OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [frv/] [frv.h] - Blame information for rev 709

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 709 jeremybenn
/* Target macros for the FRV port of GCC.
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
3
   2010, 2011
4
   Free Software Foundation, Inc.
5
   Contributed by Red Hat Inc.
6
 
7
   This file is part of GCC.
8
 
9
   GCC is free software; you can redistribute it and/or modify it
10
   under the terms of the GNU General Public License as published
11
   by the Free Software Foundation; either version 3, or (at your
12
   option) any later version.
13
 
14
   GCC is distributed in the hope that it will be useful, but WITHOUT
15
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
17
   License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with GCC; see the file COPYING3.  If not see
21
   <http://www.gnu.org/licenses/>.  */
22
 
23
#ifndef __FRV_H__
24
#define __FRV_H__
25
 
26
/* Frv general purpose macros.  */
27
/* Align an address.  */
28
#define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
29
 
30
/* Driver configuration.  */
31
 
32
/* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
33
    FDPIC which multilib to use depends on whether FDPIC is in use or
34
    not.  The trick we use is to introduce -multilib-library-pic as a
35
    pseudo-flag that selects the library-pic multilib, and map fpic
36
    and fPIC to it only if fdpic is not selected.  Also, if fdpic is
37
    selected and no PIC/PIE options are present, we imply -fPIE.
38
    Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
39
    speed, or if we have -On with n>=3, enable inlining of PLTs.  As
40
    for -mgprel-ro, we want to enable it by default, but not for -fpic or
41
    -fpie.  */
42
 
43
#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
44
"%{mno-pack:\
45
   %{!mhard-float:-msoft-float}\
46
   %{!mmedia:-mno-media}}\
47
 %{!mfdpic:%{fpic|fPIC: -multilib-library-pic}}\
48
 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
49
            %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
50
          %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{fpic|fPIC:-minline-plt} \
51
                    %{!fpic:%{!fPIC:%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}}} \
52
          %{!mno-gprel-ro:%{!fpic:%{!fpie:-mgprel-ro}}}} \
53
"
54
#ifndef SUBTARGET_DRIVER_SELF_SPECS
55
# define SUBTARGET_DRIVER_SELF_SPECS
56
#endif
57
 
58
#undef  ASM_SPEC
59
#define ASM_SPEC "\
60
%{G*} \
61
%{mtomcat-stats} \
62
%{!mno-eflags: \
63
    %{mcpu=*} \
64
    %{mgpr-*} %{mfpr-*} \
65
    %{msoft-float} %{mhard-float} \
66
    %{mdword} %{mno-dword} \
67
    %{mdouble} %{mno-double} \
68
    %{mmedia} %{mno-media} \
69
    %{mmuladd} %{mno-muladd} \
70
    %{mpack} %{mno-pack} \
71
    %{mno-fdpic:-mnopic} %{mfdpic} \
72
    %{fpic|fpie: -mpic} %{fPIC|fPIE: -mPIC} %{mlibrary-pic}}"
73
 
74
#undef  STARTFILE_SPEC
75
#define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
76
 
77
#undef  ENDFILE_SPEC
78
#define ENDFILE_SPEC "frvend%O%s"
79
 
80
 
81
#define MASK_DEFAULT_FRV        \
82
  (MASK_MEDIA                   \
83
   | MASK_DOUBLE                \
84
   | MASK_MULADD                \
85
   | MASK_DWORD                 \
86
   | MASK_PACK)
87
 
88
#define MASK_DEFAULT_FR500 \
89
  (MASK_MEDIA | MASK_DWORD | MASK_PACK)
90
 
91
#define MASK_DEFAULT_FR550 \
92
  (MASK_MEDIA | MASK_DWORD | MASK_PACK)
93
 
94
#define MASK_DEFAULT_FR450      \
95
  (MASK_GPR_32                  \
96
   | MASK_FPR_32                \
97
   | MASK_MEDIA                 \
98
   | MASK_SOFT_FLOAT            \
99
   | MASK_DWORD                 \
100
   | MASK_PACK)
101
 
102
#define MASK_DEFAULT_FR400      \
103
  (MASK_GPR_32                  \
104
   | MASK_FPR_32                \
105
   | MASK_MEDIA                 \
106
   | MASK_ACC_4                 \
107
   | MASK_SOFT_FLOAT            \
108
   | MASK_DWORD                 \
109
   | MASK_PACK)
110
 
111
#define MASK_DEFAULT_SIMPLE \
112
  (MASK_GPR_32 | MASK_SOFT_FLOAT)
113
 
114
/* A C string constant that tells the GCC driver program options to pass to
115
   `cc1'.  It can also specify how to translate options you give to GCC into
116
   options for GCC to pass to the `cc1'.
117
 
118
   Do not define this macro if it does not need to do anything.  */
119
/* For ABI compliance, we need to put bss data into the normal data section.  */
120
#define CC1_SPEC "%{G*}"
121
 
122
#undef  LINK_SPEC
123
#define LINK_SPEC "\
124
%{h*} %{v:-V} \
125
%{mfdpic:-melf32frvfd -z text} \
126
%{static:-dn -Bstatic} \
127
%{shared:-Bdynamic} \
128
%{symbolic:-Bsymbolic} \
129
%{G*}"
130
 
131
#undef  LIB_SPEC
132
#define LIB_SPEC "--start-group -lc -lsim --end-group"
133
 
134
#ifndef CPU_TYPE
135
#define CPU_TYPE                FRV_CPU_FR500
136
#endif
137
 
138
/* Run-time target specifications */
139
 
140
#define TARGET_CPU_CPP_BUILTINS()                                       \
141
  do                                                                    \
142
    {                                                                   \
143
      int issue_rate;                                                   \
144
                                                                        \
145
      builtin_define ("__frv__");                                       \
146
      builtin_assert ("machine=frv");                                   \
147
                                                                        \
148
      issue_rate = frv_issue_rate ();                                   \
149
      if (issue_rate > 1)                                               \
150
        builtin_define_with_int_value ("__FRV_VLIW__", issue_rate);     \
151
      builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS);          \
152
      builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS);          \
153
      builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS);          \
154
                                                                        \
155
      switch (frv_cpu_type)                                             \
156
        {                                                               \
157
        case FRV_CPU_GENERIC:                                           \
158
          builtin_define ("__CPU_GENERIC__");                           \
159
          break;                                                        \
160
        case FRV_CPU_FR550:                                             \
161
          builtin_define ("__CPU_FR550__");                             \
162
          break;                                                        \
163
        case FRV_CPU_FR500:                                             \
164
        case FRV_CPU_TOMCAT:                                            \
165
          builtin_define ("__CPU_FR500__");                             \
166
          break;                                                        \
167
        case FRV_CPU_FR450:                                             \
168
          builtin_define ("__CPU_FR450__");                             \
169
          break;                                                        \
170
        case FRV_CPU_FR405:                                             \
171
          builtin_define ("__CPU_FR405__");                             \
172
          break;                                                        \
173
        case FRV_CPU_FR400:                                             \
174
          builtin_define ("__CPU_FR400__");                             \
175
          break;                                                        \
176
        case FRV_CPU_FR300:                                             \
177
        case FRV_CPU_SIMPLE:                                            \
178
          builtin_define ("__CPU_FR300__");                             \
179
          break;                                                        \
180
        }                                                               \
181
                                                                        \
182
      if (TARGET_HARD_FLOAT)                                            \
183
        builtin_define ("__FRV_HARD_FLOAT__");                          \
184
      if (TARGET_DWORD)                                                 \
185
        builtin_define ("__FRV_DWORD__");                               \
186
      if (TARGET_FDPIC)                                                 \
187
        builtin_define ("__FRV_FDPIC__");                               \
188
      if (flag_leading_underscore > 0)                                  \
189
        builtin_define ("__FRV_UNDERSCORE__");                          \
190
    }                                                                   \
191
  while (0)
192
 
193
 
194
#define TARGET_HAS_FPRS         (TARGET_HARD_FLOAT || TARGET_MEDIA)
195
 
196
#define NUM_GPRS                (TARGET_GPR_32? 32 : 64)
197
#define NUM_FPRS                (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
198
#define NUM_ACCS                (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
199
 
200
/* X is a valid accumulator number if (X & ACC_MASK) == X.  */
201
#define ACC_MASK                                                \
202
  (!TARGET_MEDIA ? 0                                            \
203
   : TARGET_ACC_4 ? 3                                           \
204
   : frv_cpu_type == FRV_CPU_FR450 ? 11                         \
205
   : 7)
206
 
207
/* Macros to identify the blend of media instructions available.  Revision 1
208
   is the one found on the FR500.  Revision 2 includes the changes made for
209
   the FR400.
210
 
211
   Treat the generic processor as a revision 1 machine for now, for
212
   compatibility with earlier releases.  */
213
 
214
#define TARGET_MEDIA_REV1                                       \
215
  (TARGET_MEDIA                                                 \
216
   && (frv_cpu_type == FRV_CPU_GENERIC                          \
217
       || frv_cpu_type == FRV_CPU_FR500))
218
 
219
#define TARGET_MEDIA_REV2                                       \
220
  (TARGET_MEDIA                                                 \
221
   && (frv_cpu_type == FRV_CPU_FR400                            \
222
       || frv_cpu_type == FRV_CPU_FR405                         \
223
       || frv_cpu_type == FRV_CPU_FR450                         \
224
       || frv_cpu_type == FRV_CPU_FR550))
225
 
226
#define TARGET_MEDIA_FR450                                      \
227
  (frv_cpu_type == FRV_CPU_FR450)
228
 
229
#define TARGET_FR500_FR550_BUILTINS                             \
230
   (frv_cpu_type == FRV_CPU_FR500                               \
231
    || frv_cpu_type == FRV_CPU_FR550)
232
 
233
#define TARGET_FR405_BUILTINS                                   \
234
  (frv_cpu_type == FRV_CPU_FR405                                \
235
   || frv_cpu_type == FRV_CPU_FR450)
236
 
237
#ifndef HAVE_AS_TLS
238
#define HAVE_AS_TLS 0
239
#endif
240
 
241
#define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
242
 
243
/* Small Data Area Support.  */
244
/* Maximum size of variables that go in .sdata/.sbss.
245
   The -msdata=foo switch also controls how small variables are handled.  */
246
#ifndef SDATA_DEFAULT_SIZE
247
#define SDATA_DEFAULT_SIZE 8
248
#endif
249
 
250
 
251
/* Storage Layout */
252
 
253
/* Define this macro to have the value 1 if the most significant bit in a byte
254
   has the lowest number; otherwise define it to have the value zero.  This
255
   means that bit-field instructions count from the most significant bit.  If
256
   the machine has no bit-field instructions, then this must still be defined,
257
   but it doesn't matter which value it is defined to.  This macro need not be
258
   a constant.
259
 
260
   This macro does not affect the way structure fields are packed into bytes or
261
   words; that is controlled by `BYTES_BIG_ENDIAN'.  */
262
#define BITS_BIG_ENDIAN 1
263
 
264
/* Define this macro to have the value 1 if the most significant byte in a word
265
   has the lowest number.  This macro need not be a constant.  */
266
#define BYTES_BIG_ENDIAN 1
267
 
268
/* Define this macro to have the value 1 if, in a multiword object, the most
269
   significant word has the lowest number.  This applies to both memory
270
   locations and registers; GCC fundamentally assumes that the order of
271
   words in memory is the same as the order in registers.  This macro need not
272
   be a constant.  */
273
#define WORDS_BIG_ENDIAN 1
274
 
275
/* Number of storage units in a word; normally 4.  */
276
#define UNITS_PER_WORD 4
277
 
278
/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
279
   which has the specified mode and signedness is to be stored in a register.
280
   This macro is only called when TYPE is a scalar type.
281
 
282
   On most RISC machines, which only have operations that operate on a full
283
   register, define this macro to set M to `word_mode' if M is an integer mode
284
   narrower than `BITS_PER_WORD'.  In most cases, only integer modes should be
285
   widened because wider-precision floating-point operations are usually more
286
   expensive than their narrower counterparts.
287
 
288
   For most machines, the macro definition does not change UNSIGNEDP.  However,
289
   some machines, have instructions that preferentially handle either signed or
290
   unsigned quantities of certain modes.  For example, on the DEC Alpha, 32-bit
291
   loads from memory and 32-bit add instructions sign-extend the result to 64
292
   bits.  On such machines, set UNSIGNEDP according to which kind of extension
293
   is more efficient.
294
 
295
   Do not define this macro if it would never modify MODE.  */
296
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)     \
297
  do                                            \
298
    {                                           \
299
      if (GET_MODE_CLASS (MODE) == MODE_INT     \
300
          && GET_MODE_SIZE (MODE) < 4)          \
301
        (MODE) = SImode;                        \
302
    }                                           \
303
  while (0)
304
 
305
/* Normal alignment required for function parameters on the stack, in bits.
306
   All stack parameters receive at least this much alignment regardless of data
307
   type.  On most machines, this is the same as the size of an integer.  */
308
#define PARM_BOUNDARY 32
309
 
310
/* Define this macro if you wish to preserve a certain alignment for the stack
311
   pointer.  The definition is a C expression for the desired alignment
312
   (measured in bits).
313
 
314
   If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
315
   specified boundary.  If `PUSH_ROUNDING' is defined and specifies a less
316
   strict alignment than `STACK_BOUNDARY', the stack may be momentarily
317
   unaligned while pushing arguments.  */
318
#define STACK_BOUNDARY 64
319
 
320
/* Alignment required for a function entry point, in bits.  */
321
#define FUNCTION_BOUNDARY 128
322
 
323
/* Biggest alignment that any data type can require on this machine,
324
   in bits.  */
325
#define BIGGEST_ALIGNMENT 64
326
 
327
/* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
328
   some reason.  */
329
#ifdef IN_TARGET_LIBS
330
#define BIGGEST_FIELD_ALIGNMENT 64
331
#else
332
/* An expression for the alignment of a structure field FIELD if the
333
   alignment computed in the usual way is COMPUTED.  GCC uses this
334
   value instead of the value in `BIGGEST_ALIGNMENT' or
335
   `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only.  */
336
#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED)                             \
337
  frv_adjust_field_align (FIELD, COMPUTED)
338
#endif
339
 
340
/* If defined, a C expression to compute the alignment for a static variable.
341
   TYPE is the data type, and ALIGN is the alignment that the object
342
   would ordinarily have.  The value of this macro is used instead of that
343
   alignment to align the object.
344
 
345
   If this macro is not defined, then ALIGN is used.
346
 
347
   One use of this macro is to increase alignment of medium-size data to make
348
   it all fit in fewer cache lines.  Another is to cause character arrays to be
349
   word-aligned so that `strcpy' calls that copy constants to character arrays
350
   can be done inline.  */
351
#define DATA_ALIGNMENT(TYPE, ALIGN)             \
352
  (TREE_CODE (TYPE) == ARRAY_TYPE               \
353
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
354
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
355
 
356
/* If defined, a C expression to compute the alignment given to a constant that
357
   is being placed in memory.  CONSTANT is the constant and ALIGN is the
358
   alignment that the object would ordinarily have.  The value of this macro is
359
   used instead of that alignment to align the object.
360
 
361
   If this macro is not defined, then ALIGN is used.
362
 
363
   The typical use of this macro is to increase alignment for string constants
364
   to be word aligned so that `strcpy' calls that copy constants can be done
365
   inline.  */
366
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
367
  (TREE_CODE (EXP) == STRING_CST        \
368
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
369
 
370
/* Define this macro to be the value 1 if instructions will fail to work if
371
   given data not on the nominal alignment.  If instructions will merely go
372
   slower in that case, define this macro as 0.  */
373
#define STRICT_ALIGNMENT 1
374
 
375
#define PCC_BITFIELD_TYPE_MATTERS 1
376
 
377
 
378
/* Layout of Source Language Data Types.  */
379
 
380
#define CHAR_TYPE_SIZE         8
381
#define SHORT_TYPE_SIZE       16
382
#define INT_TYPE_SIZE         32
383
#define LONG_TYPE_SIZE        32
384
#define LONG_LONG_TYPE_SIZE   64
385
#define FLOAT_TYPE_SIZE       32
386
#define DOUBLE_TYPE_SIZE      64
387
#define LONG_DOUBLE_TYPE_SIZE 64
388
 
389
/* An expression whose value is 1 or 0, according to whether the type `char'
390
   should be signed or unsigned by default.  The user can always override this
391
   default with the options `-fsigned-char' and `-funsigned-char'.  */
392
#define DEFAULT_SIGNED_CHAR 1
393
 
394
#undef  SIZE_TYPE
395
#define SIZE_TYPE "unsigned int"
396
 
397
#undef  PTRDIFF_TYPE
398
#define PTRDIFF_TYPE "int"
399
 
400
#undef  WCHAR_TYPE
401
#define WCHAR_TYPE "long int"
402
 
403
#undef  WCHAR_TYPE_SIZE
404
#define WCHAR_TYPE_SIZE BITS_PER_WORD
405
 
406
 
407
/* General purpose registers.  */
408
#define GPR_FIRST       0                       /* First gpr */
409
#define GPR_LAST        (GPR_FIRST + 63)        /* Last gpr */
410
#define GPR_R0          GPR_FIRST               /* R0, constant 0 */
411
#define GPR_FP          (GPR_FIRST + 2)         /* Frame pointer */
412
#define GPR_SP          (GPR_FIRST + 1)         /* Stack pointer */
413
                                                /* small data register */
414
#define SDA_BASE_REG    ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
415
#define PIC_REGNO       (GPR_FIRST + (TARGET_FDPIC?15:17))        /* PIC register.  */
416
#define FDPIC_FPTR_REGNO  (GPR_FIRST + 14)        /* uClinux PIC function pointer register.  */
417
#define FDPIC_REGNO   (GPR_FIRST + 15)        /* uClinux PIC register.  */
418
 
419
#define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
420
 
421
#define OUR_FDPIC_REG   get_hard_reg_initial_val (SImode, FDPIC_REGNO)
422
 
423
#define FPR_FIRST       64                      /* First FP reg */
424
#define FPR_LAST        127                     /* Last  FP reg */
425
 
426
#define GPR_TEMP_NUM    frv_condexec_temps      /* # gprs to reserve for temps */
427
 
428
/* We reserve the last CR and CCR in each category to be used as a reload
429
   register to reload the CR/CCR registers.  This is a kludge.  */
430
#define CC_FIRST        128                     /* First ICC/FCC reg */
431
#define CC_LAST         135                     /* Last  ICC/FCC reg */
432
#define ICC_FIRST       (CC_FIRST + 4)          /* First ICC reg */
433
#define ICC_LAST        (CC_FIRST + 7)          /* Last  ICC reg */
434
#define ICC_TEMP        (CC_FIRST + 7)          /* Temporary ICC reg */
435
#define FCC_FIRST       (CC_FIRST)              /* First FCC reg */
436
#define FCC_LAST        (CC_FIRST + 3)          /* Last  FCC reg */
437
 
438
/* Amount to shift a value to locate a ICC or FCC register in the CCR
439
   register and shift it to the bottom 4 bits.  */
440
#define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
441
 
442
/* Mask to isolate a single ICC/FCC value.  */
443
#define CC_MASK         0xf
444
 
445
/* Masks to isolate the various bits in an ICC field.  */
446
#define ICC_MASK_N      0x8     /* negative */
447
#define ICC_MASK_Z      0x4     /* zero */
448
#define ICC_MASK_V      0x2     /* overflow */
449
#define ICC_MASK_C      0x1     /* carry */
450
 
451
/* Mask to isolate the N/Z flags in an ICC.  */
452
#define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
453
 
454
/* Mask to isolate the Z/C flags in an ICC.  */
455
#define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
456
 
457
/* Masks to isolate the various bits in a FCC field.  */
458
#define FCC_MASK_E      0x8     /* equal */
459
#define FCC_MASK_L      0x4     /* less than */
460
#define FCC_MASK_G      0x2     /* greater than */
461
#define FCC_MASK_U      0x1     /* unordered */
462
 
463
/* For CCR registers, the machine wants CR4..CR7 to be used for integer
464
   code and CR0..CR3 to be used for floating point.  */
465
#define CR_FIRST        136                     /* First CCR */
466
#define CR_LAST         143                     /* Last  CCR */
467
#define CR_NUM          (CR_LAST-CR_FIRST+1)    /* # of CCRs (8) */
468
#define ICR_FIRST       (CR_FIRST + 4)          /* First integer CCR */
469
#define ICR_LAST        (CR_FIRST + 7)          /* Last  integer CCR */
470
#define ICR_TEMP        ICR_LAST                /* Temp  integer CCR */
471
#define FCR_FIRST       (CR_FIRST + 0)          /* First float CCR */
472
#define FCR_LAST        (CR_FIRST + 3)          /* Last  float CCR */
473
 
474
/* Amount to shift a value to locate a CR register in the CCCR special purpose
475
   register and shift it to the bottom 2 bits.  */
476
#define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
477
 
478
/* Mask to isolate a single CR value.  */
479
#define CR_MASK         0x3
480
 
481
#define ACC_FIRST       144                     /* First acc register */
482
#define ACC_LAST        155                     /* Last  acc register */
483
 
484
#define ACCG_FIRST      156                     /* First accg register */
485
#define ACCG_LAST       167                     /* Last  accg register */
486
 
487
#define AP_FIRST        168                     /* fake argument pointer */
488
 
489
#define SPR_FIRST       169
490
#define SPR_LAST        172
491
#define LR_REGNO        (SPR_FIRST)
492
#define LCR_REGNO       (SPR_FIRST + 1)
493
#define IACC_FIRST      (SPR_FIRST + 2)
494
#define IACC_LAST       (SPR_FIRST + 3)
495
 
496
#define GPR_P(R)        IN_RANGE (R, GPR_FIRST, GPR_LAST)
497
#define GPR_OR_AP_P(R)  (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
498
#define FPR_P(R)        IN_RANGE (R, FPR_FIRST, FPR_LAST)
499
#define CC_P(R)         IN_RANGE (R, CC_FIRST, CC_LAST)
500
#define ICC_P(R)        IN_RANGE (R, ICC_FIRST, ICC_LAST)
501
#define FCC_P(R)        IN_RANGE (R, FCC_FIRST, FCC_LAST)
502
#define CR_P(R)         IN_RANGE (R, CR_FIRST, CR_LAST)
503
#define ICR_P(R)        IN_RANGE (R, ICR_FIRST, ICR_LAST)
504
#define FCR_P(R)        IN_RANGE (R, FCR_FIRST, FCR_LAST)
505
#define ACC_P(R)        IN_RANGE (R, ACC_FIRST, ACC_LAST)
506
#define ACCG_P(R)       IN_RANGE (R, ACCG_FIRST, ACCG_LAST)
507
#define SPR_P(R)        IN_RANGE (R, SPR_FIRST, SPR_LAST)
508
 
509
#define GPR_OR_PSEUDO_P(R)      (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
510
#define FPR_OR_PSEUDO_P(R)      (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
511
#define GPR_AP_OR_PSEUDO_P(R)   (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
512
#define CC_OR_PSEUDO_P(R)       (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
513
#define ICC_OR_PSEUDO_P(R)      (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
514
#define FCC_OR_PSEUDO_P(R)      (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
515
#define CR_OR_PSEUDO_P(R)       (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
516
#define ICR_OR_PSEUDO_P(R)      (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
517
#define FCR_OR_PSEUDO_P(R)      (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
518
#define ACC_OR_PSEUDO_P(R)      (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
519
#define ACCG_OR_PSEUDO_P(R)     (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
520
 
521
#define MAX_STACK_IMMEDIATE_OFFSET 2047
522
 
523
 
524
/* Register Basics.  */
525
 
526
/* Number of hardware registers known to the compiler.  They receive numbers 0
527
   through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
528
   really is assigned the number `FIRST_PSEUDO_REGISTER'.  */
529
#define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
530
 
531
/* The first/last register that can contain the arguments to a function.  */
532
#define FIRST_ARG_REGNUM        (GPR_FIRST + 8)
533
#define LAST_ARG_REGNUM         (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
534
 
535
/* Registers used by the exception handling functions.  These should be
536
   registers that are not otherwise used by the calling sequence.  */
537
#define FIRST_EH_REGNUM         14
538
#define LAST_EH_REGNUM          15
539
 
540
/* Scratch registers used in the prologue, epilogue and thunks.
541
   OFFSET_REGNO is for loading constant addends that are too big for a
542
   single instruction.  TEMP_REGNO is used for transferring SPRs to and from
543
   the stack, and various other activities.  */
544
#define OFFSET_REGNO            4
545
#define TEMP_REGNO              5
546
 
547
/* Registers used in the prologue.  OLD_SP_REGNO is the old stack pointer,
548
   which is sometimes used to set up the frame pointer.  */
549
#define OLD_SP_REGNO            6
550
 
551
/* Registers used in the epilogue.  STACKADJ_REGNO stores the exception
552
   handler's stack adjustment.  */
553
#define STACKADJ_REGNO          6
554
 
555
/* Registers used in thunks.  JMP_REGNO is used for loading the target
556
   address.  */
557
#define JUMP_REGNO              6
558
 
559
#define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
560
                                 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
561
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (SImode, STACKADJ_REGNO)
562
#define EH_RETURN_HANDLER_RTX   RETURN_ADDR_RTX (0, frame_pointer_rtx)
563
 
564
#define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
565
 
566
/* An initializer that says which registers are used for fixed purposes all
567
   throughout the compiled code and are therefore not available for general
568
   allocation.  These would include the stack pointer, the frame pointer
569
   (except on machines where that can be used as a general register when no
570
   frame pointer is needed), the program counter on machines where that is
571
   considered one of the addressable registers, and any other numbered register
572
   with a standard use.
573
 
574
   This information is expressed as a sequence of numbers, separated by commas
575
   and surrounded by braces.  The Nth number is 1 if register N is fixed, 0
576
   otherwise.
577
 
578
   The table initialized from this macro, and the table initialized by the
579
   following one, may be overridden at run time either automatically, by the
580
   actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
581
   command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.  */
582
 
583
/* gr0  -- Hard Zero
584
   gr1  -- Stack Pointer
585
   gr2  -- Frame Pointer
586
   gr3  -- Hidden Parameter
587
   gr16 -- Small Data reserved
588
   gr17 -- Pic reserved
589
   gr28 -- OS reserved
590
   gr29 -- OS reserved
591
   gr30 -- OS reserved
592
   gr31 -- OS reserved
593
   cr3  -- reserved to reload FCC registers.
594
   cr7  -- reserved to reload ICC registers.  */
595
#define FIXED_REGISTERS                                                 \
596
{       /* Integer Registers */                                         \
597
        1, 1, 1, 1, 0, 0, 0, 0,         /* 000-007, gr0  - gr7  */      \
598
        0, 0, 0, 0, 0, 0, 0, 0,         /* 008-015, gr8  - gr15 */      \
599
        1, 1, 0, 0, 0, 0, 0, 0,         /* 016-023, gr16 - gr23 */      \
600
        0, 0, 0, 0, 1, 1, 1, 1,         /* 024-031, gr24 - gr31 */      \
601
        0, 0, 0, 0, 0, 0, 0, 0,         /* 032-039, gr32 - gr39 */      \
602
        0, 0, 0, 0, 0, 0, 0, 0,         /* 040-040, gr48 - gr47 */      \
603
        0, 0, 0, 0, 0, 0, 0, 0,         /* 048-055, gr48 - gr55 */      \
604
        0, 0, 0, 0, 0, 0, 0, 0,         /* 056-063, gr56 - gr63 */      \
605
        /* Float Registers */                                           \
606
        0, 0, 0, 0, 0, 0, 0, 0,         /* 064-071, fr0  - fr7  */      \
607
        0, 0, 0, 0, 0, 0, 0, 0,         /* 072-079, fr8  - fr15 */      \
608
        0, 0, 0, 0, 0, 0, 0, 0,         /* 080-087, fr16 - fr23 */      \
609
        0, 0, 0, 0, 0, 0, 0, 0,         /* 088-095, fr24 - fr31 */      \
610
        0, 0, 0, 0, 0, 0, 0, 0,         /* 096-103, fr32 - fr39 */      \
611
        0, 0, 0, 0, 0, 0, 0, 0,         /* 104-111, fr48 - fr47 */      \
612
        0, 0, 0, 0, 0, 0, 0, 0,         /* 112-119, fr48 - fr55 */      \
613
        0, 0, 0, 0, 0, 0, 0, 0,         /* 120-127, fr56 - fr63 */      \
614
        /* Condition Code Registers */                                  \
615
        0, 0, 0, 0,                     /* 128-131, fcc0 - fcc3  */     \
616
        0, 0, 0, 1,                     /* 132-135, icc0 - icc3 */      \
617
        /* Conditional execution Registers (CCR) */                     \
618
        0, 0, 0, 0, 0, 0, 0, 1,         /* 136-143, cr0 - cr7 */        \
619
        /* Accumulators */                                              \
620
        1, 1, 1, 1, 1, 1, 1, 1,         /* 144-151, acc0  - acc7 */     \
621
        1, 1, 1, 1,                     /* 152-155, acc8  - acc11 */    \
622
        1, 1, 1, 1, 1, 1, 1, 1,         /* 156-163, accg0 - accg7 */    \
623
        1, 1, 1, 1,                     /* 164-167, accg8 - accg11 */   \
624
        /* Other registers */                                           \
625
        1,                              /* 168, AP   - fake arg ptr */  \
626
        1,                              /* 169, LR   - Link register*/  \
627
        0,                              /* 170, LCR  - Loop count reg*/ \
628
        1, 1                            /* 171-172, iacc0 */            \
629
}
630
 
631
/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
632
   general) by function calls as well as for fixed registers.  This macro
633
   therefore identifies the registers that are not available for general
634
   allocation of values that must live across function calls.
635
 
636
   If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
637
   saves it on function entry and restores it on function exit, if the register
638
   is used within the function.  */
639
#define CALL_USED_REGISTERS                                             \
640
{       /* Integer Registers */                                         \
641
        1, 1, 1, 1, 1, 1, 1, 1,         /* 000-007, gr0  - gr7  */      \
642
        1, 1, 1, 1, 1, 1, 1, 1,         /* 008-015, gr8  - gr15 */      \
643
        1, 1, 0, 0, 0, 0, 0, 0,         /* 016-023, gr16 - gr23 */      \
644
        0, 0, 0, 0, 1, 1, 1, 1,         /* 024-031, gr24 - gr31 */      \
645
        1, 1, 1, 1, 1, 1, 1, 1,         /* 032-039, gr32 - gr39 */      \
646
        1, 1, 1, 1, 1, 1, 1, 1,         /* 040-040, gr48 - gr47 */      \
647
        0, 0, 0, 0, 0, 0, 0, 0,         /* 048-055, gr48 - gr55 */      \
648
        0, 0, 0, 0, 0, 0, 0, 0,         /* 056-063, gr56 - gr63 */      \
649
        /* Float Registers */                                           \
650
        1, 1, 1, 1, 1, 1, 1, 1,         /* 064-071, fr0  - fr7  */      \
651
        1, 1, 1, 1, 1, 1, 1, 1,         /* 072-079, fr8  - fr15 */      \
652
        0, 0, 0, 0, 0, 0, 0, 0,         /* 080-087, fr16 - fr23 */      \
653
        0, 0, 0, 0, 0, 0, 0, 0,         /* 088-095, fr24 - fr31 */      \
654
        1, 1, 1, 1, 1, 1, 1, 1,         /* 096-103, fr32 - fr39 */      \
655
        1, 1, 1, 1, 1, 1, 1, 1,         /* 104-111, fr48 - fr47 */      \
656
        0, 0, 0, 0, 0, 0, 0, 0,         /* 112-119, fr48 - fr55 */      \
657
        0, 0, 0, 0, 0, 0, 0, 0,         /* 120-127, fr56 - fr63 */      \
658
        /* Condition Code Registers */                                  \
659
        1, 1, 1, 1,                     /* 128-131, fcc0 - fcc3 */      \
660
        1, 1, 1, 1,                     /* 132-135, icc0 - icc3  */     \
661
        /* Conditional execution Registers (CCR) */                     \
662
        1, 1, 1, 1, 1, 1, 1, 1,         /* 136-143, cr0 - cr7 */        \
663
        /* Accumulators */                                              \
664
        1, 1, 1, 1, 1, 1, 1, 1,         /* 144-151, acc0 - acc7 */      \
665
        1, 1, 1, 1,                     /* 152-155, acc8 - acc11 */     \
666
        1, 1, 1, 1, 1, 1, 1, 1,         /* 156-163, accg0 - accg7 */    \
667
        1, 1, 1, 1,                     /* 164-167, accg8 - accg11 */   \
668
        /* Other registers */                                           \
669
        1,                              /* 168, AP  - fake arg ptr */   \
670
        1,                              /* 169, LR  - Link register*/   \
671
        1,                              /* 170, LCR - Loop count reg */ \
672
        1, 1                            /* 171-172, iacc0 */            \
673
}
674
 
675
 
676
/* Order of allocation of registers.  */
677
 
678
/* If defined, an initializer for a vector of integers, containing the numbers
679
   of hard registers in the order in which GCC should prefer to use them
680
   (from most preferred to least).
681
 
682
   If this macro is not defined, registers are used lowest numbered first (all
683
   else being equal).
684
 
685
   One use of this macro is on machines where the highest numbered registers
686
   must always be saved and the save-multiple-registers instruction supports
687
   only sequences of consecutive registers.  On such machines, define
688
   `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
689
   allocatable register first.  */
690
 
691
/* On the FRV, allocate GR16 and GR17 after other saved registers so that we
692
   have a better chance of allocating 2 registers at a time and can use the
693
   double word load/store instructions in the prologue.  */
694
#define REG_ALLOC_ORDER                                                 \
695
{                                                                       \
696
  /* volatile registers */                                              \
697
  GPR_FIRST  +  4, GPR_FIRST  +  5, GPR_FIRST  +  6, GPR_FIRST  +  7,   \
698
  GPR_FIRST  +  8, GPR_FIRST  +  9, GPR_FIRST  + 10, GPR_FIRST  + 11,   \
699
  GPR_FIRST  + 12, GPR_FIRST  + 13, GPR_FIRST  + 14, GPR_FIRST  + 15,   \
700
  GPR_FIRST  + 32, GPR_FIRST  + 33, GPR_FIRST  + 34, GPR_FIRST  + 35,   \
701
  GPR_FIRST  + 36, GPR_FIRST  + 37, GPR_FIRST  + 38, GPR_FIRST  + 39,   \
702
  GPR_FIRST  + 40, GPR_FIRST  + 41, GPR_FIRST  + 42, GPR_FIRST  + 43,   \
703
  GPR_FIRST  + 44, GPR_FIRST  + 45, GPR_FIRST  + 46, GPR_FIRST  + 47,   \
704
                                                                        \
705
  FPR_FIRST  +  0, FPR_FIRST  +  1, FPR_FIRST  +  2, FPR_FIRST  +  3,   \
706
  FPR_FIRST  +  4, FPR_FIRST  +  5, FPR_FIRST  +  6, FPR_FIRST  +  7,   \
707
  FPR_FIRST  +  8, FPR_FIRST  +  9, FPR_FIRST  + 10, FPR_FIRST  + 11,   \
708
  FPR_FIRST  + 12, FPR_FIRST  + 13, FPR_FIRST  + 14, FPR_FIRST  + 15,   \
709
  FPR_FIRST  + 32, FPR_FIRST  + 33, FPR_FIRST  + 34, FPR_FIRST  + 35,   \
710
  FPR_FIRST  + 36, FPR_FIRST  + 37, FPR_FIRST  + 38, FPR_FIRST  + 39,   \
711
  FPR_FIRST  + 40, FPR_FIRST  + 41, FPR_FIRST  + 42, FPR_FIRST  + 43,   \
712
  FPR_FIRST  + 44, FPR_FIRST  + 45, FPR_FIRST  + 46, FPR_FIRST  + 47,   \
713
                                                                        \
714
  ICC_FIRST  +  0, ICC_FIRST  +  1, ICC_FIRST  +  2, ICC_FIRST  +  3,   \
715
  FCC_FIRST  +  0, FCC_FIRST  +  1, FCC_FIRST  +  2, FCC_FIRST  +  3,   \
716
  CR_FIRST   +  0, CR_FIRST   +  1, CR_FIRST   +  2, CR_FIRST   +  3,   \
717
  CR_FIRST   +  4, CR_FIRST   +  5, CR_FIRST   +  6, CR_FIRST   +  7,   \
718
                                                                        \
719
  /* saved registers */                                                 \
720
  GPR_FIRST  + 18, GPR_FIRST  + 19,                                     \
721
  GPR_FIRST  + 20, GPR_FIRST  + 21, GPR_FIRST  + 22, GPR_FIRST  + 23,   \
722
  GPR_FIRST  + 24, GPR_FIRST  + 25, GPR_FIRST  + 26, GPR_FIRST  + 27,   \
723
  GPR_FIRST  + 48, GPR_FIRST  + 49, GPR_FIRST  + 50, GPR_FIRST  + 51,   \
724
  GPR_FIRST  + 52, GPR_FIRST  + 53, GPR_FIRST  + 54, GPR_FIRST  + 55,   \
725
  GPR_FIRST  + 56, GPR_FIRST  + 57, GPR_FIRST  + 58, GPR_FIRST  + 59,   \
726
  GPR_FIRST  + 60, GPR_FIRST  + 61, GPR_FIRST  + 62, GPR_FIRST  + 63,   \
727
  GPR_FIRST  + 16, GPR_FIRST  + 17,                                     \
728
                                                                        \
729
  FPR_FIRST  + 16, FPR_FIRST  + 17, FPR_FIRST  + 18, FPR_FIRST  + 19,   \
730
  FPR_FIRST  + 20, FPR_FIRST  + 21, FPR_FIRST  + 22, FPR_FIRST  + 23,   \
731
  FPR_FIRST  + 24, FPR_FIRST  + 25, FPR_FIRST  + 26, FPR_FIRST  + 27,   \
732
  FPR_FIRST  + 28, FPR_FIRST  + 29, FPR_FIRST  + 30, FPR_FIRST  + 31,   \
733
  FPR_FIRST  + 48, FPR_FIRST  + 49, FPR_FIRST  + 50, FPR_FIRST  + 51,   \
734
  FPR_FIRST  + 52, FPR_FIRST  + 53, FPR_FIRST  + 54, FPR_FIRST  + 55,   \
735
  FPR_FIRST  + 56, FPR_FIRST  + 57, FPR_FIRST  + 58, FPR_FIRST  + 59,   \
736
  FPR_FIRST  + 60, FPR_FIRST  + 61, FPR_FIRST  + 62, FPR_FIRST  + 63,   \
737
                                                                        \
738
  /* special or fixed registers */                                      \
739
  GPR_FIRST  +  0, GPR_FIRST  +  1, GPR_FIRST  +  2, GPR_FIRST  +  3,   \
740
  GPR_FIRST  + 28, GPR_FIRST  + 29, GPR_FIRST  + 30, GPR_FIRST  + 31,   \
741
  ACC_FIRST  +  0, ACC_FIRST  +  1, ACC_FIRST  +  2, ACC_FIRST  +  3,   \
742
  ACC_FIRST  +  4, ACC_FIRST  +  5, ACC_FIRST  +  6, ACC_FIRST  +  7,   \
743
  ACC_FIRST  +  8, ACC_FIRST  +  9, ACC_FIRST  + 10, ACC_FIRST  + 11,   \
744
  ACCG_FIRST +  0, ACCG_FIRST +  1, ACCG_FIRST +  2, ACCG_FIRST +  3,   \
745
  ACCG_FIRST +  4, ACCG_FIRST +  5, ACCG_FIRST +  6, ACCG_FIRST +  7,   \
746
  ACCG_FIRST +  8, ACCG_FIRST +  9, ACCG_FIRST + 10, ACCG_FIRST + 11,   \
747
  AP_FIRST,        LR_REGNO,       LCR_REGNO,                           \
748
  IACC_FIRST +  0, IACC_FIRST +  1                                      \
749
}
750
 
751
 
752
/* How Values Fit in Registers.  */
753
 
754
/* A C expression for the number of consecutive hard registers, starting at
755
   register number REGNO, required to hold a value of mode MODE.
756
 
757
   On a machine where all registers are exactly one word, a suitable definition
758
   of this macro is
759
 
760
        #define HARD_REGNO_NREGS(REGNO, MODE)            \
761
           ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1)  \
762
            / UNITS_PER_WORD))  */
763
 
764
/* On the FRV, make the CC modes take 3 words in the integer registers, so that
765
   we can build the appropriate instructions to properly reload the values.  */
766
#define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
767
 
768
/* A C expression that is nonzero if it is permissible to store a value of mode
769
   MODE in hard register number REGNO (or in several registers starting with
770
   that one).  For a machine where all registers are equivalent, a suitable
771
   definition is
772
 
773
        #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
774
 
775
   It is not necessary for this macro to check for the numbers of fixed
776
   registers, because the allocation mechanism considers them to be always
777
   occupied.
778
 
779
   On some machines, double-precision values must be kept in even/odd register
780
   pairs.  The way to implement that is to define this macro to reject odd
781
   register numbers for such modes.
782
 
783
   The minimum requirement for a mode to be OK in a register is that the
784
   `movMODE' instruction pattern support moves between the register and any
785
   other hard register for which the mode is OK; and that moving a value into
786
   the register and back out not alter it.
787
 
788
   Since the same instruction used to move `SImode' will work for all narrower
789
   integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
790
   to distinguish between these modes, provided you define patterns `movhi',
791
   etc., to take advantage of this.  This is useful because of the interaction
792
   between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
793
   all integer modes to be tieable.
794
 
795
   Many machines have special registers for floating point arithmetic.  Often
796
   people assume that floating point machine modes are allowed only in floating
797
   point registers.  This is not true.  Any registers that can hold integers
798
   can safely *hold* a floating point machine mode, whether or not floating
799
   arithmetic can be done on it in those registers.  Integer move instructions
800
   can be used to move the values.
801
 
802
   On some machines, though, the converse is true: fixed-point machine modes
803
   may not go in floating registers.  This is true if the floating registers
804
   normalize any value stored in them, because storing a non-floating value
805
   there would garble it.  In this case, `HARD_REGNO_MODE_OK' should reject
806
   fixed-point machine modes in floating registers.  But if the floating
807
   registers do not automatically normalize, if you can store any bit pattern
808
   in one and retrieve it unchanged without a trap, then any machine mode may
809
   go in a floating register, so you can define this macro to say so.
810
 
811
   The primary significance of special floating registers is rather that they
812
   are the registers acceptable in floating point arithmetic instructions.
813
   However, this is of no concern to `HARD_REGNO_MODE_OK'.  You handle it by
814
   writing the proper constraints for those instructions.
815
 
816
   On some machines, the floating registers are especially slow to access, so
817
   that it is better to store a value in a stack frame than in such a register
818
   if floating point arithmetic is not being done.  As long as the floating
819
   registers are not in class `GENERAL_REGS', they will not be used unless some
820
   pattern's constraint asks for one.  */
821
#define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
822
 
823
/* A C expression that is nonzero if it is desirable to choose register
824
   allocation so as to avoid move instructions between a value of mode MODE1
825
   and a value of mode MODE2.
826
 
827
   If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
828
   ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
829
   zero.  */
830
#define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
831
 
832
/* Define this macro if the compiler should avoid copies to/from CCmode
833
   registers.  You should only define this macro if support fo copying to/from
834
   CCmode is incomplete.  */
835
#define AVOID_CCMODE_COPIES
836
 
837
 
838
/* Register Classes.  */
839
 
840
/* An enumeral type that must be defined with all the register class names as
841
   enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
842
   register class, followed by one more enumeral value, `LIM_REG_CLASSES',
843
   which is not a register class but rather tells how many classes there are.
844
 
845
   Each register class has a number, which is the value of casting the class
846
   name to type `int'.  The number serves as an index in many of the tables
847
   described below.  */
848
enum reg_class
849
{
850
  NO_REGS,
851
  ICC_REGS,
852
  FCC_REGS,
853
  CC_REGS,
854
  ICR_REGS,
855
  FCR_REGS,
856
  CR_REGS,
857
  LCR_REG,
858
  LR_REG,
859
  GR8_REGS,
860
  GR9_REGS,
861
  GR89_REGS,
862
  FDPIC_REGS,
863
  FDPIC_FPTR_REGS,
864
  FDPIC_CALL_REGS,
865
  SPR_REGS,
866
  QUAD_ACC_REGS,
867
  ACCG_REGS,
868
  QUAD_FPR_REGS,
869
  QUAD_REGS,
870
  GPR_REGS,
871
  ALL_REGS,
872
  LIM_REG_CLASSES
873
};
874
 
875
#define GENERAL_REGS GPR_REGS
876
 
877
/* The number of distinct register classes, defined as follows:
878
 
879
        #define N_REG_CLASSES (int) LIM_REG_CLASSES  */
880
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
881
 
882
/* An initializer containing the names of the register classes as C string
883
   constants.  These names are used in writing some of the debugging dumps.  */
884
#define REG_CLASS_NAMES {                                               \
885
   "NO_REGS",                                                           \
886
   "ICC_REGS",                                                          \
887
   "FCC_REGS",                                                          \
888
   "CC_REGS",                                                           \
889
   "ICR_REGS",                                                          \
890
   "FCR_REGS",                                                          \
891
   "CR_REGS",                                                           \
892
   "LCR_REG",                                                           \
893
   "LR_REG",                                                            \
894
   "GR8_REGS",                                                          \
895
   "GR9_REGS",                                                          \
896
   "GR89_REGS",                                                         \
897
   "FDPIC_REGS",                                                        \
898
   "FDPIC_FPTR_REGS",                                                   \
899
   "FDPIC_CALL_REGS",                                                   \
900
   "SPR_REGS",                                                          \
901
   "QUAD_ACC_REGS",                                                     \
902
   "ACCG_REGS",                                                         \
903
   "QUAD_FPR_REGS",                                                     \
904
   "QUAD_REGS",                                                         \
905
   "GPR_REGS",                                                          \
906
   "ALL_REGS"                                                           \
907
}
908
 
909
/* An initializer containing the contents of the register classes, as integers
910
   which are bit masks.  The Nth integer specifies the contents of class N.
911
   The way the integer MASK is interpreted is that register R is in the class
912
   if `MASK & (1 << R)' is 1.
913
 
914
   When the machine has more than 32 registers, an integer does not suffice.
915
   Then the integers are replaced by sub-initializers, braced groupings
916
   containing several integers.  Each sub-initializer must be suitable as an
917
   initializer for the type `HARD_REG_SET' which is defined in
918
   `hard-reg-set.h'.  */
919
#define REG_CLASS_CONTENTS                                                     \
920
{  /* gr0-gr31 gr32-gr63  fr0-fr31   fr32-fr-63 cc/ccr/acc ap/spr */           \
921
  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS  */\
922
  { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
923
  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
924
  { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS  */\
925
  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
926
  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
927
  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS  */\
928
  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
929
  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS  */\
930
  { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
931
  { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
932
  { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
933
  { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
934
  { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
935
  { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
936
  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
937
  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
938
  { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
939
  { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
940
  { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
941
  { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
942
  { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
943
}
944
 
945
#define EVEN_ACC_REGS   QUAD_ACC_REGS
946
#define ACC_REGS        QUAD_ACC_REGS
947
#define FEVEN_REGS      QUAD_FPR_REGS
948
#define FPR_REGS        QUAD_FPR_REGS
949
#define EVEN_REGS       QUAD_REGS
950
 
951
/* A C expression whose value is a register class containing hard register
952
   REGNO.  In general there is more than one such class; choose a class which
953
   is "minimal", meaning that no smaller class also contains the register.  */
954
 
955
extern enum reg_class regno_reg_class[];
956
#define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
957
 
958
/* A macro whose definition is the name of the class to which a valid base
959
   register must belong.  A base register is one used in an address which is
960
   the register value plus a displacement.  */
961
#define BASE_REG_CLASS GPR_REGS
962
 
963
/* A macro whose definition is the name of the class to which a valid index
964
   register must belong.  An index register is one used in an address where its
965
   value is either multiplied by a scale factor or added to another register
966
   (as well as added to a displacement).  */
967
#define INDEX_REG_CLASS GPR_REGS
968
 
969
/* A C expression which is nonzero if register number NUM is suitable for use
970
   as a base register in operand addresses.  It may be either a suitable hard
971
   register or a pseudo register that has been allocated such a hard register.  */
972
#define REGNO_OK_FOR_BASE_P(NUM)           \
973
  ((NUM) < FIRST_PSEUDO_REGISTER           \
974
   ? GPR_P (NUM)                           \
975
   : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
976
 
977
/* A C expression which is nonzero if register number NUM is suitable for use
978
   as an index register in operand addresses.  It may be either a suitable hard
979
   register or a pseudo register that has been allocated such a hard register.
980
 
981
   The difference between an index register and a base register is that the
982
   index register may be scaled.  If an address involves the sum of two
983
   registers, neither one of them scaled, then either one may be labeled the
984
   "base" and the other the "index"; but whichever labeling is used must fit
985
   the machine's constraints of which registers may serve in each capacity.
986
   The compiler will try both labelings, looking for one that is valid, and
987
   will reload one or both registers only if neither labeling works.  */
988
#define REGNO_OK_FOR_INDEX_P(NUM)                                       \
989
  ((NUM) < FIRST_PSEUDO_REGISTER                                        \
990
   ? GPR_P (NUM)                                                        \
991
   : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
992
 
993
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
994
  frv_secondary_reload_class (CLASS, MODE, X)
995
 
996
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
997
  frv_secondary_reload_class (CLASS, MODE, X)
998
 
999
/* A C expression for the maximum number of consecutive registers of
1000
   class CLASS needed to hold a value of mode MODE.
1001
 
1002
   This is closely related to the macro `HARD_REGNO_NREGS'.  In fact, the value
1003
   of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
1004
   `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
1005
 
1006
   This macro helps control the handling of multiple-word values in
1007
   the reload pass.
1008
 
1009
   This declaration is required.  */
1010
#define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
1011
 
1012
#define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
1013
 
1014
 
1015
/* Basic Stack Layout.  */
1016
 
1017
/* Structure to describe information about a saved range of registers */
1018
 
1019
typedef struct frv_stack_regs {
1020
  const char * name;            /* name of the register ranges */
1021
  int first;                    /* first register in the range */
1022
  int last;                     /* last register in the range */
1023
  int size_1word;               /* # of bytes to be stored via 1 word stores */
1024
  int size_2words;              /* # of bytes to be stored via 2 word stores */
1025
  unsigned char field_p;        /* true if the registers are a single SPR */
1026
  unsigned char dword_p;        /* true if we can do dword stores */
1027
  unsigned char special_p;      /* true if the regs have a fixed save loc.  */
1028
} frv_stack_regs_t;
1029
 
1030
/* Register ranges to look into saving.  */
1031
#define STACK_REGS_GPR          0        /* Gprs (normally gr16..gr31, gr48..gr63) */
1032
#define STACK_REGS_FPR          1       /* Fprs (normally fr16..fr31, fr48..fr63) */
1033
#define STACK_REGS_LR           2       /* LR register */
1034
#define STACK_REGS_CC           3       /* CCrs (normally not saved) */
1035
#define STACK_REGS_LCR          5       /* lcr register */
1036
#define STACK_REGS_STDARG       6       /* stdarg registers */
1037
#define STACK_REGS_STRUCT       7       /* structure return (gr3) */
1038
#define STACK_REGS_FP           8       /* FP register */
1039
#define STACK_REGS_MAX          9       /* # of register ranges */
1040
 
1041
/* Values for save_p field.  */
1042
#define REG_SAVE_NO_SAVE        0        /* register not saved */
1043
#define REG_SAVE_1WORD          1       /* save the register */
1044
#define REG_SAVE_2WORDS         2       /* save register and register+1 */
1045
 
1046
/* Structure used to define the frv stack.  */
1047
 
1048
typedef struct frv_stack {
1049
  int total_size;               /* total bytes allocated for stack */
1050
  int vars_size;                /* variable save area size */
1051
  int parameter_size;           /* outgoing parameter size */
1052
  int stdarg_size;              /* size of regs needed to be saved for stdarg */
1053
  int regs_size;                /* size of the saved registers */
1054
  int regs_size_1word;          /* # of bytes to be stored via 1 word stores */
1055
  int regs_size_2words;         /* # of bytes to be stored via 2 word stores */
1056
  int header_size;              /* size of the old FP, struct ret., LR save */
1057
  int pretend_size;             /* size of pretend args */
1058
  int vars_offset;              /* offset to save local variables from new SP*/
1059
  int regs_offset;              /* offset to save registers from new SP */
1060
                                /* register range information */
1061
  frv_stack_regs_t regs[STACK_REGS_MAX];
1062
                                /* offset to store each register */
1063
  int reg_offset[FIRST_PSEUDO_REGISTER];
1064
                                /* whether to save register (& reg+1) */
1065
  unsigned char save_p[FIRST_PSEUDO_REGISTER];
1066
} frv_stack_t;
1067
 
1068
/* Define this macro if pushing a word onto the stack moves the stack pointer
1069
   to a smaller address.  */
1070
#define STACK_GROWS_DOWNWARD 1
1071
 
1072
/* Define this macro to nonzero if the addresses of local variable slots
1073
   are at negative offsets from the frame pointer.  */
1074
#define FRAME_GROWS_DOWNWARD 1
1075
 
1076
/* Offset from the frame pointer to the first local variable slot to be
1077
   allocated.
1078
 
1079
   If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
1080
   first slot's length from `STARTING_FRAME_OFFSET'.  Otherwise, it is found by
1081
   adding the length of the first slot to the value `STARTING_FRAME_OFFSET'.  */
1082
#define STARTING_FRAME_OFFSET 0
1083
 
1084
/* Offset from the stack pointer register to the first location at which
1085
   outgoing arguments are placed.  If not specified, the default value of zero
1086
   is used.  This is the proper value for most machines.
1087
 
1088
   If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1089
   location at which outgoing arguments are placed.  */
1090
#define STACK_POINTER_OFFSET 0
1091
 
1092
/* Offset from the argument pointer register to the first argument's address.
1093
   On some machines it may depend on the data type of the function.
1094
 
1095
   If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1096
   argument's address.  */
1097
#define FIRST_PARM_OFFSET(FUNDECL) 0
1098
 
1099
/* A C expression whose value is RTL representing the address in a stack frame
1100
   where the pointer to the caller's frame is stored.  Assume that FRAMEADDR is
1101
   an RTL expression for the address of the stack frame itself.
1102
 
1103
   If you don't define this macro, the default is to return the value of
1104
   FRAMEADDR--that is, the stack frame address is also the address of the stack
1105
   word that points to the previous frame.  */
1106
#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1107
 
1108
/* A C expression whose value is RTL representing the value of the return
1109
   address for the frame COUNT steps up from the current frame, after the
1110
   prologue.  FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1111
   pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1112
   defined.
1113
 
1114
   The value of the expression must always be the correct address when COUNT is
1115
   zero, but may be `NULL_RTX' if there is not way to determine the return
1116
   address of other frames.  */
1117
#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1118
 
1119
#define RETURN_POINTER_REGNUM LR_REGNO
1120
 
1121
/* A C expression whose value is RTL representing the location of the incoming
1122
   return address at the beginning of any function, before the prologue.  This
1123
   RTL is either a `REG', indicating that the return value is saved in `REG',
1124
   or a `MEM' representing a location in the stack.
1125
 
1126
   You only need to define this macro if you want to support call frame
1127
   debugging information like that provided by DWARF 2.  */
1128
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1129
 
1130
 
1131
/* Register That Address the Stack Frame.  */
1132
 
1133
/* The register number of the stack pointer register, which must also be a
1134
   fixed register according to `FIXED_REGISTERS'.  On most machines, the
1135
   hardware determines which register this is.  */
1136
#define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1137
 
1138
/* The register number of the frame pointer register, which is used to access
1139
   automatic variables in the stack frame.  On some machines, the hardware
1140
   determines which register this is.  On other machines, you can choose any
1141
   register you wish for this purpose.  */
1142
#define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1143
 
1144
/* The register number of the arg pointer register, which is used to access the
1145
   function's argument list.  On some machines, this is the same as the frame
1146
   pointer register.  On some machines, the hardware determines which register
1147
   this is.  On other machines, you can choose any register you wish for this
1148
   purpose.  If this is not the same register as the frame pointer register,
1149
   then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1150
   arrange to be able to eliminate it.  */
1151
 
1152
/* On frv this is a fake register that is eliminated in
1153
   terms of either the frame pointer or stack pointer.  */
1154
#define ARG_POINTER_REGNUM AP_FIRST
1155
 
1156
/* Register numbers used for passing a function's static chain pointer.  If
1157
   register windows are used, the register number as seen by the called
1158
   function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1159
   seen by the calling function is `STATIC_CHAIN_REGNUM'.  If these registers
1160
   are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1161
 
1162
   The static chain register need not be a fixed register.
1163
 
1164
   If the static chain is passed in memory, these macros should not be defined;
1165
   instead, the next two macros should be defined.  */
1166
#define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1167
#define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1168
 
1169
 
1170
/* Eliminating the Frame Pointer and the Arg Pointer.  */
1171
 
1172
/* If defined, this macro specifies a table of register pairs used to eliminate
1173
   unneeded registers that point into the stack frame.  If it is not defined,
1174
   the only elimination attempted by the compiler is to replace references to
1175
   the frame pointer with references to the stack pointer.
1176
 
1177
   The definition of this macro is a list of structure initializations, each of
1178
   which specifies an original and replacement register.
1179
 
1180
   On some machines, the position of the argument pointer is not known until
1181
   the compilation is completed.  In such a case, a separate hard register must
1182
   be used for the argument pointer.  This register can be eliminated by
1183
   replacing it with either the frame pointer or the argument pointer,
1184
   depending on whether or not the frame pointer has been eliminated.
1185
 
1186
   In this case, you might specify:
1187
        #define ELIMINABLE_REGS  \
1188
        {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1189
         {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1190
         {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1191
 
1192
   Note that the elimination of the argument pointer with the stack pointer is
1193
   specified first since that is the preferred elimination.  */
1194
 
1195
#define ELIMINABLE_REGS                                                 \
1196
{                                                                       \
1197
  {ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},                         \
1198
  {ARG_POINTER_REGNUM,   FRAME_POINTER_REGNUM},                         \
1199
  {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}                          \
1200
}
1201
 
1202
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It specifies the
1203
   initial difference between the specified pair of registers.  This macro must
1204
   be defined if `ELIMINABLE_REGS' is defined.  */
1205
 
1206
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
1207
  (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1208
 
1209
 
1210
/* Passing Function Arguments on the Stack.  */
1211
 
1212
/* If defined, the maximum amount of space required for outgoing arguments will
1213
   be computed and placed into the variable
1214
   `crtl->outgoing_args_size'.  No space will be pushed onto the
1215
   stack for each call; instead, the function prologue should increase the
1216
   stack frame size by this amount.
1217
 
1218
   Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1219
   proper.  */
1220
#define ACCUMULATE_OUTGOING_ARGS 1
1221
 
1222
 
1223
/* The number of register assigned to holding function arguments.  */
1224
 
1225
#define FRV_NUM_ARG_REGS        6
1226
 
1227
/* A C type for declaring a variable that is used as the first argument of
1228
   `FUNCTION_ARG' and other related values.  For some target machines, the type
1229
   `int' suffices and can hold the number of bytes of argument so far.
1230
 
1231
   There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1232
   that have been passed on the stack.  The compiler has other variables to
1233
   keep track of that.  For target machines on which all arguments are passed
1234
   on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1235
   however, the data structure must exist and should not be empty, so use
1236
   `int'.  */
1237
#define CUMULATIVE_ARGS int
1238
 
1239
/* A C statement (sans semicolon) for initializing the variable CUM for the
1240
   state at the beginning of the argument list.  The variable has type
1241
   `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
1242
   of the function which will receive the args, or 0 if the args are to a
1243
   compiler support library function.  The value of INDIRECT is nonzero when
1244
   processing an indirect call, for example a call through a function pointer.
1245
   The value of INDIRECT is zero for a call to an explicitly named function, a
1246
   library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1247
   arguments for the function being compiled.
1248
 
1249
   When processing a call to a compiler support library function, LIBNAME
1250
   identifies which one.  It is a `symbol_ref' rtx which contains the name of
1251
   the function, as a string.  LIBNAME is 0 when an ordinary C function call is
1252
   being processed.  Thus, each time this macro is called, either LIBNAME or
1253
   FNTYPE is nonzero, but never both of them at once.  */
1254
 
1255
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1256
  frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1257
 
1258
/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1259
   arguments for the function being compiled.  If this macro is undefined,
1260
   `INIT_CUMULATIVE_ARGS' is used instead.
1261
 
1262
   The value passed for LIBNAME is always 0, since library routines with
1263
   special calling conventions are never compiled with GCC.  The argument
1264
   LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'.  */
1265
 
1266
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1267
  frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1268
 
1269
/* A C expression that is nonzero if REGNO is the number of a hard register in
1270
   which function arguments are sometimes passed.  This does *not* include
1271
   implicit arguments such as the static chain and the structure-value address.
1272
   On many machines, no registers can be used for this purpose since all
1273
   function arguments are pushed on the stack.  */
1274
#define FUNCTION_ARG_REGNO_P(REGNO) \
1275
  ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1276
 
1277
 
1278
/* How Scalar Function Values are Returned.  */
1279
 
1280
/* The number of the hard register that is used to return a scalar value from a
1281
   function call.  */
1282
#define RETURN_VALUE_REGNUM     (GPR_FIRST + 8)
1283
 
1284
#define FUNCTION_VALUE_REGNO_P(REGNO) frv_function_value_regno_p (REGNO)
1285
 
1286
 
1287
/* How Large Values are Returned.  */
1288
 
1289
/* The number of the register that is used to pass the structure
1290
   value address.  */
1291
#define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
1292
 
1293
 
1294
/* Function Entry and Exit.  */
1295
 
1296
/* Define this macro as a C expression that is nonzero if the return
1297
   instruction or the function epilogue ignores the value of the stack pointer;
1298
   in other words, if it is safe to delete an instruction to adjust the stack
1299
   pointer before a return from the function.
1300
 
1301
   Note that this macro's value is relevant only for functions for which frame
1302
   pointers are maintained.  It is never safe to delete a final stack
1303
   adjustment in a function that has no frame pointer, and the compiler knows
1304
   this regardless of `EXIT_IGNORE_STACK'.  */
1305
#define EXIT_IGNORE_STACK 1
1306
 
1307
/* Generating Code for Profiling.  */
1308
 
1309
/* A C statement or compound statement to output to FILE some assembler code to
1310
   call the profiling subroutine `mcount'.  Before calling, the assembler code
1311
   must load the address of a counter variable into a register where `mcount'
1312
   expects to find the address.  The name of this variable is `LP' followed by
1313
   the number LABELNO, so you would generate the name using `LP%d' in a
1314
   `fprintf'.
1315
 
1316
   The details of how the address should be passed to `mcount' are determined
1317
   by your operating system environment, not by GCC.  To figure them out,
1318
   compile a small program for profiling using the system's installed C
1319
   compiler and look at the assembler code that results.
1320
 
1321
   This declaration must be present, but it can be an abort if profiling is
1322
   not implemented.  */
1323
 
1324
#define FUNCTION_PROFILER(FILE, LABELNO)
1325
 
1326
/* Trampolines for Nested Functions.  */
1327
 
1328
/* A C expression for the size in bytes of the trampoline, as an integer.  */
1329
#define TRAMPOLINE_SIZE frv_trampoline_size ()
1330
 
1331
/* Alignment required for trampolines, in bits.
1332
 
1333
   If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1334
   aligning trampolines.  */
1335
#define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
1336
 
1337
/* Define this macro if trampolines need a special subroutine to do their work.
1338
   The macro should expand to a series of `asm' statements which will be
1339
   compiled with GCC.  They go in a library function named
1340
   `__transfer_from_trampoline'.
1341
 
1342
   If you need to avoid executing the ordinary prologue code of a compiled C
1343
   function when you jump to the subroutine, you can do so by placing a special
1344
   label of your own in the assembler code.  Use one `asm' statement to
1345
   generate an assembler label, and another to make the label global.  Then
1346
   trampolines can use that label to jump directly to your special assembler
1347
   code.  */
1348
 
1349
#ifdef __FRV_UNDERSCORE__
1350
#define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1351
#else
1352
#define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1353
#endif
1354
 
1355
#define Twrite _write
1356
 
1357
#if ! __FRV_FDPIC__
1358
#define TRANSFER_FROM_TRAMPOLINE                                        \
1359
extern int Twrite (int, const void *, unsigned);                        \
1360
                                                                        \
1361
void                                                                    \
1362
__trampoline_setup (short * addr, int size, int fnaddr, int sc)         \
1363
{                                                                       \
1364
  extern short __trampoline_template[];                                 \
1365
  short * to = addr;                                                    \
1366
  short * from = &__trampoline_template[0];                             \
1367
  int i;                                                                \
1368
                                                                        \
1369
  if (size < 20)                                                        \
1370
    {                                                                   \
1371
      Twrite (2, "__trampoline_setup bad size\n",                       \
1372
              sizeof ("__trampoline_setup bad size\n") - 1);            \
1373
      exit (-1);                                                        \
1374
    }                                                                   \
1375
                                                                        \
1376
  to[0] = from[0];                                                      \
1377
  to[1] = (short)(fnaddr);                                              \
1378
  to[2] = from[2];                                                      \
1379
  to[3] = (short)(sc);                                                  \
1380
  to[4] = from[4];                                                      \
1381
  to[5] = (short)(fnaddr >> 16);                                        \
1382
  to[6] = from[6];                                                      \
1383
  to[7] = (short)(sc >> 16);                                            \
1384
  to[8] = from[8];                                                      \
1385
  to[9] = from[9];                                                      \
1386
                                                                        \
1387
  for (i = 0; i < 20; i++)                                              \
1388
    __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1389
}                                                                       \
1390
                                                                        \
1391
__asm__("\n"                                                            \
1392
        "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"                       \
1393
        "\t.text\n"                                                     \
1394
        TRAMPOLINE_TEMPLATE_NAME ":\n"                                  \
1395
        "\tsetlos #0, gr6\n"    /* jump register */                     \
1396
        "\tsetlos #0, gr7\n"    /* static chain */                      \
1397
        "\tsethi #0, gr6\n"                                             \
1398
        "\tsethi #0, gr7\n"                                             \
1399
        "\tjmpl @(gr0,gr6)\n");
1400
#else
1401
#define TRANSFER_FROM_TRAMPOLINE                                        \
1402
extern int Twrite (int, const void *, unsigned);                        \
1403
                                                                        \
1404
void                                                                    \
1405
__trampoline_setup (addr, size, fnaddr, sc)                             \
1406
     short * addr;                                                      \
1407
     int size;                                                          \
1408
     int fnaddr;                                                        \
1409
     int sc;                                                            \
1410
{                                                                       \
1411
  extern short __trampoline_template[];                                 \
1412
  short * from = &__trampoline_template[0];                              \
1413
  int i;                                                                \
1414
  short **desc = (short **)addr;                                        \
1415
  short * to = addr + 4;                                                \
1416
                                                                        \
1417
  if (size != 32)                                                       \
1418
    {                                                                   \
1419
      Twrite (2, "__trampoline_setup bad size\n",                       \
1420
              sizeof ("__trampoline_setup bad size\n") - 1);            \
1421
      exit (-1);                                                        \
1422
    }                                                                   \
1423
                                                                        \
1424
  /* Create a function descriptor with the address of the code below    \
1425
     and NULL as the FDPIC value.  We don't need the real GOT value     \
1426
     here, since we don't use it, so we use NULL, that is just as       \
1427
     good.  */                                                          \
1428
  desc[0] = to;                                                          \
1429
  desc[1] = NULL;                                                       \
1430
  size -= 8;                                                            \
1431
                                                                        \
1432
  to[0] = from[0];                                                        \
1433
  to[1] = (short)(fnaddr);                                              \
1434
  to[2] = from[2];                                                      \
1435
  to[3] = (short)(sc);                                                  \
1436
  to[4] = from[4];                                                      \
1437
  to[5] = (short)(fnaddr >> 16);                                        \
1438
  to[6] = from[6];                                                      \
1439
  to[7] = (short)(sc >> 16);                                            \
1440
  to[8] = from[8];                                                      \
1441
  to[9] = from[9];                                                      \
1442
  to[10] = from[10];                                                    \
1443
  to[11] = from[11];                                                    \
1444
                                                                        \
1445
  for (i = 0; i < size; i++)                                             \
1446
    __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1447
}                                                                       \
1448
                                                                        \
1449
__asm__("\n"                                                            \
1450
        "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"                       \
1451
        "\t.text\n"                                                     \
1452
        TRAMPOLINE_TEMPLATE_NAME ":\n"                                  \
1453
        "\tsetlos #0, gr6\n"    /* Jump register.  */                   \
1454
        "\tsetlos #0, gr7\n"    /* Static chain.  */                    \
1455
        "\tsethi #0, gr6\n"                                             \
1456
        "\tsethi #0, gr7\n"                                             \
1457
        "\tldd @(gr6,gr0),gr14\n"                                       \
1458
        "\tjmpl @(gr14,gr0)\n"                                          \
1459
        );
1460
#endif
1461
 
1462
 
1463
/* Addressing Modes.  */
1464
 
1465
/* A number, the maximum number of registers that can appear in a valid memory
1466
   address.  Note that it is up to you to specify a value equal to the maximum
1467
   number that `TARGET_LEGITIMATE_ADDRESS_P' would ever accept.  */
1468
#define MAX_REGS_PER_ADDRESS 2
1469
 
1470
/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1471
   use as a base register.  For hard registers, it should always accept those
1472
   which the hardware permits and reject the others.  Whether the macro accepts
1473
   or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
1474
   described above.  This usually requires two variant definitions, of which
1475
   `REG_OK_STRICT' controls the one actually used.  */
1476
#ifdef REG_OK_STRICT
1477
#define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1478
#else
1479
#define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
1480
#endif
1481
 
1482
/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1483
   use as an index register.
1484
 
1485
   The difference between an index register and a base register is that the
1486
   index register may be scaled.  If an address involves the sum of two
1487
   registers, neither one of them scaled, then either one may be labeled the
1488
   "base" and the other the "index"; but whichever labeling is used must fit
1489
   the machine's constraints of which registers may serve in each capacity.
1490
   The compiler will try both labelings, looking for one that is valid, and
1491
   will reload one or both registers only if neither labeling works.  */
1492
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1493
 
1494
#define FIND_BASE_TERM frv_find_base_term
1495
 
1496
/* The load-and-update commands allow pre-modification in addresses.
1497
   The index has to be in a register.  */
1498
#define HAVE_PRE_MODIFY_REG 1
1499
 
1500
 
1501
/* We define extra CC modes in frv-modes.def so we need a selector.  */
1502
 
1503
#define SELECT_CC_MODE frv_select_cc_mode
1504
 
1505
/* A C expression whose value is one if it is always safe to reverse a
1506
   comparison whose mode is MODE.  If `SELECT_CC_MODE' can ever return MODE for
1507
   a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
1508
   must be zero.
1509
 
1510
   You need not define this macro if it would always returns zero or if the
1511
   floating-point format is anything other than `IEEE_FLOAT_FORMAT'.  For
1512
   example, here is the definition used on the SPARC, where floating-point
1513
   inequality comparisons are always given `CCFPEmode':
1514
 
1515
        #define REVERSIBLE_CC_MODE(MODE)  ((MODE) != CCFPEmode)  */
1516
 
1517
/* On frv, don't consider floating point comparisons to be reversible.  In
1518
   theory, fp equality comparisons can be reversible.  */
1519
#define REVERSIBLE_CC_MODE(MODE) \
1520
  ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
1521
 
1522
/* Frv CCR_MODE's are not reversible.  */
1523
#define REVERSE_CONDEXEC_PREDICATES_P(x,y)      0
1524
 
1525
 
1526
/* Describing Relative Costs of Operations.  */
1527
 
1528
/* A C expression for the cost of a branch instruction.  A value of 1 is the
1529
   default; other values are interpreted relative to that.  */
1530
#define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
1531
 
1532
/* Define this macro as a C expression which is nonzero if accessing less than
1533
   a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1534
   word of memory, i.e., if such access require more than one instruction or if
1535
   there is no difference in cost between byte and (aligned) word loads.
1536
 
1537
   When this macro is not defined, the compiler will access a field by finding
1538
   the smallest containing object; when it is defined, a fullword load will be
1539
   used if alignment permits.  Unless bytes accesses are faster than word
1540
   accesses, using word accesses is preferable since it may eliminate
1541
   subsequent memory access if subsequent accesses occur to other fields in the
1542
   same word of the structure, but to different bytes.  */
1543
#define SLOW_BYTE_ACCESS 1
1544
 
1545
/* Define this macro if it is as good or better to call a constant function
1546
   address than to call an address kept in a register.  */
1547
#define NO_FUNCTION_CSE
1548
 
1549
 
1550
/* Dividing the output into sections.  */
1551
 
1552
/* A C expression whose value is a string containing the assembler operation
1553
   that should precede instructions and read-only data.  Normally `".text"' is
1554
   right.  */
1555
#define TEXT_SECTION_ASM_OP "\t.text"
1556
 
1557
/* A C expression whose value is a string containing the assembler operation to
1558
   identify the following data as writable initialized data.  Normally
1559
   `".data"' is right.  */
1560
#define DATA_SECTION_ASM_OP "\t.data"
1561
 
1562
#define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
1563
 
1564
/* Short Data Support */
1565
#define SDATA_SECTION_ASM_OP    "\t.section .sdata,\"aw\""
1566
 
1567
#undef  INIT_SECTION_ASM_OP
1568
#undef  FINI_SECTION_ASM_OP
1569
#define INIT_SECTION_ASM_OP     "\t.section .init,\"ax\""
1570
#define FINI_SECTION_ASM_OP     "\t.section .fini,\"ax\""
1571
 
1572
#undef CTORS_SECTION_ASM_OP
1573
#undef DTORS_SECTION_ASM_OP
1574
#define CTORS_SECTION_ASM_OP    "\t.section\t.ctors,\"a\""
1575
#define DTORS_SECTION_ASM_OP    "\t.section\t.dtors,\"a\""
1576
 
1577
/* A C expression whose value is a string containing the assembler operation to
1578
   switch to the fixup section that records all initialized pointers in a -fpic
1579
   program so they can be changed program startup time if the program is loaded
1580
   at a different address than linked for.  */
1581
#define FIXUP_SECTION_ASM_OP    "\t.section .rofixup,\"a\""
1582
 
1583
/* Position Independent Code.  */
1584
 
1585
/* A C expression that is nonzero if X is a legitimate immediate operand on the
1586
   target machine when generating position independent code.  You can assume
1587
   that X satisfies `CONSTANT_P', so you need not check this.  You can also
1588
   assume FLAG_PIC is true, so you need not check it either.  You need not
1589
   define this macro if all constants (including `SYMBOL_REF') can be immediate
1590
   operands when generating position independent code.  */
1591
#define LEGITIMATE_PIC_OPERAND_P(X)                                     \
1592
  (   GET_CODE (X) == CONST_INT                                         \
1593
   || GET_CODE (X) == CONST_DOUBLE                                      \
1594
   || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT)      \
1595
   || got12_operand (X, VOIDmode))                                      \
1596
 
1597
 
1598
/* The Overall Framework of an Assembler File.  */
1599
 
1600
/* A C string constant describing how to begin a comment in the target
1601
   assembler language.  The compiler assumes that the comment will end at the
1602
   end of the line.  */
1603
#define ASM_COMMENT_START ";"
1604
 
1605
/* A C string constant for text to be output before each `asm' statement or
1606
   group of consecutive ones.  Normally this is `"#APP"', which is a comment
1607
   that has no effect on most assemblers but tells the GNU assembler that it
1608
   must check the lines that follow for all valid assembler constructs.  */
1609
#define ASM_APP_ON "#APP\n"
1610
 
1611
/* A C string constant for text to be output after each `asm' statement or
1612
   group of consecutive ones.  Normally this is `"#NO_APP"', which tells the
1613
   GNU assembler to resume making the time-saving assumptions that are valid
1614
   for ordinary compiler output.  */
1615
#define ASM_APP_OFF "#NO_APP\n"
1616
 
1617
 
1618
/* Output of Data.  */
1619
 
1620
/* This is how to output a label to dwarf/dwarf2.  */
1621
#define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL)                            \
1622
do {                                                                    \
1623
  fprintf (STREAM, "\t.picptr\t");                                      \
1624
  assemble_name (STREAM, LABEL);                                        \
1625
} while (0)
1626
 
1627
/* Whether to emit the gas specific dwarf2 line number support.  */
1628
#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
1629
 
1630
/* Output of Uninitialized Variables.  */
1631
 
1632
/* A C statement (sans semicolon) to output to the stdio stream STREAM the
1633
   assembler definition of a local-common-label named NAME whose size is SIZE
1634
   bytes.  The variable ROUNDED is the size rounded up to whatever alignment
1635
   the caller wants.
1636
 
1637
   Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
1638
   before and after that, output the additional assembler syntax for defining
1639
   the name, and a newline.
1640
 
1641
   This macro controls how the assembler definitions of uninitialized static
1642
   variables are output.  */
1643
#undef ASM_OUTPUT_LOCAL
1644
 
1645
#undef ASM_OUTPUT_ALIGNED_LOCAL
1646
 
1647
/* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME.  */
1648
extern int size_directive_output;
1649
 
1650
/* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
1651
   parameter - the DECL of variable to be output, if there is one.
1652
   This macro can be called with DECL == NULL_TREE.  If you define
1653
   this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
1654
   `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
1655
   handling the destination of the variable.  */
1656
#undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
1657
#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN)  \
1658
do {                                                                    \
1659
  if ((SIZE) > 0 && (SIZE) <= (unsigned HOST_WIDE_INT) g_switch_value)   \
1660
    switch_to_section (get_named_section (NULL, ".sbss", 0));           \
1661
  else                                                                  \
1662
    switch_to_section (bss_section);                                    \
1663
  ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT));      \
1664
  ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL);                         \
1665
  ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1);                        \
1666
} while (0)
1667
 
1668
 
1669
/* Output and Generation of Labels.  */
1670
 
1671
/* A C statement (sans semicolon) to output to the stdio stream STREAM the
1672
   assembler definition of a label named NAME.  Use the expression
1673
   `assemble_name (STREAM, NAME)' to output the name itself; before and after
1674
   that, output the additional assembler syntax for defining the name, and a
1675
   newline.  */
1676
#define ASM_OUTPUT_LABEL(STREAM, NAME)                                  \
1677
do {                                                                    \
1678
  assemble_name (STREAM, NAME);                                         \
1679
  fputs (":\n", STREAM);                                                \
1680
} while (0)
1681
 
1682
/* Globalizing directive for a label.  */
1683
#define GLOBAL_ASM_OP "\t.globl "
1684
 
1685
#undef ASM_GENERATE_INTERNAL_LABEL
1686
#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM)                 \
1687
do {                                                                    \
1688
  sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM);                        \
1689
} while (0)
1690
 
1691
 
1692
/* Macros Controlling Initialization Routines.  */
1693
 
1694
#undef INIT_SECTION_ASM_OP
1695
 
1696
/* If defined, `main' will call `__main' despite the presence of
1697
   `INIT_SECTION_ASM_OP'.  This macro should be defined for systems where the
1698
   init section is not actually run automatically, but is still useful for
1699
   collecting the lists of constructors and destructors.  */
1700
#define INVOKE__main
1701
 
1702
/* Output of Assembler Instructions.  */
1703
 
1704
/* A C initializer containing the assembler's names for the machine registers,
1705
   each one as a C string constant.  This is what translates register numbers
1706
   in the compiler into assembler language.  */
1707
#define REGISTER_NAMES                                                  \
1708
{                                                                       \
1709
 "gr0",  "sp",   "fp",   "gr3",  "gr4",  "gr5",  "gr6",  "gr7",         \
1710
  "gr8",  "gr9",  "gr10", "gr11", "gr12", "gr13", "gr14", "gr15",       \
1711
  "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23",       \
1712
  "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31",       \
1713
  "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39",       \
1714
  "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47",       \
1715
  "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55",       \
1716
  "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63",       \
1717
                                                                        \
1718
  "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",        \
1719
  "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",       \
1720
  "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",       \
1721
  "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",       \
1722
  "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",       \
1723
  "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",       \
1724
  "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",       \
1725
  "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",       \
1726
                                                                        \
1727
  "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3",       \
1728
  "cc0",  "cc1",  "cc2",  "cc3",  "cc4",  "cc5",  "cc6",  "cc7",        \
1729
  "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7",       \
1730
  "acc8", "acc9", "acc10", "acc11",                                     \
1731
  "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7",      \
1732
  "accg8", "accg9", "accg10", "accg11",                                 \
1733
  "ap",   "lr",   "lcr",  "iacc0h", "iacc0l"                            \
1734
}
1735
 
1736
/* Define this macro if you are using an unusual assembler that
1737
   requires different names for the machine instructions.
1738
 
1739
   The definition is a C statement or statements which output an
1740
   assembler instruction opcode to the stdio stream STREAM.  The
1741
   macro-operand PTR is a variable of type `char *' which points to
1742
   the opcode name in its "internal" form--the form that is written
1743
   in the machine description.  The definition should output the
1744
   opcode name to STREAM, performing any translation you desire, and
1745
   increment the variable PTR to point at the end of the opcode so
1746
   that it will not be output twice.
1747
 
1748
   In fact, your macro definition may process less than the entire
1749
   opcode name, or more than the opcode name; but if you want to
1750
   process text that includes `%'-sequences to substitute operands,
1751
   you must take care of the substitution yourself.  Just be sure to
1752
   increment PTR over whatever text should not be output normally.
1753
 
1754
   If you need to look at the operand values, they can be found as the
1755
   elements of `recog_operand'.
1756
 
1757
   If the macro definition does nothing, the instruction is output in
1758
   the usual way.  */
1759
 
1760
#define ASM_OUTPUT_OPCODE(STREAM, PTR)\
1761
   (PTR) = frv_asm_output_opcode (STREAM, PTR)
1762
 
1763
/* If defined, a C statement to be executed just prior to the output
1764
   of assembler code for INSN, to modify the extracted operands so
1765
   they will be output differently.
1766
 
1767
   Here the argument OPVEC is the vector containing the operands
1768
   extracted from INSN, and NOPERANDS is the number of elements of
1769
   the vector which contain meaningful data for this insn.  The
1770
   contents of this vector are what will be used to convert the insn
1771
   template into assembler code, so you can change the assembler
1772
   output by changing the contents of the vector.
1773
 
1774
   This macro is useful when various assembler syntaxes share a single
1775
   file of instruction patterns; by defining this macro differently,
1776
   you can cause a large class of instructions to be output
1777
   differently (such as with rearranged operands).  Naturally,
1778
   variations in assembler syntax affecting individual insn patterns
1779
   ought to be handled by writing conditional output routines in
1780
   those patterns.
1781
 
1782
   If this macro is not defined, it is equivalent to a null statement.  */
1783
 
1784
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
1785
  frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1786
 
1787
#undef USER_LABEL_PREFIX
1788
#define USER_LABEL_PREFIX ""
1789
#define REGISTER_PREFIX ""
1790
#define LOCAL_LABEL_PREFIX "."
1791
#define IMMEDIATE_PREFIX "#"
1792
 
1793
 
1794
/* Output of dispatch tables.  */
1795
 
1796
/* This macro should be provided on machines where the addresses in a dispatch
1797
   table are relative to the table's own address.
1798
 
1799
   The definition should be a C statement to output to the stdio stream STREAM
1800
   an assembler pseudo-instruction to generate a difference between two labels.
1801
   VALUE and REL are the numbers of two internal labels.  The definitions of
1802
   these labels are output using `(*targetm.asm_out.internal_label)', and they must be
1803
   printed in the same way here.  For example,
1804
 
1805
        fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL)  */
1806
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1807
fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
1808
 
1809
/* This macro should be provided on machines where the addresses in a dispatch
1810
   table are absolute.
1811
 
1812
   The definition should be a C statement to output to the stdio stream STREAM
1813
   an assembler pseudo-instruction to generate a reference to a label.  VALUE
1814
   is the number of an internal label whose definition is output using
1815
   `(*targetm.asm_out.internal_label)'.  For example,
1816
 
1817
        fprintf (STREAM, "\t.word L%d\n", VALUE)  */
1818
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1819
fprintf (STREAM, "\t.word .L%d\n", VALUE)
1820
 
1821
#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1822
 
1823
/* Assembler Commands for Exception Regions.  */
1824
 
1825
/* Define this macro to 0 if your target supports DWARF 2 frame unwind
1826
   information, but it does not yet work with exception handling.  Otherwise,
1827
   if your target supports this information (if it defines
1828
   `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
1829
   `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
1830
 
1831
   If this macro is defined to 1, the DWARF 2 unwinder will be the default
1832
   exception handling mechanism; otherwise, setjmp/longjmp will be used by
1833
   default.
1834
 
1835
   If this macro is defined to anything, the DWARF 2 unwinder will be used
1836
   instead of inline unwinders and __unwind_function in the non-setjmp case.  */
1837
#define DWARF2_UNWIND_INFO 1
1838
 
1839
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
1840
 
1841
/* Assembler Commands for Alignment.  */
1842
 
1843
#undef  ASM_OUTPUT_SKIP
1844
#define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
1845
  fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
1846
 
1847
/* A C statement to output to the stdio stream STREAM an assembler command to
1848
   advance the location counter to a multiple of 2 to the POWER bytes.  POWER
1849
   will be a C expression of type `int'.  */
1850
#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1851
  fprintf ((STREAM), "\t.p2align %d\n", (POWER))
1852
 
1853
/* Inside the text section, align with unpacked nops rather than zeros.  */
1854
#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
1855
  fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
1856
 
1857
/* Macros Affecting all Debug Formats.  */
1858
 
1859
/* A C expression that returns the DBX register number for the compiler
1860
   register number REGNO.  In simple cases, the value of this expression may be
1861
   REGNO itself.  But sometimes there are some registers that the compiler
1862
   knows about and DBX does not, or vice versa.  In such cases, some register
1863
   may need to have one number in the compiler and another for DBX.
1864
 
1865
   If two registers have consecutive numbers inside GCC, and they can be
1866
   used as a pair to hold a multiword value, then they *must* have consecutive
1867
   numbers after renumbering with `DBX_REGISTER_NUMBER'.  Otherwise, debuggers
1868
   will be unable to access such a pair, because they expect register pairs to
1869
   be consecutive in their own numbering scheme.
1870
 
1871
   If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
1872
   preserve register pairs, then what you must do instead is redefine the
1873
   actual register numbering scheme.
1874
 
1875
   This declaration is required.  */
1876
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1877
 
1878
#undef  PREFERRED_DEBUGGING_TYPE
1879
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1880
 
1881
/* Miscellaneous Parameters.  */
1882
 
1883
/* An alias for a machine mode name.  This is the machine mode that elements of
1884
   a jump-table should have.  */
1885
#define CASE_VECTOR_MODE SImode
1886
 
1887
/* Define this macro if operations between registers with integral mode smaller
1888
   than a word are always performed on the entire register.  Most RISC machines
1889
   have this property and most CISC machines do not.  */
1890
#define WORD_REGISTER_OPERATIONS
1891
 
1892
/* Define this macro to be a C expression indicating when insns that read
1893
   memory in MODE, an integral mode narrower than a word, set the bits outside
1894
   of MODE to be either the sign-extension or the zero-extension of the data
1895
   read.  Return `SIGN_EXTEND' for values of MODE for which the insn
1896
   sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
1897
   modes.
1898
 
1899
   This macro is not called with MODE non-integral or with a width greater than
1900
   or equal to `BITS_PER_WORD', so you may return any value in this case.  Do
1901
   not define this macro if it would always return `UNKNOWN'.  On machines where
1902
   this macro is defined, you will normally define it as the constant
1903
   `SIGN_EXTEND' or `ZERO_EXTEND'.  */
1904
#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1905
 
1906
/* Define if loading short immediate values into registers sign extends.  */
1907
#define SHORT_IMMEDIATES_SIGN_EXTEND
1908
 
1909
/* The maximum number of bytes that a single instruction can move quickly from
1910
   memory to memory.  */
1911
#define MOVE_MAX 8
1912
 
1913
/* A C expression which is nonzero if on this machine it is safe to "convert"
1914
   an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1915
   than INPREC) by merely operating on it as if it had only OUTPREC bits.
1916
 
1917
   On many machines, this expression can be 1.
1918
 
1919
   When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
1920
   which `MODES_TIEABLE_P' is 0, suboptimal code can result.  If this is the
1921
   case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
1922
   things.  */
1923
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1924
 
1925
/* An alias for the machine mode for pointers.  On most machines, define this
1926
   to be the integer mode corresponding to the width of a hardware pointer;
1927
   `SImode' on 32-bit machine or `DImode' on 64-bit machines.  On some machines
1928
   you must define this to be one of the partial integer modes, such as
1929
   `PSImode'.
1930
 
1931
   The width of `Pmode' must be at least as large as the value of
1932
   `POINTER_SIZE'.  If it is not equal, you must define the macro
1933
   `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'.  */
1934
#define Pmode SImode
1935
 
1936
/* An alias for the machine mode used for memory references to functions being
1937
   called, in `call' RTL expressions.  On most machines this should be
1938
   `QImode'.  */
1939
#define FUNCTION_MODE QImode
1940
 
1941
/* A C expression for the maximum number of instructions to execute via
1942
   conditional execution instructions instead of a branch.  A value of
1943
   BRANCH_COST+1 is the default if the machine does not use
1944
   cc0, and 1 if it does use cc0.  */
1945
#define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
1946
 
1947
/* A C expression to modify the code described by the conditional if
1948
   information CE_INFO, possibly updating the tests in TRUE_EXPR, and
1949
   FALSE_EXPR for converting if-then and if-then-else code to conditional
1950
   instructions.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
1951
   tests cannot be converted.  */
1952
#define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR)              \
1953
frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
1954
 
1955
/* A C expression to modify the code described by the conditional if
1956
   information CE_INFO, for the basic block BB, possibly updating the tests in
1957
   TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
1958
   if-then-else code to conditional instructions.  OLD_TRUE and OLD_FALSE are
1959
   the previous tests.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
1960
   the tests cannot be converted.  */
1961
#define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
1962
frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
1963
 
1964
/* A C expression to modify the code described by the conditional if
1965
   information CE_INFO with the new PATTERN in INSN.  If PATTERN is a null
1966
   pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
1967
   insn cannot be converted to be executed conditionally.  */
1968
#define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
1969
(PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
1970
 
1971
/* A C expression to perform any final machine dependent modifications in
1972
   converting code to conditional execution in the code described by the
1973
   conditional if information CE_INFO.  */
1974
#define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
1975
 
1976
/* A C expression to cancel any machine dependent modifications in converting
1977
   code to conditional execution in the code described by the conditional if
1978
   information CE_INFO.  */
1979
#define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
1980
 
1981
/* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS.  */
1982
#define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
1983
 
1984
/* The definition of the following macro results in that the 2nd jump
1985
   optimization (after the 2nd insn scheduling) is minimal.  It is
1986
   necessary to define when start cycle marks of insns (TImode is used
1987
   for this) is used for VLIW insn packing.  Some jump optimizations
1988
   make such marks invalid.  These marks are corrected for some
1989
   (minimal) optimizations.  ??? Probably the macro is temporary.
1990
   Final solution could making the 2nd jump optimizations before the
1991
   2nd instruction scheduling or corrections of the marks for all jump
1992
   optimizations.  Although some jump optimizations are actually
1993
   deoptimizations for VLIW (super-scalar) processors.  */
1994
 
1995
#define MINIMAL_SECOND_JUMP_OPTIMIZATION
1996
 
1997
 
1998
/* If the following macro is defined and nonzero and deterministic
1999
   finite state automata are used for pipeline hazard recognition, we
2000
   will try to exchange insns in queue ready to improve the schedule.
2001
   The more macro value, the more tries will be made.  */
2002
#define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
2003
 
2004
/* The following macro is used only when value of
2005
   FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero.  The more macro value,
2006
   the more tries will be made to choose better schedule.  If the
2007
   macro value is zero or negative there will be no multi-pass
2008
   scheduling.  */
2009
#define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
2010
 
2011
enum frv_builtins
2012
{
2013
  FRV_BUILTIN_MAND,
2014
  FRV_BUILTIN_MOR,
2015
  FRV_BUILTIN_MXOR,
2016
  FRV_BUILTIN_MNOT,
2017
  FRV_BUILTIN_MAVEH,
2018
  FRV_BUILTIN_MSATHS,
2019
  FRV_BUILTIN_MSATHU,
2020
  FRV_BUILTIN_MADDHSS,
2021
  FRV_BUILTIN_MADDHUS,
2022
  FRV_BUILTIN_MSUBHSS,
2023
  FRV_BUILTIN_MSUBHUS,
2024
  FRV_BUILTIN_MPACKH,
2025
  FRV_BUILTIN_MQADDHSS,
2026
  FRV_BUILTIN_MQADDHUS,
2027
  FRV_BUILTIN_MQSUBHSS,
2028
  FRV_BUILTIN_MQSUBHUS,
2029
  FRV_BUILTIN_MUNPACKH,
2030
  FRV_BUILTIN_MDPACKH,
2031
  FRV_BUILTIN_MBTOH,
2032
  FRV_BUILTIN_MHTOB,
2033
  FRV_BUILTIN_MCOP1,
2034
  FRV_BUILTIN_MCOP2,
2035
  FRV_BUILTIN_MROTLI,
2036
  FRV_BUILTIN_MROTRI,
2037
  FRV_BUILTIN_MWCUT,
2038
  FRV_BUILTIN_MSLLHI,
2039
  FRV_BUILTIN_MSRLHI,
2040
  FRV_BUILTIN_MSRAHI,
2041
  FRV_BUILTIN_MEXPDHW,
2042
  FRV_BUILTIN_MEXPDHD,
2043
  FRV_BUILTIN_MMULHS,
2044
  FRV_BUILTIN_MMULHU,
2045
  FRV_BUILTIN_MMULXHS,
2046
  FRV_BUILTIN_MMULXHU,
2047
  FRV_BUILTIN_MMACHS,
2048
  FRV_BUILTIN_MMACHU,
2049
  FRV_BUILTIN_MMRDHS,
2050
  FRV_BUILTIN_MMRDHU,
2051
  FRV_BUILTIN_MQMULHS,
2052
  FRV_BUILTIN_MQMULHU,
2053
  FRV_BUILTIN_MQMULXHU,
2054
  FRV_BUILTIN_MQMULXHS,
2055
  FRV_BUILTIN_MQMACHS,
2056
  FRV_BUILTIN_MQMACHU,
2057
  FRV_BUILTIN_MCPXRS,
2058
  FRV_BUILTIN_MCPXRU,
2059
  FRV_BUILTIN_MCPXIS,
2060
  FRV_BUILTIN_MCPXIU,
2061
  FRV_BUILTIN_MQCPXRS,
2062
  FRV_BUILTIN_MQCPXRU,
2063
  FRV_BUILTIN_MQCPXIS,
2064
  FRV_BUILTIN_MQCPXIU,
2065
  FRV_BUILTIN_MCUT,
2066
  FRV_BUILTIN_MCUTSS,
2067
  FRV_BUILTIN_MWTACC,
2068
  FRV_BUILTIN_MWTACCG,
2069
  FRV_BUILTIN_MRDACC,
2070
  FRV_BUILTIN_MRDACCG,
2071
  FRV_BUILTIN_MTRAP,
2072
  FRV_BUILTIN_MCLRACC,
2073
  FRV_BUILTIN_MCLRACCA,
2074
  FRV_BUILTIN_MDUNPACKH,
2075
  FRV_BUILTIN_MBTOHE,
2076
  FRV_BUILTIN_MQXMACHS,
2077
  FRV_BUILTIN_MQXMACXHS,
2078
  FRV_BUILTIN_MQMACXHS,
2079
  FRV_BUILTIN_MADDACCS,
2080
  FRV_BUILTIN_MSUBACCS,
2081
  FRV_BUILTIN_MASACCS,
2082
  FRV_BUILTIN_MDADDACCS,
2083
  FRV_BUILTIN_MDSUBACCS,
2084
  FRV_BUILTIN_MDASACCS,
2085
  FRV_BUILTIN_MABSHS,
2086
  FRV_BUILTIN_MDROTLI,
2087
  FRV_BUILTIN_MCPLHI,
2088
  FRV_BUILTIN_MCPLI,
2089
  FRV_BUILTIN_MDCUTSSI,
2090
  FRV_BUILTIN_MQSATHS,
2091
  FRV_BUILTIN_MQLCLRHS,
2092
  FRV_BUILTIN_MQLMTHS,
2093
  FRV_BUILTIN_MQSLLHI,
2094
  FRV_BUILTIN_MQSRAHI,
2095
  FRV_BUILTIN_MHSETLOS,
2096
  FRV_BUILTIN_MHSETLOH,
2097
  FRV_BUILTIN_MHSETHIS,
2098
  FRV_BUILTIN_MHSETHIH,
2099
  FRV_BUILTIN_MHDSETS,
2100
  FRV_BUILTIN_MHDSETH,
2101
  FRV_BUILTIN_SMUL,
2102
  FRV_BUILTIN_UMUL,
2103
  FRV_BUILTIN_PREFETCH0,
2104
  FRV_BUILTIN_PREFETCH,
2105
  FRV_BUILTIN_SMASS,
2106
  FRV_BUILTIN_SMSSS,
2107
  FRV_BUILTIN_SMU,
2108
  FRV_BUILTIN_SCUTSS,
2109
  FRV_BUILTIN_ADDSS,
2110
  FRV_BUILTIN_SUBSS,
2111
  FRV_BUILTIN_SLASS,
2112
  FRV_BUILTIN_IACCreadll,
2113
  FRV_BUILTIN_IACCreadl,
2114
  FRV_BUILTIN_IACCsetll,
2115
  FRV_BUILTIN_IACCsetl,
2116
  FRV_BUILTIN_SCAN,
2117
  FRV_BUILTIN_READ8,
2118
  FRV_BUILTIN_READ16,
2119
  FRV_BUILTIN_READ32,
2120
  FRV_BUILTIN_READ64,
2121
  FRV_BUILTIN_WRITE8,
2122
  FRV_BUILTIN_WRITE16,
2123
  FRV_BUILTIN_WRITE32,
2124
  FRV_BUILTIN_WRITE64
2125
};
2126
#define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
2127
 
2128
/* Enable prototypes on the call rtl functions.  */
2129
#define MD_CALL_PROTOTYPES 1
2130
 
2131
#define CPU_UNITS_QUERY 1
2132
 
2133
#ifdef __FRV_FDPIC__
2134
#define CRT_GET_RFIB_DATA(dbase) \
2135
  ({ extern void *_GLOBAL_OFFSET_TABLE_; (dbase) = &_GLOBAL_OFFSET_TABLE_; })
2136
#endif
2137
 
2138
#endif /* __FRV_H__ */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.