OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [bfin/] [bfin.h] - Blame information for rev 734

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 709 jeremybenn
/* Definitions for the Blackfin port.
2
   Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
3
   Free Software Foundation, Inc.
4
   Contributed by Analog Devices.
5
 
6
   This file is part of GCC.
7
 
8
   GCC is free software; you can redistribute it and/or modify it
9
   under the terms of the GNU General Public License as published
10
   by the Free Software Foundation; either version 3, or (at your
11
   option) any later version.
12
 
13
   GCC is distributed in the hope that it will be useful, but WITHOUT
14
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16
   License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with GCC; see the file COPYING3.  If not see
20
   <http://www.gnu.org/licenses/>.  */
21
 
22
#ifndef _BFIN_CONFIG
23
#define _BFIN_CONFIG
24
 
25
#ifndef BFIN_OPTS_H
26
#include "config/bfin/bfin-opts.h"
27
#endif
28
 
29
#define OBJECT_FORMAT_ELF
30
 
31
#define BRT 1
32
#define BRF 0
33
 
34
/* Predefinition in the preprocessor for this target machine */
35
#ifndef TARGET_CPU_CPP_BUILTINS
36
#define TARGET_CPU_CPP_BUILTINS()               \
37
  do                                            \
38
    {                                           \
39
      builtin_define_std ("bfin");              \
40
      builtin_define_std ("BFIN");              \
41
      builtin_define ("__ADSPBLACKFIN__");      \
42
      builtin_define ("__ADSPLPBLACKFIN__");    \
43
                                                \
44
      switch (bfin_cpu_type)                    \
45
        {                                       \
46
        case BFIN_CPU_BF512:                    \
47
          builtin_define ("__ADSPBF512__");     \
48
          builtin_define ("__ADSPBF51x__");     \
49
          break;                                \
50
        case BFIN_CPU_BF514:                    \
51
          builtin_define ("__ADSPBF514__");     \
52
          builtin_define ("__ADSPBF51x__");     \
53
          break;                                \
54
        case BFIN_CPU_BF516:                    \
55
          builtin_define ("__ADSPBF516__");     \
56
          builtin_define ("__ADSPBF51x__");     \
57
          break;                                \
58
        case BFIN_CPU_BF518:                    \
59
          builtin_define ("__ADSPBF518__");     \
60
          builtin_define ("__ADSPBF51x__");     \
61
          break;                                \
62
        case BFIN_CPU_BF522:                    \
63
          builtin_define ("__ADSPBF522__");     \
64
          builtin_define ("__ADSPBF52x__");     \
65
          break;                                \
66
        case BFIN_CPU_BF523:                    \
67
          builtin_define ("__ADSPBF523__");     \
68
          builtin_define ("__ADSPBF52x__");     \
69
          break;                                \
70
        case BFIN_CPU_BF524:                    \
71
          builtin_define ("__ADSPBF524__");     \
72
          builtin_define ("__ADSPBF52x__");     \
73
          break;                                \
74
        case BFIN_CPU_BF525:                    \
75
          builtin_define ("__ADSPBF525__");     \
76
          builtin_define ("__ADSPBF52x__");     \
77
          break;                                \
78
        case BFIN_CPU_BF526:                    \
79
          builtin_define ("__ADSPBF526__");     \
80
          builtin_define ("__ADSPBF52x__");     \
81
          break;                                \
82
        case BFIN_CPU_BF527:                    \
83
          builtin_define ("__ADSPBF527__");     \
84
          builtin_define ("__ADSPBF52x__");     \
85
          break;                                \
86
        case BFIN_CPU_BF531:                    \
87
          builtin_define ("__ADSPBF531__");     \
88
          break;                                \
89
        case BFIN_CPU_BF532:                    \
90
          builtin_define ("__ADSPBF532__");     \
91
          break;                                \
92
        case BFIN_CPU_BF533:                    \
93
          builtin_define ("__ADSPBF533__");     \
94
          break;                                \
95
        case BFIN_CPU_BF534:                    \
96
          builtin_define ("__ADSPBF534__");     \
97
          break;                                \
98
        case BFIN_CPU_BF536:                    \
99
          builtin_define ("__ADSPBF536__");     \
100
          break;                                \
101
        case BFIN_CPU_BF537:                    \
102
          builtin_define ("__ADSPBF537__");     \
103
          break;                                \
104
        case BFIN_CPU_BF538:                    \
105
          builtin_define ("__ADSPBF538__");     \
106
          break;                                \
107
        case BFIN_CPU_BF539:                    \
108
          builtin_define ("__ADSPBF539__");     \
109
          break;                                \
110
        case BFIN_CPU_BF542M:                   \
111
          builtin_define ("__ADSPBF542M__");    \
112
        case BFIN_CPU_BF542:                    \
113
          builtin_define ("__ADSPBF542__");     \
114
          builtin_define ("__ADSPBF54x__");     \
115
          break;                                \
116
        case BFIN_CPU_BF544M:                   \
117
          builtin_define ("__ADSPBF544M__");    \
118
        case BFIN_CPU_BF544:                    \
119
          builtin_define ("__ADSPBF544__");     \
120
          builtin_define ("__ADSPBF54x__");     \
121
          break;                                \
122
        case BFIN_CPU_BF547M:                   \
123
          builtin_define ("__ADSPBF547M__");    \
124
        case BFIN_CPU_BF547:                    \
125
          builtin_define ("__ADSPBF547__");     \
126
          builtin_define ("__ADSPBF54x__");     \
127
          break;                                \
128
        case BFIN_CPU_BF548M:                   \
129
          builtin_define ("__ADSPBF548M__");    \
130
        case BFIN_CPU_BF548:                    \
131
          builtin_define ("__ADSPBF548__");     \
132
          builtin_define ("__ADSPBF54x__");     \
133
          break;                                \
134
        case BFIN_CPU_BF549M:                   \
135
          builtin_define ("__ADSPBF549M__");    \
136
        case BFIN_CPU_BF549:                    \
137
          builtin_define ("__ADSPBF549__");     \
138
          builtin_define ("__ADSPBF54x__");     \
139
          break;                                \
140
        case BFIN_CPU_BF561:                    \
141
          builtin_define ("__ADSPBF561__");     \
142
          break;                                \
143
        case BFIN_CPU_BF592:            \
144
          builtin_define ("__ADSPBF592__"); \
145
          builtin_define ("__ADSPBF59x__"); \
146
          break;                \
147
        }                                       \
148
                                                \
149
      if (bfin_si_revision != -1)               \
150
        {                                       \
151
          /* space of 0xnnnn and a NUL */       \
152
          char *buf = XALLOCAVEC (char, 7);     \
153
                                                \
154
          sprintf (buf, "0x%04x", bfin_si_revision);                    \
155
          builtin_define_with_value ("__SILICON_REVISION__", buf, 0);    \
156
        }                                                               \
157
                                                                        \
158
      if (bfin_workarounds)                                             \
159
        builtin_define ("__WORKAROUNDS_ENABLED");                       \
160
      if (ENABLE_WA_SPECULATIVE_LOADS)                                  \
161
        builtin_define ("__WORKAROUND_SPECULATIVE_LOADS");              \
162
      if (ENABLE_WA_SPECULATIVE_SYNCS)                                  \
163
        builtin_define ("__WORKAROUND_SPECULATIVE_SYNCS");              \
164
      if (ENABLE_WA_INDIRECT_CALLS)                                     \
165
        builtin_define ("__WORKAROUND_INDIRECT_CALLS");                 \
166
      if (ENABLE_WA_RETS)                                               \
167
        builtin_define ("__WORKAROUND_RETS");                           \
168
                                                \
169
      if (TARGET_FDPIC)                         \
170
        {                                       \
171
          builtin_define ("__BFIN_FDPIC__");    \
172
          builtin_define ("__FDPIC__");         \
173
        }                                       \
174
      if (TARGET_ID_SHARED_LIBRARY              \
175
          && !TARGET_SEP_DATA)                  \
176
        builtin_define ("__ID_SHARED_LIB__");   \
177
      if (flag_no_builtin)                      \
178
        builtin_define ("__NO_BUILTIN");        \
179
      if (TARGET_MULTICORE)                     \
180
        builtin_define ("__BFIN_MULTICORE");    \
181
      if (TARGET_COREA)                         \
182
        builtin_define ("__BFIN_COREA");        \
183
      if (TARGET_COREB)                         \
184
        builtin_define ("__BFIN_COREB");        \
185
      if (TARGET_SDRAM)                         \
186
        builtin_define ("__BFIN_SDRAM");        \
187
    }                                           \
188
  while (0)
189
#endif
190
 
191
#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS   "\
192
 %{mleaf-id-shared-library:%{!mid-shared-library:-mid-shared-library}} \
193
 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
194
            %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
195
"
196
#ifndef SUBTARGET_DRIVER_SELF_SPECS
197
# define SUBTARGET_DRIVER_SELF_SPECS
198
#endif
199
 
200
#define LINK_GCC_C_SEQUENCE_SPEC "\
201
  %{mfast-fp:-lbffastfp} %G %L %{mfast-fp:-lbffastfp} %G \
202
"
203
 
204
#undef  ASM_SPEC
205
#define ASM_SPEC "\
206
    %{mno-fdpic:-mnopic} %{mfdpic}"
207
 
208
#define LINK_SPEC "\
209
%{h*} %{v:-V} \
210
%{mfdpic:-melf32bfinfd -z text} \
211
%{static:-dn -Bstatic} \
212
%{shared:-G -Bdynamic} \
213
%{symbolic:-Bsymbolic} \
214
-init __init -fini __fini "
215
 
216
/* Generate DSP instructions, like DSP halfword loads */
217
#define TARGET_DSP                      (1)
218
 
219
#define TARGET_DEFAULT 0
220
 
221
/* Maximum number of library ids we permit */
222
#define MAX_LIBRARY_ID 255
223
 
224
extern const char *bfin_library_id_string;
225
 
226
#define FUNCTION_MODE    SImode
227
#define Pmode            SImode
228
 
229
/* store-condition-codes instructions store 0 for false
230
   This is the value stored for true.  */
231
#define STORE_FLAG_VALUE 1
232
 
233
/* Define this if pushing a word on the stack
234
   makes the stack pointer a smaller address.  */
235
#define STACK_GROWS_DOWNWARD
236
 
237
#define STACK_PUSH_CODE PRE_DEC
238
 
239
/* Define this to nonzero if the nominal address of the stack frame
240
   is at the high-address end of the local variables;
241
   that is, each additional local variable allocated
242
   goes at a more negative offset in the frame.  */
243
#define FRAME_GROWS_DOWNWARD 1
244
 
245
/* We define a dummy ARGP register; the parameters start at offset 0 from
246
   it. */
247
#define FIRST_PARM_OFFSET(DECL) 0
248
 
249
/* Offset within stack frame to start allocating local variables at.
250
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
251
   first local allocated.  Otherwise, it is the offset to the BEGINNING
252
   of the first local allocated.  */
253
#define STARTING_FRAME_OFFSET 0
254
 
255
/* Register to use for pushing function arguments.  */
256
#define STACK_POINTER_REGNUM REG_P6
257
 
258
/* Base register for access to local variables of the function.  */
259
#define FRAME_POINTER_REGNUM REG_P7
260
 
261
/* A dummy register that will be eliminated to either FP or SP.  */
262
#define ARG_POINTER_REGNUM REG_ARGP
263
 
264
/* `PIC_OFFSET_TABLE_REGNUM'
265
     The register number of the register used to address a table of
266
     static data addresses in memory.  In some cases this register is
267
     defined by a processor's "application binary interface" (ABI).
268
     When this macro is defined, RTL is generated for this register
269
     once, as with the stack pointer and frame pointer registers.  If
270
     this macro is not defined, it is up to the machine-dependent files
271
     to allocate such a register (if necessary). */
272
#define PIC_OFFSET_TABLE_REGNUM (REG_P5)
273
 
274
#define FDPIC_FPTR_REGNO REG_P1
275
#define FDPIC_REGNO REG_P3
276
#define OUR_FDPIC_REG   get_hard_reg_initial_val (SImode, FDPIC_REGNO)
277
 
278
/* A static chain register for nested functions.  We need to use a
279
   call-clobbered register for this.  */
280
#define STATIC_CHAIN_REGNUM REG_P2
281
 
282
/* Define this if functions should assume that stack space has been
283
   allocated for arguments even when their values are passed in
284
   registers.
285
 
286
   The value of this macro is the size, in bytes, of the area reserved for
287
   arguments passed in registers.
288
 
289
   This space can either be allocated by the caller or be a part of the
290
   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
291
   says which.  */
292
#define FIXED_STACK_AREA 12
293
#define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
294
 
295
/* Define this if the above stack space is to be considered part of the
296
 * space allocated by the caller.  */
297
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
298
 
299
/* Define this if the maximum size of all the outgoing args is to be
300
   accumulated and pushed during the prologue.  The amount can be
301
   found in the variable crtl->outgoing_args_size. */
302
#define ACCUMULATE_OUTGOING_ARGS 1
303
 
304
/*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
305
 
306
/* If defined, a C expression to compute the alignment for a local
307
   variable.  TYPE is the data type, and ALIGN is the alignment that
308
   the object would ordinarily have.  The value of this macro is used
309
   instead of that alignment to align the object.
310
 
311
   If this macro is not defined, then ALIGN is used.
312
 
313
   One use of this macro is to increase alignment of medium-size
314
   data to make it all fit in fewer cache lines.  */
315
 
316
#define LOCAL_ALIGNMENT(TYPE, ALIGN) bfin_local_alignment ((TYPE), (ALIGN))
317
 
318
/* Make strings word-aligned so strcpy from constants will be faster.  */
319
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
320
  (TREE_CODE (EXP) == STRING_CST        \
321
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
322
 
323
#define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
324
 
325
/* Definitions for register eliminations.
326
 
327
   This is an array of structures.  Each structure initializes one pair
328
   of eliminable registers.  The "from" register number is given first,
329
   followed by "to".  Eliminations of the same "from" register are listed
330
   in order of preference.
331
 
332
   There are two registers that can always be eliminated on the i386.
333
   The frame pointer and the arg pointer can be replaced by either the
334
   hard frame pointer or to the stack pointer, depending upon the
335
   circumstances.  The hard frame pointer is not used before reload and
336
   so it is not eligible for elimination.  */
337
 
338
#define ELIMINABLE_REGS                         \
339
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},   \
340
 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},   \
341
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
342
 
343
/* Define the offset between two registers, one to be eliminated, and the other
344
   its replacement, at the start of a routine.  */
345
 
346
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
347
  ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
348
 
349
/* This processor has
350
   8 data register for doing arithmetic
351
   8  pointer register for doing addressing, including
352
      1  stack pointer P6
353
      1  frame pointer P7
354
   4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
355
   1  condition code flag register CC
356
   5  return address registers RETS/I/X/N/E
357
   1  arithmetic status register (ASTAT).  */
358
 
359
#define FIRST_PSEUDO_REGISTER 50
360
 
361
#define D_REGNO_P(X) ((X) <= REG_R7)
362
#define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
363
#define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
364
#define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
365
#define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
366
#define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
367
#define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
368
#define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
369
#define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
370
 
371
#define REGISTER_NAMES { \
372
  "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
373
  "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
374
  "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
375
  "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
376
  "A0", "A1", \
377
  "CC", \
378
  "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
379
  "ARGP", \
380
  "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
381
}
382
 
383
#define SHORT_REGISTER_NAMES { \
384
        "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
385
        "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
386
        "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
387
        "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
388
 
389
#define HIGH_REGISTER_NAMES { \
390
        "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
391
        "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
392
        "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
393
        "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
394
 
395
#define DREGS_PAIR_NAMES { \
396
  "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0,  }
397
 
398
#define BYTE_REGISTER_NAMES { \
399
  "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B",  }
400
 
401
 
402
/* 1 for registers that have pervasive standard uses
403
   and are not available for the register allocator.  */
404
 
405
#define FIXED_REGISTERS \
406
/*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
407
{ 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0, 0, 0, 0, 1, 0,    \
408
/*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
409
  0, 0, 0, 0, 0, 0, 0, 0,   1, 1, 1, 1, 0, 0, 0, 0,    \
410
/*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp lt0/1 lc0/1 */ \
411
  0, 0, 0, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,    \
412
/*lb0/1 */ \
413
  1, 1  \
414
}
415
 
416
/* 1 for registers not available across function calls.
417
   These must include the FIXED_REGISTERS and also any
418
   registers that can be used without being saved.
419
   The latter must include the registers where values are returned
420
   and the register where structure-value addresses are passed.
421
   Aside from that, you can include as many other registers as you like.  */
422
 
423
#define CALL_USED_REGISTERS \
424
/*r0 r1 r2 r3 r4 r5 r6 r7   p0 p1 p2 p3 p4 p5 p6 p7 */ \
425
{ 1, 1, 1, 1, 0, 0, 0, 0,   1, 1, 1, 0, 0, 0, 1, 0, \
426
/*i0 i1 i2 i3 b0 b1 b2 b3   l0 l1 l2 l3 m0 m1 m2 m3 */ \
427
  1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1,   \
428
/*a0 a1 cc rets/i/x/n/e     astat seqstat usp argp lt0/1 lc0/1 */ \
429
  1, 1, 1, 1, 1, 1, 1, 1,   1, 1, 1, 1, 1, 1, 1, 1, \
430
/*lb0/1 */ \
431
  1, 1  \
432
}
433
 
434
/* Order in which to allocate registers.  Each register must be
435
   listed once, even those in FIXED_REGISTERS.  List frame pointer
436
   late and fixed registers last.  Note that, in general, we prefer
437
   registers listed in CALL_USED_REGISTERS, keeping the others
438
   available for storage of persistent values. */
439
 
440
#define REG_ALLOC_ORDER \
441
{ REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
442
  REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
443
  REG_A0, REG_A1, \
444
  REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
445
  REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
446
  REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE,               \
447
  REG_ASTAT, REG_SEQSTAT, REG_USP,                                \
448
  REG_CC, REG_ARGP,                                               \
449
  REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1            \
450
}
451
 
452
/* Define the classes of registers for register constraints in the
453
   machine description.  Also define ranges of constants.
454
 
455
   One of the classes must always be named ALL_REGS and include all hard regs.
456
   If there is more than one class, another class must be named NO_REGS
457
   and contain no registers.
458
 
459
   The name GENERAL_REGS must be the name of a class (or an alias for
460
   another name such as ALL_REGS).  This is the class of registers
461
   that is allowed by "g" or "r" in a register constraint.
462
   Also, registers outside this class are allocated only when
463
   instructions express preferences for them.
464
 
465
   The classes must be numbered in nondecreasing order; that is,
466
   a larger-numbered class must never be contained completely
467
   in a smaller-numbered class.
468
 
469
   For any two classes, it is very desirable that there be another
470
   class that represents their union. */
471
 
472
 
473
enum reg_class
474
{
475
  NO_REGS,
476
  IREGS,
477
  BREGS,
478
  LREGS,
479
  MREGS,
480
  CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form.  See Automatic Circular Buffering.  */
481
  DAGREGS,
482
  EVEN_AREGS,
483
  ODD_AREGS,
484
  AREGS,
485
  CCREGS,
486
  EVEN_DREGS,
487
  ODD_DREGS,
488
  D0REGS,
489
  D1REGS,
490
  D2REGS,
491
  D3REGS,
492
  D4REGS,
493
  D5REGS,
494
  D6REGS,
495
  D7REGS,
496
  DREGS,
497
  P0REGS,
498
  FDPIC_REGS,
499
  FDPIC_FPTR_REGS,
500
  PREGS_CLOBBERED,
501
  PREGS,
502
  IPREGS,
503
  DPREGS,
504
  MOST_REGS,
505
  LT_REGS,
506
  LC_REGS,
507
  LB_REGS,
508
  PROLOGUE_REGS,
509
  NON_A_CC_REGS,
510
  ALL_REGS, LIM_REG_CLASSES
511
};
512
 
513
#define N_REG_CLASSES ((int)LIM_REG_CLASSES)
514
 
515
#define GENERAL_REGS DPREGS
516
 
517
/* Give names of register classes as strings for dump file.   */
518
 
519
#define REG_CLASS_NAMES \
520
{  "NO_REGS",           \
521
   "IREGS",             \
522
   "BREGS",             \
523
   "LREGS",             \
524
   "MREGS",             \
525
   "CIRCREGS",          \
526
   "DAGREGS",           \
527
   "EVEN_AREGS",        \
528
   "ODD_AREGS",         \
529
   "AREGS",             \
530
   "CCREGS",            \
531
   "EVEN_DREGS",        \
532
   "ODD_DREGS",         \
533
   "D0REGS",            \
534
   "D1REGS",            \
535
   "D2REGS",            \
536
   "D3REGS",            \
537
   "D4REGS",            \
538
   "D5REGS",            \
539
   "D6REGS",            \
540
   "D7REGS",            \
541
   "DREGS",             \
542
   "P0REGS",            \
543
   "FDPIC_REGS",        \
544
   "FDPIC_FPTR_REGS",   \
545
   "PREGS_CLOBBERED",   \
546
   "PREGS",             \
547
   "IPREGS",            \
548
   "DPREGS",            \
549
   "MOST_REGS",         \
550
   "LT_REGS",           \
551
   "LC_REGS",           \
552
   "LB_REGS",           \
553
   "PROLOGUE_REGS",     \
554
   "NON_A_CC_REGS",     \
555
   "ALL_REGS" }
556
 
557
/* An initializer containing the contents of the register classes, as integers
558
   which are bit masks.  The Nth integer specifies the contents of class N.
559
   The way the integer MASK is interpreted is that register R is in the class
560
   if `MASK & (1 << R)' is 1.
561
 
562
   When the machine has more than 32 registers, an integer does not suffice.
563
   Then the integers are replaced by sub-initializers, braced groupings
564
   containing several integers.  Each sub-initializer must be suitable as an
565
   initializer for the type `HARD_REG_SET' which is defined in
566
   `hard-reg-set.h'.  */
567
 
568
/* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS.  We use
569
   MOST_REGS as the union of DPREGS and DAGREGS.  */
570
 
571
#define REG_CLASS_CONTENTS \
572
    /* 31 - 0       63-32   */ \
573
{   { 0x00000000,    0 },               /* NO_REGS */   \
574
    { 0x000f0000,    0 },               /* IREGS */     \
575
    { 0x00f00000,    0 },               /* BREGS */             \
576
    { 0x0f000000,    0 },               /* LREGS */     \
577
    { 0xf0000000,    0 },               /* MREGS */   \
578
    { 0x0fff0000,    0 },               /* CIRCREGS */   \
579
    { 0xffff0000,    0 },               /* DAGREGS */   \
580
    { 0x00000000,    0x1 },             /* EVEN_AREGS */   \
581
    { 0x00000000,    0x2 },             /* ODD_AREGS */   \
582
    { 0x00000000,    0x3 },             /* AREGS */   \
583
    { 0x00000000,    0x4 },             /* CCREGS */  \
584
    { 0x00000055,    0 },               /* EVEN_DREGS */   \
585
    { 0x000000aa,    0 },               /* ODD_DREGS */   \
586
    { 0x00000001,    0 },               /* D0REGS */   \
587
    { 0x00000002,    0 },               /* D1REGS */   \
588
    { 0x00000004,    0 },               /* D2REGS */   \
589
    { 0x00000008,    0 },               /* D3REGS */   \
590
    { 0x00000010,    0 },               /* D4REGS */   \
591
    { 0x00000020,    0 },               /* D5REGS */   \
592
    { 0x00000040,    0 },               /* D6REGS */   \
593
    { 0x00000080,    0 },               /* D7REGS */   \
594
    { 0x000000ff,    0 },               /* DREGS */   \
595
    { 0x00000100,    0x000 },           /* P0REGS */   \
596
    { 0x00000800,    0x000 },           /* FDPIC_REGS */   \
597
    { 0x00000200,    0x000 },           /* FDPIC_FPTR_REGS */   \
598
    { 0x00004700,    0x800 },           /* PREGS_CLOBBERED */   \
599
    { 0x0000ff00,    0x800 },           /* PREGS */   \
600
    { 0x000fff00,    0x800 },           /* IPREGS */    \
601
    { 0x0000ffff,    0x800 },           /* DPREGS */   \
602
    { 0xffffffff,    0x800 },           /* MOST_REGS */\
603
    { 0x00000000,    0x3000 },          /* LT_REGS */\
604
    { 0x00000000,    0xc000 },          /* LC_REGS */\
605
    { 0x00000000,    0x30000 },         /* LB_REGS */\
606
    { 0x00000000,    0x3f7f8 },         /* PROLOGUE_REGS */\
607
    { 0xffffffff,    0x3fff8 },         /* NON_A_CC_REGS */\
608
    { 0xffffffff,    0x3ffff }}         /* ALL_REGS */
609
 
610
#define IREG_POSSIBLE_P(OUTER)                               \
611
  ((OUTER) == POST_INC || (OUTER) == PRE_INC                 \
612
   || (OUTER) == POST_DEC || (OUTER) == PRE_DEC              \
613
   || (OUTER) == MEM || (OUTER) == ADDRESS)
614
 
615
#define MODE_CODE_BASE_REG_CLASS(MODE, AS, OUTER, INDEX)        \
616
  ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
617
 
618
#define INDEX_REG_CLASS         PREGS
619
 
620
#define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX)       \
621
  (P_REGNO_P (X) || (X) == REG_ARGP                             \
622
   || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode              \
623
       && I_REGNO_P (X)))
624
 
625
#define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX)    \
626
  ((X) >= FIRST_PSEUDO_REGISTER                                 \
627
   || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
628
 
629
#ifdef REG_OK_STRICT
630
#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, AS, OUTER, INDEX) \
631
  REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
632
#else
633
#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, AS, OUTER, INDEX) \
634
  REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
635
#endif
636
 
637
#define REGNO_OK_FOR_INDEX_P(X)   0
638
 
639
/* The same information, inverted:
640
   Return the class number of the smallest class containing
641
   reg number REGNO.  This could be a conditional expression
642
   or could index an array.  */
643
 
644
#define REGNO_REG_CLASS(REGNO) \
645
((REGNO) == REG_R0 ? D0REGS                             \
646
 : (REGNO) == REG_R1 ? D1REGS                           \
647
 : (REGNO) == REG_R2 ? D2REGS                           \
648
 : (REGNO) == REG_R3 ? D3REGS                           \
649
 : (REGNO) == REG_R4 ? D4REGS                           \
650
 : (REGNO) == REG_R5 ? D5REGS                           \
651
 : (REGNO) == REG_R6 ? D6REGS                           \
652
 : (REGNO) == REG_R7 ? D7REGS                           \
653
 : (REGNO) == REG_P0 ? P0REGS                           \
654
 : (REGNO) < REG_I0 ? PREGS                             \
655
 : (REGNO) == REG_ARGP ? PREGS                          \
656
 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS       \
657
 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS       \
658
 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS       \
659
 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS       \
660
 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS       \
661
 : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS   \
662
 : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS   \
663
 : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS   \
664
 : (REGNO) == REG_CC ? CCREGS                           \
665
 : (REGNO) >= REG_RETS ? PROLOGUE_REGS                  \
666
 : NO_REGS)
667
 
668
/* When this hook returns true for MODE, the compiler allows
669
   registers explicitly used in the rtl to be used as spill registers
670
   but prevents the compiler from extending the lifetime of these
671
   registers.  */
672
#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
673
 
674
/* Do not allow to store a value in REG_CC for any mode */
675
/* Do not allow to store value in pregs if mode is not SI*/
676
#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
677
 
678
/* Return the maximum number of consecutive registers
679
   needed to represent mode MODE in a register of class CLASS.  */
680
#define CLASS_MAX_NREGS(CLASS, MODE)                                    \
681
  ((MODE) == V2PDImode && (CLASS) == AREGS ? 2                          \
682
   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
683
 
684
#define HARD_REGNO_NREGS(REGNO, MODE) \
685
  ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1    \
686
   : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
687
   : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
688
 
689
/* A C expression that is nonzero if hard register TO can be
690
   considered for use as a rename register for FROM register */
691
#define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
692
 
693
/* A C expression that is nonzero if it is desirable to choose
694
   register allocation so as to avoid move instructions between a
695
   value of mode MODE1 and a value of mode MODE2.
696
 
697
   If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
698
   MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
699
   MODE2)' must be zero. */
700
#define MODES_TIEABLE_P(MODE1, MODE2)                   \
701
 ((MODE1) == (MODE2)                                    \
702
  || ((GET_MODE_CLASS (MODE1) == MODE_INT               \
703
       || GET_MODE_CLASS (MODE1) == MODE_FLOAT)         \
704
      && (GET_MODE_CLASS (MODE2) == MODE_INT            \
705
          || GET_MODE_CLASS (MODE2) == MODE_FLOAT)      \
706
      && (MODE1) != BImode && (MODE2) != BImode         \
707
      && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD        \
708
      && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD))
709
 
710
/* `PREFERRED_RELOAD_CLASS (X, CLASS)'
711
   A C expression that places additional restrictions on the register
712
   class to use when it is necessary to copy value X into a register
713
   in class CLASS.  The value is a register class; perhaps CLASS, or
714
   perhaps another, smaller class.  */
715
#define PREFERRED_RELOAD_CLASS(X, CLASS)                \
716
  (GET_CODE (X) == POST_INC                             \
717
   || GET_CODE (X) == POST_DEC                          \
718
   || GET_CODE (X) == PRE_DEC ? PREGS : (CLASS))
719
 
720
/* Function Calling Conventions. */
721
 
722
/* The type of the current function; normal functions are of type
723
   SUBROUTINE.  */
724
typedef enum {
725
  SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
726
} e_funkind;
727
#define FUNCTION_RETURN_REGISTERS { REG_RETS, REG_RETI, REG_RETX, REG_RETN }
728
 
729
#define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
730
 
731
/* Flags for the call/call_value rtl operations set up by function_arg */
732
#define CALL_NORMAL             0x00000000      /* no special processing */
733
#define CALL_LONG               0x00000001      /* always call indirect */
734
#define CALL_SHORT              0x00000002      /* always call by symbol */
735
 
736
typedef struct {
737
  int words;                    /* # words passed so far */
738
  int nregs;                    /* # registers available for passing */
739
  int *arg_regs;                /* array of register -1 terminated */
740
  int call_cookie;              /* Do special things for this call */
741
} CUMULATIVE_ARGS;
742
 
743
#define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
744
 
745
 
746
/* Initialize a variable CUM of type CUMULATIVE_ARGS
747
   for a call to a function whose data type is FNTYPE.
748
   For a library call, FNTYPE is 0.  */
749
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
750
  (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
751
 
752
/* Define how to find the value returned by a function.
753
   VALTYPE is the data type of the value (as a tree).
754
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
755
   otherwise, FUNC is 0.
756
*/
757
 
758
#define VALUE_REGNO(MODE) (REG_R0)
759
 
760
#define FUNCTION_VALUE(VALTYPE, FUNC)           \
761
  gen_rtx_REG (TYPE_MODE (VALTYPE),             \
762
               VALUE_REGNO(TYPE_MODE(VALTYPE)))
763
 
764
/* Define how to find the value returned by a library function
765
   assuming the value has mode MODE.  */
766
 
767
#define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, VALUE_REGNO(MODE))
768
 
769
#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
770
 
771
#define DEFAULT_PCC_STRUCT_RETURN 0
772
 
773
/* Before the prologue, the return address is in the RETS register.  */
774
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
775
 
776
#define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
777
 
778
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
779
 
780
/* Call instructions don't modify the stack pointer on the Blackfin.  */
781
#define INCOMING_FRAME_SP_OFFSET 0
782
 
783
/* Describe how we implement __builtin_eh_return.  */
784
#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
785
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, REG_P2)
786
#define EH_RETURN_HANDLER_RTX \
787
    gen_frame_mem (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
788
 
789
/* Addressing Modes */
790
 
791
/*   A number, the maximum number of registers that can appear in a
792
     valid memory address.  Note that it is up to you to specify a
793
     value equal to the maximum number that `TARGET_LEGITIMATE_ADDRESS_P'
794
     would ever accept. */
795
#define MAX_REGS_PER_ADDRESS 1
796
 
797
#define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
798
      (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
799
 
800
#define HAVE_POST_INCREMENT 1
801
#define HAVE_POST_DECREMENT 1
802
#define HAVE_PRE_DECREMENT  1
803
 
804
/* `LEGITIMATE_PIC_OPERAND_P (X)'
805
     A C expression that is nonzero if X is a legitimate immediate
806
     operand on the target machine when generating position independent
807
     code.  You can assume that X satisfies `CONSTANT_P', so you need
808
     not check this.  You can also assume FLAG_PIC is true, so you need
809
     not check it either.  You need not define this macro if all
810
     constants (including `SYMBOL_REF') can be immediate operands when
811
     generating position independent code. */
812
#define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
813
 
814
#define SYMBOLIC_CONST(X)       \
815
(GET_CODE (X) == SYMBOL_REF                                             \
816
 || GET_CODE (X) == LABEL_REF                                           \
817
 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
818
 
819
#define NOTICE_UPDATE_CC(EXPR, INSN) 0
820
 
821
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
822
   is done just by pretending it is already truncated.  */
823
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
824
 
825
/* Max number of bytes we can move from memory to memory
826
   in one reasonably fast instruction.  */
827
#define MOVE_MAX UNITS_PER_WORD
828
 
829
/* If a memory-to-memory move would take MOVE_RATIO or more simple
830
   move-instruction pairs, we will do a movmem or libcall instead.  */
831
 
832
#define MOVE_RATIO(speed) 5
833
 
834
/* STORAGE LAYOUT: target machine storage layout
835
   Define this macro as a C expression which is nonzero if accessing
836
   less than a word of memory (i.e. a `char' or a `short') is no
837
   faster than accessing a word of memory, i.e., if such access
838
   require more than one instruction or if there is no difference in
839
   cost between byte and (aligned) word loads.
840
 
841
   When this macro is not defined, the compiler will access a field by
842
   finding the smallest containing object; when it is defined, a
843
   fullword load will be used if alignment permits.  Unless bytes
844
   accesses are faster than word accesses, using word accesses is
845
   preferable since it may eliminate subsequent memory access if
846
   subsequent accesses occur to other fields in the same word of the
847
   structure, but to different bytes.  */
848
#define SLOW_BYTE_ACCESS  0
849
#define SLOW_SHORT_ACCESS 0
850
 
851
/* Define this if most significant bit is lowest numbered
852
   in instructions that operate on numbered bit-fields. */
853
#define BITS_BIG_ENDIAN  0
854
 
855
/* Define this if most significant byte of a word is the lowest numbered.
856
   We can't access bytes but if we could we would in the Big Endian order. */
857
#define BYTES_BIG_ENDIAN 0
858
 
859
/* Define this if most significant word of a multiword number is numbered. */
860
#define WORDS_BIG_ENDIAN 0
861
 
862
/* number of bits in an addressable storage unit */
863
#define BITS_PER_UNIT 8
864
 
865
/* Width in bits of a "word", which is the contents of a machine register.
866
   Note that this is not necessarily the width of data type `int';
867
   if using 16-bit ints on a 68000, this would still be 32.
868
   But on a machine with 16-bit registers, this would be 16.  */
869
#define BITS_PER_WORD 32
870
 
871
/* Width of a word, in units (bytes).  */
872
#define UNITS_PER_WORD 4
873
 
874
/* Width in bits of a pointer.
875
   See also the macro `Pmode1' defined below.  */
876
#define POINTER_SIZE 32
877
 
878
/* Allocation boundary (in *bits*) for storing pointers in memory.  */
879
#define POINTER_BOUNDARY 32
880
 
881
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
882
#define PARM_BOUNDARY 32
883
 
884
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
885
#define STACK_BOUNDARY 32
886
 
887
/* Allocation boundary (in *bits*) for the code of a function.  */
888
#define FUNCTION_BOUNDARY 32
889
 
890
/* Alignment of field after `int : 0' in a structure.  */
891
#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
892
 
893
/* No data type wants to be aligned rounder than this.  */
894
#define BIGGEST_ALIGNMENT 32
895
 
896
/* Define this if move instructions will actually fail to work
897
   when given unaligned data.  */
898
#define STRICT_ALIGNMENT 1
899
 
900
/* (shell-command "rm c-decl.o stor-layout.o")
901
 *  never define PCC_BITFIELD_TYPE_MATTERS
902
 *  really cause some alignment problem
903
 */
904
 
905
#define UNITS_PER_FLOAT  ((FLOAT_TYPE_SIZE  + BITS_PER_UNIT - 1) / \
906
                           BITS_PER_UNIT)
907
 
908
#define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
909
                           BITS_PER_UNIT)
910
 
911
 
912
/* what is the 'type' of size_t */
913
#define SIZE_TYPE "long unsigned int"
914
 
915
/* Define this as 1 if `char' should by default be signed; else as 0.  */
916
#define DEFAULT_SIGNED_CHAR 1
917
#define FLOAT_TYPE_SIZE BITS_PER_WORD
918
#define SHORT_TYPE_SIZE 16
919
#define CHAR_TYPE_SIZE  8
920
#define INT_TYPE_SIZE   32
921
#define LONG_TYPE_SIZE  32
922
#define LONG_LONG_TYPE_SIZE 64
923
 
924
/* Note: Fix this to depend on target switch. -- lev */
925
 
926
/* Note: Try to implement double and force long double. -- tonyko
927
 * #define __DOUBLES_ARE_FLOATS__
928
 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
929
 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
930
 * #define DOUBLES_ARE_FLOATS 1
931
 */
932
 
933
#define DOUBLE_TYPE_SIZE        64
934
#define LONG_DOUBLE_TYPE_SIZE   64
935
 
936
/* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
937
     A macro to update M and UNSIGNEDP when an object whose type is
938
     TYPE and which has the specified mode and signedness is to be
939
     stored in a register.  This macro is only called when TYPE is a
940
     scalar type.
941
 
942
     On most RISC machines, which only have operations that operate on
943
     a full register, define this macro to set M to `word_mode' if M is
944
     an integer mode narrower than `BITS_PER_WORD'.  In most cases,
945
     only integer modes should be widened because wider-precision
946
     floating-point operations are usually more expensive than their
947
     narrower counterparts.
948
 
949
     For most machines, the macro definition does not change UNSIGNEDP.
950
     However, some machines, have instructions that preferentially
951
     handle either signed or unsigned quantities of certain modes.  For
952
     example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
953
     instructions sign-extend the result to 64 bits.  On such machines,
954
     set UNSIGNEDP according to which kind of extension is more
955
     efficient.
956
 
957
     Do not define this macro if it would never modify M.*/
958
 
959
#define BFIN_PROMOTE_MODE_P(MODE) \
960
    (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT   \
961
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
962
 
963
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)     \
964
  if (BFIN_PROMOTE_MODE_P(MODE))                \
965
    {                                           \
966
      if (MODE == QImode)                       \
967
        UNSIGNEDP = 1;                          \
968
      else if (MODE == HImode)                  \
969
        UNSIGNEDP = 0;                          \
970
      (MODE) = SImode;                          \
971
    }
972
 
973
/* Describing Relative Costs of Operations */
974
 
975
/* Do not put function addr into constant pool */
976
#define NO_FUNCTION_CSE 1
977
 
978
/* Specify the machine mode that this machine uses
979
   for the index in the tablejump instruction.  */
980
#define CASE_VECTOR_MODE SImode
981
 
982
#define JUMP_TABLES_IN_TEXT_SECTION flag_pic
983
 
984
/* Define if operations between registers always perform the operation
985
   on the full register even if a narrower mode is specified.
986
#define WORD_REGISTER_OPERATIONS
987
*/
988
 
989
/* Evaluates to true if A and B are mac flags that can be used
990
   together in a single multiply insn.  That is the case if they are
991
   both the same flag not involving M, or if one is a combination of
992
   the other with M.  */
993
#define MACFLAGS_MATCH_P(A, B) \
994
 ((A) == (B) \
995
  || ((A) == MACFLAG_NONE && (B) == MACFLAG_M) \
996
  || ((A) == MACFLAG_M && (B) == MACFLAG_NONE) \
997
  || ((A) == MACFLAG_IS && (B) == MACFLAG_IS_M) \
998
  || ((A) == MACFLAG_IS_M && (B) == MACFLAG_IS))
999
 
1000
/* Switch into a generic section.  */
1001
#define TARGET_ASM_NAMED_SECTION  default_elf_asm_named_section
1002
 
1003
#define PRINT_OPERAND(FILE, RTX, CODE)   print_operand (FILE, RTX, CODE)
1004
#define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1005
 
1006
typedef enum sections {
1007
    CODE_DIR,
1008
    DATA_DIR,
1009
    LAST_SECT_NM
1010
} SECT_ENUM_T;
1011
 
1012
typedef enum directives {
1013
    LONG_CONST_DIR,
1014
    SHORT_CONST_DIR,
1015
    BYTE_CONST_DIR,
1016
    SPACE_DIR,
1017
    INIT_DIR,
1018
    LAST_DIR_NM
1019
} DIR_ENUM_T;
1020
 
1021
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR)   \
1022
  ((C) == ';'                                   \
1023
   || ((C) == '|' && (STR)[1] == '|'))
1024
 
1025
#define TEXT_SECTION_ASM_OP ".text;"
1026
#define DATA_SECTION_ASM_OP ".data;"
1027
 
1028
#define ASM_APP_ON  ""
1029
#define ASM_APP_OFF ""
1030
 
1031
#define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1032
  do {  fputs (".global ", FILE);               \
1033
        assemble_name (FILE, NAME);             \
1034
        fputc (';',FILE);                       \
1035
        fputc ('\n',FILE);                      \
1036
      } while (0)
1037
 
1038
#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1039
  do {                                  \
1040
    fputs (".type ", FILE);             \
1041
    assemble_name (FILE, NAME);         \
1042
    fputs (", STT_FUNC", FILE);         \
1043
    fputc (';',FILE);                   \
1044
    fputc ('\n',FILE);                  \
1045
    ASM_OUTPUT_LABEL(FILE, NAME);       \
1046
  } while (0)
1047
 
1048
#define ASM_OUTPUT_LABEL(FILE, NAME)    \
1049
  do {  assemble_name (FILE, NAME);             \
1050
        fputs (":\n",FILE);                     \
1051
      } while (0)
1052
 
1053
#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
1054
    do {  fprintf (FILE, "_%s", NAME); \
1055
        } while (0)
1056
 
1057
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)            \
1058
do { char __buf[256];                                   \
1059
     fprintf (FILE, "\t.dd\t");                         \
1060
     ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);   \
1061
     assemble_name (FILE, __buf);                       \
1062
     fputc (';', FILE);                                 \
1063
     fputc ('\n', FILE);                                \
1064
   } while (0)
1065
 
1066
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1067
    MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1068
 
1069
#define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)           \
1070
    do {                                                        \
1071
        char __buf[256];                                        \
1072
        fprintf (FILE, "\t.dd\t");                              \
1073
        ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE);        \
1074
        assemble_name (FILE, __buf);                            \
1075
        fputs (" - ", FILE);                                    \
1076
        ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL);          \
1077
        assemble_name (FILE, __buf);                            \
1078
        fputc (';', FILE);                                      \
1079
        fputc ('\n', FILE);                                     \
1080
    } while (0)
1081
 
1082
#define ASM_OUTPUT_ALIGN(FILE,LOG)                              \
1083
    do {                                                        \
1084
      if ((LOG) != 0)                                           \
1085
        fprintf (FILE, "\t.align %d\n", 1 << (LOG));            \
1086
    } while (0)
1087
 
1088
#define ASM_OUTPUT_SKIP(FILE,SIZE)              \
1089
    do {                                        \
1090
        asm_output_skip (FILE, SIZE);           \
1091
    } while (0)
1092
 
1093
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)     \
1094
do {                                            \
1095
    switch_to_section (data_section);                           \
1096
    if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2);  \
1097
    ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE);               \
1098
    ASM_OUTPUT_LABEL (FILE, NAME);                              \
1099
    fprintf (FILE, "%s %ld;\n", ASM_SPACE,                      \
1100
             (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1);     \
1101
} while (0)
1102
 
1103
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)    \
1104
     do {                                               \
1105
        ASM_GLOBALIZE_LABEL1(FILE,NAME);                \
1106
        ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1107
 
1108
#define ASM_COMMENT_START "//"
1109
 
1110
#define PROFILE_BEFORE_PROLOGUE
1111
#define FUNCTION_PROFILER(FILE, LABELNO)        \
1112
  do {                                          \
1113
    fprintf (FILE, "\t[--SP] = RETS;\n");       \
1114
    if (TARGET_LONG_CALLS)                      \
1115
      {                                         \
1116
        fprintf (FILE, "\tP2.h = __mcount;\n"); \
1117
        fprintf (FILE, "\tP2.l = __mcount;\n"); \
1118
        fprintf (FILE, "\tCALL (P2);\n");       \
1119
      }                                         \
1120
    else                                        \
1121
      fprintf (FILE, "\tCALL __mcount;\n");     \
1122
    fprintf (FILE, "\tRETS = [SP++];\n");       \
1123
  } while(0)
1124
 
1125
#undef NO_PROFILE_COUNTERS
1126
#define NO_PROFILE_COUNTERS 1
1127
 
1128
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "\t[--SP] = %s;\n", reg_names[REGNO])
1129
#define ASM_OUTPUT_REG_POP(FILE, REGNO)  fprintf (FILE, "\t%s = [SP++];\n", reg_names[REGNO])
1130
 
1131
extern rtx bfin_cc_rtx, bfin_rets_rtx;
1132
 
1133
/* This works for GAS and some other assemblers.  */
1134
#define SET_ASM_OP              ".set "
1135
 
1136
/* DBX register number for a given compiler register number */
1137
#define DBX_REGISTER_NUMBER(REGNO)  (REGNO) 
1138
 
1139
#define SIZE_ASM_OP     "\t.size\t"
1140
 
1141
extern int splitting_for_sched, splitting_loops;
1142
 
1143
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) ((CHAR) == '!')
1144
 
1145
#ifndef TARGET_SUPPORTS_SYNC_CALLS
1146
#define TARGET_SUPPORTS_SYNC_CALLS 0
1147
#endif
1148
 
1149
struct bfin_cpu
1150
{
1151
  const char *name;
1152
  bfin_cpu_t type;
1153
  int si_revision;
1154
  unsigned int workarounds;
1155
};
1156
 
1157
extern const struct bfin_cpu bfin_cpus[];
1158
 
1159
#endif /*  _BFIN_CONFIG */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.