1 |
709 |
jeremybenn |
;; GCC machine description for picochip
|
2 |
|
|
;; Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
|
3 |
|
|
;; Contributed by Picochip Ltd (http://www.picochip.com)
|
4 |
|
|
;; Maintained by Daniel Towner (dant@picochip.com) and Hariharan
|
5 |
|
|
;; Sandanagobalane (hariharan@picochip.com)
|
6 |
|
|
;;
|
7 |
|
|
;; This file is part of GCC.
|
8 |
|
|
;;
|
9 |
|
|
;; GCC is free software; you can redistribute it and/or modify
|
10 |
|
|
;; it under the terms of the GNU General Public License as published by
|
11 |
|
|
;; the Free Software Foundation; either version 3, or (at your option)
|
12 |
|
|
;; any later version.
|
13 |
|
|
;;
|
14 |
|
|
;; GCC is distributed in the hope that it will be useful,
|
15 |
|
|
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
;; GNU General Public License for more details.
|
18 |
|
|
;;
|
19 |
|
|
;; You should have received a copy of the GNU General Public License
|
20 |
|
|
;; along with GCC; see the file COPYING3. If not, see
|
21 |
|
|
;; .
|
22 |
|
|
|
23 |
|
|
;; -------------------------------------------------------------------------
|
24 |
|
|
|
25 |
|
|
;; In addition to the normal output operand formats, the following
|
26 |
|
|
;; letter formats are also available:
|
27 |
|
|
;;
|
28 |
|
|
;; The following can be used for constants, or the constant part of a
|
29 |
|
|
;; memory offset.
|
30 |
|
|
;; Q - Output constant unaltered (byte mode).
|
31 |
|
|
;; M - Alias for Q, which only works with memory operands.
|
32 |
|
|
;; H - Divide constant by 2 (i.e., HImode is 2 bytes)
|
33 |
|
|
;; S - Divide constant by 4 (i.e., SImode is 4 bytes)
|
34 |
|
|
;;
|
35 |
|
|
;; The following can be used for two part addresses (i.e., base +
|
36 |
|
|
;; offset or base[offset]).
|
37 |
|
|
;; o - Output offset only.
|
38 |
|
|
;; b - Output base only.
|
39 |
|
|
;;
|
40 |
|
|
;; The following are used on SI registers and constants
|
41 |
|
|
;; R - Output register pair (i.e., R[n:m])
|
42 |
|
|
;; L - Output lower word/register
|
43 |
|
|
;; U - Output upper word/register
|
44 |
|
|
;;
|
45 |
|
|
;; The following are used on DI mode registers.
|
46 |
|
|
;; X - Output 3rd register
|
47 |
|
|
;; Y - Output 4th register
|
48 |
|
|
;;
|
49 |
|
|
;; Miscellaneous
|
50 |
|
|
;; | - Output VLIW separator
|
51 |
|
|
;; r - Output register value of memory operand.
|
52 |
|
|
;; I - Output an opcode (e.g., ADD for plus, LSL for lshift)
|
53 |
|
|
;; i - Output an opcode in symbolic notation (e.g., + for plus)
|
54 |
|
|
|
55 |
|
|
;; Define the length of an instruction. Used to allow different types
|
56 |
|
|
;; of branches to be used for different branch offsets. Default to 6
|
57 |
|
|
;; bytes, which is the longest possible single instruction.
|
58 |
|
|
(define_attr "length" "" (const_int 6))
|
59 |
|
|
|
60 |
|
|
;; Define some constants which are used in conjuction with branch
|
61 |
|
|
;; scheduling. Branches must be 10-bit signed, which equates to
|
62 |
|
|
;; [-512,511]. However, to compensate for the lack of branch alignment
|
63 |
|
|
;; these offsets are reduced by a factor of 2.
|
64 |
|
|
|
65 |
|
|
(define_constants
|
66 |
|
|
[
|
67 |
|
|
(MIN_BRANCH_OFFSET -256)
|
68 |
|
|
(MAX_BRANCH_OFFSET 255)
|
69 |
|
|
(SHORT_BRANCH_LENGTH 6) ; The size of a schedulable short branch.
|
70 |
|
|
(LONG_BRANCH_LENGTH 16) ; The size of an expanded JMP?? macro.
|
71 |
|
|
]
|
72 |
|
|
)
|
73 |
|
|
|
74 |
|
|
;; Define identifiers for various special instructions. These
|
75 |
|
|
;; instructions may then be used in RTL expansions, or builtins.
|
76 |
|
|
(define_constants
|
77 |
|
|
[
|
78 |
|
|
; Special instruction builtins.
|
79 |
|
|
(UNSPEC_SBC 0) ; Sign-bit count
|
80 |
|
|
(UNSPEC_ADDS 1) ; Saturating addition
|
81 |
|
|
(UNSPEC_SUBS 2) ; Saturating subtraction
|
82 |
|
|
(UNSPEC_BREV 3) ; Bit reversal
|
83 |
|
|
|
84 |
|
|
; Special internal instructions (only used by compiler)
|
85 |
|
|
(UNSPEC_COPYSW 5) ; Get status word
|
86 |
|
|
(UNSPEC_ADDC 6) ; Add with carry.
|
87 |
|
|
|
88 |
|
|
; Scalar port communication builtins
|
89 |
|
|
(UNSPEC_PUT 7) ; Communication (put): port[op0] := op1
|
90 |
|
|
(UNSPEC_GET 8) ; Communication (get): op0 := get_port[op1]
|
91 |
|
|
(UNSPEC_TESTPORT 9) ; Communication (test): op0 := testport[op1]
|
92 |
|
|
|
93 |
|
|
; Array port communication builtins. These all take extra
|
94 |
|
|
; arguments giving information about the array access being used.
|
95 |
|
|
(UNSPEC_PUT_ARRAY 10) ; Array put
|
96 |
|
|
(UNSPEC_GET_ARRAY 11) ; Array get
|
97 |
|
|
(UNSPEC_TESTPORT_ARRAY 12) ; Array test port
|
98 |
|
|
|
99 |
|
|
;; Array port expansions
|
100 |
|
|
(UNSPEC_CALL_GET_ARRAY 13) ;
|
101 |
|
|
(UNSPEC_CALL_PUT_ARRAY 14) ;
|
102 |
|
|
(UNSPEC_CALL_TESTPORT_ARRAY 15) ;
|
103 |
|
|
|
104 |
|
|
; Array port low-level fn calls
|
105 |
|
|
(UNSPEC_CALL_GET_FN 16)
|
106 |
|
|
(UNSPEC_CALL_TESTPORT_FN 17)
|
107 |
|
|
|
108 |
|
|
; Halt instruction.
|
109 |
|
|
(UNSPEC_HALT 18)
|
110 |
|
|
|
111 |
|
|
; Internal TSTPORT instruction, used to generate a single TSTPORT
|
112 |
|
|
; instruction for use in the testport branch split.
|
113 |
|
|
(UNSPEC_INTERNAL_TESTPORT 19)
|
114 |
|
|
]
|
115 |
|
|
)
|
116 |
|
|
|
117 |
|
|
;; Register ID's
|
118 |
|
|
(define_constants
|
119 |
|
|
[
|
120 |
|
|
(LINK_REGNUM 12) ; Function link register.
|
121 |
|
|
(CC_REGNUM 17) ; Condition flags.
|
122 |
|
|
(ACC_REGNUM 16) ; Condition flags.
|
123 |
|
|
]
|
124 |
|
|
)
|
125 |
|
|
|
126 |
|
|
;;============================================================================
|
127 |
|
|
;; Predicates and constraints
|
128 |
|
|
;;============================================================================
|
129 |
|
|
|
130 |
|
|
(include "predicates.md")
|
131 |
|
|
(include "constraints.md")
|
132 |
|
|
|
133 |
|
|
;;============================================================================
|
134 |
|
|
;; First operand shifting patterns. These allow certain instructions
|
135 |
|
|
;; (e.g., add, and, or, xor, sub) to apply a shift-by-constant to
|
136 |
|
|
;; their first operand.
|
137 |
|
|
;;
|
138 |
|
|
;; Note that only the first operand is matched by the shift, to ensure
|
139 |
|
|
;; that non-commutative instructions (like subtract) work
|
140 |
|
|
;; properly. When a commutative instruction, with a shift in the
|
141 |
|
|
;; second operand is found, the compiler will reorder the operands to
|
142 |
|
|
;; match.
|
143 |
|
|
;;============================================================================
|
144 |
|
|
|
145 |
|
|
(define_insn "*firstOpGenericAshift"
|
146 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
147 |
|
|
(match_operator:HI 1 "picochip_first_op_shift_operator"
|
148 |
|
|
[(ashift:HI
|
149 |
|
|
(match_operand:HI 2 "register_operand" "r")
|
150 |
|
|
(match_operand:HI 3 "picochip_J_operand" "J"))
|
151 |
|
|
(match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
|
152 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
153 |
|
|
""
|
154 |
|
|
"%I1.0 [LSL %2,%3],%4,%0\t// %0 := (%2 << %3) %i1 %4"
|
155 |
|
|
[(set_attr "type" "picoAlu")
|
156 |
|
|
;; A long constant must be used if the operator instruction doesn't
|
157 |
|
|
;; accept immediates, or if the constant is too big to fit the
|
158 |
|
|
;; immediate. Note that the following condition is written in the
|
159 |
|
|
;; way which uses the least number of predicates.
|
160 |
|
|
(set (attr "longConstant")
|
161 |
|
|
(cond [(ior (match_operand 4 "register_operand")
|
162 |
|
|
(and (match_operand 1 "picochip_first_op_shift_operator_imm")
|
163 |
|
|
(match_operand 1 "picochip_J_operand")))
|
164 |
|
|
(const_string "false")]
|
165 |
|
|
(const_string "true")))])
|
166 |
|
|
|
167 |
|
|
;; During combine, ashift gets converted into a multiply, necessitating the following pattern.
|
168 |
|
|
;; Note that we do a log_2(imm) to get the actual LSL operand.
|
169 |
|
|
|
170 |
|
|
(define_insn "*firstOpGenericAshift"
|
171 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
172 |
|
|
(match_operator:HI 1 "picochip_first_op_shift_operator"
|
173 |
|
|
[(mult:HI
|
174 |
|
|
(match_operand:HI 2 "register_operand" "r")
|
175 |
|
|
(match_operand:HI 3 "power_of_2_imm_operand" "n"))
|
176 |
|
|
(match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
|
177 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
178 |
|
|
""
|
179 |
|
|
"%I1.0 [LSL %2,%P3],%4,%0\t// %0 := (%2 << %3) %i1 %4"
|
180 |
|
|
[(set_attr "type" "picoAlu")
|
181 |
|
|
;; A long constant must be used if the operator instruction doesn't
|
182 |
|
|
;; accept immediates, or if the constant is too big to fit the
|
183 |
|
|
;; immediate. Note that the following condition is written in the
|
184 |
|
|
;; way which uses the least number of predicates.
|
185 |
|
|
(set (attr "longConstant")
|
186 |
|
|
(cond [(ior (match_operand 4 "register_operand")
|
187 |
|
|
(and (match_operand 1 "picochip_first_op_shift_operator_imm")
|
188 |
|
|
(match_operand 1 "picochip_J_operand")))
|
189 |
|
|
(const_string "false")]
|
190 |
|
|
(const_string "true")))])
|
191 |
|
|
|
192 |
|
|
(define_insn "*firstOpGenericAshiftrt"
|
193 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
194 |
|
|
(match_operator:HI 1 "picochip_first_op_shift_operator"
|
195 |
|
|
[(ashiftrt:HI
|
196 |
|
|
(match_operand:HI 2 "register_operand" "r")
|
197 |
|
|
(match_operand:HI 3 "picochip_J_operand" "J"))
|
198 |
|
|
(match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
|
199 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
200 |
|
|
""
|
201 |
|
|
"%I1.0 [ASR %2,%3],%4,%0\t// %0 := (%2 >>{arith} %3) %i1 %4"
|
202 |
|
|
[(set_attr "type" "picoAlu")
|
203 |
|
|
;; A long constant must be used if the operator instruction doesn't
|
204 |
|
|
;; accept immediates, or if the constant is too big to fit the
|
205 |
|
|
;; immediate. Note that the following condition is written in the
|
206 |
|
|
;; way which uses the least number of predicates.
|
207 |
|
|
(set (attr "longConstant")
|
208 |
|
|
(cond [(ior (match_operand 4 "register_operand")
|
209 |
|
|
(and (match_operand 1 "picochip_first_op_shift_operator_imm")
|
210 |
|
|
(match_operand 1 "picochip_J_operand")))
|
211 |
|
|
(const_string "false")]
|
212 |
|
|
(const_string "true")))])
|
213 |
|
|
|
214 |
|
|
(define_insn "*firstOpGenericLshiftrt"
|
215 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
216 |
|
|
(match_operator:HI 1 "picochip_first_op_shift_operator"
|
217 |
|
|
[(lshiftrt:HI
|
218 |
|
|
(match_operand:HI 2 "register_operand" "r")
|
219 |
|
|
(match_operand:HI 3 "picochip_J_operand" "J"))
|
220 |
|
|
(match_operand:HI 4 "picochip_register_or_immediate_operand" "ri")]))
|
221 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
222 |
|
|
""
|
223 |
|
|
"%I1.0 [LSR %2,%3],%4,%0\t// %0 := (%2 >> %3) %i1 %4"
|
224 |
|
|
[(set_attr "type" "picoAlu")
|
225 |
|
|
;; A long constant must be used if the operator instruction doesn't
|
226 |
|
|
;; accept immediates, or if the constant is too big to fit the
|
227 |
|
|
;; immediate. Note that the following condition is written in the
|
228 |
|
|
;; way which uses the least number of predicates.
|
229 |
|
|
(set (attr "longConstant")
|
230 |
|
|
(cond [(ior (match_operand 4 "register_operand")
|
231 |
|
|
(and (match_operand 1 "picochip_first_op_shift_operator_imm")
|
232 |
|
|
(match_operand 1 "picochip_J_operand")))
|
233 |
|
|
(const_string "false")]
|
234 |
|
|
(const_string "true")))])
|
235 |
|
|
|
236 |
|
|
;;===========================================================================
|
237 |
|
|
;; Jump instructions.
|
238 |
|
|
;;===========================================================================
|
239 |
|
|
|
240 |
|
|
(define_insn "indirect_jump"
|
241 |
|
|
[(set (pc) (match_operand:HI 0 "register_operand" "r"))]
|
242 |
|
|
""
|
243 |
|
|
"JR (%0)\t// Indirect_jump to %0 %>"
|
244 |
|
|
[(set_attr "type" "realBranch")
|
245 |
|
|
(set_attr "length" "3")])
|
246 |
|
|
|
247 |
|
|
(define_insn "jump"
|
248 |
|
|
[(set (pc)
|
249 |
|
|
(label_ref (match_operand 0 "" "")))]
|
250 |
|
|
""
|
251 |
|
|
"* return picochip_output_jump(insn);"
|
252 |
|
|
[(set (attr "length")
|
253 |
|
|
(if_then_else
|
254 |
|
|
(and (ge (minus (match_dup 0) (pc)) (const_int MIN_BRANCH_OFFSET))
|
255 |
|
|
(le (minus (match_dup 0) (pc)) (const_int MAX_BRANCH_OFFSET)))
|
256 |
|
|
(const_int SHORT_BRANCH_LENGTH)
|
257 |
|
|
(const_int LONG_BRANCH_LENGTH)))
|
258 |
|
|
(set (attr "type")
|
259 |
|
|
(if_then_else
|
260 |
|
|
(eq_attr "length" "6")
|
261 |
|
|
(const_string "realBranch")
|
262 |
|
|
(const_string "unknown")))])
|
263 |
|
|
|
264 |
|
|
(define_insn "*fn_return"
|
265 |
|
|
[(return)
|
266 |
|
|
(use (reg:HI LINK_REGNUM))]
|
267 |
|
|
""
|
268 |
|
|
"JR (R12)\t// Return to caller %>"
|
269 |
|
|
[(set_attr "length" "2")
|
270 |
|
|
(set_attr "type" "realBranch")
|
271 |
|
|
(set_attr "longConstant" "false")])
|
272 |
|
|
|
273 |
|
|
;; Peephole either 2 LDWs or STWs into LDL/STL.
|
274 |
|
|
(define_peephole2
|
275 |
|
|
[(set (match_operand:HI 0 "register_operand" "")
|
276 |
|
|
(match_operand:HI 1 "memory_operand" ""))
|
277 |
|
|
(set (match_operand:HI 2 "register_operand" "")
|
278 |
|
|
(match_operand:HI 3 "memory_operand" ""))]
|
279 |
|
|
"ok_to_peephole_ldw(operands[0],operands[1],operands[2],operands[3])"
|
280 |
|
|
[(set (match_dup 4) (match_dup 5))]
|
281 |
|
|
"{
|
282 |
|
|
operands[4] = gen_min_reg(operands[0],operands[2]);
|
283 |
|
|
operands[5] = gen_SImode_mem(operands[1],operands[3]);
|
284 |
|
|
}")
|
285 |
|
|
|
286 |
|
|
(define_peephole2
|
287 |
|
|
[(set (match_operand:HI 0 "memory_operand" "")
|
288 |
|
|
(match_operand:HI 1 "register_operand" ""))
|
289 |
|
|
(set (match_operand:HI 2 "memory_operand" "")
|
290 |
|
|
(match_operand:HI 3 "register_operand" ""))]
|
291 |
|
|
"ok_to_peephole_stw(operands[0],operands[1],operands[2],operands[3])"
|
292 |
|
|
[(set (match_dup 4) (match_dup 5))]
|
293 |
|
|
"{
|
294 |
|
|
operands[4] = gen_SImode_mem(operands[0],operands[2]);
|
295 |
|
|
operands[5] = gen_min_reg(operands[1],operands[3]);
|
296 |
|
|
}")
|
297 |
|
|
|
298 |
|
|
|
299 |
|
|
;; We have instructions like add,subtract,ior,and that set condition
|
300 |
|
|
;; codes if they are executed on slot 0. If we have
|
301 |
|
|
;; add a = b + c
|
302 |
|
|
;; if (a!=0)
|
303 |
|
|
;; {}
|
304 |
|
|
;; We would have RTL sequence like
|
305 |
|
|
;; add.# rb,rc,ra # will be replaced by slot no, after scheduling
|
306 |
|
|
;; sub.0 ra,0,r15
|
307 |
|
|
;; bnz
|
308 |
|
|
;; Instead, we can just do
|
309 |
|
|
;; add.0 rb,rc,ra
|
310 |
|
|
;; bnz
|
311 |
|
|
|
312 |
|
|
(define_peephole2
|
313 |
|
|
[(parallel [(set (match_operand:HI 0 "register_operand" "")
|
314 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "")
|
315 |
|
|
(match_operand:HI 2 "general_operand" "")))
|
316 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
317 |
|
|
(parallel [(set (pc)
|
318 |
|
|
(if_then_else
|
319 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
320 |
|
|
[(match_dup 0) (const_int 0)])
|
321 |
|
|
(label_ref (match_operand 6 "" ""))
|
322 |
|
|
(pc)))
|
323 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
324 |
|
|
""
|
325 |
|
|
[(parallel [(set (match_dup 0)
|
326 |
|
|
(plus:HI (match_dup 1) (match_dup 2)))
|
327 |
|
|
(set (reg:CC CC_REGNUM)
|
328 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
329 |
|
|
(parallel [(set (pc)
|
330 |
|
|
(if_then_else
|
331 |
|
|
(match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
|
332 |
|
|
(label_ref (match_dup 6))
|
333 |
|
|
(pc)))
|
334 |
|
|
(use (match_dup 7))])]
|
335 |
|
|
"{
|
336 |
|
|
operands[7] = GEN_INT(0);
|
337 |
|
|
}")
|
338 |
|
|
|
339 |
|
|
(define_peephole2
|
340 |
|
|
[(parallel [(set (match_operand:HI 0 "register_operand" "")
|
341 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "")
|
342 |
|
|
(match_operand:HI 2 "general_operand" "")))
|
343 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
344 |
|
|
(set (reg:CC CC_REGNUM)
|
345 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
346 |
|
|
[(match_dup 0) (const_int 0)]))
|
347 |
|
|
(parallel [(set (pc)
|
348 |
|
|
(if_then_else
|
349 |
|
|
(match_operator 4 "comparison_operator"
|
350 |
|
|
[(reg:CC CC_REGNUM) (const_int 0)])
|
351 |
|
|
(label_ref (match_operand 5 "" ""))
|
352 |
|
|
(pc)))
|
353 |
|
|
(use (match_operand:HI 6 "const_int_operand" ""))])]
|
354 |
|
|
""
|
355 |
|
|
[(parallel [(set (match_dup 0)
|
356 |
|
|
(plus:HI (match_dup 1) (match_dup 2)))
|
357 |
|
|
(set (reg:CC CC_REGNUM)
|
358 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
359 |
|
|
(parallel [(set (pc)
|
360 |
|
|
(if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
|
361 |
|
|
(label_ref (match_dup 5))
|
362 |
|
|
(pc)))
|
363 |
|
|
(use (match_dup 6))])]
|
364 |
|
|
"{
|
365 |
|
|
operands[7] = GEN_INT(0);
|
366 |
|
|
}")
|
367 |
|
|
|
368 |
|
|
|
369 |
|
|
;; If peephole happens before the cbranch split
|
370 |
|
|
|
371 |
|
|
(define_peephole2
|
372 |
|
|
[(parallel [(set (match_operand:HI 0 "register_operand" "")
|
373 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "")
|
374 |
|
|
(match_operand:HI 2 "register_operand" "")))
|
375 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
376 |
|
|
(parallel [(set (pc)
|
377 |
|
|
(if_then_else
|
378 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
379 |
|
|
[(match_dup 0) (const_int 0)])
|
380 |
|
|
(label_ref (match_operand 6 "" ""))
|
381 |
|
|
(pc)))
|
382 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
383 |
|
|
""
|
384 |
|
|
[(parallel [(set (match_dup 0)
|
385 |
|
|
(minus:HI (match_dup 1) (match_dup 2)))
|
386 |
|
|
(set (reg:CC CC_REGNUM)
|
387 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
388 |
|
|
(parallel [(set (pc)
|
389 |
|
|
(if_then_else
|
390 |
|
|
(match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
|
391 |
|
|
(label_ref (match_dup 6))
|
392 |
|
|
(pc)))
|
393 |
|
|
(use (match_dup 7))])]
|
394 |
|
|
"{
|
395 |
|
|
operands[7] = GEN_INT(0);
|
396 |
|
|
}")
|
397 |
|
|
|
398 |
|
|
|
399 |
|
|
;; If peephole happens after the cbranch split
|
400 |
|
|
|
401 |
|
|
(define_peephole2
|
402 |
|
|
[(parallel [(set (match_operand:HI 0 "register_operand" "")
|
403 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "")
|
404 |
|
|
(match_operand:HI 2 "register_operand" "")))
|
405 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
406 |
|
|
(set (reg:CC CC_REGNUM)
|
407 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
408 |
|
|
[(match_dup 0) (const_int 0)]))
|
409 |
|
|
(parallel [(set (pc)
|
410 |
|
|
(if_then_else
|
411 |
|
|
(match_operator 4 "comparison_operator"
|
412 |
|
|
[(reg:CC CC_REGNUM) (const_int 0)])
|
413 |
|
|
(label_ref (match_operand 5 "" ""))
|
414 |
|
|
(pc)))
|
415 |
|
|
(use (match_operand:HI 6 "const_int_operand" ""))])]
|
416 |
|
|
""
|
417 |
|
|
[(parallel [(set (match_dup 0)
|
418 |
|
|
(minus:HI (match_dup 1) (match_dup 2)))
|
419 |
|
|
(set (reg:CC CC_REGNUM)
|
420 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
421 |
|
|
(parallel [(set (pc)
|
422 |
|
|
(if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
|
423 |
|
|
(label_ref (match_dup 5))
|
424 |
|
|
(pc)))
|
425 |
|
|
(use (match_dup 6))])]
|
426 |
|
|
"{
|
427 |
|
|
operands[7] = GEN_INT(0);
|
428 |
|
|
}")
|
429 |
|
|
|
430 |
|
|
;; If peephole happens before the cbranch split
|
431 |
|
|
|
432 |
|
|
(define_peephole2
|
433 |
|
|
[(parallel[(set (match_operand:HI 0 "register_operand" "")
|
434 |
|
|
(and:HI (match_operand:HI 1 "register_operand" "")
|
435 |
|
|
(match_operand:HI 2 "general_operand" "")))
|
436 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
437 |
|
|
(parallel [(set (pc)
|
438 |
|
|
(if_then_else
|
439 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
440 |
|
|
[(match_dup 0) (const_int 0)])
|
441 |
|
|
(label_ref (match_operand 6 "" ""))
|
442 |
|
|
(pc)))
|
443 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
444 |
|
|
""
|
445 |
|
|
[(parallel [(set (match_dup 0)
|
446 |
|
|
(and:HI (match_dup 1) (match_dup 2)))
|
447 |
|
|
(set (reg:CC CC_REGNUM)
|
448 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
449 |
|
|
(parallel [(set (pc)
|
450 |
|
|
(if_then_else
|
451 |
|
|
(match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
|
452 |
|
|
(label_ref (match_dup 6))
|
453 |
|
|
(pc)))
|
454 |
|
|
(use (match_dup 7))])]
|
455 |
|
|
"{
|
456 |
|
|
operands[7] = GEN_INT(0);
|
457 |
|
|
}")
|
458 |
|
|
|
459 |
|
|
(define_peephole2
|
460 |
|
|
[(parallel[(set (match_operand:HI 0 "register_operand" "")
|
461 |
|
|
(and:HI (match_operand:HI 1 "register_operand" "")
|
462 |
|
|
(match_operand:HI 2 "general_operand" "")))
|
463 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
464 |
|
|
(set (reg:CC CC_REGNUM)
|
465 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
466 |
|
|
[(match_dup 0) (const_int 0)]))
|
467 |
|
|
(parallel [(set (pc)
|
468 |
|
|
(if_then_else
|
469 |
|
|
(match_operator 4 "comparison_operator"
|
470 |
|
|
[(reg:CC CC_REGNUM) (const_int 0)])
|
471 |
|
|
(label_ref (match_operand 5 "" ""))
|
472 |
|
|
(pc)))
|
473 |
|
|
(use (match_operand:HI 6 "const_int_operand" ""))])]
|
474 |
|
|
""
|
475 |
|
|
[(parallel [(set (match_dup 0)
|
476 |
|
|
(and:HI (match_dup 1) (match_dup 2)))
|
477 |
|
|
(set (reg:CC CC_REGNUM)
|
478 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
479 |
|
|
(parallel [(set (pc)
|
480 |
|
|
(if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
|
481 |
|
|
(label_ref (match_dup 5))
|
482 |
|
|
(pc)))
|
483 |
|
|
(use (match_dup 6))])]
|
484 |
|
|
"{
|
485 |
|
|
operands[7] = GEN_INT(0);
|
486 |
|
|
}")
|
487 |
|
|
|
488 |
|
|
;; If peephole happens before the cbranch split
|
489 |
|
|
|
490 |
|
|
(define_peephole2
|
491 |
|
|
[(parallel[(set (match_operand:HI 0 "register_operand" "")
|
492 |
|
|
(ior:HI (match_operand:HI 1 "register_operand" "")
|
493 |
|
|
(match_operand:HI 2 "general_operand" "")))
|
494 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
495 |
|
|
(parallel [(set (pc)
|
496 |
|
|
(if_then_else
|
497 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
498 |
|
|
[(match_dup 0) (const_int 0)])
|
499 |
|
|
(label_ref (match_operand 6 "" ""))
|
500 |
|
|
(pc)))
|
501 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
502 |
|
|
""
|
503 |
|
|
[(parallel [(set (match_dup 0)
|
504 |
|
|
(ior:HI (match_dup 1) (match_dup 2)))
|
505 |
|
|
(set (reg:CC CC_REGNUM)
|
506 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
507 |
|
|
(parallel [(set (pc)
|
508 |
|
|
(if_then_else
|
509 |
|
|
(match_op_dup:HI 3 [(reg:CC CC_REGNUM) (const_int 0)])
|
510 |
|
|
(label_ref (match_dup 6))
|
511 |
|
|
(pc)))
|
512 |
|
|
(use (match_dup 7))])]
|
513 |
|
|
"{
|
514 |
|
|
operands[7] = GEN_INT(0);
|
515 |
|
|
}")
|
516 |
|
|
|
517 |
|
|
(define_peephole2
|
518 |
|
|
[(parallel[(set (match_operand:HI 0 "register_operand" "")
|
519 |
|
|
(ior:HI (match_operand:HI 1 "register_operand" "")
|
520 |
|
|
(match_operand:HI 2 "general_operand" "")))
|
521 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
522 |
|
|
(set (reg:CC CC_REGNUM)
|
523 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
524 |
|
|
[(match_dup 0) (const_int 0)]))
|
525 |
|
|
(parallel [(set (pc)
|
526 |
|
|
(if_then_else
|
527 |
|
|
(match_operator 4 "comparison_operator"
|
528 |
|
|
[(reg:CC CC_REGNUM) (const_int 0)])
|
529 |
|
|
(label_ref (match_operand 5 "" ""))
|
530 |
|
|
(pc)))
|
531 |
|
|
(use (match_operand:HI 6 "const_int_operand" ""))])]
|
532 |
|
|
""
|
533 |
|
|
[(parallel [(set (match_dup 0)
|
534 |
|
|
(ior:HI (match_dup 1) (match_dup 2)))
|
535 |
|
|
(set (reg:CC CC_REGNUM)
|
536 |
|
|
(match_op_dup 3 [(const_int 0) (const_int 0)]))])
|
537 |
|
|
(parallel [(set (pc)
|
538 |
|
|
(if_then_else (match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
|
539 |
|
|
(label_ref (match_dup 5))
|
540 |
|
|
(pc)))
|
541 |
|
|
(use (match_dup 6))])]
|
542 |
|
|
"{
|
543 |
|
|
operands[7] = GEN_INT(0);
|
544 |
|
|
}")
|
545 |
|
|
|
546 |
|
|
;; Conditional branch (HI). This is split into separate compare and
|
547 |
|
|
;; branch instructions if scheduling is enabled. The branch
|
548 |
|
|
;; instruction is supplied with the type of comparison on which the
|
549 |
|
|
;; branch should occur.
|
550 |
|
|
|
551 |
|
|
(define_insn_and_split "cbranchhi4"
|
552 |
|
|
[(set (pc)
|
553 |
|
|
(if_then_else
|
554 |
|
|
(match_operator 0 "ordered_comparison_operator"
|
555 |
|
|
[(match_operand:HI 1 "register_operand" "r")
|
556 |
|
|
(match_operand:HI 2 "picochip_comparison_operand" "ri")])
|
557 |
|
|
(label_ref (match_operand 3 "" ""))
|
558 |
|
|
(pc)))
|
559 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
560 |
|
|
""
|
561 |
|
|
"* return picochip_output_cbranch(operands);"
|
562 |
|
|
"reload_completed
|
563 |
|
|
&& (picochip_schedule_type != DFA_TYPE_NONE || flag_delayed_branch)"
|
564 |
|
|
[(const_int 0)]
|
565 |
|
|
"{
|
566 |
|
|
rtx const_int_opnd;
|
567 |
|
|
const_int_opnd = GEN_INT(GET_CODE(operands[0]));
|
568 |
|
|
if (picochip_supported_comparison_operator (operands[0], HImode))
|
569 |
|
|
emit_insn (gen_supported_compare (operands[0], operands[1], operands[2]));
|
570 |
|
|
else
|
571 |
|
|
emit_insn (gen_compare (operands[0], operands[1], operands[2]));
|
572 |
|
|
emit_jump_insn (gen_branch (operands[3], const_int_opnd, operands[0]));
|
573 |
|
|
}")
|
574 |
|
|
|
575 |
|
|
;; The only difference between this and the next pattern is that the next pattern
|
576 |
|
|
;; might introduce subtracts whose first operand is a constant. This would have to
|
577 |
|
|
;; be a longConstant. But, we know that such a situation wouldnt arise for supported
|
578 |
|
|
;; comparison operator and hence this pattern assumes that the second constraint combo
|
579 |
|
|
;; would still generate a normal instruction.
|
580 |
|
|
|
581 |
|
|
(define_insn "supported_compare"
|
582 |
|
|
[(set (reg:CC CC_REGNUM)
|
583 |
|
|
(match_operator:CC 0 "picochip_supported_comparison_operator"
|
584 |
|
|
[(match_operand:HI 1 "register_operand" "r,r,r")
|
585 |
|
|
(match_operand:HI 2 "picochip_comparison_operand" "r,J,i")]))]
|
586 |
|
|
""
|
587 |
|
|
"* return picochip_output_compare(operands);"
|
588 |
|
|
[; Must be picoAlu because it sets the condition flags.
|
589 |
|
|
(set_attr "type" "picoAlu,picoAlu,picoAlu")
|
590 |
|
|
(set_attr "longConstant" "false,false,true")
|
591 |
|
|
(set_attr "length" "2,2,4")
|
592 |
|
|
])
|
593 |
|
|
|
594 |
|
|
;; This pattern was added to match the previous pattern. When doing if-convert
|
595 |
|
|
;; the pattern generated using movhicc does not have a eq:CC but only a eq for
|
596 |
|
|
;; operator. If this pattern were not to be there, Gcc decides not to use
|
597 |
|
|
;; movhicc at all. Whereas, in Gcc 4.4, it seems to be cleverer.
|
598 |
|
|
(define_insn "*supported_compare1"
|
599 |
|
|
[(set (reg:CC CC_REGNUM)
|
600 |
|
|
(match_operator 0 "picochip_supported_comparison_operator"
|
601 |
|
|
[(match_operand:HI 1 "register_operand" "r,r,r")
|
602 |
|
|
(match_operand:HI 2 "picochip_comparison_operand" "r,J,i")]))]
|
603 |
|
|
""
|
604 |
|
|
"* return picochip_output_compare(operands);"
|
605 |
|
|
[; Must be picoAlu because it sets the condition flags.
|
606 |
|
|
(set_attr "type" "picoAlu,picoAlu,picoAlu")
|
607 |
|
|
(set_attr "longConstant" "false,false,true")
|
608 |
|
|
(set_attr "length" "2,2,4")
|
609 |
|
|
])
|
610 |
|
|
|
611 |
|
|
(define_insn "compare"
|
612 |
|
|
[(set (reg:CC CC_REGNUM)
|
613 |
|
|
(match_operator:CC 0 "comparison_operator"
|
614 |
|
|
[(match_operand:HI 1 "register_operand" "r,r,r")
|
615 |
|
|
(match_operand:HI 2 "picochip_comparison_operand" "r,M,i")]))]
|
616 |
|
|
""
|
617 |
|
|
"* return picochip_output_compare(operands);"
|
618 |
|
|
[; Must be picoAlu because it sets the condition flags.
|
619 |
|
|
(set_attr "type" "picoAlu,picoAlu,picoAlu")
|
620 |
|
|
(set_attr "longConstant" "false,true,true")
|
621 |
|
|
(set_attr "length" "2,4,4")
|
622 |
|
|
])
|
623 |
|
|
|
624 |
|
|
; Match a branch instruction, created from a tstport/cbranch split.
|
625 |
|
|
; We use a "use" clause so GCC doesnt try to use this pattern generally.
|
626 |
|
|
(define_insn "branch"
|
627 |
|
|
[(set (pc)
|
628 |
|
|
(if_then_else
|
629 |
|
|
(match_operator 2 "comparison_operator"
|
630 |
|
|
[(reg:CC CC_REGNUM) (const_int 0)])
|
631 |
|
|
(label_ref (match_operand 0 "" ""))
|
632 |
|
|
(pc)))
|
633 |
|
|
(use (match_operand:HI 1 "const_int_operand" ""))]
|
634 |
|
|
""
|
635 |
|
|
"* return picochip_output_branch(operands, insn);"
|
636 |
|
|
[(set (attr "length")
|
637 |
|
|
(if_then_else
|
638 |
|
|
(and (ge (minus (match_dup 0) (pc)) (const_int MIN_BRANCH_OFFSET))
|
639 |
|
|
(le (minus (match_dup 0) (pc)) (const_int MAX_BRANCH_OFFSET)))
|
640 |
|
|
(const_int SHORT_BRANCH_LENGTH)
|
641 |
|
|
(const_int LONG_BRANCH_LENGTH)))
|
642 |
|
|
(set (attr "type")
|
643 |
|
|
(if_then_else
|
644 |
|
|
(eq_attr "length" "6")
|
645 |
|
|
(const_string "realBranch")
|
646 |
|
|
(const_string "unknown")))])
|
647 |
|
|
|
648 |
|
|
;; If a movqi is used which accesses memory on a machine which doesn't
|
649 |
|
|
;; have byte addressing, synthesise the instruction using word load/store
|
650 |
|
|
;; operations. The movqi's that are required during reload phase are
|
651 |
|
|
;; handled using reload_inqi/reload_outqi.
|
652 |
|
|
|
653 |
|
|
(define_expand "movqi"
|
654 |
|
|
[(set (match_operand:QI 0 "nonimmediate_operand" "")
|
655 |
|
|
(match_operand:QI 1 "general_operand" ""))]
|
656 |
|
|
""
|
657 |
|
|
{
|
658 |
|
|
|
659 |
|
|
if (!reload_completed &&
|
660 |
|
|
!TARGET_HAS_BYTE_ACCESS &&
|
661 |
|
|
(MEM == GET_CODE(operands[0]) || MEM == GET_CODE(operands[1])))
|
662 |
|
|
{
|
663 |
|
|
rtx address;
|
664 |
|
|
rtx wordAddress;
|
665 |
|
|
rtx const1;
|
666 |
|
|
rtx shiftVal;
|
667 |
|
|
rtx loadedValue;
|
668 |
|
|
rtx addressMask;
|
669 |
|
|
rtx topByteValue;
|
670 |
|
|
rtx signExtendedValue;
|
671 |
|
|
|
672 |
|
|
|
673 |
|
|
warn_of_byte_access();
|
674 |
|
|
|
675 |
|
|
/* Load the constant 1 into a register. */
|
676 |
|
|
const1 = gen_reg_rtx(HImode);
|
677 |
|
|
emit_insn(gen_rtx_SET(HImode, const1, GEN_INT(1)));
|
678 |
|
|
|
679 |
|
|
/* Load the address mask with the bitwise complement of 1. */
|
680 |
|
|
addressMask = gen_reg_rtx(HImode);
|
681 |
|
|
emit_insn(gen_rtx_SET(HImode, addressMask, GEN_INT(-2)));
|
682 |
|
|
|
683 |
|
|
/* Handle loads first, in case we are dealing with a mem := mem
|
684 |
|
|
* instruction. */
|
685 |
|
|
if (MEM == GET_CODE(operands[1]))
|
686 |
|
|
{
|
687 |
|
|
/* Loads work as follows. The entire word containing the desired byte
|
688 |
|
|
* is loaded. The bottom bit of the address indicates which
|
689 |
|
|
* byte is required. The desired byte is moved into the most
|
690 |
|
|
* significant byte, and then an arithmetic shift right
|
691 |
|
|
* invoked to achieve sign extension. The desired byte is
|
692 |
|
|
* moved to the MSB by XOR'ing the bottom address bit by 1,
|
693 |
|
|
* multiplying the result by 8, and then shifting left by
|
694 |
|
|
* that amount. Note that shifts only operate on the bottom
|
695 |
|
|
* 4-bits of the source offset, so although the XOR may
|
696 |
|
|
* produce a value which has its upper bits set, only bit 4
|
697 |
|
|
* (i.e., the inverted, shifted bottom address bit) actually
|
698 |
|
|
* gets used.
|
699 |
|
|
*/
|
700 |
|
|
|
701 |
|
|
/* Ensure the address is in a register. */
|
702 |
|
|
address = gen_reg_rtx(HImode);
|
703 |
|
|
emit_insn(gen_rtx_SET(HImode, address, XEXP(operands[1], 0)));
|
704 |
|
|
|
705 |
|
|
/* Compute the word address by masking out the bottom bit. */
|
706 |
|
|
wordAddress = gen_reg_rtx(HImode);
|
707 |
|
|
emit_insn(gen_andhi3(wordAddress, address, addressMask));
|
708 |
|
|
|
709 |
|
|
/* Compute the shift value. This is the bottom address bit,
|
710 |
|
|
* inverted, and multiplied by 8. */
|
711 |
|
|
shiftVal = gen_reg_rtx(HImode);
|
712 |
|
|
emit_insn(gen_xorhi3(shiftVal, address, const1));
|
713 |
|
|
emit_insn(gen_ashlhi3(shiftVal, shiftVal, GEN_INT(3)));
|
714 |
|
|
|
715 |
|
|
/* Emit the memory load. */
|
716 |
|
|
loadedValue = gen_reg_rtx(HImode);
|
717 |
|
|
emit_insn(gen_rtx_SET(HImode, loadedValue, gen_rtx_MEM(HImode, wordAddress)));
|
718 |
|
|
|
719 |
|
|
/* Shift the desired byte to the most significant byte. */
|
720 |
|
|
topByteValue = gen_reg_rtx (HImode);
|
721 |
|
|
emit_insn (gen_ashlhi3 (topByteValue, loadedValue, shiftVal));
|
722 |
|
|
|
723 |
|
|
/* Sign extend the top-byte back into the bottom byte. */
|
724 |
|
|
signExtendedValue = gen_reg_rtx(HImode);
|
725 |
|
|
emit_insn(gen_ashrhi3(signExtendedValue, topByteValue, GEN_INT(8)));
|
726 |
|
|
|
727 |
|
|
/* Final extraction of QI mode register. */
|
728 |
|
|
operands[1] = gen_rtx_SUBREG(QImode, signExtendedValue, 0);
|
729 |
|
|
|
730 |
|
|
}
|
731 |
|
|
|
732 |
|
|
if (MEM == GET_CODE(operands[0]) && GET_CODE(operands[1]) != MEM)
|
733 |
|
|
{
|
734 |
|
|
rtx zeroingByteMask;
|
735 |
|
|
rtx temp;
|
736 |
|
|
rtx tempHiMode;
|
737 |
|
|
rtx lsbByteMask;
|
738 |
|
|
|
739 |
|
|
/* Get the address. */
|
740 |
|
|
address = gen_reg_rtx(HImode);
|
741 |
|
|
emit_insn(gen_rtx_SET(HImode, address, XEXP(operands[0], 0)));
|
742 |
|
|
|
743 |
|
|
/* Compute the word aligned address. */
|
744 |
|
|
wordAddress = gen_reg_rtx(HImode);
|
745 |
|
|
emit_insn(gen_andhi3(wordAddress, address, addressMask));
|
746 |
|
|
|
747 |
|
|
/* Compute the shift value. */
|
748 |
|
|
shiftVal = gen_reg_rtx(HImode);
|
749 |
|
|
emit_insn(gen_andhi3(shiftVal, address, const1));
|
750 |
|
|
emit_insn(gen_ashlhi3(shiftVal, shiftVal, GEN_INT(3)));
|
751 |
|
|
|
752 |
|
|
/* Emit the memory load. */
|
753 |
|
|
loadedValue = gen_reg_rtx(HImode);
|
754 |
|
|
emit_insn(gen_rtx_SET(HImode, loadedValue, gen_rtx_MEM(HImode, wordAddress)));
|
755 |
|
|
|
756 |
|
|
/* Zero out the destination bits by AND'ing with 0xFF00
|
757 |
|
|
* shifted appropriately. */
|
758 |
|
|
zeroingByteMask = gen_reg_rtx(HImode);
|
759 |
|
|
emit_insn(gen_rtx_SET(HImode, zeroingByteMask, GEN_INT(-256)));
|
760 |
|
|
emit_insn(gen_lshrhi3(zeroingByteMask, zeroingByteMask, shiftVal));
|
761 |
|
|
emit_insn(gen_andhi3(loadedValue, loadedValue, zeroingByteMask));
|
762 |
|
|
|
763 |
|
|
/* Grab the incoming QI register, and ensure that the top bits
|
764 |
|
|
* are zeroed out. This is because the register may be
|
765 |
|
|
* storing a signed value, in which case the top-bits will be
|
766 |
|
|
* sign bits. These must be removed to ensure that the
|
767 |
|
|
* read-modify-write (which uses an OR) doesn't pick up those
|
768 |
|
|
* bits, instead of the original memory value which is being
|
769 |
|
|
* modified.
|
770 |
|
|
*/
|
771 |
|
|
tempHiMode = simplify_gen_subreg(HImode, operands[1], QImode, 0);
|
772 |
|
|
temp = gen_reg_rtx(HImode);
|
773 |
|
|
emit_insn(gen_rtx_SET(HImode, temp, tempHiMode));
|
774 |
|
|
lsbByteMask = gen_reg_rtx (HImode);
|
775 |
|
|
emit_insn (gen_rtx_SET (HImode, lsbByteMask, GEN_INT (0xFF)));
|
776 |
|
|
emit_insn (gen_andhi3 (temp, temp, lsbByteMask));
|
777 |
|
|
|
778 |
|
|
/* Shift the incoming byte value by the appropriate amount,
|
779 |
|
|
* and OR into the load value. */
|
780 |
|
|
emit_insn(gen_ashlhi3(temp, temp, shiftVal));
|
781 |
|
|
emit_insn(gen_iorhi3(loadedValue, loadedValue, temp));
|
782 |
|
|
|
783 |
|
|
/* Rewrite the original assignment, to assign the new value
|
784 |
|
|
* to the word address. */
|
785 |
|
|
operands[0] = gen_rtx_MEM(HImode, wordAddress);
|
786 |
|
|
operands[1] = loadedValue;
|
787 |
|
|
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
}
|
791 |
|
|
})
|
792 |
|
|
|
793 |
|
|
(define_insn "*movqi_sign_extend"
|
794 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
795 |
|
|
(sign_extend:HI (match_operand:QI 1 "memory_operand" "a,m")))]
|
796 |
|
|
"TARGET_HAS_BYTE_ACCESS"
|
797 |
|
|
"@
|
798 |
|
|
LDB (%a1),%0\t\t// %0 = Mem(%a1)
|
799 |
|
|
LDB %a1,%0\t\t// %0 = Mem(%M1{byte})"
|
800 |
|
|
[(set_attr "type" "mem,mem")
|
801 |
|
|
(set_attr "longConstant" "true,false")
|
802 |
|
|
(set_attr "length" "4,4")])
|
803 |
|
|
|
804 |
|
|
;; movqi instructions for machines with and without byte access.
|
805 |
|
|
(define_insn "*movqi_byte"
|
806 |
|
|
[(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,r,r,r,a,m")
|
807 |
|
|
(match_operand:QI 1 "general_operand" "r,a,m,I,i,r,r"))]
|
808 |
|
|
"TARGET_HAS_BYTE_ACCESS"
|
809 |
|
|
"@
|
810 |
|
|
COPY.%# %1, %0\t// %0 := %1
|
811 |
|
|
LDB (%a1),%0\t\t// %0 = Mem(%a1)
|
812 |
|
|
LDB %a1,%0\t\t// %0 = Mem(%M1{byte})
|
813 |
|
|
COPY.%# %1,%0\t\t// %0 := #%1 (QI) (short constant)
|
814 |
|
|
COPY.%# %1,%0\t\t// %0 := #%1 (QI) (long constant)
|
815 |
|
|
STB %1,(%a0)\t\t// Mem(%a0) := %1
|
816 |
|
|
STB %1,%a0\t\t// Mem(%M0{byte}) := %1"
|
817 |
|
|
[(set_attr "type" "basicAlu,mem,mem,basicAlu,basicAlu,mem,mem")
|
818 |
|
|
(set_attr "longConstant" "false,true,false,false,true,true,false")
|
819 |
|
|
(set_attr "length" "2,4,4,2,4,4,4")])
|
820 |
|
|
|
821 |
|
|
;; Machines which don't have byte access can copy registers, and load
|
822 |
|
|
;; constants, but can't access memory. The define_expand for movqi
|
823 |
|
|
;; should already have rewritten memory accesses using word
|
824 |
|
|
;; operations. The exception is qi reloads, which are handled using
|
825 |
|
|
;; the reload_? patterns.
|
826 |
|
|
(define_insn "*movqi_nobyte"
|
827 |
|
|
[(set (match_operand:QI 0 "register_operand" "=r,r")
|
828 |
|
|
(match_operand:QI 1 "picochip_register_or_immediate_operand" "r,i"))]
|
829 |
|
|
"!TARGET_HAS_BYTE_ACCESS"
|
830 |
|
|
"@
|
831 |
|
|
COPY.%# %1,%0\t// %0 := %1
|
832 |
|
|
COPY.%# %1,%0\t\t// %0 := #%1 (QI)")
|
833 |
|
|
|
834 |
|
|
(define_insn "movhi"
|
835 |
|
|
[(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,a,m,r,r")
|
836 |
|
|
(match_operand:HI 1 "general_operand" "r,a,m,r,r,I,i"))]
|
837 |
|
|
""
|
838 |
|
|
"@
|
839 |
|
|
COPY.%# %1,%0\t\t// %0 := %1
|
840 |
|
|
LDW (%a1),%0\t\t// %0 := Mem(%a1)
|
841 |
|
|
LDW %a1,%0\t\t// %0 = Mem(%M1{byte})
|
842 |
|
|
STW %1,(%a0)\t\t// Mem(%a0) := %1
|
843 |
|
|
STW %1,%a0\t\t// Mem(%M0{byte}) := %1
|
844 |
|
|
COPY.%# %1,%0\t// %0 := %1 (short constant)
|
845 |
|
|
COPY.%# %1,%0\t// %0 := %1 (long constant)"
|
846 |
|
|
[(set_attr "type" "basicAlu,mem,mem,mem,mem,basicAlu,basicAlu")
|
847 |
|
|
(set_attr "longConstant" "false,true,false,true,false,false,true")
|
848 |
|
|
(set_attr "length" "2,4,4,4,4,2,4")])
|
849 |
|
|
|
850 |
|
|
(define_insn "movsi"
|
851 |
|
|
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,a,m")
|
852 |
|
|
(match_operand:SI 1 "general_operand" "r,a,m,i,r,r"))]
|
853 |
|
|
""
|
854 |
|
|
"@
|
855 |
|
|
// %R0 := %R1 (SI)\n\tCOPY.%# %L1,%L0 %| COPY.1 %U1,%U0
|
856 |
|
|
LDL (%a1),%R0\t\t// %R0 = Mem(%a1)
|
857 |
|
|
LDL %a1,%R0\t\t// %R0 = Mem(%M1{byte})
|
858 |
|
|
// %R0 := #%1 (SI)\n\tCOPY.%# %L1,%L0 %| COPY.%# %U1,%U0
|
859 |
|
|
STL %R1,(%a0)\t\t// Mem(%a0) := %R1
|
860 |
|
|
STL %R1,%a0\t\t// Mem(%M0{byte}) := %R1"
|
861 |
|
|
[(set_attr "type" "unknown,mem,mem,unknown,mem,mem")
|
862 |
|
|
(set_attr "longConstant" "false,true,false,true,false,false")
|
863 |
|
|
(set_attr "length" "4,4,4,6,4,4")])
|
864 |
|
|
|
865 |
|
|
; Split an SI mode register copy into separate HI mode copies, which
|
866 |
|
|
; can be VLIW'd with other instructions. Only split the instruction
|
867 |
|
|
; when VLIW scheduling is enabled. Splitting the instruction saves
|
868 |
|
|
; some code space.
|
869 |
|
|
;
|
870 |
|
|
; This is predicated in reload_completed. This ensures that the
|
871 |
|
|
; instructions aren't broken up too early which can result in the
|
872 |
|
|
; SImode code being converted into inefficient HI mode code.
|
873 |
|
|
|
874 |
|
|
(define_split
|
875 |
|
|
[(set (match_operand:SI 0 "register_operand" "")
|
876 |
|
|
(match_operand:SI 1 "register_operand" ""))]
|
877 |
|
|
"reload_completed && picochip_schedule_type == DFA_TYPE_SPEED"
|
878 |
|
|
[(set (match_dup 2) (match_dup 3))
|
879 |
|
|
(set (match_dup 4) (match_dup 5))]
|
880 |
|
|
"{
|
881 |
|
|
operands[2] = gen_lowpart (HImode, operands[0]);
|
882 |
|
|
operands[3] = gen_lowpart (HImode, operands[1]);
|
883 |
|
|
operands[4] = gen_highpart (HImode, operands[0]);
|
884 |
|
|
operands[5] = gen_highpart (HImode, operands[1]);
|
885 |
|
|
}")
|
886 |
|
|
|
887 |
|
|
; SI Mode split for load constant.
|
888 |
|
|
(define_split
|
889 |
|
|
[(set (match_operand:SI 0 "register_operand" "")
|
890 |
|
|
(match_operand:SI 1 "const_int_operand" ""))]
|
891 |
|
|
"reload_completed"
|
892 |
|
|
[(set (match_dup 2) (match_dup 3))
|
893 |
|
|
(set (match_dup 4) (match_dup 5))]
|
894 |
|
|
"{
|
895 |
|
|
operands[2] = gen_lowpart (HImode, operands[0]);
|
896 |
|
|
operands[3] = picochip_get_low_const(operands[1]);
|
897 |
|
|
operands[4] = gen_highpart (HImode, operands[0]);
|
898 |
|
|
operands[5] = picochip_get_high_const(operands[1]);
|
899 |
|
|
}")
|
900 |
|
|
|
901 |
|
|
(define_insn "movsf"
|
902 |
|
|
[(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,m")
|
903 |
|
|
(match_operand:SF 1 "general_operand" "r,m,i,r"))]
|
904 |
|
|
""
|
905 |
|
|
"@
|
906 |
|
|
// %R0 := %R1 (SF)\n\tCOPY.%# %L1,%L0 %| COPY.1 %U1,%U0
|
907 |
|
|
LDL %a1,%R0\t\t// %R0 :={SF} Mem(%M1{byte})
|
908 |
|
|
// %R0 := #%1 (SF)\n\tCOPY.%# %L1,%L0\n\tCOPY.%# %U1,%U0
|
909 |
|
|
STL %R1,%a0\t\t// Mem(%M0{byte}) :={SF} %R1")
|
910 |
|
|
|
911 |
|
|
;; memcpy pattern
|
912 |
|
|
;; 0 = destination (mem:BLK ...)
|
913 |
|
|
;; 1 = source (mem:BLK ...)
|
914 |
|
|
;; 2 = count
|
915 |
|
|
;; 3 = alignment
|
916 |
|
|
(define_expand "movmemhi"
|
917 |
|
|
[(match_operand 0 "memory_operand" "")
|
918 |
|
|
(match_operand 1 "memory_operand" "")
|
919 |
|
|
(match_operand:HI 2 "immediate_operand" "")
|
920 |
|
|
(match_operand 3 "" "")]
|
921 |
|
|
"picochip_schedule_type != DFA_TYPE_NONE"
|
922 |
|
|
"if (picochip_expand_movmemhi(operands)) DONE; FAIL;"
|
923 |
|
|
)
|
924 |
|
|
|
925 |
|
|
;;===========================================================================
|
926 |
|
|
;; NOP
|
927 |
|
|
;;===========================================================================
|
928 |
|
|
|
929 |
|
|
;; No-operation (NOP)
|
930 |
|
|
(define_insn "nop"
|
931 |
|
|
[(const_int 0)]
|
932 |
|
|
""
|
933 |
|
|
"NOP\t// nop"
|
934 |
|
|
[(set_attr "length" "1")])
|
935 |
|
|
|
936 |
|
|
;;===========================================================================
|
937 |
|
|
;; Function Calls. Define expands are used to ensure that the correct
|
938 |
|
|
;; type of pattern is emitted, and then the define_insn's match the
|
939 |
|
|
;; pattern using the correct types.
|
940 |
|
|
;;
|
941 |
|
|
;; Note: The comments output as part of these instructions are detected by
|
942 |
|
|
;; the linker. Don't change the comments!
|
943 |
|
|
;;===========================================================================
|
944 |
|
|
|
945 |
|
|
(define_expand "call"
|
946 |
|
|
[(parallel [(call (match_operand:QI 0 "memory_operand" "")
|
947 |
|
|
(match_operand 1 "const_int_operand" ""))
|
948 |
|
|
(clobber (reg:HI LINK_REGNUM))])]
|
949 |
|
|
""
|
950 |
|
|
"")
|
951 |
|
|
|
952 |
|
|
(define_insn "call_for_divmod"
|
953 |
|
|
[(call (match_operand:QI 0 "memory_operand" "")
|
954 |
|
|
(match_operand 1 "const_int_operand" ""))]
|
955 |
|
|
""
|
956 |
|
|
"JL (%M0)\t// fn_call %M0%>"
|
957 |
|
|
[(set_attr "length" "4")
|
958 |
|
|
(set_attr "type" "realBranch")
|
959 |
|
|
(set_attr "longConstant" "true")])
|
960 |
|
|
|
961 |
|
|
(define_insn "*call_using_symbol"
|
962 |
|
|
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
|
963 |
|
|
(match_operand 1 "const_int_operand" ""))
|
964 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
965 |
|
|
""
|
966 |
|
|
"JL (%M0)\t// fn_call %M0%>"
|
967 |
|
|
[(set_attr "length" "4")
|
968 |
|
|
(set_attr "type" "realBranch")
|
969 |
|
|
(set_attr "longConstant" "true")])
|
970 |
|
|
|
971 |
|
|
(define_insn "*call_using_register"
|
972 |
|
|
[(call (mem:QI (match_operand:HI 0 "register_operand" "r"))
|
973 |
|
|
(match_operand 1 "const_int_operand" ""))
|
974 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
975 |
|
|
""
|
976 |
|
|
"JL (%r0)\t// fn_call_unknown %r0%>"
|
977 |
|
|
[(set_attr "length" "2")
|
978 |
|
|
(set_attr "type" "realBranch")
|
979 |
|
|
(set_attr "longConstant" "false")])
|
980 |
|
|
|
981 |
|
|
(define_expand "call_value"
|
982 |
|
|
[(parallel [(set (match_operand:HI 0 "" "")
|
983 |
|
|
(call:HI (match_operand:QI 1 "memory_operand" "g")
|
984 |
|
|
(match_operand 2 "const_int_operand" "")))
|
985 |
|
|
(clobber (reg:HI LINK_REGNUM))])]
|
986 |
|
|
""
|
987 |
|
|
"")
|
988 |
|
|
|
989 |
|
|
(define_insn "*call_value_using_symbol"
|
990 |
|
|
[(set (match_operand:HI 0 "" "")
|
991 |
|
|
(call:HI (mem:QI (match_operand:HI 1 "immediate_operand" "i"))
|
992 |
|
|
(match_operand 2 "const_int_operand" "")))
|
993 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
994 |
|
|
""
|
995 |
|
|
"JL (%M1)\t// fn_call %M1 (value return)%>"
|
996 |
|
|
[(set_attr "length" "4")
|
997 |
|
|
(set_attr "type" "realBranch")
|
998 |
|
|
(set_attr "longConstant" "true")])
|
999 |
|
|
|
1000 |
|
|
(define_insn "*call_value_using_register"
|
1001 |
|
|
[(set (match_operand:HI 0 "" "")
|
1002 |
|
|
(call:HI (mem:QI (match_operand:HI 1 "register_operand" "r"))
|
1003 |
|
|
(match_operand 2 "const_int_operand" "")))
|
1004 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
1005 |
|
|
""
|
1006 |
|
|
"JL (%r1)// fn_call_unknown %r1 (value return)%>"
|
1007 |
|
|
[(set_attr "length" "2")
|
1008 |
|
|
(set_attr "type" "realBranch")
|
1009 |
|
|
(set_attr "longConstant" "false")])
|
1010 |
|
|
|
1011 |
|
|
;;===========================================================================
|
1012 |
|
|
;; Addition
|
1013 |
|
|
;;===========================================================================
|
1014 |
|
|
|
1015 |
|
|
;; Note that the addition of a negative value is transformed into the
|
1016 |
|
|
;; subtraction of a positive value, so that the add/sub immediate slot
|
1017 |
|
|
;; can make better use of the 4-bit range.
|
1018 |
|
|
|
1019 |
|
|
(define_insn "addhi3"
|
1020 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
|
1021 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "r,r,r,r")
|
1022 |
|
|
(match_operand:HI 2 "general_operand" "r,M,n,i")))
|
1023 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1024 |
|
|
""
|
1025 |
|
|
{ if (CONST_INT == GET_CODE(operands[2]) &&
|
1026 |
|
|
INTVAL(operands[2]) > -16 &&
|
1027 |
|
|
INTVAL(operands[2]) < 0)
|
1028 |
|
|
return "SUB.%# %1,-(%2),%0\t// %0 := %1 + %2 (HI)";
|
1029 |
|
|
else
|
1030 |
|
|
return "ADD.%# %1,%2,%0\t// %0 := %1 + %2 (HI)";
|
1031 |
|
|
}
|
1032 |
|
|
[(set_attr "type" "basicAlu,basicAlu,basicAlu,basicAlu")
|
1033 |
|
|
(set_attr "longConstant" "false,false,true,true")
|
1034 |
|
|
(set_attr "length" "2,2,4,4")]
|
1035 |
|
|
)
|
1036 |
|
|
|
1037 |
|
|
|
1038 |
|
|
;; If we peepholed the compare instruction out, we need to make sure the add
|
1039 |
|
|
;; goes in slot 0. This pattern is just to accomplish that.
|
1040 |
|
|
|
1041 |
|
|
(define_insn "addhi3_with_use_clause"
|
1042 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r,r,r")
|
1043 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "r,r,r,r")
|
1044 |
|
|
(match_operand:HI 2 "general_operand" "r,M,n,i")))
|
1045 |
|
|
(set (reg:CC CC_REGNUM)
|
1046 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
1047 |
|
|
[(const_int 0)
|
1048 |
|
|
(const_int 0)]))]
|
1049 |
|
|
""
|
1050 |
|
|
{ if (CONST_INT == GET_CODE(operands[2]) &&
|
1051 |
|
|
INTVAL(operands[2]) > -16 &&
|
1052 |
|
|
INTVAL(operands[2]) < 0)
|
1053 |
|
|
return "SUB.0 %1,-(%2),%0\t// %0 := %1 + %2 (HI)";
|
1054 |
|
|
else
|
1055 |
|
|
return "ADD.0 %1,%2,%0\t// %0 := %1 + %2 (HI)";
|
1056 |
|
|
}
|
1057 |
|
|
[(set_attr "type" "picoAlu,picoAlu,picoAlu,picoAlu")
|
1058 |
|
|
(set_attr "longConstant" "false,false,true,true")
|
1059 |
|
|
(set_attr "length" "2,2,4,4")]
|
1060 |
|
|
)
|
1061 |
|
|
|
1062 |
|
|
;; Match an addition in which the first operand has been shifted
|
1063 |
|
|
;; (e.g., the comms array functions can emit such instructions).
|
1064 |
|
|
(define_insn "*addWith1stOpShift"
|
1065 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1066 |
|
|
(plus:HI (ashift:HI (match_operand:HI 1 "register_operand" "r,r")
|
1067 |
|
|
(match_operand:HI 2 "const_int_operand" ""))
|
1068 |
|
|
(match_operand:HI 3 "immediate_operand" "I,i")))
|
1069 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1070 |
|
|
""
|
1071 |
|
|
"ADD.0 [LSL %1,%2],%3,%0\t// %0 := (%1 << %2) + %3"
|
1072 |
|
|
[(set_attr "type" "picoAlu,picoAlu")
|
1073 |
|
|
(set_attr "longConstant" "false,true")])
|
1074 |
|
|
|
1075 |
|
|
(define_insn_and_split "addsi3"
|
1076 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r,r")
|
1077 |
|
|
(plus:SI (match_operand:SI 1 "register_operand" "r,r")
|
1078 |
|
|
(match_operand:SI 2 "general_operand" "r,i")))
|
1079 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1080 |
|
|
""
|
1081 |
|
|
"// %0 := %1 + %2 (SI)\n\tADD.0 %L1,%L2,%L0\n\tADDC.0 %U1,%U2,%U0"
|
1082 |
|
|
"reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
|
1083 |
|
|
[(match_dup 4)
|
1084 |
|
|
(match_dup 5)]
|
1085 |
|
|
"
|
1086 |
|
|
{
|
1087 |
|
|
rtx op0_high = gen_highpart (HImode, operands[0]);
|
1088 |
|
|
rtx op1_high = gen_highpart (HImode, operands[1]);
|
1089 |
|
|
rtx op0_low = gen_lowpart (HImode, operands[0]);
|
1090 |
|
|
rtx op1_low = gen_lowpart (HImode, operands[1]);
|
1091 |
|
|
rtx op2_high, op2_low;
|
1092 |
|
|
|
1093 |
|
|
if (CONST_INT == GET_CODE(operands[2]))
|
1094 |
|
|
{
|
1095 |
|
|
op2_high = picochip_get_high_const(operands[2]);
|
1096 |
|
|
op2_low = picochip_get_low_const(operands[2]);
|
1097 |
|
|
} else {
|
1098 |
|
|
op2_high = gen_highpart (HImode, operands[2]);
|
1099 |
|
|
op2_low = gen_lowpart (HImode, operands[2]);
|
1100 |
|
|
}
|
1101 |
|
|
|
1102 |
|
|
operands[4] = gen_add_multi_lower (op0_low, op1_low, op2_low);
|
1103 |
|
|
operands[5] = gen_add_multi_upper (op0_high, op1_high, op2_high);
|
1104 |
|
|
|
1105 |
|
|
}")
|
1106 |
|
|
|
1107 |
|
|
;; Perform the lowest part of a multi-part addition (SI/DI). This sets
|
1108 |
|
|
;; the flags, so is an picoAlu instruction (we could use a
|
1109 |
|
|
;; conventional addhi, but the addhi is better off being a treated as
|
1110 |
|
|
;; a basicAlu instruction, rather than a picoAlu instruction).
|
1111 |
|
|
(define_insn "add_multi_lower"
|
1112 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
|
1113 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "r,r,r")
|
1114 |
|
|
(match_operand:HI 2 "general_operand" "r,M,i")))
|
1115 |
|
|
(set (reg:CC CC_REGNUM)
|
1116 |
|
|
(compare:CC (plus:HI (match_dup 1)
|
1117 |
|
|
(match_dup 2))
|
1118 |
|
|
(const_int 0)))]
|
1119 |
|
|
""
|
1120 |
|
|
{ if (CONST_INT == GET_CODE(operands[2]) &&
|
1121 |
|
|
INTVAL(operands[2]) > -16 &&
|
1122 |
|
|
INTVAL(operands[2]) < 0)
|
1123 |
|
|
return "SUB.%# %1,-(%2),%0\t// %0+carry := %1 + %2 (low multi-part)";
|
1124 |
|
|
else
|
1125 |
|
|
return "ADD.%# %1,%2,%0\t// %0+carry := %1 + %2 (low multi-part)";
|
1126 |
|
|
}
|
1127 |
|
|
[(set_attr "type" "picoAlu,picoAlu,picoAlu")
|
1128 |
|
|
(set_attr "longConstant" "false,false,true")
|
1129 |
|
|
(set_attr "length" "2,2,4")])
|
1130 |
|
|
|
1131 |
|
|
;; Perform the central part of a multi-part addition (DI). This uses
|
1132 |
|
|
;; the CC register, and also sets the CC register, so needs to be
|
1133 |
|
|
;; placed in the first ALU slot. Note that the ADDC must
|
1134 |
|
|
;; use the long constant to represent immediates.
|
1135 |
|
|
(define_insn "add_multi_mid"
|
1136 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1137 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "r,r")
|
1138 |
|
|
(plus:HI (match_operand:HI 2 "general_operand" "r,i")
|
1139 |
|
|
(reg:CC CC_REGNUM))))
|
1140 |
|
|
(set (reg:CC CC_REGNUM)
|
1141 |
|
|
(compare:CC (plus:HI (match_dup 1)
|
1142 |
|
|
(match_dup 2))
|
1143 |
|
|
(const_int 0)))]
|
1144 |
|
|
""
|
1145 |
|
|
"ADDC.%# %1,%2,%0\t// %0+carry := carry + %1 + %2 (mid multi-part)"
|
1146 |
|
|
[(set_attr "type" "picoAlu,picoAlu")
|
1147 |
|
|
(set_attr "longConstant" "false,true")
|
1148 |
|
|
(set_attr "length" "2,4")])
|
1149 |
|
|
|
1150 |
|
|
;; Perform the highest part of a multi-part addition (SI/DI). This
|
1151 |
|
|
;; uses the CC register, but doesn't require any registers to be set,
|
1152 |
|
|
;; so may be scheduled in either of the ALU's. Note that the ADDC must
|
1153 |
|
|
;; use the long constant to represent immediates.
|
1154 |
|
|
(define_insn "add_multi_upper"
|
1155 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1156 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "r,r")
|
1157 |
|
|
(plus:HI (match_operand:HI 2 "general_operand" "r,i")
|
1158 |
|
|
(reg:CC CC_REGNUM))))
|
1159 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1160 |
|
|
""
|
1161 |
|
|
"ADDC.%# %1,%2,%0\t// %0 := carry + %1 + %2 (high multi-part)"
|
1162 |
|
|
[(set_attr "type" "basicAlu,basicAlu")
|
1163 |
|
|
(set_attr "longConstant" "false,true")
|
1164 |
|
|
(set_attr "length" "2,4")])
|
1165 |
|
|
|
1166 |
|
|
;; The lea instruction is a special type of add operation, which looks
|
1167 |
|
|
;; like a movhi (reg := address). It expands into reg := fp +
|
1168 |
|
|
;; offset. Ideally there should be two variants, which take different
|
1169 |
|
|
;; sized offsets (i.e., using the long constant, or not, as
|
1170 |
|
|
;; appropriate). However, the address operand may have arbitrary
|
1171 |
|
|
;; values added to it later (i.e., the AP will be eliminated, possibly
|
1172 |
|
|
;; converting a small offset into a long offset), so a long offset is
|
1173 |
|
|
;; always assumed.
|
1174 |
|
|
|
1175 |
|
|
;; Note that the lea can use an addition, and hence may modify the CC
|
1176 |
|
|
;; register. This upsets scheduling, so instead the lea is placed in
|
1177 |
|
|
;; ALU 1 where it cannot modify CC.
|
1178 |
|
|
|
1179 |
|
|
(define_insn "*lea_add"
|
1180 |
|
|
[(set (match_operand:HI 0 "nonimmediate_operand" "=r")
|
1181 |
|
|
(plus:HI (match_operand:HI 1 "register_operand" "r")
|
1182 |
|
|
(match_operand:HI 2 "immediate_operand" "i")))]
|
1183 |
|
|
""
|
1184 |
|
|
"ADD.1 %1,%2,%0\t// lea (add)")
|
1185 |
|
|
|
1186 |
|
|
;; Note that, though this instruction looks similar to movhi pattern,
|
1187 |
|
|
;; "p" constraint cannot be specified for operands other than
|
1188 |
|
|
;; address_operand, hence the extra pattern below.
|
1189 |
|
|
(define_insn "*lea_move"
|
1190 |
|
|
[(set (match_operand:HI 0 "nonimmediate_operand" "=r")
|
1191 |
|
|
(match_operand:HI 1 "address_operand" "p"))]
|
1192 |
|
|
""
|
1193 |
|
|
{
|
1194 |
|
|
if (REG == GET_CODE(operands[1]))
|
1195 |
|
|
return "COPY.1 %1,%0\t// %0 := %1 (lea)";
|
1196 |
|
|
else
|
1197 |
|
|
return "ADD.1 %b1,%o1,%0\t\t// %0 := %b1 + %o1 (lea)";
|
1198 |
|
|
}
|
1199 |
|
|
[(set_attr "type" "nonCcAlu")
|
1200 |
|
|
(set_attr "longConstant" "true")
|
1201 |
|
|
(set_attr "length" "4")])
|
1202 |
|
|
|
1203 |
|
|
|
1204 |
|
|
;;===========================================================================
|
1205 |
|
|
;; Subtraction. Note that these patterns never take immediate second
|
1206 |
|
|
;; operands, since those cases are handled by canonicalising the
|
1207 |
|
|
;; instruction into the addition of a negative costant.
|
1208 |
|
|
;; But, if the first operand needs to be a negative constant, it
|
1209 |
|
|
;; is supported here.
|
1210 |
|
|
;;===========================================================================
|
1211 |
|
|
|
1212 |
|
|
(define_insn "subhi3"
|
1213 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
|
1214 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "r,I,i")
|
1215 |
|
|
(match_operand:HI 2 "register_operand" "r,r,r")))
|
1216 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1217 |
|
|
""
|
1218 |
|
|
"SUB.%# %1,%2,%0 // %0 := %1 - %2 (HI)"
|
1219 |
|
|
[(set_attr "type" "basicAlu,basicAlu,basicAlu")
|
1220 |
|
|
(set_attr "longConstant" "false,true,true")
|
1221 |
|
|
(set_attr "length" "2,4,4")])
|
1222 |
|
|
|
1223 |
|
|
;; If we peepholed the compare instruction out, we need to make sure the
|
1224 |
|
|
;; sub goes in slot 0. This pattern is just to accomplish that.
|
1225 |
|
|
|
1226 |
|
|
(define_insn "subhi3_with_use_clause"
|
1227 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r,r")
|
1228 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "r,I,i")
|
1229 |
|
|
(match_operand:HI 2 "register_operand" "r,r,r")))
|
1230 |
|
|
(set (reg:CC CC_REGNUM)
|
1231 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
1232 |
|
|
[(const_int 0)
|
1233 |
|
|
(const_int 0)]))]
|
1234 |
|
|
""
|
1235 |
|
|
"SUB.0 %1,%2,%0 // %0 := %1 - %2 (HI)"
|
1236 |
|
|
[(set_attr "type" "picoAlu,picoAlu,picoAlu")
|
1237 |
|
|
(set_attr "longConstant" "false,true,true")
|
1238 |
|
|
(set_attr "length" "2,4,4")])
|
1239 |
|
|
|
1240 |
|
|
(define_insn_and_split "subsi3"
|
1241 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r,r")
|
1242 |
|
|
(minus:SI (match_operand:SI 1 "general_operand" "r,i")
|
1243 |
|
|
(match_operand:SI 2 "register_operand" "r,r")))
|
1244 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1245 |
|
|
""
|
1246 |
|
|
"// %0 := %1 - %2 (SI)\n\tSUB.%# %L1,%L2,%L0\n\tSUBB.%# %U1,%U2,%U0"
|
1247 |
|
|
"reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
|
1248 |
|
|
[(match_dup 4)
|
1249 |
|
|
(match_dup 5)]
|
1250 |
|
|
"
|
1251 |
|
|
{
|
1252 |
|
|
rtx op0_high = gen_highpart (HImode, operands[0]);
|
1253 |
|
|
rtx op0_low = gen_lowpart (HImode, operands[0]);
|
1254 |
|
|
rtx op2_high = gen_highpart (HImode, operands[2]);
|
1255 |
|
|
rtx op2_low = gen_lowpart (HImode, operands[2]);
|
1256 |
|
|
rtx op1_high,op1_low;
|
1257 |
|
|
|
1258 |
|
|
if (CONST_INT == GET_CODE(operands[1]))
|
1259 |
|
|
{
|
1260 |
|
|
op1_high = picochip_get_high_const(operands[1]);
|
1261 |
|
|
op1_low = picochip_get_low_const(operands[1]);
|
1262 |
|
|
} else {
|
1263 |
|
|
op1_high = gen_highpart (HImode, operands[1]);
|
1264 |
|
|
op1_low = gen_lowpart (HImode, operands[1]);
|
1265 |
|
|
}
|
1266 |
|
|
|
1267 |
|
|
|
1268 |
|
|
operands[4] = gen_sub_multi_lower (op0_low, op1_low, op2_low);
|
1269 |
|
|
operands[5] = gen_sub_multi_upper (op0_high, op1_high, op2_high);
|
1270 |
|
|
|
1271 |
|
|
}")
|
1272 |
|
|
|
1273 |
|
|
;; Match the patterns emitted by the multi-part subtraction splitting.
|
1274 |
|
|
;; This sets the CC register, so it needs to go into slot 0.
|
1275 |
|
|
(define_insn "sub_multi_lower"
|
1276 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1277 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "r,i")
|
1278 |
|
|
(match_operand:HI 2 "register_operand" "r,r")))
|
1279 |
|
|
(set (reg:CC CC_REGNUM)
|
1280 |
|
|
(compare:CC (minus:HI (match_dup 1) (match_dup 2))
|
1281 |
|
|
(const_int 0)))]
|
1282 |
|
|
""
|
1283 |
|
|
"SUB.%# %1,%2,%0\t// %0+carry := %1 - %2 (lower SI)"
|
1284 |
|
|
[(set_attr "type" "picoAlu,picoAlu")
|
1285 |
|
|
(set_attr "longConstant" "false,true")
|
1286 |
|
|
(set_attr "length" "2,4")])
|
1287 |
|
|
|
1288 |
|
|
;; Perform the central part of a multi-part addition (DI). This uses
|
1289 |
|
|
;; the CC register, and also sets the CC register, so needs to be
|
1290 |
|
|
;; placed in the first ALU.
|
1291 |
|
|
(define_insn "sub_multi_mid"
|
1292 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1293 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "r,i")
|
1294 |
|
|
(minus:HI (match_operand:HI 2 "register_operand" "r,r")
|
1295 |
|
|
(reg:CC CC_REGNUM))))
|
1296 |
|
|
(set (reg:CC CC_REGNUM)
|
1297 |
|
|
(compare:CC (minus:HI (match_dup 1)
|
1298 |
|
|
(match_dup 2))
|
1299 |
|
|
(const_int 0)))]
|
1300 |
|
|
""
|
1301 |
|
|
"SUBB.%# %1,%2,%0\t// %0+carry := carry - %1 - %2 (mid multi-part)"
|
1302 |
|
|
[(set_attr "type" "picoAlu,picoAlu")
|
1303 |
|
|
(set_attr "longConstant" "false,true")
|
1304 |
|
|
(set_attr "length" "2,4")])
|
1305 |
|
|
|
1306 |
|
|
(define_insn "sub_multi_upper"
|
1307 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1308 |
|
|
(minus:HI (match_operand:HI 1 "general_operand" "r,i")
|
1309 |
|
|
(minus:HI (match_operand:HI 2 "register_operand" "r,r")
|
1310 |
|
|
(reg:CC CC_REGNUM))))
|
1311 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1312 |
|
|
""
|
1313 |
|
|
"SUBB.%# %1,%2,%0\t// %0 := carry - %1 - %2 (upper SI)"
|
1314 |
|
|
[(set_attr "type" "basicAlu,basicAlu")
|
1315 |
|
|
(set_attr "longConstant" "false,true")
|
1316 |
|
|
(set_attr "length" "2,4")])
|
1317 |
|
|
|
1318 |
|
|
;;===========================================================================
|
1319 |
|
|
;; Multiplication (signed)
|
1320 |
|
|
;;===========================================================================
|
1321 |
|
|
|
1322 |
|
|
(define_insn "multiply_machi"
|
1323 |
|
|
[(set (reg:HI ACC_REGNUM)
|
1324 |
|
|
(mult:HI (match_operand:HI 0 "register_operand" "r,r")
|
1325 |
|
|
(match_operand:HI 1
|
1326 |
|
|
"picochip_register_or_immediate_operand" "r,i")))]
|
1327 |
|
|
"TARGET_HAS_MAC_UNIT"
|
1328 |
|
|
"MUL %0,%1,acc0\t// acc0 := %0 * %1 (signed)"
|
1329 |
|
|
[(set_attr "length" "3,5")
|
1330 |
|
|
(set_attr "type" "mac,mac")
|
1331 |
|
|
(set_attr "longConstant" "false,true")])
|
1332 |
|
|
|
1333 |
|
|
(define_expand "mulhi3"
|
1334 |
|
|
[(set (match_operand:HI 0 "register_operand" "")
|
1335 |
|
|
(mult:HI (match_operand:HI 1 "register_operand" "")
|
1336 |
|
|
(match_operand:HI 2 "picochip_register_or_immediate_operand" "")))]
|
1337 |
|
|
"TARGET_HAS_MULTIPLY"
|
1338 |
|
|
"")
|
1339 |
|
|
|
1340 |
|
|
;; Different types of mulhi, depending on the AE type. If the AE has MUL unit,
|
1341 |
|
|
;; use the following pattern.
|
1342 |
|
|
(define_insn "*mulhi3_mul"
|
1343 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1344 |
|
|
(mult:HI (match_operand:HI 1 "register_operand" "r,r")
|
1345 |
|
|
(match_operand:HI 2
|
1346 |
|
|
"picochip_register_or_immediate_operand" "r,i")))]
|
1347 |
|
|
"TARGET_HAS_MUL_UNIT"
|
1348 |
|
|
"MULL %1,%2,%0 // %0 := %1 * %2 (HI)"
|
1349 |
|
|
[(set_attr "length" "3,5")
|
1350 |
|
|
(set_attr "type" "mul,mul")
|
1351 |
|
|
(set_attr "longConstant" "false,true")])
|
1352 |
|
|
|
1353 |
|
|
;; If the AE has MAC unit, instead, use the following pattern.
|
1354 |
|
|
(define_insn_and_split "*mulhi3_mac"
|
1355 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1356 |
|
|
(mult:HI (match_operand:HI 1 "register_operand" "r,r")
|
1357 |
|
|
(match_operand:HI 2
|
1358 |
|
|
"picochip_register_or_immediate_operand" "r,i")))]
|
1359 |
|
|
"TARGET_HAS_MAC_UNIT"
|
1360 |
|
|
"// %0 := %1 * %2\n\tMUL %1,%2,acc0\n\tREADACC acc0,frac,%0"
|
1361 |
|
|
"TARGET_HAS_MAC_UNIT && reload_completed"
|
1362 |
|
|
[(match_dup 3)
|
1363 |
|
|
(match_dup 4)]
|
1364 |
|
|
"
|
1365 |
|
|
{
|
1366 |
|
|
rtx const_rtx = GEN_INT(0);
|
1367 |
|
|
operands[3] = (gen_multiply_machi(operands[1], operands[2]));
|
1368 |
|
|
operands[4] = (gen_movhi_mac(operands[0],const_rtx));
|
1369 |
|
|
} "
|
1370 |
|
|
)
|
1371 |
|
|
|
1372 |
|
|
(define_insn "umultiply_machisi"
|
1373 |
|
|
[(set (reg:SI ACC_REGNUM)
|
1374 |
|
|
(mult:SI (zero_extend:SI (match_operand:HI 0 "register_operand" "r"))
|
1375 |
|
|
(zero_extend:SI (match_operand:HI 1 "register_operand" "r"))))]
|
1376 |
|
|
"TARGET_HAS_MAC_UNIT"
|
1377 |
|
|
"MULUU %0,%1,acc0\t// acc0 := %0 * %1 (unsigned)"
|
1378 |
|
|
[(set_attr "length" "3")
|
1379 |
|
|
(set_attr "type" "mac")
|
1380 |
|
|
(set_attr "longConstant" "false")])
|
1381 |
|
|
|
1382 |
|
|
(define_insn "multiply_machisi"
|
1383 |
|
|
[(set (reg:SI ACC_REGNUM)
|
1384 |
|
|
(mult:SI (sign_extend:SI (match_operand:HI 0 "register_operand" "r,r"))
|
1385 |
|
|
(sign_extend:SI (match_operand:HI 1
|
1386 |
|
|
"picochip_register_or_immediate_operand" "r,i"))))]
|
1387 |
|
|
"TARGET_HAS_MAC_UNIT"
|
1388 |
|
|
"MUL %0,%1,acc0\t// acc0 := %0 * %1 (signed)"
|
1389 |
|
|
[(set_attr "length" "3,5")
|
1390 |
|
|
(set_attr "type" "mac,mac")
|
1391 |
|
|
(set_attr "longConstant" "false,true")])
|
1392 |
|
|
|
1393 |
|
|
;; We want to prevent GCC from thinking ACC is a normal register and using
|
1394 |
|
|
;; this pattern. We want it to be used only when you use MAC unit
|
1395 |
|
|
;; multiplication. Added a "use" clause for that sake.
|
1396 |
|
|
(define_insn "movsi_mac"
|
1397 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
1398 |
|
|
(reg:SI ACC_REGNUM))
|
1399 |
|
|
(use (match_operand:SI 1 "const_int_operand" ""))]
|
1400 |
|
|
"TARGET_HAS_MAC_UNIT"
|
1401 |
|
|
"READACC32 acc0,%R0 \t// %0 := acc0 "
|
1402 |
|
|
[(set_attr "length" "3")
|
1403 |
|
|
(set_attr "type" "mac")
|
1404 |
|
|
(set_attr "longConstant" "false")])
|
1405 |
|
|
|
1406 |
|
|
;; We want to prevent GCC from thinking ACC is a normal register and using
|
1407 |
|
|
;; this pattern. We want it to be used only when you use MAC unit
|
1408 |
|
|
;; multiplication. Added a "use" clause for that sake.
|
1409 |
|
|
(define_insn "movhi_mac"
|
1410 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
1411 |
|
|
(reg:HI ACC_REGNUM) )
|
1412 |
|
|
(use (match_operand:HI 1 "const_int_operand" ""))]
|
1413 |
|
|
"TARGET_HAS_MAC_UNIT"
|
1414 |
|
|
"READACC acc0,frac,%0 \t// %0 := acc0 "
|
1415 |
|
|
[(set_attr "length" "3")
|
1416 |
|
|
(set_attr "type" "mac")
|
1417 |
|
|
(set_attr "longConstant" "false")])
|
1418 |
|
|
|
1419 |
|
|
;; 16-bit to 32-bit widening signed multiplication.
|
1420 |
|
|
(define_expand "mulhisi3"
|
1421 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r")
|
1422 |
|
|
(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
1423 |
|
|
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
1424 |
|
|
"TARGET_HAS_MULTIPLY"
|
1425 |
|
|
""
|
1426 |
|
|
)
|
1427 |
|
|
|
1428 |
|
|
(define_insn_and_split "*mulhisi3_mul"
|
1429 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r")
|
1430 |
|
|
(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
1431 |
|
|
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
1432 |
|
|
"TARGET_HAS_MUL_UNIT"
|
1433 |
|
|
"// %0 := %1 * %2 (HI->SI)\;MULL %1,%2,%L0\;MULH %1,%2,%U0";
|
1434 |
|
|
"TARGET_HAS_MUL_UNIT && reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
|
1435 |
|
|
[(match_dup 3)
|
1436 |
|
|
(match_dup 4)]
|
1437 |
|
|
"
|
1438 |
|
|
{
|
1439 |
|
|
rtx op0_high = gen_highpart (HImode, operands[0]);
|
1440 |
|
|
rtx op0_low = gen_lowpart (HImode, operands[0]);
|
1441 |
|
|
operands[3] = gen_mulhisi3_mul_lower(op0_low,operands[1],operands[2]);
|
1442 |
|
|
operands[4] = gen_mulhisi3_mul_higher(op0_high,operands[1],operands[2]);
|
1443 |
|
|
}
|
1444 |
|
|
"
|
1445 |
|
|
)
|
1446 |
|
|
|
1447 |
|
|
(define_insn "mulhisi3_mul_lower"
|
1448 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
1449 |
|
|
(subreg:HI
|
1450 |
|
|
(mult:SI
|
1451 |
|
|
(sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
1452 |
|
|
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) 0))]
|
1453 |
|
|
"TARGET_HAS_MUL_UNIT"
|
1454 |
|
|
"MULL %1,%2,%0"
|
1455 |
|
|
[(set_attr "length" "3")
|
1456 |
|
|
(set_attr "type" "mul")
|
1457 |
|
|
(set_attr "longConstant" "false")])
|
1458 |
|
|
|
1459 |
|
|
(define_insn "mulhisi3_mul_higher"
|
1460 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
1461 |
|
|
(subreg:HI
|
1462 |
|
|
(mult:SI
|
1463 |
|
|
(sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
1464 |
|
|
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) 2))]
|
1465 |
|
|
"TARGET_HAS_MUL_UNIT"
|
1466 |
|
|
"MULH %1,%2,%0"
|
1467 |
|
|
[(set_attr "length" "3")
|
1468 |
|
|
(set_attr "type" "mul")
|
1469 |
|
|
(set_attr "longConstant" "false")])
|
1470 |
|
|
|
1471 |
|
|
(define_insn_and_split "*mulhisi3_mac"
|
1472 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r")
|
1473 |
|
|
(mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
1474 |
|
|
(sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
1475 |
|
|
"TARGET_HAS_MAC_UNIT"
|
1476 |
|
|
"// %0 := %1 * %2 (HI->SI) STAN2\;MUL %1,%2,acc0\;READACC32 acc0,%R0";
|
1477 |
|
|
"TARGET_HAS_MAC_UNIT && reload_completed"
|
1478 |
|
|
[(match_dup 3)
|
1479 |
|
|
(match_dup 4)]
|
1480 |
|
|
"
|
1481 |
|
|
{
|
1482 |
|
|
rtx const_rtx = gen_int_mode(0,SImode);
|
1483 |
|
|
operands[3] = (gen_multiply_machisi(operands[1], operands[2]));
|
1484 |
|
|
operands[4] = (gen_movsi_mac(operands[0],const_rtx));
|
1485 |
|
|
} "
|
1486 |
|
|
)
|
1487 |
|
|
|
1488 |
|
|
;;===========================================================================
|
1489 |
|
|
;; Widening multiplication (unsigned)
|
1490 |
|
|
;;===========================================================================
|
1491 |
|
|
|
1492 |
|
|
(define_expand "umulhisi3"
|
1493 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r")
|
1494 |
|
|
(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
1495 |
|
|
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
1496 |
|
|
"TARGET_HAS_MULTIPLY"
|
1497 |
|
|
""
|
1498 |
|
|
)
|
1499 |
|
|
|
1500 |
|
|
(define_insn_and_split "*umulhisi3_mul"
|
1501 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r")
|
1502 |
|
|
(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
1503 |
|
|
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
1504 |
|
|
"TARGET_HAS_MUL_UNIT"
|
1505 |
|
|
"// %0 := %1 * %2 (uHI->uSI Type 1)\;MULUL %1,%2,%L0\n\tMULUH %1,%2,%U0";
|
1506 |
|
|
"TARGET_HAS_MUL_UNIT && reload_completed && picochip_schedule_type != DFA_TYPE_NONE"
|
1507 |
|
|
[(match_dup 3)
|
1508 |
|
|
(match_dup 4)]
|
1509 |
|
|
"
|
1510 |
|
|
{
|
1511 |
|
|
rtx op0_high = gen_highpart (HImode, operands[0]);
|
1512 |
|
|
rtx op0_low = gen_lowpart (HImode, operands[0]);
|
1513 |
|
|
operands[3] = gen_umulhisi3_mul_lower(op0_low,operands[1],operands[2]);
|
1514 |
|
|
operands[4] = gen_umulhisi3_mul_higher(op0_high,operands[1],operands[2]);
|
1515 |
|
|
}
|
1516 |
|
|
"
|
1517 |
|
|
)
|
1518 |
|
|
|
1519 |
|
|
(define_insn "umulhisi3_mul_lower"
|
1520 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
1521 |
|
|
(subreg:HI
|
1522 |
|
|
(mult:SI
|
1523 |
|
|
(zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
1524 |
|
|
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))) 0))]
|
1525 |
|
|
"TARGET_HAS_MUL_UNIT"
|
1526 |
|
|
"MULUL %1,%2,%0"
|
1527 |
|
|
[(set_attr "length" "3")
|
1528 |
|
|
(set_attr "type" "mul")
|
1529 |
|
|
(set_attr "longConstant" "false")])
|
1530 |
|
|
|
1531 |
|
|
(define_insn "umulhisi3_mul_higher"
|
1532 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
1533 |
|
|
(subreg:HI
|
1534 |
|
|
(mult:SI
|
1535 |
|
|
(zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
1536 |
|
|
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))) 2))]
|
1537 |
|
|
"TARGET_HAS_MUL_UNIT"
|
1538 |
|
|
"MULUH %1,%2,%0"
|
1539 |
|
|
[(set_attr "length" "3")
|
1540 |
|
|
(set_attr "type" "mul")
|
1541 |
|
|
(set_attr "longConstant" "false")])
|
1542 |
|
|
|
1543 |
|
|
(define_insn_and_split "*umulhisi3_mac"
|
1544 |
|
|
[(set (match_operand:SI 0 "register_operand" "=&r")
|
1545 |
|
|
(mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))
|
1546 |
|
|
(zero_extend:SI (match_operand:HI 2 "register_operand" "r"))))]
|
1547 |
|
|
"TARGET_HAS_MAC_UNIT"
|
1548 |
|
|
"// %0 := %1 * %2 (uHI->uSI Type 3)\;MULUU %1,%2,acc0\;READACC32 acc0,%R0";
|
1549 |
|
|
"TARGET_HAS_MAC_UNIT && reload_completed"
|
1550 |
|
|
[(match_dup 3)
|
1551 |
|
|
(match_dup 4)]
|
1552 |
|
|
"
|
1553 |
|
|
{
|
1554 |
|
|
rtx const_rtx = gen_int_mode(0,SImode);
|
1555 |
|
|
operands[3] = (gen_umultiply_machisi(operands[1], operands[2]));
|
1556 |
|
|
operands[4] = (gen_movsi_mac(operands[0],const_rtx));
|
1557 |
|
|
} "
|
1558 |
|
|
)
|
1559 |
|
|
|
1560 |
|
|
;;===========================================================================
|
1561 |
|
|
;; Division (signed)
|
1562 |
|
|
;;===========================================================================
|
1563 |
|
|
|
1564 |
|
|
;; Perform a divmod operation as a function call. This results in some
|
1565 |
|
|
;; registers being clobbered (r0-6, r12 - ignore r13,14 as these are
|
1566 |
|
|
;; known not to be affected).
|
1567 |
|
|
(define_expand "divmodhi4"
|
1568 |
|
|
[
|
1569 |
|
|
; Copy the inputs to r0 and r1.
|
1570 |
|
|
(set (reg:HI 0) (match_operand:HI 1 "register_operand" ""))
|
1571 |
|
|
(set (reg:HI 1) (match_operand:HI 2 "register_operand" ""))
|
1572 |
|
|
; Make the function call - note that r12 (link) is clobbered. Note also
|
1573 |
|
|
; that an explicit call is generated. This ensures that gcc notices that
|
1574 |
|
|
; any function containing a div/mod is not a leaf function.
|
1575 |
|
|
(parallel [(match_dup 4)
|
1576 |
|
|
(set (reg:HI 0) (div:HI (reg:HI 0) (reg:HI 1)))
|
1577 |
|
|
(set (reg:HI 1) (mod:HI (reg:HI 0) (reg:HI 1)))
|
1578 |
|
|
(clobber (reg:HI 2))
|
1579 |
|
|
(clobber (reg:HI 3))
|
1580 |
|
|
(clobber (reg:HI 4))
|
1581 |
|
|
(clobber (reg:HI 5))
|
1582 |
|
|
(clobber (reg:HI 12))
|
1583 |
|
|
(clobber (reg:CC CC_REGNUM))
|
1584 |
|
|
])
|
1585 |
|
|
; Set the quotient (returned in register 0)
|
1586 |
|
|
(set (match_operand:HI 0 "register_operand" "") (reg:HI 0))
|
1587 |
|
|
; Set the remainder (returned in register 1)
|
1588 |
|
|
(set (match_operand:HI 3 "register_operand" "") (reg:HI 1))]
|
1589 |
|
|
""
|
1590 |
|
|
{
|
1591 |
|
|
rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_divmodhi4");
|
1592 |
|
|
operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
|
1593 |
|
|
})
|
1594 |
|
|
|
1595 |
|
|
; Match a call to divmodhi4. As this is a call, the link register
|
1596 |
|
|
; (r12), and registers r0-5 must be clobbered. Ignore clobbering of
|
1597 |
|
|
; r13/4 as these aren't used by the divide function).
|
1598 |
|
|
(define_insn "*divmodhi4_call"
|
1599 |
|
|
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
|
1600 |
|
|
(match_operand 1 "const_int_operand" ""))
|
1601 |
|
|
(set (reg:HI 0) (div:HI (reg:HI 0) (reg:HI 1)))
|
1602 |
|
|
(set (reg:HI 1) (mod:HI (reg:HI 0) (reg:HI 1)))
|
1603 |
|
|
(clobber (reg:HI 2))
|
1604 |
|
|
(clobber (reg:HI 3))
|
1605 |
|
|
(clobber (reg:HI 4))
|
1606 |
|
|
(clobber (reg:HI 5))
|
1607 |
|
|
(clobber (reg:HI 12))
|
1608 |
|
|
(clobber (reg:CC CC_REGNUM))
|
1609 |
|
|
]
|
1610 |
|
|
""
|
1611 |
|
|
"JL (%0)\t// call %0%>"
|
1612 |
|
|
[(set_attr "length" "4")
|
1613 |
|
|
(set_attr "longConstant" "true")
|
1614 |
|
|
(set_attr "type" "call")])
|
1615 |
|
|
|
1616 |
|
|
;; Perform a udivmod operation as a function call. This results in some
|
1617 |
|
|
;; registers being clobbered (r0-6, r12 - ignore r13,14 as these are
|
1618 |
|
|
;; known not to be affected).
|
1619 |
|
|
(define_expand "udivmodhi4"
|
1620 |
|
|
[
|
1621 |
|
|
; Copy the inputs to r0 and r1.
|
1622 |
|
|
(set (reg:HI 0) (match_operand:HI 1 "register_operand" ""))
|
1623 |
|
|
(set (reg:HI 1) (match_operand:HI 2 "register_operand" ""))
|
1624 |
|
|
; Make the function call - note that r12 (link) is clobbered. Note also
|
1625 |
|
|
; that an explicit call is generated. This ensures that gcc notices that
|
1626 |
|
|
; any function containing a div/mod is not a leaf function.
|
1627 |
|
|
(parallel [(match_dup 4)
|
1628 |
|
|
(set (reg:HI 0) (udiv:HI (reg:HI 0) (reg:HI 1)))
|
1629 |
|
|
(set (reg:HI 1) (umod:HI (reg:HI 0) (reg:HI 1)))
|
1630 |
|
|
(clobber (reg:HI 2))
|
1631 |
|
|
(clobber (reg:HI 3))
|
1632 |
|
|
(clobber (reg:HI 4))
|
1633 |
|
|
(clobber (reg:HI 5))
|
1634 |
|
|
(clobber (reg:HI 12))
|
1635 |
|
|
(clobber (reg:CC CC_REGNUM))
|
1636 |
|
|
])
|
1637 |
|
|
; Set the quotient (returned in register 0)
|
1638 |
|
|
(set (match_operand:HI 0 "register_operand" "") (reg:HI 0))
|
1639 |
|
|
; Set the remainder (returned in register 1)
|
1640 |
|
|
(set (match_operand:HI 3 "register_operand" "") (reg:HI 1))]
|
1641 |
|
|
""
|
1642 |
|
|
{
|
1643 |
|
|
rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_udivmodhi4");
|
1644 |
|
|
operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
|
1645 |
|
|
})
|
1646 |
|
|
|
1647 |
|
|
; Match a call to udivmodhi4. As this is a call, the link register
|
1648 |
|
|
; (r12), and registers r0-5 must be clobbered. Ignore clobbering of
|
1649 |
|
|
; r13/4 as these aren't used by the divide function).
|
1650 |
|
|
(define_insn "*udivmodhi4_call"
|
1651 |
|
|
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
|
1652 |
|
|
(match_operand 1 "const_int_operand" ""))
|
1653 |
|
|
(set (reg:HI 0) (udiv:HI (reg:HI 0) (reg:HI 1)))
|
1654 |
|
|
(set (reg:HI 1) (umod:HI (reg:HI 0) (reg:HI 1)))
|
1655 |
|
|
(clobber (reg:HI 2))
|
1656 |
|
|
(clobber (reg:HI 3))
|
1657 |
|
|
(clobber (reg:HI 4))
|
1658 |
|
|
(clobber (reg:HI 5))
|
1659 |
|
|
(clobber (reg:HI 12))
|
1660 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1661 |
|
|
""
|
1662 |
|
|
"JL (%0)\t// call %0%>"
|
1663 |
|
|
[(set_attr "length" "4")
|
1664 |
|
|
(set_attr "longConstant" "true")
|
1665 |
|
|
(set_attr "type" "call")])
|
1666 |
|
|
|
1667 |
|
|
(define_expand "udivmodsi4"
|
1668 |
|
|
[
|
1669 |
|
|
; Make the function call
|
1670 |
|
|
(set (reg:SI 0) (match_operand:SI 1 "register_operand" ""))
|
1671 |
|
|
(set (reg:SI 2) (match_operand:SI 2 "register_operand" ""))
|
1672 |
|
|
(parallel [
|
1673 |
|
|
(match_dup 4)
|
1674 |
|
|
(set (reg:SI 4) (udiv:SI (reg:SI 0) (reg:SI 2)))
|
1675 |
|
|
(set (reg:SI 6) (umod:SI (reg:SI 0) (reg:SI 2)))
|
1676 |
|
|
(clobber (reg:SI 0))
|
1677 |
|
|
(clobber (reg:SI 2))
|
1678 |
|
|
(clobber (reg:HI 12))
|
1679 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
1680 |
|
|
(set (match_operand:SI 0 "register_operand" "") (reg:SI 4))
|
1681 |
|
|
(set (match_operand:SI 3 "register_operand" "") (reg:SI 6))]
|
1682 |
|
|
""
|
1683 |
|
|
{
|
1684 |
|
|
rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_udivmodsi4");
|
1685 |
|
|
operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
|
1686 |
|
|
})
|
1687 |
|
|
|
1688 |
|
|
(define_insn "*udivmodsi4_call"
|
1689 |
|
|
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
|
1690 |
|
|
(match_operand 1 "const_int_operand" ""))
|
1691 |
|
|
(set (reg:SI 4) (udiv:SI (reg:SI 0) (reg:SI 2)))
|
1692 |
|
|
(set (reg:SI 6) (umod:SI (reg:SI 0) (reg:SI 2)))
|
1693 |
|
|
(clobber (reg:SI 0))
|
1694 |
|
|
(clobber (reg:SI 2))
|
1695 |
|
|
(clobber (reg:HI 12))
|
1696 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1697 |
|
|
""
|
1698 |
|
|
"JL (%0)\t// call %0%>"
|
1699 |
|
|
[(set_attr "length" "4")
|
1700 |
|
|
(set_attr "longConstant" "true")
|
1701 |
|
|
(set_attr "type" "call")])
|
1702 |
|
|
|
1703 |
|
|
(define_expand "divmodsi4"
|
1704 |
|
|
[
|
1705 |
|
|
; Make the function call
|
1706 |
|
|
(set (reg:SI 0) (match_operand:SI 1 "register_operand" ""))
|
1707 |
|
|
(set (reg:SI 2) (match_operand:SI 2 "register_operand" ""))
|
1708 |
|
|
(parallel [
|
1709 |
|
|
(match_dup 4)
|
1710 |
|
|
(set (reg:SI 4) (div:SI (reg:SI 0) (reg:SI 2)))
|
1711 |
|
|
(set (reg:SI 6) (mod:SI (reg:SI 0) (reg:SI 2)))
|
1712 |
|
|
(clobber (reg:SI 0))
|
1713 |
|
|
(clobber (reg:SI 2))
|
1714 |
|
|
(clobber (reg:HI 12))
|
1715 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
1716 |
|
|
(set (match_operand:SI 0 "register_operand" "") (reg:SI 4))
|
1717 |
|
|
(set (match_operand:SI 3 "register_operand" "") (reg:SI 6))]
|
1718 |
|
|
""
|
1719 |
|
|
{
|
1720 |
|
|
rtx fnName = gen_rtx_SYMBOL_REF (HImode, "_divmodsi4");
|
1721 |
|
|
operands[4] = gen_call_for_divmod (gen_rtx_MEM (QImode, fnName), GEN_INT(0));
|
1722 |
|
|
})
|
1723 |
|
|
|
1724 |
|
|
(define_insn "*divmodsi4_call"
|
1725 |
|
|
[(call (mem:QI (match_operand:HI 0 "immediate_operand" "i"))
|
1726 |
|
|
(match_operand 1 "const_int_operand" ""))
|
1727 |
|
|
(set (reg:SI 4) (div:SI (reg:SI 0) (reg:SI 2)))
|
1728 |
|
|
(set (reg:SI 6) (mod:SI (reg:SI 0) (reg:SI 2)))
|
1729 |
|
|
(clobber (reg:SI 0))
|
1730 |
|
|
(clobber (reg:SI 2))
|
1731 |
|
|
(clobber (reg:HI 12))
|
1732 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1733 |
|
|
""
|
1734 |
|
|
"JL (%0)\t// call %0%>"
|
1735 |
|
|
[(set_attr "length" "4")
|
1736 |
|
|
(set_attr "longConstant" "true")
|
1737 |
|
|
(set_attr "type" "call")])
|
1738 |
|
|
|
1739 |
|
|
;;===========================================================================
|
1740 |
|
|
;; Bitwise AND. The QI/SI mode instructions are automatically
|
1741 |
|
|
;; synthesised from the HI mode instruction.
|
1742 |
|
|
;;===========================================================================
|
1743 |
|
|
|
1744 |
|
|
(define_insn "andhi3"
|
1745 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1746 |
|
|
(and:HI (match_operand:HI 1 "register_operand" "r,r")
|
1747 |
|
|
(match_operand:HI 2 "general_operand" "r,n")))
|
1748 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1749 |
|
|
""
|
1750 |
|
|
"AND.%# %1,%2,%0 // %0 := %1 AND %2 (HI)"
|
1751 |
|
|
[(set_attr "type" "basicAlu,basicAlu")
|
1752 |
|
|
(set_attr "longConstant" "false,true")
|
1753 |
|
|
(set_attr "length" "3,5")])
|
1754 |
|
|
|
1755 |
|
|
;; If we peepholed the compare instruction out, we need to make sure the
|
1756 |
|
|
;; "and" goes in slot 0. This pattern is just to accomplish that.
|
1757 |
|
|
|
1758 |
|
|
(define_insn "andhi3_with_use_clause"
|
1759 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1760 |
|
|
(and:HI (match_operand:HI 1 "register_operand" "r,r")
|
1761 |
|
|
(match_operand:HI 2 "general_operand" "r,n")))
|
1762 |
|
|
(set (reg:CC CC_REGNUM)
|
1763 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
1764 |
|
|
[(const_int 0)
|
1765 |
|
|
(const_int 0)]))]
|
1766 |
|
|
""
|
1767 |
|
|
"AND.0 %1,%2,%0 // %0 := %1 AND %2 (HI)"
|
1768 |
|
|
[(set_attr "type" "picoAlu,picoAlu")
|
1769 |
|
|
(set_attr "longConstant" "false,true")
|
1770 |
|
|
(set_attr "length" "3,5")])
|
1771 |
|
|
|
1772 |
|
|
;;===========================================================================
|
1773 |
|
|
;; Bitwise inclusive-OR. The QI mode instruction is automatically
|
1774 |
|
|
;; synthesised from the HI mode instruction.
|
1775 |
|
|
;;===========================================================================
|
1776 |
|
|
|
1777 |
|
|
(define_insn "iorhi3"
|
1778 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1779 |
|
|
(ior:HI (match_operand:HI 1 "register_operand" "r,r")
|
1780 |
|
|
(match_operand:HI 2 "register_operand" "r,n")))
|
1781 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1782 |
|
|
""
|
1783 |
|
|
"OR.%# %1,%2,%0 // %0 := %1 IOR %2 (HI)"
|
1784 |
|
|
[(set_attr "type" "basicAlu,basicAlu")
|
1785 |
|
|
(set_attr "longConstant" "false,true")
|
1786 |
|
|
(set_attr "length" "3,5")])
|
1787 |
|
|
|
1788 |
|
|
(define_insn "iorhi3_with_use_clause"
|
1789 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1790 |
|
|
(ior:HI (match_operand:HI 1 "register_operand" "r,r")
|
1791 |
|
|
(match_operand:HI 2 "general_operand" "r,n")))
|
1792 |
|
|
(set (reg:CC CC_REGNUM)
|
1793 |
|
|
(match_operator:CC 3 "picochip_peephole_comparison_operator"
|
1794 |
|
|
[(const_int 0)
|
1795 |
|
|
(const_int 0)]))]
|
1796 |
|
|
""
|
1797 |
|
|
"OR.0 %1,%2,%0 // %0 := %1 IOR %2 (HI)"
|
1798 |
|
|
[(set_attr "type" "picoAlu,picoAlu")
|
1799 |
|
|
(set_attr "longConstant" "false,true")
|
1800 |
|
|
(set_attr "length" "3,5")])
|
1801 |
|
|
|
1802 |
|
|
;;===========================================================================
|
1803 |
|
|
;; Bitwise exclusive-OR. The QI/SI mode instructions are automatically
|
1804 |
|
|
;; synthesised from the HI mode instruction.
|
1805 |
|
|
;;===========================================================================
|
1806 |
|
|
|
1807 |
|
|
(define_insn "xorhi3"
|
1808 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1809 |
|
|
(xor:HI (match_operand:HI 1 "register_operand" "r,r")
|
1810 |
|
|
(match_operand:HI 2 "picochip_register_or_immediate_operand" "r,n")))
|
1811 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1812 |
|
|
""
|
1813 |
|
|
"XOR.%# %1,%2,%0 // %0 := %1 XOR %2 (HI)"
|
1814 |
|
|
[(set_attr "type" "basicAlu,basicAlu")
|
1815 |
|
|
(set_attr "longConstant" "false,true")
|
1816 |
|
|
(set_attr "length" "3,5")])
|
1817 |
|
|
|
1818 |
|
|
;;===========================================================================
|
1819 |
|
|
;; Arithmetic shift left.
|
1820 |
|
|
;;===========================================================================
|
1821 |
|
|
|
1822 |
|
|
(define_insn "ashlhi3"
|
1823 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1824 |
|
|
(ashift:HI (match_operand:HI 1 "register_operand" "r,r")
|
1825 |
|
|
(match_operand:HI 2 "general_operand" "r,J")))]
|
1826 |
|
|
""
|
1827 |
|
|
"LSL.%# %1,%2,%0 // %0 := %1 << %2"
|
1828 |
|
|
[(set_attr "type" "picoAlu,basicAlu")
|
1829 |
|
|
(set_attr "length" "3,3")])
|
1830 |
|
|
|
1831 |
|
|
;;===========================================================================
|
1832 |
|
|
;; Arithmetic shift right.
|
1833 |
|
|
;;===========================================================================
|
1834 |
|
|
|
1835 |
|
|
(define_insn "builtin_asri"
|
1836 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
1837 |
|
|
(ashiftrt:HI (match_operand:HI 1 "register_operand" "r")
|
1838 |
|
|
(match_operand:HI 2 "immediate_operand" "")))
|
1839 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1840 |
|
|
""
|
1841 |
|
|
"ASR.%# %1,%2,%0\t// %0 = %1 >>{arith} %2"
|
1842 |
|
|
[(set_attr "type" "basicAlu")
|
1843 |
|
|
(set_attr "length" "3")])
|
1844 |
|
|
|
1845 |
|
|
;; The picoChip ISA doesn't have a variable arithmetic shift right, so
|
1846 |
|
|
;; synthesise it. Shifts by constants are directly supported.
|
1847 |
|
|
|
1848 |
|
|
(define_expand "ashrhi3"
|
1849 |
|
|
[(match_operand:HI 0 "register_operand" "")
|
1850 |
|
|
(match_operand:HI 1 "register_operand" "")
|
1851 |
|
|
(match_operand:HI 2 "picochip_register_or_immediate_operand" "")]
|
1852 |
|
|
""
|
1853 |
|
|
{
|
1854 |
|
|
if (GET_CODE(operands[2]) == CONST_INT)
|
1855 |
|
|
/* Shift by constant is easy. */
|
1856 |
|
|
emit_insn (gen_builtin_asri (operands[0], operands[1], operands[2]));
|
1857 |
|
|
else
|
1858 |
|
|
{
|
1859 |
|
|
/* Synthesise a variable shift. */
|
1860 |
|
|
|
1861 |
|
|
rtx tmp1;
|
1862 |
|
|
rtx tmp2;
|
1863 |
|
|
rtx tmp3;
|
1864 |
|
|
rtx minus_one;
|
1865 |
|
|
rtx tmp4;
|
1866 |
|
|
|
1867 |
|
|
/* Fill a temporary with the sign bits. */
|
1868 |
|
|
tmp1 = gen_reg_rtx (HImode);
|
1869 |
|
|
emit_insn (gen_builtin_asri (tmp1, operands[1], GEN_INT(15)));
|
1870 |
|
|
|
1871 |
|
|
/* Shift the unsigned value. */
|
1872 |
|
|
tmp2 = gen_reg_rtx (HImode);
|
1873 |
|
|
emit_insn (gen_lshrhi3 (tmp2, operands[1], operands[2]));
|
1874 |
|
|
|
1875 |
|
|
/* The word of sign bits must be shifted back to the left, to zero
|
1876 |
|
|
* out the unwanted lower bits. The amount to shift left by is (15 -
|
1877 |
|
|
* count). Since the shifts are computed modulo 16 (i.e., only the
|
1878 |
|
|
* lower 4 bits of the count are used), the shift amount (15 - count)
|
1879 |
|
|
* is equivalent to !count. */
|
1880 |
|
|
tmp3 = gen_reg_rtx (HImode);
|
1881 |
|
|
minus_one = GEN_INT (-1);
|
1882 |
|
|
emit_insn (gen_xorhi3 (tmp3, operands[2], minus_one));
|
1883 |
|
|
tmp4 = gen_reg_rtx (HImode);
|
1884 |
|
|
emit_insn (gen_ashlhi3 (tmp4, tmp1, tmp3));
|
1885 |
|
|
|
1886 |
|
|
/* Combine the sign bits with the shifted value. */
|
1887 |
|
|
emit_insn (gen_iorhi3 (operands[0], tmp2, tmp4));
|
1888 |
|
|
|
1889 |
|
|
}
|
1890 |
|
|
DONE;
|
1891 |
|
|
})
|
1892 |
|
|
|
1893 |
|
|
;;===========================================================================
|
1894 |
|
|
;; Logical shift right.
|
1895 |
|
|
;;===========================================================================
|
1896 |
|
|
|
1897 |
|
|
(define_insn "lshrhi3"
|
1898 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
1899 |
|
|
(lshiftrt:HI (match_operand:HI 1 "register_operand" "r,r")
|
1900 |
|
|
(match_operand:HI 2 "general_operand" "r,J")))]
|
1901 |
|
|
""
|
1902 |
|
|
"LSR.%# %1,%2,%0 // %0 := %1 >> %2"
|
1903 |
|
|
[(set_attr "type" "picoAlu,basicAlu")
|
1904 |
|
|
(set_attr "length" "3,3")])
|
1905 |
|
|
|
1906 |
|
|
;;===========================================================================
|
1907 |
|
|
;; Negate.
|
1908 |
|
|
;;===========================================================================
|
1909 |
|
|
|
1910 |
|
|
;; Negations are performed by subtracting from the constant 0, which
|
1911 |
|
|
;; is loaded into a register. By using a register containing 0, the
|
1912 |
|
|
;; chances of being able to CSE with another 0 value are increased.
|
1913 |
|
|
|
1914 |
|
|
(define_expand "neghi2"
|
1915 |
|
|
[(set (match_dup 2) (match_dup 3))
|
1916 |
|
|
(parallel [(set (match_operand:HI 0 "register_operand" "=r")
|
1917 |
|
|
(minus:HI (match_dup 2)
|
1918 |
|
|
(match_operand:HI 1 "register_operand" "r")))
|
1919 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
1920 |
|
|
""
|
1921 |
|
|
"operands[2] = gen_reg_rtx(HImode);
|
1922 |
|
|
operands[3] = GEN_INT(0x00000000);")
|
1923 |
|
|
|
1924 |
|
|
(define_expand "negsi2"
|
1925 |
|
|
[(set (match_dup 2) (match_dup 3))
|
1926 |
|
|
(parallel [(set (match_operand:SI 0 "register_operand" "=r")
|
1927 |
|
|
(minus:SI (match_dup 2)
|
1928 |
|
|
(match_operand:SI 1 "register_operand" "r")))
|
1929 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
1930 |
|
|
""
|
1931 |
|
|
"operands[2] = gen_reg_rtx(SImode);
|
1932 |
|
|
operands[3] = GEN_INT(0x00000000);")
|
1933 |
|
|
|
1934 |
|
|
;;===========================================================================
|
1935 |
|
|
;; Absolute value. Taken from the Hacker's Delight, page 17. The second of the
|
1936 |
|
|
;; four options given there produces the smallest, fastest code.
|
1937 |
|
|
;;===========================================================================
|
1938 |
|
|
|
1939 |
|
|
(define_insn_and_split "abshi2"
|
1940 |
|
|
[(set (match_operand:HI 0 "register_operand" "")
|
1941 |
|
|
(abs:HI (match_operand:HI 1 "register_operand" "")))]
|
1942 |
|
|
""
|
1943 |
|
|
"#"
|
1944 |
|
|
""
|
1945 |
|
|
[(parallel [(set (match_dup 2)
|
1946 |
|
|
(plus:HI (ashiftrt:HI (match_dup 1) (const_int 15))
|
1947 |
|
|
(match_dup 1)))
|
1948 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
1949 |
|
|
(parallel [(set (match_dup 0)
|
1950 |
|
|
(xor:HI (ashiftrt:HI (match_dup 1) (const_int 15))
|
1951 |
|
|
(match_dup 2)))
|
1952 |
|
|
(clobber (reg:CC CC_REGNUM))])]
|
1953 |
|
|
{
|
1954 |
|
|
operands[2] = gen_reg_rtx (HImode);
|
1955 |
|
|
})
|
1956 |
|
|
|
1957 |
|
|
;;===========================================================================
|
1958 |
|
|
;; Bitwise complement. Use auto-synthesised variant for SI mode. Though this
|
1959 |
|
|
;; internally uses xor, the compiler doesnt automatically synthesize it using
|
1960 |
|
|
;; xor, if this pattern was removed.
|
1961 |
|
|
;;===========================================================================
|
1962 |
|
|
|
1963 |
|
|
(define_insn "one_cmplhi2"
|
1964 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
1965 |
|
|
(not:HI (match_operand:HI 1 "register_operand" "0")))
|
1966 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
1967 |
|
|
""
|
1968 |
|
|
"XOR.%# %1,-1,%0 // %0 := ~%1"
|
1969 |
|
|
[(set_attr "type" "basicAlu")
|
1970 |
|
|
(set_attr "longConstant" "true")
|
1971 |
|
|
(set_attr "length" "5")])
|
1972 |
|
|
|
1973 |
|
|
;;===========================================================================
|
1974 |
|
|
;; Count leading zeros. The special sign-bit-count instruction can be used
|
1975 |
|
|
;; to help us here.
|
1976 |
|
|
;; op1:=clz(op1)
|
1977 |
|
|
;; The code works by checking to see if the top bit is set. If it is,
|
1978 |
|
|
;; then there are no leading zeros. If the top bit is cleared, then
|
1979 |
|
|
;; the SBC instruction is used to determine how many more leading
|
1980 |
|
|
;; zeros are present, and adding one more for the initial zero.
|
1981 |
|
|
;;===========================================================================
|
1982 |
|
|
|
1983 |
|
|
(define_insn "clzhi2"
|
1984 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
1985 |
|
|
(clz:HI (match_operand:HI 1 "register_operand" "r")))]
|
1986 |
|
|
""
|
1987 |
|
|
"// Count leading zeros\;SBC %1,%0\;ASR.0 %1,15,r15 %| ADD.1 %0,1,%0\;COPYNE 0,%0"
|
1988 |
|
|
[(set_attr "length" "11")])
|
1989 |
|
|
|
1990 |
|
|
;;===========================================================================
|
1991 |
|
|
;; Count trailing zeros. This can be achieved efficiently by reversing
|
1992 |
|
|
;; using the bitrev instruction, and then counting the leading zeros as
|
1993 |
|
|
;; described above.
|
1994 |
|
|
;;===========================================================================
|
1995 |
|
|
|
1996 |
|
|
(define_insn "ctzhi2"
|
1997 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
1998 |
|
|
(ctz:HI (match_operand:HI 1 "register_operand" "r")))]
|
1999 |
|
|
""
|
2000 |
|
|
"// Count trailing zeros\;BREV %1,%0\;SBC %0,%0\;AND.0 %1,0x0001,r15 %| ADD.1 %0,1,%0\;COPYNE 0,%0"
|
2001 |
|
|
[(set_attr "length" "15")])
|
2002 |
|
|
|
2003 |
|
|
;;===========================================================================
|
2004 |
|
|
;; Find the first set bit, starting from the least significant bit position.
|
2005 |
|
|
;; This is very similar to the ctz function, except that the bit index is one
|
2006 |
|
|
;; greater than the number of trailing zeros (i.e., SBC + 2), and the
|
2007 |
|
|
;; result of ffs on the zero value is defined.
|
2008 |
|
|
;;===========================================================================
|
2009 |
|
|
|
2010 |
|
|
(define_insn "ffshi2"
|
2011 |
|
|
[(set (match_operand:HI 0 "register_operand" "=&r")
|
2012 |
|
|
(ffs:HI (match_operand:HI 1 "register_operand" "r")))]
|
2013 |
|
|
""
|
2014 |
|
|
"// First first bit\;BREV %1,%0\;SBC %0,%0\;AND.0 %1,0x0001,r15 %| ADD.1 %0,2,%0\;COPYNE 1,%0\;SUB.0 %1,0x0000,r15\;COPYEQ 0,%0"
|
2015 |
|
|
[(set_attr "length" "20")])
|
2016 |
|
|
|
2017 |
|
|
;;===========================================================================
|
2018 |
|
|
;; Tablejump Instruction. Jump to an absolute address.
|
2019 |
|
|
;;===========================================================================
|
2020 |
|
|
|
2021 |
|
|
(define_insn "tablejump"
|
2022 |
|
|
[(set (pc) (unspec:HI [(match_operand:HI 0 "register_operand" "r")] 1))
|
2023 |
|
|
(use (label_ref (match_operand 1 "" "")))
|
2024 |
|
|
(clobber (match_dup 0))]
|
2025 |
|
|
""
|
2026 |
|
|
"JR (%0)\t // Table jump to %0 %>"
|
2027 |
|
|
[(set_attr "length" "2")
|
2028 |
|
|
(set_attr "type" "realBranch")])
|
2029 |
|
|
|
2030 |
|
|
;; Given the memory address of a QImode value, and a scratch register,
|
2031 |
|
|
;; store the memory operand into the given output operand. The scratch
|
2032 |
|
|
;; operand will not conflict with either of the operands. The other
|
2033 |
|
|
;; two operands may conflict with each other.
|
2034 |
|
|
|
2035 |
|
|
(define_insn "synthesised_loadqi_unaligned"
|
2036 |
|
|
[(set (match_operand:QI 0 "register_operand" "=r")
|
2037 |
|
|
(match_operand:QI 1 "memory_operand" "m"))
|
2038 |
|
|
(clobber (match_operand:HI 2 "register_operand" "=&r"))
|
2039 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
2040 |
|
|
""
|
2041 |
|
|
"// Synthesised loadqi %0 = Mem(%1) (Scratch %2)\n\tAND.0 %1,-2,%2\n\tLDW (%2)0,%0 %| AND.0 %1,1,%2\n\tLSL.0 %2,3,%2\n\tSUB.0 8,%2,%2\n\tLSL.0 %0,%2,%0\n\tASR.0 %0,8,%0"
|
2042 |
|
|
; Approximate length only. Probably a little shorter than this.
|
2043 |
|
|
[(set_attr "length" "40")])
|
2044 |
|
|
|
2045 |
|
|
;; Given a memory operand whose alignment is known (the HImode aligned
|
2046 |
|
|
;; base is operand 0, and the number of bits by which to shift is in
|
2047 |
|
|
;; operand 5),
|
2048 |
|
|
(define_expand "synthesised_storeqi_aligned"
|
2049 |
|
|
[; s1 = mem_op
|
2050 |
|
|
(set (match_operand:HI 2 "register_operand" "")
|
2051 |
|
|
(match_operand:HI 0 "memory_operand" ""))
|
2052 |
|
|
; s1 = s1 and mask
|
2053 |
|
|
(parallel [(set (match_dup 2) (and:HI (match_dup 2) (match_dup 5)))
|
2054 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
2055 |
|
|
; s2 = source << bitShift
|
2056 |
|
|
(set (match_dup 3)
|
2057 |
|
|
(ashift:HI (subreg:HI (match_operand:QI 1 "register_operand" "") 0)
|
2058 |
|
|
(match_operand:HI 4 "const_int_operand" "")))
|
2059 |
|
|
; s1 = s1 or s2
|
2060 |
|
|
(parallel [(set (match_dup 2) (ior:HI (match_dup 2) (match_dup 3)))
|
2061 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
2062 |
|
|
; mem_op = s1
|
2063 |
|
|
(set (match_dup 0) (match_dup 2))]
|
2064 |
|
|
"!TARGET_HAS_BYTE_ACCESS"
|
2065 |
|
|
{
|
2066 |
|
|
/* Create the byte mask 0xFF00. */
|
2067 |
|
|
operands[5] = gen_int_mode(((~0xFF) >> INTVAL (operands[4])), HImode);
|
2068 |
|
|
})
|
2069 |
|
|
|
2070 |
|
|
;; Reload instructions. See picochip_secondary_reload for an
|
2071 |
|
|
;; explanation of why an SI mode register is used as a scratch. The
|
2072 |
|
|
;; memory operand must be stored in a register (i.e., it can't be an
|
2073 |
|
|
;; offset to another register - this would require another scratch
|
2074 |
|
|
;; register into which the address of the offset could be computed).
|
2075 |
|
|
|
2076 |
|
|
(define_expand "reload_inqi"
|
2077 |
|
|
[(parallel [(match_operand:QI 0 "register_operand" "=&r")
|
2078 |
|
|
(match_operand:QI 1 "memory_operand" "m")
|
2079 |
|
|
(match_operand:SI 2 "register_operand" "=&r")])]
|
2080 |
|
|
"!TARGET_HAS_BYTE_ACCESS"
|
2081 |
|
|
{
|
2082 |
|
|
rtx scratch, seq;
|
2083 |
|
|
|
2084 |
|
|
/* Get the scratch register. Given an SI mode value, we have a
|
2085 |
|
|
choice of two HI mode scratch registers, so we can be sure that at
|
2086 |
|
|
least one of the scratch registers will be different to the output
|
2087 |
|
|
register, operand[0]. */
|
2088 |
|
|
|
2089 |
|
|
if (REGNO (operands[0]) == REGNO (operands[2]))
|
2090 |
|
|
scratch = gen_rtx_REG (HImode, REGNO (operands[2]) + 1);
|
2091 |
|
|
else
|
2092 |
|
|
scratch = gen_rtx_REG (HImode, REGNO (operands[2]));
|
2093 |
|
|
|
2094 |
|
|
/* Ensure that the scratch doesn't overlap either of the other
|
2095 |
|
|
two operands - however, the other two may overlap each
|
2096 |
|
|
other. */
|
2097 |
|
|
gcc_assert (REGNO(scratch) != REGNO(operands[0]));
|
2098 |
|
|
gcc_assert (REGNO(scratch) != REGNO(operands[1]));
|
2099 |
|
|
|
2100 |
|
|
gcc_assert (GET_CODE (operands[1]) == MEM);
|
2101 |
|
|
|
2102 |
|
|
if (picochip_word_aligned_memory_reference(XEXP(operands[1], 0)))
|
2103 |
|
|
{
|
2104 |
|
|
/* Aligned reloads are easy, since they can use word-loads. */
|
2105 |
|
|
seq = gen_synthesised_loadqi_aligned(operands[0], operands[1], scratch);
|
2106 |
|
|
}
|
2107 |
|
|
else
|
2108 |
|
|
{
|
2109 |
|
|
/* Emit the instruction using a define_insn. */
|
2110 |
|
|
seq = gen_synthesised_loadqi_unaligned(operands[0], operands[1], scratch);
|
2111 |
|
|
}
|
2112 |
|
|
emit_insn (seq);
|
2113 |
|
|
|
2114 |
|
|
DONE;
|
2115 |
|
|
|
2116 |
|
|
})
|
2117 |
|
|
|
2118 |
|
|
(define_expand "reload_outqi"
|
2119 |
|
|
[(parallel [(match_operand 0 "memory_operand" "=m")
|
2120 |
|
|
(match_operand:QI 1 "register_operand" "r")
|
2121 |
|
|
(match_operand:SI 2 "register_operand" "=&r")])]
|
2122 |
|
|
"!TARGET_HAS_BYTE_ACCESS"
|
2123 |
|
|
{
|
2124 |
|
|
rtx scratch1 = gen_rtx_REG(HImode, REGNO(operands[2]));
|
2125 |
|
|
rtx scratch2 = gen_rtx_REG(HImode, REGNO(operands[2]) + 1);
|
2126 |
|
|
rtx seq;
|
2127 |
|
|
|
2128 |
|
|
gcc_assert (GET_CODE (operands[0]) == MEM);
|
2129 |
|
|
|
2130 |
|
|
if (picochip_word_aligned_memory_reference(XEXP(operands[0], 0)))
|
2131 |
|
|
{
|
2132 |
|
|
rtx alignedAddr, bitShift;
|
2133 |
|
|
|
2134 |
|
|
/* Convert the address of the known alignment into two operands
|
2135 |
|
|
* representing the aligned base address, and the number of shift bits
|
2136 |
|
|
* required to access the required value. */
|
2137 |
|
|
picochip_get_hi_aligned_mem(operands[0], &alignedAddr, &bitShift);
|
2138 |
|
|
|
2139 |
|
|
/* Emit an aligned store of the source, with the given bit offset. */
|
2140 |
|
|
seq = gen_synthesised_storeqi_aligned(alignedAddr, operands[1], scratch1, scratch2, bitShift);
|
2141 |
|
|
|
2142 |
|
|
}
|
2143 |
|
|
else
|
2144 |
|
|
{
|
2145 |
|
|
/* This isnt exercised at all. Moreover, with new devices, byte access
|
2146 |
|
|
is available in all variants. */
|
2147 |
|
|
gcc_unreachable();
|
2148 |
|
|
}
|
2149 |
|
|
|
2150 |
|
|
emit_insn (seq);
|
2151 |
|
|
DONE;
|
2152 |
|
|
|
2153 |
|
|
})
|
2154 |
|
|
|
2155 |
|
|
;; Perform a byte load of an alignable memory operand.
|
2156 |
|
|
; op0 = register to load. op1 = memory operand from which to load
|
2157 |
|
|
; op2 = op1, aligned to HI, op3 = const bit shift required to extract byte,
|
2158 |
|
|
; op4 = INTVAL(8 - op3)
|
2159 |
|
|
(define_expand "synthesised_loadqi_aligned"
|
2160 |
|
|
[; Load memory operand into register
|
2161 |
|
|
(set (match_operand:HI 2 "register_operand" "=r")
|
2162 |
|
|
(match_dup 3))
|
2163 |
|
|
; Shift required byte into top byte of word.
|
2164 |
|
|
(set (match_dup 2)
|
2165 |
|
|
(ashift:HI (match_dup 2)
|
2166 |
|
|
(match_dup 4)))
|
2167 |
|
|
; Arithmetic shift of byte to sign extend, and move to lowest register.
|
2168 |
|
|
(parallel[(set (subreg:HI (match_dup 0) 0)
|
2169 |
|
|
(ashiftrt:HI (match_dup 2)
|
2170 |
|
|
(const_int 8)))
|
2171 |
|
|
(clobber (reg:CC CC_REGNUM))])
|
2172 |
|
|
(use (match_operand:QI 1 "picochip_alignable_memory_operand" "g"))]
|
2173 |
|
|
"!TARGET_HAS_BYTE_ACCESS"
|
2174 |
|
|
{
|
2175 |
|
|
rtx alignedAddr, bitShift;
|
2176 |
|
|
|
2177 |
|
|
/* Convert the address of the known alignment into two operands
|
2178 |
|
|
* representing the aligned base address, and the number of shift bits
|
2179 |
|
|
* required to access the required value. */
|
2180 |
|
|
picochip_get_hi_aligned_mem(operands[1], &alignedAddr, &bitShift);
|
2181 |
|
|
|
2182 |
|
|
operands[3] = alignedAddr;
|
2183 |
|
|
operands[4] = GEN_INT(8 - INTVAL(bitShift));
|
2184 |
|
|
})
|
2185 |
|
|
|
2186 |
|
|
;;============================================================================
|
2187 |
|
|
;; Special instructions.
|
2188 |
|
|
;;============================================================================
|
2189 |
|
|
|
2190 |
|
|
; Count sign-bits.
|
2191 |
|
|
(define_insn "sbc"
|
2192 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
2193 |
|
|
(unspec:HI [(match_operand:HI 1 "register_operand" "r")]
|
2194 |
|
|
UNSPEC_SBC))]
|
2195 |
|
|
""
|
2196 |
|
|
"SBC %1,%0\t\t// %0 := SBC(%1)"
|
2197 |
|
|
[(set_attr "type" "picoAlu")
|
2198 |
|
|
(set_attr "length" "2")])
|
2199 |
|
|
|
2200 |
|
|
; Bit reversal.
|
2201 |
|
|
(define_insn "brev"
|
2202 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
2203 |
|
|
(unspec:HI [(match_operand:HI 1 "register_operand" "r")]
|
2204 |
|
|
UNSPEC_BREV))]
|
2205 |
|
|
""
|
2206 |
|
|
"BREV %1,%0\t\t// %0 := BREV(%1)"
|
2207 |
|
|
[(set_attr "length" "2")
|
2208 |
|
|
(set_attr "type" "picoAlu")])
|
2209 |
|
|
|
2210 |
|
|
; Byte swap.
|
2211 |
|
|
(define_insn "bswaphi2"
|
2212 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
2213 |
|
|
(bswap:HI (match_operand:HI 1 "register_operand" "r")))]
|
2214 |
|
|
""
|
2215 |
|
|
"BYTESWAP %1,%0\t\t// %0 := ByteSwap(%1)"
|
2216 |
|
|
[(set_attr "length" "2")
|
2217 |
|
|
(set_attr "type" "picoAlu")])
|
2218 |
|
|
|
2219 |
|
|
; Read status word.
|
2220 |
|
|
(define_insn "copysw"
|
2221 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
2222 |
|
|
(unspec_volatile:HI [(reg:CC CC_REGNUM)] UNSPEC_COPYSW))]
|
2223 |
|
|
""
|
2224 |
|
|
"COPYSW.%# %0\t// %0 := Flags"
|
2225 |
|
|
[(set_attr "type" "basicAlu")
|
2226 |
|
|
(set_attr "length" "2")])
|
2227 |
|
|
|
2228 |
|
|
; Saturating addition.
|
2229 |
|
|
(define_insn "sataddhi3"
|
2230 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
2231 |
|
|
(unspec:HI [(match_operand:HI 1 "register_operand" "r")
|
2232 |
|
|
(match_operand:HI 2 "register_operand" "r")]
|
2233 |
|
|
UNSPEC_ADDS))
|
2234 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
2235 |
|
|
""
|
2236 |
|
|
"ADDS %1,%2,%0\t// %0 := sat(%1 + %2)"
|
2237 |
|
|
[(set_attr "type" "picoAlu")
|
2238 |
|
|
(set_attr "length" "3")])
|
2239 |
|
|
|
2240 |
|
|
; Saturating subtraction.
|
2241 |
|
|
(define_insn "satsubhi3"
|
2242 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
2243 |
|
|
(unspec:HI [(match_operand:HI 1 "register_operand" "r")
|
2244 |
|
|
(match_operand:HI 2 "register_operand" "r")]
|
2245 |
|
|
UNSPEC_SUBS))
|
2246 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
2247 |
|
|
""
|
2248 |
|
|
"SUBS %1,%2,%0\t// %0 := sat(%1 - %2)"
|
2249 |
|
|
[(set_attr "type" "picoAlu")
|
2250 |
|
|
(set_attr "length" "3")])
|
2251 |
|
|
|
2252 |
|
|
(define_insn "halt"
|
2253 |
|
|
[(unspec_volatile [(match_operand:HI 0 "const_int_operand" "i")]
|
2254 |
|
|
UNSPEC_HALT)]
|
2255 |
|
|
""
|
2256 |
|
|
"HALT\t// (id %0)"
|
2257 |
|
|
[(set_attr "length" "1")
|
2258 |
|
|
(set_attr "type" "unknown")])
|
2259 |
|
|
|
2260 |
|
|
(define_insn "internal_testport"
|
2261 |
|
|
[(set (reg:CC CC_REGNUM)
|
2262 |
|
|
(unspec_volatile:CC [(match_operand:HI 0 "const_int_operand" "i")]
|
2263 |
|
|
UNSPEC_INTERNAL_TESTPORT))]
|
2264 |
|
|
""
|
2265 |
|
|
"TSTPORT %0"
|
2266 |
|
|
[(set_attr "length" "2")
|
2267 |
|
|
(set_attr "longConstant" "false")
|
2268 |
|
|
(set_attr "type" "picoAlu")])
|
2269 |
|
|
|
2270 |
|
|
;;============================================================================
|
2271 |
|
|
;; Communications builtins.
|
2272 |
|
|
;;
|
2273 |
|
|
;; Each builtin comes in two forms: a single port version, which maps
|
2274 |
|
|
;; to a single instruction, and an array port version. The array port
|
2275 |
|
|
;; version is treated as a special type of instruction, which is then
|
2276 |
|
|
;; split into a number of smaller instructions, if the index of the
|
2277 |
|
|
;; port can't be converted into a constant. When the RTL split is
|
2278 |
|
|
;; performed, a function call is emitted, in which the index of the
|
2279 |
|
|
;; port to use is used to compute the address of the function to call
|
2280 |
|
|
;; (i.e., each array port is a function in its own right, and the
|
2281 |
|
|
;; functions are stored as an array which is then indexed to determine
|
2282 |
|
|
;; the correct function). The communication function port array is
|
2283 |
|
|
;; created by the linker if and only if it is required (in a
|
2284 |
|
|
;; collect2-like manner).
|
2285 |
|
|
;;============================================================================
|
2286 |
|
|
|
2287 |
|
|
; Simple scalar get.
|
2288 |
|
|
(define_insn "commsGet"
|
2289 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
2290 |
|
|
(unspec_volatile:SI
|
2291 |
|
|
[(match_operand:HI 1 "immediate_operand" "n")]
|
2292 |
|
|
UNSPEC_GET))]
|
2293 |
|
|
""
|
2294 |
|
|
"GET %1,%R0\t// %R0 := PORT(%1)"
|
2295 |
|
|
[(set_attr "type" "comms")
|
2296 |
|
|
(set_attr "length" "2")])
|
2297 |
|
|
|
2298 |
|
|
; Entry point for array get (the actual port index is computed as the
|
2299 |
|
|
; sum of the index, and the base).
|
2300 |
|
|
;
|
2301 |
|
|
; op0 - Destination
|
2302 |
|
|
; op1 - Requested port index
|
2303 |
|
|
; op2 - size of port array (constant)
|
2304 |
|
|
; op3 - base index of port array (constant)
|
2305 |
|
|
|
2306 |
|
|
(define_expand "commsArrayGet"
|
2307 |
|
|
[(parallel
|
2308 |
|
|
[(set (reg:SI 0)
|
2309 |
|
|
(unspec_volatile:SI [(match_operand:HI 1 "general_operand" "")
|
2310 |
|
|
(match_operand:HI 2 "immediate_operand" "")
|
2311 |
|
|
(match_operand:HI 3 "immediate_operand" "")]
|
2312 |
|
|
UNSPEC_CALL_GET_ARRAY))
|
2313 |
|
|
(clobber (reg:HI LINK_REGNUM))])
|
2314 |
|
|
(set (match_operand:SI 0 "register_operand" "") (reg:SI 0))]
|
2315 |
|
|
""
|
2316 |
|
|
"")
|
2317 |
|
|
|
2318 |
|
|
;; The actual array get instruction. When the array index is a constant,
|
2319 |
|
|
;; an exact instruction may be generated. When the index is variable,
|
2320 |
|
|
;; a call to a special function is generated. This code could be
|
2321 |
|
|
;; split into individual RTL instructions, but it is so rarely
|
2322 |
|
|
;; used, that we won't bother.
|
2323 |
|
|
(define_insn "*commsArrayGetInstruction"
|
2324 |
|
|
[(set (reg:SI 0)
|
2325 |
|
|
(unspec_volatile:SI [(match_operand:HI 0 "general_operand" "r,i")
|
2326 |
|
|
(match_operand:HI 1 "immediate_operand" "")
|
2327 |
|
|
(match_operand:HI 2 "immediate_operand" "")]
|
2328 |
|
|
UNSPEC_CALL_GET_ARRAY))
|
2329 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
2330 |
|
|
""
|
2331 |
|
|
{
|
2332 |
|
|
return picochip_output_get_array (which_alternative, operands);
|
2333 |
|
|
})
|
2334 |
|
|
|
2335 |
|
|
; Scalar Put instruction.
|
2336 |
|
|
(define_insn "commsPut"
|
2337 |
|
|
[(unspec_volatile [(match_operand:HI 0 "const_int_operand" "")
|
2338 |
|
|
(match_operand:SI 1 "register_operand" "r")]
|
2339 |
|
|
UNSPEC_PUT)]
|
2340 |
|
|
""
|
2341 |
|
|
"PUT %R1,%0\t// PORT(%0) := %R1"
|
2342 |
|
|
[(set_attr "type" "comms")
|
2343 |
|
|
(set_attr "length" "2")])
|
2344 |
|
|
|
2345 |
|
|
; Entry point for array put. The operands accepted are:
|
2346 |
|
|
; op0 - Value to put
|
2347 |
|
|
; op1 - Requested port index
|
2348 |
|
|
; op2 - size of port array
|
2349 |
|
|
; op3 - base index of port array
|
2350 |
|
|
; The arguments are marshalled into the fixed registers, so that
|
2351 |
|
|
; the actual put instruction can expand into a call if necessary
|
2352 |
|
|
; (e.g., if the index is variable at run-time).
|
2353 |
|
|
|
2354 |
|
|
(define_expand "commsArrayPut"
|
2355 |
|
|
[(set (reg:SI 0) (match_operand:SI 0 "general_operand" ""))
|
2356 |
|
|
(parallel
|
2357 |
|
|
[(unspec_volatile [(match_operand:HI 1 "general_operand" "")
|
2358 |
|
|
(match_operand:HI 2 "immediate_operand" "")
|
2359 |
|
|
(match_operand:HI 3 "immediate_operand" "")]
|
2360 |
|
|
UNSPEC_CALL_PUT_ARRAY)
|
2361 |
|
|
(use (reg:SI 0))
|
2362 |
|
|
(clobber (reg:HI LINK_REGNUM))])]
|
2363 |
|
|
""
|
2364 |
|
|
"")
|
2365 |
|
|
|
2366 |
|
|
;; The actual array put instruction. When the array index is a constant,
|
2367 |
|
|
;; an exact instruction may be generated. When the index is variable,
|
2368 |
|
|
;; a call to a special function is generated. This code could be
|
2369 |
|
|
;; split into individual RTL instructions, but it is so rarely
|
2370 |
|
|
;; used, that we won't bother.
|
2371 |
|
|
(define_insn "*commsArrayPutInstruction"
|
2372 |
|
|
[(unspec_volatile [(match_operand:HI 0 "general_operand" "r,i")
|
2373 |
|
|
(match_operand:HI 1 "immediate_operand" "")
|
2374 |
|
|
(match_operand:HI 2 "immediate_operand" "")]
|
2375 |
|
|
UNSPEC_CALL_PUT_ARRAY)
|
2376 |
|
|
(use (reg:SI 0))
|
2377 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
2378 |
|
|
""
|
2379 |
|
|
{
|
2380 |
|
|
return picochip_output_put_array (which_alternative, operands);
|
2381 |
|
|
})
|
2382 |
|
|
|
2383 |
|
|
;; Scalar test port instruction.
|
2384 |
|
|
(define_insn "commsTestPort"
|
2385 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r")
|
2386 |
|
|
(unspec_volatile:HI [(match_operand:HI 1 "const_int_operand" "")]
|
2387 |
|
|
UNSPEC_TESTPORT))
|
2388 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
2389 |
|
|
""
|
2390 |
|
|
"// %0 := TestPort(%1)\;COPY.1 0,%0 %| TSTPORT %1\;COPYEQ 1,%0"
|
2391 |
|
|
[(set_attr "length" "9")])
|
2392 |
|
|
|
2393 |
|
|
; Entry point for array tstport (the actual port index is computed as the
|
2394 |
|
|
; sum of the index, and the base).
|
2395 |
|
|
;
|
2396 |
|
|
; op0 - Test value.
|
2397 |
|
|
; op1 - Requested port index
|
2398 |
|
|
; op2 - size of port array (constant)
|
2399 |
|
|
; op3 - base index of port array (constant)
|
2400 |
|
|
|
2401 |
|
|
(define_expand "commsArrayTestPort"
|
2402 |
|
|
[(parallel
|
2403 |
|
|
[(set (match_operand:HI 0 "register_operand" "")
|
2404 |
|
|
(unspec_volatile:HI [(match_operand:HI 1 "general_operand" "")
|
2405 |
|
|
(match_operand:HI 2 "immediate_operand" "")
|
2406 |
|
|
(match_operand:HI 3 "immediate_operand" "")]
|
2407 |
|
|
UNSPEC_CALL_TESTPORT_ARRAY))
|
2408 |
|
|
(clobber (reg:HI LINK_REGNUM))])]
|
2409 |
|
|
""
|
2410 |
|
|
"")
|
2411 |
|
|
|
2412 |
|
|
;; The actual array testport instruction. When the array index is a constant,
|
2413 |
|
|
;; an exact instruction may be generated. When the index is variable,
|
2414 |
|
|
;; a call to a special function is generated. This code could be
|
2415 |
|
|
;; split into individual RTL instructions, but it is so rarely
|
2416 |
|
|
;; used, that we won't bother.
|
2417 |
|
|
(define_insn "*commsArrayTestportInstruction"
|
2418 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
2419 |
|
|
(unspec_volatile:HI [(match_operand:HI 1 "general_operand" "r,i")
|
2420 |
|
|
(match_operand:HI 2 "immediate_operand" "")
|
2421 |
|
|
(match_operand:HI 3 "immediate_operand" "")]
|
2422 |
|
|
UNSPEC_CALL_TESTPORT_ARRAY))
|
2423 |
|
|
(clobber (reg:HI LINK_REGNUM))]
|
2424 |
|
|
""
|
2425 |
|
|
{
|
2426 |
|
|
return picochip_output_testport_array (which_alternative, operands);
|
2427 |
|
|
})
|
2428 |
|
|
|
2429 |
|
|
;; Merge a TSTPORT instruction with the branch to which it
|
2430 |
|
|
;; relates. Often the TSTPORT function (generated by a built-in), is
|
2431 |
|
|
;; used to control conditional execution. The normal sequence of
|
2432 |
|
|
;; instructions would be:
|
2433 |
|
|
;; TSTPORT p
|
2434 |
|
|
;; COPYSW temp
|
2435 |
|
|
;; AND temp, 0x0008, temp
|
2436 |
|
|
;; SUB temp,0,discard
|
2437 |
|
|
;; BEQ label
|
2438 |
|
|
;; This can be made more efficient by detecting the special case where
|
2439 |
|
|
;; the result of a TSTPORT is used to branch, to allow the following
|
2440 |
|
|
;; RTL sequence to be generated instead:
|
2441 |
|
|
;; TSTPORT p
|
2442 |
|
|
;; BEQ label
|
2443 |
|
|
;; A big saving in cycles and bytes!
|
2444 |
|
|
|
2445 |
|
|
(define_insn_and_split "tstport_branch"
|
2446 |
|
|
[(set (pc)
|
2447 |
|
|
(if_then_else
|
2448 |
|
|
(match_operator 0 "comparison_operator"
|
2449 |
|
|
[(unspec_volatile:HI
|
2450 |
|
|
[(match_operand:HI 1 "const_int_operand" "")]
|
2451 |
|
|
UNSPEC_TESTPORT)
|
2452 |
|
|
(const_int 0)])
|
2453 |
|
|
(label_ref (match_operand 2 "" ""))
|
2454 |
|
|
(pc)))
|
2455 |
|
|
(clobber (reg:CC CC_REGNUM))]
|
2456 |
|
|
""
|
2457 |
|
|
"#"
|
2458 |
|
|
""
|
2459 |
|
|
[(set (reg:CC CC_REGNUM)
|
2460 |
|
|
(unspec_volatile:CC [(match_dup 1)] UNSPEC_INTERNAL_TESTPORT))
|
2461 |
|
|
(parallel [(set (pc)
|
2462 |
|
|
(if_then_else
|
2463 |
|
|
(match_op_dup:HI 4 [(reg:CC CC_REGNUM) (const_int 0)])
|
2464 |
|
|
(label_ref (match_dup 2))
|
2465 |
|
|
(pc)))
|
2466 |
|
|
(use (match_dup 3))])]
|
2467 |
|
|
"{
|
2468 |
|
|
/* Note that the sense of the branch is reversed, since we are
|
2469 |
|
|
* comparing flag != 0. */
|
2470 |
|
|
gcc_assert (GET_CODE(operands[0]) == NE || GET_CODE(operands[0]) == EQ);
|
2471 |
|
|
operands[4] = gen_rtx_fmt_ee(reverse_condition(GET_CODE(operands[0])),
|
2472 |
|
|
GET_MODE(operands[0]), XEXP(operands[0], 0), XEXP(operands[0], 1));
|
2473 |
|
|
operands[3] = GEN_INT (0);
|
2474 |
|
|
}")
|
2475 |
|
|
|
2476 |
|
|
;;============================================================================
|
2477 |
|
|
;; Epilogue/Epilogue expansion.
|
2478 |
|
|
;;============================================================================
|
2479 |
|
|
|
2480 |
|
|
(define_expand "prologue"
|
2481 |
|
|
[(clobber (const_int 0))]
|
2482 |
|
|
""
|
2483 |
|
|
{
|
2484 |
|
|
picochip_expand_prologue ();
|
2485 |
|
|
DONE;
|
2486 |
|
|
})
|
2487 |
|
|
|
2488 |
|
|
(define_expand "epilogue"
|
2489 |
|
|
[(use (const_int 0))]
|
2490 |
|
|
""
|
2491 |
|
|
{
|
2492 |
|
|
picochip_expand_epilogue (FALSE);
|
2493 |
|
|
DONE;
|
2494 |
|
|
})
|
2495 |
|
|
|
2496 |
|
|
;;============================================================================
|
2497 |
|
|
;; Trap instruction. This is used to indicate an error. For the
|
2498 |
|
|
;; picoChip processors this is handled by calling a HALT instruction,
|
2499 |
|
|
;; which stops the processor.
|
2500 |
|
|
;;============================================================================
|
2501 |
|
|
|
2502 |
|
|
(define_insn "trap"
|
2503 |
|
|
[(trap_if (const_int 1) (const_int 6))]
|
2504 |
|
|
""
|
2505 |
|
|
"HALT\t// (Trap)"
|
2506 |
|
|
[(set_attr "length" "2")])
|
2507 |
|
|
|
2508 |
|
|
;;============================================================================
|
2509 |
|
|
;; Conditional copy instructions. Only equal/not-equal comparisons are
|
2510 |
|
|
;; supported. All other types of comparison remain as branch
|
2511 |
|
|
;; sequences.
|
2512 |
|
|
;;============================================================================
|
2513 |
|
|
|
2514 |
|
|
;; Define expand seems to consider the resulting two instructions to be
|
2515 |
|
|
;; independent. With a split, guarded by reload, it works correctly.
|
2516 |
|
|
(define_expand "movhicc"
|
2517 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
2518 |
|
|
(if_then_else:HI (match_operand:HI 1 "" "")
|
2519 |
|
|
(match_operand:HI 2 "register_operand" "0,0")
|
2520 |
|
|
(match_operand:HI 3 "picochip_register_or_immediate_operand" "r,i")))]
|
2521 |
|
|
""
|
2522 |
|
|
{if (!picochip_check_conditional_copy (operands))
|
2523 |
|
|
FAIL;
|
2524 |
|
|
})
|
2525 |
|
|
|
2526 |
|
|
(define_insn_and_split "*checked_movhicc"
|
2527 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
2528 |
|
|
(if_then_else:HI (match_operator 1 "picochip_peephole_comparison_operator"
|
2529 |
|
|
[(match_operand:HI 4 "register_operand" "r,r")
|
2530 |
|
|
(match_operand:HI 5 "picochip_comparison_operand" "r,i")])
|
2531 |
|
|
(match_operand:HI 2 "register_operand" "0,0")
|
2532 |
|
|
(match_operand:HI 3 "picochip_register_or_immediate_operand" "r,i")))]
|
2533 |
|
|
""
|
2534 |
|
|
"#"
|
2535 |
|
|
"reload_completed"
|
2536 |
|
|
[(set (reg:CC CC_REGNUM) (match_dup 1))
|
2537 |
|
|
(parallel [(set (match_operand:HI 0 "register_operand" "=r,r")
|
2538 |
|
|
(if_then_else:HI (match_op_dup:HI 1 [(reg:CC CC_REGNUM) (const_int 0)])
|
2539 |
|
|
(match_operand:HI 2 "picochip_register_or_immediate_operand" "0,0")
|
2540 |
|
|
(match_operand:HI 3 "picochip_register_or_immediate_operand" "r,i")))
|
2541 |
|
|
(use (match_dup 6))])]
|
2542 |
|
|
"{
|
2543 |
|
|
operands[6] = GEN_INT(GET_CODE(operands[0]));
|
2544 |
|
|
}")
|
2545 |
|
|
|
2546 |
|
|
;; We dont do any checks here. But this pattern is used only when movhicc
|
2547 |
|
|
;; was checked. Put a "use" clause to make sure.
|
2548 |
|
|
(define_insn "*conditional_copy"
|
2549 |
|
|
[(set (match_operand:HI 0 "register_operand" "=r,r")
|
2550 |
|
|
(if_then_else:HI
|
2551 |
|
|
(match_operator:HI 4 "picochip_peephole_comparison_operator"
|
2552 |
|
|
[(reg:CC CC_REGNUM) (const_int 0)])
|
2553 |
|
|
(match_operand:HI 1 "register_operand" "0,0")
|
2554 |
|
|
(match_operand:HI 2 "picochip_register_or_immediate_operand" "r,i")))
|
2555 |
|
|
(use (match_operand:HI 3 "const_int_operand" ""))]
|
2556 |
|
|
""
|
2557 |
|
|
{
|
2558 |
|
|
|
2559 |
|
|
gcc_assert (GET_CODE(operands[4]) == EQ || GET_CODE(operands[4]) == NE);
|
2560 |
|
|
/* Note that the comparison is reversed as the pattern matches
|
2561 |
|
|
the *else* part of the if_then_else */
|
2562 |
|
|
switch (GET_CODE(operands[4]))
|
2563 |
|
|
{
|
2564 |
|
|
case EQ: return "COPYNE %2,%0\t// if (NE) %0 := %2";
|
2565 |
|
|
case NE: return "COPYEQ %2,%0\t// if (EQ) %0 := %2";
|
2566 |
|
|
default:
|
2567 |
|
|
gcc_unreachable();
|
2568 |
|
|
}
|
2569 |
|
|
}
|
2570 |
|
|
[(set_attr "length" "2")
|
2571 |
|
|
(set_attr "type" "picoAlu,picoAlu")
|
2572 |
|
|
(set_attr "longConstant" "false,true")])
|
2573 |
|
|
|
2574 |
|
|
;;============================================================================
|
2575 |
|
|
;; Scheduling, including delay slot scheduling.
|
2576 |
|
|
;;============================================================================
|
2577 |
|
|
|
2578 |
|
|
(automata_option "v")
|
2579 |
|
|
(automata_option "ndfa")
|
2580 |
|
|
|
2581 |
|
|
;; Define each VLIW slot as a CPU resource. Note the three flavours of
|
2582 |
|
|
;; branch. `realBranch' is an actual branch instruction. `macroBranch'
|
2583 |
|
|
;; is a directive to the assembler, which may expand into multiple
|
2584 |
|
|
;; instructions. `call' is an actual branch instruction, but one which
|
2585 |
|
|
;; sets the link register, and hence can't be scheduled alongside
|
2586 |
|
|
;; other instructions which set the link register. When the DFA
|
2587 |
|
|
;; scheduler is fixed to prevent it scheduling a JL with an R12
|
2588 |
|
|
;; setting register, the call type branches can be replaced by
|
2589 |
|
|
;; realBranch types instead.
|
2590 |
|
|
|
2591 |
|
|
(define_attr "type"
|
2592 |
|
|
"picoAlu,basicAlu,nonCcAlu,mem,call,realBranch,macroBranch,mul,mac,app,comms,unknown"
|
2593 |
|
|
(const_string "unknown"))
|
2594 |
|
|
|
2595 |
|
|
(define_attr "schedType" "none,space,speed"
|
2596 |
|
|
(const (symbol_ref "(enum attr_schedType) picochip_schedule_type")))
|
2597 |
|
|
|
2598 |
|
|
;; Define whether an instruction uses a long constant.
|
2599 |
|
|
|
2600 |
|
|
(define_attr "longConstant"
|
2601 |
|
|
"true,false" (const_string "false"))
|
2602 |
|
|
|
2603 |
|
|
;; Define three EU slots.
|
2604 |
|
|
(define_query_cpu_unit "slot0,slot1,slot2")
|
2605 |
|
|
|
2606 |
|
|
;; Pull in the pipeline descriptions for speed or space scheduling.
|
2607 |
|
|
(include "dfa_speed.md")
|
2608 |
|
|
(include "dfa_space.md")
|
2609 |
|
|
|
2610 |
|
|
; Unknown instructions are assumed to take a single cycle, and use all
|
2611 |
|
|
; slots. This enables them to actually output a sequence of
|
2612 |
|
|
; instructions without any limitation. For the purposes of
|
2613 |
|
|
; scheduling, unknown instructions are a pain, and should be removed
|
2614 |
|
|
; completely. This means that RTL patterns should always be used to
|
2615 |
|
|
; reduce complex sequences of instructions to individual instructions.
|
2616 |
|
|
(define_insn_reservation "unknownInsn" 1
|
2617 |
|
|
(eq_attr "type" "unknown")
|
2618 |
|
|
"(slot0+slot1+slot2)")
|
2619 |
|
|
|
2620 |
|
|
; Allow any non-branch instructions to be placed in the branch
|
2621 |
|
|
; slot. Branch slots are always executed.
|
2622 |
|
|
(define_delay (eq_attr "type" "realBranch,call")
|
2623 |
|
|
[(eq_attr "type" "!realBranch,macroBranch,call,unknown") (nil) (nil)])
|