| 1 |
709 |
jeremybenn |
/* Subroutines for insn-output.c for Renesas H8/300.
|
| 2 |
|
|
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
| 3 |
|
|
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
|
| 4 |
|
|
Free Software Foundation, Inc.
|
| 5 |
|
|
Contributed by Steve Chamberlain (sac@cygnus.com),
|
| 6 |
|
|
Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
|
| 7 |
|
|
|
| 8 |
|
|
This file is part of GCC.
|
| 9 |
|
|
|
| 10 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 11 |
|
|
it under the terms of the GNU General Public License as published by
|
| 12 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 13 |
|
|
any later version.
|
| 14 |
|
|
|
| 15 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 16 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 17 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 18 |
|
|
GNU General Public License for more details.
|
| 19 |
|
|
|
| 20 |
|
|
You should have received a copy of the GNU General Public License
|
| 21 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 22 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 23 |
|
|
|
| 24 |
|
|
#include "config.h"
|
| 25 |
|
|
#include "system.h"
|
| 26 |
|
|
#include "coretypes.h"
|
| 27 |
|
|
#include "tm.h"
|
| 28 |
|
|
#include "rtl.h"
|
| 29 |
|
|
#include "tree.h"
|
| 30 |
|
|
#include "regs.h"
|
| 31 |
|
|
#include "hard-reg-set.h"
|
| 32 |
|
|
#include "insn-config.h"
|
| 33 |
|
|
#include "conditions.h"
|
| 34 |
|
|
#include "output.h"
|
| 35 |
|
|
#include "insn-attr.h"
|
| 36 |
|
|
#include "flags.h"
|
| 37 |
|
|
#include "recog.h"
|
| 38 |
|
|
#include "expr.h"
|
| 39 |
|
|
#include "function.h"
|
| 40 |
|
|
#include "optabs.h"
|
| 41 |
|
|
#include "diagnostic-core.h"
|
| 42 |
|
|
#include "c-family/c-pragma.h" /* ??? */
|
| 43 |
|
|
#include "tm_p.h"
|
| 44 |
|
|
#include "tm-constrs.h"
|
| 45 |
|
|
#include "ggc.h"
|
| 46 |
|
|
#include "target.h"
|
| 47 |
|
|
#include "target-def.h"
|
| 48 |
|
|
#include "df.h"
|
| 49 |
|
|
|
| 50 |
|
|
/* Classifies a h8300_src_operand or h8300_dst_operand.
|
| 51 |
|
|
|
| 52 |
|
|
H8OP_IMMEDIATE
|
| 53 |
|
|
A constant operand of some sort.
|
| 54 |
|
|
|
| 55 |
|
|
H8OP_REGISTER
|
| 56 |
|
|
An ordinary register.
|
| 57 |
|
|
|
| 58 |
|
|
H8OP_MEM_ABSOLUTE
|
| 59 |
|
|
A memory reference with a constant address.
|
| 60 |
|
|
|
| 61 |
|
|
H8OP_MEM_BASE
|
| 62 |
|
|
A memory reference with a register as its address.
|
| 63 |
|
|
|
| 64 |
|
|
H8OP_MEM_COMPLEX
|
| 65 |
|
|
Some other kind of memory reference. */
|
| 66 |
|
|
enum h8300_operand_class
|
| 67 |
|
|
{
|
| 68 |
|
|
H8OP_IMMEDIATE,
|
| 69 |
|
|
H8OP_REGISTER,
|
| 70 |
|
|
H8OP_MEM_ABSOLUTE,
|
| 71 |
|
|
H8OP_MEM_BASE,
|
| 72 |
|
|
H8OP_MEM_COMPLEX,
|
| 73 |
|
|
NUM_H8OPS
|
| 74 |
|
|
};
|
| 75 |
|
|
|
| 76 |
|
|
/* For a general two-operand instruction, element [X][Y] gives
|
| 77 |
|
|
the length of the opcode fields when the first operand has class
|
| 78 |
|
|
(X + 1) and the second has class Y. */
|
| 79 |
|
|
typedef unsigned char h8300_length_table[NUM_H8OPS - 1][NUM_H8OPS];
|
| 80 |
|
|
|
| 81 |
|
|
/* Forward declarations. */
|
| 82 |
|
|
static const char *byte_reg (rtx, int);
|
| 83 |
|
|
static int h8300_interrupt_function_p (tree);
|
| 84 |
|
|
static int h8300_saveall_function_p (tree);
|
| 85 |
|
|
static int h8300_monitor_function_p (tree);
|
| 86 |
|
|
static int h8300_os_task_function_p (tree);
|
| 87 |
|
|
static void h8300_emit_stack_adjustment (int, HOST_WIDE_INT, bool);
|
| 88 |
|
|
static HOST_WIDE_INT round_frame_size (HOST_WIDE_INT);
|
| 89 |
|
|
static unsigned int compute_saved_regs (void);
|
| 90 |
|
|
static const char *cond_string (enum rtx_code);
|
| 91 |
|
|
static unsigned int h8300_asm_insn_count (const char *);
|
| 92 |
|
|
static tree h8300_handle_fndecl_attribute (tree *, tree, tree, int, bool *);
|
| 93 |
|
|
static tree h8300_handle_eightbit_data_attribute (tree *, tree, tree, int, bool *);
|
| 94 |
|
|
static tree h8300_handle_tiny_data_attribute (tree *, tree, tree, int, bool *);
|
| 95 |
|
|
static void h8300_print_operand_address (FILE *, rtx);
|
| 96 |
|
|
static void h8300_print_operand (FILE *, rtx, int);
|
| 97 |
|
|
static bool h8300_print_operand_punct_valid_p (unsigned char code);
|
| 98 |
|
|
#ifndef OBJECT_FORMAT_ELF
|
| 99 |
|
|
static void h8300_asm_named_section (const char *, unsigned int, tree);
|
| 100 |
|
|
#endif
|
| 101 |
|
|
static int h8300_register_move_cost (enum machine_mode, reg_class_t, reg_class_t);
|
| 102 |
|
|
static int h8300_and_costs (rtx);
|
| 103 |
|
|
static int h8300_shift_costs (rtx);
|
| 104 |
|
|
static void h8300_push_pop (int, int, bool, bool);
|
| 105 |
|
|
static int h8300_stack_offset_p (rtx, int);
|
| 106 |
|
|
static int h8300_ldm_stm_regno (rtx, int, int, int);
|
| 107 |
|
|
static void h8300_reorg (void);
|
| 108 |
|
|
static unsigned int h8300_constant_length (rtx);
|
| 109 |
|
|
static unsigned int h8300_displacement_length (rtx, int);
|
| 110 |
|
|
static unsigned int h8300_classify_operand (rtx, int, enum h8300_operand_class *);
|
| 111 |
|
|
static unsigned int h8300_length_from_table (rtx, rtx, const h8300_length_table *);
|
| 112 |
|
|
static unsigned int h8300_unary_length (rtx);
|
| 113 |
|
|
static unsigned int h8300_short_immediate_length (rtx);
|
| 114 |
|
|
static unsigned int h8300_bitfield_length (rtx, rtx);
|
| 115 |
|
|
static unsigned int h8300_binary_length (rtx, const h8300_length_table *);
|
| 116 |
|
|
static bool h8300_short_move_mem_p (rtx, enum rtx_code);
|
| 117 |
|
|
static unsigned int h8300_move_length (rtx *, const h8300_length_table *);
|
| 118 |
|
|
static bool h8300_hard_regno_scratch_ok (unsigned int);
|
| 119 |
|
|
static rtx h8300_get_index (rtx, enum machine_mode mode, int *);
|
| 120 |
|
|
|
| 121 |
|
|
/* CPU_TYPE, says what cpu we're compiling for. */
|
| 122 |
|
|
int cpu_type;
|
| 123 |
|
|
|
| 124 |
|
|
/* True if a #pragma interrupt has been seen for the current function. */
|
| 125 |
|
|
static int pragma_interrupt;
|
| 126 |
|
|
|
| 127 |
|
|
/* True if a #pragma saveall has been seen for the current function. */
|
| 128 |
|
|
static int pragma_saveall;
|
| 129 |
|
|
|
| 130 |
|
|
static const char *const names_big[] =
|
| 131 |
|
|
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" };
|
| 132 |
|
|
|
| 133 |
|
|
static const char *const names_extended[] =
|
| 134 |
|
|
{ "er0", "er1", "er2", "er3", "er4", "er5", "er6", "er7" };
|
| 135 |
|
|
|
| 136 |
|
|
static const char *const names_upper_extended[] =
|
| 137 |
|
|
{ "e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7" };
|
| 138 |
|
|
|
| 139 |
|
|
/* Points to one of the above. */
|
| 140 |
|
|
/* ??? The above could be put in an array indexed by CPU_TYPE. */
|
| 141 |
|
|
const char * const *h8_reg_names;
|
| 142 |
|
|
|
| 143 |
|
|
/* Various operations needed by the following, indexed by CPU_TYPE. */
|
| 144 |
|
|
|
| 145 |
|
|
const char *h8_push_op, *h8_pop_op, *h8_mov_op;
|
| 146 |
|
|
|
| 147 |
|
|
/* Value of MOVE_RATIO. */
|
| 148 |
|
|
int h8300_move_ratio;
|
| 149 |
|
|
|
| 150 |
|
|
/* See below where shifts are handled for explanation of this enum. */
|
| 151 |
|
|
|
| 152 |
|
|
enum shift_alg
|
| 153 |
|
|
{
|
| 154 |
|
|
SHIFT_INLINE,
|
| 155 |
|
|
SHIFT_ROT_AND,
|
| 156 |
|
|
SHIFT_SPECIAL,
|
| 157 |
|
|
SHIFT_LOOP
|
| 158 |
|
|
};
|
| 159 |
|
|
|
| 160 |
|
|
/* Symbols of the various shifts which can be used as indices. */
|
| 161 |
|
|
|
| 162 |
|
|
enum shift_type
|
| 163 |
|
|
{
|
| 164 |
|
|
SHIFT_ASHIFT, SHIFT_LSHIFTRT, SHIFT_ASHIFTRT
|
| 165 |
|
|
};
|
| 166 |
|
|
|
| 167 |
|
|
/* Macros to keep the shift algorithm tables small. */
|
| 168 |
|
|
#define INL SHIFT_INLINE
|
| 169 |
|
|
#define ROT SHIFT_ROT_AND
|
| 170 |
|
|
#define LOP SHIFT_LOOP
|
| 171 |
|
|
#define SPC SHIFT_SPECIAL
|
| 172 |
|
|
|
| 173 |
|
|
/* The shift algorithms for each machine, mode, shift type, and shift
|
| 174 |
|
|
count are defined below. The three tables below correspond to
|
| 175 |
|
|
QImode, HImode, and SImode, respectively. Each table is organized
|
| 176 |
|
|
by, in the order of indices, machine, shift type, and shift count. */
|
| 177 |
|
|
|
| 178 |
|
|
static enum shift_alg shift_alg_qi[3][3][8] = {
|
| 179 |
|
|
{
|
| 180 |
|
|
/* TARGET_H8300 */
|
| 181 |
|
|
/* 0 1 2 3 4 5 6 7 */
|
| 182 |
|
|
{ INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
|
| 183 |
|
|
{ INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
|
| 184 |
|
|
{ INL, INL, INL, INL, INL, LOP, LOP, SPC } /* SHIFT_ASHIFTRT */
|
| 185 |
|
|
},
|
| 186 |
|
|
{
|
| 187 |
|
|
/* TARGET_H8300H */
|
| 188 |
|
|
/* 0 1 2 3 4 5 6 7 */
|
| 189 |
|
|
{ INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
|
| 190 |
|
|
{ INL, INL, INL, INL, INL, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
|
| 191 |
|
|
{ INL, INL, INL, INL, INL, LOP, LOP, SPC } /* SHIFT_ASHIFTRT */
|
| 192 |
|
|
},
|
| 193 |
|
|
{
|
| 194 |
|
|
/* TARGET_H8300S */
|
| 195 |
|
|
/* 0 1 2 3 4 5 6 7 */
|
| 196 |
|
|
{ INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_ASHIFT */
|
| 197 |
|
|
{ INL, INL, INL, INL, INL, INL, ROT, ROT }, /* SHIFT_LSHIFTRT */
|
| 198 |
|
|
{ INL, INL, INL, INL, INL, INL, INL, SPC } /* SHIFT_ASHIFTRT */
|
| 199 |
|
|
}
|
| 200 |
|
|
};
|
| 201 |
|
|
|
| 202 |
|
|
static enum shift_alg shift_alg_hi[3][3][16] = {
|
| 203 |
|
|
{
|
| 204 |
|
|
/* TARGET_H8300 */
|
| 205 |
|
|
/* 0 1 2 3 4 5 6 7 */
|
| 206 |
|
|
/* 8 9 10 11 12 13 14 15 */
|
| 207 |
|
|
{ INL, INL, INL, INL, INL, INL, INL, SPC,
|
| 208 |
|
|
SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
|
| 209 |
|
|
{ INL, INL, INL, INL, INL, LOP, LOP, SPC,
|
| 210 |
|
|
SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
|
| 211 |
|
|
{ INL, INL, INL, INL, INL, LOP, LOP, SPC,
|
| 212 |
|
|
SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
|
| 213 |
|
|
},
|
| 214 |
|
|
{
|
| 215 |
|
|
/* TARGET_H8300H */
|
| 216 |
|
|
/* 0 1 2 3 4 5 6 7 */
|
| 217 |
|
|
/* 8 9 10 11 12 13 14 15 */
|
| 218 |
|
|
{ INL, INL, INL, INL, INL, INL, INL, SPC,
|
| 219 |
|
|
SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
|
| 220 |
|
|
{ INL, INL, INL, INL, INL, INL, INL, SPC,
|
| 221 |
|
|
SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
|
| 222 |
|
|
{ INL, INL, INL, INL, INL, INL, INL, SPC,
|
| 223 |
|
|
SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
|
| 224 |
|
|
},
|
| 225 |
|
|
{
|
| 226 |
|
|
/* TARGET_H8300S */
|
| 227 |
|
|
/* 0 1 2 3 4 5 6 7 */
|
| 228 |
|
|
/* 8 9 10 11 12 13 14 15 */
|
| 229 |
|
|
{ INL, INL, INL, INL, INL, INL, INL, INL,
|
| 230 |
|
|
SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_ASHIFT */
|
| 231 |
|
|
{ INL, INL, INL, INL, INL, INL, INL, INL,
|
| 232 |
|
|
SPC, SPC, SPC, SPC, SPC, ROT, ROT, ROT }, /* SHIFT_LSHIFTRT */
|
| 233 |
|
|
{ INL, INL, INL, INL, INL, INL, INL, INL,
|
| 234 |
|
|
SPC, SPC, SPC, SPC, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFTRT */
|
| 235 |
|
|
}
|
| 236 |
|
|
};
|
| 237 |
|
|
|
| 238 |
|
|
static enum shift_alg shift_alg_si[3][3][32] = {
|
| 239 |
|
|
{
|
| 240 |
|
|
/* TARGET_H8300 */
|
| 241 |
|
|
/* 0 1 2 3 4 5 6 7 */
|
| 242 |
|
|
/* 8 9 10 11 12 13 14 15 */
|
| 243 |
|
|
/* 16 17 18 19 20 21 22 23 */
|
| 244 |
|
|
/* 24 25 26 27 28 29 30 31 */
|
| 245 |
|
|
{ INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
|
| 246 |
|
|
SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
|
| 247 |
|
|
SPC, SPC, SPC, SPC, SPC, LOP, LOP, LOP,
|
| 248 |
|
|
SPC, SPC, SPC, SPC, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFT */
|
| 249 |
|
|
{ INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
|
| 250 |
|
|
SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC,
|
| 251 |
|
|
SPC, SPC, SPC, LOP, LOP, LOP, LOP, LOP,
|
| 252 |
|
|
SPC, SPC, SPC, SPC, SPC, LOP, LOP, SPC }, /* SHIFT_LSHIFTRT */
|
| 253 |
|
|
{ INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
|
| 254 |
|
|
SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
|
| 255 |
|
|
SPC, SPC, LOP, LOP, LOP, LOP, LOP, LOP,
|
| 256 |
|
|
SPC, SPC, SPC, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
|
| 257 |
|
|
},
|
| 258 |
|
|
{
|
| 259 |
|
|
/* TARGET_H8300H */
|
| 260 |
|
|
/* 0 1 2 3 4 5 6 7 */
|
| 261 |
|
|
/* 8 9 10 11 12 13 14 15 */
|
| 262 |
|
|
/* 16 17 18 19 20 21 22 23 */
|
| 263 |
|
|
/* 24 25 26 27 28 29 30 31 */
|
| 264 |
|
|
{ INL, INL, INL, INL, INL, LOP, LOP, LOP,
|
| 265 |
|
|
SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
|
| 266 |
|
|
SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
|
| 267 |
|
|
SPC, LOP, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
|
| 268 |
|
|
{ INL, INL, INL, INL, INL, LOP, LOP, LOP,
|
| 269 |
|
|
SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC,
|
| 270 |
|
|
SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
|
| 271 |
|
|
SPC, LOP, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
|
| 272 |
|
|
{ INL, INL, INL, INL, INL, LOP, LOP, LOP,
|
| 273 |
|
|
SPC, LOP, LOP, LOP, LOP, LOP, LOP, LOP,
|
| 274 |
|
|
SPC, SPC, SPC, SPC, LOP, LOP, LOP, LOP,
|
| 275 |
|
|
SPC, LOP, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
|
| 276 |
|
|
},
|
| 277 |
|
|
{
|
| 278 |
|
|
/* TARGET_H8300S */
|
| 279 |
|
|
/* 0 1 2 3 4 5 6 7 */
|
| 280 |
|
|
/* 8 9 10 11 12 13 14 15 */
|
| 281 |
|
|
/* 16 17 18 19 20 21 22 23 */
|
| 282 |
|
|
/* 24 25 26 27 28 29 30 31 */
|
| 283 |
|
|
{ INL, INL, INL, INL, INL, INL, INL, INL,
|
| 284 |
|
|
INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
|
| 285 |
|
|
SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
|
| 286 |
|
|
SPC, SPC, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_ASHIFT */
|
| 287 |
|
|
{ INL, INL, INL, INL, INL, INL, INL, INL,
|
| 288 |
|
|
INL, INL, INL, LOP, LOP, LOP, LOP, SPC,
|
| 289 |
|
|
SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
|
| 290 |
|
|
SPC, SPC, LOP, LOP, SPC, SPC, SPC, SPC }, /* SHIFT_LSHIFTRT */
|
| 291 |
|
|
{ INL, INL, INL, INL, INL, INL, INL, INL,
|
| 292 |
|
|
INL, INL, INL, LOP, LOP, LOP, LOP, LOP,
|
| 293 |
|
|
SPC, SPC, SPC, SPC, SPC, SPC, LOP, LOP,
|
| 294 |
|
|
SPC, SPC, LOP, LOP, LOP, LOP, LOP, SPC }, /* SHIFT_ASHIFTRT */
|
| 295 |
|
|
}
|
| 296 |
|
|
};
|
| 297 |
|
|
|
| 298 |
|
|
#undef INL
|
| 299 |
|
|
#undef ROT
|
| 300 |
|
|
#undef LOP
|
| 301 |
|
|
#undef SPC
|
| 302 |
|
|
|
| 303 |
|
|
enum h8_cpu
|
| 304 |
|
|
{
|
| 305 |
|
|
H8_300,
|
| 306 |
|
|
H8_300H,
|
| 307 |
|
|
H8_S
|
| 308 |
|
|
};
|
| 309 |
|
|
|
| 310 |
|
|
/* Initialize various cpu specific globals at start up. */
|
| 311 |
|
|
|
| 312 |
|
|
static void
|
| 313 |
|
|
h8300_option_override (void)
|
| 314 |
|
|
{
|
| 315 |
|
|
static const char *const h8_push_ops[2] = { "push" , "push.l" };
|
| 316 |
|
|
static const char *const h8_pop_ops[2] = { "pop" , "pop.l" };
|
| 317 |
|
|
static const char *const h8_mov_ops[2] = { "mov.w", "mov.l" };
|
| 318 |
|
|
|
| 319 |
|
|
if (TARGET_H8300)
|
| 320 |
|
|
{
|
| 321 |
|
|
cpu_type = (int) CPU_H8300;
|
| 322 |
|
|
h8_reg_names = names_big;
|
| 323 |
|
|
}
|
| 324 |
|
|
else
|
| 325 |
|
|
{
|
| 326 |
|
|
/* For this we treat the H8/300H and H8S the same. */
|
| 327 |
|
|
cpu_type = (int) CPU_H8300H;
|
| 328 |
|
|
h8_reg_names = names_extended;
|
| 329 |
|
|
}
|
| 330 |
|
|
h8_push_op = h8_push_ops[cpu_type];
|
| 331 |
|
|
h8_pop_op = h8_pop_ops[cpu_type];
|
| 332 |
|
|
h8_mov_op = h8_mov_ops[cpu_type];
|
| 333 |
|
|
|
| 334 |
|
|
if (!TARGET_H8300S && TARGET_MAC)
|
| 335 |
|
|
{
|
| 336 |
|
|
error ("-ms2600 is used without -ms");
|
| 337 |
|
|
target_flags |= MASK_H8300S_1;
|
| 338 |
|
|
}
|
| 339 |
|
|
|
| 340 |
|
|
if (TARGET_H8300 && TARGET_NORMAL_MODE)
|
| 341 |
|
|
{
|
| 342 |
|
|
error ("-mn is used without -mh or -ms");
|
| 343 |
|
|
target_flags ^= MASK_NORMAL_MODE;
|
| 344 |
|
|
}
|
| 345 |
|
|
|
| 346 |
|
|
/* Some of the shifts are optimized for speed by default.
|
| 347 |
|
|
See http://gcc.gnu.org/ml/gcc-patches/2002-07/msg01858.html
|
| 348 |
|
|
If optimizing for size, change shift_alg for those shift to
|
| 349 |
|
|
SHIFT_LOOP. */
|
| 350 |
|
|
if (optimize_size)
|
| 351 |
|
|
{
|
| 352 |
|
|
/* H8/300 */
|
| 353 |
|
|
shift_alg_hi[H8_300][SHIFT_ASHIFT][5] = SHIFT_LOOP;
|
| 354 |
|
|
shift_alg_hi[H8_300][SHIFT_ASHIFT][6] = SHIFT_LOOP;
|
| 355 |
|
|
shift_alg_hi[H8_300][SHIFT_ASHIFT][13] = SHIFT_LOOP;
|
| 356 |
|
|
shift_alg_hi[H8_300][SHIFT_ASHIFT][14] = SHIFT_LOOP;
|
| 357 |
|
|
|
| 358 |
|
|
shift_alg_hi[H8_300][SHIFT_LSHIFTRT][13] = SHIFT_LOOP;
|
| 359 |
|
|
shift_alg_hi[H8_300][SHIFT_LSHIFTRT][14] = SHIFT_LOOP;
|
| 360 |
|
|
|
| 361 |
|
|
shift_alg_hi[H8_300][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
|
| 362 |
|
|
shift_alg_hi[H8_300][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
|
| 363 |
|
|
|
| 364 |
|
|
/* H8/300H */
|
| 365 |
|
|
shift_alg_hi[H8_300H][SHIFT_ASHIFT][5] = SHIFT_LOOP;
|
| 366 |
|
|
shift_alg_hi[H8_300H][SHIFT_ASHIFT][6] = SHIFT_LOOP;
|
| 367 |
|
|
|
| 368 |
|
|
shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][5] = SHIFT_LOOP;
|
| 369 |
|
|
shift_alg_hi[H8_300H][SHIFT_LSHIFTRT][6] = SHIFT_LOOP;
|
| 370 |
|
|
|
| 371 |
|
|
shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][5] = SHIFT_LOOP;
|
| 372 |
|
|
shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][6] = SHIFT_LOOP;
|
| 373 |
|
|
shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][13] = SHIFT_LOOP;
|
| 374 |
|
|
shift_alg_hi[H8_300H][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
|
| 375 |
|
|
|
| 376 |
|
|
/* H8S */
|
| 377 |
|
|
shift_alg_hi[H8_S][SHIFT_ASHIFTRT][14] = SHIFT_LOOP;
|
| 378 |
|
|
}
|
| 379 |
|
|
|
| 380 |
|
|
/* Work out a value for MOVE_RATIO. */
|
| 381 |
|
|
if (!TARGET_H8300SX)
|
| 382 |
|
|
{
|
| 383 |
|
|
/* Memory-memory moves are quite expensive without the
|
| 384 |
|
|
h8sx instructions. */
|
| 385 |
|
|
h8300_move_ratio = 3;
|
| 386 |
|
|
}
|
| 387 |
|
|
else if (flag_omit_frame_pointer)
|
| 388 |
|
|
{
|
| 389 |
|
|
/* movmd sequences are fairly cheap when er6 isn't fixed. They can
|
| 390 |
|
|
sometimes be as short as two individual memory-to-memory moves,
|
| 391 |
|
|
but since they use all the call-saved registers, it seems better
|
| 392 |
|
|
to allow up to three moves here. */
|
| 393 |
|
|
h8300_move_ratio = 4;
|
| 394 |
|
|
}
|
| 395 |
|
|
else if (optimize_size)
|
| 396 |
|
|
{
|
| 397 |
|
|
/* In this case we don't use movmd sequences since they tend
|
| 398 |
|
|
to be longer than calls to memcpy(). Memory-to-memory
|
| 399 |
|
|
moves are cheaper than for !TARGET_H8300SX, so it makes
|
| 400 |
|
|
sense to have a slightly higher threshold. */
|
| 401 |
|
|
h8300_move_ratio = 4;
|
| 402 |
|
|
}
|
| 403 |
|
|
else
|
| 404 |
|
|
{
|
| 405 |
|
|
/* We use movmd sequences for some moves since it can be quicker
|
| 406 |
|
|
than calling memcpy(). The sequences will need to save and
|
| 407 |
|
|
restore er6 though, so bump up the cost. */
|
| 408 |
|
|
h8300_move_ratio = 6;
|
| 409 |
|
|
}
|
| 410 |
|
|
|
| 411 |
|
|
/* This target defaults to strict volatile bitfields. */
|
| 412 |
|
|
if (flag_strict_volatile_bitfields < 0 && abi_version_at_least(2))
|
| 413 |
|
|
flag_strict_volatile_bitfields = 1;
|
| 414 |
|
|
}
|
| 415 |
|
|
|
| 416 |
|
|
/* Return the byte register name for a register rtx X. B should be 0
|
| 417 |
|
|
if you want a lower byte register. B should be 1 if you want an
|
| 418 |
|
|
upper byte register. */
|
| 419 |
|
|
|
| 420 |
|
|
static const char *
|
| 421 |
|
|
byte_reg (rtx x, int b)
|
| 422 |
|
|
{
|
| 423 |
|
|
static const char *const names_small[] = {
|
| 424 |
|
|
"r0l", "r0h", "r1l", "r1h", "r2l", "r2h", "r3l", "r3h",
|
| 425 |
|
|
"r4l", "r4h", "r5l", "r5h", "r6l", "r6h", "r7l", "r7h"
|
| 426 |
|
|
};
|
| 427 |
|
|
|
| 428 |
|
|
gcc_assert (REG_P (x));
|
| 429 |
|
|
|
| 430 |
|
|
return names_small[REGNO (x) * 2 + b];
|
| 431 |
|
|
}
|
| 432 |
|
|
|
| 433 |
|
|
/* REGNO must be saved/restored across calls if this macro is true. */
|
| 434 |
|
|
|
| 435 |
|
|
#define WORD_REG_USED(regno) \
|
| 436 |
|
|
(regno < SP_REG \
|
| 437 |
|
|
/* No need to save registers if this function will not return. */ \
|
| 438 |
|
|
&& ! TREE_THIS_VOLATILE (current_function_decl) \
|
| 439 |
|
|
&& (h8300_saveall_function_p (current_function_decl) \
|
| 440 |
|
|
/* Save any call saved register that was used. */ \
|
| 441 |
|
|
|| (df_regs_ever_live_p (regno) && !call_used_regs[regno]) \
|
| 442 |
|
|
/* Save the frame pointer if it was used. */ \
|
| 443 |
|
|
|| (regno == HARD_FRAME_POINTER_REGNUM && df_regs_ever_live_p (regno)) \
|
| 444 |
|
|
/* Save any register used in an interrupt handler. */ \
|
| 445 |
|
|
|| (h8300_current_function_interrupt_function_p () \
|
| 446 |
|
|
&& df_regs_ever_live_p (regno)) \
|
| 447 |
|
|
/* Save call clobbered registers in non-leaf interrupt \
|
| 448 |
|
|
handlers. */ \
|
| 449 |
|
|
|| (h8300_current_function_interrupt_function_p () \
|
| 450 |
|
|
&& call_used_regs[regno] \
|
| 451 |
|
|
&& !current_function_is_leaf)))
|
| 452 |
|
|
|
| 453 |
|
|
/* We use this to wrap all emitted insns in the prologue. */
|
| 454 |
|
|
static rtx
|
| 455 |
|
|
F (rtx x, bool set_it)
|
| 456 |
|
|
{
|
| 457 |
|
|
if (set_it)
|
| 458 |
|
|
RTX_FRAME_RELATED_P (x) = 1;
|
| 459 |
|
|
return x;
|
| 460 |
|
|
}
|
| 461 |
|
|
|
| 462 |
|
|
/* Mark all the subexpressions of the PARALLEL rtx PAR as
|
| 463 |
|
|
frame-related. Return PAR.
|
| 464 |
|
|
|
| 465 |
|
|
dwarf2out.c:dwarf2out_frame_debug_expr ignores sub-expressions of a
|
| 466 |
|
|
PARALLEL rtx other than the first if they do not have the
|
| 467 |
|
|
FRAME_RELATED flag set on them. */
|
| 468 |
|
|
static rtx
|
| 469 |
|
|
Fpa (rtx par)
|
| 470 |
|
|
{
|
| 471 |
|
|
int len = XVECLEN (par, 0);
|
| 472 |
|
|
int i;
|
| 473 |
|
|
|
| 474 |
|
|
for (i = 0; i < len; i++)
|
| 475 |
|
|
F (XVECEXP (par, 0, i), true);
|
| 476 |
|
|
|
| 477 |
|
|
return par;
|
| 478 |
|
|
}
|
| 479 |
|
|
|
| 480 |
|
|
/* Output assembly language to FILE for the operation OP with operand size
|
| 481 |
|
|
SIZE to adjust the stack pointer. */
|
| 482 |
|
|
|
| 483 |
|
|
static void
|
| 484 |
|
|
h8300_emit_stack_adjustment (int sign, HOST_WIDE_INT size, bool in_prologue)
|
| 485 |
|
|
{
|
| 486 |
|
|
/* If the frame size is 0, we don't have anything to do. */
|
| 487 |
|
|
if (size == 0)
|
| 488 |
|
|
return;
|
| 489 |
|
|
|
| 490 |
|
|
/* H8/300 cannot add/subtract a large constant with a single
|
| 491 |
|
|
instruction. If a temporary register is available, load the
|
| 492 |
|
|
constant to it and then do the addition. */
|
| 493 |
|
|
if (TARGET_H8300
|
| 494 |
|
|
&& size > 4
|
| 495 |
|
|
&& !h8300_current_function_interrupt_function_p ()
|
| 496 |
|
|
&& !(cfun->static_chain_decl != NULL && sign < 0))
|
| 497 |
|
|
{
|
| 498 |
|
|
rtx r3 = gen_rtx_REG (Pmode, 3);
|
| 499 |
|
|
F (emit_insn (gen_movhi (r3, GEN_INT (sign * size))), in_prologue);
|
| 500 |
|
|
F (emit_insn (gen_addhi3 (stack_pointer_rtx,
|
| 501 |
|
|
stack_pointer_rtx, r3)), in_prologue);
|
| 502 |
|
|
}
|
| 503 |
|
|
else
|
| 504 |
|
|
{
|
| 505 |
|
|
/* The stack adjustment made here is further optimized by the
|
| 506 |
|
|
splitter. In case of H8/300, the splitter always splits the
|
| 507 |
|
|
addition emitted here to make the adjustment interrupt-safe.
|
| 508 |
|
|
FIXME: We don't always tag those, because we don't know what
|
| 509 |
|
|
the splitter will do. */
|
| 510 |
|
|
if (Pmode == HImode)
|
| 511 |
|
|
{
|
| 512 |
|
|
rtx x = emit_insn (gen_addhi3 (stack_pointer_rtx,
|
| 513 |
|
|
stack_pointer_rtx, GEN_INT (sign * size)));
|
| 514 |
|
|
if (size < 4)
|
| 515 |
|
|
F (x, in_prologue);
|
| 516 |
|
|
}
|
| 517 |
|
|
else
|
| 518 |
|
|
F (emit_insn (gen_addsi3 (stack_pointer_rtx,
|
| 519 |
|
|
stack_pointer_rtx, GEN_INT (sign * size))), in_prologue);
|
| 520 |
|
|
}
|
| 521 |
|
|
}
|
| 522 |
|
|
|
| 523 |
|
|
/* Round up frame size SIZE. */
|
| 524 |
|
|
|
| 525 |
|
|
static HOST_WIDE_INT
|
| 526 |
|
|
round_frame_size (HOST_WIDE_INT size)
|
| 527 |
|
|
{
|
| 528 |
|
|
return ((size + STACK_BOUNDARY / BITS_PER_UNIT - 1)
|
| 529 |
|
|
& -STACK_BOUNDARY / BITS_PER_UNIT);
|
| 530 |
|
|
}
|
| 531 |
|
|
|
| 532 |
|
|
/* Compute which registers to push/pop.
|
| 533 |
|
|
Return a bit vector of registers. */
|
| 534 |
|
|
|
| 535 |
|
|
static unsigned int
|
| 536 |
|
|
compute_saved_regs (void)
|
| 537 |
|
|
{
|
| 538 |
|
|
unsigned int saved_regs = 0;
|
| 539 |
|
|
int regno;
|
| 540 |
|
|
|
| 541 |
|
|
/* Construct a bit vector of registers to be pushed/popped. */
|
| 542 |
|
|
for (regno = 0; regno <= HARD_FRAME_POINTER_REGNUM; regno++)
|
| 543 |
|
|
{
|
| 544 |
|
|
if (WORD_REG_USED (regno))
|
| 545 |
|
|
saved_regs |= 1 << regno;
|
| 546 |
|
|
}
|
| 547 |
|
|
|
| 548 |
|
|
/* Don't push/pop the frame pointer as it is treated separately. */
|
| 549 |
|
|
if (frame_pointer_needed)
|
| 550 |
|
|
saved_regs &= ~(1 << HARD_FRAME_POINTER_REGNUM);
|
| 551 |
|
|
|
| 552 |
|
|
return saved_regs;
|
| 553 |
|
|
}
|
| 554 |
|
|
|
| 555 |
|
|
/* Emit an insn to push register RN. */
|
| 556 |
|
|
|
| 557 |
|
|
static rtx
|
| 558 |
|
|
push (int rn)
|
| 559 |
|
|
{
|
| 560 |
|
|
rtx reg = gen_rtx_REG (word_mode, rn);
|
| 561 |
|
|
rtx x;
|
| 562 |
|
|
|
| 563 |
|
|
if (TARGET_H8300)
|
| 564 |
|
|
x = gen_push_h8300 (reg);
|
| 565 |
|
|
else if (!TARGET_NORMAL_MODE)
|
| 566 |
|
|
x = gen_push_h8300hs_advanced (reg);
|
| 567 |
|
|
else
|
| 568 |
|
|
x = gen_push_h8300hs_normal (reg);
|
| 569 |
|
|
x = F (emit_insn (x), true);
|
| 570 |
|
|
add_reg_note (x, REG_INC, stack_pointer_rtx);
|
| 571 |
|
|
return x;
|
| 572 |
|
|
}
|
| 573 |
|
|
|
| 574 |
|
|
/* Emit an insn to pop register RN. */
|
| 575 |
|
|
|
| 576 |
|
|
static rtx
|
| 577 |
|
|
pop (int rn)
|
| 578 |
|
|
{
|
| 579 |
|
|
rtx reg = gen_rtx_REG (word_mode, rn);
|
| 580 |
|
|
rtx x;
|
| 581 |
|
|
|
| 582 |
|
|
if (TARGET_H8300)
|
| 583 |
|
|
x = gen_pop_h8300 (reg);
|
| 584 |
|
|
else if (!TARGET_NORMAL_MODE)
|
| 585 |
|
|
x = gen_pop_h8300hs_advanced (reg);
|
| 586 |
|
|
else
|
| 587 |
|
|
x = gen_pop_h8300hs_normal (reg);
|
| 588 |
|
|
x = emit_insn (x);
|
| 589 |
|
|
add_reg_note (x, REG_INC, stack_pointer_rtx);
|
| 590 |
|
|
return x;
|
| 591 |
|
|
}
|
| 592 |
|
|
|
| 593 |
|
|
/* Emit an instruction to push or pop NREGS consecutive registers
|
| 594 |
|
|
starting at register REGNO. POP_P selects a pop rather than a
|
| 595 |
|
|
push and RETURN_P is true if the instruction should return.
|
| 596 |
|
|
|
| 597 |
|
|
It must be possible to do the requested operation in a single
|
| 598 |
|
|
instruction. If NREGS == 1 && !RETURN_P, use a normal push
|
| 599 |
|
|
or pop insn. Otherwise emit a parallel of the form:
|
| 600 |
|
|
|
| 601 |
|
|
(parallel
|
| 602 |
|
|
[(return) ;; if RETURN_P
|
| 603 |
|
|
(save or restore REGNO)
|
| 604 |
|
|
(save or restore REGNO + 1)
|
| 605 |
|
|
...
|
| 606 |
|
|
(save or restore REGNO + NREGS - 1)
|
| 607 |
|
|
(set sp (plus sp (const_int adjust)))] */
|
| 608 |
|
|
|
| 609 |
|
|
static void
|
| 610 |
|
|
h8300_push_pop (int regno, int nregs, bool pop_p, bool return_p)
|
| 611 |
|
|
{
|
| 612 |
|
|
int i, j;
|
| 613 |
|
|
rtvec vec;
|
| 614 |
|
|
rtx sp, offset, x;
|
| 615 |
|
|
|
| 616 |
|
|
/* See whether we can use a simple push or pop. */
|
| 617 |
|
|
if (!return_p && nregs == 1)
|
| 618 |
|
|
{
|
| 619 |
|
|
if (pop_p)
|
| 620 |
|
|
pop (regno);
|
| 621 |
|
|
else
|
| 622 |
|
|
push (regno);
|
| 623 |
|
|
return;
|
| 624 |
|
|
}
|
| 625 |
|
|
|
| 626 |
|
|
/* We need one element for the return insn, if present, one for each
|
| 627 |
|
|
register, and one for stack adjustment. */
|
| 628 |
|
|
vec = rtvec_alloc ((return_p ? 1 : 0) + nregs + 1);
|
| 629 |
|
|
sp = stack_pointer_rtx;
|
| 630 |
|
|
i = 0;
|
| 631 |
|
|
|
| 632 |
|
|
/* Add the return instruction. */
|
| 633 |
|
|
if (return_p)
|
| 634 |
|
|
{
|
| 635 |
|
|
RTVEC_ELT (vec, i) = ret_rtx;
|
| 636 |
|
|
i++;
|
| 637 |
|
|
}
|
| 638 |
|
|
|
| 639 |
|
|
/* Add the register moves. */
|
| 640 |
|
|
for (j = 0; j < nregs; j++)
|
| 641 |
|
|
{
|
| 642 |
|
|
rtx lhs, rhs;
|
| 643 |
|
|
|
| 644 |
|
|
if (pop_p)
|
| 645 |
|
|
{
|
| 646 |
|
|
/* Register REGNO + NREGS - 1 is popped first. Before the
|
| 647 |
|
|
stack adjustment, its slot is at address @sp. */
|
| 648 |
|
|
lhs = gen_rtx_REG (SImode, regno + j);
|
| 649 |
|
|
rhs = gen_rtx_MEM (SImode, plus_constant (sp, (nregs - j - 1) * 4));
|
| 650 |
|
|
}
|
| 651 |
|
|
else
|
| 652 |
|
|
{
|
| 653 |
|
|
/* Register REGNO is pushed first and will be stored at @(-4,sp). */
|
| 654 |
|
|
lhs = gen_rtx_MEM (SImode, plus_constant (sp, (j + 1) * -4));
|
| 655 |
|
|
rhs = gen_rtx_REG (SImode, regno + j);
|
| 656 |
|
|
}
|
| 657 |
|
|
RTVEC_ELT (vec, i + j) = gen_rtx_SET (VOIDmode, lhs, rhs);
|
| 658 |
|
|
}
|
| 659 |
|
|
|
| 660 |
|
|
/* Add the stack adjustment. */
|
| 661 |
|
|
offset = GEN_INT ((pop_p ? nregs : -nregs) * 4);
|
| 662 |
|
|
RTVEC_ELT (vec, i + j) = gen_rtx_SET (VOIDmode, sp,
|
| 663 |
|
|
gen_rtx_PLUS (Pmode, sp, offset));
|
| 664 |
|
|
|
| 665 |
|
|
x = gen_rtx_PARALLEL (VOIDmode, vec);
|
| 666 |
|
|
if (!pop_p)
|
| 667 |
|
|
x = Fpa (x);
|
| 668 |
|
|
|
| 669 |
|
|
if (return_p)
|
| 670 |
|
|
emit_jump_insn (x);
|
| 671 |
|
|
else
|
| 672 |
|
|
emit_insn (x);
|
| 673 |
|
|
}
|
| 674 |
|
|
|
| 675 |
|
|
/* Return true if X has the value sp + OFFSET. */
|
| 676 |
|
|
|
| 677 |
|
|
static int
|
| 678 |
|
|
h8300_stack_offset_p (rtx x, int offset)
|
| 679 |
|
|
{
|
| 680 |
|
|
if (offset == 0)
|
| 681 |
|
|
return x == stack_pointer_rtx;
|
| 682 |
|
|
|
| 683 |
|
|
return (GET_CODE (x) == PLUS
|
| 684 |
|
|
&& XEXP (x, 0) == stack_pointer_rtx
|
| 685 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
| 686 |
|
|
&& INTVAL (XEXP (x, 1)) == offset);
|
| 687 |
|
|
}
|
| 688 |
|
|
|
| 689 |
|
|
/* A subroutine of h8300_ldm_stm_parallel. X is one pattern in
|
| 690 |
|
|
something that may be an ldm or stm instruction. If it fits
|
| 691 |
|
|
the required template, return the register it loads or stores,
|
| 692 |
|
|
otherwise return -1.
|
| 693 |
|
|
|
| 694 |
|
|
LOAD_P is true if X should be a load, false if it should be a store.
|
| 695 |
|
|
NREGS is the number of registers that the whole instruction is expected
|
| 696 |
|
|
to load or store. INDEX is the index of the register that X should
|
| 697 |
|
|
load or store, relative to the lowest-numbered register. */
|
| 698 |
|
|
|
| 699 |
|
|
static int
|
| 700 |
|
|
h8300_ldm_stm_regno (rtx x, int load_p, int index, int nregs)
|
| 701 |
|
|
{
|
| 702 |
|
|
int regindex, memindex, offset;
|
| 703 |
|
|
|
| 704 |
|
|
if (load_p)
|
| 705 |
|
|
regindex = 0, memindex = 1, offset = (nregs - index - 1) * 4;
|
| 706 |
|
|
else
|
| 707 |
|
|
memindex = 0, regindex = 1, offset = (index + 1) * -4;
|
| 708 |
|
|
|
| 709 |
|
|
if (GET_CODE (x) == SET
|
| 710 |
|
|
&& GET_CODE (XEXP (x, regindex)) == REG
|
| 711 |
|
|
&& GET_CODE (XEXP (x, memindex)) == MEM
|
| 712 |
|
|
&& h8300_stack_offset_p (XEXP (XEXP (x, memindex), 0), offset))
|
| 713 |
|
|
return REGNO (XEXP (x, regindex));
|
| 714 |
|
|
|
| 715 |
|
|
return -1;
|
| 716 |
|
|
}
|
| 717 |
|
|
|
| 718 |
|
|
/* Return true if the elements of VEC starting at FIRST describe an
|
| 719 |
|
|
ldm or stm instruction (LOAD_P says which). */
|
| 720 |
|
|
|
| 721 |
|
|
int
|
| 722 |
|
|
h8300_ldm_stm_parallel (rtvec vec, int load_p, int first)
|
| 723 |
|
|
{
|
| 724 |
|
|
rtx last;
|
| 725 |
|
|
int nregs, i, regno, adjust;
|
| 726 |
|
|
|
| 727 |
|
|
/* There must be a stack adjustment, a register move, and at least one
|
| 728 |
|
|
other operation (a return or another register move). */
|
| 729 |
|
|
if (GET_NUM_ELEM (vec) < 3)
|
| 730 |
|
|
return false;
|
| 731 |
|
|
|
| 732 |
|
|
/* Get the range of registers to be pushed or popped. */
|
| 733 |
|
|
nregs = GET_NUM_ELEM (vec) - first - 1;
|
| 734 |
|
|
regno = h8300_ldm_stm_regno (RTVEC_ELT (vec, first), load_p, 0, nregs);
|
| 735 |
|
|
|
| 736 |
|
|
/* Check that the call to h8300_ldm_stm_regno succeeded and
|
| 737 |
|
|
that we're only dealing with GPRs. */
|
| 738 |
|
|
if (regno < 0 || regno + nregs > 8)
|
| 739 |
|
|
return false;
|
| 740 |
|
|
|
| 741 |
|
|
/* 2-register h8s instructions must start with an even-numbered register.
|
| 742 |
|
|
3- and 4-register instructions must start with er0 or er4. */
|
| 743 |
|
|
if (!TARGET_H8300SX)
|
| 744 |
|
|
{
|
| 745 |
|
|
if ((regno & 1) != 0)
|
| 746 |
|
|
return false;
|
| 747 |
|
|
if (nregs > 2 && (regno & 3) != 0)
|
| 748 |
|
|
return false;
|
| 749 |
|
|
}
|
| 750 |
|
|
|
| 751 |
|
|
/* Check the other loads or stores. */
|
| 752 |
|
|
for (i = 1; i < nregs; i++)
|
| 753 |
|
|
if (h8300_ldm_stm_regno (RTVEC_ELT (vec, first + i), load_p, i, nregs)
|
| 754 |
|
|
!= regno + i)
|
| 755 |
|
|
return false;
|
| 756 |
|
|
|
| 757 |
|
|
/* Check the stack adjustment. */
|
| 758 |
|
|
last = RTVEC_ELT (vec, first + nregs);
|
| 759 |
|
|
adjust = (load_p ? nregs : -nregs) * 4;
|
| 760 |
|
|
return (GET_CODE (last) == SET
|
| 761 |
|
|
&& SET_DEST (last) == stack_pointer_rtx
|
| 762 |
|
|
&& h8300_stack_offset_p (SET_SRC (last), adjust));
|
| 763 |
|
|
}
|
| 764 |
|
|
|
| 765 |
|
|
/* This is what the stack looks like after the prolog of
|
| 766 |
|
|
a function with a frame has been set up:
|
| 767 |
|
|
|
| 768 |
|
|
<args>
|
| 769 |
|
|
PC
|
| 770 |
|
|
FP <- fp
|
| 771 |
|
|
<locals>
|
| 772 |
|
|
<saved registers> <- sp
|
| 773 |
|
|
|
| 774 |
|
|
This is what the stack looks like after the prolog of
|
| 775 |
|
|
a function which doesn't have a frame:
|
| 776 |
|
|
|
| 777 |
|
|
<args>
|
| 778 |
|
|
PC
|
| 779 |
|
|
<locals>
|
| 780 |
|
|
<saved registers> <- sp
|
| 781 |
|
|
*/
|
| 782 |
|
|
|
| 783 |
|
|
/* Generate RTL code for the function prologue. */
|
| 784 |
|
|
|
| 785 |
|
|
void
|
| 786 |
|
|
h8300_expand_prologue (void)
|
| 787 |
|
|
{
|
| 788 |
|
|
int regno;
|
| 789 |
|
|
int saved_regs;
|
| 790 |
|
|
int n_regs;
|
| 791 |
|
|
|
| 792 |
|
|
/* If the current function has the OS_Task attribute set, then
|
| 793 |
|
|
we have a naked prologue. */
|
| 794 |
|
|
if (h8300_os_task_function_p (current_function_decl))
|
| 795 |
|
|
return;
|
| 796 |
|
|
|
| 797 |
|
|
if (h8300_monitor_function_p (current_function_decl))
|
| 798 |
|
|
/* My understanding of monitor functions is they act just like
|
| 799 |
|
|
interrupt functions, except the prologue must mask
|
| 800 |
|
|
interrupts. */
|
| 801 |
|
|
emit_insn (gen_monitor_prologue ());
|
| 802 |
|
|
|
| 803 |
|
|
if (frame_pointer_needed)
|
| 804 |
|
|
{
|
| 805 |
|
|
/* Push fp. */
|
| 806 |
|
|
push (HARD_FRAME_POINTER_REGNUM);
|
| 807 |
|
|
F (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx), true);
|
| 808 |
|
|
}
|
| 809 |
|
|
|
| 810 |
|
|
/* Push the rest of the registers in ascending order. */
|
| 811 |
|
|
saved_regs = compute_saved_regs ();
|
| 812 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno += n_regs)
|
| 813 |
|
|
{
|
| 814 |
|
|
n_regs = 1;
|
| 815 |
|
|
if (saved_regs & (1 << regno))
|
| 816 |
|
|
{
|
| 817 |
|
|
if (TARGET_H8300S)
|
| 818 |
|
|
{
|
| 819 |
|
|
/* See how many registers we can push at the same time. */
|
| 820 |
|
|
if ((!TARGET_H8300SX || (regno & 3) == 0)
|
| 821 |
|
|
&& ((saved_regs >> regno) & 0x0f) == 0x0f)
|
| 822 |
|
|
n_regs = 4;
|
| 823 |
|
|
|
| 824 |
|
|
else if ((!TARGET_H8300SX || (regno & 3) == 0)
|
| 825 |
|
|
&& ((saved_regs >> regno) & 0x07) == 0x07)
|
| 826 |
|
|
n_regs = 3;
|
| 827 |
|
|
|
| 828 |
|
|
else if ((!TARGET_H8300SX || (regno & 1) == 0)
|
| 829 |
|
|
&& ((saved_regs >> regno) & 0x03) == 0x03)
|
| 830 |
|
|
n_regs = 2;
|
| 831 |
|
|
}
|
| 832 |
|
|
|
| 833 |
|
|
h8300_push_pop (regno, n_regs, false, false);
|
| 834 |
|
|
}
|
| 835 |
|
|
}
|
| 836 |
|
|
|
| 837 |
|
|
/* Leave room for locals. */
|
| 838 |
|
|
h8300_emit_stack_adjustment (-1, round_frame_size (get_frame_size ()), true);
|
| 839 |
|
|
}
|
| 840 |
|
|
|
| 841 |
|
|
/* Return nonzero if we can use "rts" for the function currently being
|
| 842 |
|
|
compiled. */
|
| 843 |
|
|
|
| 844 |
|
|
int
|
| 845 |
|
|
h8300_can_use_return_insn_p (void)
|
| 846 |
|
|
{
|
| 847 |
|
|
return (reload_completed
|
| 848 |
|
|
&& !frame_pointer_needed
|
| 849 |
|
|
&& get_frame_size () == 0
|
| 850 |
|
|
&& compute_saved_regs () == 0);
|
| 851 |
|
|
}
|
| 852 |
|
|
|
| 853 |
|
|
/* Generate RTL code for the function epilogue. */
|
| 854 |
|
|
|
| 855 |
|
|
void
|
| 856 |
|
|
h8300_expand_epilogue (void)
|
| 857 |
|
|
{
|
| 858 |
|
|
int regno;
|
| 859 |
|
|
int saved_regs;
|
| 860 |
|
|
int n_regs;
|
| 861 |
|
|
HOST_WIDE_INT frame_size;
|
| 862 |
|
|
bool returned_p;
|
| 863 |
|
|
|
| 864 |
|
|
if (h8300_os_task_function_p (current_function_decl))
|
| 865 |
|
|
/* OS_Task epilogues are nearly naked -- they just have an
|
| 866 |
|
|
rts instruction. */
|
| 867 |
|
|
return;
|
| 868 |
|
|
|
| 869 |
|
|
frame_size = round_frame_size (get_frame_size ());
|
| 870 |
|
|
returned_p = false;
|
| 871 |
|
|
|
| 872 |
|
|
/* Deallocate locals. */
|
| 873 |
|
|
h8300_emit_stack_adjustment (1, frame_size, false);
|
| 874 |
|
|
|
| 875 |
|
|
/* Pop the saved registers in descending order. */
|
| 876 |
|
|
saved_regs = compute_saved_regs ();
|
| 877 |
|
|
for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno -= n_regs)
|
| 878 |
|
|
{
|
| 879 |
|
|
n_regs = 1;
|
| 880 |
|
|
if (saved_regs & (1 << regno))
|
| 881 |
|
|
{
|
| 882 |
|
|
if (TARGET_H8300S)
|
| 883 |
|
|
{
|
| 884 |
|
|
/* See how many registers we can pop at the same time. */
|
| 885 |
|
|
if ((TARGET_H8300SX || (regno & 3) == 3)
|
| 886 |
|
|
&& ((saved_regs << 3 >> regno) & 0x0f) == 0x0f)
|
| 887 |
|
|
n_regs = 4;
|
| 888 |
|
|
|
| 889 |
|
|
else if ((TARGET_H8300SX || (regno & 3) == 2)
|
| 890 |
|
|
&& ((saved_regs << 2 >> regno) & 0x07) == 0x07)
|
| 891 |
|
|
n_regs = 3;
|
| 892 |
|
|
|
| 893 |
|
|
else if ((TARGET_H8300SX || (regno & 1) == 1)
|
| 894 |
|
|
&& ((saved_regs << 1 >> regno) & 0x03) == 0x03)
|
| 895 |
|
|
n_regs = 2;
|
| 896 |
|
|
}
|
| 897 |
|
|
|
| 898 |
|
|
/* See if this pop would be the last insn before the return.
|
| 899 |
|
|
If so, use rte/l or rts/l instead of pop or ldm.l. */
|
| 900 |
|
|
if (TARGET_H8300SX
|
| 901 |
|
|
&& !frame_pointer_needed
|
| 902 |
|
|
&& frame_size == 0
|
| 903 |
|
|
&& (saved_regs & ((1 << (regno - n_regs + 1)) - 1)) == 0)
|
| 904 |
|
|
returned_p = true;
|
| 905 |
|
|
|
| 906 |
|
|
h8300_push_pop (regno - n_regs + 1, n_regs, true, returned_p);
|
| 907 |
|
|
}
|
| 908 |
|
|
}
|
| 909 |
|
|
|
| 910 |
|
|
/* Pop frame pointer if we had one. */
|
| 911 |
|
|
if (frame_pointer_needed)
|
| 912 |
|
|
{
|
| 913 |
|
|
if (TARGET_H8300SX)
|
| 914 |
|
|
returned_p = true;
|
| 915 |
|
|
h8300_push_pop (HARD_FRAME_POINTER_REGNUM, 1, true, returned_p);
|
| 916 |
|
|
}
|
| 917 |
|
|
|
| 918 |
|
|
if (!returned_p)
|
| 919 |
|
|
emit_jump_insn (ret_rtx);
|
| 920 |
|
|
}
|
| 921 |
|
|
|
| 922 |
|
|
/* Return nonzero if the current function is an interrupt
|
| 923 |
|
|
function. */
|
| 924 |
|
|
|
| 925 |
|
|
int
|
| 926 |
|
|
h8300_current_function_interrupt_function_p (void)
|
| 927 |
|
|
{
|
| 928 |
|
|
return (h8300_interrupt_function_p (current_function_decl)
|
| 929 |
|
|
|| h8300_monitor_function_p (current_function_decl));
|
| 930 |
|
|
}
|
| 931 |
|
|
|
| 932 |
|
|
/* Output assembly code for the start of the file. */
|
| 933 |
|
|
|
| 934 |
|
|
static void
|
| 935 |
|
|
h8300_file_start (void)
|
| 936 |
|
|
{
|
| 937 |
|
|
default_file_start ();
|
| 938 |
|
|
|
| 939 |
|
|
if (TARGET_H8300H)
|
| 940 |
|
|
fputs (TARGET_NORMAL_MODE ? "\t.h8300hn\n" : "\t.h8300h\n", asm_out_file);
|
| 941 |
|
|
else if (TARGET_H8300SX)
|
| 942 |
|
|
fputs (TARGET_NORMAL_MODE ? "\t.h8300sxn\n" : "\t.h8300sx\n", asm_out_file);
|
| 943 |
|
|
else if (TARGET_H8300S)
|
| 944 |
|
|
fputs (TARGET_NORMAL_MODE ? "\t.h8300sn\n" : "\t.h8300s\n", asm_out_file);
|
| 945 |
|
|
}
|
| 946 |
|
|
|
| 947 |
|
|
/* Output assembly language code for the end of file. */
|
| 948 |
|
|
|
| 949 |
|
|
static void
|
| 950 |
|
|
h8300_file_end (void)
|
| 951 |
|
|
{
|
| 952 |
|
|
fputs ("\t.end\n", asm_out_file);
|
| 953 |
|
|
}
|
| 954 |
|
|
|
| 955 |
|
|
/* Split an add of a small constant into two adds/subs insns.
|
| 956 |
|
|
|
| 957 |
|
|
If USE_INCDEC_P is nonzero, we generate the last insn using inc/dec
|
| 958 |
|
|
instead of adds/subs. */
|
| 959 |
|
|
|
| 960 |
|
|
void
|
| 961 |
|
|
split_adds_subs (enum machine_mode mode, rtx *operands)
|
| 962 |
|
|
{
|
| 963 |
|
|
HOST_WIDE_INT val = INTVAL (operands[1]);
|
| 964 |
|
|
rtx reg = operands[0];
|
| 965 |
|
|
HOST_WIDE_INT sign = 1;
|
| 966 |
|
|
HOST_WIDE_INT amount;
|
| 967 |
|
|
rtx (*gen_add) (rtx, rtx, rtx);
|
| 968 |
|
|
|
| 969 |
|
|
/* Force VAL to be positive so that we do not have to consider the
|
| 970 |
|
|
sign. */
|
| 971 |
|
|
if (val < 0)
|
| 972 |
|
|
{
|
| 973 |
|
|
val = -val;
|
| 974 |
|
|
sign = -1;
|
| 975 |
|
|
}
|
| 976 |
|
|
|
| 977 |
|
|
switch (mode)
|
| 978 |
|
|
{
|
| 979 |
|
|
case HImode:
|
| 980 |
|
|
gen_add = gen_addhi3;
|
| 981 |
|
|
break;
|
| 982 |
|
|
|
| 983 |
|
|
case SImode:
|
| 984 |
|
|
gen_add = gen_addsi3;
|
| 985 |
|
|
break;
|
| 986 |
|
|
|
| 987 |
|
|
default:
|
| 988 |
|
|
gcc_unreachable ();
|
| 989 |
|
|
}
|
| 990 |
|
|
|
| 991 |
|
|
/* Try different amounts in descending order. */
|
| 992 |
|
|
for (amount = (TARGET_H8300H || TARGET_H8300S) ? 4 : 2;
|
| 993 |
|
|
amount > 0;
|
| 994 |
|
|
amount /= 2)
|
| 995 |
|
|
{
|
| 996 |
|
|
for (; val >= amount; val -= amount)
|
| 997 |
|
|
emit_insn (gen_add (reg, reg, GEN_INT (sign * amount)));
|
| 998 |
|
|
}
|
| 999 |
|
|
|
| 1000 |
|
|
return;
|
| 1001 |
|
|
}
|
| 1002 |
|
|
|
| 1003 |
|
|
/* Handle machine specific pragmas for compatibility with existing
|
| 1004 |
|
|
compilers for the H8/300.
|
| 1005 |
|
|
|
| 1006 |
|
|
pragma saveall generates prologue/epilogue code which saves and
|
| 1007 |
|
|
restores all the registers on function entry.
|
| 1008 |
|
|
|
| 1009 |
|
|
pragma interrupt saves and restores all registers, and exits with
|
| 1010 |
|
|
an rte instruction rather than an rts. A pointer to a function
|
| 1011 |
|
|
with this attribute may be safely used in an interrupt vector. */
|
| 1012 |
|
|
|
| 1013 |
|
|
void
|
| 1014 |
|
|
h8300_pr_interrupt (struct cpp_reader *pfile ATTRIBUTE_UNUSED)
|
| 1015 |
|
|
{
|
| 1016 |
|
|
pragma_interrupt = 1;
|
| 1017 |
|
|
}
|
| 1018 |
|
|
|
| 1019 |
|
|
void
|
| 1020 |
|
|
h8300_pr_saveall (struct cpp_reader *pfile ATTRIBUTE_UNUSED)
|
| 1021 |
|
|
{
|
| 1022 |
|
|
pragma_saveall = 1;
|
| 1023 |
|
|
}
|
| 1024 |
|
|
|
| 1025 |
|
|
/* If the next function argument with MODE and TYPE is to be passed in
|
| 1026 |
|
|
a register, return a reg RTX for the hard register in which to pass
|
| 1027 |
|
|
the argument. CUM represents the state after the last argument.
|
| 1028 |
|
|
If the argument is to be pushed, NULL_RTX is returned.
|
| 1029 |
|
|
|
| 1030 |
|
|
On the H8/300 all normal args are pushed, unless -mquickcall in which
|
| 1031 |
|
|
case the first 3 arguments are passed in registers. */
|
| 1032 |
|
|
|
| 1033 |
|
|
static rtx
|
| 1034 |
|
|
h8300_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
|
| 1035 |
|
|
const_tree type, bool named)
|
| 1036 |
|
|
{
|
| 1037 |
|
|
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
| 1038 |
|
|
|
| 1039 |
|
|
static const char *const hand_list[] = {
|
| 1040 |
|
|
"__main",
|
| 1041 |
|
|
"__cmpsi2",
|
| 1042 |
|
|
"__divhi3",
|
| 1043 |
|
|
"__modhi3",
|
| 1044 |
|
|
"__udivhi3",
|
| 1045 |
|
|
"__umodhi3",
|
| 1046 |
|
|
"__divsi3",
|
| 1047 |
|
|
"__modsi3",
|
| 1048 |
|
|
"__udivsi3",
|
| 1049 |
|
|
"__umodsi3",
|
| 1050 |
|
|
"__mulhi3",
|
| 1051 |
|
|
"__mulsi3",
|
| 1052 |
|
|
"__reg_memcpy",
|
| 1053 |
|
|
"__reg_memset",
|
| 1054 |
|
|
"__ucmpsi2",
|
| 1055 |
|
|
0,
|
| 1056 |
|
|
};
|
| 1057 |
|
|
|
| 1058 |
|
|
rtx result = NULL_RTX;
|
| 1059 |
|
|
const char *fname;
|
| 1060 |
|
|
int regpass = 0;
|
| 1061 |
|
|
|
| 1062 |
|
|
/* Never pass unnamed arguments in registers. */
|
| 1063 |
|
|
if (!named)
|
| 1064 |
|
|
return NULL_RTX;
|
| 1065 |
|
|
|
| 1066 |
|
|
/* Pass 3 regs worth of data in regs when user asked on the command line. */
|
| 1067 |
|
|
if (TARGET_QUICKCALL)
|
| 1068 |
|
|
regpass = 3;
|
| 1069 |
|
|
|
| 1070 |
|
|
/* If calling hand written assembler, use 4 regs of args. */
|
| 1071 |
|
|
if (cum->libcall)
|
| 1072 |
|
|
{
|
| 1073 |
|
|
const char * const *p;
|
| 1074 |
|
|
|
| 1075 |
|
|
fname = XSTR (cum->libcall, 0);
|
| 1076 |
|
|
|
| 1077 |
|
|
/* See if this libcall is one of the hand coded ones. */
|
| 1078 |
|
|
for (p = hand_list; *p && strcmp (*p, fname) != 0; p++)
|
| 1079 |
|
|
;
|
| 1080 |
|
|
|
| 1081 |
|
|
if (*p)
|
| 1082 |
|
|
regpass = 4;
|
| 1083 |
|
|
}
|
| 1084 |
|
|
|
| 1085 |
|
|
if (regpass)
|
| 1086 |
|
|
{
|
| 1087 |
|
|
int size;
|
| 1088 |
|
|
|
| 1089 |
|
|
if (mode == BLKmode)
|
| 1090 |
|
|
size = int_size_in_bytes (type);
|
| 1091 |
|
|
else
|
| 1092 |
|
|
size = GET_MODE_SIZE (mode);
|
| 1093 |
|
|
|
| 1094 |
|
|
if (size + cum->nbytes <= regpass * UNITS_PER_WORD
|
| 1095 |
|
|
&& cum->nbytes / UNITS_PER_WORD <= 3)
|
| 1096 |
|
|
result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD);
|
| 1097 |
|
|
}
|
| 1098 |
|
|
|
| 1099 |
|
|
return result;
|
| 1100 |
|
|
}
|
| 1101 |
|
|
|
| 1102 |
|
|
/* Update the data in CUM to advance over an argument
|
| 1103 |
|
|
of mode MODE and data type TYPE.
|
| 1104 |
|
|
(TYPE is null for libcalls where that information may not be available.) */
|
| 1105 |
|
|
|
| 1106 |
|
|
static void
|
| 1107 |
|
|
h8300_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
|
| 1108 |
|
|
const_tree type, bool named ATTRIBUTE_UNUSED)
|
| 1109 |
|
|
{
|
| 1110 |
|
|
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
| 1111 |
|
|
|
| 1112 |
|
|
cum->nbytes += (mode != BLKmode
|
| 1113 |
|
|
? (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD
|
| 1114 |
|
|
: (int_size_in_bytes (type) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD);
|
| 1115 |
|
|
}
|
| 1116 |
|
|
|
| 1117 |
|
|
|
| 1118 |
|
|
/* Implements TARGET_REGISTER_MOVE_COST.
|
| 1119 |
|
|
|
| 1120 |
|
|
Any SI register-to-register move may need to be reloaded,
|
| 1121 |
|
|
so inmplement h8300_register_move_cost to return > 2 so that reload never
|
| 1122 |
|
|
shortcuts. */
|
| 1123 |
|
|
|
| 1124 |
|
|
static int
|
| 1125 |
|
|
h8300_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
|
| 1126 |
|
|
reg_class_t from, reg_class_t to)
|
| 1127 |
|
|
{
|
| 1128 |
|
|
if (from == MAC_REGS || to == MAC_REG)
|
| 1129 |
|
|
return 6;
|
| 1130 |
|
|
else
|
| 1131 |
|
|
return 3;
|
| 1132 |
|
|
}
|
| 1133 |
|
|
|
| 1134 |
|
|
/* Compute the cost of an and insn. */
|
| 1135 |
|
|
|
| 1136 |
|
|
static int
|
| 1137 |
|
|
h8300_and_costs (rtx x)
|
| 1138 |
|
|
{
|
| 1139 |
|
|
rtx operands[4];
|
| 1140 |
|
|
|
| 1141 |
|
|
if (GET_MODE (x) == QImode)
|
| 1142 |
|
|
return 1;
|
| 1143 |
|
|
|
| 1144 |
|
|
if (GET_MODE (x) != HImode
|
| 1145 |
|
|
&& GET_MODE (x) != SImode)
|
| 1146 |
|
|
return 100;
|
| 1147 |
|
|
|
| 1148 |
|
|
operands[0] = NULL;
|
| 1149 |
|
|
operands[1] = XEXP (x, 0);
|
| 1150 |
|
|
operands[2] = XEXP (x, 1);
|
| 1151 |
|
|
operands[3] = x;
|
| 1152 |
|
|
return compute_logical_op_length (GET_MODE (x), operands) / 2;
|
| 1153 |
|
|
}
|
| 1154 |
|
|
|
| 1155 |
|
|
/* Compute the cost of a shift insn. */
|
| 1156 |
|
|
|
| 1157 |
|
|
static int
|
| 1158 |
|
|
h8300_shift_costs (rtx x)
|
| 1159 |
|
|
{
|
| 1160 |
|
|
rtx operands[4];
|
| 1161 |
|
|
|
| 1162 |
|
|
if (GET_MODE (x) != QImode
|
| 1163 |
|
|
&& GET_MODE (x) != HImode
|
| 1164 |
|
|
&& GET_MODE (x) != SImode)
|
| 1165 |
|
|
return 100;
|
| 1166 |
|
|
|
| 1167 |
|
|
operands[0] = NULL;
|
| 1168 |
|
|
operands[1] = NULL;
|
| 1169 |
|
|
operands[2] = XEXP (x, 1);
|
| 1170 |
|
|
operands[3] = x;
|
| 1171 |
|
|
return compute_a_shift_length (NULL, operands) / 2;
|
| 1172 |
|
|
}
|
| 1173 |
|
|
|
| 1174 |
|
|
/* Worker function for TARGET_RTX_COSTS. */
|
| 1175 |
|
|
|
| 1176 |
|
|
static bool
|
| 1177 |
|
|
h8300_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
|
| 1178 |
|
|
int *total, bool speed)
|
| 1179 |
|
|
{
|
| 1180 |
|
|
if (TARGET_H8300SX && outer_code == MEM)
|
| 1181 |
|
|
{
|
| 1182 |
|
|
/* Estimate the number of execution states needed to calculate
|
| 1183 |
|
|
the address. */
|
| 1184 |
|
|
if (register_operand (x, VOIDmode)
|
| 1185 |
|
|
|| GET_CODE (x) == POST_INC
|
| 1186 |
|
|
|| GET_CODE (x) == POST_DEC
|
| 1187 |
|
|
|| CONSTANT_P (x))
|
| 1188 |
|
|
*total = 0;
|
| 1189 |
|
|
else
|
| 1190 |
|
|
*total = COSTS_N_INSNS (1);
|
| 1191 |
|
|
return true;
|
| 1192 |
|
|
}
|
| 1193 |
|
|
|
| 1194 |
|
|
switch (code)
|
| 1195 |
|
|
{
|
| 1196 |
|
|
case CONST_INT:
|
| 1197 |
|
|
{
|
| 1198 |
|
|
HOST_WIDE_INT n = INTVAL (x);
|
| 1199 |
|
|
|
| 1200 |
|
|
if (TARGET_H8300SX)
|
| 1201 |
|
|
{
|
| 1202 |
|
|
/* Constant operands need the same number of processor
|
| 1203 |
|
|
states as register operands. Although we could try to
|
| 1204 |
|
|
use a size-based cost for !speed, the lack of
|
| 1205 |
|
|
of a mode makes the results very unpredictable. */
|
| 1206 |
|
|
*total = 0;
|
| 1207 |
|
|
return true;
|
| 1208 |
|
|
}
|
| 1209 |
|
|
if (-4 <= n || n <= 4)
|
| 1210 |
|
|
{
|
| 1211 |
|
|
switch ((int) n)
|
| 1212 |
|
|
{
|
| 1213 |
|
|
case 0:
|
| 1214 |
|
|
*total = 0;
|
| 1215 |
|
|
return true;
|
| 1216 |
|
|
case 1:
|
| 1217 |
|
|
case 2:
|
| 1218 |
|
|
case -1:
|
| 1219 |
|
|
case -2:
|
| 1220 |
|
|
*total = 0 + (outer_code == SET);
|
| 1221 |
|
|
return true;
|
| 1222 |
|
|
case 4:
|
| 1223 |
|
|
case -4:
|
| 1224 |
|
|
if (TARGET_H8300H || TARGET_H8300S)
|
| 1225 |
|
|
*total = 0 + (outer_code == SET);
|
| 1226 |
|
|
else
|
| 1227 |
|
|
*total = 1;
|
| 1228 |
|
|
return true;
|
| 1229 |
|
|
}
|
| 1230 |
|
|
}
|
| 1231 |
|
|
*total = 1;
|
| 1232 |
|
|
return true;
|
| 1233 |
|
|
}
|
| 1234 |
|
|
|
| 1235 |
|
|
case CONST:
|
| 1236 |
|
|
case LABEL_REF:
|
| 1237 |
|
|
case SYMBOL_REF:
|
| 1238 |
|
|
if (TARGET_H8300SX)
|
| 1239 |
|
|
{
|
| 1240 |
|
|
/* See comment for CONST_INT. */
|
| 1241 |
|
|
*total = 0;
|
| 1242 |
|
|
return true;
|
| 1243 |
|
|
}
|
| 1244 |
|
|
*total = 3;
|
| 1245 |
|
|
return true;
|
| 1246 |
|
|
|
| 1247 |
|
|
case CONST_DOUBLE:
|
| 1248 |
|
|
*total = 20;
|
| 1249 |
|
|
return true;
|
| 1250 |
|
|
|
| 1251 |
|
|
case COMPARE:
|
| 1252 |
|
|
if (XEXP (x, 1) == const0_rtx)
|
| 1253 |
|
|
*total = 0;
|
| 1254 |
|
|
return false;
|
| 1255 |
|
|
|
| 1256 |
|
|
case AND:
|
| 1257 |
|
|
if (!h8300_dst_operand (XEXP (x, 0), VOIDmode)
|
| 1258 |
|
|
|| !h8300_src_operand (XEXP (x, 1), VOIDmode))
|
| 1259 |
|
|
return false;
|
| 1260 |
|
|
*total = COSTS_N_INSNS (h8300_and_costs (x));
|
| 1261 |
|
|
return true;
|
| 1262 |
|
|
|
| 1263 |
|
|
/* We say that MOD and DIV are so expensive because otherwise we'll
|
| 1264 |
|
|
generate some really horrible code for division of a power of two. */
|
| 1265 |
|
|
case MOD:
|
| 1266 |
|
|
case DIV:
|
| 1267 |
|
|
case UMOD:
|
| 1268 |
|
|
case UDIV:
|
| 1269 |
|
|
if (TARGET_H8300SX)
|
| 1270 |
|
|
switch (GET_MODE (x))
|
| 1271 |
|
|
{
|
| 1272 |
|
|
case QImode:
|
| 1273 |
|
|
case HImode:
|
| 1274 |
|
|
*total = COSTS_N_INSNS (!speed ? 4 : 10);
|
| 1275 |
|
|
return false;
|
| 1276 |
|
|
|
| 1277 |
|
|
case SImode:
|
| 1278 |
|
|
*total = COSTS_N_INSNS (!speed ? 4 : 18);
|
| 1279 |
|
|
return false;
|
| 1280 |
|
|
|
| 1281 |
|
|
default:
|
| 1282 |
|
|
break;
|
| 1283 |
|
|
}
|
| 1284 |
|
|
*total = COSTS_N_INSNS (12);
|
| 1285 |
|
|
return true;
|
| 1286 |
|
|
|
| 1287 |
|
|
case MULT:
|
| 1288 |
|
|
if (TARGET_H8300SX)
|
| 1289 |
|
|
switch (GET_MODE (x))
|
| 1290 |
|
|
{
|
| 1291 |
|
|
case QImode:
|
| 1292 |
|
|
case HImode:
|
| 1293 |
|
|
*total = COSTS_N_INSNS (2);
|
| 1294 |
|
|
return false;
|
| 1295 |
|
|
|
| 1296 |
|
|
case SImode:
|
| 1297 |
|
|
*total = COSTS_N_INSNS (5);
|
| 1298 |
|
|
return false;
|
| 1299 |
|
|
|
| 1300 |
|
|
default:
|
| 1301 |
|
|
break;
|
| 1302 |
|
|
}
|
| 1303 |
|
|
*total = COSTS_N_INSNS (4);
|
| 1304 |
|
|
return true;
|
| 1305 |
|
|
|
| 1306 |
|
|
case ASHIFT:
|
| 1307 |
|
|
case ASHIFTRT:
|
| 1308 |
|
|
case LSHIFTRT:
|
| 1309 |
|
|
if (h8sx_binary_shift_operator (x, VOIDmode))
|
| 1310 |
|
|
{
|
| 1311 |
|
|
*total = COSTS_N_INSNS (2);
|
| 1312 |
|
|
return false;
|
| 1313 |
|
|
}
|
| 1314 |
|
|
else if (h8sx_unary_shift_operator (x, VOIDmode))
|
| 1315 |
|
|
{
|
| 1316 |
|
|
*total = COSTS_N_INSNS (1);
|
| 1317 |
|
|
return false;
|
| 1318 |
|
|
}
|
| 1319 |
|
|
*total = COSTS_N_INSNS (h8300_shift_costs (x));
|
| 1320 |
|
|
return true;
|
| 1321 |
|
|
|
| 1322 |
|
|
case ROTATE:
|
| 1323 |
|
|
case ROTATERT:
|
| 1324 |
|
|
if (GET_MODE (x) == HImode)
|
| 1325 |
|
|
*total = 2;
|
| 1326 |
|
|
else
|
| 1327 |
|
|
*total = 8;
|
| 1328 |
|
|
return true;
|
| 1329 |
|
|
|
| 1330 |
|
|
default:
|
| 1331 |
|
|
*total = COSTS_N_INSNS (1);
|
| 1332 |
|
|
return false;
|
| 1333 |
|
|
}
|
| 1334 |
|
|
}
|
| 1335 |
|
|
|
| 1336 |
|
|
/* Documentation for the machine specific operand escapes:
|
| 1337 |
|
|
|
| 1338 |
|
|
'E' like s but negative.
|
| 1339 |
|
|
'F' like t but negative.
|
| 1340 |
|
|
'G' constant just the negative
|
| 1341 |
|
|
'R' print operand as a byte:8 address if appropriate, else fall back to
|
| 1342 |
|
|
'X' handling.
|
| 1343 |
|
|
'S' print operand as a long word
|
| 1344 |
|
|
'T' print operand as a word
|
| 1345 |
|
|
'V' find the set bit, and print its number.
|
| 1346 |
|
|
'W' find the clear bit, and print its number.
|
| 1347 |
|
|
'X' print operand as a byte
|
| 1348 |
|
|
'Y' print either l or h depending on whether last 'Z' operand < 8 or >= 8.
|
| 1349 |
|
|
If this operand isn't a register, fall back to 'R' handling.
|
| 1350 |
|
|
'Z' print int & 7.
|
| 1351 |
|
|
'c' print the opcode corresponding to rtl
|
| 1352 |
|
|
'e' first word of 32-bit value - if reg, then least reg. if mem
|
| 1353 |
|
|
then least. if const then most sig word
|
| 1354 |
|
|
'f' second word of 32-bit value - if reg, then biggest reg. if mem
|
| 1355 |
|
|
then +2. if const then least sig word
|
| 1356 |
|
|
'j' print operand as condition code.
|
| 1357 |
|
|
'k' print operand as reverse condition code.
|
| 1358 |
|
|
'm' convert an integer operand to a size suffix (.b, .w or .l)
|
| 1359 |
|
|
'o' print an integer without a leading '#'
|
| 1360 |
|
|
's' print as low byte of 16-bit value
|
| 1361 |
|
|
't' print as high byte of 16-bit value
|
| 1362 |
|
|
'w' print as low byte of 32-bit value
|
| 1363 |
|
|
'x' print as 2nd byte of 32-bit value
|
| 1364 |
|
|
'y' print as 3rd byte of 32-bit value
|
| 1365 |
|
|
'z' print as msb of 32-bit value
|
| 1366 |
|
|
*/
|
| 1367 |
|
|
|
| 1368 |
|
|
/* Return assembly language string which identifies a comparison type. */
|
| 1369 |
|
|
|
| 1370 |
|
|
static const char *
|
| 1371 |
|
|
cond_string (enum rtx_code code)
|
| 1372 |
|
|
{
|
| 1373 |
|
|
switch (code)
|
| 1374 |
|
|
{
|
| 1375 |
|
|
case NE:
|
| 1376 |
|
|
return "ne";
|
| 1377 |
|
|
case EQ:
|
| 1378 |
|
|
return "eq";
|
| 1379 |
|
|
case GE:
|
| 1380 |
|
|
return "ge";
|
| 1381 |
|
|
case GT:
|
| 1382 |
|
|
return "gt";
|
| 1383 |
|
|
case LE:
|
| 1384 |
|
|
return "le";
|
| 1385 |
|
|
case LT:
|
| 1386 |
|
|
return "lt";
|
| 1387 |
|
|
case GEU:
|
| 1388 |
|
|
return "hs";
|
| 1389 |
|
|
case GTU:
|
| 1390 |
|
|
return "hi";
|
| 1391 |
|
|
case LEU:
|
| 1392 |
|
|
return "ls";
|
| 1393 |
|
|
case LTU:
|
| 1394 |
|
|
return "lo";
|
| 1395 |
|
|
default:
|
| 1396 |
|
|
gcc_unreachable ();
|
| 1397 |
|
|
}
|
| 1398 |
|
|
}
|
| 1399 |
|
|
|
| 1400 |
|
|
/* Print operand X using operand code CODE to assembly language output file
|
| 1401 |
|
|
FILE. */
|
| 1402 |
|
|
|
| 1403 |
|
|
static void
|
| 1404 |
|
|
h8300_print_operand (FILE *file, rtx x, int code)
|
| 1405 |
|
|
{
|
| 1406 |
|
|
/* This is used for communication between codes V,W,Z and Y. */
|
| 1407 |
|
|
static int bitint;
|
| 1408 |
|
|
|
| 1409 |
|
|
switch (code)
|
| 1410 |
|
|
{
|
| 1411 |
|
|
case 'E':
|
| 1412 |
|
|
switch (GET_CODE (x))
|
| 1413 |
|
|
{
|
| 1414 |
|
|
case REG:
|
| 1415 |
|
|
fprintf (file, "%sl", names_big[REGNO (x)]);
|
| 1416 |
|
|
break;
|
| 1417 |
|
|
case CONST_INT:
|
| 1418 |
|
|
fprintf (file, "#%ld", (-INTVAL (x)) & 0xff);
|
| 1419 |
|
|
break;
|
| 1420 |
|
|
default:
|
| 1421 |
|
|
gcc_unreachable ();
|
| 1422 |
|
|
}
|
| 1423 |
|
|
break;
|
| 1424 |
|
|
case 'F':
|
| 1425 |
|
|
switch (GET_CODE (x))
|
| 1426 |
|
|
{
|
| 1427 |
|
|
case REG:
|
| 1428 |
|
|
fprintf (file, "%sh", names_big[REGNO (x)]);
|
| 1429 |
|
|
break;
|
| 1430 |
|
|
case CONST_INT:
|
| 1431 |
|
|
fprintf (file, "#%ld", ((-INTVAL (x)) & 0xff00) >> 8);
|
| 1432 |
|
|
break;
|
| 1433 |
|
|
default:
|
| 1434 |
|
|
gcc_unreachable ();
|
| 1435 |
|
|
}
|
| 1436 |
|
|
break;
|
| 1437 |
|
|
case 'G':
|
| 1438 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
| 1439 |
|
|
fprintf (file, "#%ld", 0xff & (-INTVAL (x)));
|
| 1440 |
|
|
break;
|
| 1441 |
|
|
case 'S':
|
| 1442 |
|
|
if (GET_CODE (x) == REG)
|
| 1443 |
|
|
fprintf (file, "%s", names_extended[REGNO (x)]);
|
| 1444 |
|
|
else
|
| 1445 |
|
|
goto def;
|
| 1446 |
|
|
break;
|
| 1447 |
|
|
case 'T':
|
| 1448 |
|
|
if (GET_CODE (x) == REG)
|
| 1449 |
|
|
fprintf (file, "%s", names_big[REGNO (x)]);
|
| 1450 |
|
|
else
|
| 1451 |
|
|
goto def;
|
| 1452 |
|
|
break;
|
| 1453 |
|
|
case 'V':
|
| 1454 |
|
|
bitint = (INTVAL (x) & 0xffff);
|
| 1455 |
|
|
if ((exact_log2 ((bitint >> 8) & 0xff)) == -1)
|
| 1456 |
|
|
bitint = exact_log2 (bitint & 0xff);
|
| 1457 |
|
|
else
|
| 1458 |
|
|
bitint = exact_log2 ((bitint >> 8) & 0xff);
|
| 1459 |
|
|
gcc_assert (bitint >= 0);
|
| 1460 |
|
|
fprintf (file, "#%d", bitint);
|
| 1461 |
|
|
break;
|
| 1462 |
|
|
case 'W':
|
| 1463 |
|
|
bitint = ((~INTVAL (x)) & 0xffff);
|
| 1464 |
|
|
if ((exact_log2 ((bitint >> 8) & 0xff)) == -1 )
|
| 1465 |
|
|
bitint = exact_log2 (bitint & 0xff);
|
| 1466 |
|
|
else
|
| 1467 |
|
|
bitint = (exact_log2 ((bitint >> 8) & 0xff));
|
| 1468 |
|
|
gcc_assert (bitint >= 0);
|
| 1469 |
|
|
fprintf (file, "#%d", bitint);
|
| 1470 |
|
|
break;
|
| 1471 |
|
|
case 'R':
|
| 1472 |
|
|
case 'X':
|
| 1473 |
|
|
if (GET_CODE (x) == REG)
|
| 1474 |
|
|
fprintf (file, "%s", byte_reg (x, 0));
|
| 1475 |
|
|
else
|
| 1476 |
|
|
goto def;
|
| 1477 |
|
|
break;
|
| 1478 |
|
|
case 'Y':
|
| 1479 |
|
|
gcc_assert (bitint >= 0);
|
| 1480 |
|
|
if (GET_CODE (x) == REG)
|
| 1481 |
|
|
fprintf (file, "%s%c", names_big[REGNO (x)], bitint > 7 ? 'h' : 'l');
|
| 1482 |
|
|
else
|
| 1483 |
|
|
h8300_print_operand (file, x, 'R');
|
| 1484 |
|
|
bitint = -1;
|
| 1485 |
|
|
break;
|
| 1486 |
|
|
case 'Z':
|
| 1487 |
|
|
bitint = INTVAL (x);
|
| 1488 |
|
|
fprintf (file, "#%d", bitint & 7);
|
| 1489 |
|
|
break;
|
| 1490 |
|
|
case 'c':
|
| 1491 |
|
|
switch (GET_CODE (x))
|
| 1492 |
|
|
{
|
| 1493 |
|
|
case IOR:
|
| 1494 |
|
|
fprintf (file, "or");
|
| 1495 |
|
|
break;
|
| 1496 |
|
|
case XOR:
|
| 1497 |
|
|
fprintf (file, "xor");
|
| 1498 |
|
|
break;
|
| 1499 |
|
|
case AND:
|
| 1500 |
|
|
fprintf (file, "and");
|
| 1501 |
|
|
break;
|
| 1502 |
|
|
default:
|
| 1503 |
|
|
break;
|
| 1504 |
|
|
}
|
| 1505 |
|
|
break;
|
| 1506 |
|
|
case 'e':
|
| 1507 |
|
|
switch (GET_CODE (x))
|
| 1508 |
|
|
{
|
| 1509 |
|
|
case REG:
|
| 1510 |
|
|
if (TARGET_H8300)
|
| 1511 |
|
|
fprintf (file, "%s", names_big[REGNO (x)]);
|
| 1512 |
|
|
else
|
| 1513 |
|
|
fprintf (file, "%s", names_upper_extended[REGNO (x)]);
|
| 1514 |
|
|
break;
|
| 1515 |
|
|
case MEM:
|
| 1516 |
|
|
h8300_print_operand (file, x, 0);
|
| 1517 |
|
|
break;
|
| 1518 |
|
|
case CONST_INT:
|
| 1519 |
|
|
fprintf (file, "#%ld", ((INTVAL (x) >> 16) & 0xffff));
|
| 1520 |
|
|
break;
|
| 1521 |
|
|
case CONST_DOUBLE:
|
| 1522 |
|
|
{
|
| 1523 |
|
|
long val;
|
| 1524 |
|
|
REAL_VALUE_TYPE rv;
|
| 1525 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
|
| 1526 |
|
|
REAL_VALUE_TO_TARGET_SINGLE (rv, val);
|
| 1527 |
|
|
fprintf (file, "#%ld", ((val >> 16) & 0xffff));
|
| 1528 |
|
|
break;
|
| 1529 |
|
|
}
|
| 1530 |
|
|
default:
|
| 1531 |
|
|
gcc_unreachable ();
|
| 1532 |
|
|
break;
|
| 1533 |
|
|
}
|
| 1534 |
|
|
break;
|
| 1535 |
|
|
case 'f':
|
| 1536 |
|
|
switch (GET_CODE (x))
|
| 1537 |
|
|
{
|
| 1538 |
|
|
case REG:
|
| 1539 |
|
|
if (TARGET_H8300)
|
| 1540 |
|
|
fprintf (file, "%s", names_big[REGNO (x) + 1]);
|
| 1541 |
|
|
else
|
| 1542 |
|
|
fprintf (file, "%s", names_big[REGNO (x)]);
|
| 1543 |
|
|
break;
|
| 1544 |
|
|
case MEM:
|
| 1545 |
|
|
x = adjust_address (x, HImode, 2);
|
| 1546 |
|
|
h8300_print_operand (file, x, 0);
|
| 1547 |
|
|
break;
|
| 1548 |
|
|
case CONST_INT:
|
| 1549 |
|
|
fprintf (file, "#%ld", INTVAL (x) & 0xffff);
|
| 1550 |
|
|
break;
|
| 1551 |
|
|
case CONST_DOUBLE:
|
| 1552 |
|
|
{
|
| 1553 |
|
|
long val;
|
| 1554 |
|
|
REAL_VALUE_TYPE rv;
|
| 1555 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
|
| 1556 |
|
|
REAL_VALUE_TO_TARGET_SINGLE (rv, val);
|
| 1557 |
|
|
fprintf (file, "#%ld", (val & 0xffff));
|
| 1558 |
|
|
break;
|
| 1559 |
|
|
}
|
| 1560 |
|
|
default:
|
| 1561 |
|
|
gcc_unreachable ();
|
| 1562 |
|
|
}
|
| 1563 |
|
|
break;
|
| 1564 |
|
|
case 'j':
|
| 1565 |
|
|
fputs (cond_string (GET_CODE (x)), file);
|
| 1566 |
|
|
break;
|
| 1567 |
|
|
case 'k':
|
| 1568 |
|
|
fputs (cond_string (reverse_condition (GET_CODE (x))), file);
|
| 1569 |
|
|
break;
|
| 1570 |
|
|
case 'm':
|
| 1571 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
| 1572 |
|
|
switch (INTVAL (x))
|
| 1573 |
|
|
{
|
| 1574 |
|
|
case 1:
|
| 1575 |
|
|
fputs (".b", file);
|
| 1576 |
|
|
break;
|
| 1577 |
|
|
|
| 1578 |
|
|
case 2:
|
| 1579 |
|
|
fputs (".w", file);
|
| 1580 |
|
|
break;
|
| 1581 |
|
|
|
| 1582 |
|
|
case 4:
|
| 1583 |
|
|
fputs (".l", file);
|
| 1584 |
|
|
break;
|
| 1585 |
|
|
|
| 1586 |
|
|
default:
|
| 1587 |
|
|
gcc_unreachable ();
|
| 1588 |
|
|
}
|
| 1589 |
|
|
break;
|
| 1590 |
|
|
case 'o':
|
| 1591 |
|
|
h8300_print_operand_address (file, x);
|
| 1592 |
|
|
break;
|
| 1593 |
|
|
case 's':
|
| 1594 |
|
|
if (GET_CODE (x) == CONST_INT)
|
| 1595 |
|
|
fprintf (file, "#%ld", (INTVAL (x)) & 0xff);
|
| 1596 |
|
|
else
|
| 1597 |
|
|
fprintf (file, "%s", byte_reg (x, 0));
|
| 1598 |
|
|
break;
|
| 1599 |
|
|
case 't':
|
| 1600 |
|
|
if (GET_CODE (x) == CONST_INT)
|
| 1601 |
|
|
fprintf (file, "#%ld", (INTVAL (x) >> 8) & 0xff);
|
| 1602 |
|
|
else
|
| 1603 |
|
|
fprintf (file, "%s", byte_reg (x, 1));
|
| 1604 |
|
|
break;
|
| 1605 |
|
|
case 'w':
|
| 1606 |
|
|
if (GET_CODE (x) == CONST_INT)
|
| 1607 |
|
|
fprintf (file, "#%ld", INTVAL (x) & 0xff);
|
| 1608 |
|
|
else
|
| 1609 |
|
|
fprintf (file, "%s",
|
| 1610 |
|
|
byte_reg (x, TARGET_H8300 ? 2 : 0));
|
| 1611 |
|
|
break;
|
| 1612 |
|
|
case 'x':
|
| 1613 |
|
|
if (GET_CODE (x) == CONST_INT)
|
| 1614 |
|
|
fprintf (file, "#%ld", (INTVAL (x) >> 8) & 0xff);
|
| 1615 |
|
|
else
|
| 1616 |
|
|
fprintf (file, "%s",
|
| 1617 |
|
|
byte_reg (x, TARGET_H8300 ? 3 : 1));
|
| 1618 |
|
|
break;
|
| 1619 |
|
|
case 'y':
|
| 1620 |
|
|
if (GET_CODE (x) == CONST_INT)
|
| 1621 |
|
|
fprintf (file, "#%ld", (INTVAL (x) >> 16) & 0xff);
|
| 1622 |
|
|
else
|
| 1623 |
|
|
fprintf (file, "%s", byte_reg (x, 0));
|
| 1624 |
|
|
break;
|
| 1625 |
|
|
case 'z':
|
| 1626 |
|
|
if (GET_CODE (x) == CONST_INT)
|
| 1627 |
|
|
fprintf (file, "#%ld", (INTVAL (x) >> 24) & 0xff);
|
| 1628 |
|
|
else
|
| 1629 |
|
|
fprintf (file, "%s", byte_reg (x, 1));
|
| 1630 |
|
|
break;
|
| 1631 |
|
|
|
| 1632 |
|
|
default:
|
| 1633 |
|
|
def:
|
| 1634 |
|
|
switch (GET_CODE (x))
|
| 1635 |
|
|
{
|
| 1636 |
|
|
case REG:
|
| 1637 |
|
|
switch (GET_MODE (x))
|
| 1638 |
|
|
{
|
| 1639 |
|
|
case QImode:
|
| 1640 |
|
|
#if 0 /* Is it asm ("mov.b %0,r2l", ...) */
|
| 1641 |
|
|
fprintf (file, "%s", byte_reg (x, 0));
|
| 1642 |
|
|
#else /* ... or is it asm ("mov.b %0l,r2l", ...) */
|
| 1643 |
|
|
fprintf (file, "%s", names_big[REGNO (x)]);
|
| 1644 |
|
|
#endif
|
| 1645 |
|
|
break;
|
| 1646 |
|
|
case HImode:
|
| 1647 |
|
|
fprintf (file, "%s", names_big[REGNO (x)]);
|
| 1648 |
|
|
break;
|
| 1649 |
|
|
case SImode:
|
| 1650 |
|
|
case SFmode:
|
| 1651 |
|
|
fprintf (file, "%s", names_extended[REGNO (x)]);
|
| 1652 |
|
|
break;
|
| 1653 |
|
|
default:
|
| 1654 |
|
|
gcc_unreachable ();
|
| 1655 |
|
|
}
|
| 1656 |
|
|
break;
|
| 1657 |
|
|
|
| 1658 |
|
|
case MEM:
|
| 1659 |
|
|
{
|
| 1660 |
|
|
rtx addr = XEXP (x, 0);
|
| 1661 |
|
|
|
| 1662 |
|
|
fprintf (file, "@");
|
| 1663 |
|
|
output_address (addr);
|
| 1664 |
|
|
|
| 1665 |
|
|
/* Add a length suffix to constant addresses. Although this
|
| 1666 |
|
|
is often unnecessary, it helps to avoid ambiguity in the
|
| 1667 |
|
|
syntax of mova. If we wrote an insn like:
|
| 1668 |
|
|
|
| 1669 |
|
|
mova/w.l @(1,@foo.b),er0
|
| 1670 |
|
|
|
| 1671 |
|
|
then .b would be considered part of the symbol name.
|
| 1672 |
|
|
Adding a length after foo will avoid this. */
|
| 1673 |
|
|
if (CONSTANT_P (addr))
|
| 1674 |
|
|
switch (code)
|
| 1675 |
|
|
{
|
| 1676 |
|
|
case 'R':
|
| 1677 |
|
|
/* Used for mov.b and bit operations. */
|
| 1678 |
|
|
if (h8300_eightbit_constant_address_p (addr))
|
| 1679 |
|
|
{
|
| 1680 |
|
|
fprintf (file, ":8");
|
| 1681 |
|
|
break;
|
| 1682 |
|
|
}
|
| 1683 |
|
|
|
| 1684 |
|
|
/* Fall through. We should not get here if we are
|
| 1685 |
|
|
processing bit operations on H8/300 or H8/300H
|
| 1686 |
|
|
because 'U' constraint does not allow bit
|
| 1687 |
|
|
operations on the tiny area on these machines. */
|
| 1688 |
|
|
|
| 1689 |
|
|
case 'X':
|
| 1690 |
|
|
case 'T':
|
| 1691 |
|
|
case 'S':
|
| 1692 |
|
|
if (h8300_constant_length (addr) == 2)
|
| 1693 |
|
|
fprintf (file, ":16");
|
| 1694 |
|
|
else
|
| 1695 |
|
|
fprintf (file, ":32");
|
| 1696 |
|
|
break;
|
| 1697 |
|
|
default:
|
| 1698 |
|
|
break;
|
| 1699 |
|
|
}
|
| 1700 |
|
|
}
|
| 1701 |
|
|
break;
|
| 1702 |
|
|
|
| 1703 |
|
|
case CONST_INT:
|
| 1704 |
|
|
case SYMBOL_REF:
|
| 1705 |
|
|
case CONST:
|
| 1706 |
|
|
case LABEL_REF:
|
| 1707 |
|
|
fprintf (file, "#");
|
| 1708 |
|
|
h8300_print_operand_address (file, x);
|
| 1709 |
|
|
break;
|
| 1710 |
|
|
case CONST_DOUBLE:
|
| 1711 |
|
|
{
|
| 1712 |
|
|
long val;
|
| 1713 |
|
|
REAL_VALUE_TYPE rv;
|
| 1714 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
|
| 1715 |
|
|
REAL_VALUE_TO_TARGET_SINGLE (rv, val);
|
| 1716 |
|
|
fprintf (file, "#%ld", val);
|
| 1717 |
|
|
break;
|
| 1718 |
|
|
}
|
| 1719 |
|
|
default:
|
| 1720 |
|
|
break;
|
| 1721 |
|
|
}
|
| 1722 |
|
|
}
|
| 1723 |
|
|
}
|
| 1724 |
|
|
|
| 1725 |
|
|
/* Implements TARGET_PRINT_OPERAND_PUNCT_VALID_P. */
|
| 1726 |
|
|
|
| 1727 |
|
|
static bool
|
| 1728 |
|
|
h8300_print_operand_punct_valid_p (unsigned char code)
|
| 1729 |
|
|
{
|
| 1730 |
|
|
return (code == '#');
|
| 1731 |
|
|
}
|
| 1732 |
|
|
|
| 1733 |
|
|
/* Output assembly language output for the address ADDR to FILE. */
|
| 1734 |
|
|
|
| 1735 |
|
|
static void
|
| 1736 |
|
|
h8300_print_operand_address (FILE *file, rtx addr)
|
| 1737 |
|
|
{
|
| 1738 |
|
|
rtx index;
|
| 1739 |
|
|
int size;
|
| 1740 |
|
|
|
| 1741 |
|
|
switch (GET_CODE (addr))
|
| 1742 |
|
|
{
|
| 1743 |
|
|
case REG:
|
| 1744 |
|
|
fprintf (file, "%s", h8_reg_names[REGNO (addr)]);
|
| 1745 |
|
|
break;
|
| 1746 |
|
|
|
| 1747 |
|
|
case PRE_DEC:
|
| 1748 |
|
|
fprintf (file, "-%s", h8_reg_names[REGNO (XEXP (addr, 0))]);
|
| 1749 |
|
|
break;
|
| 1750 |
|
|
|
| 1751 |
|
|
case POST_INC:
|
| 1752 |
|
|
fprintf (file, "%s+", h8_reg_names[REGNO (XEXP (addr, 0))]);
|
| 1753 |
|
|
break;
|
| 1754 |
|
|
|
| 1755 |
|
|
case PRE_INC:
|
| 1756 |
|
|
fprintf (file, "+%s", h8_reg_names[REGNO (XEXP (addr, 0))]);
|
| 1757 |
|
|
break;
|
| 1758 |
|
|
|
| 1759 |
|
|
case POST_DEC:
|
| 1760 |
|
|
fprintf (file, "%s-", h8_reg_names[REGNO (XEXP (addr, 0))]);
|
| 1761 |
|
|
break;
|
| 1762 |
|
|
|
| 1763 |
|
|
case PLUS:
|
| 1764 |
|
|
fprintf (file, "(");
|
| 1765 |
|
|
|
| 1766 |
|
|
index = h8300_get_index (XEXP (addr, 0), VOIDmode, &size);
|
| 1767 |
|
|
if (GET_CODE (index) == REG)
|
| 1768 |
|
|
{
|
| 1769 |
|
|
/* reg,foo */
|
| 1770 |
|
|
h8300_print_operand_address (file, XEXP (addr, 1));
|
| 1771 |
|
|
fprintf (file, ",");
|
| 1772 |
|
|
switch (size)
|
| 1773 |
|
|
{
|
| 1774 |
|
|
case 0:
|
| 1775 |
|
|
h8300_print_operand_address (file, index);
|
| 1776 |
|
|
break;
|
| 1777 |
|
|
|
| 1778 |
|
|
case 1:
|
| 1779 |
|
|
h8300_print_operand (file, index, 'X');
|
| 1780 |
|
|
fputs (".b", file);
|
| 1781 |
|
|
break;
|
| 1782 |
|
|
|
| 1783 |
|
|
case 2:
|
| 1784 |
|
|
h8300_print_operand (file, index, 'T');
|
| 1785 |
|
|
fputs (".w", file);
|
| 1786 |
|
|
break;
|
| 1787 |
|
|
|
| 1788 |
|
|
case 4:
|
| 1789 |
|
|
h8300_print_operand (file, index, 'S');
|
| 1790 |
|
|
fputs (".l", file);
|
| 1791 |
|
|
break;
|
| 1792 |
|
|
}
|
| 1793 |
|
|
/* h8300_print_operand_address (file, XEXP (addr, 0)); */
|
| 1794 |
|
|
}
|
| 1795 |
|
|
else
|
| 1796 |
|
|
{
|
| 1797 |
|
|
/* foo+k */
|
| 1798 |
|
|
h8300_print_operand_address (file, XEXP (addr, 0));
|
| 1799 |
|
|
fprintf (file, "+");
|
| 1800 |
|
|
h8300_print_operand_address (file, XEXP (addr, 1));
|
| 1801 |
|
|
}
|
| 1802 |
|
|
fprintf (file, ")");
|
| 1803 |
|
|
break;
|
| 1804 |
|
|
|
| 1805 |
|
|
case CONST_INT:
|
| 1806 |
|
|
{
|
| 1807 |
|
|
/* Since the H8/300 only has 16-bit pointers, negative values are also
|
| 1808 |
|
|
those >= 32768. This happens for example with pointer minus a
|
| 1809 |
|
|
constant. We don't want to turn (char *p - 2) into
|
| 1810 |
|
|
(char *p + 65534) because loop unrolling can build upon this
|
| 1811 |
|
|
(IE: char *p + 131068). */
|
| 1812 |
|
|
int n = INTVAL (addr);
|
| 1813 |
|
|
if (TARGET_H8300)
|
| 1814 |
|
|
n = (int) (short) n;
|
| 1815 |
|
|
fprintf (file, "%d", n);
|
| 1816 |
|
|
break;
|
| 1817 |
|
|
}
|
| 1818 |
|
|
|
| 1819 |
|
|
default:
|
| 1820 |
|
|
output_addr_const (file, addr);
|
| 1821 |
|
|
break;
|
| 1822 |
|
|
}
|
| 1823 |
|
|
}
|
| 1824 |
|
|
|
| 1825 |
|
|
/* Output all insn addresses and their sizes into the assembly language
|
| 1826 |
|
|
output file. This is helpful for debugging whether the length attributes
|
| 1827 |
|
|
in the md file are correct. This is not meant to be a user selectable
|
| 1828 |
|
|
option. */
|
| 1829 |
|
|
|
| 1830 |
|
|
void
|
| 1831 |
|
|
final_prescan_insn (rtx insn, rtx *operand ATTRIBUTE_UNUSED,
|
| 1832 |
|
|
int num_operands ATTRIBUTE_UNUSED)
|
| 1833 |
|
|
{
|
| 1834 |
|
|
/* This holds the last insn address. */
|
| 1835 |
|
|
static int last_insn_address = 0;
|
| 1836 |
|
|
|
| 1837 |
|
|
const int uid = INSN_UID (insn);
|
| 1838 |
|
|
|
| 1839 |
|
|
if (TARGET_ADDRESSES)
|
| 1840 |
|
|
{
|
| 1841 |
|
|
fprintf (asm_out_file, "; 0x%x %d\n", INSN_ADDRESSES (uid),
|
| 1842 |
|
|
INSN_ADDRESSES (uid) - last_insn_address);
|
| 1843 |
|
|
last_insn_address = INSN_ADDRESSES (uid);
|
| 1844 |
|
|
}
|
| 1845 |
|
|
}
|
| 1846 |
|
|
|
| 1847 |
|
|
/* Prepare for an SI sized move. */
|
| 1848 |
|
|
|
| 1849 |
|
|
int
|
| 1850 |
|
|
h8300_expand_movsi (rtx operands[])
|
| 1851 |
|
|
{
|
| 1852 |
|
|
rtx src = operands[1];
|
| 1853 |
|
|
rtx dst = operands[0];
|
| 1854 |
|
|
if (!reload_in_progress && !reload_completed)
|
| 1855 |
|
|
{
|
| 1856 |
|
|
if (!register_operand (dst, GET_MODE (dst)))
|
| 1857 |
|
|
{
|
| 1858 |
|
|
rtx tmp = gen_reg_rtx (GET_MODE (dst));
|
| 1859 |
|
|
emit_move_insn (tmp, src);
|
| 1860 |
|
|
operands[1] = tmp;
|
| 1861 |
|
|
}
|
| 1862 |
|
|
}
|
| 1863 |
|
|
return 0;
|
| 1864 |
|
|
}
|
| 1865 |
|
|
|
| 1866 |
|
|
/* Given FROM and TO register numbers, say whether this elimination is allowed.
|
| 1867 |
|
|
Frame pointer elimination is automatically handled.
|
| 1868 |
|
|
|
| 1869 |
|
|
For the h8300, if frame pointer elimination is being done, we would like to
|
| 1870 |
|
|
convert ap and rp into sp, not fp.
|
| 1871 |
|
|
|
| 1872 |
|
|
All other eliminations are valid. */
|
| 1873 |
|
|
|
| 1874 |
|
|
static bool
|
| 1875 |
|
|
h8300_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
|
| 1876 |
|
|
{
|
| 1877 |
|
|
return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
|
| 1878 |
|
|
}
|
| 1879 |
|
|
|
| 1880 |
|
|
/* Conditionally modify register usage based on target flags. */
|
| 1881 |
|
|
|
| 1882 |
|
|
static void
|
| 1883 |
|
|
h8300_conditional_register_usage (void)
|
| 1884 |
|
|
{
|
| 1885 |
|
|
if (!TARGET_MAC)
|
| 1886 |
|
|
fixed_regs[MAC_REG] = call_used_regs[MAC_REG] = 1;
|
| 1887 |
|
|
}
|
| 1888 |
|
|
|
| 1889 |
|
|
/* Function for INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET).
|
| 1890 |
|
|
Define the offset between two registers, one to be eliminated, and
|
| 1891 |
|
|
the other its replacement, at the start of a routine. */
|
| 1892 |
|
|
|
| 1893 |
|
|
int
|
| 1894 |
|
|
h8300_initial_elimination_offset (int from, int to)
|
| 1895 |
|
|
{
|
| 1896 |
|
|
/* The number of bytes that the return address takes on the stack. */
|
| 1897 |
|
|
int pc_size = POINTER_SIZE / BITS_PER_UNIT;
|
| 1898 |
|
|
|
| 1899 |
|
|
/* The number of bytes that the saved frame pointer takes on the stack. */
|
| 1900 |
|
|
int fp_size = frame_pointer_needed * UNITS_PER_WORD;
|
| 1901 |
|
|
|
| 1902 |
|
|
/* The number of bytes that the saved registers, excluding the frame
|
| 1903 |
|
|
pointer, take on the stack. */
|
| 1904 |
|
|
int saved_regs_size = 0;
|
| 1905 |
|
|
|
| 1906 |
|
|
/* The number of bytes that the locals takes on the stack. */
|
| 1907 |
|
|
int frame_size = round_frame_size (get_frame_size ());
|
| 1908 |
|
|
|
| 1909 |
|
|
int regno;
|
| 1910 |
|
|
|
| 1911 |
|
|
for (regno = 0; regno <= HARD_FRAME_POINTER_REGNUM; regno++)
|
| 1912 |
|
|
if (WORD_REG_USED (regno))
|
| 1913 |
|
|
saved_regs_size += UNITS_PER_WORD;
|
| 1914 |
|
|
|
| 1915 |
|
|
/* Adjust saved_regs_size because the above loop took the frame
|
| 1916 |
|
|
pointer int account. */
|
| 1917 |
|
|
saved_regs_size -= fp_size;
|
| 1918 |
|
|
|
| 1919 |
|
|
switch (to)
|
| 1920 |
|
|
{
|
| 1921 |
|
|
case HARD_FRAME_POINTER_REGNUM:
|
| 1922 |
|
|
switch (from)
|
| 1923 |
|
|
{
|
| 1924 |
|
|
case ARG_POINTER_REGNUM:
|
| 1925 |
|
|
return pc_size + fp_size;
|
| 1926 |
|
|
case RETURN_ADDRESS_POINTER_REGNUM:
|
| 1927 |
|
|
return fp_size;
|
| 1928 |
|
|
case FRAME_POINTER_REGNUM:
|
| 1929 |
|
|
return -saved_regs_size;
|
| 1930 |
|
|
default:
|
| 1931 |
|
|
gcc_unreachable ();
|
| 1932 |
|
|
}
|
| 1933 |
|
|
break;
|
| 1934 |
|
|
case STACK_POINTER_REGNUM:
|
| 1935 |
|
|
switch (from)
|
| 1936 |
|
|
{
|
| 1937 |
|
|
case ARG_POINTER_REGNUM:
|
| 1938 |
|
|
return pc_size + saved_regs_size + frame_size;
|
| 1939 |
|
|
case RETURN_ADDRESS_POINTER_REGNUM:
|
| 1940 |
|
|
return saved_regs_size + frame_size;
|
| 1941 |
|
|
case FRAME_POINTER_REGNUM:
|
| 1942 |
|
|
return frame_size;
|
| 1943 |
|
|
default:
|
| 1944 |
|
|
gcc_unreachable ();
|
| 1945 |
|
|
}
|
| 1946 |
|
|
break;
|
| 1947 |
|
|
default:
|
| 1948 |
|
|
gcc_unreachable ();
|
| 1949 |
|
|
}
|
| 1950 |
|
|
gcc_unreachable ();
|
| 1951 |
|
|
}
|
| 1952 |
|
|
|
| 1953 |
|
|
/* Worker function for RETURN_ADDR_RTX. */
|
| 1954 |
|
|
|
| 1955 |
|
|
rtx
|
| 1956 |
|
|
h8300_return_addr_rtx (int count, rtx frame)
|
| 1957 |
|
|
{
|
| 1958 |
|
|
rtx ret;
|
| 1959 |
|
|
|
| 1960 |
|
|
if (count == 0)
|
| 1961 |
|
|
ret = gen_rtx_MEM (Pmode,
|
| 1962 |
|
|
gen_rtx_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM));
|
| 1963 |
|
|
else if (flag_omit_frame_pointer)
|
| 1964 |
|
|
return (rtx) 0;
|
| 1965 |
|
|
else
|
| 1966 |
|
|
ret = gen_rtx_MEM (Pmode,
|
| 1967 |
|
|
memory_address (Pmode,
|
| 1968 |
|
|
plus_constant (frame, UNITS_PER_WORD)));
|
| 1969 |
|
|
set_mem_alias_set (ret, get_frame_alias_set ());
|
| 1970 |
|
|
return ret;
|
| 1971 |
|
|
}
|
| 1972 |
|
|
|
| 1973 |
|
|
/* Update the condition code from the insn. */
|
| 1974 |
|
|
|
| 1975 |
|
|
void
|
| 1976 |
|
|
notice_update_cc (rtx body, rtx insn)
|
| 1977 |
|
|
{
|
| 1978 |
|
|
rtx set;
|
| 1979 |
|
|
|
| 1980 |
|
|
switch (get_attr_cc (insn))
|
| 1981 |
|
|
{
|
| 1982 |
|
|
case CC_NONE:
|
| 1983 |
|
|
/* Insn does not affect CC at all. */
|
| 1984 |
|
|
break;
|
| 1985 |
|
|
|
| 1986 |
|
|
case CC_NONE_0HIT:
|
| 1987 |
|
|
/* Insn does not change CC, but the 0'th operand has been changed. */
|
| 1988 |
|
|
if (cc_status.value1 != 0
|
| 1989 |
|
|
&& reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value1))
|
| 1990 |
|
|
cc_status.value1 = 0;
|
| 1991 |
|
|
if (cc_status.value2 != 0
|
| 1992 |
|
|
&& reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value2))
|
| 1993 |
|
|
cc_status.value2 = 0;
|
| 1994 |
|
|
break;
|
| 1995 |
|
|
|
| 1996 |
|
|
case CC_SET_ZN:
|
| 1997 |
|
|
/* Insn sets the Z,N flags of CC to recog_data.operand[0].
|
| 1998 |
|
|
The V flag is unusable. The C flag may or may not be known but
|
| 1999 |
|
|
that's ok because alter_cond will change tests to use EQ/NE. */
|
| 2000 |
|
|
CC_STATUS_INIT;
|
| 2001 |
|
|
cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
|
| 2002 |
|
|
set = single_set (insn);
|
| 2003 |
|
|
cc_status.value1 = SET_SRC (set);
|
| 2004 |
|
|
if (SET_DEST (set) != cc0_rtx)
|
| 2005 |
|
|
cc_status.value2 = SET_DEST (set);
|
| 2006 |
|
|
break;
|
| 2007 |
|
|
|
| 2008 |
|
|
case CC_SET_ZNV:
|
| 2009 |
|
|
/* Insn sets the Z,N,V flags of CC to recog_data.operand[0].
|
| 2010 |
|
|
The C flag may or may not be known but that's ok because
|
| 2011 |
|
|
alter_cond will change tests to use EQ/NE. */
|
| 2012 |
|
|
CC_STATUS_INIT;
|
| 2013 |
|
|
cc_status.flags |= CC_NO_CARRY;
|
| 2014 |
|
|
set = single_set (insn);
|
| 2015 |
|
|
cc_status.value1 = SET_SRC (set);
|
| 2016 |
|
|
if (SET_DEST (set) != cc0_rtx)
|
| 2017 |
|
|
{
|
| 2018 |
|
|
/* If the destination is STRICT_LOW_PART, strip off
|
| 2019 |
|
|
STRICT_LOW_PART. */
|
| 2020 |
|
|
if (GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
|
| 2021 |
|
|
cc_status.value2 = XEXP (SET_DEST (set), 0);
|
| 2022 |
|
|
else
|
| 2023 |
|
|
cc_status.value2 = SET_DEST (set);
|
| 2024 |
|
|
}
|
| 2025 |
|
|
break;
|
| 2026 |
|
|
|
| 2027 |
|
|
case CC_COMPARE:
|
| 2028 |
|
|
/* The insn is a compare instruction. */
|
| 2029 |
|
|
CC_STATUS_INIT;
|
| 2030 |
|
|
cc_status.value1 = SET_SRC (body);
|
| 2031 |
|
|
break;
|
| 2032 |
|
|
|
| 2033 |
|
|
case CC_CLOBBER:
|
| 2034 |
|
|
/* Insn doesn't leave CC in a usable state. */
|
| 2035 |
|
|
CC_STATUS_INIT;
|
| 2036 |
|
|
break;
|
| 2037 |
|
|
}
|
| 2038 |
|
|
}
|
| 2039 |
|
|
|
| 2040 |
|
|
/* Given that X occurs in an address of the form (plus X constant),
|
| 2041 |
|
|
return the part of X that is expected to be a register. There are
|
| 2042 |
|
|
four kinds of addressing mode to recognize:
|
| 2043 |
|
|
|
| 2044 |
|
|
@(dd,Rn)
|
| 2045 |
|
|
@(dd,RnL.b)
|
| 2046 |
|
|
@(dd,Rn.w)
|
| 2047 |
|
|
@(dd,ERn.l)
|
| 2048 |
|
|
|
| 2049 |
|
|
If SIZE is nonnull, and the address is one of the last three forms,
|
| 2050 |
|
|
set *SIZE to the index multiplication factor. Set it to 0 for
|
| 2051 |
|
|
plain @(dd,Rn) addresses.
|
| 2052 |
|
|
|
| 2053 |
|
|
MODE is the mode of the value being accessed. It can be VOIDmode
|
| 2054 |
|
|
if the address is known to be valid, but its mode is unknown. */
|
| 2055 |
|
|
|
| 2056 |
|
|
static rtx
|
| 2057 |
|
|
h8300_get_index (rtx x, enum machine_mode mode, int *size)
|
| 2058 |
|
|
{
|
| 2059 |
|
|
int dummy, factor;
|
| 2060 |
|
|
|
| 2061 |
|
|
if (size == 0)
|
| 2062 |
|
|
size = &dummy;
|
| 2063 |
|
|
|
| 2064 |
|
|
factor = (mode == VOIDmode ? 0 : GET_MODE_SIZE (mode));
|
| 2065 |
|
|
if (TARGET_H8300SX
|
| 2066 |
|
|
&& factor <= 4
|
| 2067 |
|
|
&& (mode == VOIDmode
|
| 2068 |
|
|
|| GET_MODE_CLASS (mode) == MODE_INT
|
| 2069 |
|
|
|| GET_MODE_CLASS (mode) == MODE_FLOAT))
|
| 2070 |
|
|
{
|
| 2071 |
|
|
if (factor <= 1 && GET_CODE (x) == ZERO_EXTEND)
|
| 2072 |
|
|
{
|
| 2073 |
|
|
/* When accessing byte-sized values, the index can be
|
| 2074 |
|
|
a zero-extended QImode or HImode register. */
|
| 2075 |
|
|
*size = GET_MODE_SIZE (GET_MODE (XEXP (x, 0)));
|
| 2076 |
|
|
return XEXP (x, 0);
|
| 2077 |
|
|
}
|
| 2078 |
|
|
else
|
| 2079 |
|
|
{
|
| 2080 |
|
|
/* We're looking for addresses of the form:
|
| 2081 |
|
|
|
| 2082 |
|
|
(mult X I)
|
| 2083 |
|
|
or (mult (zero_extend X) I)
|
| 2084 |
|
|
|
| 2085 |
|
|
where I is the size of the operand being accessed.
|
| 2086 |
|
|
The canonical form of the second expression is:
|
| 2087 |
|
|
|
| 2088 |
|
|
(and (mult (subreg X) I) J)
|
| 2089 |
|
|
|
| 2090 |
|
|
where J == GET_MODE_MASK (GET_MODE (X)) * I. */
|
| 2091 |
|
|
rtx index;
|
| 2092 |
|
|
|
| 2093 |
|
|
if (GET_CODE (x) == AND
|
| 2094 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
| 2095 |
|
|
&& (factor == 0
|
| 2096 |
|
|
|| INTVAL (XEXP (x, 1)) == 0xff * factor
|
| 2097 |
|
|
|| INTVAL (XEXP (x, 1)) == 0xffff * factor))
|
| 2098 |
|
|
{
|
| 2099 |
|
|
index = XEXP (x, 0);
|
| 2100 |
|
|
*size = (INTVAL (XEXP (x, 1)) >= 0xffff ? 2 : 1);
|
| 2101 |
|
|
}
|
| 2102 |
|
|
else
|
| 2103 |
|
|
{
|
| 2104 |
|
|
index = x;
|
| 2105 |
|
|
*size = 4;
|
| 2106 |
|
|
}
|
| 2107 |
|
|
|
| 2108 |
|
|
if (GET_CODE (index) == MULT
|
| 2109 |
|
|
&& GET_CODE (XEXP (index, 1)) == CONST_INT
|
| 2110 |
|
|
&& (factor == 0 || factor == INTVAL (XEXP (index, 1))))
|
| 2111 |
|
|
return XEXP (index, 0);
|
| 2112 |
|
|
}
|
| 2113 |
|
|
}
|
| 2114 |
|
|
*size = 0;
|
| 2115 |
|
|
return x;
|
| 2116 |
|
|
}
|
| 2117 |
|
|
|
| 2118 |
|
|
/* Worker function for TARGET_MODE_DEPENDENT_ADDRESS_P.
|
| 2119 |
|
|
|
| 2120 |
|
|
On the H8/300, the predecrement and postincrement address depend thus
|
| 2121 |
|
|
(the amount of decrement or increment being the length of the operand). */
|
| 2122 |
|
|
|
| 2123 |
|
|
static bool
|
| 2124 |
|
|
h8300_mode_dependent_address_p (const_rtx addr)
|
| 2125 |
|
|
{
|
| 2126 |
|
|
if (GET_CODE (addr) == PLUS
|
| 2127 |
|
|
&& h8300_get_index (XEXP (addr, 0), VOIDmode, 0) != XEXP (addr, 0))
|
| 2128 |
|
|
return true;
|
| 2129 |
|
|
|
| 2130 |
|
|
return false;
|
| 2131 |
|
|
}
|
| 2132 |
|
|
|
| 2133 |
|
|
static const h8300_length_table addb_length_table =
|
| 2134 |
|
|
{
|
| 2135 |
|
|
/* #xx Rs @aa @Rs @xx */
|
| 2136 |
|
|
{ 2, 2, 4, 4, 4 }, /* add.b xx,Rd */
|
| 2137 |
|
|
{ 4, 4, 4, 4, 6 }, /* add.b xx,@aa */
|
| 2138 |
|
|
{ 4, 4, 4, 4, 6 }, /* add.b xx,@Rd */
|
| 2139 |
|
|
{ 6, 4, 4, 4, 6 } /* add.b xx,@xx */
|
| 2140 |
|
|
};
|
| 2141 |
|
|
|
| 2142 |
|
|
static const h8300_length_table addw_length_table =
|
| 2143 |
|
|
{
|
| 2144 |
|
|
/* #xx Rs @aa @Rs @xx */
|
| 2145 |
|
|
{ 2, 2, 4, 4, 4 }, /* add.w xx,Rd */
|
| 2146 |
|
|
{ 4, 4, 4, 4, 6 }, /* add.w xx,@aa */
|
| 2147 |
|
|
{ 4, 4, 4, 4, 6 }, /* add.w xx,@Rd */
|
| 2148 |
|
|
{ 4, 4, 4, 4, 6 } /* add.w xx,@xx */
|
| 2149 |
|
|
};
|
| 2150 |
|
|
|
| 2151 |
|
|
static const h8300_length_table addl_length_table =
|
| 2152 |
|
|
{
|
| 2153 |
|
|
/* #xx Rs @aa @Rs @xx */
|
| 2154 |
|
|
{ 2, 2, 4, 4, 4 }, /* add.l xx,Rd */
|
| 2155 |
|
|
{ 4, 4, 6, 6, 6 }, /* add.l xx,@aa */
|
| 2156 |
|
|
{ 4, 4, 6, 6, 6 }, /* add.l xx,@Rd */
|
| 2157 |
|
|
{ 4, 4, 6, 6, 6 } /* add.l xx,@xx */
|
| 2158 |
|
|
};
|
| 2159 |
|
|
|
| 2160 |
|
|
#define logicb_length_table addb_length_table
|
| 2161 |
|
|
#define logicw_length_table addw_length_table
|
| 2162 |
|
|
|
| 2163 |
|
|
static const h8300_length_table logicl_length_table =
|
| 2164 |
|
|
{
|
| 2165 |
|
|
/* #xx Rs @aa @Rs @xx */
|
| 2166 |
|
|
{ 2, 4, 4, 4, 4 }, /* and.l xx,Rd */
|
| 2167 |
|
|
{ 4, 4, 6, 6, 6 }, /* and.l xx,@aa */
|
| 2168 |
|
|
{ 4, 4, 6, 6, 6 }, /* and.l xx,@Rd */
|
| 2169 |
|
|
{ 4, 4, 6, 6, 6 } /* and.l xx,@xx */
|
| 2170 |
|
|
};
|
| 2171 |
|
|
|
| 2172 |
|
|
static const h8300_length_table movb_length_table =
|
| 2173 |
|
|
{
|
| 2174 |
|
|
/* #xx Rs @aa @Rs @xx */
|
| 2175 |
|
|
{ 2, 2, 2, 2, 4 }, /* mov.b xx,Rd */
|
| 2176 |
|
|
{ 4, 2, 4, 4, 4 }, /* mov.b xx,@aa */
|
| 2177 |
|
|
{ 4, 2, 4, 4, 4 }, /* mov.b xx,@Rd */
|
| 2178 |
|
|
{ 4, 4, 4, 4, 4 } /* mov.b xx,@xx */
|
| 2179 |
|
|
};
|
| 2180 |
|
|
|
| 2181 |
|
|
#define movw_length_table movb_length_table
|
| 2182 |
|
|
|
| 2183 |
|
|
static const h8300_length_table movl_length_table =
|
| 2184 |
|
|
{
|
| 2185 |
|
|
/* #xx Rs @aa @Rs @xx */
|
| 2186 |
|
|
{ 2, 2, 4, 4, 4 }, /* mov.l xx,Rd */
|
| 2187 |
|
|
{ 4, 4, 4, 4, 4 }, /* mov.l xx,@aa */
|
| 2188 |
|
|
{ 4, 4, 4, 4, 4 }, /* mov.l xx,@Rd */
|
| 2189 |
|
|
{ 4, 4, 4, 4, 4 } /* mov.l xx,@xx */
|
| 2190 |
|
|
};
|
| 2191 |
|
|
|
| 2192 |
|
|
/* Return the size of the given address or displacement constant. */
|
| 2193 |
|
|
|
| 2194 |
|
|
static unsigned int
|
| 2195 |
|
|
h8300_constant_length (rtx constant)
|
| 2196 |
|
|
{
|
| 2197 |
|
|
/* Check for (@d:16,Reg). */
|
| 2198 |
|
|
if (GET_CODE (constant) == CONST_INT
|
| 2199 |
|
|
&& IN_RANGE (INTVAL (constant), -0x8000, 0x7fff))
|
| 2200 |
|
|
return 2;
|
| 2201 |
|
|
|
| 2202 |
|
|
/* Check for (@d:16,Reg) in cases where the displacement is
|
| 2203 |
|
|
an absolute address. */
|
| 2204 |
|
|
if (Pmode == HImode || h8300_tiny_constant_address_p (constant))
|
| 2205 |
|
|
return 2;
|
| 2206 |
|
|
|
| 2207 |
|
|
return 4;
|
| 2208 |
|
|
}
|
| 2209 |
|
|
|
| 2210 |
|
|
/* Return the size of a displacement field in address ADDR, which should
|
| 2211 |
|
|
have the form (plus X constant). SIZE is the number of bytes being
|
| 2212 |
|
|
accessed. */
|
| 2213 |
|
|
|
| 2214 |
|
|
static unsigned int
|
| 2215 |
|
|
h8300_displacement_length (rtx addr, int size)
|
| 2216 |
|
|
{
|
| 2217 |
|
|
rtx offset;
|
| 2218 |
|
|
|
| 2219 |
|
|
offset = XEXP (addr, 1);
|
| 2220 |
|
|
|
| 2221 |
|
|
/* Check for @(d:2,Reg). */
|
| 2222 |
|
|
if (register_operand (XEXP (addr, 0), VOIDmode)
|
| 2223 |
|
|
&& GET_CODE (offset) == CONST_INT
|
| 2224 |
|
|
&& (INTVAL (offset) == size
|
| 2225 |
|
|
|| INTVAL (offset) == size * 2
|
| 2226 |
|
|
|| INTVAL (offset) == size * 3))
|
| 2227 |
|
|
return 0;
|
| 2228 |
|
|
|
| 2229 |
|
|
return h8300_constant_length (offset);
|
| 2230 |
|
|
}
|
| 2231 |
|
|
|
| 2232 |
|
|
/* Store the class of operand OP in *OPCLASS and return the length of any
|
| 2233 |
|
|
extra operand fields. SIZE is the number of bytes in OP. OPCLASS
|
| 2234 |
|
|
can be null if only the length is needed. */
|
| 2235 |
|
|
|
| 2236 |
|
|
static unsigned int
|
| 2237 |
|
|
h8300_classify_operand (rtx op, int size, enum h8300_operand_class *opclass)
|
| 2238 |
|
|
{
|
| 2239 |
|
|
enum h8300_operand_class dummy;
|
| 2240 |
|
|
|
| 2241 |
|
|
if (opclass == 0)
|
| 2242 |
|
|
opclass = &dummy;
|
| 2243 |
|
|
|
| 2244 |
|
|
if (CONSTANT_P (op))
|
| 2245 |
|
|
{
|
| 2246 |
|
|
*opclass = H8OP_IMMEDIATE;
|
| 2247 |
|
|
|
| 2248 |
|
|
/* Byte-sized immediates are stored in the opcode fields. */
|
| 2249 |
|
|
if (size == 1)
|
| 2250 |
|
|
return 0;
|
| 2251 |
|
|
|
| 2252 |
|
|
/* If this is a 32-bit instruction, see whether the constant
|
| 2253 |
|
|
will fit into a 16-bit immediate field. */
|
| 2254 |
|
|
if (TARGET_H8300SX
|
| 2255 |
|
|
&& size == 4
|
| 2256 |
|
|
&& GET_CODE (op) == CONST_INT
|
| 2257 |
|
|
&& IN_RANGE (INTVAL (op), 0, 0xffff))
|
| 2258 |
|
|
return 2;
|
| 2259 |
|
|
|
| 2260 |
|
|
return size;
|
| 2261 |
|
|
}
|
| 2262 |
|
|
else if (GET_CODE (op) == MEM)
|
| 2263 |
|
|
{
|
| 2264 |
|
|
op = XEXP (op, 0);
|
| 2265 |
|
|
if (CONSTANT_P (op))
|
| 2266 |
|
|
{
|
| 2267 |
|
|
*opclass = H8OP_MEM_ABSOLUTE;
|
| 2268 |
|
|
return h8300_constant_length (op);
|
| 2269 |
|
|
}
|
| 2270 |
|
|
else if (GET_CODE (op) == PLUS && CONSTANT_P (XEXP (op, 1)))
|
| 2271 |
|
|
{
|
| 2272 |
|
|
*opclass = H8OP_MEM_COMPLEX;
|
| 2273 |
|
|
return h8300_displacement_length (op, size);
|
| 2274 |
|
|
}
|
| 2275 |
|
|
else if (GET_RTX_CLASS (GET_CODE (op)) == RTX_AUTOINC)
|
| 2276 |
|
|
{
|
| 2277 |
|
|
*opclass = H8OP_MEM_COMPLEX;
|
| 2278 |
|
|
return 0;
|
| 2279 |
|
|
}
|
| 2280 |
|
|
else if (register_operand (op, VOIDmode))
|
| 2281 |
|
|
{
|
| 2282 |
|
|
*opclass = H8OP_MEM_BASE;
|
| 2283 |
|
|
return 0;
|
| 2284 |
|
|
}
|
| 2285 |
|
|
}
|
| 2286 |
|
|
gcc_assert (register_operand (op, VOIDmode));
|
| 2287 |
|
|
*opclass = H8OP_REGISTER;
|
| 2288 |
|
|
return 0;
|
| 2289 |
|
|
}
|
| 2290 |
|
|
|
| 2291 |
|
|
/* Return the length of the instruction described by TABLE given that
|
| 2292 |
|
|
its operands are OP1 and OP2. OP1 must be an h8300_dst_operand
|
| 2293 |
|
|
and OP2 must be an h8300_src_operand. */
|
| 2294 |
|
|
|
| 2295 |
|
|
static unsigned int
|
| 2296 |
|
|
h8300_length_from_table (rtx op1, rtx op2, const h8300_length_table *table)
|
| 2297 |
|
|
{
|
| 2298 |
|
|
enum h8300_operand_class op1_class, op2_class;
|
| 2299 |
|
|
unsigned int size, immediate_length;
|
| 2300 |
|
|
|
| 2301 |
|
|
size = GET_MODE_SIZE (GET_MODE (op1));
|
| 2302 |
|
|
immediate_length = (h8300_classify_operand (op1, size, &op1_class)
|
| 2303 |
|
|
+ h8300_classify_operand (op2, size, &op2_class));
|
| 2304 |
|
|
return immediate_length + (*table)[op1_class - 1][op2_class];
|
| 2305 |
|
|
}
|
| 2306 |
|
|
|
| 2307 |
|
|
/* Return the length of a unary instruction such as neg or not given that
|
| 2308 |
|
|
its operand is OP. */
|
| 2309 |
|
|
|
| 2310 |
|
|
unsigned int
|
| 2311 |
|
|
h8300_unary_length (rtx op)
|
| 2312 |
|
|
{
|
| 2313 |
|
|
enum h8300_operand_class opclass;
|
| 2314 |
|
|
unsigned int size, operand_length;
|
| 2315 |
|
|
|
| 2316 |
|
|
size = GET_MODE_SIZE (GET_MODE (op));
|
| 2317 |
|
|
operand_length = h8300_classify_operand (op, size, &opclass);
|
| 2318 |
|
|
switch (opclass)
|
| 2319 |
|
|
{
|
| 2320 |
|
|
case H8OP_REGISTER:
|
| 2321 |
|
|
return 2;
|
| 2322 |
|
|
|
| 2323 |
|
|
case H8OP_MEM_BASE:
|
| 2324 |
|
|
return (size == 4 ? 6 : 4);
|
| 2325 |
|
|
|
| 2326 |
|
|
case H8OP_MEM_ABSOLUTE:
|
| 2327 |
|
|
return operand_length + (size == 4 ? 6 : 4);
|
| 2328 |
|
|
|
| 2329 |
|
|
case H8OP_MEM_COMPLEX:
|
| 2330 |
|
|
return operand_length + 6;
|
| 2331 |
|
|
|
| 2332 |
|
|
default:
|
| 2333 |
|
|
gcc_unreachable ();
|
| 2334 |
|
|
}
|
| 2335 |
|
|
}
|
| 2336 |
|
|
|
| 2337 |
|
|
/* Likewise short immediate instructions such as add.w #xx:3,OP. */
|
| 2338 |
|
|
|
| 2339 |
|
|
static unsigned int
|
| 2340 |
|
|
h8300_short_immediate_length (rtx op)
|
| 2341 |
|
|
{
|
| 2342 |
|
|
enum h8300_operand_class opclass;
|
| 2343 |
|
|
unsigned int size, operand_length;
|
| 2344 |
|
|
|
| 2345 |
|
|
size = GET_MODE_SIZE (GET_MODE (op));
|
| 2346 |
|
|
operand_length = h8300_classify_operand (op, size, &opclass);
|
| 2347 |
|
|
|
| 2348 |
|
|
switch (opclass)
|
| 2349 |
|
|
{
|
| 2350 |
|
|
case H8OP_REGISTER:
|
| 2351 |
|
|
return 2;
|
| 2352 |
|
|
|
| 2353 |
|
|
case H8OP_MEM_BASE:
|
| 2354 |
|
|
case H8OP_MEM_ABSOLUTE:
|
| 2355 |
|
|
case H8OP_MEM_COMPLEX:
|
| 2356 |
|
|
return 4 + operand_length;
|
| 2357 |
|
|
|
| 2358 |
|
|
default:
|
| 2359 |
|
|
gcc_unreachable ();
|
| 2360 |
|
|
}
|
| 2361 |
|
|
}
|
| 2362 |
|
|
|
| 2363 |
|
|
/* Likewise bitfield load and store instructions. */
|
| 2364 |
|
|
|
| 2365 |
|
|
static unsigned int
|
| 2366 |
|
|
h8300_bitfield_length (rtx op, rtx op2)
|
| 2367 |
|
|
{
|
| 2368 |
|
|
enum h8300_operand_class opclass;
|
| 2369 |
|
|
unsigned int size, operand_length;
|
| 2370 |
|
|
|
| 2371 |
|
|
if (GET_CODE (op) == REG)
|
| 2372 |
|
|
op = op2;
|
| 2373 |
|
|
gcc_assert (GET_CODE (op) != REG);
|
| 2374 |
|
|
|
| 2375 |
|
|
size = GET_MODE_SIZE (GET_MODE (op));
|
| 2376 |
|
|
operand_length = h8300_classify_operand (op, size, &opclass);
|
| 2377 |
|
|
|
| 2378 |
|
|
switch (opclass)
|
| 2379 |
|
|
{
|
| 2380 |
|
|
case H8OP_MEM_BASE:
|
| 2381 |
|
|
case H8OP_MEM_ABSOLUTE:
|
| 2382 |
|
|
case H8OP_MEM_COMPLEX:
|
| 2383 |
|
|
return 4 + operand_length;
|
| 2384 |
|
|
|
| 2385 |
|
|
default:
|
| 2386 |
|
|
gcc_unreachable ();
|
| 2387 |
|
|
}
|
| 2388 |
|
|
}
|
| 2389 |
|
|
|
| 2390 |
|
|
/* Calculate the length of general binary instruction INSN using TABLE. */
|
| 2391 |
|
|
|
| 2392 |
|
|
static unsigned int
|
| 2393 |
|
|
h8300_binary_length (rtx insn, const h8300_length_table *table)
|
| 2394 |
|
|
{
|
| 2395 |
|
|
rtx set;
|
| 2396 |
|
|
|
| 2397 |
|
|
set = single_set (insn);
|
| 2398 |
|
|
gcc_assert (set);
|
| 2399 |
|
|
|
| 2400 |
|
|
if (BINARY_P (SET_SRC (set)))
|
| 2401 |
|
|
return h8300_length_from_table (XEXP (SET_SRC (set), 0),
|
| 2402 |
|
|
XEXP (SET_SRC (set), 1), table);
|
| 2403 |
|
|
else
|
| 2404 |
|
|
{
|
| 2405 |
|
|
gcc_assert (GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == RTX_TERNARY);
|
| 2406 |
|
|
return h8300_length_from_table (XEXP (XEXP (SET_SRC (set), 1), 0),
|
| 2407 |
|
|
XEXP (XEXP (SET_SRC (set), 1), 1),
|
| 2408 |
|
|
table);
|
| 2409 |
|
|
}
|
| 2410 |
|
|
}
|
| 2411 |
|
|
|
| 2412 |
|
|
/* Subroutine of h8300_move_length. Return true if OP is 1- or 2-byte
|
| 2413 |
|
|
memory reference and either (1) it has the form @(d:16,Rn) or
|
| 2414 |
|
|
(2) its address has the code given by INC_CODE. */
|
| 2415 |
|
|
|
| 2416 |
|
|
static bool
|
| 2417 |
|
|
h8300_short_move_mem_p (rtx op, enum rtx_code inc_code)
|
| 2418 |
|
|
{
|
| 2419 |
|
|
rtx addr;
|
| 2420 |
|
|
unsigned int size;
|
| 2421 |
|
|
|
| 2422 |
|
|
if (GET_CODE (op) != MEM)
|
| 2423 |
|
|
return false;
|
| 2424 |
|
|
|
| 2425 |
|
|
addr = XEXP (op, 0);
|
| 2426 |
|
|
size = GET_MODE_SIZE (GET_MODE (op));
|
| 2427 |
|
|
if (size != 1 && size != 2)
|
| 2428 |
|
|
return false;
|
| 2429 |
|
|
|
| 2430 |
|
|
return (GET_CODE (addr) == inc_code
|
| 2431 |
|
|
|| (GET_CODE (addr) == PLUS
|
| 2432 |
|
|
&& GET_CODE (XEXP (addr, 0)) == REG
|
| 2433 |
|
|
&& h8300_displacement_length (addr, size) == 2));
|
| 2434 |
|
|
}
|
| 2435 |
|
|
|
| 2436 |
|
|
/* Calculate the length of move instruction INSN using the given length
|
| 2437 |
|
|
table. Although the tables are correct for most cases, there is some
|
| 2438 |
|
|
irregularity in the length of mov.b and mov.w. The following forms:
|
| 2439 |
|
|
|
| 2440 |
|
|
mov @ERs+, Rd
|
| 2441 |
|
|
mov @(d:16,ERs), Rd
|
| 2442 |
|
|
mov Rs, @-ERd
|
| 2443 |
|
|
mov Rs, @(d:16,ERd)
|
| 2444 |
|
|
|
| 2445 |
|
|
are two bytes shorter than most other "mov Rs, @complex" or
|
| 2446 |
|
|
"mov @complex,Rd" combinations. */
|
| 2447 |
|
|
|
| 2448 |
|
|
static unsigned int
|
| 2449 |
|
|
h8300_move_length (rtx *operands, const h8300_length_table *table)
|
| 2450 |
|
|
{
|
| 2451 |
|
|
unsigned int size;
|
| 2452 |
|
|
|
| 2453 |
|
|
size = h8300_length_from_table (operands[0], operands[1], table);
|
| 2454 |
|
|
if (REG_P (operands[0]) && h8300_short_move_mem_p (operands[1], POST_INC))
|
| 2455 |
|
|
size -= 2;
|
| 2456 |
|
|
if (REG_P (operands[1]) && h8300_short_move_mem_p (operands[0], PRE_DEC))
|
| 2457 |
|
|
size -= 2;
|
| 2458 |
|
|
return size;
|
| 2459 |
|
|
}
|
| 2460 |
|
|
|
| 2461 |
|
|
/* Return the length of a mova instruction with the given operands.
|
| 2462 |
|
|
DEST is the register destination, SRC is the source address and
|
| 2463 |
|
|
OFFSET is the 16-bit or 32-bit displacement. */
|
| 2464 |
|
|
|
| 2465 |
|
|
static unsigned int
|
| 2466 |
|
|
h8300_mova_length (rtx dest, rtx src, rtx offset)
|
| 2467 |
|
|
{
|
| 2468 |
|
|
unsigned int size;
|
| 2469 |
|
|
|
| 2470 |
|
|
size = (2
|
| 2471 |
|
|
+ h8300_constant_length (offset)
|
| 2472 |
|
|
+ h8300_classify_operand (src, GET_MODE_SIZE (GET_MODE (src)), 0));
|
| 2473 |
|
|
if (!REG_P (dest) || !REG_P (src) || REGNO (src) != REGNO (dest))
|
| 2474 |
|
|
size += 2;
|
| 2475 |
|
|
return size;
|
| 2476 |
|
|
}
|
| 2477 |
|
|
|
| 2478 |
|
|
/* Compute the length of INSN based on its length_table attribute.
|
| 2479 |
|
|
OPERANDS is the array of its operands. */
|
| 2480 |
|
|
|
| 2481 |
|
|
unsigned int
|
| 2482 |
|
|
h8300_insn_length_from_table (rtx insn, rtx * operands)
|
| 2483 |
|
|
{
|
| 2484 |
|
|
switch (get_attr_length_table (insn))
|
| 2485 |
|
|
{
|
| 2486 |
|
|
case LENGTH_TABLE_NONE:
|
| 2487 |
|
|
gcc_unreachable ();
|
| 2488 |
|
|
|
| 2489 |
|
|
case LENGTH_TABLE_ADDB:
|
| 2490 |
|
|
return h8300_binary_length (insn, &addb_length_table);
|
| 2491 |
|
|
|
| 2492 |
|
|
case LENGTH_TABLE_ADDW:
|
| 2493 |
|
|
return h8300_binary_length (insn, &addw_length_table);
|
| 2494 |
|
|
|
| 2495 |
|
|
case LENGTH_TABLE_ADDL:
|
| 2496 |
|
|
return h8300_binary_length (insn, &addl_length_table);
|
| 2497 |
|
|
|
| 2498 |
|
|
case LENGTH_TABLE_LOGICB:
|
| 2499 |
|
|
return h8300_binary_length (insn, &logicb_length_table);
|
| 2500 |
|
|
|
| 2501 |
|
|
case LENGTH_TABLE_MOVB:
|
| 2502 |
|
|
return h8300_move_length (operands, &movb_length_table);
|
| 2503 |
|
|
|
| 2504 |
|
|
case LENGTH_TABLE_MOVW:
|
| 2505 |
|
|
return h8300_move_length (operands, &movw_length_table);
|
| 2506 |
|
|
|
| 2507 |
|
|
case LENGTH_TABLE_MOVL:
|
| 2508 |
|
|
return h8300_move_length (operands, &movl_length_table);
|
| 2509 |
|
|
|
| 2510 |
|
|
case LENGTH_TABLE_MOVA:
|
| 2511 |
|
|
return h8300_mova_length (operands[0], operands[1], operands[2]);
|
| 2512 |
|
|
|
| 2513 |
|
|
case LENGTH_TABLE_MOVA_ZERO:
|
| 2514 |
|
|
return h8300_mova_length (operands[0], operands[1], const0_rtx);
|
| 2515 |
|
|
|
| 2516 |
|
|
case LENGTH_TABLE_UNARY:
|
| 2517 |
|
|
return h8300_unary_length (operands[0]);
|
| 2518 |
|
|
|
| 2519 |
|
|
case LENGTH_TABLE_MOV_IMM4:
|
| 2520 |
|
|
return 2 + h8300_classify_operand (operands[0], 0, 0);
|
| 2521 |
|
|
|
| 2522 |
|
|
case LENGTH_TABLE_SHORT_IMMEDIATE:
|
| 2523 |
|
|
return h8300_short_immediate_length (operands[0]);
|
| 2524 |
|
|
|
| 2525 |
|
|
case LENGTH_TABLE_BITFIELD:
|
| 2526 |
|
|
return h8300_bitfield_length (operands[0], operands[1]);
|
| 2527 |
|
|
|
| 2528 |
|
|
case LENGTH_TABLE_BITBRANCH:
|
| 2529 |
|
|
return h8300_bitfield_length (operands[1], operands[2]) - 2;
|
| 2530 |
|
|
|
| 2531 |
|
|
default:
|
| 2532 |
|
|
gcc_unreachable ();
|
| 2533 |
|
|
}
|
| 2534 |
|
|
}
|
| 2535 |
|
|
|
| 2536 |
|
|
/* Return true if LHS and RHS are memory references that can be mapped
|
| 2537 |
|
|
to the same h8sx assembly operand. LHS appears as the destination of
|
| 2538 |
|
|
an instruction and RHS appears as a source.
|
| 2539 |
|
|
|
| 2540 |
|
|
Three cases are allowed:
|
| 2541 |
|
|
|
| 2542 |
|
|
- RHS is @+Rn or @-Rn, LHS is @Rn
|
| 2543 |
|
|
- RHS is @Rn, LHS is @Rn+ or @Rn-
|
| 2544 |
|
|
- RHS and LHS have the same address and neither has side effects. */
|
| 2545 |
|
|
|
| 2546 |
|
|
bool
|
| 2547 |
|
|
h8sx_mergeable_memrefs_p (rtx lhs, rtx rhs)
|
| 2548 |
|
|
{
|
| 2549 |
|
|
if (GET_CODE (rhs) == MEM && GET_CODE (lhs) == MEM)
|
| 2550 |
|
|
{
|
| 2551 |
|
|
rhs = XEXP (rhs, 0);
|
| 2552 |
|
|
lhs = XEXP (lhs, 0);
|
| 2553 |
|
|
|
| 2554 |
|
|
if (GET_CODE (rhs) == PRE_INC || GET_CODE (rhs) == PRE_DEC)
|
| 2555 |
|
|
return rtx_equal_p (XEXP (rhs, 0), lhs);
|
| 2556 |
|
|
|
| 2557 |
|
|
if (GET_CODE (lhs) == POST_INC || GET_CODE (lhs) == POST_DEC)
|
| 2558 |
|
|
return rtx_equal_p (rhs, XEXP (lhs, 0));
|
| 2559 |
|
|
|
| 2560 |
|
|
if (rtx_equal_p (rhs, lhs))
|
| 2561 |
|
|
return true;
|
| 2562 |
|
|
}
|
| 2563 |
|
|
return false;
|
| 2564 |
|
|
}
|
| 2565 |
|
|
|
| 2566 |
|
|
/* Return true if OPERANDS[1] can be mapped to the same assembly
|
| 2567 |
|
|
operand as OPERANDS[0]. */
|
| 2568 |
|
|
|
| 2569 |
|
|
bool
|
| 2570 |
|
|
h8300_operands_match_p (rtx *operands)
|
| 2571 |
|
|
{
|
| 2572 |
|
|
if (register_operand (operands[0], VOIDmode)
|
| 2573 |
|
|
&& register_operand (operands[1], VOIDmode))
|
| 2574 |
|
|
return true;
|
| 2575 |
|
|
|
| 2576 |
|
|
if (h8sx_mergeable_memrefs_p (operands[0], operands[1]))
|
| 2577 |
|
|
return true;
|
| 2578 |
|
|
|
| 2579 |
|
|
return false;
|
| 2580 |
|
|
}
|
| 2581 |
|
|
|
| 2582 |
|
|
/* Try using movmd to move LENGTH bytes from memory region SRC to memory
|
| 2583 |
|
|
region DEST. The two regions do not overlap and have the common
|
| 2584 |
|
|
alignment given by ALIGNMENT. Return true on success.
|
| 2585 |
|
|
|
| 2586 |
|
|
Using movmd for variable-length moves seems to involve some
|
| 2587 |
|
|
complex trade-offs. For instance:
|
| 2588 |
|
|
|
| 2589 |
|
|
- Preparing for a movmd instruction is similar to preparing
|
| 2590 |
|
|
for a memcpy. The main difference is that the arguments
|
| 2591 |
|
|
are moved into er4, er5 and er6 rather than er0, er1 and er2.
|
| 2592 |
|
|
|
| 2593 |
|
|
- Since movmd clobbers the frame pointer, we need to save
|
| 2594 |
|
|
and restore it somehow when frame_pointer_needed. This can
|
| 2595 |
|
|
sometimes make movmd sequences longer than calls to memcpy().
|
| 2596 |
|
|
|
| 2597 |
|
|
- The counter register is 16 bits, so the instruction is only
|
| 2598 |
|
|
suitable for variable-length moves when sizeof (size_t) == 2.
|
| 2599 |
|
|
That's only true in normal mode.
|
| 2600 |
|
|
|
| 2601 |
|
|
- We will often lack static alignment information. Falling back
|
| 2602 |
|
|
on movmd.b would likely be slower than calling memcpy(), at least
|
| 2603 |
|
|
for big moves.
|
| 2604 |
|
|
|
| 2605 |
|
|
This function therefore only uses movmd when the length is a
|
| 2606 |
|
|
known constant, and only then if -fomit-frame-pointer is in
|
| 2607 |
|
|
effect or if we're not optimizing for size.
|
| 2608 |
|
|
|
| 2609 |
|
|
At the moment the function uses movmd for all in-range constants,
|
| 2610 |
|
|
but it might be better to fall back on memcpy() for large moves
|
| 2611 |
|
|
if ALIGNMENT == 1. */
|
| 2612 |
|
|
|
| 2613 |
|
|
bool
|
| 2614 |
|
|
h8sx_emit_movmd (rtx dest, rtx src, rtx length,
|
| 2615 |
|
|
HOST_WIDE_INT alignment)
|
| 2616 |
|
|
{
|
| 2617 |
|
|
if (!flag_omit_frame_pointer && optimize_size)
|
| 2618 |
|
|
return false;
|
| 2619 |
|
|
|
| 2620 |
|
|
if (GET_CODE (length) == CONST_INT)
|
| 2621 |
|
|
{
|
| 2622 |
|
|
rtx dest_reg, src_reg, first_dest, first_src;
|
| 2623 |
|
|
HOST_WIDE_INT n;
|
| 2624 |
|
|
int factor;
|
| 2625 |
|
|
|
| 2626 |
|
|
/* Use movmd.l if the alignment allows it, otherwise fall back
|
| 2627 |
|
|
on movmd.b. */
|
| 2628 |
|
|
factor = (alignment >= 2 ? 4 : 1);
|
| 2629 |
|
|
|
| 2630 |
|
|
/* Make sure the length is within range. We can handle counter
|
| 2631 |
|
|
values up to 65536, although HImode truncation will make
|
| 2632 |
|
|
the count appear negative in rtl dumps. */
|
| 2633 |
|
|
n = INTVAL (length);
|
| 2634 |
|
|
if (n <= 0 || n / factor > 65536)
|
| 2635 |
|
|
return false;
|
| 2636 |
|
|
|
| 2637 |
|
|
/* Create temporary registers for the source and destination
|
| 2638 |
|
|
pointers. Initialize them to the start of each region. */
|
| 2639 |
|
|
dest_reg = copy_addr_to_reg (XEXP (dest, 0));
|
| 2640 |
|
|
src_reg = copy_addr_to_reg (XEXP (src, 0));
|
| 2641 |
|
|
|
| 2642 |
|
|
/* Create references to the movmd source and destination blocks. */
|
| 2643 |
|
|
first_dest = replace_equiv_address (dest, dest_reg);
|
| 2644 |
|
|
first_src = replace_equiv_address (src, src_reg);
|
| 2645 |
|
|
|
| 2646 |
|
|
set_mem_size (first_dest, n & -factor);
|
| 2647 |
|
|
set_mem_size (first_src, n & -factor);
|
| 2648 |
|
|
|
| 2649 |
|
|
length = copy_to_mode_reg (HImode, gen_int_mode (n / factor, HImode));
|
| 2650 |
|
|
emit_insn (gen_movmd (first_dest, first_src, length, GEN_INT (factor)));
|
| 2651 |
|
|
|
| 2652 |
|
|
if ((n & -factor) != n)
|
| 2653 |
|
|
{
|
| 2654 |
|
|
/* Move SRC and DEST past the region we just copied.
|
| 2655 |
|
|
This is done to update the memory attributes. */
|
| 2656 |
|
|
dest = adjust_address (dest, BLKmode, n & -factor);
|
| 2657 |
|
|
src = adjust_address (src, BLKmode, n & -factor);
|
| 2658 |
|
|
|
| 2659 |
|
|
/* Replace the addresses with the source and destination
|
| 2660 |
|
|
registers, which movmd has left with the right values. */
|
| 2661 |
|
|
dest = replace_equiv_address (dest, dest_reg);
|
| 2662 |
|
|
src = replace_equiv_address (src, src_reg);
|
| 2663 |
|
|
|
| 2664 |
|
|
/* Mop up the left-over bytes. */
|
| 2665 |
|
|
if (n & 2)
|
| 2666 |
|
|
emit_move_insn (adjust_address (dest, HImode, 0),
|
| 2667 |
|
|
adjust_address (src, HImode, 0));
|
| 2668 |
|
|
if (n & 1)
|
| 2669 |
|
|
emit_move_insn (adjust_address (dest, QImode, n & 2),
|
| 2670 |
|
|
adjust_address (src, QImode, n & 2));
|
| 2671 |
|
|
}
|
| 2672 |
|
|
return true;
|
| 2673 |
|
|
}
|
| 2674 |
|
|
return false;
|
| 2675 |
|
|
}
|
| 2676 |
|
|
|
| 2677 |
|
|
/* Move ADDR into er6 after pushing its old value onto the stack. */
|
| 2678 |
|
|
|
| 2679 |
|
|
void
|
| 2680 |
|
|
h8300_swap_into_er6 (rtx addr)
|
| 2681 |
|
|
{
|
| 2682 |
|
|
rtx insn = push (HARD_FRAME_POINTER_REGNUM);
|
| 2683 |
|
|
if (frame_pointer_needed)
|
| 2684 |
|
|
add_reg_note (insn, REG_CFA_DEF_CFA,
|
| 2685 |
|
|
plus_constant (gen_rtx_MEM (Pmode, stack_pointer_rtx),
|
| 2686 |
|
|
2 * UNITS_PER_WORD));
|
| 2687 |
|
|
else
|
| 2688 |
|
|
add_reg_note (insn, REG_CFA_ADJUST_CFA,
|
| 2689 |
|
|
gen_rtx_SET (VOIDmode, stack_pointer_rtx,
|
| 2690 |
|
|
plus_constant (stack_pointer_rtx, 4)));
|
| 2691 |
|
|
|
| 2692 |
|
|
emit_move_insn (hard_frame_pointer_rtx, addr);
|
| 2693 |
|
|
if (REGNO (addr) == SP_REG)
|
| 2694 |
|
|
emit_move_insn (hard_frame_pointer_rtx,
|
| 2695 |
|
|
plus_constant (hard_frame_pointer_rtx,
|
| 2696 |
|
|
GET_MODE_SIZE (word_mode)));
|
| 2697 |
|
|
}
|
| 2698 |
|
|
|
| 2699 |
|
|
/* Move the current value of er6 into ADDR and pop its old value
|
| 2700 |
|
|
from the stack. */
|
| 2701 |
|
|
|
| 2702 |
|
|
void
|
| 2703 |
|
|
h8300_swap_out_of_er6 (rtx addr)
|
| 2704 |
|
|
{
|
| 2705 |
|
|
rtx insn;
|
| 2706 |
|
|
|
| 2707 |
|
|
if (REGNO (addr) != SP_REG)
|
| 2708 |
|
|
emit_move_insn (addr, hard_frame_pointer_rtx);
|
| 2709 |
|
|
|
| 2710 |
|
|
insn = pop (HARD_FRAME_POINTER_REGNUM);
|
| 2711 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
| 2712 |
|
|
if (frame_pointer_needed)
|
| 2713 |
|
|
add_reg_note (insn, REG_CFA_DEF_CFA,
|
| 2714 |
|
|
plus_constant (hard_frame_pointer_rtx, 2 * UNITS_PER_WORD));
|
| 2715 |
|
|
else
|
| 2716 |
|
|
add_reg_note (insn, REG_CFA_ADJUST_CFA,
|
| 2717 |
|
|
gen_rtx_SET (VOIDmode, stack_pointer_rtx,
|
| 2718 |
|
|
plus_constant (stack_pointer_rtx, -4)));
|
| 2719 |
|
|
}
|
| 2720 |
|
|
|
| 2721 |
|
|
/* Return the length of mov instruction. */
|
| 2722 |
|
|
|
| 2723 |
|
|
unsigned int
|
| 2724 |
|
|
compute_mov_length (rtx *operands)
|
| 2725 |
|
|
{
|
| 2726 |
|
|
/* If the mov instruction involves a memory operand, we compute the
|
| 2727 |
|
|
length, assuming the largest addressing mode is used, and then
|
| 2728 |
|
|
adjust later in the function. Otherwise, we compute and return
|
| 2729 |
|
|
the exact length in one step. */
|
| 2730 |
|
|
enum machine_mode mode = GET_MODE (operands[0]);
|
| 2731 |
|
|
rtx dest = operands[0];
|
| 2732 |
|
|
rtx src = operands[1];
|
| 2733 |
|
|
rtx addr;
|
| 2734 |
|
|
|
| 2735 |
|
|
if (GET_CODE (src) == MEM)
|
| 2736 |
|
|
addr = XEXP (src, 0);
|
| 2737 |
|
|
else if (GET_CODE (dest) == MEM)
|
| 2738 |
|
|
addr = XEXP (dest, 0);
|
| 2739 |
|
|
else
|
| 2740 |
|
|
addr = NULL_RTX;
|
| 2741 |
|
|
|
| 2742 |
|
|
if (TARGET_H8300)
|
| 2743 |
|
|
{
|
| 2744 |
|
|
unsigned int base_length;
|
| 2745 |
|
|
|
| 2746 |
|
|
switch (mode)
|
| 2747 |
|
|
{
|
| 2748 |
|
|
case QImode:
|
| 2749 |
|
|
if (addr == NULL_RTX)
|
| 2750 |
|
|
return 2;
|
| 2751 |
|
|
|
| 2752 |
|
|
/* The eightbit addressing is available only in QImode, so
|
| 2753 |
|
|
go ahead and take care of it. */
|
| 2754 |
|
|
if (h8300_eightbit_constant_address_p (addr))
|
| 2755 |
|
|
return 2;
|
| 2756 |
|
|
|
| 2757 |
|
|
base_length = 4;
|
| 2758 |
|
|
break;
|
| 2759 |
|
|
|
| 2760 |
|
|
case HImode:
|
| 2761 |
|
|
if (addr == NULL_RTX)
|
| 2762 |
|
|
{
|
| 2763 |
|
|
if (REG_P (src))
|
| 2764 |
|
|
return 2;
|
| 2765 |
|
|
|
| 2766 |
|
|
if (src == const0_rtx)
|
| 2767 |
|
|
return 2;
|
| 2768 |
|
|
|
| 2769 |
|
|
return 4;
|
| 2770 |
|
|
}
|
| 2771 |
|
|
|
| 2772 |
|
|
base_length = 4;
|
| 2773 |
|
|
break;
|
| 2774 |
|
|
|
| 2775 |
|
|
case SImode:
|
| 2776 |
|
|
if (addr == NULL_RTX)
|
| 2777 |
|
|
{
|
| 2778 |
|
|
if (REG_P (src))
|
| 2779 |
|
|
return 4;
|
| 2780 |
|
|
|
| 2781 |
|
|
if (GET_CODE (src) == CONST_INT)
|
| 2782 |
|
|
{
|
| 2783 |
|
|
if (src == const0_rtx)
|
| 2784 |
|
|
return 4;
|
| 2785 |
|
|
|
| 2786 |
|
|
if ((INTVAL (src) & 0xffff) == 0)
|
| 2787 |
|
|
return 6;
|
| 2788 |
|
|
|
| 2789 |
|
|
if ((INTVAL (src) & 0xffff) == 0)
|
| 2790 |
|
|
return 6;
|
| 2791 |
|
|
|
| 2792 |
|
|
if ((INTVAL (src) & 0xffff)
|
| 2793 |
|
|
== ((INTVAL (src) >> 16) & 0xffff))
|
| 2794 |
|
|
return 6;
|
| 2795 |
|
|
}
|
| 2796 |
|
|
return 8;
|
| 2797 |
|
|
}
|
| 2798 |
|
|
|
| 2799 |
|
|
base_length = 8;
|
| 2800 |
|
|
break;
|
| 2801 |
|
|
|
| 2802 |
|
|
case SFmode:
|
| 2803 |
|
|
if (addr == NULL_RTX)
|
| 2804 |
|
|
{
|
| 2805 |
|
|
if (REG_P (src))
|
| 2806 |
|
|
return 4;
|
| 2807 |
|
|
|
| 2808 |
|
|
if (satisfies_constraint_G (src))
|
| 2809 |
|
|
return 4;
|
| 2810 |
|
|
|
| 2811 |
|
|
return 8;
|
| 2812 |
|
|
}
|
| 2813 |
|
|
|
| 2814 |
|
|
base_length = 8;
|
| 2815 |
|
|
break;
|
| 2816 |
|
|
|
| 2817 |
|
|
default:
|
| 2818 |
|
|
gcc_unreachable ();
|
| 2819 |
|
|
}
|
| 2820 |
|
|
|
| 2821 |
|
|
/* Adjust the length based on the addressing mode used.
|
| 2822 |
|
|
Specifically, we subtract the difference between the actual
|
| 2823 |
|
|
length and the longest one, which is @(d:16,Rs). For SImode
|
| 2824 |
|
|
and SFmode, we double the adjustment because two mov.w are
|
| 2825 |
|
|
used to do the job. */
|
| 2826 |
|
|
|
| 2827 |
|
|
/* @Rs+ and @-Rd are 2 bytes shorter than the longest. */
|
| 2828 |
|
|
if (GET_CODE (addr) == PRE_DEC
|
| 2829 |
|
|
|| GET_CODE (addr) == POST_INC)
|
| 2830 |
|
|
{
|
| 2831 |
|
|
if (mode == QImode || mode == HImode)
|
| 2832 |
|
|
return base_length - 2;
|
| 2833 |
|
|
else
|
| 2834 |
|
|
/* In SImode and SFmode, we use two mov.w instructions, so
|
| 2835 |
|
|
double the adjustment. */
|
| 2836 |
|
|
return base_length - 4;
|
| 2837 |
|
|
}
|
| 2838 |
|
|
|
| 2839 |
|
|
/* @Rs and @Rd are 2 bytes shorter than the longest. Note that
|
| 2840 |
|
|
in SImode and SFmode, the second mov.w involves an address
|
| 2841 |
|
|
with displacement, namely @(2,Rs) or @(2,Rd), so we subtract
|
| 2842 |
|
|
only 2 bytes. */
|
| 2843 |
|
|
if (GET_CODE (addr) == REG)
|
| 2844 |
|
|
return base_length - 2;
|
| 2845 |
|
|
|
| 2846 |
|
|
return base_length;
|
| 2847 |
|
|
}
|
| 2848 |
|
|
else
|
| 2849 |
|
|
{
|
| 2850 |
|
|
unsigned int base_length;
|
| 2851 |
|
|
|
| 2852 |
|
|
switch (mode)
|
| 2853 |
|
|
{
|
| 2854 |
|
|
case QImode:
|
| 2855 |
|
|
if (addr == NULL_RTX)
|
| 2856 |
|
|
return 2;
|
| 2857 |
|
|
|
| 2858 |
|
|
/* The eightbit addressing is available only in QImode, so
|
| 2859 |
|
|
go ahead and take care of it. */
|
| 2860 |
|
|
if (h8300_eightbit_constant_address_p (addr))
|
| 2861 |
|
|
return 2;
|
| 2862 |
|
|
|
| 2863 |
|
|
base_length = 8;
|
| 2864 |
|
|
break;
|
| 2865 |
|
|
|
| 2866 |
|
|
case HImode:
|
| 2867 |
|
|
if (addr == NULL_RTX)
|
| 2868 |
|
|
{
|
| 2869 |
|
|
if (REG_P (src))
|
| 2870 |
|
|
return 2;
|
| 2871 |
|
|
|
| 2872 |
|
|
if (src == const0_rtx)
|
| 2873 |
|
|
return 2;
|
| 2874 |
|
|
|
| 2875 |
|
|
return 4;
|
| 2876 |
|
|
}
|
| 2877 |
|
|
|
| 2878 |
|
|
base_length = 8;
|
| 2879 |
|
|
break;
|
| 2880 |
|
|
|
| 2881 |
|
|
case SImode:
|
| 2882 |
|
|
if (addr == NULL_RTX)
|
| 2883 |
|
|
{
|
| 2884 |
|
|
if (REG_P (src))
|
| 2885 |
|
|
{
|
| 2886 |
|
|
if (REGNO (src) == MAC_REG || REGNO (dest) == MAC_REG)
|
| 2887 |
|
|
return 4;
|
| 2888 |
|
|
else
|
| 2889 |
|
|
return 2;
|
| 2890 |
|
|
}
|
| 2891 |
|
|
|
| 2892 |
|
|
if (GET_CODE (src) == CONST_INT)
|
| 2893 |
|
|
{
|
| 2894 |
|
|
int val = INTVAL (src);
|
| 2895 |
|
|
|
| 2896 |
|
|
if (val == 0)
|
| 2897 |
|
|
return 2;
|
| 2898 |
|
|
|
| 2899 |
|
|
if (val == (val & 0x00ff) || val == (val & 0xff00))
|
| 2900 |
|
|
return 4;
|
| 2901 |
|
|
|
| 2902 |
|
|
switch (val & 0xffffffff)
|
| 2903 |
|
|
{
|
| 2904 |
|
|
case 0xffffffff:
|
| 2905 |
|
|
case 0xfffffffe:
|
| 2906 |
|
|
case 0xfffffffc:
|
| 2907 |
|
|
case 0x0000ffff:
|
| 2908 |
|
|
case 0x0000fffe:
|
| 2909 |
|
|
case 0xffff0000:
|
| 2910 |
|
|
case 0xfffe0000:
|
| 2911 |
|
|
case 0x00010000:
|
| 2912 |
|
|
case 0x00020000:
|
| 2913 |
|
|
return 4;
|
| 2914 |
|
|
}
|
| 2915 |
|
|
}
|
| 2916 |
|
|
return 6;
|
| 2917 |
|
|
}
|
| 2918 |
|
|
|
| 2919 |
|
|
base_length = 10;
|
| 2920 |
|
|
break;
|
| 2921 |
|
|
|
| 2922 |
|
|
case SFmode:
|
| 2923 |
|
|
if (addr == NULL_RTX)
|
| 2924 |
|
|
{
|
| 2925 |
|
|
if (REG_P (src))
|
| 2926 |
|
|
return 2;
|
| 2927 |
|
|
|
| 2928 |
|
|
if (satisfies_constraint_G (src))
|
| 2929 |
|
|
return 2;
|
| 2930 |
|
|
|
| 2931 |
|
|
return 6;
|
| 2932 |
|
|
}
|
| 2933 |
|
|
|
| 2934 |
|
|
base_length = 10;
|
| 2935 |
|
|
break;
|
| 2936 |
|
|
|
| 2937 |
|
|
default:
|
| 2938 |
|
|
gcc_unreachable ();
|
| 2939 |
|
|
}
|
| 2940 |
|
|
|
| 2941 |
|
|
/* Adjust the length based on the addressing mode used.
|
| 2942 |
|
|
Specifically, we subtract the difference between the actual
|
| 2943 |
|
|
length and the longest one, which is @(d:24,ERs). */
|
| 2944 |
|
|
|
| 2945 |
|
|
/* @ERs+ and @-ERd are 6 bytes shorter than the longest. */
|
| 2946 |
|
|
if (GET_CODE (addr) == PRE_DEC
|
| 2947 |
|
|
|| GET_CODE (addr) == POST_INC)
|
| 2948 |
|
|
return base_length - 6;
|
| 2949 |
|
|
|
| 2950 |
|
|
/* @ERs and @ERd are 6 bytes shorter than the longest. */
|
| 2951 |
|
|
if (GET_CODE (addr) == REG)
|
| 2952 |
|
|
return base_length - 6;
|
| 2953 |
|
|
|
| 2954 |
|
|
/* @(d:16,ERs) and @(d:16,ERd) are 4 bytes shorter than the
|
| 2955 |
|
|
longest. */
|
| 2956 |
|
|
if (GET_CODE (addr) == PLUS
|
| 2957 |
|
|
&& GET_CODE (XEXP (addr, 0)) == REG
|
| 2958 |
|
|
&& GET_CODE (XEXP (addr, 1)) == CONST_INT
|
| 2959 |
|
|
&& INTVAL (XEXP (addr, 1)) > -32768
|
| 2960 |
|
|
&& INTVAL (XEXP (addr, 1)) < 32767)
|
| 2961 |
|
|
return base_length - 4;
|
| 2962 |
|
|
|
| 2963 |
|
|
/* @aa:16 is 4 bytes shorter than the longest. */
|
| 2964 |
|
|
if (h8300_tiny_constant_address_p (addr))
|
| 2965 |
|
|
return base_length - 4;
|
| 2966 |
|
|
|
| 2967 |
|
|
/* @aa:24 is 2 bytes shorter than the longest. */
|
| 2968 |
|
|
if (CONSTANT_P (addr))
|
| 2969 |
|
|
return base_length - 2;
|
| 2970 |
|
|
|
| 2971 |
|
|
return base_length;
|
| 2972 |
|
|
}
|
| 2973 |
|
|
}
|
| 2974 |
|
|
|
| 2975 |
|
|
/* Output an addition insn. */
|
| 2976 |
|
|
|
| 2977 |
|
|
const char *
|
| 2978 |
|
|
output_plussi (rtx *operands)
|
| 2979 |
|
|
{
|
| 2980 |
|
|
enum machine_mode mode = GET_MODE (operands[0]);
|
| 2981 |
|
|
|
| 2982 |
|
|
gcc_assert (mode == SImode);
|
| 2983 |
|
|
|
| 2984 |
|
|
if (TARGET_H8300)
|
| 2985 |
|
|
{
|
| 2986 |
|
|
if (GET_CODE (operands[2]) == REG)
|
| 2987 |
|
|
return "add.w\t%f2,%f0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
|
| 2988 |
|
|
|
| 2989 |
|
|
if (GET_CODE (operands[2]) == CONST_INT)
|
| 2990 |
|
|
{
|
| 2991 |
|
|
HOST_WIDE_INT n = INTVAL (operands[2]);
|
| 2992 |
|
|
|
| 2993 |
|
|
if ((n & 0xffffff) == 0)
|
| 2994 |
|
|
return "add\t%z2,%z0";
|
| 2995 |
|
|
if ((n & 0xffff) == 0)
|
| 2996 |
|
|
return "add\t%y2,%y0\n\taddx\t%z2,%z0";
|
| 2997 |
|
|
if ((n & 0xff) == 0)
|
| 2998 |
|
|
return "add\t%x2,%x0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
|
| 2999 |
|
|
}
|
| 3000 |
|
|
|
| 3001 |
|
|
return "add\t%w2,%w0\n\taddx\t%x2,%x0\n\taddx\t%y2,%y0\n\taddx\t%z2,%z0";
|
| 3002 |
|
|
}
|
| 3003 |
|
|
else
|
| 3004 |
|
|
{
|
| 3005 |
|
|
if (GET_CODE (operands[2]) == CONST_INT
|
| 3006 |
|
|
&& register_operand (operands[1], VOIDmode))
|
| 3007 |
|
|
{
|
| 3008 |
|
|
HOST_WIDE_INT intval = INTVAL (operands[2]);
|
| 3009 |
|
|
|
| 3010 |
|
|
if (TARGET_H8300SX && (intval >= 1 && intval <= 7))
|
| 3011 |
|
|
return "add.l\t%S2,%S0";
|
| 3012 |
|
|
if (TARGET_H8300SX && (intval >= -7 && intval <= -1))
|
| 3013 |
|
|
return "sub.l\t%G2,%S0";
|
| 3014 |
|
|
|
| 3015 |
|
|
/* See if we can finish with 2 bytes. */
|
| 3016 |
|
|
|
| 3017 |
|
|
switch ((unsigned int) intval & 0xffffffff)
|
| 3018 |
|
|
{
|
| 3019 |
|
|
case 0x00000001:
|
| 3020 |
|
|
case 0x00000002:
|
| 3021 |
|
|
case 0x00000004:
|
| 3022 |
|
|
return "adds\t%2,%S0";
|
| 3023 |
|
|
|
| 3024 |
|
|
case 0xffffffff:
|
| 3025 |
|
|
case 0xfffffffe:
|
| 3026 |
|
|
case 0xfffffffc:
|
| 3027 |
|
|
return "subs\t%G2,%S0";
|
| 3028 |
|
|
|
| 3029 |
|
|
case 0x00010000:
|
| 3030 |
|
|
case 0x00020000:
|
| 3031 |
|
|
operands[2] = GEN_INT (intval >> 16);
|
| 3032 |
|
|
return "inc.w\t%2,%e0";
|
| 3033 |
|
|
|
| 3034 |
|
|
case 0xffff0000:
|
| 3035 |
|
|
case 0xfffe0000:
|
| 3036 |
|
|
operands[2] = GEN_INT (intval >> 16);
|
| 3037 |
|
|
return "dec.w\t%G2,%e0";
|
| 3038 |
|
|
}
|
| 3039 |
|
|
|
| 3040 |
|
|
/* See if we can finish with 4 bytes. */
|
| 3041 |
|
|
if ((intval & 0xffff) == 0)
|
| 3042 |
|
|
{
|
| 3043 |
|
|
operands[2] = GEN_INT (intval >> 16);
|
| 3044 |
|
|
return "add.w\t%2,%e0";
|
| 3045 |
|
|
}
|
| 3046 |
|
|
}
|
| 3047 |
|
|
|
| 3048 |
|
|
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0)
|
| 3049 |
|
|
{
|
| 3050 |
|
|
operands[2] = GEN_INT (-INTVAL (operands[2]));
|
| 3051 |
|
|
return "sub.l\t%S2,%S0";
|
| 3052 |
|
|
}
|
| 3053 |
|
|
return "add.l\t%S2,%S0";
|
| 3054 |
|
|
}
|
| 3055 |
|
|
}
|
| 3056 |
|
|
|
| 3057 |
|
|
/* ??? It would be much easier to add the h8sx stuff if a single function
|
| 3058 |
|
|
classified the addition as either inc/dec, adds/subs, add.w or add.l. */
|
| 3059 |
|
|
/* Compute the length of an addition insn. */
|
| 3060 |
|
|
|
| 3061 |
|
|
unsigned int
|
| 3062 |
|
|
compute_plussi_length (rtx *operands)
|
| 3063 |
|
|
{
|
| 3064 |
|
|
enum machine_mode mode = GET_MODE (operands[0]);
|
| 3065 |
|
|
|
| 3066 |
|
|
gcc_assert (mode == SImode);
|
| 3067 |
|
|
|
| 3068 |
|
|
if (TARGET_H8300)
|
| 3069 |
|
|
{
|
| 3070 |
|
|
if (GET_CODE (operands[2]) == REG)
|
| 3071 |
|
|
return 6;
|
| 3072 |
|
|
|
| 3073 |
|
|
if (GET_CODE (operands[2]) == CONST_INT)
|
| 3074 |
|
|
{
|
| 3075 |
|
|
HOST_WIDE_INT n = INTVAL (operands[2]);
|
| 3076 |
|
|
|
| 3077 |
|
|
if ((n & 0xffffff) == 0)
|
| 3078 |
|
|
return 2;
|
| 3079 |
|
|
if ((n & 0xffff) == 0)
|
| 3080 |
|
|
return 4;
|
| 3081 |
|
|
if ((n & 0xff) == 0)
|
| 3082 |
|
|
return 6;
|
| 3083 |
|
|
}
|
| 3084 |
|
|
|
| 3085 |
|
|
return 8;
|
| 3086 |
|
|
}
|
| 3087 |
|
|
else
|
| 3088 |
|
|
{
|
| 3089 |
|
|
if (GET_CODE (operands[2]) == CONST_INT
|
| 3090 |
|
|
&& register_operand (operands[1], VOIDmode))
|
| 3091 |
|
|
{
|
| 3092 |
|
|
HOST_WIDE_INT intval = INTVAL (operands[2]);
|
| 3093 |
|
|
|
| 3094 |
|
|
if (TARGET_H8300SX && (intval >= 1 && intval <= 7))
|
| 3095 |
|
|
return 2;
|
| 3096 |
|
|
if (TARGET_H8300SX && (intval >= -7 && intval <= -1))
|
| 3097 |
|
|
return 2;
|
| 3098 |
|
|
|
| 3099 |
|
|
/* See if we can finish with 2 bytes. */
|
| 3100 |
|
|
|
| 3101 |
|
|
switch ((unsigned int) intval & 0xffffffff)
|
| 3102 |
|
|
{
|
| 3103 |
|
|
case 0x00000001:
|
| 3104 |
|
|
case 0x00000002:
|
| 3105 |
|
|
case 0x00000004:
|
| 3106 |
|
|
return 2;
|
| 3107 |
|
|
|
| 3108 |
|
|
case 0xffffffff:
|
| 3109 |
|
|
case 0xfffffffe:
|
| 3110 |
|
|
case 0xfffffffc:
|
| 3111 |
|
|
return 2;
|
| 3112 |
|
|
|
| 3113 |
|
|
case 0x00010000:
|
| 3114 |
|
|
case 0x00020000:
|
| 3115 |
|
|
return 2;
|
| 3116 |
|
|
|
| 3117 |
|
|
case 0xffff0000:
|
| 3118 |
|
|
case 0xfffe0000:
|
| 3119 |
|
|
return 2;
|
| 3120 |
|
|
}
|
| 3121 |
|
|
|
| 3122 |
|
|
/* See if we can finish with 4 bytes. */
|
| 3123 |
|
|
if ((intval & 0xffff) == 0)
|
| 3124 |
|
|
return 4;
|
| 3125 |
|
|
}
|
| 3126 |
|
|
|
| 3127 |
|
|
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0)
|
| 3128 |
|
|
return h8300_length_from_table (operands[0],
|
| 3129 |
|
|
GEN_INT (-INTVAL (operands[2])),
|
| 3130 |
|
|
&addl_length_table);
|
| 3131 |
|
|
else
|
| 3132 |
|
|
return h8300_length_from_table (operands[0], operands[2],
|
| 3133 |
|
|
&addl_length_table);
|
| 3134 |
|
|
return 6;
|
| 3135 |
|
|
}
|
| 3136 |
|
|
}
|
| 3137 |
|
|
|
| 3138 |
|
|
/* Compute which flag bits are valid after an addition insn. */
|
| 3139 |
|
|
|
| 3140 |
|
|
enum attr_cc
|
| 3141 |
|
|
compute_plussi_cc (rtx *operands)
|
| 3142 |
|
|
{
|
| 3143 |
|
|
enum machine_mode mode = GET_MODE (operands[0]);
|
| 3144 |
|
|
|
| 3145 |
|
|
gcc_assert (mode == SImode);
|
| 3146 |
|
|
|
| 3147 |
|
|
if (TARGET_H8300)
|
| 3148 |
|
|
{
|
| 3149 |
|
|
return CC_CLOBBER;
|
| 3150 |
|
|
}
|
| 3151 |
|
|
else
|
| 3152 |
|
|
{
|
| 3153 |
|
|
if (GET_CODE (operands[2]) == CONST_INT
|
| 3154 |
|
|
&& register_operand (operands[1], VOIDmode))
|
| 3155 |
|
|
{
|
| 3156 |
|
|
HOST_WIDE_INT intval = INTVAL (operands[2]);
|
| 3157 |
|
|
|
| 3158 |
|
|
if (TARGET_H8300SX && (intval >= 1 && intval <= 7))
|
| 3159 |
|
|
return CC_SET_ZN;
|
| 3160 |
|
|
if (TARGET_H8300SX && (intval >= -7 && intval <= -1))
|
| 3161 |
|
|
return CC_SET_ZN;
|
| 3162 |
|
|
|
| 3163 |
|
|
/* See if we can finish with 2 bytes. */
|
| 3164 |
|
|
|
| 3165 |
|
|
switch ((unsigned int) intval & 0xffffffff)
|
| 3166 |
|
|
{
|
| 3167 |
|
|
case 0x00000001:
|
| 3168 |
|
|
case 0x00000002:
|
| 3169 |
|
|
case 0x00000004:
|
| 3170 |
|
|
return CC_NONE_0HIT;
|
| 3171 |
|
|
|
| 3172 |
|
|
case 0xffffffff:
|
| 3173 |
|
|
case 0xfffffffe:
|
| 3174 |
|
|
case 0xfffffffc:
|
| 3175 |
|
|
return CC_NONE_0HIT;
|
| 3176 |
|
|
|
| 3177 |
|
|
case 0x00010000:
|
| 3178 |
|
|
case 0x00020000:
|
| 3179 |
|
|
return CC_CLOBBER;
|
| 3180 |
|
|
|
| 3181 |
|
|
case 0xffff0000:
|
| 3182 |
|
|
case 0xfffe0000:
|
| 3183 |
|
|
return CC_CLOBBER;
|
| 3184 |
|
|
}
|
| 3185 |
|
|
|
| 3186 |
|
|
/* See if we can finish with 4 bytes. */
|
| 3187 |
|
|
if ((intval & 0xffff) == 0)
|
| 3188 |
|
|
return CC_CLOBBER;
|
| 3189 |
|
|
}
|
| 3190 |
|
|
|
| 3191 |
|
|
return CC_SET_ZN;
|
| 3192 |
|
|
}
|
| 3193 |
|
|
}
|
| 3194 |
|
|
|
| 3195 |
|
|
/* Output a logical insn. */
|
| 3196 |
|
|
|
| 3197 |
|
|
const char *
|
| 3198 |
|
|
output_logical_op (enum machine_mode mode, rtx *operands)
|
| 3199 |
|
|
{
|
| 3200 |
|
|
/* Figure out the logical op that we need to perform. */
|
| 3201 |
|
|
enum rtx_code code = GET_CODE (operands[3]);
|
| 3202 |
|
|
/* Pretend that every byte is affected if both operands are registers. */
|
| 3203 |
|
|
const unsigned HOST_WIDE_INT intval =
|
| 3204 |
|
|
(unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
|
| 3205 |
|
|
/* Always use the full instruction if the
|
| 3206 |
|
|
first operand is in memory. It is better
|
| 3207 |
|
|
to use define_splits to generate the shorter
|
| 3208 |
|
|
sequence where valid. */
|
| 3209 |
|
|
&& register_operand (operands[1], VOIDmode)
|
| 3210 |
|
|
? INTVAL (operands[2]) : 0x55555555);
|
| 3211 |
|
|
/* The determinant of the algorithm. If we perform an AND, 0
|
| 3212 |
|
|
affects a bit. Otherwise, 1 affects a bit. */
|
| 3213 |
|
|
const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
|
| 3214 |
|
|
/* Break up DET into pieces. */
|
| 3215 |
|
|
const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
|
| 3216 |
|
|
const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
|
| 3217 |
|
|
const unsigned HOST_WIDE_INT b2 = (det >> 16) & 0xff;
|
| 3218 |
|
|
const unsigned HOST_WIDE_INT b3 = (det >> 24) & 0xff;
|
| 3219 |
|
|
const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
|
| 3220 |
|
|
const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
|
| 3221 |
|
|
int lower_half_easy_p = 0;
|
| 3222 |
|
|
int upper_half_easy_p = 0;
|
| 3223 |
|
|
/* The name of an insn. */
|
| 3224 |
|
|
const char *opname;
|
| 3225 |
|
|
char insn_buf[100];
|
| 3226 |
|
|
|
| 3227 |
|
|
switch (code)
|
| 3228 |
|
|
{
|
| 3229 |
|
|
case AND:
|
| 3230 |
|
|
opname = "and";
|
| 3231 |
|
|
break;
|
| 3232 |
|
|
case IOR:
|
| 3233 |
|
|
opname = "or";
|
| 3234 |
|
|
break;
|
| 3235 |
|
|
case XOR:
|
| 3236 |
|
|
opname = "xor";
|
| 3237 |
|
|
break;
|
| 3238 |
|
|
default:
|
| 3239 |
|
|
gcc_unreachable ();
|
| 3240 |
|
|
}
|
| 3241 |
|
|
|
| 3242 |
|
|
switch (mode)
|
| 3243 |
|
|
{
|
| 3244 |
|
|
case HImode:
|
| 3245 |
|
|
/* First, see if we can finish with one insn. */
|
| 3246 |
|
|
if ((TARGET_H8300H || TARGET_H8300S)
|
| 3247 |
|
|
&& b0 != 0
|
| 3248 |
|
|
&& b1 != 0)
|
| 3249 |
|
|
{
|
| 3250 |
|
|
sprintf (insn_buf, "%s.w\t%%T2,%%T0", opname);
|
| 3251 |
|
|
output_asm_insn (insn_buf, operands);
|
| 3252 |
|
|
}
|
| 3253 |
|
|
else
|
| 3254 |
|
|
{
|
| 3255 |
|
|
/* Take care of the lower byte. */
|
| 3256 |
|
|
if (b0 != 0)
|
| 3257 |
|
|
{
|
| 3258 |
|
|
sprintf (insn_buf, "%s\t%%s2,%%s0", opname);
|
| 3259 |
|
|
output_asm_insn (insn_buf, operands);
|
| 3260 |
|
|
}
|
| 3261 |
|
|
/* Take care of the upper byte. */
|
| 3262 |
|
|
if (b1 != 0)
|
| 3263 |
|
|
{
|
| 3264 |
|
|
sprintf (insn_buf, "%s\t%%t2,%%t0", opname);
|
| 3265 |
|
|
output_asm_insn (insn_buf, operands);
|
| 3266 |
|
|
}
|
| 3267 |
|
|
}
|
| 3268 |
|
|
break;
|
| 3269 |
|
|
case SImode:
|
| 3270 |
|
|
if (TARGET_H8300H || TARGET_H8300S)
|
| 3271 |
|
|
{
|
| 3272 |
|
|
/* Determine if the lower half can be taken care of in no more
|
| 3273 |
|
|
than two bytes. */
|
| 3274 |
|
|
lower_half_easy_p = (b0 == 0
|
| 3275 |
|
|
|| b1 == 0
|
| 3276 |
|
|
|| (code != IOR && w0 == 0xffff));
|
| 3277 |
|
|
|
| 3278 |
|
|
/* Determine if the upper half can be taken care of in no more
|
| 3279 |
|
|
than two bytes. */
|
| 3280 |
|
|
upper_half_easy_p = ((code != IOR && w1 == 0xffff)
|
| 3281 |
|
|
|| (code == AND && w1 == 0xff00));
|
| 3282 |
|
|
}
|
| 3283 |
|
|
|
| 3284 |
|
|
/* Check if doing everything with one insn is no worse than
|
| 3285 |
|
|
using multiple insns. */
|
| 3286 |
|
|
if ((TARGET_H8300H || TARGET_H8300S)
|
| 3287 |
|
|
&& w0 != 0 && w1 != 0
|
| 3288 |
|
|
&& !(lower_half_easy_p && upper_half_easy_p)
|
| 3289 |
|
|
&& !(code == IOR && w1 == 0xffff
|
| 3290 |
|
|
&& (w0 & 0x8000) != 0 && lower_half_easy_p))
|
| 3291 |
|
|
{
|
| 3292 |
|
|
sprintf (insn_buf, "%s.l\t%%S2,%%S0", opname);
|
| 3293 |
|
|
output_asm_insn (insn_buf, operands);
|
| 3294 |
|
|
}
|
| 3295 |
|
|
else
|
| 3296 |
|
|
{
|
| 3297 |
|
|
/* Take care of the lower and upper words individually. For
|
| 3298 |
|
|
each word, we try different methods in the order of
|
| 3299 |
|
|
|
| 3300 |
|
|
1) the special insn (in case of AND or XOR),
|
| 3301 |
|
|
2) the word-wise insn, and
|
| 3302 |
|
|
3) The byte-wise insn. */
|
| 3303 |
|
|
if (w0 == 0xffff
|
| 3304 |
|
|
&& (TARGET_H8300 ? (code == AND) : (code != IOR)))
|
| 3305 |
|
|
output_asm_insn ((code == AND)
|
| 3306 |
|
|
? "sub.w\t%f0,%f0" : "not.w\t%f0",
|
| 3307 |
|
|
operands);
|
| 3308 |
|
|
else if ((TARGET_H8300H || TARGET_H8300S)
|
| 3309 |
|
|
&& (b0 != 0)
|
| 3310 |
|
|
&& (b1 != 0))
|
| 3311 |
|
|
{
|
| 3312 |
|
|
sprintf (insn_buf, "%s.w\t%%f2,%%f0", opname);
|
| 3313 |
|
|
output_asm_insn (insn_buf, operands);
|
| 3314 |
|
|
}
|
| 3315 |
|
|
else
|
| 3316 |
|
|
{
|
| 3317 |
|
|
if (b0 != 0)
|
| 3318 |
|
|
{
|
| 3319 |
|
|
sprintf (insn_buf, "%s\t%%w2,%%w0", opname);
|
| 3320 |
|
|
output_asm_insn (insn_buf, operands);
|
| 3321 |
|
|
}
|
| 3322 |
|
|
if (b1 != 0)
|
| 3323 |
|
|
{
|
| 3324 |
|
|
sprintf (insn_buf, "%s\t%%x2,%%x0", opname);
|
| 3325 |
|
|
output_asm_insn (insn_buf, operands);
|
| 3326 |
|
|
}
|
| 3327 |
|
|
}
|
| 3328 |
|
|
|
| 3329 |
|
|
if ((w1 == 0xffff)
|
| 3330 |
|
|
&& (TARGET_H8300 ? (code == AND) : (code != IOR)))
|
| 3331 |
|
|
output_asm_insn ((code == AND)
|
| 3332 |
|
|
? "sub.w\t%e0,%e0" : "not.w\t%e0",
|
| 3333 |
|
|
operands);
|
| 3334 |
|
|
else if ((TARGET_H8300H || TARGET_H8300S)
|
| 3335 |
|
|
&& code == IOR
|
| 3336 |
|
|
&& w1 == 0xffff
|
| 3337 |
|
|
&& (w0 & 0x8000) != 0)
|
| 3338 |
|
|
{
|
| 3339 |
|
|
output_asm_insn ("exts.l\t%S0", operands);
|
| 3340 |
|
|
}
|
| 3341 |
|
|
else if ((TARGET_H8300H || TARGET_H8300S)
|
| 3342 |
|
|
&& code == AND
|
| 3343 |
|
|
&& w1 == 0xff00)
|
| 3344 |
|
|
{
|
| 3345 |
|
|
output_asm_insn ("extu.w\t%e0", operands);
|
| 3346 |
|
|
}
|
| 3347 |
|
|
else if (TARGET_H8300H || TARGET_H8300S)
|
| 3348 |
|
|
{
|
| 3349 |
|
|
if (w1 != 0)
|
| 3350 |
|
|
{
|
| 3351 |
|
|
sprintf (insn_buf, "%s.w\t%%e2,%%e0", opname);
|
| 3352 |
|
|
output_asm_insn (insn_buf, operands);
|
| 3353 |
|
|
}
|
| 3354 |
|
|
}
|
| 3355 |
|
|
else
|
| 3356 |
|
|
{
|
| 3357 |
|
|
if (b2 != 0)
|
| 3358 |
|
|
{
|
| 3359 |
|
|
sprintf (insn_buf, "%s\t%%y2,%%y0", opname);
|
| 3360 |
|
|
output_asm_insn (insn_buf, operands);
|
| 3361 |
|
|
}
|
| 3362 |
|
|
if (b3 != 0)
|
| 3363 |
|
|
{
|
| 3364 |
|
|
sprintf (insn_buf, "%s\t%%z2,%%z0", opname);
|
| 3365 |
|
|
output_asm_insn (insn_buf, operands);
|
| 3366 |
|
|
}
|
| 3367 |
|
|
}
|
| 3368 |
|
|
}
|
| 3369 |
|
|
break;
|
| 3370 |
|
|
default:
|
| 3371 |
|
|
gcc_unreachable ();
|
| 3372 |
|
|
}
|
| 3373 |
|
|
return "";
|
| 3374 |
|
|
}
|
| 3375 |
|
|
|
| 3376 |
|
|
/* Compute the length of a logical insn. */
|
| 3377 |
|
|
|
| 3378 |
|
|
unsigned int
|
| 3379 |
|
|
compute_logical_op_length (enum machine_mode mode, rtx *operands)
|
| 3380 |
|
|
{
|
| 3381 |
|
|
/* Figure out the logical op that we need to perform. */
|
| 3382 |
|
|
enum rtx_code code = GET_CODE (operands[3]);
|
| 3383 |
|
|
/* Pretend that every byte is affected if both operands are registers. */
|
| 3384 |
|
|
const unsigned HOST_WIDE_INT intval =
|
| 3385 |
|
|
(unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
|
| 3386 |
|
|
/* Always use the full instruction if the
|
| 3387 |
|
|
first operand is in memory. It is better
|
| 3388 |
|
|
to use define_splits to generate the shorter
|
| 3389 |
|
|
sequence where valid. */
|
| 3390 |
|
|
&& register_operand (operands[1], VOIDmode)
|
| 3391 |
|
|
? INTVAL (operands[2]) : 0x55555555);
|
| 3392 |
|
|
/* The determinant of the algorithm. If we perform an AND, 0
|
| 3393 |
|
|
affects a bit. Otherwise, 1 affects a bit. */
|
| 3394 |
|
|
const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
|
| 3395 |
|
|
/* Break up DET into pieces. */
|
| 3396 |
|
|
const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
|
| 3397 |
|
|
const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
|
| 3398 |
|
|
const unsigned HOST_WIDE_INT b2 = (det >> 16) & 0xff;
|
| 3399 |
|
|
const unsigned HOST_WIDE_INT b3 = (det >> 24) & 0xff;
|
| 3400 |
|
|
const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
|
| 3401 |
|
|
const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
|
| 3402 |
|
|
int lower_half_easy_p = 0;
|
| 3403 |
|
|
int upper_half_easy_p = 0;
|
| 3404 |
|
|
/* Insn length. */
|
| 3405 |
|
|
unsigned int length = 0;
|
| 3406 |
|
|
|
| 3407 |
|
|
switch (mode)
|
| 3408 |
|
|
{
|
| 3409 |
|
|
case HImode:
|
| 3410 |
|
|
/* First, see if we can finish with one insn. */
|
| 3411 |
|
|
if ((TARGET_H8300H || TARGET_H8300S)
|
| 3412 |
|
|
&& b0 != 0
|
| 3413 |
|
|
&& b1 != 0)
|
| 3414 |
|
|
{
|
| 3415 |
|
|
length = h8300_length_from_table (operands[1], operands[2],
|
| 3416 |
|
|
&logicw_length_table);
|
| 3417 |
|
|
}
|
| 3418 |
|
|
else
|
| 3419 |
|
|
{
|
| 3420 |
|
|
/* Take care of the lower byte. */
|
| 3421 |
|
|
if (b0 != 0)
|
| 3422 |
|
|
length += 2;
|
| 3423 |
|
|
|
| 3424 |
|
|
/* Take care of the upper byte. */
|
| 3425 |
|
|
if (b1 != 0)
|
| 3426 |
|
|
length += 2;
|
| 3427 |
|
|
}
|
| 3428 |
|
|
break;
|
| 3429 |
|
|
case SImode:
|
| 3430 |
|
|
if (TARGET_H8300H || TARGET_H8300S)
|
| 3431 |
|
|
{
|
| 3432 |
|
|
/* Determine if the lower half can be taken care of in no more
|
| 3433 |
|
|
than two bytes. */
|
| 3434 |
|
|
lower_half_easy_p = (b0 == 0
|
| 3435 |
|
|
|| b1 == 0
|
| 3436 |
|
|
|| (code != IOR && w0 == 0xffff));
|
| 3437 |
|
|
|
| 3438 |
|
|
/* Determine if the upper half can be taken care of in no more
|
| 3439 |
|
|
than two bytes. */
|
| 3440 |
|
|
upper_half_easy_p = ((code != IOR && w1 == 0xffff)
|
| 3441 |
|
|
|| (code == AND && w1 == 0xff00));
|
| 3442 |
|
|
}
|
| 3443 |
|
|
|
| 3444 |
|
|
/* Check if doing everything with one insn is no worse than
|
| 3445 |
|
|
using multiple insns. */
|
| 3446 |
|
|
if ((TARGET_H8300H || TARGET_H8300S)
|
| 3447 |
|
|
&& w0 != 0 && w1 != 0
|
| 3448 |
|
|
&& !(lower_half_easy_p && upper_half_easy_p)
|
| 3449 |
|
|
&& !(code == IOR && w1 == 0xffff
|
| 3450 |
|
|
&& (w0 & 0x8000) != 0 && lower_half_easy_p))
|
| 3451 |
|
|
{
|
| 3452 |
|
|
length = h8300_length_from_table (operands[1], operands[2],
|
| 3453 |
|
|
&logicl_length_table);
|
| 3454 |
|
|
}
|
| 3455 |
|
|
else
|
| 3456 |
|
|
{
|
| 3457 |
|
|
/* Take care of the lower and upper words individually. For
|
| 3458 |
|
|
each word, we try different methods in the order of
|
| 3459 |
|
|
|
| 3460 |
|
|
1) the special insn (in case of AND or XOR),
|
| 3461 |
|
|
2) the word-wise insn, and
|
| 3462 |
|
|
3) The byte-wise insn. */
|
| 3463 |
|
|
if (w0 == 0xffff
|
| 3464 |
|
|
&& (TARGET_H8300 ? (code == AND) : (code != IOR)))
|
| 3465 |
|
|
{
|
| 3466 |
|
|
length += 2;
|
| 3467 |
|
|
}
|
| 3468 |
|
|
else if ((TARGET_H8300H || TARGET_H8300S)
|
| 3469 |
|
|
&& (b0 != 0)
|
| 3470 |
|
|
&& (b1 != 0))
|
| 3471 |
|
|
{
|
| 3472 |
|
|
length += 4;
|
| 3473 |
|
|
}
|
| 3474 |
|
|
else
|
| 3475 |
|
|
{
|
| 3476 |
|
|
if (b0 != 0)
|
| 3477 |
|
|
length += 2;
|
| 3478 |
|
|
|
| 3479 |
|
|
if (b1 != 0)
|
| 3480 |
|
|
length += 2;
|
| 3481 |
|
|
}
|
| 3482 |
|
|
|
| 3483 |
|
|
if (w1 == 0xffff
|
| 3484 |
|
|
&& (TARGET_H8300 ? (code == AND) : (code != IOR)))
|
| 3485 |
|
|
{
|
| 3486 |
|
|
length += 2;
|
| 3487 |
|
|
}
|
| 3488 |
|
|
else if ((TARGET_H8300H || TARGET_H8300S)
|
| 3489 |
|
|
&& code == IOR
|
| 3490 |
|
|
&& w1 == 0xffff
|
| 3491 |
|
|
&& (w0 & 0x8000) != 0)
|
| 3492 |
|
|
{
|
| 3493 |
|
|
length += 2;
|
| 3494 |
|
|
}
|
| 3495 |
|
|
else if ((TARGET_H8300H || TARGET_H8300S)
|
| 3496 |
|
|
&& code == AND
|
| 3497 |
|
|
&& w1 == 0xff00)
|
| 3498 |
|
|
{
|
| 3499 |
|
|
length += 2;
|
| 3500 |
|
|
}
|
| 3501 |
|
|
else if (TARGET_H8300H || TARGET_H8300S)
|
| 3502 |
|
|
{
|
| 3503 |
|
|
if (w1 != 0)
|
| 3504 |
|
|
length += 4;
|
| 3505 |
|
|
}
|
| 3506 |
|
|
else
|
| 3507 |
|
|
{
|
| 3508 |
|
|
if (b2 != 0)
|
| 3509 |
|
|
length += 2;
|
| 3510 |
|
|
|
| 3511 |
|
|
if (b3 != 0)
|
| 3512 |
|
|
length += 2;
|
| 3513 |
|
|
}
|
| 3514 |
|
|
}
|
| 3515 |
|
|
break;
|
| 3516 |
|
|
default:
|
| 3517 |
|
|
gcc_unreachable ();
|
| 3518 |
|
|
}
|
| 3519 |
|
|
return length;
|
| 3520 |
|
|
}
|
| 3521 |
|
|
|
| 3522 |
|
|
/* Compute which flag bits are valid after a logical insn. */
|
| 3523 |
|
|
|
| 3524 |
|
|
enum attr_cc
|
| 3525 |
|
|
compute_logical_op_cc (enum machine_mode mode, rtx *operands)
|
| 3526 |
|
|
{
|
| 3527 |
|
|
/* Figure out the logical op that we need to perform. */
|
| 3528 |
|
|
enum rtx_code code = GET_CODE (operands[3]);
|
| 3529 |
|
|
/* Pretend that every byte is affected if both operands are registers. */
|
| 3530 |
|
|
const unsigned HOST_WIDE_INT intval =
|
| 3531 |
|
|
(unsigned HOST_WIDE_INT) ((GET_CODE (operands[2]) == CONST_INT)
|
| 3532 |
|
|
/* Always use the full instruction if the
|
| 3533 |
|
|
first operand is in memory. It is better
|
| 3534 |
|
|
to use define_splits to generate the shorter
|
| 3535 |
|
|
sequence where valid. */
|
| 3536 |
|
|
&& register_operand (operands[1], VOIDmode)
|
| 3537 |
|
|
? INTVAL (operands[2]) : 0x55555555);
|
| 3538 |
|
|
/* The determinant of the algorithm. If we perform an AND, 0
|
| 3539 |
|
|
affects a bit. Otherwise, 1 affects a bit. */
|
| 3540 |
|
|
const unsigned HOST_WIDE_INT det = (code != AND) ? intval : ~intval;
|
| 3541 |
|
|
/* Break up DET into pieces. */
|
| 3542 |
|
|
const unsigned HOST_WIDE_INT b0 = (det >> 0) & 0xff;
|
| 3543 |
|
|
const unsigned HOST_WIDE_INT b1 = (det >> 8) & 0xff;
|
| 3544 |
|
|
const unsigned HOST_WIDE_INT w0 = (det >> 0) & 0xffff;
|
| 3545 |
|
|
const unsigned HOST_WIDE_INT w1 = (det >> 16) & 0xffff;
|
| 3546 |
|
|
int lower_half_easy_p = 0;
|
| 3547 |
|
|
int upper_half_easy_p = 0;
|
| 3548 |
|
|
/* Condition code. */
|
| 3549 |
|
|
enum attr_cc cc = CC_CLOBBER;
|
| 3550 |
|
|
|
| 3551 |
|
|
switch (mode)
|
| 3552 |
|
|
{
|
| 3553 |
|
|
case HImode:
|
| 3554 |
|
|
/* First, see if we can finish with one insn. */
|
| 3555 |
|
|
if ((TARGET_H8300H || TARGET_H8300S)
|
| 3556 |
|
|
&& b0 != 0
|
| 3557 |
|
|
&& b1 != 0)
|
| 3558 |
|
|
{
|
| 3559 |
|
|
cc = CC_SET_ZNV;
|
| 3560 |
|
|
}
|
| 3561 |
|
|
break;
|
| 3562 |
|
|
case SImode:
|
| 3563 |
|
|
if (TARGET_H8300H || TARGET_H8300S)
|
| 3564 |
|
|
{
|
| 3565 |
|
|
/* Determine if the lower half can be taken care of in no more
|
| 3566 |
|
|
than two bytes. */
|
| 3567 |
|
|
lower_half_easy_p = (b0 == 0
|
| 3568 |
|
|
|| b1 == 0
|
| 3569 |
|
|
|| (code != IOR && w0 == 0xffff));
|
| 3570 |
|
|
|
| 3571 |
|
|
/* Determine if the upper half can be taken care of in no more
|
| 3572 |
|
|
than two bytes. */
|
| 3573 |
|
|
upper_half_easy_p = ((code != IOR && w1 == 0xffff)
|
| 3574 |
|
|
|| (code == AND && w1 == 0xff00));
|
| 3575 |
|
|
}
|
| 3576 |
|
|
|
| 3577 |
|
|
/* Check if doing everything with one insn is no worse than
|
| 3578 |
|
|
using multiple insns. */
|
| 3579 |
|
|
if ((TARGET_H8300H || TARGET_H8300S)
|
| 3580 |
|
|
&& w0 != 0 && w1 != 0
|
| 3581 |
|
|
&& !(lower_half_easy_p && upper_half_easy_p)
|
| 3582 |
|
|
&& !(code == IOR && w1 == 0xffff
|
| 3583 |
|
|
&& (w0 & 0x8000) != 0 && lower_half_easy_p))
|
| 3584 |
|
|
{
|
| 3585 |
|
|
cc = CC_SET_ZNV;
|
| 3586 |
|
|
}
|
| 3587 |
|
|
else
|
| 3588 |
|
|
{
|
| 3589 |
|
|
if ((TARGET_H8300H || TARGET_H8300S)
|
| 3590 |
|
|
&& code == IOR
|
| 3591 |
|
|
&& w1 == 0xffff
|
| 3592 |
|
|
&& (w0 & 0x8000) != 0)
|
| 3593 |
|
|
{
|
| 3594 |
|
|
cc = CC_SET_ZNV;
|
| 3595 |
|
|
}
|
| 3596 |
|
|
}
|
| 3597 |
|
|
break;
|
| 3598 |
|
|
default:
|
| 3599 |
|
|
gcc_unreachable ();
|
| 3600 |
|
|
}
|
| 3601 |
|
|
return cc;
|
| 3602 |
|
|
}
|
| 3603 |
|
|
|
| 3604 |
|
|
/* Expand a conditional branch. */
|
| 3605 |
|
|
|
| 3606 |
|
|
void
|
| 3607 |
|
|
h8300_expand_branch (rtx operands[])
|
| 3608 |
|
|
{
|
| 3609 |
|
|
enum rtx_code code = GET_CODE (operands[0]);
|
| 3610 |
|
|
rtx op0 = operands[1];
|
| 3611 |
|
|
rtx op1 = operands[2];
|
| 3612 |
|
|
rtx label = operands[3];
|
| 3613 |
|
|
rtx tmp;
|
| 3614 |
|
|
|
| 3615 |
|
|
tmp = gen_rtx_COMPARE (VOIDmode, op0, op1);
|
| 3616 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, cc0_rtx, tmp));
|
| 3617 |
|
|
|
| 3618 |
|
|
tmp = gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
|
| 3619 |
|
|
tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
|
| 3620 |
|
|
gen_rtx_LABEL_REF (VOIDmode, label),
|
| 3621 |
|
|
pc_rtx);
|
| 3622 |
|
|
emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
|
| 3623 |
|
|
}
|
| 3624 |
|
|
|
| 3625 |
|
|
|
| 3626 |
|
|
/* Expand a conditional store. */
|
| 3627 |
|
|
|
| 3628 |
|
|
void
|
| 3629 |
|
|
h8300_expand_store (rtx operands[])
|
| 3630 |
|
|
{
|
| 3631 |
|
|
rtx dest = operands[0];
|
| 3632 |
|
|
enum rtx_code code = GET_CODE (operands[1]);
|
| 3633 |
|
|
rtx op0 = operands[2];
|
| 3634 |
|
|
rtx op1 = operands[3];
|
| 3635 |
|
|
rtx tmp;
|
| 3636 |
|
|
|
| 3637 |
|
|
tmp = gen_rtx_COMPARE (VOIDmode, op0, op1);
|
| 3638 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, cc0_rtx, tmp));
|
| 3639 |
|
|
|
| 3640 |
|
|
tmp = gen_rtx_fmt_ee (code, GET_MODE (dest), cc0_rtx, const0_rtx);
|
| 3641 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
|
| 3642 |
|
|
}
|
| 3643 |
|
|
|
| 3644 |
|
|
/* Shifts.
|
| 3645 |
|
|
|
| 3646 |
|
|
We devote a fair bit of code to getting efficient shifts since we
|
| 3647 |
|
|
can only shift one bit at a time on the H8/300 and H8/300H and only
|
| 3648 |
|
|
one or two bits at a time on the H8S.
|
| 3649 |
|
|
|
| 3650 |
|
|
All shift code falls into one of the following ways of
|
| 3651 |
|
|
implementation:
|
| 3652 |
|
|
|
| 3653 |
|
|
o SHIFT_INLINE: Emit straight line code for the shift; this is used
|
| 3654 |
|
|
when a straight line shift is about the same size or smaller than
|
| 3655 |
|
|
a loop.
|
| 3656 |
|
|
|
| 3657 |
|
|
o SHIFT_ROT_AND: Rotate the value the opposite direction, then mask
|
| 3658 |
|
|
off the bits we don't need. This is used when only a few of the
|
| 3659 |
|
|
bits in the original value will survive in the shifted value.
|
| 3660 |
|
|
|
| 3661 |
|
|
o SHIFT_SPECIAL: Often it's possible to move a byte or a word to
|
| 3662 |
|
|
simulate a shift by 8, 16, or 24 bits. Once moved, a few inline
|
| 3663 |
|
|
shifts can be added if the shift count is slightly more than 8 or
|
| 3664 |
|
|
16. This case also includes other oddballs that are not worth
|
| 3665 |
|
|
explaining here.
|
| 3666 |
|
|
|
| 3667 |
|
|
o SHIFT_LOOP: Emit a loop using one (or two on H8S) bit shifts.
|
| 3668 |
|
|
|
| 3669 |
|
|
For each shift count, we try to use code that has no trade-off
|
| 3670 |
|
|
between code size and speed whenever possible.
|
| 3671 |
|
|
|
| 3672 |
|
|
If the trade-off is unavoidable, we try to be reasonable.
|
| 3673 |
|
|
Specifically, the fastest version is one instruction longer than
|
| 3674 |
|
|
the shortest version, we take the fastest version. We also provide
|
| 3675 |
|
|
the use a way to switch back to the shortest version with -Os.
|
| 3676 |
|
|
|
| 3677 |
|
|
For the details of the shift algorithms for various shift counts,
|
| 3678 |
|
|
refer to shift_alg_[qhs]i. */
|
| 3679 |
|
|
|
| 3680 |
|
|
/* Classify a shift with the given mode and code. OP is the shift amount. */
|
| 3681 |
|
|
|
| 3682 |
|
|
enum h8sx_shift_type
|
| 3683 |
|
|
h8sx_classify_shift (enum machine_mode mode, enum rtx_code code, rtx op)
|
| 3684 |
|
|
{
|
| 3685 |
|
|
if (!TARGET_H8300SX)
|
| 3686 |
|
|
return H8SX_SHIFT_NONE;
|
| 3687 |
|
|
|
| 3688 |
|
|
switch (code)
|
| 3689 |
|
|
{
|
| 3690 |
|
|
case ASHIFT:
|
| 3691 |
|
|
case LSHIFTRT:
|
| 3692 |
|
|
/* Check for variable shifts (shll Rs,Rd and shlr Rs,Rd). */
|
| 3693 |
|
|
if (GET_CODE (op) != CONST_INT)
|
| 3694 |
|
|
return H8SX_SHIFT_BINARY;
|
| 3695 |
|
|
|
| 3696 |
|
|
/* Reject out-of-range shift amounts. */
|
| 3697 |
|
|
if (INTVAL (op) <= 0 || INTVAL (op) >= GET_MODE_BITSIZE (mode))
|
| 3698 |
|
|
return H8SX_SHIFT_NONE;
|
| 3699 |
|
|
|
| 3700 |
|
|
/* Power-of-2 shifts are effectively unary operations. */
|
| 3701 |
|
|
if (exact_log2 (INTVAL (op)) >= 0)
|
| 3702 |
|
|
return H8SX_SHIFT_UNARY;
|
| 3703 |
|
|
|
| 3704 |
|
|
return H8SX_SHIFT_BINARY;
|
| 3705 |
|
|
|
| 3706 |
|
|
case ASHIFTRT:
|
| 3707 |
|
|
if (op == const1_rtx || op == const2_rtx)
|
| 3708 |
|
|
return H8SX_SHIFT_UNARY;
|
| 3709 |
|
|
return H8SX_SHIFT_NONE;
|
| 3710 |
|
|
|
| 3711 |
|
|
case ROTATE:
|
| 3712 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 3713 |
|
|
&& (INTVAL (op) == 1
|
| 3714 |
|
|
|| INTVAL (op) == 2
|
| 3715 |
|
|
|| INTVAL (op) == GET_MODE_BITSIZE (mode) - 2
|
| 3716 |
|
|
|| INTVAL (op) == GET_MODE_BITSIZE (mode) - 1))
|
| 3717 |
|
|
return H8SX_SHIFT_UNARY;
|
| 3718 |
|
|
return H8SX_SHIFT_NONE;
|
| 3719 |
|
|
|
| 3720 |
|
|
default:
|
| 3721 |
|
|
return H8SX_SHIFT_NONE;
|
| 3722 |
|
|
}
|
| 3723 |
|
|
}
|
| 3724 |
|
|
|
| 3725 |
|
|
/* Return the asm template for a single h8sx shift instruction.
|
| 3726 |
|
|
OPERANDS[0] and OPERANDS[1] are the destination, OPERANDS[2]
|
| 3727 |
|
|
is the source and OPERANDS[3] is the shift. SUFFIX is the
|
| 3728 |
|
|
size suffix ('b', 'w' or 'l') and OPTYPE is the h8300_print_operand
|
| 3729 |
|
|
prefix for the destination operand. */
|
| 3730 |
|
|
|
| 3731 |
|
|
const char *
|
| 3732 |
|
|
output_h8sx_shift (rtx *operands, int suffix, int optype)
|
| 3733 |
|
|
{
|
| 3734 |
|
|
static char buffer[16];
|
| 3735 |
|
|
const char *stem;
|
| 3736 |
|
|
|
| 3737 |
|
|
switch (GET_CODE (operands[3]))
|
| 3738 |
|
|
{
|
| 3739 |
|
|
case ASHIFT:
|
| 3740 |
|
|
stem = "shll";
|
| 3741 |
|
|
break;
|
| 3742 |
|
|
|
| 3743 |
|
|
case ASHIFTRT:
|
| 3744 |
|
|
stem = "shar";
|
| 3745 |
|
|
break;
|
| 3746 |
|
|
|
| 3747 |
|
|
case LSHIFTRT:
|
| 3748 |
|
|
stem = "shlr";
|
| 3749 |
|
|
break;
|
| 3750 |
|
|
|
| 3751 |
|
|
case ROTATE:
|
| 3752 |
|
|
stem = "rotl";
|
| 3753 |
|
|
if (INTVAL (operands[2]) > 2)
|
| 3754 |
|
|
{
|
| 3755 |
|
|
/* This is really a right rotate. */
|
| 3756 |
|
|
operands[2] = GEN_INT (GET_MODE_BITSIZE (GET_MODE (operands[0]))
|
| 3757 |
|
|
- INTVAL (operands[2]));
|
| 3758 |
|
|
stem = "rotr";
|
| 3759 |
|
|
}
|
| 3760 |
|
|
break;
|
| 3761 |
|
|
|
| 3762 |
|
|
default:
|
| 3763 |
|
|
gcc_unreachable ();
|
| 3764 |
|
|
}
|
| 3765 |
|
|
if (operands[2] == const1_rtx)
|
| 3766 |
|
|
sprintf (buffer, "%s.%c\t%%%c0", stem, suffix, optype);
|
| 3767 |
|
|
else
|
| 3768 |
|
|
sprintf (buffer, "%s.%c\t%%X2,%%%c0", stem, suffix, optype);
|
| 3769 |
|
|
return buffer;
|
| 3770 |
|
|
}
|
| 3771 |
|
|
|
| 3772 |
|
|
/* Emit code to do shifts. */
|
| 3773 |
|
|
|
| 3774 |
|
|
bool
|
| 3775 |
|
|
expand_a_shift (enum machine_mode mode, enum rtx_code code, rtx operands[])
|
| 3776 |
|
|
{
|
| 3777 |
|
|
switch (h8sx_classify_shift (mode, code, operands[2]))
|
| 3778 |
|
|
{
|
| 3779 |
|
|
case H8SX_SHIFT_BINARY:
|
| 3780 |
|
|
operands[1] = force_reg (mode, operands[1]);
|
| 3781 |
|
|
return false;
|
| 3782 |
|
|
|
| 3783 |
|
|
case H8SX_SHIFT_UNARY:
|
| 3784 |
|
|
return false;
|
| 3785 |
|
|
|
| 3786 |
|
|
case H8SX_SHIFT_NONE:
|
| 3787 |
|
|
break;
|
| 3788 |
|
|
}
|
| 3789 |
|
|
|
| 3790 |
|
|
emit_move_insn (copy_rtx (operands[0]), operands[1]);
|
| 3791 |
|
|
|
| 3792 |
|
|
/* Need a loop to get all the bits we want - we generate the
|
| 3793 |
|
|
code at emit time, but need to allocate a scratch reg now. */
|
| 3794 |
|
|
|
| 3795 |
|
|
emit_insn (gen_rtx_PARALLEL
|
| 3796 |
|
|
(VOIDmode,
|
| 3797 |
|
|
gen_rtvec (2,
|
| 3798 |
|
|
gen_rtx_SET (VOIDmode, copy_rtx (operands[0]),
|
| 3799 |
|
|
gen_rtx_fmt_ee (code, mode,
|
| 3800 |
|
|
copy_rtx (operands[0]), operands[2])),
|
| 3801 |
|
|
gen_rtx_CLOBBER (VOIDmode,
|
| 3802 |
|
|
gen_rtx_SCRATCH (QImode)))));
|
| 3803 |
|
|
return true;
|
| 3804 |
|
|
}
|
| 3805 |
|
|
|
| 3806 |
|
|
/* Symbols of the various modes which can be used as indices. */
|
| 3807 |
|
|
|
| 3808 |
|
|
enum shift_mode
|
| 3809 |
|
|
{
|
| 3810 |
|
|
QIshift, HIshift, SIshift
|
| 3811 |
|
|
};
|
| 3812 |
|
|
|
| 3813 |
|
|
/* For single bit shift insns, record assembler and what bits of the
|
| 3814 |
|
|
condition code are valid afterwards (represented as various CC_FOO
|
| 3815 |
|
|
bits, 0 means CC isn't left in a usable state). */
|
| 3816 |
|
|
|
| 3817 |
|
|
struct shift_insn
|
| 3818 |
|
|
{
|
| 3819 |
|
|
const char *const assembler;
|
| 3820 |
|
|
const enum attr_cc cc_valid;
|
| 3821 |
|
|
};
|
| 3822 |
|
|
|
| 3823 |
|
|
/* Assembler instruction shift table.
|
| 3824 |
|
|
|
| 3825 |
|
|
These tables are used to look up the basic shifts.
|
| 3826 |
|
|
They are indexed by cpu, shift_type, and mode. */
|
| 3827 |
|
|
|
| 3828 |
|
|
static const struct shift_insn shift_one[2][3][3] =
|
| 3829 |
|
|
{
|
| 3830 |
|
|
/* H8/300 */
|
| 3831 |
|
|
{
|
| 3832 |
|
|
/* SHIFT_ASHIFT */
|
| 3833 |
|
|
{
|
| 3834 |
|
|
{ "shll\t%X0", CC_SET_ZNV },
|
| 3835 |
|
|
{ "add.w\t%T0,%T0", CC_SET_ZN },
|
| 3836 |
|
|
{ "add.w\t%f0,%f0\n\taddx\t%y0,%y0\n\taddx\t%z0,%z0", CC_CLOBBER }
|
| 3837 |
|
|
},
|
| 3838 |
|
|
/* SHIFT_LSHIFTRT */
|
| 3839 |
|
|
{
|
| 3840 |
|
|
{ "shlr\t%X0", CC_SET_ZNV },
|
| 3841 |
|
|
{ "shlr\t%t0\n\trotxr\t%s0", CC_CLOBBER },
|
| 3842 |
|
|
{ "shlr\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", CC_CLOBBER }
|
| 3843 |
|
|
},
|
| 3844 |
|
|
/* SHIFT_ASHIFTRT */
|
| 3845 |
|
|
{
|
| 3846 |
|
|
{ "shar\t%X0", CC_SET_ZNV },
|
| 3847 |
|
|
{ "shar\t%t0\n\trotxr\t%s0", CC_CLOBBER },
|
| 3848 |
|
|
{ "shar\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", CC_CLOBBER }
|
| 3849 |
|
|
}
|
| 3850 |
|
|
},
|
| 3851 |
|
|
/* H8/300H */
|
| 3852 |
|
|
{
|
| 3853 |
|
|
/* SHIFT_ASHIFT */
|
| 3854 |
|
|
{
|
| 3855 |
|
|
{ "shll.b\t%X0", CC_SET_ZNV },
|
| 3856 |
|
|
{ "shll.w\t%T0", CC_SET_ZNV },
|
| 3857 |
|
|
{ "shll.l\t%S0", CC_SET_ZNV }
|
| 3858 |
|
|
},
|
| 3859 |
|
|
/* SHIFT_LSHIFTRT */
|
| 3860 |
|
|
{
|
| 3861 |
|
|
{ "shlr.b\t%X0", CC_SET_ZNV },
|
| 3862 |
|
|
{ "shlr.w\t%T0", CC_SET_ZNV },
|
| 3863 |
|
|
{ "shlr.l\t%S0", CC_SET_ZNV }
|
| 3864 |
|
|
},
|
| 3865 |
|
|
/* SHIFT_ASHIFTRT */
|
| 3866 |
|
|
{
|
| 3867 |
|
|
{ "shar.b\t%X0", CC_SET_ZNV },
|
| 3868 |
|
|
{ "shar.w\t%T0", CC_SET_ZNV },
|
| 3869 |
|
|
{ "shar.l\t%S0", CC_SET_ZNV }
|
| 3870 |
|
|
}
|
| 3871 |
|
|
}
|
| 3872 |
|
|
};
|
| 3873 |
|
|
|
| 3874 |
|
|
static const struct shift_insn shift_two[3][3] =
|
| 3875 |
|
|
{
|
| 3876 |
|
|
/* SHIFT_ASHIFT */
|
| 3877 |
|
|
{
|
| 3878 |
|
|
{ "shll.b\t#2,%X0", CC_SET_ZNV },
|
| 3879 |
|
|
{ "shll.w\t#2,%T0", CC_SET_ZNV },
|
| 3880 |
|
|
{ "shll.l\t#2,%S0", CC_SET_ZNV }
|
| 3881 |
|
|
},
|
| 3882 |
|
|
/* SHIFT_LSHIFTRT */
|
| 3883 |
|
|
{
|
| 3884 |
|
|
{ "shlr.b\t#2,%X0", CC_SET_ZNV },
|
| 3885 |
|
|
{ "shlr.w\t#2,%T0", CC_SET_ZNV },
|
| 3886 |
|
|
{ "shlr.l\t#2,%S0", CC_SET_ZNV }
|
| 3887 |
|
|
},
|
| 3888 |
|
|
/* SHIFT_ASHIFTRT */
|
| 3889 |
|
|
{
|
| 3890 |
|
|
{ "shar.b\t#2,%X0", CC_SET_ZNV },
|
| 3891 |
|
|
{ "shar.w\t#2,%T0", CC_SET_ZNV },
|
| 3892 |
|
|
{ "shar.l\t#2,%S0", CC_SET_ZNV }
|
| 3893 |
|
|
}
|
| 3894 |
|
|
};
|
| 3895 |
|
|
|
| 3896 |
|
|
/* Rotates are organized by which shift they'll be used in implementing.
|
| 3897 |
|
|
There's no need to record whether the cc is valid afterwards because
|
| 3898 |
|
|
it is the AND insn that will decide this. */
|
| 3899 |
|
|
|
| 3900 |
|
|
static const char *const rotate_one[2][3][3] =
|
| 3901 |
|
|
{
|
| 3902 |
|
|
/* H8/300 */
|
| 3903 |
|
|
{
|
| 3904 |
|
|
/* SHIFT_ASHIFT */
|
| 3905 |
|
|
{
|
| 3906 |
|
|
"rotr\t%X0",
|
| 3907 |
|
|
"shlr\t%t0\n\trotxr\t%s0\n\tbst\t#7,%t0",
|
| 3908 |
|
|
|
| 3909 |
|
|
},
|
| 3910 |
|
|
/* SHIFT_LSHIFTRT */
|
| 3911 |
|
|
{
|
| 3912 |
|
|
"rotl\t%X0",
|
| 3913 |
|
|
"shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
|
| 3914 |
|
|
|
| 3915 |
|
|
},
|
| 3916 |
|
|
/* SHIFT_ASHIFTRT */
|
| 3917 |
|
|
{
|
| 3918 |
|
|
"rotl\t%X0",
|
| 3919 |
|
|
"shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
|
| 3920 |
|
|
|
| 3921 |
|
|
}
|
| 3922 |
|
|
},
|
| 3923 |
|
|
/* H8/300H */
|
| 3924 |
|
|
{
|
| 3925 |
|
|
/* SHIFT_ASHIFT */
|
| 3926 |
|
|
{
|
| 3927 |
|
|
"rotr.b\t%X0",
|
| 3928 |
|
|
"rotr.w\t%T0",
|
| 3929 |
|
|
"rotr.l\t%S0"
|
| 3930 |
|
|
},
|
| 3931 |
|
|
/* SHIFT_LSHIFTRT */
|
| 3932 |
|
|
{
|
| 3933 |
|
|
"rotl.b\t%X0",
|
| 3934 |
|
|
"rotl.w\t%T0",
|
| 3935 |
|
|
"rotl.l\t%S0"
|
| 3936 |
|
|
},
|
| 3937 |
|
|
/* SHIFT_ASHIFTRT */
|
| 3938 |
|
|
{
|
| 3939 |
|
|
"rotl.b\t%X0",
|
| 3940 |
|
|
"rotl.w\t%T0",
|
| 3941 |
|
|
"rotl.l\t%S0"
|
| 3942 |
|
|
}
|
| 3943 |
|
|
}
|
| 3944 |
|
|
};
|
| 3945 |
|
|
|
| 3946 |
|
|
static const char *const rotate_two[3][3] =
|
| 3947 |
|
|
{
|
| 3948 |
|
|
/* SHIFT_ASHIFT */
|
| 3949 |
|
|
{
|
| 3950 |
|
|
"rotr.b\t#2,%X0",
|
| 3951 |
|
|
"rotr.w\t#2,%T0",
|
| 3952 |
|
|
"rotr.l\t#2,%S0"
|
| 3953 |
|
|
},
|
| 3954 |
|
|
/* SHIFT_LSHIFTRT */
|
| 3955 |
|
|
{
|
| 3956 |
|
|
"rotl.b\t#2,%X0",
|
| 3957 |
|
|
"rotl.w\t#2,%T0",
|
| 3958 |
|
|
"rotl.l\t#2,%S0"
|
| 3959 |
|
|
},
|
| 3960 |
|
|
/* SHIFT_ASHIFTRT */
|
| 3961 |
|
|
{
|
| 3962 |
|
|
"rotl.b\t#2,%X0",
|
| 3963 |
|
|
"rotl.w\t#2,%T0",
|
| 3964 |
|
|
"rotl.l\t#2,%S0"
|
| 3965 |
|
|
}
|
| 3966 |
|
|
};
|
| 3967 |
|
|
|
| 3968 |
|
|
struct shift_info {
|
| 3969 |
|
|
/* Shift algorithm. */
|
| 3970 |
|
|
enum shift_alg alg;
|
| 3971 |
|
|
|
| 3972 |
|
|
/* The number of bits to be shifted by shift1 and shift2. Valid
|
| 3973 |
|
|
when ALG is SHIFT_SPECIAL. */
|
| 3974 |
|
|
unsigned int remainder;
|
| 3975 |
|
|
|
| 3976 |
|
|
/* Special insn for a shift. Valid when ALG is SHIFT_SPECIAL. */
|
| 3977 |
|
|
const char *special;
|
| 3978 |
|
|
|
| 3979 |
|
|
/* Insn for a one-bit shift. Valid when ALG is either SHIFT_INLINE
|
| 3980 |
|
|
or SHIFT_SPECIAL, and REMAINDER is nonzero. */
|
| 3981 |
|
|
const char *shift1;
|
| 3982 |
|
|
|
| 3983 |
|
|
/* Insn for a two-bit shift. Valid when ALG is either SHIFT_INLINE
|
| 3984 |
|
|
or SHIFT_SPECIAL, and REMAINDER is nonzero. */
|
| 3985 |
|
|
const char *shift2;
|
| 3986 |
|
|
|
| 3987 |
|
|
/* CC status for SHIFT_INLINE. */
|
| 3988 |
|
|
enum attr_cc cc_inline;
|
| 3989 |
|
|
|
| 3990 |
|
|
/* CC status for SHIFT_SPECIAL. */
|
| 3991 |
|
|
enum attr_cc cc_special;
|
| 3992 |
|
|
};
|
| 3993 |
|
|
|
| 3994 |
|
|
static void get_shift_alg (enum shift_type,
|
| 3995 |
|
|
enum shift_mode, unsigned int,
|
| 3996 |
|
|
struct shift_info *);
|
| 3997 |
|
|
|
| 3998 |
|
|
/* Given SHIFT_TYPE, SHIFT_MODE, and shift count COUNT, determine the
|
| 3999 |
|
|
best algorithm for doing the shift. The assembler code is stored
|
| 4000 |
|
|
in the pointers in INFO. We achieve the maximum efficiency in most
|
| 4001 |
|
|
cases when !TARGET_H8300. In case of TARGET_H8300, shifts in
|
| 4002 |
|
|
SImode in particular have a lot of room to optimize.
|
| 4003 |
|
|
|
| 4004 |
|
|
We first determine the strategy of the shift algorithm by a table
|
| 4005 |
|
|
lookup. If that tells us to use a hand crafted assembly code, we
|
| 4006 |
|
|
go into the big switch statement to find what that is. Otherwise,
|
| 4007 |
|
|
we resort to a generic way, such as inlining. In either case, the
|
| 4008 |
|
|
result is returned through INFO. */
|
| 4009 |
|
|
|
| 4010 |
|
|
static void
|
| 4011 |
|
|
get_shift_alg (enum shift_type shift_type, enum shift_mode shift_mode,
|
| 4012 |
|
|
unsigned int count, struct shift_info *info)
|
| 4013 |
|
|
{
|
| 4014 |
|
|
enum h8_cpu cpu;
|
| 4015 |
|
|
|
| 4016 |
|
|
/* Find the target CPU. */
|
| 4017 |
|
|
if (TARGET_H8300)
|
| 4018 |
|
|
cpu = H8_300;
|
| 4019 |
|
|
else if (TARGET_H8300H)
|
| 4020 |
|
|
cpu = H8_300H;
|
| 4021 |
|
|
else
|
| 4022 |
|
|
cpu = H8_S;
|
| 4023 |
|
|
|
| 4024 |
|
|
/* Find the shift algorithm. */
|
| 4025 |
|
|
info->alg = SHIFT_LOOP;
|
| 4026 |
|
|
switch (shift_mode)
|
| 4027 |
|
|
{
|
| 4028 |
|
|
case QIshift:
|
| 4029 |
|
|
if (count < GET_MODE_BITSIZE (QImode))
|
| 4030 |
|
|
info->alg = shift_alg_qi[cpu][shift_type][count];
|
| 4031 |
|
|
break;
|
| 4032 |
|
|
|
| 4033 |
|
|
case HIshift:
|
| 4034 |
|
|
if (count < GET_MODE_BITSIZE (HImode))
|
| 4035 |
|
|
info->alg = shift_alg_hi[cpu][shift_type][count];
|
| 4036 |
|
|
break;
|
| 4037 |
|
|
|
| 4038 |
|
|
case SIshift:
|
| 4039 |
|
|
if (count < GET_MODE_BITSIZE (SImode))
|
| 4040 |
|
|
info->alg = shift_alg_si[cpu][shift_type][count];
|
| 4041 |
|
|
break;
|
| 4042 |
|
|
|
| 4043 |
|
|
default:
|
| 4044 |
|
|
gcc_unreachable ();
|
| 4045 |
|
|
}
|
| 4046 |
|
|
|
| 4047 |
|
|
/* Fill in INFO. Return unless we have SHIFT_SPECIAL. */
|
| 4048 |
|
|
switch (info->alg)
|
| 4049 |
|
|
{
|
| 4050 |
|
|
case SHIFT_INLINE:
|
| 4051 |
|
|
info->remainder = count;
|
| 4052 |
|
|
/* Fall through. */
|
| 4053 |
|
|
|
| 4054 |
|
|
case SHIFT_LOOP:
|
| 4055 |
|
|
/* It is up to the caller to know that looping clobbers cc. */
|
| 4056 |
|
|
info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
|
| 4057 |
|
|
info->shift2 = shift_two[shift_type][shift_mode].assembler;
|
| 4058 |
|
|
info->cc_inline = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
|
| 4059 |
|
|
goto end;
|
| 4060 |
|
|
|
| 4061 |
|
|
case SHIFT_ROT_AND:
|
| 4062 |
|
|
info->shift1 = rotate_one[cpu_type][shift_type][shift_mode];
|
| 4063 |
|
|
info->shift2 = rotate_two[shift_type][shift_mode];
|
| 4064 |
|
|
info->cc_inline = CC_CLOBBER;
|
| 4065 |
|
|
goto end;
|
| 4066 |
|
|
|
| 4067 |
|
|
case SHIFT_SPECIAL:
|
| 4068 |
|
|
/* REMAINDER is 0 for most cases, so initialize it to 0. */
|
| 4069 |
|
|
info->remainder = 0;
|
| 4070 |
|
|
info->shift1 = shift_one[cpu_type][shift_type][shift_mode].assembler;
|
| 4071 |
|
|
info->shift2 = shift_two[shift_type][shift_mode].assembler;
|
| 4072 |
|
|
info->cc_inline = shift_one[cpu_type][shift_type][shift_mode].cc_valid;
|
| 4073 |
|
|
info->cc_special = CC_CLOBBER;
|
| 4074 |
|
|
break;
|
| 4075 |
|
|
}
|
| 4076 |
|
|
|
| 4077 |
|
|
/* Here we only deal with SHIFT_SPECIAL. */
|
| 4078 |
|
|
switch (shift_mode)
|
| 4079 |
|
|
{
|
| 4080 |
|
|
case QIshift:
|
| 4081 |
|
|
/* For ASHIFTRT by 7 bits, the sign bit is simply replicated
|
| 4082 |
|
|
through the entire value. */
|
| 4083 |
|
|
gcc_assert (shift_type == SHIFT_ASHIFTRT && count == 7);
|
| 4084 |
|
|
info->special = "shll\t%X0\n\tsubx\t%X0,%X0";
|
| 4085 |
|
|
goto end;
|
| 4086 |
|
|
|
| 4087 |
|
|
case HIshift:
|
| 4088 |
|
|
if (count == 7)
|
| 4089 |
|
|
{
|
| 4090 |
|
|
switch (shift_type)
|
| 4091 |
|
|
{
|
| 4092 |
|
|
case SHIFT_ASHIFT:
|
| 4093 |
|
|
if (TARGET_H8300)
|
| 4094 |
|
|
info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.b\t%t0\n\trotr.b\t%s0\n\tand.b\t#0x80,%s0";
|
| 4095 |
|
|
else
|
| 4096 |
|
|
info->special = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.w\t%T0\n\tand.b\t#0x80,%s0";
|
| 4097 |
|
|
goto end;
|
| 4098 |
|
|
case SHIFT_LSHIFTRT:
|
| 4099 |
|
|
if (TARGET_H8300)
|
| 4100 |
|
|
info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\trotl.b\t%t0\n\tand.b\t#0x01,%t0";
|
| 4101 |
|
|
else
|
| 4102 |
|
|
info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.w\t%T0\n\tand.b\t#0x01,%t0";
|
| 4103 |
|
|
goto end;
|
| 4104 |
|
|
case SHIFT_ASHIFTRT:
|
| 4105 |
|
|
info->special = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\tsubx\t%t0,%t0";
|
| 4106 |
|
|
goto end;
|
| 4107 |
|
|
}
|
| 4108 |
|
|
}
|
| 4109 |
|
|
else if ((8 <= count && count <= 13)
|
| 4110 |
|
|
|| (TARGET_H8300S && count == 14))
|
| 4111 |
|
|
{
|
| 4112 |
|
|
info->remainder = count - 8;
|
| 4113 |
|
|
|
| 4114 |
|
|
switch (shift_type)
|
| 4115 |
|
|
{
|
| 4116 |
|
|
case SHIFT_ASHIFT:
|
| 4117 |
|
|
info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0";
|
| 4118 |
|
|
goto end;
|
| 4119 |
|
|
case SHIFT_LSHIFTRT:
|
| 4120 |
|
|
if (TARGET_H8300)
|
| 4121 |
|
|
{
|
| 4122 |
|
|
info->special = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0";
|
| 4123 |
|
|
info->shift1 = "shlr.b\t%s0";
|
| 4124 |
|
|
info->cc_inline = CC_SET_ZNV;
|
| 4125 |
|
|
}
|
| 4126 |
|
|
else
|
| 4127 |
|
|
{
|
| 4128 |
|
|
info->special = "mov.b\t%t0,%s0\n\textu.w\t%T0";
|
| 4129 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4130 |
|
|
}
|
| 4131 |
|
|
goto end;
|
| 4132 |
|
|
case SHIFT_ASHIFTRT:
|
| 4133 |
|
|
if (TARGET_H8300)
|
| 4134 |
|
|
{
|
| 4135 |
|
|
info->special = "mov.b\t%t0,%s0\n\tbld\t#7,%s0\n\tsubx\t%t0,%t0";
|
| 4136 |
|
|
info->shift1 = "shar.b\t%s0";
|
| 4137 |
|
|
}
|
| 4138 |
|
|
else
|
| 4139 |
|
|
{
|
| 4140 |
|
|
info->special = "mov.b\t%t0,%s0\n\texts.w\t%T0";
|
| 4141 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4142 |
|
|
}
|
| 4143 |
|
|
goto end;
|
| 4144 |
|
|
}
|
| 4145 |
|
|
}
|
| 4146 |
|
|
else if (count == 14)
|
| 4147 |
|
|
{
|
| 4148 |
|
|
switch (shift_type)
|
| 4149 |
|
|
{
|
| 4150 |
|
|
case SHIFT_ASHIFT:
|
| 4151 |
|
|
if (TARGET_H8300)
|
| 4152 |
|
|
info->special = "mov.b\t%s0,%t0\n\trotr.b\t%t0\n\trotr.b\t%t0\n\tand.b\t#0xC0,%t0\n\tsub.b\t%s0,%s0";
|
| 4153 |
|
|
goto end;
|
| 4154 |
|
|
case SHIFT_LSHIFTRT:
|
| 4155 |
|
|
if (TARGET_H8300)
|
| 4156 |
|
|
info->special = "mov.b\t%t0,%s0\n\trotl.b\t%s0\n\trotl.b\t%s0\n\tand.b\t#3,%s0\n\tsub.b\t%t0,%t0";
|
| 4157 |
|
|
goto end;
|
| 4158 |
|
|
case SHIFT_ASHIFTRT:
|
| 4159 |
|
|
if (TARGET_H8300)
|
| 4160 |
|
|
info->special = "mov.b\t%t0,%s0\n\tshll.b\t%s0\n\tsubx.b\t%t0,%t0\n\tshll.b\t%s0\n\tmov.b\t%t0,%s0\n\tbst.b\t#0,%s0";
|
| 4161 |
|
|
else if (TARGET_H8300H)
|
| 4162 |
|
|
{
|
| 4163 |
|
|
info->special = "shll.b\t%t0\n\tsubx.b\t%s0,%s0\n\tshll.b\t%t0\n\trotxl.b\t%s0\n\texts.w\t%T0";
|
| 4164 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4165 |
|
|
}
|
| 4166 |
|
|
else /* TARGET_H8300S */
|
| 4167 |
|
|
gcc_unreachable ();
|
| 4168 |
|
|
goto end;
|
| 4169 |
|
|
}
|
| 4170 |
|
|
}
|
| 4171 |
|
|
else if (count == 15)
|
| 4172 |
|
|
{
|
| 4173 |
|
|
switch (shift_type)
|
| 4174 |
|
|
{
|
| 4175 |
|
|
case SHIFT_ASHIFT:
|
| 4176 |
|
|
info->special = "bld\t#0,%s0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#7,%t0";
|
| 4177 |
|
|
goto end;
|
| 4178 |
|
|
case SHIFT_LSHIFTRT:
|
| 4179 |
|
|
info->special = "bld\t#7,%t0\n\txor\t%s0,%s0\n\txor\t%t0,%t0\n\tbst\t#0,%s0";
|
| 4180 |
|
|
goto end;
|
| 4181 |
|
|
case SHIFT_ASHIFTRT:
|
| 4182 |
|
|
info->special = "shll\t%t0\n\tsubx\t%t0,%t0\n\tmov.b\t%t0,%s0";
|
| 4183 |
|
|
goto end;
|
| 4184 |
|
|
}
|
| 4185 |
|
|
}
|
| 4186 |
|
|
gcc_unreachable ();
|
| 4187 |
|
|
|
| 4188 |
|
|
case SIshift:
|
| 4189 |
|
|
if (TARGET_H8300 && 8 <= count && count <= 9)
|
| 4190 |
|
|
{
|
| 4191 |
|
|
info->remainder = count - 8;
|
| 4192 |
|
|
|
| 4193 |
|
|
switch (shift_type)
|
| 4194 |
|
|
{
|
| 4195 |
|
|
case SHIFT_ASHIFT:
|
| 4196 |
|
|
info->special = "mov.b\t%y0,%z0\n\tmov.b\t%x0,%y0\n\tmov.b\t%w0,%x0\n\tsub.b\t%w0,%w0";
|
| 4197 |
|
|
goto end;
|
| 4198 |
|
|
case SHIFT_LSHIFTRT:
|
| 4199 |
|
|
info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tsub.b\t%z0,%z0";
|
| 4200 |
|
|
info->shift1 = "shlr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0";
|
| 4201 |
|
|
goto end;
|
| 4202 |
|
|
case SHIFT_ASHIFTRT:
|
| 4203 |
|
|
info->special = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tshll\t%z0\n\tsubx\t%z0,%z0";
|
| 4204 |
|
|
goto end;
|
| 4205 |
|
|
}
|
| 4206 |
|
|
}
|
| 4207 |
|
|
else if (count == 8 && !TARGET_H8300)
|
| 4208 |
|
|
{
|
| 4209 |
|
|
switch (shift_type)
|
| 4210 |
|
|
{
|
| 4211 |
|
|
case SHIFT_ASHIFT:
|
| 4212 |
|
|
info->special = "mov.w\t%e0,%f4\n\tmov.b\t%s4,%t4\n\tmov.b\t%t0,%s4\n\tmov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f4,%e0";
|
| 4213 |
|
|
goto end;
|
| 4214 |
|
|
case SHIFT_LSHIFTRT:
|
| 4215 |
|
|
info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\textu.w\t%f4\n\tmov.w\t%f4,%e0";
|
| 4216 |
|
|
goto end;
|
| 4217 |
|
|
case SHIFT_ASHIFTRT:
|
| 4218 |
|
|
info->special = "mov.w\t%e0,%f4\n\tmov.b\t%t0,%s0\n\tmov.b\t%s4,%t0\n\tmov.b\t%t4,%s4\n\texts.w\t%f4\n\tmov.w\t%f4,%e0";
|
| 4219 |
|
|
goto end;
|
| 4220 |
|
|
}
|
| 4221 |
|
|
}
|
| 4222 |
|
|
else if (count == 15 && TARGET_H8300)
|
| 4223 |
|
|
{
|
| 4224 |
|
|
switch (shift_type)
|
| 4225 |
|
|
{
|
| 4226 |
|
|
case SHIFT_ASHIFT:
|
| 4227 |
|
|
gcc_unreachable ();
|
| 4228 |
|
|
case SHIFT_LSHIFTRT:
|
| 4229 |
|
|
info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\txor\t%y0,%y0\n\txor\t%z0,%z0\n\trotxl\t%w0\n\trotxl\t%x0\n\trotxl\t%y0";
|
| 4230 |
|
|
goto end;
|
| 4231 |
|
|
case SHIFT_ASHIFTRT:
|
| 4232 |
|
|
info->special = "bld\t#7,%z0\n\tmov.w\t%e0,%f0\n\trotxl\t%w0\n\trotxl\t%x0\n\tsubx\t%y0,%y0\n\tsubx\t%z0,%z0";
|
| 4233 |
|
|
goto end;
|
| 4234 |
|
|
}
|
| 4235 |
|
|
}
|
| 4236 |
|
|
else if (count == 15 && !TARGET_H8300)
|
| 4237 |
|
|
{
|
| 4238 |
|
|
switch (shift_type)
|
| 4239 |
|
|
{
|
| 4240 |
|
|
case SHIFT_ASHIFT:
|
| 4241 |
|
|
info->special = "shlr.w\t%e0\n\tmov.w\t%f0,%e0\n\txor.w\t%f0,%f0\n\trotxr.l\t%S0";
|
| 4242 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4243 |
|
|
goto end;
|
| 4244 |
|
|
case SHIFT_LSHIFTRT:
|
| 4245 |
|
|
info->special = "shll.w\t%f0\n\tmov.w\t%e0,%f0\n\txor.w\t%e0,%e0\n\trotxl.l\t%S0";
|
| 4246 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4247 |
|
|
goto end;
|
| 4248 |
|
|
case SHIFT_ASHIFTRT:
|
| 4249 |
|
|
gcc_unreachable ();
|
| 4250 |
|
|
}
|
| 4251 |
|
|
}
|
| 4252 |
|
|
else if ((TARGET_H8300 && 16 <= count && count <= 20)
|
| 4253 |
|
|
|| (TARGET_H8300H && 16 <= count && count <= 19)
|
| 4254 |
|
|
|| (TARGET_H8300S && 16 <= count && count <= 21))
|
| 4255 |
|
|
{
|
| 4256 |
|
|
info->remainder = count - 16;
|
| 4257 |
|
|
|
| 4258 |
|
|
switch (shift_type)
|
| 4259 |
|
|
{
|
| 4260 |
|
|
case SHIFT_ASHIFT:
|
| 4261 |
|
|
info->special = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
|
| 4262 |
|
|
if (TARGET_H8300)
|
| 4263 |
|
|
info->shift1 = "add.w\t%e0,%e0";
|
| 4264 |
|
|
goto end;
|
| 4265 |
|
|
case SHIFT_LSHIFTRT:
|
| 4266 |
|
|
if (TARGET_H8300)
|
| 4267 |
|
|
{
|
| 4268 |
|
|
info->special = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0";
|
| 4269 |
|
|
info->shift1 = "shlr\t%x0\n\trotxr\t%w0";
|
| 4270 |
|
|
}
|
| 4271 |
|
|
else
|
| 4272 |
|
|
{
|
| 4273 |
|
|
info->special = "mov.w\t%e0,%f0\n\textu.l\t%S0";
|
| 4274 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4275 |
|
|
}
|
| 4276 |
|
|
goto end;
|
| 4277 |
|
|
case SHIFT_ASHIFTRT:
|
| 4278 |
|
|
if (TARGET_H8300)
|
| 4279 |
|
|
{
|
| 4280 |
|
|
info->special = "mov.w\t%e0,%f0\n\tshll\t%z0\n\tsubx\t%z0,%z0\n\tmov.b\t%z0,%y0";
|
| 4281 |
|
|
info->shift1 = "shar\t%x0\n\trotxr\t%w0";
|
| 4282 |
|
|
}
|
| 4283 |
|
|
else
|
| 4284 |
|
|
{
|
| 4285 |
|
|
info->special = "mov.w\t%e0,%f0\n\texts.l\t%S0";
|
| 4286 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4287 |
|
|
}
|
| 4288 |
|
|
goto end;
|
| 4289 |
|
|
}
|
| 4290 |
|
|
}
|
| 4291 |
|
|
else if (TARGET_H8300 && 24 <= count && count <= 28)
|
| 4292 |
|
|
{
|
| 4293 |
|
|
info->remainder = count - 24;
|
| 4294 |
|
|
|
| 4295 |
|
|
switch (shift_type)
|
| 4296 |
|
|
{
|
| 4297 |
|
|
case SHIFT_ASHIFT:
|
| 4298 |
|
|
info->special = "mov.b\t%w0,%z0\n\tsub.b\t%y0,%y0\n\tsub.w\t%f0,%f0";
|
| 4299 |
|
|
info->shift1 = "shll.b\t%z0";
|
| 4300 |
|
|
info->cc_inline = CC_SET_ZNV;
|
| 4301 |
|
|
goto end;
|
| 4302 |
|
|
case SHIFT_LSHIFTRT:
|
| 4303 |
|
|
info->special = "mov.b\t%z0,%w0\n\tsub.b\t%x0,%x0\n\tsub.w\t%e0,%e0";
|
| 4304 |
|
|
info->shift1 = "shlr.b\t%w0";
|
| 4305 |
|
|
info->cc_inline = CC_SET_ZNV;
|
| 4306 |
|
|
goto end;
|
| 4307 |
|
|
case SHIFT_ASHIFTRT:
|
| 4308 |
|
|
info->special = "mov.b\t%z0,%w0\n\tbld\t#7,%w0\n\tsubx\t%x0,%x0\n\tsubx\t%x0,%x0\n\tsubx\t%x0,%x0";
|
| 4309 |
|
|
info->shift1 = "shar.b\t%w0";
|
| 4310 |
|
|
info->cc_inline = CC_SET_ZNV;
|
| 4311 |
|
|
goto end;
|
| 4312 |
|
|
}
|
| 4313 |
|
|
}
|
| 4314 |
|
|
else if ((TARGET_H8300H && count == 24)
|
| 4315 |
|
|
|| (TARGET_H8300S && 24 <= count && count <= 25))
|
| 4316 |
|
|
{
|
| 4317 |
|
|
info->remainder = count - 24;
|
| 4318 |
|
|
|
| 4319 |
|
|
switch (shift_type)
|
| 4320 |
|
|
{
|
| 4321 |
|
|
case SHIFT_ASHIFT:
|
| 4322 |
|
|
info->special = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tmov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
|
| 4323 |
|
|
goto end;
|
| 4324 |
|
|
case SHIFT_LSHIFTRT:
|
| 4325 |
|
|
info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\textu.w\t%f0\n\textu.l\t%S0";
|
| 4326 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4327 |
|
|
goto end;
|
| 4328 |
|
|
case SHIFT_ASHIFTRT:
|
| 4329 |
|
|
info->special = "mov.w\t%e0,%f0\n\tmov.b\t%t0,%s0\n\texts.w\t%f0\n\texts.l\t%S0";
|
| 4330 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4331 |
|
|
goto end;
|
| 4332 |
|
|
}
|
| 4333 |
|
|
}
|
| 4334 |
|
|
else if (!TARGET_H8300 && count == 28)
|
| 4335 |
|
|
{
|
| 4336 |
|
|
switch (shift_type)
|
| 4337 |
|
|
{
|
| 4338 |
|
|
case SHIFT_ASHIFT:
|
| 4339 |
|
|
if (TARGET_H8300H)
|
| 4340 |
|
|
info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
|
| 4341 |
|
|
else
|
| 4342 |
|
|
info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\trotr.l\t#2,%S0\n\tsub.w\t%f0,%f0";
|
| 4343 |
|
|
goto end;
|
| 4344 |
|
|
case SHIFT_LSHIFTRT:
|
| 4345 |
|
|
if (TARGET_H8300H)
|
| 4346 |
|
|
{
|
| 4347 |
|
|
info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
|
| 4348 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4349 |
|
|
}
|
| 4350 |
|
|
else
|
| 4351 |
|
|
info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\trotl.l\t#2,%S0\n\textu.l\t%S0";
|
| 4352 |
|
|
goto end;
|
| 4353 |
|
|
case SHIFT_ASHIFTRT:
|
| 4354 |
|
|
gcc_unreachable ();
|
| 4355 |
|
|
}
|
| 4356 |
|
|
}
|
| 4357 |
|
|
else if (!TARGET_H8300 && count == 29)
|
| 4358 |
|
|
{
|
| 4359 |
|
|
switch (shift_type)
|
| 4360 |
|
|
{
|
| 4361 |
|
|
case SHIFT_ASHIFT:
|
| 4362 |
|
|
if (TARGET_H8300H)
|
| 4363 |
|
|
info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
|
| 4364 |
|
|
else
|
| 4365 |
|
|
info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
|
| 4366 |
|
|
goto end;
|
| 4367 |
|
|
case SHIFT_LSHIFTRT:
|
| 4368 |
|
|
if (TARGET_H8300H)
|
| 4369 |
|
|
{
|
| 4370 |
|
|
info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
|
| 4371 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4372 |
|
|
}
|
| 4373 |
|
|
else
|
| 4374 |
|
|
{
|
| 4375 |
|
|
info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
|
| 4376 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4377 |
|
|
}
|
| 4378 |
|
|
goto end;
|
| 4379 |
|
|
case SHIFT_ASHIFTRT:
|
| 4380 |
|
|
gcc_unreachable ();
|
| 4381 |
|
|
}
|
| 4382 |
|
|
}
|
| 4383 |
|
|
else if (!TARGET_H8300 && count == 30)
|
| 4384 |
|
|
{
|
| 4385 |
|
|
switch (shift_type)
|
| 4386 |
|
|
{
|
| 4387 |
|
|
case SHIFT_ASHIFT:
|
| 4388 |
|
|
if (TARGET_H8300H)
|
| 4389 |
|
|
info->special = "sub.w\t%e0,%e0\n\trotr.l\t%S0\n\trotr.l\t%S0\n\tsub.w\t%f0,%f0";
|
| 4390 |
|
|
else
|
| 4391 |
|
|
info->special = "sub.w\t%e0,%e0\n\trotr.l\t#2,%S0\n\tsub.w\t%f0,%f0";
|
| 4392 |
|
|
goto end;
|
| 4393 |
|
|
case SHIFT_LSHIFTRT:
|
| 4394 |
|
|
if (TARGET_H8300H)
|
| 4395 |
|
|
info->special = "sub.w\t%f0,%f0\n\trotl.l\t%S0\n\trotl.l\t%S0\n\textu.l\t%S0";
|
| 4396 |
|
|
else
|
| 4397 |
|
|
info->special = "sub.w\t%f0,%f0\n\trotl.l\t#2,%S0\n\textu.l\t%S0";
|
| 4398 |
|
|
goto end;
|
| 4399 |
|
|
case SHIFT_ASHIFTRT:
|
| 4400 |
|
|
gcc_unreachable ();
|
| 4401 |
|
|
}
|
| 4402 |
|
|
}
|
| 4403 |
|
|
else if (count == 31)
|
| 4404 |
|
|
{
|
| 4405 |
|
|
if (TARGET_H8300)
|
| 4406 |
|
|
{
|
| 4407 |
|
|
switch (shift_type)
|
| 4408 |
|
|
{
|
| 4409 |
|
|
case SHIFT_ASHIFT:
|
| 4410 |
|
|
info->special = "sub.w\t%e0,%e0\n\tshlr\t%w0\n\tmov.w\t%e0,%f0\n\trotxr\t%z0";
|
| 4411 |
|
|
goto end;
|
| 4412 |
|
|
case SHIFT_LSHIFTRT:
|
| 4413 |
|
|
info->special = "sub.w\t%f0,%f0\n\tshll\t%z0\n\tmov.w\t%f0,%e0\n\trotxl\t%w0";
|
| 4414 |
|
|
goto end;
|
| 4415 |
|
|
case SHIFT_ASHIFTRT:
|
| 4416 |
|
|
info->special = "shll\t%z0\n\tsubx\t%w0,%w0\n\tmov.b\t%w0,%x0\n\tmov.w\t%f0,%e0";
|
| 4417 |
|
|
goto end;
|
| 4418 |
|
|
}
|
| 4419 |
|
|
}
|
| 4420 |
|
|
else
|
| 4421 |
|
|
{
|
| 4422 |
|
|
switch (shift_type)
|
| 4423 |
|
|
{
|
| 4424 |
|
|
case SHIFT_ASHIFT:
|
| 4425 |
|
|
info->special = "shlr.l\t%S0\n\txor.l\t%S0,%S0\n\trotxr.l\t%S0";
|
| 4426 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4427 |
|
|
goto end;
|
| 4428 |
|
|
case SHIFT_LSHIFTRT:
|
| 4429 |
|
|
info->special = "shll.l\t%S0\n\txor.l\t%S0,%S0\n\trotxl.l\t%S0";
|
| 4430 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4431 |
|
|
goto end;
|
| 4432 |
|
|
case SHIFT_ASHIFTRT:
|
| 4433 |
|
|
info->special = "shll\t%e0\n\tsubx\t%w0,%w0\n\texts.w\t%T0\n\texts.l\t%S0";
|
| 4434 |
|
|
info->cc_special = CC_SET_ZNV;
|
| 4435 |
|
|
goto end;
|
| 4436 |
|
|
}
|
| 4437 |
|
|
}
|
| 4438 |
|
|
}
|
| 4439 |
|
|
gcc_unreachable ();
|
| 4440 |
|
|
|
| 4441 |
|
|
default:
|
| 4442 |
|
|
gcc_unreachable ();
|
| 4443 |
|
|
}
|
| 4444 |
|
|
|
| 4445 |
|
|
end:
|
| 4446 |
|
|
if (!TARGET_H8300S)
|
| 4447 |
|
|
info->shift2 = NULL;
|
| 4448 |
|
|
}
|
| 4449 |
|
|
|
| 4450 |
|
|
/* Given COUNT and MODE of a shift, return 1 if a scratch reg may be
|
| 4451 |
|
|
needed for some shift with COUNT and MODE. Return 0 otherwise. */
|
| 4452 |
|
|
|
| 4453 |
|
|
int
|
| 4454 |
|
|
h8300_shift_needs_scratch_p (int count, enum machine_mode mode)
|
| 4455 |
|
|
{
|
| 4456 |
|
|
enum h8_cpu cpu;
|
| 4457 |
|
|
int a, lr, ar;
|
| 4458 |
|
|
|
| 4459 |
|
|
if (GET_MODE_BITSIZE (mode) <= count)
|
| 4460 |
|
|
return 1;
|
| 4461 |
|
|
|
| 4462 |
|
|
/* Find out the target CPU. */
|
| 4463 |
|
|
if (TARGET_H8300)
|
| 4464 |
|
|
cpu = H8_300;
|
| 4465 |
|
|
else if (TARGET_H8300H)
|
| 4466 |
|
|
cpu = H8_300H;
|
| 4467 |
|
|
else
|
| 4468 |
|
|
cpu = H8_S;
|
| 4469 |
|
|
|
| 4470 |
|
|
/* Find the shift algorithm. */
|
| 4471 |
|
|
switch (mode)
|
| 4472 |
|
|
{
|
| 4473 |
|
|
case QImode:
|
| 4474 |
|
|
a = shift_alg_qi[cpu][SHIFT_ASHIFT][count];
|
| 4475 |
|
|
lr = shift_alg_qi[cpu][SHIFT_LSHIFTRT][count];
|
| 4476 |
|
|
ar = shift_alg_qi[cpu][SHIFT_ASHIFTRT][count];
|
| 4477 |
|
|
break;
|
| 4478 |
|
|
|
| 4479 |
|
|
case HImode:
|
| 4480 |
|
|
a = shift_alg_hi[cpu][SHIFT_ASHIFT][count];
|
| 4481 |
|
|
lr = shift_alg_hi[cpu][SHIFT_LSHIFTRT][count];
|
| 4482 |
|
|
ar = shift_alg_hi[cpu][SHIFT_ASHIFTRT][count];
|
| 4483 |
|
|
break;
|
| 4484 |
|
|
|
| 4485 |
|
|
case SImode:
|
| 4486 |
|
|
a = shift_alg_si[cpu][SHIFT_ASHIFT][count];
|
| 4487 |
|
|
lr = shift_alg_si[cpu][SHIFT_LSHIFTRT][count];
|
| 4488 |
|
|
ar = shift_alg_si[cpu][SHIFT_ASHIFTRT][count];
|
| 4489 |
|
|
break;
|
| 4490 |
|
|
|
| 4491 |
|
|
default:
|
| 4492 |
|
|
gcc_unreachable ();
|
| 4493 |
|
|
}
|
| 4494 |
|
|
|
| 4495 |
|
|
/* On H8/300H, count == 8 uses a scratch register. */
|
| 4496 |
|
|
return (a == SHIFT_LOOP || lr == SHIFT_LOOP || ar == SHIFT_LOOP
|
| 4497 |
|
|
|| (TARGET_H8300H && mode == SImode && count == 8));
|
| 4498 |
|
|
}
|
| 4499 |
|
|
|
| 4500 |
|
|
/* Output the assembler code for doing shifts. */
|
| 4501 |
|
|
|
| 4502 |
|
|
const char *
|
| 4503 |
|
|
output_a_shift (rtx *operands)
|
| 4504 |
|
|
{
|
| 4505 |
|
|
static int loopend_lab;
|
| 4506 |
|
|
rtx shift = operands[3];
|
| 4507 |
|
|
enum machine_mode mode = GET_MODE (shift);
|
| 4508 |
|
|
enum rtx_code code = GET_CODE (shift);
|
| 4509 |
|
|
enum shift_type shift_type;
|
| 4510 |
|
|
enum shift_mode shift_mode;
|
| 4511 |
|
|
struct shift_info info;
|
| 4512 |
|
|
int n;
|
| 4513 |
|
|
|
| 4514 |
|
|
loopend_lab++;
|
| 4515 |
|
|
|
| 4516 |
|
|
switch (mode)
|
| 4517 |
|
|
{
|
| 4518 |
|
|
case QImode:
|
| 4519 |
|
|
shift_mode = QIshift;
|
| 4520 |
|
|
break;
|
| 4521 |
|
|
case HImode:
|
| 4522 |
|
|
shift_mode = HIshift;
|
| 4523 |
|
|
break;
|
| 4524 |
|
|
case SImode:
|
| 4525 |
|
|
shift_mode = SIshift;
|
| 4526 |
|
|
break;
|
| 4527 |
|
|
default:
|
| 4528 |
|
|
gcc_unreachable ();
|
| 4529 |
|
|
}
|
| 4530 |
|
|
|
| 4531 |
|
|
switch (code)
|
| 4532 |
|
|
{
|
| 4533 |
|
|
case ASHIFTRT:
|
| 4534 |
|
|
shift_type = SHIFT_ASHIFTRT;
|
| 4535 |
|
|
break;
|
| 4536 |
|
|
case LSHIFTRT:
|
| 4537 |
|
|
shift_type = SHIFT_LSHIFTRT;
|
| 4538 |
|
|
break;
|
| 4539 |
|
|
case ASHIFT:
|
| 4540 |
|
|
shift_type = SHIFT_ASHIFT;
|
| 4541 |
|
|
break;
|
| 4542 |
|
|
default:
|
| 4543 |
|
|
gcc_unreachable ();
|
| 4544 |
|
|
}
|
| 4545 |
|
|
|
| 4546 |
|
|
/* This case must be taken care of by one of the two splitters
|
| 4547 |
|
|
that convert a variable shift into a loop. */
|
| 4548 |
|
|
gcc_assert (GET_CODE (operands[2]) == CONST_INT);
|
| 4549 |
|
|
|
| 4550 |
|
|
n = INTVAL (operands[2]);
|
| 4551 |
|
|
|
| 4552 |
|
|
/* If the count is negative, make it 0. */
|
| 4553 |
|
|
if (n < 0)
|
| 4554 |
|
|
n = 0;
|
| 4555 |
|
|
/* If the count is too big, truncate it.
|
| 4556 |
|
|
ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
|
| 4557 |
|
|
do the intuitive thing. */
|
| 4558 |
|
|
else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
|
| 4559 |
|
|
n = GET_MODE_BITSIZE (mode);
|
| 4560 |
|
|
|
| 4561 |
|
|
get_shift_alg (shift_type, shift_mode, n, &info);
|
| 4562 |
|
|
|
| 4563 |
|
|
switch (info.alg)
|
| 4564 |
|
|
{
|
| 4565 |
|
|
case SHIFT_SPECIAL:
|
| 4566 |
|
|
output_asm_insn (info.special, operands);
|
| 4567 |
|
|
/* Fall through. */
|
| 4568 |
|
|
|
| 4569 |
|
|
case SHIFT_INLINE:
|
| 4570 |
|
|
n = info.remainder;
|
| 4571 |
|
|
|
| 4572 |
|
|
/* Emit two bit shifts first. */
|
| 4573 |
|
|
if (info.shift2 != NULL)
|
| 4574 |
|
|
{
|
| 4575 |
|
|
for (; n > 1; n -= 2)
|
| 4576 |
|
|
output_asm_insn (info.shift2, operands);
|
| 4577 |
|
|
}
|
| 4578 |
|
|
|
| 4579 |
|
|
/* Now emit one bit shifts for any residual. */
|
| 4580 |
|
|
for (; n > 0; n--)
|
| 4581 |
|
|
output_asm_insn (info.shift1, operands);
|
| 4582 |
|
|
return "";
|
| 4583 |
|
|
|
| 4584 |
|
|
case SHIFT_ROT_AND:
|
| 4585 |
|
|
{
|
| 4586 |
|
|
int m = GET_MODE_BITSIZE (mode) - n;
|
| 4587 |
|
|
const int mask = (shift_type == SHIFT_ASHIFT
|
| 4588 |
|
|
? ((1 << m) - 1) << n
|
| 4589 |
|
|
: (1 << m) - 1);
|
| 4590 |
|
|
char insn_buf[200];
|
| 4591 |
|
|
|
| 4592 |
|
|
/* Not all possibilities of rotate are supported. They shouldn't
|
| 4593 |
|
|
be generated, but let's watch for 'em. */
|
| 4594 |
|
|
gcc_assert (info.shift1);
|
| 4595 |
|
|
|
| 4596 |
|
|
/* Emit two bit rotates first. */
|
| 4597 |
|
|
if (info.shift2 != NULL)
|
| 4598 |
|
|
{
|
| 4599 |
|
|
for (; m > 1; m -= 2)
|
| 4600 |
|
|
output_asm_insn (info.shift2, operands);
|
| 4601 |
|
|
}
|
| 4602 |
|
|
|
| 4603 |
|
|
/* Now single bit rotates for any residual. */
|
| 4604 |
|
|
for (; m > 0; m--)
|
| 4605 |
|
|
output_asm_insn (info.shift1, operands);
|
| 4606 |
|
|
|
| 4607 |
|
|
/* Now mask off the high bits. */
|
| 4608 |
|
|
switch (mode)
|
| 4609 |
|
|
{
|
| 4610 |
|
|
case QImode:
|
| 4611 |
|
|
sprintf (insn_buf, "and\t#%d,%%X0", mask);
|
| 4612 |
|
|
break;
|
| 4613 |
|
|
|
| 4614 |
|
|
case HImode:
|
| 4615 |
|
|
gcc_assert (TARGET_H8300H || TARGET_H8300S);
|
| 4616 |
|
|
sprintf (insn_buf, "and.w\t#%d,%%T0", mask);
|
| 4617 |
|
|
break;
|
| 4618 |
|
|
|
| 4619 |
|
|
default:
|
| 4620 |
|
|
gcc_unreachable ();
|
| 4621 |
|
|
}
|
| 4622 |
|
|
|
| 4623 |
|
|
output_asm_insn (insn_buf, operands);
|
| 4624 |
|
|
return "";
|
| 4625 |
|
|
}
|
| 4626 |
|
|
|
| 4627 |
|
|
case SHIFT_LOOP:
|
| 4628 |
|
|
/* A loop to shift by a "large" constant value.
|
| 4629 |
|
|
If we have shift-by-2 insns, use them. */
|
| 4630 |
|
|
if (info.shift2 != NULL)
|
| 4631 |
|
|
{
|
| 4632 |
|
|
fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n / 2,
|
| 4633 |
|
|
names_big[REGNO (operands[4])]);
|
| 4634 |
|
|
fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
|
| 4635 |
|
|
output_asm_insn (info.shift2, operands);
|
| 4636 |
|
|
output_asm_insn ("add #0xff,%X4", operands);
|
| 4637 |
|
|
fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
|
| 4638 |
|
|
if (n % 2)
|
| 4639 |
|
|
output_asm_insn (info.shift1, operands);
|
| 4640 |
|
|
}
|
| 4641 |
|
|
else
|
| 4642 |
|
|
{
|
| 4643 |
|
|
fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n,
|
| 4644 |
|
|
names_big[REGNO (operands[4])]);
|
| 4645 |
|
|
fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
|
| 4646 |
|
|
output_asm_insn (info.shift1, operands);
|
| 4647 |
|
|
output_asm_insn ("add #0xff,%X4", operands);
|
| 4648 |
|
|
fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
|
| 4649 |
|
|
}
|
| 4650 |
|
|
return "";
|
| 4651 |
|
|
|
| 4652 |
|
|
default:
|
| 4653 |
|
|
gcc_unreachable ();
|
| 4654 |
|
|
}
|
| 4655 |
|
|
}
|
| 4656 |
|
|
|
| 4657 |
|
|
/* Count the number of assembly instructions in a string TEMPL. */
|
| 4658 |
|
|
|
| 4659 |
|
|
static unsigned int
|
| 4660 |
|
|
h8300_asm_insn_count (const char *templ)
|
| 4661 |
|
|
{
|
| 4662 |
|
|
unsigned int count = 1;
|
| 4663 |
|
|
|
| 4664 |
|
|
for (; *templ; templ++)
|
| 4665 |
|
|
if (*templ == '\n')
|
| 4666 |
|
|
count++;
|
| 4667 |
|
|
|
| 4668 |
|
|
return count;
|
| 4669 |
|
|
}
|
| 4670 |
|
|
|
| 4671 |
|
|
/* Compute the length of a shift insn. */
|
| 4672 |
|
|
|
| 4673 |
|
|
unsigned int
|
| 4674 |
|
|
compute_a_shift_length (rtx insn ATTRIBUTE_UNUSED, rtx *operands)
|
| 4675 |
|
|
{
|
| 4676 |
|
|
rtx shift = operands[3];
|
| 4677 |
|
|
enum machine_mode mode = GET_MODE (shift);
|
| 4678 |
|
|
enum rtx_code code = GET_CODE (shift);
|
| 4679 |
|
|
enum shift_type shift_type;
|
| 4680 |
|
|
enum shift_mode shift_mode;
|
| 4681 |
|
|
struct shift_info info;
|
| 4682 |
|
|
unsigned int wlength = 0;
|
| 4683 |
|
|
|
| 4684 |
|
|
switch (mode)
|
| 4685 |
|
|
{
|
| 4686 |
|
|
case QImode:
|
| 4687 |
|
|
shift_mode = QIshift;
|
| 4688 |
|
|
break;
|
| 4689 |
|
|
case HImode:
|
| 4690 |
|
|
shift_mode = HIshift;
|
| 4691 |
|
|
break;
|
| 4692 |
|
|
case SImode:
|
| 4693 |
|
|
shift_mode = SIshift;
|
| 4694 |
|
|
break;
|
| 4695 |
|
|
default:
|
| 4696 |
|
|
gcc_unreachable ();
|
| 4697 |
|
|
}
|
| 4698 |
|
|
|
| 4699 |
|
|
switch (code)
|
| 4700 |
|
|
{
|
| 4701 |
|
|
case ASHIFTRT:
|
| 4702 |
|
|
shift_type = SHIFT_ASHIFTRT;
|
| 4703 |
|
|
break;
|
| 4704 |
|
|
case LSHIFTRT:
|
| 4705 |
|
|
shift_type = SHIFT_LSHIFTRT;
|
| 4706 |
|
|
break;
|
| 4707 |
|
|
case ASHIFT:
|
| 4708 |
|
|
shift_type = SHIFT_ASHIFT;
|
| 4709 |
|
|
break;
|
| 4710 |
|
|
default:
|
| 4711 |
|
|
gcc_unreachable ();
|
| 4712 |
|
|
}
|
| 4713 |
|
|
|
| 4714 |
|
|
if (GET_CODE (operands[2]) != CONST_INT)
|
| 4715 |
|
|
{
|
| 4716 |
|
|
/* Get the assembler code to do one shift. */
|
| 4717 |
|
|
get_shift_alg (shift_type, shift_mode, 1, &info);
|
| 4718 |
|
|
|
| 4719 |
|
|
return (4 + h8300_asm_insn_count (info.shift1)) * 2;
|
| 4720 |
|
|
}
|
| 4721 |
|
|
else
|
| 4722 |
|
|
{
|
| 4723 |
|
|
int n = INTVAL (operands[2]);
|
| 4724 |
|
|
|
| 4725 |
|
|
/* If the count is negative, make it 0. */
|
| 4726 |
|
|
if (n < 0)
|
| 4727 |
|
|
n = 0;
|
| 4728 |
|
|
/* If the count is too big, truncate it.
|
| 4729 |
|
|
ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
|
| 4730 |
|
|
do the intuitive thing. */
|
| 4731 |
|
|
else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
|
| 4732 |
|
|
n = GET_MODE_BITSIZE (mode);
|
| 4733 |
|
|
|
| 4734 |
|
|
get_shift_alg (shift_type, shift_mode, n, &info);
|
| 4735 |
|
|
|
| 4736 |
|
|
switch (info.alg)
|
| 4737 |
|
|
{
|
| 4738 |
|
|
case SHIFT_SPECIAL:
|
| 4739 |
|
|
wlength += h8300_asm_insn_count (info.special);
|
| 4740 |
|
|
|
| 4741 |
|
|
/* Every assembly instruction used in SHIFT_SPECIAL case
|
| 4742 |
|
|
takes 2 bytes except xor.l, which takes 4 bytes, so if we
|
| 4743 |
|
|
see xor.l, we just pretend that xor.l counts as two insns
|
| 4744 |
|
|
so that the insn length will be computed correctly. */
|
| 4745 |
|
|
if (strstr (info.special, "xor.l") != NULL)
|
| 4746 |
|
|
wlength++;
|
| 4747 |
|
|
|
| 4748 |
|
|
/* Fall through. */
|
| 4749 |
|
|
|
| 4750 |
|
|
case SHIFT_INLINE:
|
| 4751 |
|
|
n = info.remainder;
|
| 4752 |
|
|
|
| 4753 |
|
|
if (info.shift2 != NULL)
|
| 4754 |
|
|
{
|
| 4755 |
|
|
wlength += h8300_asm_insn_count (info.shift2) * (n / 2);
|
| 4756 |
|
|
n = n % 2;
|
| 4757 |
|
|
}
|
| 4758 |
|
|
|
| 4759 |
|
|
wlength += h8300_asm_insn_count (info.shift1) * n;
|
| 4760 |
|
|
|
| 4761 |
|
|
return 2 * wlength;
|
| 4762 |
|
|
|
| 4763 |
|
|
case SHIFT_ROT_AND:
|
| 4764 |
|
|
{
|
| 4765 |
|
|
int m = GET_MODE_BITSIZE (mode) - n;
|
| 4766 |
|
|
|
| 4767 |
|
|
/* Not all possibilities of rotate are supported. They shouldn't
|
| 4768 |
|
|
be generated, but let's watch for 'em. */
|
| 4769 |
|
|
gcc_assert (info.shift1);
|
| 4770 |
|
|
|
| 4771 |
|
|
if (info.shift2 != NULL)
|
| 4772 |
|
|
{
|
| 4773 |
|
|
wlength += h8300_asm_insn_count (info.shift2) * (m / 2);
|
| 4774 |
|
|
m = m % 2;
|
| 4775 |
|
|
}
|
| 4776 |
|
|
|
| 4777 |
|
|
wlength += h8300_asm_insn_count (info.shift1) * m;
|
| 4778 |
|
|
|
| 4779 |
|
|
/* Now mask off the high bits. */
|
| 4780 |
|
|
switch (mode)
|
| 4781 |
|
|
{
|
| 4782 |
|
|
case QImode:
|
| 4783 |
|
|
wlength += 1;
|
| 4784 |
|
|
break;
|
| 4785 |
|
|
case HImode:
|
| 4786 |
|
|
wlength += 2;
|
| 4787 |
|
|
break;
|
| 4788 |
|
|
case SImode:
|
| 4789 |
|
|
gcc_assert (!TARGET_H8300);
|
| 4790 |
|
|
wlength += 3;
|
| 4791 |
|
|
break;
|
| 4792 |
|
|
default:
|
| 4793 |
|
|
gcc_unreachable ();
|
| 4794 |
|
|
}
|
| 4795 |
|
|
return 2 * wlength;
|
| 4796 |
|
|
}
|
| 4797 |
|
|
|
| 4798 |
|
|
case SHIFT_LOOP:
|
| 4799 |
|
|
/* A loop to shift by a "large" constant value.
|
| 4800 |
|
|
If we have shift-by-2 insns, use them. */
|
| 4801 |
|
|
if (info.shift2 != NULL)
|
| 4802 |
|
|
{
|
| 4803 |
|
|
wlength += 3 + h8300_asm_insn_count (info.shift2);
|
| 4804 |
|
|
if (n % 2)
|
| 4805 |
|
|
wlength += h8300_asm_insn_count (info.shift1);
|
| 4806 |
|
|
}
|
| 4807 |
|
|
else
|
| 4808 |
|
|
{
|
| 4809 |
|
|
wlength += 3 + h8300_asm_insn_count (info.shift1);
|
| 4810 |
|
|
}
|
| 4811 |
|
|
return 2 * wlength;
|
| 4812 |
|
|
|
| 4813 |
|
|
default:
|
| 4814 |
|
|
gcc_unreachable ();
|
| 4815 |
|
|
}
|
| 4816 |
|
|
}
|
| 4817 |
|
|
}
|
| 4818 |
|
|
|
| 4819 |
|
|
/* Compute which flag bits are valid after a shift insn. */
|
| 4820 |
|
|
|
| 4821 |
|
|
enum attr_cc
|
| 4822 |
|
|
compute_a_shift_cc (rtx insn ATTRIBUTE_UNUSED, rtx *operands)
|
| 4823 |
|
|
{
|
| 4824 |
|
|
rtx shift = operands[3];
|
| 4825 |
|
|
enum machine_mode mode = GET_MODE (shift);
|
| 4826 |
|
|
enum rtx_code code = GET_CODE (shift);
|
| 4827 |
|
|
enum shift_type shift_type;
|
| 4828 |
|
|
enum shift_mode shift_mode;
|
| 4829 |
|
|
struct shift_info info;
|
| 4830 |
|
|
int n;
|
| 4831 |
|
|
|
| 4832 |
|
|
switch (mode)
|
| 4833 |
|
|
{
|
| 4834 |
|
|
case QImode:
|
| 4835 |
|
|
shift_mode = QIshift;
|
| 4836 |
|
|
break;
|
| 4837 |
|
|
case HImode:
|
| 4838 |
|
|
shift_mode = HIshift;
|
| 4839 |
|
|
break;
|
| 4840 |
|
|
case SImode:
|
| 4841 |
|
|
shift_mode = SIshift;
|
| 4842 |
|
|
break;
|
| 4843 |
|
|
default:
|
| 4844 |
|
|
gcc_unreachable ();
|
| 4845 |
|
|
}
|
| 4846 |
|
|
|
| 4847 |
|
|
switch (code)
|
| 4848 |
|
|
{
|
| 4849 |
|
|
case ASHIFTRT:
|
| 4850 |
|
|
shift_type = SHIFT_ASHIFTRT;
|
| 4851 |
|
|
break;
|
| 4852 |
|
|
case LSHIFTRT:
|
| 4853 |
|
|
shift_type = SHIFT_LSHIFTRT;
|
| 4854 |
|
|
break;
|
| 4855 |
|
|
case ASHIFT:
|
| 4856 |
|
|
shift_type = SHIFT_ASHIFT;
|
| 4857 |
|
|
break;
|
| 4858 |
|
|
default:
|
| 4859 |
|
|
gcc_unreachable ();
|
| 4860 |
|
|
}
|
| 4861 |
|
|
|
| 4862 |
|
|
/* This case must be taken care of by one of the two splitters
|
| 4863 |
|
|
that convert a variable shift into a loop. */
|
| 4864 |
|
|
gcc_assert (GET_CODE (operands[2]) == CONST_INT);
|
| 4865 |
|
|
|
| 4866 |
|
|
n = INTVAL (operands[2]);
|
| 4867 |
|
|
|
| 4868 |
|
|
/* If the count is negative, make it 0. */
|
| 4869 |
|
|
if (n < 0)
|
| 4870 |
|
|
n = 0;
|
| 4871 |
|
|
/* If the count is too big, truncate it.
|
| 4872 |
|
|
ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
|
| 4873 |
|
|
do the intuitive thing. */
|
| 4874 |
|
|
else if ((unsigned int) n > GET_MODE_BITSIZE (mode))
|
| 4875 |
|
|
n = GET_MODE_BITSIZE (mode);
|
| 4876 |
|
|
|
| 4877 |
|
|
get_shift_alg (shift_type, shift_mode, n, &info);
|
| 4878 |
|
|
|
| 4879 |
|
|
switch (info.alg)
|
| 4880 |
|
|
{
|
| 4881 |
|
|
case SHIFT_SPECIAL:
|
| 4882 |
|
|
if (info.remainder == 0)
|
| 4883 |
|
|
return info.cc_special;
|
| 4884 |
|
|
|
| 4885 |
|
|
/* Fall through. */
|
| 4886 |
|
|
|
| 4887 |
|
|
case SHIFT_INLINE:
|
| 4888 |
|
|
return info.cc_inline;
|
| 4889 |
|
|
|
| 4890 |
|
|
case SHIFT_ROT_AND:
|
| 4891 |
|
|
/* This case always ends with an and instruction. */
|
| 4892 |
|
|
return CC_SET_ZNV;
|
| 4893 |
|
|
|
| 4894 |
|
|
case SHIFT_LOOP:
|
| 4895 |
|
|
/* A loop to shift by a "large" constant value.
|
| 4896 |
|
|
If we have shift-by-2 insns, use them. */
|
| 4897 |
|
|
if (info.shift2 != NULL)
|
| 4898 |
|
|
{
|
| 4899 |
|
|
if (n % 2)
|
| 4900 |
|
|
return info.cc_inline;
|
| 4901 |
|
|
}
|
| 4902 |
|
|
return CC_CLOBBER;
|
| 4903 |
|
|
|
| 4904 |
|
|
default:
|
| 4905 |
|
|
gcc_unreachable ();
|
| 4906 |
|
|
}
|
| 4907 |
|
|
}
|
| 4908 |
|
|
|
| 4909 |
|
|
/* A rotation by a non-constant will cause a loop to be generated, in
|
| 4910 |
|
|
which a rotation by one bit is used. A rotation by a constant,
|
| 4911 |
|
|
including the one in the loop, will be taken care of by
|
| 4912 |
|
|
output_a_rotate () at the insn emit time. */
|
| 4913 |
|
|
|
| 4914 |
|
|
int
|
| 4915 |
|
|
expand_a_rotate (rtx operands[])
|
| 4916 |
|
|
{
|
| 4917 |
|
|
rtx dst = operands[0];
|
| 4918 |
|
|
rtx src = operands[1];
|
| 4919 |
|
|
rtx rotate_amount = operands[2];
|
| 4920 |
|
|
enum machine_mode mode = GET_MODE (dst);
|
| 4921 |
|
|
|
| 4922 |
|
|
if (h8sx_classify_shift (mode, ROTATE, rotate_amount) == H8SX_SHIFT_UNARY)
|
| 4923 |
|
|
return false;
|
| 4924 |
|
|
|
| 4925 |
|
|
/* We rotate in place. */
|
| 4926 |
|
|
emit_move_insn (dst, src);
|
| 4927 |
|
|
|
| 4928 |
|
|
if (GET_CODE (rotate_amount) != CONST_INT)
|
| 4929 |
|
|
{
|
| 4930 |
|
|
rtx counter = gen_reg_rtx (QImode);
|
| 4931 |
|
|
rtx start_label = gen_label_rtx ();
|
| 4932 |
|
|
rtx end_label = gen_label_rtx ();
|
| 4933 |
|
|
|
| 4934 |
|
|
/* If the rotate amount is less than or equal to 0,
|
| 4935 |
|
|
we go out of the loop. */
|
| 4936 |
|
|
emit_cmp_and_jump_insns (rotate_amount, const0_rtx, LE, NULL_RTX,
|
| 4937 |
|
|
QImode, 0, end_label);
|
| 4938 |
|
|
|
| 4939 |
|
|
/* Initialize the loop counter. */
|
| 4940 |
|
|
emit_move_insn (counter, rotate_amount);
|
| 4941 |
|
|
|
| 4942 |
|
|
emit_label (start_label);
|
| 4943 |
|
|
|
| 4944 |
|
|
/* Rotate by one bit. */
|
| 4945 |
|
|
switch (mode)
|
| 4946 |
|
|
{
|
| 4947 |
|
|
case QImode:
|
| 4948 |
|
|
emit_insn (gen_rotlqi3_1 (dst, dst, const1_rtx));
|
| 4949 |
|
|
break;
|
| 4950 |
|
|
case HImode:
|
| 4951 |
|
|
emit_insn (gen_rotlhi3_1 (dst, dst, const1_rtx));
|
| 4952 |
|
|
break;
|
| 4953 |
|
|
case SImode:
|
| 4954 |
|
|
emit_insn (gen_rotlsi3_1 (dst, dst, const1_rtx));
|
| 4955 |
|
|
break;
|
| 4956 |
|
|
default:
|
| 4957 |
|
|
gcc_unreachable ();
|
| 4958 |
|
|
}
|
| 4959 |
|
|
|
| 4960 |
|
|
/* Decrement the counter by 1. */
|
| 4961 |
|
|
emit_insn (gen_addqi3 (counter, counter, constm1_rtx));
|
| 4962 |
|
|
|
| 4963 |
|
|
/* If the loop counter is nonzero, we go back to the beginning
|
| 4964 |
|
|
of the loop. */
|
| 4965 |
|
|
emit_cmp_and_jump_insns (counter, const0_rtx, NE, NULL_RTX, QImode, 1,
|
| 4966 |
|
|
start_label);
|
| 4967 |
|
|
|
| 4968 |
|
|
emit_label (end_label);
|
| 4969 |
|
|
}
|
| 4970 |
|
|
else
|
| 4971 |
|
|
{
|
| 4972 |
|
|
/* Rotate by AMOUNT bits. */
|
| 4973 |
|
|
switch (mode)
|
| 4974 |
|
|
{
|
| 4975 |
|
|
case QImode:
|
| 4976 |
|
|
emit_insn (gen_rotlqi3_1 (dst, dst, rotate_amount));
|
| 4977 |
|
|
break;
|
| 4978 |
|
|
case HImode:
|
| 4979 |
|
|
emit_insn (gen_rotlhi3_1 (dst, dst, rotate_amount));
|
| 4980 |
|
|
break;
|
| 4981 |
|
|
case SImode:
|
| 4982 |
|
|
emit_insn (gen_rotlsi3_1 (dst, dst, rotate_amount));
|
| 4983 |
|
|
break;
|
| 4984 |
|
|
default:
|
| 4985 |
|
|
gcc_unreachable ();
|
| 4986 |
|
|
}
|
| 4987 |
|
|
}
|
| 4988 |
|
|
|
| 4989 |
|
|
return 1;
|
| 4990 |
|
|
}
|
| 4991 |
|
|
|
| 4992 |
|
|
/* Output a rotate insn. */
|
| 4993 |
|
|
|
| 4994 |
|
|
const char *
|
| 4995 |
|
|
output_a_rotate (enum rtx_code code, rtx *operands)
|
| 4996 |
|
|
{
|
| 4997 |
|
|
rtx dst = operands[0];
|
| 4998 |
|
|
rtx rotate_amount = operands[2];
|
| 4999 |
|
|
enum shift_mode rotate_mode;
|
| 5000 |
|
|
enum shift_type rotate_type;
|
| 5001 |
|
|
const char *insn_buf;
|
| 5002 |
|
|
int bits;
|
| 5003 |
|
|
int amount;
|
| 5004 |
|
|
enum machine_mode mode = GET_MODE (dst);
|
| 5005 |
|
|
|
| 5006 |
|
|
gcc_assert (GET_CODE (rotate_amount) == CONST_INT);
|
| 5007 |
|
|
|
| 5008 |
|
|
switch (mode)
|
| 5009 |
|
|
{
|
| 5010 |
|
|
case QImode:
|
| 5011 |
|
|
rotate_mode = QIshift;
|
| 5012 |
|
|
break;
|
| 5013 |
|
|
case HImode:
|
| 5014 |
|
|
rotate_mode = HIshift;
|
| 5015 |
|
|
break;
|
| 5016 |
|
|
case SImode:
|
| 5017 |
|
|
rotate_mode = SIshift;
|
| 5018 |
|
|
break;
|
| 5019 |
|
|
default:
|
| 5020 |
|
|
gcc_unreachable ();
|
| 5021 |
|
|
}
|
| 5022 |
|
|
|
| 5023 |
|
|
switch (code)
|
| 5024 |
|
|
{
|
| 5025 |
|
|
case ROTATERT:
|
| 5026 |
|
|
rotate_type = SHIFT_ASHIFT;
|
| 5027 |
|
|
break;
|
| 5028 |
|
|
case ROTATE:
|
| 5029 |
|
|
rotate_type = SHIFT_LSHIFTRT;
|
| 5030 |
|
|
break;
|
| 5031 |
|
|
default:
|
| 5032 |
|
|
gcc_unreachable ();
|
| 5033 |
|
|
}
|
| 5034 |
|
|
|
| 5035 |
|
|
amount = INTVAL (rotate_amount);
|
| 5036 |
|
|
|
| 5037 |
|
|
/* Clean up AMOUNT. */
|
| 5038 |
|
|
if (amount < 0)
|
| 5039 |
|
|
amount = 0;
|
| 5040 |
|
|
if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
|
| 5041 |
|
|
amount = GET_MODE_BITSIZE (mode);
|
| 5042 |
|
|
|
| 5043 |
|
|
/* Determine the faster direction. After this phase, amount will be
|
| 5044 |
|
|
at most a half of GET_MODE_BITSIZE (mode). */
|
| 5045 |
|
|
if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
|
| 5046 |
|
|
{
|
| 5047 |
|
|
/* Flip the direction. */
|
| 5048 |
|
|
amount = GET_MODE_BITSIZE (mode) - amount;
|
| 5049 |
|
|
rotate_type =
|
| 5050 |
|
|
(rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
|
| 5051 |
|
|
}
|
| 5052 |
|
|
|
| 5053 |
|
|
/* See if a byte swap (in HImode) or a word swap (in SImode) can
|
| 5054 |
|
|
boost up the rotation. */
|
| 5055 |
|
|
if ((mode == HImode && TARGET_H8300 && amount >= 5)
|
| 5056 |
|
|
|| (mode == HImode && TARGET_H8300H && amount >= 6)
|
| 5057 |
|
|
|| (mode == HImode && TARGET_H8300S && amount == 8)
|
| 5058 |
|
|
|| (mode == SImode && TARGET_H8300H && amount >= 10)
|
| 5059 |
|
|
|| (mode == SImode && TARGET_H8300S && amount >= 13))
|
| 5060 |
|
|
{
|
| 5061 |
|
|
switch (mode)
|
| 5062 |
|
|
{
|
| 5063 |
|
|
case HImode:
|
| 5064 |
|
|
/* This code works on any family. */
|
| 5065 |
|
|
insn_buf = "xor.b\t%s0,%t0\n\txor.b\t%t0,%s0\n\txor.b\t%s0,%t0";
|
| 5066 |
|
|
output_asm_insn (insn_buf, operands);
|
| 5067 |
|
|
break;
|
| 5068 |
|
|
|
| 5069 |
|
|
case SImode:
|
| 5070 |
|
|
/* This code works on the H8/300H and H8S. */
|
| 5071 |
|
|
insn_buf = "xor.w\t%e0,%f0\n\txor.w\t%f0,%e0\n\txor.w\t%e0,%f0";
|
| 5072 |
|
|
output_asm_insn (insn_buf, operands);
|
| 5073 |
|
|
break;
|
| 5074 |
|
|
|
| 5075 |
|
|
default:
|
| 5076 |
|
|
gcc_unreachable ();
|
| 5077 |
|
|
}
|
| 5078 |
|
|
|
| 5079 |
|
|
/* Adjust AMOUNT and flip the direction. */
|
| 5080 |
|
|
amount = GET_MODE_BITSIZE (mode) / 2 - amount;
|
| 5081 |
|
|
rotate_type =
|
| 5082 |
|
|
(rotate_type == SHIFT_ASHIFT) ? SHIFT_LSHIFTRT : SHIFT_ASHIFT;
|
| 5083 |
|
|
}
|
| 5084 |
|
|
|
| 5085 |
|
|
/* Output rotate insns. */
|
| 5086 |
|
|
for (bits = TARGET_H8300S ? 2 : 1; bits > 0; bits /= 2)
|
| 5087 |
|
|
{
|
| 5088 |
|
|
if (bits == 2)
|
| 5089 |
|
|
insn_buf = rotate_two[rotate_type][rotate_mode];
|
| 5090 |
|
|
else
|
| 5091 |
|
|
insn_buf = rotate_one[cpu_type][rotate_type][rotate_mode];
|
| 5092 |
|
|
|
| 5093 |
|
|
for (; amount >= bits; amount -= bits)
|
| 5094 |
|
|
output_asm_insn (insn_buf, operands);
|
| 5095 |
|
|
}
|
| 5096 |
|
|
|
| 5097 |
|
|
return "";
|
| 5098 |
|
|
}
|
| 5099 |
|
|
|
| 5100 |
|
|
/* Compute the length of a rotate insn. */
|
| 5101 |
|
|
|
| 5102 |
|
|
unsigned int
|
| 5103 |
|
|
compute_a_rotate_length (rtx *operands)
|
| 5104 |
|
|
{
|
| 5105 |
|
|
rtx src = operands[1];
|
| 5106 |
|
|
rtx amount_rtx = operands[2];
|
| 5107 |
|
|
enum machine_mode mode = GET_MODE (src);
|
| 5108 |
|
|
int amount;
|
| 5109 |
|
|
unsigned int length = 0;
|
| 5110 |
|
|
|
| 5111 |
|
|
gcc_assert (GET_CODE (amount_rtx) == CONST_INT);
|
| 5112 |
|
|
|
| 5113 |
|
|
amount = INTVAL (amount_rtx);
|
| 5114 |
|
|
|
| 5115 |
|
|
/* Clean up AMOUNT. */
|
| 5116 |
|
|
if (amount < 0)
|
| 5117 |
|
|
amount = 0;
|
| 5118 |
|
|
if ((unsigned int) amount > GET_MODE_BITSIZE (mode))
|
| 5119 |
|
|
amount = GET_MODE_BITSIZE (mode);
|
| 5120 |
|
|
|
| 5121 |
|
|
/* Determine the faster direction. After this phase, amount
|
| 5122 |
|
|
will be at most a half of GET_MODE_BITSIZE (mode). */
|
| 5123 |
|
|
if ((unsigned int) amount > GET_MODE_BITSIZE (mode) / (unsigned) 2)
|
| 5124 |
|
|
/* Flip the direction. */
|
| 5125 |
|
|
amount = GET_MODE_BITSIZE (mode) - amount;
|
| 5126 |
|
|
|
| 5127 |
|
|
/* See if a byte swap (in HImode) or a word swap (in SImode) can
|
| 5128 |
|
|
boost up the rotation. */
|
| 5129 |
|
|
if ((mode == HImode && TARGET_H8300 && amount >= 5)
|
| 5130 |
|
|
|| (mode == HImode && TARGET_H8300H && amount >= 6)
|
| 5131 |
|
|
|| (mode == HImode && TARGET_H8300S && amount == 8)
|
| 5132 |
|
|
|| (mode == SImode && TARGET_H8300H && amount >= 10)
|
| 5133 |
|
|
|| (mode == SImode && TARGET_H8300S && amount >= 13))
|
| 5134 |
|
|
{
|
| 5135 |
|
|
/* Adjust AMOUNT and flip the direction. */
|
| 5136 |
|
|
amount = GET_MODE_BITSIZE (mode) / 2 - amount;
|
| 5137 |
|
|
length += 6;
|
| 5138 |
|
|
}
|
| 5139 |
|
|
|
| 5140 |
|
|
/* We use 2-bit rotations on the H8S. */
|
| 5141 |
|
|
if (TARGET_H8300S)
|
| 5142 |
|
|
amount = amount / 2 + amount % 2;
|
| 5143 |
|
|
|
| 5144 |
|
|
/* The H8/300 uses three insns to rotate one bit, taking 6
|
| 5145 |
|
|
length. */
|
| 5146 |
|
|
length += amount * ((TARGET_H8300 && mode == HImode) ? 6 : 2);
|
| 5147 |
|
|
|
| 5148 |
|
|
return length;
|
| 5149 |
|
|
}
|
| 5150 |
|
|
|
| 5151 |
|
|
/* Fix the operands of a gen_xxx so that it could become a bit
|
| 5152 |
|
|
operating insn. */
|
| 5153 |
|
|
|
| 5154 |
|
|
int
|
| 5155 |
|
|
fix_bit_operand (rtx *operands, enum rtx_code code)
|
| 5156 |
|
|
{
|
| 5157 |
|
|
/* The bit_operand predicate accepts any memory during RTL generation, but
|
| 5158 |
|
|
only 'U' memory afterwards, so if this is a MEM operand, we must force
|
| 5159 |
|
|
it to be valid for 'U' by reloading the address. */
|
| 5160 |
|
|
|
| 5161 |
|
|
if (code == AND
|
| 5162 |
|
|
? single_zero_operand (operands[2], QImode)
|
| 5163 |
|
|
: single_one_operand (operands[2], QImode))
|
| 5164 |
|
|
{
|
| 5165 |
|
|
/* OK to have a memory dest. */
|
| 5166 |
|
|
if (GET_CODE (operands[0]) == MEM
|
| 5167 |
|
|
&& !satisfies_constraint_U (operands[0]))
|
| 5168 |
|
|
{
|
| 5169 |
|
|
rtx mem = gen_rtx_MEM (GET_MODE (operands[0]),
|
| 5170 |
|
|
copy_to_mode_reg (Pmode,
|
| 5171 |
|
|
XEXP (operands[0], 0)));
|
| 5172 |
|
|
MEM_COPY_ATTRIBUTES (mem, operands[0]);
|
| 5173 |
|
|
operands[0] = mem;
|
| 5174 |
|
|
}
|
| 5175 |
|
|
|
| 5176 |
|
|
if (GET_CODE (operands[1]) == MEM
|
| 5177 |
|
|
&& !satisfies_constraint_U (operands[1]))
|
| 5178 |
|
|
{
|
| 5179 |
|
|
rtx mem = gen_rtx_MEM (GET_MODE (operands[1]),
|
| 5180 |
|
|
copy_to_mode_reg (Pmode,
|
| 5181 |
|
|
XEXP (operands[1], 0)));
|
| 5182 |
|
|
MEM_COPY_ATTRIBUTES (mem, operands[0]);
|
| 5183 |
|
|
operands[1] = mem;
|
| 5184 |
|
|
}
|
| 5185 |
|
|
return 0;
|
| 5186 |
|
|
}
|
| 5187 |
|
|
|
| 5188 |
|
|
/* Dest and src op must be register. */
|
| 5189 |
|
|
|
| 5190 |
|
|
operands[1] = force_reg (QImode, operands[1]);
|
| 5191 |
|
|
{
|
| 5192 |
|
|
rtx res = gen_reg_rtx (QImode);
|
| 5193 |
|
|
switch (code)
|
| 5194 |
|
|
{
|
| 5195 |
|
|
case AND:
|
| 5196 |
|
|
emit_insn (gen_andqi3_1 (res, operands[1], operands[2]));
|
| 5197 |
|
|
break;
|
| 5198 |
|
|
case IOR:
|
| 5199 |
|
|
emit_insn (gen_iorqi3_1 (res, operands[1], operands[2]));
|
| 5200 |
|
|
break;
|
| 5201 |
|
|
case XOR:
|
| 5202 |
|
|
emit_insn (gen_xorqi3_1 (res, operands[1], operands[2]));
|
| 5203 |
|
|
break;
|
| 5204 |
|
|
default:
|
| 5205 |
|
|
gcc_unreachable ();
|
| 5206 |
|
|
}
|
| 5207 |
|
|
emit_insn (gen_movqi (operands[0], res));
|
| 5208 |
|
|
}
|
| 5209 |
|
|
return 1;
|
| 5210 |
|
|
}
|
| 5211 |
|
|
|
| 5212 |
|
|
/* Return nonzero if FUNC is an interrupt function as specified
|
| 5213 |
|
|
by the "interrupt" attribute. */
|
| 5214 |
|
|
|
| 5215 |
|
|
static int
|
| 5216 |
|
|
h8300_interrupt_function_p (tree func)
|
| 5217 |
|
|
{
|
| 5218 |
|
|
tree a;
|
| 5219 |
|
|
|
| 5220 |
|
|
if (TREE_CODE (func) != FUNCTION_DECL)
|
| 5221 |
|
|
return 0;
|
| 5222 |
|
|
|
| 5223 |
|
|
a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
|
| 5224 |
|
|
return a != NULL_TREE;
|
| 5225 |
|
|
}
|
| 5226 |
|
|
|
| 5227 |
|
|
/* Return nonzero if FUNC is a saveall function as specified by the
|
| 5228 |
|
|
"saveall" attribute. */
|
| 5229 |
|
|
|
| 5230 |
|
|
static int
|
| 5231 |
|
|
h8300_saveall_function_p (tree func)
|
| 5232 |
|
|
{
|
| 5233 |
|
|
tree a;
|
| 5234 |
|
|
|
| 5235 |
|
|
if (TREE_CODE (func) != FUNCTION_DECL)
|
| 5236 |
|
|
return 0;
|
| 5237 |
|
|
|
| 5238 |
|
|
a = lookup_attribute ("saveall", DECL_ATTRIBUTES (func));
|
| 5239 |
|
|
return a != NULL_TREE;
|
| 5240 |
|
|
}
|
| 5241 |
|
|
|
| 5242 |
|
|
/* Return nonzero if FUNC is an OS_Task function as specified
|
| 5243 |
|
|
by the "OS_Task" attribute. */
|
| 5244 |
|
|
|
| 5245 |
|
|
static int
|
| 5246 |
|
|
h8300_os_task_function_p (tree func)
|
| 5247 |
|
|
{
|
| 5248 |
|
|
tree a;
|
| 5249 |
|
|
|
| 5250 |
|
|
if (TREE_CODE (func) != FUNCTION_DECL)
|
| 5251 |
|
|
return 0;
|
| 5252 |
|
|
|
| 5253 |
|
|
a = lookup_attribute ("OS_Task", DECL_ATTRIBUTES (func));
|
| 5254 |
|
|
return a != NULL_TREE;
|
| 5255 |
|
|
}
|
| 5256 |
|
|
|
| 5257 |
|
|
/* Return nonzero if FUNC is a monitor function as specified
|
| 5258 |
|
|
by the "monitor" attribute. */
|
| 5259 |
|
|
|
| 5260 |
|
|
static int
|
| 5261 |
|
|
h8300_monitor_function_p (tree func)
|
| 5262 |
|
|
{
|
| 5263 |
|
|
tree a;
|
| 5264 |
|
|
|
| 5265 |
|
|
if (TREE_CODE (func) != FUNCTION_DECL)
|
| 5266 |
|
|
return 0;
|
| 5267 |
|
|
|
| 5268 |
|
|
a = lookup_attribute ("monitor", DECL_ATTRIBUTES (func));
|
| 5269 |
|
|
return a != NULL_TREE;
|
| 5270 |
|
|
}
|
| 5271 |
|
|
|
| 5272 |
|
|
/* Return nonzero if FUNC is a function that should be called
|
| 5273 |
|
|
through the function vector. */
|
| 5274 |
|
|
|
| 5275 |
|
|
int
|
| 5276 |
|
|
h8300_funcvec_function_p (tree func)
|
| 5277 |
|
|
{
|
| 5278 |
|
|
tree a;
|
| 5279 |
|
|
|
| 5280 |
|
|
if (TREE_CODE (func) != FUNCTION_DECL)
|
| 5281 |
|
|
return 0;
|
| 5282 |
|
|
|
| 5283 |
|
|
a = lookup_attribute ("function_vector", DECL_ATTRIBUTES (func));
|
| 5284 |
|
|
return a != NULL_TREE;
|
| 5285 |
|
|
}
|
| 5286 |
|
|
|
| 5287 |
|
|
/* Return nonzero if DECL is a variable that's in the eight bit
|
| 5288 |
|
|
data area. */
|
| 5289 |
|
|
|
| 5290 |
|
|
int
|
| 5291 |
|
|
h8300_eightbit_data_p (tree decl)
|
| 5292 |
|
|
{
|
| 5293 |
|
|
tree a;
|
| 5294 |
|
|
|
| 5295 |
|
|
if (TREE_CODE (decl) != VAR_DECL)
|
| 5296 |
|
|
return 0;
|
| 5297 |
|
|
|
| 5298 |
|
|
a = lookup_attribute ("eightbit_data", DECL_ATTRIBUTES (decl));
|
| 5299 |
|
|
return a != NULL_TREE;
|
| 5300 |
|
|
}
|
| 5301 |
|
|
|
| 5302 |
|
|
/* Return nonzero if DECL is a variable that's in the tiny
|
| 5303 |
|
|
data area. */
|
| 5304 |
|
|
|
| 5305 |
|
|
int
|
| 5306 |
|
|
h8300_tiny_data_p (tree decl)
|
| 5307 |
|
|
{
|
| 5308 |
|
|
tree a;
|
| 5309 |
|
|
|
| 5310 |
|
|
if (TREE_CODE (decl) != VAR_DECL)
|
| 5311 |
|
|
return 0;
|
| 5312 |
|
|
|
| 5313 |
|
|
a = lookup_attribute ("tiny_data", DECL_ATTRIBUTES (decl));
|
| 5314 |
|
|
return a != NULL_TREE;
|
| 5315 |
|
|
}
|
| 5316 |
|
|
|
| 5317 |
|
|
/* Generate an 'interrupt_handler' attribute for decls. We convert
|
| 5318 |
|
|
all the pragmas to corresponding attributes. */
|
| 5319 |
|
|
|
| 5320 |
|
|
static void
|
| 5321 |
|
|
h8300_insert_attributes (tree node, tree *attributes)
|
| 5322 |
|
|
{
|
| 5323 |
|
|
if (TREE_CODE (node) == FUNCTION_DECL)
|
| 5324 |
|
|
{
|
| 5325 |
|
|
if (pragma_interrupt)
|
| 5326 |
|
|
{
|
| 5327 |
|
|
pragma_interrupt = 0;
|
| 5328 |
|
|
|
| 5329 |
|
|
/* Add an 'interrupt_handler' attribute. */
|
| 5330 |
|
|
*attributes = tree_cons (get_identifier ("interrupt_handler"),
|
| 5331 |
|
|
NULL, *attributes);
|
| 5332 |
|
|
}
|
| 5333 |
|
|
|
| 5334 |
|
|
if (pragma_saveall)
|
| 5335 |
|
|
{
|
| 5336 |
|
|
pragma_saveall = 0;
|
| 5337 |
|
|
|
| 5338 |
|
|
/* Add an 'saveall' attribute. */
|
| 5339 |
|
|
*attributes = tree_cons (get_identifier ("saveall"),
|
| 5340 |
|
|
NULL, *attributes);
|
| 5341 |
|
|
}
|
| 5342 |
|
|
}
|
| 5343 |
|
|
}
|
| 5344 |
|
|
|
| 5345 |
|
|
/* Supported attributes:
|
| 5346 |
|
|
|
| 5347 |
|
|
interrupt_handler: output a prologue and epilogue suitable for an
|
| 5348 |
|
|
interrupt handler.
|
| 5349 |
|
|
|
| 5350 |
|
|
saveall: output a prologue and epilogue that saves and restores
|
| 5351 |
|
|
all registers except the stack pointer.
|
| 5352 |
|
|
|
| 5353 |
|
|
function_vector: This function should be called through the
|
| 5354 |
|
|
function vector.
|
| 5355 |
|
|
|
| 5356 |
|
|
eightbit_data: This variable lives in the 8-bit data area and can
|
| 5357 |
|
|
be referenced with 8-bit absolute memory addresses.
|
| 5358 |
|
|
|
| 5359 |
|
|
tiny_data: This variable lives in the tiny data area and can be
|
| 5360 |
|
|
referenced with 16-bit absolute memory references. */
|
| 5361 |
|
|
|
| 5362 |
|
|
static const struct attribute_spec h8300_attribute_table[] =
|
| 5363 |
|
|
{
|
| 5364 |
|
|
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
|
| 5365 |
|
|
affects_type_identity } */
|
| 5366 |
|
|
{ "interrupt_handler", 0, 0, true, false, false,
|
| 5367 |
|
|
h8300_handle_fndecl_attribute, false },
|
| 5368 |
|
|
{ "saveall", 0, 0, true, false, false,
|
| 5369 |
|
|
h8300_handle_fndecl_attribute, false },
|
| 5370 |
|
|
{ "OS_Task", 0, 0, true, false, false,
|
| 5371 |
|
|
h8300_handle_fndecl_attribute, false },
|
| 5372 |
|
|
{ "monitor", 0, 0, true, false, false,
|
| 5373 |
|
|
h8300_handle_fndecl_attribute, false },
|
| 5374 |
|
|
{ "function_vector", 0, 0, true, false, false,
|
| 5375 |
|
|
h8300_handle_fndecl_attribute, false },
|
| 5376 |
|
|
{ "eightbit_data", 0, 0, true, false, false,
|
| 5377 |
|
|
h8300_handle_eightbit_data_attribute, false },
|
| 5378 |
|
|
{ "tiny_data", 0, 0, true, false, false,
|
| 5379 |
|
|
h8300_handle_tiny_data_attribute, false },
|
| 5380 |
|
|
{ NULL, 0, 0, false, false, false, NULL, false }
|
| 5381 |
|
|
};
|
| 5382 |
|
|
|
| 5383 |
|
|
|
| 5384 |
|
|
/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
|
| 5385 |
|
|
struct attribute_spec.handler. */
|
| 5386 |
|
|
static tree
|
| 5387 |
|
|
h8300_handle_fndecl_attribute (tree *node, tree name,
|
| 5388 |
|
|
tree args ATTRIBUTE_UNUSED,
|
| 5389 |
|
|
int flags ATTRIBUTE_UNUSED,
|
| 5390 |
|
|
bool *no_add_attrs)
|
| 5391 |
|
|
{
|
| 5392 |
|
|
if (TREE_CODE (*node) != FUNCTION_DECL)
|
| 5393 |
|
|
{
|
| 5394 |
|
|
warning (OPT_Wattributes, "%qE attribute only applies to functions",
|
| 5395 |
|
|
name);
|
| 5396 |
|
|
*no_add_attrs = true;
|
| 5397 |
|
|
}
|
| 5398 |
|
|
|
| 5399 |
|
|
return NULL_TREE;
|
| 5400 |
|
|
}
|
| 5401 |
|
|
|
| 5402 |
|
|
/* Handle an "eightbit_data" attribute; arguments as in
|
| 5403 |
|
|
struct attribute_spec.handler. */
|
| 5404 |
|
|
static tree
|
| 5405 |
|
|
h8300_handle_eightbit_data_attribute (tree *node, tree name,
|
| 5406 |
|
|
tree args ATTRIBUTE_UNUSED,
|
| 5407 |
|
|
int flags ATTRIBUTE_UNUSED,
|
| 5408 |
|
|
bool *no_add_attrs)
|
| 5409 |
|
|
{
|
| 5410 |
|
|
tree decl = *node;
|
| 5411 |
|
|
|
| 5412 |
|
|
if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
|
| 5413 |
|
|
{
|
| 5414 |
|
|
DECL_SECTION_NAME (decl) = build_string (7, ".eight");
|
| 5415 |
|
|
}
|
| 5416 |
|
|
else
|
| 5417 |
|
|
{
|
| 5418 |
|
|
warning (OPT_Wattributes, "%qE attribute ignored",
|
| 5419 |
|
|
name);
|
| 5420 |
|
|
*no_add_attrs = true;
|
| 5421 |
|
|
}
|
| 5422 |
|
|
|
| 5423 |
|
|
return NULL_TREE;
|
| 5424 |
|
|
}
|
| 5425 |
|
|
|
| 5426 |
|
|
/* Handle an "tiny_data" attribute; arguments as in
|
| 5427 |
|
|
struct attribute_spec.handler. */
|
| 5428 |
|
|
static tree
|
| 5429 |
|
|
h8300_handle_tiny_data_attribute (tree *node, tree name,
|
| 5430 |
|
|
tree args ATTRIBUTE_UNUSED,
|
| 5431 |
|
|
int flags ATTRIBUTE_UNUSED,
|
| 5432 |
|
|
bool *no_add_attrs)
|
| 5433 |
|
|
{
|
| 5434 |
|
|
tree decl = *node;
|
| 5435 |
|
|
|
| 5436 |
|
|
if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
|
| 5437 |
|
|
{
|
| 5438 |
|
|
DECL_SECTION_NAME (decl) = build_string (6, ".tiny");
|
| 5439 |
|
|
}
|
| 5440 |
|
|
else
|
| 5441 |
|
|
{
|
| 5442 |
|
|
warning (OPT_Wattributes, "%qE attribute ignored",
|
| 5443 |
|
|
name);
|
| 5444 |
|
|
*no_add_attrs = true;
|
| 5445 |
|
|
}
|
| 5446 |
|
|
|
| 5447 |
|
|
return NULL_TREE;
|
| 5448 |
|
|
}
|
| 5449 |
|
|
|
| 5450 |
|
|
/* Mark function vectors, and various small data objects. */
|
| 5451 |
|
|
|
| 5452 |
|
|
static void
|
| 5453 |
|
|
h8300_encode_section_info (tree decl, rtx rtl, int first)
|
| 5454 |
|
|
{
|
| 5455 |
|
|
int extra_flags = 0;
|
| 5456 |
|
|
|
| 5457 |
|
|
default_encode_section_info (decl, rtl, first);
|
| 5458 |
|
|
|
| 5459 |
|
|
if (TREE_CODE (decl) == FUNCTION_DECL
|
| 5460 |
|
|
&& h8300_funcvec_function_p (decl))
|
| 5461 |
|
|
extra_flags = SYMBOL_FLAG_FUNCVEC_FUNCTION;
|
| 5462 |
|
|
else if (TREE_CODE (decl) == VAR_DECL
|
| 5463 |
|
|
&& (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
|
| 5464 |
|
|
{
|
| 5465 |
|
|
if (h8300_eightbit_data_p (decl))
|
| 5466 |
|
|
extra_flags = SYMBOL_FLAG_EIGHTBIT_DATA;
|
| 5467 |
|
|
else if (first && h8300_tiny_data_p (decl))
|
| 5468 |
|
|
extra_flags = SYMBOL_FLAG_TINY_DATA;
|
| 5469 |
|
|
}
|
| 5470 |
|
|
|
| 5471 |
|
|
if (extra_flags)
|
| 5472 |
|
|
SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
|
| 5473 |
|
|
}
|
| 5474 |
|
|
|
| 5475 |
|
|
/* Output a single-bit extraction. */
|
| 5476 |
|
|
|
| 5477 |
|
|
const char *
|
| 5478 |
|
|
output_simode_bld (int bild, rtx operands[])
|
| 5479 |
|
|
{
|
| 5480 |
|
|
if (TARGET_H8300)
|
| 5481 |
|
|
{
|
| 5482 |
|
|
/* Clear the destination register. */
|
| 5483 |
|
|
output_asm_insn ("sub.w\t%e0,%e0\n\tsub.w\t%f0,%f0", operands);
|
| 5484 |
|
|
|
| 5485 |
|
|
/* Now output the bit load or bit inverse load, and store it in
|
| 5486 |
|
|
the destination. */
|
| 5487 |
|
|
if (bild)
|
| 5488 |
|
|
output_asm_insn ("bild\t%Z2,%Y1", operands);
|
| 5489 |
|
|
else
|
| 5490 |
|
|
output_asm_insn ("bld\t%Z2,%Y1", operands);
|
| 5491 |
|
|
|
| 5492 |
|
|
output_asm_insn ("bst\t#0,%w0", operands);
|
| 5493 |
|
|
}
|
| 5494 |
|
|
else
|
| 5495 |
|
|
{
|
| 5496 |
|
|
/* Determine if we can clear the destination first. */
|
| 5497 |
|
|
int clear_first = (REG_P (operands[0]) && REG_P (operands[1])
|
| 5498 |
|
|
&& REGNO (operands[0]) != REGNO (operands[1]));
|
| 5499 |
|
|
|
| 5500 |
|
|
if (clear_first)
|
| 5501 |
|
|
output_asm_insn ("sub.l\t%S0,%S0", operands);
|
| 5502 |
|
|
|
| 5503 |
|
|
/* Output the bit load or bit inverse load. */
|
| 5504 |
|
|
if (bild)
|
| 5505 |
|
|
output_asm_insn ("bild\t%Z2,%Y1", operands);
|
| 5506 |
|
|
else
|
| 5507 |
|
|
output_asm_insn ("bld\t%Z2,%Y1", operands);
|
| 5508 |
|
|
|
| 5509 |
|
|
if (!clear_first)
|
| 5510 |
|
|
output_asm_insn ("xor.l\t%S0,%S0", operands);
|
| 5511 |
|
|
|
| 5512 |
|
|
/* Perform the bit store. */
|
| 5513 |
|
|
output_asm_insn ("rotxl.l\t%S0", operands);
|
| 5514 |
|
|
}
|
| 5515 |
|
|
|
| 5516 |
|
|
/* All done. */
|
| 5517 |
|
|
return "";
|
| 5518 |
|
|
}
|
| 5519 |
|
|
|
| 5520 |
|
|
/* Delayed-branch scheduling is more effective if we have some idea
|
| 5521 |
|
|
how long each instruction will be. Use a shorten_branches pass
|
| 5522 |
|
|
to get an initial estimate. */
|
| 5523 |
|
|
|
| 5524 |
|
|
static void
|
| 5525 |
|
|
h8300_reorg (void)
|
| 5526 |
|
|
{
|
| 5527 |
|
|
if (flag_delayed_branch)
|
| 5528 |
|
|
shorten_branches (get_insns ());
|
| 5529 |
|
|
}
|
| 5530 |
|
|
|
| 5531 |
|
|
#ifndef OBJECT_FORMAT_ELF
|
| 5532 |
|
|
static void
|
| 5533 |
|
|
h8300_asm_named_section (const char *name, unsigned int flags ATTRIBUTE_UNUSED,
|
| 5534 |
|
|
tree decl)
|
| 5535 |
|
|
{
|
| 5536 |
|
|
/* ??? Perhaps we should be using default_coff_asm_named_section. */
|
| 5537 |
|
|
fprintf (asm_out_file, "\t.section %s\n", name);
|
| 5538 |
|
|
}
|
| 5539 |
|
|
#endif /* ! OBJECT_FORMAT_ELF */
|
| 5540 |
|
|
|
| 5541 |
|
|
/* Nonzero if X is a constant address suitable as an 8-bit absolute,
|
| 5542 |
|
|
which is a special case of the 'R' operand. */
|
| 5543 |
|
|
|
| 5544 |
|
|
int
|
| 5545 |
|
|
h8300_eightbit_constant_address_p (rtx x)
|
| 5546 |
|
|
{
|
| 5547 |
|
|
/* The ranges of the 8-bit area. */
|
| 5548 |
|
|
const unsigned HOST_WIDE_INT n1 = trunc_int_for_mode (0xff00, HImode);
|
| 5549 |
|
|
const unsigned HOST_WIDE_INT n2 = trunc_int_for_mode (0xffff, HImode);
|
| 5550 |
|
|
const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00ffff00, SImode);
|
| 5551 |
|
|
const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00ffffff, SImode);
|
| 5552 |
|
|
const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0xffffff00, SImode);
|
| 5553 |
|
|
const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0xffffffff, SImode);
|
| 5554 |
|
|
|
| 5555 |
|
|
unsigned HOST_WIDE_INT addr;
|
| 5556 |
|
|
|
| 5557 |
|
|
/* We accept symbols declared with eightbit_data. */
|
| 5558 |
|
|
if (GET_CODE (x) == SYMBOL_REF)
|
| 5559 |
|
|
return (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_EIGHTBIT_DATA) != 0;
|
| 5560 |
|
|
|
| 5561 |
|
|
if (GET_CODE (x) != CONST_INT)
|
| 5562 |
|
|
return 0;
|
| 5563 |
|
|
|
| 5564 |
|
|
addr = INTVAL (x);
|
| 5565 |
|
|
|
| 5566 |
|
|
return (0
|
| 5567 |
|
|
|| ((TARGET_H8300 || TARGET_NORMAL_MODE) && IN_RANGE (addr, n1, n2))
|
| 5568 |
|
|
|| (TARGET_H8300H && IN_RANGE (addr, h1, h2))
|
| 5569 |
|
|
|| (TARGET_H8300S && IN_RANGE (addr, s1, s2)));
|
| 5570 |
|
|
}
|
| 5571 |
|
|
|
| 5572 |
|
|
/* Nonzero if X is a constant address suitable as an 16-bit absolute
|
| 5573 |
|
|
on H8/300H and H8S. */
|
| 5574 |
|
|
|
| 5575 |
|
|
int
|
| 5576 |
|
|
h8300_tiny_constant_address_p (rtx x)
|
| 5577 |
|
|
{
|
| 5578 |
|
|
/* The ranges of the 16-bit area. */
|
| 5579 |
|
|
const unsigned HOST_WIDE_INT h1 = trunc_int_for_mode (0x00000000, SImode);
|
| 5580 |
|
|
const unsigned HOST_WIDE_INT h2 = trunc_int_for_mode (0x00007fff, SImode);
|
| 5581 |
|
|
const unsigned HOST_WIDE_INT h3 = trunc_int_for_mode (0x00ff8000, SImode);
|
| 5582 |
|
|
const unsigned HOST_WIDE_INT h4 = trunc_int_for_mode (0x00ffffff, SImode);
|
| 5583 |
|
|
const unsigned HOST_WIDE_INT s1 = trunc_int_for_mode (0x00000000, SImode);
|
| 5584 |
|
|
const unsigned HOST_WIDE_INT s2 = trunc_int_for_mode (0x00007fff, SImode);
|
| 5585 |
|
|
const unsigned HOST_WIDE_INT s3 = trunc_int_for_mode (0xffff8000, SImode);
|
| 5586 |
|
|
const unsigned HOST_WIDE_INT s4 = trunc_int_for_mode (0xffffffff, SImode);
|
| 5587 |
|
|
|
| 5588 |
|
|
unsigned HOST_WIDE_INT addr;
|
| 5589 |
|
|
|
| 5590 |
|
|
switch (GET_CODE (x))
|
| 5591 |
|
|
{
|
| 5592 |
|
|
case SYMBOL_REF:
|
| 5593 |
|
|
/* In the normal mode, any symbol fits in the 16-bit absolute
|
| 5594 |
|
|
address range. We also accept symbols declared with
|
| 5595 |
|
|
tiny_data. */
|
| 5596 |
|
|
return (TARGET_NORMAL_MODE
|
| 5597 |
|
|
|| (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_TINY_DATA) != 0);
|
| 5598 |
|
|
|
| 5599 |
|
|
case CONST_INT:
|
| 5600 |
|
|
addr = INTVAL (x);
|
| 5601 |
|
|
return (TARGET_NORMAL_MODE
|
| 5602 |
|
|
|| (TARGET_H8300H
|
| 5603 |
|
|
&& (IN_RANGE (addr, h1, h2) || IN_RANGE (addr, h3, h4)))
|
| 5604 |
|
|
|| (TARGET_H8300S
|
| 5605 |
|
|
&& (IN_RANGE (addr, s1, s2) || IN_RANGE (addr, s3, s4))));
|
| 5606 |
|
|
|
| 5607 |
|
|
case CONST:
|
| 5608 |
|
|
return TARGET_NORMAL_MODE;
|
| 5609 |
|
|
|
| 5610 |
|
|
default:
|
| 5611 |
|
|
return 0;
|
| 5612 |
|
|
}
|
| 5613 |
|
|
|
| 5614 |
|
|
}
|
| 5615 |
|
|
|
| 5616 |
|
|
/* Return nonzero if ADDR1 and ADDR2 point to consecutive memory
|
| 5617 |
|
|
locations that can be accessed as a 16-bit word. */
|
| 5618 |
|
|
|
| 5619 |
|
|
int
|
| 5620 |
|
|
byte_accesses_mergeable_p (rtx addr1, rtx addr2)
|
| 5621 |
|
|
{
|
| 5622 |
|
|
HOST_WIDE_INT offset1, offset2;
|
| 5623 |
|
|
rtx reg1, reg2;
|
| 5624 |
|
|
|
| 5625 |
|
|
if (REG_P (addr1))
|
| 5626 |
|
|
{
|
| 5627 |
|
|
reg1 = addr1;
|
| 5628 |
|
|
offset1 = 0;
|
| 5629 |
|
|
}
|
| 5630 |
|
|
else if (GET_CODE (addr1) == PLUS
|
| 5631 |
|
|
&& REG_P (XEXP (addr1, 0))
|
| 5632 |
|
|
&& GET_CODE (XEXP (addr1, 1)) == CONST_INT)
|
| 5633 |
|
|
{
|
| 5634 |
|
|
reg1 = XEXP (addr1, 0);
|
| 5635 |
|
|
offset1 = INTVAL (XEXP (addr1, 1));
|
| 5636 |
|
|
}
|
| 5637 |
|
|
else
|
| 5638 |
|
|
return 0;
|
| 5639 |
|
|
|
| 5640 |
|
|
if (REG_P (addr2))
|
| 5641 |
|
|
{
|
| 5642 |
|
|
reg2 = addr2;
|
| 5643 |
|
|
offset2 = 0;
|
| 5644 |
|
|
}
|
| 5645 |
|
|
else if (GET_CODE (addr2) == PLUS
|
| 5646 |
|
|
&& REG_P (XEXP (addr2, 0))
|
| 5647 |
|
|
&& GET_CODE (XEXP (addr2, 1)) == CONST_INT)
|
| 5648 |
|
|
{
|
| 5649 |
|
|
reg2 = XEXP (addr2, 0);
|
| 5650 |
|
|
offset2 = INTVAL (XEXP (addr2, 1));
|
| 5651 |
|
|
}
|
| 5652 |
|
|
else
|
| 5653 |
|
|
return 0;
|
| 5654 |
|
|
|
| 5655 |
|
|
if (((reg1 == stack_pointer_rtx && reg2 == stack_pointer_rtx)
|
| 5656 |
|
|
|| (reg1 == frame_pointer_rtx && reg2 == frame_pointer_rtx))
|
| 5657 |
|
|
&& offset1 % 2 == 0
|
| 5658 |
|
|
&& offset1 + 1 == offset2)
|
| 5659 |
|
|
return 1;
|
| 5660 |
|
|
|
| 5661 |
|
|
return 0;
|
| 5662 |
|
|
}
|
| 5663 |
|
|
|
| 5664 |
|
|
/* Return nonzero if we have the same comparison insn as I3 two insns
|
| 5665 |
|
|
before I3. I3 is assumed to be a comparison insn. */
|
| 5666 |
|
|
|
| 5667 |
|
|
int
|
| 5668 |
|
|
same_cmp_preceding_p (rtx i3)
|
| 5669 |
|
|
{
|
| 5670 |
|
|
rtx i1, i2;
|
| 5671 |
|
|
|
| 5672 |
|
|
/* Make sure we have a sequence of three insns. */
|
| 5673 |
|
|
i2 = prev_nonnote_insn (i3);
|
| 5674 |
|
|
if (i2 == NULL_RTX)
|
| 5675 |
|
|
return 0;
|
| 5676 |
|
|
i1 = prev_nonnote_insn (i2);
|
| 5677 |
|
|
if (i1 == NULL_RTX)
|
| 5678 |
|
|
return 0;
|
| 5679 |
|
|
|
| 5680 |
|
|
return (INSN_P (i1) && rtx_equal_p (PATTERN (i1), PATTERN (i3))
|
| 5681 |
|
|
&& any_condjump_p (i2) && onlyjump_p (i2));
|
| 5682 |
|
|
}
|
| 5683 |
|
|
|
| 5684 |
|
|
/* Return nonzero if we have the same comparison insn as I1 two insns
|
| 5685 |
|
|
after I1. I1 is assumed to be a comparison insn. */
|
| 5686 |
|
|
|
| 5687 |
|
|
int
|
| 5688 |
|
|
same_cmp_following_p (rtx i1)
|
| 5689 |
|
|
{
|
| 5690 |
|
|
rtx i2, i3;
|
| 5691 |
|
|
|
| 5692 |
|
|
/* Make sure we have a sequence of three insns. */
|
| 5693 |
|
|
i2 = next_nonnote_insn (i1);
|
| 5694 |
|
|
if (i2 == NULL_RTX)
|
| 5695 |
|
|
return 0;
|
| 5696 |
|
|
i3 = next_nonnote_insn (i2);
|
| 5697 |
|
|
if (i3 == NULL_RTX)
|
| 5698 |
|
|
return 0;
|
| 5699 |
|
|
|
| 5700 |
|
|
return (INSN_P (i3) && rtx_equal_p (PATTERN (i1), PATTERN (i3))
|
| 5701 |
|
|
&& any_condjump_p (i2) && onlyjump_p (i2));
|
| 5702 |
|
|
}
|
| 5703 |
|
|
|
| 5704 |
|
|
/* Return nonzero if OPERANDS are valid for stm (or ldm) that pushes
|
| 5705 |
|
|
(or pops) N registers. OPERANDS are assumed to be an array of
|
| 5706 |
|
|
registers. */
|
| 5707 |
|
|
|
| 5708 |
|
|
int
|
| 5709 |
|
|
h8300_regs_ok_for_stm (int n, rtx operands[])
|
| 5710 |
|
|
{
|
| 5711 |
|
|
switch (n)
|
| 5712 |
|
|
{
|
| 5713 |
|
|
case 2:
|
| 5714 |
|
|
return ((REGNO (operands[0]) == 0 && REGNO (operands[1]) == 1)
|
| 5715 |
|
|
|| (REGNO (operands[0]) == 2 && REGNO (operands[1]) == 3)
|
| 5716 |
|
|
|| (REGNO (operands[0]) == 4 && REGNO (operands[1]) == 5));
|
| 5717 |
|
|
case 3:
|
| 5718 |
|
|
return ((REGNO (operands[0]) == 0
|
| 5719 |
|
|
&& REGNO (operands[1]) == 1
|
| 5720 |
|
|
&& REGNO (operands[2]) == 2)
|
| 5721 |
|
|
|| (REGNO (operands[0]) == 4
|
| 5722 |
|
|
&& REGNO (operands[1]) == 5
|
| 5723 |
|
|
&& REGNO (operands[2]) == 6));
|
| 5724 |
|
|
|
| 5725 |
|
|
case 4:
|
| 5726 |
|
|
return (REGNO (operands[0]) == 0
|
| 5727 |
|
|
&& REGNO (operands[1]) == 1
|
| 5728 |
|
|
&& REGNO (operands[2]) == 2
|
| 5729 |
|
|
&& REGNO (operands[3]) == 3);
|
| 5730 |
|
|
default:
|
| 5731 |
|
|
gcc_unreachable ();
|
| 5732 |
|
|
}
|
| 5733 |
|
|
}
|
| 5734 |
|
|
|
| 5735 |
|
|
/* Return nonzero if register OLD_REG can be renamed to register NEW_REG. */
|
| 5736 |
|
|
|
| 5737 |
|
|
int
|
| 5738 |
|
|
h8300_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
|
| 5739 |
|
|
unsigned int new_reg)
|
| 5740 |
|
|
{
|
| 5741 |
|
|
/* Interrupt functions can only use registers that have already been
|
| 5742 |
|
|
saved by the prologue, even if they would normally be
|
| 5743 |
|
|
call-clobbered. */
|
| 5744 |
|
|
|
| 5745 |
|
|
if (h8300_current_function_interrupt_function_p ()
|
| 5746 |
|
|
&& !df_regs_ever_live_p (new_reg))
|
| 5747 |
|
|
return 0;
|
| 5748 |
|
|
|
| 5749 |
|
|
return 1;
|
| 5750 |
|
|
}
|
| 5751 |
|
|
|
| 5752 |
|
|
/* Returns true if register REGNO is safe to be allocated as a scratch
|
| 5753 |
|
|
register in the current function. */
|
| 5754 |
|
|
|
| 5755 |
|
|
static bool
|
| 5756 |
|
|
h8300_hard_regno_scratch_ok (unsigned int regno)
|
| 5757 |
|
|
{
|
| 5758 |
|
|
if (h8300_current_function_interrupt_function_p ()
|
| 5759 |
|
|
&& ! WORD_REG_USED (regno))
|
| 5760 |
|
|
return false;
|
| 5761 |
|
|
|
| 5762 |
|
|
return true;
|
| 5763 |
|
|
}
|
| 5764 |
|
|
|
| 5765 |
|
|
|
| 5766 |
|
|
/* Return nonzero if X is a REG or SUBREG suitable as a base register. */
|
| 5767 |
|
|
|
| 5768 |
|
|
static int
|
| 5769 |
|
|
h8300_rtx_ok_for_base_p (rtx x, int strict)
|
| 5770 |
|
|
{
|
| 5771 |
|
|
/* Strip off SUBREG if any. */
|
| 5772 |
|
|
if (GET_CODE (x) == SUBREG)
|
| 5773 |
|
|
x = SUBREG_REG (x);
|
| 5774 |
|
|
|
| 5775 |
|
|
return (REG_P (x)
|
| 5776 |
|
|
&& (strict
|
| 5777 |
|
|
? REG_OK_FOR_BASE_STRICT_P (x)
|
| 5778 |
|
|
: REG_OK_FOR_BASE_NONSTRICT_P (x)));
|
| 5779 |
|
|
}
|
| 5780 |
|
|
|
| 5781 |
|
|
/* Return nozero if X is a legitimate address. On the H8/300, a
|
| 5782 |
|
|
legitimate address has the form REG, REG+CONSTANT_ADDRESS or
|
| 5783 |
|
|
CONSTANT_ADDRESS. */
|
| 5784 |
|
|
|
| 5785 |
|
|
static bool
|
| 5786 |
|
|
h8300_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
|
| 5787 |
|
|
{
|
| 5788 |
|
|
/* The register indirect addresses like @er0 is always valid. */
|
| 5789 |
|
|
if (h8300_rtx_ok_for_base_p (x, strict))
|
| 5790 |
|
|
return 1;
|
| 5791 |
|
|
|
| 5792 |
|
|
if (CONSTANT_ADDRESS_P (x))
|
| 5793 |
|
|
return 1;
|
| 5794 |
|
|
|
| 5795 |
|
|
if (TARGET_H8300SX
|
| 5796 |
|
|
&& ( GET_CODE (x) == PRE_INC
|
| 5797 |
|
|
|| GET_CODE (x) == PRE_DEC
|
| 5798 |
|
|
|| GET_CODE (x) == POST_INC
|
| 5799 |
|
|
|| GET_CODE (x) == POST_DEC)
|
| 5800 |
|
|
&& h8300_rtx_ok_for_base_p (XEXP (x, 0), strict))
|
| 5801 |
|
|
return 1;
|
| 5802 |
|
|
|
| 5803 |
|
|
if (GET_CODE (x) == PLUS
|
| 5804 |
|
|
&& CONSTANT_ADDRESS_P (XEXP (x, 1))
|
| 5805 |
|
|
&& h8300_rtx_ok_for_base_p (h8300_get_index (XEXP (x, 0),
|
| 5806 |
|
|
mode, 0), strict))
|
| 5807 |
|
|
return 1;
|
| 5808 |
|
|
|
| 5809 |
|
|
return 0;
|
| 5810 |
|
|
}
|
| 5811 |
|
|
|
| 5812 |
|
|
/* Worker function for HARD_REGNO_NREGS.
|
| 5813 |
|
|
|
| 5814 |
|
|
We pretend the MAC register is 32bits -- we don't have any data
|
| 5815 |
|
|
types on the H8 series to handle more than 32bits. */
|
| 5816 |
|
|
|
| 5817 |
|
|
int
|
| 5818 |
|
|
h8300_hard_regno_nregs (int regno ATTRIBUTE_UNUSED, enum machine_mode mode)
|
| 5819 |
|
|
{
|
| 5820 |
|
|
return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
| 5821 |
|
|
}
|
| 5822 |
|
|
|
| 5823 |
|
|
/* Worker function for HARD_REGNO_MODE_OK. */
|
| 5824 |
|
|
|
| 5825 |
|
|
int
|
| 5826 |
|
|
h8300_hard_regno_mode_ok (int regno, enum machine_mode mode)
|
| 5827 |
|
|
{
|
| 5828 |
|
|
if (TARGET_H8300)
|
| 5829 |
|
|
/* If an even reg, then anything goes. Otherwise the mode must be
|
| 5830 |
|
|
QI or HI. */
|
| 5831 |
|
|
return ((regno & 1) == 0) || (mode == HImode) || (mode == QImode);
|
| 5832 |
|
|
else
|
| 5833 |
|
|
/* MAC register can only be of SImode. Otherwise, anything
|
| 5834 |
|
|
goes. */
|
| 5835 |
|
|
return regno == MAC_REG ? mode == SImode : 1;
|
| 5836 |
|
|
}
|
| 5837 |
|
|
|
| 5838 |
|
|
/* Helper function for the move patterns. Make sure a move is legitimate. */
|
| 5839 |
|
|
|
| 5840 |
|
|
bool
|
| 5841 |
|
|
h8300_move_ok (rtx dest, rtx src)
|
| 5842 |
|
|
{
|
| 5843 |
|
|
rtx addr, other;
|
| 5844 |
|
|
|
| 5845 |
|
|
/* Validate that at least one operand is a register. */
|
| 5846 |
|
|
if (MEM_P (dest))
|
| 5847 |
|
|
{
|
| 5848 |
|
|
if (MEM_P (src) || CONSTANT_P (src))
|
| 5849 |
|
|
return false;
|
| 5850 |
|
|
addr = XEXP (dest, 0);
|
| 5851 |
|
|
other = src;
|
| 5852 |
|
|
}
|
| 5853 |
|
|
else if (MEM_P (src))
|
| 5854 |
|
|
{
|
| 5855 |
|
|
addr = XEXP (src, 0);
|
| 5856 |
|
|
other = dest;
|
| 5857 |
|
|
}
|
| 5858 |
|
|
else
|
| 5859 |
|
|
return true;
|
| 5860 |
|
|
|
| 5861 |
|
|
/* Validate that auto-inc doesn't affect OTHER. */
|
| 5862 |
|
|
if (GET_RTX_CLASS (GET_CODE (addr)) != RTX_AUTOINC)
|
| 5863 |
|
|
return true;
|
| 5864 |
|
|
addr = XEXP (addr, 0);
|
| 5865 |
|
|
|
| 5866 |
|
|
if (addr == stack_pointer_rtx)
|
| 5867 |
|
|
return register_no_sp_elim_operand (other, VOIDmode);
|
| 5868 |
|
|
else
|
| 5869 |
|
|
return !reg_overlap_mentioned_p(other, addr);
|
| 5870 |
|
|
}
|
| 5871 |
|
|
|
| 5872 |
|
|
/* Perform target dependent optabs initialization. */
|
| 5873 |
|
|
static void
|
| 5874 |
|
|
h8300_init_libfuncs (void)
|
| 5875 |
|
|
{
|
| 5876 |
|
|
set_optab_libfunc (smul_optab, HImode, "__mulhi3");
|
| 5877 |
|
|
set_optab_libfunc (sdiv_optab, HImode, "__divhi3");
|
| 5878 |
|
|
set_optab_libfunc (udiv_optab, HImode, "__udivhi3");
|
| 5879 |
|
|
set_optab_libfunc (smod_optab, HImode, "__modhi3");
|
| 5880 |
|
|
set_optab_libfunc (umod_optab, HImode, "__umodhi3");
|
| 5881 |
|
|
}
|
| 5882 |
|
|
|
| 5883 |
|
|
/* Worker function for TARGET_FUNCTION_VALUE.
|
| 5884 |
|
|
|
| 5885 |
|
|
On the H8 the return value is in R0/R1. */
|
| 5886 |
|
|
|
| 5887 |
|
|
static rtx
|
| 5888 |
|
|
h8300_function_value (const_tree ret_type,
|
| 5889 |
|
|
const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
|
| 5890 |
|
|
bool outgoing ATTRIBUTE_UNUSED)
|
| 5891 |
|
|
{
|
| 5892 |
|
|
return gen_rtx_REG (TYPE_MODE (ret_type), R0_REG);
|
| 5893 |
|
|
}
|
| 5894 |
|
|
|
| 5895 |
|
|
/* Worker function for TARGET_LIBCALL_VALUE.
|
| 5896 |
|
|
|
| 5897 |
|
|
On the H8 the return value is in R0/R1. */
|
| 5898 |
|
|
|
| 5899 |
|
|
static rtx
|
| 5900 |
|
|
h8300_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
|
| 5901 |
|
|
{
|
| 5902 |
|
|
return gen_rtx_REG (mode, R0_REG);
|
| 5903 |
|
|
}
|
| 5904 |
|
|
|
| 5905 |
|
|
/* Worker function for TARGET_FUNCTION_VALUE_REGNO_P.
|
| 5906 |
|
|
|
| 5907 |
|
|
On the H8, R0 is the only register thus used. */
|
| 5908 |
|
|
|
| 5909 |
|
|
static bool
|
| 5910 |
|
|
h8300_function_value_regno_p (const unsigned int regno)
|
| 5911 |
|
|
{
|
| 5912 |
|
|
return (regno == R0_REG);
|
| 5913 |
|
|
}
|
| 5914 |
|
|
|
| 5915 |
|
|
/* Worker function for TARGET_RETURN_IN_MEMORY. */
|
| 5916 |
|
|
|
| 5917 |
|
|
static bool
|
| 5918 |
|
|
h8300_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
|
| 5919 |
|
|
{
|
| 5920 |
|
|
return (TYPE_MODE (type) == BLKmode
|
| 5921 |
|
|
|| GET_MODE_SIZE (TYPE_MODE (type)) > (TARGET_H8300 ? 4 : 8));
|
| 5922 |
|
|
}
|
| 5923 |
|
|
|
| 5924 |
|
|
/* We emit the entire trampoline here. Depending on the pointer size,
|
| 5925 |
|
|
we use a different trampoline.
|
| 5926 |
|
|
|
| 5927 |
|
|
Pmode == HImode
|
| 5928 |
|
|
vvvv context
|
| 5929 |
|
|
1 0000 7903xxxx mov.w #0x1234,r3
|
| 5930 |
|
|
2 0004 5A00xxxx jmp @0x1234
|
| 5931 |
|
|
^^^^ function
|
| 5932 |
|
|
|
| 5933 |
|
|
Pmode == SImode
|
| 5934 |
|
|
vvvvvvvv context
|
| 5935 |
|
|
2 0000 7A03xxxxxxxx mov.l #0x12345678,er3
|
| 5936 |
|
|
3 0006 5Axxxxxx jmp @0x123456
|
| 5937 |
|
|
^^^^^^ function
|
| 5938 |
|
|
*/
|
| 5939 |
|
|
|
| 5940 |
|
|
static void
|
| 5941 |
|
|
h8300_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
|
| 5942 |
|
|
{
|
| 5943 |
|
|
rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
|
| 5944 |
|
|
rtx mem;
|
| 5945 |
|
|
|
| 5946 |
|
|
if (Pmode == HImode)
|
| 5947 |
|
|
{
|
| 5948 |
|
|
mem = adjust_address (m_tramp, HImode, 0);
|
| 5949 |
|
|
emit_move_insn (mem, GEN_INT (0x7903));
|
| 5950 |
|
|
mem = adjust_address (m_tramp, Pmode, 2);
|
| 5951 |
|
|
emit_move_insn (mem, cxt);
|
| 5952 |
|
|
mem = adjust_address (m_tramp, HImode, 4);
|
| 5953 |
|
|
emit_move_insn (mem, GEN_INT (0x5a00));
|
| 5954 |
|
|
mem = adjust_address (m_tramp, Pmode, 6);
|
| 5955 |
|
|
emit_move_insn (mem, fnaddr);
|
| 5956 |
|
|
}
|
| 5957 |
|
|
else
|
| 5958 |
|
|
{
|
| 5959 |
|
|
rtx tem;
|
| 5960 |
|
|
|
| 5961 |
|
|
mem = adjust_address (m_tramp, HImode, 0);
|
| 5962 |
|
|
emit_move_insn (mem, GEN_INT (0x7a03));
|
| 5963 |
|
|
mem = adjust_address (m_tramp, Pmode, 2);
|
| 5964 |
|
|
emit_move_insn (mem, cxt);
|
| 5965 |
|
|
|
| 5966 |
|
|
tem = copy_to_reg (fnaddr);
|
| 5967 |
|
|
emit_insn (gen_andsi3 (tem, tem, GEN_INT (0x00ffffff)));
|
| 5968 |
|
|
emit_insn (gen_iorsi3 (tem, tem, GEN_INT (0x5a000000)));
|
| 5969 |
|
|
mem = adjust_address (m_tramp, SImode, 6);
|
| 5970 |
|
|
emit_move_insn (mem, tem);
|
| 5971 |
|
|
}
|
| 5972 |
|
|
}
|
| 5973 |
|
|
|
| 5974 |
|
|
/* Initialize the GCC target structure. */
|
| 5975 |
|
|
#undef TARGET_ATTRIBUTE_TABLE
|
| 5976 |
|
|
#define TARGET_ATTRIBUTE_TABLE h8300_attribute_table
|
| 5977 |
|
|
|
| 5978 |
|
|
#undef TARGET_ASM_ALIGNED_HI_OP
|
| 5979 |
|
|
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
|
| 5980 |
|
|
|
| 5981 |
|
|
#undef TARGET_ASM_FILE_START
|
| 5982 |
|
|
#define TARGET_ASM_FILE_START h8300_file_start
|
| 5983 |
|
|
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
|
| 5984 |
|
|
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
|
| 5985 |
|
|
|
| 5986 |
|
|
#undef TARGET_ASM_FILE_END
|
| 5987 |
|
|
#define TARGET_ASM_FILE_END h8300_file_end
|
| 5988 |
|
|
|
| 5989 |
|
|
#undef TARGET_PRINT_OPERAND
|
| 5990 |
|
|
#define TARGET_PRINT_OPERAND h8300_print_operand
|
| 5991 |
|
|
#undef TARGET_PRINT_OPERAND_ADDRESS
|
| 5992 |
|
|
#define TARGET_PRINT_OPERAND_ADDRESS h8300_print_operand_address
|
| 5993 |
|
|
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
|
| 5994 |
|
|
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P h8300_print_operand_punct_valid_p
|
| 5995 |
|
|
|
| 5996 |
|
|
#undef TARGET_ENCODE_SECTION_INFO
|
| 5997 |
|
|
#define TARGET_ENCODE_SECTION_INFO h8300_encode_section_info
|
| 5998 |
|
|
|
| 5999 |
|
|
#undef TARGET_INSERT_ATTRIBUTES
|
| 6000 |
|
|
#define TARGET_INSERT_ATTRIBUTES h8300_insert_attributes
|
| 6001 |
|
|
|
| 6002 |
|
|
#undef TARGET_REGISTER_MOVE_COST
|
| 6003 |
|
|
#define TARGET_REGISTER_MOVE_COST h8300_register_move_cost
|
| 6004 |
|
|
|
| 6005 |
|
|
#undef TARGET_RTX_COSTS
|
| 6006 |
|
|
#define TARGET_RTX_COSTS h8300_rtx_costs
|
| 6007 |
|
|
|
| 6008 |
|
|
#undef TARGET_INIT_LIBFUNCS
|
| 6009 |
|
|
#define TARGET_INIT_LIBFUNCS h8300_init_libfuncs
|
| 6010 |
|
|
|
| 6011 |
|
|
#undef TARGET_FUNCTION_VALUE
|
| 6012 |
|
|
#define TARGET_FUNCTION_VALUE h8300_function_value
|
| 6013 |
|
|
|
| 6014 |
|
|
#undef TARGET_LIBCALL_VALUE
|
| 6015 |
|
|
#define TARGET_LIBCALL_VALUE h8300_libcall_value
|
| 6016 |
|
|
|
| 6017 |
|
|
#undef TARGET_FUNCTION_VALUE_REGNO_P
|
| 6018 |
|
|
#define TARGET_FUNCTION_VALUE_REGNO_P h8300_function_value_regno_p
|
| 6019 |
|
|
|
| 6020 |
|
|
#undef TARGET_RETURN_IN_MEMORY
|
| 6021 |
|
|
#define TARGET_RETURN_IN_MEMORY h8300_return_in_memory
|
| 6022 |
|
|
|
| 6023 |
|
|
#undef TARGET_FUNCTION_ARG
|
| 6024 |
|
|
#define TARGET_FUNCTION_ARG h8300_function_arg
|
| 6025 |
|
|
|
| 6026 |
|
|
#undef TARGET_FUNCTION_ARG_ADVANCE
|
| 6027 |
|
|
#define TARGET_FUNCTION_ARG_ADVANCE h8300_function_arg_advance
|
| 6028 |
|
|
|
| 6029 |
|
|
#undef TARGET_MACHINE_DEPENDENT_REORG
|
| 6030 |
|
|
#define TARGET_MACHINE_DEPENDENT_REORG h8300_reorg
|
| 6031 |
|
|
|
| 6032 |
|
|
#undef TARGET_HARD_REGNO_SCRATCH_OK
|
| 6033 |
|
|
#define TARGET_HARD_REGNO_SCRATCH_OK h8300_hard_regno_scratch_ok
|
| 6034 |
|
|
|
| 6035 |
|
|
#undef TARGET_LEGITIMATE_ADDRESS_P
|
| 6036 |
|
|
#define TARGET_LEGITIMATE_ADDRESS_P h8300_legitimate_address_p
|
| 6037 |
|
|
|
| 6038 |
|
|
#undef TARGET_CAN_ELIMINATE
|
| 6039 |
|
|
#define TARGET_CAN_ELIMINATE h8300_can_eliminate
|
| 6040 |
|
|
|
| 6041 |
|
|
#undef TARGET_CONDITIONAL_REGISTER_USAGE
|
| 6042 |
|
|
#define TARGET_CONDITIONAL_REGISTER_USAGE h8300_conditional_register_usage
|
| 6043 |
|
|
|
| 6044 |
|
|
#undef TARGET_TRAMPOLINE_INIT
|
| 6045 |
|
|
#define TARGET_TRAMPOLINE_INIT h8300_trampoline_init
|
| 6046 |
|
|
|
| 6047 |
|
|
#undef TARGET_OPTION_OVERRIDE
|
| 6048 |
|
|
#define TARGET_OPTION_OVERRIDE h8300_option_override
|
| 6049 |
|
|
|
| 6050 |
|
|
#undef TARGET_MODE_DEPENDENT_ADDRESS_P
|
| 6051 |
|
|
#define TARGET_MODE_DEPENDENT_ADDRESS_P h8300_mode_dependent_address_p
|
| 6052 |
|
|
|
| 6053 |
|
|
struct gcc_target targetm = TARGET_INITIALIZER;
|