1 |
709 |
jeremybenn |
/* Target Code for TI C6X
|
2 |
|
|
Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Andrew Jenner <andrew@codesourcery.com>
|
4 |
|
|
Contributed by Bernd Schmidt <bernds@codesourcery.com>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
9 |
|
|
under the terms of the GNU General Public License as published
|
10 |
|
|
by the Free Software Foundation; either version 3, or (at your
|
11 |
|
|
option) any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
14 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
15 |
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
16 |
|
|
License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "rtl.h"
|
27 |
|
|
#include "tree.h"
|
28 |
|
|
#include "insn-flags.h"
|
29 |
|
|
#include "output.h"
|
30 |
|
|
#include "insn-attr.h"
|
31 |
|
|
#include "insn-codes.h"
|
32 |
|
|
#include "expr.h"
|
33 |
|
|
#include "regs.h"
|
34 |
|
|
#include "optabs.h"
|
35 |
|
|
#include "recog.h"
|
36 |
|
|
#include "ggc.h"
|
37 |
|
|
#include "sched-int.h"
|
38 |
|
|
#include "timevar.h"
|
39 |
|
|
#include "tm_p.h"
|
40 |
|
|
#include "tm-preds.h"
|
41 |
|
|
#include "tm-constrs.h"
|
42 |
|
|
#include "df.h"
|
43 |
|
|
#include "integrate.h"
|
44 |
|
|
#include "diagnostic-core.h"
|
45 |
|
|
#include "cgraph.h"
|
46 |
|
|
#include "cfglayout.h"
|
47 |
|
|
#include "langhooks.h"
|
48 |
|
|
#include "target.h"
|
49 |
|
|
#include "target-def.h"
|
50 |
|
|
#include "sel-sched.h"
|
51 |
|
|
#include "debug.h"
|
52 |
|
|
#include "opts.h"
|
53 |
|
|
#include "hw-doloop.h"
|
54 |
|
|
#include "regrename.h"
|
55 |
|
|
|
56 |
|
|
/* Table of supported architecture variants. */
|
57 |
|
|
typedef struct
|
58 |
|
|
{
|
59 |
|
|
const char *arch;
|
60 |
|
|
enum c6x_cpu_type type;
|
61 |
|
|
unsigned short features;
|
62 |
|
|
} c6x_arch_table;
|
63 |
|
|
|
64 |
|
|
/* A list of all ISAs, mapping each one to a representative device.
|
65 |
|
|
Used for -march selection. */
|
66 |
|
|
static const c6x_arch_table all_isas[] =
|
67 |
|
|
{
|
68 |
|
|
#define C6X_ISA(NAME,DEVICE,FLAGS) \
|
69 |
|
|
{ NAME, DEVICE, FLAGS },
|
70 |
|
|
#include "c6x-isas.def"
|
71 |
|
|
#undef C6X_ISA
|
72 |
|
|
{ NULL, C6X_CPU_C62X, 0 }
|
73 |
|
|
};
|
74 |
|
|
|
75 |
|
|
/* This is the parsed result of the "-march=" option, if given. */
|
76 |
|
|
enum c6x_cpu_type c6x_arch = C6X_DEFAULT_ARCH;
|
77 |
|
|
|
78 |
|
|
/* A mask of insn types that are allowed by the architecture selected by
|
79 |
|
|
the -march option. */
|
80 |
|
|
unsigned long c6x_insn_mask = C6X_DEFAULT_INSN_MASK;
|
81 |
|
|
|
82 |
|
|
/* The instruction that is being output (as obtained from FINAL_PRESCAN_INSN).
|
83 |
|
|
*/
|
84 |
|
|
static rtx c6x_current_insn = NULL_RTX;
|
85 |
|
|
|
86 |
|
|
/* A decl we build to access __c6xabi_DSBT_base. */
|
87 |
|
|
static GTY(()) tree dsbt_decl;
|
88 |
|
|
|
89 |
|
|
/* Determines whether we run our final scheduling pass or not. We always
|
90 |
|
|
avoid the normal second scheduling pass. */
|
91 |
|
|
static int c6x_flag_schedule_insns2;
|
92 |
|
|
|
93 |
|
|
/* Determines whether we run variable tracking in machine dependent
|
94 |
|
|
reorganization. */
|
95 |
|
|
static int c6x_flag_var_tracking;
|
96 |
|
|
|
97 |
|
|
/* Determines whether we use modulo scheduling. */
|
98 |
|
|
static int c6x_flag_modulo_sched;
|
99 |
|
|
|
100 |
|
|
/* Record the state of flag_pic before we set it to 1 for DSBT. */
|
101 |
|
|
int c6x_initial_flag_pic;
|
102 |
|
|
|
103 |
|
|
typedef struct
|
104 |
|
|
{
|
105 |
|
|
/* We record the clock cycle for every insn during scheduling. */
|
106 |
|
|
int clock;
|
107 |
|
|
/* After scheduling, we run assign_reservations to choose unit
|
108 |
|
|
reservations for all insns. These are recorded here. */
|
109 |
|
|
int reservation;
|
110 |
|
|
/* Records the new condition for insns which must be made
|
111 |
|
|
conditional after scheduling. An entry of NULL_RTX means no such
|
112 |
|
|
change is necessary. */
|
113 |
|
|
rtx new_cond;
|
114 |
|
|
/* True for the first insn that was scheduled in an ebb. */
|
115 |
|
|
bool ebb_start;
|
116 |
|
|
/* The scheduler state after the insn, transformed into a mask of UNIT_QID
|
117 |
|
|
bits rather than storing the state. Meaningful only for the last
|
118 |
|
|
insn in a cycle. */
|
119 |
|
|
unsigned int unit_mask;
|
120 |
|
|
} c6x_sched_insn_info;
|
121 |
|
|
|
122 |
|
|
DEF_VEC_O(c6x_sched_insn_info);
|
123 |
|
|
DEF_VEC_ALLOC_O(c6x_sched_insn_info, heap);
|
124 |
|
|
|
125 |
|
|
/* Record a c6x_sched_insn_info structure for every insn in the function. */
|
126 |
|
|
static VEC(c6x_sched_insn_info, heap) *insn_info;
|
127 |
|
|
|
128 |
|
|
#define INSN_INFO_LENGTH (VEC_length (c6x_sched_insn_info, insn_info))
|
129 |
|
|
#define INSN_INFO_ENTRY(N) (*VEC_index (c6x_sched_insn_info, insn_info, (N)))
|
130 |
|
|
|
131 |
|
|
static bool done_cfi_sections;
|
132 |
|
|
|
133 |
|
|
#define RESERVATION_FLAG_D 1
|
134 |
|
|
#define RESERVATION_FLAG_L 2
|
135 |
|
|
#define RESERVATION_FLAG_S 4
|
136 |
|
|
#define RESERVATION_FLAG_M 8
|
137 |
|
|
#define RESERVATION_FLAG_DL (RESERVATION_FLAG_D | RESERVATION_FLAG_L)
|
138 |
|
|
#define RESERVATION_FLAG_DS (RESERVATION_FLAG_D | RESERVATION_FLAG_S)
|
139 |
|
|
#define RESERVATION_FLAG_LS (RESERVATION_FLAG_L | RESERVATION_FLAG_S)
|
140 |
|
|
#define RESERVATION_FLAG_DLS (RESERVATION_FLAG_D | RESERVATION_FLAG_LS)
|
141 |
|
|
|
142 |
|
|
/* The DFA names of the units. */
|
143 |
|
|
static const char *const c6x_unit_names[] =
|
144 |
|
|
{
|
145 |
|
|
"d1", "l1", "s1", "m1", "fps1", "fpl1", "adddps1", "adddpl1",
|
146 |
|
|
"d2", "l2", "s2", "m2", "fps2", "fpl2", "adddps2", "adddpl2"
|
147 |
|
|
};
|
148 |
|
|
|
149 |
|
|
/* The DFA unit number for each unit in c6x_unit_names[]. */
|
150 |
|
|
static int c6x_unit_codes[ARRAY_SIZE (c6x_unit_names)];
|
151 |
|
|
|
152 |
|
|
/* Unit query IDs. */
|
153 |
|
|
#define UNIT_QID_D1 0
|
154 |
|
|
#define UNIT_QID_L1 1
|
155 |
|
|
#define UNIT_QID_S1 2
|
156 |
|
|
#define UNIT_QID_M1 3
|
157 |
|
|
#define UNIT_QID_FPS1 4
|
158 |
|
|
#define UNIT_QID_FPL1 5
|
159 |
|
|
#define UNIT_QID_ADDDPS1 6
|
160 |
|
|
#define UNIT_QID_ADDDPL1 7
|
161 |
|
|
#define UNIT_QID_SIDE_OFFSET 8
|
162 |
|
|
|
163 |
|
|
#define RESERVATION_S1 2
|
164 |
|
|
#define RESERVATION_S2 10
|
165 |
|
|
|
166 |
|
|
/* An enum for the unit requirements we count in the UNIT_REQS table. */
|
167 |
|
|
enum unitreqs
|
168 |
|
|
{
|
169 |
|
|
UNIT_REQ_D,
|
170 |
|
|
UNIT_REQ_L,
|
171 |
|
|
UNIT_REQ_S,
|
172 |
|
|
UNIT_REQ_M,
|
173 |
|
|
UNIT_REQ_DL,
|
174 |
|
|
UNIT_REQ_DS,
|
175 |
|
|
UNIT_REQ_LS,
|
176 |
|
|
UNIT_REQ_DLS,
|
177 |
|
|
UNIT_REQ_T,
|
178 |
|
|
UNIT_REQ_X,
|
179 |
|
|
UNIT_REQ_MAX
|
180 |
|
|
};
|
181 |
|
|
|
182 |
|
|
/* A table used to count unit requirements. Used when computing minimum
|
183 |
|
|
iteration intervals. */
|
184 |
|
|
typedef int unit_req_table[2][UNIT_REQ_MAX];
|
185 |
|
|
static unit_req_table unit_reqs;
|
186 |
|
|
|
187 |
|
|
/* Register map for debugging. */
|
188 |
|
|
int const dbx_register_map[FIRST_PSEUDO_REGISTER] =
|
189 |
|
|
{
|
190 |
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* A0 - A15. */
|
191 |
|
|
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, /* A16 - A32. */
|
192 |
|
|
50, 51, 52,
|
193 |
|
|
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, /* B0 - B15. */
|
194 |
|
|
29, 30, 31,
|
195 |
|
|
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, /* B16 - B32. */
|
196 |
|
|
66, 67, 68,
|
197 |
|
|
-1, -1, -1 /* FP, ARGP, ILC. */
|
198 |
|
|
};
|
199 |
|
|
|
200 |
|
|
/* Allocate a new, cleared machine_function structure. */
|
201 |
|
|
|
202 |
|
|
static struct machine_function *
|
203 |
|
|
c6x_init_machine_status (void)
|
204 |
|
|
{
|
205 |
|
|
return ggc_alloc_cleared_machine_function ();
|
206 |
|
|
}
|
207 |
|
|
|
208 |
|
|
/* Implement TARGET_OPTION_OVERRIDE. */
|
209 |
|
|
|
210 |
|
|
static void
|
211 |
|
|
c6x_option_override (void)
|
212 |
|
|
{
|
213 |
|
|
unsigned i;
|
214 |
|
|
|
215 |
|
|
if (global_options_set.x_c6x_arch_option)
|
216 |
|
|
{
|
217 |
|
|
c6x_arch = all_isas[c6x_arch_option].type;
|
218 |
|
|
c6x_insn_mask &= ~C6X_INSNS_ALL_CPU_BITS;
|
219 |
|
|
c6x_insn_mask |= all_isas[c6x_arch_option].features;
|
220 |
|
|
}
|
221 |
|
|
|
222 |
|
|
c6x_flag_schedule_insns2 = flag_schedule_insns_after_reload;
|
223 |
|
|
flag_schedule_insns_after_reload = 0;
|
224 |
|
|
|
225 |
|
|
c6x_flag_modulo_sched = flag_modulo_sched;
|
226 |
|
|
flag_modulo_sched = 0;
|
227 |
|
|
|
228 |
|
|
init_machine_status = c6x_init_machine_status;
|
229 |
|
|
|
230 |
|
|
for (i = 0; i < ARRAY_SIZE (c6x_unit_names); i++)
|
231 |
|
|
c6x_unit_codes[i] = get_cpu_unit_code (c6x_unit_names[i]);
|
232 |
|
|
|
233 |
|
|
if (flag_pic && !TARGET_DSBT)
|
234 |
|
|
{
|
235 |
|
|
error ("-fpic and -fPIC not supported without -mdsbt on this target");
|
236 |
|
|
flag_pic = 0;
|
237 |
|
|
}
|
238 |
|
|
c6x_initial_flag_pic = flag_pic;
|
239 |
|
|
if (TARGET_DSBT && !flag_pic)
|
240 |
|
|
flag_pic = 1;
|
241 |
|
|
}
|
242 |
|
|
|
243 |
|
|
|
244 |
|
|
/* Implement the TARGET_CONDITIONAL_REGISTER_USAGE hook. */
|
245 |
|
|
|
246 |
|
|
static void
|
247 |
|
|
c6x_conditional_register_usage (void)
|
248 |
|
|
{
|
249 |
|
|
int i;
|
250 |
|
|
if (c6x_arch == C6X_CPU_C62X || c6x_arch == C6X_CPU_C67X)
|
251 |
|
|
for (i = 16; i < 32; i++)
|
252 |
|
|
{
|
253 |
|
|
fixed_regs[i] = 1;
|
254 |
|
|
fixed_regs[32 + i] = 1;
|
255 |
|
|
}
|
256 |
|
|
if (TARGET_INSNS_64)
|
257 |
|
|
{
|
258 |
|
|
SET_HARD_REG_BIT (reg_class_contents[(int)PREDICATE_A_REGS],
|
259 |
|
|
REG_A0);
|
260 |
|
|
SET_HARD_REG_BIT (reg_class_contents[(int)PREDICATE_REGS],
|
261 |
|
|
REG_A0);
|
262 |
|
|
CLEAR_HARD_REG_BIT (reg_class_contents[(int)NONPREDICATE_A_REGS],
|
263 |
|
|
REG_A0);
|
264 |
|
|
CLEAR_HARD_REG_BIT (reg_class_contents[(int)NONPREDICATE_REGS],
|
265 |
|
|
REG_A0);
|
266 |
|
|
}
|
267 |
|
|
}
|
268 |
|
|
|
269 |
|
|
static GTY(()) rtx eqdf_libfunc;
|
270 |
|
|
static GTY(()) rtx nedf_libfunc;
|
271 |
|
|
static GTY(()) rtx ledf_libfunc;
|
272 |
|
|
static GTY(()) rtx ltdf_libfunc;
|
273 |
|
|
static GTY(()) rtx gedf_libfunc;
|
274 |
|
|
static GTY(()) rtx gtdf_libfunc;
|
275 |
|
|
static GTY(()) rtx eqsf_libfunc;
|
276 |
|
|
static GTY(()) rtx nesf_libfunc;
|
277 |
|
|
static GTY(()) rtx lesf_libfunc;
|
278 |
|
|
static GTY(()) rtx ltsf_libfunc;
|
279 |
|
|
static GTY(()) rtx gesf_libfunc;
|
280 |
|
|
static GTY(()) rtx gtsf_libfunc;
|
281 |
|
|
static GTY(()) rtx strasgi_libfunc;
|
282 |
|
|
static GTY(()) rtx strasgi64p_libfunc;
|
283 |
|
|
|
284 |
|
|
/* Implement the TARGET_INIT_LIBFUNCS macro. We use this to rename library
|
285 |
|
|
functions to match the C6x ABI. */
|
286 |
|
|
|
287 |
|
|
static void
|
288 |
|
|
c6x_init_libfuncs (void)
|
289 |
|
|
{
|
290 |
|
|
/* Double-precision floating-point arithmetic. */
|
291 |
|
|
set_optab_libfunc (add_optab, DFmode, "__c6xabi_addd");
|
292 |
|
|
set_optab_libfunc (sdiv_optab, DFmode, "__c6xabi_divd");
|
293 |
|
|
set_optab_libfunc (smul_optab, DFmode, "__c6xabi_mpyd");
|
294 |
|
|
set_optab_libfunc (neg_optab, DFmode, "__c6xabi_negd");
|
295 |
|
|
set_optab_libfunc (sub_optab, DFmode, "__c6xabi_subd");
|
296 |
|
|
|
297 |
|
|
/* Single-precision floating-point arithmetic. */
|
298 |
|
|
set_optab_libfunc (add_optab, SFmode, "__c6xabi_addf");
|
299 |
|
|
set_optab_libfunc (sdiv_optab, SFmode, "__c6xabi_divf");
|
300 |
|
|
set_optab_libfunc (smul_optab, SFmode, "__c6xabi_mpyf");
|
301 |
|
|
set_optab_libfunc (neg_optab, SFmode, "__c6xabi_negf");
|
302 |
|
|
set_optab_libfunc (sub_optab, SFmode, "__c6xabi_subf");
|
303 |
|
|
|
304 |
|
|
/* Floating-point comparisons. */
|
305 |
|
|
eqsf_libfunc = init_one_libfunc ("__c6xabi_eqf");
|
306 |
|
|
nesf_libfunc = init_one_libfunc ("__c6xabi_neqf");
|
307 |
|
|
lesf_libfunc = init_one_libfunc ("__c6xabi_lef");
|
308 |
|
|
ltsf_libfunc = init_one_libfunc ("__c6xabi_ltf");
|
309 |
|
|
gesf_libfunc = init_one_libfunc ("__c6xabi_gef");
|
310 |
|
|
gtsf_libfunc = init_one_libfunc ("__c6xabi_gtf");
|
311 |
|
|
eqdf_libfunc = init_one_libfunc ("__c6xabi_eqd");
|
312 |
|
|
nedf_libfunc = init_one_libfunc ("__c6xabi_neqd");
|
313 |
|
|
ledf_libfunc = init_one_libfunc ("__c6xabi_led");
|
314 |
|
|
ltdf_libfunc = init_one_libfunc ("__c6xabi_ltd");
|
315 |
|
|
gedf_libfunc = init_one_libfunc ("__c6xabi_ged");
|
316 |
|
|
gtdf_libfunc = init_one_libfunc ("__c6xabi_gtd");
|
317 |
|
|
|
318 |
|
|
set_optab_libfunc (eq_optab, SFmode, NULL);
|
319 |
|
|
set_optab_libfunc (ne_optab, SFmode, "__c6xabi_neqf");
|
320 |
|
|
set_optab_libfunc (gt_optab, SFmode, NULL);
|
321 |
|
|
set_optab_libfunc (ge_optab, SFmode, NULL);
|
322 |
|
|
set_optab_libfunc (lt_optab, SFmode, NULL);
|
323 |
|
|
set_optab_libfunc (le_optab, SFmode, NULL);
|
324 |
|
|
set_optab_libfunc (unord_optab, SFmode, "__c6xabi_unordf");
|
325 |
|
|
set_optab_libfunc (eq_optab, DFmode, NULL);
|
326 |
|
|
set_optab_libfunc (ne_optab, DFmode, "__c6xabi_neqd");
|
327 |
|
|
set_optab_libfunc (gt_optab, DFmode, NULL);
|
328 |
|
|
set_optab_libfunc (ge_optab, DFmode, NULL);
|
329 |
|
|
set_optab_libfunc (lt_optab, DFmode, NULL);
|
330 |
|
|
set_optab_libfunc (le_optab, DFmode, NULL);
|
331 |
|
|
set_optab_libfunc (unord_optab, DFmode, "__c6xabi_unordd");
|
332 |
|
|
|
333 |
|
|
/* Floating-point to integer conversions. */
|
334 |
|
|
set_conv_libfunc (sfix_optab, SImode, DFmode, "__c6xabi_fixdi");
|
335 |
|
|
set_conv_libfunc (ufix_optab, SImode, DFmode, "__c6xabi_fixdu");
|
336 |
|
|
set_conv_libfunc (sfix_optab, DImode, DFmode, "__c6xabi_fixdlli");
|
337 |
|
|
set_conv_libfunc (ufix_optab, DImode, DFmode, "__c6xabi_fixdull");
|
338 |
|
|
set_conv_libfunc (sfix_optab, SImode, SFmode, "__c6xabi_fixfi");
|
339 |
|
|
set_conv_libfunc (ufix_optab, SImode, SFmode, "__c6xabi_fixfu");
|
340 |
|
|
set_conv_libfunc (sfix_optab, DImode, SFmode, "__c6xabi_fixflli");
|
341 |
|
|
set_conv_libfunc (ufix_optab, DImode, SFmode, "__c6xabi_fixfull");
|
342 |
|
|
|
343 |
|
|
/* Conversions between floating types. */
|
344 |
|
|
set_conv_libfunc (trunc_optab, SFmode, DFmode, "__c6xabi_cvtdf");
|
345 |
|
|
set_conv_libfunc (sext_optab, DFmode, SFmode, "__c6xabi_cvtfd");
|
346 |
|
|
|
347 |
|
|
/* Integer to floating-point conversions. */
|
348 |
|
|
set_conv_libfunc (sfloat_optab, DFmode, SImode, "__c6xabi_fltid");
|
349 |
|
|
set_conv_libfunc (ufloat_optab, DFmode, SImode, "__c6xabi_fltud");
|
350 |
|
|
set_conv_libfunc (sfloat_optab, DFmode, DImode, "__c6xabi_fltllid");
|
351 |
|
|
set_conv_libfunc (ufloat_optab, DFmode, DImode, "__c6xabi_fltulld");
|
352 |
|
|
set_conv_libfunc (sfloat_optab, SFmode, SImode, "__c6xabi_fltif");
|
353 |
|
|
set_conv_libfunc (ufloat_optab, SFmode, SImode, "__c6xabi_fltuf");
|
354 |
|
|
set_conv_libfunc (sfloat_optab, SFmode, DImode, "__c6xabi_fltllif");
|
355 |
|
|
set_conv_libfunc (ufloat_optab, SFmode, DImode, "__c6xabi_fltullf");
|
356 |
|
|
|
357 |
|
|
/* Long long. */
|
358 |
|
|
set_optab_libfunc (smul_optab, DImode, "__c6xabi_mpyll");
|
359 |
|
|
set_optab_libfunc (ashl_optab, DImode, "__c6xabi_llshl");
|
360 |
|
|
set_optab_libfunc (lshr_optab, DImode, "__c6xabi_llshru");
|
361 |
|
|
set_optab_libfunc (ashr_optab, DImode, "__c6xabi_llshr");
|
362 |
|
|
|
363 |
|
|
set_optab_libfunc (sdiv_optab, SImode, "__c6xabi_divi");
|
364 |
|
|
set_optab_libfunc (udiv_optab, SImode, "__c6xabi_divu");
|
365 |
|
|
set_optab_libfunc (smod_optab, SImode, "__c6xabi_remi");
|
366 |
|
|
set_optab_libfunc (umod_optab, SImode, "__c6xabi_remu");
|
367 |
|
|
set_optab_libfunc (sdivmod_optab, SImode, "__c6xabi_divremi");
|
368 |
|
|
set_optab_libfunc (udivmod_optab, SImode, "__c6xabi_divremu");
|
369 |
|
|
set_optab_libfunc (sdiv_optab, DImode, "__c6xabi_divlli");
|
370 |
|
|
set_optab_libfunc (udiv_optab, DImode, "__c6xabi_divull");
|
371 |
|
|
set_optab_libfunc (smod_optab, DImode, "__c6xabi_remlli");
|
372 |
|
|
set_optab_libfunc (umod_optab, DImode, "__c6xabi_remull");
|
373 |
|
|
set_optab_libfunc (udivmod_optab, DImode, "__c6xabi_divremull");
|
374 |
|
|
|
375 |
|
|
/* Block move. */
|
376 |
|
|
strasgi_libfunc = init_one_libfunc ("__c6xabi_strasgi");
|
377 |
|
|
strasgi64p_libfunc = init_one_libfunc ("__c6xabi_strasgi_64plus");
|
378 |
|
|
}
|
379 |
|
|
|
380 |
|
|
/* Begin the assembly file. */
|
381 |
|
|
|
382 |
|
|
static void
|
383 |
|
|
c6x_file_start (void)
|
384 |
|
|
{
|
385 |
|
|
/* Variable tracking should be run after all optimizations which change order
|
386 |
|
|
of insns. It also needs a valid CFG. This can't be done in
|
387 |
|
|
c6x_override_options, because flag_var_tracking is finalized after
|
388 |
|
|
that. */
|
389 |
|
|
c6x_flag_var_tracking = flag_var_tracking;
|
390 |
|
|
flag_var_tracking = 0;
|
391 |
|
|
|
392 |
|
|
done_cfi_sections = false;
|
393 |
|
|
default_file_start ();
|
394 |
|
|
|
395 |
|
|
/* Arrays are aligned to 8-byte boundaries. */
|
396 |
|
|
asm_fprintf (asm_out_file,
|
397 |
|
|
"\t.c6xabi_attribute Tag_ABI_array_object_alignment, 0\n");
|
398 |
|
|
asm_fprintf (asm_out_file,
|
399 |
|
|
"\t.c6xabi_attribute Tag_ABI_array_object_align_expected, 0\n");
|
400 |
|
|
|
401 |
|
|
/* Stack alignment is 8 bytes. */
|
402 |
|
|
asm_fprintf (asm_out_file,
|
403 |
|
|
"\t.c6xabi_attribute Tag_ABI_stack_align_needed, 0\n");
|
404 |
|
|
asm_fprintf (asm_out_file,
|
405 |
|
|
"\t.c6xabi_attribute Tag_ABI_stack_align_preserved, 0\n");
|
406 |
|
|
|
407 |
|
|
#if 0 /* FIXME: Reenable when TI's tools are fixed. */
|
408 |
|
|
/* ??? Ideally we'd check flag_short_wchar somehow. */
|
409 |
|
|
asm_fprintf (asm_out_file, "\t.c6xabi_attribute Tag_ABI_wchar_t, %d\n", 2);
|
410 |
|
|
#endif
|
411 |
|
|
|
412 |
|
|
/* We conform to version 1.0 of the ABI. */
|
413 |
|
|
asm_fprintf (asm_out_file,
|
414 |
|
|
"\t.c6xabi_attribute Tag_ABI_conformance, \"1.0\"\n");
|
415 |
|
|
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
/* The LTO frontend only enables exceptions when it sees a function that
|
419 |
|
|
uses it. This changes the return value of dwarf2out_do_frame, so we
|
420 |
|
|
have to check before every function. */
|
421 |
|
|
|
422 |
|
|
void
|
423 |
|
|
c6x_output_file_unwind (FILE * f)
|
424 |
|
|
{
|
425 |
|
|
if (done_cfi_sections)
|
426 |
|
|
return;
|
427 |
|
|
|
428 |
|
|
/* Output a .cfi_sections directive. */
|
429 |
|
|
if (dwarf2out_do_frame ())
|
430 |
|
|
{
|
431 |
|
|
if (flag_unwind_tables || flag_exceptions)
|
432 |
|
|
{
|
433 |
|
|
if (write_symbols == DWARF2_DEBUG
|
434 |
|
|
|| write_symbols == VMS_AND_DWARF2_DEBUG)
|
435 |
|
|
asm_fprintf (f, "\t.cfi_sections .debug_frame, .c6xabi.exidx\n");
|
436 |
|
|
else
|
437 |
|
|
asm_fprintf (f, "\t.cfi_sections .c6xabi.exidx\n");
|
438 |
|
|
}
|
439 |
|
|
else
|
440 |
|
|
asm_fprintf (f, "\t.cfi_sections .debug_frame\n");
|
441 |
|
|
done_cfi_sections = true;
|
442 |
|
|
}
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
/* Output unwind directives at the end of a function. */
|
446 |
|
|
|
447 |
|
|
static void
|
448 |
|
|
c6x_output_fn_unwind (FILE * f)
|
449 |
|
|
{
|
450 |
|
|
/* Return immediately if we are not generating unwinding tables. */
|
451 |
|
|
if (! (flag_unwind_tables || flag_exceptions))
|
452 |
|
|
return;
|
453 |
|
|
|
454 |
|
|
/* If this function will never be unwound, then mark it as such. */
|
455 |
|
|
if (!(flag_unwind_tables || crtl->uses_eh_lsda)
|
456 |
|
|
&& (TREE_NOTHROW (current_function_decl)
|
457 |
|
|
|| crtl->all_throwers_are_sibcalls))
|
458 |
|
|
fputs("\t.cantunwind\n", f);
|
459 |
|
|
|
460 |
|
|
fputs ("\t.endp\n", f);
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
|
464 |
|
|
/* Stack and Calling. */
|
465 |
|
|
|
466 |
|
|
int argument_registers[10] =
|
467 |
|
|
{
|
468 |
|
|
REG_A4, REG_B4,
|
469 |
|
|
REG_A6, REG_B6,
|
470 |
|
|
REG_A8, REG_B8,
|
471 |
|
|
REG_A10, REG_B10,
|
472 |
|
|
REG_A12, REG_B12
|
473 |
|
|
};
|
474 |
|
|
|
475 |
|
|
/* Implements the macro INIT_CUMULATIVE_ARGS defined in c6x.h. */
|
476 |
|
|
|
477 |
|
|
void
|
478 |
|
|
c6x_init_cumulative_args (CUMULATIVE_ARGS *cum, const_tree fntype, rtx libname,
|
479 |
|
|
int n_named_args ATTRIBUTE_UNUSED)
|
480 |
|
|
{
|
481 |
|
|
cum->count = 0;
|
482 |
|
|
cum->nregs = 10;
|
483 |
|
|
if (!libname && fntype)
|
484 |
|
|
{
|
485 |
|
|
/* We need to find out the number of named arguments. Unfortunately,
|
486 |
|
|
for incoming arguments, N_NAMED_ARGS is set to -1. */
|
487 |
|
|
if (stdarg_p (fntype))
|
488 |
|
|
cum->nregs = type_num_arguments (fntype) - 1;
|
489 |
|
|
if (cum->nregs > 10)
|
490 |
|
|
cum->nregs = 10;
|
491 |
|
|
}
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
/* Implements the macro FUNCTION_ARG defined in c6x.h. */
|
495 |
|
|
|
496 |
|
|
static rtx
|
497 |
|
|
c6x_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
|
498 |
|
|
const_tree type, bool named ATTRIBUTE_UNUSED)
|
499 |
|
|
{
|
500 |
|
|
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
501 |
|
|
if (cum->count >= cum->nregs)
|
502 |
|
|
return NULL_RTX;
|
503 |
|
|
if (type)
|
504 |
|
|
{
|
505 |
|
|
HOST_WIDE_INT size = int_size_in_bytes (type);
|
506 |
|
|
if (TARGET_BIG_ENDIAN && AGGREGATE_TYPE_P (type))
|
507 |
|
|
{
|
508 |
|
|
if (size > 4)
|
509 |
|
|
{
|
510 |
|
|
rtx reg1 = gen_rtx_REG (SImode, argument_registers[cum->count] + 1);
|
511 |
|
|
rtx reg2 = gen_rtx_REG (SImode, argument_registers[cum->count]);
|
512 |
|
|
rtvec vec = gen_rtvec (2, gen_rtx_EXPR_LIST (VOIDmode, reg1, const0_rtx),
|
513 |
|
|
gen_rtx_EXPR_LIST (VOIDmode, reg2, GEN_INT (4)));
|
514 |
|
|
return gen_rtx_PARALLEL (mode, vec);
|
515 |
|
|
}
|
516 |
|
|
}
|
517 |
|
|
}
|
518 |
|
|
return gen_rtx_REG (mode, argument_registers[cum->count]);
|
519 |
|
|
}
|
520 |
|
|
|
521 |
|
|
static void
|
522 |
|
|
c6x_function_arg_advance (cumulative_args_t cum_v,
|
523 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
524 |
|
|
const_tree type ATTRIBUTE_UNUSED,
|
525 |
|
|
bool named ATTRIBUTE_UNUSED)
|
526 |
|
|
{
|
527 |
|
|
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
528 |
|
|
cum->count++;
|
529 |
|
|
}
|
530 |
|
|
|
531 |
|
|
|
532 |
|
|
/* Return true if BLOCK_REG_PADDING (MODE, TYPE, FIRST) should return
|
533 |
|
|
upward rather than downward. */
|
534 |
|
|
|
535 |
|
|
bool
|
536 |
|
|
c6x_block_reg_pad_upward (enum machine_mode mode ATTRIBUTE_UNUSED,
|
537 |
|
|
const_tree type, bool first)
|
538 |
|
|
{
|
539 |
|
|
HOST_WIDE_INT size;
|
540 |
|
|
|
541 |
|
|
if (!TARGET_BIG_ENDIAN)
|
542 |
|
|
return true;
|
543 |
|
|
if (!first)
|
544 |
|
|
return true;
|
545 |
|
|
if (!type)
|
546 |
|
|
return true;
|
547 |
|
|
size = int_size_in_bytes (type);
|
548 |
|
|
return size == 3;
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
/* Implement TARGET_FUNCTION_ARG_BOUNDARY. */
|
552 |
|
|
|
553 |
|
|
static unsigned int
|
554 |
|
|
c6x_function_arg_boundary (enum machine_mode mode, const_tree type)
|
555 |
|
|
{
|
556 |
|
|
unsigned int boundary = type ? TYPE_ALIGN (type) : GET_MODE_BITSIZE (mode);
|
557 |
|
|
|
558 |
|
|
if (boundary > BITS_PER_WORD)
|
559 |
|
|
return 2 * BITS_PER_WORD;
|
560 |
|
|
|
561 |
|
|
if (mode == BLKmode)
|
562 |
|
|
{
|
563 |
|
|
HOST_WIDE_INT size = int_size_in_bytes (type);
|
564 |
|
|
if (size > 4)
|
565 |
|
|
return 2 * BITS_PER_WORD;
|
566 |
|
|
if (boundary < BITS_PER_WORD)
|
567 |
|
|
{
|
568 |
|
|
if (size >= 3)
|
569 |
|
|
return BITS_PER_WORD;
|
570 |
|
|
if (size >= 2)
|
571 |
|
|
return 2 * BITS_PER_UNIT;
|
572 |
|
|
}
|
573 |
|
|
}
|
574 |
|
|
return boundary;
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
/* Implement TARGET_FUNCTION_ARG_ROUND_BOUNDARY. */
|
578 |
|
|
static unsigned int
|
579 |
|
|
c6x_function_arg_round_boundary (enum machine_mode mode, const_tree type)
|
580 |
|
|
{
|
581 |
|
|
return c6x_function_arg_boundary (mode, type);
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
/* TARGET_FUNCTION_VALUE implementation. Returns an RTX representing the place
|
585 |
|
|
where function FUNC returns or receives a value of data type TYPE. */
|
586 |
|
|
|
587 |
|
|
static rtx
|
588 |
|
|
c6x_function_value (const_tree type, const_tree func ATTRIBUTE_UNUSED,
|
589 |
|
|
bool outgoing ATTRIBUTE_UNUSED)
|
590 |
|
|
{
|
591 |
|
|
/* Functions return values in register A4. When returning aggregates, we may
|
592 |
|
|
have to adjust for endianness. */
|
593 |
|
|
if (TARGET_BIG_ENDIAN && type && AGGREGATE_TYPE_P (type))
|
594 |
|
|
{
|
595 |
|
|
HOST_WIDE_INT size = int_size_in_bytes (type);
|
596 |
|
|
if (size > 4)
|
597 |
|
|
{
|
598 |
|
|
|
599 |
|
|
rtx reg1 = gen_rtx_REG (SImode, REG_A4 + 1);
|
600 |
|
|
rtx reg2 = gen_rtx_REG (SImode, REG_A4);
|
601 |
|
|
rtvec vec = gen_rtvec (2, gen_rtx_EXPR_LIST (VOIDmode, reg1, const0_rtx),
|
602 |
|
|
gen_rtx_EXPR_LIST (VOIDmode, reg2, GEN_INT (4)));
|
603 |
|
|
return gen_rtx_PARALLEL (TYPE_MODE (type), vec);
|
604 |
|
|
}
|
605 |
|
|
}
|
606 |
|
|
return gen_rtx_REG (TYPE_MODE (type), REG_A4);
|
607 |
|
|
}
|
608 |
|
|
|
609 |
|
|
/* Implement TARGET_LIBCALL_VALUE. */
|
610 |
|
|
|
611 |
|
|
static rtx
|
612 |
|
|
c6x_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
|
613 |
|
|
{
|
614 |
|
|
return gen_rtx_REG (mode, REG_A4);
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
/* TARGET_STRUCT_VALUE_RTX implementation. */
|
618 |
|
|
|
619 |
|
|
static rtx
|
620 |
|
|
c6x_struct_value_rtx (tree type ATTRIBUTE_UNUSED, int incoming ATTRIBUTE_UNUSED)
|
621 |
|
|
{
|
622 |
|
|
return gen_rtx_REG (Pmode, REG_A3);
|
623 |
|
|
}
|
624 |
|
|
|
625 |
|
|
/* Implement TARGET_FUNCTION_VALUE_REGNO_P. */
|
626 |
|
|
|
627 |
|
|
static bool
|
628 |
|
|
c6x_function_value_regno_p (const unsigned int regno)
|
629 |
|
|
{
|
630 |
|
|
return regno == REG_A4;
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
/* Types larger than 64 bit, and variable sized types, are passed by
|
634 |
|
|
reference. The callee must copy them; see c6x_callee_copies. */
|
635 |
|
|
|
636 |
|
|
static bool
|
637 |
|
|
c6x_pass_by_reference (cumulative_args_t cum_v ATTRIBUTE_UNUSED,
|
638 |
|
|
enum machine_mode mode, const_tree type,
|
639 |
|
|
bool named ATTRIBUTE_UNUSED)
|
640 |
|
|
{
|
641 |
|
|
int size = -1;
|
642 |
|
|
if (type)
|
643 |
|
|
size = int_size_in_bytes (type);
|
644 |
|
|
else if (mode != VOIDmode)
|
645 |
|
|
size = GET_MODE_SIZE (mode);
|
646 |
|
|
return size > 2 * UNITS_PER_WORD || size == -1;
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
/* Decide whether a type should be returned in memory (true)
|
650 |
|
|
or in a register (false). This is called by the macro
|
651 |
|
|
TARGET_RETURN_IN_MEMORY. */
|
652 |
|
|
|
653 |
|
|
static bool
|
654 |
|
|
c6x_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
|
655 |
|
|
{
|
656 |
|
|
int size = int_size_in_bytes (type);
|
657 |
|
|
return size > 2 * UNITS_PER_WORD || size == -1;
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
/* Values which must be returned in the most-significant end of the return
|
661 |
|
|
register. */
|
662 |
|
|
|
663 |
|
|
static bool
|
664 |
|
|
c6x_return_in_msb (const_tree valtype)
|
665 |
|
|
{
|
666 |
|
|
HOST_WIDE_INT size = int_size_in_bytes (valtype);
|
667 |
|
|
return TARGET_BIG_ENDIAN && AGGREGATE_TYPE_P (valtype) && size == 3;
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
/* Implement TARGET_CALLEE_COPIES. */
|
671 |
|
|
|
672 |
|
|
static bool
|
673 |
|
|
c6x_callee_copies (cumulative_args_t cum_v ATTRIBUTE_UNUSED,
|
674 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
675 |
|
|
const_tree type ATTRIBUTE_UNUSED,
|
676 |
|
|
bool named ATTRIBUTE_UNUSED)
|
677 |
|
|
{
|
678 |
|
|
return true;
|
679 |
|
|
}
|
680 |
|
|
|
681 |
|
|
/* Return the type to use as __builtin_va_list. */
|
682 |
|
|
static tree
|
683 |
|
|
c6x_build_builtin_va_list (void)
|
684 |
|
|
{
|
685 |
|
|
return build_pointer_type (char_type_node);
|
686 |
|
|
}
|
687 |
|
|
|
688 |
|
|
static void
|
689 |
|
|
c6x_asm_trampoline_template (FILE *f)
|
690 |
|
|
{
|
691 |
|
|
fprintf (f, "\t.long\t0x0000002b\n"); /* mvkl .s2 fnlow,B0 */
|
692 |
|
|
fprintf (f, "\t.long\t0x01000028\n"); /* || mvkl .s1 sclow,A2 */
|
693 |
|
|
fprintf (f, "\t.long\t0x0000006b\n"); /* mvkh .s2 fnhigh,B0 */
|
694 |
|
|
fprintf (f, "\t.long\t0x01000068\n"); /* || mvkh .s1 schigh,A2 */
|
695 |
|
|
fprintf (f, "\t.long\t0x00000362\n"); /* b .s2 B0 */
|
696 |
|
|
fprintf (f, "\t.long\t0x00008000\n"); /* nop 5 */
|
697 |
|
|
fprintf (f, "\t.long\t0x00000000\n"); /* nop */
|
698 |
|
|
fprintf (f, "\t.long\t0x00000000\n"); /* nop */
|
699 |
|
|
}
|
700 |
|
|
|
701 |
|
|
/* Emit RTL insns to initialize the variable parts of a trampoline at
|
702 |
|
|
TRAMP. FNADDR is an RTX for the address of the function's pure
|
703 |
|
|
code. CXT is an RTX for the static chain value for the function. */
|
704 |
|
|
|
705 |
|
|
static void
|
706 |
|
|
c6x_initialize_trampoline (rtx tramp, tree fndecl, rtx cxt)
|
707 |
|
|
{
|
708 |
|
|
rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
|
709 |
|
|
rtx t1 = copy_to_reg (fnaddr);
|
710 |
|
|
rtx t2 = copy_to_reg (cxt);
|
711 |
|
|
rtx mask = gen_reg_rtx (SImode);
|
712 |
|
|
int i;
|
713 |
|
|
|
714 |
|
|
emit_block_move (tramp, assemble_trampoline_template (),
|
715 |
|
|
GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
|
716 |
|
|
|
717 |
|
|
emit_move_insn (mask, GEN_INT (0xffff << 7));
|
718 |
|
|
|
719 |
|
|
for (i = 0; i < 4; i++)
|
720 |
|
|
{
|
721 |
|
|
rtx mem = adjust_address (tramp, SImode, i * 4);
|
722 |
|
|
rtx t = (i & 1) ? t2 : t1;
|
723 |
|
|
rtx v1 = gen_reg_rtx (SImode);
|
724 |
|
|
rtx v2 = gen_reg_rtx (SImode);
|
725 |
|
|
emit_move_insn (v1, mem);
|
726 |
|
|
if (i < 2)
|
727 |
|
|
emit_insn (gen_ashlsi3 (v2, t, GEN_INT (7)));
|
728 |
|
|
else
|
729 |
|
|
emit_insn (gen_lshrsi3 (v2, t, GEN_INT (9)));
|
730 |
|
|
emit_insn (gen_andsi3 (v2, v2, mask));
|
731 |
|
|
emit_insn (gen_iorsi3 (v2, v2, v1));
|
732 |
|
|
emit_move_insn (mem, v2);
|
733 |
|
|
}
|
734 |
|
|
#ifdef CLEAR_INSN_CACHE
|
735 |
|
|
tramp = XEXP (tramp, 0);
|
736 |
|
|
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__gnu_clear_cache"),
|
737 |
|
|
LCT_NORMAL, VOIDmode, 2, tramp, Pmode,
|
738 |
|
|
plus_constant (tramp, TRAMPOLINE_SIZE), Pmode);
|
739 |
|
|
#endif
|
740 |
|
|
}
|
741 |
|
|
|
742 |
|
|
/* Determine whether c6x_output_mi_thunk can succeed. */
|
743 |
|
|
|
744 |
|
|
static bool
|
745 |
|
|
c6x_can_output_mi_thunk (const_tree thunk ATTRIBUTE_UNUSED,
|
746 |
|
|
HOST_WIDE_INT delta ATTRIBUTE_UNUSED,
|
747 |
|
|
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
|
748 |
|
|
const_tree function ATTRIBUTE_UNUSED)
|
749 |
|
|
{
|
750 |
|
|
return !TARGET_LONG_CALLS;
|
751 |
|
|
}
|
752 |
|
|
|
753 |
|
|
/* Output the assembler code for a thunk function. THUNK is the
|
754 |
|
|
declaration for the thunk function itself, FUNCTION is the decl for
|
755 |
|
|
the target function. DELTA is an immediate constant offset to be
|
756 |
|
|
added to THIS. If VCALL_OFFSET is nonzero, the word at
|
757 |
|
|
*(*this + vcall_offset) should be added to THIS. */
|
758 |
|
|
|
759 |
|
|
static void
|
760 |
|
|
c6x_output_mi_thunk (FILE *file ATTRIBUTE_UNUSED,
|
761 |
|
|
tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta,
|
762 |
|
|
HOST_WIDE_INT vcall_offset, tree function)
|
763 |
|
|
{
|
764 |
|
|
rtx xops[5];
|
765 |
|
|
/* The this parameter is passed as the first argument. */
|
766 |
|
|
rtx this_rtx = gen_rtx_REG (Pmode, REG_A4);
|
767 |
|
|
|
768 |
|
|
c6x_current_insn = NULL_RTX;
|
769 |
|
|
|
770 |
|
|
xops[4] = XEXP (DECL_RTL (function), 0);
|
771 |
|
|
if (!vcall_offset)
|
772 |
|
|
{
|
773 |
|
|
output_asm_insn ("b .s2 \t%4", xops);
|
774 |
|
|
if (!delta)
|
775 |
|
|
output_asm_insn ("nop 5", xops);
|
776 |
|
|
}
|
777 |
|
|
|
778 |
|
|
/* Adjust the this parameter by a fixed constant. */
|
779 |
|
|
if (delta)
|
780 |
|
|
{
|
781 |
|
|
xops[0] = GEN_INT (delta);
|
782 |
|
|
xops[1] = this_rtx;
|
783 |
|
|
if (delta >= -16 && delta <= 15)
|
784 |
|
|
{
|
785 |
|
|
output_asm_insn ("add .s1 %0, %1, %1", xops);
|
786 |
|
|
if (!vcall_offset)
|
787 |
|
|
output_asm_insn ("nop 4", xops);
|
788 |
|
|
}
|
789 |
|
|
else if (delta >= 16 && delta < 32)
|
790 |
|
|
{
|
791 |
|
|
output_asm_insn ("add .d1 %0, %1, %1", xops);
|
792 |
|
|
if (!vcall_offset)
|
793 |
|
|
output_asm_insn ("nop 4", xops);
|
794 |
|
|
}
|
795 |
|
|
else if (delta >= -32768 && delta < 32768)
|
796 |
|
|
{
|
797 |
|
|
output_asm_insn ("mvk .s1 %0, A0", xops);
|
798 |
|
|
output_asm_insn ("add .d1 %1, A0, %1", xops);
|
799 |
|
|
if (!vcall_offset)
|
800 |
|
|
output_asm_insn ("nop 3", xops);
|
801 |
|
|
}
|
802 |
|
|
else
|
803 |
|
|
{
|
804 |
|
|
output_asm_insn ("mvkl .s1 %0, A0", xops);
|
805 |
|
|
output_asm_insn ("mvkh .s1 %0, A0", xops);
|
806 |
|
|
output_asm_insn ("add .d1 %1, A0, %1", xops);
|
807 |
|
|
if (!vcall_offset)
|
808 |
|
|
output_asm_insn ("nop 3", xops);
|
809 |
|
|
}
|
810 |
|
|
}
|
811 |
|
|
|
812 |
|
|
/* Adjust the this parameter by a value stored in the vtable. */
|
813 |
|
|
if (vcall_offset)
|
814 |
|
|
{
|
815 |
|
|
rtx a0tmp = gen_rtx_REG (Pmode, REG_A0);
|
816 |
|
|
rtx a3tmp = gen_rtx_REG (Pmode, REG_A3);
|
817 |
|
|
|
818 |
|
|
xops[1] = a3tmp;
|
819 |
|
|
xops[2] = a0tmp;
|
820 |
|
|
xops[3] = gen_rtx_MEM (Pmode, a0tmp);
|
821 |
|
|
output_asm_insn ("mv .s1 a4, %2", xops);
|
822 |
|
|
output_asm_insn ("ldw .d1t1 %3, %2", xops);
|
823 |
|
|
|
824 |
|
|
/* Adjust the this parameter. */
|
825 |
|
|
xops[0] = gen_rtx_MEM (Pmode, plus_constant (a0tmp, vcall_offset));
|
826 |
|
|
if (!memory_operand (xops[0], Pmode))
|
827 |
|
|
{
|
828 |
|
|
rtx tmp2 = gen_rtx_REG (Pmode, REG_A1);
|
829 |
|
|
xops[0] = GEN_INT (vcall_offset);
|
830 |
|
|
xops[1] = tmp2;
|
831 |
|
|
output_asm_insn ("mvkl .s1 %0, %1", xops);
|
832 |
|
|
output_asm_insn ("mvkh .s1 %0, %1", xops);
|
833 |
|
|
output_asm_insn ("nop 2", xops);
|
834 |
|
|
output_asm_insn ("add .d1 %2, %1, %2", xops);
|
835 |
|
|
xops[0] = gen_rtx_MEM (Pmode, a0tmp);
|
836 |
|
|
}
|
837 |
|
|
else
|
838 |
|
|
output_asm_insn ("nop 4", xops);
|
839 |
|
|
xops[2] = this_rtx;
|
840 |
|
|
output_asm_insn ("ldw .d1t1 %0, %1", xops);
|
841 |
|
|
output_asm_insn ("|| b .s2 \t%4", xops);
|
842 |
|
|
output_asm_insn ("nop 4", xops);
|
843 |
|
|
output_asm_insn ("add .d1 %2, %1, %2", xops);
|
844 |
|
|
}
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
/* Return true if EXP goes in small data/bss. */
|
848 |
|
|
|
849 |
|
|
static bool
|
850 |
|
|
c6x_in_small_data_p (const_tree exp)
|
851 |
|
|
{
|
852 |
|
|
/* We want to merge strings, so we never consider them small data. */
|
853 |
|
|
if (TREE_CODE (exp) == STRING_CST)
|
854 |
|
|
return false;
|
855 |
|
|
|
856 |
|
|
/* Functions are never small data. */
|
857 |
|
|
if (TREE_CODE (exp) == FUNCTION_DECL)
|
858 |
|
|
return false;
|
859 |
|
|
|
860 |
|
|
if (TREE_CODE (exp) == VAR_DECL && DECL_WEAK (exp))
|
861 |
|
|
return false;
|
862 |
|
|
|
863 |
|
|
if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
|
864 |
|
|
{
|
865 |
|
|
const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));
|
866 |
|
|
|
867 |
|
|
if (strcmp (section, ".neardata") == 0
|
868 |
|
|
|| strncmp (section, ".neardata.", 10) == 0
|
869 |
|
|
|| strncmp (section, ".gnu.linkonce.s.", 16) == 0
|
870 |
|
|
|| strcmp (section, ".bss") == 0
|
871 |
|
|
|| strncmp (section, ".bss.", 5) == 0
|
872 |
|
|
|| strncmp (section, ".gnu.linkonce.sb.", 17) == 0
|
873 |
|
|
|| strcmp (section, ".rodata") == 0
|
874 |
|
|
|| strncmp (section, ".rodata.", 8) == 0
|
875 |
|
|
|| strncmp (section, ".gnu.linkonce.s2.", 17) == 0)
|
876 |
|
|
return true;
|
877 |
|
|
}
|
878 |
|
|
else
|
879 |
|
|
return PLACE_IN_SDATA_P (exp);
|
880 |
|
|
|
881 |
|
|
return false;
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
/* Return a section for X. The only special thing we do here is to
|
885 |
|
|
honor small data. We don't have a tree type, so we can't use the
|
886 |
|
|
PLACE_IN_SDATA_P macro we use everywhere else; we choose to place
|
887 |
|
|
everything sized 8 bytes or smaller into small data. */
|
888 |
|
|
|
889 |
|
|
static section *
|
890 |
|
|
c6x_select_rtx_section (enum machine_mode mode, rtx x,
|
891 |
|
|
unsigned HOST_WIDE_INT align)
|
892 |
|
|
{
|
893 |
|
|
if (c6x_sdata_mode == C6X_SDATA_ALL
|
894 |
|
|
|| (c6x_sdata_mode != C6X_SDATA_NONE && GET_MODE_SIZE (mode) <= 8))
|
895 |
|
|
/* ??? Consider using mergeable sdata sections. */
|
896 |
|
|
return sdata_section;
|
897 |
|
|
else
|
898 |
|
|
return default_elf_select_rtx_section (mode, x, align);
|
899 |
|
|
}
|
900 |
|
|
|
901 |
|
|
static section *
|
902 |
|
|
c6x_elf_select_section (tree decl, int reloc,
|
903 |
|
|
unsigned HOST_WIDE_INT align)
|
904 |
|
|
{
|
905 |
|
|
const char *sname = NULL;
|
906 |
|
|
unsigned int flags = SECTION_WRITE;
|
907 |
|
|
if (c6x_in_small_data_p (decl))
|
908 |
|
|
{
|
909 |
|
|
switch (categorize_decl_for_section (decl, reloc))
|
910 |
|
|
{
|
911 |
|
|
case SECCAT_SRODATA:
|
912 |
|
|
sname = ".rodata";
|
913 |
|
|
flags = 0;
|
914 |
|
|
break;
|
915 |
|
|
case SECCAT_SDATA:
|
916 |
|
|
sname = ".neardata";
|
917 |
|
|
break;
|
918 |
|
|
case SECCAT_SBSS:
|
919 |
|
|
sname = ".bss";
|
920 |
|
|
flags |= SECTION_BSS;
|
921 |
|
|
default:
|
922 |
|
|
break;
|
923 |
|
|
}
|
924 |
|
|
}
|
925 |
|
|
else
|
926 |
|
|
{
|
927 |
|
|
switch (categorize_decl_for_section (decl, reloc))
|
928 |
|
|
{
|
929 |
|
|
case SECCAT_DATA:
|
930 |
|
|
sname = ".fardata";
|
931 |
|
|
break;
|
932 |
|
|
case SECCAT_DATA_REL:
|
933 |
|
|
sname = ".fardata.rel";
|
934 |
|
|
break;
|
935 |
|
|
case SECCAT_DATA_REL_LOCAL:
|
936 |
|
|
sname = ".fardata.rel.local";
|
937 |
|
|
break;
|
938 |
|
|
case SECCAT_DATA_REL_RO:
|
939 |
|
|
sname = ".fardata.rel.ro";
|
940 |
|
|
break;
|
941 |
|
|
case SECCAT_DATA_REL_RO_LOCAL:
|
942 |
|
|
sname = ".fardata.rel.ro.local";
|
943 |
|
|
break;
|
944 |
|
|
case SECCAT_BSS:
|
945 |
|
|
sname = ".far";
|
946 |
|
|
flags |= SECTION_BSS;
|
947 |
|
|
break;
|
948 |
|
|
case SECCAT_RODATA:
|
949 |
|
|
sname = ".const";
|
950 |
|
|
flags = 0;
|
951 |
|
|
break;
|
952 |
|
|
case SECCAT_SRODATA:
|
953 |
|
|
case SECCAT_SDATA:
|
954 |
|
|
case SECCAT_SBSS:
|
955 |
|
|
gcc_unreachable ();
|
956 |
|
|
default:
|
957 |
|
|
break;
|
958 |
|
|
}
|
959 |
|
|
}
|
960 |
|
|
if (sname)
|
961 |
|
|
{
|
962 |
|
|
/* We might get called with string constants, but get_named_section
|
963 |
|
|
doesn't like them as they are not DECLs. Also, we need to set
|
964 |
|
|
flags in that case. */
|
965 |
|
|
if (!DECL_P (decl))
|
966 |
|
|
return get_section (sname, flags, NULL);
|
967 |
|
|
return get_named_section (decl, sname, reloc);
|
968 |
|
|
}
|
969 |
|
|
|
970 |
|
|
return default_elf_select_section (decl, reloc, align);
|
971 |
|
|
}
|
972 |
|
|
|
973 |
|
|
/* Build up a unique section name, expressed as a
|
974 |
|
|
STRING_CST node, and assign it to DECL_SECTION_NAME (decl).
|
975 |
|
|
RELOC indicates whether the initial value of EXP requires
|
976 |
|
|
link-time relocations. */
|
977 |
|
|
|
978 |
|
|
static void ATTRIBUTE_UNUSED
|
979 |
|
|
c6x_elf_unique_section (tree decl, int reloc)
|
980 |
|
|
{
|
981 |
|
|
const char *prefix = NULL;
|
982 |
|
|
/* We only need to use .gnu.linkonce if we don't have COMDAT groups. */
|
983 |
|
|
bool one_only = DECL_ONE_ONLY (decl) && !HAVE_COMDAT_GROUP;
|
984 |
|
|
|
985 |
|
|
if (c6x_in_small_data_p (decl))
|
986 |
|
|
{
|
987 |
|
|
switch (categorize_decl_for_section (decl, reloc))
|
988 |
|
|
{
|
989 |
|
|
case SECCAT_SDATA:
|
990 |
|
|
prefix = one_only ? ".s" : ".neardata";
|
991 |
|
|
break;
|
992 |
|
|
case SECCAT_SBSS:
|
993 |
|
|
prefix = one_only ? ".sb" : ".bss";
|
994 |
|
|
break;
|
995 |
|
|
case SECCAT_SRODATA:
|
996 |
|
|
prefix = one_only ? ".s2" : ".rodata";
|
997 |
|
|
break;
|
998 |
|
|
case SECCAT_RODATA_MERGE_STR:
|
999 |
|
|
case SECCAT_RODATA_MERGE_STR_INIT:
|
1000 |
|
|
case SECCAT_RODATA_MERGE_CONST:
|
1001 |
|
|
case SECCAT_RODATA:
|
1002 |
|
|
case SECCAT_DATA:
|
1003 |
|
|
case SECCAT_DATA_REL:
|
1004 |
|
|
case SECCAT_DATA_REL_LOCAL:
|
1005 |
|
|
case SECCAT_DATA_REL_RO:
|
1006 |
|
|
case SECCAT_DATA_REL_RO_LOCAL:
|
1007 |
|
|
gcc_unreachable ();
|
1008 |
|
|
default:
|
1009 |
|
|
/* Everything else we place into default sections and hope for the
|
1010 |
|
|
best. */
|
1011 |
|
|
break;
|
1012 |
|
|
}
|
1013 |
|
|
}
|
1014 |
|
|
else
|
1015 |
|
|
{
|
1016 |
|
|
switch (categorize_decl_for_section (decl, reloc))
|
1017 |
|
|
{
|
1018 |
|
|
case SECCAT_DATA:
|
1019 |
|
|
case SECCAT_DATA_REL:
|
1020 |
|
|
case SECCAT_DATA_REL_LOCAL:
|
1021 |
|
|
case SECCAT_DATA_REL_RO:
|
1022 |
|
|
case SECCAT_DATA_REL_RO_LOCAL:
|
1023 |
|
|
prefix = one_only ? ".fd" : ".fardata";
|
1024 |
|
|
break;
|
1025 |
|
|
case SECCAT_BSS:
|
1026 |
|
|
prefix = one_only ? ".fb" : ".far";
|
1027 |
|
|
break;
|
1028 |
|
|
case SECCAT_RODATA:
|
1029 |
|
|
case SECCAT_RODATA_MERGE_STR:
|
1030 |
|
|
case SECCAT_RODATA_MERGE_STR_INIT:
|
1031 |
|
|
case SECCAT_RODATA_MERGE_CONST:
|
1032 |
|
|
prefix = one_only ? ".fr" : ".const";
|
1033 |
|
|
break;
|
1034 |
|
|
case SECCAT_SRODATA:
|
1035 |
|
|
case SECCAT_SDATA:
|
1036 |
|
|
case SECCAT_SBSS:
|
1037 |
|
|
gcc_unreachable ();
|
1038 |
|
|
default:
|
1039 |
|
|
break;
|
1040 |
|
|
}
|
1041 |
|
|
}
|
1042 |
|
|
|
1043 |
|
|
if (prefix)
|
1044 |
|
|
{
|
1045 |
|
|
const char *name, *linkonce;
|
1046 |
|
|
char *string;
|
1047 |
|
|
|
1048 |
|
|
name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
|
1049 |
|
|
name = targetm.strip_name_encoding (name);
|
1050 |
|
|
|
1051 |
|
|
/* If we're using one_only, then there needs to be a .gnu.linkonce
|
1052 |
|
|
prefix to the section name. */
|
1053 |
|
|
linkonce = one_only ? ".gnu.linkonce" : "";
|
1054 |
|
|
|
1055 |
|
|
string = ACONCAT ((linkonce, prefix, ".", name, NULL));
|
1056 |
|
|
|
1057 |
|
|
DECL_SECTION_NAME (decl) = build_string (strlen (string), string);
|
1058 |
|
|
return;
|
1059 |
|
|
}
|
1060 |
|
|
default_unique_section (decl, reloc);
|
1061 |
|
|
}
|
1062 |
|
|
|
1063 |
|
|
static unsigned int
|
1064 |
|
|
c6x_section_type_flags (tree decl, const char *name, int reloc)
|
1065 |
|
|
{
|
1066 |
|
|
unsigned int flags = 0;
|
1067 |
|
|
|
1068 |
|
|
if (strcmp (name, ".far") == 0
|
1069 |
|
|
|| strncmp (name, ".far.", 5) == 0)
|
1070 |
|
|
flags |= SECTION_BSS;
|
1071 |
|
|
|
1072 |
|
|
flags |= default_section_type_flags (decl, name, reloc);
|
1073 |
|
|
|
1074 |
|
|
return flags;
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
/* Checks whether the given CALL_EXPR would use a caller saved
|
1078 |
|
|
register. This is used to decide whether sibling call optimization
|
1079 |
|
|
could be performed on the respective function call. */
|
1080 |
|
|
|
1081 |
|
|
static bool
|
1082 |
|
|
c6x_call_saved_register_used (tree call_expr)
|
1083 |
|
|
{
|
1084 |
|
|
CUMULATIVE_ARGS cum_v;
|
1085 |
|
|
cumulative_args_t cum;
|
1086 |
|
|
HARD_REG_SET call_saved_regset;
|
1087 |
|
|
tree parameter;
|
1088 |
|
|
enum machine_mode mode;
|
1089 |
|
|
tree type;
|
1090 |
|
|
rtx parm_rtx;
|
1091 |
|
|
int i;
|
1092 |
|
|
|
1093 |
|
|
INIT_CUMULATIVE_ARGS (cum_v, NULL, NULL, 0, 0);
|
1094 |
|
|
cum = pack_cumulative_args (&cum_v);
|
1095 |
|
|
|
1096 |
|
|
COMPL_HARD_REG_SET (call_saved_regset, call_used_reg_set);
|
1097 |
|
|
for (i = 0; i < call_expr_nargs (call_expr); i++)
|
1098 |
|
|
{
|
1099 |
|
|
parameter = CALL_EXPR_ARG (call_expr, i);
|
1100 |
|
|
gcc_assert (parameter);
|
1101 |
|
|
|
1102 |
|
|
/* For an undeclared variable passed as parameter we will get
|
1103 |
|
|
an ERROR_MARK node here. */
|
1104 |
|
|
if (TREE_CODE (parameter) == ERROR_MARK)
|
1105 |
|
|
return true;
|
1106 |
|
|
|
1107 |
|
|
type = TREE_TYPE (parameter);
|
1108 |
|
|
gcc_assert (type);
|
1109 |
|
|
|
1110 |
|
|
mode = TYPE_MODE (type);
|
1111 |
|
|
gcc_assert (mode);
|
1112 |
|
|
|
1113 |
|
|
if (pass_by_reference (&cum_v, mode, type, true))
|
1114 |
|
|
{
|
1115 |
|
|
mode = Pmode;
|
1116 |
|
|
type = build_pointer_type (type);
|
1117 |
|
|
}
|
1118 |
|
|
|
1119 |
|
|
parm_rtx = c6x_function_arg (cum, mode, type, 0);
|
1120 |
|
|
|
1121 |
|
|
c6x_function_arg_advance (cum, mode, type, 0);
|
1122 |
|
|
|
1123 |
|
|
if (!parm_rtx)
|
1124 |
|
|
continue;
|
1125 |
|
|
|
1126 |
|
|
if (REG_P (parm_rtx)
|
1127 |
|
|
&& overlaps_hard_reg_set_p (call_saved_regset, GET_MODE (parm_rtx),
|
1128 |
|
|
REGNO (parm_rtx)))
|
1129 |
|
|
return true;
|
1130 |
|
|
if (GET_CODE (parm_rtx) == PARALLEL)
|
1131 |
|
|
{
|
1132 |
|
|
int n = XVECLEN (parm_rtx, 0);
|
1133 |
|
|
while (n-- > 0)
|
1134 |
|
|
{
|
1135 |
|
|
rtx x = XEXP (XVECEXP (parm_rtx, 0, n), 0);
|
1136 |
|
|
if (REG_P (x)
|
1137 |
|
|
&& overlaps_hard_reg_set_p (call_saved_regset,
|
1138 |
|
|
GET_MODE (x), REGNO (x)))
|
1139 |
|
|
return true;
|
1140 |
|
|
}
|
1141 |
|
|
}
|
1142 |
|
|
}
|
1143 |
|
|
return false;
|
1144 |
|
|
}
|
1145 |
|
|
|
1146 |
|
|
/* Decide whether we can make a sibling call to a function. DECL is the
|
1147 |
|
|
declaration of the function being targeted by the call and EXP is the
|
1148 |
|
|
CALL_EXPR representing the call. */
|
1149 |
|
|
|
1150 |
|
|
static bool
|
1151 |
|
|
c6x_function_ok_for_sibcall (tree decl, tree exp)
|
1152 |
|
|
{
|
1153 |
|
|
/* Registers A10, A12, B10 and B12 are available as arguments
|
1154 |
|
|
register but unfortunately caller saved. This makes functions
|
1155 |
|
|
needing these registers for arguments not suitable for
|
1156 |
|
|
sibcalls. */
|
1157 |
|
|
if (c6x_call_saved_register_used (exp))
|
1158 |
|
|
return false;
|
1159 |
|
|
|
1160 |
|
|
if (!flag_pic)
|
1161 |
|
|
return true;
|
1162 |
|
|
|
1163 |
|
|
if (TARGET_DSBT)
|
1164 |
|
|
{
|
1165 |
|
|
/* When compiling for DSBT, the calling function must be local,
|
1166 |
|
|
so that when we reload B14 in the sibcall epilogue, it will
|
1167 |
|
|
not change its value. */
|
1168 |
|
|
struct cgraph_local_info *this_func;
|
1169 |
|
|
|
1170 |
|
|
if (!decl)
|
1171 |
|
|
/* Not enough information. */
|
1172 |
|
|
return false;
|
1173 |
|
|
|
1174 |
|
|
this_func = cgraph_local_info (current_function_decl);
|
1175 |
|
|
return this_func->local;
|
1176 |
|
|
}
|
1177 |
|
|
|
1178 |
|
|
return true;
|
1179 |
|
|
}
|
1180 |
|
|
|
1181 |
|
|
/* Return true if DECL is known to be linked into section SECTION. */
|
1182 |
|
|
|
1183 |
|
|
static bool
|
1184 |
|
|
c6x_function_in_section_p (tree decl, section *section)
|
1185 |
|
|
{
|
1186 |
|
|
/* We can only be certain about functions defined in the same
|
1187 |
|
|
compilation unit. */
|
1188 |
|
|
if (!TREE_STATIC (decl))
|
1189 |
|
|
return false;
|
1190 |
|
|
|
1191 |
|
|
/* Make sure that SYMBOL always binds to the definition in this
|
1192 |
|
|
compilation unit. */
|
1193 |
|
|
if (!targetm.binds_local_p (decl))
|
1194 |
|
|
return false;
|
1195 |
|
|
|
1196 |
|
|
/* If DECL_SECTION_NAME is set, assume it is trustworthy. */
|
1197 |
|
|
if (!DECL_SECTION_NAME (decl))
|
1198 |
|
|
{
|
1199 |
|
|
/* Make sure that we will not create a unique section for DECL. */
|
1200 |
|
|
if (flag_function_sections || DECL_ONE_ONLY (decl))
|
1201 |
|
|
return false;
|
1202 |
|
|
}
|
1203 |
|
|
|
1204 |
|
|
return function_section (decl) == section;
|
1205 |
|
|
}
|
1206 |
|
|
|
1207 |
|
|
/* Return true if a call to OP, which is a SYMBOL_REF, must be expanded
|
1208 |
|
|
as a long call. */
|
1209 |
|
|
bool
|
1210 |
|
|
c6x_long_call_p (rtx op)
|
1211 |
|
|
{
|
1212 |
|
|
tree decl;
|
1213 |
|
|
|
1214 |
|
|
if (!TARGET_LONG_CALLS)
|
1215 |
|
|
return false;
|
1216 |
|
|
|
1217 |
|
|
decl = SYMBOL_REF_DECL (op);
|
1218 |
|
|
|
1219 |
|
|
/* Try to determine whether the symbol is in the same section as the current
|
1220 |
|
|
function. Be conservative, and only cater for cases in which the
|
1221 |
|
|
whole of the current function is placed in the same section. */
|
1222 |
|
|
if (decl != NULL_TREE
|
1223 |
|
|
&& !flag_reorder_blocks_and_partition
|
1224 |
|
|
&& TREE_CODE (decl) == FUNCTION_DECL
|
1225 |
|
|
&& c6x_function_in_section_p (decl, current_function_section ()))
|
1226 |
|
|
return false;
|
1227 |
|
|
|
1228 |
|
|
return true;
|
1229 |
|
|
}
|
1230 |
|
|
|
1231 |
|
|
/* Emit the sequence for a call. */
|
1232 |
|
|
void
|
1233 |
|
|
c6x_expand_call (rtx retval, rtx address, bool sibcall)
|
1234 |
|
|
{
|
1235 |
|
|
rtx callee = XEXP (address, 0);
|
1236 |
|
|
rtx call_insn;
|
1237 |
|
|
|
1238 |
|
|
if (!c6x_call_operand (callee, Pmode))
|
1239 |
|
|
{
|
1240 |
|
|
callee = force_reg (Pmode, callee);
|
1241 |
|
|
address = change_address (address, Pmode, callee);
|
1242 |
|
|
}
|
1243 |
|
|
call_insn = gen_rtx_CALL (VOIDmode, address, const0_rtx);
|
1244 |
|
|
if (sibcall)
|
1245 |
|
|
{
|
1246 |
|
|
call_insn = emit_call_insn (call_insn);
|
1247 |
|
|
use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn),
|
1248 |
|
|
gen_rtx_REG (Pmode, REG_B3));
|
1249 |
|
|
}
|
1250 |
|
|
else
|
1251 |
|
|
{
|
1252 |
|
|
if (retval == NULL_RTX)
|
1253 |
|
|
call_insn = emit_call_insn (call_insn);
|
1254 |
|
|
else
|
1255 |
|
|
call_insn = emit_call_insn (gen_rtx_SET (GET_MODE (retval), retval,
|
1256 |
|
|
call_insn));
|
1257 |
|
|
}
|
1258 |
|
|
if (flag_pic)
|
1259 |
|
|
use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), pic_offset_table_rtx);
|
1260 |
|
|
}
|
1261 |
|
|
|
1262 |
|
|
/* Legitimize PIC addresses. If the address is already position-independent,
|
1263 |
|
|
we return ORIG. Newly generated position-independent addresses go into a
|
1264 |
|
|
reg. This is REG if nonzero, otherwise we allocate register(s) as
|
1265 |
|
|
necessary. PICREG is the register holding the pointer to the PIC offset
|
1266 |
|
|
table. */
|
1267 |
|
|
|
1268 |
|
|
static rtx
|
1269 |
|
|
legitimize_pic_address (rtx orig, rtx reg, rtx picreg)
|
1270 |
|
|
{
|
1271 |
|
|
rtx addr = orig;
|
1272 |
|
|
rtx new_rtx = orig;
|
1273 |
|
|
|
1274 |
|
|
if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
|
1275 |
|
|
{
|
1276 |
|
|
int unspec = UNSPEC_LOAD_GOT;
|
1277 |
|
|
rtx tmp;
|
1278 |
|
|
|
1279 |
|
|
if (reg == 0)
|
1280 |
|
|
{
|
1281 |
|
|
gcc_assert (can_create_pseudo_p ());
|
1282 |
|
|
reg = gen_reg_rtx (Pmode);
|
1283 |
|
|
}
|
1284 |
|
|
if (flag_pic == 2)
|
1285 |
|
|
{
|
1286 |
|
|
if (can_create_pseudo_p ())
|
1287 |
|
|
tmp = gen_reg_rtx (Pmode);
|
1288 |
|
|
else
|
1289 |
|
|
tmp = reg;
|
1290 |
|
|
emit_insn (gen_movsi_gotoff_high (tmp, addr));
|
1291 |
|
|
emit_insn (gen_movsi_gotoff_lo_sum (tmp, tmp, addr));
|
1292 |
|
|
emit_insn (gen_load_got_gotoff (reg, picreg, tmp));
|
1293 |
|
|
}
|
1294 |
|
|
else
|
1295 |
|
|
{
|
1296 |
|
|
tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), unspec);
|
1297 |
|
|
new_rtx = gen_const_mem (Pmode, gen_rtx_PLUS (Pmode, picreg, tmp));
|
1298 |
|
|
|
1299 |
|
|
emit_move_insn (reg, new_rtx);
|
1300 |
|
|
}
|
1301 |
|
|
if (picreg == pic_offset_table_rtx)
|
1302 |
|
|
crtl->uses_pic_offset_table = 1;
|
1303 |
|
|
return reg;
|
1304 |
|
|
}
|
1305 |
|
|
|
1306 |
|
|
else if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS)
|
1307 |
|
|
{
|
1308 |
|
|
rtx base;
|
1309 |
|
|
|
1310 |
|
|
if (GET_CODE (addr) == CONST)
|
1311 |
|
|
{
|
1312 |
|
|
addr = XEXP (addr, 0);
|
1313 |
|
|
gcc_assert (GET_CODE (addr) == PLUS);
|
1314 |
|
|
}
|
1315 |
|
|
|
1316 |
|
|
if (XEXP (addr, 0) == picreg)
|
1317 |
|
|
return orig;
|
1318 |
|
|
|
1319 |
|
|
if (reg == 0)
|
1320 |
|
|
{
|
1321 |
|
|
gcc_assert (can_create_pseudo_p ());
|
1322 |
|
|
reg = gen_reg_rtx (Pmode);
|
1323 |
|
|
}
|
1324 |
|
|
|
1325 |
|
|
base = legitimize_pic_address (XEXP (addr, 0), reg, picreg);
|
1326 |
|
|
addr = legitimize_pic_address (XEXP (addr, 1),
|
1327 |
|
|
base == reg ? NULL_RTX : reg,
|
1328 |
|
|
picreg);
|
1329 |
|
|
|
1330 |
|
|
if (GET_CODE (addr) == CONST_INT)
|
1331 |
|
|
{
|
1332 |
|
|
gcc_assert (! reload_in_progress && ! reload_completed);
|
1333 |
|
|
addr = force_reg (Pmode, addr);
|
1334 |
|
|
}
|
1335 |
|
|
|
1336 |
|
|
if (GET_CODE (addr) == PLUS && CONSTANT_P (XEXP (addr, 1)))
|
1337 |
|
|
{
|
1338 |
|
|
base = gen_rtx_PLUS (Pmode, base, XEXP (addr, 0));
|
1339 |
|
|
addr = XEXP (addr, 1);
|
1340 |
|
|
}
|
1341 |
|
|
|
1342 |
|
|
return gen_rtx_PLUS (Pmode, base, addr);
|
1343 |
|
|
}
|
1344 |
|
|
|
1345 |
|
|
return new_rtx;
|
1346 |
|
|
}
|
1347 |
|
|
|
1348 |
|
|
/* Expand a move operation in mode MODE. The operands are in OPERANDS.
|
1349 |
|
|
Returns true if no further code must be generated, false if the caller
|
1350 |
|
|
should generate an insn to move OPERANDS[1] to OPERANDS[0]. */
|
1351 |
|
|
|
1352 |
|
|
bool
|
1353 |
|
|
expand_move (rtx *operands, enum machine_mode mode)
|
1354 |
|
|
{
|
1355 |
|
|
rtx dest = operands[0];
|
1356 |
|
|
rtx op = operands[1];
|
1357 |
|
|
|
1358 |
|
|
if ((reload_in_progress | reload_completed) == 0
|
1359 |
|
|
&& GET_CODE (dest) == MEM && GET_CODE (op) != REG)
|
1360 |
|
|
operands[1] = force_reg (mode, op);
|
1361 |
|
|
else if (mode == SImode && symbolic_operand (op, SImode))
|
1362 |
|
|
{
|
1363 |
|
|
if (flag_pic)
|
1364 |
|
|
{
|
1365 |
|
|
if (sdata_symbolic_operand (op, SImode))
|
1366 |
|
|
{
|
1367 |
|
|
emit_insn (gen_load_sdata_pic (dest, pic_offset_table_rtx, op));
|
1368 |
|
|
crtl->uses_pic_offset_table = 1;
|
1369 |
|
|
return true;
|
1370 |
|
|
}
|
1371 |
|
|
else
|
1372 |
|
|
{
|
1373 |
|
|
rtx temp = (reload_completed || reload_in_progress
|
1374 |
|
|
? dest : gen_reg_rtx (Pmode));
|
1375 |
|
|
|
1376 |
|
|
operands[1] = legitimize_pic_address (op, temp,
|
1377 |
|
|
pic_offset_table_rtx);
|
1378 |
|
|
}
|
1379 |
|
|
}
|
1380 |
|
|
else if (reload_completed
|
1381 |
|
|
&& !sdata_symbolic_operand (op, SImode))
|
1382 |
|
|
{
|
1383 |
|
|
emit_insn (gen_movsi_high (dest, op));
|
1384 |
|
|
emit_insn (gen_movsi_lo_sum (dest, dest, op));
|
1385 |
|
|
return true;
|
1386 |
|
|
}
|
1387 |
|
|
}
|
1388 |
|
|
return false;
|
1389 |
|
|
}
|
1390 |
|
|
|
1391 |
|
|
/* This function is called when we're about to expand an integer compare
|
1392 |
|
|
operation which performs COMPARISON. It examines the second operand,
|
1393 |
|
|
and if it is an integer constant that cannot be used directly on the
|
1394 |
|
|
current machine in a comparison insn, it returns true. */
|
1395 |
|
|
bool
|
1396 |
|
|
c6x_force_op_for_comparison_p (enum rtx_code code, rtx op)
|
1397 |
|
|
{
|
1398 |
|
|
if (!CONST_INT_P (op) || satisfies_constraint_Iu4 (op))
|
1399 |
|
|
return false;
|
1400 |
|
|
|
1401 |
|
|
if ((code == EQ || code == LT || code == GT)
|
1402 |
|
|
&& !satisfies_constraint_Is5 (op))
|
1403 |
|
|
return true;
|
1404 |
|
|
if ((code == GTU || code == LTU)
|
1405 |
|
|
&& (!TARGET_INSNS_64 || !satisfies_constraint_Iu5 (op)))
|
1406 |
|
|
return true;
|
1407 |
|
|
|
1408 |
|
|
return false;
|
1409 |
|
|
}
|
1410 |
|
|
|
1411 |
|
|
/* Emit comparison instruction if necessary, returning the expression
|
1412 |
|
|
that holds the compare result in the proper mode. Return the comparison
|
1413 |
|
|
that should be used in the jump insn. */
|
1414 |
|
|
|
1415 |
|
|
rtx
|
1416 |
|
|
c6x_expand_compare (rtx comparison, enum machine_mode mode)
|
1417 |
|
|
{
|
1418 |
|
|
enum rtx_code code = GET_CODE (comparison);
|
1419 |
|
|
rtx op0 = XEXP (comparison, 0);
|
1420 |
|
|
rtx op1 = XEXP (comparison, 1);
|
1421 |
|
|
rtx cmp;
|
1422 |
|
|
enum rtx_code jump_code = code;
|
1423 |
|
|
enum machine_mode op_mode = GET_MODE (op0);
|
1424 |
|
|
|
1425 |
|
|
if (op_mode == DImode && (code == NE || code == EQ) && op1 == const0_rtx)
|
1426 |
|
|
{
|
1427 |
|
|
rtx t = gen_reg_rtx (SImode);
|
1428 |
|
|
emit_insn (gen_iorsi3 (t, gen_lowpart (SImode, op0),
|
1429 |
|
|
gen_highpart (SImode, op0)));
|
1430 |
|
|
op_mode = SImode;
|
1431 |
|
|
cmp = t;
|
1432 |
|
|
}
|
1433 |
|
|
else if (op_mode == DImode)
|
1434 |
|
|
{
|
1435 |
|
|
rtx lo[2], high[2];
|
1436 |
|
|
rtx cmp1, cmp2;
|
1437 |
|
|
|
1438 |
|
|
if (code == NE || code == GEU || code == LEU || code == GE || code == LE)
|
1439 |
|
|
{
|
1440 |
|
|
code = reverse_condition (code);
|
1441 |
|
|
jump_code = EQ;
|
1442 |
|
|
}
|
1443 |
|
|
else
|
1444 |
|
|
jump_code = NE;
|
1445 |
|
|
|
1446 |
|
|
split_di (&op0, 1, lo, high);
|
1447 |
|
|
split_di (&op1, 1, lo + 1, high + 1);
|
1448 |
|
|
|
1449 |
|
|
if (c6x_force_op_for_comparison_p (code, high[1])
|
1450 |
|
|
|| c6x_force_op_for_comparison_p (EQ, high[1]))
|
1451 |
|
|
high[1] = force_reg (SImode, high[1]);
|
1452 |
|
|
|
1453 |
|
|
cmp1 = gen_reg_rtx (SImode);
|
1454 |
|
|
cmp2 = gen_reg_rtx (SImode);
|
1455 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, cmp1,
|
1456 |
|
|
gen_rtx_fmt_ee (code, SImode, high[0], high[1])));
|
1457 |
|
|
if (code == EQ)
|
1458 |
|
|
{
|
1459 |
|
|
if (c6x_force_op_for_comparison_p (code, lo[1]))
|
1460 |
|
|
lo[1] = force_reg (SImode, lo[1]);
|
1461 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, cmp2,
|
1462 |
|
|
gen_rtx_fmt_ee (code, SImode, lo[0], lo[1])));
|
1463 |
|
|
emit_insn (gen_andsi3 (cmp1, cmp1, cmp2));
|
1464 |
|
|
}
|
1465 |
|
|
else
|
1466 |
|
|
{
|
1467 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, cmp2,
|
1468 |
|
|
gen_rtx_EQ (SImode, high[0], high[1])));
|
1469 |
|
|
if (code == GT)
|
1470 |
|
|
code = GTU;
|
1471 |
|
|
else if (code == LT)
|
1472 |
|
|
code = LTU;
|
1473 |
|
|
if (c6x_force_op_for_comparison_p (code, lo[1]))
|
1474 |
|
|
lo[1] = force_reg (SImode, lo[1]);
|
1475 |
|
|
emit_insn (gen_cmpsi_and (cmp2, gen_rtx_fmt_ee (code, SImode,
|
1476 |
|
|
lo[0], lo[1]),
|
1477 |
|
|
lo[0], lo[1], cmp2));
|
1478 |
|
|
emit_insn (gen_iorsi3 (cmp1, cmp1, cmp2));
|
1479 |
|
|
}
|
1480 |
|
|
cmp = cmp1;
|
1481 |
|
|
}
|
1482 |
|
|
else if (TARGET_FP && !flag_finite_math_only
|
1483 |
|
|
&& (op_mode == DFmode || op_mode == SFmode)
|
1484 |
|
|
&& code != EQ && code != NE && code != LT && code != GT
|
1485 |
|
|
&& code != UNLE && code != UNGE)
|
1486 |
|
|
{
|
1487 |
|
|
enum rtx_code code1, code2, code3;
|
1488 |
|
|
rtx (*fn) (rtx, rtx, rtx, rtx, rtx);
|
1489 |
|
|
|
1490 |
|
|
jump_code = NE;
|
1491 |
|
|
code3 = UNKNOWN;
|
1492 |
|
|
switch (code)
|
1493 |
|
|
{
|
1494 |
|
|
case UNLT:
|
1495 |
|
|
case UNGT:
|
1496 |
|
|
jump_code = EQ;
|
1497 |
|
|
/* fall through */
|
1498 |
|
|
case LE:
|
1499 |
|
|
case GE:
|
1500 |
|
|
code1 = code == LE || code == UNGT ? LT : GT;
|
1501 |
|
|
code2 = EQ;
|
1502 |
|
|
break;
|
1503 |
|
|
|
1504 |
|
|
case UNORDERED:
|
1505 |
|
|
jump_code = EQ;
|
1506 |
|
|
/* fall through */
|
1507 |
|
|
case ORDERED:
|
1508 |
|
|
code3 = EQ;
|
1509 |
|
|
/* fall through */
|
1510 |
|
|
case LTGT:
|
1511 |
|
|
code1 = LT;
|
1512 |
|
|
code2 = GT;
|
1513 |
|
|
break;
|
1514 |
|
|
|
1515 |
|
|
case UNEQ:
|
1516 |
|
|
code1 = LT;
|
1517 |
|
|
code2 = GT;
|
1518 |
|
|
jump_code = EQ;
|
1519 |
|
|
break;
|
1520 |
|
|
|
1521 |
|
|
default:
|
1522 |
|
|
gcc_unreachable ();
|
1523 |
|
|
}
|
1524 |
|
|
|
1525 |
|
|
cmp = gen_reg_rtx (SImode);
|
1526 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, cmp,
|
1527 |
|
|
gen_rtx_fmt_ee (code1, SImode, op0, op1)));
|
1528 |
|
|
fn = op_mode == DFmode ? gen_cmpdf_ior : gen_cmpsf_ior;
|
1529 |
|
|
emit_insn (fn (cmp, gen_rtx_fmt_ee (code2, SImode, op0, op1),
|
1530 |
|
|
op0, op1, cmp));
|
1531 |
|
|
if (code3 != UNKNOWN)
|
1532 |
|
|
emit_insn (fn (cmp, gen_rtx_fmt_ee (code3, SImode, op0, op1),
|
1533 |
|
|
op0, op1, cmp));
|
1534 |
|
|
}
|
1535 |
|
|
else if (op_mode == SImode && (code == NE || code == EQ) && op1 == const0_rtx)
|
1536 |
|
|
cmp = op0;
|
1537 |
|
|
else
|
1538 |
|
|
{
|
1539 |
|
|
bool is_fp_libfunc;
|
1540 |
|
|
is_fp_libfunc = !TARGET_FP && (op_mode == DFmode || op_mode == SFmode);
|
1541 |
|
|
|
1542 |
|
|
if ((code == NE || code == GEU || code == LEU || code == GE || code == LE)
|
1543 |
|
|
&& !is_fp_libfunc)
|
1544 |
|
|
{
|
1545 |
|
|
code = reverse_condition (code);
|
1546 |
|
|
jump_code = EQ;
|
1547 |
|
|
}
|
1548 |
|
|
else if (code == UNGE)
|
1549 |
|
|
{
|
1550 |
|
|
code = LT;
|
1551 |
|
|
jump_code = EQ;
|
1552 |
|
|
}
|
1553 |
|
|
else if (code == UNLE)
|
1554 |
|
|
{
|
1555 |
|
|
code = GT;
|
1556 |
|
|
jump_code = EQ;
|
1557 |
|
|
}
|
1558 |
|
|
else
|
1559 |
|
|
jump_code = NE;
|
1560 |
|
|
|
1561 |
|
|
if (is_fp_libfunc)
|
1562 |
|
|
{
|
1563 |
|
|
rtx insns;
|
1564 |
|
|
rtx libfunc;
|
1565 |
|
|
switch (code)
|
1566 |
|
|
{
|
1567 |
|
|
case EQ:
|
1568 |
|
|
libfunc = op_mode == DFmode ? eqdf_libfunc : eqsf_libfunc;
|
1569 |
|
|
break;
|
1570 |
|
|
case NE:
|
1571 |
|
|
libfunc = op_mode == DFmode ? nedf_libfunc : nesf_libfunc;
|
1572 |
|
|
break;
|
1573 |
|
|
case GT:
|
1574 |
|
|
libfunc = op_mode == DFmode ? gtdf_libfunc : gtsf_libfunc;
|
1575 |
|
|
break;
|
1576 |
|
|
case GE:
|
1577 |
|
|
libfunc = op_mode == DFmode ? gedf_libfunc : gesf_libfunc;
|
1578 |
|
|
break;
|
1579 |
|
|
case LT:
|
1580 |
|
|
libfunc = op_mode == DFmode ? ltdf_libfunc : ltsf_libfunc;
|
1581 |
|
|
break;
|
1582 |
|
|
case LE:
|
1583 |
|
|
libfunc = op_mode == DFmode ? ledf_libfunc : lesf_libfunc;
|
1584 |
|
|
break;
|
1585 |
|
|
default:
|
1586 |
|
|
gcc_unreachable ();
|
1587 |
|
|
}
|
1588 |
|
|
start_sequence ();
|
1589 |
|
|
|
1590 |
|
|
cmp = emit_library_call_value (libfunc, 0, LCT_CONST, SImode, 2,
|
1591 |
|
|
op0, op_mode, op1, op_mode);
|
1592 |
|
|
insns = get_insns ();
|
1593 |
|
|
end_sequence ();
|
1594 |
|
|
|
1595 |
|
|
emit_libcall_block (insns, cmp, cmp,
|
1596 |
|
|
gen_rtx_fmt_ee (code, SImode, op0, op1));
|
1597 |
|
|
}
|
1598 |
|
|
else
|
1599 |
|
|
{
|
1600 |
|
|
cmp = gen_reg_rtx (SImode);
|
1601 |
|
|
if (c6x_force_op_for_comparison_p (code, op1))
|
1602 |
|
|
op1 = force_reg (SImode, op1);
|
1603 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, cmp,
|
1604 |
|
|
gen_rtx_fmt_ee (code, SImode, op0, op1)));
|
1605 |
|
|
}
|
1606 |
|
|
}
|
1607 |
|
|
|
1608 |
|
|
return gen_rtx_fmt_ee (jump_code, mode, cmp, const0_rtx);
|
1609 |
|
|
}
|
1610 |
|
|
|
1611 |
|
|
/* Return one word of double-word value OP. HIGH_P is true to select the
|
1612 |
|
|
high part, false to select the low part. When encountering auto-increment
|
1613 |
|
|
addressing, we make the assumption that the low part is going to be accessed
|
1614 |
|
|
first. */
|
1615 |
|
|
|
1616 |
|
|
rtx
|
1617 |
|
|
c6x_subword (rtx op, bool high_p)
|
1618 |
|
|
{
|
1619 |
|
|
unsigned int byte;
|
1620 |
|
|
enum machine_mode mode;
|
1621 |
|
|
|
1622 |
|
|
mode = GET_MODE (op);
|
1623 |
|
|
if (mode == VOIDmode)
|
1624 |
|
|
mode = DImode;
|
1625 |
|
|
|
1626 |
|
|
if (TARGET_BIG_ENDIAN ? !high_p : high_p)
|
1627 |
|
|
byte = UNITS_PER_WORD;
|
1628 |
|
|
else
|
1629 |
|
|
byte = 0;
|
1630 |
|
|
|
1631 |
|
|
if (MEM_P (op))
|
1632 |
|
|
{
|
1633 |
|
|
rtx addr = XEXP (op, 0);
|
1634 |
|
|
if (GET_CODE (addr) == PLUS || REG_P (addr))
|
1635 |
|
|
return adjust_address (op, word_mode, byte);
|
1636 |
|
|
/* FIXME: should really support autoincrement addressing for
|
1637 |
|
|
multi-word modes. */
|
1638 |
|
|
gcc_unreachable ();
|
1639 |
|
|
}
|
1640 |
|
|
|
1641 |
|
|
return simplify_gen_subreg (word_mode, op, mode, byte);
|
1642 |
|
|
}
|
1643 |
|
|
|
1644 |
|
|
/* Split one or more DImode RTL references into pairs of SImode
|
1645 |
|
|
references. The RTL can be REG, offsettable MEM, integer constant, or
|
1646 |
|
|
CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
|
1647 |
|
|
split and "num" is its length. lo_half and hi_half are output arrays
|
1648 |
|
|
that parallel "operands". */
|
1649 |
|
|
|
1650 |
|
|
void
|
1651 |
|
|
split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
|
1652 |
|
|
{
|
1653 |
|
|
while (num--)
|
1654 |
|
|
{
|
1655 |
|
|
rtx op = operands[num];
|
1656 |
|
|
|
1657 |
|
|
lo_half[num] = c6x_subword (op, false);
|
1658 |
|
|
hi_half[num] = c6x_subword (op, true);
|
1659 |
|
|
}
|
1660 |
|
|
}
|
1661 |
|
|
|
1662 |
|
|
/* Return true if VAL is a mask valid for a clr instruction. */
|
1663 |
|
|
bool
|
1664 |
|
|
c6x_valid_mask_p (HOST_WIDE_INT val)
|
1665 |
|
|
{
|
1666 |
|
|
int i;
|
1667 |
|
|
for (i = 0; i < 32; i++)
|
1668 |
|
|
if (!(val & ((unsigned HOST_WIDE_INT)1 << i)))
|
1669 |
|
|
break;
|
1670 |
|
|
for (; i < 32; i++)
|
1671 |
|
|
if (val & ((unsigned HOST_WIDE_INT)1 << i))
|
1672 |
|
|
break;
|
1673 |
|
|
for (; i < 32; i++)
|
1674 |
|
|
if (!(val & ((unsigned HOST_WIDE_INT)1 << i)))
|
1675 |
|
|
return false;
|
1676 |
|
|
return true;
|
1677 |
|
|
}
|
1678 |
|
|
|
1679 |
|
|
/* Expand a block move for a movmemM pattern. */
|
1680 |
|
|
|
1681 |
|
|
bool
|
1682 |
|
|
c6x_expand_movmem (rtx dst, rtx src, rtx count_exp, rtx align_exp,
|
1683 |
|
|
rtx expected_align_exp ATTRIBUTE_UNUSED,
|
1684 |
|
|
rtx expected_size_exp ATTRIBUTE_UNUSED)
|
1685 |
|
|
{
|
1686 |
|
|
unsigned HOST_WIDE_INT align = 1;
|
1687 |
|
|
unsigned HOST_WIDE_INT src_mem_align, dst_mem_align, min_mem_align;
|
1688 |
|
|
unsigned HOST_WIDE_INT count = 0, offset = 0;
|
1689 |
|
|
unsigned int biggest_move = TARGET_STDW ? 8 : 4;
|
1690 |
|
|
|
1691 |
|
|
if (CONST_INT_P (align_exp))
|
1692 |
|
|
align = INTVAL (align_exp);
|
1693 |
|
|
|
1694 |
|
|
src_mem_align = MEM_ALIGN (src) / BITS_PER_UNIT;
|
1695 |
|
|
dst_mem_align = MEM_ALIGN (dst) / BITS_PER_UNIT;
|
1696 |
|
|
min_mem_align = MIN (src_mem_align, dst_mem_align);
|
1697 |
|
|
|
1698 |
|
|
if (min_mem_align > align)
|
1699 |
|
|
align = min_mem_align / BITS_PER_UNIT;
|
1700 |
|
|
if (src_mem_align < align)
|
1701 |
|
|
src_mem_align = align;
|
1702 |
|
|
if (dst_mem_align < align)
|
1703 |
|
|
dst_mem_align = align;
|
1704 |
|
|
|
1705 |
|
|
if (CONST_INT_P (count_exp))
|
1706 |
|
|
count = INTVAL (count_exp);
|
1707 |
|
|
else
|
1708 |
|
|
return false;
|
1709 |
|
|
|
1710 |
|
|
/* Make sure we don't need to care about overflow later on. */
|
1711 |
|
|
if (count > ((unsigned HOST_WIDE_INT) 1 << 30))
|
1712 |
|
|
return false;
|
1713 |
|
|
|
1714 |
|
|
if (count >= 28 && (count & 3) == 0 && align >= 4)
|
1715 |
|
|
{
|
1716 |
|
|
tree dst_expr = MEM_EXPR (dst);
|
1717 |
|
|
tree src_expr = MEM_EXPR (src);
|
1718 |
|
|
rtx fn = TARGET_INSNS_64PLUS ? strasgi64p_libfunc : strasgi_libfunc;
|
1719 |
|
|
rtx srcreg = force_reg (Pmode, XEXP (src, 0));
|
1720 |
|
|
rtx dstreg = force_reg (Pmode, XEXP (dst, 0));
|
1721 |
|
|
|
1722 |
|
|
if (src_expr)
|
1723 |
|
|
mark_addressable (src_expr);
|
1724 |
|
|
if (dst_expr)
|
1725 |
|
|
mark_addressable (dst_expr);
|
1726 |
|
|
emit_library_call (fn, LCT_NORMAL, VOIDmode, 3,
|
1727 |
|
|
dstreg, Pmode, srcreg, Pmode, count_exp, SImode);
|
1728 |
|
|
return true;
|
1729 |
|
|
}
|
1730 |
|
|
|
1731 |
|
|
if (biggest_move > align && !TARGET_INSNS_64)
|
1732 |
|
|
biggest_move = align;
|
1733 |
|
|
|
1734 |
|
|
if (count / biggest_move > 7)
|
1735 |
|
|
return false;
|
1736 |
|
|
|
1737 |
|
|
while (count > 0)
|
1738 |
|
|
{
|
1739 |
|
|
rtx reg, reg_lowpart;
|
1740 |
|
|
enum machine_mode srcmode, dstmode;
|
1741 |
|
|
unsigned HOST_WIDE_INT src_size, dst_size, src_left;
|
1742 |
|
|
int shift;
|
1743 |
|
|
rtx srcmem, dstmem;
|
1744 |
|
|
|
1745 |
|
|
while (biggest_move > count)
|
1746 |
|
|
biggest_move /= 2;
|
1747 |
|
|
|
1748 |
|
|
src_size = dst_size = biggest_move;
|
1749 |
|
|
if (src_size > src_mem_align && src_size == 2)
|
1750 |
|
|
src_size = 1;
|
1751 |
|
|
if (dst_size > dst_mem_align && dst_size == 2)
|
1752 |
|
|
dst_size = 1;
|
1753 |
|
|
|
1754 |
|
|
if (dst_size > src_size)
|
1755 |
|
|
dst_size = src_size;
|
1756 |
|
|
|
1757 |
|
|
srcmode = mode_for_size (src_size * BITS_PER_UNIT, MODE_INT, 0);
|
1758 |
|
|
dstmode = mode_for_size (dst_size * BITS_PER_UNIT, MODE_INT, 0);
|
1759 |
|
|
if (src_size >= 4)
|
1760 |
|
|
reg_lowpart = reg = gen_reg_rtx (srcmode);
|
1761 |
|
|
else
|
1762 |
|
|
{
|
1763 |
|
|
reg = gen_reg_rtx (SImode);
|
1764 |
|
|
reg_lowpart = gen_lowpart (srcmode, reg);
|
1765 |
|
|
}
|
1766 |
|
|
|
1767 |
|
|
srcmem = adjust_address (copy_rtx (src), srcmode, offset);
|
1768 |
|
|
|
1769 |
|
|
if (src_size > src_mem_align)
|
1770 |
|
|
{
|
1771 |
|
|
enum insn_code icode = (srcmode == SImode ? CODE_FOR_movmisalignsi
|
1772 |
|
|
: CODE_FOR_movmisaligndi);
|
1773 |
|
|
emit_insn (GEN_FCN (icode) (reg_lowpart, srcmem));
|
1774 |
|
|
}
|
1775 |
|
|
else
|
1776 |
|
|
emit_move_insn (reg_lowpart, srcmem);
|
1777 |
|
|
|
1778 |
|
|
src_left = src_size;
|
1779 |
|
|
shift = TARGET_BIG_ENDIAN ? (src_size - dst_size) * BITS_PER_UNIT : 0;
|
1780 |
|
|
while (src_left > 0)
|
1781 |
|
|
{
|
1782 |
|
|
rtx dstreg = reg_lowpart;
|
1783 |
|
|
|
1784 |
|
|
if (src_size > dst_size)
|
1785 |
|
|
{
|
1786 |
|
|
rtx srcword = reg;
|
1787 |
|
|
int shift_amount = shift & (BITS_PER_WORD - 1);
|
1788 |
|
|
if (src_size > 4)
|
1789 |
|
|
srcword = operand_subword_force (srcword, src_left >= 4 ? 0 : 4,
|
1790 |
|
|
SImode);
|
1791 |
|
|
if (shift_amount > 0)
|
1792 |
|
|
{
|
1793 |
|
|
dstreg = gen_reg_rtx (SImode);
|
1794 |
|
|
emit_insn (gen_lshrsi3 (dstreg, srcword,
|
1795 |
|
|
GEN_INT (shift_amount)));
|
1796 |
|
|
}
|
1797 |
|
|
else
|
1798 |
|
|
dstreg = srcword;
|
1799 |
|
|
dstreg = gen_lowpart (dstmode, dstreg);
|
1800 |
|
|
}
|
1801 |
|
|
|
1802 |
|
|
dstmem = adjust_address (copy_rtx (dst), dstmode, offset);
|
1803 |
|
|
if (dst_size > dst_mem_align)
|
1804 |
|
|
{
|
1805 |
|
|
enum insn_code icode = (dstmode == SImode ? CODE_FOR_movmisalignsi
|
1806 |
|
|
: CODE_FOR_movmisaligndi);
|
1807 |
|
|
emit_insn (GEN_FCN (icode) (dstmem, dstreg));
|
1808 |
|
|
}
|
1809 |
|
|
else
|
1810 |
|
|
emit_move_insn (dstmem, dstreg);
|
1811 |
|
|
|
1812 |
|
|
if (TARGET_BIG_ENDIAN)
|
1813 |
|
|
shift -= dst_size * BITS_PER_UNIT;
|
1814 |
|
|
else
|
1815 |
|
|
shift += dst_size * BITS_PER_UNIT;
|
1816 |
|
|
offset += dst_size;
|
1817 |
|
|
src_left -= dst_size;
|
1818 |
|
|
}
|
1819 |
|
|
count -= src_size;
|
1820 |
|
|
}
|
1821 |
|
|
return true;
|
1822 |
|
|
}
|
1823 |
|
|
|
1824 |
|
|
/* Subroutine of print_address_operand, print a single address offset OFF for
|
1825 |
|
|
a memory access of mode MEM_MODE, choosing between normal form and scaled
|
1826 |
|
|
form depending on the type of the insn. Misaligned memory references must
|
1827 |
|
|
use the scaled form. */
|
1828 |
|
|
|
1829 |
|
|
static void
|
1830 |
|
|
print_address_offset (FILE *file, rtx off, enum machine_mode mem_mode)
|
1831 |
|
|
{
|
1832 |
|
|
rtx pat;
|
1833 |
|
|
|
1834 |
|
|
if (c6x_current_insn != NULL_RTX)
|
1835 |
|
|
{
|
1836 |
|
|
pat = PATTERN (c6x_current_insn);
|
1837 |
|
|
if (GET_CODE (pat) == COND_EXEC)
|
1838 |
|
|
pat = COND_EXEC_CODE (pat);
|
1839 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
1840 |
|
|
pat = XVECEXP (pat, 0, 0);
|
1841 |
|
|
|
1842 |
|
|
if (GET_CODE (pat) == SET
|
1843 |
|
|
&& GET_CODE (SET_SRC (pat)) == UNSPEC
|
1844 |
|
|
&& XINT (SET_SRC (pat), 1) == UNSPEC_MISALIGNED_ACCESS)
|
1845 |
|
|
{
|
1846 |
|
|
gcc_assert (CONST_INT_P (off)
|
1847 |
|
|
&& (INTVAL (off) & (GET_MODE_SIZE (mem_mode) - 1)) == 0);
|
1848 |
|
|
fprintf (file, "[" HOST_WIDE_INT_PRINT_DEC "]",
|
1849 |
|
|
INTVAL (off) / GET_MODE_SIZE (mem_mode));
|
1850 |
|
|
return;
|
1851 |
|
|
}
|
1852 |
|
|
}
|
1853 |
|
|
fputs ("(", file);
|
1854 |
|
|
output_address (off);
|
1855 |
|
|
fputs (")", file);
|
1856 |
|
|
}
|
1857 |
|
|
|
1858 |
|
|
static bool
|
1859 |
|
|
c6x_print_operand_punct_valid_p (unsigned char c)
|
1860 |
|
|
{
|
1861 |
|
|
return c == '$' || c == '.' || c == '|';
|
1862 |
|
|
}
|
1863 |
|
|
|
1864 |
|
|
static void c6x_print_operand (FILE *, rtx, int);
|
1865 |
|
|
|
1866 |
|
|
/* Subroutine of c6x_print_operand; used to print a memory reference X to FILE. */
|
1867 |
|
|
|
1868 |
|
|
static void
|
1869 |
|
|
c6x_print_address_operand (FILE *file, rtx x, enum machine_mode mem_mode)
|
1870 |
|
|
{
|
1871 |
|
|
rtx off;
|
1872 |
|
|
switch (GET_CODE (x))
|
1873 |
|
|
{
|
1874 |
|
|
case PRE_MODIFY:
|
1875 |
|
|
case POST_MODIFY:
|
1876 |
|
|
if (GET_CODE (x) == POST_MODIFY)
|
1877 |
|
|
output_address (XEXP (x, 0));
|
1878 |
|
|
off = XEXP (XEXP (x, 1), 1);
|
1879 |
|
|
if (XEXP (x, 0) == stack_pointer_rtx)
|
1880 |
|
|
{
|
1881 |
|
|
if (GET_CODE (x) == PRE_MODIFY)
|
1882 |
|
|
gcc_assert (INTVAL (off) > 0);
|
1883 |
|
|
else
|
1884 |
|
|
gcc_assert (INTVAL (off) < 0);
|
1885 |
|
|
}
|
1886 |
|
|
if (CONST_INT_P (off) && INTVAL (off) < 0)
|
1887 |
|
|
{
|
1888 |
|
|
fprintf (file, "--");
|
1889 |
|
|
off = GEN_INT (-INTVAL (off));
|
1890 |
|
|
}
|
1891 |
|
|
else
|
1892 |
|
|
fprintf (file, "++");
|
1893 |
|
|
if (GET_CODE (x) == PRE_MODIFY)
|
1894 |
|
|
output_address (XEXP (x, 0));
|
1895 |
|
|
print_address_offset (file, off, mem_mode);
|
1896 |
|
|
break;
|
1897 |
|
|
|
1898 |
|
|
case PLUS:
|
1899 |
|
|
off = XEXP (x, 1);
|
1900 |
|
|
if (CONST_INT_P (off) && INTVAL (off) < 0)
|
1901 |
|
|
{
|
1902 |
|
|
fprintf (file, "-");
|
1903 |
|
|
off = GEN_INT (-INTVAL (off));
|
1904 |
|
|
}
|
1905 |
|
|
else
|
1906 |
|
|
fprintf (file, "+");
|
1907 |
|
|
output_address (XEXP (x, 0));
|
1908 |
|
|
print_address_offset (file, off, mem_mode);
|
1909 |
|
|
break;
|
1910 |
|
|
|
1911 |
|
|
case PRE_DEC:
|
1912 |
|
|
gcc_assert (XEXP (x, 0) != stack_pointer_rtx);
|
1913 |
|
|
fprintf (file, "--");
|
1914 |
|
|
output_address (XEXP (x, 0));
|
1915 |
|
|
fprintf (file, "[1]");
|
1916 |
|
|
break;
|
1917 |
|
|
case PRE_INC:
|
1918 |
|
|
fprintf (file, "++");
|
1919 |
|
|
output_address (XEXP (x, 0));
|
1920 |
|
|
fprintf (file, "[1]");
|
1921 |
|
|
break;
|
1922 |
|
|
case POST_INC:
|
1923 |
|
|
gcc_assert (XEXP (x, 0) != stack_pointer_rtx);
|
1924 |
|
|
output_address (XEXP (x, 0));
|
1925 |
|
|
fprintf (file, "++[1]");
|
1926 |
|
|
break;
|
1927 |
|
|
case POST_DEC:
|
1928 |
|
|
output_address (XEXP (x, 0));
|
1929 |
|
|
fprintf (file, "--[1]");
|
1930 |
|
|
break;
|
1931 |
|
|
|
1932 |
|
|
case SYMBOL_REF:
|
1933 |
|
|
case CONST:
|
1934 |
|
|
case LABEL_REF:
|
1935 |
|
|
gcc_assert (sdata_symbolic_operand (x, Pmode));
|
1936 |
|
|
fprintf (file, "+B14(");
|
1937 |
|
|
output_addr_const (file, x);
|
1938 |
|
|
fprintf (file, ")");
|
1939 |
|
|
break;
|
1940 |
|
|
|
1941 |
|
|
case UNSPEC:
|
1942 |
|
|
switch (XINT (x, 1))
|
1943 |
|
|
{
|
1944 |
|
|
case UNSPEC_LOAD_GOT:
|
1945 |
|
|
fputs ("$GOT(", file);
|
1946 |
|
|
output_addr_const (file, XVECEXP (x, 0, 0));
|
1947 |
|
|
fputs (")", file);
|
1948 |
|
|
break;
|
1949 |
|
|
case UNSPEC_LOAD_SDATA:
|
1950 |
|
|
output_addr_const (file, XVECEXP (x, 0, 0));
|
1951 |
|
|
break;
|
1952 |
|
|
default:
|
1953 |
|
|
gcc_unreachable ();
|
1954 |
|
|
}
|
1955 |
|
|
break;
|
1956 |
|
|
|
1957 |
|
|
default:
|
1958 |
|
|
gcc_assert (GET_CODE (x) != MEM);
|
1959 |
|
|
c6x_print_operand (file, x, 0);
|
1960 |
|
|
break;
|
1961 |
|
|
}
|
1962 |
|
|
}
|
1963 |
|
|
|
1964 |
|
|
/* Return a single character, which is either 'l', 's', 'd' or 'm', which
|
1965 |
|
|
specifies the functional unit used by INSN. */
|
1966 |
|
|
|
1967 |
|
|
char
|
1968 |
|
|
c6x_get_unit_specifier (rtx insn)
|
1969 |
|
|
{
|
1970 |
|
|
enum attr_units units;
|
1971 |
|
|
|
1972 |
|
|
if (insn_info)
|
1973 |
|
|
{
|
1974 |
|
|
int unit = INSN_INFO_ENTRY (INSN_UID (insn)).reservation;
|
1975 |
|
|
return c6x_unit_names[unit][0];
|
1976 |
|
|
}
|
1977 |
|
|
|
1978 |
|
|
units = get_attr_units (insn);
|
1979 |
|
|
switch (units)
|
1980 |
|
|
{
|
1981 |
|
|
case UNITS_D:
|
1982 |
|
|
case UNITS_DL:
|
1983 |
|
|
case UNITS_DS:
|
1984 |
|
|
case UNITS_DLS:
|
1985 |
|
|
case UNITS_D_ADDR:
|
1986 |
|
|
return 'd';
|
1987 |
|
|
break;
|
1988 |
|
|
case UNITS_L:
|
1989 |
|
|
case UNITS_LS:
|
1990 |
|
|
return 'l';
|
1991 |
|
|
break;
|
1992 |
|
|
case UNITS_S:
|
1993 |
|
|
return 's';
|
1994 |
|
|
break;
|
1995 |
|
|
case UNITS_M:
|
1996 |
|
|
return 'm';
|
1997 |
|
|
break;
|
1998 |
|
|
default:
|
1999 |
|
|
gcc_unreachable ();
|
2000 |
|
|
}
|
2001 |
|
|
}
|
2002 |
|
|
|
2003 |
|
|
/* Prints the unit specifier field. */
|
2004 |
|
|
static void
|
2005 |
|
|
c6x_print_unit_specifier_field (FILE *file, rtx insn)
|
2006 |
|
|
{
|
2007 |
|
|
enum attr_units units = get_attr_units (insn);
|
2008 |
|
|
enum attr_cross cross = get_attr_cross (insn);
|
2009 |
|
|
enum attr_dest_regfile rf = get_attr_dest_regfile (insn);
|
2010 |
|
|
int half;
|
2011 |
|
|
char unitspec;
|
2012 |
|
|
|
2013 |
|
|
if (units == UNITS_D_ADDR)
|
2014 |
|
|
{
|
2015 |
|
|
enum attr_addr_regfile arf = get_attr_addr_regfile (insn);
|
2016 |
|
|
int t_half;
|
2017 |
|
|
gcc_assert (arf != ADDR_REGFILE_UNKNOWN);
|
2018 |
|
|
half = arf == ADDR_REGFILE_A ? 1 : 2;
|
2019 |
|
|
t_half = rf == DEST_REGFILE_A ? 1 : 2;
|
2020 |
|
|
fprintf (file, ".d%dt%d", half, t_half);
|
2021 |
|
|
return;
|
2022 |
|
|
}
|
2023 |
|
|
|
2024 |
|
|
if (insn_info)
|
2025 |
|
|
{
|
2026 |
|
|
int unit = INSN_INFO_ENTRY (INSN_UID (insn)).reservation;
|
2027 |
|
|
fputs (".", file);
|
2028 |
|
|
fputs (c6x_unit_names[unit], file);
|
2029 |
|
|
if (cross == CROSS_Y)
|
2030 |
|
|
fputs ("x", file);
|
2031 |
|
|
return;
|
2032 |
|
|
}
|
2033 |
|
|
|
2034 |
|
|
gcc_assert (rf != DEST_REGFILE_UNKNOWN);
|
2035 |
|
|
unitspec = c6x_get_unit_specifier (insn);
|
2036 |
|
|
half = rf == DEST_REGFILE_A ? 1 : 2;
|
2037 |
|
|
fprintf (file, ".%c%d%s", unitspec, half, cross == CROSS_Y ? "x" : "");
|
2038 |
|
|
}
|
2039 |
|
|
|
2040 |
|
|
/* Output assembly language output for the address ADDR to FILE. */
|
2041 |
|
|
static void
|
2042 |
|
|
c6x_print_operand_address (FILE *file, rtx addr)
|
2043 |
|
|
{
|
2044 |
|
|
c6x_print_address_operand (file, addr, VOIDmode);
|
2045 |
|
|
}
|
2046 |
|
|
|
2047 |
|
|
/* Print an operand, X, to FILE, with an optional modifier in CODE.
|
2048 |
|
|
|
2049 |
|
|
Meaning of CODE:
|
2050 |
|
|
$ -- print the unit specifier field for the instruction.
|
2051 |
|
|
. -- print the predicate for the instruction or an emptry string for an
|
2052 |
|
|
unconditional one.
|
2053 |
|
|
| -- print "||" if the insn should be issued in parallel with the previous
|
2054 |
|
|
one.
|
2055 |
|
|
|
2056 |
|
|
C -- print an opcode suffix for a reversed condition
|
2057 |
|
|
d -- H, W or D as a suffix for ADDA, based on the factor given by the
|
2058 |
|
|
operand
|
2059 |
|
|
D -- print either B, H, W or D as a suffix for ADDA, based on the size of
|
2060 |
|
|
the operand
|
2061 |
|
|
J -- print a predicate
|
2062 |
|
|
j -- like J, but use reverse predicate
|
2063 |
|
|
k -- treat a CONST_INT as a register number and print it as a register
|
2064 |
|
|
k -- like k, but print out a doubleword register
|
2065 |
|
|
n -- print an integer operand, negated
|
2066 |
|
|
p -- print the low part of a DImode register
|
2067 |
|
|
P -- print the high part of a DImode register
|
2068 |
|
|
r -- print the absolute value of an integer operand, shifted right by 1
|
2069 |
|
|
R -- print the absolute value of an integer operand, shifted right by 2
|
2070 |
|
|
f -- the first clear bit in an integer operand assumed to be a mask for
|
2071 |
|
|
a clr instruction
|
2072 |
|
|
F -- the last clear bit in such a mask
|
2073 |
|
|
s -- the first set bit in an integer operand assumed to be a mask for
|
2074 |
|
|
a set instruction
|
2075 |
|
|
S -- the last set bit in such a mask
|
2076 |
|
|
U -- print either 1 or 2, depending on the side of the machine used by
|
2077 |
|
|
the operand */
|
2078 |
|
|
|
2079 |
|
|
static void
|
2080 |
|
|
c6x_print_operand (FILE *file, rtx x, int code)
|
2081 |
|
|
{
|
2082 |
|
|
int i;
|
2083 |
|
|
HOST_WIDE_INT v;
|
2084 |
|
|
tree t;
|
2085 |
|
|
enum machine_mode mode;
|
2086 |
|
|
|
2087 |
|
|
if (code == '|')
|
2088 |
|
|
{
|
2089 |
|
|
if (GET_MODE (c6x_current_insn) != TImode)
|
2090 |
|
|
fputs ("||", file);
|
2091 |
|
|
return;
|
2092 |
|
|
}
|
2093 |
|
|
if (code == '$')
|
2094 |
|
|
{
|
2095 |
|
|
c6x_print_unit_specifier_field (file, c6x_current_insn);
|
2096 |
|
|
return;
|
2097 |
|
|
}
|
2098 |
|
|
|
2099 |
|
|
if (code == '.')
|
2100 |
|
|
{
|
2101 |
|
|
x = current_insn_predicate;
|
2102 |
|
|
if (x)
|
2103 |
|
|
{
|
2104 |
|
|
unsigned int regno = REGNO (XEXP (x, 0));
|
2105 |
|
|
fputs ("[", file);
|
2106 |
|
|
if (GET_CODE (x) == EQ)
|
2107 |
|
|
fputs ("!", file);
|
2108 |
|
|
fputs (reg_names [regno], file);
|
2109 |
|
|
fputs ("]", file);
|
2110 |
|
|
}
|
2111 |
|
|
return;
|
2112 |
|
|
}
|
2113 |
|
|
|
2114 |
|
|
mode = GET_MODE (x);
|
2115 |
|
|
|
2116 |
|
|
switch (code)
|
2117 |
|
|
{
|
2118 |
|
|
case 'C':
|
2119 |
|
|
case 'c':
|
2120 |
|
|
{
|
2121 |
|
|
enum rtx_code c = GET_CODE (x);
|
2122 |
|
|
if (code == 'C')
|
2123 |
|
|
c = swap_condition (c);
|
2124 |
|
|
fputs (GET_RTX_NAME (c), file);
|
2125 |
|
|
}
|
2126 |
|
|
return;
|
2127 |
|
|
|
2128 |
|
|
case 'J':
|
2129 |
|
|
case 'j':
|
2130 |
|
|
{
|
2131 |
|
|
unsigned int regno = REGNO (XEXP (x, 0));
|
2132 |
|
|
if ((GET_CODE (x) == EQ) == (code == 'J'))
|
2133 |
|
|
fputs ("!", file);
|
2134 |
|
|
fputs (reg_names [regno], file);
|
2135 |
|
|
}
|
2136 |
|
|
return;
|
2137 |
|
|
|
2138 |
|
|
case 'k':
|
2139 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
2140 |
|
|
v = INTVAL (x);
|
2141 |
|
|
fprintf (file, "%s", reg_names[v]);
|
2142 |
|
|
return;
|
2143 |
|
|
case 'K':
|
2144 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
2145 |
|
|
v = INTVAL (x);
|
2146 |
|
|
gcc_assert ((v & 1) == 0);
|
2147 |
|
|
fprintf (file, "%s:%s", reg_names[v + 1], reg_names[v]);
|
2148 |
|
|
return;
|
2149 |
|
|
|
2150 |
|
|
case 's':
|
2151 |
|
|
case 'S':
|
2152 |
|
|
case 'f':
|
2153 |
|
|
case 'F':
|
2154 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
2155 |
|
|
v = INTVAL (x);
|
2156 |
|
|
for (i = 0; i < 32; i++)
|
2157 |
|
|
{
|
2158 |
|
|
HOST_WIDE_INT tst = v & 1;
|
2159 |
|
|
if (((code == 'f' || code == 'F') && !tst)
|
2160 |
|
|
|| ((code == 's' || code == 'S') && tst))
|
2161 |
|
|
break;
|
2162 |
|
|
v >>= 1;
|
2163 |
|
|
}
|
2164 |
|
|
if (code == 'f' || code == 's')
|
2165 |
|
|
{
|
2166 |
|
|
fprintf (file, "%d", i);
|
2167 |
|
|
return;
|
2168 |
|
|
}
|
2169 |
|
|
for (;i < 32; i++)
|
2170 |
|
|
{
|
2171 |
|
|
HOST_WIDE_INT tst = v & 1;
|
2172 |
|
|
if ((code == 'F' && tst) || (code == 'S' && !tst))
|
2173 |
|
|
break;
|
2174 |
|
|
v >>= 1;
|
2175 |
|
|
}
|
2176 |
|
|
fprintf (file, "%d", i - 1);
|
2177 |
|
|
return;
|
2178 |
|
|
|
2179 |
|
|
case 'n':
|
2180 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
2181 |
|
|
output_addr_const (file, GEN_INT (-INTVAL (x)));
|
2182 |
|
|
return;
|
2183 |
|
|
|
2184 |
|
|
case 'r':
|
2185 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
2186 |
|
|
v = INTVAL (x);
|
2187 |
|
|
if (v < 0)
|
2188 |
|
|
v = -v;
|
2189 |
|
|
output_addr_const (file, GEN_INT (v >> 1));
|
2190 |
|
|
return;
|
2191 |
|
|
|
2192 |
|
|
case 'R':
|
2193 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
2194 |
|
|
v = INTVAL (x);
|
2195 |
|
|
if (v < 0)
|
2196 |
|
|
v = -v;
|
2197 |
|
|
output_addr_const (file, GEN_INT (v >> 2));
|
2198 |
|
|
return;
|
2199 |
|
|
|
2200 |
|
|
case 'd':
|
2201 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
2202 |
|
|
v = INTVAL (x);
|
2203 |
|
|
fputs (v == 2 ? "h" : v == 4 ? "w" : "d", file);
|
2204 |
|
|
return;
|
2205 |
|
|
|
2206 |
|
|
case 'p':
|
2207 |
|
|
case 'P':
|
2208 |
|
|
gcc_assert (GET_CODE (x) == REG);
|
2209 |
|
|
v = REGNO (x);
|
2210 |
|
|
if (code == 'P')
|
2211 |
|
|
v++;
|
2212 |
|
|
fputs (reg_names[v], file);
|
2213 |
|
|
return;
|
2214 |
|
|
|
2215 |
|
|
case 'D':
|
2216 |
|
|
v = 0;
|
2217 |
|
|
if (GET_CODE (x) == CONST)
|
2218 |
|
|
{
|
2219 |
|
|
x = XEXP (x, 0);
|
2220 |
|
|
gcc_assert (GET_CODE (x) == PLUS);
|
2221 |
|
|
gcc_assert (GET_CODE (XEXP (x, 1)) == CONST_INT);
|
2222 |
|
|
v = INTVAL (XEXP (x, 1));
|
2223 |
|
|
x = XEXP (x, 0);
|
2224 |
|
|
|
2225 |
|
|
}
|
2226 |
|
|
gcc_assert (GET_CODE (x) == SYMBOL_REF);
|
2227 |
|
|
|
2228 |
|
|
t = SYMBOL_REF_DECL (x);
|
2229 |
|
|
if (DECL_P (t))
|
2230 |
|
|
v |= DECL_ALIGN_UNIT (t);
|
2231 |
|
|
else
|
2232 |
|
|
v |= TYPE_ALIGN_UNIT (TREE_TYPE (t));
|
2233 |
|
|
if (v & 1)
|
2234 |
|
|
fputs ("b", file);
|
2235 |
|
|
else if (v & 2)
|
2236 |
|
|
fputs ("h", file);
|
2237 |
|
|
else
|
2238 |
|
|
fputs ("w", file);
|
2239 |
|
|
return;
|
2240 |
|
|
|
2241 |
|
|
case 'U':
|
2242 |
|
|
if (MEM_P (x))
|
2243 |
|
|
{
|
2244 |
|
|
x = XEXP (x, 0);
|
2245 |
|
|
if (GET_CODE (x) == PLUS
|
2246 |
|
|
|| GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
|
2247 |
|
|
x = XEXP (x, 0);
|
2248 |
|
|
if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF)
|
2249 |
|
|
{
|
2250 |
|
|
gcc_assert (sdata_symbolic_operand (x, Pmode));
|
2251 |
|
|
fputs ("2", file);
|
2252 |
|
|
return;
|
2253 |
|
|
}
|
2254 |
|
|
}
|
2255 |
|
|
gcc_assert (REG_P (x));
|
2256 |
|
|
if (A_REGNO_P (REGNO (x)))
|
2257 |
|
|
fputs ("1", file);
|
2258 |
|
|
if (B_REGNO_P (REGNO (x)))
|
2259 |
|
|
fputs ("2", file);
|
2260 |
|
|
return;
|
2261 |
|
|
|
2262 |
|
|
default:
|
2263 |
|
|
switch (GET_CODE (x))
|
2264 |
|
|
{
|
2265 |
|
|
case REG:
|
2266 |
|
|
if (GET_MODE_SIZE (mode) == 8)
|
2267 |
|
|
fprintf (file, "%s:%s", reg_names[REGNO (x) + 1],
|
2268 |
|
|
reg_names[REGNO (x)]);
|
2269 |
|
|
else
|
2270 |
|
|
fprintf (file, "%s", reg_names[REGNO (x)]);
|
2271 |
|
|
break;
|
2272 |
|
|
|
2273 |
|
|
case MEM:
|
2274 |
|
|
fputc ('*', file);
|
2275 |
|
|
gcc_assert (XEXP (x, 0) != stack_pointer_rtx);
|
2276 |
|
|
c6x_print_address_operand (file, XEXP (x, 0), GET_MODE (x));
|
2277 |
|
|
break;
|
2278 |
|
|
|
2279 |
|
|
case SYMBOL_REF:
|
2280 |
|
|
fputc ('(', file);
|
2281 |
|
|
output_addr_const (file, x);
|
2282 |
|
|
fputc (')', file);
|
2283 |
|
|
break;
|
2284 |
|
|
|
2285 |
|
|
case CONST_INT:
|
2286 |
|
|
output_addr_const (file, x);
|
2287 |
|
|
break;
|
2288 |
|
|
|
2289 |
|
|
case CONST_DOUBLE:
|
2290 |
|
|
output_operand_lossage ("invalid const_double operand");
|
2291 |
|
|
break;
|
2292 |
|
|
|
2293 |
|
|
default:
|
2294 |
|
|
output_addr_const (file, x);
|
2295 |
|
|
}
|
2296 |
|
|
}
|
2297 |
|
|
}
|
2298 |
|
|
|
2299 |
|
|
/* Return TRUE if OP is a valid memory address with a base register of
|
2300 |
|
|
class C. If SMALL_OFFSET is true, we disallow memory references which would
|
2301 |
|
|
require a long offset with B14/B15. */
|
2302 |
|
|
|
2303 |
|
|
bool
|
2304 |
|
|
c6x_mem_operand (rtx op, enum reg_class c, bool small_offset)
|
2305 |
|
|
{
|
2306 |
|
|
enum machine_mode mode = GET_MODE (op);
|
2307 |
|
|
rtx base = XEXP (op, 0);
|
2308 |
|
|
switch (GET_CODE (base))
|
2309 |
|
|
{
|
2310 |
|
|
case REG:
|
2311 |
|
|
break;
|
2312 |
|
|
case PLUS:
|
2313 |
|
|
if (small_offset
|
2314 |
|
|
&& (XEXP (base, 0) == stack_pointer_rtx
|
2315 |
|
|
|| XEXP (base, 0) == pic_offset_table_rtx))
|
2316 |
|
|
{
|
2317 |
|
|
if (!c6x_legitimate_address_p_1 (mode, base, true, true))
|
2318 |
|
|
return false;
|
2319 |
|
|
}
|
2320 |
|
|
|
2321 |
|
|
/* fall through */
|
2322 |
|
|
case PRE_INC:
|
2323 |
|
|
case PRE_DEC:
|
2324 |
|
|
case PRE_MODIFY:
|
2325 |
|
|
case POST_INC:
|
2326 |
|
|
case POST_DEC:
|
2327 |
|
|
case POST_MODIFY:
|
2328 |
|
|
base = XEXP (base, 0);
|
2329 |
|
|
break;
|
2330 |
|
|
|
2331 |
|
|
case CONST:
|
2332 |
|
|
case LABEL_REF:
|
2333 |
|
|
case SYMBOL_REF:
|
2334 |
|
|
gcc_assert (sdata_symbolic_operand (base, Pmode));
|
2335 |
|
|
return !small_offset && c == B_REGS;
|
2336 |
|
|
|
2337 |
|
|
default:
|
2338 |
|
|
return false;
|
2339 |
|
|
}
|
2340 |
|
|
return TEST_HARD_REG_BIT (reg_class_contents[ (int) (c)], REGNO (base));
|
2341 |
|
|
}
|
2342 |
|
|
|
2343 |
|
|
/* Returns true if X is a valid address for use in a memory reference
|
2344 |
|
|
of mode MODE. If STRICT is true, we do not allow pseudo registers
|
2345 |
|
|
in the address. NO_LARGE_OFFSET is true if we are examining an
|
2346 |
|
|
address for use in a load or store misaligned instruction, or
|
2347 |
|
|
recursively examining an operand inside a PRE/POST_MODIFY. */
|
2348 |
|
|
|
2349 |
|
|
bool
|
2350 |
|
|
c6x_legitimate_address_p_1 (enum machine_mode mode, rtx x, bool strict,
|
2351 |
|
|
bool no_large_offset)
|
2352 |
|
|
{
|
2353 |
|
|
int size, size1;
|
2354 |
|
|
HOST_WIDE_INT off;
|
2355 |
|
|
enum rtx_code code = GET_CODE (x);
|
2356 |
|
|
|
2357 |
|
|
switch (code)
|
2358 |
|
|
{
|
2359 |
|
|
case PRE_MODIFY:
|
2360 |
|
|
case POST_MODIFY:
|
2361 |
|
|
/* We can't split these into word-sized pieces yet. */
|
2362 |
|
|
if (!TARGET_STDW && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
|
2363 |
|
|
return false;
|
2364 |
|
|
if (GET_CODE (XEXP (x, 1)) != PLUS)
|
2365 |
|
|
return false;
|
2366 |
|
|
if (!c6x_legitimate_address_p_1 (mode, XEXP (x, 1), strict, true))
|
2367 |
|
|
return false;
|
2368 |
|
|
if (!rtx_equal_p (XEXP (x, 0), XEXP (XEXP (x, 1), 0)))
|
2369 |
|
|
return false;
|
2370 |
|
|
|
2371 |
|
|
/* fall through */
|
2372 |
|
|
case PRE_INC:
|
2373 |
|
|
case PRE_DEC:
|
2374 |
|
|
case POST_INC:
|
2375 |
|
|
case POST_DEC:
|
2376 |
|
|
/* We can't split these into word-sized pieces yet. */
|
2377 |
|
|
if (!TARGET_STDW && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
|
2378 |
|
|
return false;
|
2379 |
|
|
x = XEXP (x, 0);
|
2380 |
|
|
if (!REG_P (x))
|
2381 |
|
|
return false;
|
2382 |
|
|
|
2383 |
|
|
/* fall through */
|
2384 |
|
|
case REG:
|
2385 |
|
|
if (strict)
|
2386 |
|
|
return REGNO_OK_FOR_BASE_STRICT_P (REGNO (x));
|
2387 |
|
|
else
|
2388 |
|
|
return REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x));
|
2389 |
|
|
|
2390 |
|
|
case PLUS:
|
2391 |
|
|
if (!REG_P (XEXP (x, 0))
|
2392 |
|
|
|| !c6x_legitimate_address_p_1 (mode, XEXP (x, 0), strict, false))
|
2393 |
|
|
return false;
|
2394 |
|
|
/* We cannot ensure currently that both registers end up in the
|
2395 |
|
|
same register file. */
|
2396 |
|
|
if (REG_P (XEXP (x, 1)))
|
2397 |
|
|
return false;
|
2398 |
|
|
|
2399 |
|
|
if (mode == BLKmode)
|
2400 |
|
|
size = 4;
|
2401 |
|
|
else if (mode == VOIDmode)
|
2402 |
|
|
/* ??? This can happen during ivopts. */
|
2403 |
|
|
size = 1;
|
2404 |
|
|
else
|
2405 |
|
|
size = GET_MODE_SIZE (mode);
|
2406 |
|
|
|
2407 |
|
|
if (flag_pic
|
2408 |
|
|
&& GET_CODE (XEXP (x, 1)) == UNSPEC
|
2409 |
|
|
&& XINT (XEXP (x, 1), 1) == UNSPEC_LOAD_SDATA
|
2410 |
|
|
&& XEXP (x, 0) == pic_offset_table_rtx
|
2411 |
|
|
&& sdata_symbolic_operand (XVECEXP (XEXP (x, 1), 0, 0), SImode))
|
2412 |
|
|
return !no_large_offset && size <= 4;
|
2413 |
|
|
if (flag_pic == 1
|
2414 |
|
|
&& mode == Pmode
|
2415 |
|
|
&& GET_CODE (XEXP (x, 1)) == UNSPEC
|
2416 |
|
|
&& XINT (XEXP (x, 1), 1) == UNSPEC_LOAD_GOT
|
2417 |
|
|
&& XEXP (x, 0) == pic_offset_table_rtx
|
2418 |
|
|
&& (GET_CODE (XVECEXP (XEXP (x, 1), 0, 0)) == SYMBOL_REF
|
2419 |
|
|
|| GET_CODE (XVECEXP (XEXP (x, 1), 0, 0)) == LABEL_REF))
|
2420 |
|
|
return !no_large_offset;
|
2421 |
|
|
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
|
2422 |
|
|
return false;
|
2423 |
|
|
|
2424 |
|
|
off = INTVAL (XEXP (x, 1));
|
2425 |
|
|
|
2426 |
|
|
/* If the machine does not have doubleword load/stores, we'll use
|
2427 |
|
|
word size accesses. */
|
2428 |
|
|
size1 = size;
|
2429 |
|
|
if (size == 2 * UNITS_PER_WORD && !TARGET_STDW)
|
2430 |
|
|
size = UNITS_PER_WORD;
|
2431 |
|
|
|
2432 |
|
|
if (((HOST_WIDE_INT)size1 - 1) & off)
|
2433 |
|
|
return false;
|
2434 |
|
|
off /= size;
|
2435 |
|
|
if (off > -32 && off < (size1 == size ? 32 : 28))
|
2436 |
|
|
return true;
|
2437 |
|
|
if (no_large_offset || code != PLUS || XEXP (x, 0) != stack_pointer_rtx
|
2438 |
|
|
|| size1 > UNITS_PER_WORD)
|
2439 |
|
|
return false;
|
2440 |
|
|
return off >= 0 && off < 32768;
|
2441 |
|
|
|
2442 |
|
|
case CONST:
|
2443 |
|
|
case SYMBOL_REF:
|
2444 |
|
|
case LABEL_REF:
|
2445 |
|
|
return (!no_large_offset
|
2446 |
|
|
/* With -fpic, we must wrap it in an unspec to show the B14
|
2447 |
|
|
dependency. */
|
2448 |
|
|
&& !flag_pic
|
2449 |
|
|
&& GET_MODE_SIZE (mode) <= UNITS_PER_WORD
|
2450 |
|
|
&& sdata_symbolic_operand (x, Pmode));
|
2451 |
|
|
|
2452 |
|
|
default:
|
2453 |
|
|
return false;
|
2454 |
|
|
}
|
2455 |
|
|
}
|
2456 |
|
|
|
2457 |
|
|
static bool
|
2458 |
|
|
c6x_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
|
2459 |
|
|
{
|
2460 |
|
|
return c6x_legitimate_address_p_1 (mode, x, strict, false);
|
2461 |
|
|
}
|
2462 |
|
|
|
2463 |
|
|
static bool
|
2464 |
|
|
c6x_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED,
|
2465 |
|
|
rtx x ATTRIBUTE_UNUSED)
|
2466 |
|
|
{
|
2467 |
|
|
return true;
|
2468 |
|
|
}
|
2469 |
|
|
|
2470 |
|
|
/* Implements TARGET_PREFERRED_RENAME_CLASS. */
|
2471 |
|
|
static reg_class_t
|
2472 |
|
|
c6x_preferred_rename_class (reg_class_t cl)
|
2473 |
|
|
{
|
2474 |
|
|
if (cl == A_REGS)
|
2475 |
|
|
return NONPREDICATE_A_REGS;
|
2476 |
|
|
if (cl == B_REGS)
|
2477 |
|
|
return NONPREDICATE_B_REGS;
|
2478 |
|
|
if (cl == ALL_REGS || cl == GENERAL_REGS)
|
2479 |
|
|
return NONPREDICATE_REGS;
|
2480 |
|
|
return NO_REGS;
|
2481 |
|
|
}
|
2482 |
|
|
|
2483 |
|
|
/* Implements FINAL_PRESCAN_INSN. */
|
2484 |
|
|
void
|
2485 |
|
|
c6x_final_prescan_insn (rtx insn, rtx *opvec ATTRIBUTE_UNUSED,
|
2486 |
|
|
int noperands ATTRIBUTE_UNUSED)
|
2487 |
|
|
{
|
2488 |
|
|
c6x_current_insn = insn;
|
2489 |
|
|
}
|
2490 |
|
|
|
2491 |
|
|
/* A structure to describe the stack layout of a function. The layout is
|
2492 |
|
|
as follows:
|
2493 |
|
|
|
2494 |
|
|
[saved frame pointer (or possibly padding0)]
|
2495 |
|
|
--> incoming stack pointer, new hard frame pointer
|
2496 |
|
|
[saved call-used regs]
|
2497 |
|
|
[optional padding1]
|
2498 |
|
|
--> soft frame pointer
|
2499 |
|
|
[frame]
|
2500 |
|
|
[outgoing arguments]
|
2501 |
|
|
[optional padding2]
|
2502 |
|
|
|
2503 |
|
|
The structure members are laid out in this order. */
|
2504 |
|
|
|
2505 |
|
|
struct c6x_frame
|
2506 |
|
|
{
|
2507 |
|
|
int padding0;
|
2508 |
|
|
/* Number of registers to save. */
|
2509 |
|
|
int nregs;
|
2510 |
|
|
int padding1;
|
2511 |
|
|
HOST_WIDE_INT frame;
|
2512 |
|
|
int outgoing_arguments_size;
|
2513 |
|
|
int padding2;
|
2514 |
|
|
|
2515 |
|
|
HOST_WIDE_INT to_allocate;
|
2516 |
|
|
/* The offsets relative to the incoming stack pointer (which
|
2517 |
|
|
becomes HARD_FRAME_POINTER). */
|
2518 |
|
|
HOST_WIDE_INT frame_pointer_offset;
|
2519 |
|
|
HOST_WIDE_INT b3_offset;
|
2520 |
|
|
|
2521 |
|
|
/* True if we should call push_rts/pop_rts to save and restore
|
2522 |
|
|
registers. */
|
2523 |
|
|
bool push_rts;
|
2524 |
|
|
};
|
2525 |
|
|
|
2526 |
|
|
/* Return true if we need to save and modify the PIC register in the
|
2527 |
|
|
prologue. */
|
2528 |
|
|
|
2529 |
|
|
static bool
|
2530 |
|
|
must_reload_pic_reg_p (void)
|
2531 |
|
|
{
|
2532 |
|
|
struct cgraph_local_info *i = NULL;
|
2533 |
|
|
|
2534 |
|
|
if (!TARGET_DSBT)
|
2535 |
|
|
return false;
|
2536 |
|
|
|
2537 |
|
|
i = cgraph_local_info (current_function_decl);
|
2538 |
|
|
|
2539 |
|
|
if ((crtl->uses_pic_offset_table || !current_function_is_leaf) && !i->local)
|
2540 |
|
|
return true;
|
2541 |
|
|
return false;
|
2542 |
|
|
}
|
2543 |
|
|
|
2544 |
|
|
/* Return 1 if we need to save REGNO. */
|
2545 |
|
|
static int
|
2546 |
|
|
c6x_save_reg (unsigned int regno)
|
2547 |
|
|
{
|
2548 |
|
|
return ((df_regs_ever_live_p (regno)
|
2549 |
|
|
&& !call_used_regs[regno]
|
2550 |
|
|
&& !fixed_regs[regno])
|
2551 |
|
|
|| (regno == RETURN_ADDR_REGNO
|
2552 |
|
|
&& (df_regs_ever_live_p (regno)
|
2553 |
|
|
|| !current_function_is_leaf))
|
2554 |
|
|
|| (regno == PIC_OFFSET_TABLE_REGNUM && must_reload_pic_reg_p ()));
|
2555 |
|
|
}
|
2556 |
|
|
|
2557 |
|
|
/* Examine the number of regs NREGS we've determined we must save.
|
2558 |
|
|
Return true if we should use __c6xabi_push_rts/__c6xabi_pop_rts for
|
2559 |
|
|
prologue and epilogue. */
|
2560 |
|
|
|
2561 |
|
|
static bool
|
2562 |
|
|
use_push_rts_p (int nregs)
|
2563 |
|
|
{
|
2564 |
|
|
if (TARGET_INSNS_64PLUS && optimize_function_for_size_p (cfun)
|
2565 |
|
|
&& !cfun->machine->contains_sibcall
|
2566 |
|
|
&& !cfun->returns_struct
|
2567 |
|
|
&& !TARGET_LONG_CALLS
|
2568 |
|
|
&& nregs >= 6 && !frame_pointer_needed)
|
2569 |
|
|
return true;
|
2570 |
|
|
return false;
|
2571 |
|
|
}
|
2572 |
|
|
|
2573 |
|
|
/* Return number of saved general prupose registers. */
|
2574 |
|
|
|
2575 |
|
|
int
|
2576 |
|
|
c6x_nsaved_regs (void)
|
2577 |
|
|
{
|
2578 |
|
|
int nregs = 0;
|
2579 |
|
|
int regno;
|
2580 |
|
|
|
2581 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
2582 |
|
|
if (c6x_save_reg (regno))
|
2583 |
|
|
nregs++;
|
2584 |
|
|
return nregs;
|
2585 |
|
|
}
|
2586 |
|
|
|
2587 |
|
|
/* The safe debug order mandated by the ABI. */
|
2588 |
|
|
static unsigned reg_save_order[] =
|
2589 |
|
|
{
|
2590 |
|
|
REG_A10, REG_A11, REG_A12, REG_A13,
|
2591 |
|
|
REG_A14, REG_B3,
|
2592 |
|
|
REG_B10, REG_B11, REG_B12, REG_B13,
|
2593 |
|
|
REG_B14, REG_A15
|
2594 |
|
|
};
|
2595 |
|
|
|
2596 |
|
|
#define N_SAVE_ORDER (sizeof reg_save_order / sizeof *reg_save_order)
|
2597 |
|
|
|
2598 |
|
|
/* Compute the layout of the stack frame and store it in FRAME. */
|
2599 |
|
|
|
2600 |
|
|
static void
|
2601 |
|
|
c6x_compute_frame_layout (struct c6x_frame *frame)
|
2602 |
|
|
{
|
2603 |
|
|
HOST_WIDE_INT size = get_frame_size ();
|
2604 |
|
|
HOST_WIDE_INT offset;
|
2605 |
|
|
int nregs;
|
2606 |
|
|
|
2607 |
|
|
/* We use the four bytes which are technically inside the caller's frame,
|
2608 |
|
|
usually to save the frame pointer. */
|
2609 |
|
|
offset = -4;
|
2610 |
|
|
frame->padding0 = 0;
|
2611 |
|
|
nregs = c6x_nsaved_regs ();
|
2612 |
|
|
frame->push_rts = false;
|
2613 |
|
|
frame->b3_offset = 0;
|
2614 |
|
|
if (use_push_rts_p (nregs))
|
2615 |
|
|
{
|
2616 |
|
|
frame->push_rts = true;
|
2617 |
|
|
frame->b3_offset = (TARGET_BIG_ENDIAN ? -12 : -13) * 4;
|
2618 |
|
|
nregs = 14;
|
2619 |
|
|
}
|
2620 |
|
|
else if (c6x_save_reg (REG_B3))
|
2621 |
|
|
{
|
2622 |
|
|
int idx;
|
2623 |
|
|
for (idx = N_SAVE_ORDER - 1; reg_save_order[idx] != REG_B3; idx--)
|
2624 |
|
|
{
|
2625 |
|
|
if (c6x_save_reg (reg_save_order[idx]))
|
2626 |
|
|
frame->b3_offset -= 4;
|
2627 |
|
|
}
|
2628 |
|
|
}
|
2629 |
|
|
frame->nregs = nregs;
|
2630 |
|
|
|
2631 |
|
|
if (size == 0 && nregs == 0)
|
2632 |
|
|
{
|
2633 |
|
|
frame->padding0 = 4;
|
2634 |
|
|
frame->padding1 = frame->padding2 = 0;
|
2635 |
|
|
frame->frame_pointer_offset = frame->to_allocate = 0;
|
2636 |
|
|
frame->outgoing_arguments_size = 0;
|
2637 |
|
|
return;
|
2638 |
|
|
}
|
2639 |
|
|
|
2640 |
|
|
if (!frame->push_rts)
|
2641 |
|
|
offset += frame->nregs * 4;
|
2642 |
|
|
|
2643 |
|
|
if (offset == 0 && size == 0 && crtl->outgoing_args_size == 0
|
2644 |
|
|
&& !current_function_is_leaf)
|
2645 |
|
|
/* Don't use the bottom of the caller's frame if we have no
|
2646 |
|
|
allocation of our own and call other functions. */
|
2647 |
|
|
frame->padding0 = frame->padding1 = 4;
|
2648 |
|
|
else if (offset & 4)
|
2649 |
|
|
frame->padding1 = 4;
|
2650 |
|
|
else
|
2651 |
|
|
frame->padding1 = 0;
|
2652 |
|
|
|
2653 |
|
|
offset += frame->padding0 + frame->padding1;
|
2654 |
|
|
frame->frame_pointer_offset = offset;
|
2655 |
|
|
offset += size;
|
2656 |
|
|
|
2657 |
|
|
frame->outgoing_arguments_size = crtl->outgoing_args_size;
|
2658 |
|
|
offset += frame->outgoing_arguments_size;
|
2659 |
|
|
|
2660 |
|
|
if ((offset & 4) == 0)
|
2661 |
|
|
frame->padding2 = 8;
|
2662 |
|
|
else
|
2663 |
|
|
frame->padding2 = 4;
|
2664 |
|
|
frame->to_allocate = offset + frame->padding2;
|
2665 |
|
|
}
|
2666 |
|
|
|
2667 |
|
|
/* Return the offset between two registers, one to be eliminated, and the other
|
2668 |
|
|
its replacement, at the start of a routine. */
|
2669 |
|
|
|
2670 |
|
|
HOST_WIDE_INT
|
2671 |
|
|
c6x_initial_elimination_offset (int from, int to)
|
2672 |
|
|
{
|
2673 |
|
|
struct c6x_frame frame;
|
2674 |
|
|
c6x_compute_frame_layout (&frame);
|
2675 |
|
|
|
2676 |
|
|
if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
|
2677 |
|
|
return 0;
|
2678 |
|
|
else if (from == FRAME_POINTER_REGNUM
|
2679 |
|
|
&& to == HARD_FRAME_POINTER_REGNUM)
|
2680 |
|
|
return -frame.frame_pointer_offset;
|
2681 |
|
|
else
|
2682 |
|
|
{
|
2683 |
|
|
gcc_assert (to == STACK_POINTER_REGNUM);
|
2684 |
|
|
|
2685 |
|
|
if (from == ARG_POINTER_REGNUM)
|
2686 |
|
|
return frame.to_allocate + (frame.push_rts ? 56 : 0);
|
2687 |
|
|
|
2688 |
|
|
gcc_assert (from == FRAME_POINTER_REGNUM);
|
2689 |
|
|
return frame.to_allocate - frame.frame_pointer_offset;
|
2690 |
|
|
}
|
2691 |
|
|
}
|
2692 |
|
|
|
2693 |
|
|
/* Given FROM and TO register numbers, say whether this elimination is
|
2694 |
|
|
allowed. Frame pointer elimination is automatically handled. */
|
2695 |
|
|
|
2696 |
|
|
static bool
|
2697 |
|
|
c6x_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
|
2698 |
|
|
{
|
2699 |
|
|
if (to == STACK_POINTER_REGNUM)
|
2700 |
|
|
return !frame_pointer_needed;
|
2701 |
|
|
return true;
|
2702 |
|
|
}
|
2703 |
|
|
|
2704 |
|
|
/* Emit insns to increment the stack pointer by OFFSET. If
|
2705 |
|
|
FRAME_RELATED_P, set the RTX_FRAME_RELATED_P flag on the insns.
|
2706 |
|
|
Does nothing if the offset is zero. */
|
2707 |
|
|
|
2708 |
|
|
static void
|
2709 |
|
|
emit_add_sp_const (HOST_WIDE_INT offset, bool frame_related_p)
|
2710 |
|
|
{
|
2711 |
|
|
rtx to_add = GEN_INT (offset);
|
2712 |
|
|
rtx orig_to_add = to_add;
|
2713 |
|
|
rtx insn;
|
2714 |
|
|
|
2715 |
|
|
if (offset == 0)
|
2716 |
|
|
return;
|
2717 |
|
|
|
2718 |
|
|
if (offset < -32768 || offset > 32767)
|
2719 |
|
|
{
|
2720 |
|
|
rtx reg = gen_rtx_REG (SImode, REG_A0);
|
2721 |
|
|
rtx low = GEN_INT (trunc_int_for_mode (offset, HImode));
|
2722 |
|
|
|
2723 |
|
|
insn = emit_insn (gen_movsi_high (reg, low));
|
2724 |
|
|
if (frame_related_p)
|
2725 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
2726 |
|
|
insn = emit_insn (gen_movsi_lo_sum (reg, reg, to_add));
|
2727 |
|
|
if (frame_related_p)
|
2728 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
2729 |
|
|
to_add = reg;
|
2730 |
|
|
}
|
2731 |
|
|
insn = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
2732 |
|
|
to_add));
|
2733 |
|
|
if (frame_related_p)
|
2734 |
|
|
{
|
2735 |
|
|
if (REG_P (to_add))
|
2736 |
|
|
add_reg_note (insn, REG_FRAME_RELATED_EXPR,
|
2737 |
|
|
gen_rtx_SET (VOIDmode, stack_pointer_rtx,
|
2738 |
|
|
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
2739 |
|
|
orig_to_add)));
|
2740 |
|
|
|
2741 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
2742 |
|
|
}
|
2743 |
|
|
}
|
2744 |
|
|
|
2745 |
|
|
/* Prologue and epilogue. */
|
2746 |
|
|
void
|
2747 |
|
|
c6x_expand_prologue (void)
|
2748 |
|
|
{
|
2749 |
|
|
struct c6x_frame frame;
|
2750 |
|
|
rtx insn, mem;
|
2751 |
|
|
int nsaved = 0;
|
2752 |
|
|
HOST_WIDE_INT initial_offset, off, added_already;
|
2753 |
|
|
|
2754 |
|
|
c6x_compute_frame_layout (&frame);
|
2755 |
|
|
|
2756 |
|
|
if (flag_stack_usage_info)
|
2757 |
|
|
current_function_static_stack_size = frame.to_allocate;
|
2758 |
|
|
|
2759 |
|
|
initial_offset = -frame.to_allocate;
|
2760 |
|
|
if (frame.push_rts)
|
2761 |
|
|
{
|
2762 |
|
|
emit_insn (gen_push_rts ());
|
2763 |
|
|
nsaved = frame.nregs;
|
2764 |
|
|
}
|
2765 |
|
|
|
2766 |
|
|
/* If the offsets would be too large for the memory references we will
|
2767 |
|
|
create to save registers, do the stack allocation in two parts.
|
2768 |
|
|
Ensure by subtracting 8 that we don't store to the word pointed to
|
2769 |
|
|
by the stack pointer. */
|
2770 |
|
|
if (initial_offset < -32768)
|
2771 |
|
|
initial_offset = -frame.frame_pointer_offset - 8;
|
2772 |
|
|
|
2773 |
|
|
if (frame.to_allocate > 0)
|
2774 |
|
|
gcc_assert (initial_offset != 0);
|
2775 |
|
|
|
2776 |
|
|
off = -initial_offset + 4 - frame.padding0;
|
2777 |
|
|
|
2778 |
|
|
mem = gen_frame_mem (Pmode, stack_pointer_rtx);
|
2779 |
|
|
|
2780 |
|
|
added_already = 0;
|
2781 |
|
|
if (frame_pointer_needed)
|
2782 |
|
|
{
|
2783 |
|
|
rtx fp_reg = gen_rtx_REG (SImode, REG_A15);
|
2784 |
|
|
/* We go through some contortions here to both follow the ABI's
|
2785 |
|
|
recommendation that FP == incoming SP, and to avoid writing or
|
2786 |
|
|
reading the word pointed to by the stack pointer. */
|
2787 |
|
|
rtx addr = gen_rtx_POST_MODIFY (Pmode, stack_pointer_rtx,
|
2788 |
|
|
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
2789 |
|
|
GEN_INT (-8)));
|
2790 |
|
|
insn = emit_move_insn (gen_frame_mem (Pmode, addr), fp_reg);
|
2791 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
2792 |
|
|
nsaved++;
|
2793 |
|
|
insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx, stack_pointer_rtx,
|
2794 |
|
|
GEN_INT (8)));
|
2795 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
2796 |
|
|
off -= 4;
|
2797 |
|
|
added_already = -8;
|
2798 |
|
|
}
|
2799 |
|
|
|
2800 |
|
|
emit_add_sp_const (initial_offset - added_already, true);
|
2801 |
|
|
|
2802 |
|
|
if (nsaved < frame.nregs)
|
2803 |
|
|
{
|
2804 |
|
|
unsigned i;
|
2805 |
|
|
|
2806 |
|
|
for (i = 0; i < N_SAVE_ORDER; i++)
|
2807 |
|
|
{
|
2808 |
|
|
int idx = N_SAVE_ORDER - i - 1;
|
2809 |
|
|
unsigned regno = reg_save_order[idx];
|
2810 |
|
|
rtx reg;
|
2811 |
|
|
enum machine_mode save_mode = SImode;
|
2812 |
|
|
|
2813 |
|
|
if (regno == REG_A15 && frame_pointer_needed)
|
2814 |
|
|
/* Already saved. */
|
2815 |
|
|
continue;
|
2816 |
|
|
if (!c6x_save_reg (regno))
|
2817 |
|
|
continue;
|
2818 |
|
|
|
2819 |
|
|
if (TARGET_STDW && (off & 4) == 0 && off <= 256
|
2820 |
|
|
&& (regno & 1) == 1
|
2821 |
|
|
&& i + 1 < N_SAVE_ORDER
|
2822 |
|
|
&& reg_save_order[idx - 1] == regno - 1
|
2823 |
|
|
&& c6x_save_reg (regno - 1))
|
2824 |
|
|
{
|
2825 |
|
|
save_mode = DImode;
|
2826 |
|
|
regno--;
|
2827 |
|
|
i++;
|
2828 |
|
|
}
|
2829 |
|
|
reg = gen_rtx_REG (save_mode, regno);
|
2830 |
|
|
off -= GET_MODE_SIZE (save_mode);
|
2831 |
|
|
|
2832 |
|
|
insn = emit_move_insn (adjust_address (mem, save_mode, off),
|
2833 |
|
|
reg);
|
2834 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
2835 |
|
|
|
2836 |
|
|
nsaved += HARD_REGNO_NREGS (regno, save_mode);
|
2837 |
|
|
}
|
2838 |
|
|
}
|
2839 |
|
|
gcc_assert (nsaved == frame.nregs);
|
2840 |
|
|
emit_add_sp_const (-frame.to_allocate - initial_offset, true);
|
2841 |
|
|
if (must_reload_pic_reg_p ())
|
2842 |
|
|
{
|
2843 |
|
|
if (dsbt_decl == NULL)
|
2844 |
|
|
{
|
2845 |
|
|
tree t;
|
2846 |
|
|
|
2847 |
|
|
t = build_index_type (integer_one_node);
|
2848 |
|
|
t = build_array_type (integer_type_node, t);
|
2849 |
|
|
t = build_decl (BUILTINS_LOCATION, VAR_DECL,
|
2850 |
|
|
get_identifier ("__c6xabi_DSBT_BASE"), t);
|
2851 |
|
|
DECL_ARTIFICIAL (t) = 1;
|
2852 |
|
|
DECL_IGNORED_P (t) = 1;
|
2853 |
|
|
DECL_EXTERNAL (t) = 1;
|
2854 |
|
|
TREE_STATIC (t) = 1;
|
2855 |
|
|
TREE_PUBLIC (t) = 1;
|
2856 |
|
|
TREE_USED (t) = 1;
|
2857 |
|
|
|
2858 |
|
|
dsbt_decl = t;
|
2859 |
|
|
}
|
2860 |
|
|
emit_insn (gen_setup_dsbt (pic_offset_table_rtx,
|
2861 |
|
|
XEXP (DECL_RTL (dsbt_decl), 0)));
|
2862 |
|
|
}
|
2863 |
|
|
}
|
2864 |
|
|
|
2865 |
|
|
void
|
2866 |
|
|
c6x_expand_epilogue (bool sibcall)
|
2867 |
|
|
{
|
2868 |
|
|
unsigned i;
|
2869 |
|
|
struct c6x_frame frame;
|
2870 |
|
|
rtx mem;
|
2871 |
|
|
HOST_WIDE_INT off;
|
2872 |
|
|
int nsaved = 0;
|
2873 |
|
|
|
2874 |
|
|
c6x_compute_frame_layout (&frame);
|
2875 |
|
|
|
2876 |
|
|
mem = gen_frame_mem (Pmode, stack_pointer_rtx);
|
2877 |
|
|
|
2878 |
|
|
/* Insert a dummy set/use of the stack pointer. This creates a
|
2879 |
|
|
scheduler barrier between the prologue saves and epilogue restores. */
|
2880 |
|
|
emit_insn (gen_epilogue_barrier (stack_pointer_rtx, stack_pointer_rtx));
|
2881 |
|
|
|
2882 |
|
|
/* If the offsets would be too large for the memory references we will
|
2883 |
|
|
create to restore registers, do a preliminary stack adjustment here. */
|
2884 |
|
|
off = frame.to_allocate - frame.frame_pointer_offset + frame.padding1;
|
2885 |
|
|
if (frame.push_rts)
|
2886 |
|
|
{
|
2887 |
|
|
nsaved = frame.nregs;
|
2888 |
|
|
}
|
2889 |
|
|
else
|
2890 |
|
|
{
|
2891 |
|
|
if (frame.to_allocate > 32768)
|
2892 |
|
|
{
|
2893 |
|
|
/* Don't add the entire offset so that we leave an unused word
|
2894 |
|
|
above the stack pointer. */
|
2895 |
|
|
emit_add_sp_const ((off - 16) & ~7, false);
|
2896 |
|
|
off &= 7;
|
2897 |
|
|
off += 16;
|
2898 |
|
|
}
|
2899 |
|
|
for (i = 0; i < N_SAVE_ORDER; i++)
|
2900 |
|
|
{
|
2901 |
|
|
unsigned regno = reg_save_order[i];
|
2902 |
|
|
rtx reg;
|
2903 |
|
|
enum machine_mode save_mode = SImode;
|
2904 |
|
|
|
2905 |
|
|
if (!c6x_save_reg (regno))
|
2906 |
|
|
continue;
|
2907 |
|
|
if (regno == REG_A15 && frame_pointer_needed)
|
2908 |
|
|
continue;
|
2909 |
|
|
|
2910 |
|
|
if (TARGET_STDW && (off & 4) == 0 && off < 256
|
2911 |
|
|
&& (regno & 1) == 0
|
2912 |
|
|
&& i + 1 < N_SAVE_ORDER
|
2913 |
|
|
&& reg_save_order[i + 1] == regno + 1
|
2914 |
|
|
&& c6x_save_reg (regno + 1))
|
2915 |
|
|
{
|
2916 |
|
|
save_mode = DImode;
|
2917 |
|
|
i++;
|
2918 |
|
|
}
|
2919 |
|
|
reg = gen_rtx_REG (save_mode, regno);
|
2920 |
|
|
|
2921 |
|
|
emit_move_insn (reg, adjust_address (mem, save_mode, off));
|
2922 |
|
|
|
2923 |
|
|
off += GET_MODE_SIZE (save_mode);
|
2924 |
|
|
nsaved += HARD_REGNO_NREGS (regno, save_mode);
|
2925 |
|
|
}
|
2926 |
|
|
}
|
2927 |
|
|
if (!frame_pointer_needed)
|
2928 |
|
|
emit_add_sp_const (off + frame.padding0 - 4, false);
|
2929 |
|
|
else
|
2930 |
|
|
{
|
2931 |
|
|
rtx fp_reg = gen_rtx_REG (SImode, REG_A15);
|
2932 |
|
|
rtx addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx,
|
2933 |
|
|
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
|
2934 |
|
|
GEN_INT (8)));
|
2935 |
|
|
emit_insn (gen_addsi3 (stack_pointer_rtx, hard_frame_pointer_rtx,
|
2936 |
|
|
GEN_INT (-8)));
|
2937 |
|
|
emit_move_insn (fp_reg, gen_frame_mem (Pmode, addr));
|
2938 |
|
|
nsaved++;
|
2939 |
|
|
}
|
2940 |
|
|
gcc_assert (nsaved == frame.nregs);
|
2941 |
|
|
if (!sibcall)
|
2942 |
|
|
{
|
2943 |
|
|
if (frame.push_rts)
|
2944 |
|
|
emit_jump_insn (gen_pop_rts ());
|
2945 |
|
|
else
|
2946 |
|
|
emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode,
|
2947 |
|
|
RETURN_ADDR_REGNO)));
|
2948 |
|
|
}
|
2949 |
|
|
}
|
2950 |
|
|
|
2951 |
|
|
/* Return the value of the return address for the frame COUNT steps up
|
2952 |
|
|
from the current frame, after the prologue.
|
2953 |
|
|
We punt for everything but the current frame by returning const0_rtx. */
|
2954 |
|
|
|
2955 |
|
|
rtx
|
2956 |
|
|
c6x_return_addr_rtx (int count)
|
2957 |
|
|
{
|
2958 |
|
|
if (count != 0)
|
2959 |
|
|
return const0_rtx;
|
2960 |
|
|
|
2961 |
|
|
return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNO);
|
2962 |
|
|
}
|
2963 |
|
|
|
2964 |
|
|
/* Return true iff TYPE is one of the shadow types. */
|
2965 |
|
|
static bool
|
2966 |
|
|
shadow_type_p (enum attr_type type)
|
2967 |
|
|
{
|
2968 |
|
|
return (type == TYPE_SHADOW || type == TYPE_LOAD_SHADOW
|
2969 |
|
|
|| type == TYPE_MULT_SHADOW);
|
2970 |
|
|
}
|
2971 |
|
|
|
2972 |
|
|
/* Return true iff INSN is a shadow pattern. */
|
2973 |
|
|
static bool
|
2974 |
|
|
shadow_p (rtx insn)
|
2975 |
|
|
{
|
2976 |
|
|
if (!NONDEBUG_INSN_P (insn) || recog_memoized (insn) < 0)
|
2977 |
|
|
return false;
|
2978 |
|
|
return shadow_type_p (get_attr_type (insn));
|
2979 |
|
|
}
|
2980 |
|
|
|
2981 |
|
|
/* Return true iff INSN is a shadow or blockage pattern. */
|
2982 |
|
|
static bool
|
2983 |
|
|
shadow_or_blockage_p (rtx insn)
|
2984 |
|
|
{
|
2985 |
|
|
enum attr_type type;
|
2986 |
|
|
if (!NONDEBUG_INSN_P (insn) || recog_memoized (insn) < 0)
|
2987 |
|
|
return false;
|
2988 |
|
|
type = get_attr_type (insn);
|
2989 |
|
|
return shadow_type_p (type) || type == TYPE_BLOCKAGE;
|
2990 |
|
|
}
|
2991 |
|
|
|
2992 |
|
|
/* Translate UNITS into a bitmask of units we can reserve for this
|
2993 |
|
|
insn. */
|
2994 |
|
|
static int
|
2995 |
|
|
get_reservation_flags (enum attr_units units)
|
2996 |
|
|
{
|
2997 |
|
|
switch (units)
|
2998 |
|
|
{
|
2999 |
|
|
case UNITS_D:
|
3000 |
|
|
case UNITS_D_ADDR:
|
3001 |
|
|
return RESERVATION_FLAG_D;
|
3002 |
|
|
case UNITS_L:
|
3003 |
|
|
return RESERVATION_FLAG_L;
|
3004 |
|
|
case UNITS_S:
|
3005 |
|
|
return RESERVATION_FLAG_S;
|
3006 |
|
|
case UNITS_M:
|
3007 |
|
|
return RESERVATION_FLAG_M;
|
3008 |
|
|
case UNITS_LS:
|
3009 |
|
|
return RESERVATION_FLAG_LS;
|
3010 |
|
|
case UNITS_DL:
|
3011 |
|
|
return RESERVATION_FLAG_DL;
|
3012 |
|
|
case UNITS_DS:
|
3013 |
|
|
return RESERVATION_FLAG_DS;
|
3014 |
|
|
case UNITS_DLS:
|
3015 |
|
|
return RESERVATION_FLAG_DLS;
|
3016 |
|
|
default:
|
3017 |
|
|
return 0;
|
3018 |
|
|
}
|
3019 |
|
|
}
|
3020 |
|
|
|
3021 |
|
|
/* Compute the side of the machine used by INSN, which reserves UNITS.
|
3022 |
|
|
This must match the reservations in the scheduling description. */
|
3023 |
|
|
static int
|
3024 |
|
|
get_insn_side (rtx insn, enum attr_units units)
|
3025 |
|
|
{
|
3026 |
|
|
if (units == UNITS_D_ADDR)
|
3027 |
|
|
return (get_attr_addr_regfile (insn) == ADDR_REGFILE_A ? 0 : 1);
|
3028 |
|
|
else
|
3029 |
|
|
{
|
3030 |
|
|
enum attr_dest_regfile rf = get_attr_dest_regfile (insn);
|
3031 |
|
|
if (rf == DEST_REGFILE_ANY)
|
3032 |
|
|
return get_attr_type (insn) == TYPE_BRANCH ? 0 : 1;
|
3033 |
|
|
else
|
3034 |
|
|
return rf == DEST_REGFILE_A ? 0 : 1;
|
3035 |
|
|
}
|
3036 |
|
|
}
|
3037 |
|
|
|
3038 |
|
|
/* After scheduling, walk the insns between HEAD and END and assign unit
|
3039 |
|
|
reservations. */
|
3040 |
|
|
static void
|
3041 |
|
|
assign_reservations (rtx head, rtx end)
|
3042 |
|
|
{
|
3043 |
|
|
rtx insn;
|
3044 |
|
|
for (insn = head; insn != NEXT_INSN (end); insn = NEXT_INSN (insn))
|
3045 |
|
|
{
|
3046 |
|
|
unsigned int sched_mask, reserved;
|
3047 |
|
|
rtx within, last;
|
3048 |
|
|
int pass;
|
3049 |
|
|
int rsrv[2];
|
3050 |
|
|
int rsrv_count[2][4];
|
3051 |
|
|
int i;
|
3052 |
|
|
|
3053 |
|
|
if (GET_MODE (insn) != TImode)
|
3054 |
|
|
continue;
|
3055 |
|
|
|
3056 |
|
|
reserved = 0;
|
3057 |
|
|
last = NULL_RTX;
|
3058 |
|
|
/* Find the last insn in the packet. It has a state recorded for it,
|
3059 |
|
|
which we can use to determine the units we should be using. */
|
3060 |
|
|
for (within = insn;
|
3061 |
|
|
(within != NEXT_INSN (end)
|
3062 |
|
|
&& (within == insn || GET_MODE (within) != TImode));
|
3063 |
|
|
within = NEXT_INSN (within))
|
3064 |
|
|
{
|
3065 |
|
|
int icode;
|
3066 |
|
|
if (!NONDEBUG_INSN_P (within))
|
3067 |
|
|
continue;
|
3068 |
|
|
icode = recog_memoized (within);
|
3069 |
|
|
if (icode < 0)
|
3070 |
|
|
continue;
|
3071 |
|
|
if (shadow_p (within))
|
3072 |
|
|
continue;
|
3073 |
|
|
if (INSN_INFO_ENTRY (INSN_UID (within)).reservation != 0)
|
3074 |
|
|
reserved |= 1 << INSN_INFO_ENTRY (INSN_UID (within)).reservation;
|
3075 |
|
|
last = within;
|
3076 |
|
|
}
|
3077 |
|
|
if (last == NULL_RTX)
|
3078 |
|
|
continue;
|
3079 |
|
|
|
3080 |
|
|
sched_mask = INSN_INFO_ENTRY (INSN_UID (last)).unit_mask;
|
3081 |
|
|
sched_mask &= ~reserved;
|
3082 |
|
|
|
3083 |
|
|
memset (rsrv_count, 0, sizeof rsrv_count);
|
3084 |
|
|
rsrv[0] = rsrv[1] = ~0;
|
3085 |
|
|
for (i = 0; i < 8; i++)
|
3086 |
|
|
{
|
3087 |
|
|
int side = i / 4;
|
3088 |
|
|
int unit = i & 3;
|
3089 |
|
|
unsigned unit_bit = 1 << (unit + side * UNIT_QID_SIDE_OFFSET);
|
3090 |
|
|
/* Clear the bits which we expect to reserve in the following loop,
|
3091 |
|
|
leaving the ones set which aren't present in the scheduler's
|
3092 |
|
|
state and shouldn't be reserved. */
|
3093 |
|
|
if (sched_mask & unit_bit)
|
3094 |
|
|
rsrv[i / 4] &= ~(1 << unit);
|
3095 |
|
|
}
|
3096 |
|
|
|
3097 |
|
|
/* Walk through the insns that occur in the same cycle. We use multiple
|
3098 |
|
|
passes to assign units, assigning for insns with the most specific
|
3099 |
|
|
requirements first. */
|
3100 |
|
|
for (pass = 0; pass < 4; pass++)
|
3101 |
|
|
for (within = insn;
|
3102 |
|
|
(within != NEXT_INSN (end)
|
3103 |
|
|
&& (within == insn || GET_MODE (within) != TImode));
|
3104 |
|
|
within = NEXT_INSN (within))
|
3105 |
|
|
{
|
3106 |
|
|
int uid = INSN_UID (within);
|
3107 |
|
|
int this_rsrv, side;
|
3108 |
|
|
int icode;
|
3109 |
|
|
enum attr_units units;
|
3110 |
|
|
enum attr_type type;
|
3111 |
|
|
int j;
|
3112 |
|
|
|
3113 |
|
|
if (!NONDEBUG_INSN_P (within))
|
3114 |
|
|
continue;
|
3115 |
|
|
icode = recog_memoized (within);
|
3116 |
|
|
if (icode < 0)
|
3117 |
|
|
continue;
|
3118 |
|
|
if (INSN_INFO_ENTRY (uid).reservation != 0)
|
3119 |
|
|
continue;
|
3120 |
|
|
units = get_attr_units (within);
|
3121 |
|
|
type = get_attr_type (within);
|
3122 |
|
|
this_rsrv = get_reservation_flags (units);
|
3123 |
|
|
if (this_rsrv == 0)
|
3124 |
|
|
continue;
|
3125 |
|
|
side = get_insn_side (within, units);
|
3126 |
|
|
|
3127 |
|
|
/* Certain floating point instructions are treated specially. If
|
3128 |
|
|
an insn can choose between units it can reserve, and its
|
3129 |
|
|
reservation spans more than one cycle, the reservation contains
|
3130 |
|
|
special markers in the first cycle to help us reconstruct what
|
3131 |
|
|
the automaton chose. */
|
3132 |
|
|
if ((type == TYPE_ADDDP || type == TYPE_FP4)
|
3133 |
|
|
&& units == UNITS_LS)
|
3134 |
|
|
{
|
3135 |
|
|
int test1_code = ((type == TYPE_FP4 ? UNIT_QID_FPL1 : UNIT_QID_ADDDPL1)
|
3136 |
|
|
+ side * UNIT_QID_SIDE_OFFSET);
|
3137 |
|
|
int test2_code = ((type == TYPE_FP4 ? UNIT_QID_FPS1 : UNIT_QID_ADDDPS1)
|
3138 |
|
|
+ side * UNIT_QID_SIDE_OFFSET);
|
3139 |
|
|
if ((sched_mask & (1 << test1_code)) != 0)
|
3140 |
|
|
{
|
3141 |
|
|
this_rsrv = RESERVATION_FLAG_L;
|
3142 |
|
|
sched_mask &= ~(1 << test1_code);
|
3143 |
|
|
}
|
3144 |
|
|
else if ((sched_mask & (1 << test2_code)) != 0)
|
3145 |
|
|
{
|
3146 |
|
|
this_rsrv = RESERVATION_FLAG_S;
|
3147 |
|
|
sched_mask &= ~(1 << test2_code);
|
3148 |
|
|
}
|
3149 |
|
|
}
|
3150 |
|
|
|
3151 |
|
|
if ((this_rsrv & (this_rsrv - 1)) == 0)
|
3152 |
|
|
{
|
3153 |
|
|
int t = exact_log2 (this_rsrv) + side * UNIT_QID_SIDE_OFFSET;
|
3154 |
|
|
rsrv[side] |= this_rsrv;
|
3155 |
|
|
INSN_INFO_ENTRY (uid).reservation = t;
|
3156 |
|
|
continue;
|
3157 |
|
|
}
|
3158 |
|
|
|
3159 |
|
|
if (pass == 1)
|
3160 |
|
|
{
|
3161 |
|
|
for (j = 0; j < 4; j++)
|
3162 |
|
|
if (this_rsrv & (1 << j))
|
3163 |
|
|
rsrv_count[side][j]++;
|
3164 |
|
|
continue;
|
3165 |
|
|
}
|
3166 |
|
|
if ((pass == 2 && this_rsrv != RESERVATION_FLAG_DLS)
|
3167 |
|
|
|| (pass == 3 && this_rsrv == RESERVATION_FLAG_DLS))
|
3168 |
|
|
{
|
3169 |
|
|
int best = -1, best_cost = INT_MAX;
|
3170 |
|
|
for (j = 0; j < 4; j++)
|
3171 |
|
|
if ((this_rsrv & (1 << j))
|
3172 |
|
|
&& !(rsrv[side] & (1 << j))
|
3173 |
|
|
&& rsrv_count[side][j] < best_cost)
|
3174 |
|
|
{
|
3175 |
|
|
best_cost = rsrv_count[side][j];
|
3176 |
|
|
best = j;
|
3177 |
|
|
}
|
3178 |
|
|
gcc_assert (best != -1);
|
3179 |
|
|
rsrv[side] |= 1 << best;
|
3180 |
|
|
for (j = 0; j < 4; j++)
|
3181 |
|
|
if ((this_rsrv & (1 << j)) && j != best)
|
3182 |
|
|
rsrv_count[side][j]--;
|
3183 |
|
|
|
3184 |
|
|
INSN_INFO_ENTRY (uid).reservation
|
3185 |
|
|
= best + side * UNIT_QID_SIDE_OFFSET;
|
3186 |
|
|
}
|
3187 |
|
|
}
|
3188 |
|
|
}
|
3189 |
|
|
}
|
3190 |
|
|
|
3191 |
|
|
/* Return a factor by which to weight unit imbalances for a reservation
|
3192 |
|
|
R. */
|
3193 |
|
|
static int
|
3194 |
|
|
unit_req_factor (enum unitreqs r)
|
3195 |
|
|
{
|
3196 |
|
|
switch (r)
|
3197 |
|
|
{
|
3198 |
|
|
case UNIT_REQ_D:
|
3199 |
|
|
case UNIT_REQ_L:
|
3200 |
|
|
case UNIT_REQ_S:
|
3201 |
|
|
case UNIT_REQ_M:
|
3202 |
|
|
case UNIT_REQ_X:
|
3203 |
|
|
case UNIT_REQ_T:
|
3204 |
|
|
return 1;
|
3205 |
|
|
case UNIT_REQ_DL:
|
3206 |
|
|
case UNIT_REQ_LS:
|
3207 |
|
|
case UNIT_REQ_DS:
|
3208 |
|
|
return 2;
|
3209 |
|
|
case UNIT_REQ_DLS:
|
3210 |
|
|
return 3;
|
3211 |
|
|
default:
|
3212 |
|
|
gcc_unreachable ();
|
3213 |
|
|
}
|
3214 |
|
|
}
|
3215 |
|
|
|
3216 |
|
|
/* Examine INSN, and store in REQ1/SIDE1 and REQ2/SIDE2 the unit
|
3217 |
|
|
requirements. Returns zero if INSN can't be handled, otherwise
|
3218 |
|
|
either one or two to show how many of the two pairs are in use.
|
3219 |
|
|
REQ1 is always used, it holds what is normally thought of as the
|
3220 |
|
|
instructions reservation, e.g. UNIT_REQ_DL. REQ2 is used to either
|
3221 |
|
|
describe a cross path, or for loads/stores, the T unit. */
|
3222 |
|
|
static int
|
3223 |
|
|
get_unit_reqs (rtx insn, int *req1, int *side1, int *req2, int *side2)
|
3224 |
|
|
{
|
3225 |
|
|
enum attr_units units;
|
3226 |
|
|
enum attr_cross cross;
|
3227 |
|
|
int side, req;
|
3228 |
|
|
|
3229 |
|
|
if (!NONDEBUG_INSN_P (insn) || recog_memoized (insn) < 0)
|
3230 |
|
|
return 0;
|
3231 |
|
|
units = get_attr_units (insn);
|
3232 |
|
|
if (units == UNITS_UNKNOWN)
|
3233 |
|
|
return 0;
|
3234 |
|
|
side = get_insn_side (insn, units);
|
3235 |
|
|
cross = get_attr_cross (insn);
|
3236 |
|
|
|
3237 |
|
|
req = (units == UNITS_D ? UNIT_REQ_D
|
3238 |
|
|
: units == UNITS_D_ADDR ? UNIT_REQ_D
|
3239 |
|
|
: units == UNITS_DL ? UNIT_REQ_DL
|
3240 |
|
|
: units == UNITS_DS ? UNIT_REQ_DS
|
3241 |
|
|
: units == UNITS_L ? UNIT_REQ_L
|
3242 |
|
|
: units == UNITS_LS ? UNIT_REQ_LS
|
3243 |
|
|
: units == UNITS_S ? UNIT_REQ_S
|
3244 |
|
|
: units == UNITS_M ? UNIT_REQ_M
|
3245 |
|
|
: units == UNITS_DLS ? UNIT_REQ_DLS
|
3246 |
|
|
: -1);
|
3247 |
|
|
gcc_assert (req != -1);
|
3248 |
|
|
*req1 = req;
|
3249 |
|
|
*side1 = side;
|
3250 |
|
|
if (units == UNITS_D_ADDR)
|
3251 |
|
|
{
|
3252 |
|
|
*req2 = UNIT_REQ_T;
|
3253 |
|
|
*side2 = side ^ (cross == CROSS_Y ? 1 : 0);
|
3254 |
|
|
return 2;
|
3255 |
|
|
}
|
3256 |
|
|
else if (cross == CROSS_Y)
|
3257 |
|
|
{
|
3258 |
|
|
*req2 = UNIT_REQ_X;
|
3259 |
|
|
*side2 = side;
|
3260 |
|
|
return 2;
|
3261 |
|
|
}
|
3262 |
|
|
return 1;
|
3263 |
|
|
}
|
3264 |
|
|
|
3265 |
|
|
/* Walk the insns between and including HEAD and TAIL, and mark the
|
3266 |
|
|
resource requirements in the unit_reqs table. */
|
3267 |
|
|
static void
|
3268 |
|
|
count_unit_reqs (unit_req_table reqs, rtx head, rtx tail)
|
3269 |
|
|
{
|
3270 |
|
|
rtx insn;
|
3271 |
|
|
|
3272 |
|
|
memset (reqs, 0, sizeof (unit_req_table));
|
3273 |
|
|
|
3274 |
|
|
for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
|
3275 |
|
|
{
|
3276 |
|
|
int side1, side2, req1, req2;
|
3277 |
|
|
|
3278 |
|
|
switch (get_unit_reqs (insn, &req1, &side1, &req2, &side2))
|
3279 |
|
|
{
|
3280 |
|
|
case 2:
|
3281 |
|
|
reqs[side2][req2]++;
|
3282 |
|
|
/* fall through */
|
3283 |
|
|
case 1:
|
3284 |
|
|
reqs[side1][req1]++;
|
3285 |
|
|
break;
|
3286 |
|
|
}
|
3287 |
|
|
}
|
3288 |
|
|
}
|
3289 |
|
|
|
3290 |
|
|
/* Update the table REQS by merging more specific unit reservations into
|
3291 |
|
|
more general ones, i.e. counting (for example) UNIT_REQ_D also in
|
3292 |
|
|
UNIT_REQ_DL, DS, and DLS. */
|
3293 |
|
|
static void
|
3294 |
|
|
merge_unit_reqs (unit_req_table reqs)
|
3295 |
|
|
{
|
3296 |
|
|
int side;
|
3297 |
|
|
for (side = 0; side < 2; side++)
|
3298 |
|
|
{
|
3299 |
|
|
int d = reqs[side][UNIT_REQ_D];
|
3300 |
|
|
int l = reqs[side][UNIT_REQ_L];
|
3301 |
|
|
int s = reqs[side][UNIT_REQ_S];
|
3302 |
|
|
int dl = reqs[side][UNIT_REQ_DL];
|
3303 |
|
|
int ls = reqs[side][UNIT_REQ_LS];
|
3304 |
|
|
int ds = reqs[side][UNIT_REQ_DS];
|
3305 |
|
|
|
3306 |
|
|
reqs[side][UNIT_REQ_DL] += d;
|
3307 |
|
|
reqs[side][UNIT_REQ_DL] += l;
|
3308 |
|
|
reqs[side][UNIT_REQ_DS] += d;
|
3309 |
|
|
reqs[side][UNIT_REQ_DS] += s;
|
3310 |
|
|
reqs[side][UNIT_REQ_LS] += l;
|
3311 |
|
|
reqs[side][UNIT_REQ_LS] += s;
|
3312 |
|
|
reqs[side][UNIT_REQ_DLS] += ds + dl + ls + d + l + s;
|
3313 |
|
|
}
|
3314 |
|
|
}
|
3315 |
|
|
|
3316 |
|
|
/* Examine the table REQS and return a measure of unit imbalance by comparing
|
3317 |
|
|
the two sides of the machine. If, for example, D1 is used twice and D2
|
3318 |
|
|
used not at all, the return value should be 1 in the absence of other
|
3319 |
|
|
imbalances. */
|
3320 |
|
|
static int
|
3321 |
|
|
unit_req_imbalance (unit_req_table reqs)
|
3322 |
|
|
{
|
3323 |
|
|
int val = 0;
|
3324 |
|
|
int i;
|
3325 |
|
|
|
3326 |
|
|
for (i = 0; i < UNIT_REQ_MAX; i++)
|
3327 |
|
|
{
|
3328 |
|
|
int factor = unit_req_factor ((enum unitreqs) i);
|
3329 |
|
|
int diff = abs (reqs[0][i] - reqs[1][i]);
|
3330 |
|
|
val += (diff + factor - 1) / factor / 2;
|
3331 |
|
|
}
|
3332 |
|
|
return val;
|
3333 |
|
|
}
|
3334 |
|
|
|
3335 |
|
|
/* Return the resource-constrained minimum iteration interval given the
|
3336 |
|
|
data in the REQS table. This must have been processed with
|
3337 |
|
|
merge_unit_reqs already. */
|
3338 |
|
|
static int
|
3339 |
|
|
res_mii (unit_req_table reqs)
|
3340 |
|
|
{
|
3341 |
|
|
int side, req;
|
3342 |
|
|
int worst = 1;
|
3343 |
|
|
for (side = 0; side < 2; side++)
|
3344 |
|
|
for (req = 0; req < UNIT_REQ_MAX; req++)
|
3345 |
|
|
{
|
3346 |
|
|
int factor = unit_req_factor ((enum unitreqs) req);
|
3347 |
|
|
worst = MAX ((reqs[side][UNIT_REQ_D] + factor - 1) / factor, worst);
|
3348 |
|
|
}
|
3349 |
|
|
|
3350 |
|
|
return worst;
|
3351 |
|
|
}
|
3352 |
|
|
|
3353 |
|
|
/* Examine INSN, and store in PMASK1 and PMASK2 bitmasks that represent
|
3354 |
|
|
the operands that are involved in the (up to) two reservations, as
|
3355 |
|
|
found by get_unit_reqs. Return true if we did this successfully, false
|
3356 |
|
|
if we couldn't identify what to do with INSN. */
|
3357 |
|
|
static bool
|
3358 |
|
|
get_unit_operand_masks (rtx insn, unsigned int *pmask1, unsigned int *pmask2)
|
3359 |
|
|
{
|
3360 |
|
|
enum attr_op_pattern op_pat;
|
3361 |
|
|
|
3362 |
|
|
if (recog_memoized (insn) < 0)
|
3363 |
|
|
return 0;
|
3364 |
|
|
if (GET_CODE (PATTERN (insn)) == COND_EXEC)
|
3365 |
|
|
return false;
|
3366 |
|
|
extract_insn (insn);
|
3367 |
|
|
op_pat = get_attr_op_pattern (insn);
|
3368 |
|
|
if (op_pat == OP_PATTERN_DT)
|
3369 |
|
|
{
|
3370 |
|
|
gcc_assert (recog_data.n_operands == 2);
|
3371 |
|
|
*pmask1 = 1 << 0;
|
3372 |
|
|
*pmask2 = 1 << 1;
|
3373 |
|
|
return true;
|
3374 |
|
|
}
|
3375 |
|
|
else if (op_pat == OP_PATTERN_TD)
|
3376 |
|
|
{
|
3377 |
|
|
gcc_assert (recog_data.n_operands == 2);
|
3378 |
|
|
*pmask1 = 1 << 1;
|
3379 |
|
|
*pmask2 = 1 << 0;
|
3380 |
|
|
return true;
|
3381 |
|
|
}
|
3382 |
|
|
else if (op_pat == OP_PATTERN_SXS)
|
3383 |
|
|
{
|
3384 |
|
|
gcc_assert (recog_data.n_operands == 3);
|
3385 |
|
|
*pmask1 = (1 << 0) | (1 << 2);
|
3386 |
|
|
*pmask2 = 1 << 1;
|
3387 |
|
|
return true;
|
3388 |
|
|
}
|
3389 |
|
|
else if (op_pat == OP_PATTERN_SX)
|
3390 |
|
|
{
|
3391 |
|
|
gcc_assert (recog_data.n_operands == 2);
|
3392 |
|
|
*pmask1 = 1 << 0;
|
3393 |
|
|
*pmask2 = 1 << 1;
|
3394 |
|
|
return true;
|
3395 |
|
|
}
|
3396 |
|
|
else if (op_pat == OP_PATTERN_SSX)
|
3397 |
|
|
{
|
3398 |
|
|
gcc_assert (recog_data.n_operands == 3);
|
3399 |
|
|
*pmask1 = (1 << 0) | (1 << 1);
|
3400 |
|
|
*pmask2 = 1 << 2;
|
3401 |
|
|
return true;
|
3402 |
|
|
}
|
3403 |
|
|
return false;
|
3404 |
|
|
}
|
3405 |
|
|
|
3406 |
|
|
/* Try to replace a register in INSN, which has corresponding rename info
|
3407 |
|
|
from regrename_analyze in INFO. OP_MASK and ORIG_SIDE provide information
|
3408 |
|
|
about the operands that must be renamed and the side they are on.
|
3409 |
|
|
REQS is the table of unit reservations in the loop between HEAD and TAIL.
|
3410 |
|
|
We recompute this information locally after our transformation, and keep
|
3411 |
|
|
it only if we managed to improve the balance. */
|
3412 |
|
|
static void
|
3413 |
|
|
try_rename_operands (rtx head, rtx tail, unit_req_table reqs, rtx insn,
|
3414 |
|
|
insn_rr_info *info, unsigned int op_mask, int orig_side)
|
3415 |
|
|
{
|
3416 |
|
|
enum reg_class super_class = orig_side == 0 ? B_REGS : A_REGS;
|
3417 |
|
|
HARD_REG_SET unavailable;
|
3418 |
|
|
du_head_p this_head;
|
3419 |
|
|
struct du_chain *chain;
|
3420 |
|
|
int i;
|
3421 |
|
|
unsigned tmp_mask;
|
3422 |
|
|
int best_reg, old_reg;
|
3423 |
|
|
VEC (du_head_p, heap) *involved_chains = NULL;
|
3424 |
|
|
unit_req_table new_reqs;
|
3425 |
|
|
|
3426 |
|
|
for (i = 0, tmp_mask = op_mask; tmp_mask; i++)
|
3427 |
|
|
{
|
3428 |
|
|
du_head_p op_chain;
|
3429 |
|
|
if ((tmp_mask & (1 << i)) == 0)
|
3430 |
|
|
continue;
|
3431 |
|
|
if (info->op_info[i].n_chains != 1)
|
3432 |
|
|
goto out_fail;
|
3433 |
|
|
op_chain = regrename_chain_from_id (info->op_info[i].heads[0]->id);
|
3434 |
|
|
VEC_safe_push (du_head_p, heap, involved_chains, op_chain);
|
3435 |
|
|
tmp_mask &= ~(1 << i);
|
3436 |
|
|
}
|
3437 |
|
|
|
3438 |
|
|
if (VEC_length (du_head_p, involved_chains) > 1)
|
3439 |
|
|
goto out_fail;
|
3440 |
|
|
|
3441 |
|
|
this_head = VEC_index (du_head_p, involved_chains, 0);
|
3442 |
|
|
if (this_head->cannot_rename)
|
3443 |
|
|
goto out_fail;
|
3444 |
|
|
|
3445 |
|
|
for (chain = this_head->first; chain; chain = chain->next_use)
|
3446 |
|
|
{
|
3447 |
|
|
unsigned int mask1, mask2, mask_changed;
|
3448 |
|
|
int count, side1, side2, req1, req2;
|
3449 |
|
|
insn_rr_info *this_rr = VEC_index (insn_rr_info, insn_rr,
|
3450 |
|
|
INSN_UID (chain->insn));
|
3451 |
|
|
|
3452 |
|
|
count = get_unit_reqs (chain->insn, &req1, &side1, &req2, &side2);
|
3453 |
|
|
|
3454 |
|
|
if (count == 0)
|
3455 |
|
|
goto out_fail;
|
3456 |
|
|
|
3457 |
|
|
if (!get_unit_operand_masks (chain->insn, &mask1, &mask2))
|
3458 |
|
|
goto out_fail;
|
3459 |
|
|
|
3460 |
|
|
extract_insn (chain->insn);
|
3461 |
|
|
|
3462 |
|
|
mask_changed = 0;
|
3463 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
3464 |
|
|
{
|
3465 |
|
|
int j;
|
3466 |
|
|
int n_this_op = this_rr->op_info[i].n_chains;
|
3467 |
|
|
for (j = 0; j < n_this_op; j++)
|
3468 |
|
|
{
|
3469 |
|
|
du_head_p other = this_rr->op_info[i].heads[j];
|
3470 |
|
|
if (regrename_chain_from_id (other->id) == this_head)
|
3471 |
|
|
break;
|
3472 |
|
|
}
|
3473 |
|
|
if (j == n_this_op)
|
3474 |
|
|
continue;
|
3475 |
|
|
|
3476 |
|
|
if (n_this_op != 1)
|
3477 |
|
|
goto out_fail;
|
3478 |
|
|
mask_changed |= 1 << i;
|
3479 |
|
|
}
|
3480 |
|
|
gcc_assert (mask_changed != 0);
|
3481 |
|
|
if (mask_changed != mask1 && mask_changed != mask2)
|
3482 |
|
|
goto out_fail;
|
3483 |
|
|
}
|
3484 |
|
|
|
3485 |
|
|
/* If we get here, we can do the renaming. */
|
3486 |
|
|
COMPL_HARD_REG_SET (unavailable, reg_class_contents[(int) super_class]);
|
3487 |
|
|
|
3488 |
|
|
old_reg = this_head->regno;
|
3489 |
|
|
best_reg = find_best_rename_reg (this_head, super_class, &unavailable, old_reg);
|
3490 |
|
|
|
3491 |
|
|
regrename_do_replace (this_head, best_reg);
|
3492 |
|
|
|
3493 |
|
|
count_unit_reqs (new_reqs, head, PREV_INSN (tail));
|
3494 |
|
|
merge_unit_reqs (new_reqs);
|
3495 |
|
|
if (dump_file)
|
3496 |
|
|
{
|
3497 |
|
|
fprintf (dump_file, "reshuffle for insn %d, op_mask %x, "
|
3498 |
|
|
"original side %d, new reg %d\n",
|
3499 |
|
|
INSN_UID (insn), op_mask, orig_side, best_reg);
|
3500 |
|
|
fprintf (dump_file, " imbalance %d -> %d\n",
|
3501 |
|
|
unit_req_imbalance (reqs), unit_req_imbalance (new_reqs));
|
3502 |
|
|
}
|
3503 |
|
|
if (unit_req_imbalance (new_reqs) > unit_req_imbalance (reqs))
|
3504 |
|
|
regrename_do_replace (this_head, old_reg);
|
3505 |
|
|
else
|
3506 |
|
|
memcpy (reqs, new_reqs, sizeof (unit_req_table));
|
3507 |
|
|
|
3508 |
|
|
out_fail:
|
3509 |
|
|
VEC_free (du_head_p, heap, involved_chains);
|
3510 |
|
|
}
|
3511 |
|
|
|
3512 |
|
|
/* Find insns in LOOP which would, if shifted to the other side
|
3513 |
|
|
of the machine, reduce an imbalance in the unit reservations. */
|
3514 |
|
|
static void
|
3515 |
|
|
reshuffle_units (basic_block loop)
|
3516 |
|
|
{
|
3517 |
|
|
rtx head = BB_HEAD (loop);
|
3518 |
|
|
rtx tail = BB_END (loop);
|
3519 |
|
|
rtx insn;
|
3520 |
|
|
unit_req_table reqs;
|
3521 |
|
|
edge e;
|
3522 |
|
|
edge_iterator ei;
|
3523 |
|
|
bitmap_head bbs;
|
3524 |
|
|
|
3525 |
|
|
count_unit_reqs (reqs, head, PREV_INSN (tail));
|
3526 |
|
|
merge_unit_reqs (reqs);
|
3527 |
|
|
|
3528 |
|
|
regrename_init (true);
|
3529 |
|
|
|
3530 |
|
|
bitmap_initialize (&bbs, &bitmap_default_obstack);
|
3531 |
|
|
|
3532 |
|
|
FOR_EACH_EDGE (e, ei, loop->preds)
|
3533 |
|
|
bitmap_set_bit (&bbs, e->src->index);
|
3534 |
|
|
|
3535 |
|
|
bitmap_set_bit (&bbs, loop->index);
|
3536 |
|
|
regrename_analyze (&bbs);
|
3537 |
|
|
|
3538 |
|
|
for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
|
3539 |
|
|
{
|
3540 |
|
|
enum attr_units units;
|
3541 |
|
|
int count, side1, side2, req1, req2;
|
3542 |
|
|
unsigned int mask1, mask2;
|
3543 |
|
|
insn_rr_info *info;
|
3544 |
|
|
|
3545 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
3546 |
|
|
continue;
|
3547 |
|
|
|
3548 |
|
|
count = get_unit_reqs (insn, &req1, &side1, &req2, &side2);
|
3549 |
|
|
|
3550 |
|
|
if (count == 0)
|
3551 |
|
|
continue;
|
3552 |
|
|
|
3553 |
|
|
if (!get_unit_operand_masks (insn, &mask1, &mask2))
|
3554 |
|
|
continue;
|
3555 |
|
|
|
3556 |
|
|
info = VEC_index (insn_rr_info, insn_rr, INSN_UID (insn));
|
3557 |
|
|
if (info->op_info == NULL)
|
3558 |
|
|
continue;
|
3559 |
|
|
|
3560 |
|
|
if (reqs[side1][req1] > 1
|
3561 |
|
|
&& reqs[side1][req1] > 2 * reqs[side1 ^ 1][req1])
|
3562 |
|
|
{
|
3563 |
|
|
try_rename_operands (head, tail, reqs, insn, info, mask1, side1);
|
3564 |
|
|
}
|
3565 |
|
|
|
3566 |
|
|
units = get_attr_units (insn);
|
3567 |
|
|
if (units == UNITS_D_ADDR)
|
3568 |
|
|
{
|
3569 |
|
|
gcc_assert (count == 2);
|
3570 |
|
|
if (reqs[side2][req2] > 1
|
3571 |
|
|
&& reqs[side2][req2] > 2 * reqs[side2 ^ 1][req2])
|
3572 |
|
|
{
|
3573 |
|
|
try_rename_operands (head, tail, reqs, insn, info, mask2, side2);
|
3574 |
|
|
}
|
3575 |
|
|
}
|
3576 |
|
|
}
|
3577 |
|
|
regrename_finish ();
|
3578 |
|
|
}
|
3579 |
|
|
|
3580 |
|
|
/* Backend scheduling state. */
|
3581 |
|
|
typedef struct c6x_sched_context
|
3582 |
|
|
{
|
3583 |
|
|
/* The current scheduler clock, saved in the sched_reorder hook. */
|
3584 |
|
|
int curr_sched_clock;
|
3585 |
|
|
|
3586 |
|
|
/* Number of insns issued so far in this cycle. */
|
3587 |
|
|
int issued_this_cycle;
|
3588 |
|
|
|
3589 |
|
|
/* We record the time at which each jump occurs in JUMP_CYCLES. The
|
3590 |
|
|
theoretical maximum for number of jumps in flight is 12: 2 every
|
3591 |
|
|
cycle, with a latency of 6 cycles each. This is a circular
|
3592 |
|
|
buffer; JUMP_CYCLE_INDEX is the pointer to the start. Earlier
|
3593 |
|
|
jumps have a higher index. This array should be accessed through
|
3594 |
|
|
the jump_cycle function. */
|
3595 |
|
|
int jump_cycles[12];
|
3596 |
|
|
int jump_cycle_index;
|
3597 |
|
|
|
3598 |
|
|
/* In parallel with jump_cycles, this array records the opposite of
|
3599 |
|
|
the condition used in each pending jump. This is used to
|
3600 |
|
|
predicate insns that are scheduled in the jump's delay slots. If
|
3601 |
|
|
this is NULL_RTX no such predication happens. */
|
3602 |
|
|
rtx jump_cond[12];
|
3603 |
|
|
|
3604 |
|
|
/* Similar to the jump_cycles mechanism, but here we take into
|
3605 |
|
|
account all insns with delay slots, to avoid scheduling asms into
|
3606 |
|
|
the delay slots. */
|
3607 |
|
|
int delays_finished_at;
|
3608 |
|
|
|
3609 |
|
|
/* The following variable value is the last issued insn. */
|
3610 |
|
|
rtx last_scheduled_insn;
|
3611 |
|
|
/* The last issued insn that isn't a shadow of another. */
|
3612 |
|
|
rtx last_scheduled_iter0;
|
3613 |
|
|
|
3614 |
|
|
/* The following variable value is DFA state before issuing the
|
3615 |
|
|
first insn in the current clock cycle. We do not use this member
|
3616 |
|
|
of the structure directly; we copy the data in and out of
|
3617 |
|
|
prev_cycle_state. */
|
3618 |
|
|
state_t prev_cycle_state_ctx;
|
3619 |
|
|
|
3620 |
|
|
int reg_n_accesses[FIRST_PSEUDO_REGISTER];
|
3621 |
|
|
int reg_n_xaccesses[FIRST_PSEUDO_REGISTER];
|
3622 |
|
|
int reg_set_in_cycle[FIRST_PSEUDO_REGISTER];
|
3623 |
|
|
|
3624 |
|
|
int tmp_reg_n_accesses[FIRST_PSEUDO_REGISTER];
|
3625 |
|
|
int tmp_reg_n_xaccesses[FIRST_PSEUDO_REGISTER];
|
3626 |
|
|
} *c6x_sched_context_t;
|
3627 |
|
|
|
3628 |
|
|
/* The current scheduling state. */
|
3629 |
|
|
static struct c6x_sched_context ss;
|
3630 |
|
|
|
3631 |
|
|
/* The following variable value is DFA state before issueing the first insn
|
3632 |
|
|
in the current clock cycle. This is used in c6x_variable_issue for
|
3633 |
|
|
comparison with the state after issuing the last insn in a cycle. */
|
3634 |
|
|
static state_t prev_cycle_state;
|
3635 |
|
|
|
3636 |
|
|
/* Set when we discover while processing an insn that it would lead to too
|
3637 |
|
|
many accesses of the same register. */
|
3638 |
|
|
static bool reg_access_stall;
|
3639 |
|
|
|
3640 |
|
|
/* The highest insn uid after delayed insns were split, but before loop bodies
|
3641 |
|
|
were copied by the modulo scheduling code. */
|
3642 |
|
|
static int sploop_max_uid_iter0;
|
3643 |
|
|
|
3644 |
|
|
/* Look up the jump cycle with index N. For an out-of-bounds N, we return 0,
|
3645 |
|
|
so the caller does not specifically have to test for it. */
|
3646 |
|
|
static int
|
3647 |
|
|
get_jump_cycle (int n)
|
3648 |
|
|
{
|
3649 |
|
|
if (n >= 12)
|
3650 |
|
|
return 0;
|
3651 |
|
|
n += ss.jump_cycle_index;
|
3652 |
|
|
if (n >= 12)
|
3653 |
|
|
n -= 12;
|
3654 |
|
|
return ss.jump_cycles[n];
|
3655 |
|
|
}
|
3656 |
|
|
|
3657 |
|
|
/* Look up the jump condition with index N. */
|
3658 |
|
|
static rtx
|
3659 |
|
|
get_jump_cond (int n)
|
3660 |
|
|
{
|
3661 |
|
|
if (n >= 12)
|
3662 |
|
|
return NULL_RTX;
|
3663 |
|
|
n += ss.jump_cycle_index;
|
3664 |
|
|
if (n >= 12)
|
3665 |
|
|
n -= 12;
|
3666 |
|
|
return ss.jump_cond[n];
|
3667 |
|
|
}
|
3668 |
|
|
|
3669 |
|
|
/* Return the index of the first jump that occurs after CLOCK_VAR. If no jump
|
3670 |
|
|
has delay slots beyond CLOCK_VAR, return -1. */
|
3671 |
|
|
static int
|
3672 |
|
|
first_jump_index (int clock_var)
|
3673 |
|
|
{
|
3674 |
|
|
int retval = -1;
|
3675 |
|
|
int n = 0;
|
3676 |
|
|
for (;;)
|
3677 |
|
|
{
|
3678 |
|
|
int t = get_jump_cycle (n);
|
3679 |
|
|
if (t <= clock_var)
|
3680 |
|
|
break;
|
3681 |
|
|
retval = n;
|
3682 |
|
|
n++;
|
3683 |
|
|
}
|
3684 |
|
|
return retval;
|
3685 |
|
|
}
|
3686 |
|
|
|
3687 |
|
|
/* Add a new entry in our scheduling state for a jump that occurs in CYCLE
|
3688 |
|
|
and has the opposite condition of COND. */
|
3689 |
|
|
static void
|
3690 |
|
|
record_jump (int cycle, rtx cond)
|
3691 |
|
|
{
|
3692 |
|
|
if (ss.jump_cycle_index == 0)
|
3693 |
|
|
ss.jump_cycle_index = 11;
|
3694 |
|
|
else
|
3695 |
|
|
ss.jump_cycle_index--;
|
3696 |
|
|
ss.jump_cycles[ss.jump_cycle_index] = cycle;
|
3697 |
|
|
ss.jump_cond[ss.jump_cycle_index] = cond;
|
3698 |
|
|
}
|
3699 |
|
|
|
3700 |
|
|
/* Set the clock cycle of INSN to CYCLE. Also clears the insn's entry in
|
3701 |
|
|
new_conditions. */
|
3702 |
|
|
static void
|
3703 |
|
|
insn_set_clock (rtx insn, int cycle)
|
3704 |
|
|
{
|
3705 |
|
|
unsigned uid = INSN_UID (insn);
|
3706 |
|
|
|
3707 |
|
|
if (uid >= INSN_INFO_LENGTH)
|
3708 |
|
|
VEC_safe_grow (c6x_sched_insn_info, heap, insn_info, uid * 5 / 4 + 10);
|
3709 |
|
|
|
3710 |
|
|
INSN_INFO_ENTRY (uid).clock = cycle;
|
3711 |
|
|
INSN_INFO_ENTRY (uid).new_cond = NULL;
|
3712 |
|
|
INSN_INFO_ENTRY (uid).reservation = 0;
|
3713 |
|
|
INSN_INFO_ENTRY (uid).ebb_start = false;
|
3714 |
|
|
}
|
3715 |
|
|
|
3716 |
|
|
/* Return the clock cycle we set for the insn with uid UID. */
|
3717 |
|
|
static int
|
3718 |
|
|
insn_uid_get_clock (int uid)
|
3719 |
|
|
{
|
3720 |
|
|
return INSN_INFO_ENTRY (uid).clock;
|
3721 |
|
|
}
|
3722 |
|
|
|
3723 |
|
|
/* Return the clock cycle we set for INSN. */
|
3724 |
|
|
static int
|
3725 |
|
|
insn_get_clock (rtx insn)
|
3726 |
|
|
{
|
3727 |
|
|
return insn_uid_get_clock (INSN_UID (insn));
|
3728 |
|
|
}
|
3729 |
|
|
|
3730 |
|
|
/* Examine INSN, and if it is a conditional jump of any kind, return
|
3731 |
|
|
the opposite of the condition in which it branches. Otherwise,
|
3732 |
|
|
return NULL_RTX. */
|
3733 |
|
|
static rtx
|
3734 |
|
|
condjump_opposite_condition (rtx insn)
|
3735 |
|
|
{
|
3736 |
|
|
rtx pat = PATTERN (insn);
|
3737 |
|
|
int icode = INSN_CODE (insn);
|
3738 |
|
|
rtx x = NULL;
|
3739 |
|
|
|
3740 |
|
|
if (icode == CODE_FOR_br_true || icode == CODE_FOR_br_false)
|
3741 |
|
|
{
|
3742 |
|
|
x = XEXP (SET_SRC (pat), 0);
|
3743 |
|
|
if (icode == CODE_FOR_br_false)
|
3744 |
|
|
return x;
|
3745 |
|
|
}
|
3746 |
|
|
if (GET_CODE (pat) == COND_EXEC)
|
3747 |
|
|
{
|
3748 |
|
|
rtx t = COND_EXEC_CODE (pat);
|
3749 |
|
|
if ((GET_CODE (t) == PARALLEL
|
3750 |
|
|
&& GET_CODE (XVECEXP (t, 0, 0)) == RETURN)
|
3751 |
|
|
|| (GET_CODE (t) == UNSPEC && XINT (t, 1) == UNSPEC_REAL_JUMP)
|
3752 |
|
|
|| (GET_CODE (t) == SET && SET_DEST (t) == pc_rtx))
|
3753 |
|
|
x = COND_EXEC_TEST (pat);
|
3754 |
|
|
}
|
3755 |
|
|
|
3756 |
|
|
if (x != NULL_RTX)
|
3757 |
|
|
{
|
3758 |
|
|
enum rtx_code code = GET_CODE (x);
|
3759 |
|
|
x = gen_rtx_fmt_ee (code == EQ ? NE : EQ,
|
3760 |
|
|
GET_MODE (x), XEXP (x, 0),
|
3761 |
|
|
XEXP (x, 1));
|
3762 |
|
|
}
|
3763 |
|
|
return x;
|
3764 |
|
|
}
|
3765 |
|
|
|
3766 |
|
|
/* Return true iff COND1 and COND2 are exactly opposite conditions
|
3767 |
|
|
one of them NE and the other EQ. */
|
3768 |
|
|
static bool
|
3769 |
|
|
conditions_opposite_p (rtx cond1, rtx cond2)
|
3770 |
|
|
{
|
3771 |
|
|
return (rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
|
3772 |
|
|
&& rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1))
|
3773 |
|
|
&& GET_CODE (cond1) == reverse_condition (GET_CODE (cond2)));
|
3774 |
|
|
}
|
3775 |
|
|
|
3776 |
|
|
/* Return true if we can add a predicate COND to INSN, or if INSN
|
3777 |
|
|
already has that predicate. If DOIT is true, also perform the
|
3778 |
|
|
modification. */
|
3779 |
|
|
static bool
|
3780 |
|
|
predicate_insn (rtx insn, rtx cond, bool doit)
|
3781 |
|
|
{
|
3782 |
|
|
int icode;
|
3783 |
|
|
if (cond == NULL_RTX)
|
3784 |
|
|
{
|
3785 |
|
|
gcc_assert (!doit);
|
3786 |
|
|
return false;
|
3787 |
|
|
}
|
3788 |
|
|
|
3789 |
|
|
if (get_attr_predicable (insn) == PREDICABLE_YES
|
3790 |
|
|
&& GET_CODE (PATTERN (insn)) != COND_EXEC)
|
3791 |
|
|
{
|
3792 |
|
|
if (doit)
|
3793 |
|
|
{
|
3794 |
|
|
rtx newpat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (insn));
|
3795 |
|
|
PATTERN (insn) = newpat;
|
3796 |
|
|
INSN_CODE (insn) = -1;
|
3797 |
|
|
}
|
3798 |
|
|
return true;
|
3799 |
|
|
}
|
3800 |
|
|
if (GET_CODE (PATTERN (insn)) == COND_EXEC
|
3801 |
|
|
&& rtx_equal_p (COND_EXEC_TEST (PATTERN (insn)), cond))
|
3802 |
|
|
return true;
|
3803 |
|
|
icode = INSN_CODE (insn);
|
3804 |
|
|
if (icode == CODE_FOR_real_jump
|
3805 |
|
|
|| icode == CODE_FOR_jump
|
3806 |
|
|
|| icode == CODE_FOR_indirect_jump)
|
3807 |
|
|
{
|
3808 |
|
|
rtx pat = PATTERN (insn);
|
3809 |
|
|
rtx dest = (icode == CODE_FOR_real_jump ? XVECEXP (pat, 0, 0)
|
3810 |
|
|
: icode == CODE_FOR_jump ? XEXP (SET_SRC (pat), 0)
|
3811 |
|
|
: SET_SRC (pat));
|
3812 |
|
|
if (doit)
|
3813 |
|
|
{
|
3814 |
|
|
rtx newpat;
|
3815 |
|
|
if (REG_P (dest))
|
3816 |
|
|
newpat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (insn));
|
3817 |
|
|
else
|
3818 |
|
|
newpat = gen_br_true (cond, XEXP (cond, 0), dest);
|
3819 |
|
|
PATTERN (insn) = newpat;
|
3820 |
|
|
INSN_CODE (insn) = -1;
|
3821 |
|
|
}
|
3822 |
|
|
return true;
|
3823 |
|
|
}
|
3824 |
|
|
if (INSN_CODE (insn) == CODE_FOR_br_true)
|
3825 |
|
|
{
|
3826 |
|
|
rtx br_cond = XEXP (SET_SRC (PATTERN (insn)), 0);
|
3827 |
|
|
return rtx_equal_p (br_cond, cond);
|
3828 |
|
|
}
|
3829 |
|
|
if (INSN_CODE (insn) == CODE_FOR_br_false)
|
3830 |
|
|
{
|
3831 |
|
|
rtx br_cond = XEXP (SET_SRC (PATTERN (insn)), 0);
|
3832 |
|
|
return conditions_opposite_p (br_cond, cond);
|
3833 |
|
|
}
|
3834 |
|
|
return false;
|
3835 |
|
|
}
|
3836 |
|
|
|
3837 |
|
|
/* Initialize SC. Used by c6x_init_sched_context and c6x_sched_init. */
|
3838 |
|
|
static void
|
3839 |
|
|
init_sched_state (c6x_sched_context_t sc)
|
3840 |
|
|
{
|
3841 |
|
|
sc->last_scheduled_insn = NULL_RTX;
|
3842 |
|
|
sc->last_scheduled_iter0 = NULL_RTX;
|
3843 |
|
|
sc->issued_this_cycle = 0;
|
3844 |
|
|
memset (sc->jump_cycles, 0, sizeof sc->jump_cycles);
|
3845 |
|
|
memset (sc->jump_cond, 0, sizeof sc->jump_cond);
|
3846 |
|
|
sc->jump_cycle_index = 0;
|
3847 |
|
|
sc->delays_finished_at = 0;
|
3848 |
|
|
sc->curr_sched_clock = 0;
|
3849 |
|
|
|
3850 |
|
|
sc->prev_cycle_state_ctx = xmalloc (dfa_state_size);
|
3851 |
|
|
|
3852 |
|
|
memset (sc->reg_n_accesses, 0, sizeof sc->reg_n_accesses);
|
3853 |
|
|
memset (sc->reg_n_xaccesses, 0, sizeof sc->reg_n_xaccesses);
|
3854 |
|
|
memset (sc->reg_set_in_cycle, 0, sizeof sc->reg_set_in_cycle);
|
3855 |
|
|
|
3856 |
|
|
state_reset (sc->prev_cycle_state_ctx);
|
3857 |
|
|
}
|
3858 |
|
|
|
3859 |
|
|
/* Allocate store for new scheduling context. */
|
3860 |
|
|
static void *
|
3861 |
|
|
c6x_alloc_sched_context (void)
|
3862 |
|
|
{
|
3863 |
|
|
return xmalloc (sizeof (struct c6x_sched_context));
|
3864 |
|
|
}
|
3865 |
|
|
|
3866 |
|
|
/* If CLEAN_P is true then initializes _SC with clean data,
|
3867 |
|
|
and from the global context otherwise. */
|
3868 |
|
|
static void
|
3869 |
|
|
c6x_init_sched_context (void *_sc, bool clean_p)
|
3870 |
|
|
{
|
3871 |
|
|
c6x_sched_context_t sc = (c6x_sched_context_t) _sc;
|
3872 |
|
|
|
3873 |
|
|
if (clean_p)
|
3874 |
|
|
{
|
3875 |
|
|
init_sched_state (sc);
|
3876 |
|
|
}
|
3877 |
|
|
else
|
3878 |
|
|
{
|
3879 |
|
|
*sc = ss;
|
3880 |
|
|
sc->prev_cycle_state_ctx = xmalloc (dfa_state_size);
|
3881 |
|
|
memcpy (sc->prev_cycle_state_ctx, prev_cycle_state, dfa_state_size);
|
3882 |
|
|
}
|
3883 |
|
|
}
|
3884 |
|
|
|
3885 |
|
|
/* Sets the global scheduling context to the one pointed to by _SC. */
|
3886 |
|
|
static void
|
3887 |
|
|
c6x_set_sched_context (void *_sc)
|
3888 |
|
|
{
|
3889 |
|
|
c6x_sched_context_t sc = (c6x_sched_context_t) _sc;
|
3890 |
|
|
|
3891 |
|
|
gcc_assert (sc != NULL);
|
3892 |
|
|
ss = *sc;
|
3893 |
|
|
memcpy (prev_cycle_state, sc->prev_cycle_state_ctx, dfa_state_size);
|
3894 |
|
|
}
|
3895 |
|
|
|
3896 |
|
|
/* Clear data in _SC. */
|
3897 |
|
|
static void
|
3898 |
|
|
c6x_clear_sched_context (void *_sc)
|
3899 |
|
|
{
|
3900 |
|
|
c6x_sched_context_t sc = (c6x_sched_context_t) _sc;
|
3901 |
|
|
gcc_assert (_sc != NULL);
|
3902 |
|
|
|
3903 |
|
|
free (sc->prev_cycle_state_ctx);
|
3904 |
|
|
}
|
3905 |
|
|
|
3906 |
|
|
/* Free _SC. */
|
3907 |
|
|
static void
|
3908 |
|
|
c6x_free_sched_context (void *_sc)
|
3909 |
|
|
{
|
3910 |
|
|
free (_sc);
|
3911 |
|
|
}
|
3912 |
|
|
|
3913 |
|
|
/* Provide information about speculation capabilities, and set the
|
3914 |
|
|
DO_BACKTRACKING flag. */
|
3915 |
|
|
static void
|
3916 |
|
|
c6x_set_sched_flags (spec_info_t spec_info)
|
3917 |
|
|
{
|
3918 |
|
|
unsigned int *flags = &(current_sched_info->flags);
|
3919 |
|
|
|
3920 |
|
|
if (*flags & SCHED_EBB)
|
3921 |
|
|
{
|
3922 |
|
|
*flags |= DO_BACKTRACKING | DO_PREDICATION;
|
3923 |
|
|
}
|
3924 |
|
|
|
3925 |
|
|
spec_info->mask = 0;
|
3926 |
|
|
}
|
3927 |
|
|
|
3928 |
|
|
/* Implement the TARGET_SCHED_ISSUE_RATE hook. */
|
3929 |
|
|
|
3930 |
|
|
static int
|
3931 |
|
|
c6x_issue_rate (void)
|
3932 |
|
|
{
|
3933 |
|
|
return 8;
|
3934 |
|
|
}
|
3935 |
|
|
|
3936 |
|
|
/* Used together with the collapse_ndfa option, this ensures that we reach a
|
3937 |
|
|
deterministic automaton state before trying to advance a cycle.
|
3938 |
|
|
With collapse_ndfa, genautomata creates advance cycle arcs only for
|
3939 |
|
|
such deterministic states. */
|
3940 |
|
|
|
3941 |
|
|
static rtx
|
3942 |
|
|
c6x_sched_dfa_pre_cycle_insn (void)
|
3943 |
|
|
{
|
3944 |
|
|
return const0_rtx;
|
3945 |
|
|
}
|
3946 |
|
|
|
3947 |
|
|
/* We're beginning a new block. Initialize data structures as necessary. */
|
3948 |
|
|
|
3949 |
|
|
static void
|
3950 |
|
|
c6x_sched_init (FILE *dump ATTRIBUTE_UNUSED,
|
3951 |
|
|
int sched_verbose ATTRIBUTE_UNUSED,
|
3952 |
|
|
int max_ready ATTRIBUTE_UNUSED)
|
3953 |
|
|
{
|
3954 |
|
|
if (prev_cycle_state == NULL)
|
3955 |
|
|
{
|
3956 |
|
|
prev_cycle_state = xmalloc (dfa_state_size);
|
3957 |
|
|
}
|
3958 |
|
|
init_sched_state (&ss);
|
3959 |
|
|
state_reset (prev_cycle_state);
|
3960 |
|
|
}
|
3961 |
|
|
|
3962 |
|
|
/* We are about to being issuing INSN. Return nonzero if we cannot
|
3963 |
|
|
issue it on given cycle CLOCK and return zero if we should not sort
|
3964 |
|
|
the ready queue on the next clock start.
|
3965 |
|
|
For C6X, we use this function just to copy the previous DFA state
|
3966 |
|
|
for comparison purposes. */
|
3967 |
|
|
|
3968 |
|
|
static int
|
3969 |
|
|
c6x_dfa_new_cycle (FILE *dump ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
|
3970 |
|
|
rtx insn ATTRIBUTE_UNUSED, int last_clock ATTRIBUTE_UNUSED,
|
3971 |
|
|
int clock ATTRIBUTE_UNUSED, int *sort_p ATTRIBUTE_UNUSED)
|
3972 |
|
|
{
|
3973 |
|
|
if (clock != last_clock)
|
3974 |
|
|
memcpy (prev_cycle_state, curr_state, dfa_state_size);
|
3975 |
|
|
return 0;
|
3976 |
|
|
}
|
3977 |
|
|
|
3978 |
|
|
static void
|
3979 |
|
|
c6x_mark_regno_read (int regno, bool cross)
|
3980 |
|
|
{
|
3981 |
|
|
int t = ++ss.tmp_reg_n_accesses[regno];
|
3982 |
|
|
|
3983 |
|
|
if (t > 4)
|
3984 |
|
|
reg_access_stall = true;
|
3985 |
|
|
|
3986 |
|
|
if (cross)
|
3987 |
|
|
{
|
3988 |
|
|
int set_cycle = ss.reg_set_in_cycle[regno];
|
3989 |
|
|
/* This must be done in this way rather than by tweaking things in
|
3990 |
|
|
adjust_cost, since the stall occurs even for insns with opposite
|
3991 |
|
|
predicates, and the scheduler may not even see a dependency. */
|
3992 |
|
|
if (set_cycle > 0 && set_cycle == ss.curr_sched_clock)
|
3993 |
|
|
reg_access_stall = true;
|
3994 |
|
|
/* This doesn't quite do anything yet as we're only modeling one
|
3995 |
|
|
x unit. */
|
3996 |
|
|
++ss.tmp_reg_n_xaccesses[regno];
|
3997 |
|
|
}
|
3998 |
|
|
}
|
3999 |
|
|
|
4000 |
|
|
/* Note that REG is read in the insn being examined. If CROSS, it
|
4001 |
|
|
means the access is through a cross path. Update the temporary reg
|
4002 |
|
|
access arrays, and set REG_ACCESS_STALL if the insn can't be issued
|
4003 |
|
|
in the current cycle. */
|
4004 |
|
|
|
4005 |
|
|
static void
|
4006 |
|
|
c6x_mark_reg_read (rtx reg, bool cross)
|
4007 |
|
|
{
|
4008 |
|
|
unsigned regno = REGNO (reg);
|
4009 |
|
|
unsigned nregs = hard_regno_nregs[regno][GET_MODE (reg)];
|
4010 |
|
|
|
4011 |
|
|
while (nregs-- > 0)
|
4012 |
|
|
c6x_mark_regno_read (regno + nregs, cross);
|
4013 |
|
|
}
|
4014 |
|
|
|
4015 |
|
|
/* Note that register REG is written in cycle CYCLES. */
|
4016 |
|
|
|
4017 |
|
|
static void
|
4018 |
|
|
c6x_mark_reg_written (rtx reg, int cycles)
|
4019 |
|
|
{
|
4020 |
|
|
unsigned regno = REGNO (reg);
|
4021 |
|
|
unsigned nregs = hard_regno_nregs[regno][GET_MODE (reg)];
|
4022 |
|
|
|
4023 |
|
|
while (nregs-- > 0)
|
4024 |
|
|
ss.reg_set_in_cycle[regno + nregs] = cycles;
|
4025 |
|
|
}
|
4026 |
|
|
|
4027 |
|
|
/* Update the register state information for an instruction whose
|
4028 |
|
|
body is X. Return true if the instruction has to be delayed until the
|
4029 |
|
|
next cycle. */
|
4030 |
|
|
|
4031 |
|
|
static bool
|
4032 |
|
|
c6x_registers_update (rtx insn)
|
4033 |
|
|
{
|
4034 |
|
|
enum attr_cross cross;
|
4035 |
|
|
enum attr_dest_regfile destrf;
|
4036 |
|
|
int i, nops;
|
4037 |
|
|
rtx x;
|
4038 |
|
|
|
4039 |
|
|
if (!reload_completed || recog_memoized (insn) < 0)
|
4040 |
|
|
return false;
|
4041 |
|
|
|
4042 |
|
|
reg_access_stall = false;
|
4043 |
|
|
memcpy (ss.tmp_reg_n_accesses, ss.reg_n_accesses,
|
4044 |
|
|
sizeof ss.tmp_reg_n_accesses);
|
4045 |
|
|
memcpy (ss.tmp_reg_n_xaccesses, ss.reg_n_xaccesses,
|
4046 |
|
|
sizeof ss.tmp_reg_n_xaccesses);
|
4047 |
|
|
|
4048 |
|
|
extract_insn (insn);
|
4049 |
|
|
|
4050 |
|
|
cross = get_attr_cross (insn);
|
4051 |
|
|
destrf = get_attr_dest_regfile (insn);
|
4052 |
|
|
|
4053 |
|
|
nops = recog_data.n_operands;
|
4054 |
|
|
x = PATTERN (insn);
|
4055 |
|
|
if (GET_CODE (x) == COND_EXEC)
|
4056 |
|
|
{
|
4057 |
|
|
c6x_mark_reg_read (XEXP (XEXP (x, 0), 0), false);
|
4058 |
|
|
nops -= 2;
|
4059 |
|
|
}
|
4060 |
|
|
|
4061 |
|
|
for (i = 0; i < nops; i++)
|
4062 |
|
|
{
|
4063 |
|
|
rtx op = recog_data.operand[i];
|
4064 |
|
|
if (recog_data.operand_type[i] == OP_OUT)
|
4065 |
|
|
continue;
|
4066 |
|
|
if (REG_P (op))
|
4067 |
|
|
{
|
4068 |
|
|
bool this_cross = cross;
|
4069 |
|
|
if (destrf == DEST_REGFILE_A && A_REGNO_P (REGNO (op)))
|
4070 |
|
|
this_cross = false;
|
4071 |
|
|
if (destrf == DEST_REGFILE_B && B_REGNO_P (REGNO (op)))
|
4072 |
|
|
this_cross = false;
|
4073 |
|
|
c6x_mark_reg_read (op, this_cross);
|
4074 |
|
|
}
|
4075 |
|
|
else if (MEM_P (op))
|
4076 |
|
|
{
|
4077 |
|
|
op = XEXP (op, 0);
|
4078 |
|
|
switch (GET_CODE (op))
|
4079 |
|
|
{
|
4080 |
|
|
case POST_INC:
|
4081 |
|
|
case PRE_INC:
|
4082 |
|
|
case POST_DEC:
|
4083 |
|
|
case PRE_DEC:
|
4084 |
|
|
op = XEXP (op, 0);
|
4085 |
|
|
/* fall through */
|
4086 |
|
|
case REG:
|
4087 |
|
|
c6x_mark_reg_read (op, false);
|
4088 |
|
|
break;
|
4089 |
|
|
case POST_MODIFY:
|
4090 |
|
|
case PRE_MODIFY:
|
4091 |
|
|
op = XEXP (op, 1);
|
4092 |
|
|
gcc_assert (GET_CODE (op) == PLUS);
|
4093 |
|
|
/* fall through */
|
4094 |
|
|
case PLUS:
|
4095 |
|
|
c6x_mark_reg_read (XEXP (op, 0), false);
|
4096 |
|
|
if (REG_P (XEXP (op, 1)))
|
4097 |
|
|
c6x_mark_reg_read (XEXP (op, 1), false);
|
4098 |
|
|
break;
|
4099 |
|
|
case SYMBOL_REF:
|
4100 |
|
|
case LABEL_REF:
|
4101 |
|
|
case CONST:
|
4102 |
|
|
c6x_mark_regno_read (REG_B14, false);
|
4103 |
|
|
break;
|
4104 |
|
|
default:
|
4105 |
|
|
gcc_unreachable ();
|
4106 |
|
|
}
|
4107 |
|
|
}
|
4108 |
|
|
else if (!CONSTANT_P (op) && strlen (recog_data.constraints[i]) > 0)
|
4109 |
|
|
gcc_unreachable ();
|
4110 |
|
|
}
|
4111 |
|
|
return reg_access_stall;
|
4112 |
|
|
}
|
4113 |
|
|
|
4114 |
|
|
/* Helper function for the TARGET_SCHED_REORDER and
|
4115 |
|
|
TARGET_SCHED_REORDER2 hooks. If scheduling an insn would be unsafe
|
4116 |
|
|
in the current cycle, move it down in the ready list and return the
|
4117 |
|
|
number of non-unsafe insns. */
|
4118 |
|
|
|
4119 |
|
|
static int
|
4120 |
|
|
c6x_sched_reorder_1 (rtx *ready, int *pn_ready, int clock_var)
|
4121 |
|
|
{
|
4122 |
|
|
int n_ready = *pn_ready;
|
4123 |
|
|
rtx *e_ready = ready + n_ready;
|
4124 |
|
|
rtx *insnp;
|
4125 |
|
|
int first_jump;
|
4126 |
|
|
|
4127 |
|
|
/* Keep track of conflicts due to a limit number of register accesses,
|
4128 |
|
|
and due to stalls incurred by too early accesses of registers using
|
4129 |
|
|
cross paths. */
|
4130 |
|
|
|
4131 |
|
|
for (insnp = ready; insnp < e_ready; insnp++)
|
4132 |
|
|
{
|
4133 |
|
|
rtx insn = *insnp;
|
4134 |
|
|
int icode = recog_memoized (insn);
|
4135 |
|
|
bool is_asm = (icode < 0
|
4136 |
|
|
&& (GET_CODE (PATTERN (insn)) == ASM_INPUT
|
4137 |
|
|
|| asm_noperands (PATTERN (insn)) >= 0));
|
4138 |
|
|
bool no_parallel = (is_asm || icode == CODE_FOR_sploop
|
4139 |
|
|
|| (icode >= 0
|
4140 |
|
|
&& get_attr_type (insn) == TYPE_ATOMIC));
|
4141 |
|
|
|
4142 |
|
|
/* We delay asm insns until all delay slots are exhausted. We can't
|
4143 |
|
|
accurately tell how many cycles an asm takes, and the main scheduling
|
4144 |
|
|
code always assumes at least 1 cycle, which may be wrong. */
|
4145 |
|
|
if ((no_parallel
|
4146 |
|
|
&& (ss.issued_this_cycle > 0 || clock_var < ss.delays_finished_at))
|
4147 |
|
|
|| c6x_registers_update (insn)
|
4148 |
|
|
|| (ss.issued_this_cycle > 0 && icode == CODE_FOR_sploop))
|
4149 |
|
|
{
|
4150 |
|
|
memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
|
4151 |
|
|
*ready = insn;
|
4152 |
|
|
n_ready--;
|
4153 |
|
|
ready++;
|
4154 |
|
|
}
|
4155 |
|
|
else if (shadow_p (insn))
|
4156 |
|
|
{
|
4157 |
|
|
memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
|
4158 |
|
|
*ready = insn;
|
4159 |
|
|
}
|
4160 |
|
|
}
|
4161 |
|
|
|
4162 |
|
|
/* Ensure that no other jump is scheduled in jump delay slots, since
|
4163 |
|
|
it would put the machine into the wrong state. Also, we must
|
4164 |
|
|
avoid scheduling insns that have a latency longer than the
|
4165 |
|
|
remaining jump delay slots, as the code at the jump destination
|
4166 |
|
|
won't be prepared for it.
|
4167 |
|
|
|
4168 |
|
|
However, we can relax this condition somewhat. The rest of the
|
4169 |
|
|
scheduler will automatically avoid scheduling an insn on which
|
4170 |
|
|
the jump shadow depends so late that its side effect happens
|
4171 |
|
|
after the jump. This means that if we see an insn with a longer
|
4172 |
|
|
latency here, it can safely be scheduled if we can ensure that it
|
4173 |
|
|
has a predicate opposite of the previous jump: the side effect
|
4174 |
|
|
will happen in what we think of as the same basic block. In
|
4175 |
|
|
c6x_variable_issue, we will record the necessary predicate in
|
4176 |
|
|
new_conditions, and after scheduling is finished, we will modify
|
4177 |
|
|
the insn.
|
4178 |
|
|
|
4179 |
|
|
Special care must be taken whenever there is more than one jump
|
4180 |
|
|
in flight. */
|
4181 |
|
|
|
4182 |
|
|
first_jump = first_jump_index (clock_var);
|
4183 |
|
|
if (first_jump != -1)
|
4184 |
|
|
{
|
4185 |
|
|
int first_cycle = get_jump_cycle (first_jump);
|
4186 |
|
|
rtx first_cond = get_jump_cond (first_jump);
|
4187 |
|
|
int second_cycle = 0;
|
4188 |
|
|
|
4189 |
|
|
if (first_jump > 0)
|
4190 |
|
|
second_cycle = get_jump_cycle (first_jump - 1);
|
4191 |
|
|
|
4192 |
|
|
for (insnp = ready; insnp < e_ready; insnp++)
|
4193 |
|
|
{
|
4194 |
|
|
rtx insn = *insnp;
|
4195 |
|
|
int icode = recog_memoized (insn);
|
4196 |
|
|
bool is_asm = (icode < 0
|
4197 |
|
|
&& (GET_CODE (PATTERN (insn)) == ASM_INPUT
|
4198 |
|
|
|| asm_noperands (PATTERN (insn)) >= 0));
|
4199 |
|
|
int this_cycles, rsrv_cycles;
|
4200 |
|
|
enum attr_type type;
|
4201 |
|
|
|
4202 |
|
|
gcc_assert (!is_asm);
|
4203 |
|
|
if (icode < 0)
|
4204 |
|
|
continue;
|
4205 |
|
|
this_cycles = get_attr_cycles (insn);
|
4206 |
|
|
rsrv_cycles = get_attr_reserve_cycles (insn);
|
4207 |
|
|
type = get_attr_type (insn);
|
4208 |
|
|
/* Treat branches specially; there is also a hazard if two jumps
|
4209 |
|
|
end at the same cycle. */
|
4210 |
|
|
if (type == TYPE_BRANCH || type == TYPE_CALL)
|
4211 |
|
|
this_cycles++;
|
4212 |
|
|
if (clock_var + this_cycles <= first_cycle)
|
4213 |
|
|
continue;
|
4214 |
|
|
if ((first_jump > 0 && clock_var + this_cycles > second_cycle)
|
4215 |
|
|
|| clock_var + rsrv_cycles > first_cycle
|
4216 |
|
|
|| !predicate_insn (insn, first_cond, false))
|
4217 |
|
|
{
|
4218 |
|
|
memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
|
4219 |
|
|
*ready = insn;
|
4220 |
|
|
n_ready--;
|
4221 |
|
|
ready++;
|
4222 |
|
|
}
|
4223 |
|
|
}
|
4224 |
|
|
}
|
4225 |
|
|
|
4226 |
|
|
return n_ready;
|
4227 |
|
|
}
|
4228 |
|
|
|
4229 |
|
|
/* Implement the TARGET_SCHED_REORDER hook. We save the current clock
|
4230 |
|
|
for later and clear the register access information for the new
|
4231 |
|
|
cycle. We also move asm statements out of the way if they would be
|
4232 |
|
|
scheduled in a delay slot. */
|
4233 |
|
|
|
4234 |
|
|
static int
|
4235 |
|
|
c6x_sched_reorder (FILE *dump ATTRIBUTE_UNUSED,
|
4236 |
|
|
int sched_verbose ATTRIBUTE_UNUSED,
|
4237 |
|
|
rtx *ready ATTRIBUTE_UNUSED,
|
4238 |
|
|
int *pn_ready ATTRIBUTE_UNUSED, int clock_var)
|
4239 |
|
|
{
|
4240 |
|
|
ss.curr_sched_clock = clock_var;
|
4241 |
|
|
ss.issued_this_cycle = 0;
|
4242 |
|
|
memset (ss.reg_n_accesses, 0, sizeof ss.reg_n_accesses);
|
4243 |
|
|
memset (ss.reg_n_xaccesses, 0, sizeof ss.reg_n_xaccesses);
|
4244 |
|
|
|
4245 |
|
|
if (ready == NULL)
|
4246 |
|
|
return 0;
|
4247 |
|
|
|
4248 |
|
|
return c6x_sched_reorder_1 (ready, pn_ready, clock_var);
|
4249 |
|
|
}
|
4250 |
|
|
|
4251 |
|
|
/* Implement the TARGET_SCHED_REORDER2 hook. We use this to record the clock
|
4252 |
|
|
cycle for every insn. */
|
4253 |
|
|
|
4254 |
|
|
static int
|
4255 |
|
|
c6x_sched_reorder2 (FILE *dump ATTRIBUTE_UNUSED,
|
4256 |
|
|
int sched_verbose ATTRIBUTE_UNUSED,
|
4257 |
|
|
rtx *ready ATTRIBUTE_UNUSED,
|
4258 |
|
|
int *pn_ready ATTRIBUTE_UNUSED, int clock_var)
|
4259 |
|
|
{
|
4260 |
|
|
/* FIXME: the assembler rejects labels inside an execute packet.
|
4261 |
|
|
This can occur if prologue insns are scheduled in parallel with
|
4262 |
|
|
others, so we avoid this here. Also make sure that nothing is
|
4263 |
|
|
scheduled in parallel with a TYPE_ATOMIC insn or after a jump. */
|
4264 |
|
|
if (RTX_FRAME_RELATED_P (ss.last_scheduled_insn)
|
4265 |
|
|
|| JUMP_P (ss.last_scheduled_insn)
|
4266 |
|
|
|| (recog_memoized (ss.last_scheduled_insn) >= 0
|
4267 |
|
|
&& get_attr_type (ss.last_scheduled_insn) == TYPE_ATOMIC))
|
4268 |
|
|
{
|
4269 |
|
|
int n_ready = *pn_ready;
|
4270 |
|
|
rtx *e_ready = ready + n_ready;
|
4271 |
|
|
rtx *insnp;
|
4272 |
|
|
|
4273 |
|
|
for (insnp = ready; insnp < e_ready; insnp++)
|
4274 |
|
|
{
|
4275 |
|
|
rtx insn = *insnp;
|
4276 |
|
|
if (!shadow_p (insn))
|
4277 |
|
|
{
|
4278 |
|
|
memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
|
4279 |
|
|
*ready = insn;
|
4280 |
|
|
n_ready--;
|
4281 |
|
|
ready++;
|
4282 |
|
|
}
|
4283 |
|
|
}
|
4284 |
|
|
return n_ready;
|
4285 |
|
|
}
|
4286 |
|
|
|
4287 |
|
|
return c6x_sched_reorder_1 (ready, pn_ready, clock_var);
|
4288 |
|
|
}
|
4289 |
|
|
|
4290 |
|
|
/* Subroutine of maybe_clobber_cond, called through note_stores. */
|
4291 |
|
|
|
4292 |
|
|
static void
|
4293 |
|
|
clobber_cond_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data1)
|
4294 |
|
|
{
|
4295 |
|
|
rtx *cond = (rtx *)data1;
|
4296 |
|
|
if (*cond != NULL_RTX && reg_overlap_mentioned_p (x, *cond))
|
4297 |
|
|
*cond = NULL_RTX;
|
4298 |
|
|
}
|
4299 |
|
|
|
4300 |
|
|
/* Examine INSN, and if it destroys the conditions have recorded for
|
4301 |
|
|
any of the jumps in flight, clear that condition so that we don't
|
4302 |
|
|
predicate any more insns. CLOCK_VAR helps us limit the search to
|
4303 |
|
|
only those jumps which are still in flight. */
|
4304 |
|
|
|
4305 |
|
|
static void
|
4306 |
|
|
maybe_clobber_cond (rtx insn, int clock_var)
|
4307 |
|
|
{
|
4308 |
|
|
int n, idx;
|
4309 |
|
|
idx = ss.jump_cycle_index;
|
4310 |
|
|
for (n = 0; n < 12; n++, idx++)
|
4311 |
|
|
{
|
4312 |
|
|
rtx cond, link;
|
4313 |
|
|
int cycle;
|
4314 |
|
|
|
4315 |
|
|
if (idx >= 12)
|
4316 |
|
|
idx -= 12;
|
4317 |
|
|
cycle = ss.jump_cycles[idx];
|
4318 |
|
|
if (cycle <= clock_var)
|
4319 |
|
|
return;
|
4320 |
|
|
|
4321 |
|
|
cond = ss.jump_cond[idx];
|
4322 |
|
|
if (cond == NULL_RTX)
|
4323 |
|
|
continue;
|
4324 |
|
|
|
4325 |
|
|
if (CALL_P (insn))
|
4326 |
|
|
{
|
4327 |
|
|
ss.jump_cond[idx] = NULL_RTX;
|
4328 |
|
|
continue;
|
4329 |
|
|
}
|
4330 |
|
|
|
4331 |
|
|
note_stores (PATTERN (insn), clobber_cond_1, ss.jump_cond + idx);
|
4332 |
|
|
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
4333 |
|
|
if (REG_NOTE_KIND (link) == REG_INC)
|
4334 |
|
|
clobber_cond_1 (XEXP (link, 0), NULL_RTX, ss.jump_cond + idx);
|
4335 |
|
|
}
|
4336 |
|
|
}
|
4337 |
|
|
|
4338 |
|
|
/* Implement the TARGET_SCHED_VARIABLE_ISSUE hook. We are about to
|
4339 |
|
|
issue INSN. Return the number of insns left on the ready queue
|
4340 |
|
|
that can be issued this cycle.
|
4341 |
|
|
We use this hook to record clock cycles and reservations for every insn. */
|
4342 |
|
|
|
4343 |
|
|
static int
|
4344 |
|
|
c6x_variable_issue (FILE *dump ATTRIBUTE_UNUSED,
|
4345 |
|
|
int sched_verbose ATTRIBUTE_UNUSED,
|
4346 |
|
|
rtx insn, int can_issue_more ATTRIBUTE_UNUSED)
|
4347 |
|
|
{
|
4348 |
|
|
ss.last_scheduled_insn = insn;
|
4349 |
|
|
if (INSN_UID (insn) < sploop_max_uid_iter0 && !JUMP_P (insn))
|
4350 |
|
|
ss.last_scheduled_iter0 = insn;
|
4351 |
|
|
if (GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER)
|
4352 |
|
|
ss.issued_this_cycle++;
|
4353 |
|
|
if (insn_info)
|
4354 |
|
|
{
|
4355 |
|
|
state_t st_after = alloca (dfa_state_size);
|
4356 |
|
|
int curr_clock = ss.curr_sched_clock;
|
4357 |
|
|
int uid = INSN_UID (insn);
|
4358 |
|
|
int icode = recog_memoized (insn);
|
4359 |
|
|
rtx first_cond;
|
4360 |
|
|
int first, first_cycle;
|
4361 |
|
|
unsigned int mask;
|
4362 |
|
|
int i;
|
4363 |
|
|
|
4364 |
|
|
insn_set_clock (insn, curr_clock);
|
4365 |
|
|
INSN_INFO_ENTRY (uid).ebb_start
|
4366 |
|
|
= curr_clock == 0 && ss.issued_this_cycle == 1;
|
4367 |
|
|
|
4368 |
|
|
first = first_jump_index (ss.curr_sched_clock);
|
4369 |
|
|
if (first == -1)
|
4370 |
|
|
{
|
4371 |
|
|
first_cycle = 0;
|
4372 |
|
|
first_cond = NULL_RTX;
|
4373 |
|
|
}
|
4374 |
|
|
else
|
4375 |
|
|
{
|
4376 |
|
|
first_cycle = get_jump_cycle (first);
|
4377 |
|
|
first_cond = get_jump_cond (first);
|
4378 |
|
|
}
|
4379 |
|
|
if (icode >= 0
|
4380 |
|
|
&& first_cycle > curr_clock
|
4381 |
|
|
&& first_cond != NULL_RTX
|
4382 |
|
|
&& (curr_clock + get_attr_cycles (insn) > first_cycle
|
4383 |
|
|
|| get_attr_type (insn) == TYPE_BRANCH
|
4384 |
|
|
|| get_attr_type (insn) == TYPE_CALL))
|
4385 |
|
|
INSN_INFO_ENTRY (uid).new_cond = first_cond;
|
4386 |
|
|
|
4387 |
|
|
memcpy (st_after, curr_state, dfa_state_size);
|
4388 |
|
|
state_transition (st_after, const0_rtx);
|
4389 |
|
|
|
4390 |
|
|
mask = 0;
|
4391 |
|
|
for (i = 0; i < 2 * UNIT_QID_SIDE_OFFSET; i++)
|
4392 |
|
|
if (cpu_unit_reservation_p (st_after, c6x_unit_codes[i])
|
4393 |
|
|
&& !cpu_unit_reservation_p (prev_cycle_state, c6x_unit_codes[i]))
|
4394 |
|
|
mask |= 1 << i;
|
4395 |
|
|
INSN_INFO_ENTRY (uid).unit_mask = mask;
|
4396 |
|
|
|
4397 |
|
|
maybe_clobber_cond (insn, curr_clock);
|
4398 |
|
|
|
4399 |
|
|
if (icode >= 0)
|
4400 |
|
|
{
|
4401 |
|
|
int i, cycles;
|
4402 |
|
|
|
4403 |
|
|
c6x_registers_update (insn);
|
4404 |
|
|
memcpy (ss.reg_n_accesses, ss.tmp_reg_n_accesses,
|
4405 |
|
|
sizeof ss.reg_n_accesses);
|
4406 |
|
|
memcpy (ss.reg_n_xaccesses, ss.tmp_reg_n_accesses,
|
4407 |
|
|
sizeof ss.reg_n_xaccesses);
|
4408 |
|
|
|
4409 |
|
|
cycles = get_attr_cycles (insn);
|
4410 |
|
|
if (ss.delays_finished_at < ss.curr_sched_clock + cycles)
|
4411 |
|
|
ss.delays_finished_at = ss.curr_sched_clock + cycles;
|
4412 |
|
|
if (get_attr_type (insn) == TYPE_BRANCH
|
4413 |
|
|
|| get_attr_type (insn) == TYPE_CALL)
|
4414 |
|
|
{
|
4415 |
|
|
rtx opposite = condjump_opposite_condition (insn);
|
4416 |
|
|
record_jump (ss.curr_sched_clock + cycles, opposite);
|
4417 |
|
|
}
|
4418 |
|
|
|
4419 |
|
|
/* Mark the cycles in which the destination registers are written.
|
4420 |
|
|
This is used for calculating stalls when using cross units. */
|
4421 |
|
|
extract_insn (insn);
|
4422 |
|
|
/* Cross-path stalls don't apply to results of load insns. */
|
4423 |
|
|
if (get_attr_type (insn) == TYPE_LOAD
|
4424 |
|
|
|| get_attr_type (insn) == TYPE_LOADN
|
4425 |
|
|
|| get_attr_type (insn) == TYPE_LOAD_SHADOW)
|
4426 |
|
|
cycles--;
|
4427 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
4428 |
|
|
{
|
4429 |
|
|
rtx op = recog_data.operand[i];
|
4430 |
|
|
if (MEM_P (op))
|
4431 |
|
|
{
|
4432 |
|
|
rtx addr = XEXP (op, 0);
|
4433 |
|
|
if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
|
4434 |
|
|
c6x_mark_reg_written (XEXP (addr, 0),
|
4435 |
|
|
insn_uid_get_clock (uid) + 1);
|
4436 |
|
|
}
|
4437 |
|
|
if (recog_data.operand_type[i] != OP_IN
|
4438 |
|
|
&& REG_P (op))
|
4439 |
|
|
{
|
4440 |
|
|
c6x_mark_reg_written (op,
|
4441 |
|
|
insn_uid_get_clock (uid) + cycles);
|
4442 |
|
|
}
|
4443 |
|
|
}
|
4444 |
|
|
}
|
4445 |
|
|
}
|
4446 |
|
|
return can_issue_more;
|
4447 |
|
|
}
|
4448 |
|
|
|
4449 |
|
|
/* Implement the TARGET_SCHED_ADJUST_COST hook. We need special handling for
|
4450 |
|
|
anti- and output dependencies. */
|
4451 |
|
|
|
4452 |
|
|
static int
|
4453 |
|
|
c6x_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
|
4454 |
|
|
{
|
4455 |
|
|
enum attr_type insn_type = TYPE_UNKNOWN, dep_insn_type = TYPE_UNKNOWN;
|
4456 |
|
|
int dep_insn_code_number, insn_code_number;
|
4457 |
|
|
int shadow_bonus = 0;
|
4458 |
|
|
enum reg_note kind;
|
4459 |
|
|
dep_insn_code_number = recog_memoized (dep_insn);
|
4460 |
|
|
insn_code_number = recog_memoized (insn);
|
4461 |
|
|
|
4462 |
|
|
if (dep_insn_code_number >= 0)
|
4463 |
|
|
dep_insn_type = get_attr_type (dep_insn);
|
4464 |
|
|
|
4465 |
|
|
if (insn_code_number >= 0)
|
4466 |
|
|
insn_type = get_attr_type (insn);
|
4467 |
|
|
|
4468 |
|
|
kind = REG_NOTE_KIND (link);
|
4469 |
|
|
if (kind == 0)
|
4470 |
|
|
{
|
4471 |
|
|
/* If we have a dependency on a load, and it's not for the result of
|
4472 |
|
|
the load, it must be for an autoincrement. Reduce the cost in that
|
4473 |
|
|
case. */
|
4474 |
|
|
if (dep_insn_type == TYPE_LOAD)
|
4475 |
|
|
{
|
4476 |
|
|
rtx set = PATTERN (dep_insn);
|
4477 |
|
|
if (GET_CODE (set) == COND_EXEC)
|
4478 |
|
|
set = COND_EXEC_CODE (set);
|
4479 |
|
|
if (GET_CODE (set) == UNSPEC)
|
4480 |
|
|
cost = 1;
|
4481 |
|
|
else
|
4482 |
|
|
{
|
4483 |
|
|
gcc_assert (GET_CODE (set) == SET);
|
4484 |
|
|
if (!reg_overlap_mentioned_p (SET_DEST (set), PATTERN (insn)))
|
4485 |
|
|
cost = 1;
|
4486 |
|
|
}
|
4487 |
|
|
}
|
4488 |
|
|
}
|
4489 |
|
|
|
4490 |
|
|
/* A jump shadow needs to have its latency decreased by one. Conceptually,
|
4491 |
|
|
it occurs in between two cycles, but we schedule it at the end of the
|
4492 |
|
|
first cycle. */
|
4493 |
|
|
if (shadow_type_p (insn_type))
|
4494 |
|
|
shadow_bonus = 1;
|
4495 |
|
|
|
4496 |
|
|
/* Anti and output dependencies usually have zero cost, but we want
|
4497 |
|
|
to insert a stall after a jump, and after certain floating point
|
4498 |
|
|
insns that take more than one cycle to read their inputs. In the
|
4499 |
|
|
future, we should try to find a better algorithm for scheduling
|
4500 |
|
|
jumps. */
|
4501 |
|
|
if (kind != 0)
|
4502 |
|
|
{
|
4503 |
|
|
/* We can get anti-dependencies against shadow insns. Treat these
|
4504 |
|
|
like output dependencies, so that the insn is entirely finished
|
4505 |
|
|
before the branch takes place. */
|
4506 |
|
|
if (kind == REG_DEP_ANTI && insn_type == TYPE_SHADOW)
|
4507 |
|
|
kind = REG_DEP_OUTPUT;
|
4508 |
|
|
switch (dep_insn_type)
|
4509 |
|
|
{
|
4510 |
|
|
case TYPE_CALLP:
|
4511 |
|
|
return 1;
|
4512 |
|
|
case TYPE_BRANCH:
|
4513 |
|
|
case TYPE_CALL:
|
4514 |
|
|
if (get_attr_has_shadow (dep_insn) == HAS_SHADOW_Y)
|
4515 |
|
|
/* This is a real_jump/real_call insn. These don't have
|
4516 |
|
|
outputs, and ensuring the validity of scheduling things
|
4517 |
|
|
in the delay slot is the job of
|
4518 |
|
|
c6x_sched_reorder_1. */
|
4519 |
|
|
return 0;
|
4520 |
|
|
/* Unsplit calls can happen - e.g. for divide insns. */
|
4521 |
|
|
return 6;
|
4522 |
|
|
case TYPE_LOAD:
|
4523 |
|
|
case TYPE_LOADN:
|
4524 |
|
|
case TYPE_INTDP:
|
4525 |
|
|
if (kind == REG_DEP_OUTPUT)
|
4526 |
|
|
return 5 - shadow_bonus;
|
4527 |
|
|
return 0;
|
4528 |
|
|
case TYPE_MPY4:
|
4529 |
|
|
case TYPE_FP4:
|
4530 |
|
|
if (kind == REG_DEP_OUTPUT)
|
4531 |
|
|
return 4 - shadow_bonus;
|
4532 |
|
|
return 0;
|
4533 |
|
|
case TYPE_MPY2:
|
4534 |
|
|
if (kind == REG_DEP_OUTPUT)
|
4535 |
|
|
return 2 - shadow_bonus;
|
4536 |
|
|
return 0;
|
4537 |
|
|
case TYPE_CMPDP:
|
4538 |
|
|
if (kind == REG_DEP_OUTPUT)
|
4539 |
|
|
return 2 - shadow_bonus;
|
4540 |
|
|
return 2;
|
4541 |
|
|
case TYPE_ADDDP:
|
4542 |
|
|
case TYPE_MPYSPDP:
|
4543 |
|
|
if (kind == REG_DEP_OUTPUT)
|
4544 |
|
|
return 7 - shadow_bonus;
|
4545 |
|
|
return 2;
|
4546 |
|
|
case TYPE_MPYSP2DP:
|
4547 |
|
|
if (kind == REG_DEP_OUTPUT)
|
4548 |
|
|
return 5 - shadow_bonus;
|
4549 |
|
|
return 2;
|
4550 |
|
|
case TYPE_MPYI:
|
4551 |
|
|
if (kind == REG_DEP_OUTPUT)
|
4552 |
|
|
return 9 - shadow_bonus;
|
4553 |
|
|
return 4;
|
4554 |
|
|
case TYPE_MPYID:
|
4555 |
|
|
case TYPE_MPYDP:
|
4556 |
|
|
if (kind == REG_DEP_OUTPUT)
|
4557 |
|
|
return 10 - shadow_bonus;
|
4558 |
|
|
return 4;
|
4559 |
|
|
|
4560 |
|
|
default:
|
4561 |
|
|
if (insn_type == TYPE_SPKERNEL)
|
4562 |
|
|
return 0;
|
4563 |
|
|
if (kind == REG_DEP_OUTPUT)
|
4564 |
|
|
return 1 - shadow_bonus;
|
4565 |
|
|
|
4566 |
|
|
return 0;
|
4567 |
|
|
}
|
4568 |
|
|
}
|
4569 |
|
|
|
4570 |
|
|
return cost - shadow_bonus;
|
4571 |
|
|
}
|
4572 |
|
|
|
4573 |
|
|
/* Create a SEQUENCE rtx to replace the instructions in SLOT, of which there
|
4574 |
|
|
are N_FILLED. REAL_FIRST identifies the slot if the insn that appears
|
4575 |
|
|
first in the original stream. */
|
4576 |
|
|
|
4577 |
|
|
static void
|
4578 |
|
|
gen_one_bundle (rtx *slot, int n_filled, int real_first)
|
4579 |
|
|
{
|
4580 |
|
|
rtx bundle;
|
4581 |
|
|
rtx t;
|
4582 |
|
|
int i;
|
4583 |
|
|
|
4584 |
|
|
bundle = gen_rtx_SEQUENCE (VOIDmode, gen_rtvec_v (n_filled, slot));
|
4585 |
|
|
bundle = make_insn_raw (bundle);
|
4586 |
|
|
BLOCK_FOR_INSN (bundle) = BLOCK_FOR_INSN (slot[0]);
|
4587 |
|
|
INSN_LOCATOR (bundle) = INSN_LOCATOR (slot[0]);
|
4588 |
|
|
PREV_INSN (bundle) = PREV_INSN (slot[real_first]);
|
4589 |
|
|
|
4590 |
|
|
t = NULL_RTX;
|
4591 |
|
|
|
4592 |
|
|
for (i = 0; i < n_filled; i++)
|
4593 |
|
|
{
|
4594 |
|
|
rtx insn = slot[i];
|
4595 |
|
|
remove_insn (insn);
|
4596 |
|
|
PREV_INSN (insn) = t ? t : PREV_INSN (bundle);
|
4597 |
|
|
if (t != NULL_RTX)
|
4598 |
|
|
NEXT_INSN (t) = insn;
|
4599 |
|
|
t = insn;
|
4600 |
|
|
if (i > 0)
|
4601 |
|
|
INSN_LOCATOR (slot[i]) = INSN_LOCATOR (bundle);
|
4602 |
|
|
}
|
4603 |
|
|
|
4604 |
|
|
NEXT_INSN (bundle) = NEXT_INSN (PREV_INSN (bundle));
|
4605 |
|
|
NEXT_INSN (t) = NEXT_INSN (bundle);
|
4606 |
|
|
NEXT_INSN (PREV_INSN (bundle)) = bundle;
|
4607 |
|
|
PREV_INSN (NEXT_INSN (bundle)) = bundle;
|
4608 |
|
|
}
|
4609 |
|
|
|
4610 |
|
|
/* Move all parallel instructions into SEQUENCEs, so that no subsequent passes
|
4611 |
|
|
try to insert labels in the middle. */
|
4612 |
|
|
|
4613 |
|
|
static void
|
4614 |
|
|
c6x_gen_bundles (void)
|
4615 |
|
|
{
|
4616 |
|
|
basic_block bb;
|
4617 |
|
|
rtx insn, next, last_call;
|
4618 |
|
|
|
4619 |
|
|
FOR_EACH_BB (bb)
|
4620 |
|
|
{
|
4621 |
|
|
rtx insn, next;
|
4622 |
|
|
/* The machine is eight insns wide. We can have up to six shadow
|
4623 |
|
|
insns, plus an extra slot for merging the jump shadow. */
|
4624 |
|
|
rtx slot[15];
|
4625 |
|
|
int n_filled = 0;
|
4626 |
|
|
int first_slot = 0;
|
4627 |
|
|
|
4628 |
|
|
for (insn = BB_HEAD (bb);; insn = next)
|
4629 |
|
|
{
|
4630 |
|
|
int at_end;
|
4631 |
|
|
rtx delete_this = NULL_RTX;
|
4632 |
|
|
|
4633 |
|
|
if (NONDEBUG_INSN_P (insn))
|
4634 |
|
|
{
|
4635 |
|
|
/* Put calls at the start of the sequence. */
|
4636 |
|
|
if (CALL_P (insn))
|
4637 |
|
|
{
|
4638 |
|
|
first_slot++;
|
4639 |
|
|
if (n_filled)
|
4640 |
|
|
{
|
4641 |
|
|
memmove (&slot[1], &slot[0],
|
4642 |
|
|
n_filled * sizeof (slot[0]));
|
4643 |
|
|
}
|
4644 |
|
|
if (!shadow_p (insn))
|
4645 |
|
|
{
|
4646 |
|
|
PUT_MODE (insn, TImode);
|
4647 |
|
|
if (n_filled)
|
4648 |
|
|
PUT_MODE (slot[1], VOIDmode);
|
4649 |
|
|
}
|
4650 |
|
|
n_filled++;
|
4651 |
|
|
slot[0] = insn;
|
4652 |
|
|
}
|
4653 |
|
|
else
|
4654 |
|
|
{
|
4655 |
|
|
slot[n_filled++] = insn;
|
4656 |
|
|
}
|
4657 |
|
|
}
|
4658 |
|
|
|
4659 |
|
|
next = NEXT_INSN (insn);
|
4660 |
|
|
while (next && insn != BB_END (bb)
|
4661 |
|
|
&& !(NONDEBUG_INSN_P (next)
|
4662 |
|
|
&& GET_CODE (PATTERN (next)) != USE
|
4663 |
|
|
&& GET_CODE (PATTERN (next)) != CLOBBER))
|
4664 |
|
|
{
|
4665 |
|
|
insn = next;
|
4666 |
|
|
next = NEXT_INSN (insn);
|
4667 |
|
|
}
|
4668 |
|
|
|
4669 |
|
|
at_end = insn == BB_END (bb);
|
4670 |
|
|
if (delete_this == NULL_RTX
|
4671 |
|
|
&& (at_end || (GET_MODE (next) == TImode
|
4672 |
|
|
&& !(shadow_p (next) && CALL_P (next)))))
|
4673 |
|
|
{
|
4674 |
|
|
if (n_filled >= 2)
|
4675 |
|
|
gen_one_bundle (slot, n_filled, first_slot);
|
4676 |
|
|
|
4677 |
|
|
n_filled = 0;
|
4678 |
|
|
first_slot = 0;
|
4679 |
|
|
}
|
4680 |
|
|
if (at_end)
|
4681 |
|
|
break;
|
4682 |
|
|
}
|
4683 |
|
|
}
|
4684 |
|
|
/* Bundling, and emitting nops, can separate
|
4685 |
|
|
NOTE_INSN_CALL_ARG_LOCATION from the corresponding calls. Fix
|
4686 |
|
|
that up here. */
|
4687 |
|
|
last_call = NULL_RTX;
|
4688 |
|
|
for (insn = get_insns (); insn; insn = next)
|
4689 |
|
|
{
|
4690 |
|
|
next = NEXT_INSN (insn);
|
4691 |
|
|
if (CALL_P (insn)
|
4692 |
|
|
|| (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE
|
4693 |
|
|
&& CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
|
4694 |
|
|
last_call = insn;
|
4695 |
|
|
if (!NOTE_P (insn) || NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION)
|
4696 |
|
|
continue;
|
4697 |
|
|
if (NEXT_INSN (last_call) == insn)
|
4698 |
|
|
continue;
|
4699 |
|
|
NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
|
4700 |
|
|
PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
|
4701 |
|
|
PREV_INSN (insn) = last_call;
|
4702 |
|
|
NEXT_INSN (insn) = NEXT_INSN (last_call);
|
4703 |
|
|
PREV_INSN (NEXT_INSN (insn)) = insn;
|
4704 |
|
|
NEXT_INSN (PREV_INSN (insn)) = insn;
|
4705 |
|
|
last_call = insn;
|
4706 |
|
|
}
|
4707 |
|
|
}
|
4708 |
|
|
|
4709 |
|
|
/* Emit a NOP instruction for CYCLES cycles after insn AFTER. Return it. */
|
4710 |
|
|
|
4711 |
|
|
static rtx
|
4712 |
|
|
emit_nop_after (int cycles, rtx after)
|
4713 |
|
|
{
|
4714 |
|
|
rtx insn;
|
4715 |
|
|
|
4716 |
|
|
/* mpydp has 9 delay slots, and we may schedule a stall for a cross-path
|
4717 |
|
|
operation. We don't need the extra NOP since in this case, the hardware
|
4718 |
|
|
will automatically insert the required stall. */
|
4719 |
|
|
if (cycles == 10)
|
4720 |
|
|
cycles--;
|
4721 |
|
|
|
4722 |
|
|
gcc_assert (cycles < 10);
|
4723 |
|
|
|
4724 |
|
|
insn = emit_insn_after (gen_nop_count (GEN_INT (cycles)), after);
|
4725 |
|
|
PUT_MODE (insn, TImode);
|
4726 |
|
|
|
4727 |
|
|
return insn;
|
4728 |
|
|
}
|
4729 |
|
|
|
4730 |
|
|
/* Determine whether INSN is a call that needs to have a return label
|
4731 |
|
|
placed. */
|
4732 |
|
|
|
4733 |
|
|
static bool
|
4734 |
|
|
returning_call_p (rtx insn)
|
4735 |
|
|
{
|
4736 |
|
|
if (CALL_P (insn))
|
4737 |
|
|
return (!SIBLING_CALL_P (insn)
|
4738 |
|
|
&& get_attr_type (insn) != TYPE_CALLP
|
4739 |
|
|
&& get_attr_type (insn) != TYPE_SHADOW);
|
4740 |
|
|
if (recog_memoized (insn) < 0)
|
4741 |
|
|
return false;
|
4742 |
|
|
if (get_attr_type (insn) == TYPE_CALL)
|
4743 |
|
|
return true;
|
4744 |
|
|
return false;
|
4745 |
|
|
}
|
4746 |
|
|
|
4747 |
|
|
/* Determine whether INSN's pattern can be converted to use callp. */
|
4748 |
|
|
static bool
|
4749 |
|
|
can_use_callp (rtx insn)
|
4750 |
|
|
{
|
4751 |
|
|
int icode = recog_memoized (insn);
|
4752 |
|
|
if (!TARGET_INSNS_64PLUS
|
4753 |
|
|
|| icode < 0
|
4754 |
|
|
|| GET_CODE (PATTERN (insn)) == COND_EXEC)
|
4755 |
|
|
return false;
|
4756 |
|
|
|
4757 |
|
|
return ((icode == CODE_FOR_real_call
|
4758 |
|
|
|| icode == CODE_FOR_call_internal
|
4759 |
|
|
|| icode == CODE_FOR_call_value_internal)
|
4760 |
|
|
&& get_attr_dest_regfile (insn) == DEST_REGFILE_ANY);
|
4761 |
|
|
}
|
4762 |
|
|
|
4763 |
|
|
/* Convert the pattern of INSN, which must be a CALL_INSN, into a callp. */
|
4764 |
|
|
static void
|
4765 |
|
|
convert_to_callp (rtx insn)
|
4766 |
|
|
{
|
4767 |
|
|
rtx lab;
|
4768 |
|
|
extract_insn (insn);
|
4769 |
|
|
if (GET_CODE (PATTERN (insn)) == SET)
|
4770 |
|
|
{
|
4771 |
|
|
rtx dest = recog_data.operand[0];
|
4772 |
|
|
lab = recog_data.operand[1];
|
4773 |
|
|
PATTERN (insn) = gen_callp_value (dest, lab);
|
4774 |
|
|
INSN_CODE (insn) = CODE_FOR_callp_value;
|
4775 |
|
|
}
|
4776 |
|
|
else
|
4777 |
|
|
{
|
4778 |
|
|
lab = recog_data.operand[0];
|
4779 |
|
|
PATTERN (insn) = gen_callp (lab);
|
4780 |
|
|
INSN_CODE (insn) = CODE_FOR_callp;
|
4781 |
|
|
}
|
4782 |
|
|
}
|
4783 |
|
|
|
4784 |
|
|
/* Scan forwards from INSN until we find the next insn that has mode TImode
|
4785 |
|
|
(indicating it starts a new cycle), and occurs in cycle CLOCK.
|
4786 |
|
|
Return it if we find such an insn, NULL_RTX otherwise. */
|
4787 |
|
|
static rtx
|
4788 |
|
|
find_next_cycle_insn (rtx insn, int clock)
|
4789 |
|
|
{
|
4790 |
|
|
rtx t = insn;
|
4791 |
|
|
if (GET_MODE (t) == TImode)
|
4792 |
|
|
t = next_real_insn (t);
|
4793 |
|
|
while (t && GET_MODE (t) != TImode)
|
4794 |
|
|
t = next_real_insn (t);
|
4795 |
|
|
|
4796 |
|
|
if (t && insn_get_clock (t) == clock)
|
4797 |
|
|
return t;
|
4798 |
|
|
return NULL_RTX;
|
4799 |
|
|
}
|
4800 |
|
|
|
4801 |
|
|
/* If COND_INSN has a COND_EXEC condition, wrap the same condition
|
4802 |
|
|
around PAT. Return PAT either unchanged or modified in this
|
4803 |
|
|
way. */
|
4804 |
|
|
static rtx
|
4805 |
|
|
duplicate_cond (rtx pat, rtx cond_insn)
|
4806 |
|
|
{
|
4807 |
|
|
rtx cond_pat = PATTERN (cond_insn);
|
4808 |
|
|
if (GET_CODE (cond_pat) == COND_EXEC)
|
4809 |
|
|
pat = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (COND_EXEC_TEST (cond_pat)),
|
4810 |
|
|
pat);
|
4811 |
|
|
return pat;
|
4812 |
|
|
}
|
4813 |
|
|
|
4814 |
|
|
/* Walk forward from INSN to find the last insn that issues in the same clock
|
4815 |
|
|
cycle. */
|
4816 |
|
|
static rtx
|
4817 |
|
|
find_last_same_clock (rtx insn)
|
4818 |
|
|
{
|
4819 |
|
|
rtx retval = insn;
|
4820 |
|
|
rtx t = next_real_insn (insn);
|
4821 |
|
|
|
4822 |
|
|
while (t && GET_MODE (t) != TImode)
|
4823 |
|
|
{
|
4824 |
|
|
if (!DEBUG_INSN_P (t) && recog_memoized (t) >= 0)
|
4825 |
|
|
retval = t;
|
4826 |
|
|
t = next_real_insn (t);
|
4827 |
|
|
}
|
4828 |
|
|
return retval;
|
4829 |
|
|
}
|
4830 |
|
|
|
4831 |
|
|
/* For every call insn in the function, emit code to load the return
|
4832 |
|
|
address. For each call we create a return label and store it in
|
4833 |
|
|
CALL_LABELS. If are not scheduling, we emit the labels here,
|
4834 |
|
|
otherwise the caller will do it later.
|
4835 |
|
|
This function is called after final insn scheduling, but before creating
|
4836 |
|
|
the SEQUENCEs that represent execute packets. */
|
4837 |
|
|
|
4838 |
|
|
static void
|
4839 |
|
|
reorg_split_calls (rtx *call_labels)
|
4840 |
|
|
{
|
4841 |
|
|
unsigned int reservation_mask = 0;
|
4842 |
|
|
rtx insn = get_insns ();
|
4843 |
|
|
gcc_assert (GET_CODE (insn) == NOTE);
|
4844 |
|
|
insn = next_real_insn (insn);
|
4845 |
|
|
while (insn)
|
4846 |
|
|
{
|
4847 |
|
|
int uid;
|
4848 |
|
|
rtx next = next_real_insn (insn);
|
4849 |
|
|
|
4850 |
|
|
if (DEBUG_INSN_P (insn))
|
4851 |
|
|
goto done;
|
4852 |
|
|
|
4853 |
|
|
if (GET_MODE (insn) == TImode)
|
4854 |
|
|
reservation_mask = 0;
|
4855 |
|
|
uid = INSN_UID (insn);
|
4856 |
|
|
if (c6x_flag_schedule_insns2 && recog_memoized (insn) >= 0)
|
4857 |
|
|
reservation_mask |= 1 << INSN_INFO_ENTRY (uid).reservation;
|
4858 |
|
|
|
4859 |
|
|
if (returning_call_p (insn))
|
4860 |
|
|
{
|
4861 |
|
|
rtx label = gen_label_rtx ();
|
4862 |
|
|
rtx labelref = gen_rtx_LABEL_REF (Pmode, label);
|
4863 |
|
|
rtx reg = gen_rtx_REG (SImode, RETURN_ADDR_REGNO);
|
4864 |
|
|
|
4865 |
|
|
LABEL_NUSES (label) = 2;
|
4866 |
|
|
if (!c6x_flag_schedule_insns2)
|
4867 |
|
|
{
|
4868 |
|
|
if (can_use_callp (insn))
|
4869 |
|
|
convert_to_callp (insn);
|
4870 |
|
|
else
|
4871 |
|
|
{
|
4872 |
|
|
rtx t;
|
4873 |
|
|
rtx slot[4];
|
4874 |
|
|
emit_label_after (label, insn);
|
4875 |
|
|
|
4876 |
|
|
/* Bundle the call and its delay slots into a single
|
4877 |
|
|
SEQUENCE. While these do not issue in parallel
|
4878 |
|
|
we need to group them into a single EH region. */
|
4879 |
|
|
slot[0] = insn;
|
4880 |
|
|
PUT_MODE (insn, TImode);
|
4881 |
|
|
if (TARGET_INSNS_64)
|
4882 |
|
|
{
|
4883 |
|
|
t = gen_addkpc (reg, labelref, GEN_INT (4));
|
4884 |
|
|
slot[1] = emit_insn_after (duplicate_cond (t, insn),
|
4885 |
|
|
insn);
|
4886 |
|
|
PUT_MODE (slot[1], TImode);
|
4887 |
|
|
gen_one_bundle (slot, 2, 0);
|
4888 |
|
|
}
|
4889 |
|
|
else
|
4890 |
|
|
{
|
4891 |
|
|
slot[3] = emit_insn_after (gen_nop_count (GEN_INT (3)),
|
4892 |
|
|
insn);
|
4893 |
|
|
PUT_MODE (slot[3], TImode);
|
4894 |
|
|
t = gen_movsi_lo_sum (reg, reg, labelref);
|
4895 |
|
|
slot[2] = emit_insn_after (duplicate_cond (t, insn),
|
4896 |
|
|
insn);
|
4897 |
|
|
PUT_MODE (slot[2], TImode);
|
4898 |
|
|
t = gen_movsi_high (reg, labelref);
|
4899 |
|
|
slot[1] = emit_insn_after (duplicate_cond (t, insn),
|
4900 |
|
|
insn);
|
4901 |
|
|
PUT_MODE (slot[1], TImode);
|
4902 |
|
|
gen_one_bundle (slot, 4, 0);
|
4903 |
|
|
}
|
4904 |
|
|
}
|
4905 |
|
|
}
|
4906 |
|
|
else
|
4907 |
|
|
{
|
4908 |
|
|
/* If we scheduled, we reserved the .S2 unit for one or two
|
4909 |
|
|
cycles after the call. Emit the insns in these slots,
|
4910 |
|
|
unless it's possible to create a CALLP insn.
|
4911 |
|
|
Note that this works because the dependencies ensure that
|
4912 |
|
|
no insn setting/using B3 is scheduled in the delay slots of
|
4913 |
|
|
a call. */
|
4914 |
|
|
int this_clock = insn_get_clock (insn);
|
4915 |
|
|
rtx last_same_clock;
|
4916 |
|
|
rtx after1;
|
4917 |
|
|
|
4918 |
|
|
call_labels[INSN_UID (insn)] = label;
|
4919 |
|
|
|
4920 |
|
|
last_same_clock = find_last_same_clock (insn);
|
4921 |
|
|
|
4922 |
|
|
if (can_use_callp (insn))
|
4923 |
|
|
{
|
4924 |
|
|
/* Find the first insn of the next execute packet. If it
|
4925 |
|
|
is the shadow insn corresponding to this call, we may
|
4926 |
|
|
use a CALLP insn. */
|
4927 |
|
|
rtx shadow = next_nonnote_nondebug_insn (last_same_clock);
|
4928 |
|
|
|
4929 |
|
|
if (CALL_P (shadow)
|
4930 |
|
|
&& insn_get_clock (shadow) == this_clock + 5)
|
4931 |
|
|
{
|
4932 |
|
|
convert_to_callp (shadow);
|
4933 |
|
|
insn_set_clock (shadow, this_clock);
|
4934 |
|
|
INSN_INFO_ENTRY (INSN_UID (shadow)).reservation
|
4935 |
|
|
= RESERVATION_S2;
|
4936 |
|
|
INSN_INFO_ENTRY (INSN_UID (shadow)).unit_mask
|
4937 |
|
|
= INSN_INFO_ENTRY (INSN_UID (last_same_clock)).unit_mask;
|
4938 |
|
|
if (GET_MODE (insn) == TImode)
|
4939 |
|
|
{
|
4940 |
|
|
rtx new_cycle_first = NEXT_INSN (insn);
|
4941 |
|
|
while (!NONDEBUG_INSN_P (new_cycle_first)
|
4942 |
|
|
|| GET_CODE (PATTERN (new_cycle_first)) == USE
|
4943 |
|
|
|| GET_CODE (PATTERN (new_cycle_first)) == CLOBBER)
|
4944 |
|
|
new_cycle_first = NEXT_INSN (new_cycle_first);
|
4945 |
|
|
PUT_MODE (new_cycle_first, TImode);
|
4946 |
|
|
if (new_cycle_first != shadow)
|
4947 |
|
|
PUT_MODE (shadow, VOIDmode);
|
4948 |
|
|
INSN_INFO_ENTRY (INSN_UID (new_cycle_first)).ebb_start
|
4949 |
|
|
= INSN_INFO_ENTRY (INSN_UID (insn)).ebb_start;
|
4950 |
|
|
}
|
4951 |
|
|
else
|
4952 |
|
|
PUT_MODE (shadow, VOIDmode);
|
4953 |
|
|
delete_insn (insn);
|
4954 |
|
|
goto done;
|
4955 |
|
|
}
|
4956 |
|
|
}
|
4957 |
|
|
after1 = find_next_cycle_insn (last_same_clock, this_clock + 1);
|
4958 |
|
|
if (after1 == NULL_RTX)
|
4959 |
|
|
after1 = last_same_clock;
|
4960 |
|
|
else
|
4961 |
|
|
after1 = find_last_same_clock (after1);
|
4962 |
|
|
if (TARGET_INSNS_64)
|
4963 |
|
|
{
|
4964 |
|
|
rtx x1 = gen_addkpc (reg, labelref, const0_rtx);
|
4965 |
|
|
x1 = emit_insn_after (duplicate_cond (x1, insn), after1);
|
4966 |
|
|
insn_set_clock (x1, this_clock + 1);
|
4967 |
|
|
INSN_INFO_ENTRY (INSN_UID (x1)).reservation = RESERVATION_S2;
|
4968 |
|
|
if (after1 == last_same_clock)
|
4969 |
|
|
PUT_MODE (x1, TImode);
|
4970 |
|
|
else
|
4971 |
|
|
INSN_INFO_ENTRY (INSN_UID (x1)).unit_mask
|
4972 |
|
|
= INSN_INFO_ENTRY (INSN_UID (after1)).unit_mask;
|
4973 |
|
|
}
|
4974 |
|
|
else
|
4975 |
|
|
{
|
4976 |
|
|
rtx x1, x2;
|
4977 |
|
|
rtx after2 = find_next_cycle_insn (after1, this_clock + 2);
|
4978 |
|
|
if (after2 == NULL_RTX)
|
4979 |
|
|
after2 = after1;
|
4980 |
|
|
x2 = gen_movsi_lo_sum (reg, reg, labelref);
|
4981 |
|
|
x2 = emit_insn_after (duplicate_cond (x2, insn), after2);
|
4982 |
|
|
x1 = gen_movsi_high (reg, labelref);
|
4983 |
|
|
x1 = emit_insn_after (duplicate_cond (x1, insn), after1);
|
4984 |
|
|
insn_set_clock (x1, this_clock + 1);
|
4985 |
|
|
insn_set_clock (x2, this_clock + 2);
|
4986 |
|
|
INSN_INFO_ENTRY (INSN_UID (x1)).reservation = RESERVATION_S2;
|
4987 |
|
|
INSN_INFO_ENTRY (INSN_UID (x2)).reservation = RESERVATION_S2;
|
4988 |
|
|
if (after1 == last_same_clock)
|
4989 |
|
|
PUT_MODE (x1, TImode);
|
4990 |
|
|
else
|
4991 |
|
|
INSN_INFO_ENTRY (INSN_UID (x1)).unit_mask
|
4992 |
|
|
= INSN_INFO_ENTRY (INSN_UID (after1)).unit_mask;
|
4993 |
|
|
if (after1 == after2)
|
4994 |
|
|
PUT_MODE (x2, TImode);
|
4995 |
|
|
else
|
4996 |
|
|
INSN_INFO_ENTRY (INSN_UID (x2)).unit_mask
|
4997 |
|
|
= INSN_INFO_ENTRY (INSN_UID (after2)).unit_mask;
|
4998 |
|
|
}
|
4999 |
|
|
}
|
5000 |
|
|
}
|
5001 |
|
|
done:
|
5002 |
|
|
insn = next;
|
5003 |
|
|
}
|
5004 |
|
|
}
|
5005 |
|
|
|
5006 |
|
|
/* Called as part of c6x_reorg. This function emits multi-cycle NOP
|
5007 |
|
|
insns as required for correctness. CALL_LABELS is the array that
|
5008 |
|
|
holds the return labels for call insns; we emit these here if
|
5009 |
|
|
scheduling was run earlier. */
|
5010 |
|
|
|
5011 |
|
|
static void
|
5012 |
|
|
reorg_emit_nops (rtx *call_labels)
|
5013 |
|
|
{
|
5014 |
|
|
bool first;
|
5015 |
|
|
rtx prev, last_call;
|
5016 |
|
|
int prev_clock, earliest_bb_end;
|
5017 |
|
|
int prev_implicit_nops;
|
5018 |
|
|
rtx insn = get_insns ();
|
5019 |
|
|
|
5020 |
|
|
/* We look at one insn (or bundle inside a sequence) in each iteration, storing
|
5021 |
|
|
its issue time in PREV_CLOCK for the next iteration. If there is a gap in
|
5022 |
|
|
clocks, we must insert a NOP.
|
5023 |
|
|
EARLIEST_BB_END tracks in which cycle all insns that have been issued in the
|
5024 |
|
|
current basic block will finish. We must not allow the next basic block to
|
5025 |
|
|
begin before this cycle.
|
5026 |
|
|
PREV_IMPLICIT_NOPS tells us whether we've seen an insn that implicitly contains
|
5027 |
|
|
a multi-cycle nop. The code is scheduled such that subsequent insns will
|
5028 |
|
|
show the cycle gap, but we needn't insert a real NOP instruction. */
|
5029 |
|
|
insn = next_real_insn (insn);
|
5030 |
|
|
last_call = prev = NULL_RTX;
|
5031 |
|
|
prev_clock = -1;
|
5032 |
|
|
earliest_bb_end = 0;
|
5033 |
|
|
prev_implicit_nops = 0;
|
5034 |
|
|
first = true;
|
5035 |
|
|
while (insn)
|
5036 |
|
|
{
|
5037 |
|
|
int this_clock = -1;
|
5038 |
|
|
rtx next;
|
5039 |
|
|
int max_cycles = 0;
|
5040 |
|
|
|
5041 |
|
|
next = next_real_insn (insn);
|
5042 |
|
|
|
5043 |
|
|
if (DEBUG_INSN_P (insn)
|
5044 |
|
|
|| GET_CODE (PATTERN (insn)) == USE
|
5045 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER
|
5046 |
|
|
|| shadow_or_blockage_p (insn)
|
5047 |
|
|
|| (JUMP_P (insn)
|
5048 |
|
|
&& (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
|
5049 |
|
|
|| GET_CODE (PATTERN (insn)) == ADDR_VEC)))
|
5050 |
|
|
goto next_insn;
|
5051 |
|
|
|
5052 |
|
|
if (!c6x_flag_schedule_insns2)
|
5053 |
|
|
/* No scheduling; ensure that no parallel issue happens. */
|
5054 |
|
|
PUT_MODE (insn, TImode);
|
5055 |
|
|
else
|
5056 |
|
|
{
|
5057 |
|
|
int cycles;
|
5058 |
|
|
|
5059 |
|
|
this_clock = insn_get_clock (insn);
|
5060 |
|
|
if (this_clock != prev_clock)
|
5061 |
|
|
{
|
5062 |
|
|
PUT_MODE (insn, TImode);
|
5063 |
|
|
|
5064 |
|
|
if (!first)
|
5065 |
|
|
{
|
5066 |
|
|
cycles = this_clock - prev_clock;
|
5067 |
|
|
|
5068 |
|
|
cycles -= prev_implicit_nops;
|
5069 |
|
|
if (cycles > 1)
|
5070 |
|
|
{
|
5071 |
|
|
rtx nop = emit_nop_after (cycles - 1, prev);
|
5072 |
|
|
insn_set_clock (nop, prev_clock + prev_implicit_nops + 1);
|
5073 |
|
|
}
|
5074 |
|
|
}
|
5075 |
|
|
prev_clock = this_clock;
|
5076 |
|
|
|
5077 |
|
|
if (last_call
|
5078 |
|
|
&& insn_get_clock (last_call) + 6 <= this_clock)
|
5079 |
|
|
{
|
5080 |
|
|
emit_label_before (call_labels[INSN_UID (last_call)], insn);
|
5081 |
|
|
last_call = NULL_RTX;
|
5082 |
|
|
}
|
5083 |
|
|
prev_implicit_nops = 0;
|
5084 |
|
|
}
|
5085 |
|
|
}
|
5086 |
|
|
|
5087 |
|
|
/* Examine how many cycles the current insn takes, and adjust
|
5088 |
|
|
LAST_CALL, EARLIEST_BB_END and PREV_IMPLICIT_NOPS. */
|
5089 |
|
|
if (recog_memoized (insn) >= 0
|
5090 |
|
|
/* If not scheduling, we've emitted NOPs after calls already. */
|
5091 |
|
|
&& (c6x_flag_schedule_insns2 || !returning_call_p (insn)))
|
5092 |
|
|
{
|
5093 |
|
|
max_cycles = get_attr_cycles (insn);
|
5094 |
|
|
if (get_attr_type (insn) == TYPE_CALLP)
|
5095 |
|
|
prev_implicit_nops = 5;
|
5096 |
|
|
}
|
5097 |
|
|
else
|
5098 |
|
|
max_cycles = 1;
|
5099 |
|
|
if (returning_call_p (insn))
|
5100 |
|
|
last_call = insn;
|
5101 |
|
|
|
5102 |
|
|
if (c6x_flag_schedule_insns2)
|
5103 |
|
|
{
|
5104 |
|
|
gcc_assert (this_clock >= 0);
|
5105 |
|
|
if (earliest_bb_end < this_clock + max_cycles)
|
5106 |
|
|
earliest_bb_end = this_clock + max_cycles;
|
5107 |
|
|
}
|
5108 |
|
|
else if (max_cycles > 1)
|
5109 |
|
|
emit_nop_after (max_cycles - 1, insn);
|
5110 |
|
|
|
5111 |
|
|
prev = insn;
|
5112 |
|
|
first = false;
|
5113 |
|
|
|
5114 |
|
|
next_insn:
|
5115 |
|
|
if (c6x_flag_schedule_insns2
|
5116 |
|
|
&& (next == NULL_RTX
|
5117 |
|
|
|| (GET_MODE (next) == TImode
|
5118 |
|
|
&& INSN_INFO_ENTRY (INSN_UID (next)).ebb_start))
|
5119 |
|
|
&& earliest_bb_end > 0)
|
5120 |
|
|
{
|
5121 |
|
|
int cycles = earliest_bb_end - prev_clock;
|
5122 |
|
|
if (cycles > 1)
|
5123 |
|
|
{
|
5124 |
|
|
prev = emit_nop_after (cycles - 1, prev);
|
5125 |
|
|
insn_set_clock (prev, prev_clock + prev_implicit_nops + 1);
|
5126 |
|
|
}
|
5127 |
|
|
earliest_bb_end = 0;
|
5128 |
|
|
prev_clock = -1;
|
5129 |
|
|
first = true;
|
5130 |
|
|
|
5131 |
|
|
if (last_call)
|
5132 |
|
|
emit_label_after (call_labels[INSN_UID (last_call)], prev);
|
5133 |
|
|
last_call = NULL_RTX;
|
5134 |
|
|
}
|
5135 |
|
|
insn = next;
|
5136 |
|
|
}
|
5137 |
|
|
}
|
5138 |
|
|
|
5139 |
|
|
/* If possible, split INSN, which we know is either a jump or a call, into a real
|
5140 |
|
|
insn and its shadow. */
|
5141 |
|
|
static void
|
5142 |
|
|
split_delayed_branch (rtx insn)
|
5143 |
|
|
{
|
5144 |
|
|
int code = recog_memoized (insn);
|
5145 |
|
|
rtx i1, newpat;
|
5146 |
|
|
rtx pat = PATTERN (insn);
|
5147 |
|
|
|
5148 |
|
|
if (GET_CODE (pat) == COND_EXEC)
|
5149 |
|
|
pat = COND_EXEC_CODE (pat);
|
5150 |
|
|
|
5151 |
|
|
if (CALL_P (insn))
|
5152 |
|
|
{
|
5153 |
|
|
rtx src = pat, dest = NULL_RTX;
|
5154 |
|
|
rtx callee;
|
5155 |
|
|
if (GET_CODE (pat) == SET)
|
5156 |
|
|
{
|
5157 |
|
|
dest = SET_DEST (pat);
|
5158 |
|
|
src = SET_SRC (pat);
|
5159 |
|
|
}
|
5160 |
|
|
callee = XEXP (XEXP (src, 0), 0);
|
5161 |
|
|
if (SIBLING_CALL_P (insn))
|
5162 |
|
|
{
|
5163 |
|
|
if (REG_P (callee))
|
5164 |
|
|
newpat = gen_indirect_sibcall_shadow ();
|
5165 |
|
|
else
|
5166 |
|
|
newpat = gen_sibcall_shadow (callee);
|
5167 |
|
|
pat = gen_real_jump (callee);
|
5168 |
|
|
}
|
5169 |
|
|
else if (dest != NULL_RTX)
|
5170 |
|
|
{
|
5171 |
|
|
if (REG_P (callee))
|
5172 |
|
|
newpat = gen_indirect_call_value_shadow (dest);
|
5173 |
|
|
else
|
5174 |
|
|
newpat = gen_call_value_shadow (dest, callee);
|
5175 |
|
|
pat = gen_real_call (callee);
|
5176 |
|
|
}
|
5177 |
|
|
else
|
5178 |
|
|
{
|
5179 |
|
|
if (REG_P (callee))
|
5180 |
|
|
newpat = gen_indirect_call_shadow ();
|
5181 |
|
|
else
|
5182 |
|
|
newpat = gen_call_shadow (callee);
|
5183 |
|
|
pat = gen_real_call (callee);
|
5184 |
|
|
}
|
5185 |
|
|
pat = duplicate_cond (pat, insn);
|
5186 |
|
|
newpat = duplicate_cond (newpat, insn);
|
5187 |
|
|
}
|
5188 |
|
|
else
|
5189 |
|
|
{
|
5190 |
|
|
rtx src, op;
|
5191 |
|
|
if (GET_CODE (pat) == PARALLEL
|
5192 |
|
|
&& GET_CODE (XVECEXP (pat, 0, 0)) == RETURN)
|
5193 |
|
|
{
|
5194 |
|
|
newpat = gen_return_shadow ();
|
5195 |
|
|
pat = gen_real_ret (XEXP (XVECEXP (pat, 0, 1), 0));
|
5196 |
|
|
newpat = duplicate_cond (newpat, insn);
|
5197 |
|
|
}
|
5198 |
|
|
else
|
5199 |
|
|
switch (code)
|
5200 |
|
|
{
|
5201 |
|
|
case CODE_FOR_br_true:
|
5202 |
|
|
case CODE_FOR_br_false:
|
5203 |
|
|
src = SET_SRC (pat);
|
5204 |
|
|
op = XEXP (src, code == CODE_FOR_br_true ? 1 : 2);
|
5205 |
|
|
newpat = gen_condjump_shadow (op);
|
5206 |
|
|
pat = gen_real_jump (op);
|
5207 |
|
|
if (code == CODE_FOR_br_true)
|
5208 |
|
|
pat = gen_rtx_COND_EXEC (VOIDmode, XEXP (src, 0), pat);
|
5209 |
|
|
else
|
5210 |
|
|
pat = gen_rtx_COND_EXEC (VOIDmode,
|
5211 |
|
|
reversed_comparison (XEXP (src, 0),
|
5212 |
|
|
VOIDmode),
|
5213 |
|
|
pat);
|
5214 |
|
|
break;
|
5215 |
|
|
|
5216 |
|
|
case CODE_FOR_jump:
|
5217 |
|
|
op = SET_SRC (pat);
|
5218 |
|
|
newpat = gen_jump_shadow (op);
|
5219 |
|
|
break;
|
5220 |
|
|
|
5221 |
|
|
case CODE_FOR_indirect_jump:
|
5222 |
|
|
newpat = gen_indirect_jump_shadow ();
|
5223 |
|
|
break;
|
5224 |
|
|
|
5225 |
|
|
case CODE_FOR_return_internal:
|
5226 |
|
|
newpat = gen_return_shadow ();
|
5227 |
|
|
pat = gen_real_ret (XEXP (XVECEXP (pat, 0, 1), 0));
|
5228 |
|
|
break;
|
5229 |
|
|
|
5230 |
|
|
default:
|
5231 |
|
|
return;
|
5232 |
|
|
}
|
5233 |
|
|
}
|
5234 |
|
|
i1 = emit_insn_before (pat, insn);
|
5235 |
|
|
PATTERN (insn) = newpat;
|
5236 |
|
|
INSN_CODE (insn) = -1;
|
5237 |
|
|
record_delay_slot_pair (i1, insn, 5, 0);
|
5238 |
|
|
}
|
5239 |
|
|
|
5240 |
|
|
/* If INSN is a multi-cycle insn that should be handled properly in
|
5241 |
|
|
modulo-scheduling, split it into a real insn and a shadow.
|
5242 |
|
|
Return true if we made a change.
|
5243 |
|
|
|
5244 |
|
|
It is valid for us to fail to split an insn; the caller has to deal
|
5245 |
|
|
with the possibility. Currently we handle loads and most mpy2 and
|
5246 |
|
|
mpy4 insns. */
|
5247 |
|
|
static bool
|
5248 |
|
|
split_delayed_nonbranch (rtx insn)
|
5249 |
|
|
{
|
5250 |
|
|
int code = recog_memoized (insn);
|
5251 |
|
|
enum attr_type type;
|
5252 |
|
|
rtx i1, newpat, src, dest;
|
5253 |
|
|
rtx pat = PATTERN (insn);
|
5254 |
|
|
rtvec rtv;
|
5255 |
|
|
int delay;
|
5256 |
|
|
|
5257 |
|
|
if (GET_CODE (pat) == COND_EXEC)
|
5258 |
|
|
pat = COND_EXEC_CODE (pat);
|
5259 |
|
|
|
5260 |
|
|
if (code < 0 || GET_CODE (pat) != SET)
|
5261 |
|
|
return false;
|
5262 |
|
|
src = SET_SRC (pat);
|
5263 |
|
|
dest = SET_DEST (pat);
|
5264 |
|
|
if (!REG_P (dest))
|
5265 |
|
|
return false;
|
5266 |
|
|
|
5267 |
|
|
type = get_attr_type (insn);
|
5268 |
|
|
if (code >= 0
|
5269 |
|
|
&& (type == TYPE_LOAD
|
5270 |
|
|
|| type == TYPE_LOADN))
|
5271 |
|
|
{
|
5272 |
|
|
if (!MEM_P (src)
|
5273 |
|
|
&& (GET_CODE (src) != ZERO_EXTEND
|
5274 |
|
|
|| !MEM_P (XEXP (src, 0))))
|
5275 |
|
|
return false;
|
5276 |
|
|
|
5277 |
|
|
if (GET_MODE_SIZE (GET_MODE (dest)) > 4
|
5278 |
|
|
&& (GET_MODE_SIZE (GET_MODE (dest)) != 8 || !TARGET_LDDW))
|
5279 |
|
|
return false;
|
5280 |
|
|
|
5281 |
|
|
rtv = gen_rtvec (2, GEN_INT (REGNO (SET_DEST (pat))),
|
5282 |
|
|
SET_SRC (pat));
|
5283 |
|
|
newpat = gen_load_shadow (SET_DEST (pat));
|
5284 |
|
|
pat = gen_rtx_UNSPEC (VOIDmode, rtv, UNSPEC_REAL_LOAD);
|
5285 |
|
|
delay = 4;
|
5286 |
|
|
}
|
5287 |
|
|
else if (code >= 0
|
5288 |
|
|
&& (type == TYPE_MPY2
|
5289 |
|
|
|| type == TYPE_MPY4))
|
5290 |
|
|
{
|
5291 |
|
|
/* We don't handle floating point multiplies yet. */
|
5292 |
|
|
if (GET_MODE (dest) == SFmode)
|
5293 |
|
|
return false;
|
5294 |
|
|
|
5295 |
|
|
rtv = gen_rtvec (2, GEN_INT (REGNO (SET_DEST (pat))),
|
5296 |
|
|
SET_SRC (pat));
|
5297 |
|
|
newpat = gen_mult_shadow (SET_DEST (pat));
|
5298 |
|
|
pat = gen_rtx_UNSPEC (VOIDmode, rtv, UNSPEC_REAL_MULT);
|
5299 |
|
|
delay = type == TYPE_MPY2 ? 1 : 3;
|
5300 |
|
|
}
|
5301 |
|
|
else
|
5302 |
|
|
return false;
|
5303 |
|
|
|
5304 |
|
|
pat = duplicate_cond (pat, insn);
|
5305 |
|
|
newpat = duplicate_cond (newpat, insn);
|
5306 |
|
|
i1 = emit_insn_before (pat, insn);
|
5307 |
|
|
PATTERN (insn) = newpat;
|
5308 |
|
|
INSN_CODE (insn) = -1;
|
5309 |
|
|
recog_memoized (insn);
|
5310 |
|
|
recog_memoized (i1);
|
5311 |
|
|
record_delay_slot_pair (i1, insn, delay, 0);
|
5312 |
|
|
return true;
|
5313 |
|
|
}
|
5314 |
|
|
|
5315 |
|
|
/* Examine if INSN is the result of splitting a load into a real load and a
|
5316 |
|
|
shadow, and if so, undo the transformation. */
|
5317 |
|
|
static void
|
5318 |
|
|
undo_split_delayed_nonbranch (rtx insn)
|
5319 |
|
|
{
|
5320 |
|
|
int icode = recog_memoized (insn);
|
5321 |
|
|
enum attr_type type;
|
5322 |
|
|
rtx prev_pat, insn_pat, prev;
|
5323 |
|
|
|
5324 |
|
|
if (icode < 0)
|
5325 |
|
|
return;
|
5326 |
|
|
type = get_attr_type (insn);
|
5327 |
|
|
if (type != TYPE_LOAD_SHADOW && type != TYPE_MULT_SHADOW)
|
5328 |
|
|
return;
|
5329 |
|
|
prev = PREV_INSN (insn);
|
5330 |
|
|
prev_pat = PATTERN (prev);
|
5331 |
|
|
insn_pat = PATTERN (insn);
|
5332 |
|
|
if (GET_CODE (prev_pat) == COND_EXEC)
|
5333 |
|
|
{
|
5334 |
|
|
prev_pat = COND_EXEC_CODE (prev_pat);
|
5335 |
|
|
insn_pat = COND_EXEC_CODE (insn_pat);
|
5336 |
|
|
}
|
5337 |
|
|
|
5338 |
|
|
gcc_assert (GET_CODE (prev_pat) == UNSPEC
|
5339 |
|
|
&& ((XINT (prev_pat, 1) == UNSPEC_REAL_LOAD
|
5340 |
|
|
&& type == TYPE_LOAD_SHADOW)
|
5341 |
|
|
|| (XINT (prev_pat, 1) == UNSPEC_REAL_MULT
|
5342 |
|
|
&& type == TYPE_MULT_SHADOW)));
|
5343 |
|
|
insn_pat = gen_rtx_SET (VOIDmode, SET_DEST (insn_pat),
|
5344 |
|
|
XVECEXP (prev_pat, 0, 1));
|
5345 |
|
|
insn_pat = duplicate_cond (insn_pat, prev);
|
5346 |
|
|
PATTERN (insn) = insn_pat;
|
5347 |
|
|
INSN_CODE (insn) = -1;
|
5348 |
|
|
delete_insn (prev);
|
5349 |
|
|
}
|
5350 |
|
|
|
5351 |
|
|
/* Split every insn (i.e. jumps and calls) which can have delay slots into
|
5352 |
|
|
two parts: the first one is scheduled normally and emits the instruction,
|
5353 |
|
|
while the second one is a shadow insn which shows the side effect taking
|
5354 |
|
|
place. The second one is placed in the right cycle by the scheduler, but
|
5355 |
|
|
not emitted as an assembly instruction. */
|
5356 |
|
|
|
5357 |
|
|
static void
|
5358 |
|
|
split_delayed_insns (void)
|
5359 |
|
|
{
|
5360 |
|
|
rtx insn;
|
5361 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
5362 |
|
|
{
|
5363 |
|
|
if (JUMP_P (insn) || CALL_P (insn))
|
5364 |
|
|
split_delayed_branch (insn);
|
5365 |
|
|
}
|
5366 |
|
|
}
|
5367 |
|
|
|
5368 |
|
|
/* For every insn that has an entry in the new_conditions vector, give it
|
5369 |
|
|
the appropriate predicate. */
|
5370 |
|
|
static void
|
5371 |
|
|
conditionalize_after_sched (void)
|
5372 |
|
|
{
|
5373 |
|
|
basic_block bb;
|
5374 |
|
|
rtx insn;
|
5375 |
|
|
FOR_EACH_BB (bb)
|
5376 |
|
|
FOR_BB_INSNS (bb, insn)
|
5377 |
|
|
{
|
5378 |
|
|
unsigned uid = INSN_UID (insn);
|
5379 |
|
|
rtx cond;
|
5380 |
|
|
if (!NONDEBUG_INSN_P (insn) || uid >= INSN_INFO_LENGTH)
|
5381 |
|
|
continue;
|
5382 |
|
|
cond = INSN_INFO_ENTRY (uid).new_cond;
|
5383 |
|
|
if (cond == NULL_RTX)
|
5384 |
|
|
continue;
|
5385 |
|
|
if (dump_file)
|
5386 |
|
|
fprintf (dump_file, "Conditionalizing insn %d\n", uid);
|
5387 |
|
|
predicate_insn (insn, cond, true);
|
5388 |
|
|
}
|
5389 |
|
|
}
|
5390 |
|
|
|
5391 |
|
|
/* A callback for the hw-doloop pass. This function examines INSN; if
|
5392 |
|
|
it is a loop_end pattern we recognize, return the reg rtx for the
|
5393 |
|
|
loop counter. Otherwise, return NULL_RTX. */
|
5394 |
|
|
|
5395 |
|
|
static rtx
|
5396 |
|
|
hwloop_pattern_reg (rtx insn)
|
5397 |
|
|
{
|
5398 |
|
|
rtx pat, reg;
|
5399 |
|
|
|
5400 |
|
|
if (!JUMP_P (insn) || recog_memoized (insn) != CODE_FOR_loop_end)
|
5401 |
|
|
return NULL_RTX;
|
5402 |
|
|
|
5403 |
|
|
pat = PATTERN (insn);
|
5404 |
|
|
reg = SET_DEST (XVECEXP (pat, 0, 1));
|
5405 |
|
|
if (!REG_P (reg))
|
5406 |
|
|
return NULL_RTX;
|
5407 |
|
|
return reg;
|
5408 |
|
|
}
|
5409 |
|
|
|
5410 |
|
|
/* Return the number of cycles taken by BB, as computed by scheduling,
|
5411 |
|
|
including the latencies of all insns with delay slots. IGNORE is
|
5412 |
|
|
an insn we should ignore in the calculation, usually the final
|
5413 |
|
|
branch. */
|
5414 |
|
|
static int
|
5415 |
|
|
bb_earliest_end_cycle (basic_block bb, rtx ignore)
|
5416 |
|
|
{
|
5417 |
|
|
int earliest = 0;
|
5418 |
|
|
rtx insn;
|
5419 |
|
|
|
5420 |
|
|
FOR_BB_INSNS (bb, insn)
|
5421 |
|
|
{
|
5422 |
|
|
int cycles, this_clock;
|
5423 |
|
|
|
5424 |
|
|
if (LABEL_P (insn) || NOTE_P (insn) || DEBUG_INSN_P (insn)
|
5425 |
|
|
|| GET_CODE (PATTERN (insn)) == USE
|
5426 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER
|
5427 |
|
|
|| insn == ignore)
|
5428 |
|
|
continue;
|
5429 |
|
|
|
5430 |
|
|
this_clock = insn_get_clock (insn);
|
5431 |
|
|
cycles = get_attr_cycles (insn);
|
5432 |
|
|
|
5433 |
|
|
if (earliest < this_clock + cycles)
|
5434 |
|
|
earliest = this_clock + cycles;
|
5435 |
|
|
}
|
5436 |
|
|
return earliest;
|
5437 |
|
|
}
|
5438 |
|
|
|
5439 |
|
|
/* Examine the insns in BB and remove all which have a uid greater or
|
5440 |
|
|
equal to MAX_UID. */
|
5441 |
|
|
static void
|
5442 |
|
|
filter_insns_above (basic_block bb, int max_uid)
|
5443 |
|
|
{
|
5444 |
|
|
rtx insn, next;
|
5445 |
|
|
bool prev_ti = false;
|
5446 |
|
|
int prev_cycle = -1;
|
5447 |
|
|
|
5448 |
|
|
FOR_BB_INSNS_SAFE (bb, insn, next)
|
5449 |
|
|
{
|
5450 |
|
|
int this_cycle;
|
5451 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
5452 |
|
|
continue;
|
5453 |
|
|
if (insn == BB_END (bb))
|
5454 |
|
|
return;
|
5455 |
|
|
this_cycle = insn_get_clock (insn);
|
5456 |
|
|
if (prev_ti && this_cycle == prev_cycle)
|
5457 |
|
|
{
|
5458 |
|
|
gcc_assert (GET_MODE (insn) != TImode);
|
5459 |
|
|
PUT_MODE (insn, TImode);
|
5460 |
|
|
}
|
5461 |
|
|
prev_ti = false;
|
5462 |
|
|
if (INSN_UID (insn) >= max_uid)
|
5463 |
|
|
{
|
5464 |
|
|
if (GET_MODE (insn) == TImode)
|
5465 |
|
|
{
|
5466 |
|
|
prev_ti = true;
|
5467 |
|
|
prev_cycle = this_cycle;
|
5468 |
|
|
}
|
5469 |
|
|
delete_insn (insn);
|
5470 |
|
|
}
|
5471 |
|
|
}
|
5472 |
|
|
}
|
5473 |
|
|
|
5474 |
|
|
/* Implement TARGET_ASM_EMIT_EXCEPT_PERSONALITY. */
|
5475 |
|
|
|
5476 |
|
|
static void
|
5477 |
|
|
c6x_asm_emit_except_personality (rtx personality)
|
5478 |
|
|
{
|
5479 |
|
|
fputs ("\t.personality\t", asm_out_file);
|
5480 |
|
|
output_addr_const (asm_out_file, personality);
|
5481 |
|
|
fputc ('\n', asm_out_file);
|
5482 |
|
|
}
|
5483 |
|
|
|
5484 |
|
|
/* Use a special assembly directive rather than a regular setion for
|
5485 |
|
|
unwind table data. */
|
5486 |
|
|
|
5487 |
|
|
static void
|
5488 |
|
|
c6x_asm_init_sections (void)
|
5489 |
|
|
{
|
5490 |
|
|
exception_section = get_unnamed_section (0, output_section_asm_op,
|
5491 |
|
|
"\t.handlerdata");
|
5492 |
|
|
}
|
5493 |
|
|
|
5494 |
|
|
/* A callback for the hw-doloop pass. Called to optimize LOOP in a
|
5495 |
|
|
machine-specific fashion; returns true if successful and false if
|
5496 |
|
|
the hwloop_fail function should be called. */
|
5497 |
|
|
|
5498 |
|
|
static bool
|
5499 |
|
|
hwloop_optimize (hwloop_info loop)
|
5500 |
|
|
{
|
5501 |
|
|
basic_block entry_bb, bb;
|
5502 |
|
|
rtx seq, insn, prev, entry_after, end_packet;
|
5503 |
|
|
rtx head_insn, tail_insn, new_insns, last_insn;
|
5504 |
|
|
int loop_earliest;
|
5505 |
|
|
int n_execute_packets;
|
5506 |
|
|
edge entry_edge;
|
5507 |
|
|
unsigned ix;
|
5508 |
|
|
int max_uid_before, delayed_splits;
|
5509 |
|
|
int i, sp_ii, min_ii, max_ii, max_parallel, n_insns, n_real_insns, stages;
|
5510 |
|
|
rtx *orig_vec;
|
5511 |
|
|
rtx *copies;
|
5512 |
|
|
rtx **insn_copies;
|
5513 |
|
|
|
5514 |
|
|
if (!c6x_flag_modulo_sched || !c6x_flag_schedule_insns2
|
5515 |
|
|
|| !TARGET_INSNS_64PLUS)
|
5516 |
|
|
return false;
|
5517 |
|
|
|
5518 |
|
|
if (loop->iter_reg_used || loop->depth > 1)
|
5519 |
|
|
return false;
|
5520 |
|
|
if (loop->has_call || loop->has_asm)
|
5521 |
|
|
return false;
|
5522 |
|
|
|
5523 |
|
|
if (loop->head != loop->tail)
|
5524 |
|
|
return false;
|
5525 |
|
|
|
5526 |
|
|
gcc_assert (loop->incoming_dest == loop->head);
|
5527 |
|
|
|
5528 |
|
|
entry_edge = NULL;
|
5529 |
|
|
FOR_EACH_VEC_ELT (edge, loop->incoming, i, entry_edge)
|
5530 |
|
|
if (entry_edge->flags & EDGE_FALLTHRU)
|
5531 |
|
|
break;
|
5532 |
|
|
if (entry_edge == NULL)
|
5533 |
|
|
return false;
|
5534 |
|
|
|
5535 |
|
|
reshuffle_units (loop->head);
|
5536 |
|
|
|
5537 |
|
|
schedule_ebbs_init ();
|
5538 |
|
|
schedule_ebb (BB_HEAD (loop->tail), loop->loop_end, true);
|
5539 |
|
|
schedule_ebbs_finish ();
|
5540 |
|
|
|
5541 |
|
|
bb = loop->head;
|
5542 |
|
|
loop_earliest = bb_earliest_end_cycle (bb, loop->loop_end) + 1;
|
5543 |
|
|
|
5544 |
|
|
max_uid_before = get_max_uid ();
|
5545 |
|
|
|
5546 |
|
|
/* Split all multi-cycle operations, such as loads. For normal
|
5547 |
|
|
scheduling, we only do this for branches, as the generated code
|
5548 |
|
|
would otherwise not be interrupt-safe. When using sploop, it is
|
5549 |
|
|
safe and beneficial to split them. If any multi-cycle operations
|
5550 |
|
|
remain after splitting (because we don't handle them yet), we
|
5551 |
|
|
cannot pipeline the loop. */
|
5552 |
|
|
delayed_splits = 0;
|
5553 |
|
|
FOR_BB_INSNS (bb, insn)
|
5554 |
|
|
{
|
5555 |
|
|
if (NONDEBUG_INSN_P (insn))
|
5556 |
|
|
{
|
5557 |
|
|
recog_memoized (insn);
|
5558 |
|
|
if (split_delayed_nonbranch (insn))
|
5559 |
|
|
delayed_splits++;
|
5560 |
|
|
else if (INSN_CODE (insn) >= 0
|
5561 |
|
|
&& get_attr_cycles (insn) > 1)
|
5562 |
|
|
goto undo_splits;
|
5563 |
|
|
}
|
5564 |
|
|
}
|
5565 |
|
|
|
5566 |
|
|
/* Count the number of insns as well as the number real insns, and save
|
5567 |
|
|
the original sequence of insns in case we must restore it later. */
|
5568 |
|
|
n_insns = n_real_insns = 0;
|
5569 |
|
|
FOR_BB_INSNS (bb, insn)
|
5570 |
|
|
{
|
5571 |
|
|
n_insns++;
|
5572 |
|
|
if (NONDEBUG_INSN_P (insn) && insn != loop->loop_end)
|
5573 |
|
|
n_real_insns++;
|
5574 |
|
|
}
|
5575 |
|
|
orig_vec = XNEWVEC (rtx, n_insns);
|
5576 |
|
|
n_insns = 0;
|
5577 |
|
|
FOR_BB_INSNS (bb, insn)
|
5578 |
|
|
orig_vec[n_insns++] = insn;
|
5579 |
|
|
|
5580 |
|
|
/* Count the unit reservations, and compute a minimum II from that
|
5581 |
|
|
table. */
|
5582 |
|
|
count_unit_reqs (unit_reqs, loop->start_label,
|
5583 |
|
|
PREV_INSN (loop->loop_end));
|
5584 |
|
|
merge_unit_reqs (unit_reqs);
|
5585 |
|
|
|
5586 |
|
|
min_ii = res_mii (unit_reqs);
|
5587 |
|
|
max_ii = loop_earliest < 15 ? loop_earliest : 14;
|
5588 |
|
|
|
5589 |
|
|
/* Make copies of the loop body, up to a maximum number of stages we want
|
5590 |
|
|
to handle. */
|
5591 |
|
|
max_parallel = loop_earliest / min_ii + 1;
|
5592 |
|
|
|
5593 |
|
|
copies = XCNEWVEC (rtx, (max_parallel + 1) * n_real_insns);
|
5594 |
|
|
insn_copies = XNEWVEC (rtx *, max_parallel + 1);
|
5595 |
|
|
for (i = 0; i < max_parallel + 1; i++)
|
5596 |
|
|
insn_copies[i] = copies + i * n_real_insns;
|
5597 |
|
|
|
5598 |
|
|
head_insn = next_nonnote_nondebug_insn (loop->start_label);
|
5599 |
|
|
tail_insn = prev_real_insn (BB_END (bb));
|
5600 |
|
|
|
5601 |
|
|
i = 0;
|
5602 |
|
|
FOR_BB_INSNS (bb, insn)
|
5603 |
|
|
if (NONDEBUG_INSN_P (insn) && insn != loop->loop_end)
|
5604 |
|
|
insn_copies[0][i++] = insn;
|
5605 |
|
|
|
5606 |
|
|
sploop_max_uid_iter0 = get_max_uid ();
|
5607 |
|
|
|
5608 |
|
|
/* Generate the copies of the loop body, and save them in the
|
5609 |
|
|
INSN_COPIES array. */
|
5610 |
|
|
start_sequence ();
|
5611 |
|
|
for (i = 0; i < max_parallel; i++)
|
5612 |
|
|
{
|
5613 |
|
|
int j;
|
5614 |
|
|
rtx this_iter;
|
5615 |
|
|
|
5616 |
|
|
this_iter = duplicate_insn_chain (head_insn, tail_insn);
|
5617 |
|
|
j = 0;
|
5618 |
|
|
while (this_iter)
|
5619 |
|
|
{
|
5620 |
|
|
rtx prev_stage_insn = insn_copies[i][j];
|
5621 |
|
|
gcc_assert (INSN_CODE (this_iter) == INSN_CODE (prev_stage_insn));
|
5622 |
|
|
|
5623 |
|
|
if (INSN_CODE (this_iter) >= 0
|
5624 |
|
|
&& (get_attr_type (this_iter) == TYPE_LOAD_SHADOW
|
5625 |
|
|
|| get_attr_type (this_iter) == TYPE_MULT_SHADOW))
|
5626 |
|
|
{
|
5627 |
|
|
rtx prev = PREV_INSN (this_iter);
|
5628 |
|
|
record_delay_slot_pair (prev, this_iter,
|
5629 |
|
|
get_attr_cycles (prev) - 1, 0);
|
5630 |
|
|
}
|
5631 |
|
|
else
|
5632 |
|
|
record_delay_slot_pair (prev_stage_insn, this_iter, i, 1);
|
5633 |
|
|
|
5634 |
|
|
insn_copies[i + 1][j] = this_iter;
|
5635 |
|
|
j++;
|
5636 |
|
|
this_iter = next_nonnote_nondebug_insn (this_iter);
|
5637 |
|
|
}
|
5638 |
|
|
}
|
5639 |
|
|
new_insns = get_insns ();
|
5640 |
|
|
last_insn = insn_copies[max_parallel][n_real_insns - 1];
|
5641 |
|
|
end_sequence ();
|
5642 |
|
|
emit_insn_before (new_insns, BB_END (bb));
|
5643 |
|
|
|
5644 |
|
|
/* Try to schedule the loop using varying initiation intervals,
|
5645 |
|
|
starting with the smallest possible and incrementing it
|
5646 |
|
|
on failure. */
|
5647 |
|
|
for (sp_ii = min_ii; sp_ii <= max_ii; sp_ii++)
|
5648 |
|
|
{
|
5649 |
|
|
basic_block tmp_bb;
|
5650 |
|
|
if (dump_file)
|
5651 |
|
|
fprintf (dump_file, "Trying to schedule for II %d\n", sp_ii);
|
5652 |
|
|
|
5653 |
|
|
df_clear_flags (DF_LR_RUN_DCE);
|
5654 |
|
|
|
5655 |
|
|
schedule_ebbs_init ();
|
5656 |
|
|
set_modulo_params (sp_ii, max_parallel, n_real_insns,
|
5657 |
|
|
sploop_max_uid_iter0);
|
5658 |
|
|
tmp_bb = schedule_ebb (BB_HEAD (bb), last_insn, true);
|
5659 |
|
|
schedule_ebbs_finish ();
|
5660 |
|
|
|
5661 |
|
|
if (tmp_bb)
|
5662 |
|
|
{
|
5663 |
|
|
if (dump_file)
|
5664 |
|
|
fprintf (dump_file, "Found schedule with II %d\n", sp_ii);
|
5665 |
|
|
break;
|
5666 |
|
|
}
|
5667 |
|
|
}
|
5668 |
|
|
|
5669 |
|
|
discard_delay_pairs_above (max_uid_before);
|
5670 |
|
|
|
5671 |
|
|
if (sp_ii > max_ii)
|
5672 |
|
|
goto restore_loop;
|
5673 |
|
|
|
5674 |
|
|
stages = insn_get_clock (ss.last_scheduled_iter0) / sp_ii + 1;
|
5675 |
|
|
|
5676 |
|
|
if (stages == 1 && sp_ii > 5)
|
5677 |
|
|
goto restore_loop;
|
5678 |
|
|
|
5679 |
|
|
/* At this point, we know we've been successful, unless we find later that
|
5680 |
|
|
there are too many execute packets for the loop buffer to hold. */
|
5681 |
|
|
|
5682 |
|
|
/* Assign reservations to the instructions in the loop. We must find
|
5683 |
|
|
the stage that contains the full loop kernel, and transfer the
|
5684 |
|
|
reservations of the instructions contained in it to the corresponding
|
5685 |
|
|
instructions from iteration 0, which are the only ones we'll keep. */
|
5686 |
|
|
assign_reservations (BB_HEAD (bb), ss.last_scheduled_insn);
|
5687 |
|
|
PREV_INSN (BB_END (bb)) = ss.last_scheduled_iter0;
|
5688 |
|
|
NEXT_INSN (ss.last_scheduled_iter0) = BB_END (bb);
|
5689 |
|
|
filter_insns_above (bb, sploop_max_uid_iter0);
|
5690 |
|
|
|
5691 |
|
|
for (i = 0; i < n_real_insns; i++)
|
5692 |
|
|
{
|
5693 |
|
|
rtx insn = insn_copies[0][i];
|
5694 |
|
|
int uid = INSN_UID (insn);
|
5695 |
|
|
int stage = insn_uid_get_clock (uid) / sp_ii;
|
5696 |
|
|
|
5697 |
|
|
if (stage + 1 < stages)
|
5698 |
|
|
{
|
5699 |
|
|
int copy_uid;
|
5700 |
|
|
stage = stages - stage - 1;
|
5701 |
|
|
copy_uid = INSN_UID (insn_copies[stage][i]);
|
5702 |
|
|
INSN_INFO_ENTRY (uid).reservation
|
5703 |
|
|
= INSN_INFO_ENTRY (copy_uid).reservation;
|
5704 |
|
|
}
|
5705 |
|
|
}
|
5706 |
|
|
if (stages == 1)
|
5707 |
|
|
stages++;
|
5708 |
|
|
|
5709 |
|
|
/* Compute the number of execute packets the pipelined form of the loop will
|
5710 |
|
|
require. */
|
5711 |
|
|
prev = NULL_RTX;
|
5712 |
|
|
n_execute_packets = 0;
|
5713 |
|
|
for (insn = loop->start_label; insn != loop->loop_end; insn = NEXT_INSN (insn))
|
5714 |
|
|
{
|
5715 |
|
|
if (NONDEBUG_INSN_P (insn) && GET_MODE (insn) == TImode
|
5716 |
|
|
&& !shadow_p (insn))
|
5717 |
|
|
{
|
5718 |
|
|
n_execute_packets++;
|
5719 |
|
|
if (prev && insn_get_clock (prev) + 1 != insn_get_clock (insn))
|
5720 |
|
|
/* We need an extra NOP instruction. */
|
5721 |
|
|
n_execute_packets++;
|
5722 |
|
|
|
5723 |
|
|
prev = insn;
|
5724 |
|
|
}
|
5725 |
|
|
}
|
5726 |
|
|
|
5727 |
|
|
end_packet = ss.last_scheduled_iter0;
|
5728 |
|
|
while (!NONDEBUG_INSN_P (end_packet) || GET_MODE (end_packet) != TImode)
|
5729 |
|
|
end_packet = PREV_INSN (end_packet);
|
5730 |
|
|
|
5731 |
|
|
/* The earliest cycle in which we can emit the SPKERNEL instruction. */
|
5732 |
|
|
loop_earliest = (stages - 1) * sp_ii;
|
5733 |
|
|
if (loop_earliest > insn_get_clock (end_packet))
|
5734 |
|
|
{
|
5735 |
|
|
n_execute_packets++;
|
5736 |
|
|
end_packet = loop->loop_end;
|
5737 |
|
|
}
|
5738 |
|
|
else
|
5739 |
|
|
loop_earliest = insn_get_clock (end_packet);
|
5740 |
|
|
|
5741 |
|
|
if (n_execute_packets > 14)
|
5742 |
|
|
goto restore_loop;
|
5743 |
|
|
|
5744 |
|
|
/* Generate the spkernel instruction, and place it at the appropriate
|
5745 |
|
|
spot. */
|
5746 |
|
|
PUT_MODE (end_packet, VOIDmode);
|
5747 |
|
|
|
5748 |
|
|
insn = gen_spkernel (GEN_INT (stages - 1),
|
5749 |
|
|
const0_rtx, JUMP_LABEL (loop->loop_end));
|
5750 |
|
|
insn = emit_jump_insn_before (insn, end_packet);
|
5751 |
|
|
JUMP_LABEL (insn) = JUMP_LABEL (loop->loop_end);
|
5752 |
|
|
insn_set_clock (insn, loop_earliest);
|
5753 |
|
|
PUT_MODE (insn, TImode);
|
5754 |
|
|
INSN_INFO_ENTRY (INSN_UID (insn)).ebb_start = false;
|
5755 |
|
|
delete_insn (loop->loop_end);
|
5756 |
|
|
|
5757 |
|
|
/* Place the mvc and sploop instructions before the loop. */
|
5758 |
|
|
entry_bb = entry_edge->src;
|
5759 |
|
|
|
5760 |
|
|
start_sequence ();
|
5761 |
|
|
|
5762 |
|
|
insn = emit_insn (gen_mvilc (loop->iter_reg));
|
5763 |
|
|
insn = emit_insn (gen_sploop (GEN_INT (sp_ii)));
|
5764 |
|
|
|
5765 |
|
|
seq = get_insns ();
|
5766 |
|
|
|
5767 |
|
|
if (!single_succ_p (entry_bb) || VEC_length (edge, loop->incoming) > 1)
|
5768 |
|
|
{
|
5769 |
|
|
basic_block new_bb;
|
5770 |
|
|
edge e;
|
5771 |
|
|
edge_iterator ei;
|
5772 |
|
|
|
5773 |
|
|
emit_insn_before (seq, BB_HEAD (loop->head));
|
5774 |
|
|
seq = emit_label_before (gen_label_rtx (), seq);
|
5775 |
|
|
|
5776 |
|
|
new_bb = create_basic_block (seq, insn, entry_bb);
|
5777 |
|
|
FOR_EACH_EDGE (e, ei, loop->incoming)
|
5778 |
|
|
{
|
5779 |
|
|
if (!(e->flags & EDGE_FALLTHRU))
|
5780 |
|
|
redirect_edge_and_branch_force (e, new_bb);
|
5781 |
|
|
else
|
5782 |
|
|
redirect_edge_succ (e, new_bb);
|
5783 |
|
|
}
|
5784 |
|
|
make_edge (new_bb, loop->head, 0);
|
5785 |
|
|
}
|
5786 |
|
|
else
|
5787 |
|
|
{
|
5788 |
|
|
entry_after = BB_END (entry_bb);
|
5789 |
|
|
while (DEBUG_INSN_P (entry_after)
|
5790 |
|
|
|| (NOTE_P (entry_after)
|
5791 |
|
|
&& NOTE_KIND (entry_after) != NOTE_INSN_BASIC_BLOCK))
|
5792 |
|
|
entry_after = PREV_INSN (entry_after);
|
5793 |
|
|
emit_insn_after (seq, entry_after);
|
5794 |
|
|
}
|
5795 |
|
|
|
5796 |
|
|
end_sequence ();
|
5797 |
|
|
|
5798 |
|
|
/* Make sure we don't try to schedule this loop again. */
|
5799 |
|
|
for (ix = 0; VEC_iterate (basic_block, loop->blocks, ix, bb); ix++)
|
5800 |
|
|
bb->flags |= BB_DISABLE_SCHEDULE;
|
5801 |
|
|
|
5802 |
|
|
return true;
|
5803 |
|
|
|
5804 |
|
|
restore_loop:
|
5805 |
|
|
if (dump_file)
|
5806 |
|
|
fprintf (dump_file, "Unable to pipeline loop.\n");
|
5807 |
|
|
|
5808 |
|
|
for (i = 1; i < n_insns; i++)
|
5809 |
|
|
{
|
5810 |
|
|
NEXT_INSN (orig_vec[i - 1]) = orig_vec[i];
|
5811 |
|
|
PREV_INSN (orig_vec[i]) = orig_vec[i - 1];
|
5812 |
|
|
}
|
5813 |
|
|
PREV_INSN (orig_vec[0]) = PREV_INSN (BB_HEAD (bb));
|
5814 |
|
|
NEXT_INSN (PREV_INSN (BB_HEAD (bb))) = orig_vec[0];
|
5815 |
|
|
NEXT_INSN (orig_vec[n_insns - 1]) = NEXT_INSN (BB_END (bb));
|
5816 |
|
|
PREV_INSN (NEXT_INSN (BB_END (bb))) = orig_vec[n_insns - 1];
|
5817 |
|
|
BB_HEAD (bb) = orig_vec[0];
|
5818 |
|
|
BB_END (bb) = orig_vec[n_insns - 1];
|
5819 |
|
|
undo_splits:
|
5820 |
|
|
free_delay_pairs ();
|
5821 |
|
|
FOR_BB_INSNS (bb, insn)
|
5822 |
|
|
if (NONDEBUG_INSN_P (insn))
|
5823 |
|
|
undo_split_delayed_nonbranch (insn);
|
5824 |
|
|
return false;
|
5825 |
|
|
}
|
5826 |
|
|
|
5827 |
|
|
/* A callback for the hw-doloop pass. Called when a loop we have discovered
|
5828 |
|
|
turns out not to be optimizable; we have to split the doloop_end pattern
|
5829 |
|
|
into a subtract and a test. */
|
5830 |
|
|
static void
|
5831 |
|
|
hwloop_fail (hwloop_info loop)
|
5832 |
|
|
{
|
5833 |
|
|
rtx insn, test, testreg;
|
5834 |
|
|
|
5835 |
|
|
if (dump_file)
|
5836 |
|
|
fprintf (dump_file, "splitting doloop insn %d\n",
|
5837 |
|
|
INSN_UID (loop->loop_end));
|
5838 |
|
|
insn = gen_addsi3 (loop->iter_reg, loop->iter_reg, constm1_rtx);
|
5839 |
|
|
/* See if we can emit the add at the head of the loop rather than at the
|
5840 |
|
|
end. */
|
5841 |
|
|
if (loop->head == NULL
|
5842 |
|
|
|| loop->iter_reg_used_outside
|
5843 |
|
|
|| loop->iter_reg_used
|
5844 |
|
|
|| TEST_HARD_REG_BIT (loop->regs_set_in_loop, REGNO (loop->iter_reg))
|
5845 |
|
|
|| loop->incoming_dest != loop->head
|
5846 |
|
|
|| EDGE_COUNT (loop->head->preds) != 2)
|
5847 |
|
|
emit_insn_before (insn, loop->loop_end);
|
5848 |
|
|
else
|
5849 |
|
|
{
|
5850 |
|
|
rtx t = loop->start_label;
|
5851 |
|
|
while (!NOTE_P (t) || NOTE_KIND (t) != NOTE_INSN_BASIC_BLOCK)
|
5852 |
|
|
t = NEXT_INSN (t);
|
5853 |
|
|
emit_insn_after (insn, t);
|
5854 |
|
|
}
|
5855 |
|
|
|
5856 |
|
|
testreg = SET_DEST (XVECEXP (PATTERN (loop->loop_end), 0, 2));
|
5857 |
|
|
if (GET_CODE (testreg) == SCRATCH)
|
5858 |
|
|
testreg = loop->iter_reg;
|
5859 |
|
|
else
|
5860 |
|
|
emit_insn_before (gen_movsi (testreg, loop->iter_reg), loop->loop_end);
|
5861 |
|
|
|
5862 |
|
|
test = gen_rtx_NE (VOIDmode, testreg, const0_rtx);
|
5863 |
|
|
insn = emit_jump_insn_before (gen_cbranchsi4 (test, testreg, const0_rtx,
|
5864 |
|
|
loop->start_label),
|
5865 |
|
|
loop->loop_end);
|
5866 |
|
|
|
5867 |
|
|
JUMP_LABEL (insn) = loop->start_label;
|
5868 |
|
|
LABEL_NUSES (loop->start_label)++;
|
5869 |
|
|
delete_insn (loop->loop_end);
|
5870 |
|
|
}
|
5871 |
|
|
|
5872 |
|
|
static struct hw_doloop_hooks c6x_doloop_hooks =
|
5873 |
|
|
{
|
5874 |
|
|
hwloop_pattern_reg,
|
5875 |
|
|
hwloop_optimize,
|
5876 |
|
|
hwloop_fail
|
5877 |
|
|
};
|
5878 |
|
|
|
5879 |
|
|
/* Run the hw-doloop pass to modulo-schedule hardware loops, or split the
|
5880 |
|
|
doloop_end patterns where such optimizations are impossible. */
|
5881 |
|
|
static void
|
5882 |
|
|
c6x_hwloops (void)
|
5883 |
|
|
{
|
5884 |
|
|
if (optimize)
|
5885 |
|
|
reorg_loops (true, &c6x_doloop_hooks);
|
5886 |
|
|
}
|
5887 |
|
|
|
5888 |
|
|
/* Implement the TARGET_MACHINE_DEPENDENT_REORG pass. We split call insns here
|
5889 |
|
|
into a sequence that loads the return register and performs the call,
|
5890 |
|
|
and emit the return label.
|
5891 |
|
|
If scheduling after reload is requested, it happens here. */
|
5892 |
|
|
|
5893 |
|
|
static void
|
5894 |
|
|
c6x_reorg (void)
|
5895 |
|
|
{
|
5896 |
|
|
basic_block bb;
|
5897 |
|
|
rtx *call_labels;
|
5898 |
|
|
bool do_selsched = (c6x_flag_schedule_insns2 && flag_selective_scheduling2
|
5899 |
|
|
&& !maybe_skip_selective_scheduling ());
|
5900 |
|
|
|
5901 |
|
|
/* We are freeing block_for_insn in the toplev to keep compatibility
|
5902 |
|
|
with old MDEP_REORGS that are not CFG based. Recompute it now. */
|
5903 |
|
|
compute_bb_for_insn ();
|
5904 |
|
|
|
5905 |
|
|
df_clear_flags (DF_LR_RUN_DCE);
|
5906 |
|
|
df_note_add_problem ();
|
5907 |
|
|
|
5908 |
|
|
/* If optimizing, we'll have split before scheduling. */
|
5909 |
|
|
if (optimize == 0)
|
5910 |
|
|
split_all_insns ();
|
5911 |
|
|
|
5912 |
|
|
df_analyze ();
|
5913 |
|
|
|
5914 |
|
|
if (c6x_flag_schedule_insns2)
|
5915 |
|
|
{
|
5916 |
|
|
int sz = get_max_uid () * 3 / 2 + 1;
|
5917 |
|
|
|
5918 |
|
|
insn_info = VEC_alloc (c6x_sched_insn_info, heap, sz);
|
5919 |
|
|
}
|
5920 |
|
|
|
5921 |
|
|
/* Make sure the real-jump insns we create are not deleted. When modulo-
|
5922 |
|
|
scheduling, situations where a reg is only stored in a loop can also
|
5923 |
|
|
cause dead code when doing the initial unrolling. */
|
5924 |
|
|
sched_no_dce = true;
|
5925 |
|
|
|
5926 |
|
|
c6x_hwloops ();
|
5927 |
|
|
|
5928 |
|
|
if (c6x_flag_schedule_insns2)
|
5929 |
|
|
{
|
5930 |
|
|
split_delayed_insns ();
|
5931 |
|
|
timevar_push (TV_SCHED2);
|
5932 |
|
|
if (do_selsched)
|
5933 |
|
|
run_selective_scheduling ();
|
5934 |
|
|
else
|
5935 |
|
|
schedule_ebbs ();
|
5936 |
|
|
conditionalize_after_sched ();
|
5937 |
|
|
timevar_pop (TV_SCHED2);
|
5938 |
|
|
|
5939 |
|
|
free_delay_pairs ();
|
5940 |
|
|
}
|
5941 |
|
|
sched_no_dce = false;
|
5942 |
|
|
|
5943 |
|
|
call_labels = XCNEWVEC (rtx, get_max_uid () + 1);
|
5944 |
|
|
|
5945 |
|
|
reorg_split_calls (call_labels);
|
5946 |
|
|
|
5947 |
|
|
if (c6x_flag_schedule_insns2)
|
5948 |
|
|
{
|
5949 |
|
|
FOR_EACH_BB (bb)
|
5950 |
|
|
if ((bb->flags & BB_DISABLE_SCHEDULE) == 0)
|
5951 |
|
|
assign_reservations (BB_HEAD (bb), BB_END (bb));
|
5952 |
|
|
}
|
5953 |
|
|
|
5954 |
|
|
if (c6x_flag_var_tracking)
|
5955 |
|
|
{
|
5956 |
|
|
timevar_push (TV_VAR_TRACKING);
|
5957 |
|
|
variable_tracking_main ();
|
5958 |
|
|
timevar_pop (TV_VAR_TRACKING);
|
5959 |
|
|
}
|
5960 |
|
|
|
5961 |
|
|
reorg_emit_nops (call_labels);
|
5962 |
|
|
|
5963 |
|
|
/* Post-process the schedule to move parallel insns into SEQUENCEs. */
|
5964 |
|
|
if (c6x_flag_schedule_insns2)
|
5965 |
|
|
{
|
5966 |
|
|
free_delay_pairs ();
|
5967 |
|
|
c6x_gen_bundles ();
|
5968 |
|
|
}
|
5969 |
|
|
|
5970 |
|
|
df_finish_pass (false);
|
5971 |
|
|
}
|
5972 |
|
|
|
5973 |
|
|
/* Called when a function has been assembled. It should perform all the
|
5974 |
|
|
tasks of ASM_DECLARE_FUNCTION_SIZE in elfos.h, plus target-specific
|
5975 |
|
|
tasks.
|
5976 |
|
|
We free the reservation (and other scheduling) information here now that
|
5977 |
|
|
all insns have been output. */
|
5978 |
|
|
void
|
5979 |
|
|
c6x_function_end (FILE *file, const char *fname)
|
5980 |
|
|
{
|
5981 |
|
|
c6x_output_fn_unwind (file);
|
5982 |
|
|
|
5983 |
|
|
if (insn_info)
|
5984 |
|
|
VEC_free (c6x_sched_insn_info, heap, insn_info);
|
5985 |
|
|
insn_info = NULL;
|
5986 |
|
|
|
5987 |
|
|
if (!flag_inhibit_size_directive)
|
5988 |
|
|
ASM_OUTPUT_MEASURED_SIZE (file, fname);
|
5989 |
|
|
}
|
5990 |
|
|
|
5991 |
|
|
/* Determine whether X is a shift with code CODE and an integer amount
|
5992 |
|
|
AMOUNT. */
|
5993 |
|
|
static bool
|
5994 |
|
|
shift_p (rtx x, enum rtx_code code, int amount)
|
5995 |
|
|
{
|
5996 |
|
|
return (GET_CODE (x) == code && GET_CODE (XEXP (x, 1)) == CONST_INT
|
5997 |
|
|
&& INTVAL (XEXP (x, 1)) == amount);
|
5998 |
|
|
}
|
5999 |
|
|
|
6000 |
|
|
/* Compute a (partial) cost for rtx X. Return true if the complete
|
6001 |
|
|
cost has been computed, and false if subexpressions should be
|
6002 |
|
|
scanned. In either case, *TOTAL contains the cost result. */
|
6003 |
|
|
|
6004 |
|
|
static bool
|
6005 |
|
|
c6x_rtx_costs (rtx x, int code, int outer_code, int opno, int *total,
|
6006 |
|
|
bool speed)
|
6007 |
|
|
{
|
6008 |
|
|
int cost2 = COSTS_N_INSNS (1);
|
6009 |
|
|
rtx op0, op1;
|
6010 |
|
|
|
6011 |
|
|
switch (code)
|
6012 |
|
|
{
|
6013 |
|
|
case CONST_INT:
|
6014 |
|
|
if (outer_code == SET || outer_code == PLUS)
|
6015 |
|
|
*total = satisfies_constraint_IsB (x) ? 0 : cost2;
|
6016 |
|
|
else if (outer_code == AND || outer_code == IOR || outer_code == XOR
|
6017 |
|
|
|| outer_code == MINUS)
|
6018 |
|
|
*total = satisfies_constraint_Is5 (x) ? 0 : cost2;
|
6019 |
|
|
else if (GET_RTX_CLASS (outer_code) == RTX_COMPARE
|
6020 |
|
|
|| GET_RTX_CLASS (outer_code) == RTX_COMM_COMPARE)
|
6021 |
|
|
*total = satisfies_constraint_Iu4 (x) ? 0 : cost2;
|
6022 |
|
|
else if (outer_code == ASHIFT || outer_code == ASHIFTRT
|
6023 |
|
|
|| outer_code == LSHIFTRT)
|
6024 |
|
|
*total = satisfies_constraint_Iu5 (x) ? 0 : cost2;
|
6025 |
|
|
else
|
6026 |
|
|
*total = cost2;
|
6027 |
|
|
return true;
|
6028 |
|
|
|
6029 |
|
|
case CONST:
|
6030 |
|
|
case LABEL_REF:
|
6031 |
|
|
case SYMBOL_REF:
|
6032 |
|
|
case CONST_DOUBLE:
|
6033 |
|
|
*total = COSTS_N_INSNS (2);
|
6034 |
|
|
return true;
|
6035 |
|
|
|
6036 |
|
|
case TRUNCATE:
|
6037 |
|
|
/* Recognize a mult_highpart operation. */
|
6038 |
|
|
if ((GET_MODE (x) == HImode || GET_MODE (x) == SImode)
|
6039 |
|
|
&& GET_CODE (XEXP (x, 0)) == LSHIFTRT
|
6040 |
|
|
&& GET_MODE (XEXP (x, 0)) == GET_MODE_2XWIDER_MODE (GET_MODE (x))
|
6041 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
|
6042 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
6043 |
|
|
&& INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (GET_MODE (x)))
|
6044 |
|
|
{
|
6045 |
|
|
rtx mul = XEXP (XEXP (x, 0), 0);
|
6046 |
|
|
rtx op0 = XEXP (mul, 0);
|
6047 |
|
|
rtx op1 = XEXP (mul, 1);
|
6048 |
|
|
enum rtx_code code0 = GET_CODE (op0);
|
6049 |
|
|
enum rtx_code code1 = GET_CODE (op1);
|
6050 |
|
|
|
6051 |
|
|
if ((code0 == code1
|
6052 |
|
|
&& (code0 == SIGN_EXTEND || code0 == ZERO_EXTEND))
|
6053 |
|
|
|| (GET_MODE (x) == HImode
|
6054 |
|
|
&& code0 == ZERO_EXTEND && code1 == SIGN_EXTEND))
|
6055 |
|
|
{
|
6056 |
|
|
if (GET_MODE (x) == HImode)
|
6057 |
|
|
*total = COSTS_N_INSNS (2);
|
6058 |
|
|
else
|
6059 |
|
|
*total = COSTS_N_INSNS (12);
|
6060 |
|
|
*total += rtx_cost (XEXP (op0, 0), code0, 0, speed);
|
6061 |
|
|
*total += rtx_cost (XEXP (op1, 0), code1, 0, speed);
|
6062 |
|
|
return true;
|
6063 |
|
|
}
|
6064 |
|
|
}
|
6065 |
|
|
return false;
|
6066 |
|
|
|
6067 |
|
|
case ASHIFT:
|
6068 |
|
|
case ASHIFTRT:
|
6069 |
|
|
case LSHIFTRT:
|
6070 |
|
|
if (GET_MODE (x) == DImode)
|
6071 |
|
|
*total = COSTS_N_INSNS (CONSTANT_P (XEXP (x, 1)) ? 4 : 15);
|
6072 |
|
|
else
|
6073 |
|
|
*total = COSTS_N_INSNS (1);
|
6074 |
|
|
return false;
|
6075 |
|
|
|
6076 |
|
|
case PLUS:
|
6077 |
|
|
case MINUS:
|
6078 |
|
|
*total = COSTS_N_INSNS (1);
|
6079 |
|
|
op0 = code == PLUS ? XEXP (x, 0) : XEXP (x, 1);
|
6080 |
|
|
op1 = code == PLUS ? XEXP (x, 1) : XEXP (x, 0);
|
6081 |
|
|
if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
|
6082 |
|
|
&& INTEGRAL_MODE_P (GET_MODE (x))
|
6083 |
|
|
&& GET_CODE (op0) == MULT
|
6084 |
|
|
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
6085 |
|
|
&& (INTVAL (XEXP (op0, 1)) == 2
|
6086 |
|
|
|| INTVAL (XEXP (op0, 1)) == 4
|
6087 |
|
|
|| (code == PLUS && INTVAL (XEXP (op0, 1)) == 8)))
|
6088 |
|
|
{
|
6089 |
|
|
*total += rtx_cost (XEXP (op0, 0), ASHIFT, 0, speed);
|
6090 |
|
|
*total += rtx_cost (op1, (enum rtx_code) code, 1, speed);
|
6091 |
|
|
return true;
|
6092 |
|
|
}
|
6093 |
|
|
return false;
|
6094 |
|
|
|
6095 |
|
|
case MULT:
|
6096 |
|
|
op0 = XEXP (x, 0);
|
6097 |
|
|
op1 = XEXP (x, 1);
|
6098 |
|
|
if (GET_MODE (x) == DFmode)
|
6099 |
|
|
{
|
6100 |
|
|
if (TARGET_FP)
|
6101 |
|
|
*total = COSTS_N_INSNS (speed ? 10 : 1);
|
6102 |
|
|
else
|
6103 |
|
|
*total = COSTS_N_INSNS (speed ? 200 : 4);
|
6104 |
|
|
}
|
6105 |
|
|
else if (GET_MODE (x) == SFmode)
|
6106 |
|
|
{
|
6107 |
|
|
if (TARGET_FP)
|
6108 |
|
|
*total = COSTS_N_INSNS (speed ? 4 : 1);
|
6109 |
|
|
else
|
6110 |
|
|
*total = COSTS_N_INSNS (speed ? 100 : 4);
|
6111 |
|
|
}
|
6112 |
|
|
else if (GET_MODE (x) == DImode)
|
6113 |
|
|
{
|
6114 |
|
|
if (TARGET_MPY32
|
6115 |
|
|
&& GET_CODE (op0) == GET_CODE (op1)
|
6116 |
|
|
&& (GET_CODE (op0) == ZERO_EXTEND
|
6117 |
|
|
|| GET_CODE (op0) == SIGN_EXTEND))
|
6118 |
|
|
{
|
6119 |
|
|
*total = COSTS_N_INSNS (speed ? 2 : 1);
|
6120 |
|
|
op0 = XEXP (op0, 0);
|
6121 |
|
|
op1 = XEXP (op1, 0);
|
6122 |
|
|
}
|
6123 |
|
|
else
|
6124 |
|
|
/* Maybe improve this laster. */
|
6125 |
|
|
*total = COSTS_N_INSNS (20);
|
6126 |
|
|
}
|
6127 |
|
|
else if (GET_MODE (x) == SImode)
|
6128 |
|
|
{
|
6129 |
|
|
if (((GET_CODE (op0) == ZERO_EXTEND
|
6130 |
|
|
|| GET_CODE (op0) == SIGN_EXTEND
|
6131 |
|
|
|| shift_p (op0, LSHIFTRT, 16))
|
6132 |
|
|
&& (GET_CODE (op1) == SIGN_EXTEND
|
6133 |
|
|
|| GET_CODE (op1) == ZERO_EXTEND
|
6134 |
|
|
|| scst5_operand (op1, SImode)
|
6135 |
|
|
|| shift_p (op1, ASHIFTRT, 16)
|
6136 |
|
|
|| shift_p (op1, LSHIFTRT, 16)))
|
6137 |
|
|
|| (shift_p (op0, ASHIFTRT, 16)
|
6138 |
|
|
&& (GET_CODE (op1) == SIGN_EXTEND
|
6139 |
|
|
|| shift_p (op1, ASHIFTRT, 16))))
|
6140 |
|
|
{
|
6141 |
|
|
*total = COSTS_N_INSNS (speed ? 2 : 1);
|
6142 |
|
|
op0 = XEXP (op0, 0);
|
6143 |
|
|
if (scst5_operand (op1, SImode))
|
6144 |
|
|
op1 = NULL_RTX;
|
6145 |
|
|
else
|
6146 |
|
|
op1 = XEXP (op1, 0);
|
6147 |
|
|
}
|
6148 |
|
|
else if (!speed)
|
6149 |
|
|
*total = COSTS_N_INSNS (1);
|
6150 |
|
|
else if (TARGET_MPY32)
|
6151 |
|
|
*total = COSTS_N_INSNS (4);
|
6152 |
|
|
else
|
6153 |
|
|
*total = COSTS_N_INSNS (6);
|
6154 |
|
|
}
|
6155 |
|
|
else if (GET_MODE (x) == HImode)
|
6156 |
|
|
*total = COSTS_N_INSNS (speed ? 2 : 1);
|
6157 |
|
|
|
6158 |
|
|
if (GET_CODE (op0) != REG
|
6159 |
|
|
&& (GET_CODE (op0) != SUBREG || GET_CODE (SUBREG_REG (op0)) != REG))
|
6160 |
|
|
*total += rtx_cost (op0, MULT, 0, speed);
|
6161 |
|
|
if (op1 && GET_CODE (op1) != REG
|
6162 |
|
|
&& (GET_CODE (op1) != SUBREG || GET_CODE (SUBREG_REG (op1)) != REG))
|
6163 |
|
|
*total += rtx_cost (op1, MULT, 1, speed);
|
6164 |
|
|
return true;
|
6165 |
|
|
|
6166 |
|
|
case UDIV:
|
6167 |
|
|
case DIV:
|
6168 |
|
|
/* This is a bit random; assuming on average there'll be 16 leading
|
6169 |
|
|
zeros. FIXME: estimate better for constant dividends. */
|
6170 |
|
|
*total = COSTS_N_INSNS (6 + 3 * 16);
|
6171 |
|
|
return false;
|
6172 |
|
|
|
6173 |
|
|
case IF_THEN_ELSE:
|
6174 |
|
|
/* Recognize the cmp_and/ior patterns. */
|
6175 |
|
|
op0 = XEXP (x, 0);
|
6176 |
|
|
if ((GET_CODE (op0) == EQ || GET_CODE (op0) == NE)
|
6177 |
|
|
&& REG_P (XEXP (op0, 0))
|
6178 |
|
|
&& XEXP (op0, 1) == const0_rtx
|
6179 |
|
|
&& rtx_equal_p (XEXP (x, 1), XEXP (op0, 0)))
|
6180 |
|
|
{
|
6181 |
|
|
*total = rtx_cost (XEXP (x, 1), (enum rtx_code) outer_code,
|
6182 |
|
|
opno, speed);
|
6183 |
|
|
return false;
|
6184 |
|
|
}
|
6185 |
|
|
return false;
|
6186 |
|
|
|
6187 |
|
|
default:
|
6188 |
|
|
return false;
|
6189 |
|
|
}
|
6190 |
|
|
}
|
6191 |
|
|
|
6192 |
|
|
/* Implements target hook vector_mode_supported_p. */
|
6193 |
|
|
|
6194 |
|
|
static bool
|
6195 |
|
|
c6x_vector_mode_supported_p (enum machine_mode mode)
|
6196 |
|
|
{
|
6197 |
|
|
switch (mode)
|
6198 |
|
|
{
|
6199 |
|
|
case V2HImode:
|
6200 |
|
|
case V4QImode:
|
6201 |
|
|
case V2SImode:
|
6202 |
|
|
case V4HImode:
|
6203 |
|
|
case V8QImode:
|
6204 |
|
|
return true;
|
6205 |
|
|
default:
|
6206 |
|
|
return false;
|
6207 |
|
|
}
|
6208 |
|
|
}
|
6209 |
|
|
|
6210 |
|
|
/* Implements TARGET_VECTORIZE_PREFERRED_SIMD_MODE. */
|
6211 |
|
|
static enum machine_mode
|
6212 |
|
|
c6x_preferred_simd_mode (enum machine_mode mode)
|
6213 |
|
|
{
|
6214 |
|
|
switch (mode)
|
6215 |
|
|
{
|
6216 |
|
|
case HImode:
|
6217 |
|
|
return V2HImode;
|
6218 |
|
|
case QImode:
|
6219 |
|
|
return V4QImode;
|
6220 |
|
|
|
6221 |
|
|
default:
|
6222 |
|
|
return word_mode;
|
6223 |
|
|
}
|
6224 |
|
|
}
|
6225 |
|
|
|
6226 |
|
|
/* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
|
6227 |
|
|
|
6228 |
|
|
static bool
|
6229 |
|
|
c6x_scalar_mode_supported_p (enum machine_mode mode)
|
6230 |
|
|
{
|
6231 |
|
|
if (ALL_FIXED_POINT_MODE_P (mode)
|
6232 |
|
|
&& GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD)
|
6233 |
|
|
return true;
|
6234 |
|
|
|
6235 |
|
|
return default_scalar_mode_supported_p (mode);
|
6236 |
|
|
}
|
6237 |
|
|
|
6238 |
|
|
/* Output a reference from a function exception table to the type_info
|
6239 |
|
|
object X. Output these via a special assembly directive. */
|
6240 |
|
|
|
6241 |
|
|
static bool
|
6242 |
|
|
c6x_output_ttype (rtx x)
|
6243 |
|
|
{
|
6244 |
|
|
/* Use special relocations for symbol references. */
|
6245 |
|
|
if (GET_CODE (x) != CONST_INT)
|
6246 |
|
|
fputs ("\t.ehtype\t", asm_out_file);
|
6247 |
|
|
else
|
6248 |
|
|
fputs ("\t.word\t", asm_out_file);
|
6249 |
|
|
output_addr_const (asm_out_file, x);
|
6250 |
|
|
fputc ('\n', asm_out_file);
|
6251 |
|
|
|
6252 |
|
|
return TRUE;
|
6253 |
|
|
}
|
6254 |
|
|
|
6255 |
|
|
/* Modify the return address of the current function. */
|
6256 |
|
|
|
6257 |
|
|
void
|
6258 |
|
|
c6x_set_return_address (rtx source, rtx scratch)
|
6259 |
|
|
{
|
6260 |
|
|
struct c6x_frame frame;
|
6261 |
|
|
rtx addr;
|
6262 |
|
|
HOST_WIDE_INT offset;
|
6263 |
|
|
|
6264 |
|
|
c6x_compute_frame_layout (&frame);
|
6265 |
|
|
if (! c6x_save_reg (RETURN_ADDR_REGNO))
|
6266 |
|
|
emit_move_insn (gen_rtx_REG (Pmode, RETURN_ADDR_REGNO), source);
|
6267 |
|
|
else
|
6268 |
|
|
{
|
6269 |
|
|
|
6270 |
|
|
if (frame_pointer_needed)
|
6271 |
|
|
{
|
6272 |
|
|
addr = hard_frame_pointer_rtx;
|
6273 |
|
|
offset = frame.b3_offset;
|
6274 |
|
|
}
|
6275 |
|
|
else
|
6276 |
|
|
{
|
6277 |
|
|
addr = stack_pointer_rtx;
|
6278 |
|
|
offset = frame.to_allocate - frame.b3_offset;
|
6279 |
|
|
}
|
6280 |
|
|
|
6281 |
|
|
/* TODO: Use base+offset loads where possible. */
|
6282 |
|
|
if (offset)
|
6283 |
|
|
{
|
6284 |
|
|
HOST_WIDE_INT low = trunc_int_for_mode (offset, HImode);
|
6285 |
|
|
|
6286 |
|
|
emit_insn (gen_movsi_high (scratch, GEN_INT (low)));
|
6287 |
|
|
if (low != offset)
|
6288 |
|
|
emit_insn (gen_movsi_lo_sum (scratch, scratch, GEN_INT(offset)));
|
6289 |
|
|
emit_insn (gen_addsi3 (scratch, addr, scratch));
|
6290 |
|
|
addr = scratch;
|
6291 |
|
|
}
|
6292 |
|
|
|
6293 |
|
|
emit_move_insn (gen_frame_mem (Pmode, addr), source);
|
6294 |
|
|
}
|
6295 |
|
|
}
|
6296 |
|
|
|
6297 |
|
|
/* We save pairs of registers using a DImode store. Describe the component
|
6298 |
|
|
registers for DWARF generation code. */
|
6299 |
|
|
|
6300 |
|
|
static rtx
|
6301 |
|
|
c6x_dwarf_register_span (rtx rtl)
|
6302 |
|
|
{
|
6303 |
|
|
unsigned regno;
|
6304 |
|
|
unsigned real_regno;
|
6305 |
|
|
int nregs;
|
6306 |
|
|
int i;
|
6307 |
|
|
rtx p;
|
6308 |
|
|
|
6309 |
|
|
regno = REGNO (rtl);
|
6310 |
|
|
nregs = HARD_REGNO_NREGS (regno, GET_MODE (rtl));
|
6311 |
|
|
if (nregs == 1)
|
6312 |
|
|
return NULL_RTX;
|
6313 |
|
|
|
6314 |
|
|
p = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc(nregs));
|
6315 |
|
|
for (i = 0; i < nregs; i++)
|
6316 |
|
|
{
|
6317 |
|
|
if (TARGET_BIG_ENDIAN)
|
6318 |
|
|
real_regno = regno + nregs - (i + 1);
|
6319 |
|
|
else
|
6320 |
|
|
real_regno = regno + i;
|
6321 |
|
|
|
6322 |
|
|
XVECEXP (p, 0, i) = gen_rtx_REG (SImode, real_regno);
|
6323 |
|
|
}
|
6324 |
|
|
|
6325 |
|
|
return p;
|
6326 |
|
|
}
|
6327 |
|
|
|
6328 |
|
|
/* Codes for all the C6X builtins. */
|
6329 |
|
|
enum c6x_builtins
|
6330 |
|
|
{
|
6331 |
|
|
C6X_BUILTIN_SADD,
|
6332 |
|
|
C6X_BUILTIN_SSUB,
|
6333 |
|
|
C6X_BUILTIN_ADD2,
|
6334 |
|
|
C6X_BUILTIN_SUB2,
|
6335 |
|
|
C6X_BUILTIN_ADD4,
|
6336 |
|
|
C6X_BUILTIN_SUB4,
|
6337 |
|
|
C6X_BUILTIN_SADD2,
|
6338 |
|
|
C6X_BUILTIN_SSUB2,
|
6339 |
|
|
C6X_BUILTIN_SADDU4,
|
6340 |
|
|
|
6341 |
|
|
C6X_BUILTIN_SMPY,
|
6342 |
|
|
C6X_BUILTIN_SMPYH,
|
6343 |
|
|
C6X_BUILTIN_SMPYHL,
|
6344 |
|
|
C6X_BUILTIN_SMPYLH,
|
6345 |
|
|
C6X_BUILTIN_MPY2,
|
6346 |
|
|
C6X_BUILTIN_SMPY2,
|
6347 |
|
|
|
6348 |
|
|
C6X_BUILTIN_CLRR,
|
6349 |
|
|
C6X_BUILTIN_EXTR,
|
6350 |
|
|
C6X_BUILTIN_EXTRU,
|
6351 |
|
|
|
6352 |
|
|
C6X_BUILTIN_SSHL,
|
6353 |
|
|
C6X_BUILTIN_SUBC,
|
6354 |
|
|
C6X_BUILTIN_ABS,
|
6355 |
|
|
C6X_BUILTIN_ABS2,
|
6356 |
|
|
C6X_BUILTIN_AVG2,
|
6357 |
|
|
C6X_BUILTIN_AVGU4,
|
6358 |
|
|
|
6359 |
|
|
C6X_BUILTIN_MAX
|
6360 |
|
|
};
|
6361 |
|
|
|
6362 |
|
|
|
6363 |
|
|
static GTY(()) tree c6x_builtin_decls[C6X_BUILTIN_MAX];
|
6364 |
|
|
|
6365 |
|
|
/* Return the C6X builtin for CODE. */
|
6366 |
|
|
static tree
|
6367 |
|
|
c6x_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
|
6368 |
|
|
{
|
6369 |
|
|
if (code >= C6X_BUILTIN_MAX)
|
6370 |
|
|
return error_mark_node;
|
6371 |
|
|
|
6372 |
|
|
return c6x_builtin_decls[code];
|
6373 |
|
|
}
|
6374 |
|
|
|
6375 |
|
|
#define def_builtin(NAME, TYPE, CODE) \
|
6376 |
|
|
do { \
|
6377 |
|
|
tree bdecl; \
|
6378 |
|
|
bdecl = add_builtin_function ((NAME), (TYPE), (CODE), BUILT_IN_MD, \
|
6379 |
|
|
NULL, NULL_TREE); \
|
6380 |
|
|
c6x_builtin_decls[CODE] = bdecl; \
|
6381 |
|
|
} while (0)
|
6382 |
|
|
|
6383 |
|
|
/* Set up all builtin functions for this target. */
|
6384 |
|
|
static void
|
6385 |
|
|
c6x_init_builtins (void)
|
6386 |
|
|
{
|
6387 |
|
|
tree V4QI_type_node = build_vector_type (unsigned_intQI_type_node, 4);
|
6388 |
|
|
tree V2HI_type_node = build_vector_type (intHI_type_node, 2);
|
6389 |
|
|
tree V2SI_type_node = build_vector_type (intSI_type_node, 2);
|
6390 |
|
|
tree int_ftype_int
|
6391 |
|
|
= build_function_type_list (integer_type_node, integer_type_node,
|
6392 |
|
|
NULL_TREE);
|
6393 |
|
|
tree int_ftype_int_int
|
6394 |
|
|
= build_function_type_list (integer_type_node, integer_type_node,
|
6395 |
|
|
integer_type_node, NULL_TREE);
|
6396 |
|
|
tree v2hi_ftype_v2hi
|
6397 |
|
|
= build_function_type_list (V2HI_type_node, V2HI_type_node, NULL_TREE);
|
6398 |
|
|
tree v4qi_ftype_v4qi_v4qi
|
6399 |
|
|
= build_function_type_list (V4QI_type_node, V4QI_type_node,
|
6400 |
|
|
V4QI_type_node, NULL_TREE);
|
6401 |
|
|
tree v2hi_ftype_v2hi_v2hi
|
6402 |
|
|
= build_function_type_list (V2HI_type_node, V2HI_type_node,
|
6403 |
|
|
V2HI_type_node, NULL_TREE);
|
6404 |
|
|
tree v2si_ftype_v2hi_v2hi
|
6405 |
|
|
= build_function_type_list (V2SI_type_node, V2HI_type_node,
|
6406 |
|
|
V2HI_type_node, NULL_TREE);
|
6407 |
|
|
|
6408 |
|
|
def_builtin ("__builtin_c6x_sadd", int_ftype_int_int,
|
6409 |
|
|
C6X_BUILTIN_SADD);
|
6410 |
|
|
def_builtin ("__builtin_c6x_ssub", int_ftype_int_int,
|
6411 |
|
|
C6X_BUILTIN_SSUB);
|
6412 |
|
|
def_builtin ("__builtin_c6x_add2", v2hi_ftype_v2hi_v2hi,
|
6413 |
|
|
C6X_BUILTIN_ADD2);
|
6414 |
|
|
def_builtin ("__builtin_c6x_sub2", v2hi_ftype_v2hi_v2hi,
|
6415 |
|
|
C6X_BUILTIN_SUB2);
|
6416 |
|
|
def_builtin ("__builtin_c6x_add4", v4qi_ftype_v4qi_v4qi,
|
6417 |
|
|
C6X_BUILTIN_ADD4);
|
6418 |
|
|
def_builtin ("__builtin_c6x_sub4", v4qi_ftype_v4qi_v4qi,
|
6419 |
|
|
C6X_BUILTIN_SUB4);
|
6420 |
|
|
def_builtin ("__builtin_c6x_mpy2", v2si_ftype_v2hi_v2hi,
|
6421 |
|
|
C6X_BUILTIN_MPY2);
|
6422 |
|
|
def_builtin ("__builtin_c6x_sadd2", v2hi_ftype_v2hi_v2hi,
|
6423 |
|
|
C6X_BUILTIN_SADD2);
|
6424 |
|
|
def_builtin ("__builtin_c6x_ssub2", v2hi_ftype_v2hi_v2hi,
|
6425 |
|
|
C6X_BUILTIN_SSUB2);
|
6426 |
|
|
def_builtin ("__builtin_c6x_saddu4", v4qi_ftype_v4qi_v4qi,
|
6427 |
|
|
C6X_BUILTIN_SADDU4);
|
6428 |
|
|
def_builtin ("__builtin_c6x_smpy2", v2si_ftype_v2hi_v2hi,
|
6429 |
|
|
C6X_BUILTIN_SMPY2);
|
6430 |
|
|
|
6431 |
|
|
def_builtin ("__builtin_c6x_smpy", int_ftype_int_int,
|
6432 |
|
|
C6X_BUILTIN_SMPY);
|
6433 |
|
|
def_builtin ("__builtin_c6x_smpyh", int_ftype_int_int,
|
6434 |
|
|
C6X_BUILTIN_SMPYH);
|
6435 |
|
|
def_builtin ("__builtin_c6x_smpyhl", int_ftype_int_int,
|
6436 |
|
|
C6X_BUILTIN_SMPYHL);
|
6437 |
|
|
def_builtin ("__builtin_c6x_smpylh", int_ftype_int_int,
|
6438 |
|
|
C6X_BUILTIN_SMPYLH);
|
6439 |
|
|
|
6440 |
|
|
def_builtin ("__builtin_c6x_sshl", int_ftype_int_int,
|
6441 |
|
|
C6X_BUILTIN_SSHL);
|
6442 |
|
|
def_builtin ("__builtin_c6x_subc", int_ftype_int_int,
|
6443 |
|
|
C6X_BUILTIN_SUBC);
|
6444 |
|
|
|
6445 |
|
|
def_builtin ("__builtin_c6x_avg2", v2hi_ftype_v2hi_v2hi,
|
6446 |
|
|
C6X_BUILTIN_AVG2);
|
6447 |
|
|
def_builtin ("__builtin_c6x_avgu4", v4qi_ftype_v4qi_v4qi,
|
6448 |
|
|
C6X_BUILTIN_AVGU4);
|
6449 |
|
|
|
6450 |
|
|
def_builtin ("__builtin_c6x_clrr", int_ftype_int_int,
|
6451 |
|
|
C6X_BUILTIN_CLRR);
|
6452 |
|
|
def_builtin ("__builtin_c6x_extr", int_ftype_int_int,
|
6453 |
|
|
C6X_BUILTIN_EXTR);
|
6454 |
|
|
def_builtin ("__builtin_c6x_extru", int_ftype_int_int,
|
6455 |
|
|
C6X_BUILTIN_EXTRU);
|
6456 |
|
|
|
6457 |
|
|
def_builtin ("__builtin_c6x_abs", int_ftype_int, C6X_BUILTIN_ABS);
|
6458 |
|
|
def_builtin ("__builtin_c6x_abs2", v2hi_ftype_v2hi, C6X_BUILTIN_ABS2);
|
6459 |
|
|
}
|
6460 |
|
|
|
6461 |
|
|
|
6462 |
|
|
struct builtin_description
|
6463 |
|
|
{
|
6464 |
|
|
const enum insn_code icode;
|
6465 |
|
|
const char *const name;
|
6466 |
|
|
const enum c6x_builtins code;
|
6467 |
|
|
};
|
6468 |
|
|
|
6469 |
|
|
static const struct builtin_description bdesc_2arg[] =
|
6470 |
|
|
{
|
6471 |
|
|
{ CODE_FOR_saddsi3, "__builtin_c6x_sadd", C6X_BUILTIN_SADD },
|
6472 |
|
|
{ CODE_FOR_ssubsi3, "__builtin_c6x_ssub", C6X_BUILTIN_SSUB },
|
6473 |
|
|
{ CODE_FOR_addv2hi3, "__builtin_c6x_add2", C6X_BUILTIN_ADD2 },
|
6474 |
|
|
{ CODE_FOR_subv2hi3, "__builtin_c6x_sub2", C6X_BUILTIN_SUB2 },
|
6475 |
|
|
{ CODE_FOR_addv4qi3, "__builtin_c6x_add4", C6X_BUILTIN_ADD4 },
|
6476 |
|
|
{ CODE_FOR_subv4qi3, "__builtin_c6x_sub4", C6X_BUILTIN_SUB4 },
|
6477 |
|
|
{ CODE_FOR_ss_addv2hi3, "__builtin_c6x_sadd2", C6X_BUILTIN_SADD2 },
|
6478 |
|
|
{ CODE_FOR_ss_subv2hi3, "__builtin_c6x_ssub2", C6X_BUILTIN_SSUB2 },
|
6479 |
|
|
{ CODE_FOR_us_addv4qi3, "__builtin_c6x_saddu4", C6X_BUILTIN_SADDU4 },
|
6480 |
|
|
|
6481 |
|
|
{ CODE_FOR_subcsi3, "__builtin_c6x_subc", C6X_BUILTIN_SUBC },
|
6482 |
|
|
{ CODE_FOR_ss_ashlsi3, "__builtin_c6x_sshl", C6X_BUILTIN_SSHL },
|
6483 |
|
|
|
6484 |
|
|
{ CODE_FOR_avgv2hi3, "__builtin_c6x_avg2", C6X_BUILTIN_AVG2 },
|
6485 |
|
|
{ CODE_FOR_uavgv4qi3, "__builtin_c6x_avgu4", C6X_BUILTIN_AVGU4 },
|
6486 |
|
|
|
6487 |
|
|
{ CODE_FOR_mulhqsq3, "__builtin_c6x_smpy", C6X_BUILTIN_SMPY },
|
6488 |
|
|
{ CODE_FOR_mulhqsq3_hh, "__builtin_c6x_smpyh", C6X_BUILTIN_SMPYH },
|
6489 |
|
|
{ CODE_FOR_mulhqsq3_lh, "__builtin_c6x_smpylh", C6X_BUILTIN_SMPYLH },
|
6490 |
|
|
{ CODE_FOR_mulhqsq3_hl, "__builtin_c6x_smpyhl", C6X_BUILTIN_SMPYHL },
|
6491 |
|
|
|
6492 |
|
|
{ CODE_FOR_mulv2hqv2sq3, "__builtin_c6x_smpy2", C6X_BUILTIN_SMPY2 },
|
6493 |
|
|
|
6494 |
|
|
{ CODE_FOR_clrr, "__builtin_c6x_clrr", C6X_BUILTIN_CLRR },
|
6495 |
|
|
{ CODE_FOR_extr, "__builtin_c6x_extr", C6X_BUILTIN_EXTR },
|
6496 |
|
|
{ CODE_FOR_extru, "__builtin_c6x_extru", C6X_BUILTIN_EXTRU }
|
6497 |
|
|
};
|
6498 |
|
|
|
6499 |
|
|
static const struct builtin_description bdesc_1arg[] =
|
6500 |
|
|
{
|
6501 |
|
|
{ CODE_FOR_ssabssi2, "__builtin_c6x_abs", C6X_BUILTIN_ABS },
|
6502 |
|
|
{ CODE_FOR_ssabsv2hi2, "__builtin_c6x_abs2", C6X_BUILTIN_ABS2 }
|
6503 |
|
|
};
|
6504 |
|
|
|
6505 |
|
|
/* Errors in the source file can cause expand_expr to return const0_rtx
|
6506 |
|
|
where we expect a vector. To avoid crashing, use one of the vector
|
6507 |
|
|
clear instructions. */
|
6508 |
|
|
static rtx
|
6509 |
|
|
safe_vector_operand (rtx x, enum machine_mode mode)
|
6510 |
|
|
{
|
6511 |
|
|
if (x != const0_rtx)
|
6512 |
|
|
return x;
|
6513 |
|
|
x = gen_reg_rtx (SImode);
|
6514 |
|
|
|
6515 |
|
|
emit_insn (gen_movsi (x, CONST0_RTX (SImode)));
|
6516 |
|
|
return gen_lowpart (mode, x);
|
6517 |
|
|
}
|
6518 |
|
|
|
6519 |
|
|
/* Subroutine of c6x_expand_builtin to take care of binop insns. MACFLAG is -1
|
6520 |
|
|
if this is a normal binary op, or one of the MACFLAG_xxx constants. */
|
6521 |
|
|
|
6522 |
|
|
static rtx
|
6523 |
|
|
c6x_expand_binop_builtin (enum insn_code icode, tree exp, rtx target,
|
6524 |
|
|
bool match_op)
|
6525 |
|
|
{
|
6526 |
|
|
int offs = match_op ? 1 : 0;
|
6527 |
|
|
rtx pat;
|
6528 |
|
|
tree arg0 = CALL_EXPR_ARG (exp, 0);
|
6529 |
|
|
tree arg1 = CALL_EXPR_ARG (exp, 1);
|
6530 |
|
|
rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
|
6531 |
|
|
rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, EXPAND_NORMAL);
|
6532 |
|
|
enum machine_mode op0mode = GET_MODE (op0);
|
6533 |
|
|
enum machine_mode op1mode = GET_MODE (op1);
|
6534 |
|
|
enum machine_mode tmode = insn_data[icode].operand[0].mode;
|
6535 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[1 + offs].mode;
|
6536 |
|
|
enum machine_mode mode1 = insn_data[icode].operand[2 + offs].mode;
|
6537 |
|
|
rtx ret = target;
|
6538 |
|
|
|
6539 |
|
|
if (VECTOR_MODE_P (mode0))
|
6540 |
|
|
op0 = safe_vector_operand (op0, mode0);
|
6541 |
|
|
if (VECTOR_MODE_P (mode1))
|
6542 |
|
|
op1 = safe_vector_operand (op1, mode1);
|
6543 |
|
|
|
6544 |
|
|
if (! target
|
6545 |
|
|
|| GET_MODE (target) != tmode
|
6546 |
|
|
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
|
6547 |
|
|
{
|
6548 |
|
|
if (tmode == SQmode || tmode == V2SQmode)
|
6549 |
|
|
{
|
6550 |
|
|
ret = gen_reg_rtx (tmode == SQmode ? SImode : V2SImode);
|
6551 |
|
|
target = gen_lowpart (tmode, ret);
|
6552 |
|
|
}
|
6553 |
|
|
else
|
6554 |
|
|
target = gen_reg_rtx (tmode);
|
6555 |
|
|
}
|
6556 |
|
|
|
6557 |
|
|
if ((op0mode == V2HImode || op0mode == SImode || op0mode == VOIDmode)
|
6558 |
|
|
&& (mode0 == V2HQmode || mode0 == HQmode || mode0 == SQmode))
|
6559 |
|
|
{
|
6560 |
|
|
op0mode = mode0;
|
6561 |
|
|
op0 = gen_lowpart (mode0, op0);
|
6562 |
|
|
}
|
6563 |
|
|
if ((op1mode == V2HImode || op1mode == SImode || op1mode == VOIDmode)
|
6564 |
|
|
&& (mode1 == V2HQmode || mode1 == HQmode || mode1 == SQmode))
|
6565 |
|
|
{
|
6566 |
|
|
op1mode = mode1;
|
6567 |
|
|
op1 = gen_lowpart (mode1, op1);
|
6568 |
|
|
}
|
6569 |
|
|
/* In case the insn wants input operands in modes different from
|
6570 |
|
|
the result, abort. */
|
6571 |
|
|
gcc_assert ((op0mode == mode0 || op0mode == VOIDmode)
|
6572 |
|
|
&& (op1mode == mode1 || op1mode == VOIDmode));
|
6573 |
|
|
|
6574 |
|
|
if (! (*insn_data[icode].operand[1 + offs].predicate) (op0, mode0))
|
6575 |
|
|
op0 = copy_to_mode_reg (mode0, op0);
|
6576 |
|
|
if (! (*insn_data[icode].operand[2 + offs].predicate) (op1, mode1))
|
6577 |
|
|
op1 = copy_to_mode_reg (mode1, op1);
|
6578 |
|
|
|
6579 |
|
|
if (match_op)
|
6580 |
|
|
pat = GEN_FCN (icode) (target, target, op0, op1);
|
6581 |
|
|
else
|
6582 |
|
|
pat = GEN_FCN (icode) (target, op0, op1);
|
6583 |
|
|
|
6584 |
|
|
if (! pat)
|
6585 |
|
|
return 0;
|
6586 |
|
|
|
6587 |
|
|
emit_insn (pat);
|
6588 |
|
|
|
6589 |
|
|
return ret;
|
6590 |
|
|
}
|
6591 |
|
|
|
6592 |
|
|
/* Subroutine of c6x_expand_builtin to take care of unop insns. */
|
6593 |
|
|
|
6594 |
|
|
static rtx
|
6595 |
|
|
c6x_expand_unop_builtin (enum insn_code icode, tree exp,
|
6596 |
|
|
rtx target)
|
6597 |
|
|
{
|
6598 |
|
|
rtx pat;
|
6599 |
|
|
tree arg0 = CALL_EXPR_ARG (exp, 0);
|
6600 |
|
|
rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, EXPAND_NORMAL);
|
6601 |
|
|
enum machine_mode op0mode = GET_MODE (op0);
|
6602 |
|
|
enum machine_mode tmode = insn_data[icode].operand[0].mode;
|
6603 |
|
|
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
|
6604 |
|
|
|
6605 |
|
|
if (! target
|
6606 |
|
|
|| GET_MODE (target) != tmode
|
6607 |
|
|
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
|
6608 |
|
|
target = gen_reg_rtx (tmode);
|
6609 |
|
|
|
6610 |
|
|
if (VECTOR_MODE_P (mode0))
|
6611 |
|
|
op0 = safe_vector_operand (op0, mode0);
|
6612 |
|
|
|
6613 |
|
|
if (op0mode == SImode && mode0 == HImode)
|
6614 |
|
|
{
|
6615 |
|
|
op0mode = HImode;
|
6616 |
|
|
op0 = gen_lowpart (HImode, op0);
|
6617 |
|
|
}
|
6618 |
|
|
gcc_assert (op0mode == mode0 || op0mode == VOIDmode);
|
6619 |
|
|
|
6620 |
|
|
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
|
6621 |
|
|
op0 = copy_to_mode_reg (mode0, op0);
|
6622 |
|
|
|
6623 |
|
|
pat = GEN_FCN (icode) (target, op0);
|
6624 |
|
|
if (! pat)
|
6625 |
|
|
return 0;
|
6626 |
|
|
emit_insn (pat);
|
6627 |
|
|
return target;
|
6628 |
|
|
}
|
6629 |
|
|
|
6630 |
|
|
/* Expand an expression EXP that calls a built-in function,
|
6631 |
|
|
with result going to TARGET if that's convenient
|
6632 |
|
|
(and in mode MODE if that's convenient).
|
6633 |
|
|
SUBTARGET may be used as the target for computing one of EXP's operands.
|
6634 |
|
|
IGNORE is nonzero if the value is to be ignored. */
|
6635 |
|
|
|
6636 |
|
|
static rtx
|
6637 |
|
|
c6x_expand_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
|
6638 |
|
|
rtx subtarget ATTRIBUTE_UNUSED,
|
6639 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
6640 |
|
|
int ignore ATTRIBUTE_UNUSED)
|
6641 |
|
|
{
|
6642 |
|
|
size_t i;
|
6643 |
|
|
const struct builtin_description *d;
|
6644 |
|
|
tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
|
6645 |
|
|
unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
|
6646 |
|
|
|
6647 |
|
|
for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
|
6648 |
|
|
if (d->code == fcode)
|
6649 |
|
|
return c6x_expand_binop_builtin (d->icode, exp, target,
|
6650 |
|
|
fcode == C6X_BUILTIN_CLRR);
|
6651 |
|
|
|
6652 |
|
|
for (i = 0, d = bdesc_1arg; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
|
6653 |
|
|
if (d->code == fcode)
|
6654 |
|
|
return c6x_expand_unop_builtin (d->icode, exp, target);
|
6655 |
|
|
|
6656 |
|
|
gcc_unreachable ();
|
6657 |
|
|
}
|
6658 |
|
|
|
6659 |
|
|
/* Target unwind frame info is generated from dwarf CFI directives, so
|
6660 |
|
|
always output dwarf2 unwind info. */
|
6661 |
|
|
|
6662 |
|
|
static enum unwind_info_type
|
6663 |
|
|
c6x_debug_unwind_info (void)
|
6664 |
|
|
{
|
6665 |
|
|
if (flag_unwind_tables || flag_exceptions)
|
6666 |
|
|
return UI_DWARF2;
|
6667 |
|
|
|
6668 |
|
|
return default_debug_unwind_info ();
|
6669 |
|
|
}
|
6670 |
|
|
|
6671 |
|
|
/* Target Structure. */
|
6672 |
|
|
|
6673 |
|
|
/* Initialize the GCC target structure. */
|
6674 |
|
|
#undef TARGET_FUNCTION_ARG
|
6675 |
|
|
#define TARGET_FUNCTION_ARG c6x_function_arg
|
6676 |
|
|
#undef TARGET_FUNCTION_ARG_ADVANCE
|
6677 |
|
|
#define TARGET_FUNCTION_ARG_ADVANCE c6x_function_arg_advance
|
6678 |
|
|
#undef TARGET_FUNCTION_ARG_BOUNDARY
|
6679 |
|
|
#define TARGET_FUNCTION_ARG_BOUNDARY c6x_function_arg_boundary
|
6680 |
|
|
#undef TARGET_FUNCTION_ARG_ROUND_BOUNDARY
|
6681 |
|
|
#define TARGET_FUNCTION_ARG_ROUND_BOUNDARY \
|
6682 |
|
|
c6x_function_arg_round_boundary
|
6683 |
|
|
#undef TARGET_FUNCTION_VALUE_REGNO_P
|
6684 |
|
|
#define TARGET_FUNCTION_VALUE_REGNO_P c6x_function_value_regno_p
|
6685 |
|
|
#undef TARGET_FUNCTION_VALUE
|
6686 |
|
|
#define TARGET_FUNCTION_VALUE c6x_function_value
|
6687 |
|
|
#undef TARGET_LIBCALL_VALUE
|
6688 |
|
|
#define TARGET_LIBCALL_VALUE c6x_libcall_value
|
6689 |
|
|
#undef TARGET_RETURN_IN_MEMORY
|
6690 |
|
|
#define TARGET_RETURN_IN_MEMORY c6x_return_in_memory
|
6691 |
|
|
#undef TARGET_RETURN_IN_MSB
|
6692 |
|
|
#define TARGET_RETURN_IN_MSB c6x_return_in_msb
|
6693 |
|
|
#undef TARGET_PASS_BY_REFERENCE
|
6694 |
|
|
#define TARGET_PASS_BY_REFERENCE c6x_pass_by_reference
|
6695 |
|
|
#undef TARGET_CALLEE_COPIES
|
6696 |
|
|
#define TARGET_CALLEE_COPIES c6x_callee_copies
|
6697 |
|
|
#undef TARGET_STRUCT_VALUE_RTX
|
6698 |
|
|
#define TARGET_STRUCT_VALUE_RTX c6x_struct_value_rtx
|
6699 |
|
|
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
|
6700 |
|
|
#define TARGET_FUNCTION_OK_FOR_SIBCALL c6x_function_ok_for_sibcall
|
6701 |
|
|
|
6702 |
|
|
#undef TARGET_ASM_OUTPUT_MI_THUNK
|
6703 |
|
|
#define TARGET_ASM_OUTPUT_MI_THUNK c6x_output_mi_thunk
|
6704 |
|
|
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
|
6705 |
|
|
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK c6x_can_output_mi_thunk
|
6706 |
|
|
|
6707 |
|
|
#undef TARGET_BUILD_BUILTIN_VA_LIST
|
6708 |
|
|
#define TARGET_BUILD_BUILTIN_VA_LIST c6x_build_builtin_va_list
|
6709 |
|
|
|
6710 |
|
|
#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
|
6711 |
|
|
#define TARGET_ASM_TRAMPOLINE_TEMPLATE c6x_asm_trampoline_template
|
6712 |
|
|
#undef TARGET_TRAMPOLINE_INIT
|
6713 |
|
|
#define TARGET_TRAMPOLINE_INIT c6x_initialize_trampoline
|
6714 |
|
|
|
6715 |
|
|
#undef TARGET_LEGITIMATE_CONSTANT_P
|
6716 |
|
|
#define TARGET_LEGITIMATE_CONSTANT_P c6x_legitimate_constant_p
|
6717 |
|
|
#undef TARGET_LEGITIMATE_ADDRESS_P
|
6718 |
|
|
#define TARGET_LEGITIMATE_ADDRESS_P c6x_legitimate_address_p
|
6719 |
|
|
|
6720 |
|
|
#undef TARGET_IN_SMALL_DATA_P
|
6721 |
|
|
#define TARGET_IN_SMALL_DATA_P c6x_in_small_data_p
|
6722 |
|
|
#undef TARGET_ASM_SELECT_RTX_SECTION
|
6723 |
|
|
#define TARGET_ASM_SELECT_RTX_SECTION c6x_select_rtx_section
|
6724 |
|
|
#undef TARGET_ASM_SELECT_SECTION
|
6725 |
|
|
#define TARGET_ASM_SELECT_SECTION c6x_elf_select_section
|
6726 |
|
|
#undef TARGET_ASM_UNIQUE_SECTION
|
6727 |
|
|
#define TARGET_ASM_UNIQUE_SECTION c6x_elf_unique_section
|
6728 |
|
|
#undef TARGET_SECTION_TYPE_FLAGS
|
6729 |
|
|
#define TARGET_SECTION_TYPE_FLAGS c6x_section_type_flags
|
6730 |
|
|
#undef TARGET_HAVE_SRODATA_SECTION
|
6731 |
|
|
#define TARGET_HAVE_SRODATA_SECTION true
|
6732 |
|
|
#undef TARGET_ASM_MERGEABLE_RODATA_PREFIX
|
6733 |
|
|
#define TARGET_ASM_MERGEABLE_RODATA_PREFIX ".const"
|
6734 |
|
|
|
6735 |
|
|
#undef TARGET_OPTION_OVERRIDE
|
6736 |
|
|
#define TARGET_OPTION_OVERRIDE c6x_option_override
|
6737 |
|
|
#undef TARGET_CONDITIONAL_REGISTER_USAGE
|
6738 |
|
|
#define TARGET_CONDITIONAL_REGISTER_USAGE c6x_conditional_register_usage
|
6739 |
|
|
|
6740 |
|
|
#undef TARGET_INIT_LIBFUNCS
|
6741 |
|
|
#define TARGET_INIT_LIBFUNCS c6x_init_libfuncs
|
6742 |
|
|
#undef TARGET_LIBFUNC_GNU_PREFIX
|
6743 |
|
|
#define TARGET_LIBFUNC_GNU_PREFIX true
|
6744 |
|
|
|
6745 |
|
|
#undef TARGET_SCALAR_MODE_SUPPORTED_P
|
6746 |
|
|
#define TARGET_SCALAR_MODE_SUPPORTED_P c6x_scalar_mode_supported_p
|
6747 |
|
|
#undef TARGET_VECTOR_MODE_SUPPORTED_P
|
6748 |
|
|
#define TARGET_VECTOR_MODE_SUPPORTED_P c6x_vector_mode_supported_p
|
6749 |
|
|
#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
|
6750 |
|
|
#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE c6x_preferred_simd_mode
|
6751 |
|
|
|
6752 |
|
|
#undef TARGET_RTX_COSTS
|
6753 |
|
|
#define TARGET_RTX_COSTS c6x_rtx_costs
|
6754 |
|
|
|
6755 |
|
|
#undef TARGET_SCHED_INIT
|
6756 |
|
|
#define TARGET_SCHED_INIT c6x_sched_init
|
6757 |
|
|
#undef TARGET_SCHED_SET_SCHED_FLAGS
|
6758 |
|
|
#define TARGET_SCHED_SET_SCHED_FLAGS c6x_set_sched_flags
|
6759 |
|
|
#undef TARGET_SCHED_ADJUST_COST
|
6760 |
|
|
#define TARGET_SCHED_ADJUST_COST c6x_adjust_cost
|
6761 |
|
|
#undef TARGET_SCHED_ISSUE_RATE
|
6762 |
|
|
#define TARGET_SCHED_ISSUE_RATE c6x_issue_rate
|
6763 |
|
|
#undef TARGET_SCHED_VARIABLE_ISSUE
|
6764 |
|
|
#define TARGET_SCHED_VARIABLE_ISSUE c6x_variable_issue
|
6765 |
|
|
#undef TARGET_SCHED_REORDER
|
6766 |
|
|
#define TARGET_SCHED_REORDER c6x_sched_reorder
|
6767 |
|
|
#undef TARGET_SCHED_REORDER2
|
6768 |
|
|
#define TARGET_SCHED_REORDER2 c6x_sched_reorder2
|
6769 |
|
|
#undef TARGET_SCHED_DFA_NEW_CYCLE
|
6770 |
|
|
#define TARGET_SCHED_DFA_NEW_CYCLE c6x_dfa_new_cycle
|
6771 |
|
|
#undef TARGET_SCHED_DFA_PRE_CYCLE_INSN
|
6772 |
|
|
#define TARGET_SCHED_DFA_PRE_CYCLE_INSN c6x_sched_dfa_pre_cycle_insn
|
6773 |
|
|
#undef TARGET_SCHED_EXPOSED_PIPELINE
|
6774 |
|
|
#define TARGET_SCHED_EXPOSED_PIPELINE true
|
6775 |
|
|
|
6776 |
|
|
#undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
|
6777 |
|
|
#define TARGET_SCHED_ALLOC_SCHED_CONTEXT c6x_alloc_sched_context
|
6778 |
|
|
#undef TARGET_SCHED_INIT_SCHED_CONTEXT
|
6779 |
|
|
#define TARGET_SCHED_INIT_SCHED_CONTEXT c6x_init_sched_context
|
6780 |
|
|
#undef TARGET_SCHED_SET_SCHED_CONTEXT
|
6781 |
|
|
#define TARGET_SCHED_SET_SCHED_CONTEXT c6x_set_sched_context
|
6782 |
|
|
#undef TARGET_SCHED_CLEAR_SCHED_CONTEXT
|
6783 |
|
|
#define TARGET_SCHED_CLEAR_SCHED_CONTEXT c6x_clear_sched_context
|
6784 |
|
|
#undef TARGET_SCHED_FREE_SCHED_CONTEXT
|
6785 |
|
|
#define TARGET_SCHED_FREE_SCHED_CONTEXT c6x_free_sched_context
|
6786 |
|
|
|
6787 |
|
|
#undef TARGET_CAN_ELIMINATE
|
6788 |
|
|
#define TARGET_CAN_ELIMINATE c6x_can_eliminate
|
6789 |
|
|
|
6790 |
|
|
#undef TARGET_PREFERRED_RENAME_CLASS
|
6791 |
|
|
#define TARGET_PREFERRED_RENAME_CLASS c6x_preferred_rename_class
|
6792 |
|
|
|
6793 |
|
|
#undef TARGET_MACHINE_DEPENDENT_REORG
|
6794 |
|
|
#define TARGET_MACHINE_DEPENDENT_REORG c6x_reorg
|
6795 |
|
|
|
6796 |
|
|
#undef TARGET_ASM_FILE_START
|
6797 |
|
|
#define TARGET_ASM_FILE_START c6x_file_start
|
6798 |
|
|
|
6799 |
|
|
#undef TARGET_PRINT_OPERAND
|
6800 |
|
|
#define TARGET_PRINT_OPERAND c6x_print_operand
|
6801 |
|
|
#undef TARGET_PRINT_OPERAND_ADDRESS
|
6802 |
|
|
#define TARGET_PRINT_OPERAND_ADDRESS c6x_print_operand_address
|
6803 |
|
|
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
|
6804 |
|
|
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P c6x_print_operand_punct_valid_p
|
6805 |
|
|
|
6806 |
|
|
/* C6x unwinding tables use a different format for the typeinfo tables. */
|
6807 |
|
|
#undef TARGET_ASM_TTYPE
|
6808 |
|
|
#define TARGET_ASM_TTYPE c6x_output_ttype
|
6809 |
|
|
|
6810 |
|
|
/* The C6x ABI follows the ARM EABI exception handling rules. */
|
6811 |
|
|
#undef TARGET_ARM_EABI_UNWINDER
|
6812 |
|
|
#define TARGET_ARM_EABI_UNWINDER true
|
6813 |
|
|
|
6814 |
|
|
#undef TARGET_ASM_EMIT_EXCEPT_PERSONALITY
|
6815 |
|
|
#define TARGET_ASM_EMIT_EXCEPT_PERSONALITY c6x_asm_emit_except_personality
|
6816 |
|
|
|
6817 |
|
|
#undef TARGET_ASM_INIT_SECTIONS
|
6818 |
|
|
#define TARGET_ASM_INIT_SECTIONS c6x_asm_init_sections
|
6819 |
|
|
|
6820 |
|
|
#undef TARGET_DEBUG_UNWIND_INFO
|
6821 |
|
|
#define TARGET_DEBUG_UNWIND_INFO c6x_debug_unwind_info
|
6822 |
|
|
|
6823 |
|
|
#undef TARGET_DWARF_REGISTER_SPAN
|
6824 |
|
|
#define TARGET_DWARF_REGISTER_SPAN c6x_dwarf_register_span
|
6825 |
|
|
|
6826 |
|
|
#undef TARGET_INIT_BUILTINS
|
6827 |
|
|
#define TARGET_INIT_BUILTINS c6x_init_builtins
|
6828 |
|
|
#undef TARGET_EXPAND_BUILTIN
|
6829 |
|
|
#define TARGET_EXPAND_BUILTIN c6x_expand_builtin
|
6830 |
|
|
#undef TARGET_BUILTIN_DECL
|
6831 |
|
|
#define TARGET_BUILTIN_DECL c6x_builtin_decl
|
6832 |
|
|
|
6833 |
|
|
struct gcc_target targetm = TARGET_INITIALIZER;
|
6834 |
|
|
|
6835 |
|
|
#include "gt-c6x.h"
|