OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [i386/] [i386.h] - Blame information for rev 867

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 709 jeremybenn
/* Definitions of target machine for GCC for IA-32.
2
   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3
   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4
   Free Software Foundation, Inc.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify
9
it under the terms of the GNU General Public License as published by
10
the Free Software Foundation; either version 3, or (at your option)
11
any later version.
12
 
13
GCC is distributed in the hope that it will be useful,
14
but WITHOUT ANY WARRANTY; without even the implied warranty of
15
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
GNU General Public License for more details.
17
 
18
Under Section 7 of GPL version 3, you are granted additional
19
permissions described in the GCC Runtime Library Exception, version
20
3.1, as published by the Free Software Foundation.
21
 
22
You should have received a copy of the GNU General Public License and
23
a copy of the GCC Runtime Library Exception along with this program;
24
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
25
<http://www.gnu.org/licenses/>.  */
26
 
27
/* The purpose of this file is to define the characteristics of the i386,
28
   independent of assembler syntax or operating system.
29
 
30
   Three other files build on this one to describe a specific assembler syntax:
31
   bsd386.h, att386.h, and sun386.h.
32
 
33
   The actual tm.h file for a particular system should include
34
   this file, and then the file for the appropriate assembler syntax.
35
 
36
   Many macros that specify assembler syntax are omitted entirely from
37
   this file because they really belong in the files for particular
38
   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39
   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40
   that start with ASM_ or end in ASM_OP.  */
41
 
42
/* Redefines for option macros.  */
43
 
44
#define TARGET_64BIT    OPTION_ISA_64BIT
45
#define TARGET_X32      OPTION_ISA_X32
46
#define TARGET_MMX      OPTION_ISA_MMX
47
#define TARGET_3DNOW    OPTION_ISA_3DNOW
48
#define TARGET_3DNOW_A  OPTION_ISA_3DNOW_A
49
#define TARGET_SSE      OPTION_ISA_SSE
50
#define TARGET_SSE2     OPTION_ISA_SSE2
51
#define TARGET_SSE3     OPTION_ISA_SSE3
52
#define TARGET_SSSE3    OPTION_ISA_SSSE3
53
#define TARGET_SSE4_1   OPTION_ISA_SSE4_1
54
#define TARGET_SSE4_2   OPTION_ISA_SSE4_2
55
#define TARGET_AVX      OPTION_ISA_AVX
56
#define TARGET_AVX2     OPTION_ISA_AVX2
57
#define TARGET_FMA      OPTION_ISA_FMA
58
#define TARGET_SSE4A    OPTION_ISA_SSE4A
59
#define TARGET_FMA4     OPTION_ISA_FMA4
60
#define TARGET_XOP      OPTION_ISA_XOP
61
#define TARGET_LWP      OPTION_ISA_LWP
62
#define TARGET_ROUND    OPTION_ISA_ROUND
63
#define TARGET_ABM      OPTION_ISA_ABM
64
#define TARGET_BMI      OPTION_ISA_BMI
65
#define TARGET_BMI2     OPTION_ISA_BMI2
66
#define TARGET_LZCNT    OPTION_ISA_LZCNT
67
#define TARGET_TBM      OPTION_ISA_TBM
68
#define TARGET_POPCNT   OPTION_ISA_POPCNT
69
#define TARGET_SAHF     OPTION_ISA_SAHF
70
#define TARGET_MOVBE    OPTION_ISA_MOVBE
71
#define TARGET_CRC32    OPTION_ISA_CRC32
72
#define TARGET_AES      OPTION_ISA_AES
73
#define TARGET_PCLMUL   OPTION_ISA_PCLMUL
74
#define TARGET_CMPXCHG16B OPTION_ISA_CX16
75
#define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
76
#define TARGET_RDRND    OPTION_ISA_RDRND
77
#define TARGET_F16C     OPTION_ISA_F16C
78
 
79
#define TARGET_LP64     (TARGET_64BIT && !TARGET_X32)
80
 
81
/* SSE4.1 defines round instructions */
82
#define OPTION_MASK_ISA_ROUND   OPTION_MASK_ISA_SSE4_1
83
#define OPTION_ISA_ROUND        ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
84
 
85
#include "config/vxworks-dummy.h"
86
 
87
#include "config/i386/i386-opts.h"
88
 
89
#define MAX_STRINGOP_ALGS 4
90
 
91
/* Specify what algorithm to use for stringops on known size.
92
   When size is unknown, the UNKNOWN_SIZE alg is used.  When size is
93
   known at compile time or estimated via feedback, the SIZE array
94
   is walked in order until MAX is greater then the estimate (or -1
95
   means infinity).  Corresponding ALG is used then.
96
   For example initializer:
97
    {{256, loop}, {-1, rep_prefix_4_byte}}
98
   will use loop for blocks smaller or equal to 256 bytes, rep prefix will
99
   be used otherwise.  */
100
struct stringop_algs
101
{
102
  const enum stringop_alg unknown_size;
103
  const struct stringop_strategy {
104
    const int max;
105
    const enum stringop_alg alg;
106
  } size [MAX_STRINGOP_ALGS];
107
};
108
 
109
/* Define the specific costs for a given cpu */
110
 
111
struct processor_costs {
112
  const int add;                /* cost of an add instruction */
113
  const int lea;                /* cost of a lea instruction */
114
  const int shift_var;          /* variable shift costs */
115
  const int shift_const;        /* constant shift costs */
116
  const int mult_init[5];       /* cost of starting a multiply
117
                                   in QImode, HImode, SImode, DImode, TImode*/
118
  const int mult_bit;           /* cost of multiply per each bit set */
119
  const int divide[5];          /* cost of a divide/mod
120
                                   in QImode, HImode, SImode, DImode, TImode*/
121
  int movsx;                    /* The cost of movsx operation.  */
122
  int movzx;                    /* The cost of movzx operation.  */
123
  const int large_insn;         /* insns larger than this cost more */
124
  const int move_ratio;         /* The threshold of number of scalar
125
                                   memory-to-memory move insns.  */
126
  const int movzbl_load;        /* cost of loading using movzbl */
127
  const int int_load[3];        /* cost of loading integer registers
128
                                   in QImode, HImode and SImode relative
129
                                   to reg-reg move (2).  */
130
  const int int_store[3];       /* cost of storing integer register
131
                                   in QImode, HImode and SImode */
132
  const int fp_move;            /* cost of reg,reg fld/fst */
133
  const int fp_load[3];         /* cost of loading FP register
134
                                   in SFmode, DFmode and XFmode */
135
  const int fp_store[3];        /* cost of storing FP register
136
                                   in SFmode, DFmode and XFmode */
137
  const int mmx_move;           /* cost of moving MMX register.  */
138
  const int mmx_load[2];        /* cost of loading MMX register
139
                                   in SImode and DImode */
140
  const int mmx_store[2];       /* cost of storing MMX register
141
                                   in SImode and DImode */
142
  const int sse_move;           /* cost of moving SSE register.  */
143
  const int sse_load[3];        /* cost of loading SSE register
144
                                   in SImode, DImode and TImode*/
145
  const int sse_store[3];       /* cost of storing SSE register
146
                                   in SImode, DImode and TImode*/
147
  const int mmxsse_to_integer;  /* cost of moving mmxsse register to
148
                                   integer and vice versa.  */
149
  const int l1_cache_size;      /* size of l1 cache, in kilobytes.  */
150
  const int l2_cache_size;      /* size of l2 cache, in kilobytes.  */
151
  const int prefetch_block;     /* bytes moved to cache for prefetch.  */
152
  const int simultaneous_prefetches; /* number of parallel prefetch
153
                                   operations.  */
154
  const int branch_cost;        /* Default value for BRANCH_COST.  */
155
  const int fadd;               /* cost of FADD and FSUB instructions.  */
156
  const int fmul;               /* cost of FMUL instruction.  */
157
  const int fdiv;               /* cost of FDIV instruction.  */
158
  const int fabs;               /* cost of FABS instruction.  */
159
  const int fchs;               /* cost of FCHS instruction.  */
160
  const int fsqrt;              /* cost of FSQRT instruction.  */
161
                                /* Specify what algorithm
162
                                   to use for stringops on unknown size.  */
163
  struct stringop_algs memcpy[2], memset[2];
164
  const int scalar_stmt_cost;   /* Cost of any scalar operation, excluding
165
                                   load and store.  */
166
  const int scalar_load_cost;   /* Cost of scalar load.  */
167
  const int scalar_store_cost;  /* Cost of scalar store.  */
168
  const int vec_stmt_cost;      /* Cost of any vector operation, excluding
169
                                   load, store, vector-to-scalar and
170
                                   scalar-to-vector operation.  */
171
  const int vec_to_scalar_cost;    /* Cost of vect-to-scalar operation.  */
172
  const int scalar_to_vec_cost;    /* Cost of scalar-to-vector operation.  */
173
  const int vec_align_load_cost;   /* Cost of aligned vector load.  */
174
  const int vec_unalign_load_cost; /* Cost of unaligned vector load.  */
175
  const int vec_store_cost;        /* Cost of vector store.  */
176
  const int cond_taken_branch_cost;    /* Cost of taken branch for vectorizer
177
                                          cost model.  */
178
  const int cond_not_taken_branch_cost;/* Cost of not taken branch for
179
                                          vectorizer cost model.  */
180
};
181
 
182
extern const struct processor_costs *ix86_cost;
183
extern const struct processor_costs ix86_size_cost;
184
 
185
#define ix86_cur_cost() \
186
  (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
187
 
188
/* Macros used in the machine description to test the flags.  */
189
 
190
/* configure can arrange to make this 2, to force a 486.  */
191
 
192
#ifndef TARGET_CPU_DEFAULT
193
#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
194
#endif
195
 
196
#ifndef TARGET_FPMATH_DEFAULT
197
#define TARGET_FPMATH_DEFAULT \
198
  (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
199
#endif
200
 
201
#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
202
 
203
/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
204
   compile-time constant.  */
205
#ifdef IN_LIBGCC2
206
#undef TARGET_64BIT
207
#ifdef __x86_64__
208
#define TARGET_64BIT 1
209
#else
210
#define TARGET_64BIT 0
211
#endif
212
#else
213
#ifndef TARGET_BI_ARCH
214
#undef TARGET_64BIT
215
#if TARGET_64BIT_DEFAULT
216
#define TARGET_64BIT 1
217
#else
218
#define TARGET_64BIT 0
219
#endif
220
#endif
221
#endif
222
 
223
#define HAS_LONG_COND_BRANCH 1
224
#define HAS_LONG_UNCOND_BRANCH 1
225
 
226
#define TARGET_386 (ix86_tune == PROCESSOR_I386)
227
#define TARGET_486 (ix86_tune == PROCESSOR_I486)
228
#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
229
#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
230
#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
231
#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
232
#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
233
#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
234
#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
235
#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
236
#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
237
#define TARGET_CORE2_32 (ix86_tune == PROCESSOR_CORE2_32)
238
#define TARGET_CORE2_64 (ix86_tune == PROCESSOR_CORE2_64)
239
#define TARGET_CORE2 (TARGET_CORE2_32 || TARGET_CORE2_64)
240
#define TARGET_COREI7_32 (ix86_tune == PROCESSOR_COREI7_32)
241
#define TARGET_COREI7_64 (ix86_tune == PROCESSOR_COREI7_64)
242
#define TARGET_COREI7 (TARGET_COREI7_32 || TARGET_COREI7_64)
243
#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
244
#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
245
#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
246
#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
247
#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
248
#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
249
#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
250
#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
251
 
252
/* Feature tests against the various tunings.  */
253
enum ix86_tune_indices {
254
  X86_TUNE_USE_LEAVE,
255
  X86_TUNE_PUSH_MEMORY,
256
  X86_TUNE_ZERO_EXTEND_WITH_AND,
257
  X86_TUNE_UNROLL_STRLEN,
258
  X86_TUNE_BRANCH_PREDICTION_HINTS,
259
  X86_TUNE_DOUBLE_WITH_ADD,
260
  X86_TUNE_USE_SAHF,
261
  X86_TUNE_MOVX,
262
  X86_TUNE_PARTIAL_REG_STALL,
263
  X86_TUNE_PARTIAL_FLAG_REG_STALL,
264
  X86_TUNE_USE_HIMODE_FIOP,
265
  X86_TUNE_USE_SIMODE_FIOP,
266
  X86_TUNE_USE_MOV0,
267
  X86_TUNE_USE_CLTD,
268
  X86_TUNE_USE_XCHGB,
269
  X86_TUNE_SPLIT_LONG_MOVES,
270
  X86_TUNE_READ_MODIFY_WRITE,
271
  X86_TUNE_READ_MODIFY,
272
  X86_TUNE_PROMOTE_QIMODE,
273
  X86_TUNE_FAST_PREFIX,
274
  X86_TUNE_SINGLE_STRINGOP,
275
  X86_TUNE_QIMODE_MATH,
276
  X86_TUNE_HIMODE_MATH,
277
  X86_TUNE_PROMOTE_QI_REGS,
278
  X86_TUNE_PROMOTE_HI_REGS,
279
  X86_TUNE_SINGLE_POP,
280
  X86_TUNE_DOUBLE_POP,
281
  X86_TUNE_SINGLE_PUSH,
282
  X86_TUNE_DOUBLE_PUSH,
283
  X86_TUNE_INTEGER_DFMODE_MOVES,
284
  X86_TUNE_PARTIAL_REG_DEPENDENCY,
285
  X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
286
  X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
287
  X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
288
  X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
289
  X86_TUNE_SSE_SPLIT_REGS,
290
  X86_TUNE_SSE_TYPELESS_STORES,
291
  X86_TUNE_SSE_LOAD0_BY_PXOR,
292
  X86_TUNE_MEMORY_MISMATCH_STALL,
293
  X86_TUNE_PROLOGUE_USING_MOVE,
294
  X86_TUNE_EPILOGUE_USING_MOVE,
295
  X86_TUNE_SHIFT1,
296
  X86_TUNE_USE_FFREEP,
297
  X86_TUNE_INTER_UNIT_MOVES,
298
  X86_TUNE_INTER_UNIT_CONVERSIONS,
299
  X86_TUNE_FOUR_JUMP_LIMIT,
300
  X86_TUNE_SCHEDULE,
301
  X86_TUNE_USE_BT,
302
  X86_TUNE_USE_INCDEC,
303
  X86_TUNE_PAD_RETURNS,
304
  X86_TUNE_PAD_SHORT_FUNCTION,
305
  X86_TUNE_EXT_80387_CONSTANTS,
306
  X86_TUNE_SHORTEN_X87_SSE,
307
  X86_TUNE_AVOID_VECTOR_DECODE,
308
  X86_TUNE_PROMOTE_HIMODE_IMUL,
309
  X86_TUNE_SLOW_IMUL_IMM32_MEM,
310
  X86_TUNE_SLOW_IMUL_IMM8,
311
  X86_TUNE_MOVE_M1_VIA_OR,
312
  X86_TUNE_NOT_UNPAIRABLE,
313
  X86_TUNE_NOT_VECTORMODE,
314
  X86_TUNE_USE_VECTOR_FP_CONVERTS,
315
  X86_TUNE_USE_VECTOR_CONVERTS,
316
  X86_TUNE_FUSE_CMP_AND_BRANCH,
317
  X86_TUNE_OPT_AGU,
318
  X86_TUNE_VECTORIZE_DOUBLE,
319
  X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
320
  X86_TUNE_AVX128_OPTIMAL,
321
  X86_TUNE_REASSOC_INT_TO_PARALLEL,
322
  X86_TUNE_REASSOC_FP_TO_PARALLEL,
323
 
324
  X86_TUNE_LAST
325
};
326
 
327
extern unsigned char ix86_tune_features[X86_TUNE_LAST];
328
 
329
#define TARGET_USE_LEAVE        ix86_tune_features[X86_TUNE_USE_LEAVE]
330
#define TARGET_PUSH_MEMORY      ix86_tune_features[X86_TUNE_PUSH_MEMORY]
331
#define TARGET_ZERO_EXTEND_WITH_AND \
332
        ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
333
#define TARGET_UNROLL_STRLEN    ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
334
#define TARGET_BRANCH_PREDICTION_HINTS \
335
        ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
336
#define TARGET_DOUBLE_WITH_ADD  ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
337
#define TARGET_USE_SAHF         ix86_tune_features[X86_TUNE_USE_SAHF]
338
#define TARGET_MOVX             ix86_tune_features[X86_TUNE_MOVX]
339
#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
340
#define TARGET_PARTIAL_FLAG_REG_STALL \
341
        ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
342
#define TARGET_USE_HIMODE_FIOP  ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
343
#define TARGET_USE_SIMODE_FIOP  ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
344
#define TARGET_USE_MOV0         ix86_tune_features[X86_TUNE_USE_MOV0]
345
#define TARGET_USE_CLTD         ix86_tune_features[X86_TUNE_USE_CLTD]
346
#define TARGET_USE_XCHGB        ix86_tune_features[X86_TUNE_USE_XCHGB]
347
#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
348
#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
349
#define TARGET_READ_MODIFY      ix86_tune_features[X86_TUNE_READ_MODIFY]
350
#define TARGET_PROMOTE_QImode   ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
351
#define TARGET_FAST_PREFIX      ix86_tune_features[X86_TUNE_FAST_PREFIX]
352
#define TARGET_SINGLE_STRINGOP  ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
353
#define TARGET_QIMODE_MATH      ix86_tune_features[X86_TUNE_QIMODE_MATH]
354
#define TARGET_HIMODE_MATH      ix86_tune_features[X86_TUNE_HIMODE_MATH]
355
#define TARGET_PROMOTE_QI_REGS  ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
356
#define TARGET_PROMOTE_HI_REGS  ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
357
#define TARGET_SINGLE_POP       ix86_tune_features[X86_TUNE_SINGLE_POP]
358
#define TARGET_DOUBLE_POP       ix86_tune_features[X86_TUNE_DOUBLE_POP]
359
#define TARGET_SINGLE_PUSH      ix86_tune_features[X86_TUNE_SINGLE_PUSH]
360
#define TARGET_DOUBLE_PUSH      ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
361
#define TARGET_INTEGER_DFMODE_MOVES \
362
        ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
363
#define TARGET_PARTIAL_REG_DEPENDENCY \
364
        ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
365
#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
366
        ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
367
#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
368
        ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
369
#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
370
        ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
371
#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
372
        ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
373
#define TARGET_SSE_SPLIT_REGS   ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
374
#define TARGET_SSE_TYPELESS_STORES \
375
        ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
376
#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
377
#define TARGET_MEMORY_MISMATCH_STALL \
378
        ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
379
#define TARGET_PROLOGUE_USING_MOVE \
380
        ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
381
#define TARGET_EPILOGUE_USING_MOVE \
382
        ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
383
#define TARGET_SHIFT1           ix86_tune_features[X86_TUNE_SHIFT1]
384
#define TARGET_USE_FFREEP       ix86_tune_features[X86_TUNE_USE_FFREEP]
385
#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
386
#define TARGET_INTER_UNIT_CONVERSIONS\
387
        ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
388
#define TARGET_FOUR_JUMP_LIMIT  ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
389
#define TARGET_SCHEDULE         ix86_tune_features[X86_TUNE_SCHEDULE]
390
#define TARGET_USE_BT           ix86_tune_features[X86_TUNE_USE_BT]
391
#define TARGET_USE_INCDEC       ix86_tune_features[X86_TUNE_USE_INCDEC]
392
#define TARGET_PAD_RETURNS      ix86_tune_features[X86_TUNE_PAD_RETURNS]
393
#define TARGET_PAD_SHORT_FUNCTION \
394
        ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
395
#define TARGET_EXT_80387_CONSTANTS \
396
        ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
397
#define TARGET_SHORTEN_X87_SSE  ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
398
#define TARGET_AVOID_VECTOR_DECODE \
399
        ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
400
#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
401
        ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
402
#define TARGET_SLOW_IMUL_IMM32_MEM \
403
        ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
404
#define TARGET_SLOW_IMUL_IMM8   ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
405
#define TARGET_MOVE_M1_VIA_OR   ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
406
#define TARGET_NOT_UNPAIRABLE   ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
407
#define TARGET_NOT_VECTORMODE   ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
408
#define TARGET_USE_VECTOR_FP_CONVERTS \
409
        ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
410
#define TARGET_USE_VECTOR_CONVERTS \
411
        ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
412
#define TARGET_FUSE_CMP_AND_BRANCH \
413
        ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
414
#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
415
#define TARGET_VECTORIZE_DOUBLE \
416
        ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
417
#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
418
        ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
419
#define TARGET_AVX128_OPTIMAL \
420
        ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
421
#define TARGET_REASSOC_INT_TO_PARALLEL \
422
        ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
423
#define TARGET_REASSOC_FP_TO_PARALLEL \
424
        ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
425
 
426
/* Feature tests against the various architecture variations.  */
427
enum ix86_arch_indices {
428
  X86_ARCH_CMOVE,               /* || TARGET_SSE */
429
  X86_ARCH_CMPXCHG,
430
  X86_ARCH_CMPXCHG8B,
431
  X86_ARCH_XADD,
432
  X86_ARCH_BSWAP,
433
 
434
  X86_ARCH_LAST
435
};
436
 
437
extern unsigned char ix86_arch_features[X86_ARCH_LAST];
438
 
439
#define TARGET_CMOVE            ix86_arch_features[X86_ARCH_CMOVE]
440
#define TARGET_CMPXCHG          ix86_arch_features[X86_ARCH_CMPXCHG]
441
#define TARGET_CMPXCHG8B        ix86_arch_features[X86_ARCH_CMPXCHG8B]
442
#define TARGET_XADD             ix86_arch_features[X86_ARCH_XADD]
443
#define TARGET_BSWAP            ix86_arch_features[X86_ARCH_BSWAP]
444
 
445
#define TARGET_FISTTP           (TARGET_SSE3 && TARGET_80387)
446
 
447
extern int x86_prefetch_sse;
448
 
449
#define TARGET_PREFETCH_SSE     x86_prefetch_sse
450
 
451
#define ASSEMBLER_DIALECT       (ix86_asm_dialect)
452
 
453
#define TARGET_SSE_MATH         ((ix86_fpmath & FPMATH_SSE) != 0)
454
#define TARGET_MIX_SSE_I387 \
455
 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
456
 
457
#define TARGET_GNU_TLS          (ix86_tls_dialect == TLS_DIALECT_GNU)
458
#define TARGET_GNU2_TLS         (ix86_tls_dialect == TLS_DIALECT_GNU2)
459
#define TARGET_ANY_GNU_TLS      (TARGET_GNU_TLS || TARGET_GNU2_TLS)
460
#define TARGET_SUN_TLS          0
461
 
462
#ifndef TARGET_64BIT_DEFAULT
463
#define TARGET_64BIT_DEFAULT 0
464
#endif
465
#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
466
#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
467
#endif
468
 
469
/* Fence to use after loop using storent.  */
470
 
471
extern tree x86_mfence;
472
#define FENCE_FOLLOWING_MOVNT x86_mfence
473
 
474
/* Once GDB has been enhanced to deal with functions without frame
475
   pointers, we can change this to allow for elimination of
476
   the frame pointer in leaf functions.  */
477
#define TARGET_DEFAULT 0
478
 
479
/* Extra bits to force.  */
480
#define TARGET_SUBTARGET_DEFAULT 0
481
#define TARGET_SUBTARGET_ISA_DEFAULT 0
482
 
483
/* Extra bits to force on w/ 32-bit mode.  */
484
#define TARGET_SUBTARGET32_DEFAULT 0
485
#define TARGET_SUBTARGET32_ISA_DEFAULT 0
486
 
487
/* Extra bits to force on w/ 64-bit mode.  */
488
#define TARGET_SUBTARGET64_DEFAULT 0
489
#define TARGET_SUBTARGET64_ISA_DEFAULT 0
490
 
491
/* Replace MACH-O, ifdefs by in-line tests, where possible.
492
   (a) Macros defined in config/i386/darwin.h  */
493
#define TARGET_MACHO 0
494
#define TARGET_MACHO_BRANCH_ISLANDS 0
495
#define MACHOPIC_ATT_STUB 0
496
/* (b) Macros defined in config/darwin.h  */
497
#define MACHO_DYNAMIC_NO_PIC_P 0
498
#define MACHOPIC_INDIRECT 0
499
#define MACHOPIC_PURE 0
500
 
501
/* For the Windows 64-bit ABI.  */
502
#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
503
 
504
/* For the Windows 32-bit ABI.  */
505
#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
506
 
507
/* This is re-defined by cygming.h.  */
508
#define TARGET_SEH 0
509
 
510
/* The default abi used by target.  */
511
#define DEFAULT_ABI SYSV_ABI
512
 
513
/* Subtargets may reset this to 1 in order to enable 96-bit long double
514
   with the rounding mode forced to 53 bits.  */
515
#define TARGET_96_ROUND_53_LONG_DOUBLE 0
516
 
517
/* -march=native handling only makes sense with compiler running on
518
   an x86 or x86_64 chip.  If changing this condition, also change
519
   the condition in driver-i386.c.  */
520
#if defined(__i386__) || defined(__x86_64__)
521
/* In driver-i386.c.  */
522
extern const char *host_detect_local_cpu (int argc, const char **argv);
523
#define EXTRA_SPEC_FUNCTIONS \
524
  { "local_cpu_detect", host_detect_local_cpu },
525
#define HAVE_LOCAL_CPU_DETECT
526
#endif
527
 
528
#if TARGET_64BIT_DEFAULT
529
#define OPT_ARCH64 "!m32"
530
#define OPT_ARCH32 "m32"
531
#else
532
#define OPT_ARCH64 "m64|mx32"
533
#define OPT_ARCH32 "m64|mx32:;"
534
#endif
535
 
536
/* Support for configure-time defaults of some command line options.
537
   The order here is important so that -march doesn't squash the
538
   tune or cpu values.  */
539
#define OPTION_DEFAULT_SPECS                                       \
540
  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
541
  {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
542
  {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
543
  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" },  \
544
  {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
545
  {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
546
  {"arch", "%{!march=*:-march=%(VALUE)}"},                         \
547
  {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"},    \
548
  {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
549
 
550
/* Specs for the compiler proper */
551
 
552
#ifndef CC1_CPU_SPEC
553
#define CC1_CPU_SPEC_1 ""
554
 
555
#ifndef HAVE_LOCAL_CPU_DETECT
556
#define CC1_CPU_SPEC CC1_CPU_SPEC_1
557
#else
558
#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
559
"%{march=native:%>march=native %:local_cpu_detect(arch) \
560
  %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
561
%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
562
#endif
563
#endif
564
 
565
/* Target CPU builtins.  */
566
#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
567
 
568
/* Target Pragmas.  */
569
#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
570
 
571
enum target_cpu_default
572
{
573
  TARGET_CPU_DEFAULT_generic = 0,
574
 
575
  TARGET_CPU_DEFAULT_i386,
576
  TARGET_CPU_DEFAULT_i486,
577
  TARGET_CPU_DEFAULT_pentium,
578
  TARGET_CPU_DEFAULT_pentium_mmx,
579
  TARGET_CPU_DEFAULT_pentiumpro,
580
  TARGET_CPU_DEFAULT_pentium2,
581
  TARGET_CPU_DEFAULT_pentium3,
582
  TARGET_CPU_DEFAULT_pentium4,
583
  TARGET_CPU_DEFAULT_pentium_m,
584
  TARGET_CPU_DEFAULT_prescott,
585
  TARGET_CPU_DEFAULT_nocona,
586
  TARGET_CPU_DEFAULT_core2,
587
  TARGET_CPU_DEFAULT_corei7,
588
  TARGET_CPU_DEFAULT_atom,
589
 
590
  TARGET_CPU_DEFAULT_geode,
591
  TARGET_CPU_DEFAULT_k6,
592
  TARGET_CPU_DEFAULT_k6_2,
593
  TARGET_CPU_DEFAULT_k6_3,
594
  TARGET_CPU_DEFAULT_athlon,
595
  TARGET_CPU_DEFAULT_athlon_sse,
596
  TARGET_CPU_DEFAULT_k8,
597
  TARGET_CPU_DEFAULT_amdfam10,
598
  TARGET_CPU_DEFAULT_bdver1,
599
  TARGET_CPU_DEFAULT_bdver2,
600
  TARGET_CPU_DEFAULT_btver1,
601
 
602
  TARGET_CPU_DEFAULT_max
603
};
604
 
605
#ifndef CC1_SPEC
606
#define CC1_SPEC "%(cc1_cpu) "
607
#endif
608
 
609
/* This macro defines names of additional specifications to put in the
610
   specs that can be used in various specifications like CC1_SPEC.  Its
611
   definition is an initializer with a subgrouping for each command option.
612
 
613
   Each subgrouping contains a string constant, that defines the
614
   specification name, and a string constant that used by the GCC driver
615
   program.
616
 
617
   Do not define this macro if it does not need to do anything.  */
618
 
619
#ifndef SUBTARGET_EXTRA_SPECS
620
#define SUBTARGET_EXTRA_SPECS
621
#endif
622
 
623
#define EXTRA_SPECS                                                     \
624
  { "cc1_cpu",  CC1_CPU_SPEC },                                         \
625
  SUBTARGET_EXTRA_SPECS
626
 
627
 
628
/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
629
   FPU, assume that the fpcw is set to extended precision; when using
630
   only SSE, rounding is correct; when using both SSE and the FPU,
631
   the rounding precision is indeterminate, since either may be chosen
632
   apparently at random.  */
633
#define TARGET_FLT_EVAL_METHOD \
634
  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
635
 
636
/* Whether to allow x87 floating-point arithmetic on MODE (one of
637
   SFmode, DFmode and XFmode) in the current excess precision
638
   configuration.  */
639
#define X87_ENABLE_ARITH(MODE) \
640
  (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
641
 
642
/* Likewise, whether to allow direct conversions from integer mode
643
   IMODE (HImode, SImode or DImode) to MODE.  */
644
#define X87_ENABLE_FLOAT(MODE, IMODE)                   \
645
  (flag_excess_precision == EXCESS_PRECISION_FAST       \
646
   || (MODE) == XFmode                                  \
647
   || ((MODE) == DFmode && (IMODE) == SImode)           \
648
   || (IMODE) == HImode)
649
 
650
/* target machine storage layout */
651
 
652
#define SHORT_TYPE_SIZE 16
653
#define INT_TYPE_SIZE 32
654
#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
655
#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
656
#define LONG_LONG_TYPE_SIZE 64
657
#define FLOAT_TYPE_SIZE 32
658
#define DOUBLE_TYPE_SIZE 64
659
#define LONG_DOUBLE_TYPE_SIZE 80
660
 
661
#define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
662
 
663
#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
664
#define MAX_BITS_PER_WORD 64
665
#else
666
#define MAX_BITS_PER_WORD 32
667
#endif
668
 
669
/* Define this if most significant byte of a word is the lowest numbered.  */
670
/* That is true on the 80386.  */
671
 
672
#define BITS_BIG_ENDIAN 0
673
 
674
/* Define this if most significant byte of a word is the lowest numbered.  */
675
/* That is not true on the 80386.  */
676
#define BYTES_BIG_ENDIAN 0
677
 
678
/* Define this if most significant word of a multiword number is the lowest
679
   numbered.  */
680
/* Not true for 80386 */
681
#define WORDS_BIG_ENDIAN 0
682
 
683
/* Width of a word, in units (bytes).  */
684
#define UNITS_PER_WORD          (TARGET_64BIT ? 8 : 4)
685
 
686
#ifndef IN_LIBGCC2
687
#define MIN_UNITS_PER_WORD      4
688
#endif
689
 
690
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
691
#define PARM_BOUNDARY BITS_PER_WORD
692
 
693
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
694
#define STACK_BOUNDARY \
695
 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
696
 
697
/* Stack boundary of the main function guaranteed by OS.  */
698
#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
699
 
700
/* Minimum stack boundary.  */
701
#define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
702
 
703
/* Boundary (in *bits*) on which the stack pointer prefers to be
704
   aligned; the compiler cannot rely on having this alignment.  */
705
#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
706
 
707
/* It should be MIN_STACK_BOUNDARY.  But we set it to 128 bits for
708
   both 32bit and 64bit, to support codes that need 128 bit stack
709
   alignment for SSE instructions, but can't realign the stack.  */
710
#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
711
 
712
/* 1 if -mstackrealign should be turned on by default.  It will
713
   generate an alternate prologue and epilogue that realigns the
714
   runtime stack if nessary.  This supports mixing codes that keep a
715
   4-byte aligned stack, as specified by i386 psABI, with codes that
716
   need a 16-byte aligned stack, as required by SSE instructions.  */
717
#define STACK_REALIGN_DEFAULT 0
718
 
719
/* Boundary (in *bits*) on which the incoming stack is aligned.  */
720
#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
721
 
722
/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack.  This is
723
   mandatory for the 64-bit ABI, and may or may not be true for other
724
   operating systems.  */
725
#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
726
 
727
/* Minimum allocation boundary for the code of a function.  */
728
#define FUNCTION_BOUNDARY 8
729
 
730
/* C++ stores the virtual bit in the lowest bit of function pointers.  */
731
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
732
 
733
/* Minimum size in bits of the largest boundary to which any
734
   and all fundamental data types supported by the hardware
735
   might need to be aligned. No data type wants to be aligned
736
   rounder than this.
737
 
738
   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
739
   and Pentium Pro XFmode values at 128 bit boundaries.  */
740
 
741
#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
742
 
743
/* Maximum stack alignment.  */
744
#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
745
 
746
/* Alignment value for attribute ((aligned)).  It is a constant since
747
   it is the part of the ABI.  We shouldn't change it with -mavx.  */
748
#define ATTRIBUTE_ALIGNED_VALUE 128
749
 
750
/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
751
#define ALIGN_MODE_128(MODE) \
752
 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
753
 
754
/* The published ABIs say that doubles should be aligned on word
755
   boundaries, so lower the alignment for structure fields unless
756
   -malign-double is set.  */
757
 
758
/* ??? Blah -- this macro is used directly by libobjc.  Since it
759
   supports no vector modes, cut out the complexity and fall back
760
   on BIGGEST_FIELD_ALIGNMENT.  */
761
#ifdef IN_TARGET_LIBS
762
#ifdef __x86_64__
763
#define BIGGEST_FIELD_ALIGNMENT 128
764
#else
765
#define BIGGEST_FIELD_ALIGNMENT 32
766
#endif
767
#else
768
#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
769
   x86_field_alignment (FIELD, COMPUTED)
770
#endif
771
 
772
/* If defined, a C expression to compute the alignment given to a
773
   constant that is being placed in memory.  EXP is the constant
774
   and ALIGN is the alignment that the object would ordinarily have.
775
   The value of this macro is used instead of that alignment to align
776
   the object.
777
 
778
   If this macro is not defined, then ALIGN is used.
779
 
780
   The typical use of this macro is to increase alignment for string
781
   constants to be word aligned so that `strcpy' calls that copy
782
   constants can be done inline.  */
783
 
784
#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
785
 
786
/* If defined, a C expression to compute the alignment for a static
787
   variable.  TYPE is the data type, and ALIGN is the alignment that
788
   the object would ordinarily have.  The value of this macro is used
789
   instead of that alignment to align the object.
790
 
791
   If this macro is not defined, then ALIGN is used.
792
 
793
   One use of this macro is to increase alignment of medium-size
794
   data to make it all fit in fewer cache lines.  Another is to
795
   cause character arrays to be word-aligned so that `strcpy' calls
796
   that copy constants to character arrays can be done inline.  */
797
 
798
#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
799
 
800
/* If defined, a C expression to compute the alignment for a local
801
   variable.  TYPE is the data type, and ALIGN is the alignment that
802
   the object would ordinarily have.  The value of this macro is used
803
   instead of that alignment to align the object.
804
 
805
   If this macro is not defined, then ALIGN is used.
806
 
807
   One use of this macro is to increase alignment of medium-size
808
   data to make it all fit in fewer cache lines.  */
809
 
810
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
811
  ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
812
 
813
/* If defined, a C expression to compute the alignment for stack slot.
814
   TYPE is the data type, MODE is the widest mode available, and ALIGN
815
   is the alignment that the slot would ordinarily have.  The value of
816
   this macro is used instead of that alignment to align the slot.
817
 
818
   If this macro is not defined, then ALIGN is used when TYPE is NULL,
819
   Otherwise, LOCAL_ALIGNMENT will be used.
820
 
821
   One use of this macro is to set alignment of stack slot to the
822
   maximum alignment of all possible modes which the slot may have.  */
823
 
824
#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
825
  ix86_local_alignment ((TYPE), (MODE), (ALIGN))
826
 
827
/* If defined, a C expression to compute the alignment for a local
828
   variable DECL.
829
 
830
   If this macro is not defined, then
831
   LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
832
 
833
   One use of this macro is to increase alignment of medium-size
834
   data to make it all fit in fewer cache lines.  */
835
 
836
#define LOCAL_DECL_ALIGNMENT(DECL) \
837
  ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
838
 
839
/* If defined, a C expression to compute the minimum required alignment
840
   for dynamic stack realignment purposes for EXP (a TYPE or DECL),
841
   MODE, assuming normal alignment ALIGN.
842
 
843
   If this macro is not defined, then (ALIGN) will be used.  */
844
 
845
#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
846
  ix86_minimum_alignment (EXP, MODE, ALIGN)
847
 
848
 
849
/* Set this nonzero if move instructions will actually fail to work
850
   when given unaligned data.  */
851
#define STRICT_ALIGNMENT 0
852
 
853
/* If bit field type is int, don't let it cross an int,
854
   and give entire struct the alignment of an int.  */
855
/* Required on the 386 since it doesn't have bit-field insns.  */
856
#define PCC_BITFIELD_TYPE_MATTERS 1
857
 
858
/* Standard register usage.  */
859
 
860
/* This processor has special stack-like registers.  See reg-stack.c
861
   for details.  */
862
 
863
#define STACK_REGS
864
 
865
#define IS_STACK_MODE(MODE)                                     \
866
  (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH))       \
867
   || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH))   \
868
   || (MODE) == XFmode)
869
 
870
/* Number of actual hardware registers.
871
   The hardware registers are assigned numbers for the compiler
872
   from 0 to just below FIRST_PSEUDO_REGISTER.
873
   All registers that the compiler knows about must be given numbers,
874
   even those that are not normally considered general registers.
875
 
876
   In the 80386 we give the 8 general purpose registers the numbers 0-7.
877
   We number the floating point registers 8-15.
878
   Note that registers 0-7 can be accessed as a  short or int,
879
   while only 0-3 may be used with byte `mov' instructions.
880
 
881
   Reg 16 does not correspond to any hardware register, but instead
882
   appears in the RTL as an argument pointer prior to reload, and is
883
   eliminated during reloading in favor of either the stack or frame
884
   pointer.  */
885
 
886
#define FIRST_PSEUDO_REGISTER 53
887
 
888
/* Number of hardware registers that go into the DWARF-2 unwind info.
889
   If not defined, equals FIRST_PSEUDO_REGISTER.  */
890
 
891
#define DWARF_FRAME_REGISTERS 17
892
 
893
/* 1 for registers that have pervasive standard uses
894
   and are not available for the register allocator.
895
   On the 80386, the stack pointer is such, as is the arg pointer.
896
 
897
   The value is zero if the register is not fixed on either 32 or
898
   64 bit targets, one if the register if fixed on both 32 and 64
899
   bit targets, two if it is only fixed on 32bit targets and three
900
   if its only fixed on 64bit targets.
901
   Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
902
 */
903
#define FIXED_REGISTERS                                         \
904
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/      \
905
{  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,      \
906
/*arg,flags,fpsr,fpcr,frame*/                                   \
907
    1,    1,   1,   1,    1,                                    \
908
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/                     \
909
     0,   0,   0,   0,   0,   0,   0,   0,                      \
910
/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/                     \
911
     0,   0,   0,   0,   0,   0,   0,   0,                      \
912
/*  r8,  r9, r10, r11, r12, r13, r14, r15*/                     \
913
     2,   2,   2,   2,   2,   2,   2,   2,                      \
914
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/               \
915
     2,   2,    2,    2,    2,    2,    2,    2 }
916
 
917
 
918
/* 1 for registers not available across function calls.
919
   These must include the FIXED_REGISTERS and also any
920
   registers that can be used without being saved.
921
   The latter must include the registers where values are returned
922
   and the register where structure-value addresses are passed.
923
   Aside from that, you can include as many other registers as you like.
924
 
925
   The value is zero if the register is not call used on either 32 or
926
   64 bit targets, one if the register if call used on both 32 and 64
927
   bit targets, two if it is only call used on 32bit targets and three
928
   if its only call used on 64bit targets.
929
   Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE.
930
*/
931
#define CALL_USED_REGISTERS                                     \
932
/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/      \
933
{  1, 1, 1, 0, 3, 3, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1, \
934
/*arg,flags,fpsr,fpcr,frame*/                                   \
935
    1,   1,    1,   1,    1,                                    \
936
/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/                     \
937
     1,   1,   1,   1,   1,   1,   1,   1,                      \
938
/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/                     \
939
     1,   1,   1,   1,   1,   1,   1,   1,                      \
940
/*  r8,  r9, r10, r11, r12, r13, r14, r15*/                     \
941
     1,   1,   1,   1,   2,   2,   2,   2,                      \
942
/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/               \
943
     1,   1,    1,    1,    1,    1,    1,    1 }
944
 
945
/* Order in which to allocate registers.  Each register must be
946
   listed once, even those in FIXED_REGISTERS.  List frame pointer
947
   late and fixed registers last.  Note that, in general, we prefer
948
   registers listed in CALL_USED_REGISTERS, keeping the others
949
   available for storage of persistent values.
950
 
951
   The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
952
   so this is just empty initializer for array.  */
953
 
954
#define REG_ALLOC_ORDER                                         \
955
{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
956
   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,  \
957
   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
958
   48, 49, 50, 51, 52 }
959
 
960
/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
961
   to be rearranged based on a particular function.  When using sse math,
962
   we want to allocate SSE before x87 registers and vice versa.  */
963
 
964
#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
965
 
966
 
967
#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
968
 
969
/* Return number of consecutive hard regs needed starting at reg REGNO
970
   to hold something of mode MODE.
971
   This is ordinarily the length in words of a value of mode MODE
972
   but can be less for certain modes in special long registers.
973
 
974
   Actually there are no two word move instructions for consecutive
975
   registers.  And only registers 0-3 may have mov byte instructions
976
   applied to them.  */
977
 
978
#define HARD_REGNO_NREGS(REGNO, MODE)                                   \
979
  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)     \
980
   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)                                    \
981
   : ((MODE) == XFmode                                                  \
982
      ? (TARGET_64BIT ? 2 : 3)                                          \
983
      : (MODE) == XCmode                                                \
984
      ? (TARGET_64BIT ? 4 : 6)                                          \
985
      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
986
 
987
#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)                       \
988
  ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)                         \
989
   ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)  \
990
      ? 0                                                                \
991
      : ((MODE) == XFmode || (MODE) == XCmode))                         \
992
   : 0)
993
 
994
#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
995
 
996
#define VALID_AVX256_REG_MODE(MODE)                                     \
997
  ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode     \
998
   || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode    \
999
   || (MODE) == V4DFmode)
1000
 
1001
#define VALID_SSE2_REG_MODE(MODE)                                       \
1002
  ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode      \
1003
   || (MODE) == V2DImode || (MODE) == DFmode)
1004
 
1005
#define VALID_SSE_REG_MODE(MODE)                                        \
1006
  ((MODE) == V1TImode || (MODE) == TImode                               \
1007
   || (MODE) == V4SFmode || (MODE) == V4SImode                          \
1008
   || (MODE) == SFmode || (MODE) == TFmode)
1009
 
1010
#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1011
  ((MODE) == V2SFmode || (MODE) == SFmode)
1012
 
1013
#define VALID_MMX_REG_MODE(MODE)                                        \
1014
  ((MODE == V1DImode) || (MODE) == DImode                               \
1015
   || (MODE) == V2SImode || (MODE) == SImode                            \
1016
   || (MODE) == V4HImode || (MODE) == V8QImode)
1017
 
1018
#define VALID_DFP_MODE_P(MODE) \
1019
  ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1020
 
1021
#define VALID_FP_MODE_P(MODE)                                           \
1022
  ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode             \
1023
   || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)         \
1024
 
1025
#define VALID_INT_MODE_P(MODE)                                          \
1026
  ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode             \
1027
   || (MODE) == DImode                                                  \
1028
   || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode       \
1029
   || (MODE) == CDImode                                                 \
1030
   || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode           \
1031
                        || (MODE) == TFmode || (MODE) == TCmode)))
1032
 
1033
/* Return true for modes passed in SSE registers.  */
1034
#define SSE_REG_MODE_P(MODE)                                            \
1035
  ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode        \
1036
   || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode      \
1037
   || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode    \
1038
   || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode  \
1039
   || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode    \
1040
   || (MODE) == V2TImode)
1041
 
1042
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
1043
 
1044
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1045
   ix86_hard_regno_mode_ok ((REGNO), (MODE))
1046
 
1047
/* Value is 1 if it is a good idea to tie two pseudo registers
1048
   when one has mode MODE1 and one has mode MODE2.
1049
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1050
   for any hard reg, then this must be 0 for correct output.  */
1051
 
1052
#define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
1053
 
1054
/* It is possible to write patterns to move flags; but until someone
1055
   does it,  */
1056
#define AVOID_CCMODE_COPIES
1057
 
1058
/* Specify the modes required to caller save a given hard regno.
1059
   We do this on i386 to prevent flags from being saved at all.
1060
 
1061
   Kill any attempts to combine saving of modes.  */
1062
 
1063
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)                 \
1064
  (CC_REGNO_P (REGNO) ? VOIDmode                                        \
1065
   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode                      \
1066
   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1067
   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode             \
1068
   : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode     \
1069
   : (MODE))
1070
 
1071
/* The only ABI that saves SSE registers across calls is Win64 (thus no
1072
   need to check the current ABI here), and with AVX enabled Win64 only
1073
   guarantees that the low 16 bytes are saved.  */
1074
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)             \
1075
  (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1076
 
1077
/* Specify the registers used for certain standard purposes.
1078
   The values of these macros are register numbers.  */
1079
 
1080
/* on the 386 the pc register is %eip, and is not usable as a general
1081
   register.  The ordinary mov instructions won't work */
1082
/* #define PC_REGNUM  */
1083
 
1084
/* Register to use for pushing function arguments.  */
1085
#define STACK_POINTER_REGNUM 7
1086
 
1087
/* Base register for access to local variables of the function.  */
1088
#define HARD_FRAME_POINTER_REGNUM 6
1089
 
1090
/* Base register for access to local variables of the function.  */
1091
#define FRAME_POINTER_REGNUM 20
1092
 
1093
/* First floating point reg */
1094
#define FIRST_FLOAT_REG 8
1095
 
1096
/* First & last stack-like regs */
1097
#define FIRST_STACK_REG FIRST_FLOAT_REG
1098
#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1099
 
1100
#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1101
#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1102
 
1103
#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
1104
#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1105
 
1106
#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
1107
#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1108
 
1109
#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
1110
#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1111
 
1112
/* Override this in other tm.h files to cope with various OS lossage
1113
   requiring a frame pointer.  */
1114
#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1115
#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1116
#endif
1117
 
1118
/* Make sure we can access arbitrary call frames.  */
1119
#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1120
 
1121
/* Base register for access to arguments of the function.  */
1122
#define ARG_POINTER_REGNUM 16
1123
 
1124
/* Register to hold the addressing base for position independent
1125
   code access to data items.  We don't use PIC pointer for 64bit
1126
   mode.  Define the regnum to dummy value to prevent gcc from
1127
   pessimizing code dealing with EBX.
1128
 
1129
   To avoid clobbering a call-saved register unnecessarily, we renumber
1130
   the pic register when possible.  The change is visible after the
1131
   prologue has been emitted.  */
1132
 
1133
#define REAL_PIC_OFFSET_TABLE_REGNUM  BX_REG
1134
 
1135
#define PIC_OFFSET_TABLE_REGNUM                         \
1136
  ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC)        \
1137
   || !flag_pic ? INVALID_REGNUM                        \
1138
   : reload_completed ? REGNO (pic_offset_table_rtx)    \
1139
   : REAL_PIC_OFFSET_TABLE_REGNUM)
1140
 
1141
#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1142
 
1143
/* This is overridden by <cygwin.h>.  */
1144
#define MS_AGGREGATE_RETURN 0
1145
 
1146
#define KEEP_AGGREGATE_RETURN_POINTER 0
1147
 
1148
/* Define the classes of registers for register constraints in the
1149
   machine description.  Also define ranges of constants.
1150
 
1151
   One of the classes must always be named ALL_REGS and include all hard regs.
1152
   If there is more than one class, another class must be named NO_REGS
1153
   and contain no registers.
1154
 
1155
   The name GENERAL_REGS must be the name of a class (or an alias for
1156
   another name such as ALL_REGS).  This is the class of registers
1157
   that is allowed by "g" or "r" in a register constraint.
1158
   Also, registers outside this class are allocated only when
1159
   instructions express preferences for them.
1160
 
1161
   The classes must be numbered in nondecreasing order; that is,
1162
   a larger-numbered class must never be contained completely
1163
   in a smaller-numbered class.
1164
 
1165
   For any two classes, it is very desirable that there be another
1166
   class that represents their union.
1167
 
1168
   It might seem that class BREG is unnecessary, since no useful 386
1169
   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1170
   and the "b" register constraint is useful in asms for syscalls.
1171
 
1172
   The flags, fpsr and fpcr registers are in no class.  */
1173
 
1174
enum reg_class
1175
{
1176
  NO_REGS,
1177
  AREG, DREG, CREG, BREG, SIREG, DIREG,
1178
  AD_REGS,                      /* %eax/%edx for DImode */
1179
  CLOBBERED_REGS,               /* call-clobbered integers */
1180
  Q_REGS,                       /* %eax %ebx %ecx %edx */
1181
  NON_Q_REGS,                   /* %esi %edi %ebp %esp */
1182
  INDEX_REGS,                   /* %eax %ebx %ecx %edx %esi %edi %ebp */
1183
  LEGACY_REGS,                  /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1184
  GENERAL_REGS,                 /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1185
                                   %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1186
  FP_TOP_REG, FP_SECOND_REG,    /* %st(0) %st(1) */
1187
  FLOAT_REGS,
1188
  SSE_FIRST_REG,
1189
  SSE_REGS,
1190
  MMX_REGS,
1191
  FP_TOP_SSE_REGS,
1192
  FP_SECOND_SSE_REGS,
1193
  FLOAT_SSE_REGS,
1194
  FLOAT_INT_REGS,
1195
  INT_SSE_REGS,
1196
  FLOAT_INT_SSE_REGS,
1197
  ALL_REGS, LIM_REG_CLASSES
1198
};
1199
 
1200
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1201
 
1202
#define INTEGER_CLASS_P(CLASS) \
1203
  reg_class_subset_p ((CLASS), GENERAL_REGS)
1204
#define FLOAT_CLASS_P(CLASS) \
1205
  reg_class_subset_p ((CLASS), FLOAT_REGS)
1206
#define SSE_CLASS_P(CLASS) \
1207
  reg_class_subset_p ((CLASS), SSE_REGS)
1208
#define MMX_CLASS_P(CLASS) \
1209
  ((CLASS) == MMX_REGS)
1210
#define MAYBE_INTEGER_CLASS_P(CLASS) \
1211
  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1212
#define MAYBE_FLOAT_CLASS_P(CLASS) \
1213
  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1214
#define MAYBE_SSE_CLASS_P(CLASS) \
1215
  reg_classes_intersect_p (SSE_REGS, (CLASS))
1216
#define MAYBE_MMX_CLASS_P(CLASS) \
1217
  reg_classes_intersect_p (MMX_REGS, (CLASS))
1218
 
1219
#define Q_CLASS_P(CLASS) \
1220
  reg_class_subset_p ((CLASS), Q_REGS)
1221
 
1222
/* Give names of register classes as strings for dump file.  */
1223
 
1224
#define REG_CLASS_NAMES \
1225
{  "NO_REGS",                           \
1226
   "AREG", "DREG", "CREG", "BREG",      \
1227
   "SIREG", "DIREG",                    \
1228
   "AD_REGS",                           \
1229
   "CLOBBERED_REGS",                    \
1230
   "Q_REGS", "NON_Q_REGS",              \
1231
   "INDEX_REGS",                        \
1232
   "LEGACY_REGS",                       \
1233
   "GENERAL_REGS",                      \
1234
   "FP_TOP_REG", "FP_SECOND_REG",       \
1235
   "FLOAT_REGS",                        \
1236
   "SSE_FIRST_REG",                     \
1237
   "SSE_REGS",                          \
1238
   "MMX_REGS",                          \
1239
   "FP_TOP_SSE_REGS",                   \
1240
   "FP_SECOND_SSE_REGS",                \
1241
   "FLOAT_SSE_REGS",                    \
1242
   "FLOAT_INT_REGS",                    \
1243
   "INT_SSE_REGS",                      \
1244
   "FLOAT_INT_SSE_REGS",                \
1245
   "ALL_REGS" }
1246
 
1247
/* Define which registers fit in which classes.  This is an initializer
1248
   for a vector of HARD_REG_SET of length N_REG_CLASSES.
1249
 
1250
   Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1251
   is adjusted by TARGET_CONDITIONAL_REGISTER_USAGE for the 64-bit ABI
1252
   in effect.  */
1253
 
1254
#define REG_CLASS_CONTENTS                                              \
1255
{     { 0x00,     0x0 },                                                \
1256
      { 0x01,     0x0 }, { 0x02, 0x0 }, /* AREG, DREG */                \
1257
      { 0x04,     0x0 }, { 0x08, 0x0 }, /* CREG, BREG */                \
1258
      { 0x10,     0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */              \
1259
      { 0x03,     0x0 },                /* AD_REGS */                   \
1260
      { 0x07,     0x0 },                /* CLOBBERED_REGS */            \
1261
      { 0x0f,     0x0 },                /* Q_REGS */                    \
1262
  { 0x1100f0,  0x1fe0 },                /* NON_Q_REGS */                \
1263
      { 0x7f,  0x1fe0 },                /* INDEX_REGS */                \
1264
  { 0x1100ff,     0x0 },                /* LEGACY_REGS */               \
1265
  { 0x1100ff,  0x1fe0 },                /* GENERAL_REGS */              \
1266
     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1267
    { 0xff00,     0x0 },                /* FLOAT_REGS */                \
1268
  { 0x200000,     0x0 },                /* SSE_FIRST_REG */             \
1269
{ 0x1fe00000,0x1fe000 },                /* SSE_REGS */                  \
1270
{ 0xe0000000,    0x1f },                /* MMX_REGS */                  \
1271
{ 0x1fe00100,0x1fe000 },                /* FP_TOP_SSE_REG */            \
1272
{ 0x1fe00200,0x1fe000 },                /* FP_SECOND_SSE_REG */         \
1273
{ 0x1fe0ff00,0x1fe000 },                /* FLOAT_SSE_REGS */            \
1274
   { 0x1ffff,  0x1fe0 },                /* FLOAT_INT_REGS */            \
1275
{ 0x1fe100ff,0x1fffe0 },                /* INT_SSE_REGS */              \
1276
{ 0x1fe1ffff,0x1fffe0 },                /* FLOAT_INT_SSE_REGS */        \
1277
{ 0xffffffff,0x1fffff }                                                 \
1278
}
1279
 
1280
/* The same information, inverted:
1281
   Return the class number of the smallest class containing
1282
   reg number REGNO.  This could be a conditional expression
1283
   or could index an array.  */
1284
 
1285
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1286
 
1287
/* When this hook returns true for MODE, the compiler allows
1288
   registers explicitly used in the rtl to be used as spill registers
1289
   but prevents the compiler from extending the lifetime of these
1290
   registers.  */
1291
#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1292
 
1293
#define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
1294
 
1295
#define GENERAL_REGNO_P(N) \
1296
  ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1297
 
1298
#define GENERAL_REG_P(X) \
1299
  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1300
 
1301
#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1302
 
1303
#define REX_INT_REGNO_P(N) \
1304
  IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1305
#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1306
 
1307
#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1308
#define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1309
#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1310
#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1311
 
1312
#define X87_FLOAT_MODE_P(MODE)  \
1313
  (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1314
 
1315
#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1316
#define SSE_REGNO_P(N)                                          \
1317
  (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG)                  \
1318
   || REX_SSE_REGNO_P (N))
1319
 
1320
#define REX_SSE_REGNO_P(N) \
1321
  IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1322
 
1323
#define SSE_REGNO(N) \
1324
  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1325
 
1326
#define SSE_FLOAT_MODE_P(MODE) \
1327
  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1328
 
1329
#define FMA4_VEC_FLOAT_MODE_P(MODE) \
1330
  (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1331
                  || (MODE) == V8SFmode || (MODE) == V4DFmode))
1332
 
1333
#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1334
#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1335
 
1336
#define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1337
#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1338
 
1339
#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1340
 
1341
#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1342
#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1343
 
1344
/* The class value for index registers, and the one for base regs.  */
1345
 
1346
#define INDEX_REG_CLASS INDEX_REGS
1347
#define BASE_REG_CLASS GENERAL_REGS
1348
 
1349
/* Place additional restrictions on the register class to use when it
1350
   is necessary to be able to hold a value of mode MODE in a reload
1351
   register for which class CLASS would ordinarily be used.  */
1352
 
1353
#define LIMIT_RELOAD_CLASS(MODE, CLASS)                         \
1354
  ((MODE) == QImode && !TARGET_64BIT                            \
1355
   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS           \
1356
       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)      \
1357
   ? Q_REGS : (CLASS))
1358
 
1359
/* If we are copying between general and FP registers, we need a memory
1360
   location. The same is true for SSE and MMX registers.  */
1361
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1362
  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1363
 
1364
/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1365
   There is no need to emit full 64 bit move on 64 bit targets
1366
   for integral modes that can be moved using 32 bit move.  */
1367
#define SECONDARY_MEMORY_NEEDED_MODE(MODE)                      \
1368
  (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE)       \
1369
   ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)                \
1370
   : MODE)
1371
 
1372
/* Return a class of registers that cannot change FROM mode to TO mode.  */
1373
 
1374
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1375
  ix86_cannot_change_mode_class (FROM, TO, CLASS)
1376
 
1377
/* Stack layout; function entry, exit and calling.  */
1378
 
1379
/* Define this if pushing a word on the stack
1380
   makes the stack pointer a smaller address.  */
1381
#define STACK_GROWS_DOWNWARD
1382
 
1383
/* Define this to nonzero if the nominal address of the stack frame
1384
   is at the high-address end of the local variables;
1385
   that is, each additional local variable allocated
1386
   goes at a more negative offset in the frame.  */
1387
#define FRAME_GROWS_DOWNWARD 1
1388
 
1389
/* Offset within stack frame to start allocating local variables at.
1390
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1391
   first local allocated.  Otherwise, it is the offset to the BEGINNING
1392
   of the first local allocated.  */
1393
#define STARTING_FRAME_OFFSET 0
1394
 
1395
/* If we generate an insn to push BYTES bytes, this says how many the stack
1396
   pointer really advances by.  On 386, we have pushw instruction that
1397
   decrements by exactly 2 no matter what the position was, there is no pushb.
1398
 
1399
   But as CIE data alignment factor on this arch is -4 for 32bit targets
1400
   and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1401
   are in multiple of 4 for 32bit targets and 8 for 64bit targets.  */
1402
 
1403
#define PUSH_ROUNDING(BYTES) \
1404
  (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
1405
 
1406
/* If defined, the maximum amount of space required for outgoing arguments
1407
   will be computed and placed into the variable `crtl->outgoing_args_size'.
1408
   No space will be pushed onto the stack for each call; instead, the
1409
   function prologue should increase the stack frame size by this amount.
1410
 
1411
   64-bit MS ABI seem to require 16 byte alignment everywhere except for
1412
   function prologue and apilogue.  This is not possible without
1413
   ACCUMULATE_OUTGOING_ARGS.  */
1414
 
1415
#define ACCUMULATE_OUTGOING_ARGS \
1416
  (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
1417
 
1418
/* If defined, a C expression whose value is nonzero when we want to use PUSH
1419
   instructions to pass outgoing arguments.  */
1420
 
1421
#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1422
 
1423
/* We want the stack and args grow in opposite directions, even if
1424
   PUSH_ARGS is 0.  */
1425
#define PUSH_ARGS_REVERSED 1
1426
 
1427
/* Offset of first parameter from the argument pointer register value.  */
1428
#define FIRST_PARM_OFFSET(FNDECL) 0
1429
 
1430
/* Define this macro if functions should assume that stack space has been
1431
   allocated for arguments even when their values are passed in registers.
1432
 
1433
   The value of this macro is the size, in bytes, of the area reserved for
1434
   arguments passed in registers for the function represented by FNDECL.
1435
 
1436
   This space can be allocated by the caller, or be a part of the
1437
   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1438
   which.  */
1439
#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1440
 
1441
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1442
  (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1443
 
1444
/* Define how to find the value returned by a library function
1445
   assuming the value has mode MODE.  */
1446
 
1447
#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1448
 
1449
/* Define the size of the result block used for communication between
1450
   untyped_call and untyped_return.  The block contains a DImode value
1451
   followed by the block used by fnsave and frstor.  */
1452
 
1453
#define APPLY_RESULT_SIZE (8+108)
1454
 
1455
/* 1 if N is a possible register number for function argument passing.  */
1456
#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1457
 
1458
/* Define a data type for recording info about an argument list
1459
   during the scan of that argument list.  This data type should
1460
   hold all necessary information about the function itself
1461
   and about the args processed so far, enough to enable macros
1462
   such as FUNCTION_ARG to determine where the next arg should go.  */
1463
 
1464
typedef struct ix86_args {
1465
  int words;                    /* # words passed so far */
1466
  int nregs;                    /* # registers available for passing */
1467
  int regno;                    /* next available register number */
1468
  int fastcall;                 /* fastcall or thiscall calling convention
1469
                                   is used */
1470
  int sse_words;                /* # sse words passed so far */
1471
  int sse_nregs;                /* # sse registers available for passing */
1472
  int warn_avx;                 /* True when we want to warn about AVX ABI.  */
1473
  int warn_sse;                 /* True when we want to warn about SSE ABI.  */
1474
  int warn_mmx;                 /* True when we want to warn about MMX ABI.  */
1475
  int sse_regno;                /* next available sse register number */
1476
  int mmx_words;                /* # mmx words passed so far */
1477
  int mmx_nregs;                /* # mmx registers available for passing */
1478
  int mmx_regno;                /* next available mmx register number */
1479
  int maybe_vaarg;              /* true for calls to possibly vardic fncts.  */
1480
  int caller;                   /* true if it is caller.  */
1481
  int float_in_sse;             /* Set to 1 or 2 for 32bit targets if
1482
                                   SFmode/DFmode arguments should be passed
1483
                                   in SSE registers.  Otherwise 0.  */
1484
  enum calling_abi call_abi;    /* Set to SYSV_ABI for sysv abi. Otherwise
1485
                                   MS_ABI for ms abi.  */
1486
} CUMULATIVE_ARGS;
1487
 
1488
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1489
   for a call to a function whose data type is FNTYPE.
1490
   For a library call, FNTYPE is 0.  */
1491
 
1492
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1493
  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1494
                        (N_NAMED_ARGS) != -1)
1495
 
1496
/* Output assembler code to FILE to increment profiler label # LABELNO
1497
   for profiling a function entry.  */
1498
 
1499
#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1500
 
1501
#define MCOUNT_NAME "_mcount"
1502
 
1503
#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1504
 
1505
#define PROFILE_COUNT_REGISTER "edx"
1506
 
1507
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1508
   the stack pointer does not matter.  The value is tested only in
1509
   functions that have frame pointers.
1510
   No definition is equivalent to always zero.  */
1511
/* Note on the 386 it might be more efficient not to define this since
1512
   we have to restore it ourselves from the frame pointer, in order to
1513
   use pop */
1514
 
1515
#define EXIT_IGNORE_STACK 1
1516
 
1517
/* Output assembler code for a block containing the constant parts
1518
   of a trampoline, leaving space for the variable parts.  */
1519
 
1520
/* On the 386, the trampoline contains two instructions:
1521
     mov #STATIC,ecx
1522
     jmp FUNCTION
1523
   The trampoline is generated entirely at runtime.  The operand of JMP
1524
   is the address of FUNCTION relative to the instruction following the
1525
   JMP (which is 5 bytes long).  */
1526
 
1527
/* Length in units of the trampoline for entering a nested function.  */
1528
 
1529
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1530
 
1531
/* Definitions for register eliminations.
1532
 
1533
   This is an array of structures.  Each structure initializes one pair
1534
   of eliminable registers.  The "from" register number is given first,
1535
   followed by "to".  Eliminations of the same "from" register are listed
1536
   in order of preference.
1537
 
1538
   There are two registers that can always be eliminated on the i386.
1539
   The frame pointer and the arg pointer can be replaced by either the
1540
   hard frame pointer or to the stack pointer, depending upon the
1541
   circumstances.  The hard frame pointer is not used before reload and
1542
   so it is not eligible for elimination.  */
1543
 
1544
#define ELIMINABLE_REGS                                 \
1545
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},           \
1546
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},      \
1547
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},         \
1548
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}    \
1549
 
1550
/* Define the offset between two registers, one to be eliminated, and the other
1551
   its replacement, at the start of a routine.  */
1552
 
1553
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1554
  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1555
 
1556
/* Addressing modes, and classification of registers for them.  */
1557
 
1558
/* Macros to check register numbers against specific register classes.  */
1559
 
1560
/* These assume that REGNO is a hard or pseudo reg number.
1561
   They give nonzero only if REGNO is a hard reg of the suitable class
1562
   or a pseudo reg currently allocated to a suitable hard reg.
1563
   Since they use reg_renumber, they are safe only once reg_renumber
1564
   has been allocated, which happens in local-alloc.c.  */
1565
 
1566
#define REGNO_OK_FOR_INDEX_P(REGNO)                                     \
1567
  ((REGNO) < STACK_POINTER_REGNUM                                       \
1568
   || REX_INT_REGNO_P (REGNO)                                           \
1569
   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM           \
1570
   || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1571
 
1572
#define REGNO_OK_FOR_BASE_P(REGNO)                                      \
1573
  (GENERAL_REGNO_P (REGNO)                                              \
1574
   || (REGNO) == ARG_POINTER_REGNUM                                     \
1575
   || (REGNO) == FRAME_POINTER_REGNUM                                   \
1576
   || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1577
 
1578
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1579
   and check its validity for a certain class.
1580
   We have two alternate definitions for each of them.
1581
   The usual definition accepts all pseudo regs; the other rejects
1582
   them unless they have been allocated suitable hard regs.
1583
   The symbol REG_OK_STRICT causes the latter definition to be used.
1584
 
1585
   Most source files want to accept pseudo regs in the hope that
1586
   they will get allocated to the class that the insn wants them to be in.
1587
   Source files for reload pass need to be strict.
1588
   After reload, it makes no difference, since pseudo regs have
1589
   been eliminated by then.  */
1590
 
1591
 
1592
/* Non strict versions, pseudos are ok.  */
1593
#define REG_OK_FOR_INDEX_NONSTRICT_P(X)                                 \
1594
  (REGNO (X) < STACK_POINTER_REGNUM                                     \
1595
   || REX_INT_REGNO_P (REGNO (X))                                       \
1596
   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1597
 
1598
#define REG_OK_FOR_BASE_NONSTRICT_P(X)                                  \
1599
  (GENERAL_REGNO_P (REGNO (X))                                          \
1600
   || REGNO (X) == ARG_POINTER_REGNUM                                   \
1601
   || REGNO (X) == FRAME_POINTER_REGNUM                                 \
1602
   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1603
 
1604
/* Strict versions, hard registers only */
1605
#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1606
#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1607
 
1608
#ifndef REG_OK_STRICT
1609
#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1610
#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1611
 
1612
#else
1613
#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1614
#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1615
#endif
1616
 
1617
/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1618
   that is a valid memory address for an instruction.
1619
   The MODE argument is the machine mode for the MEM expression
1620
   that wants to use this address.
1621
 
1622
   The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1623
   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1624
 
1625
   See legitimize_pic_address in i386.c for details as to what
1626
   constitutes a legitimate address when -fpic is used.  */
1627
 
1628
#define MAX_REGS_PER_ADDRESS 2
1629
 
1630
#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1631
 
1632
/* If defined, a C expression to determine the base term of address X.
1633
   This macro is used in only one place: `find_base_term' in alias.c.
1634
 
1635
   It is always safe for this macro to not be defined.  It exists so
1636
   that alias analysis can understand machine-dependent addresses.
1637
 
1638
   The typical use of this macro is to handle addresses containing
1639
   a label_ref or symbol_ref within an UNSPEC.  */
1640
 
1641
#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1642
 
1643
/* Nonzero if the constant value X is a legitimate general operand
1644
   when generating PIC code.  It is given that flag_pic is on and
1645
   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1646
 
1647
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1648
 
1649
#define SYMBOLIC_CONST(X)       \
1650
  (GET_CODE (X) == SYMBOL_REF                                           \
1651
   || GET_CODE (X) == LABEL_REF                                         \
1652
   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1653
 
1654
/* Max number of args passed in registers.  If this is more than 3, we will
1655
   have problems with ebx (register #4), since it is a caller save register and
1656
   is also used as the pic register in ELF.  So for now, don't allow more than
1657
   3 registers to be passed in registers.  */
1658
 
1659
/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1660
#define X86_64_REGPARM_MAX 6
1661
#define X86_64_MS_REGPARM_MAX 4
1662
 
1663
#define X86_32_REGPARM_MAX 3
1664
 
1665
#define REGPARM_MAX                                                     \
1666
  (TARGET_64BIT                                                         \
1667
   ? (TARGET_64BIT_MS_ABI                                               \
1668
      ? X86_64_MS_REGPARM_MAX                                           \
1669
      : X86_64_REGPARM_MAX)                                             \
1670
   : X86_32_REGPARM_MAX)
1671
 
1672
#define X86_64_SSE_REGPARM_MAX 8
1673
#define X86_64_MS_SSE_REGPARM_MAX 4
1674
 
1675
#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1676
 
1677
#define SSE_REGPARM_MAX                                                 \
1678
  (TARGET_64BIT                                                         \
1679
   ? (TARGET_64BIT_MS_ABI                                               \
1680
      ? X86_64_MS_SSE_REGPARM_MAX                                       \
1681
      : X86_64_SSE_REGPARM_MAX)                                         \
1682
   : X86_32_SSE_REGPARM_MAX)
1683
 
1684
#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1685
 
1686
/* Specify the machine mode that this machine uses
1687
   for the index in the tablejump instruction.  */
1688
#define CASE_VECTOR_MODE \
1689
 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1690
 
1691
/* Define this as 1 if `char' should by default be signed; else as 0.  */
1692
#define DEFAULT_SIGNED_CHAR 1
1693
 
1694
/* Max number of bytes we can move from memory to memory
1695
   in one reasonably fast instruction.  */
1696
#define MOVE_MAX 16
1697
 
1698
/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1699
   move efficiently, as opposed to  MOVE_MAX which is the maximum
1700
   number of bytes we can move with a single instruction.  */
1701
#define MOVE_MAX_PIECES UNITS_PER_WORD
1702
 
1703
/* If a memory-to-memory move would take MOVE_RATIO or more simple
1704
   move-instruction pairs, we will do a movmem or libcall instead.
1705
   Increasing the value will always make code faster, but eventually
1706
   incurs high cost in increased code size.
1707
 
1708
   If you don't define this, a reasonable default is used.  */
1709
 
1710
#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1711
 
1712
/* If a clear memory operation would take CLEAR_RATIO or more simple
1713
   move-instruction sequences, we will do a clrmem or libcall instead.  */
1714
 
1715
#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1716
 
1717
/* Define if shifts truncate the shift count which implies one can
1718
   omit a sign-extension or zero-extension of a shift count.
1719
 
1720
   On i386, shifts do truncate the count.  But bit test instructions
1721
   take the modulo of the bit offset operand.  */
1722
 
1723
/* #define SHIFT_COUNT_TRUNCATED */
1724
 
1725
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1726
   is done just by pretending it is already truncated.  */
1727
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1728
 
1729
/* A macro to update M and UNSIGNEDP when an object whose type is
1730
   TYPE and which has the specified mode and signedness is to be
1731
   stored in a register.  This macro is only called when TYPE is a
1732
   scalar type.
1733
 
1734
   On i386 it is sometimes useful to promote HImode and QImode
1735
   quantities to SImode.  The choice depends on target type.  */
1736
 
1737
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)             \
1738
do {                                                    \
1739
  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)      \
1740
      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))  \
1741
    (MODE) = SImode;                                    \
1742
} while (0)
1743
 
1744
/* Specify the machine mode that pointers have.
1745
   After generation of rtl, the compiler makes no further distinction
1746
   between pointers and any other objects of this machine mode.  */
1747
#define Pmode (TARGET_64BIT ? DImode : SImode)
1748
 
1749
/* A C expression whose value is zero if pointers that need to be extended
1750
   from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1751
   greater then zero if they are zero-extended and less then zero if the
1752
   ptr_extend instruction should be used.  */
1753
 
1754
#define POINTERS_EXTEND_UNSIGNED 1
1755
 
1756
/* A function address in a call instruction
1757
   is a byte address (for indexing purposes)
1758
   so give the MEM rtx a byte's mode.  */
1759
#define FUNCTION_MODE QImode
1760
 
1761
 
1762
/* A C expression for the cost of a branch instruction.  A value of 1
1763
   is the default; other values are interpreted relative to that.  */
1764
 
1765
#define BRANCH_COST(speed_p, predictable_p) \
1766
  (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1767
 
1768
/* Define this macro as a C expression which is nonzero if accessing
1769
   less than a word of memory (i.e. a `char' or a `short') is no
1770
   faster than accessing a word of memory, i.e., if such access
1771
   require more than one instruction or if there is no difference in
1772
   cost between byte and (aligned) word loads.
1773
 
1774
   When this macro is not defined, the compiler will access a field by
1775
   finding the smallest containing object; when it is defined, a
1776
   fullword load will be used if alignment permits.  Unless bytes
1777
   accesses are faster than word accesses, using word accesses is
1778
   preferable since it may eliminate subsequent memory access if
1779
   subsequent accesses occur to other fields in the same word of the
1780
   structure, but to different bytes.  */
1781
 
1782
#define SLOW_BYTE_ACCESS 0
1783
 
1784
/* Nonzero if access to memory by shorts is slow and undesirable.  */
1785
#define SLOW_SHORT_ACCESS 0
1786
 
1787
/* Define this macro to be the value 1 if unaligned accesses have a
1788
   cost many times greater than aligned accesses, for example if they
1789
   are emulated in a trap handler.
1790
 
1791
   When this macro is nonzero, the compiler will act as if
1792
   `STRICT_ALIGNMENT' were nonzero when generating code for block
1793
   moves.  This can cause significantly more instructions to be
1794
   produced.  Therefore, do not set this macro nonzero if unaligned
1795
   accesses only add a cycle or two to the time for a memory access.
1796
 
1797
   If the value of this macro is always zero, it need not be defined.  */
1798
 
1799
/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1800
 
1801
/* Define this macro if it is as good or better to call a constant
1802
   function address than to call an address kept in a register.
1803
 
1804
   Desirable on the 386 because a CALL with a constant address is
1805
   faster than one with a register address.  */
1806
 
1807
#define NO_FUNCTION_CSE
1808
 
1809
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1810
   return the mode to be used for the comparison.
1811
 
1812
   For floating-point equality comparisons, CCFPEQmode should be used.
1813
   VOIDmode should be used in all other cases.
1814
 
1815
   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1816
   possible, to allow for more combinations.  */
1817
 
1818
#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1819
 
1820
/* Return nonzero if MODE implies a floating point inequality can be
1821
   reversed.  */
1822
 
1823
#define REVERSIBLE_CC_MODE(MODE) 1
1824
 
1825
/* A C expression whose value is reversed condition code of the CODE for
1826
   comparison done in CC_MODE mode.  */
1827
#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1828
 
1829
 
1830
/* Control the assembler format that we output, to the extent
1831
   this does not vary between assemblers.  */
1832
 
1833
/* How to refer to registers in assembler output.
1834
   This sequence is indexed by compiler's hard-register-number (see above).  */
1835
 
1836
/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1837
   For non floating point regs, the following are the HImode names.
1838
 
1839
   For float regs, the stack top is sometimes referred to as "%st(0)"
1840
   instead of just "%st".  TARGET_PRINT_OPERAND handles this with the
1841
   "y" code.  */
1842
 
1843
#define HI_REGISTER_NAMES                                               \
1844
{"ax","dx","cx","bx","si","di","bp","sp",                               \
1845
 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",          \
1846
 "argp", "flags", "fpsr", "fpcr", "frame",                              \
1847
 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",               \
1848
 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7",                \
1849
 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",                  \
1850
 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1851
 
1852
#define REGISTER_NAMES HI_REGISTER_NAMES
1853
 
1854
/* Table of additional register names to use in user input.  */
1855
 
1856
#define ADDITIONAL_REGISTER_NAMES \
1857
{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },        \
1858
  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },       \
1859
  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },        \
1860
  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },       \
1861
  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },            \
1862
  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1863
 
1864
/* Note we are omitting these since currently I don't know how
1865
to get gcc to use these, since they want the same but different
1866
number as al, and ax.
1867
*/
1868
 
1869
#define QI_REGISTER_NAMES \
1870
{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1871
 
1872
/* These parallel the array above, and can be used to access bits 8:15
1873
   of regs 0 through 3.  */
1874
 
1875
#define QI_HIGH_REGISTER_NAMES \
1876
{"ah", "dh", "ch", "bh", }
1877
 
1878
/* How to renumber registers for dbx and gdb.  */
1879
 
1880
#define DBX_REGISTER_NUMBER(N) \
1881
  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1882
 
1883
extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1884
extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1885
extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1886
 
1887
/* Before the prologue, RA is at 0(%esp).  */
1888
#define INCOMING_RETURN_ADDR_RTX \
1889
  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1890
 
1891
/* After the prologue, RA is at -4(AP) in the current frame.  */
1892
#define RETURN_ADDR_RTX(COUNT, FRAME)                                      \
1893
  ((COUNT) == 0                                                             \
1894
   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1895
   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
1896
 
1897
/* PC is dbx register 8; let's use that column for RA.  */
1898
#define DWARF_FRAME_RETURN_COLUMN       (TARGET_64BIT ? 16 : 8)
1899
 
1900
/* Before the prologue, the top of the frame is at 4(%esp).  */
1901
#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1902
 
1903
/* Describe how we implement __builtin_eh_return.  */
1904
#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
1905
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, CX_REG)
1906
 
1907
 
1908
/* Select a format to encode pointers in exception handling data.  CODE
1909
   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1910
   true if the symbol may be affected by dynamic relocations.
1911
 
1912
   ??? All x86 object file formats are capable of representing this.
1913
   After all, the relocation needed is the same as for the call insn.
1914
   Whether or not a particular assembler allows us to enter such, I
1915
   guess we'll have to see.  */
1916
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)                      \
1917
  asm_preferred_eh_data_format ((CODE), (GLOBAL))
1918
 
1919
/* This is how to output an insn to push a register on the stack.
1920
   It need not be very fast code.  */
1921
 
1922
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
1923
do {                                                                    \
1924
  if (TARGET_64BIT)                                                     \
1925
    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",                          \
1926
                 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));   \
1927
  else                                                                  \
1928
    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);     \
1929
} while (0)
1930
 
1931
/* This is how to output an insn to pop a register from the stack.
1932
   It need not be very fast code.  */
1933
 
1934
#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
1935
do {                                                                    \
1936
  if (TARGET_64BIT)                                                     \
1937
    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",                           \
1938
                 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));   \
1939
  else                                                                  \
1940
    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);      \
1941
} while (0)
1942
 
1943
/* This is how to output an element of a case-vector that is absolute.  */
1944
 
1945
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1946
  ix86_output_addr_vec_elt ((FILE), (VALUE))
1947
 
1948
/* This is how to output an element of a case-vector that is relative.  */
1949
 
1950
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1951
  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
1952
 
1953
/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true.  */
1954
 
1955
#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR)      \
1956
{                                               \
1957
  if ((PTR)[0] == '%' && (PTR)[1] == 'v')        \
1958
    (PTR) += TARGET_AVX ? 1 : 2;                \
1959
}
1960
 
1961
/* A C statement or statements which output an assembler instruction
1962
   opcode to the stdio stream STREAM.  The macro-operand PTR is a
1963
   variable of type `char *' which points to the opcode name in
1964
   its "internal" form--the form that is written in the machine
1965
   description.  */
1966
 
1967
#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1968
  ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
1969
 
1970
/* A C statement to output to the stdio stream FILE an assembler
1971
   command to pad the location counter to a multiple of 1<<LOG
1972
   bytes if it is within MAX_SKIP bytes.  */
1973
 
1974
#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
1975
#undef  ASM_OUTPUT_MAX_SKIP_PAD
1976
#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP)                    \
1977
  if ((LOG) != 0)                                                        \
1978
    {                                                                   \
1979
      if ((MAX_SKIP) == 0)                                               \
1980
        fprintf ((FILE), "\t.p2align %d\n", (LOG));                     \
1981
      else                                                              \
1982
        fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP));     \
1983
    }
1984
#endif
1985
 
1986
/* Write the extra assembler code needed to declare a function
1987
   properly.  */
1988
 
1989
#undef ASM_OUTPUT_FUNCTION_LABEL
1990
#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
1991
  ix86_asm_output_function_label (FILE, NAME, DECL)
1992
 
1993
/* Under some conditions we need jump tables in the text section,
1994
   because the assembler cannot handle label differences between
1995
   sections.  This is the case for x86_64 on Mach-O for example.  */
1996
 
1997
#define JUMP_TABLES_IN_TEXT_SECTION \
1998
  (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
1999
   || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2000
 
2001
/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2002
   and switch back.  For x86 we do this only to save a few bytes that
2003
   would otherwise be unused in the text section.  */
2004
#define CRT_MKSTR2(VAL) #VAL
2005
#define CRT_MKSTR(x) CRT_MKSTR2(x)
2006
 
2007
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)              \
2008
   asm (SECTION_OP "\n\t"                                       \
2009
        "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n"     \
2010
        TEXT_SECTION_ASM_OP);
2011
 
2012
/* Which processor to tune code generation for.  */
2013
 
2014
enum processor_type
2015
{
2016
  PROCESSOR_I386 = 0,                    /* 80386 */
2017
  PROCESSOR_I486,                       /* 80486DX, 80486SX, 80486DX[24] */
2018
  PROCESSOR_PENTIUM,
2019
  PROCESSOR_PENTIUMPRO,
2020
  PROCESSOR_GEODE,
2021
  PROCESSOR_K6,
2022
  PROCESSOR_ATHLON,
2023
  PROCESSOR_PENTIUM4,
2024
  PROCESSOR_K8,
2025
  PROCESSOR_NOCONA,
2026
  PROCESSOR_CORE2_32,
2027
  PROCESSOR_CORE2_64,
2028
  PROCESSOR_COREI7_32,
2029
  PROCESSOR_COREI7_64,
2030
  PROCESSOR_GENERIC32,
2031
  PROCESSOR_GENERIC64,
2032
  PROCESSOR_AMDFAM10,
2033
  PROCESSOR_BDVER1,
2034
  PROCESSOR_BDVER2,
2035
  PROCESSOR_BTVER1,
2036
  PROCESSOR_ATOM,
2037
  PROCESSOR_max
2038
};
2039
 
2040
extern enum processor_type ix86_tune;
2041
extern enum processor_type ix86_arch;
2042
 
2043
/* Size of the RED_ZONE area.  */
2044
#define RED_ZONE_SIZE 128
2045
/* Reserved area of the red zone for temporaries.  */
2046
#define RED_ZONE_RESERVE 8
2047
 
2048
extern unsigned int ix86_preferred_stack_boundary;
2049
extern unsigned int ix86_incoming_stack_boundary;
2050
 
2051
/* Smallest class containing REGNO.  */
2052
extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2053
 
2054
enum ix86_fpcmp_strategy {
2055
  IX86_FPCMP_SAHF,
2056
  IX86_FPCMP_COMI,
2057
  IX86_FPCMP_ARITH
2058
};
2059
 
2060
/* To properly truncate FP values into integers, we need to set i387 control
2061
   word.  We can't emit proper mode switching code before reload, as spills
2062
   generated by reload may truncate values incorrectly, but we still can avoid
2063
   redundant computation of new control word by the mode switching pass.
2064
   The fldcw instructions are still emitted redundantly, but this is probably
2065
   not going to be noticeable problem, as most CPUs do have fast path for
2066
   the sequence.
2067
 
2068
   The machinery is to emit simple truncation instructions and split them
2069
   before reload to instructions having USEs of two memory locations that
2070
   are filled by this code to old and new control word.
2071
 
2072
   Post-reload pass may be later used to eliminate the redundant fildcw if
2073
   needed.  */
2074
 
2075
enum ix86_entity
2076
{
2077
  I387_TRUNC = 0,
2078
  I387_FLOOR,
2079
  I387_CEIL,
2080
  I387_MASK_PM,
2081
  MAX_386_ENTITIES
2082
};
2083
 
2084
enum ix86_stack_slot
2085
{
2086
  SLOT_VIRTUAL = 0,
2087
  SLOT_TEMP,
2088
  SLOT_CW_STORED,
2089
  SLOT_CW_TRUNC,
2090
  SLOT_CW_FLOOR,
2091
  SLOT_CW_CEIL,
2092
  SLOT_CW_MASK_PM,
2093
  MAX_386_STACK_LOCALS
2094
};
2095
 
2096
/* Define this macro if the port needs extra instructions inserted
2097
   for mode switching in an optimizing compilation.  */
2098
 
2099
#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2100
   ix86_optimize_mode_switching[(ENTITY)]
2101
 
2102
/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2103
   initializer for an array of integers.  Each initializer element N
2104
   refers to an entity that needs mode switching, and specifies the
2105
   number of different modes that might need to be set for this
2106
   entity.  The position of the initializer in the initializer -
2107
   starting counting at zero - determines the integer that is used to
2108
   refer to the mode-switched entity in question.  */
2109
 
2110
#define NUM_MODES_FOR_MODE_SWITCHING \
2111
   { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2112
 
2113
/* ENTITY is an integer specifying a mode-switched entity.  If
2114
   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2115
   return an integer value not larger than the corresponding element
2116
   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2117
   must be switched into prior to the execution of INSN. */
2118
 
2119
#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2120
 
2121
/* This macro specifies the order in which modes for ENTITY are
2122
   processed.  0 is the highest priority.  */
2123
 
2124
#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2125
 
2126
/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
2127
   is the set of hard registers live at the point where the insn(s)
2128
   are to be inserted.  */
2129
 
2130
#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE)                     \
2131
  ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED             \
2132
   ? emit_i387_cw_initialization (MODE), 0                               \
2133
   : 0)
2134
 
2135
 
2136
/* Avoid renaming of stack registers, as doing so in combination with
2137
   scheduling just increases amount of live registers at time and in
2138
   the turn amount of fxch instructions needed.
2139
 
2140
   ??? Maybe Pentium chips benefits from renaming, someone can try....  */
2141
 
2142
#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
2143
  (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2144
 
2145
 
2146
#define FASTCALL_PREFIX '@'
2147
 
2148
/* Machine specific frame tracking during prologue/epilogue generation.  */
2149
 
2150
#ifndef USED_FOR_TARGET
2151
struct GTY(()) machine_frame_state
2152
{
2153
  /* This pair tracks the currently active CFA as reg+offset.  When reg
2154
     is drap_reg, we don't bother trying to record here the real CFA when
2155
     it might really be a DW_CFA_def_cfa_expression.  */
2156
  rtx cfa_reg;
2157
  HOST_WIDE_INT cfa_offset;
2158
 
2159
  /* The current offset (canonically from the CFA) of ESP and EBP.
2160
     When stack frame re-alignment is active, these may not be relative
2161
     to the CFA.  However, in all cases they are relative to the offsets
2162
     of the saved registers stored in ix86_frame.  */
2163
  HOST_WIDE_INT sp_offset;
2164
  HOST_WIDE_INT fp_offset;
2165
 
2166
  /* The size of the red-zone that may be assumed for the purposes of
2167
     eliding register restore notes in the epilogue.  This may be zero
2168
     if no red-zone is in effect, or may be reduced from the real
2169
     red-zone value by a maximum runtime stack re-alignment value.  */
2170
  int red_zone_offset;
2171
 
2172
  /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2173
     value within the frame.  If false then the offset above should be
2174
     ignored.  Note that DRAP, if valid, *always* points to the CFA and
2175
     thus has an offset of zero.  */
2176
  BOOL_BITFIELD sp_valid : 1;
2177
  BOOL_BITFIELD fp_valid : 1;
2178
  BOOL_BITFIELD drap_valid : 1;
2179
 
2180
  /* Indicate whether the local stack frame has been re-aligned.  When
2181
     set, the SP/FP offsets above are relative to the aligned frame
2182
     and not the CFA.  */
2183
  BOOL_BITFIELD realigned : 1;
2184
};
2185
 
2186
/* Private to winnt.c.  */
2187
struct seh_frame_state;
2188
 
2189
struct GTY(()) machine_function {
2190
  struct stack_local_entry *stack_locals;
2191
  const char *some_ld_name;
2192
  int varargs_gpr_size;
2193
  int varargs_fpr_size;
2194
  int optimize_mode_switching[MAX_386_ENTITIES];
2195
 
2196
  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2197
     has been computed for.  */
2198
  int use_fast_prologue_epilogue_nregs;
2199
 
2200
  /* For -fsplit-stack support: A stack local which holds a pointer to
2201
     the stack arguments for a function with a variable number of
2202
     arguments.  This is set at the start of the function and is used
2203
     to initialize the overflow_arg_area field of the va_list
2204
     structure.  */
2205
  rtx split_stack_varargs_pointer;
2206
 
2207
  /* This value is used for amd64 targets and specifies the current abi
2208
     to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi.  */
2209
  ENUM_BITFIELD(calling_abi) call_abi : 8;
2210
 
2211
  /* Nonzero if the function accesses a previous frame.  */
2212
  BOOL_BITFIELD accesses_prev_frame : 1;
2213
 
2214
  /* Nonzero if the function requires a CLD in the prologue.  */
2215
  BOOL_BITFIELD needs_cld : 1;
2216
 
2217
  /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2218
     expander to determine the style used.  */
2219
  BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2220
 
2221
  /* If true, the current function needs the default PIC register, not
2222
     an alternate register (on x86) and must not use the red zone (on
2223
     x86_64), even if it's a leaf function.  We don't want the
2224
     function to be regarded as non-leaf because TLS calls need not
2225
     affect register allocation.  This flag is set when a TLS call
2226
     instruction is expanded within a function, and never reset, even
2227
     if all such instructions are optimized away.  Use the
2228
     ix86_current_function_calls_tls_descriptor macro for a better
2229
     approximation.  */
2230
  BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2231
 
2232
  /* If true, the current function has a STATIC_CHAIN is placed on the
2233
     stack below the return address.  */
2234
  BOOL_BITFIELD static_chain_on_stack : 1;
2235
 
2236
  /* Nonzero if caller passes 256bit AVX modes.  */
2237
  BOOL_BITFIELD caller_pass_avx256_p : 1;
2238
 
2239
  /* Nonzero if caller returns 256bit AVX modes.  */
2240
  BOOL_BITFIELD caller_return_avx256_p : 1;
2241
 
2242
  /* Nonzero if the current callee passes 256bit AVX modes.  */
2243
  BOOL_BITFIELD callee_pass_avx256_p : 1;
2244
 
2245
  /* Nonzero if the current callee returns 256bit AVX modes.  */
2246
  BOOL_BITFIELD callee_return_avx256_p : 1;
2247
 
2248
  /* Nonzero if rescan vzerouppers in the current function is needed.  */
2249
  BOOL_BITFIELD rescan_vzeroupper_p : 1;
2250
 
2251
  /* During prologue/epilogue generation, the current frame state.
2252
     Otherwise, the frame state at the end of the prologue.  */
2253
  struct machine_frame_state fs;
2254
 
2255
  /* During SEH output, this is non-null.  */
2256
  struct seh_frame_state * GTY((skip(""))) seh;
2257
};
2258
#endif
2259
 
2260
#define ix86_stack_locals (cfun->machine->stack_locals)
2261
#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2262
#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2263
#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2264
#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2265
#define ix86_tls_descriptor_calls_expanded_in_cfun \
2266
  (cfun->machine->tls_descriptor_call_expanded_p)
2267
/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2268
   calls are optimized away, we try to detect cases in which it was
2269
   optimized away.  Since such instructions (use (reg REG_SP)), we can
2270
   verify whether there's any such instruction live by testing that
2271
   REG_SP is live.  */
2272
#define ix86_current_function_calls_tls_descriptor \
2273
  (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2274
#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2275
 
2276
/* Control behavior of x86_file_start.  */
2277
#define X86_FILE_START_VERSION_DIRECTIVE false
2278
#define X86_FILE_START_FLTUSED false
2279
 
2280
/* Flag to mark data that is in the large address area.  */
2281
#define SYMBOL_FLAG_FAR_ADDR            (SYMBOL_FLAG_MACH_DEP << 0)
2282
#define SYMBOL_REF_FAR_ADDR_P(X)        \
2283
        ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2284
 
2285
/* Flags to mark dllimport/dllexport.  Used by PE ports, but handy to
2286
   have defined always, to avoid ifdefing.  */
2287
#define SYMBOL_FLAG_DLLIMPORT           (SYMBOL_FLAG_MACH_DEP << 1)
2288
#define SYMBOL_REF_DLLIMPORT_P(X) \
2289
        ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2290
 
2291
#define SYMBOL_FLAG_DLLEXPORT           (SYMBOL_FLAG_MACH_DEP << 2)
2292
#define SYMBOL_REF_DLLEXPORT_P(X) \
2293
        ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2294
 
2295
extern void debug_ready_dispatch (void);
2296
extern void debug_dispatch_window (int);
2297
 
2298
/* The value at zero is only defined for the BMI instructions
2299
   LZCNT and TZCNT, not the BSR/BSF insns in the original isa.  */
2300
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2301
        ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
2302
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2303
        ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
2304
 
2305
 
2306
/* Flags returned by ix86_get_callcvt ().  */
2307
#define IX86_CALLCVT_CDECL      0x1
2308
#define IX86_CALLCVT_STDCALL    0x2
2309
#define IX86_CALLCVT_FASTCALL   0x4
2310
#define IX86_CALLCVT_THISCALL   0x8
2311
#define IX86_CALLCVT_REGPARM    0x10
2312
#define IX86_CALLCVT_SSEREGPARM 0x20
2313
 
2314
#define IX86_BASE_CALLCVT(FLAGS) \
2315
        ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2316
                    | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2317
 
2318
#define RECIP_MASK_NONE         0x00
2319
#define RECIP_MASK_DIV          0x01
2320
#define RECIP_MASK_SQRT         0x02
2321
#define RECIP_MASK_VEC_DIV      0x04
2322
#define RECIP_MASK_VEC_SQRT     0x08
2323
#define RECIP_MASK_ALL  (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2324
                         | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2325
#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2326
 
2327
#define TARGET_RECIP_DIV        ((recip_mask & RECIP_MASK_DIV) != 0)
2328
#define TARGET_RECIP_SQRT       ((recip_mask & RECIP_MASK_SQRT) != 0)
2329
#define TARGET_RECIP_VEC_DIV    ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2330
#define TARGET_RECIP_VEC_SQRT   ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2331
 
2332
/*
2333
Local variables:
2334
version-control: t
2335
End:
2336
*/

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.