1 |
709 |
jeremybenn |
/* Subroutines used for code generation on Vitesse IQ2000 processors
|
2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "tree.h"
|
26 |
|
|
#include "rtl.h"
|
27 |
|
|
#include "regs.h"
|
28 |
|
|
#include "hard-reg-set.h"
|
29 |
|
|
#include "insn-config.h"
|
30 |
|
|
#include "conditions.h"
|
31 |
|
|
#include "output.h"
|
32 |
|
|
#include "insn-attr.h"
|
33 |
|
|
#include "flags.h"
|
34 |
|
|
#include "function.h"
|
35 |
|
|
#include "expr.h"
|
36 |
|
|
#include "optabs.h"
|
37 |
|
|
#include "libfuncs.h"
|
38 |
|
|
#include "recog.h"
|
39 |
|
|
#include "diagnostic-core.h"
|
40 |
|
|
#include "reload.h"
|
41 |
|
|
#include "ggc.h"
|
42 |
|
|
#include "tm_p.h"
|
43 |
|
|
#include "debug.h"
|
44 |
|
|
#include "target.h"
|
45 |
|
|
#include "target-def.h"
|
46 |
|
|
#include "langhooks.h"
|
47 |
|
|
#include "df.h"
|
48 |
|
|
|
49 |
|
|
/* Enumeration for all of the relational tests, so that we can build
|
50 |
|
|
arrays indexed by the test type, and not worry about the order
|
51 |
|
|
of EQ, NE, etc. */
|
52 |
|
|
|
53 |
|
|
enum internal_test
|
54 |
|
|
{
|
55 |
|
|
ITEST_EQ,
|
56 |
|
|
ITEST_NE,
|
57 |
|
|
ITEST_GT,
|
58 |
|
|
ITEST_GE,
|
59 |
|
|
ITEST_LT,
|
60 |
|
|
ITEST_LE,
|
61 |
|
|
ITEST_GTU,
|
62 |
|
|
ITEST_GEU,
|
63 |
|
|
ITEST_LTU,
|
64 |
|
|
ITEST_LEU,
|
65 |
|
|
ITEST_MAX
|
66 |
|
|
};
|
67 |
|
|
|
68 |
|
|
struct constant;
|
69 |
|
|
|
70 |
|
|
|
71 |
|
|
/* Structure to be filled in by compute_frame_size with register
|
72 |
|
|
save masks, and offsets for the current function. */
|
73 |
|
|
|
74 |
|
|
struct iq2000_frame_info
|
75 |
|
|
{
|
76 |
|
|
long total_size; /* # bytes that the entire frame takes up. */
|
77 |
|
|
long var_size; /* # bytes that variables take up. */
|
78 |
|
|
long args_size; /* # bytes that outgoing arguments take up. */
|
79 |
|
|
long extra_size; /* # bytes of extra gunk. */
|
80 |
|
|
int gp_reg_size; /* # bytes needed to store gp regs. */
|
81 |
|
|
int fp_reg_size; /* # bytes needed to store fp regs. */
|
82 |
|
|
long mask; /* Mask of saved gp registers. */
|
83 |
|
|
long gp_save_offset; /* Offset from vfp to store gp registers. */
|
84 |
|
|
long fp_save_offset; /* Offset from vfp to store fp registers. */
|
85 |
|
|
long gp_sp_offset; /* Offset from new sp to store gp registers. */
|
86 |
|
|
long fp_sp_offset; /* Offset from new sp to store fp registers. */
|
87 |
|
|
int initialized; /* != 0 if frame size already calculated. */
|
88 |
|
|
int num_gp; /* Number of gp registers saved. */
|
89 |
|
|
} iq2000_frame_info;
|
90 |
|
|
|
91 |
|
|
struct GTY(()) machine_function
|
92 |
|
|
{
|
93 |
|
|
/* Current frame information, calculated by compute_frame_size. */
|
94 |
|
|
long total_size; /* # bytes that the entire frame takes up. */
|
95 |
|
|
long var_size; /* # bytes that variables take up. */
|
96 |
|
|
long args_size; /* # bytes that outgoing arguments take up. */
|
97 |
|
|
long extra_size; /* # bytes of extra gunk. */
|
98 |
|
|
int gp_reg_size; /* # bytes needed to store gp regs. */
|
99 |
|
|
int fp_reg_size; /* # bytes needed to store fp regs. */
|
100 |
|
|
long mask; /* Mask of saved gp registers. */
|
101 |
|
|
long gp_save_offset; /* Offset from vfp to store gp registers. */
|
102 |
|
|
long fp_save_offset; /* Offset from vfp to store fp registers. */
|
103 |
|
|
long gp_sp_offset; /* Offset from new sp to store gp registers. */
|
104 |
|
|
long fp_sp_offset; /* Offset from new sp to store fp registers. */
|
105 |
|
|
int initialized; /* != 0 if frame size already calculated. */
|
106 |
|
|
int num_gp; /* Number of gp registers saved. */
|
107 |
|
|
};
|
108 |
|
|
|
109 |
|
|
/* Global variables for machine-dependent things. */
|
110 |
|
|
|
111 |
|
|
/* List of all IQ2000 punctuation characters used by iq2000_print_operand. */
|
112 |
|
|
static char iq2000_print_operand_punct[256];
|
113 |
|
|
|
114 |
|
|
/* Which instruction set architecture to use. */
|
115 |
|
|
int iq2000_isa;
|
116 |
|
|
|
117 |
|
|
/* Local variables. */
|
118 |
|
|
|
119 |
|
|
/* The next branch instruction is a branch likely, not branch normal. */
|
120 |
|
|
static int iq2000_branch_likely;
|
121 |
|
|
|
122 |
|
|
/* Count of delay slots and how many are filled. */
|
123 |
|
|
static int dslots_load_total;
|
124 |
|
|
static int dslots_load_filled;
|
125 |
|
|
static int dslots_jump_total;
|
126 |
|
|
|
127 |
|
|
/* # of nops needed by previous insn. */
|
128 |
|
|
static int dslots_number_nops;
|
129 |
|
|
|
130 |
|
|
/* Number of 1/2/3 word references to data items (i.e., not jal's). */
|
131 |
|
|
static int num_refs[3];
|
132 |
|
|
|
133 |
|
|
/* Registers to check for load delay. */
|
134 |
|
|
static rtx iq2000_load_reg;
|
135 |
|
|
static rtx iq2000_load_reg2;
|
136 |
|
|
static rtx iq2000_load_reg3;
|
137 |
|
|
static rtx iq2000_load_reg4;
|
138 |
|
|
|
139 |
|
|
/* Mode used for saving/restoring general purpose registers. */
|
140 |
|
|
static enum machine_mode gpr_mode;
|
141 |
|
|
|
142 |
|
|
|
143 |
|
|
/* Initialize the GCC target structure. */
|
144 |
|
|
static struct machine_function* iq2000_init_machine_status (void);
|
145 |
|
|
static void iq2000_option_override (void);
|
146 |
|
|
static section *iq2000_select_rtx_section (enum machine_mode, rtx,
|
147 |
|
|
unsigned HOST_WIDE_INT);
|
148 |
|
|
static void iq2000_init_builtins (void);
|
149 |
|
|
static rtx iq2000_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
|
150 |
|
|
static bool iq2000_return_in_memory (const_tree, const_tree);
|
151 |
|
|
static void iq2000_setup_incoming_varargs (cumulative_args_t,
|
152 |
|
|
enum machine_mode, tree, int *,
|
153 |
|
|
int);
|
154 |
|
|
static bool iq2000_rtx_costs (rtx, int, int, int, int *, bool);
|
155 |
|
|
static int iq2000_address_cost (rtx, bool);
|
156 |
|
|
static section *iq2000_select_section (tree, int, unsigned HOST_WIDE_INT);
|
157 |
|
|
static rtx iq2000_legitimize_address (rtx, rtx, enum machine_mode);
|
158 |
|
|
static bool iq2000_pass_by_reference (cumulative_args_t, enum machine_mode,
|
159 |
|
|
const_tree, bool);
|
160 |
|
|
static int iq2000_arg_partial_bytes (cumulative_args_t, enum machine_mode,
|
161 |
|
|
tree, bool);
|
162 |
|
|
static rtx iq2000_function_arg (cumulative_args_t,
|
163 |
|
|
enum machine_mode, const_tree, bool);
|
164 |
|
|
static void iq2000_function_arg_advance (cumulative_args_t,
|
165 |
|
|
enum machine_mode, const_tree, bool);
|
166 |
|
|
static unsigned int iq2000_function_arg_boundary (enum machine_mode,
|
167 |
|
|
const_tree);
|
168 |
|
|
static void iq2000_va_start (tree, rtx);
|
169 |
|
|
static bool iq2000_legitimate_address_p (enum machine_mode, rtx, bool);
|
170 |
|
|
static bool iq2000_can_eliminate (const int, const int);
|
171 |
|
|
static void iq2000_asm_trampoline_template (FILE *);
|
172 |
|
|
static void iq2000_trampoline_init (rtx, tree, rtx);
|
173 |
|
|
static rtx iq2000_function_value (const_tree, const_tree, bool);
|
174 |
|
|
static rtx iq2000_libcall_value (enum machine_mode, const_rtx);
|
175 |
|
|
static void iq2000_print_operand (FILE *, rtx, int);
|
176 |
|
|
static void iq2000_print_operand_address (FILE *, rtx);
|
177 |
|
|
static bool iq2000_print_operand_punct_valid_p (unsigned char code);
|
178 |
|
|
|
179 |
|
|
#undef TARGET_INIT_BUILTINS
|
180 |
|
|
#define TARGET_INIT_BUILTINS iq2000_init_builtins
|
181 |
|
|
#undef TARGET_EXPAND_BUILTIN
|
182 |
|
|
#define TARGET_EXPAND_BUILTIN iq2000_expand_builtin
|
183 |
|
|
#undef TARGET_ASM_SELECT_RTX_SECTION
|
184 |
|
|
#define TARGET_ASM_SELECT_RTX_SECTION iq2000_select_rtx_section
|
185 |
|
|
#undef TARGET_OPTION_OVERRIDE
|
186 |
|
|
#define TARGET_OPTION_OVERRIDE iq2000_option_override
|
187 |
|
|
#undef TARGET_RTX_COSTS
|
188 |
|
|
#define TARGET_RTX_COSTS iq2000_rtx_costs
|
189 |
|
|
#undef TARGET_ADDRESS_COST
|
190 |
|
|
#define TARGET_ADDRESS_COST iq2000_address_cost
|
191 |
|
|
#undef TARGET_ASM_SELECT_SECTION
|
192 |
|
|
#define TARGET_ASM_SELECT_SECTION iq2000_select_section
|
193 |
|
|
|
194 |
|
|
#undef TARGET_LEGITIMIZE_ADDRESS
|
195 |
|
|
#define TARGET_LEGITIMIZE_ADDRESS iq2000_legitimize_address
|
196 |
|
|
|
197 |
|
|
/* The assembler supports switchable .bss sections, but
|
198 |
|
|
iq2000_select_section doesn't yet make use of them. */
|
199 |
|
|
#undef TARGET_HAVE_SWITCHABLE_BSS_SECTIONS
|
200 |
|
|
#define TARGET_HAVE_SWITCHABLE_BSS_SECTIONS false
|
201 |
|
|
|
202 |
|
|
#undef TARGET_PRINT_OPERAND
|
203 |
|
|
#define TARGET_PRINT_OPERAND iq2000_print_operand
|
204 |
|
|
#undef TARGET_PRINT_OPERAND_ADDRESS
|
205 |
|
|
#define TARGET_PRINT_OPERAND_ADDRESS iq2000_print_operand_address
|
206 |
|
|
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
|
207 |
|
|
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P iq2000_print_operand_punct_valid_p
|
208 |
|
|
|
209 |
|
|
#undef TARGET_PROMOTE_FUNCTION_MODE
|
210 |
|
|
#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
|
211 |
|
|
#undef TARGET_PROMOTE_PROTOTYPES
|
212 |
|
|
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
|
213 |
|
|
|
214 |
|
|
#undef TARGET_FUNCTION_VALUE
|
215 |
|
|
#define TARGET_FUNCTION_VALUE iq2000_function_value
|
216 |
|
|
#undef TARGET_LIBCALL_VALUE
|
217 |
|
|
#define TARGET_LIBCALL_VALUE iq2000_libcall_value
|
218 |
|
|
#undef TARGET_RETURN_IN_MEMORY
|
219 |
|
|
#define TARGET_RETURN_IN_MEMORY iq2000_return_in_memory
|
220 |
|
|
#undef TARGET_PASS_BY_REFERENCE
|
221 |
|
|
#define TARGET_PASS_BY_REFERENCE iq2000_pass_by_reference
|
222 |
|
|
#undef TARGET_CALLEE_COPIES
|
223 |
|
|
#define TARGET_CALLEE_COPIES hook_callee_copies_named
|
224 |
|
|
#undef TARGET_ARG_PARTIAL_BYTES
|
225 |
|
|
#define TARGET_ARG_PARTIAL_BYTES iq2000_arg_partial_bytes
|
226 |
|
|
#undef TARGET_FUNCTION_ARG
|
227 |
|
|
#define TARGET_FUNCTION_ARG iq2000_function_arg
|
228 |
|
|
#undef TARGET_FUNCTION_ARG_ADVANCE
|
229 |
|
|
#define TARGET_FUNCTION_ARG_ADVANCE iq2000_function_arg_advance
|
230 |
|
|
#undef TARGET_FUNCTION_ARG_BOUNDARY
|
231 |
|
|
#define TARGET_FUNCTION_ARG_BOUNDARY iq2000_function_arg_boundary
|
232 |
|
|
|
233 |
|
|
#undef TARGET_SETUP_INCOMING_VARARGS
|
234 |
|
|
#define TARGET_SETUP_INCOMING_VARARGS iq2000_setup_incoming_varargs
|
235 |
|
|
#undef TARGET_STRICT_ARGUMENT_NAMING
|
236 |
|
|
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
|
237 |
|
|
|
238 |
|
|
#undef TARGET_EXPAND_BUILTIN_VA_START
|
239 |
|
|
#define TARGET_EXPAND_BUILTIN_VA_START iq2000_va_start
|
240 |
|
|
|
241 |
|
|
#undef TARGET_LEGITIMATE_ADDRESS_P
|
242 |
|
|
#define TARGET_LEGITIMATE_ADDRESS_P iq2000_legitimate_address_p
|
243 |
|
|
|
244 |
|
|
#undef TARGET_CAN_ELIMINATE
|
245 |
|
|
#define TARGET_CAN_ELIMINATE iq2000_can_eliminate
|
246 |
|
|
|
247 |
|
|
#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
|
248 |
|
|
#define TARGET_ASM_TRAMPOLINE_TEMPLATE iq2000_asm_trampoline_template
|
249 |
|
|
#undef TARGET_TRAMPOLINE_INIT
|
250 |
|
|
#define TARGET_TRAMPOLINE_INIT iq2000_trampoline_init
|
251 |
|
|
|
252 |
|
|
struct gcc_target targetm = TARGET_INITIALIZER;
|
253 |
|
|
|
254 |
|
|
/* Return nonzero if we split the address into high and low parts. */
|
255 |
|
|
|
256 |
|
|
int
|
257 |
|
|
iq2000_check_split (rtx address, enum machine_mode mode)
|
258 |
|
|
{
|
259 |
|
|
/* This is the same check used in simple_memory_operand.
|
260 |
|
|
We use it here because LO_SUM is not offsettable. */
|
261 |
|
|
if (GET_MODE_SIZE (mode) > (unsigned) UNITS_PER_WORD)
|
262 |
|
|
return 0;
|
263 |
|
|
|
264 |
|
|
if ((GET_CODE (address) == SYMBOL_REF)
|
265 |
|
|
|| (GET_CODE (address) == CONST
|
266 |
|
|
&& GET_CODE (XEXP (XEXP (address, 0), 0)) == SYMBOL_REF)
|
267 |
|
|
|| GET_CODE (address) == LABEL_REF)
|
268 |
|
|
return 1;
|
269 |
|
|
|
270 |
|
|
return 0;
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
/* Return nonzero if REG is valid for MODE. */
|
274 |
|
|
|
275 |
|
|
int
|
276 |
|
|
iq2000_reg_mode_ok_for_base_p (rtx reg,
|
277 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
278 |
|
|
int strict)
|
279 |
|
|
{
|
280 |
|
|
return (strict
|
281 |
|
|
? REGNO_MODE_OK_FOR_BASE_P (REGNO (reg), mode)
|
282 |
|
|
: GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (reg), mode));
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
/* Return a nonzero value if XINSN is a legitimate address for a
|
286 |
|
|
memory operand of the indicated MODE. STRICT is nonzero if this
|
287 |
|
|
function is called during reload. */
|
288 |
|
|
|
289 |
|
|
bool
|
290 |
|
|
iq2000_legitimate_address_p (enum machine_mode mode, rtx xinsn, bool strict)
|
291 |
|
|
{
|
292 |
|
|
if (TARGET_DEBUG_A_MODE)
|
293 |
|
|
{
|
294 |
|
|
GO_PRINTF2 ("\n========== legitimate_address_p, %sstrict\n",
|
295 |
|
|
strict ? "" : "not ");
|
296 |
|
|
GO_DEBUG_RTX (xinsn);
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
/* Check for constant before stripping off SUBREG, so that we don't
|
300 |
|
|
accept (subreg (const_int)) which will fail to reload. */
|
301 |
|
|
if (CONSTANT_ADDRESS_P (xinsn)
|
302 |
|
|
&& ! (iq2000_check_split (xinsn, mode))
|
303 |
|
|
&& ! (GET_CODE (xinsn) == CONST_INT && ! SMALL_INT (xinsn)))
|
304 |
|
|
return 1;
|
305 |
|
|
|
306 |
|
|
while (GET_CODE (xinsn) == SUBREG)
|
307 |
|
|
xinsn = SUBREG_REG (xinsn);
|
308 |
|
|
|
309 |
|
|
if (GET_CODE (xinsn) == REG
|
310 |
|
|
&& iq2000_reg_mode_ok_for_base_p (xinsn, mode, strict))
|
311 |
|
|
return 1;
|
312 |
|
|
|
313 |
|
|
if (GET_CODE (xinsn) == LO_SUM)
|
314 |
|
|
{
|
315 |
|
|
rtx xlow0 = XEXP (xinsn, 0);
|
316 |
|
|
rtx xlow1 = XEXP (xinsn, 1);
|
317 |
|
|
|
318 |
|
|
while (GET_CODE (xlow0) == SUBREG)
|
319 |
|
|
xlow0 = SUBREG_REG (xlow0);
|
320 |
|
|
if (GET_CODE (xlow0) == REG
|
321 |
|
|
&& iq2000_reg_mode_ok_for_base_p (xlow0, mode, strict)
|
322 |
|
|
&& iq2000_check_split (xlow1, mode))
|
323 |
|
|
return 1;
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
if (GET_CODE (xinsn) == PLUS)
|
327 |
|
|
{
|
328 |
|
|
rtx xplus0 = XEXP (xinsn, 0);
|
329 |
|
|
rtx xplus1 = XEXP (xinsn, 1);
|
330 |
|
|
enum rtx_code code0;
|
331 |
|
|
enum rtx_code code1;
|
332 |
|
|
|
333 |
|
|
while (GET_CODE (xplus0) == SUBREG)
|
334 |
|
|
xplus0 = SUBREG_REG (xplus0);
|
335 |
|
|
code0 = GET_CODE (xplus0);
|
336 |
|
|
|
337 |
|
|
while (GET_CODE (xplus1) == SUBREG)
|
338 |
|
|
xplus1 = SUBREG_REG (xplus1);
|
339 |
|
|
code1 = GET_CODE (xplus1);
|
340 |
|
|
|
341 |
|
|
if (code0 == REG
|
342 |
|
|
&& iq2000_reg_mode_ok_for_base_p (xplus0, mode, strict))
|
343 |
|
|
{
|
344 |
|
|
if (code1 == CONST_INT && SMALL_INT (xplus1)
|
345 |
|
|
&& SMALL_INT_UNSIGNED (xplus1) /* No negative offsets */)
|
346 |
|
|
return 1;
|
347 |
|
|
}
|
348 |
|
|
}
|
349 |
|
|
|
350 |
|
|
if (TARGET_DEBUG_A_MODE)
|
351 |
|
|
GO_PRINTF ("Not a enum machine_mode mode, legitimate address\n");
|
352 |
|
|
|
353 |
|
|
/* The address was not legitimate. */
|
354 |
|
|
return 0;
|
355 |
|
|
}
|
356 |
|
|
|
357 |
|
|
/* Returns an operand string for the given instruction's delay slot,
|
358 |
|
|
after updating filled delay slot statistics.
|
359 |
|
|
|
360 |
|
|
We assume that operands[0] is the target register that is set.
|
361 |
|
|
|
362 |
|
|
In order to check the next insn, most of this functionality is moved
|
363 |
|
|
to FINAL_PRESCAN_INSN, and we just set the global variables that
|
364 |
|
|
it needs. */
|
365 |
|
|
|
366 |
|
|
const char *
|
367 |
|
|
iq2000_fill_delay_slot (const char *ret, enum delay_type type, rtx operands[],
|
368 |
|
|
rtx cur_insn)
|
369 |
|
|
{
|
370 |
|
|
rtx set_reg;
|
371 |
|
|
enum machine_mode mode;
|
372 |
|
|
rtx next_insn = cur_insn ? NEXT_INSN (cur_insn) : NULL_RTX;
|
373 |
|
|
int num_nops;
|
374 |
|
|
|
375 |
|
|
if (type == DELAY_LOAD || type == DELAY_FCMP)
|
376 |
|
|
num_nops = 1;
|
377 |
|
|
|
378 |
|
|
else
|
379 |
|
|
num_nops = 0;
|
380 |
|
|
|
381 |
|
|
/* Make sure that we don't put nop's after labels. */
|
382 |
|
|
next_insn = NEXT_INSN (cur_insn);
|
383 |
|
|
while (next_insn != 0
|
384 |
|
|
&& (GET_CODE (next_insn) == NOTE
|
385 |
|
|
|| GET_CODE (next_insn) == CODE_LABEL))
|
386 |
|
|
next_insn = NEXT_INSN (next_insn);
|
387 |
|
|
|
388 |
|
|
dslots_load_total += num_nops;
|
389 |
|
|
if (TARGET_DEBUG_C_MODE
|
390 |
|
|
|| type == DELAY_NONE
|
391 |
|
|
|| operands == 0
|
392 |
|
|
|| cur_insn == 0
|
393 |
|
|
|| next_insn == 0
|
394 |
|
|
|| GET_CODE (next_insn) == CODE_LABEL
|
395 |
|
|
|| (set_reg = operands[0]) == 0)
|
396 |
|
|
{
|
397 |
|
|
dslots_number_nops = 0;
|
398 |
|
|
iq2000_load_reg = 0;
|
399 |
|
|
iq2000_load_reg2 = 0;
|
400 |
|
|
iq2000_load_reg3 = 0;
|
401 |
|
|
iq2000_load_reg4 = 0;
|
402 |
|
|
|
403 |
|
|
return ret;
|
404 |
|
|
}
|
405 |
|
|
|
406 |
|
|
set_reg = operands[0];
|
407 |
|
|
if (set_reg == 0)
|
408 |
|
|
return ret;
|
409 |
|
|
|
410 |
|
|
while (GET_CODE (set_reg) == SUBREG)
|
411 |
|
|
set_reg = SUBREG_REG (set_reg);
|
412 |
|
|
|
413 |
|
|
mode = GET_MODE (set_reg);
|
414 |
|
|
dslots_number_nops = num_nops;
|
415 |
|
|
iq2000_load_reg = set_reg;
|
416 |
|
|
if (GET_MODE_SIZE (mode)
|
417 |
|
|
> (unsigned) (UNITS_PER_WORD))
|
418 |
|
|
iq2000_load_reg2 = gen_rtx_REG (SImode, REGNO (set_reg) + 1);
|
419 |
|
|
else
|
420 |
|
|
iq2000_load_reg2 = 0;
|
421 |
|
|
|
422 |
|
|
return ret;
|
423 |
|
|
}
|
424 |
|
|
|
425 |
|
|
/* Determine whether a memory reference takes one (based off of the GP
|
426 |
|
|
pointer), two (normal), or three (label + reg) instructions, and bump the
|
427 |
|
|
appropriate counter for -mstats. */
|
428 |
|
|
|
429 |
|
|
static void
|
430 |
|
|
iq2000_count_memory_refs (rtx op, int num)
|
431 |
|
|
{
|
432 |
|
|
int additional = 0;
|
433 |
|
|
int n_words = 0;
|
434 |
|
|
rtx addr, plus0, plus1;
|
435 |
|
|
enum rtx_code code0, code1;
|
436 |
|
|
int looping;
|
437 |
|
|
|
438 |
|
|
if (TARGET_DEBUG_B_MODE)
|
439 |
|
|
{
|
440 |
|
|
fprintf (stderr, "\n========== iq2000_count_memory_refs:\n");
|
441 |
|
|
debug_rtx (op);
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
/* Skip MEM if passed, otherwise handle movsi of address. */
|
445 |
|
|
addr = (GET_CODE (op) != MEM) ? op : XEXP (op, 0);
|
446 |
|
|
|
447 |
|
|
/* Loop, going through the address RTL. */
|
448 |
|
|
do
|
449 |
|
|
{
|
450 |
|
|
looping = FALSE;
|
451 |
|
|
switch (GET_CODE (addr))
|
452 |
|
|
{
|
453 |
|
|
case REG:
|
454 |
|
|
case CONST_INT:
|
455 |
|
|
case LO_SUM:
|
456 |
|
|
break;
|
457 |
|
|
|
458 |
|
|
case PLUS:
|
459 |
|
|
plus0 = XEXP (addr, 0);
|
460 |
|
|
plus1 = XEXP (addr, 1);
|
461 |
|
|
code0 = GET_CODE (plus0);
|
462 |
|
|
code1 = GET_CODE (plus1);
|
463 |
|
|
|
464 |
|
|
if (code0 == REG)
|
465 |
|
|
{
|
466 |
|
|
additional++;
|
467 |
|
|
addr = plus1;
|
468 |
|
|
looping = 1;
|
469 |
|
|
continue;
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
if (code0 == CONST_INT)
|
473 |
|
|
{
|
474 |
|
|
addr = plus1;
|
475 |
|
|
looping = 1;
|
476 |
|
|
continue;
|
477 |
|
|
}
|
478 |
|
|
|
479 |
|
|
if (code1 == REG)
|
480 |
|
|
{
|
481 |
|
|
additional++;
|
482 |
|
|
addr = plus0;
|
483 |
|
|
looping = 1;
|
484 |
|
|
continue;
|
485 |
|
|
}
|
486 |
|
|
|
487 |
|
|
if (code1 == CONST_INT)
|
488 |
|
|
{
|
489 |
|
|
addr = plus0;
|
490 |
|
|
looping = 1;
|
491 |
|
|
continue;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
if (code0 == SYMBOL_REF || code0 == LABEL_REF || code0 == CONST)
|
495 |
|
|
{
|
496 |
|
|
addr = plus0;
|
497 |
|
|
looping = 1;
|
498 |
|
|
continue;
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
if (code1 == SYMBOL_REF || code1 == LABEL_REF || code1 == CONST)
|
502 |
|
|
{
|
503 |
|
|
addr = plus1;
|
504 |
|
|
looping = 1;
|
505 |
|
|
continue;
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
break;
|
509 |
|
|
|
510 |
|
|
case LABEL_REF:
|
511 |
|
|
n_words = 2; /* Always 2 words. */
|
512 |
|
|
break;
|
513 |
|
|
|
514 |
|
|
case CONST:
|
515 |
|
|
addr = XEXP (addr, 0);
|
516 |
|
|
looping = 1;
|
517 |
|
|
continue;
|
518 |
|
|
|
519 |
|
|
case SYMBOL_REF:
|
520 |
|
|
n_words = SYMBOL_REF_FLAG (addr) ? 1 : 2;
|
521 |
|
|
break;
|
522 |
|
|
|
523 |
|
|
default:
|
524 |
|
|
break;
|
525 |
|
|
}
|
526 |
|
|
}
|
527 |
|
|
while (looping);
|
528 |
|
|
|
529 |
|
|
if (n_words == 0)
|
530 |
|
|
return;
|
531 |
|
|
|
532 |
|
|
n_words += additional;
|
533 |
|
|
if (n_words > 3)
|
534 |
|
|
n_words = 3;
|
535 |
|
|
|
536 |
|
|
num_refs[n_words-1] += num;
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
/* Abort after printing out a specific insn. */
|
540 |
|
|
|
541 |
|
|
static void
|
542 |
|
|
abort_with_insn (rtx insn, const char * reason)
|
543 |
|
|
{
|
544 |
|
|
error (reason);
|
545 |
|
|
debug_rtx (insn);
|
546 |
|
|
fancy_abort (__FILE__, __LINE__, __FUNCTION__);
|
547 |
|
|
}
|
548 |
|
|
|
549 |
|
|
/* Return the appropriate instructions to move one operand to another. */
|
550 |
|
|
|
551 |
|
|
const char *
|
552 |
|
|
iq2000_move_1word (rtx operands[], rtx insn, int unsignedp)
|
553 |
|
|
{
|
554 |
|
|
const char *ret = 0;
|
555 |
|
|
rtx op0 = operands[0];
|
556 |
|
|
rtx op1 = operands[1];
|
557 |
|
|
enum rtx_code code0 = GET_CODE (op0);
|
558 |
|
|
enum rtx_code code1 = GET_CODE (op1);
|
559 |
|
|
enum machine_mode mode = GET_MODE (op0);
|
560 |
|
|
int subreg_offset0 = 0;
|
561 |
|
|
int subreg_offset1 = 0;
|
562 |
|
|
enum delay_type delay = DELAY_NONE;
|
563 |
|
|
|
564 |
|
|
while (code0 == SUBREG)
|
565 |
|
|
{
|
566 |
|
|
subreg_offset0 += subreg_regno_offset (REGNO (SUBREG_REG (op0)),
|
567 |
|
|
GET_MODE (SUBREG_REG (op0)),
|
568 |
|
|
SUBREG_BYTE (op0),
|
569 |
|
|
GET_MODE (op0));
|
570 |
|
|
op0 = SUBREG_REG (op0);
|
571 |
|
|
code0 = GET_CODE (op0);
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
while (code1 == SUBREG)
|
575 |
|
|
{
|
576 |
|
|
subreg_offset1 += subreg_regno_offset (REGNO (SUBREG_REG (op1)),
|
577 |
|
|
GET_MODE (SUBREG_REG (op1)),
|
578 |
|
|
SUBREG_BYTE (op1),
|
579 |
|
|
GET_MODE (op1));
|
580 |
|
|
op1 = SUBREG_REG (op1);
|
581 |
|
|
code1 = GET_CODE (op1);
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
/* For our purposes, a condition code mode is the same as SImode. */
|
585 |
|
|
if (mode == CCmode)
|
586 |
|
|
mode = SImode;
|
587 |
|
|
|
588 |
|
|
if (code0 == REG)
|
589 |
|
|
{
|
590 |
|
|
int regno0 = REGNO (op0) + subreg_offset0;
|
591 |
|
|
|
592 |
|
|
if (code1 == REG)
|
593 |
|
|
{
|
594 |
|
|
int regno1 = REGNO (op1) + subreg_offset1;
|
595 |
|
|
|
596 |
|
|
/* Do not do anything for assigning a register to itself */
|
597 |
|
|
if (regno0 == regno1)
|
598 |
|
|
ret = "";
|
599 |
|
|
|
600 |
|
|
else if (GP_REG_P (regno0))
|
601 |
|
|
{
|
602 |
|
|
if (GP_REG_P (regno1))
|
603 |
|
|
ret = "or\t%0,%%0,%1";
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
else if (code1 == MEM)
|
609 |
|
|
{
|
610 |
|
|
delay = DELAY_LOAD;
|
611 |
|
|
|
612 |
|
|
if (TARGET_STATS)
|
613 |
|
|
iq2000_count_memory_refs (op1, 1);
|
614 |
|
|
|
615 |
|
|
if (GP_REG_P (regno0))
|
616 |
|
|
{
|
617 |
|
|
/* For loads, use the mode of the memory item, instead of the
|
618 |
|
|
target, so zero/sign extend can use this code as well. */
|
619 |
|
|
switch (GET_MODE (op1))
|
620 |
|
|
{
|
621 |
|
|
default:
|
622 |
|
|
break;
|
623 |
|
|
case SFmode:
|
624 |
|
|
ret = "lw\t%0,%1";
|
625 |
|
|
break;
|
626 |
|
|
case SImode:
|
627 |
|
|
case CCmode:
|
628 |
|
|
ret = "lw\t%0,%1";
|
629 |
|
|
break;
|
630 |
|
|
case HImode:
|
631 |
|
|
ret = (unsignedp) ? "lhu\t%0,%1" : "lh\t%0,%1";
|
632 |
|
|
break;
|
633 |
|
|
case QImode:
|
634 |
|
|
ret = (unsignedp) ? "lbu\t%0,%1" : "lb\t%0,%1";
|
635 |
|
|
break;
|
636 |
|
|
}
|
637 |
|
|
}
|
638 |
|
|
}
|
639 |
|
|
|
640 |
|
|
else if (code1 == CONST_INT
|
641 |
|
|
|| (code1 == CONST_DOUBLE
|
642 |
|
|
&& GET_MODE (op1) == VOIDmode))
|
643 |
|
|
{
|
644 |
|
|
if (code1 == CONST_DOUBLE)
|
645 |
|
|
{
|
646 |
|
|
/* This can happen when storing constants into long long
|
647 |
|
|
bitfields. Just store the least significant word of
|
648 |
|
|
the value. */
|
649 |
|
|
operands[1] = op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
|
650 |
|
|
}
|
651 |
|
|
|
652 |
|
|
if (INTVAL (op1) == 0)
|
653 |
|
|
{
|
654 |
|
|
if (GP_REG_P (regno0))
|
655 |
|
|
ret = "or\t%0,%%0,%z1";
|
656 |
|
|
}
|
657 |
|
|
else if (GP_REG_P (regno0))
|
658 |
|
|
{
|
659 |
|
|
if (SMALL_INT_UNSIGNED (op1))
|
660 |
|
|
ret = "ori\t%0,%%0,%x1\t\t\t# %1";
|
661 |
|
|
else if (SMALL_INT (op1))
|
662 |
|
|
ret = "addiu\t%0,%%0,%1\t\t\t# %1";
|
663 |
|
|
else
|
664 |
|
|
ret = "lui\t%0,%X1\t\t\t# %1\n\tori\t%0,%0,%x1";
|
665 |
|
|
}
|
666 |
|
|
}
|
667 |
|
|
|
668 |
|
|
else if (code1 == CONST_DOUBLE && mode == SFmode)
|
669 |
|
|
{
|
670 |
|
|
if (op1 == CONST0_RTX (SFmode))
|
671 |
|
|
{
|
672 |
|
|
if (GP_REG_P (regno0))
|
673 |
|
|
ret = "or\t%0,%%0,%.";
|
674 |
|
|
}
|
675 |
|
|
|
676 |
|
|
else
|
677 |
|
|
{
|
678 |
|
|
delay = DELAY_LOAD;
|
679 |
|
|
ret = "li.s\t%0,%1";
|
680 |
|
|
}
|
681 |
|
|
}
|
682 |
|
|
|
683 |
|
|
else if (code1 == LABEL_REF)
|
684 |
|
|
{
|
685 |
|
|
if (TARGET_STATS)
|
686 |
|
|
iq2000_count_memory_refs (op1, 1);
|
687 |
|
|
|
688 |
|
|
ret = "la\t%0,%a1";
|
689 |
|
|
}
|
690 |
|
|
|
691 |
|
|
else if (code1 == SYMBOL_REF || code1 == CONST)
|
692 |
|
|
{
|
693 |
|
|
if (TARGET_STATS)
|
694 |
|
|
iq2000_count_memory_refs (op1, 1);
|
695 |
|
|
|
696 |
|
|
ret = "la\t%0,%a1";
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
else if (code1 == PLUS)
|
700 |
|
|
{
|
701 |
|
|
rtx add_op0 = XEXP (op1, 0);
|
702 |
|
|
rtx add_op1 = XEXP (op1, 1);
|
703 |
|
|
|
704 |
|
|
if (GET_CODE (XEXP (op1, 1)) == REG
|
705 |
|
|
&& GET_CODE (XEXP (op1, 0)) == CONST_INT)
|
706 |
|
|
add_op0 = XEXP (op1, 1), add_op1 = XEXP (op1, 0);
|
707 |
|
|
|
708 |
|
|
operands[2] = add_op0;
|
709 |
|
|
operands[3] = add_op1;
|
710 |
|
|
ret = "add%:\t%0,%2,%3";
|
711 |
|
|
}
|
712 |
|
|
|
713 |
|
|
else if (code1 == HIGH)
|
714 |
|
|
{
|
715 |
|
|
operands[1] = XEXP (op1, 0);
|
716 |
|
|
ret = "lui\t%0,%%hi(%1)";
|
717 |
|
|
}
|
718 |
|
|
}
|
719 |
|
|
|
720 |
|
|
else if (code0 == MEM)
|
721 |
|
|
{
|
722 |
|
|
if (TARGET_STATS)
|
723 |
|
|
iq2000_count_memory_refs (op0, 1);
|
724 |
|
|
|
725 |
|
|
if (code1 == REG)
|
726 |
|
|
{
|
727 |
|
|
int regno1 = REGNO (op1) + subreg_offset1;
|
728 |
|
|
|
729 |
|
|
if (GP_REG_P (regno1))
|
730 |
|
|
{
|
731 |
|
|
switch (mode)
|
732 |
|
|
{
|
733 |
|
|
case SFmode: ret = "sw\t%1,%0"; break;
|
734 |
|
|
case SImode: ret = "sw\t%1,%0"; break;
|
735 |
|
|
case HImode: ret = "sh\t%1,%0"; break;
|
736 |
|
|
case QImode: ret = "sb\t%1,%0"; break;
|
737 |
|
|
default: break;
|
738 |
|
|
}
|
739 |
|
|
}
|
740 |
|
|
}
|
741 |
|
|
|
742 |
|
|
else if (code1 == CONST_INT && INTVAL (op1) == 0)
|
743 |
|
|
{
|
744 |
|
|
switch (mode)
|
745 |
|
|
{
|
746 |
|
|
case SFmode: ret = "sw\t%z1,%0"; break;
|
747 |
|
|
case SImode: ret = "sw\t%z1,%0"; break;
|
748 |
|
|
case HImode: ret = "sh\t%z1,%0"; break;
|
749 |
|
|
case QImode: ret = "sb\t%z1,%0"; break;
|
750 |
|
|
default: break;
|
751 |
|
|
}
|
752 |
|
|
}
|
753 |
|
|
|
754 |
|
|
else if (code1 == CONST_DOUBLE && op1 == CONST0_RTX (mode))
|
755 |
|
|
{
|
756 |
|
|
switch (mode)
|
757 |
|
|
{
|
758 |
|
|
case SFmode: ret = "sw\t%.,%0"; break;
|
759 |
|
|
case SImode: ret = "sw\t%.,%0"; break;
|
760 |
|
|
case HImode: ret = "sh\t%.,%0"; break;
|
761 |
|
|
case QImode: ret = "sb\t%.,%0"; break;
|
762 |
|
|
default: break;
|
763 |
|
|
}
|
764 |
|
|
}
|
765 |
|
|
}
|
766 |
|
|
|
767 |
|
|
if (ret == 0)
|
768 |
|
|
{
|
769 |
|
|
abort_with_insn (insn, "Bad move");
|
770 |
|
|
return 0;
|
771 |
|
|
}
|
772 |
|
|
|
773 |
|
|
if (delay != DELAY_NONE)
|
774 |
|
|
return iq2000_fill_delay_slot (ret, delay, operands, insn);
|
775 |
|
|
|
776 |
|
|
return ret;
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
/* Provide the costs of an addressing mode that contains ADDR. */
|
780 |
|
|
|
781 |
|
|
static int
|
782 |
|
|
iq2000_address_cost (rtx addr, bool speed)
|
783 |
|
|
{
|
784 |
|
|
switch (GET_CODE (addr))
|
785 |
|
|
{
|
786 |
|
|
case LO_SUM:
|
787 |
|
|
return 1;
|
788 |
|
|
|
789 |
|
|
case LABEL_REF:
|
790 |
|
|
return 2;
|
791 |
|
|
|
792 |
|
|
case CONST:
|
793 |
|
|
{
|
794 |
|
|
rtx offset = const0_rtx;
|
795 |
|
|
|
796 |
|
|
addr = eliminate_constant_term (XEXP (addr, 0), & offset);
|
797 |
|
|
if (GET_CODE (addr) == LABEL_REF)
|
798 |
|
|
return 2;
|
799 |
|
|
|
800 |
|
|
if (GET_CODE (addr) != SYMBOL_REF)
|
801 |
|
|
return 4;
|
802 |
|
|
|
803 |
|
|
if (! SMALL_INT (offset))
|
804 |
|
|
return 2;
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
/* Fall through. */
|
808 |
|
|
|
809 |
|
|
case SYMBOL_REF:
|
810 |
|
|
return SYMBOL_REF_FLAG (addr) ? 1 : 2;
|
811 |
|
|
|
812 |
|
|
case PLUS:
|
813 |
|
|
{
|
814 |
|
|
rtx plus0 = XEXP (addr, 0);
|
815 |
|
|
rtx plus1 = XEXP (addr, 1);
|
816 |
|
|
|
817 |
|
|
if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)
|
818 |
|
|
plus0 = XEXP (addr, 1), plus1 = XEXP (addr, 0);
|
819 |
|
|
|
820 |
|
|
if (GET_CODE (plus0) != REG)
|
821 |
|
|
break;
|
822 |
|
|
|
823 |
|
|
switch (GET_CODE (plus1))
|
824 |
|
|
{
|
825 |
|
|
case CONST_INT:
|
826 |
|
|
return SMALL_INT (plus1) ? 1 : 2;
|
827 |
|
|
|
828 |
|
|
case CONST:
|
829 |
|
|
case SYMBOL_REF:
|
830 |
|
|
case LABEL_REF:
|
831 |
|
|
case HIGH:
|
832 |
|
|
case LO_SUM:
|
833 |
|
|
return iq2000_address_cost (plus1, speed) + 1;
|
834 |
|
|
|
835 |
|
|
default:
|
836 |
|
|
break;
|
837 |
|
|
}
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
default:
|
841 |
|
|
break;
|
842 |
|
|
}
|
843 |
|
|
|
844 |
|
|
return 4;
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
/* Make normal rtx_code into something we can index from an array. */
|
848 |
|
|
|
849 |
|
|
static enum internal_test
|
850 |
|
|
map_test_to_internal_test (enum rtx_code test_code)
|
851 |
|
|
{
|
852 |
|
|
enum internal_test test = ITEST_MAX;
|
853 |
|
|
|
854 |
|
|
switch (test_code)
|
855 |
|
|
{
|
856 |
|
|
case EQ: test = ITEST_EQ; break;
|
857 |
|
|
case NE: test = ITEST_NE; break;
|
858 |
|
|
case GT: test = ITEST_GT; break;
|
859 |
|
|
case GE: test = ITEST_GE; break;
|
860 |
|
|
case LT: test = ITEST_LT; break;
|
861 |
|
|
case LE: test = ITEST_LE; break;
|
862 |
|
|
case GTU: test = ITEST_GTU; break;
|
863 |
|
|
case GEU: test = ITEST_GEU; break;
|
864 |
|
|
case LTU: test = ITEST_LTU; break;
|
865 |
|
|
case LEU: test = ITEST_LEU; break;
|
866 |
|
|
default: break;
|
867 |
|
|
}
|
868 |
|
|
|
869 |
|
|
return test;
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
/* Generate the code to do a TEST_CODE comparison on two integer values CMP0
|
873 |
|
|
and CMP1. P_INVERT is NULL or ptr if branch needs to reverse its test.
|
874 |
|
|
The return value RESULT is:
|
875 |
|
|
(reg:SI xx) The pseudo register the comparison is in
|
876 |
|
|
|
877 |
|
|
|
878 |
|
|
rtx
|
879 |
|
|
gen_int_relational (enum rtx_code test_code, rtx result, rtx cmp0, rtx cmp1,
|
880 |
|
|
int *p_invert)
|
881 |
|
|
{
|
882 |
|
|
struct cmp_info
|
883 |
|
|
{
|
884 |
|
|
enum rtx_code test_code; /* Code to use in instruction (LT vs. LTU). */
|
885 |
|
|
int const_low; /* Low bound of constant we can accept. */
|
886 |
|
|
int const_high; /* High bound of constant we can accept. */
|
887 |
|
|
int const_add; /* Constant to add (convert LE -> LT). */
|
888 |
|
|
int reverse_regs; /* Reverse registers in test. */
|
889 |
|
|
int invert_const; /* != 0 if invert value if cmp1 is constant. */
|
890 |
|
|
int invert_reg; /* != 0 if invert value if cmp1 is register. */
|
891 |
|
|
int unsignedp; /* != 0 for unsigned comparisons. */
|
892 |
|
|
};
|
893 |
|
|
|
894 |
|
|
static struct cmp_info info[ (int)ITEST_MAX ] =
|
895 |
|
|
{
|
896 |
|
|
{ XOR, 0, 65535, 0, 0, 0, 0, 0 }, /* EQ */
|
897 |
|
|
{ XOR, 0, 65535, 0, 0, 1, 1, 0 }, /* NE */
|
898 |
|
|
{ LT, -32769, 32766, 1, 1, 1, 0, 0 }, /* GT */
|
899 |
|
|
{ LT, -32768, 32767, 0, 0, 1, 1, 0 }, /* GE */
|
900 |
|
|
{ LT, -32768, 32767, 0, 0, 0, 0, 0 }, /* LT */
|
901 |
|
|
{ LT, -32769, 32766, 1, 1, 0, 1, 0 }, /* LE */
|
902 |
|
|
{ LTU, -32769, 32766, 1, 1, 1, 0, 1 }, /* GTU */
|
903 |
|
|
{ LTU, -32768, 32767, 0, 0, 1, 1, 1 }, /* GEU */
|
904 |
|
|
{ LTU, -32768, 32767, 0, 0, 0, 0, 1 }, /* LTU */
|
905 |
|
|
{ LTU, -32769, 32766, 1, 1, 0, 1, 1 }, /* LEU */
|
906 |
|
|
};
|
907 |
|
|
|
908 |
|
|
enum internal_test test;
|
909 |
|
|
enum machine_mode mode;
|
910 |
|
|
struct cmp_info *p_info;
|
911 |
|
|
int branch_p;
|
912 |
|
|
int eqne_p;
|
913 |
|
|
int invert;
|
914 |
|
|
rtx reg;
|
915 |
|
|
rtx reg2;
|
916 |
|
|
|
917 |
|
|
test = map_test_to_internal_test (test_code);
|
918 |
|
|
gcc_assert (test != ITEST_MAX);
|
919 |
|
|
|
920 |
|
|
p_info = &info[(int) test];
|
921 |
|
|
eqne_p = (p_info->test_code == XOR);
|
922 |
|
|
|
923 |
|
|
mode = GET_MODE (cmp0);
|
924 |
|
|
if (mode == VOIDmode)
|
925 |
|
|
mode = GET_MODE (cmp1);
|
926 |
|
|
|
927 |
|
|
/* Eliminate simple branches. */
|
928 |
|
|
branch_p = (result == 0);
|
929 |
|
|
if (branch_p)
|
930 |
|
|
{
|
931 |
|
|
if (GET_CODE (cmp0) == REG || GET_CODE (cmp0) == SUBREG)
|
932 |
|
|
{
|
933 |
|
|
/* Comparisons against zero are simple branches. */
|
934 |
|
|
if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
|
935 |
|
|
return 0;
|
936 |
|
|
|
937 |
|
|
/* Test for beq/bne. */
|
938 |
|
|
if (eqne_p)
|
939 |
|
|
return 0;
|
940 |
|
|
}
|
941 |
|
|
|
942 |
|
|
/* Allocate a pseudo to calculate the value in. */
|
943 |
|
|
result = gen_reg_rtx (mode);
|
944 |
|
|
}
|
945 |
|
|
|
946 |
|
|
/* Make sure we can handle any constants given to us. */
|
947 |
|
|
if (GET_CODE (cmp0) == CONST_INT)
|
948 |
|
|
cmp0 = force_reg (mode, cmp0);
|
949 |
|
|
|
950 |
|
|
if (GET_CODE (cmp1) == CONST_INT)
|
951 |
|
|
{
|
952 |
|
|
HOST_WIDE_INT value = INTVAL (cmp1);
|
953 |
|
|
|
954 |
|
|
if (value < p_info->const_low
|
955 |
|
|
|| value > p_info->const_high)
|
956 |
|
|
cmp1 = force_reg (mode, cmp1);
|
957 |
|
|
}
|
958 |
|
|
|
959 |
|
|
/* See if we need to invert the result. */
|
960 |
|
|
invert = (GET_CODE (cmp1) == CONST_INT
|
961 |
|
|
? p_info->invert_const : p_info->invert_reg);
|
962 |
|
|
|
963 |
|
|
if (p_invert != (int *)0)
|
964 |
|
|
{
|
965 |
|
|
*p_invert = invert;
|
966 |
|
|
invert = 0;
|
967 |
|
|
}
|
968 |
|
|
|
969 |
|
|
/* Comparison to constants, may involve adding 1 to change a LT into LE.
|
970 |
|
|
Comparison between two registers, may involve switching operands. */
|
971 |
|
|
if (GET_CODE (cmp1) == CONST_INT)
|
972 |
|
|
{
|
973 |
|
|
if (p_info->const_add != 0)
|
974 |
|
|
{
|
975 |
|
|
HOST_WIDE_INT new_const = INTVAL (cmp1) + p_info->const_add;
|
976 |
|
|
|
977 |
|
|
/* If modification of cmp1 caused overflow,
|
978 |
|
|
we would get the wrong answer if we follow the usual path;
|
979 |
|
|
thus, x > 0xffffffffU would turn into x > 0U. */
|
980 |
|
|
if ((p_info->unsignedp
|
981 |
|
|
? (unsigned HOST_WIDE_INT) new_const >
|
982 |
|
|
(unsigned HOST_WIDE_INT) INTVAL (cmp1)
|
983 |
|
|
: new_const > INTVAL (cmp1))
|
984 |
|
|
!= (p_info->const_add > 0))
|
985 |
|
|
{
|
986 |
|
|
/* This test is always true, but if INVERT is true then
|
987 |
|
|
the result of the test needs to be inverted so 0 should
|
988 |
|
|
be returned instead. */
|
989 |
|
|
emit_move_insn (result, invert ? const0_rtx : const_true_rtx);
|
990 |
|
|
return result;
|
991 |
|
|
}
|
992 |
|
|
else
|
993 |
|
|
cmp1 = GEN_INT (new_const);
|
994 |
|
|
}
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
else if (p_info->reverse_regs)
|
998 |
|
|
{
|
999 |
|
|
rtx temp = cmp0;
|
1000 |
|
|
cmp0 = cmp1;
|
1001 |
|
|
cmp1 = temp;
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
|
|
if (test == ITEST_NE && GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
|
1005 |
|
|
reg = cmp0;
|
1006 |
|
|
else
|
1007 |
|
|
{
|
1008 |
|
|
reg = (invert || eqne_p) ? gen_reg_rtx (mode) : result;
|
1009 |
|
|
convert_move (reg, gen_rtx_fmt_ee (p_info->test_code, mode, cmp0, cmp1), 0);
|
1010 |
|
|
}
|
1011 |
|
|
|
1012 |
|
|
if (test == ITEST_NE)
|
1013 |
|
|
{
|
1014 |
|
|
convert_move (result, gen_rtx_GTU (mode, reg, const0_rtx), 0);
|
1015 |
|
|
if (p_invert != NULL)
|
1016 |
|
|
*p_invert = 0;
|
1017 |
|
|
invert = 0;
|
1018 |
|
|
}
|
1019 |
|
|
|
1020 |
|
|
else if (test == ITEST_EQ)
|
1021 |
|
|
{
|
1022 |
|
|
reg2 = invert ? gen_reg_rtx (mode) : result;
|
1023 |
|
|
convert_move (reg2, gen_rtx_LTU (mode, reg, const1_rtx), 0);
|
1024 |
|
|
reg = reg2;
|
1025 |
|
|
}
|
1026 |
|
|
|
1027 |
|
|
if (invert)
|
1028 |
|
|
{
|
1029 |
|
|
rtx one;
|
1030 |
|
|
|
1031 |
|
|
one = const1_rtx;
|
1032 |
|
|
convert_move (result, gen_rtx_XOR (mode, reg, one), 0);
|
1033 |
|
|
}
|
1034 |
|
|
|
1035 |
|
|
return result;
|
1036 |
|
|
}
|
1037 |
|
|
|
1038 |
|
|
/* Emit the common code for doing conditional branches.
|
1039 |
|
|
operand[0] is the label to jump to.
|
1040 |
|
|
The comparison operands are saved away by cmp{si,di,sf,df}. */
|
1041 |
|
|
|
1042 |
|
|
void
|
1043 |
|
|
gen_conditional_branch (rtx operands[], enum machine_mode mode)
|
1044 |
|
|
{
|
1045 |
|
|
enum rtx_code test_code = GET_CODE (operands[0]);
|
1046 |
|
|
rtx cmp0 = operands[1];
|
1047 |
|
|
rtx cmp1 = operands[2];
|
1048 |
|
|
rtx reg;
|
1049 |
|
|
int invert;
|
1050 |
|
|
rtx label1, label2;
|
1051 |
|
|
|
1052 |
|
|
invert = 0;
|
1053 |
|
|
reg = gen_int_relational (test_code, NULL_RTX, cmp0, cmp1, &invert);
|
1054 |
|
|
|
1055 |
|
|
if (reg)
|
1056 |
|
|
{
|
1057 |
|
|
cmp0 = reg;
|
1058 |
|
|
cmp1 = const0_rtx;
|
1059 |
|
|
test_code = NE;
|
1060 |
|
|
}
|
1061 |
|
|
else if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) != 0)
|
1062 |
|
|
/* We don't want to build a comparison against a nonzero
|
1063 |
|
|
constant. */
|
1064 |
|
|
cmp1 = force_reg (mode, cmp1);
|
1065 |
|
|
|
1066 |
|
|
/* Generate the branch. */
|
1067 |
|
|
label1 = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
|
1068 |
|
|
label2 = pc_rtx;
|
1069 |
|
|
|
1070 |
|
|
if (invert)
|
1071 |
|
|
{
|
1072 |
|
|
label2 = label1;
|
1073 |
|
|
label1 = pc_rtx;
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
|
1077 |
|
|
gen_rtx_IF_THEN_ELSE (VOIDmode,
|
1078 |
|
|
gen_rtx_fmt_ee (test_code,
|
1079 |
|
|
mode,
|
1080 |
|
|
cmp0, cmp1),
|
1081 |
|
|
label1, label2)));
|
1082 |
|
|
}
|
1083 |
|
|
|
1084 |
|
|
/* Initialize CUM for a function FNTYPE. */
|
1085 |
|
|
|
1086 |
|
|
void
|
1087 |
|
|
init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
|
1088 |
|
|
rtx libname ATTRIBUTE_UNUSED)
|
1089 |
|
|
{
|
1090 |
|
|
static CUMULATIVE_ARGS zero_cum;
|
1091 |
|
|
tree param;
|
1092 |
|
|
tree next_param;
|
1093 |
|
|
|
1094 |
|
|
if (TARGET_DEBUG_D_MODE)
|
1095 |
|
|
{
|
1096 |
|
|
fprintf (stderr,
|
1097 |
|
|
"\ninit_cumulative_args, fntype = 0x%.8lx", (long) fntype);
|
1098 |
|
|
|
1099 |
|
|
if (!fntype)
|
1100 |
|
|
fputc ('\n', stderr);
|
1101 |
|
|
|
1102 |
|
|
else
|
1103 |
|
|
{
|
1104 |
|
|
tree ret_type = TREE_TYPE (fntype);
|
1105 |
|
|
|
1106 |
|
|
fprintf (stderr, ", fntype code = %s, ret code = %s\n",
|
1107 |
|
|
tree_code_name[(int)TREE_CODE (fntype)],
|
1108 |
|
|
tree_code_name[(int)TREE_CODE (ret_type)]);
|
1109 |
|
|
}
|
1110 |
|
|
}
|
1111 |
|
|
|
1112 |
|
|
*cum = zero_cum;
|
1113 |
|
|
|
1114 |
|
|
/* Determine if this function has variable arguments. This is
|
1115 |
|
|
indicated by the last argument being 'void_type_mode' if there
|
1116 |
|
|
are no variable arguments. The standard IQ2000 calling sequence
|
1117 |
|
|
passes all arguments in the general purpose registers in this case. */
|
1118 |
|
|
|
1119 |
|
|
for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
|
1120 |
|
|
param != 0; param = next_param)
|
1121 |
|
|
{
|
1122 |
|
|
next_param = TREE_CHAIN (param);
|
1123 |
|
|
if (next_param == 0 && TREE_VALUE (param) != void_type_node)
|
1124 |
|
|
cum->gp_reg_found = 1;
|
1125 |
|
|
}
|
1126 |
|
|
}
|
1127 |
|
|
|
1128 |
|
|
/* Advance the argument of type TYPE and mode MODE to the next argument
|
1129 |
|
|
position in CUM. */
|
1130 |
|
|
|
1131 |
|
|
static void
|
1132 |
|
|
iq2000_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
|
1133 |
|
|
const_tree type, bool named)
|
1134 |
|
|
{
|
1135 |
|
|
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
1136 |
|
|
|
1137 |
|
|
if (TARGET_DEBUG_D_MODE)
|
1138 |
|
|
{
|
1139 |
|
|
fprintf (stderr,
|
1140 |
|
|
"function_adv({gp reg found = %d, arg # = %2d, words = %2d}, %4s, ",
|
1141 |
|
|
cum->gp_reg_found, cum->arg_number, cum->arg_words,
|
1142 |
|
|
GET_MODE_NAME (mode));
|
1143 |
|
|
fprintf (stderr, "%p", CONST_CAST2 (void *, const_tree, type));
|
1144 |
|
|
fprintf (stderr, ", %d )\n\n", named);
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
cum->arg_number++;
|
1148 |
|
|
switch (mode)
|
1149 |
|
|
{
|
1150 |
|
|
case VOIDmode:
|
1151 |
|
|
break;
|
1152 |
|
|
|
1153 |
|
|
default:
|
1154 |
|
|
gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
|
1155 |
|
|
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
|
1156 |
|
|
|
1157 |
|
|
cum->gp_reg_found = 1;
|
1158 |
|
|
cum->arg_words += ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1)
|
1159 |
|
|
/ UNITS_PER_WORD);
|
1160 |
|
|
break;
|
1161 |
|
|
|
1162 |
|
|
case BLKmode:
|
1163 |
|
|
cum->gp_reg_found = 1;
|
1164 |
|
|
cum->arg_words += ((int_size_in_bytes (type) + UNITS_PER_WORD - 1)
|
1165 |
|
|
/ UNITS_PER_WORD);
|
1166 |
|
|
break;
|
1167 |
|
|
|
1168 |
|
|
case SFmode:
|
1169 |
|
|
cum->arg_words ++;
|
1170 |
|
|
if (! cum->gp_reg_found && cum->arg_number <= 2)
|
1171 |
|
|
cum->fp_code += 1 << ((cum->arg_number - 1) * 2);
|
1172 |
|
|
break;
|
1173 |
|
|
|
1174 |
|
|
case DFmode:
|
1175 |
|
|
cum->arg_words += 2;
|
1176 |
|
|
if (! cum->gp_reg_found && cum->arg_number <= 2)
|
1177 |
|
|
cum->fp_code += 2 << ((cum->arg_number - 1) * 2);
|
1178 |
|
|
break;
|
1179 |
|
|
|
1180 |
|
|
case DImode:
|
1181 |
|
|
cum->gp_reg_found = 1;
|
1182 |
|
|
cum->arg_words += 2;
|
1183 |
|
|
break;
|
1184 |
|
|
|
1185 |
|
|
case TImode:
|
1186 |
|
|
cum->gp_reg_found = 1;
|
1187 |
|
|
cum->arg_words += 4;
|
1188 |
|
|
break;
|
1189 |
|
|
|
1190 |
|
|
case QImode:
|
1191 |
|
|
case HImode:
|
1192 |
|
|
case SImode:
|
1193 |
|
|
cum->gp_reg_found = 1;
|
1194 |
|
|
cum->arg_words ++;
|
1195 |
|
|
break;
|
1196 |
|
|
}
|
1197 |
|
|
}
|
1198 |
|
|
|
1199 |
|
|
/* Return an RTL expression containing the register for the given mode MODE
|
1200 |
|
|
and type TYPE in CUM, or 0 if the argument is to be passed on the stack. */
|
1201 |
|
|
|
1202 |
|
|
static rtx
|
1203 |
|
|
iq2000_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
|
1204 |
|
|
const_tree type, bool named)
|
1205 |
|
|
{
|
1206 |
|
|
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
1207 |
|
|
rtx ret;
|
1208 |
|
|
int regbase = -1;
|
1209 |
|
|
int bias = 0;
|
1210 |
|
|
unsigned int *arg_words = &cum->arg_words;
|
1211 |
|
|
int struct_p = (type != 0
|
1212 |
|
|
&& (TREE_CODE (type) == RECORD_TYPE
|
1213 |
|
|
|| TREE_CODE (type) == UNION_TYPE
|
1214 |
|
|
|| TREE_CODE (type) == QUAL_UNION_TYPE));
|
1215 |
|
|
|
1216 |
|
|
if (TARGET_DEBUG_D_MODE)
|
1217 |
|
|
{
|
1218 |
|
|
fprintf (stderr,
|
1219 |
|
|
"function_arg( {gp reg found = %d, arg # = %2d, words = %2d}, %4s, ",
|
1220 |
|
|
cum->gp_reg_found, cum->arg_number, cum->arg_words,
|
1221 |
|
|
GET_MODE_NAME (mode));
|
1222 |
|
|
fprintf (stderr, "%p", (const void *) type);
|
1223 |
|
|
fprintf (stderr, ", %d ) = ", named);
|
1224 |
|
|
}
|
1225 |
|
|
|
1226 |
|
|
|
1227 |
|
|
cum->last_arg_fp = 0;
|
1228 |
|
|
switch (mode)
|
1229 |
|
|
{
|
1230 |
|
|
case SFmode:
|
1231 |
|
|
regbase = GP_ARG_FIRST;
|
1232 |
|
|
break;
|
1233 |
|
|
|
1234 |
|
|
case DFmode:
|
1235 |
|
|
cum->arg_words += cum->arg_words & 1;
|
1236 |
|
|
|
1237 |
|
|
regbase = GP_ARG_FIRST;
|
1238 |
|
|
break;
|
1239 |
|
|
|
1240 |
|
|
default:
|
1241 |
|
|
gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
|
1242 |
|
|
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
|
1243 |
|
|
|
1244 |
|
|
/* Drops through. */
|
1245 |
|
|
case BLKmode:
|
1246 |
|
|
if (type != NULL_TREE && TYPE_ALIGN (type) > (unsigned) BITS_PER_WORD)
|
1247 |
|
|
cum->arg_words += (cum->arg_words & 1);
|
1248 |
|
|
regbase = GP_ARG_FIRST;
|
1249 |
|
|
break;
|
1250 |
|
|
|
1251 |
|
|
case VOIDmode:
|
1252 |
|
|
case QImode:
|
1253 |
|
|
case HImode:
|
1254 |
|
|
case SImode:
|
1255 |
|
|
regbase = GP_ARG_FIRST;
|
1256 |
|
|
break;
|
1257 |
|
|
|
1258 |
|
|
case DImode:
|
1259 |
|
|
cum->arg_words += (cum->arg_words & 1);
|
1260 |
|
|
regbase = GP_ARG_FIRST;
|
1261 |
|
|
break;
|
1262 |
|
|
|
1263 |
|
|
case TImode:
|
1264 |
|
|
cum->arg_words += (cum->arg_words & 3);
|
1265 |
|
|
regbase = GP_ARG_FIRST;
|
1266 |
|
|
break;
|
1267 |
|
|
}
|
1268 |
|
|
|
1269 |
|
|
if (*arg_words >= (unsigned) MAX_ARGS_IN_REGISTERS)
|
1270 |
|
|
{
|
1271 |
|
|
if (TARGET_DEBUG_D_MODE)
|
1272 |
|
|
fprintf (stderr, "<stack>%s\n", struct_p ? ", [struct]" : "");
|
1273 |
|
|
|
1274 |
|
|
ret = 0;
|
1275 |
|
|
}
|
1276 |
|
|
else
|
1277 |
|
|
{
|
1278 |
|
|
gcc_assert (regbase != -1);
|
1279 |
|
|
|
1280 |
|
|
if (! type || TREE_CODE (type) != RECORD_TYPE
|
1281 |
|
|
|| ! named || ! TYPE_SIZE_UNIT (type)
|
1282 |
|
|
|| ! host_integerp (TYPE_SIZE_UNIT (type), 1))
|
1283 |
|
|
ret = gen_rtx_REG (mode, regbase + *arg_words + bias);
|
1284 |
|
|
else
|
1285 |
|
|
{
|
1286 |
|
|
tree field;
|
1287 |
|
|
|
1288 |
|
|
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
1289 |
|
|
if (TREE_CODE (field) == FIELD_DECL
|
1290 |
|
|
&& TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
|
1291 |
|
|
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
|
1292 |
|
|
&& host_integerp (bit_position (field), 0)
|
1293 |
|
|
&& int_bit_position (field) % BITS_PER_WORD == 0)
|
1294 |
|
|
break;
|
1295 |
|
|
|
1296 |
|
|
/* If the whole struct fits a DFmode register,
|
1297 |
|
|
we don't need the PARALLEL. */
|
1298 |
|
|
if (! field || mode == DFmode)
|
1299 |
|
|
ret = gen_rtx_REG (mode, regbase + *arg_words + bias);
|
1300 |
|
|
else
|
1301 |
|
|
{
|
1302 |
|
|
unsigned int chunks;
|
1303 |
|
|
HOST_WIDE_INT bitpos;
|
1304 |
|
|
unsigned int regno;
|
1305 |
|
|
unsigned int i;
|
1306 |
|
|
|
1307 |
|
|
/* ??? If this is a packed structure, then the last hunk won't
|
1308 |
|
|
be 64 bits. */
|
1309 |
|
|
chunks
|
1310 |
|
|
= tree_low_cst (TYPE_SIZE_UNIT (type), 1) / UNITS_PER_WORD;
|
1311 |
|
|
if (chunks + *arg_words + bias > (unsigned) MAX_ARGS_IN_REGISTERS)
|
1312 |
|
|
chunks = MAX_ARGS_IN_REGISTERS - *arg_words - bias;
|
1313 |
|
|
|
1314 |
|
|
/* Assign_parms checks the mode of ENTRY_PARM, so we must
|
1315 |
|
|
use the actual mode here. */
|
1316 |
|
|
ret = gen_rtx_PARALLEL (mode, rtvec_alloc (chunks));
|
1317 |
|
|
|
1318 |
|
|
bitpos = 0;
|
1319 |
|
|
regno = regbase + *arg_words + bias;
|
1320 |
|
|
field = TYPE_FIELDS (type);
|
1321 |
|
|
for (i = 0; i < chunks; i++)
|
1322 |
|
|
{
|
1323 |
|
|
rtx reg;
|
1324 |
|
|
|
1325 |
|
|
for (; field; field = DECL_CHAIN (field))
|
1326 |
|
|
if (TREE_CODE (field) == FIELD_DECL
|
1327 |
|
|
&& int_bit_position (field) >= bitpos)
|
1328 |
|
|
break;
|
1329 |
|
|
|
1330 |
|
|
if (field
|
1331 |
|
|
&& int_bit_position (field) == bitpos
|
1332 |
|
|
&& TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
|
1333 |
|
|
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
|
1334 |
|
|
reg = gen_rtx_REG (DFmode, regno++);
|
1335 |
|
|
else
|
1336 |
|
|
reg = gen_rtx_REG (word_mode, regno);
|
1337 |
|
|
|
1338 |
|
|
XVECEXP (ret, 0, i)
|
1339 |
|
|
= gen_rtx_EXPR_LIST (VOIDmode, reg,
|
1340 |
|
|
GEN_INT (bitpos / BITS_PER_UNIT));
|
1341 |
|
|
|
1342 |
|
|
bitpos += 64;
|
1343 |
|
|
regno++;
|
1344 |
|
|
}
|
1345 |
|
|
}
|
1346 |
|
|
}
|
1347 |
|
|
|
1348 |
|
|
if (TARGET_DEBUG_D_MODE)
|
1349 |
|
|
fprintf (stderr, "%s%s\n", reg_names[regbase + *arg_words + bias],
|
1350 |
|
|
struct_p ? ", [struct]" : "");
|
1351 |
|
|
}
|
1352 |
|
|
|
1353 |
|
|
/* We will be called with a mode of VOIDmode after the last argument
|
1354 |
|
|
has been seen. Whatever we return will be passed to the call
|
1355 |
|
|
insn. If we need any shifts for small structures, return them in
|
1356 |
|
|
a PARALLEL. */
|
1357 |
|
|
if (mode == VOIDmode)
|
1358 |
|
|
{
|
1359 |
|
|
if (cum->num_adjusts > 0)
|
1360 |
|
|
ret = gen_rtx_PARALLEL ((enum machine_mode) cum->fp_code,
|
1361 |
|
|
gen_rtvec_v (cum->num_adjusts, cum->adjust));
|
1362 |
|
|
}
|
1363 |
|
|
|
1364 |
|
|
return ret;
|
1365 |
|
|
}
|
1366 |
|
|
|
1367 |
|
|
static unsigned int
|
1368 |
|
|
iq2000_function_arg_boundary (enum machine_mode mode, const_tree type)
|
1369 |
|
|
{
|
1370 |
|
|
return (type != NULL_TREE
|
1371 |
|
|
? (TYPE_ALIGN (type) <= PARM_BOUNDARY
|
1372 |
|
|
? PARM_BOUNDARY
|
1373 |
|
|
: TYPE_ALIGN (type))
|
1374 |
|
|
: (GET_MODE_ALIGNMENT (mode) <= PARM_BOUNDARY
|
1375 |
|
|
? PARM_BOUNDARY
|
1376 |
|
|
: GET_MODE_ALIGNMENT (mode)));
|
1377 |
|
|
}
|
1378 |
|
|
|
1379 |
|
|
static int
|
1380 |
|
|
iq2000_arg_partial_bytes (cumulative_args_t cum_v, enum machine_mode mode,
|
1381 |
|
|
tree type ATTRIBUTE_UNUSED,
|
1382 |
|
|
bool named ATTRIBUTE_UNUSED)
|
1383 |
|
|
{
|
1384 |
|
|
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
1385 |
|
|
|
1386 |
|
|
if (mode == DImode && cum->arg_words == MAX_ARGS_IN_REGISTERS - 1)
|
1387 |
|
|
{
|
1388 |
|
|
if (TARGET_DEBUG_D_MODE)
|
1389 |
|
|
fprintf (stderr, "iq2000_arg_partial_bytes=%d\n", UNITS_PER_WORD);
|
1390 |
|
|
return UNITS_PER_WORD;
|
1391 |
|
|
}
|
1392 |
|
|
|
1393 |
|
|
return 0;
|
1394 |
|
|
}
|
1395 |
|
|
|
1396 |
|
|
/* Implement va_start. */
|
1397 |
|
|
|
1398 |
|
|
static void
|
1399 |
|
|
iq2000_va_start (tree valist, rtx nextarg)
|
1400 |
|
|
{
|
1401 |
|
|
int int_arg_words;
|
1402 |
|
|
/* Find out how many non-float named formals. */
|
1403 |
|
|
int gpr_save_area_size;
|
1404 |
|
|
/* Note UNITS_PER_WORD is 4 bytes. */
|
1405 |
|
|
int_arg_words = crtl->args.info.arg_words;
|
1406 |
|
|
|
1407 |
|
|
if (int_arg_words < 8 )
|
1408 |
|
|
/* Adjust for the prologue's economy measure. */
|
1409 |
|
|
gpr_save_area_size = (8 - int_arg_words) * UNITS_PER_WORD;
|
1410 |
|
|
else
|
1411 |
|
|
gpr_save_area_size = 0;
|
1412 |
|
|
|
1413 |
|
|
/* Everything is in the GPR save area, or in the overflow
|
1414 |
|
|
area which is contiguous with it. */
|
1415 |
|
|
nextarg = plus_constant (nextarg, - gpr_save_area_size);
|
1416 |
|
|
std_expand_builtin_va_start (valist, nextarg);
|
1417 |
|
|
}
|
1418 |
|
|
|
1419 |
|
|
/* Allocate a chunk of memory for per-function machine-dependent data. */
|
1420 |
|
|
|
1421 |
|
|
static struct machine_function *
|
1422 |
|
|
iq2000_init_machine_status (void)
|
1423 |
|
|
{
|
1424 |
|
|
return ggc_alloc_cleared_machine_function ();
|
1425 |
|
|
}
|
1426 |
|
|
|
1427 |
|
|
/* Detect any conflicts in the switches. */
|
1428 |
|
|
|
1429 |
|
|
static void
|
1430 |
|
|
iq2000_option_override (void)
|
1431 |
|
|
{
|
1432 |
|
|
target_flags &= ~MASK_GPOPT;
|
1433 |
|
|
|
1434 |
|
|
iq2000_isa = IQ2000_ISA_DEFAULT;
|
1435 |
|
|
|
1436 |
|
|
/* Identify the processor type. */
|
1437 |
|
|
|
1438 |
|
|
iq2000_print_operand_punct['?'] = 1;
|
1439 |
|
|
iq2000_print_operand_punct['#'] = 1;
|
1440 |
|
|
iq2000_print_operand_punct['&'] = 1;
|
1441 |
|
|
iq2000_print_operand_punct['!'] = 1;
|
1442 |
|
|
iq2000_print_operand_punct['*'] = 1;
|
1443 |
|
|
iq2000_print_operand_punct['@'] = 1;
|
1444 |
|
|
iq2000_print_operand_punct['.'] = 1;
|
1445 |
|
|
iq2000_print_operand_punct['('] = 1;
|
1446 |
|
|
iq2000_print_operand_punct[')'] = 1;
|
1447 |
|
|
iq2000_print_operand_punct['['] = 1;
|
1448 |
|
|
iq2000_print_operand_punct[']'] = 1;
|
1449 |
|
|
iq2000_print_operand_punct['<'] = 1;
|
1450 |
|
|
iq2000_print_operand_punct['>'] = 1;
|
1451 |
|
|
iq2000_print_operand_punct['{'] = 1;
|
1452 |
|
|
iq2000_print_operand_punct['}'] = 1;
|
1453 |
|
|
iq2000_print_operand_punct['^'] = 1;
|
1454 |
|
|
iq2000_print_operand_punct['$'] = 1;
|
1455 |
|
|
iq2000_print_operand_punct['+'] = 1;
|
1456 |
|
|
iq2000_print_operand_punct['~'] = 1;
|
1457 |
|
|
|
1458 |
|
|
/* Save GPR registers in word_mode sized hunks. word_mode hasn't been
|
1459 |
|
|
initialized yet, so we can't use that here. */
|
1460 |
|
|
gpr_mode = SImode;
|
1461 |
|
|
|
1462 |
|
|
/* Function to allocate machine-dependent function status. */
|
1463 |
|
|
init_machine_status = iq2000_init_machine_status;
|
1464 |
|
|
}
|
1465 |
|
|
|
1466 |
|
|
/* The arg pointer (which is eliminated) points to the virtual frame pointer,
|
1467 |
|
|
while the frame pointer (which may be eliminated) points to the stack
|
1468 |
|
|
pointer after the initial adjustments. */
|
1469 |
|
|
|
1470 |
|
|
HOST_WIDE_INT
|
1471 |
|
|
iq2000_debugger_offset (rtx addr, HOST_WIDE_INT offset)
|
1472 |
|
|
{
|
1473 |
|
|
rtx offset2 = const0_rtx;
|
1474 |
|
|
rtx reg = eliminate_constant_term (addr, & offset2);
|
1475 |
|
|
|
1476 |
|
|
if (offset == 0)
|
1477 |
|
|
offset = INTVAL (offset2);
|
1478 |
|
|
|
1479 |
|
|
if (reg == stack_pointer_rtx || reg == frame_pointer_rtx
|
1480 |
|
|
|| reg == hard_frame_pointer_rtx)
|
1481 |
|
|
{
|
1482 |
|
|
HOST_WIDE_INT frame_size = (!cfun->machine->initialized)
|
1483 |
|
|
? compute_frame_size (get_frame_size ())
|
1484 |
|
|
: cfun->machine->total_size;
|
1485 |
|
|
|
1486 |
|
|
offset = offset - frame_size;
|
1487 |
|
|
}
|
1488 |
|
|
|
1489 |
|
|
return offset;
|
1490 |
|
|
}
|
1491 |
|
|
|
1492 |
|
|
/* If defined, a C statement to be executed just prior to the output of
|
1493 |
|
|
assembler code for INSN, to modify the extracted operands so they will be
|
1494 |
|
|
output differently.
|
1495 |
|
|
|
1496 |
|
|
Here the argument OPVEC is the vector containing the operands extracted
|
1497 |
|
|
from INSN, and NOPERANDS is the number of elements of the vector which
|
1498 |
|
|
contain meaningful data for this insn. The contents of this vector are
|
1499 |
|
|
what will be used to convert the insn template into assembler code, so you
|
1500 |
|
|
can change the assembler output by changing the contents of the vector.
|
1501 |
|
|
|
1502 |
|
|
We use it to check if the current insn needs a nop in front of it because
|
1503 |
|
|
of load delays, and also to update the delay slot statistics. */
|
1504 |
|
|
|
1505 |
|
|
void
|
1506 |
|
|
final_prescan_insn (rtx insn, rtx opvec[] ATTRIBUTE_UNUSED,
|
1507 |
|
|
int noperands ATTRIBUTE_UNUSED)
|
1508 |
|
|
{
|
1509 |
|
|
if (dslots_number_nops > 0)
|
1510 |
|
|
{
|
1511 |
|
|
rtx pattern = PATTERN (insn);
|
1512 |
|
|
int length = get_attr_length (insn);
|
1513 |
|
|
|
1514 |
|
|
/* Do we need to emit a NOP? */
|
1515 |
|
|
if (length == 0
|
1516 |
|
|
|| (iq2000_load_reg != 0 && reg_mentioned_p (iq2000_load_reg, pattern))
|
1517 |
|
|
|| (iq2000_load_reg2 != 0 && reg_mentioned_p (iq2000_load_reg2, pattern))
|
1518 |
|
|
|| (iq2000_load_reg3 != 0 && reg_mentioned_p (iq2000_load_reg3, pattern))
|
1519 |
|
|
|| (iq2000_load_reg4 != 0
|
1520 |
|
|
&& reg_mentioned_p (iq2000_load_reg4, pattern)))
|
1521 |
|
|
fputs ("\tnop\n", asm_out_file);
|
1522 |
|
|
|
1523 |
|
|
else
|
1524 |
|
|
dslots_load_filled ++;
|
1525 |
|
|
|
1526 |
|
|
while (--dslots_number_nops > 0)
|
1527 |
|
|
fputs ("\tnop\n", asm_out_file);
|
1528 |
|
|
|
1529 |
|
|
iq2000_load_reg = 0;
|
1530 |
|
|
iq2000_load_reg2 = 0;
|
1531 |
|
|
iq2000_load_reg3 = 0;
|
1532 |
|
|
iq2000_load_reg4 = 0;
|
1533 |
|
|
}
|
1534 |
|
|
|
1535 |
|
|
if ( (GET_CODE (insn) == JUMP_INSN
|
1536 |
|
|
|| GET_CODE (insn) == CALL_INSN
|
1537 |
|
|
|| (GET_CODE (PATTERN (insn)) == RETURN))
|
1538 |
|
|
&& NEXT_INSN (PREV_INSN (insn)) == insn)
|
1539 |
|
|
{
|
1540 |
|
|
rtx nop_insn = emit_insn_after (gen_nop (), insn);
|
1541 |
|
|
|
1542 |
|
|
INSN_ADDRESSES_NEW (nop_insn, -1);
|
1543 |
|
|
}
|
1544 |
|
|
|
1545 |
|
|
if (TARGET_STATS
|
1546 |
|
|
&& (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN))
|
1547 |
|
|
dslots_jump_total ++;
|
1548 |
|
|
}
|
1549 |
|
|
|
1550 |
|
|
/* Return the bytes needed to compute the frame pointer from the current
|
1551 |
|
|
stack pointer where SIZE is the # of var. bytes allocated.
|
1552 |
|
|
|
1553 |
|
|
IQ2000 stack frames look like:
|
1554 |
|
|
|
1555 |
|
|
Before call After call
|
1556 |
|
|
+-----------------------+ +-----------------------+
|
1557 |
|
|
high | | | |
|
1558 |
|
|
mem. | | | |
|
1559 |
|
|
| caller's temps. | | caller's temps. |
|
1560 |
|
|
| | | |
|
1561 |
|
|
+-----------------------+ +-----------------------+
|
1562 |
|
|
| | | |
|
1563 |
|
|
| arguments on stack. | | arguments on stack. |
|
1564 |
|
|
| | | |
|
1565 |
|
|
+-----------------------+ +-----------------------+
|
1566 |
|
|
| 4 words to save | | 4 words to save |
|
1567 |
|
|
| arguments passed | | arguments passed |
|
1568 |
|
|
| in registers, even | | in registers, even |
|
1569 |
|
|
SP->| if not passed. | VFP->| if not passed. |
|
1570 |
|
|
+-----------------------+ +-----------------------+
|
1571 |
|
|
| |
|
1572 |
|
|
| fp register save |
|
1573 |
|
|
| |
|
1574 |
|
|
+-----------------------+
|
1575 |
|
|
| |
|
1576 |
|
|
| gp register save |
|
1577 |
|
|
| |
|
1578 |
|
|
+-----------------------+
|
1579 |
|
|
| |
|
1580 |
|
|
| local variables |
|
1581 |
|
|
| |
|
1582 |
|
|
+-----------------------+
|
1583 |
|
|
| |
|
1584 |
|
|
| alloca allocations |
|
1585 |
|
|
| |
|
1586 |
|
|
+-----------------------+
|
1587 |
|
|
| |
|
1588 |
|
|
| GP save for V.4 abi |
|
1589 |
|
|
| |
|
1590 |
|
|
+-----------------------+
|
1591 |
|
|
| |
|
1592 |
|
|
| arguments on stack |
|
1593 |
|
|
| |
|
1594 |
|
|
+-----------------------+
|
1595 |
|
|
| 4 words to save |
|
1596 |
|
|
| arguments passed |
|
1597 |
|
|
| in registers, even |
|
1598 |
|
|
low SP->| if not passed. |
|
1599 |
|
|
memory +-----------------------+ */
|
1600 |
|
|
|
1601 |
|
|
HOST_WIDE_INT
|
1602 |
|
|
compute_frame_size (HOST_WIDE_INT size)
|
1603 |
|
|
{
|
1604 |
|
|
int regno;
|
1605 |
|
|
HOST_WIDE_INT total_size; /* # bytes that the entire frame takes up. */
|
1606 |
|
|
HOST_WIDE_INT var_size; /* # bytes that variables take up. */
|
1607 |
|
|
HOST_WIDE_INT args_size; /* # bytes that outgoing arguments take up. */
|
1608 |
|
|
HOST_WIDE_INT extra_size; /* # extra bytes. */
|
1609 |
|
|
HOST_WIDE_INT gp_reg_rounded; /* # bytes needed to store gp after rounding. */
|
1610 |
|
|
HOST_WIDE_INT gp_reg_size; /* # bytes needed to store gp regs. */
|
1611 |
|
|
HOST_WIDE_INT fp_reg_size; /* # bytes needed to store fp regs. */
|
1612 |
|
|
long mask; /* mask of saved gp registers. */
|
1613 |
|
|
|
1614 |
|
|
gp_reg_size = 0;
|
1615 |
|
|
fp_reg_size = 0;
|
1616 |
|
|
mask = 0;
|
1617 |
|
|
extra_size = IQ2000_STACK_ALIGN ((0));
|
1618 |
|
|
var_size = IQ2000_STACK_ALIGN (size);
|
1619 |
|
|
args_size = IQ2000_STACK_ALIGN (crtl->outgoing_args_size);
|
1620 |
|
|
|
1621 |
|
|
/* If a function dynamically allocates the stack and
|
1622 |
|
|
has 0 for STACK_DYNAMIC_OFFSET then allocate some stack space. */
|
1623 |
|
|
if (args_size == 0 && cfun->calls_alloca)
|
1624 |
|
|
args_size = 4 * UNITS_PER_WORD;
|
1625 |
|
|
|
1626 |
|
|
total_size = var_size + args_size + extra_size;
|
1627 |
|
|
|
1628 |
|
|
/* Calculate space needed for gp registers. */
|
1629 |
|
|
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
|
1630 |
|
|
{
|
1631 |
|
|
if (MUST_SAVE_REGISTER (regno))
|
1632 |
|
|
{
|
1633 |
|
|
gp_reg_size += GET_MODE_SIZE (gpr_mode);
|
1634 |
|
|
mask |= 1L << (regno - GP_REG_FIRST);
|
1635 |
|
|
}
|
1636 |
|
|
}
|
1637 |
|
|
|
1638 |
|
|
/* We need to restore these for the handler. */
|
1639 |
|
|
if (crtl->calls_eh_return)
|
1640 |
|
|
{
|
1641 |
|
|
unsigned int i;
|
1642 |
|
|
|
1643 |
|
|
for (i = 0; ; ++i)
|
1644 |
|
|
{
|
1645 |
|
|
regno = EH_RETURN_DATA_REGNO (i);
|
1646 |
|
|
if (regno == (int) INVALID_REGNUM)
|
1647 |
|
|
break;
|
1648 |
|
|
gp_reg_size += GET_MODE_SIZE (gpr_mode);
|
1649 |
|
|
mask |= 1L << (regno - GP_REG_FIRST);
|
1650 |
|
|
}
|
1651 |
|
|
}
|
1652 |
|
|
|
1653 |
|
|
gp_reg_rounded = IQ2000_STACK_ALIGN (gp_reg_size);
|
1654 |
|
|
total_size += gp_reg_rounded + IQ2000_STACK_ALIGN (fp_reg_size);
|
1655 |
|
|
|
1656 |
|
|
/* The gp reg is caller saved, so there is no need for leaf routines
|
1657 |
|
|
(total_size == extra_size) to save the gp reg. */
|
1658 |
|
|
if (total_size == extra_size
|
1659 |
|
|
&& ! profile_flag)
|
1660 |
|
|
total_size = extra_size = 0;
|
1661 |
|
|
|
1662 |
|
|
total_size += IQ2000_STACK_ALIGN (crtl->args.pretend_args_size);
|
1663 |
|
|
|
1664 |
|
|
/* Save other computed information. */
|
1665 |
|
|
cfun->machine->total_size = total_size;
|
1666 |
|
|
cfun->machine->var_size = var_size;
|
1667 |
|
|
cfun->machine->args_size = args_size;
|
1668 |
|
|
cfun->machine->extra_size = extra_size;
|
1669 |
|
|
cfun->machine->gp_reg_size = gp_reg_size;
|
1670 |
|
|
cfun->machine->fp_reg_size = fp_reg_size;
|
1671 |
|
|
cfun->machine->mask = mask;
|
1672 |
|
|
cfun->machine->initialized = reload_completed;
|
1673 |
|
|
cfun->machine->num_gp = gp_reg_size / UNITS_PER_WORD;
|
1674 |
|
|
|
1675 |
|
|
if (mask)
|
1676 |
|
|
{
|
1677 |
|
|
unsigned long offset;
|
1678 |
|
|
|
1679 |
|
|
offset = (args_size + extra_size + var_size
|
1680 |
|
|
+ gp_reg_size - GET_MODE_SIZE (gpr_mode));
|
1681 |
|
|
|
1682 |
|
|
cfun->machine->gp_sp_offset = offset;
|
1683 |
|
|
cfun->machine->gp_save_offset = offset - total_size;
|
1684 |
|
|
}
|
1685 |
|
|
else
|
1686 |
|
|
{
|
1687 |
|
|
cfun->machine->gp_sp_offset = 0;
|
1688 |
|
|
cfun->machine->gp_save_offset = 0;
|
1689 |
|
|
}
|
1690 |
|
|
|
1691 |
|
|
cfun->machine->fp_sp_offset = 0;
|
1692 |
|
|
cfun->machine->fp_save_offset = 0;
|
1693 |
|
|
|
1694 |
|
|
/* Ok, we're done. */
|
1695 |
|
|
return total_size;
|
1696 |
|
|
}
|
1697 |
|
|
|
1698 |
|
|
|
1699 |
|
|
/* We can always eliminate to the frame pointer. We can eliminate to the
|
1700 |
|
|
stack pointer unless a frame pointer is needed. */
|
1701 |
|
|
|
1702 |
|
|
bool
|
1703 |
|
|
iq2000_can_eliminate (const int from, const int to)
|
1704 |
|
|
{
|
1705 |
|
|
return (from == RETURN_ADDRESS_POINTER_REGNUM
|
1706 |
|
|
&& (! leaf_function_p ()
|
1707 |
|
|
|| (to == GP_REG_FIRST + 31 && leaf_function_p ())))
|
1708 |
|
|
|| (from != RETURN_ADDRESS_POINTER_REGNUM
|
1709 |
|
|
&& (to == HARD_FRAME_POINTER_REGNUM
|
1710 |
|
|
|| (to == STACK_POINTER_REGNUM
|
1711 |
|
|
&& ! frame_pointer_needed)));
|
1712 |
|
|
}
|
1713 |
|
|
|
1714 |
|
|
/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame
|
1715 |
|
|
pointer, argument pointer, or return address pointer. TO is either
|
1716 |
|
|
the stack pointer or hard frame pointer. */
|
1717 |
|
|
|
1718 |
|
|
int
|
1719 |
|
|
iq2000_initial_elimination_offset (int from, int to ATTRIBUTE_UNUSED)
|
1720 |
|
|
{
|
1721 |
|
|
int offset;
|
1722 |
|
|
|
1723 |
|
|
compute_frame_size (get_frame_size ());
|
1724 |
|
|
if ((from) == FRAME_POINTER_REGNUM)
|
1725 |
|
|
(offset) = 0;
|
1726 |
|
|
else if ((from) == ARG_POINTER_REGNUM)
|
1727 |
|
|
(offset) = (cfun->machine->total_size);
|
1728 |
|
|
else if ((from) == RETURN_ADDRESS_POINTER_REGNUM)
|
1729 |
|
|
{
|
1730 |
|
|
if (leaf_function_p ())
|
1731 |
|
|
(offset) = 0;
|
1732 |
|
|
else (offset) = cfun->machine->gp_sp_offset
|
1733 |
|
|
+ ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT))
|
1734 |
|
|
* (BYTES_BIG_ENDIAN != 0));
|
1735 |
|
|
}
|
1736 |
|
|
else
|
1737 |
|
|
gcc_unreachable ();
|
1738 |
|
|
|
1739 |
|
|
return offset;
|
1740 |
|
|
}
|
1741 |
|
|
|
1742 |
|
|
/* Common code to emit the insns (or to write the instructions to a file)
|
1743 |
|
|
to save/restore registers.
|
1744 |
|
|
Other parts of the code assume that IQ2000_TEMP1_REGNUM (aka large_reg)
|
1745 |
|
|
is not modified within save_restore_insns. */
|
1746 |
|
|
|
1747 |
|
|
#define BITSET_P(VALUE,BIT) (((VALUE) & (1L << (BIT))) != 0)
|
1748 |
|
|
|
1749 |
|
|
/* Emit instructions to load the value (SP + OFFSET) into IQ2000_TEMP2_REGNUM
|
1750 |
|
|
and return an rtl expression for the register. Write the assembly
|
1751 |
|
|
instructions directly to FILE if it is not null, otherwise emit them as
|
1752 |
|
|
rtl.
|
1753 |
|
|
|
1754 |
|
|
This function is a subroutine of save_restore_insns. It is used when
|
1755 |
|
|
OFFSET is too large to add in a single instruction. */
|
1756 |
|
|
|
1757 |
|
|
static rtx
|
1758 |
|
|
iq2000_add_large_offset_to_sp (HOST_WIDE_INT offset)
|
1759 |
|
|
{
|
1760 |
|
|
rtx reg = gen_rtx_REG (Pmode, IQ2000_TEMP2_REGNUM);
|
1761 |
|
|
rtx offset_rtx = GEN_INT (offset);
|
1762 |
|
|
|
1763 |
|
|
emit_move_insn (reg, offset_rtx);
|
1764 |
|
|
emit_insn (gen_addsi3 (reg, reg, stack_pointer_rtx));
|
1765 |
|
|
return reg;
|
1766 |
|
|
}
|
1767 |
|
|
|
1768 |
|
|
/* Make INSN frame related and note that it performs the frame-related
|
1769 |
|
|
operation DWARF_PATTERN. */
|
1770 |
|
|
|
1771 |
|
|
static void
|
1772 |
|
|
iq2000_annotate_frame_insn (rtx insn, rtx dwarf_pattern)
|
1773 |
|
|
{
|
1774 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
1775 |
|
|
REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
1776 |
|
|
dwarf_pattern,
|
1777 |
|
|
REG_NOTES (insn));
|
1778 |
|
|
}
|
1779 |
|
|
|
1780 |
|
|
/* Emit a move instruction that stores REG in MEM. Make the instruction
|
1781 |
|
|
frame related and note that it stores REG at (SP + OFFSET). */
|
1782 |
|
|
|
1783 |
|
|
static void
|
1784 |
|
|
iq2000_emit_frame_related_store (rtx mem, rtx reg, HOST_WIDE_INT offset)
|
1785 |
|
|
{
|
1786 |
|
|
rtx dwarf_address = plus_constant (stack_pointer_rtx, offset);
|
1787 |
|
|
rtx dwarf_mem = gen_rtx_MEM (GET_MODE (reg), dwarf_address);
|
1788 |
|
|
|
1789 |
|
|
iq2000_annotate_frame_insn (emit_move_insn (mem, reg),
|
1790 |
|
|
gen_rtx_SET (GET_MODE (reg), dwarf_mem, reg));
|
1791 |
|
|
}
|
1792 |
|
|
|
1793 |
|
|
/* Emit instructions to save/restore registers, as determined by STORE_P. */
|
1794 |
|
|
|
1795 |
|
|
static void
|
1796 |
|
|
save_restore_insns (int store_p)
|
1797 |
|
|
{
|
1798 |
|
|
long mask = cfun->machine->mask;
|
1799 |
|
|
int regno;
|
1800 |
|
|
rtx base_reg_rtx;
|
1801 |
|
|
HOST_WIDE_INT base_offset;
|
1802 |
|
|
HOST_WIDE_INT gp_offset;
|
1803 |
|
|
HOST_WIDE_INT end_offset;
|
1804 |
|
|
|
1805 |
|
|
gcc_assert (!frame_pointer_needed
|
1806 |
|
|
|| BITSET_P (mask, HARD_FRAME_POINTER_REGNUM - GP_REG_FIRST));
|
1807 |
|
|
|
1808 |
|
|
if (mask == 0)
|
1809 |
|
|
{
|
1810 |
|
|
base_reg_rtx = 0, base_offset = 0;
|
1811 |
|
|
return;
|
1812 |
|
|
}
|
1813 |
|
|
|
1814 |
|
|
/* Save registers starting from high to low. The debuggers prefer at least
|
1815 |
|
|
the return register be stored at func+4, and also it allows us not to
|
1816 |
|
|
need a nop in the epilog if at least one register is reloaded in
|
1817 |
|
|
addition to return address. */
|
1818 |
|
|
|
1819 |
|
|
/* Save GP registers if needed. */
|
1820 |
|
|
/* Pick which pointer to use as a base register. For small frames, just
|
1821 |
|
|
use the stack pointer. Otherwise, use a temporary register. Save 2
|
1822 |
|
|
cycles if the save area is near the end of a large frame, by reusing
|
1823 |
|
|
the constant created in the prologue/epilogue to adjust the stack
|
1824 |
|
|
frame. */
|
1825 |
|
|
|
1826 |
|
|
gp_offset = cfun->machine->gp_sp_offset;
|
1827 |
|
|
end_offset
|
1828 |
|
|
= gp_offset - (cfun->machine->gp_reg_size
|
1829 |
|
|
- GET_MODE_SIZE (gpr_mode));
|
1830 |
|
|
|
1831 |
|
|
if (gp_offset < 0 || end_offset < 0)
|
1832 |
|
|
internal_error
|
1833 |
|
|
("gp_offset (%ld) or end_offset (%ld) is less than zero",
|
1834 |
|
|
(long) gp_offset, (long) end_offset);
|
1835 |
|
|
|
1836 |
|
|
else if (gp_offset < 32768)
|
1837 |
|
|
base_reg_rtx = stack_pointer_rtx, base_offset = 0;
|
1838 |
|
|
else
|
1839 |
|
|
{
|
1840 |
|
|
int regno;
|
1841 |
|
|
int reg_save_count = 0;
|
1842 |
|
|
|
1843 |
|
|
for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
|
1844 |
|
|
if (BITSET_P (mask, regno - GP_REG_FIRST)) reg_save_count += 1;
|
1845 |
|
|
base_offset = gp_offset - ((reg_save_count - 1) * 4);
|
1846 |
|
|
base_reg_rtx = iq2000_add_large_offset_to_sp (base_offset);
|
1847 |
|
|
}
|
1848 |
|
|
|
1849 |
|
|
for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
|
1850 |
|
|
{
|
1851 |
|
|
if (BITSET_P (mask, regno - GP_REG_FIRST))
|
1852 |
|
|
{
|
1853 |
|
|
rtx reg_rtx;
|
1854 |
|
|
rtx mem_rtx
|
1855 |
|
|
= gen_rtx_MEM (gpr_mode,
|
1856 |
|
|
gen_rtx_PLUS (Pmode, base_reg_rtx,
|
1857 |
|
|
GEN_INT (gp_offset - base_offset)));
|
1858 |
|
|
|
1859 |
|
|
reg_rtx = gen_rtx_REG (gpr_mode, regno);
|
1860 |
|
|
|
1861 |
|
|
if (store_p)
|
1862 |
|
|
iq2000_emit_frame_related_store (mem_rtx, reg_rtx, gp_offset);
|
1863 |
|
|
else
|
1864 |
|
|
{
|
1865 |
|
|
emit_move_insn (reg_rtx, mem_rtx);
|
1866 |
|
|
}
|
1867 |
|
|
gp_offset -= GET_MODE_SIZE (gpr_mode);
|
1868 |
|
|
}
|
1869 |
|
|
}
|
1870 |
|
|
}
|
1871 |
|
|
|
1872 |
|
|
/* Expand the prologue into a bunch of separate insns. */
|
1873 |
|
|
|
1874 |
|
|
void
|
1875 |
|
|
iq2000_expand_prologue (void)
|
1876 |
|
|
{
|
1877 |
|
|
int regno;
|
1878 |
|
|
HOST_WIDE_INT tsize;
|
1879 |
|
|
int last_arg_is_vararg_marker = 0;
|
1880 |
|
|
tree fndecl = current_function_decl;
|
1881 |
|
|
tree fntype = TREE_TYPE (fndecl);
|
1882 |
|
|
tree fnargs = DECL_ARGUMENTS (fndecl);
|
1883 |
|
|
rtx next_arg_reg;
|
1884 |
|
|
int i;
|
1885 |
|
|
tree next_arg;
|
1886 |
|
|
tree cur_arg;
|
1887 |
|
|
CUMULATIVE_ARGS args_so_far_v;
|
1888 |
|
|
cumulative_args_t args_so_far;
|
1889 |
|
|
int store_args_on_stack = (iq2000_can_use_return_insn ());
|
1890 |
|
|
|
1891 |
|
|
/* If struct value address is treated as the first argument. */
|
1892 |
|
|
if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
|
1893 |
|
|
&& !cfun->returns_pcc_struct
|
1894 |
|
|
&& targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
|
1895 |
|
|
{
|
1896 |
|
|
tree type = build_pointer_type (fntype);
|
1897 |
|
|
tree function_result_decl = build_decl (BUILTINS_LOCATION,
|
1898 |
|
|
PARM_DECL, NULL_TREE, type);
|
1899 |
|
|
|
1900 |
|
|
DECL_ARG_TYPE (function_result_decl) = type;
|
1901 |
|
|
DECL_CHAIN (function_result_decl) = fnargs;
|
1902 |
|
|
fnargs = function_result_decl;
|
1903 |
|
|
}
|
1904 |
|
|
|
1905 |
|
|
/* For arguments passed in registers, find the register number
|
1906 |
|
|
of the first argument in the variable part of the argument list,
|
1907 |
|
|
otherwise GP_ARG_LAST+1. Note also if the last argument is
|
1908 |
|
|
the varargs special argument, and treat it as part of the
|
1909 |
|
|
variable arguments.
|
1910 |
|
|
|
1911 |
|
|
This is only needed if store_args_on_stack is true. */
|
1912 |
|
|
INIT_CUMULATIVE_ARGS (args_so_far_v, fntype, NULL_RTX, 0, 0);
|
1913 |
|
|
args_so_far = pack_cumulative_args (&args_so_far_v);
|
1914 |
|
|
regno = GP_ARG_FIRST;
|
1915 |
|
|
|
1916 |
|
|
for (cur_arg = fnargs; cur_arg != 0; cur_arg = next_arg)
|
1917 |
|
|
{
|
1918 |
|
|
tree passed_type = DECL_ARG_TYPE (cur_arg);
|
1919 |
|
|
enum machine_mode passed_mode = TYPE_MODE (passed_type);
|
1920 |
|
|
rtx entry_parm;
|
1921 |
|
|
|
1922 |
|
|
if (TREE_ADDRESSABLE (passed_type))
|
1923 |
|
|
{
|
1924 |
|
|
passed_type = build_pointer_type (passed_type);
|
1925 |
|
|
passed_mode = Pmode;
|
1926 |
|
|
}
|
1927 |
|
|
|
1928 |
|
|
entry_parm = iq2000_function_arg (args_so_far, passed_mode,
|
1929 |
|
|
passed_type, true);
|
1930 |
|
|
|
1931 |
|
|
iq2000_function_arg_advance (args_so_far, passed_mode,
|
1932 |
|
|
passed_type, true);
|
1933 |
|
|
next_arg = DECL_CHAIN (cur_arg);
|
1934 |
|
|
|
1935 |
|
|
if (entry_parm && store_args_on_stack)
|
1936 |
|
|
{
|
1937 |
|
|
if (next_arg == 0
|
1938 |
|
|
&& DECL_NAME (cur_arg)
|
1939 |
|
|
&& ((0 == strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)),
|
1940 |
|
|
"__builtin_va_alist"))
|
1941 |
|
|
|| (0 == strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)),
|
1942 |
|
|
"va_alist"))))
|
1943 |
|
|
{
|
1944 |
|
|
last_arg_is_vararg_marker = 1;
|
1945 |
|
|
break;
|
1946 |
|
|
}
|
1947 |
|
|
else
|
1948 |
|
|
{
|
1949 |
|
|
int words;
|
1950 |
|
|
|
1951 |
|
|
gcc_assert (GET_CODE (entry_parm) == REG);
|
1952 |
|
|
|
1953 |
|
|
/* Passed in a register, so will get homed automatically. */
|
1954 |
|
|
if (GET_MODE (entry_parm) == BLKmode)
|
1955 |
|
|
words = (int_size_in_bytes (passed_type) + 3) / 4;
|
1956 |
|
|
else
|
1957 |
|
|
words = (GET_MODE_SIZE (GET_MODE (entry_parm)) + 3) / 4;
|
1958 |
|
|
|
1959 |
|
|
regno = REGNO (entry_parm) + words - 1;
|
1960 |
|
|
}
|
1961 |
|
|
}
|
1962 |
|
|
else
|
1963 |
|
|
{
|
1964 |
|
|
regno = GP_ARG_LAST+1;
|
1965 |
|
|
break;
|
1966 |
|
|
}
|
1967 |
|
|
}
|
1968 |
|
|
|
1969 |
|
|
/* In order to pass small structures by value in registers we need to
|
1970 |
|
|
shift the value into the high part of the register.
|
1971 |
|
|
iq2000_unction_arg has encoded a PARALLEL rtx, holding a vector of
|
1972 |
|
|
adjustments to be made as the next_arg_reg variable, so we split up
|
1973 |
|
|
the insns, and emit them separately. */
|
1974 |
|
|
next_arg_reg = iq2000_function_arg (args_so_far, VOIDmode,
|
1975 |
|
|
void_type_node, true);
|
1976 |
|
|
if (next_arg_reg != 0 && GET_CODE (next_arg_reg) == PARALLEL)
|
1977 |
|
|
{
|
1978 |
|
|
rtvec adjust = XVEC (next_arg_reg, 0);
|
1979 |
|
|
int num = GET_NUM_ELEM (adjust);
|
1980 |
|
|
|
1981 |
|
|
for (i = 0; i < num; i++)
|
1982 |
|
|
{
|
1983 |
|
|
rtx pattern;
|
1984 |
|
|
|
1985 |
|
|
pattern = RTVEC_ELT (adjust, i);
|
1986 |
|
|
if (GET_CODE (pattern) != SET
|
1987 |
|
|
|| GET_CODE (SET_SRC (pattern)) != ASHIFT)
|
1988 |
|
|
abort_with_insn (pattern, "Insn is not a shift");
|
1989 |
|
|
PUT_CODE (SET_SRC (pattern), ASHIFTRT);
|
1990 |
|
|
|
1991 |
|
|
emit_insn (pattern);
|
1992 |
|
|
}
|
1993 |
|
|
}
|
1994 |
|
|
|
1995 |
|
|
tsize = compute_frame_size (get_frame_size ());
|
1996 |
|
|
|
1997 |
|
|
/* If this function is a varargs function, store any registers that
|
1998 |
|
|
would normally hold arguments ($4 - $7) on the stack. */
|
1999 |
|
|
if (store_args_on_stack
|
2000 |
|
|
&& (stdarg_p (fntype)
|
2001 |
|
|
|| last_arg_is_vararg_marker))
|
2002 |
|
|
{
|
2003 |
|
|
int offset = (regno - GP_ARG_FIRST) * UNITS_PER_WORD;
|
2004 |
|
|
rtx ptr = stack_pointer_rtx;
|
2005 |
|
|
|
2006 |
|
|
for (; regno <= GP_ARG_LAST; regno++)
|
2007 |
|
|
{
|
2008 |
|
|
if (offset != 0)
|
2009 |
|
|
ptr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
|
2010 |
|
|
emit_move_insn (gen_rtx_MEM (gpr_mode, ptr),
|
2011 |
|
|
gen_rtx_REG (gpr_mode, regno));
|
2012 |
|
|
|
2013 |
|
|
offset += GET_MODE_SIZE (gpr_mode);
|
2014 |
|
|
}
|
2015 |
|
|
}
|
2016 |
|
|
|
2017 |
|
|
if (tsize > 0)
|
2018 |
|
|
{
|
2019 |
|
|
rtx tsize_rtx = GEN_INT (tsize);
|
2020 |
|
|
rtx adjustment_rtx, insn, dwarf_pattern;
|
2021 |
|
|
|
2022 |
|
|
if (tsize > 32767)
|
2023 |
|
|
{
|
2024 |
|
|
adjustment_rtx = gen_rtx_REG (Pmode, IQ2000_TEMP1_REGNUM);
|
2025 |
|
|
emit_move_insn (adjustment_rtx, tsize_rtx);
|
2026 |
|
|
}
|
2027 |
|
|
else
|
2028 |
|
|
adjustment_rtx = tsize_rtx;
|
2029 |
|
|
|
2030 |
|
|
insn = emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
2031 |
|
|
adjustment_rtx));
|
2032 |
|
|
|
2033 |
|
|
dwarf_pattern = gen_rtx_SET (Pmode, stack_pointer_rtx,
|
2034 |
|
|
plus_constant (stack_pointer_rtx, -tsize));
|
2035 |
|
|
|
2036 |
|
|
iq2000_annotate_frame_insn (insn, dwarf_pattern);
|
2037 |
|
|
|
2038 |
|
|
save_restore_insns (1);
|
2039 |
|
|
|
2040 |
|
|
if (frame_pointer_needed)
|
2041 |
|
|
{
|
2042 |
|
|
rtx insn = 0;
|
2043 |
|
|
|
2044 |
|
|
insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
|
2045 |
|
|
stack_pointer_rtx));
|
2046 |
|
|
|
2047 |
|
|
if (insn)
|
2048 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
2049 |
|
|
}
|
2050 |
|
|
}
|
2051 |
|
|
|
2052 |
|
|
emit_insn (gen_blockage ());
|
2053 |
|
|
}
|
2054 |
|
|
|
2055 |
|
|
/* Expand the epilogue into a bunch of separate insns. */
|
2056 |
|
|
|
2057 |
|
|
void
|
2058 |
|
|
iq2000_expand_epilogue (void)
|
2059 |
|
|
{
|
2060 |
|
|
HOST_WIDE_INT tsize = cfun->machine->total_size;
|
2061 |
|
|
rtx tsize_rtx = GEN_INT (tsize);
|
2062 |
|
|
rtx tmp_rtx = (rtx)0;
|
2063 |
|
|
|
2064 |
|
|
if (iq2000_can_use_return_insn ())
|
2065 |
|
|
{
|
2066 |
|
|
emit_jump_insn (gen_return ());
|
2067 |
|
|
return;
|
2068 |
|
|
}
|
2069 |
|
|
|
2070 |
|
|
if (tsize > 32767)
|
2071 |
|
|
{
|
2072 |
|
|
tmp_rtx = gen_rtx_REG (Pmode, IQ2000_TEMP1_REGNUM);
|
2073 |
|
|
emit_move_insn (tmp_rtx, tsize_rtx);
|
2074 |
|
|
tsize_rtx = tmp_rtx;
|
2075 |
|
|
}
|
2076 |
|
|
|
2077 |
|
|
if (tsize > 0)
|
2078 |
|
|
{
|
2079 |
|
|
if (frame_pointer_needed)
|
2080 |
|
|
{
|
2081 |
|
|
emit_insn (gen_blockage ());
|
2082 |
|
|
|
2083 |
|
|
emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx));
|
2084 |
|
|
}
|
2085 |
|
|
|
2086 |
|
|
save_restore_insns (0);
|
2087 |
|
|
|
2088 |
|
|
if (crtl->calls_eh_return)
|
2089 |
|
|
{
|
2090 |
|
|
rtx eh_ofs = EH_RETURN_STACKADJ_RTX;
|
2091 |
|
|
emit_insn (gen_addsi3 (eh_ofs, eh_ofs, tsize_rtx));
|
2092 |
|
|
tsize_rtx = eh_ofs;
|
2093 |
|
|
}
|
2094 |
|
|
|
2095 |
|
|
emit_insn (gen_blockage ());
|
2096 |
|
|
|
2097 |
|
|
if (tsize != 0 || crtl->calls_eh_return)
|
2098 |
|
|
{
|
2099 |
|
|
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
|
2100 |
|
|
tsize_rtx));
|
2101 |
|
|
}
|
2102 |
|
|
}
|
2103 |
|
|
|
2104 |
|
|
if (crtl->calls_eh_return)
|
2105 |
|
|
{
|
2106 |
|
|
/* Perform the additional bump for __throw. */
|
2107 |
|
|
emit_move_insn (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
|
2108 |
|
|
stack_pointer_rtx);
|
2109 |
|
|
emit_use (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM));
|
2110 |
|
|
emit_jump_insn (gen_eh_return_internal ());
|
2111 |
|
|
}
|
2112 |
|
|
else
|
2113 |
|
|
emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
|
2114 |
|
|
GP_REG_FIRST + 31)));
|
2115 |
|
|
}
|
2116 |
|
|
|
2117 |
|
|
void
|
2118 |
|
|
iq2000_expand_eh_return (rtx address)
|
2119 |
|
|
{
|
2120 |
|
|
HOST_WIDE_INT gp_offset = cfun->machine->gp_sp_offset;
|
2121 |
|
|
rtx scratch;
|
2122 |
|
|
|
2123 |
|
|
scratch = plus_constant (stack_pointer_rtx, gp_offset);
|
2124 |
|
|
emit_move_insn (gen_rtx_MEM (GET_MODE (address), scratch), address);
|
2125 |
|
|
}
|
2126 |
|
|
|
2127 |
|
|
/* Return nonzero if this function is known to have a null epilogue.
|
2128 |
|
|
This allows the optimizer to omit jumps to jumps if no stack
|
2129 |
|
|
was created. */
|
2130 |
|
|
|
2131 |
|
|
int
|
2132 |
|
|
iq2000_can_use_return_insn (void)
|
2133 |
|
|
{
|
2134 |
|
|
if (! reload_completed)
|
2135 |
|
|
return 0;
|
2136 |
|
|
|
2137 |
|
|
if (df_regs_ever_live_p (31) || profile_flag)
|
2138 |
|
|
return 0;
|
2139 |
|
|
|
2140 |
|
|
if (cfun->machine->initialized)
|
2141 |
|
|
return cfun->machine->total_size == 0;
|
2142 |
|
|
|
2143 |
|
|
return compute_frame_size (get_frame_size ()) == 0;
|
2144 |
|
|
}
|
2145 |
|
|
|
2146 |
|
|
/* Choose the section to use for the constant rtx expression X that has
|
2147 |
|
|
mode MODE. */
|
2148 |
|
|
|
2149 |
|
|
static section *
|
2150 |
|
|
iq2000_select_rtx_section (enum machine_mode mode, rtx x ATTRIBUTE_UNUSED,
|
2151 |
|
|
unsigned HOST_WIDE_INT align)
|
2152 |
|
|
{
|
2153 |
|
|
/* For embedded applications, always put constants in read-only data,
|
2154 |
|
|
in order to reduce RAM usage. */
|
2155 |
|
|
return mergeable_constant_section (mode, align, 0);
|
2156 |
|
|
}
|
2157 |
|
|
|
2158 |
|
|
/* Choose the section to use for DECL. RELOC is true if its value contains
|
2159 |
|
|
any relocatable expression.
|
2160 |
|
|
|
2161 |
|
|
Some of the logic used here needs to be replicated in
|
2162 |
|
|
ENCODE_SECTION_INFO in iq2000.h so that references to these symbols
|
2163 |
|
|
are done correctly. */
|
2164 |
|
|
|
2165 |
|
|
static section *
|
2166 |
|
|
iq2000_select_section (tree decl, int reloc ATTRIBUTE_UNUSED,
|
2167 |
|
|
unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
|
2168 |
|
|
{
|
2169 |
|
|
if (TARGET_EMBEDDED_DATA)
|
2170 |
|
|
{
|
2171 |
|
|
/* For embedded applications, always put an object in read-only data
|
2172 |
|
|
if possible, in order to reduce RAM usage. */
|
2173 |
|
|
if ((TREE_CODE (decl) == VAR_DECL
|
2174 |
|
|
&& TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl)
|
2175 |
|
|
&& DECL_INITIAL (decl)
|
2176 |
|
|
&& (DECL_INITIAL (decl) == error_mark_node
|
2177 |
|
|
|| TREE_CONSTANT (DECL_INITIAL (decl))))
|
2178 |
|
|
/* Deal with calls from output_constant_def_contents. */
|
2179 |
|
|
|| TREE_CODE (decl) != VAR_DECL)
|
2180 |
|
|
return readonly_data_section;
|
2181 |
|
|
else
|
2182 |
|
|
return data_section;
|
2183 |
|
|
}
|
2184 |
|
|
else
|
2185 |
|
|
{
|
2186 |
|
|
/* For hosted applications, always put an object in small data if
|
2187 |
|
|
possible, as this gives the best performance. */
|
2188 |
|
|
if ((TREE_CODE (decl) == VAR_DECL
|
2189 |
|
|
&& TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl)
|
2190 |
|
|
&& DECL_INITIAL (decl)
|
2191 |
|
|
&& (DECL_INITIAL (decl) == error_mark_node
|
2192 |
|
|
|| TREE_CONSTANT (DECL_INITIAL (decl))))
|
2193 |
|
|
/* Deal with calls from output_constant_def_contents. */
|
2194 |
|
|
|| TREE_CODE (decl) != VAR_DECL)
|
2195 |
|
|
return readonly_data_section;
|
2196 |
|
|
else
|
2197 |
|
|
return data_section;
|
2198 |
|
|
}
|
2199 |
|
|
}
|
2200 |
|
|
/* Return register to use for a function return value with VALTYPE for function
|
2201 |
|
|
FUNC. */
|
2202 |
|
|
|
2203 |
|
|
static rtx
|
2204 |
|
|
iq2000_function_value (const_tree valtype,
|
2205 |
|
|
const_tree fn_decl_or_type,
|
2206 |
|
|
bool outgoing ATTRIBUTE_UNUSED)
|
2207 |
|
|
{
|
2208 |
|
|
int reg = GP_RETURN;
|
2209 |
|
|
enum machine_mode mode = TYPE_MODE (valtype);
|
2210 |
|
|
int unsignedp = TYPE_UNSIGNED (valtype);
|
2211 |
|
|
const_tree func = fn_decl_or_type;
|
2212 |
|
|
|
2213 |
|
|
if (fn_decl_or_type
|
2214 |
|
|
&& !DECL_P (fn_decl_or_type))
|
2215 |
|
|
fn_decl_or_type = NULL;
|
2216 |
|
|
|
2217 |
|
|
/* Since we promote return types, we must promote the mode here too. */
|
2218 |
|
|
mode = promote_function_mode (valtype, mode, &unsignedp, func, 1);
|
2219 |
|
|
|
2220 |
|
|
return gen_rtx_REG (mode, reg);
|
2221 |
|
|
}
|
2222 |
|
|
|
2223 |
|
|
/* Worker function for TARGET_LIBCALL_VALUE. */
|
2224 |
|
|
|
2225 |
|
|
static rtx
|
2226 |
|
|
iq2000_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
|
2227 |
|
|
{
|
2228 |
|
|
return gen_rtx_REG (((GET_MODE_CLASS (mode) != MODE_INT
|
2229 |
|
|
|| GET_MODE_SIZE (mode) >= 4)
|
2230 |
|
|
? mode : SImode),
|
2231 |
|
|
GP_RETURN);
|
2232 |
|
|
}
|
2233 |
|
|
|
2234 |
|
|
/* Worker function for FUNCTION_VALUE_REGNO_P.
|
2235 |
|
|
|
2236 |
|
|
On the IQ2000, R2 and R3 are the only register thus used. */
|
2237 |
|
|
|
2238 |
|
|
bool
|
2239 |
|
|
iq2000_function_value_regno_p (const unsigned int regno)
|
2240 |
|
|
{
|
2241 |
|
|
return (regno == GP_RETURN);
|
2242 |
|
|
}
|
2243 |
|
|
|
2244 |
|
|
|
2245 |
|
|
/* Return true when an argument must be passed by reference. */
|
2246 |
|
|
|
2247 |
|
|
static bool
|
2248 |
|
|
iq2000_pass_by_reference (cumulative_args_t cum_v, enum machine_mode mode,
|
2249 |
|
|
const_tree type, bool named ATTRIBUTE_UNUSED)
|
2250 |
|
|
{
|
2251 |
|
|
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
2252 |
|
|
int size;
|
2253 |
|
|
|
2254 |
|
|
/* We must pass by reference if we would be both passing in registers
|
2255 |
|
|
and the stack. This is because any subsequent partial arg would be
|
2256 |
|
|
handled incorrectly in this case. */
|
2257 |
|
|
if (cum && targetm.calls.must_pass_in_stack (mode, type))
|
2258 |
|
|
{
|
2259 |
|
|
/* Don't pass the actual CUM to FUNCTION_ARG, because we would
|
2260 |
|
|
get double copies of any offsets generated for small structs
|
2261 |
|
|
passed in registers. */
|
2262 |
|
|
CUMULATIVE_ARGS temp;
|
2263 |
|
|
|
2264 |
|
|
temp = *cum;
|
2265 |
|
|
if (iq2000_function_arg (pack_cumulative_args (&temp), mode, type, named)
|
2266 |
|
|
!= 0)
|
2267 |
|
|
return 1;
|
2268 |
|
|
}
|
2269 |
|
|
|
2270 |
|
|
if (type == NULL_TREE || mode == DImode || mode == DFmode)
|
2271 |
|
|
return 0;
|
2272 |
|
|
|
2273 |
|
|
size = int_size_in_bytes (type);
|
2274 |
|
|
return size == -1 || size > UNITS_PER_WORD;
|
2275 |
|
|
}
|
2276 |
|
|
|
2277 |
|
|
/* Return the length of INSN. LENGTH is the initial length computed by
|
2278 |
|
|
attributes in the machine-description file. */
|
2279 |
|
|
|
2280 |
|
|
int
|
2281 |
|
|
iq2000_adjust_insn_length (rtx insn, int length)
|
2282 |
|
|
{
|
2283 |
|
|
/* A unconditional jump has an unfilled delay slot if it is not part
|
2284 |
|
|
of a sequence. A conditional jump normally has a delay slot. */
|
2285 |
|
|
if (simplejump_p (insn)
|
2286 |
|
|
|| ( (GET_CODE (insn) == JUMP_INSN
|
2287 |
|
|
|| GET_CODE (insn) == CALL_INSN)))
|
2288 |
|
|
length += 4;
|
2289 |
|
|
|
2290 |
|
|
return length;
|
2291 |
|
|
}
|
2292 |
|
|
|
2293 |
|
|
/* Output assembly instructions to perform a conditional branch.
|
2294 |
|
|
|
2295 |
|
|
INSN is the branch instruction. OPERANDS[0] is the condition.
|
2296 |
|
|
OPERANDS[1] is the target of the branch. OPERANDS[2] is the target
|
2297 |
|
|
of the first operand to the condition. If TWO_OPERANDS_P is
|
2298 |
|
|
nonzero the comparison takes two operands; OPERANDS[3] will be the
|
2299 |
|
|
second operand.
|
2300 |
|
|
|
2301 |
|
|
If INVERTED_P is nonzero we are to branch if the condition does
|
2302 |
|
|
not hold. If FLOAT_P is nonzero this is a floating-point comparison.
|
2303 |
|
|
|
2304 |
|
|
LENGTH is the length (in bytes) of the sequence we are to generate.
|
2305 |
|
|
That tells us whether to generate a simple conditional branch, or a
|
2306 |
|
|
reversed conditional branch around a `jr' instruction. */
|
2307 |
|
|
|
2308 |
|
|
char *
|
2309 |
|
|
iq2000_output_conditional_branch (rtx insn, rtx * operands, int two_operands_p,
|
2310 |
|
|
int float_p, int inverted_p, int length)
|
2311 |
|
|
{
|
2312 |
|
|
static char buffer[200];
|
2313 |
|
|
/* The kind of comparison we are doing. */
|
2314 |
|
|
enum rtx_code code = GET_CODE (operands[0]);
|
2315 |
|
|
/* Nonzero if the opcode for the comparison needs a `z' indicating
|
2316 |
|
|
that it is a comparison against zero. */
|
2317 |
|
|
int need_z_p;
|
2318 |
|
|
/* A string to use in the assembly output to represent the first
|
2319 |
|
|
operand. */
|
2320 |
|
|
const char *op1 = "%z2";
|
2321 |
|
|
/* A string to use in the assembly output to represent the second
|
2322 |
|
|
operand. Use the hard-wired zero register if there's no second
|
2323 |
|
|
operand. */
|
2324 |
|
|
const char *op2 = (two_operands_p ? ",%z3" : ",%.");
|
2325 |
|
|
/* The operand-printing string for the comparison. */
|
2326 |
|
|
const char *comp = (float_p ? "%F0" : "%C0");
|
2327 |
|
|
/* The operand-printing string for the inverted comparison. */
|
2328 |
|
|
const char *inverted_comp = (float_p ? "%W0" : "%N0");
|
2329 |
|
|
|
2330 |
|
|
/* Likely variants of each branch instruction annul the instruction
|
2331 |
|
|
in the delay slot if the branch is not taken. */
|
2332 |
|
|
iq2000_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
|
2333 |
|
|
|
2334 |
|
|
if (!two_operands_p)
|
2335 |
|
|
{
|
2336 |
|
|
/* To compute whether than A > B, for example, we normally
|
2337 |
|
|
subtract B from A and then look at the sign bit. But, if we
|
2338 |
|
|
are doing an unsigned comparison, and B is zero, we don't
|
2339 |
|
|
have to do the subtraction. Instead, we can just check to
|
2340 |
|
|
see if A is nonzero. Thus, we change the CODE here to
|
2341 |
|
|
reflect the simpler comparison operation. */
|
2342 |
|
|
switch (code)
|
2343 |
|
|
{
|
2344 |
|
|
case GTU:
|
2345 |
|
|
code = NE;
|
2346 |
|
|
break;
|
2347 |
|
|
|
2348 |
|
|
case LEU:
|
2349 |
|
|
code = EQ;
|
2350 |
|
|
break;
|
2351 |
|
|
|
2352 |
|
|
case GEU:
|
2353 |
|
|
/* A condition which will always be true. */
|
2354 |
|
|
code = EQ;
|
2355 |
|
|
op1 = "%.";
|
2356 |
|
|
break;
|
2357 |
|
|
|
2358 |
|
|
case LTU:
|
2359 |
|
|
/* A condition which will always be false. */
|
2360 |
|
|
code = NE;
|
2361 |
|
|
op1 = "%.";
|
2362 |
|
|
break;
|
2363 |
|
|
|
2364 |
|
|
default:
|
2365 |
|
|
/* Not a special case. */
|
2366 |
|
|
break;
|
2367 |
|
|
}
|
2368 |
|
|
}
|
2369 |
|
|
|
2370 |
|
|
/* Relative comparisons are always done against zero. But
|
2371 |
|
|
equality comparisons are done between two operands, and therefore
|
2372 |
|
|
do not require a `z' in the assembly language output. */
|
2373 |
|
|
need_z_p = (!float_p && code != EQ && code != NE);
|
2374 |
|
|
/* For comparisons against zero, the zero is not provided
|
2375 |
|
|
explicitly. */
|
2376 |
|
|
if (need_z_p)
|
2377 |
|
|
op2 = "";
|
2378 |
|
|
|
2379 |
|
|
/* Begin by terminating the buffer. That way we can always use
|
2380 |
|
|
strcat to add to it. */
|
2381 |
|
|
buffer[0] = '\0';
|
2382 |
|
|
|
2383 |
|
|
switch (length)
|
2384 |
|
|
{
|
2385 |
|
|
case 4:
|
2386 |
|
|
case 8:
|
2387 |
|
|
/* Just a simple conditional branch. */
|
2388 |
|
|
if (float_p)
|
2389 |
|
|
sprintf (buffer, "b%s%%?\t%%Z2%%1",
|
2390 |
|
|
inverted_p ? inverted_comp : comp);
|
2391 |
|
|
else
|
2392 |
|
|
sprintf (buffer, "b%s%s%%?\t%s%s,%%1",
|
2393 |
|
|
inverted_p ? inverted_comp : comp,
|
2394 |
|
|
need_z_p ? "z" : "",
|
2395 |
|
|
op1,
|
2396 |
|
|
op2);
|
2397 |
|
|
return buffer;
|
2398 |
|
|
|
2399 |
|
|
case 12:
|
2400 |
|
|
case 16:
|
2401 |
|
|
{
|
2402 |
|
|
/* Generate a reversed conditional branch around ` j'
|
2403 |
|
|
instruction:
|
2404 |
|
|
|
2405 |
|
|
.set noreorder
|
2406 |
|
|
.set nomacro
|
2407 |
|
|
bc l
|
2408 |
|
|
nop
|
2409 |
|
|
j target
|
2410 |
|
|
.set macro
|
2411 |
|
|
.set reorder
|
2412 |
|
|
l:
|
2413 |
|
|
|
2414 |
|
|
Because we have to jump four bytes *past* the following
|
2415 |
|
|
instruction if this branch was annulled, we can't just use
|
2416 |
|
|
a label, as in the picture above; there's no way to put the
|
2417 |
|
|
label after the next instruction, as the assembler does not
|
2418 |
|
|
accept `.L+4' as the target of a branch. (We can't just
|
2419 |
|
|
wait until the next instruction is output; it might be a
|
2420 |
|
|
macro and take up more than four bytes. Once again, we see
|
2421 |
|
|
why we want to eliminate macros.)
|
2422 |
|
|
|
2423 |
|
|
If the branch is annulled, we jump four more bytes that we
|
2424 |
|
|
would otherwise; that way we skip the annulled instruction
|
2425 |
|
|
in the delay slot. */
|
2426 |
|
|
|
2427 |
|
|
const char *target
|
2428 |
|
|
= ((iq2000_branch_likely || length == 16) ? ".+16" : ".+12");
|
2429 |
|
|
char *c;
|
2430 |
|
|
|
2431 |
|
|
c = strchr (buffer, '\0');
|
2432 |
|
|
/* Generate the reversed comparison. This takes four
|
2433 |
|
|
bytes. */
|
2434 |
|
|
if (float_p)
|
2435 |
|
|
sprintf (c, "b%s\t%%Z2%s",
|
2436 |
|
|
inverted_p ? comp : inverted_comp,
|
2437 |
|
|
target);
|
2438 |
|
|
else
|
2439 |
|
|
sprintf (c, "b%s%s\t%s%s,%s",
|
2440 |
|
|
inverted_p ? comp : inverted_comp,
|
2441 |
|
|
need_z_p ? "z" : "",
|
2442 |
|
|
op1,
|
2443 |
|
|
op2,
|
2444 |
|
|
target);
|
2445 |
|
|
strcat (c, "\n\tnop\n\tj\t%1");
|
2446 |
|
|
if (length == 16)
|
2447 |
|
|
/* The delay slot was unfilled. Since we're inside
|
2448 |
|
|
.noreorder, the assembler will not fill in the NOP for
|
2449 |
|
|
us, so we must do it ourselves. */
|
2450 |
|
|
strcat (buffer, "\n\tnop");
|
2451 |
|
|
return buffer;
|
2452 |
|
|
}
|
2453 |
|
|
|
2454 |
|
|
default:
|
2455 |
|
|
gcc_unreachable ();
|
2456 |
|
|
}
|
2457 |
|
|
|
2458 |
|
|
/* NOTREACHED */
|
2459 |
|
|
return 0;
|
2460 |
|
|
}
|
2461 |
|
|
|
2462 |
|
|
#define def_builtin(NAME, TYPE, CODE) \
|
2463 |
|
|
add_builtin_function ((NAME), (TYPE), (CODE), BUILT_IN_MD, \
|
2464 |
|
|
NULL, NULL_TREE)
|
2465 |
|
|
|
2466 |
|
|
static void
|
2467 |
|
|
iq2000_init_builtins (void)
|
2468 |
|
|
{
|
2469 |
|
|
tree void_ftype, void_ftype_int, void_ftype_int_int;
|
2470 |
|
|
tree void_ftype_int_int_int;
|
2471 |
|
|
tree int_ftype_int, int_ftype_int_int, int_ftype_int_int_int;
|
2472 |
|
|
tree int_ftype_int_int_int_int;
|
2473 |
|
|
|
2474 |
|
|
/* func () */
|
2475 |
|
|
void_ftype
|
2476 |
|
|
= build_function_type_list (void_type_node, NULL_TREE);
|
2477 |
|
|
|
2478 |
|
|
/* func (int) */
|
2479 |
|
|
void_ftype_int
|
2480 |
|
|
= build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
|
2481 |
|
|
|
2482 |
|
|
/* void func (int, int) */
|
2483 |
|
|
void_ftype_int_int
|
2484 |
|
|
= build_function_type_list (void_type_node,
|
2485 |
|
|
integer_type_node,
|
2486 |
|
|
integer_type_node,
|
2487 |
|
|
NULL_TREE);
|
2488 |
|
|
|
2489 |
|
|
/* int func (int) */
|
2490 |
|
|
int_ftype_int
|
2491 |
|
|
= build_function_type_list (integer_type_node,
|
2492 |
|
|
integer_type_node, NULL_TREE);
|
2493 |
|
|
|
2494 |
|
|
/* int func (int, int) */
|
2495 |
|
|
int_ftype_int_int
|
2496 |
|
|
= build_function_type_list (integer_type_node,
|
2497 |
|
|
integer_type_node,
|
2498 |
|
|
integer_type_node,
|
2499 |
|
|
NULL_TREE);
|
2500 |
|
|
|
2501 |
|
|
/* void func (int, int, int) */
|
2502 |
|
|
void_ftype_int_int_int
|
2503 |
|
|
= build_function_type_list (void_type_node,
|
2504 |
|
|
integer_type_node,
|
2505 |
|
|
integer_type_node,
|
2506 |
|
|
integer_type_node,
|
2507 |
|
|
NULL_TREE);
|
2508 |
|
|
|
2509 |
|
|
/* int func (int, int, int) */
|
2510 |
|
|
int_ftype_int_int_int
|
2511 |
|
|
= build_function_type_list (integer_type_node,
|
2512 |
|
|
integer_type_node,
|
2513 |
|
|
integer_type_node,
|
2514 |
|
|
integer_type_node,
|
2515 |
|
|
NULL_TREE);
|
2516 |
|
|
|
2517 |
|
|
/* int func (int, int, int, int) */
|
2518 |
|
|
int_ftype_int_int_int_int
|
2519 |
|
|
= build_function_type_list (integer_type_node,
|
2520 |
|
|
integer_type_node,
|
2521 |
|
|
integer_type_node,
|
2522 |
|
|
integer_type_node,
|
2523 |
|
|
integer_type_node,
|
2524 |
|
|
NULL_TREE);
|
2525 |
|
|
|
2526 |
|
|
def_builtin ("__builtin_ado16", int_ftype_int_int, IQ2000_BUILTIN_ADO16);
|
2527 |
|
|
def_builtin ("__builtin_ram", int_ftype_int_int_int_int, IQ2000_BUILTIN_RAM);
|
2528 |
|
|
def_builtin ("__builtin_chkhdr", void_ftype_int_int, IQ2000_BUILTIN_CHKHDR);
|
2529 |
|
|
def_builtin ("__builtin_pkrl", void_ftype_int_int, IQ2000_BUILTIN_PKRL);
|
2530 |
|
|
def_builtin ("__builtin_cfc0", int_ftype_int, IQ2000_BUILTIN_CFC0);
|
2531 |
|
|
def_builtin ("__builtin_cfc1", int_ftype_int, IQ2000_BUILTIN_CFC1);
|
2532 |
|
|
def_builtin ("__builtin_cfc2", int_ftype_int, IQ2000_BUILTIN_CFC2);
|
2533 |
|
|
def_builtin ("__builtin_cfc3", int_ftype_int, IQ2000_BUILTIN_CFC3);
|
2534 |
|
|
def_builtin ("__builtin_ctc0", void_ftype_int_int, IQ2000_BUILTIN_CTC0);
|
2535 |
|
|
def_builtin ("__builtin_ctc1", void_ftype_int_int, IQ2000_BUILTIN_CTC1);
|
2536 |
|
|
def_builtin ("__builtin_ctc2", void_ftype_int_int, IQ2000_BUILTIN_CTC2);
|
2537 |
|
|
def_builtin ("__builtin_ctc3", void_ftype_int_int, IQ2000_BUILTIN_CTC3);
|
2538 |
|
|
def_builtin ("__builtin_mfc0", int_ftype_int, IQ2000_BUILTIN_MFC0);
|
2539 |
|
|
def_builtin ("__builtin_mfc1", int_ftype_int, IQ2000_BUILTIN_MFC1);
|
2540 |
|
|
def_builtin ("__builtin_mfc2", int_ftype_int, IQ2000_BUILTIN_MFC2);
|
2541 |
|
|
def_builtin ("__builtin_mfc3", int_ftype_int, IQ2000_BUILTIN_MFC3);
|
2542 |
|
|
def_builtin ("__builtin_mtc0", void_ftype_int_int, IQ2000_BUILTIN_MTC0);
|
2543 |
|
|
def_builtin ("__builtin_mtc1", void_ftype_int_int, IQ2000_BUILTIN_MTC1);
|
2544 |
|
|
def_builtin ("__builtin_mtc2", void_ftype_int_int, IQ2000_BUILTIN_MTC2);
|
2545 |
|
|
def_builtin ("__builtin_mtc3", void_ftype_int_int, IQ2000_BUILTIN_MTC3);
|
2546 |
|
|
def_builtin ("__builtin_lur", void_ftype_int_int, IQ2000_BUILTIN_LUR);
|
2547 |
|
|
def_builtin ("__builtin_rb", void_ftype_int_int, IQ2000_BUILTIN_RB);
|
2548 |
|
|
def_builtin ("__builtin_rx", void_ftype_int_int, IQ2000_BUILTIN_RX);
|
2549 |
|
|
def_builtin ("__builtin_srrd", void_ftype_int, IQ2000_BUILTIN_SRRD);
|
2550 |
|
|
def_builtin ("__builtin_srwr", void_ftype_int_int, IQ2000_BUILTIN_SRWR);
|
2551 |
|
|
def_builtin ("__builtin_wb", void_ftype_int_int, IQ2000_BUILTIN_WB);
|
2552 |
|
|
def_builtin ("__builtin_wx", void_ftype_int_int, IQ2000_BUILTIN_WX);
|
2553 |
|
|
def_builtin ("__builtin_luc32l", void_ftype_int_int, IQ2000_BUILTIN_LUC32L);
|
2554 |
|
|
def_builtin ("__builtin_luc64", void_ftype_int_int, IQ2000_BUILTIN_LUC64);
|
2555 |
|
|
def_builtin ("__builtin_luc64l", void_ftype_int_int, IQ2000_BUILTIN_LUC64L);
|
2556 |
|
|
def_builtin ("__builtin_luk", void_ftype_int_int, IQ2000_BUILTIN_LUK);
|
2557 |
|
|
def_builtin ("__builtin_lulck", void_ftype_int, IQ2000_BUILTIN_LULCK);
|
2558 |
|
|
def_builtin ("__builtin_lum32", void_ftype_int_int, IQ2000_BUILTIN_LUM32);
|
2559 |
|
|
def_builtin ("__builtin_lum32l", void_ftype_int_int, IQ2000_BUILTIN_LUM32L);
|
2560 |
|
|
def_builtin ("__builtin_lum64", void_ftype_int_int, IQ2000_BUILTIN_LUM64);
|
2561 |
|
|
def_builtin ("__builtin_lum64l", void_ftype_int_int, IQ2000_BUILTIN_LUM64L);
|
2562 |
|
|
def_builtin ("__builtin_lurl", void_ftype_int_int, IQ2000_BUILTIN_LURL);
|
2563 |
|
|
def_builtin ("__builtin_mrgb", int_ftype_int_int_int, IQ2000_BUILTIN_MRGB);
|
2564 |
|
|
def_builtin ("__builtin_srrdl", void_ftype_int, IQ2000_BUILTIN_SRRDL);
|
2565 |
|
|
def_builtin ("__builtin_srulck", void_ftype_int, IQ2000_BUILTIN_SRULCK);
|
2566 |
|
|
def_builtin ("__builtin_srwru", void_ftype_int_int, IQ2000_BUILTIN_SRWRU);
|
2567 |
|
|
def_builtin ("__builtin_trapqfl", void_ftype, IQ2000_BUILTIN_TRAPQFL);
|
2568 |
|
|
def_builtin ("__builtin_trapqne", void_ftype, IQ2000_BUILTIN_TRAPQNE);
|
2569 |
|
|
def_builtin ("__builtin_traprel", void_ftype_int, IQ2000_BUILTIN_TRAPREL);
|
2570 |
|
|
def_builtin ("__builtin_wbu", void_ftype_int_int_int, IQ2000_BUILTIN_WBU);
|
2571 |
|
|
def_builtin ("__builtin_syscall", void_ftype, IQ2000_BUILTIN_SYSCALL);
|
2572 |
|
|
}
|
2573 |
|
|
|
2574 |
|
|
/* Builtin for ICODE having ARGCOUNT args in EXP where each arg
|
2575 |
|
|
has an rtx CODE. */
|
2576 |
|
|
|
2577 |
|
|
static rtx
|
2578 |
|
|
expand_one_builtin (enum insn_code icode, rtx target, tree exp,
|
2579 |
|
|
enum rtx_code *code, int argcount)
|
2580 |
|
|
{
|
2581 |
|
|
rtx pat;
|
2582 |
|
|
tree arg [5];
|
2583 |
|
|
rtx op [5];
|
2584 |
|
|
enum machine_mode mode [5];
|
2585 |
|
|
int i;
|
2586 |
|
|
|
2587 |
|
|
mode[0] = insn_data[icode].operand[0].mode;
|
2588 |
|
|
for (i = 0; i < argcount; i++)
|
2589 |
|
|
{
|
2590 |
|
|
arg[i] = CALL_EXPR_ARG (exp, i);
|
2591 |
|
|
op[i] = expand_normal (arg[i]);
|
2592 |
|
|
mode[i] = insn_data[icode].operand[i].mode;
|
2593 |
|
|
if (code[i] == CONST_INT && GET_CODE (op[i]) != CONST_INT)
|
2594 |
|
|
error ("argument %qd is not a constant", i + 1);
|
2595 |
|
|
if (code[i] == REG
|
2596 |
|
|
&& ! (*insn_data[icode].operand[i].predicate) (op[i], mode[i]))
|
2597 |
|
|
op[i] = copy_to_mode_reg (mode[i], op[i]);
|
2598 |
|
|
}
|
2599 |
|
|
|
2600 |
|
|
if (insn_data[icode].operand[0].constraint[0] == '=')
|
2601 |
|
|
{
|
2602 |
|
|
if (target == 0
|
2603 |
|
|
|| GET_MODE (target) != mode[0]
|
2604 |
|
|
|| ! (*insn_data[icode].operand[0].predicate) (target, mode[0]))
|
2605 |
|
|
target = gen_reg_rtx (mode[0]);
|
2606 |
|
|
}
|
2607 |
|
|
else
|
2608 |
|
|
target = 0;
|
2609 |
|
|
|
2610 |
|
|
switch (argcount)
|
2611 |
|
|
{
|
2612 |
|
|
case 0:
|
2613 |
|
|
pat = GEN_FCN (icode) (target);
|
2614 |
|
|
case 1:
|
2615 |
|
|
if (target)
|
2616 |
|
|
pat = GEN_FCN (icode) (target, op[0]);
|
2617 |
|
|
else
|
2618 |
|
|
pat = GEN_FCN (icode) (op[0]);
|
2619 |
|
|
break;
|
2620 |
|
|
case 2:
|
2621 |
|
|
if (target)
|
2622 |
|
|
pat = GEN_FCN (icode) (target, op[0], op[1]);
|
2623 |
|
|
else
|
2624 |
|
|
pat = GEN_FCN (icode) (op[0], op[1]);
|
2625 |
|
|
break;
|
2626 |
|
|
case 3:
|
2627 |
|
|
if (target)
|
2628 |
|
|
pat = GEN_FCN (icode) (target, op[0], op[1], op[2]);
|
2629 |
|
|
else
|
2630 |
|
|
pat = GEN_FCN (icode) (op[0], op[1], op[2]);
|
2631 |
|
|
break;
|
2632 |
|
|
case 4:
|
2633 |
|
|
if (target)
|
2634 |
|
|
pat = GEN_FCN (icode) (target, op[0], op[1], op[2], op[3]);
|
2635 |
|
|
else
|
2636 |
|
|
pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
|
2637 |
|
|
break;
|
2638 |
|
|
default:
|
2639 |
|
|
gcc_unreachable ();
|
2640 |
|
|
}
|
2641 |
|
|
|
2642 |
|
|
if (! pat)
|
2643 |
|
|
return 0;
|
2644 |
|
|
emit_insn (pat);
|
2645 |
|
|
return target;
|
2646 |
|
|
}
|
2647 |
|
|
|
2648 |
|
|
/* Expand an expression EXP that calls a built-in function,
|
2649 |
|
|
with result going to TARGET if that's convenient
|
2650 |
|
|
(and in mode MODE if that's convenient).
|
2651 |
|
|
SUBTARGET may be used as the target for computing one of EXP's operands.
|
2652 |
|
|
IGNORE is nonzero if the value is to be ignored. */
|
2653 |
|
|
|
2654 |
|
|
static rtx
|
2655 |
|
|
iq2000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
|
2656 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
2657 |
|
|
int ignore ATTRIBUTE_UNUSED)
|
2658 |
|
|
{
|
2659 |
|
|
tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
|
2660 |
|
|
int fcode = DECL_FUNCTION_CODE (fndecl);
|
2661 |
|
|
enum rtx_code code [5];
|
2662 |
|
|
|
2663 |
|
|
code[0] = REG;
|
2664 |
|
|
code[1] = REG;
|
2665 |
|
|
code[2] = REG;
|
2666 |
|
|
code[3] = REG;
|
2667 |
|
|
code[4] = REG;
|
2668 |
|
|
switch (fcode)
|
2669 |
|
|
{
|
2670 |
|
|
default:
|
2671 |
|
|
break;
|
2672 |
|
|
|
2673 |
|
|
case IQ2000_BUILTIN_ADO16:
|
2674 |
|
|
return expand_one_builtin (CODE_FOR_ado16, target, exp, code, 2);
|
2675 |
|
|
|
2676 |
|
|
case IQ2000_BUILTIN_RAM:
|
2677 |
|
|
code[1] = CONST_INT;
|
2678 |
|
|
code[2] = CONST_INT;
|
2679 |
|
|
code[3] = CONST_INT;
|
2680 |
|
|
return expand_one_builtin (CODE_FOR_ram, target, exp, code, 4);
|
2681 |
|
|
|
2682 |
|
|
case IQ2000_BUILTIN_CHKHDR:
|
2683 |
|
|
return expand_one_builtin (CODE_FOR_chkhdr, target, exp, code, 2);
|
2684 |
|
|
|
2685 |
|
|
case IQ2000_BUILTIN_PKRL:
|
2686 |
|
|
return expand_one_builtin (CODE_FOR_pkrl, target, exp, code, 2);
|
2687 |
|
|
|
2688 |
|
|
case IQ2000_BUILTIN_CFC0:
|
2689 |
|
|
code[0] = CONST_INT;
|
2690 |
|
|
return expand_one_builtin (CODE_FOR_cfc0, target, exp, code, 1);
|
2691 |
|
|
|
2692 |
|
|
case IQ2000_BUILTIN_CFC1:
|
2693 |
|
|
code[0] = CONST_INT;
|
2694 |
|
|
return expand_one_builtin (CODE_FOR_cfc1, target, exp, code, 1);
|
2695 |
|
|
|
2696 |
|
|
case IQ2000_BUILTIN_CFC2:
|
2697 |
|
|
code[0] = CONST_INT;
|
2698 |
|
|
return expand_one_builtin (CODE_FOR_cfc2, target, exp, code, 1);
|
2699 |
|
|
|
2700 |
|
|
case IQ2000_BUILTIN_CFC3:
|
2701 |
|
|
code[0] = CONST_INT;
|
2702 |
|
|
return expand_one_builtin (CODE_FOR_cfc3, target, exp, code, 1);
|
2703 |
|
|
|
2704 |
|
|
case IQ2000_BUILTIN_CTC0:
|
2705 |
|
|
code[1] = CONST_INT;
|
2706 |
|
|
return expand_one_builtin (CODE_FOR_ctc0, target, exp, code, 2);
|
2707 |
|
|
|
2708 |
|
|
case IQ2000_BUILTIN_CTC1:
|
2709 |
|
|
code[1] = CONST_INT;
|
2710 |
|
|
return expand_one_builtin (CODE_FOR_ctc1, target, exp, code, 2);
|
2711 |
|
|
|
2712 |
|
|
case IQ2000_BUILTIN_CTC2:
|
2713 |
|
|
code[1] = CONST_INT;
|
2714 |
|
|
return expand_one_builtin (CODE_FOR_ctc2, target, exp, code, 2);
|
2715 |
|
|
|
2716 |
|
|
case IQ2000_BUILTIN_CTC3:
|
2717 |
|
|
code[1] = CONST_INT;
|
2718 |
|
|
return expand_one_builtin (CODE_FOR_ctc3, target, exp, code, 2);
|
2719 |
|
|
|
2720 |
|
|
case IQ2000_BUILTIN_MFC0:
|
2721 |
|
|
code[0] = CONST_INT;
|
2722 |
|
|
return expand_one_builtin (CODE_FOR_mfc0, target, exp, code, 1);
|
2723 |
|
|
|
2724 |
|
|
case IQ2000_BUILTIN_MFC1:
|
2725 |
|
|
code[0] = CONST_INT;
|
2726 |
|
|
return expand_one_builtin (CODE_FOR_mfc1, target, exp, code, 1);
|
2727 |
|
|
|
2728 |
|
|
case IQ2000_BUILTIN_MFC2:
|
2729 |
|
|
code[0] = CONST_INT;
|
2730 |
|
|
return expand_one_builtin (CODE_FOR_mfc2, target, exp, code, 1);
|
2731 |
|
|
|
2732 |
|
|
case IQ2000_BUILTIN_MFC3:
|
2733 |
|
|
code[0] = CONST_INT;
|
2734 |
|
|
return expand_one_builtin (CODE_FOR_mfc3, target, exp, code, 1);
|
2735 |
|
|
|
2736 |
|
|
case IQ2000_BUILTIN_MTC0:
|
2737 |
|
|
code[1] = CONST_INT;
|
2738 |
|
|
return expand_one_builtin (CODE_FOR_mtc0, target, exp, code, 2);
|
2739 |
|
|
|
2740 |
|
|
case IQ2000_BUILTIN_MTC1:
|
2741 |
|
|
code[1] = CONST_INT;
|
2742 |
|
|
return expand_one_builtin (CODE_FOR_mtc1, target, exp, code, 2);
|
2743 |
|
|
|
2744 |
|
|
case IQ2000_BUILTIN_MTC2:
|
2745 |
|
|
code[1] = CONST_INT;
|
2746 |
|
|
return expand_one_builtin (CODE_FOR_mtc2, target, exp, code, 2);
|
2747 |
|
|
|
2748 |
|
|
case IQ2000_BUILTIN_MTC3:
|
2749 |
|
|
code[1] = CONST_INT;
|
2750 |
|
|
return expand_one_builtin (CODE_FOR_mtc3, target, exp, code, 2);
|
2751 |
|
|
|
2752 |
|
|
case IQ2000_BUILTIN_LUR:
|
2753 |
|
|
return expand_one_builtin (CODE_FOR_lur, target, exp, code, 2);
|
2754 |
|
|
|
2755 |
|
|
case IQ2000_BUILTIN_RB:
|
2756 |
|
|
return expand_one_builtin (CODE_FOR_rb, target, exp, code, 2);
|
2757 |
|
|
|
2758 |
|
|
case IQ2000_BUILTIN_RX:
|
2759 |
|
|
return expand_one_builtin (CODE_FOR_rx, target, exp, code, 2);
|
2760 |
|
|
|
2761 |
|
|
case IQ2000_BUILTIN_SRRD:
|
2762 |
|
|
return expand_one_builtin (CODE_FOR_srrd, target, exp, code, 1);
|
2763 |
|
|
|
2764 |
|
|
case IQ2000_BUILTIN_SRWR:
|
2765 |
|
|
return expand_one_builtin (CODE_FOR_srwr, target, exp, code, 2);
|
2766 |
|
|
|
2767 |
|
|
case IQ2000_BUILTIN_WB:
|
2768 |
|
|
return expand_one_builtin (CODE_FOR_wb, target, exp, code, 2);
|
2769 |
|
|
|
2770 |
|
|
case IQ2000_BUILTIN_WX:
|
2771 |
|
|
return expand_one_builtin (CODE_FOR_wx, target, exp, code, 2);
|
2772 |
|
|
|
2773 |
|
|
case IQ2000_BUILTIN_LUC32L:
|
2774 |
|
|
return expand_one_builtin (CODE_FOR_luc32l, target, exp, code, 2);
|
2775 |
|
|
|
2776 |
|
|
case IQ2000_BUILTIN_LUC64:
|
2777 |
|
|
return expand_one_builtin (CODE_FOR_luc64, target, exp, code, 2);
|
2778 |
|
|
|
2779 |
|
|
case IQ2000_BUILTIN_LUC64L:
|
2780 |
|
|
return expand_one_builtin (CODE_FOR_luc64l, target, exp, code, 2);
|
2781 |
|
|
|
2782 |
|
|
case IQ2000_BUILTIN_LUK:
|
2783 |
|
|
return expand_one_builtin (CODE_FOR_luk, target, exp, code, 2);
|
2784 |
|
|
|
2785 |
|
|
case IQ2000_BUILTIN_LULCK:
|
2786 |
|
|
return expand_one_builtin (CODE_FOR_lulck, target, exp, code, 1);
|
2787 |
|
|
|
2788 |
|
|
case IQ2000_BUILTIN_LUM32:
|
2789 |
|
|
return expand_one_builtin (CODE_FOR_lum32, target, exp, code, 2);
|
2790 |
|
|
|
2791 |
|
|
case IQ2000_BUILTIN_LUM32L:
|
2792 |
|
|
return expand_one_builtin (CODE_FOR_lum32l, target, exp, code, 2);
|
2793 |
|
|
|
2794 |
|
|
case IQ2000_BUILTIN_LUM64:
|
2795 |
|
|
return expand_one_builtin (CODE_FOR_lum64, target, exp, code, 2);
|
2796 |
|
|
|
2797 |
|
|
case IQ2000_BUILTIN_LUM64L:
|
2798 |
|
|
return expand_one_builtin (CODE_FOR_lum64l, target, exp, code, 2);
|
2799 |
|
|
|
2800 |
|
|
case IQ2000_BUILTIN_LURL:
|
2801 |
|
|
return expand_one_builtin (CODE_FOR_lurl, target, exp, code, 2);
|
2802 |
|
|
|
2803 |
|
|
case IQ2000_BUILTIN_MRGB:
|
2804 |
|
|
code[2] = CONST_INT;
|
2805 |
|
|
return expand_one_builtin (CODE_FOR_mrgb, target, exp, code, 3);
|
2806 |
|
|
|
2807 |
|
|
case IQ2000_BUILTIN_SRRDL:
|
2808 |
|
|
return expand_one_builtin (CODE_FOR_srrdl, target, exp, code, 1);
|
2809 |
|
|
|
2810 |
|
|
case IQ2000_BUILTIN_SRULCK:
|
2811 |
|
|
return expand_one_builtin (CODE_FOR_srulck, target, exp, code, 1);
|
2812 |
|
|
|
2813 |
|
|
case IQ2000_BUILTIN_SRWRU:
|
2814 |
|
|
return expand_one_builtin (CODE_FOR_srwru, target, exp, code, 2);
|
2815 |
|
|
|
2816 |
|
|
case IQ2000_BUILTIN_TRAPQFL:
|
2817 |
|
|
return expand_one_builtin (CODE_FOR_trapqfl, target, exp, code, 0);
|
2818 |
|
|
|
2819 |
|
|
case IQ2000_BUILTIN_TRAPQNE:
|
2820 |
|
|
return expand_one_builtin (CODE_FOR_trapqne, target, exp, code, 0);
|
2821 |
|
|
|
2822 |
|
|
case IQ2000_BUILTIN_TRAPREL:
|
2823 |
|
|
return expand_one_builtin (CODE_FOR_traprel, target, exp, code, 1);
|
2824 |
|
|
|
2825 |
|
|
case IQ2000_BUILTIN_WBU:
|
2826 |
|
|
return expand_one_builtin (CODE_FOR_wbu, target, exp, code, 3);
|
2827 |
|
|
|
2828 |
|
|
case IQ2000_BUILTIN_SYSCALL:
|
2829 |
|
|
return expand_one_builtin (CODE_FOR_syscall, target, exp, code, 0);
|
2830 |
|
|
}
|
2831 |
|
|
|
2832 |
|
|
return NULL_RTX;
|
2833 |
|
|
}
|
2834 |
|
|
|
2835 |
|
|
/* Worker function for TARGET_RETURN_IN_MEMORY. */
|
2836 |
|
|
|
2837 |
|
|
static bool
|
2838 |
|
|
iq2000_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
|
2839 |
|
|
{
|
2840 |
|
|
return ((int_size_in_bytes (type) > (2 * UNITS_PER_WORD))
|
2841 |
|
|
|| (int_size_in_bytes (type) == -1));
|
2842 |
|
|
}
|
2843 |
|
|
|
2844 |
|
|
/* Worker function for TARGET_SETUP_INCOMING_VARARGS. */
|
2845 |
|
|
|
2846 |
|
|
static void
|
2847 |
|
|
iq2000_setup_incoming_varargs (cumulative_args_t cum_v,
|
2848 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED,
|
2849 |
|
|
tree type ATTRIBUTE_UNUSED, int * pretend_size,
|
2850 |
|
|
int no_rtl)
|
2851 |
|
|
{
|
2852 |
|
|
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
2853 |
|
|
unsigned int iq2000_off = ! cum->last_arg_fp;
|
2854 |
|
|
unsigned int iq2000_fp_off = cum->last_arg_fp;
|
2855 |
|
|
|
2856 |
|
|
if ((cum->arg_words < MAX_ARGS_IN_REGISTERS - iq2000_off))
|
2857 |
|
|
{
|
2858 |
|
|
int iq2000_save_gp_regs
|
2859 |
|
|
= MAX_ARGS_IN_REGISTERS - cum->arg_words - iq2000_off;
|
2860 |
|
|
int iq2000_save_fp_regs
|
2861 |
|
|
= (MAX_ARGS_IN_REGISTERS - cum->fp_arg_words - iq2000_fp_off);
|
2862 |
|
|
|
2863 |
|
|
if (iq2000_save_gp_regs < 0)
|
2864 |
|
|
iq2000_save_gp_regs = 0;
|
2865 |
|
|
if (iq2000_save_fp_regs < 0)
|
2866 |
|
|
iq2000_save_fp_regs = 0;
|
2867 |
|
|
|
2868 |
|
|
*pretend_size = ((iq2000_save_gp_regs * UNITS_PER_WORD)
|
2869 |
|
|
+ (iq2000_save_fp_regs * UNITS_PER_FPREG));
|
2870 |
|
|
|
2871 |
|
|
if (! (no_rtl))
|
2872 |
|
|
{
|
2873 |
|
|
if (cum->arg_words < MAX_ARGS_IN_REGISTERS - iq2000_off)
|
2874 |
|
|
{
|
2875 |
|
|
rtx ptr, mem;
|
2876 |
|
|
ptr = plus_constant (virtual_incoming_args_rtx,
|
2877 |
|
|
- (iq2000_save_gp_regs
|
2878 |
|
|
* UNITS_PER_WORD));
|
2879 |
|
|
mem = gen_rtx_MEM (BLKmode, ptr);
|
2880 |
|
|
move_block_from_reg
|
2881 |
|
|
(cum->arg_words + GP_ARG_FIRST + iq2000_off,
|
2882 |
|
|
mem,
|
2883 |
|
|
iq2000_save_gp_regs);
|
2884 |
|
|
}
|
2885 |
|
|
}
|
2886 |
|
|
}
|
2887 |
|
|
}
|
2888 |
|
|
|
2889 |
|
|
/* A C compound statement to output to stdio stream STREAM the
|
2890 |
|
|
assembler syntax for an instruction operand that is a memory
|
2891 |
|
|
reference whose address is ADDR. ADDR is an RTL expression. */
|
2892 |
|
|
|
2893 |
|
|
static void
|
2894 |
|
|
iq2000_print_operand_address (FILE * file, rtx addr)
|
2895 |
|
|
{
|
2896 |
|
|
if (!addr)
|
2897 |
|
|
error ("PRINT_OPERAND_ADDRESS, null pointer");
|
2898 |
|
|
|
2899 |
|
|
else
|
2900 |
|
|
switch (GET_CODE (addr))
|
2901 |
|
|
{
|
2902 |
|
|
case REG:
|
2903 |
|
|
if (REGNO (addr) == ARG_POINTER_REGNUM)
|
2904 |
|
|
abort_with_insn (addr, "Arg pointer not eliminated.");
|
2905 |
|
|
|
2906 |
|
|
fprintf (file, "0(%s)", reg_names [REGNO (addr)]);
|
2907 |
|
|
break;
|
2908 |
|
|
|
2909 |
|
|
case LO_SUM:
|
2910 |
|
|
{
|
2911 |
|
|
rtx arg0 = XEXP (addr, 0);
|
2912 |
|
|
rtx arg1 = XEXP (addr, 1);
|
2913 |
|
|
|
2914 |
|
|
if (GET_CODE (arg0) != REG)
|
2915 |
|
|
abort_with_insn (addr,
|
2916 |
|
|
"PRINT_OPERAND_ADDRESS, LO_SUM with #1 not REG.");
|
2917 |
|
|
|
2918 |
|
|
fprintf (file, "%%lo(");
|
2919 |
|
|
iq2000_print_operand_address (file, arg1);
|
2920 |
|
|
fprintf (file, ")(%s)", reg_names [REGNO (arg0)]);
|
2921 |
|
|
}
|
2922 |
|
|
break;
|
2923 |
|
|
|
2924 |
|
|
case PLUS:
|
2925 |
|
|
{
|
2926 |
|
|
rtx reg = 0;
|
2927 |
|
|
rtx offset = 0;
|
2928 |
|
|
rtx arg0 = XEXP (addr, 0);
|
2929 |
|
|
rtx arg1 = XEXP (addr, 1);
|
2930 |
|
|
|
2931 |
|
|
if (GET_CODE (arg0) == REG)
|
2932 |
|
|
{
|
2933 |
|
|
reg = arg0;
|
2934 |
|
|
offset = arg1;
|
2935 |
|
|
if (GET_CODE (offset) == REG)
|
2936 |
|
|
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, 2 regs");
|
2937 |
|
|
}
|
2938 |
|
|
|
2939 |
|
|
else if (GET_CODE (arg1) == REG)
|
2940 |
|
|
reg = arg1, offset = arg0;
|
2941 |
|
|
else if (CONSTANT_P (arg0) && CONSTANT_P (arg1))
|
2942 |
|
|
{
|
2943 |
|
|
output_addr_const (file, addr);
|
2944 |
|
|
break;
|
2945 |
|
|
}
|
2946 |
|
|
else
|
2947 |
|
|
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, no regs");
|
2948 |
|
|
|
2949 |
|
|
if (! CONSTANT_P (offset))
|
2950 |
|
|
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #2");
|
2951 |
|
|
|
2952 |
|
|
if (REGNO (reg) == ARG_POINTER_REGNUM)
|
2953 |
|
|
abort_with_insn (addr, "Arg pointer not eliminated.");
|
2954 |
|
|
|
2955 |
|
|
output_addr_const (file, offset);
|
2956 |
|
|
fprintf (file, "(%s)", reg_names [REGNO (reg)]);
|
2957 |
|
|
}
|
2958 |
|
|
break;
|
2959 |
|
|
|
2960 |
|
|
case LABEL_REF:
|
2961 |
|
|
case SYMBOL_REF:
|
2962 |
|
|
case CONST_INT:
|
2963 |
|
|
case CONST:
|
2964 |
|
|
output_addr_const (file, addr);
|
2965 |
|
|
if (GET_CODE (addr) == CONST_INT)
|
2966 |
|
|
fprintf (file, "(%s)", reg_names [0]);
|
2967 |
|
|
break;
|
2968 |
|
|
|
2969 |
|
|
default:
|
2970 |
|
|
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #1");
|
2971 |
|
|
break;
|
2972 |
|
|
}
|
2973 |
|
|
}
|
2974 |
|
|
|
2975 |
|
|
/* A C compound statement to output to stdio stream FILE the
|
2976 |
|
|
assembler syntax for an instruction operand OP.
|
2977 |
|
|
|
2978 |
|
|
LETTER is a value that can be used to specify one of several ways
|
2979 |
|
|
of printing the operand. It is used when identical operands
|
2980 |
|
|
must be printed differently depending on the context. LETTER
|
2981 |
|
|
comes from the `%' specification that was used to request
|
2982 |
|
|
printing of the operand. If the specification was just `%DIGIT'
|
2983 |
|
|
then LETTER is 0; if the specification was `%LTR DIGIT' then LETTER
|
2984 |
|
|
is the ASCII code for LTR.
|
2985 |
|
|
|
2986 |
|
|
If OP is a register, this macro should print the register's name.
|
2987 |
|
|
The names can be found in an array `reg_names' whose type is
|
2988 |
|
|
`char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
|
2989 |
|
|
|
2990 |
|
|
When the machine description has a specification `%PUNCT' (a `%'
|
2991 |
|
|
followed by a punctuation character), this macro is called with
|
2992 |
|
|
a null pointer for X and the punctuation character for LETTER.
|
2993 |
|
|
|
2994 |
|
|
The IQ2000 specific codes are:
|
2995 |
|
|
|
2996 |
|
|
'X' X is CONST_INT, prints upper 16 bits in hexadecimal format = "0x%04x",
|
2997 |
|
|
'x' X is CONST_INT, prints lower 16 bits in hexadecimal format = "0x%04x",
|
2998 |
|
|
'd' output integer constant in decimal,
|
2999 |
|
|
'z' if the operand is 0, use $0 instead of normal operand.
|
3000 |
|
|
'D' print second part of double-word register or memory operand.
|
3001 |
|
|
'L' print low-order register of double-word register operand.
|
3002 |
|
|
'M' print high-order register of double-word register operand.
|
3003 |
|
|
'C' print part of opcode for a branch condition.
|
3004 |
|
|
'F' print part of opcode for a floating-point branch condition.
|
3005 |
|
|
'N' print part of opcode for a branch condition, inverted.
|
3006 |
|
|
'W' print part of opcode for a floating-point branch condition, inverted.
|
3007 |
|
|
'A' Print part of opcode for a bit test condition.
|
3008 |
|
|
'P' Print label for a bit test.
|
3009 |
|
|
'p' Print log for a bit test.
|
3010 |
|
|
'B' print 'z' for EQ, 'n' for NE
|
3011 |
|
|
'b' print 'n' for EQ, 'z' for NE
|
3012 |
|
|
'T' print 'f' for EQ, 't' for NE
|
3013 |
|
|
't' print 't' for EQ, 'f' for NE
|
3014 |
|
|
'Z' print register and a comma, but print nothing for $fcc0
|
3015 |
|
|
'?' Print 'l' if we are to use a branch likely instead of normal branch.
|
3016 |
|
|
'@' Print the name of the assembler temporary register (at or $1).
|
3017 |
|
|
'.' Print the name of the register with a hard-wired zero (zero or $0).
|
3018 |
|
|
'$' Print the name of the stack pointer register (sp or $29).
|
3019 |
|
|
'+' Print the name of the gp register (gp or $28). */
|
3020 |
|
|
|
3021 |
|
|
static void
|
3022 |
|
|
iq2000_print_operand (FILE *file, rtx op, int letter)
|
3023 |
|
|
{
|
3024 |
|
|
enum rtx_code code;
|
3025 |
|
|
|
3026 |
|
|
if (iq2000_print_operand_punct_valid_p (letter))
|
3027 |
|
|
{
|
3028 |
|
|
switch (letter)
|
3029 |
|
|
{
|
3030 |
|
|
case '?':
|
3031 |
|
|
if (iq2000_branch_likely)
|
3032 |
|
|
putc ('l', file);
|
3033 |
|
|
break;
|
3034 |
|
|
|
3035 |
|
|
case '@':
|
3036 |
|
|
fputs (reg_names [GP_REG_FIRST + 1], file);
|
3037 |
|
|
break;
|
3038 |
|
|
|
3039 |
|
|
case '.':
|
3040 |
|
|
fputs (reg_names [GP_REG_FIRST + 0], file);
|
3041 |
|
|
break;
|
3042 |
|
|
|
3043 |
|
|
case '$':
|
3044 |
|
|
fputs (reg_names[STACK_POINTER_REGNUM], file);
|
3045 |
|
|
break;
|
3046 |
|
|
|
3047 |
|
|
case '+':
|
3048 |
|
|
fputs (reg_names[GP_REG_FIRST + 28], file);
|
3049 |
|
|
break;
|
3050 |
|
|
|
3051 |
|
|
default:
|
3052 |
|
|
error ("PRINT_OPERAND: Unknown punctuation '%c'", letter);
|
3053 |
|
|
break;
|
3054 |
|
|
}
|
3055 |
|
|
|
3056 |
|
|
return;
|
3057 |
|
|
}
|
3058 |
|
|
|
3059 |
|
|
if (! op)
|
3060 |
|
|
{
|
3061 |
|
|
error ("PRINT_OPERAND null pointer");
|
3062 |
|
|
return;
|
3063 |
|
|
}
|
3064 |
|
|
|
3065 |
|
|
code = GET_CODE (op);
|
3066 |
|
|
|
3067 |
|
|
if (code == SIGN_EXTEND)
|
3068 |
|
|
op = XEXP (op, 0), code = GET_CODE (op);
|
3069 |
|
|
|
3070 |
|
|
if (letter == 'C')
|
3071 |
|
|
switch (code)
|
3072 |
|
|
{
|
3073 |
|
|
case EQ: fputs ("eq", file); break;
|
3074 |
|
|
case NE: fputs ("ne", file); break;
|
3075 |
|
|
case GT: fputs ("gt", file); break;
|
3076 |
|
|
case GE: fputs ("ge", file); break;
|
3077 |
|
|
case LT: fputs ("lt", file); break;
|
3078 |
|
|
case LE: fputs ("le", file); break;
|
3079 |
|
|
case GTU: fputs ("ne", file); break;
|
3080 |
|
|
case GEU: fputs ("geu", file); break;
|
3081 |
|
|
case LTU: fputs ("ltu", file); break;
|
3082 |
|
|
case LEU: fputs ("eq", file); break;
|
3083 |
|
|
default:
|
3084 |
|
|
abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%C");
|
3085 |
|
|
}
|
3086 |
|
|
|
3087 |
|
|
else if (letter == 'N')
|
3088 |
|
|
switch (code)
|
3089 |
|
|
{
|
3090 |
|
|
case EQ: fputs ("ne", file); break;
|
3091 |
|
|
case NE: fputs ("eq", file); break;
|
3092 |
|
|
case GT: fputs ("le", file); break;
|
3093 |
|
|
case GE: fputs ("lt", file); break;
|
3094 |
|
|
case LT: fputs ("ge", file); break;
|
3095 |
|
|
case LE: fputs ("gt", file); break;
|
3096 |
|
|
case GTU: fputs ("leu", file); break;
|
3097 |
|
|
case GEU: fputs ("ltu", file); break;
|
3098 |
|
|
case LTU: fputs ("geu", file); break;
|
3099 |
|
|
case LEU: fputs ("gtu", file); break;
|
3100 |
|
|
default:
|
3101 |
|
|
abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%N");
|
3102 |
|
|
}
|
3103 |
|
|
|
3104 |
|
|
else if (letter == 'F')
|
3105 |
|
|
switch (code)
|
3106 |
|
|
{
|
3107 |
|
|
case EQ: fputs ("c1f", file); break;
|
3108 |
|
|
case NE: fputs ("c1t", file); break;
|
3109 |
|
|
default:
|
3110 |
|
|
abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%F");
|
3111 |
|
|
}
|
3112 |
|
|
|
3113 |
|
|
else if (letter == 'W')
|
3114 |
|
|
switch (code)
|
3115 |
|
|
{
|
3116 |
|
|
case EQ: fputs ("c1t", file); break;
|
3117 |
|
|
case NE: fputs ("c1f", file); break;
|
3118 |
|
|
default:
|
3119 |
|
|
abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%W");
|
3120 |
|
|
}
|
3121 |
|
|
|
3122 |
|
|
else if (letter == 'A')
|
3123 |
|
|
fputs (code == LABEL_REF ? "i" : "in", file);
|
3124 |
|
|
|
3125 |
|
|
else if (letter == 'P')
|
3126 |
|
|
{
|
3127 |
|
|
if (code == LABEL_REF)
|
3128 |
|
|
output_addr_const (file, op);
|
3129 |
|
|
else if (code != PC)
|
3130 |
|
|
output_operand_lossage ("invalid %%P operand");
|
3131 |
|
|
}
|
3132 |
|
|
|
3133 |
|
|
else if (letter == 'p')
|
3134 |
|
|
{
|
3135 |
|
|
int value;
|
3136 |
|
|
if (code != CONST_INT
|
3137 |
|
|
|| (value = exact_log2 (INTVAL (op))) < 0)
|
3138 |
|
|
output_operand_lossage ("invalid %%p value");
|
3139 |
|
|
else
|
3140 |
|
|
fprintf (file, "%d", value);
|
3141 |
|
|
}
|
3142 |
|
|
|
3143 |
|
|
else if (letter == 'Z')
|
3144 |
|
|
{
|
3145 |
|
|
gcc_unreachable ();
|
3146 |
|
|
}
|
3147 |
|
|
|
3148 |
|
|
else if (code == REG || code == SUBREG)
|
3149 |
|
|
{
|
3150 |
|
|
int regnum;
|
3151 |
|
|
|
3152 |
|
|
if (code == REG)
|
3153 |
|
|
regnum = REGNO (op);
|
3154 |
|
|
else
|
3155 |
|
|
regnum = true_regnum (op);
|
3156 |
|
|
|
3157 |
|
|
if ((letter == 'M' && ! WORDS_BIG_ENDIAN)
|
3158 |
|
|
|| (letter == 'L' && WORDS_BIG_ENDIAN)
|
3159 |
|
|
|| letter == 'D')
|
3160 |
|
|
regnum++;
|
3161 |
|
|
|
3162 |
|
|
fprintf (file, "%s", reg_names[regnum]);
|
3163 |
|
|
}
|
3164 |
|
|
|
3165 |
|
|
else if (code == MEM)
|
3166 |
|
|
{
|
3167 |
|
|
if (letter == 'D')
|
3168 |
|
|
output_address (plus_constant (XEXP (op, 0), 4));
|
3169 |
|
|
else
|
3170 |
|
|
output_address (XEXP (op, 0));
|
3171 |
|
|
}
|
3172 |
|
|
|
3173 |
|
|
else if (code == CONST_DOUBLE
|
3174 |
|
|
&& GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT)
|
3175 |
|
|
{
|
3176 |
|
|
char s[60];
|
3177 |
|
|
|
3178 |
|
|
real_to_decimal (s, CONST_DOUBLE_REAL_VALUE (op), sizeof (s), 0, 1);
|
3179 |
|
|
fputs (s, file);
|
3180 |
|
|
}
|
3181 |
|
|
|
3182 |
|
|
else if (letter == 'x' && GET_CODE (op) == CONST_INT)
|
3183 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL(op));
|
3184 |
|
|
|
3185 |
|
|
else if (letter == 'X' && GET_CODE(op) == CONST_INT)
|
3186 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & (INTVAL (op) >> 16));
|
3187 |
|
|
|
3188 |
|
|
else if (letter == 'd' && GET_CODE(op) == CONST_INT)
|
3189 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL(op)));
|
3190 |
|
|
|
3191 |
|
|
else if (letter == 'z' && GET_CODE (op) == CONST_INT && INTVAL (op) == 0)
|
3192 |
|
|
fputs (reg_names[GP_REG_FIRST], file);
|
3193 |
|
|
|
3194 |
|
|
else if (letter == 'd' || letter == 'x' || letter == 'X')
|
3195 |
|
|
output_operand_lossage ("invalid use of %%d, %%x, or %%X");
|
3196 |
|
|
|
3197 |
|
|
else if (letter == 'B')
|
3198 |
|
|
fputs (code == EQ ? "z" : "n", file);
|
3199 |
|
|
else if (letter == 'b')
|
3200 |
|
|
fputs (code == EQ ? "n" : "z", file);
|
3201 |
|
|
else if (letter == 'T')
|
3202 |
|
|
fputs (code == EQ ? "f" : "t", file);
|
3203 |
|
|
else if (letter == 't')
|
3204 |
|
|
fputs (code == EQ ? "t" : "f", file);
|
3205 |
|
|
|
3206 |
|
|
else if (code == CONST && GET_CODE (XEXP (op, 0)) == REG)
|
3207 |
|
|
{
|
3208 |
|
|
iq2000_print_operand (file, XEXP (op, 0), letter);
|
3209 |
|
|
}
|
3210 |
|
|
|
3211 |
|
|
else
|
3212 |
|
|
output_addr_const (file, op);
|
3213 |
|
|
}
|
3214 |
|
|
|
3215 |
|
|
static bool
|
3216 |
|
|
iq2000_print_operand_punct_valid_p (unsigned char code)
|
3217 |
|
|
{
|
3218 |
|
|
return iq2000_print_operand_punct[code];
|
3219 |
|
|
}
|
3220 |
|
|
|
3221 |
|
|
/* For the IQ2000, transform:
|
3222 |
|
|
|
3223 |
|
|
memory(X + <large int>)
|
3224 |
|
|
into:
|
3225 |
|
|
Y = <large int> & ~0x7fff;
|
3226 |
|
|
Z = X + Y
|
3227 |
|
|
memory (Z + (<large int> & 0x7fff));
|
3228 |
|
|
*/
|
3229 |
|
|
|
3230 |
|
|
rtx
|
3231 |
|
|
iq2000_legitimize_address (rtx xinsn, rtx old_x ATTRIBUTE_UNUSED,
|
3232 |
|
|
enum machine_mode mode)
|
3233 |
|
|
{
|
3234 |
|
|
if (TARGET_DEBUG_B_MODE)
|
3235 |
|
|
{
|
3236 |
|
|
GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n");
|
3237 |
|
|
GO_DEBUG_RTX (xinsn);
|
3238 |
|
|
}
|
3239 |
|
|
|
3240 |
|
|
if (iq2000_check_split (xinsn, mode))
|
3241 |
|
|
{
|
3242 |
|
|
return gen_rtx_LO_SUM (Pmode,
|
3243 |
|
|
copy_to_mode_reg (Pmode,
|
3244 |
|
|
gen_rtx_HIGH (Pmode, xinsn)),
|
3245 |
|
|
xinsn);
|
3246 |
|
|
}
|
3247 |
|
|
|
3248 |
|
|
if (GET_CODE (xinsn) == PLUS)
|
3249 |
|
|
{
|
3250 |
|
|
rtx xplus0 = XEXP (xinsn, 0);
|
3251 |
|
|
rtx xplus1 = XEXP (xinsn, 1);
|
3252 |
|
|
enum rtx_code code0 = GET_CODE (xplus0);
|
3253 |
|
|
enum rtx_code code1 = GET_CODE (xplus1);
|
3254 |
|
|
|
3255 |
|
|
if (code0 != REG && code1 == REG)
|
3256 |
|
|
{
|
3257 |
|
|
xplus0 = XEXP (xinsn, 1);
|
3258 |
|
|
xplus1 = XEXP (xinsn, 0);
|
3259 |
|
|
code0 = GET_CODE (xplus0);
|
3260 |
|
|
code1 = GET_CODE (xplus1);
|
3261 |
|
|
}
|
3262 |
|
|
|
3263 |
|
|
if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, mode)
|
3264 |
|
|
&& code1 == CONST_INT && !SMALL_INT (xplus1))
|
3265 |
|
|
{
|
3266 |
|
|
rtx int_reg = gen_reg_rtx (Pmode);
|
3267 |
|
|
rtx ptr_reg = gen_reg_rtx (Pmode);
|
3268 |
|
|
|
3269 |
|
|
emit_move_insn (int_reg,
|
3270 |
|
|
GEN_INT (INTVAL (xplus1) & ~ 0x7fff));
|
3271 |
|
|
|
3272 |
|
|
emit_insn (gen_rtx_SET (VOIDmode,
|
3273 |
|
|
ptr_reg,
|
3274 |
|
|
gen_rtx_PLUS (Pmode, xplus0, int_reg)));
|
3275 |
|
|
|
3276 |
|
|
return plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff);
|
3277 |
|
|
}
|
3278 |
|
|
}
|
3279 |
|
|
|
3280 |
|
|
if (TARGET_DEBUG_B_MODE)
|
3281 |
|
|
GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n");
|
3282 |
|
|
|
3283 |
|
|
return xinsn;
|
3284 |
|
|
}
|
3285 |
|
|
|
3286 |
|
|
|
3287 |
|
|
static bool
|
3288 |
|
|
iq2000_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED,
|
3289 |
|
|
int opno ATTRIBUTE_UNUSED, int * total,
|
3290 |
|
|
bool speed ATTRIBUTE_UNUSED)
|
3291 |
|
|
{
|
3292 |
|
|
enum machine_mode mode = GET_MODE (x);
|
3293 |
|
|
|
3294 |
|
|
switch (code)
|
3295 |
|
|
{
|
3296 |
|
|
case MEM:
|
3297 |
|
|
{
|
3298 |
|
|
int num_words = (GET_MODE_SIZE (mode) > UNITS_PER_WORD) ? 2 : 1;
|
3299 |
|
|
|
3300 |
|
|
if (simple_memory_operand (x, mode))
|
3301 |
|
|
return COSTS_N_INSNS (num_words);
|
3302 |
|
|
|
3303 |
|
|
* total = COSTS_N_INSNS (2 * num_words);
|
3304 |
|
|
break;
|
3305 |
|
|
}
|
3306 |
|
|
|
3307 |
|
|
case FFS:
|
3308 |
|
|
* total = COSTS_N_INSNS (6);
|
3309 |
|
|
break;
|
3310 |
|
|
|
3311 |
|
|
case AND:
|
3312 |
|
|
case IOR:
|
3313 |
|
|
case XOR:
|
3314 |
|
|
case NOT:
|
3315 |
|
|
* total = COSTS_N_INSNS (mode == DImode ? 2 : 1);
|
3316 |
|
|
break;
|
3317 |
|
|
|
3318 |
|
|
case ASHIFT:
|
3319 |
|
|
case ASHIFTRT:
|
3320 |
|
|
case LSHIFTRT:
|
3321 |
|
|
if (mode == DImode)
|
3322 |
|
|
* total = COSTS_N_INSNS ((GET_CODE (XEXP (x, 1)) == CONST_INT) ? 4 : 12);
|
3323 |
|
|
else
|
3324 |
|
|
* total = COSTS_N_INSNS (1);
|
3325 |
|
|
break;
|
3326 |
|
|
|
3327 |
|
|
case ABS:
|
3328 |
|
|
if (mode == SFmode || mode == DFmode)
|
3329 |
|
|
* total = COSTS_N_INSNS (1);
|
3330 |
|
|
else
|
3331 |
|
|
* total = COSTS_N_INSNS (4);
|
3332 |
|
|
break;
|
3333 |
|
|
|
3334 |
|
|
case PLUS:
|
3335 |
|
|
case MINUS:
|
3336 |
|
|
if (mode == SFmode || mode == DFmode)
|
3337 |
|
|
* total = COSTS_N_INSNS (6);
|
3338 |
|
|
else if (mode == DImode)
|
3339 |
|
|
* total = COSTS_N_INSNS (4);
|
3340 |
|
|
else
|
3341 |
|
|
* total = COSTS_N_INSNS (1);
|
3342 |
|
|
break;
|
3343 |
|
|
|
3344 |
|
|
case NEG:
|
3345 |
|
|
* total = (mode == DImode) ? 4 : 1;
|
3346 |
|
|
break;
|
3347 |
|
|
|
3348 |
|
|
case MULT:
|
3349 |
|
|
if (mode == SFmode)
|
3350 |
|
|
* total = COSTS_N_INSNS (7);
|
3351 |
|
|
else if (mode == DFmode)
|
3352 |
|
|
* total = COSTS_N_INSNS (8);
|
3353 |
|
|
else
|
3354 |
|
|
* total = COSTS_N_INSNS (10);
|
3355 |
|
|
break;
|
3356 |
|
|
|
3357 |
|
|
case DIV:
|
3358 |
|
|
case MOD:
|
3359 |
|
|
if (mode == SFmode)
|
3360 |
|
|
* total = COSTS_N_INSNS (23);
|
3361 |
|
|
else if (mode == DFmode)
|
3362 |
|
|
* total = COSTS_N_INSNS (36);
|
3363 |
|
|
else
|
3364 |
|
|
* total = COSTS_N_INSNS (69);
|
3365 |
|
|
break;
|
3366 |
|
|
|
3367 |
|
|
case UDIV:
|
3368 |
|
|
case UMOD:
|
3369 |
|
|
* total = COSTS_N_INSNS (69);
|
3370 |
|
|
break;
|
3371 |
|
|
|
3372 |
|
|
case SIGN_EXTEND:
|
3373 |
|
|
* total = COSTS_N_INSNS (2);
|
3374 |
|
|
break;
|
3375 |
|
|
|
3376 |
|
|
case ZERO_EXTEND:
|
3377 |
|
|
* total = COSTS_N_INSNS (1);
|
3378 |
|
|
break;
|
3379 |
|
|
|
3380 |
|
|
case CONST_INT:
|
3381 |
|
|
* total = 0;
|
3382 |
|
|
break;
|
3383 |
|
|
|
3384 |
|
|
case LABEL_REF:
|
3385 |
|
|
* total = COSTS_N_INSNS (2);
|
3386 |
|
|
break;
|
3387 |
|
|
|
3388 |
|
|
case CONST:
|
3389 |
|
|
{
|
3390 |
|
|
rtx offset = const0_rtx;
|
3391 |
|
|
rtx symref = eliminate_constant_term (XEXP (x, 0), & offset);
|
3392 |
|
|
|
3393 |
|
|
if (GET_CODE (symref) == LABEL_REF)
|
3394 |
|
|
* total = COSTS_N_INSNS (2);
|
3395 |
|
|
else if (GET_CODE (symref) != SYMBOL_REF)
|
3396 |
|
|
* total = COSTS_N_INSNS (4);
|
3397 |
|
|
/* Let's be paranoid.... */
|
3398 |
|
|
else if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767)
|
3399 |
|
|
* total = COSTS_N_INSNS (2);
|
3400 |
|
|
else
|
3401 |
|
|
* total = COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2);
|
3402 |
|
|
break;
|
3403 |
|
|
}
|
3404 |
|
|
|
3405 |
|
|
case SYMBOL_REF:
|
3406 |
|
|
* total = COSTS_N_INSNS (SYMBOL_REF_FLAG (x) ? 1 : 2);
|
3407 |
|
|
break;
|
3408 |
|
|
|
3409 |
|
|
case CONST_DOUBLE:
|
3410 |
|
|
{
|
3411 |
|
|
rtx high, low;
|
3412 |
|
|
|
3413 |
|
|
split_double (x, & high, & low);
|
3414 |
|
|
|
3415 |
|
|
* total = COSTS_N_INSNS ( (high == CONST0_RTX (GET_MODE (high))
|
3416 |
|
|
|| low == CONST0_RTX (GET_MODE (low)))
|
3417 |
|
|
? 2 : 4);
|
3418 |
|
|
break;
|
3419 |
|
|
}
|
3420 |
|
|
|
3421 |
|
|
default:
|
3422 |
|
|
return false;
|
3423 |
|
|
}
|
3424 |
|
|
return true;
|
3425 |
|
|
}
|
3426 |
|
|
|
3427 |
|
|
/* Worker for TARGET_ASM_TRAMPOLINE_TEMPLATE. */
|
3428 |
|
|
|
3429 |
|
|
static void
|
3430 |
|
|
iq2000_asm_trampoline_template (FILE *f)
|
3431 |
|
|
{
|
3432 |
|
|
fprintf (f, "\t.word\t0x03e00821\t\t# move $1,$31\n");
|
3433 |
|
|
fprintf (f, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");
|
3434 |
|
|
fprintf (f, "\t.word\t0x00000000\t\t# nop\n");
|
3435 |
|
|
if (Pmode == DImode)
|
3436 |
|
|
{
|
3437 |
|
|
fprintf (f, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n");
|
3438 |
|
|
fprintf (f, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n");
|
3439 |
|
|
}
|
3440 |
|
|
else
|
3441 |
|
|
{
|
3442 |
|
|
fprintf (f, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n");
|
3443 |
|
|
fprintf (f, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n");
|
3444 |
|
|
}
|
3445 |
|
|
fprintf (f, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n");
|
3446 |
|
|
fprintf (f, "\t.word\t0x00600008\t\t# jr $3\n");
|
3447 |
|
|
fprintf (f, "\t.word\t0x0020f821\t\t# move $31,$1\n");
|
3448 |
|
|
fprintf (f, "\t.word\t0x00000000\t\t# <function address>\n");
|
3449 |
|
|
fprintf (f, "\t.word\t0x00000000\t\t# <static chain value>\n");
|
3450 |
|
|
}
|
3451 |
|
|
|
3452 |
|
|
/* Worker for TARGET_TRAMPOLINE_INIT. */
|
3453 |
|
|
|
3454 |
|
|
static void
|
3455 |
|
|
iq2000_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
|
3456 |
|
|
{
|
3457 |
|
|
rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
|
3458 |
|
|
rtx mem;
|
3459 |
|
|
|
3460 |
|
|
emit_block_move (m_tramp, assemble_trampoline_template (),
|
3461 |
|
|
GEN_INT (TRAMPOLINE_CODE_SIZE), BLOCK_OP_NORMAL);
|
3462 |
|
|
|
3463 |
|
|
mem = adjust_address (m_tramp, Pmode, TRAMPOLINE_CODE_SIZE);
|
3464 |
|
|
emit_move_insn (mem, fnaddr);
|
3465 |
|
|
mem = adjust_address (m_tramp, Pmode,
|
3466 |
|
|
TRAMPOLINE_CODE_SIZE + GET_MODE_SIZE (Pmode));
|
3467 |
|
|
emit_move_insn (mem, chain_value);
|
3468 |
|
|
}
|
3469 |
|
|
|
3470 |
|
|
#include "gt-iq2000.h"
|