| 1 |
709 |
jeremybenn |
;; Predicate definitions for POWER and PowerPC.
|
| 2 |
|
|
;; Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
|
| 3 |
|
|
;; Free Software Foundation, Inc.
|
| 4 |
|
|
;;
|
| 5 |
|
|
;; This file is part of GCC.
|
| 6 |
|
|
;;
|
| 7 |
|
|
;; GCC is free software; you can redistribute it and/or modify
|
| 8 |
|
|
;; it under the terms of the GNU General Public License as published by
|
| 9 |
|
|
;; the Free Software Foundation; either version 3, or (at your option)
|
| 10 |
|
|
;; any later version.
|
| 11 |
|
|
;;
|
| 12 |
|
|
;; GCC is distributed in the hope that it will be useful,
|
| 13 |
|
|
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
;; GNU General Public License for more details.
|
| 16 |
|
|
;;
|
| 17 |
|
|
;; You should have received a copy of the GNU General Public License
|
| 18 |
|
|
;; along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
;; .
|
| 20 |
|
|
|
| 21 |
|
|
;; Return 1 for anything except PARALLEL.
|
| 22 |
|
|
(define_predicate "any_operand"
|
| 23 |
|
|
(match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem"))
|
| 24 |
|
|
|
| 25 |
|
|
;; Return 1 for any PARALLEL.
|
| 26 |
|
|
(define_predicate "any_parallel_operand"
|
| 27 |
|
|
(match_code "parallel"))
|
| 28 |
|
|
|
| 29 |
|
|
;; Return 1 if op is COUNT register.
|
| 30 |
|
|
(define_predicate "count_register_operand"
|
| 31 |
|
|
(and (match_code "reg")
|
| 32 |
|
|
(match_test "REGNO (op) == CTR_REGNO
|
| 33 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
|
| 34 |
|
|
|
| 35 |
|
|
;; Return 1 if op is an Altivec register.
|
| 36 |
|
|
(define_predicate "altivec_register_operand"
|
| 37 |
|
|
(and (match_operand 0 "register_operand")
|
| 38 |
|
|
(match_test "GET_CODE (op) != REG
|
| 39 |
|
|
|| ALTIVEC_REGNO_P (REGNO (op))
|
| 40 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
|
| 41 |
|
|
|
| 42 |
|
|
;; Return 1 if op is a VSX register.
|
| 43 |
|
|
(define_predicate "vsx_register_operand"
|
| 44 |
|
|
(and (match_operand 0 "register_operand")
|
| 45 |
|
|
(match_test "GET_CODE (op) != REG
|
| 46 |
|
|
|| VSX_REGNO_P (REGNO (op))
|
| 47 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
|
| 48 |
|
|
|
| 49 |
|
|
;; Return 1 if op is a vector register that operates on floating point vectors
|
| 50 |
|
|
;; (either altivec or VSX).
|
| 51 |
|
|
(define_predicate "vfloat_operand"
|
| 52 |
|
|
(and (match_operand 0 "register_operand")
|
| 53 |
|
|
(match_test "GET_CODE (op) != REG
|
| 54 |
|
|
|| VFLOAT_REGNO_P (REGNO (op))
|
| 55 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
|
| 56 |
|
|
|
| 57 |
|
|
;; Return 1 if op is a vector register that operates on integer vectors
|
| 58 |
|
|
;; (only altivec, VSX doesn't support integer vectors)
|
| 59 |
|
|
(define_predicate "vint_operand"
|
| 60 |
|
|
(and (match_operand 0 "register_operand")
|
| 61 |
|
|
(match_test "GET_CODE (op) != REG
|
| 62 |
|
|
|| VINT_REGNO_P (REGNO (op))
|
| 63 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
|
| 64 |
|
|
|
| 65 |
|
|
;; Return 1 if op is a vector register to do logical operations on (and, or,
|
| 66 |
|
|
;; xor, etc.)
|
| 67 |
|
|
(define_predicate "vlogical_operand"
|
| 68 |
|
|
(and (match_operand 0 "register_operand")
|
| 69 |
|
|
(match_test "GET_CODE (op) != REG
|
| 70 |
|
|
|| VLOGICAL_REGNO_P (REGNO (op))
|
| 71 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER")))
|
| 72 |
|
|
|
| 73 |
|
|
;; Return 1 if op is the carry register.
|
| 74 |
|
|
(define_predicate "ca_operand"
|
| 75 |
|
|
(and (match_code "reg")
|
| 76 |
|
|
(match_test "CA_REGNO_P (REGNO (op))")))
|
| 77 |
|
|
|
| 78 |
|
|
;; Return 1 if op is a signed 5-bit constant integer.
|
| 79 |
|
|
(define_predicate "s5bit_cint_operand"
|
| 80 |
|
|
(and (match_code "const_int")
|
| 81 |
|
|
(match_test "INTVAL (op) >= -16 && INTVAL (op) <= 15")))
|
| 82 |
|
|
|
| 83 |
|
|
;; Return 1 if op is a unsigned 5-bit constant integer.
|
| 84 |
|
|
(define_predicate "u5bit_cint_operand"
|
| 85 |
|
|
(and (match_code "const_int")
|
| 86 |
|
|
(match_test "INTVAL (op) >= 0 && INTVAL (op) <= 31")))
|
| 87 |
|
|
|
| 88 |
|
|
;; Return 1 if op is a signed 8-bit constant integer.
|
| 89 |
|
|
;; Integer multiplication complete more quickly
|
| 90 |
|
|
(define_predicate "s8bit_cint_operand"
|
| 91 |
|
|
(and (match_code "const_int")
|
| 92 |
|
|
(match_test "INTVAL (op) >= -128 && INTVAL (op) <= 127")))
|
| 93 |
|
|
|
| 94 |
|
|
;; Return 1 if op is a constant integer that can fit in a D field.
|
| 95 |
|
|
(define_predicate "short_cint_operand"
|
| 96 |
|
|
(and (match_code "const_int")
|
| 97 |
|
|
(match_test "satisfies_constraint_I (op)")))
|
| 98 |
|
|
|
| 99 |
|
|
;; Return 1 if op is a constant integer that can fit in an unsigned D field.
|
| 100 |
|
|
(define_predicate "u_short_cint_operand"
|
| 101 |
|
|
(and (match_code "const_int")
|
| 102 |
|
|
(match_test "satisfies_constraint_K (op)")))
|
| 103 |
|
|
|
| 104 |
|
|
;; Return 1 if op is a constant integer that cannot fit in a signed D field.
|
| 105 |
|
|
(define_predicate "non_short_cint_operand"
|
| 106 |
|
|
(and (match_code "const_int")
|
| 107 |
|
|
(match_test "(unsigned HOST_WIDE_INT)
|
| 108 |
|
|
(INTVAL (op) + 0x8000) >= 0x10000")))
|
| 109 |
|
|
|
| 110 |
|
|
;; Return 1 if op is a positive constant integer that is an exact power of 2.
|
| 111 |
|
|
(define_predicate "exact_log2_cint_operand"
|
| 112 |
|
|
(and (match_code "const_int")
|
| 113 |
|
|
(match_test "INTVAL (op) > 0 && exact_log2 (INTVAL (op)) >= 0")))
|
| 114 |
|
|
|
| 115 |
|
|
;; Match op = 0 or op = 1.
|
| 116 |
|
|
(define_predicate "const_0_to_1_operand"
|
| 117 |
|
|
(and (match_code "const_int")
|
| 118 |
|
|
(match_test "IN_RANGE (INTVAL (op), 0, 1)")))
|
| 119 |
|
|
|
| 120 |
|
|
;; Match op = 2 or op = 3.
|
| 121 |
|
|
(define_predicate "const_2_to_3_operand"
|
| 122 |
|
|
(and (match_code "const_int")
|
| 123 |
|
|
(match_test "IN_RANGE (INTVAL (op), 2, 3)")))
|
| 124 |
|
|
|
| 125 |
|
|
;; Return 1 if op is a register that is not special.
|
| 126 |
|
|
(define_predicate "gpc_reg_operand"
|
| 127 |
|
|
(and (match_operand 0 "register_operand")
|
| 128 |
|
|
(match_test "(GET_CODE (op) != REG
|
| 129 |
|
|
|| (REGNO (op) >= ARG_POINTER_REGNUM
|
| 130 |
|
|
&& !CA_REGNO_P (REGNO (op)))
|
| 131 |
|
|
|| REGNO (op) < MQ_REGNO)
|
| 132 |
|
|
&& !((TARGET_E500_DOUBLE || TARGET_SPE)
|
| 133 |
|
|
&& invalid_e500_subreg (op, mode))")))
|
| 134 |
|
|
|
| 135 |
|
|
;; Return 1 if op is a register that is a condition register field.
|
| 136 |
|
|
(define_predicate "cc_reg_operand"
|
| 137 |
|
|
(and (match_operand 0 "register_operand")
|
| 138 |
|
|
(match_test "GET_CODE (op) != REG
|
| 139 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER
|
| 140 |
|
|
|| CR_REGNO_P (REGNO (op))")))
|
| 141 |
|
|
|
| 142 |
|
|
;; Return 1 if op is a register that is a condition register field not cr0.
|
| 143 |
|
|
(define_predicate "cc_reg_not_cr0_operand"
|
| 144 |
|
|
(and (match_operand 0 "register_operand")
|
| 145 |
|
|
(match_test "GET_CODE (op) != REG
|
| 146 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER
|
| 147 |
|
|
|| CR_REGNO_NOT_CR0_P (REGNO (op))")))
|
| 148 |
|
|
|
| 149 |
|
|
;; Return 1 if op is a register that is a condition register field and if generating microcode, not cr0.
|
| 150 |
|
|
(define_predicate "cc_reg_not_micro_cr0_operand"
|
| 151 |
|
|
(and (match_operand 0 "register_operand")
|
| 152 |
|
|
(match_test "GET_CODE (op) != REG
|
| 153 |
|
|
|| REGNO (op) > LAST_VIRTUAL_REGISTER
|
| 154 |
|
|
|| (rs6000_gen_cell_microcode && CR_REGNO_NOT_CR0_P (REGNO (op)))
|
| 155 |
|
|
|| (!rs6000_gen_cell_microcode && CR_REGNO_P (REGNO (op)))")))
|
| 156 |
|
|
|
| 157 |
|
|
;; Return 1 if op is a constant integer valid for D field
|
| 158 |
|
|
;; or non-special register register.
|
| 159 |
|
|
(define_predicate "reg_or_short_operand"
|
| 160 |
|
|
(if_then_else (match_code "const_int")
|
| 161 |
|
|
(match_operand 0 "short_cint_operand")
|
| 162 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
| 163 |
|
|
|
| 164 |
|
|
;; Return 1 if op is a constant integer valid whose negation is valid for
|
| 165 |
|
|
;; D field or non-special register register.
|
| 166 |
|
|
;; Do not allow a constant zero because all patterns that call this
|
| 167 |
|
|
;; predicate use "addic r1,r2,-const" to set carry when r2 is greater than
|
| 168 |
|
|
;; or equal to const, which does not work for zero.
|
| 169 |
|
|
(define_predicate "reg_or_neg_short_operand"
|
| 170 |
|
|
(if_then_else (match_code "const_int")
|
| 171 |
|
|
(match_test "satisfies_constraint_P (op)
|
| 172 |
|
|
&& INTVAL (op) != 0")
|
| 173 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
| 174 |
|
|
|
| 175 |
|
|
;; Return 1 if op is a constant integer valid for DS field
|
| 176 |
|
|
;; or non-special register.
|
| 177 |
|
|
(define_predicate "reg_or_aligned_short_operand"
|
| 178 |
|
|
(if_then_else (match_code "const_int")
|
| 179 |
|
|
(and (match_operand 0 "short_cint_operand")
|
| 180 |
|
|
(match_test "!(INTVAL (op) & 3)"))
|
| 181 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
| 182 |
|
|
|
| 183 |
|
|
;; Return 1 if op is a constant integer whose high-order 16 bits are zero
|
| 184 |
|
|
;; or non-special register.
|
| 185 |
|
|
(define_predicate "reg_or_u_short_operand"
|
| 186 |
|
|
(if_then_else (match_code "const_int")
|
| 187 |
|
|
(match_operand 0 "u_short_cint_operand")
|
| 188 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
| 189 |
|
|
|
| 190 |
|
|
;; Return 1 if op is any constant integer
|
| 191 |
|
|
;; or non-special register.
|
| 192 |
|
|
(define_predicate "reg_or_cint_operand"
|
| 193 |
|
|
(ior (match_code "const_int")
|
| 194 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
| 195 |
|
|
|
| 196 |
|
|
;; Return 1 if op is a constant integer valid for addition
|
| 197 |
|
|
;; or non-special register.
|
| 198 |
|
|
(define_predicate "reg_or_add_cint_operand"
|
| 199 |
|
|
(if_then_else (match_code "const_int")
|
| 200 |
|
|
(match_test "(HOST_BITS_PER_WIDE_INT == 32
|
| 201 |
|
|
&& (mode == SImode || INTVAL (op) < 0x7fff8000))
|
| 202 |
|
|
|| ((unsigned HOST_WIDE_INT) (INTVAL (op) + 0x80008000)
|
| 203 |
|
|
< (unsigned HOST_WIDE_INT) 0x100000000ll)")
|
| 204 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
| 205 |
|
|
|
| 206 |
|
|
;; Return 1 if op is a constant integer valid for subtraction
|
| 207 |
|
|
;; or non-special register.
|
| 208 |
|
|
(define_predicate "reg_or_sub_cint_operand"
|
| 209 |
|
|
(if_then_else (match_code "const_int")
|
| 210 |
|
|
(match_test "(HOST_BITS_PER_WIDE_INT == 32
|
| 211 |
|
|
&& (mode == SImode || - INTVAL (op) < 0x7fff8000))
|
| 212 |
|
|
|| ((unsigned HOST_WIDE_INT) (- INTVAL (op)
|
| 213 |
|
|
+ (mode == SImode
|
| 214 |
|
|
? 0x80000000 : 0x80008000))
|
| 215 |
|
|
< (unsigned HOST_WIDE_INT) 0x100000000ll)")
|
| 216 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
| 217 |
|
|
|
| 218 |
|
|
;; Return 1 if op is any 32-bit unsigned constant integer
|
| 219 |
|
|
;; or non-special register.
|
| 220 |
|
|
(define_predicate "reg_or_logical_cint_operand"
|
| 221 |
|
|
(if_then_else (match_code "const_int")
|
| 222 |
|
|
(match_test "(GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
|
| 223 |
|
|
&& INTVAL (op) >= 0)
|
| 224 |
|
|
|| ((INTVAL (op) & GET_MODE_MASK (mode)
|
| 225 |
|
|
& (~ (unsigned HOST_WIDE_INT) 0xffffffff)) == 0)")
|
| 226 |
|
|
(if_then_else (match_code "const_double")
|
| 227 |
|
|
(match_test "GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
|
| 228 |
|
|
&& mode == DImode
|
| 229 |
|
|
&& CONST_DOUBLE_HIGH (op) == 0")
|
| 230 |
|
|
(match_operand 0 "gpc_reg_operand"))))
|
| 231 |
|
|
|
| 232 |
|
|
;; Return 1 if operand is a CONST_DOUBLE that can be set in a register
|
| 233 |
|
|
;; with no more than one instruction per word.
|
| 234 |
|
|
(define_predicate "easy_fp_constant"
|
| 235 |
|
|
(match_code "const_double")
|
| 236 |
|
|
{
|
| 237 |
|
|
long k[4];
|
| 238 |
|
|
REAL_VALUE_TYPE rv;
|
| 239 |
|
|
|
| 240 |
|
|
if (GET_MODE (op) != mode
|
| 241 |
|
|
|| (!SCALAR_FLOAT_MODE_P (mode) && mode != DImode))
|
| 242 |
|
|
return 0;
|
| 243 |
|
|
|
| 244 |
|
|
/* Consider all constants with -msoft-float to be easy. */
|
| 245 |
|
|
if ((TARGET_SOFT_FLOAT || TARGET_E500_SINGLE
|
| 246 |
|
|
|| (TARGET_HARD_FLOAT && (TARGET_SINGLE_FLOAT && ! TARGET_DOUBLE_FLOAT)))
|
| 247 |
|
|
&& mode != DImode)
|
| 248 |
|
|
return 1;
|
| 249 |
|
|
|
| 250 |
|
|
if (DECIMAL_FLOAT_MODE_P (mode))
|
| 251 |
|
|
return 0;
|
| 252 |
|
|
|
| 253 |
|
|
/* If we are using V.4 style PIC, consider all constants to be hard. */
|
| 254 |
|
|
if (flag_pic && DEFAULT_ABI == ABI_V4)
|
| 255 |
|
|
return 0;
|
| 256 |
|
|
|
| 257 |
|
|
#ifdef TARGET_RELOCATABLE
|
| 258 |
|
|
/* Similarly if we are using -mrelocatable, consider all constants
|
| 259 |
|
|
to be hard. */
|
| 260 |
|
|
if (TARGET_RELOCATABLE)
|
| 261 |
|
|
return 0;
|
| 262 |
|
|
#endif
|
| 263 |
|
|
|
| 264 |
|
|
switch (mode)
|
| 265 |
|
|
{
|
| 266 |
|
|
case TFmode:
|
| 267 |
|
|
if (TARGET_E500_DOUBLE)
|
| 268 |
|
|
return 0;
|
| 269 |
|
|
|
| 270 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
|
| 271 |
|
|
REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
|
| 272 |
|
|
|
| 273 |
|
|
return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1
|
| 274 |
|
|
&& num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1
|
| 275 |
|
|
&& num_insns_constant_wide ((HOST_WIDE_INT) k[2]) == 1
|
| 276 |
|
|
&& num_insns_constant_wide ((HOST_WIDE_INT) k[3]) == 1);
|
| 277 |
|
|
|
| 278 |
|
|
case DFmode:
|
| 279 |
|
|
/* The constant 0.f is easy under VSX. */
|
| 280 |
|
|
if (op == CONST0_RTX (DFmode) && VECTOR_UNIT_VSX_P (DFmode))
|
| 281 |
|
|
return 1;
|
| 282 |
|
|
|
| 283 |
|
|
/* Force constants to memory before reload to utilize
|
| 284 |
|
|
compress_float_constant.
|
| 285 |
|
|
Avoid this when flag_unsafe_math_optimizations is enabled
|
| 286 |
|
|
because RDIV division to reciprocal optimization is not able
|
| 287 |
|
|
to regenerate the division. */
|
| 288 |
|
|
if (TARGET_E500_DOUBLE
|
| 289 |
|
|
|| (!reload_in_progress && !reload_completed
|
| 290 |
|
|
&& !flag_unsafe_math_optimizations))
|
| 291 |
|
|
return 0;
|
| 292 |
|
|
|
| 293 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
|
| 294 |
|
|
REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
|
| 295 |
|
|
|
| 296 |
|
|
return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1
|
| 297 |
|
|
&& num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1);
|
| 298 |
|
|
|
| 299 |
|
|
case SFmode:
|
| 300 |
|
|
/* The constant 0.f is easy. */
|
| 301 |
|
|
if (op == CONST0_RTX (SFmode))
|
| 302 |
|
|
return 1;
|
| 303 |
|
|
|
| 304 |
|
|
/* Force constants to memory before reload to utilize
|
| 305 |
|
|
compress_float_constant.
|
| 306 |
|
|
Avoid this when flag_unsafe_math_optimizations is enabled
|
| 307 |
|
|
because RDIV division to reciprocal optimization is not able
|
| 308 |
|
|
to regenerate the division. */
|
| 309 |
|
|
if (!reload_in_progress && !reload_completed
|
| 310 |
|
|
&& !flag_unsafe_math_optimizations)
|
| 311 |
|
|
return 0;
|
| 312 |
|
|
|
| 313 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
|
| 314 |
|
|
REAL_VALUE_TO_TARGET_SINGLE (rv, k[0]);
|
| 315 |
|
|
|
| 316 |
|
|
return num_insns_constant_wide (k[0]) == 1;
|
| 317 |
|
|
|
| 318 |
|
|
case DImode:
|
| 319 |
|
|
return ((TARGET_POWERPC64
|
| 320 |
|
|
&& GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_LOW (op) == 0)
|
| 321 |
|
|
|| (num_insns_constant (op, DImode) <= 2));
|
| 322 |
|
|
|
| 323 |
|
|
case SImode:
|
| 324 |
|
|
return 1;
|
| 325 |
|
|
|
| 326 |
|
|
default:
|
| 327 |
|
|
gcc_unreachable ();
|
| 328 |
|
|
}
|
| 329 |
|
|
})
|
| 330 |
|
|
|
| 331 |
|
|
;; Return 1 if the operand is a CONST_VECTOR and can be loaded into a
|
| 332 |
|
|
;; vector register without using memory.
|
| 333 |
|
|
(define_predicate "easy_vector_constant"
|
| 334 |
|
|
(match_code "const_vector")
|
| 335 |
|
|
{
|
| 336 |
|
|
/* As the paired vectors are actually FPRs it seems that there is
|
| 337 |
|
|
no easy way to load a CONST_VECTOR without using memory. */
|
| 338 |
|
|
if (TARGET_PAIRED_FLOAT)
|
| 339 |
|
|
return false;
|
| 340 |
|
|
|
| 341 |
|
|
if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode))
|
| 342 |
|
|
{
|
| 343 |
|
|
if (zero_constant (op, mode))
|
| 344 |
|
|
return true;
|
| 345 |
|
|
|
| 346 |
|
|
return easy_altivec_constant (op, mode);
|
| 347 |
|
|
}
|
| 348 |
|
|
|
| 349 |
|
|
if (SPE_VECTOR_MODE (mode))
|
| 350 |
|
|
{
|
| 351 |
|
|
int cst, cst2;
|
| 352 |
|
|
if (zero_constant (op, mode))
|
| 353 |
|
|
return true;
|
| 354 |
|
|
if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
|
| 355 |
|
|
return false;
|
| 356 |
|
|
|
| 357 |
|
|
/* Limit SPE vectors to 15 bits signed. These we can generate with:
|
| 358 |
|
|
li r0, CONSTANT1
|
| 359 |
|
|
evmergelo r0, r0, r0
|
| 360 |
|
|
li r0, CONSTANT2
|
| 361 |
|
|
|
| 362 |
|
|
I don't know how efficient it would be to allow bigger constants,
|
| 363 |
|
|
considering we'll have an extra 'ori' for every 'li'. I doubt 5
|
| 364 |
|
|
instructions is better than a 64-bit memory load, but I don't
|
| 365 |
|
|
have the e500 timing specs. */
|
| 366 |
|
|
if (mode == V2SImode)
|
| 367 |
|
|
{
|
| 368 |
|
|
cst = INTVAL (CONST_VECTOR_ELT (op, 0));
|
| 369 |
|
|
cst2 = INTVAL (CONST_VECTOR_ELT (op, 1));
|
| 370 |
|
|
return cst >= -0x7fff && cst <= 0x7fff
|
| 371 |
|
|
&& cst2 >= -0x7fff && cst2 <= 0x7fff;
|
| 372 |
|
|
}
|
| 373 |
|
|
}
|
| 374 |
|
|
|
| 375 |
|
|
return false;
|
| 376 |
|
|
})
|
| 377 |
|
|
|
| 378 |
|
|
;; Same as easy_vector_constant but only for EASY_VECTOR_15_ADD_SELF.
|
| 379 |
|
|
(define_predicate "easy_vector_constant_add_self"
|
| 380 |
|
|
(and (match_code "const_vector")
|
| 381 |
|
|
(and (match_test "TARGET_ALTIVEC")
|
| 382 |
|
|
(match_test "easy_altivec_constant (op, mode)")))
|
| 383 |
|
|
{
|
| 384 |
|
|
HOST_WIDE_INT val;
|
| 385 |
|
|
if (mode == V2DImode || mode == V2DFmode)
|
| 386 |
|
|
return 0;
|
| 387 |
|
|
val = const_vector_elt_as_int (op, GET_MODE_NUNITS (mode) - 1);
|
| 388 |
|
|
val = ((val & 0xff) ^ 0x80) - 0x80;
|
| 389 |
|
|
return EASY_VECTOR_15_ADD_SELF (val);
|
| 390 |
|
|
})
|
| 391 |
|
|
|
| 392 |
|
|
;; Same as easy_vector_constant but only for EASY_VECTOR_MSB.
|
| 393 |
|
|
(define_predicate "easy_vector_constant_msb"
|
| 394 |
|
|
(and (match_code "const_vector")
|
| 395 |
|
|
(and (match_test "TARGET_ALTIVEC")
|
| 396 |
|
|
(match_test "easy_altivec_constant (op, mode)")))
|
| 397 |
|
|
{
|
| 398 |
|
|
HOST_WIDE_INT val;
|
| 399 |
|
|
if (mode == V2DImode || mode == V2DFmode)
|
| 400 |
|
|
return 0;
|
| 401 |
|
|
val = const_vector_elt_as_int (op, GET_MODE_NUNITS (mode) - 1);
|
| 402 |
|
|
return EASY_VECTOR_MSB (val, GET_MODE_INNER (mode));
|
| 403 |
|
|
})
|
| 404 |
|
|
|
| 405 |
|
|
;; Return 1 if operand is constant zero (scalars and vectors).
|
| 406 |
|
|
(define_predicate "zero_constant"
|
| 407 |
|
|
(and (match_code "const_int,const_double,const_vector")
|
| 408 |
|
|
(match_test "op == CONST0_RTX (mode)")))
|
| 409 |
|
|
|
| 410 |
|
|
;; Return 1 if operand is 0.0.
|
| 411 |
|
|
;; or non-special register register field no cr0
|
| 412 |
|
|
(define_predicate "zero_fp_constant"
|
| 413 |
|
|
(and (match_code "const_double")
|
| 414 |
|
|
(match_test "SCALAR_FLOAT_MODE_P (mode)
|
| 415 |
|
|
&& op == CONST0_RTX (mode)")))
|
| 416 |
|
|
|
| 417 |
|
|
;; Return 1 if the operand is in volatile memory. Note that during the
|
| 418 |
|
|
;; RTL generation phase, memory_operand does not return TRUE for volatile
|
| 419 |
|
|
;; memory references. So this function allows us to recognize volatile
|
| 420 |
|
|
;; references where it's safe.
|
| 421 |
|
|
(define_predicate "volatile_mem_operand"
|
| 422 |
|
|
(and (and (match_code "mem")
|
| 423 |
|
|
(match_test "MEM_VOLATILE_P (op)"))
|
| 424 |
|
|
(if_then_else (match_test "reload_completed")
|
| 425 |
|
|
(match_operand 0 "memory_operand")
|
| 426 |
|
|
(if_then_else (match_test "reload_in_progress")
|
| 427 |
|
|
(match_test "strict_memory_address_p (mode, XEXP (op, 0))")
|
| 428 |
|
|
(match_test "memory_address_p (mode, XEXP (op, 0))")))))
|
| 429 |
|
|
|
| 430 |
|
|
;; Return 1 if the operand is an offsettable memory operand.
|
| 431 |
|
|
(define_predicate "offsettable_mem_operand"
|
| 432 |
|
|
(and (match_operand 0 "memory_operand")
|
| 433 |
|
|
(match_test "offsettable_nonstrict_memref_p (op)")))
|
| 434 |
|
|
|
| 435 |
|
|
;; Return 1 if the operand is a memory operand with an address divisible by 4
|
| 436 |
|
|
(define_predicate "word_offset_memref_operand"
|
| 437 |
|
|
(match_operand 0 "memory_operand")
|
| 438 |
|
|
{
|
| 439 |
|
|
/* Address inside MEM. */
|
| 440 |
|
|
op = XEXP (op, 0);
|
| 441 |
|
|
|
| 442 |
|
|
/* Extract address from auto-inc/dec. */
|
| 443 |
|
|
if (GET_CODE (op) == PRE_INC
|
| 444 |
|
|
|| GET_CODE (op) == PRE_DEC)
|
| 445 |
|
|
op = XEXP (op, 0);
|
| 446 |
|
|
else if (GET_CODE (op) == PRE_MODIFY)
|
| 447 |
|
|
op = XEXP (op, 1);
|
| 448 |
|
|
else if (GET_CODE (op) == LO_SUM
|
| 449 |
|
|
&& GET_CODE (XEXP (op, 0)) == REG
|
| 450 |
|
|
&& GET_CODE (XEXP (op, 1)) == CONST)
|
| 451 |
|
|
op = XEXP (XEXP (op, 1), 0);
|
| 452 |
|
|
|
| 453 |
|
|
return (GET_CODE (op) != PLUS
|
| 454 |
|
|
|| GET_CODE (XEXP (op, 1)) != CONST_INT
|
| 455 |
|
|
|| INTVAL (XEXP (op, 1)) % 4 == 0);
|
| 456 |
|
|
})
|
| 457 |
|
|
|
| 458 |
|
|
;; Return 1 if the operand is an indexed or indirect memory operand.
|
| 459 |
|
|
(define_predicate "indexed_or_indirect_operand"
|
| 460 |
|
|
(match_code "mem")
|
| 461 |
|
|
{
|
| 462 |
|
|
op = XEXP (op, 0);
|
| 463 |
|
|
if (VECTOR_MEM_ALTIVEC_P (mode)
|
| 464 |
|
|
&& GET_CODE (op) == AND
|
| 465 |
|
|
&& GET_CODE (XEXP (op, 1)) == CONST_INT
|
| 466 |
|
|
&& INTVAL (XEXP (op, 1)) == -16)
|
| 467 |
|
|
op = XEXP (op, 0);
|
| 468 |
|
|
|
| 469 |
|
|
return indexed_or_indirect_address (op, mode);
|
| 470 |
|
|
})
|
| 471 |
|
|
|
| 472 |
|
|
;; Return 1 if the operand is an indexed or indirect memory operand with an
|
| 473 |
|
|
;; AND -16 in it, used to recognize when we need to switch to Altivec loads
|
| 474 |
|
|
;; to realign loops instead of VSX (altivec silently ignores the bottom bits,
|
| 475 |
|
|
;; while VSX uses the full address and traps)
|
| 476 |
|
|
(define_predicate "altivec_indexed_or_indirect_operand"
|
| 477 |
|
|
(match_code "mem")
|
| 478 |
|
|
{
|
| 479 |
|
|
op = XEXP (op, 0);
|
| 480 |
|
|
if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
|
| 481 |
|
|
&& GET_CODE (op) == AND
|
| 482 |
|
|
&& GET_CODE (XEXP (op, 1)) == CONST_INT
|
| 483 |
|
|
&& INTVAL (XEXP (op, 1)) == -16)
|
| 484 |
|
|
return indexed_or_indirect_address (XEXP (op, 0), mode);
|
| 485 |
|
|
|
| 486 |
|
|
return 0;
|
| 487 |
|
|
})
|
| 488 |
|
|
|
| 489 |
|
|
;; Return 1 if the operand is an indexed or indirect address.
|
| 490 |
|
|
(define_special_predicate "indexed_or_indirect_address"
|
| 491 |
|
|
(and (match_test "REG_P (op)
|
| 492 |
|
|
|| (GET_CODE (op) == PLUS
|
| 493 |
|
|
/* Omit testing REG_P (XEXP (op, 0)). */
|
| 494 |
|
|
&& REG_P (XEXP (op, 1)))")
|
| 495 |
|
|
(match_operand 0 "address_operand")))
|
| 496 |
|
|
|
| 497 |
|
|
;; Used for the destination of the fix_truncdfsi2 expander.
|
| 498 |
|
|
;; If stfiwx will be used, the result goes to memory; otherwise,
|
| 499 |
|
|
;; we're going to emit a store and a load of a subreg, so the dest is a
|
| 500 |
|
|
;; register.
|
| 501 |
|
|
(define_predicate "fix_trunc_dest_operand"
|
| 502 |
|
|
(if_then_else (match_test "! TARGET_E500_DOUBLE && TARGET_PPC_GFXOPT")
|
| 503 |
|
|
(match_operand 0 "memory_operand")
|
| 504 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
| 505 |
|
|
|
| 506 |
|
|
;; Return 1 if the operand is either a non-special register or can be used
|
| 507 |
|
|
;; as the operand of a `mode' add insn.
|
| 508 |
|
|
(define_predicate "add_operand"
|
| 509 |
|
|
(if_then_else (match_code "const_int")
|
| 510 |
|
|
(match_test "satisfies_constraint_I (op)
|
| 511 |
|
|
|| satisfies_constraint_L (op)")
|
| 512 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
| 513 |
|
|
|
| 514 |
|
|
;; Return 1 if OP is a constant but not a valid add_operand.
|
| 515 |
|
|
(define_predicate "non_add_cint_operand"
|
| 516 |
|
|
(and (match_code "const_int")
|
| 517 |
|
|
(match_test "!satisfies_constraint_I (op)
|
| 518 |
|
|
&& !satisfies_constraint_L (op)")))
|
| 519 |
|
|
|
| 520 |
|
|
;; Return 1 if the operand is a constant that can be used as the operand
|
| 521 |
|
|
;; of an OR or XOR.
|
| 522 |
|
|
(define_predicate "logical_const_operand"
|
| 523 |
|
|
(match_code "const_int,const_double")
|
| 524 |
|
|
{
|
| 525 |
|
|
HOST_WIDE_INT opl, oph;
|
| 526 |
|
|
|
| 527 |
|
|
if (GET_CODE (op) == CONST_INT)
|
| 528 |
|
|
{
|
| 529 |
|
|
opl = INTVAL (op) & GET_MODE_MASK (mode);
|
| 530 |
|
|
|
| 531 |
|
|
if (HOST_BITS_PER_WIDE_INT <= 32
|
| 532 |
|
|
&& GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT && opl < 0)
|
| 533 |
|
|
return 0;
|
| 534 |
|
|
}
|
| 535 |
|
|
else if (GET_CODE (op) == CONST_DOUBLE)
|
| 536 |
|
|
{
|
| 537 |
|
|
gcc_assert (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT);
|
| 538 |
|
|
|
| 539 |
|
|
opl = CONST_DOUBLE_LOW (op);
|
| 540 |
|
|
oph = CONST_DOUBLE_HIGH (op);
|
| 541 |
|
|
if (oph != 0)
|
| 542 |
|
|
return 0;
|
| 543 |
|
|
}
|
| 544 |
|
|
else
|
| 545 |
|
|
return 0;
|
| 546 |
|
|
|
| 547 |
|
|
return ((opl & ~ (unsigned HOST_WIDE_INT) 0xffff) == 0
|
| 548 |
|
|
|| (opl & ~ (unsigned HOST_WIDE_INT) 0xffff0000) == 0);
|
| 549 |
|
|
})
|
| 550 |
|
|
|
| 551 |
|
|
;; Return 1 if the operand is a non-special register or a constant that
|
| 552 |
|
|
;; can be used as the operand of an OR or XOR.
|
| 553 |
|
|
(define_predicate "logical_operand"
|
| 554 |
|
|
(ior (match_operand 0 "gpc_reg_operand")
|
| 555 |
|
|
(match_operand 0 "logical_const_operand")))
|
| 556 |
|
|
|
| 557 |
|
|
;; Return 1 if op is a constant that is not a logical operand, but could
|
| 558 |
|
|
;; be split into one.
|
| 559 |
|
|
(define_predicate "non_logical_cint_operand"
|
| 560 |
|
|
(and (match_code "const_int,const_double")
|
| 561 |
|
|
(and (not (match_operand 0 "logical_operand"))
|
| 562 |
|
|
(match_operand 0 "reg_or_logical_cint_operand"))))
|
| 563 |
|
|
|
| 564 |
|
|
;; Return 1 if op is a constant that can be encoded in a 32-bit mask,
|
| 565 |
|
|
;; suitable for use with rlwinm (no more than two 1->0 or 0->1
|
| 566 |
|
|
;; transitions). Reject all ones and all zeros, since these should have
|
| 567 |
|
|
;; been optimized away and confuse the making of MB and ME.
|
| 568 |
|
|
(define_predicate "mask_operand"
|
| 569 |
|
|
(match_code "const_int")
|
| 570 |
|
|
{
|
| 571 |
|
|
HOST_WIDE_INT c, lsb;
|
| 572 |
|
|
|
| 573 |
|
|
c = INTVAL (op);
|
| 574 |
|
|
|
| 575 |
|
|
if (TARGET_POWERPC64)
|
| 576 |
|
|
{
|
| 577 |
|
|
/* Fail if the mask is not 32-bit. */
|
| 578 |
|
|
if (mode == DImode && (c & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0)
|
| 579 |
|
|
return 0;
|
| 580 |
|
|
|
| 581 |
|
|
/* Fail if the mask wraps around because the upper 32-bits of the
|
| 582 |
|
|
mask will all be 1s, contrary to GCC's internal view. */
|
| 583 |
|
|
if ((c & 0x80000001) == 0x80000001)
|
| 584 |
|
|
return 0;
|
| 585 |
|
|
}
|
| 586 |
|
|
|
| 587 |
|
|
/* We don't change the number of transitions by inverting,
|
| 588 |
|
|
so make sure we start with the LS bit zero. */
|
| 589 |
|
|
if (c & 1)
|
| 590 |
|
|
c = ~c;
|
| 591 |
|
|
|
| 592 |
|
|
/* Reject all zeros or all ones. */
|
| 593 |
|
|
if (c == 0)
|
| 594 |
|
|
return 0;
|
| 595 |
|
|
|
| 596 |
|
|
/* Find the first transition. */
|
| 597 |
|
|
lsb = c & -c;
|
| 598 |
|
|
|
| 599 |
|
|
/* Invert to look for a second transition. */
|
| 600 |
|
|
c = ~c;
|
| 601 |
|
|
|
| 602 |
|
|
/* Erase first transition. */
|
| 603 |
|
|
c &= -lsb;
|
| 604 |
|
|
|
| 605 |
|
|
/* Find the second transition (if any). */
|
| 606 |
|
|
lsb = c & -c;
|
| 607 |
|
|
|
| 608 |
|
|
/* Match if all the bits above are 1's (or c is zero). */
|
| 609 |
|
|
return c == -lsb;
|
| 610 |
|
|
})
|
| 611 |
|
|
|
| 612 |
|
|
;; Return 1 for the PowerPC64 rlwinm corner case.
|
| 613 |
|
|
(define_predicate "mask_operand_wrap"
|
| 614 |
|
|
(match_code "const_int")
|
| 615 |
|
|
{
|
| 616 |
|
|
HOST_WIDE_INT c, lsb;
|
| 617 |
|
|
|
| 618 |
|
|
c = INTVAL (op);
|
| 619 |
|
|
|
| 620 |
|
|
if ((c & 0x80000001) != 0x80000001)
|
| 621 |
|
|
return 0;
|
| 622 |
|
|
|
| 623 |
|
|
c = ~c;
|
| 624 |
|
|
if (c == 0)
|
| 625 |
|
|
return 0;
|
| 626 |
|
|
|
| 627 |
|
|
lsb = c & -c;
|
| 628 |
|
|
c = ~c;
|
| 629 |
|
|
c &= -lsb;
|
| 630 |
|
|
lsb = c & -c;
|
| 631 |
|
|
return c == -lsb;
|
| 632 |
|
|
})
|
| 633 |
|
|
|
| 634 |
|
|
;; Return 1 if the operand is a constant that is a PowerPC64 mask
|
| 635 |
|
|
;; suitable for use with rldicl or rldicr (no more than one 1->0 or 0->1
|
| 636 |
|
|
;; transition). Reject all zeros, since zero should have been
|
| 637 |
|
|
;; optimized away and confuses the making of MB and ME.
|
| 638 |
|
|
(define_predicate "mask64_operand"
|
| 639 |
|
|
(match_code "const_int")
|
| 640 |
|
|
{
|
| 641 |
|
|
HOST_WIDE_INT c, lsb;
|
| 642 |
|
|
|
| 643 |
|
|
c = INTVAL (op);
|
| 644 |
|
|
|
| 645 |
|
|
/* Reject all zeros. */
|
| 646 |
|
|
if (c == 0)
|
| 647 |
|
|
return 0;
|
| 648 |
|
|
|
| 649 |
|
|
/* We don't change the number of transitions by inverting,
|
| 650 |
|
|
so make sure we start with the LS bit zero. */
|
| 651 |
|
|
if (c & 1)
|
| 652 |
|
|
c = ~c;
|
| 653 |
|
|
|
| 654 |
|
|
/* Find the first transition. */
|
| 655 |
|
|
lsb = c & -c;
|
| 656 |
|
|
|
| 657 |
|
|
/* Match if all the bits above are 1's (or c is zero). */
|
| 658 |
|
|
return c == -lsb;
|
| 659 |
|
|
})
|
| 660 |
|
|
|
| 661 |
|
|
;; Like mask64_operand, but allow up to three transitions. This
|
| 662 |
|
|
;; predicate is used by insn patterns that generate two rldicl or
|
| 663 |
|
|
;; rldicr machine insns.
|
| 664 |
|
|
(define_predicate "mask64_2_operand"
|
| 665 |
|
|
(match_code "const_int")
|
| 666 |
|
|
{
|
| 667 |
|
|
HOST_WIDE_INT c, lsb;
|
| 668 |
|
|
|
| 669 |
|
|
c = INTVAL (op);
|
| 670 |
|
|
|
| 671 |
|
|
/* Disallow all zeros. */
|
| 672 |
|
|
if (c == 0)
|
| 673 |
|
|
return 0;
|
| 674 |
|
|
|
| 675 |
|
|
/* We don't change the number of transitions by inverting,
|
| 676 |
|
|
so make sure we start with the LS bit zero. */
|
| 677 |
|
|
if (c & 1)
|
| 678 |
|
|
c = ~c;
|
| 679 |
|
|
|
| 680 |
|
|
/* Find the first transition. */
|
| 681 |
|
|
lsb = c & -c;
|
| 682 |
|
|
|
| 683 |
|
|
/* Invert to look for a second transition. */
|
| 684 |
|
|
c = ~c;
|
| 685 |
|
|
|
| 686 |
|
|
/* Erase first transition. */
|
| 687 |
|
|
c &= -lsb;
|
| 688 |
|
|
|
| 689 |
|
|
/* Find the second transition. */
|
| 690 |
|
|
lsb = c & -c;
|
| 691 |
|
|
|
| 692 |
|
|
/* Invert to look for a third transition. */
|
| 693 |
|
|
c = ~c;
|
| 694 |
|
|
|
| 695 |
|
|
/* Erase second transition. */
|
| 696 |
|
|
c &= -lsb;
|
| 697 |
|
|
|
| 698 |
|
|
/* Find the third transition (if any). */
|
| 699 |
|
|
lsb = c & -c;
|
| 700 |
|
|
|
| 701 |
|
|
/* Match if all the bits above are 1's (or c is zero). */
|
| 702 |
|
|
return c == -lsb;
|
| 703 |
|
|
})
|
| 704 |
|
|
|
| 705 |
|
|
;; Like and_operand, but also match constants that can be implemented
|
| 706 |
|
|
;; with two rldicl or rldicr insns.
|
| 707 |
|
|
(define_predicate "and64_2_operand"
|
| 708 |
|
|
(ior (match_operand 0 "mask64_2_operand")
|
| 709 |
|
|
(if_then_else (match_test "fixed_regs[CR0_REGNO]")
|
| 710 |
|
|
(match_operand 0 "gpc_reg_operand")
|
| 711 |
|
|
(match_operand 0 "logical_operand"))))
|
| 712 |
|
|
|
| 713 |
|
|
;; Return 1 if the operand is either a non-special register or a
|
| 714 |
|
|
;; constant that can be used as the operand of a logical AND.
|
| 715 |
|
|
(define_predicate "and_operand"
|
| 716 |
|
|
(ior (match_operand 0 "mask_operand")
|
| 717 |
|
|
(ior (and (match_test "TARGET_POWERPC64 && mode == DImode")
|
| 718 |
|
|
(match_operand 0 "mask64_operand"))
|
| 719 |
|
|
(if_then_else (match_test "fixed_regs[CR0_REGNO]")
|
| 720 |
|
|
(match_operand 0 "gpc_reg_operand")
|
| 721 |
|
|
(match_operand 0 "logical_operand")))))
|
| 722 |
|
|
|
| 723 |
|
|
;; Return 1 if the operand is either a logical operand or a short cint operand.
|
| 724 |
|
|
(define_predicate "scc_eq_operand"
|
| 725 |
|
|
(ior (match_operand 0 "logical_operand")
|
| 726 |
|
|
(match_operand 0 "short_cint_operand")))
|
| 727 |
|
|
|
| 728 |
|
|
;; Return 1 if the operand is a general non-special register or memory operand.
|
| 729 |
|
|
(define_predicate "reg_or_mem_operand"
|
| 730 |
|
|
(ior (match_operand 0 "memory_operand")
|
| 731 |
|
|
(ior (and (match_code "mem")
|
| 732 |
|
|
(match_test "macho_lo_sum_memory_operand (op, mode)"))
|
| 733 |
|
|
(ior (match_operand 0 "volatile_mem_operand")
|
| 734 |
|
|
(match_operand 0 "gpc_reg_operand")))))
|
| 735 |
|
|
|
| 736 |
|
|
;; Return 1 if the operand is either an easy FP constant or memory or reg.
|
| 737 |
|
|
(define_predicate "reg_or_none500mem_operand"
|
| 738 |
|
|
(if_then_else (match_code "mem")
|
| 739 |
|
|
(and (match_test "!TARGET_E500_DOUBLE")
|
| 740 |
|
|
(ior (match_operand 0 "memory_operand")
|
| 741 |
|
|
(ior (match_test "macho_lo_sum_memory_operand (op, mode)")
|
| 742 |
|
|
(match_operand 0 "volatile_mem_operand"))))
|
| 743 |
|
|
(match_operand 0 "gpc_reg_operand")))
|
| 744 |
|
|
|
| 745 |
|
|
;; Return 1 if the operand is CONST_DOUBLE 0, register or memory operand.
|
| 746 |
|
|
(define_predicate "zero_reg_mem_operand"
|
| 747 |
|
|
(ior (match_operand 0 "zero_fp_constant")
|
| 748 |
|
|
(match_operand 0 "reg_or_mem_operand")))
|
| 749 |
|
|
|
| 750 |
|
|
;; Return 1 if the operand is a general register or memory operand without
|
| 751 |
|
|
;; pre_inc or pre_dec or pre_modify, which produces invalid form of PowerPC
|
| 752 |
|
|
;; lwa instruction.
|
| 753 |
|
|
(define_predicate "lwa_operand"
|
| 754 |
|
|
(match_code "reg,subreg,mem")
|
| 755 |
|
|
{
|
| 756 |
|
|
rtx inner, addr, offset;
|
| 757 |
|
|
|
| 758 |
|
|
inner = op;
|
| 759 |
|
|
if (reload_completed && GET_CODE (inner) == SUBREG)
|
| 760 |
|
|
inner = SUBREG_REG (inner);
|
| 761 |
|
|
|
| 762 |
|
|
if (gpc_reg_operand (inner, mode))
|
| 763 |
|
|
return true;
|
| 764 |
|
|
if (!memory_operand (inner, mode))
|
| 765 |
|
|
return false;
|
| 766 |
|
|
addr = XEXP (inner, 0);
|
| 767 |
|
|
if (GET_CODE (addr) == PRE_INC
|
| 768 |
|
|
|| GET_CODE (addr) == PRE_DEC
|
| 769 |
|
|
|| (GET_CODE (addr) == PRE_MODIFY
|
| 770 |
|
|
&& !legitimate_indexed_address_p (XEXP (addr, 1), 0)))
|
| 771 |
|
|
return false;
|
| 772 |
|
|
if (GET_CODE (addr) == LO_SUM
|
| 773 |
|
|
&& GET_CODE (XEXP (addr, 0)) == REG
|
| 774 |
|
|
&& GET_CODE (XEXP (addr, 1)) == CONST)
|
| 775 |
|
|
addr = XEXP (XEXP (addr, 1), 0);
|
| 776 |
|
|
if (GET_CODE (addr) != PLUS)
|
| 777 |
|
|
return true;
|
| 778 |
|
|
offset = XEXP (addr, 1);
|
| 779 |
|
|
if (GET_CODE (offset) != CONST_INT)
|
| 780 |
|
|
return true;
|
| 781 |
|
|
return INTVAL (offset) % 4 == 0;
|
| 782 |
|
|
})
|
| 783 |
|
|
|
| 784 |
|
|
;; Return 1 if the operand, used inside a MEM, is a SYMBOL_REF.
|
| 785 |
|
|
(define_predicate "symbol_ref_operand"
|
| 786 |
|
|
(and (match_code "symbol_ref")
|
| 787 |
|
|
(match_test "(mode == VOIDmode || GET_MODE (op) == mode)
|
| 788 |
|
|
&& (DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))")))
|
| 789 |
|
|
|
| 790 |
|
|
;; Return 1 if op is an operand that can be loaded via the GOT.
|
| 791 |
|
|
;; or non-special register register field no cr0
|
| 792 |
|
|
(define_predicate "got_operand"
|
| 793 |
|
|
(match_code "symbol_ref,const,label_ref"))
|
| 794 |
|
|
|
| 795 |
|
|
;; Return 1 if op is a simple reference that can be loaded via the GOT,
|
| 796 |
|
|
;; excluding labels involving addition.
|
| 797 |
|
|
(define_predicate "got_no_const_operand"
|
| 798 |
|
|
(match_code "symbol_ref,label_ref"))
|
| 799 |
|
|
|
| 800 |
|
|
;; Return 1 if op is a SYMBOL_REF for a TLS symbol.
|
| 801 |
|
|
(define_predicate "rs6000_tls_symbol_ref"
|
| 802 |
|
|
(and (match_code "symbol_ref")
|
| 803 |
|
|
(match_test "RS6000_SYMBOL_REF_TLS_P (op)")))
|
| 804 |
|
|
|
| 805 |
|
|
;; Return 1 if the operand, used inside a MEM, is a valid first argument
|
| 806 |
|
|
;; to CALL. This is a SYMBOL_REF, a pseudo-register, LR or CTR.
|
| 807 |
|
|
(define_predicate "call_operand"
|
| 808 |
|
|
(if_then_else (match_code "reg")
|
| 809 |
|
|
(match_test "REGNO (op) == LR_REGNO
|
| 810 |
|
|
|| REGNO (op) == CTR_REGNO
|
| 811 |
|
|
|| REGNO (op) >= FIRST_PSEUDO_REGISTER")
|
| 812 |
|
|
(match_code "symbol_ref")))
|
| 813 |
|
|
|
| 814 |
|
|
;; Return 1 if the operand is a SYMBOL_REF for a function known to be in
|
| 815 |
|
|
;; this file.
|
| 816 |
|
|
(define_predicate "current_file_function_operand"
|
| 817 |
|
|
(and (match_code "symbol_ref")
|
| 818 |
|
|
(match_test "(DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))
|
| 819 |
|
|
&& ((SYMBOL_REF_LOCAL_P (op)
|
| 820 |
|
|
&& (DEFAULT_ABI != ABI_AIX
|
| 821 |
|
|
|| !SYMBOL_REF_EXTERNAL_P (op)))
|
| 822 |
|
|
|| (op == XEXP (DECL_RTL (current_function_decl),
|
| 823 |
|
|
0)))")))
|
| 824 |
|
|
|
| 825 |
|
|
;; Return 1 if this operand is a valid input for a move insn.
|
| 826 |
|
|
(define_predicate "input_operand"
|
| 827 |
|
|
(match_code "label_ref,symbol_ref,const,high,reg,subreg,mem,
|
| 828 |
|
|
const_double,const_vector,const_int,plus")
|
| 829 |
|
|
{
|
| 830 |
|
|
/* Memory is always valid. */
|
| 831 |
|
|
if (memory_operand (op, mode))
|
| 832 |
|
|
return 1;
|
| 833 |
|
|
|
| 834 |
|
|
/* For floating-point, easy constants are valid. */
|
| 835 |
|
|
if (SCALAR_FLOAT_MODE_P (mode)
|
| 836 |
|
|
&& CONSTANT_P (op)
|
| 837 |
|
|
&& easy_fp_constant (op, mode))
|
| 838 |
|
|
return 1;
|
| 839 |
|
|
|
| 840 |
|
|
/* Allow any integer constant. */
|
| 841 |
|
|
if (GET_MODE_CLASS (mode) == MODE_INT
|
| 842 |
|
|
&& (GET_CODE (op) == CONST_INT
|
| 843 |
|
|
|| GET_CODE (op) == CONST_DOUBLE))
|
| 844 |
|
|
return 1;
|
| 845 |
|
|
|
| 846 |
|
|
/* Allow easy vector constants. */
|
| 847 |
|
|
if (GET_CODE (op) == CONST_VECTOR
|
| 848 |
|
|
&& easy_vector_constant (op, mode))
|
| 849 |
|
|
return 1;
|
| 850 |
|
|
|
| 851 |
|
|
/* Do not allow invalid E500 subregs. */
|
| 852 |
|
|
if ((TARGET_E500_DOUBLE || TARGET_SPE)
|
| 853 |
|
|
&& GET_CODE (op) == SUBREG
|
| 854 |
|
|
&& invalid_e500_subreg (op, mode))
|
| 855 |
|
|
return 0;
|
| 856 |
|
|
|
| 857 |
|
|
/* For floating-point or multi-word mode, the only remaining valid type
|
| 858 |
|
|
is a register. */
|
| 859 |
|
|
if (SCALAR_FLOAT_MODE_P (mode)
|
| 860 |
|
|
|| GET_MODE_SIZE (mode) > UNITS_PER_WORD)
|
| 861 |
|
|
return register_operand (op, mode);
|
| 862 |
|
|
|
| 863 |
|
|
/* The only cases left are integral modes one word or smaller (we
|
| 864 |
|
|
do not get called for MODE_CC values). These can be in any
|
| 865 |
|
|
register. */
|
| 866 |
|
|
if (register_operand (op, mode))
|
| 867 |
|
|
return 1;
|
| 868 |
|
|
|
| 869 |
|
|
/* A SYMBOL_REF referring to the TOC is valid. */
|
| 870 |
|
|
if (legitimate_constant_pool_address_p (op, mode, false))
|
| 871 |
|
|
return 1;
|
| 872 |
|
|
|
| 873 |
|
|
/* A constant pool expression (relative to the TOC) is valid */
|
| 874 |
|
|
if (toc_relative_expr_p (op))
|
| 875 |
|
|
return 1;
|
| 876 |
|
|
|
| 877 |
|
|
/* V.4 allows SYMBOL_REFs and CONSTs that are in the small data region
|
| 878 |
|
|
to be valid. */
|
| 879 |
|
|
if (DEFAULT_ABI == ABI_V4
|
| 880 |
|
|
&& (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST)
|
| 881 |
|
|
&& small_data_operand (op, Pmode))
|
| 882 |
|
|
return 1;
|
| 883 |
|
|
|
| 884 |
|
|
return 0;
|
| 885 |
|
|
})
|
| 886 |
|
|
|
| 887 |
|
|
;; Return 1 if this operand is a valid input for a vsx_splat insn.
|
| 888 |
|
|
(define_predicate "splat_input_operand"
|
| 889 |
|
|
(match_code "label_ref,symbol_ref,const,high,reg,subreg,mem,
|
| 890 |
|
|
const_double,const_vector,const_int,plus")
|
| 891 |
|
|
{
|
| 892 |
|
|
if (MEM_P (op))
|
| 893 |
|
|
{
|
| 894 |
|
|
if (mode == DFmode)
|
| 895 |
|
|
mode = V2DFmode;
|
| 896 |
|
|
else if (mode == DImode)
|
| 897 |
|
|
mode = V2DImode;
|
| 898 |
|
|
else
|
| 899 |
|
|
gcc_unreachable ();
|
| 900 |
|
|
}
|
| 901 |
|
|
return input_operand (op, mode);
|
| 902 |
|
|
})
|
| 903 |
|
|
|
| 904 |
|
|
;; Return true if OP is an invalid SUBREG operation on the e500.
|
| 905 |
|
|
(define_predicate "rs6000_nonimmediate_operand"
|
| 906 |
|
|
(match_code "reg,subreg,mem")
|
| 907 |
|
|
{
|
| 908 |
|
|
if ((TARGET_E500_DOUBLE || TARGET_SPE)
|
| 909 |
|
|
&& GET_CODE (op) == SUBREG
|
| 910 |
|
|
&& invalid_e500_subreg (op, mode))
|
| 911 |
|
|
return 0;
|
| 912 |
|
|
|
| 913 |
|
|
return nonimmediate_operand (op, mode);
|
| 914 |
|
|
})
|
| 915 |
|
|
|
| 916 |
|
|
;; Return true if operand is boolean operator.
|
| 917 |
|
|
(define_predicate "boolean_operator"
|
| 918 |
|
|
(match_code "and,ior,xor"))
|
| 919 |
|
|
|
| 920 |
|
|
;; Return true if operand is OR-form of boolean operator.
|
| 921 |
|
|
(define_predicate "boolean_or_operator"
|
| 922 |
|
|
(match_code "ior,xor"))
|
| 923 |
|
|
|
| 924 |
|
|
;; Return true if operand is an equality operator.
|
| 925 |
|
|
(define_special_predicate "equality_operator"
|
| 926 |
|
|
(match_code "eq,ne"))
|
| 927 |
|
|
|
| 928 |
|
|
;; Return true if operand is MIN or MAX operator.
|
| 929 |
|
|
(define_predicate "min_max_operator"
|
| 930 |
|
|
(match_code "smin,smax,umin,umax"))
|
| 931 |
|
|
|
| 932 |
|
|
;; Return 1 if OP is a comparison operation that is valid for a branch
|
| 933 |
|
|
;; instruction. We check the opcode against the mode of the CC value.
|
| 934 |
|
|
;; validate_condition_mode is an assertion.
|
| 935 |
|
|
(define_predicate "branch_comparison_operator"
|
| 936 |
|
|
(and (match_operand 0 "comparison_operator")
|
| 937 |
|
|
(and (match_test "GET_MODE_CLASS (GET_MODE (XEXP (op, 0))) == MODE_CC")
|
| 938 |
|
|
(match_test "validate_condition_mode (GET_CODE (op),
|
| 939 |
|
|
GET_MODE (XEXP (op, 0))),
|
| 940 |
|
|
1"))))
|
| 941 |
|
|
|
| 942 |
|
|
(define_predicate "rs6000_cbranch_operator"
|
| 943 |
|
|
(if_then_else (match_test "TARGET_HARD_FLOAT && !TARGET_FPRS")
|
| 944 |
|
|
(match_operand 0 "ordered_comparison_operator")
|
| 945 |
|
|
(match_operand 0 "comparison_operator")))
|
| 946 |
|
|
|
| 947 |
|
|
;; Return 1 if OP is a comparison operation that is valid for an SCC insn --
|
| 948 |
|
|
;; it must be a positive comparison.
|
| 949 |
|
|
(define_predicate "scc_comparison_operator"
|
| 950 |
|
|
(and (match_operand 0 "branch_comparison_operator")
|
| 951 |
|
|
(match_code "eq,lt,gt,ltu,gtu,unordered")))
|
| 952 |
|
|
|
| 953 |
|
|
;; Return 1 if OP is a comparison operation whose inverse would be valid for
|
| 954 |
|
|
;; an SCC insn.
|
| 955 |
|
|
(define_predicate "scc_rev_comparison_operator"
|
| 956 |
|
|
(and (match_operand 0 "branch_comparison_operator")
|
| 957 |
|
|
(match_code "ne,le,ge,leu,geu,ordered")))
|
| 958 |
|
|
|
| 959 |
|
|
;; Return 1 if OP is a comparison operation that is valid for a branch
|
| 960 |
|
|
;; insn, which is true if the corresponding bit in the CC register is set.
|
| 961 |
|
|
(define_predicate "branch_positive_comparison_operator"
|
| 962 |
|
|
(and (match_operand 0 "branch_comparison_operator")
|
| 963 |
|
|
(match_code "eq,lt,gt,ltu,gtu,unordered")))
|
| 964 |
|
|
|
| 965 |
|
|
;; Return 1 if OP is a load multiple operation, known to be a PARALLEL.
|
| 966 |
|
|
(define_predicate "load_multiple_operation"
|
| 967 |
|
|
(match_code "parallel")
|
| 968 |
|
|
{
|
| 969 |
|
|
int count = XVECLEN (op, 0);
|
| 970 |
|
|
unsigned int dest_regno;
|
| 971 |
|
|
rtx src_addr;
|
| 972 |
|
|
int i;
|
| 973 |
|
|
|
| 974 |
|
|
/* Perform a quick check so we don't blow up below. */
|
| 975 |
|
|
if (count <= 1
|
| 976 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
| 977 |
|
|
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|
| 978 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
|
| 979 |
|
|
return 0;
|
| 980 |
|
|
|
| 981 |
|
|
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
|
| 982 |
|
|
src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
|
| 983 |
|
|
|
| 984 |
|
|
for (i = 1; i < count; i++)
|
| 985 |
|
|
{
|
| 986 |
|
|
rtx elt = XVECEXP (op, 0, i);
|
| 987 |
|
|
|
| 988 |
|
|
if (GET_CODE (elt) != SET
|
| 989 |
|
|
|| GET_CODE (SET_DEST (elt)) != REG
|
| 990 |
|
|
|| GET_MODE (SET_DEST (elt)) != SImode
|
| 991 |
|
|
|| REGNO (SET_DEST (elt)) != dest_regno + i
|
| 992 |
|
|
|| GET_CODE (SET_SRC (elt)) != MEM
|
| 993 |
|
|
|| GET_MODE (SET_SRC (elt)) != SImode
|
| 994 |
|
|
|| GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
|
| 995 |
|
|
|| ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
|
| 996 |
|
|
|| GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
|
| 997 |
|
|
|| INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4)
|
| 998 |
|
|
return 0;
|
| 999 |
|
|
}
|
| 1000 |
|
|
|
| 1001 |
|
|
return 1;
|
| 1002 |
|
|
})
|
| 1003 |
|
|
|
| 1004 |
|
|
;; Return 1 if OP is a store multiple operation, known to be a PARALLEL.
|
| 1005 |
|
|
;; The second vector element is a CLOBBER.
|
| 1006 |
|
|
(define_predicate "store_multiple_operation"
|
| 1007 |
|
|
(match_code "parallel")
|
| 1008 |
|
|
{
|
| 1009 |
|
|
int count = XVECLEN (op, 0) - 1;
|
| 1010 |
|
|
unsigned int src_regno;
|
| 1011 |
|
|
rtx dest_addr;
|
| 1012 |
|
|
int i;
|
| 1013 |
|
|
|
| 1014 |
|
|
/* Perform a quick check so we don't blow up below. */
|
| 1015 |
|
|
if (count <= 1
|
| 1016 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
| 1017 |
|
|
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
|
| 1018 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
|
| 1019 |
|
|
return 0;
|
| 1020 |
|
|
|
| 1021 |
|
|
src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
|
| 1022 |
|
|
dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
|
| 1023 |
|
|
|
| 1024 |
|
|
for (i = 1; i < count; i++)
|
| 1025 |
|
|
{
|
| 1026 |
|
|
rtx elt = XVECEXP (op, 0, i + 1);
|
| 1027 |
|
|
|
| 1028 |
|
|
if (GET_CODE (elt) != SET
|
| 1029 |
|
|
|| GET_CODE (SET_SRC (elt)) != REG
|
| 1030 |
|
|
|| GET_MODE (SET_SRC (elt)) != SImode
|
| 1031 |
|
|
|| REGNO (SET_SRC (elt)) != src_regno + i
|
| 1032 |
|
|
|| GET_CODE (SET_DEST (elt)) != MEM
|
| 1033 |
|
|
|| GET_MODE (SET_DEST (elt)) != SImode
|
| 1034 |
|
|
|| GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
|
| 1035 |
|
|
|| ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr)
|
| 1036 |
|
|
|| GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
|
| 1037 |
|
|
|| INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4)
|
| 1038 |
|
|
return 0;
|
| 1039 |
|
|
}
|
| 1040 |
|
|
|
| 1041 |
|
|
return 1;
|
| 1042 |
|
|
})
|
| 1043 |
|
|
|
| 1044 |
|
|
;; Return 1 if OP is valid for a save_world call in prologue, known to be
|
| 1045 |
|
|
;; a PARLLEL.
|
| 1046 |
|
|
(define_predicate "save_world_operation"
|
| 1047 |
|
|
(match_code "parallel")
|
| 1048 |
|
|
{
|
| 1049 |
|
|
int index;
|
| 1050 |
|
|
int i;
|
| 1051 |
|
|
rtx elt;
|
| 1052 |
|
|
int count = XVECLEN (op, 0);
|
| 1053 |
|
|
|
| 1054 |
|
|
if (count != 54)
|
| 1055 |
|
|
return 0;
|
| 1056 |
|
|
|
| 1057 |
|
|
index = 0;
|
| 1058 |
|
|
if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|
| 1059 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != USE)
|
| 1060 |
|
|
return 0;
|
| 1061 |
|
|
|
| 1062 |
|
|
for (i=1; i <= 18; i++)
|
| 1063 |
|
|
{
|
| 1064 |
|
|
elt = XVECEXP (op, 0, index++);
|
| 1065 |
|
|
if (GET_CODE (elt) != SET
|
| 1066 |
|
|
|| GET_CODE (SET_DEST (elt)) != MEM
|
| 1067 |
|
|
|| ! memory_operand (SET_DEST (elt), DFmode)
|
| 1068 |
|
|
|| GET_CODE (SET_SRC (elt)) != REG
|
| 1069 |
|
|
|| GET_MODE (SET_SRC (elt)) != DFmode)
|
| 1070 |
|
|
return 0;
|
| 1071 |
|
|
}
|
| 1072 |
|
|
|
| 1073 |
|
|
for (i=1; i <= 12; i++)
|
| 1074 |
|
|
{
|
| 1075 |
|
|
elt = XVECEXP (op, 0, index++);
|
| 1076 |
|
|
if (GET_CODE (elt) != SET
|
| 1077 |
|
|
|| GET_CODE (SET_DEST (elt)) != MEM
|
| 1078 |
|
|
|| GET_CODE (SET_SRC (elt)) != REG
|
| 1079 |
|
|
|| GET_MODE (SET_SRC (elt)) != V4SImode)
|
| 1080 |
|
|
return 0;
|
| 1081 |
|
|
}
|
| 1082 |
|
|
|
| 1083 |
|
|
for (i=1; i <= 19; i++)
|
| 1084 |
|
|
{
|
| 1085 |
|
|
elt = XVECEXP (op, 0, index++);
|
| 1086 |
|
|
if (GET_CODE (elt) != SET
|
| 1087 |
|
|
|| GET_CODE (SET_DEST (elt)) != MEM
|
| 1088 |
|
|
|| ! memory_operand (SET_DEST (elt), Pmode)
|
| 1089 |
|
|
|| GET_CODE (SET_SRC (elt)) != REG
|
| 1090 |
|
|
|| GET_MODE (SET_SRC (elt)) != Pmode)
|
| 1091 |
|
|
return 0;
|
| 1092 |
|
|
}
|
| 1093 |
|
|
|
| 1094 |
|
|
elt = XVECEXP (op, 0, index++);
|
| 1095 |
|
|
if (GET_CODE (elt) != SET
|
| 1096 |
|
|
|| GET_CODE (SET_DEST (elt)) != MEM
|
| 1097 |
|
|
|| ! memory_operand (SET_DEST (elt), Pmode)
|
| 1098 |
|
|
|| GET_CODE (SET_SRC (elt)) != REG
|
| 1099 |
|
|
|| REGNO (SET_SRC (elt)) != CR2_REGNO
|
| 1100 |
|
|
|| GET_MODE (SET_SRC (elt)) != Pmode)
|
| 1101 |
|
|
return 0;
|
| 1102 |
|
|
|
| 1103 |
|
|
if (GET_CODE (XVECEXP (op, 0, index++)) != SET
|
| 1104 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != SET)
|
| 1105 |
|
|
return 0;
|
| 1106 |
|
|
return 1;
|
| 1107 |
|
|
})
|
| 1108 |
|
|
|
| 1109 |
|
|
;; Return 1 if OP is valid for a restore_world call in epilogue, known to be
|
| 1110 |
|
|
;; a PARLLEL.
|
| 1111 |
|
|
(define_predicate "restore_world_operation"
|
| 1112 |
|
|
(match_code "parallel")
|
| 1113 |
|
|
{
|
| 1114 |
|
|
int index;
|
| 1115 |
|
|
int i;
|
| 1116 |
|
|
rtx elt;
|
| 1117 |
|
|
int count = XVECLEN (op, 0);
|
| 1118 |
|
|
|
| 1119 |
|
|
if (count != 59)
|
| 1120 |
|
|
return 0;
|
| 1121 |
|
|
|
| 1122 |
|
|
index = 0;
|
| 1123 |
|
|
if (GET_CODE (XVECEXP (op, 0, index++)) != RETURN
|
| 1124 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != USE
|
| 1125 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != USE
|
| 1126 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER)
|
| 1127 |
|
|
return 0;
|
| 1128 |
|
|
|
| 1129 |
|
|
elt = XVECEXP (op, 0, index++);
|
| 1130 |
|
|
if (GET_CODE (elt) != SET
|
| 1131 |
|
|
|| GET_CODE (SET_SRC (elt)) != MEM
|
| 1132 |
|
|
|| ! memory_operand (SET_SRC (elt), Pmode)
|
| 1133 |
|
|
|| GET_CODE (SET_DEST (elt)) != REG
|
| 1134 |
|
|
|| REGNO (SET_DEST (elt)) != CR2_REGNO
|
| 1135 |
|
|
|| GET_MODE (SET_DEST (elt)) != Pmode)
|
| 1136 |
|
|
return 0;
|
| 1137 |
|
|
|
| 1138 |
|
|
for (i=1; i <= 19; i++)
|
| 1139 |
|
|
{
|
| 1140 |
|
|
elt = XVECEXP (op, 0, index++);
|
| 1141 |
|
|
if (GET_CODE (elt) != SET
|
| 1142 |
|
|
|| GET_CODE (SET_SRC (elt)) != MEM
|
| 1143 |
|
|
|| ! memory_operand (SET_SRC (elt), Pmode)
|
| 1144 |
|
|
|| GET_CODE (SET_DEST (elt)) != REG
|
| 1145 |
|
|
|| GET_MODE (SET_DEST (elt)) != Pmode)
|
| 1146 |
|
|
return 0;
|
| 1147 |
|
|
}
|
| 1148 |
|
|
|
| 1149 |
|
|
for (i=1; i <= 12; i++)
|
| 1150 |
|
|
{
|
| 1151 |
|
|
elt = XVECEXP (op, 0, index++);
|
| 1152 |
|
|
if (GET_CODE (elt) != SET
|
| 1153 |
|
|
|| GET_CODE (SET_SRC (elt)) != MEM
|
| 1154 |
|
|
|| GET_CODE (SET_DEST (elt)) != REG
|
| 1155 |
|
|
|| GET_MODE (SET_DEST (elt)) != V4SImode)
|
| 1156 |
|
|
return 0;
|
| 1157 |
|
|
}
|
| 1158 |
|
|
|
| 1159 |
|
|
for (i=1; i <= 18; i++)
|
| 1160 |
|
|
{
|
| 1161 |
|
|
elt = XVECEXP (op, 0, index++);
|
| 1162 |
|
|
if (GET_CODE (elt) != SET
|
| 1163 |
|
|
|| GET_CODE (SET_SRC (elt)) != MEM
|
| 1164 |
|
|
|| ! memory_operand (SET_SRC (elt), DFmode)
|
| 1165 |
|
|
|| GET_CODE (SET_DEST (elt)) != REG
|
| 1166 |
|
|
|| GET_MODE (SET_DEST (elt)) != DFmode)
|
| 1167 |
|
|
return 0;
|
| 1168 |
|
|
}
|
| 1169 |
|
|
|
| 1170 |
|
|
if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|
| 1171 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|
| 1172 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|
| 1173 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
|
| 1174 |
|
|
|| GET_CODE (XVECEXP (op, 0, index++)) != USE)
|
| 1175 |
|
|
return 0;
|
| 1176 |
|
|
return 1;
|
| 1177 |
|
|
})
|
| 1178 |
|
|
|
| 1179 |
|
|
;; Return 1 if OP is valid for a vrsave call, known to be a PARALLEL.
|
| 1180 |
|
|
(define_predicate "vrsave_operation"
|
| 1181 |
|
|
(match_code "parallel")
|
| 1182 |
|
|
{
|
| 1183 |
|
|
int count = XVECLEN (op, 0);
|
| 1184 |
|
|
unsigned int dest_regno, src_regno;
|
| 1185 |
|
|
int i;
|
| 1186 |
|
|
|
| 1187 |
|
|
if (count <= 1
|
| 1188 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
| 1189 |
|
|
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|
| 1190 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC_VOLATILE
|
| 1191 |
|
|
|| XINT (SET_SRC (XVECEXP (op, 0, 0)), 1) != UNSPECV_SET_VRSAVE)
|
| 1192 |
|
|
return 0;
|
| 1193 |
|
|
|
| 1194 |
|
|
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
|
| 1195 |
|
|
src_regno = REGNO (XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 1));
|
| 1196 |
|
|
|
| 1197 |
|
|
if (dest_regno != VRSAVE_REGNO || src_regno != VRSAVE_REGNO)
|
| 1198 |
|
|
return 0;
|
| 1199 |
|
|
|
| 1200 |
|
|
for (i = 1; i < count; i++)
|
| 1201 |
|
|
{
|
| 1202 |
|
|
rtx elt = XVECEXP (op, 0, i);
|
| 1203 |
|
|
|
| 1204 |
|
|
if (GET_CODE (elt) != CLOBBER
|
| 1205 |
|
|
&& GET_CODE (elt) != SET)
|
| 1206 |
|
|
return 0;
|
| 1207 |
|
|
}
|
| 1208 |
|
|
|
| 1209 |
|
|
return 1;
|
| 1210 |
|
|
})
|
| 1211 |
|
|
|
| 1212 |
|
|
;; Return 1 if OP is valid for mfcr insn, known to be a PARALLEL.
|
| 1213 |
|
|
(define_predicate "mfcr_operation"
|
| 1214 |
|
|
(match_code "parallel")
|
| 1215 |
|
|
{
|
| 1216 |
|
|
int count = XVECLEN (op, 0);
|
| 1217 |
|
|
int i;
|
| 1218 |
|
|
|
| 1219 |
|
|
/* Perform a quick check so we don't blow up below. */
|
| 1220 |
|
|
if (count < 1
|
| 1221 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
| 1222 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
|
| 1223 |
|
|
|| XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
|
| 1224 |
|
|
return 0;
|
| 1225 |
|
|
|
| 1226 |
|
|
for (i = 0; i < count; i++)
|
| 1227 |
|
|
{
|
| 1228 |
|
|
rtx exp = XVECEXP (op, 0, i);
|
| 1229 |
|
|
rtx unspec;
|
| 1230 |
|
|
int maskval;
|
| 1231 |
|
|
rtx src_reg;
|
| 1232 |
|
|
|
| 1233 |
|
|
src_reg = XVECEXP (SET_SRC (exp), 0, 0);
|
| 1234 |
|
|
|
| 1235 |
|
|
if (GET_CODE (src_reg) != REG
|
| 1236 |
|
|
|| GET_MODE (src_reg) != CCmode
|
| 1237 |
|
|
|| ! CR_REGNO_P (REGNO (src_reg)))
|
| 1238 |
|
|
return 0;
|
| 1239 |
|
|
|
| 1240 |
|
|
if (GET_CODE (exp) != SET
|
| 1241 |
|
|
|| GET_CODE (SET_DEST (exp)) != REG
|
| 1242 |
|
|
|| GET_MODE (SET_DEST (exp)) != SImode
|
| 1243 |
|
|
|| ! INT_REGNO_P (REGNO (SET_DEST (exp))))
|
| 1244 |
|
|
return 0;
|
| 1245 |
|
|
unspec = SET_SRC (exp);
|
| 1246 |
|
|
maskval = 1 << (MAX_CR_REGNO - REGNO (src_reg));
|
| 1247 |
|
|
|
| 1248 |
|
|
if (GET_CODE (unspec) != UNSPEC
|
| 1249 |
|
|
|| XINT (unspec, 1) != UNSPEC_MOVESI_FROM_CR
|
| 1250 |
|
|
|| XVECLEN (unspec, 0) != 2
|
| 1251 |
|
|
|| XVECEXP (unspec, 0, 0) != src_reg
|
| 1252 |
|
|
|| GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
|
| 1253 |
|
|
|| INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
|
| 1254 |
|
|
return 0;
|
| 1255 |
|
|
}
|
| 1256 |
|
|
return 1;
|
| 1257 |
|
|
})
|
| 1258 |
|
|
|
| 1259 |
|
|
;; Return 1 if OP is valid for mtcrf insn, known to be a PARALLEL.
|
| 1260 |
|
|
(define_predicate "mtcrf_operation"
|
| 1261 |
|
|
(match_code "parallel")
|
| 1262 |
|
|
{
|
| 1263 |
|
|
int count = XVECLEN (op, 0);
|
| 1264 |
|
|
int i;
|
| 1265 |
|
|
rtx src_reg;
|
| 1266 |
|
|
|
| 1267 |
|
|
/* Perform a quick check so we don't blow up below. */
|
| 1268 |
|
|
if (count < 1
|
| 1269 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
| 1270 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
|
| 1271 |
|
|
|| XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
|
| 1272 |
|
|
return 0;
|
| 1273 |
|
|
src_reg = XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 0);
|
| 1274 |
|
|
|
| 1275 |
|
|
if (GET_CODE (src_reg) != REG
|
| 1276 |
|
|
|| GET_MODE (src_reg) != SImode
|
| 1277 |
|
|
|| ! INT_REGNO_P (REGNO (src_reg)))
|
| 1278 |
|
|
return 0;
|
| 1279 |
|
|
|
| 1280 |
|
|
for (i = 0; i < count; i++)
|
| 1281 |
|
|
{
|
| 1282 |
|
|
rtx exp = XVECEXP (op, 0, i);
|
| 1283 |
|
|
rtx unspec;
|
| 1284 |
|
|
int maskval;
|
| 1285 |
|
|
|
| 1286 |
|
|
if (GET_CODE (exp) != SET
|
| 1287 |
|
|
|| GET_CODE (SET_DEST (exp)) != REG
|
| 1288 |
|
|
|| GET_MODE (SET_DEST (exp)) != CCmode
|
| 1289 |
|
|
|| ! CR_REGNO_P (REGNO (SET_DEST (exp))))
|
| 1290 |
|
|
return 0;
|
| 1291 |
|
|
unspec = SET_SRC (exp);
|
| 1292 |
|
|
maskval = 1 << (MAX_CR_REGNO - REGNO (SET_DEST (exp)));
|
| 1293 |
|
|
|
| 1294 |
|
|
if (GET_CODE (unspec) != UNSPEC
|
| 1295 |
|
|
|| XINT (unspec, 1) != UNSPEC_MOVESI_TO_CR
|
| 1296 |
|
|
|| XVECLEN (unspec, 0) != 2
|
| 1297 |
|
|
|| XVECEXP (unspec, 0, 0) != src_reg
|
| 1298 |
|
|
|| GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
|
| 1299 |
|
|
|| INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
|
| 1300 |
|
|
return 0;
|
| 1301 |
|
|
}
|
| 1302 |
|
|
return 1;
|
| 1303 |
|
|
})
|
| 1304 |
|
|
|
| 1305 |
|
|
;; Return 1 if OP is valid for lmw insn, known to be a PARALLEL.
|
| 1306 |
|
|
(define_predicate "lmw_operation"
|
| 1307 |
|
|
(match_code "parallel")
|
| 1308 |
|
|
{
|
| 1309 |
|
|
int count = XVECLEN (op, 0);
|
| 1310 |
|
|
unsigned int dest_regno;
|
| 1311 |
|
|
rtx src_addr;
|
| 1312 |
|
|
unsigned int base_regno;
|
| 1313 |
|
|
HOST_WIDE_INT offset;
|
| 1314 |
|
|
int i;
|
| 1315 |
|
|
|
| 1316 |
|
|
/* Perform a quick check so we don't blow up below. */
|
| 1317 |
|
|
if (count <= 1
|
| 1318 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
| 1319 |
|
|
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|
| 1320 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
|
| 1321 |
|
|
return 0;
|
| 1322 |
|
|
|
| 1323 |
|
|
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
|
| 1324 |
|
|
src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
|
| 1325 |
|
|
|
| 1326 |
|
|
if (dest_regno > 31
|
| 1327 |
|
|
|| count != 32 - (int) dest_regno)
|
| 1328 |
|
|
return 0;
|
| 1329 |
|
|
|
| 1330 |
|
|
if (legitimate_indirect_address_p (src_addr, 0))
|
| 1331 |
|
|
{
|
| 1332 |
|
|
offset = 0;
|
| 1333 |
|
|
base_regno = REGNO (src_addr);
|
| 1334 |
|
|
if (base_regno == 0)
|
| 1335 |
|
|
return 0;
|
| 1336 |
|
|
}
|
| 1337 |
|
|
else if (rs6000_legitimate_offset_address_p (SImode, src_addr, 0))
|
| 1338 |
|
|
{
|
| 1339 |
|
|
offset = INTVAL (XEXP (src_addr, 1));
|
| 1340 |
|
|
base_regno = REGNO (XEXP (src_addr, 0));
|
| 1341 |
|
|
}
|
| 1342 |
|
|
else
|
| 1343 |
|
|
return 0;
|
| 1344 |
|
|
|
| 1345 |
|
|
for (i = 0; i < count; i++)
|
| 1346 |
|
|
{
|
| 1347 |
|
|
rtx elt = XVECEXP (op, 0, i);
|
| 1348 |
|
|
rtx newaddr;
|
| 1349 |
|
|
rtx addr_reg;
|
| 1350 |
|
|
HOST_WIDE_INT newoffset;
|
| 1351 |
|
|
|
| 1352 |
|
|
if (GET_CODE (elt) != SET
|
| 1353 |
|
|
|| GET_CODE (SET_DEST (elt)) != REG
|
| 1354 |
|
|
|| GET_MODE (SET_DEST (elt)) != SImode
|
| 1355 |
|
|
|| REGNO (SET_DEST (elt)) != dest_regno + i
|
| 1356 |
|
|
|| GET_CODE (SET_SRC (elt)) != MEM
|
| 1357 |
|
|
|| GET_MODE (SET_SRC (elt)) != SImode)
|
| 1358 |
|
|
return 0;
|
| 1359 |
|
|
newaddr = XEXP (SET_SRC (elt), 0);
|
| 1360 |
|
|
if (legitimate_indirect_address_p (newaddr, 0))
|
| 1361 |
|
|
{
|
| 1362 |
|
|
newoffset = 0;
|
| 1363 |
|
|
addr_reg = newaddr;
|
| 1364 |
|
|
}
|
| 1365 |
|
|
else if (rs6000_legitimate_offset_address_p (SImode, newaddr, 0))
|
| 1366 |
|
|
{
|
| 1367 |
|
|
addr_reg = XEXP (newaddr, 0);
|
| 1368 |
|
|
newoffset = INTVAL (XEXP (newaddr, 1));
|
| 1369 |
|
|
}
|
| 1370 |
|
|
else
|
| 1371 |
|
|
return 0;
|
| 1372 |
|
|
if (REGNO (addr_reg) != base_regno
|
| 1373 |
|
|
|| newoffset != offset + 4 * i)
|
| 1374 |
|
|
return 0;
|
| 1375 |
|
|
}
|
| 1376 |
|
|
|
| 1377 |
|
|
return 1;
|
| 1378 |
|
|
})
|
| 1379 |
|
|
|
| 1380 |
|
|
;; Return 1 if OP is valid for stmw insn, known to be a PARALLEL.
|
| 1381 |
|
|
(define_predicate "stmw_operation"
|
| 1382 |
|
|
(match_code "parallel")
|
| 1383 |
|
|
{
|
| 1384 |
|
|
int count = XVECLEN (op, 0);
|
| 1385 |
|
|
unsigned int src_regno;
|
| 1386 |
|
|
rtx dest_addr;
|
| 1387 |
|
|
unsigned int base_regno;
|
| 1388 |
|
|
HOST_WIDE_INT offset;
|
| 1389 |
|
|
int i;
|
| 1390 |
|
|
|
| 1391 |
|
|
/* Perform a quick check so we don't blow up below. */
|
| 1392 |
|
|
if (count <= 1
|
| 1393 |
|
|
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|
| 1394 |
|
|
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
|
| 1395 |
|
|
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
|
| 1396 |
|
|
return 0;
|
| 1397 |
|
|
|
| 1398 |
|
|
src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
|
| 1399 |
|
|
dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
|
| 1400 |
|
|
|
| 1401 |
|
|
if (src_regno > 31
|
| 1402 |
|
|
|| count != 32 - (int) src_regno)
|
| 1403 |
|
|
return 0;
|
| 1404 |
|
|
|
| 1405 |
|
|
if (legitimate_indirect_address_p (dest_addr, 0))
|
| 1406 |
|
|
{
|
| 1407 |
|
|
offset = 0;
|
| 1408 |
|
|
base_regno = REGNO (dest_addr);
|
| 1409 |
|
|
if (base_regno == 0)
|
| 1410 |
|
|
return 0;
|
| 1411 |
|
|
}
|
| 1412 |
|
|
else if (rs6000_legitimate_offset_address_p (SImode, dest_addr, 0))
|
| 1413 |
|
|
{
|
| 1414 |
|
|
offset = INTVAL (XEXP (dest_addr, 1));
|
| 1415 |
|
|
base_regno = REGNO (XEXP (dest_addr, 0));
|
| 1416 |
|
|
}
|
| 1417 |
|
|
else
|
| 1418 |
|
|
return 0;
|
| 1419 |
|
|
|
| 1420 |
|
|
for (i = 0; i < count; i++)
|
| 1421 |
|
|
{
|
| 1422 |
|
|
rtx elt = XVECEXP (op, 0, i);
|
| 1423 |
|
|
rtx newaddr;
|
| 1424 |
|
|
rtx addr_reg;
|
| 1425 |
|
|
HOST_WIDE_INT newoffset;
|
| 1426 |
|
|
|
| 1427 |
|
|
if (GET_CODE (elt) != SET
|
| 1428 |
|
|
|| GET_CODE (SET_SRC (elt)) != REG
|
| 1429 |
|
|
|| GET_MODE (SET_SRC (elt)) != SImode
|
| 1430 |
|
|
|| REGNO (SET_SRC (elt)) != src_regno + i
|
| 1431 |
|
|
|| GET_CODE (SET_DEST (elt)) != MEM
|
| 1432 |
|
|
|| GET_MODE (SET_DEST (elt)) != SImode)
|
| 1433 |
|
|
return 0;
|
| 1434 |
|
|
newaddr = XEXP (SET_DEST (elt), 0);
|
| 1435 |
|
|
if (legitimate_indirect_address_p (newaddr, 0))
|
| 1436 |
|
|
{
|
| 1437 |
|
|
newoffset = 0;
|
| 1438 |
|
|
addr_reg = newaddr;
|
| 1439 |
|
|
}
|
| 1440 |
|
|
else if (rs6000_legitimate_offset_address_p (SImode, newaddr, 0))
|
| 1441 |
|
|
{
|
| 1442 |
|
|
addr_reg = XEXP (newaddr, 0);
|
| 1443 |
|
|
newoffset = INTVAL (XEXP (newaddr, 1));
|
| 1444 |
|
|
}
|
| 1445 |
|
|
else
|
| 1446 |
|
|
return 0;
|
| 1447 |
|
|
if (REGNO (addr_reg) != base_regno
|
| 1448 |
|
|
|| newoffset != offset + 4 * i)
|
| 1449 |
|
|
return 0;
|
| 1450 |
|
|
}
|
| 1451 |
|
|
|
| 1452 |
|
|
return 1;
|
| 1453 |
|
|
})
|