OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [mn10300/] [mn10300.h] - Blame information for rev 867

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 709 jeremybenn
/* Definitions of target machine for GNU compiler.
2
   Matsushita MN10300 series
3
   Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4
   2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5
   Contributed by Jeff Law (law@cygnus.com).
6
 
7
   This file is part of GCC.
8
 
9
   GCC is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3, or (at your option)
12
   any later version.
13
 
14
   GCC is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with GCC; see the file COPYING3.  If not see
21
   <http://www.gnu.org/licenses/>.  */
22
 
23
#undef ASM_SPEC
24
#undef LIB_SPEC
25
#undef ENDFILE_SPEC
26
#undef  LINK_SPEC
27
#define LINK_SPEC "%{mrelax:%{!r:--relax}}"
28
#undef  STARTFILE_SPEC
29
#define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
30
 
31
/* Names to predefine in the preprocessor for this target machine.  */
32
 
33
#define TARGET_CPU_CPP_BUILTINS()               \
34
  do                                            \
35
    {                                           \
36
      builtin_define ("__mn10300__");           \
37
      builtin_define ("__MN10300__");           \
38
      builtin_assert ("cpu=mn10300");           \
39
      builtin_assert ("machine=mn10300");       \
40
                                                \
41
      if (TARGET_AM34)                          \
42
        {                                       \
43
          builtin_define ("__AM33__=4");        \
44
          builtin_define ("__AM34__");          \
45
        }                                       \
46
      else if (TARGET_AM33_2)                   \
47
        {                                       \
48
          builtin_define ("__AM33__=2");        \
49
          builtin_define ("__AM33_2__");        \
50
        }                                       \
51
      else if (TARGET_AM33)                     \
52
        builtin_define ("__AM33__=1");          \
53
                                                \
54
      builtin_define (TARGET_ALLOW_LIW ?        \
55
                      "__LIW__" : "__NO_LIW__");\
56
                                                \
57
      builtin_define (TARGET_ALLOW_SETLB  ?     \
58
                      "__SETLB__" : "__NO_SETLB__");\
59
    }                                           \
60
  while (0)
61
 
62
#ifndef MN10300_OPTS_H
63
#include "config/mn10300/mn10300-opts.h"
64
#endif
65
 
66
extern enum processor_type mn10300_tune_cpu;
67
 
68
#define TARGET_AM33     (mn10300_processor >= PROCESSOR_AM33)
69
#define TARGET_AM33_2   (mn10300_processor >= PROCESSOR_AM33_2)
70
#define TARGET_AM34     (mn10300_processor >= PROCESSOR_AM34)
71
 
72
#ifndef PROCESSOR_DEFAULT
73
#define PROCESSOR_DEFAULT PROCESSOR_MN10300
74
#endif
75
 
76
 
77
/* Target machine storage layout */
78
 
79
/* Define this if most significant bit is lowest numbered
80
   in instructions that operate on numbered bit-fields.
81
   This is not true on the Matsushita MN1003.  */
82
#define BITS_BIG_ENDIAN 0
83
 
84
/* Define this if most significant byte of a word is the lowest numbered.  */
85
/* This is not true on the Matsushita MN10300.  */
86
#define BYTES_BIG_ENDIAN 0
87
 
88
/* Define this if most significant word of a multiword number is lowest
89
   numbered.
90
   This is not true on the Matsushita MN10300.  */
91
#define WORDS_BIG_ENDIAN 0
92
 
93
/* Width of a word, in units (bytes).  */
94
#define UNITS_PER_WORD          4
95
 
96
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
97
#define PARM_BOUNDARY           32
98
 
99
/* The stack goes in 32-bit lumps.  */
100
#define STACK_BOUNDARY          32
101
 
102
/* Allocation boundary (in *bits*) for the code of a function.
103
   8 is the minimum boundary; it's unclear if bigger alignments
104
   would improve performance.  */
105
#define FUNCTION_BOUNDARY 8
106
 
107
/* No data type wants to be aligned rounder than this.  */
108
#define BIGGEST_ALIGNMENT       32
109
 
110
/* Alignment of field after `int : 0' in a structure.  */
111
#define EMPTY_FIELD_BOUNDARY    32
112
 
113
/* Define this if move instructions will actually fail to work
114
   when given unaligned data.  */
115
#define STRICT_ALIGNMENT 1
116
 
117
/* Define this as 1 if `char' should by default be signed; else as 0.  */
118
#define DEFAULT_SIGNED_CHAR 0
119
 
120
#undef  SIZE_TYPE
121
#define SIZE_TYPE "unsigned int"
122
 
123
#undef  PTRDIFF_TYPE
124
#define PTRDIFF_TYPE "int"
125
 
126
#undef  WCHAR_TYPE
127
#define WCHAR_TYPE "long int"
128
 
129
#undef  WCHAR_TYPE_SIZE
130
#define WCHAR_TYPE_SIZE BITS_PER_WORD
131
 
132
/* Standard register usage.  */
133
 
134
/* Number of actual hardware registers.
135
   The hardware registers are assigned numbers for the compiler
136
   from 0 to just below FIRST_PSEUDO_REGISTER.
137
 
138
   All registers that the compiler knows about must be given numbers,
139
   even those that are not normally considered general registers.  */
140
 
141
#define FIRST_PSEUDO_REGISTER 52
142
 
143
/* Specify machine-specific register numbers.  The commented out entries
144
   are defined in mn10300.md.  */
145
#define FIRST_DATA_REGNUM      0
146
#define LAST_DATA_REGNUM       3
147
#define FIRST_ADDRESS_REGNUM   4
148
/* #define PIC_REG             6 */
149
#define LAST_ADDRESS_REGNUM    8
150
/* #define SP_REG              9 */
151
#define FIRST_EXTENDED_REGNUM 10
152
#define LAST_EXTENDED_REGNUM  17
153
#define FIRST_FP_REGNUM       18
154
#define LAST_FP_REGNUM        49
155
/* #define MDR_REG            50 */
156
/* #define CC_REG             51 */
157
#define FIRST_ARGUMENT_REGNUM  0
158
 
159
/* Specify the registers used for certain standard purposes.
160
   The values of these macros are register numbers.  */
161
 
162
/* Register to use for pushing function arguments.  */
163
#define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
164
 
165
/* Base register for access to local variables of the function.  */
166
#define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
167
 
168
/* Base register for access to arguments of the function.  This
169
   is a fake register and will be eliminated into either the frame
170
   pointer or stack pointer.  */
171
#define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
172
 
173
/* Register in which static-chain is passed to a function.  */
174
#define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
175
 
176
/* 1 for registers that have pervasive standard uses
177
   and are not available for the register allocator.  */
178
 
179
#define FIXED_REGISTERS \
180
  { 0, 0, 0, 0,                             /* data regs */         \
181
    0, 0, 0, 0,                             /* addr regs */         \
182
    1,                                  /* arg reg */           \
183
    1,                                  /* sp reg */            \
184
    0, 0, 0, 0, 0, 0, 0, 0,             /* extended regs */     \
185
    0, 0,                         /* fp regs (18-19) */   \
186
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (20-29) */   \
187
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (30-39) */   \
188
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (40-49) */   \
189
    0,                                   /* mdr reg */           \
190
    1                                   /* cc reg */            \
191
  }
192
 
193
/* 1 for registers not available across function calls.
194
   These must include the FIXED_REGISTERS and also any
195
   registers that can be used without being saved.
196
   The latter must include the registers where values are returned
197
   and the register where structure-value addresses are passed.
198
   Aside from that, you can include as many other registers as you
199
   like.  */
200
 
201
#define CALL_USED_REGISTERS \
202
  { 1, 1, 0, 0,                           /* data regs */         \
203
    1, 1, 0, 0,                           /* addr regs */         \
204
    1,                                  /* arg reg */           \
205
    1,                                  /* sp reg */            \
206
    1, 1, 1, 1, 0, 0, 0, 0,         /* extended regs */     \
207
    1, 1,                               /* fp regs (18-19) */   \
208
    1, 1, 0, 0, 0, 0, 0, 0, 0, 0,       /* fp regs (20-29) */   \
209
    0, 0, 0, 0, 0, 0, 0, 0, 1, 1,       /* fp regs (30-39) */   \
210
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1,       /* fp regs (40-49) */   \
211
    1,                                  /* mdr reg */           \
212
    1                                   /* cc reg */            \
213
  }
214
 
215
/* Note: The definition of CALL_REALLY_USED_REGISTERS is not
216
   redundant.  It is needed when compiling in PIC mode because
217
   the a2 register becomes fixed (and hence must be marked as
218
   call_used) but in order to preserve the ABI it is not marked
219
   as call_really_used.  */
220
#define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
221
 
222
#define REG_ALLOC_ORDER \
223
  { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
224
  , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
225
  , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 50, 51 \
226
  }
227
 
228
/* Return number of consecutive hard regs needed starting at reg REGNO
229
   to hold something of mode MODE.
230
 
231
   This is ordinarily the length in words of a value of mode MODE
232
   but can be less for certain modes in special long registers.  */
233
 
234
#define HARD_REGNO_NREGS(REGNO, MODE)   \
235
  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
236
 
237
/* Value is 1 if hard register REGNO can hold a value of machine-mode
238
   MODE.  */
239
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
240
  mn10300_hard_regno_mode_ok ((REGNO), (MODE))
241
 
242
/* Value is 1 if it is a good idea to tie two pseudo registers
243
   when one has mode MODE1 and one has mode MODE2.
244
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
245
   for any hard reg, then this must be 0 for correct output.  */
246
#define MODES_TIEABLE_P(MODE1, MODE2) \
247
  mn10300_modes_tieable ((MODE1), (MODE2))
248
 
249
/* 4 data, and effectively 3 address registers is small as far as I'm
250
   concerned.  */
251
#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
252
 
253
/* Define the classes of registers for register constraints in the
254
   machine description.  Also define ranges of constants.
255
 
256
   One of the classes must always be named ALL_REGS and include all hard regs.
257
   If there is more than one class, another class must be named NO_REGS
258
   and contain no registers.
259
 
260
   The name GENERAL_REGS must be the name of a class (or an alias for
261
   another name such as ALL_REGS).  This is the class of registers
262
   that is allowed by "g" or "r" in a register constraint.
263
   Also, registers outside this class are allocated only when
264
   instructions express preferences for them.
265
 
266
   The classes must be numbered in nondecreasing order; that is,
267
   a larger-numbered class must never be contained completely
268
   in a smaller-numbered class.
269
 
270
   For any two classes, it is very desirable that there be another
271
   class that represents their union.  */
272
 
273
enum reg_class
274
{
275
  NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, SP_OR_ADDRESS_REGS,
276
  EXTENDED_REGS, FP_REGS, FP_ACC_REGS, CC_REGS, MDR_REGS,
277
  GENERAL_REGS, SP_OR_GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
278
};
279
 
280
#define N_REG_CLASSES (int) LIM_REG_CLASSES
281
 
282
/* Give names of register classes as strings for dump file.  */
283
 
284
#define REG_CLASS_NAMES                                                 \
285
{ "NO_REGS", "DATA_REGS", "ADDRESS_REGS", "SP_REGS", "SP_OR_ADDRESS_REGS", \
286
  "EXTENDED_REGS", "FP_REGS", "FP_ACC_REGS", "CC_REGS", "MDR_REGS",     \
287
  "GENERAL_REGS", "SP_OR_GENERAL_REGS", "ALL_REGS", "LIM_REGS"          \
288
}
289
 
290
/* Define which registers fit in which classes.
291
   This is an initializer for a vector of HARD_REG_SET
292
   of length N_REG_CLASSES.  */
293
 
294
#define REG_CLASS_CONTENTS                                      \
295
{ { 0,           0 },       /* No regs */                         \
296
  { 0x0000000f, 0 },       /* DATA_REGS */                       \
297
  { 0x000001f0, 0 },       /* ADDRESS_REGS */                    \
298
  { 0x00000200, 0 },       /* SP_REGS */                         \
299
  { 0x000003f0, 0 },       /* SP_OR_ADDRESS_REGS */              \
300
  { 0x0003fc00, 0 },       /* EXTENDED_REGS */                   \
301
  { 0xfffc0000, 0x3ffff },/* FP_REGS */                         \
302
  { 0x03fc0000, 0 },       /* FP_ACC_REGS */                     \
303
  { 0x00000000, 0x80000 },/* CC_REGS */                         \
304
  { 0x00000000, 0x40000 },/* MDR_REGS */                        \
305
  { 0x0003fdff, 0 },       /* GENERAL_REGS */                    \
306
  { 0x0003ffff, 0 },      /* SP_OR_GENERAL_REGS */               \
307
  { 0xffffffff, 0xfffff } /* ALL_REGS */                        \
308
}
309
 
310
/* The same information, inverted:
311
   Return the class number of the smallest class containing
312
   reg number REGNO.  This could be a conditional expression
313
   or could index an array.  */
314
 
315
#define REGNO_REG_CLASS(REGNO)                       \
316
  ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS :         \
317
   (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS :   \
318
   (REGNO) == STACK_POINTER_REGNUM ? SP_REGS :       \
319
   (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
320
   (REGNO) <= LAST_FP_REGNUM ? FP_REGS :             \
321
   (REGNO) == MDR_REG ? MDR_REGS :                   \
322
   (REGNO) == CC_REG ? CC_REGS :                     \
323
   NO_REGS)
324
 
325
/* The class value for index registers, and the one for base regs.  */
326
#define INDEX_REG_CLASS \
327
  (TARGET_AM33 ? GENERAL_REGS : DATA_REGS)
328
#define BASE_REG_CLASS \
329
  (TARGET_AM33 ? SP_OR_GENERAL_REGS : SP_OR_ADDRESS_REGS)
330
 
331
/* Macros to check register numbers against specific register classes.  */
332
 
333
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
334
   and check its validity for a certain class.
335
   We have two alternate definitions for each of them.
336
   The usual definition accepts all pseudo regs; the other rejects
337
   them unless they have been allocated suitable hard regs.
338
   The symbol REG_OK_STRICT causes the latter definition to be used.
339
 
340
   Most source files want to accept pseudo regs in the hope that
341
   they will get allocated to the class that the insn wants them to be in.
342
   Source files for reload pass need to be strict.
343
   After reload, it makes no difference, since pseudo regs have
344
   been eliminated by then.  */
345
 
346
/* These assume that REGNO is a hard or pseudo reg number.
347
   They give nonzero only if REGNO is a hard reg of the suitable class
348
   or a pseudo reg currently allocated to a suitable hard reg.
349
   Since they use reg_renumber, they are safe only once reg_renumber
350
   has been allocated, which happens in local-alloc.c.  */
351
 
352
#ifndef REG_OK_STRICT
353
# define REG_STRICT 0
354
#else
355
# define REG_STRICT 1
356
#endif
357
 
358
#define REGNO_DATA_P(regno, strict) \
359
  mn10300_regno_in_class_p (regno, DATA_REGS, strict)
360
#define REGNO_ADDRESS_P(regno, strict) \
361
  mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
362
#define REGNO_EXTENDED_P(regno, strict) \
363
  mn10300_regno_in_class_p (regno, EXTENDED_REGS, strict)
364
#define REGNO_GENERAL_P(regno, strict) \
365
  mn10300_regno_in_class_p (regno, GENERAL_REGS, strict)
366
 
367
#define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
368
  mn10300_regno_in_class_p (regno, BASE_REG_CLASS, strict)
369
#define REGNO_OK_FOR_BASE_P(regno) \
370
  (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
371
#define REG_OK_FOR_BASE_P(X) \
372
  (REGNO_OK_FOR_BASE_P (REGNO (X)))
373
 
374
#define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
375
  mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
376
#define REGNO_OK_FOR_BIT_BASE_P(regno) \
377
  (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
378
#define REG_OK_FOR_BIT_BASE_P(X) \
379
  (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
380
 
381
#define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
382
  mn10300_regno_in_class_p (regno, INDEX_REG_CLASS, strict)
383
#define REGNO_OK_FOR_INDEX_P(regno) \
384
  (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
385
#define REG_OK_FOR_INDEX_P(X) \
386
  (REGNO_OK_FOR_INDEX_P (REGNO (X)))
387
 
388
#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
389
  (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
390
 
391
/* A class that contains registers which the compiler must always
392
   access in a mode that is the same size as the mode in which it
393
   loaded the register.  */
394
#define CLASS_CANNOT_CHANGE_SIZE FP_REGS
395
 
396
/* Return 1 if VALUE is in the range specified.  */
397
 
398
#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
399
#define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
400
 
401
 
402
/* Stack layout; function entry, exit and calling.  */
403
 
404
/* Define this if pushing a word on the stack
405
   makes the stack pointer a smaller address.  */
406
 
407
#define STACK_GROWS_DOWNWARD
408
 
409
/* Define this to nonzero if the nominal address of the stack frame
410
   is at the high-address end of the local variables;
411
   that is, each additional local variable allocated
412
   goes at a more negative offset in the frame.  */
413
 
414
#define FRAME_GROWS_DOWNWARD 1
415
 
416
/* Offset within stack frame to start allocating local variables at.
417
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
418
   first local allocated.  Otherwise, it is the offset to the BEGINNING
419
   of the first local allocated.  */
420
 
421
#define STARTING_FRAME_OFFSET 0
422
 
423
/* Offset of first parameter from the argument pointer register value.  */
424
/* Is equal to the size of the saved fp + pc, even if an fp isn't
425
   saved since the value is used before we know.  */
426
 
427
#define FIRST_PARM_OFFSET(FNDECL) 4
428
 
429
/* But the CFA is at the arg pointer directly, not at the first argument.  */
430
#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
431
 
432
#define ELIMINABLE_REGS                         \
433
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},   \
434
 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},   \
435
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
436
 
437
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
438
  OFFSET = mn10300_initial_offset (FROM, TO)
439
 
440
/* We use d0/d1 for passing parameters, so allocate 8 bytes of space
441
   for a register flushback area.  */
442
#define REG_PARM_STACK_SPACE(DECL) 8
443
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
444
#define ACCUMULATE_OUTGOING_ARGS 1
445
 
446
/* So we can allocate space for return pointers once for the function
447
   instead of around every call.  */
448
#define STACK_POINTER_OFFSET 4
449
 
450
/* 1 if N is a possible register number for function argument passing.
451
   On the MN10300, d0 and d1 are used in this way.  */
452
 
453
#define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
454
 
455
 
456
/* Define a data type for recording info about an argument list
457
   during the scan of that argument list.  This data type should
458
   hold all necessary information about the function itself
459
   and about the args processed so far, enough to enable macros
460
   such as FUNCTION_ARG to determine where the next arg should go.
461
 
462
   On the MN10300, this is a single integer, which is a number of bytes
463
   of arguments scanned so far.  */
464
 
465
#define CUMULATIVE_ARGS struct cum_arg
466
 
467
struct cum_arg
468
{
469
  int nbytes;
470
};
471
 
472
/* Initialize a variable CUM of type CUMULATIVE_ARGS
473
   for a call to a function whose data type is FNTYPE.
474
   For a library call, FNTYPE is 0.
475
 
476
   On the MN10300, the offset starts at 0.  */
477
 
478
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
479
 ((CUM).nbytes = 0)
480
 
481
#define FUNCTION_VALUE_REGNO_P(N)  mn10300_function_value_regno_p (N)
482
 
483
#define DEFAULT_PCC_STRUCT_RETURN 0
484
 
485
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
486
   the stack pointer does not matter.  The value is tested only in
487
   functions that have frame pointers.
488
   No definition is equivalent to always zero.  */
489
 
490
#define EXIT_IGNORE_STACK 1
491
 
492
/* Output assembler code to FILE to increment profiler label # LABELNO
493
   for profiling a function entry.  */
494
 
495
#define FUNCTION_PROFILER(FILE, LABELNO) ;
496
 
497
/* Length in units of the trampoline for entering a nested function.  */
498
 
499
#define TRAMPOLINE_SIZE         16
500
#define TRAMPOLINE_ALIGNMENT    32
501
 
502
/* A C expression whose value is RTL representing the value of the return
503
   address for the frame COUNT steps up from the current frame.
504
 
505
   On the mn10300, the return address is not at a constant location
506
   due to the frame layout.  Luckily, it is at a constant offset from
507
   the argument pointer, so we define RETURN_ADDR_RTX to return a
508
   MEM using arg_pointer_rtx.  Reload will replace arg_pointer_rtx
509
   with a reference to the stack/frame pointer + an appropriate offset.  */
510
 
511
#define RETURN_ADDR_RTX(COUNT, FRAME)   \
512
  ((COUNT == 0)                         \
513
   ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
514
   : (rtx) 0)
515
 
516
/* The return address is saved both in the stack and in MDR.  Using
517
   the stack location is handiest for what unwinding needs.  */
518
#define INCOMING_RETURN_ADDR_RTX \
519
  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
520
 
521
/* Maximum number of registers that can appear in a valid memory address.  */
522
 
523
#define MAX_REGS_PER_ADDRESS 2
524
 
525
 
526
/* We have post-increments.  */
527
#define HAVE_POST_INCREMENT     TARGET_AM33
528
#define HAVE_POST_MODIFY_DISP   TARGET_AM33
529
 
530
/* ... But we don't want to use them for block moves.  Small offsets are
531
   just as effective, at least for inline block move sizes, and appears
532
   to produce cleaner code.  */
533
#define USE_LOAD_POST_INCREMENT(M)      0
534
#define USE_STORE_POST_INCREMENT(M)     0
535
 
536
/* Accept either REG or SUBREG where a register is valid.  */
537
 
538
#define RTX_OK_FOR_BASE_P(X, strict)                            \
539
  ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X),         \
540
                                             (strict)))         \
541
   || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X))         \
542
       && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)),   \
543
                                      (strict))))
544
 
545
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)               \
546
do {                                                                         \
547
  rtx new_x = mn10300_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
548
  if (new_x)                                                                 \
549
    {                                                                        \
550
      X = new_x;                                                             \
551
      goto WIN;                                                              \
552
    }                                                                        \
553
} while (0)
554
 
555
 
556
/* Zero if this needs fixing up to become PIC.  */
557
 
558
#define LEGITIMATE_PIC_OPERAND_P(X) \
559
  mn10300_legitimate_pic_operand_p (X)
560
 
561
/* Register to hold the addressing base for
562
   position independent code access to data items.  */
563
#define PIC_OFFSET_TABLE_REGNUM PIC_REG
564
 
565
/* The name of the pseudo-symbol representing the Global Offset Table.  */
566
#define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
567
 
568
#define SYMBOLIC_CONST_P(X)     \
569
((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF)      \
570
  && ! LEGITIMATE_PIC_OPERAND_P (X))
571
 
572
/* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled.  */
573
#define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
574
 
575
#define SELECT_CC_MODE(OP, X, Y)  mn10300_select_cc_mode (OP, X, Y)
576
#define REVERSIBLE_CC_MODE(MODE)  0
577
 
578
/* Nonzero if access to memory by bytes or half words is no faster
579
   than accessing full words.  */
580
#define SLOW_BYTE_ACCESS 1
581
 
582
#define NO_FUNCTION_CSE
583
 
584
/* According expr.c, a value of around 6 should minimize code size, and
585
   for the MN10300 series, that's our primary concern.  */
586
#define MOVE_RATIO(speed) 6
587
 
588
#define TEXT_SECTION_ASM_OP "\t.section .text"
589
#define DATA_SECTION_ASM_OP "\t.section .data"
590
#define BSS_SECTION_ASM_OP  "\t.section .bss"
591
 
592
#define ASM_COMMENT_START "#"
593
 
594
/* Output to assembler file text saying following lines
595
   may contain character constants, extra white space, comments, etc.  */
596
 
597
#define ASM_APP_ON "#APP\n"
598
 
599
/* Output to assembler file text saying following lines
600
   no longer contain unusual constructs.  */
601
 
602
#define ASM_APP_OFF "#NO_APP\n"
603
 
604
#undef  USER_LABEL_PREFIX
605
#define USER_LABEL_PREFIX "_"
606
 
607
/* This says how to output the assembler to define a global
608
   uninitialized but not common symbol.
609
   Try to use asm_output_bss to implement this macro.  */
610
 
611
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
612
  asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
613
 
614
/* Globalizing directive for a label.  */
615
#define GLOBAL_ASM_OP "\t.global "
616
 
617
/* This is how to output a reference to a user-level label named NAME.
618
   `assemble_name' uses this.  */
619
 
620
#undef  ASM_OUTPUT_LABELREF
621
#define ASM_OUTPUT_LABELREF(FILE, NAME) \
622
  asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
623
 
624
/* This is how we tell the assembler that two symbols have the same value.  */
625
 
626
#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
627
  do                                     \
628
    {                                    \
629
      assemble_name (FILE, NAME1);       \
630
      fputs (" = ", FILE);               \
631
      assemble_name (FILE, NAME2);       \
632
      fputc ('\n', FILE);                \
633
    }                                    \
634
  while (0)
635
 
636
/* How to refer to registers in assembler output.
637
   This sequence is indexed by compiler's hard-register-number (see above).  */
638
 
639
#define REGISTER_NAMES                                                  \
640
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp",           \
641
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7"                        \
642
, "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7"                \
643
, "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15"          \
644
, "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23"        \
645
, "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"        \
646
, "mdr", "EPSW"                                                         \
647
}
648
 
649
#define ADDITIONAL_REGISTER_NAMES                               \
650
{ {"r8",  4}, {"r9",  5}, {"r10", 6}, {"r11", 7},               \
651
  {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3},                \
652
  {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13},               \
653
  {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17}                \
654
, {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24}            \
655
, {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32}         \
656
, {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40}        \
657
, {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48}        \
658
, {"cc", CC_REG}                                                \
659
}
660
 
661
/* Print an instruction operand X on file FILE.
662
   look in mn10300.c for details */
663
 
664
#define PRINT_OPERAND(FILE, X, CODE) \
665
  mn10300_print_operand (FILE, X, CODE)
666
 
667
/* Print a memory operand whose address is X, on file FILE.
668
   This uses a function in output-vax.c.  */
669
 
670
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
671
  mn10300_print_operand_address (FILE, ADDR)
672
 
673
/* This is how to output an element of a case-vector that is absolute.  */
674
 
675
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
676
  fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
677
 
678
/* This is how to output an element of a case-vector that is relative.  */
679
 
680
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
681
  fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
682
 
683
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
684
  if ((LOG) != 0)                        \
685
    fprintf (FILE, "\t.align %d\n", (LOG))
686
 
687
/* We don't have to worry about dbx compatibility for the mn10300.  */
688
#define DEFAULT_GDB_EXTENSIONS 1
689
 
690
/* Use dwarf2 debugging info by default.  */
691
#undef  PREFERRED_DEBUGGING_TYPE
692
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
693
#define DWARF2_DEBUGGING_INFO 1
694
#define DWARF2_ASM_LINE_DEBUG_INFO 1
695
 
696
/* Specify the machine mode that this machine uses
697
   for the index in the tablejump instruction.  */
698
#define CASE_VECTOR_MODE Pmode
699
 
700
/* Define if operations between registers always perform the operation
701
   on the full register even if a narrower mode is specified.  */
702
#define WORD_REGISTER_OPERATIONS
703
 
704
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
705
 
706
/* This flag, if defined, says the same insns that convert to a signed fixnum
707
   also convert validly to an unsigned one.  */
708
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
709
 
710
/* Max number of bytes we can move from memory to memory
711
   in one reasonably fast instruction.  */
712
#define MOVE_MAX        4
713
 
714
/* Define if shifts truncate the shift count
715
   which implies one can omit a sign-extension or zero-extension
716
   of a shift count.  */
717
#define SHIFT_COUNT_TRUNCATED 1
718
 
719
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
720
   is done just by pretending it is already truncated.  */
721
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
722
 
723
/* Specify the machine mode that pointers have.
724
   After generation of rtl, the compiler makes no further distinction
725
   between pointers and any other objects of this machine mode.  */
726
#define Pmode SImode
727
 
728
/* A function address in a call instruction
729
   is a byte address (for indexing purposes)
730
   so give the MEM rtx a byte's mode.  */
731
#define FUNCTION_MODE QImode
732
 
733
/* The assembler op to get a word.  */
734
 
735
#define FILE_ASM_OP "\t.file\n"
736
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.