| 1 |
709 |
jeremybenn |
/* Definitions of target machine for GNU compiler, for IBM RS/6000.
|
| 2 |
|
|
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
| 3 |
|
|
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
| 4 |
|
|
2010, 2011
|
| 5 |
|
|
Free Software Foundation, Inc.
|
| 6 |
|
|
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
|
| 7 |
|
|
|
| 8 |
|
|
This file is part of GCC.
|
| 9 |
|
|
|
| 10 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 11 |
|
|
under the terms of the GNU General Public License as published
|
| 12 |
|
|
by the Free Software Foundation; either version 3, or (at your
|
| 13 |
|
|
option) any later version.
|
| 14 |
|
|
|
| 15 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 16 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| 17 |
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
| 18 |
|
|
License for more details.
|
| 19 |
|
|
|
| 20 |
|
|
Under Section 7 of GPL version 3, you are granted additional
|
| 21 |
|
|
permissions described in the GCC Runtime Library Exception, version
|
| 22 |
|
|
3.1, as published by the Free Software Foundation.
|
| 23 |
|
|
|
| 24 |
|
|
You should have received a copy of the GNU General Public License and
|
| 25 |
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
| 26 |
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
| 27 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 28 |
|
|
|
| 29 |
|
|
/* Note that some other tm.h files include this one and then override
|
| 30 |
|
|
many of the definitions. */
|
| 31 |
|
|
|
| 32 |
|
|
#ifndef RS6000_OPTS_H
|
| 33 |
|
|
#include "config/rs6000/rs6000-opts.h"
|
| 34 |
|
|
#endif
|
| 35 |
|
|
|
| 36 |
|
|
/* Definitions for the object file format. These are set at
|
| 37 |
|
|
compile-time. */
|
| 38 |
|
|
|
| 39 |
|
|
#define OBJECT_XCOFF 1
|
| 40 |
|
|
#define OBJECT_ELF 2
|
| 41 |
|
|
#define OBJECT_PEF 3
|
| 42 |
|
|
#define OBJECT_MACHO 4
|
| 43 |
|
|
|
| 44 |
|
|
#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
|
| 45 |
|
|
#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
|
| 46 |
|
|
#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
|
| 47 |
|
|
#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
|
| 48 |
|
|
|
| 49 |
|
|
#ifndef TARGET_AIX
|
| 50 |
|
|
#define TARGET_AIX 0
|
| 51 |
|
|
#endif
|
| 52 |
|
|
|
| 53 |
|
|
#ifndef TARGET_AIX_OS
|
| 54 |
|
|
#define TARGET_AIX_OS 0
|
| 55 |
|
|
#endif
|
| 56 |
|
|
|
| 57 |
|
|
/* Control whether function entry points use a "dot" symbol when
|
| 58 |
|
|
ABI_AIX. */
|
| 59 |
|
|
#define DOT_SYMBOLS 1
|
| 60 |
|
|
|
| 61 |
|
|
/* Default string to use for cpu if not specified. */
|
| 62 |
|
|
#ifndef TARGET_CPU_DEFAULT
|
| 63 |
|
|
#define TARGET_CPU_DEFAULT ((char *)0)
|
| 64 |
|
|
#endif
|
| 65 |
|
|
|
| 66 |
|
|
/* If configured for PPC405, support PPC405CR Erratum77. */
|
| 67 |
|
|
#ifdef CONFIG_PPC405CR
|
| 68 |
|
|
#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
|
| 69 |
|
|
#else
|
| 70 |
|
|
#define PPC405_ERRATUM77 0
|
| 71 |
|
|
#endif
|
| 72 |
|
|
|
| 73 |
|
|
#ifndef TARGET_PAIRED_FLOAT
|
| 74 |
|
|
#define TARGET_PAIRED_FLOAT 0
|
| 75 |
|
|
#endif
|
| 76 |
|
|
|
| 77 |
|
|
#ifdef HAVE_AS_POPCNTB
|
| 78 |
|
|
#define ASM_CPU_POWER5_SPEC "-mpower5"
|
| 79 |
|
|
#else
|
| 80 |
|
|
#define ASM_CPU_POWER5_SPEC "-mpower4"
|
| 81 |
|
|
#endif
|
| 82 |
|
|
|
| 83 |
|
|
#ifdef HAVE_AS_DFP
|
| 84 |
|
|
#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
|
| 85 |
|
|
#else
|
| 86 |
|
|
#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
|
| 87 |
|
|
#endif
|
| 88 |
|
|
|
| 89 |
|
|
#ifdef HAVE_AS_POPCNTD
|
| 90 |
|
|
#define ASM_CPU_POWER7_SPEC "-mpower7"
|
| 91 |
|
|
#else
|
| 92 |
|
|
#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
|
| 93 |
|
|
#endif
|
| 94 |
|
|
|
| 95 |
|
|
#ifdef HAVE_AS_DCI
|
| 96 |
|
|
#define ASM_CPU_476_SPEC "-m476"
|
| 97 |
|
|
#else
|
| 98 |
|
|
#define ASM_CPU_476_SPEC "-mpower4"
|
| 99 |
|
|
#endif
|
| 100 |
|
|
|
| 101 |
|
|
/* Common ASM definitions used by ASM_SPEC among the various targets for
|
| 102 |
|
|
handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
|
| 103 |
|
|
provide the default assembler options if the user uses -mcpu=native, so if
|
| 104 |
|
|
you make changes here, make them also there. */
|
| 105 |
|
|
#define ASM_CPU_SPEC \
|
| 106 |
|
|
"%{!mcpu*: \
|
| 107 |
|
|
%{mpower: %{!mpower2: -mpwr}} \
|
| 108 |
|
|
%{mpower2: -mpwrx} \
|
| 109 |
|
|
%{mpowerpc64*: -mppc64} \
|
| 110 |
|
|
%{!mpowerpc64*: %{mpowerpc*: -mppc}} \
|
| 111 |
|
|
%{mno-power: %{!mpowerpc*: -mcom}} \
|
| 112 |
|
|
%{!mno-power: %{!mpower*: %(asm_default)}}} \
|
| 113 |
|
|
%{mcpu=native: %(asm_cpu_native)} \
|
| 114 |
|
|
%{mcpu=common: -mcom} \
|
| 115 |
|
|
%{mcpu=cell: -mcell} \
|
| 116 |
|
|
%{mcpu=power: -mpwr} \
|
| 117 |
|
|
%{mcpu=power2: -mpwrx} \
|
| 118 |
|
|
%{mcpu=power3: -mppc64} \
|
| 119 |
|
|
%{mcpu=power4: -mpower4} \
|
| 120 |
|
|
%{mcpu=power5: %(asm_cpu_power5)} \
|
| 121 |
|
|
%{mcpu=power5+: %(asm_cpu_power5)} \
|
| 122 |
|
|
%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
|
| 123 |
|
|
%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
|
| 124 |
|
|
%{mcpu=power7: %(asm_cpu_power7)} \
|
| 125 |
|
|
%{mcpu=a2: -ma2} \
|
| 126 |
|
|
%{mcpu=powerpc: -mppc} \
|
| 127 |
|
|
%{mcpu=rios: -mpwr} \
|
| 128 |
|
|
%{mcpu=rios1: -mpwr} \
|
| 129 |
|
|
%{mcpu=rios2: -mpwrx} \
|
| 130 |
|
|
%{mcpu=rsc: -mpwr} \
|
| 131 |
|
|
%{mcpu=rsc1: -mpwr} \
|
| 132 |
|
|
%{mcpu=rs64a: -mppc64} \
|
| 133 |
|
|
%{mcpu=401: -mppc} \
|
| 134 |
|
|
%{mcpu=403: -m403} \
|
| 135 |
|
|
%{mcpu=405: -m405} \
|
| 136 |
|
|
%{mcpu=405fp: -m405} \
|
| 137 |
|
|
%{mcpu=440: -m440} \
|
| 138 |
|
|
%{mcpu=440fp: -m440} \
|
| 139 |
|
|
%{mcpu=464: -m440} \
|
| 140 |
|
|
%{mcpu=464fp: -m440} \
|
| 141 |
|
|
%{mcpu=476: %(asm_cpu_476)} \
|
| 142 |
|
|
%{mcpu=476fp: %(asm_cpu_476)} \
|
| 143 |
|
|
%{mcpu=505: -mppc} \
|
| 144 |
|
|
%{mcpu=601: -m601} \
|
| 145 |
|
|
%{mcpu=602: -mppc} \
|
| 146 |
|
|
%{mcpu=603: -mppc} \
|
| 147 |
|
|
%{mcpu=603e: -mppc} \
|
| 148 |
|
|
%{mcpu=ec603e: -mppc} \
|
| 149 |
|
|
%{mcpu=604: -mppc} \
|
| 150 |
|
|
%{mcpu=604e: -mppc} \
|
| 151 |
|
|
%{mcpu=620: -mppc64} \
|
| 152 |
|
|
%{mcpu=630: -mppc64} \
|
| 153 |
|
|
%{mcpu=740: -mppc} \
|
| 154 |
|
|
%{mcpu=750: -mppc} \
|
| 155 |
|
|
%{mcpu=G3: -mppc} \
|
| 156 |
|
|
%{mcpu=7400: -mppc -maltivec} \
|
| 157 |
|
|
%{mcpu=7450: -mppc -maltivec} \
|
| 158 |
|
|
%{mcpu=G4: -mppc -maltivec} \
|
| 159 |
|
|
%{mcpu=801: -mppc} \
|
| 160 |
|
|
%{mcpu=821: -mppc} \
|
| 161 |
|
|
%{mcpu=823: -mppc} \
|
| 162 |
|
|
%{mcpu=860: -mppc} \
|
| 163 |
|
|
%{mcpu=970: -mpower4 -maltivec} \
|
| 164 |
|
|
%{mcpu=G5: -mpower4 -maltivec} \
|
| 165 |
|
|
%{mcpu=8540: -me500} \
|
| 166 |
|
|
%{mcpu=8548: -me500} \
|
| 167 |
|
|
%{mcpu=e300c2: -me300} \
|
| 168 |
|
|
%{mcpu=e300c3: -me300} \
|
| 169 |
|
|
%{mcpu=e500mc: -me500mc} \
|
| 170 |
|
|
%{mcpu=e500mc64: -me500mc64} \
|
| 171 |
|
|
%{maltivec: -maltivec} \
|
| 172 |
|
|
%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
|
| 173 |
|
|
-many"
|
| 174 |
|
|
|
| 175 |
|
|
#define CPP_DEFAULT_SPEC ""
|
| 176 |
|
|
|
| 177 |
|
|
#define ASM_DEFAULT_SPEC ""
|
| 178 |
|
|
|
| 179 |
|
|
/* This macro defines names of additional specifications to put in the specs
|
| 180 |
|
|
that can be used in various specifications like CC1_SPEC. Its definition
|
| 181 |
|
|
is an initializer with a subgrouping for each command option.
|
| 182 |
|
|
|
| 183 |
|
|
Each subgrouping contains a string constant, that defines the
|
| 184 |
|
|
specification name, and a string constant that used by the GCC driver
|
| 185 |
|
|
program.
|
| 186 |
|
|
|
| 187 |
|
|
Do not define this macro if it does not need to do anything. */
|
| 188 |
|
|
|
| 189 |
|
|
#define SUBTARGET_EXTRA_SPECS
|
| 190 |
|
|
|
| 191 |
|
|
#define EXTRA_SPECS \
|
| 192 |
|
|
{ "cpp_default", CPP_DEFAULT_SPEC }, \
|
| 193 |
|
|
{ "asm_cpu", ASM_CPU_SPEC }, \
|
| 194 |
|
|
{ "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
|
| 195 |
|
|
{ "asm_default", ASM_DEFAULT_SPEC }, \
|
| 196 |
|
|
{ "cc1_cpu", CC1_CPU_SPEC }, \
|
| 197 |
|
|
{ "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
|
| 198 |
|
|
{ "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
|
| 199 |
|
|
{ "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
|
| 200 |
|
|
{ "asm_cpu_476", ASM_CPU_476_SPEC }, \
|
| 201 |
|
|
SUBTARGET_EXTRA_SPECS
|
| 202 |
|
|
|
| 203 |
|
|
/* -mcpu=native handling only makes sense with compiler running on
|
| 204 |
|
|
an PowerPC chip. If changing this condition, also change
|
| 205 |
|
|
the condition in driver-rs6000.c. */
|
| 206 |
|
|
#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
|
| 207 |
|
|
/* In driver-rs6000.c. */
|
| 208 |
|
|
extern const char *host_detect_local_cpu (int argc, const char **argv);
|
| 209 |
|
|
#define EXTRA_SPEC_FUNCTIONS \
|
| 210 |
|
|
{ "local_cpu_detect", host_detect_local_cpu },
|
| 211 |
|
|
#define HAVE_LOCAL_CPU_DETECT
|
| 212 |
|
|
#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
|
| 213 |
|
|
|
| 214 |
|
|
#else
|
| 215 |
|
|
#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
|
| 216 |
|
|
#endif
|
| 217 |
|
|
|
| 218 |
|
|
#ifndef CC1_CPU_SPEC
|
| 219 |
|
|
#ifdef HAVE_LOCAL_CPU_DETECT
|
| 220 |
|
|
#define CC1_CPU_SPEC \
|
| 221 |
|
|
"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
|
| 222 |
|
|
%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
|
| 223 |
|
|
#else
|
| 224 |
|
|
#define CC1_CPU_SPEC ""
|
| 225 |
|
|
#endif
|
| 226 |
|
|
#endif
|
| 227 |
|
|
|
| 228 |
|
|
/* Architecture type. */
|
| 229 |
|
|
|
| 230 |
|
|
/* Define TARGET_MFCRF if the target assembler does not support the
|
| 231 |
|
|
optional field operand for mfcr. */
|
| 232 |
|
|
|
| 233 |
|
|
#ifndef HAVE_AS_MFCRF
|
| 234 |
|
|
#undef TARGET_MFCRF
|
| 235 |
|
|
#define TARGET_MFCRF 0
|
| 236 |
|
|
#endif
|
| 237 |
|
|
|
| 238 |
|
|
/* Define TARGET_POPCNTB if the target assembler does not support the
|
| 239 |
|
|
popcount byte instruction. */
|
| 240 |
|
|
|
| 241 |
|
|
#ifndef HAVE_AS_POPCNTB
|
| 242 |
|
|
#undef TARGET_POPCNTB
|
| 243 |
|
|
#define TARGET_POPCNTB 0
|
| 244 |
|
|
#endif
|
| 245 |
|
|
|
| 246 |
|
|
/* Define TARGET_FPRND if the target assembler does not support the
|
| 247 |
|
|
fp rounding instructions. */
|
| 248 |
|
|
|
| 249 |
|
|
#ifndef HAVE_AS_FPRND
|
| 250 |
|
|
#undef TARGET_FPRND
|
| 251 |
|
|
#define TARGET_FPRND 0
|
| 252 |
|
|
#endif
|
| 253 |
|
|
|
| 254 |
|
|
/* Define TARGET_CMPB if the target assembler does not support the
|
| 255 |
|
|
cmpb instruction. */
|
| 256 |
|
|
|
| 257 |
|
|
#ifndef HAVE_AS_CMPB
|
| 258 |
|
|
#undef TARGET_CMPB
|
| 259 |
|
|
#define TARGET_CMPB 0
|
| 260 |
|
|
#endif
|
| 261 |
|
|
|
| 262 |
|
|
/* Define TARGET_MFPGPR if the target assembler does not support the
|
| 263 |
|
|
mffpr and mftgpr instructions. */
|
| 264 |
|
|
|
| 265 |
|
|
#ifndef HAVE_AS_MFPGPR
|
| 266 |
|
|
#undef TARGET_MFPGPR
|
| 267 |
|
|
#define TARGET_MFPGPR 0
|
| 268 |
|
|
#endif
|
| 269 |
|
|
|
| 270 |
|
|
/* Define TARGET_DFP if the target assembler does not support decimal
|
| 271 |
|
|
floating point instructions. */
|
| 272 |
|
|
#ifndef HAVE_AS_DFP
|
| 273 |
|
|
#undef TARGET_DFP
|
| 274 |
|
|
#define TARGET_DFP 0
|
| 275 |
|
|
#endif
|
| 276 |
|
|
|
| 277 |
|
|
/* Define TARGET_POPCNTD if the target assembler does not support the
|
| 278 |
|
|
popcount word and double word instructions. */
|
| 279 |
|
|
|
| 280 |
|
|
#ifndef HAVE_AS_POPCNTD
|
| 281 |
|
|
#undef TARGET_POPCNTD
|
| 282 |
|
|
#define TARGET_POPCNTD 0
|
| 283 |
|
|
#endif
|
| 284 |
|
|
|
| 285 |
|
|
/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
|
| 286 |
|
|
not, generate the lwsync code as an integer constant. */
|
| 287 |
|
|
#ifdef HAVE_AS_LWSYNC
|
| 288 |
|
|
#define TARGET_LWSYNC_INSTRUCTION 1
|
| 289 |
|
|
#else
|
| 290 |
|
|
#define TARGET_LWSYNC_INSTRUCTION 0
|
| 291 |
|
|
#endif
|
| 292 |
|
|
|
| 293 |
|
|
/* Define TARGET_TLS_MARKERS if the target assembler does not support
|
| 294 |
|
|
arg markers for __tls_get_addr calls. */
|
| 295 |
|
|
#ifndef HAVE_AS_TLS_MARKERS
|
| 296 |
|
|
#undef TARGET_TLS_MARKERS
|
| 297 |
|
|
#define TARGET_TLS_MARKERS 0
|
| 298 |
|
|
#else
|
| 299 |
|
|
#define TARGET_TLS_MARKERS tls_markers
|
| 300 |
|
|
#endif
|
| 301 |
|
|
|
| 302 |
|
|
#ifndef TARGET_SECURE_PLT
|
| 303 |
|
|
#define TARGET_SECURE_PLT 0
|
| 304 |
|
|
#endif
|
| 305 |
|
|
|
| 306 |
|
|
#ifndef TARGET_CMODEL
|
| 307 |
|
|
#define TARGET_CMODEL CMODEL_SMALL
|
| 308 |
|
|
#endif
|
| 309 |
|
|
|
| 310 |
|
|
#define TARGET_32BIT (! TARGET_64BIT)
|
| 311 |
|
|
|
| 312 |
|
|
#ifndef HAVE_AS_TLS
|
| 313 |
|
|
#define HAVE_AS_TLS 0
|
| 314 |
|
|
#endif
|
| 315 |
|
|
|
| 316 |
|
|
#ifndef TARGET_LINK_STACK
|
| 317 |
|
|
#define TARGET_LINK_STACK 0
|
| 318 |
|
|
#endif
|
| 319 |
|
|
|
| 320 |
|
|
#ifndef SET_TARGET_LINK_STACK
|
| 321 |
|
|
#define SET_TARGET_LINK_STACK(X) do { } while (0)
|
| 322 |
|
|
#endif
|
| 323 |
|
|
|
| 324 |
|
|
/* Return 1 for a symbol ref for a thread-local storage symbol. */
|
| 325 |
|
|
#define RS6000_SYMBOL_REF_TLS_P(RTX) \
|
| 326 |
|
|
(GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
|
| 327 |
|
|
|
| 328 |
|
|
#ifdef IN_LIBGCC2
|
| 329 |
|
|
/* For libgcc2 we make sure this is a compile time constant */
|
| 330 |
|
|
#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
|
| 331 |
|
|
#undef TARGET_POWERPC64
|
| 332 |
|
|
#define TARGET_POWERPC64 1
|
| 333 |
|
|
#else
|
| 334 |
|
|
#undef TARGET_POWERPC64
|
| 335 |
|
|
#define TARGET_POWERPC64 0
|
| 336 |
|
|
#endif
|
| 337 |
|
|
#else
|
| 338 |
|
|
/* The option machinery will define this. */
|
| 339 |
|
|
#endif
|
| 340 |
|
|
|
| 341 |
|
|
#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
|
| 342 |
|
|
|
| 343 |
|
|
/* FPU operations supported.
|
| 344 |
|
|
Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
|
| 345 |
|
|
also test TARGET_HARD_FLOAT. */
|
| 346 |
|
|
#define TARGET_SINGLE_FLOAT 1
|
| 347 |
|
|
#define TARGET_DOUBLE_FLOAT 1
|
| 348 |
|
|
#define TARGET_SINGLE_FPU 0
|
| 349 |
|
|
#define TARGET_SIMPLE_FPU 0
|
| 350 |
|
|
#define TARGET_XILINX_FPU 0
|
| 351 |
|
|
|
| 352 |
|
|
/* Recast the processor type to the cpu attribute. */
|
| 353 |
|
|
#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
|
| 354 |
|
|
|
| 355 |
|
|
/* Define generic processor types based upon current deployment. */
|
| 356 |
|
|
#define PROCESSOR_COMMON PROCESSOR_PPC601
|
| 357 |
|
|
#define PROCESSOR_POWER PROCESSOR_RIOS1
|
| 358 |
|
|
#define PROCESSOR_POWERPC PROCESSOR_PPC604
|
| 359 |
|
|
#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
|
| 360 |
|
|
|
| 361 |
|
|
/* Define the default processor. This is overridden by other tm.h files. */
|
| 362 |
|
|
#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
|
| 363 |
|
|
#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
|
| 364 |
|
|
|
| 365 |
|
|
/* Specify the dialect of assembler to use. New mnemonics is dialect one
|
| 366 |
|
|
and the old mnemonics are dialect zero. */
|
| 367 |
|
|
#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
|
| 368 |
|
|
|
| 369 |
|
|
/* Debug support */
|
| 370 |
|
|
#define MASK_DEBUG_STACK 0x01 /* debug stack applications */
|
| 371 |
|
|
#define MASK_DEBUG_ARG 0x02 /* debug argument handling */
|
| 372 |
|
|
#define MASK_DEBUG_REG 0x04 /* debug register handling */
|
| 373 |
|
|
#define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
|
| 374 |
|
|
#define MASK_DEBUG_COST 0x10 /* debug rtx codes */
|
| 375 |
|
|
#define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
|
| 376 |
|
|
#define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
|
| 377 |
|
|
#define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
|
| 378 |
|
|
| MASK_DEBUG_ARG \
|
| 379 |
|
|
| MASK_DEBUG_REG \
|
| 380 |
|
|
| MASK_DEBUG_ADDR \
|
| 381 |
|
|
| MASK_DEBUG_COST \
|
| 382 |
|
|
| MASK_DEBUG_TARGET \
|
| 383 |
|
|
| MASK_DEBUG_BUILTIN)
|
| 384 |
|
|
|
| 385 |
|
|
#define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
|
| 386 |
|
|
#define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
|
| 387 |
|
|
#define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
|
| 388 |
|
|
#define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
|
| 389 |
|
|
#define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
|
| 390 |
|
|
#define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
|
| 391 |
|
|
#define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
|
| 392 |
|
|
|
| 393 |
|
|
extern enum rs6000_vector rs6000_vector_unit[];
|
| 394 |
|
|
|
| 395 |
|
|
#define VECTOR_UNIT_NONE_P(MODE) \
|
| 396 |
|
|
(rs6000_vector_unit[(MODE)] == VECTOR_NONE)
|
| 397 |
|
|
|
| 398 |
|
|
#define VECTOR_UNIT_VSX_P(MODE) \
|
| 399 |
|
|
(rs6000_vector_unit[(MODE)] == VECTOR_VSX)
|
| 400 |
|
|
|
| 401 |
|
|
#define VECTOR_UNIT_ALTIVEC_P(MODE) \
|
| 402 |
|
|
(rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
|
| 403 |
|
|
|
| 404 |
|
|
#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
|
| 405 |
|
|
(rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC \
|
| 406 |
|
|
|| rs6000_vector_unit[(MODE)] == VECTOR_VSX)
|
| 407 |
|
|
|
| 408 |
|
|
/* Describe whether to use VSX loads or Altivec loads. For now, just use the
|
| 409 |
|
|
same unit as the vector unit we are using, but we may want to migrate to
|
| 410 |
|
|
using VSX style loads even for types handled by altivec. */
|
| 411 |
|
|
extern enum rs6000_vector rs6000_vector_mem[];
|
| 412 |
|
|
|
| 413 |
|
|
#define VECTOR_MEM_NONE_P(MODE) \
|
| 414 |
|
|
(rs6000_vector_mem[(MODE)] == VECTOR_NONE)
|
| 415 |
|
|
|
| 416 |
|
|
#define VECTOR_MEM_VSX_P(MODE) \
|
| 417 |
|
|
(rs6000_vector_mem[(MODE)] == VECTOR_VSX)
|
| 418 |
|
|
|
| 419 |
|
|
#define VECTOR_MEM_ALTIVEC_P(MODE) \
|
| 420 |
|
|
(rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
|
| 421 |
|
|
|
| 422 |
|
|
#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
|
| 423 |
|
|
(rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC \
|
| 424 |
|
|
|| rs6000_vector_mem[(MODE)] == VECTOR_VSX)
|
| 425 |
|
|
|
| 426 |
|
|
/* Return the alignment of a given vector type, which is set based on the
|
| 427 |
|
|
vector unit use. VSX for instance can load 32 or 64 bit aligned words
|
| 428 |
|
|
without problems, while Altivec requires 128-bit aligned vectors. */
|
| 429 |
|
|
extern int rs6000_vector_align[];
|
| 430 |
|
|
|
| 431 |
|
|
#define VECTOR_ALIGN(MODE) \
|
| 432 |
|
|
((rs6000_vector_align[(MODE)] != 0) \
|
| 433 |
|
|
? rs6000_vector_align[(MODE)] \
|
| 434 |
|
|
: (int)GET_MODE_BITSIZE ((MODE)))
|
| 435 |
|
|
|
| 436 |
|
|
/* Alignment options for fields in structures for sub-targets following
|
| 437 |
|
|
AIX-like ABI.
|
| 438 |
|
|
ALIGN_POWER word-aligns FP doubles (default AIX ABI).
|
| 439 |
|
|
ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
|
| 440 |
|
|
|
| 441 |
|
|
Override the macro definitions when compiling libobjc to avoid undefined
|
| 442 |
|
|
reference to rs6000_alignment_flags due to library's use of GCC alignment
|
| 443 |
|
|
macros which use the macros below. */
|
| 444 |
|
|
|
| 445 |
|
|
#ifndef IN_TARGET_LIBS
|
| 446 |
|
|
#define MASK_ALIGN_POWER 0x00000000
|
| 447 |
|
|
#define MASK_ALIGN_NATURAL 0x00000001
|
| 448 |
|
|
#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
|
| 449 |
|
|
#else
|
| 450 |
|
|
#define TARGET_ALIGN_NATURAL 0
|
| 451 |
|
|
#endif
|
| 452 |
|
|
|
| 453 |
|
|
#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
|
| 454 |
|
|
#define TARGET_IEEEQUAD rs6000_ieeequad
|
| 455 |
|
|
#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
|
| 456 |
|
|
#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
|
| 457 |
|
|
|
| 458 |
|
|
#define TARGET_SPE_ABI 0
|
| 459 |
|
|
#define TARGET_SPE 0
|
| 460 |
|
|
#define TARGET_E500 0
|
| 461 |
|
|
#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
|
| 462 |
|
|
#define TARGET_FPRS 1
|
| 463 |
|
|
#define TARGET_E500_SINGLE 0
|
| 464 |
|
|
#define TARGET_E500_DOUBLE 0
|
| 465 |
|
|
#define CHECK_E500_OPTIONS do { } while (0)
|
| 466 |
|
|
|
| 467 |
|
|
/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
|
| 468 |
|
|
Enable 32-bit fcfid's on any of the switches for newer ISA machines or
|
| 469 |
|
|
XILINX. */
|
| 470 |
|
|
#define TARGET_FCFID (TARGET_POWERPC64 \
|
| 471 |
|
|
|| TARGET_POPCNTB /* ISA 2.02 */ \
|
| 472 |
|
|
|| TARGET_CMPB /* ISA 2.05 */ \
|
| 473 |
|
|
|| TARGET_POPCNTD /* ISA 2.06 */ \
|
| 474 |
|
|
|| TARGET_XILINX_FPU)
|
| 475 |
|
|
|
| 476 |
|
|
#define TARGET_FCTIDZ TARGET_FCFID
|
| 477 |
|
|
#define TARGET_STFIWX TARGET_PPC_GFXOPT
|
| 478 |
|
|
#define TARGET_LFIWAX TARGET_CMPB
|
| 479 |
|
|
#define TARGET_LFIWZX TARGET_POPCNTD
|
| 480 |
|
|
#define TARGET_FCFIDS TARGET_POPCNTD
|
| 481 |
|
|
#define TARGET_FCFIDU TARGET_POPCNTD
|
| 482 |
|
|
#define TARGET_FCFIDUS TARGET_POPCNTD
|
| 483 |
|
|
#define TARGET_FCTIDUZ TARGET_POPCNTD
|
| 484 |
|
|
#define TARGET_FCTIWUZ TARGET_POPCNTD
|
| 485 |
|
|
|
| 486 |
|
|
/* For power systems, we want to enable Altivec and VSX builtins even if the
|
| 487 |
|
|
user did not use -maltivec or -mvsx to allow the builtins to be used inside
|
| 488 |
|
|
of #pragma GCC target or the target attribute to change the code level for a
|
| 489 |
|
|
given system. The SPE and Paired builtins are only enabled if you configure
|
| 490 |
|
|
the compiler for those builtins, and those machines don't support altivec or
|
| 491 |
|
|
VSX. */
|
| 492 |
|
|
|
| 493 |
|
|
#define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
|
| 494 |
|
|
&& ((TARGET_POWERPC64 \
|
| 495 |
|
|
|| TARGET_PPC_GPOPT /* 970 */ \
|
| 496 |
|
|
|| TARGET_POPCNTB /* ISA 2.02 */ \
|
| 497 |
|
|
|| TARGET_CMPB /* ISA 2.05 */ \
|
| 498 |
|
|
|| TARGET_POPCNTD /* ISA 2.06 */ \
|
| 499 |
|
|
|| TARGET_ALTIVEC \
|
| 500 |
|
|
|| TARGET_VSX)))
|
| 501 |
|
|
|
| 502 |
|
|
|
| 503 |
|
|
|
| 504 |
|
|
/* E500 processors only support plain "sync", not lwsync. */
|
| 505 |
|
|
#define TARGET_NO_LWSYNC TARGET_E500
|
| 506 |
|
|
|
| 507 |
|
|
/* Which machine supports the various reciprocal estimate instructions. */
|
| 508 |
|
|
#define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
|
| 509 |
|
|
&& TARGET_FPRS && TARGET_SINGLE_FLOAT)
|
| 510 |
|
|
|
| 511 |
|
|
#define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
|
| 512 |
|
|
&& TARGET_DOUBLE_FLOAT \
|
| 513 |
|
|
&& (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
|
| 514 |
|
|
|
| 515 |
|
|
#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
|
| 516 |
|
|
&& TARGET_FPRS && TARGET_SINGLE_FLOAT)
|
| 517 |
|
|
|
| 518 |
|
|
#define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
|
| 519 |
|
|
&& TARGET_DOUBLE_FLOAT \
|
| 520 |
|
|
&& (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
|
| 521 |
|
|
|
| 522 |
|
|
/* Whether the various reciprocal divide/square root estimate instructions
|
| 523 |
|
|
exist, and whether we should automatically generate code for the instruction
|
| 524 |
|
|
by default. */
|
| 525 |
|
|
#define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
|
| 526 |
|
|
#define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
|
| 527 |
|
|
#define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
|
| 528 |
|
|
#define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
|
| 529 |
|
|
|
| 530 |
|
|
extern unsigned char rs6000_recip_bits[];
|
| 531 |
|
|
|
| 532 |
|
|
#define RS6000_RECIP_HAVE_RE_P(MODE) \
|
| 533 |
|
|
(rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
|
| 534 |
|
|
|
| 535 |
|
|
#define RS6000_RECIP_AUTO_RE_P(MODE) \
|
| 536 |
|
|
(rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
|
| 537 |
|
|
|
| 538 |
|
|
#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
|
| 539 |
|
|
(rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
|
| 540 |
|
|
|
| 541 |
|
|
#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
|
| 542 |
|
|
(rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
|
| 543 |
|
|
|
| 544 |
|
|
#define RS6000_RECIP_HIGH_PRECISION_P(MODE) \
|
| 545 |
|
|
((MODE) == SFmode || (MODE) == V4SFmode || TARGET_RECIP_PRECISION)
|
| 546 |
|
|
|
| 547 |
|
|
/* The default CPU for TARGET_OPTION_OVERRIDE. */
|
| 548 |
|
|
#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
|
| 549 |
|
|
|
| 550 |
|
|
/* Target pragma. */
|
| 551 |
|
|
#define REGISTER_TARGET_PRAGMAS() do { \
|
| 552 |
|
|
c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
|
| 553 |
|
|
targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
|
| 554 |
|
|
targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
|
| 555 |
|
|
rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
|
| 556 |
|
|
} while (0)
|
| 557 |
|
|
|
| 558 |
|
|
/* Target #defines. */
|
| 559 |
|
|
#define TARGET_CPU_CPP_BUILTINS() \
|
| 560 |
|
|
rs6000_cpu_cpp_builtins (pfile)
|
| 561 |
|
|
|
| 562 |
|
|
/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
|
| 563 |
|
|
we're compiling for. Some configurations may need to override it. */
|
| 564 |
|
|
#define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
|
| 565 |
|
|
do \
|
| 566 |
|
|
{ \
|
| 567 |
|
|
if (BYTES_BIG_ENDIAN) \
|
| 568 |
|
|
{ \
|
| 569 |
|
|
builtin_define ("__BIG_ENDIAN__"); \
|
| 570 |
|
|
builtin_define ("_BIG_ENDIAN"); \
|
| 571 |
|
|
builtin_assert ("machine=bigendian"); \
|
| 572 |
|
|
} \
|
| 573 |
|
|
else \
|
| 574 |
|
|
{ \
|
| 575 |
|
|
builtin_define ("__LITTLE_ENDIAN__"); \
|
| 576 |
|
|
builtin_define ("_LITTLE_ENDIAN"); \
|
| 577 |
|
|
builtin_assert ("machine=littleendian"); \
|
| 578 |
|
|
} \
|
| 579 |
|
|
} \
|
| 580 |
|
|
while (0)
|
| 581 |
|
|
|
| 582 |
|
|
/* Target machine storage layout. */
|
| 583 |
|
|
|
| 584 |
|
|
/* Define this macro if it is advisable to hold scalars in registers
|
| 585 |
|
|
in a wider mode than that declared by the program. In such cases,
|
| 586 |
|
|
the value is constrained to be within the bounds of the declared
|
| 587 |
|
|
type, but kept valid in the wider mode. The signedness of the
|
| 588 |
|
|
extension may differ from that of the type. */
|
| 589 |
|
|
|
| 590 |
|
|
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
|
| 591 |
|
|
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
| 592 |
|
|
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
|
| 593 |
|
|
(MODE) = TARGET_32BIT ? SImode : DImode;
|
| 594 |
|
|
|
| 595 |
|
|
/* Define this if most significant bit is lowest numbered
|
| 596 |
|
|
in instructions that operate on numbered bit-fields. */
|
| 597 |
|
|
/* That is true on RS/6000. */
|
| 598 |
|
|
#define BITS_BIG_ENDIAN 1
|
| 599 |
|
|
|
| 600 |
|
|
/* Define this if most significant byte of a word is the lowest numbered. */
|
| 601 |
|
|
/* That is true on RS/6000. */
|
| 602 |
|
|
#define BYTES_BIG_ENDIAN 1
|
| 603 |
|
|
|
| 604 |
|
|
/* Define this if most significant word of a multiword number is lowest
|
| 605 |
|
|
numbered.
|
| 606 |
|
|
|
| 607 |
|
|
For RS/6000 we can decide arbitrarily since there are no machine
|
| 608 |
|
|
instructions for them. Might as well be consistent with bits and bytes. */
|
| 609 |
|
|
#define WORDS_BIG_ENDIAN 1
|
| 610 |
|
|
|
| 611 |
|
|
#define MAX_BITS_PER_WORD 64
|
| 612 |
|
|
|
| 613 |
|
|
/* Width of a word, in units (bytes). */
|
| 614 |
|
|
#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
|
| 615 |
|
|
#ifdef IN_LIBGCC2
|
| 616 |
|
|
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
|
| 617 |
|
|
#else
|
| 618 |
|
|
#define MIN_UNITS_PER_WORD 4
|
| 619 |
|
|
#endif
|
| 620 |
|
|
#define UNITS_PER_FP_WORD 8
|
| 621 |
|
|
#define UNITS_PER_ALTIVEC_WORD 16
|
| 622 |
|
|
#define UNITS_PER_VSX_WORD 16
|
| 623 |
|
|
#define UNITS_PER_SPE_WORD 8
|
| 624 |
|
|
#define UNITS_PER_PAIRED_WORD 8
|
| 625 |
|
|
|
| 626 |
|
|
/* Type used for ptrdiff_t, as a string used in a declaration. */
|
| 627 |
|
|
#define PTRDIFF_TYPE "int"
|
| 628 |
|
|
|
| 629 |
|
|
/* Type used for size_t, as a string used in a declaration. */
|
| 630 |
|
|
#define SIZE_TYPE "long unsigned int"
|
| 631 |
|
|
|
| 632 |
|
|
/* Type used for wchar_t, as a string used in a declaration. */
|
| 633 |
|
|
#define WCHAR_TYPE "short unsigned int"
|
| 634 |
|
|
|
| 635 |
|
|
/* Width of wchar_t in bits. */
|
| 636 |
|
|
#define WCHAR_TYPE_SIZE 16
|
| 637 |
|
|
|
| 638 |
|
|
/* A C expression for the size in bits of the type `short' on the
|
| 639 |
|
|
target machine. If you don't define this, the default is half a
|
| 640 |
|
|
word. (If this would be less than one storage unit, it is
|
| 641 |
|
|
rounded up to one unit.) */
|
| 642 |
|
|
#define SHORT_TYPE_SIZE 16
|
| 643 |
|
|
|
| 644 |
|
|
/* A C expression for the size in bits of the type `int' on the
|
| 645 |
|
|
target machine. If you don't define this, the default is one
|
| 646 |
|
|
word. */
|
| 647 |
|
|
#define INT_TYPE_SIZE 32
|
| 648 |
|
|
|
| 649 |
|
|
/* A C expression for the size in bits of the type `long' on the
|
| 650 |
|
|
target machine. If you don't define this, the default is one
|
| 651 |
|
|
word. */
|
| 652 |
|
|
#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
|
| 653 |
|
|
|
| 654 |
|
|
/* A C expression for the size in bits of the type `long long' on the
|
| 655 |
|
|
target machine. If you don't define this, the default is two
|
| 656 |
|
|
words. */
|
| 657 |
|
|
#define LONG_LONG_TYPE_SIZE 64
|
| 658 |
|
|
|
| 659 |
|
|
/* A C expression for the size in bits of the type `float' on the
|
| 660 |
|
|
target machine. If you don't define this, the default is one
|
| 661 |
|
|
word. */
|
| 662 |
|
|
#define FLOAT_TYPE_SIZE 32
|
| 663 |
|
|
|
| 664 |
|
|
/* A C expression for the size in bits of the type `double' on the
|
| 665 |
|
|
target machine. If you don't define this, the default is two
|
| 666 |
|
|
words. */
|
| 667 |
|
|
#define DOUBLE_TYPE_SIZE 64
|
| 668 |
|
|
|
| 669 |
|
|
/* A C expression for the size in bits of the type `long double' on
|
| 670 |
|
|
the target machine. If you don't define this, the default is two
|
| 671 |
|
|
words. */
|
| 672 |
|
|
#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
|
| 673 |
|
|
|
| 674 |
|
|
/* Define this to set long double type size to use in libgcc2.c, which can
|
| 675 |
|
|
not depend on target_flags. */
|
| 676 |
|
|
#ifdef __LONG_DOUBLE_128__
|
| 677 |
|
|
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
|
| 678 |
|
|
#else
|
| 679 |
|
|
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
|
| 680 |
|
|
#endif
|
| 681 |
|
|
|
| 682 |
|
|
/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
|
| 683 |
|
|
#define WIDEST_HARDWARE_FP_SIZE 64
|
| 684 |
|
|
|
| 685 |
|
|
/* Width in bits of a pointer.
|
| 686 |
|
|
See also the macro `Pmode' defined below. */
|
| 687 |
|
|
extern unsigned rs6000_pointer_size;
|
| 688 |
|
|
#define POINTER_SIZE rs6000_pointer_size
|
| 689 |
|
|
|
| 690 |
|
|
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
| 691 |
|
|
#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
|
| 692 |
|
|
|
| 693 |
|
|
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
| 694 |
|
|
#define STACK_BOUNDARY \
|
| 695 |
|
|
((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
|
| 696 |
|
|
? 64 : 128)
|
| 697 |
|
|
|
| 698 |
|
|
/* Allocation boundary (in *bits*) for the code of a function. */
|
| 699 |
|
|
#define FUNCTION_BOUNDARY 32
|
| 700 |
|
|
|
| 701 |
|
|
/* No data type wants to be aligned rounder than this. */
|
| 702 |
|
|
#define BIGGEST_ALIGNMENT 128
|
| 703 |
|
|
|
| 704 |
|
|
/* A C expression to compute the alignment for a variables in the
|
| 705 |
|
|
local store. TYPE is the data type, and ALIGN is the alignment
|
| 706 |
|
|
that the object would ordinarily have. */
|
| 707 |
|
|
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
|
| 708 |
|
|
DATA_ALIGNMENT (TYPE, ALIGN)
|
| 709 |
|
|
|
| 710 |
|
|
/* Alignment of field after `int : 0' in a structure. */
|
| 711 |
|
|
#define EMPTY_FIELD_BOUNDARY 32
|
| 712 |
|
|
|
| 713 |
|
|
/* Every structure's size must be a multiple of this. */
|
| 714 |
|
|
#define STRUCTURE_SIZE_BOUNDARY 8
|
| 715 |
|
|
|
| 716 |
|
|
/* Return 1 if a structure or array containing FIELD should be
|
| 717 |
|
|
accessed using `BLKMODE'.
|
| 718 |
|
|
|
| 719 |
|
|
For the SPE, simd types are V2SI, and gcc can be tempted to put the
|
| 720 |
|
|
entire thing in a DI and use subregs to access the internals.
|
| 721 |
|
|
store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
|
| 722 |
|
|
back-end. Because a single GPR can hold a V2SI, but not a DI, the
|
| 723 |
|
|
best thing to do is set structs to BLKmode and avoid Severe Tire
|
| 724 |
|
|
Damage.
|
| 725 |
|
|
|
| 726 |
|
|
On e500 v2, DF and DI modes suffer from the same anomaly. DF can
|
| 727 |
|
|
fit into 1, whereas DI still needs two. */
|
| 728 |
|
|
#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
|
| 729 |
|
|
((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
|
| 730 |
|
|
|| (TARGET_E500_DOUBLE && (MODE) == DFmode))
|
| 731 |
|
|
|
| 732 |
|
|
/* A bit-field declared as `int' forces `int' alignment for the struct. */
|
| 733 |
|
|
#define PCC_BITFIELD_TYPE_MATTERS 1
|
| 734 |
|
|
|
| 735 |
|
|
/* Make strings word-aligned so strcpy from constants will be faster.
|
| 736 |
|
|
Make vector constants quadword aligned. */
|
| 737 |
|
|
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
| 738 |
|
|
(TREE_CODE (EXP) == STRING_CST \
|
| 739 |
|
|
&& (STRICT_ALIGNMENT || !optimize_size) \
|
| 740 |
|
|
&& (ALIGN) < BITS_PER_WORD \
|
| 741 |
|
|
? BITS_PER_WORD \
|
| 742 |
|
|
: (ALIGN))
|
| 743 |
|
|
|
| 744 |
|
|
/* Make arrays of chars word-aligned for the same reasons.
|
| 745 |
|
|
Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
|
| 746 |
|
|
64 bits. */
|
| 747 |
|
|
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
| 748 |
|
|
(TREE_CODE (TYPE) == VECTOR_TYPE \
|
| 749 |
|
|
? (((TARGET_SPE && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) \
|
| 750 |
|
|
|| (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) \
|
| 751 |
|
|
? 64 : 128) \
|
| 752 |
|
|
: ((TARGET_E500_DOUBLE \
|
| 753 |
|
|
&& TREE_CODE (TYPE) == REAL_TYPE \
|
| 754 |
|
|
&& TYPE_MODE (TYPE) == DFmode) \
|
| 755 |
|
|
? 64 \
|
| 756 |
|
|
: (TREE_CODE (TYPE) == ARRAY_TYPE \
|
| 757 |
|
|
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
|
| 758 |
|
|
&& (ALIGN) < BITS_PER_WORD) ? BITS_PER_WORD : (ALIGN)))
|
| 759 |
|
|
|
| 760 |
|
|
/* Nonzero if move instructions will actually fail to work
|
| 761 |
|
|
when given unaligned data. */
|
| 762 |
|
|
#define STRICT_ALIGNMENT 0
|
| 763 |
|
|
|
| 764 |
|
|
/* Define this macro to be the value 1 if unaligned accesses have a cost
|
| 765 |
|
|
many times greater than aligned accesses, for example if they are
|
| 766 |
|
|
emulated in a trap handler. */
|
| 767 |
|
|
/* Altivec vector memory instructions simply ignore the low bits; SPE vector
|
| 768 |
|
|
memory instructions trap on unaligned accesses; VSX memory instructions are
|
| 769 |
|
|
aligned to 4 or 8 bytes. */
|
| 770 |
|
|
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
|
| 771 |
|
|
(STRICT_ALIGNMENT \
|
| 772 |
|
|
|| (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
|
| 773 |
|
|
|| (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode \
|
| 774 |
|
|
|| (MODE) == DImode) \
|
| 775 |
|
|
&& (ALIGN) < 32) \
|
| 776 |
|
|
|| (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
|
| 777 |
|
|
|
| 778 |
|
|
|
| 779 |
|
|
/* Standard register usage. */
|
| 780 |
|
|
|
| 781 |
|
|
/* Number of actual hardware registers.
|
| 782 |
|
|
The hardware registers are assigned numbers for the compiler
|
| 783 |
|
|
from 0 to just below FIRST_PSEUDO_REGISTER.
|
| 784 |
|
|
All registers that the compiler knows about must be given numbers,
|
| 785 |
|
|
even those that are not normally considered general registers.
|
| 786 |
|
|
|
| 787 |
|
|
RS/6000 has 32 fixed-point registers, 32 floating-point registers,
|
| 788 |
|
|
an MQ register, a count register, a link register, and 8 condition
|
| 789 |
|
|
register fields, which we view here as separate registers. AltiVec
|
| 790 |
|
|
adds 32 vector registers and a VRsave register.
|
| 791 |
|
|
|
| 792 |
|
|
In addition, the difference between the frame and argument pointers is
|
| 793 |
|
|
a function of the number of registers saved, so we need to have a
|
| 794 |
|
|
register for AP that will later be eliminated in favor of SP or FP.
|
| 795 |
|
|
This is a normal register, but it is fixed.
|
| 796 |
|
|
|
| 797 |
|
|
We also create a pseudo register for float/int conversions, that will
|
| 798 |
|
|
really represent the memory location used. It is represented here as
|
| 799 |
|
|
a register, in order to work around problems in allocating stack storage
|
| 800 |
|
|
in inline functions.
|
| 801 |
|
|
|
| 802 |
|
|
Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
|
| 803 |
|
|
pointer, which is eventually eliminated in favor of SP or FP. */
|
| 804 |
|
|
|
| 805 |
|
|
#define FIRST_PSEUDO_REGISTER 114
|
| 806 |
|
|
|
| 807 |
|
|
/* This must be included for pre gcc 3.0 glibc compatibility. */
|
| 808 |
|
|
#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
|
| 809 |
|
|
|
| 810 |
|
|
/* Add 32 dwarf columns for synthetic SPE registers. */
|
| 811 |
|
|
#define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
|
| 812 |
|
|
|
| 813 |
|
|
/* The SPE has an additional 32 synthetic registers, with DWARF debug
|
| 814 |
|
|
info numbering for these registers starting at 1200. While eh_frame
|
| 815 |
|
|
register numbering need not be the same as the debug info numbering,
|
| 816 |
|
|
we choose to number these regs for eh_frame at 1200 too. This allows
|
| 817 |
|
|
future versions of the rs6000 backend to add hard registers and
|
| 818 |
|
|
continue to use the gcc hard register numbering for eh_frame. If the
|
| 819 |
|
|
extra SPE registers in eh_frame were numbered starting from the
|
| 820 |
|
|
current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
|
| 821 |
|
|
changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
|
| 822 |
|
|
avoid invalidating older SPE eh_frame info.
|
| 823 |
|
|
|
| 824 |
|
|
We must map them here to avoid huge unwinder tables mostly consisting
|
| 825 |
|
|
of unused space. */
|
| 826 |
|
|
#define DWARF_REG_TO_UNWIND_COLUMN(r) \
|
| 827 |
|
|
((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
|
| 828 |
|
|
|
| 829 |
|
|
/* Use standard DWARF numbering for DWARF debugging information. */
|
| 830 |
|
|
#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
|
| 831 |
|
|
|
| 832 |
|
|
/* Use gcc hard register numbering for eh_frame. */
|
| 833 |
|
|
#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
|
| 834 |
|
|
|
| 835 |
|
|
/* Map register numbers held in the call frame info that gcc has
|
| 836 |
|
|
collected using DWARF_FRAME_REGNUM to those that should be output in
|
| 837 |
|
|
.debug_frame and .eh_frame. We continue to use gcc hard reg numbers
|
| 838 |
|
|
for .eh_frame, but use the numbers mandated by the various ABIs for
|
| 839 |
|
|
.debug_frame. rs6000_emit_prologue has translated any combination of
|
| 840 |
|
|
CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
|
| 841 |
|
|
the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
|
| 842 |
|
|
#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
|
| 843 |
|
|
((FOR_EH) ? (REGNO) \
|
| 844 |
|
|
: (REGNO) == CR2_REGNO ? 64 \
|
| 845 |
|
|
: DBX_REGISTER_NUMBER (REGNO))
|
| 846 |
|
|
|
| 847 |
|
|
/* 1 for registers that have pervasive standard uses
|
| 848 |
|
|
and are not available for the register allocator.
|
| 849 |
|
|
|
| 850 |
|
|
On RS/6000, r1 is used for the stack. On Darwin, r2 is available
|
| 851 |
|
|
as a local register; for all other OS's r2 is the TOC pointer.
|
| 852 |
|
|
|
| 853 |
|
|
cr5 is not supposed to be used.
|
| 854 |
|
|
|
| 855 |
|
|
On System V implementations, r13 is fixed and not available for use. */
|
| 856 |
|
|
|
| 857 |
|
|
#define FIXED_REGISTERS \
|
| 858 |
|
|
{0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
|
| 859 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 860 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 861 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 862 |
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
|
| 863 |
|
|
/* AltiVec registers. */ \
|
| 864 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 865 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 866 |
|
|
1, 1 \
|
| 867 |
|
|
, 1, 1, 1 \
|
| 868 |
|
|
}
|
| 869 |
|
|
|
| 870 |
|
|
/* 1 for registers not available across function calls.
|
| 871 |
|
|
These must include the FIXED_REGISTERS and also any
|
| 872 |
|
|
registers that can be used without being saved.
|
| 873 |
|
|
The latter must include the registers where values are returned
|
| 874 |
|
|
and the register where structure-value addresses are passed.
|
| 875 |
|
|
Aside from that, you can include as many other registers as you like. */
|
| 876 |
|
|
|
| 877 |
|
|
#define CALL_USED_REGISTERS \
|
| 878 |
|
|
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
|
| 879 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 880 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
|
| 881 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 882 |
|
|
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
|
| 883 |
|
|
/* AltiVec registers. */ \
|
| 884 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 885 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 886 |
|
|
1, 1 \
|
| 887 |
|
|
, 1, 1, 1 \
|
| 888 |
|
|
}
|
| 889 |
|
|
|
| 890 |
|
|
/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
|
| 891 |
|
|
the entire set of `FIXED_REGISTERS' be included.
|
| 892 |
|
|
(`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
|
| 893 |
|
|
This macro is optional. If not specified, it defaults to the value
|
| 894 |
|
|
of `CALL_USED_REGISTERS'. */
|
| 895 |
|
|
|
| 896 |
|
|
#define CALL_REALLY_USED_REGISTERS \
|
| 897 |
|
|
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
|
| 898 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 899 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
|
| 900 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 901 |
|
|
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
|
| 902 |
|
|
/* AltiVec registers. */ \
|
| 903 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 904 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
| 905 |
|
|
0, 0 \
|
| 906 |
|
|
, 0, 0, 0 \
|
| 907 |
|
|
}
|
| 908 |
|
|
|
| 909 |
|
|
#define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
|
| 910 |
|
|
|
| 911 |
|
|
#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
|
| 912 |
|
|
#define FIRST_SAVED_FP_REGNO (14+32)
|
| 913 |
|
|
#define FIRST_SAVED_GP_REGNO 13
|
| 914 |
|
|
|
| 915 |
|
|
/* List the order in which to allocate registers. Each register must be
|
| 916 |
|
|
listed once, even those in FIXED_REGISTERS.
|
| 917 |
|
|
|
| 918 |
|
|
We allocate in the following order:
|
| 919 |
|
|
fp0 (not saved or used for anything)
|
| 920 |
|
|
fp13 - fp2 (not saved; incoming fp arg registers)
|
| 921 |
|
|
fp1 (not saved; return value)
|
| 922 |
|
|
fp31 - fp14 (saved; order given to save least number)
|
| 923 |
|
|
cr7, cr6 (not saved or special)
|
| 924 |
|
|
cr1 (not saved, but used for FP operations)
|
| 925 |
|
|
cr0 (not saved, but used for arithmetic operations)
|
| 926 |
|
|
cr4, cr3, cr2 (saved)
|
| 927 |
|
|
r9 (not saved; best for TImode)
|
| 928 |
|
|
r10, r8-r4 (not saved; highest first for less conflict with params)
|
| 929 |
|
|
r3 (not saved; return value register)
|
| 930 |
|
|
r11 (not saved; later alloc to help shrink-wrap)
|
| 931 |
|
|
r0 (not saved; cannot be base reg)
|
| 932 |
|
|
r31 - r13 (saved; order given to save least number)
|
| 933 |
|
|
r12 (not saved; if used for DImode or DFmode would use r13)
|
| 934 |
|
|
mq (not saved; best to use it if we can)
|
| 935 |
|
|
ctr (not saved; when we have the choice ctr is better)
|
| 936 |
|
|
lr (saved)
|
| 937 |
|
|
cr5, r1, r2, ap, ca (fixed)
|
| 938 |
|
|
v0 - v1 (not saved or used for anything)
|
| 939 |
|
|
v13 - v3 (not saved; incoming vector arg registers)
|
| 940 |
|
|
v2 (not saved; incoming vector arg reg; return value)
|
| 941 |
|
|
v19 - v14 (not saved or used for anything)
|
| 942 |
|
|
v31 - v20 (saved; order given to save least number)
|
| 943 |
|
|
vrsave, vscr (fixed)
|
| 944 |
|
|
spe_acc, spefscr (fixed)
|
| 945 |
|
|
sfp (fixed)
|
| 946 |
|
|
*/
|
| 947 |
|
|
|
| 948 |
|
|
#if FIXED_R2 == 1
|
| 949 |
|
|
#define MAYBE_R2_AVAILABLE
|
| 950 |
|
|
#define MAYBE_R2_FIXED 2,
|
| 951 |
|
|
#else
|
| 952 |
|
|
#define MAYBE_R2_AVAILABLE 2,
|
| 953 |
|
|
#define MAYBE_R2_FIXED
|
| 954 |
|
|
#endif
|
| 955 |
|
|
|
| 956 |
|
|
#if FIXED_R13 == 1
|
| 957 |
|
|
#define EARLY_R12 12,
|
| 958 |
|
|
#define LATE_R12
|
| 959 |
|
|
#else
|
| 960 |
|
|
#define EARLY_R12
|
| 961 |
|
|
#define LATE_R12 12,
|
| 962 |
|
|
#endif
|
| 963 |
|
|
|
| 964 |
|
|
#define REG_ALLOC_ORDER \
|
| 965 |
|
|
{32, \
|
| 966 |
|
|
45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
|
| 967 |
|
|
33, \
|
| 968 |
|
|
63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
|
| 969 |
|
|
50, 49, 48, 47, 46, \
|
| 970 |
|
|
75, 74, 69, 68, 72, 71, 70, \
|
| 971 |
|
|
MAYBE_R2_AVAILABLE \
|
| 972 |
|
|
9, 10, 8, 7, 6, 5, 4, \
|
| 973 |
|
|
3, EARLY_R12 11, 0, \
|
| 974 |
|
|
31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
|
| 975 |
|
|
18, 17, 16, 15, 14, 13, LATE_R12 \
|
| 976 |
|
|
64, 66, 65, \
|
| 977 |
|
|
73, 1, MAYBE_R2_FIXED 67, 76, \
|
| 978 |
|
|
/* AltiVec registers. */ \
|
| 979 |
|
|
77, 78, \
|
| 980 |
|
|
90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
|
| 981 |
|
|
79, \
|
| 982 |
|
|
96, 95, 94, 93, 92, 91, \
|
| 983 |
|
|
108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
|
| 984 |
|
|
109, 110, \
|
| 985 |
|
|
111, 112, 113 \
|
| 986 |
|
|
}
|
| 987 |
|
|
|
| 988 |
|
|
/* True if register is floating-point. */
|
| 989 |
|
|
#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
|
| 990 |
|
|
|
| 991 |
|
|
/* True if register is a condition register. */
|
| 992 |
|
|
#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
|
| 993 |
|
|
|
| 994 |
|
|
/* True if register is a condition register, but not cr0. */
|
| 995 |
|
|
#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
|
| 996 |
|
|
|
| 997 |
|
|
/* True if register is an integer register. */
|
| 998 |
|
|
#define INT_REGNO_P(N) \
|
| 999 |
|
|
((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
|
| 1000 |
|
|
|
| 1001 |
|
|
/* SPE SIMD registers are just the GPRs. */
|
| 1002 |
|
|
#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
|
| 1003 |
|
|
|
| 1004 |
|
|
/* PAIRED SIMD registers are just the FPRs. */
|
| 1005 |
|
|
#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
|
| 1006 |
|
|
|
| 1007 |
|
|
/* True if register is the CA register. */
|
| 1008 |
|
|
#define CA_REGNO_P(N) ((N) == CA_REGNO)
|
| 1009 |
|
|
|
| 1010 |
|
|
/* True if register is an AltiVec register. */
|
| 1011 |
|
|
#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
|
| 1012 |
|
|
|
| 1013 |
|
|
/* True if register is a VSX register. */
|
| 1014 |
|
|
#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
|
| 1015 |
|
|
|
| 1016 |
|
|
/* Alternate name for any vector register supporting floating point, no matter
|
| 1017 |
|
|
which instruction set(s) are available. */
|
| 1018 |
|
|
#define VFLOAT_REGNO_P(N) \
|
| 1019 |
|
|
(ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
|
| 1020 |
|
|
|
| 1021 |
|
|
/* Alternate name for any vector register supporting integer, no matter which
|
| 1022 |
|
|
instruction set(s) are available. */
|
| 1023 |
|
|
#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
|
| 1024 |
|
|
|
| 1025 |
|
|
/* Alternate name for any vector register supporting logical operations, no
|
| 1026 |
|
|
matter which instruction set(s) are available. */
|
| 1027 |
|
|
#define VLOGICAL_REGNO_P(N) VFLOAT_REGNO_P (N)
|
| 1028 |
|
|
|
| 1029 |
|
|
/* Return number of consecutive hard regs needed starting at reg REGNO
|
| 1030 |
|
|
to hold something of mode MODE. */
|
| 1031 |
|
|
|
| 1032 |
|
|
#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
|
| 1033 |
|
|
|
| 1034 |
|
|
/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
|
| 1035 |
|
|
enough space to account for vectors in FP regs. */
|
| 1036 |
|
|
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
|
| 1037 |
|
|
(TARGET_VSX \
|
| 1038 |
|
|
&& ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
|
| 1039 |
|
|
&& FP_REGNO_P (REGNO) \
|
| 1040 |
|
|
? V2DFmode \
|
| 1041 |
|
|
: choose_hard_reg_mode ((REGNO), (NREGS), false))
|
| 1042 |
|
|
|
| 1043 |
|
|
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
|
| 1044 |
|
|
(((TARGET_32BIT && TARGET_POWERPC64 \
|
| 1045 |
|
|
&& (GET_MODE_SIZE (MODE) > 4) \
|
| 1046 |
|
|
&& INT_REGNO_P (REGNO)) ? 1 : 0) \
|
| 1047 |
|
|
|| (TARGET_VSX && FP_REGNO_P (REGNO) \
|
| 1048 |
|
|
&& GET_MODE_SIZE (MODE) > 8))
|
| 1049 |
|
|
|
| 1050 |
|
|
#define VSX_VECTOR_MODE(MODE) \
|
| 1051 |
|
|
((MODE) == V4SFmode \
|
| 1052 |
|
|
|| (MODE) == V2DFmode) \
|
| 1053 |
|
|
|
| 1054 |
|
|
#define ALTIVEC_VECTOR_MODE(MODE) \
|
| 1055 |
|
|
((MODE) == V16QImode \
|
| 1056 |
|
|
|| (MODE) == V8HImode \
|
| 1057 |
|
|
|| (MODE) == V4SFmode \
|
| 1058 |
|
|
|| (MODE) == V4SImode)
|
| 1059 |
|
|
|
| 1060 |
|
|
#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
|
| 1061 |
|
|
(ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
|
| 1062 |
|
|
|| (MODE) == V2DImode)
|
| 1063 |
|
|
|
| 1064 |
|
|
#define SPE_VECTOR_MODE(MODE) \
|
| 1065 |
|
|
((MODE) == V4HImode \
|
| 1066 |
|
|
|| (MODE) == V2SFmode \
|
| 1067 |
|
|
|| (MODE) == V1DImode \
|
| 1068 |
|
|
|| (MODE) == V2SImode)
|
| 1069 |
|
|
|
| 1070 |
|
|
#define PAIRED_VECTOR_MODE(MODE) \
|
| 1071 |
|
|
((MODE) == V2SFmode)
|
| 1072 |
|
|
|
| 1073 |
|
|
/* Value is TRUE if hard register REGNO can hold a value of
|
| 1074 |
|
|
machine-mode MODE. */
|
| 1075 |
|
|
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
| 1076 |
|
|
rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
|
| 1077 |
|
|
|
| 1078 |
|
|
/* Value is 1 if it is a good idea to tie two pseudo registers
|
| 1079 |
|
|
when one has mode MODE1 and one has mode MODE2.
|
| 1080 |
|
|
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
| 1081 |
|
|
for any hard reg, then this must be 0 for correct output. */
|
| 1082 |
|
|
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
| 1083 |
|
|
(SCALAR_FLOAT_MODE_P (MODE1) \
|
| 1084 |
|
|
? SCALAR_FLOAT_MODE_P (MODE2) \
|
| 1085 |
|
|
: SCALAR_FLOAT_MODE_P (MODE2) \
|
| 1086 |
|
|
? SCALAR_FLOAT_MODE_P (MODE1) \
|
| 1087 |
|
|
: GET_MODE_CLASS (MODE1) == MODE_CC \
|
| 1088 |
|
|
? GET_MODE_CLASS (MODE2) == MODE_CC \
|
| 1089 |
|
|
: GET_MODE_CLASS (MODE2) == MODE_CC \
|
| 1090 |
|
|
? GET_MODE_CLASS (MODE1) == MODE_CC \
|
| 1091 |
|
|
: SPE_VECTOR_MODE (MODE1) \
|
| 1092 |
|
|
? SPE_VECTOR_MODE (MODE2) \
|
| 1093 |
|
|
: SPE_VECTOR_MODE (MODE2) \
|
| 1094 |
|
|
? SPE_VECTOR_MODE (MODE1) \
|
| 1095 |
|
|
: ALTIVEC_VECTOR_MODE (MODE1) \
|
| 1096 |
|
|
? ALTIVEC_VECTOR_MODE (MODE2) \
|
| 1097 |
|
|
: ALTIVEC_VECTOR_MODE (MODE2) \
|
| 1098 |
|
|
? ALTIVEC_VECTOR_MODE (MODE1) \
|
| 1099 |
|
|
: ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
|
| 1100 |
|
|
? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
|
| 1101 |
|
|
: ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
|
| 1102 |
|
|
? ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
|
| 1103 |
|
|
: 1)
|
| 1104 |
|
|
|
| 1105 |
|
|
/* Post-reload, we can't use any new AltiVec registers, as we already
|
| 1106 |
|
|
emitted the vrsave mask. */
|
| 1107 |
|
|
|
| 1108 |
|
|
#define HARD_REGNO_RENAME_OK(SRC, DST) \
|
| 1109 |
|
|
(! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
|
| 1110 |
|
|
|
| 1111 |
|
|
/* Specify the cost of a branch insn; roughly the number of extra insns that
|
| 1112 |
|
|
should be added to avoid a branch.
|
| 1113 |
|
|
|
| 1114 |
|
|
Set this to 3 on the RS/6000 since that is roughly the average cost of an
|
| 1115 |
|
|
unscheduled conditional branch. */
|
| 1116 |
|
|
|
| 1117 |
|
|
#define BRANCH_COST(speed_p, predictable_p) 3
|
| 1118 |
|
|
|
| 1119 |
|
|
/* Override BRANCH_COST heuristic which empirically produces worse
|
| 1120 |
|
|
performance for removing short circuiting from the logical ops. */
|
| 1121 |
|
|
|
| 1122 |
|
|
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
|
| 1123 |
|
|
|
| 1124 |
|
|
/* A fixed register used at epilogue generation to address SPE registers
|
| 1125 |
|
|
with negative offsets. The 64-bit load/store instructions on the SPE
|
| 1126 |
|
|
only take positive offsets (and small ones at that), so we need to
|
| 1127 |
|
|
reserve a register for consing up negative offsets. */
|
| 1128 |
|
|
|
| 1129 |
|
|
#define FIXED_SCRATCH 0
|
| 1130 |
|
|
|
| 1131 |
|
|
/* Specify the registers used for certain standard purposes.
|
| 1132 |
|
|
The values of these macros are register numbers. */
|
| 1133 |
|
|
|
| 1134 |
|
|
/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
|
| 1135 |
|
|
/* #define PC_REGNUM */
|
| 1136 |
|
|
|
| 1137 |
|
|
/* Register to use for pushing function arguments. */
|
| 1138 |
|
|
#define STACK_POINTER_REGNUM 1
|
| 1139 |
|
|
|
| 1140 |
|
|
/* Base register for access to local variables of the function. */
|
| 1141 |
|
|
#define HARD_FRAME_POINTER_REGNUM 31
|
| 1142 |
|
|
|
| 1143 |
|
|
/* Base register for access to local variables of the function. */
|
| 1144 |
|
|
#define FRAME_POINTER_REGNUM 113
|
| 1145 |
|
|
|
| 1146 |
|
|
/* Base register for access to arguments of the function. */
|
| 1147 |
|
|
#define ARG_POINTER_REGNUM 67
|
| 1148 |
|
|
|
| 1149 |
|
|
/* Place to put static chain when calling a function that requires it. */
|
| 1150 |
|
|
#define STATIC_CHAIN_REGNUM 11
|
| 1151 |
|
|
|
| 1152 |
|
|
|
| 1153 |
|
|
/* Define the classes of registers for register constraints in the
|
| 1154 |
|
|
machine description. Also define ranges of constants.
|
| 1155 |
|
|
|
| 1156 |
|
|
One of the classes must always be named ALL_REGS and include all hard regs.
|
| 1157 |
|
|
If there is more than one class, another class must be named NO_REGS
|
| 1158 |
|
|
and contain no registers.
|
| 1159 |
|
|
|
| 1160 |
|
|
The name GENERAL_REGS must be the name of a class (or an alias for
|
| 1161 |
|
|
another name such as ALL_REGS). This is the class of registers
|
| 1162 |
|
|
that is allowed by "g" or "r" in a register constraint.
|
| 1163 |
|
|
Also, registers outside this class are allocated only when
|
| 1164 |
|
|
instructions express preferences for them.
|
| 1165 |
|
|
|
| 1166 |
|
|
The classes must be numbered in nondecreasing order; that is,
|
| 1167 |
|
|
a larger-numbered class must never be contained completely
|
| 1168 |
|
|
in a smaller-numbered class.
|
| 1169 |
|
|
|
| 1170 |
|
|
For any two classes, it is very desirable that there be another
|
| 1171 |
|
|
class that represents their union. */
|
| 1172 |
|
|
|
| 1173 |
|
|
/* The RS/6000 has three types of registers, fixed-point, floating-point, and
|
| 1174 |
|
|
condition registers, plus three special registers, MQ, CTR, and the link
|
| 1175 |
|
|
register. AltiVec adds a vector register class. VSX registers overlap the
|
| 1176 |
|
|
FPR registers and the Altivec registers.
|
| 1177 |
|
|
|
| 1178 |
|
|
However, r0 is special in that it cannot be used as a base register.
|
| 1179 |
|
|
So make a class for registers valid as base registers.
|
| 1180 |
|
|
|
| 1181 |
|
|
Also, cr0 is the only condition code register that can be used in
|
| 1182 |
|
|
arithmetic insns, so make a separate class for it. */
|
| 1183 |
|
|
|
| 1184 |
|
|
enum reg_class
|
| 1185 |
|
|
{
|
| 1186 |
|
|
NO_REGS,
|
| 1187 |
|
|
BASE_REGS,
|
| 1188 |
|
|
GENERAL_REGS,
|
| 1189 |
|
|
FLOAT_REGS,
|
| 1190 |
|
|
ALTIVEC_REGS,
|
| 1191 |
|
|
VSX_REGS,
|
| 1192 |
|
|
VRSAVE_REGS,
|
| 1193 |
|
|
VSCR_REGS,
|
| 1194 |
|
|
SPE_ACC_REGS,
|
| 1195 |
|
|
SPEFSCR_REGS,
|
| 1196 |
|
|
NON_SPECIAL_REGS,
|
| 1197 |
|
|
MQ_REGS,
|
| 1198 |
|
|
LINK_REGS,
|
| 1199 |
|
|
CTR_REGS,
|
| 1200 |
|
|
LINK_OR_CTR_REGS,
|
| 1201 |
|
|
SPECIAL_REGS,
|
| 1202 |
|
|
SPEC_OR_GEN_REGS,
|
| 1203 |
|
|
CR0_REGS,
|
| 1204 |
|
|
CR_REGS,
|
| 1205 |
|
|
NON_FLOAT_REGS,
|
| 1206 |
|
|
CA_REGS,
|
| 1207 |
|
|
ALL_REGS,
|
| 1208 |
|
|
LIM_REG_CLASSES
|
| 1209 |
|
|
};
|
| 1210 |
|
|
|
| 1211 |
|
|
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
| 1212 |
|
|
|
| 1213 |
|
|
/* Give names of register classes as strings for dump file. */
|
| 1214 |
|
|
|
| 1215 |
|
|
#define REG_CLASS_NAMES \
|
| 1216 |
|
|
{ \
|
| 1217 |
|
|
"NO_REGS", \
|
| 1218 |
|
|
"BASE_REGS", \
|
| 1219 |
|
|
"GENERAL_REGS", \
|
| 1220 |
|
|
"FLOAT_REGS", \
|
| 1221 |
|
|
"ALTIVEC_REGS", \
|
| 1222 |
|
|
"VSX_REGS", \
|
| 1223 |
|
|
"VRSAVE_REGS", \
|
| 1224 |
|
|
"VSCR_REGS", \
|
| 1225 |
|
|
"SPE_ACC_REGS", \
|
| 1226 |
|
|
"SPEFSCR_REGS", \
|
| 1227 |
|
|
"NON_SPECIAL_REGS", \
|
| 1228 |
|
|
"MQ_REGS", \
|
| 1229 |
|
|
"LINK_REGS", \
|
| 1230 |
|
|
"CTR_REGS", \
|
| 1231 |
|
|
"LINK_OR_CTR_REGS", \
|
| 1232 |
|
|
"SPECIAL_REGS", \
|
| 1233 |
|
|
"SPEC_OR_GEN_REGS", \
|
| 1234 |
|
|
"CR0_REGS", \
|
| 1235 |
|
|
"CR_REGS", \
|
| 1236 |
|
|
"NON_FLOAT_REGS", \
|
| 1237 |
|
|
"CA_REGS", \
|
| 1238 |
|
|
"ALL_REGS" \
|
| 1239 |
|
|
}
|
| 1240 |
|
|
|
| 1241 |
|
|
/* Define which registers fit in which classes.
|
| 1242 |
|
|
This is an initializer for a vector of HARD_REG_SET
|
| 1243 |
|
|
of length N_REG_CLASSES. */
|
| 1244 |
|
|
|
| 1245 |
|
|
#define REG_CLASS_CONTENTS \
|
| 1246 |
|
|
{ \
|
| 1247 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
|
| 1248 |
|
|
{ 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
|
| 1249 |
|
|
{ 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
|
| 1250 |
|
|
{ 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
|
| 1251 |
|
|
{ 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
|
| 1252 |
|
|
{ 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */ \
|
| 1253 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
|
| 1254 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
|
| 1255 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
|
| 1256 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
|
| 1257 |
|
|
{ 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
|
| 1258 |
|
|
{ 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
|
| 1259 |
|
|
{ 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
|
| 1260 |
|
|
{ 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
|
| 1261 |
|
|
{ 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
|
| 1262 |
|
|
{ 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
|
| 1263 |
|
|
{ 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
|
| 1264 |
|
|
{ 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
|
| 1265 |
|
|
{ 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
|
| 1266 |
|
|
{ 0xffffffff, 0x00000000, 0x00000fff, 0x00020000 }, /* NON_FLOAT_REGS */ \
|
| 1267 |
|
|
{ 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */ \
|
| 1268 |
|
|
{ 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \
|
| 1269 |
|
|
}
|
| 1270 |
|
|
|
| 1271 |
|
|
/* The same information, inverted:
|
| 1272 |
|
|
Return the class number of the smallest class containing
|
| 1273 |
|
|
reg number REGNO. This could be a conditional expression
|
| 1274 |
|
|
or could index an array. */
|
| 1275 |
|
|
|
| 1276 |
|
|
extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
|
| 1277 |
|
|
|
| 1278 |
|
|
#if ENABLE_CHECKING
|
| 1279 |
|
|
#define REGNO_REG_CLASS(REGNO) \
|
| 1280 |
|
|
(gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)), \
|
| 1281 |
|
|
rs6000_regno_regclass[(REGNO)])
|
| 1282 |
|
|
|
| 1283 |
|
|
#else
|
| 1284 |
|
|
#define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
|
| 1285 |
|
|
#endif
|
| 1286 |
|
|
|
| 1287 |
|
|
/* Register classes for various constraints that are based on the target
|
| 1288 |
|
|
switches. */
|
| 1289 |
|
|
enum r6000_reg_class_enum {
|
| 1290 |
|
|
RS6000_CONSTRAINT_d, /* fpr registers for double values */
|
| 1291 |
|
|
RS6000_CONSTRAINT_f, /* fpr registers for single values */
|
| 1292 |
|
|
RS6000_CONSTRAINT_v, /* Altivec registers */
|
| 1293 |
|
|
RS6000_CONSTRAINT_wa, /* Any VSX register */
|
| 1294 |
|
|
RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
|
| 1295 |
|
|
RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
|
| 1296 |
|
|
RS6000_CONSTRAINT_ws, /* VSX register for DF */
|
| 1297 |
|
|
RS6000_CONSTRAINT_MAX
|
| 1298 |
|
|
};
|
| 1299 |
|
|
|
| 1300 |
|
|
extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
|
| 1301 |
|
|
|
| 1302 |
|
|
/* The class value for index registers, and the one for base regs. */
|
| 1303 |
|
|
#define INDEX_REG_CLASS GENERAL_REGS
|
| 1304 |
|
|
#define BASE_REG_CLASS BASE_REGS
|
| 1305 |
|
|
|
| 1306 |
|
|
/* Return whether a given register class can hold VSX objects. */
|
| 1307 |
|
|
#define VSX_REG_CLASS_P(CLASS) \
|
| 1308 |
|
|
((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
|
| 1309 |
|
|
|
| 1310 |
|
|
/* Given an rtx X being reloaded into a reg required to be
|
| 1311 |
|
|
in class CLASS, return the class of reg to actually use.
|
| 1312 |
|
|
In general this is just CLASS; but on some machines
|
| 1313 |
|
|
in some cases it is preferable to use a more restrictive class.
|
| 1314 |
|
|
|
| 1315 |
|
|
On the RS/6000, we have to return NO_REGS when we want to reload a
|
| 1316 |
|
|
floating-point CONST_DOUBLE to force it to be copied to memory.
|
| 1317 |
|
|
|
| 1318 |
|
|
We also don't want to reload integer values into floating-point
|
| 1319 |
|
|
registers if we can at all help it. In fact, this can
|
| 1320 |
|
|
cause reload to die, if it tries to generate a reload of CTR
|
| 1321 |
|
|
into a FP register and discovers it doesn't have the memory location
|
| 1322 |
|
|
required.
|
| 1323 |
|
|
|
| 1324 |
|
|
??? Would it be a good idea to have reload do the converse, that is
|
| 1325 |
|
|
try to reload floating modes into FP registers if possible?
|
| 1326 |
|
|
*/
|
| 1327 |
|
|
|
| 1328 |
|
|
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
|
| 1329 |
|
|
rs6000_preferred_reload_class_ptr (X, CLASS)
|
| 1330 |
|
|
|
| 1331 |
|
|
/* Return the register class of a scratch register needed to copy IN into
|
| 1332 |
|
|
or out of a register in CLASS in MODE. If it can be done directly,
|
| 1333 |
|
|
NO_REGS is returned. */
|
| 1334 |
|
|
|
| 1335 |
|
|
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
|
| 1336 |
|
|
rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
|
| 1337 |
|
|
|
| 1338 |
|
|
/* If we are copying between FP or AltiVec registers and anything
|
| 1339 |
|
|
else, we need a memory location. The exception is when we are
|
| 1340 |
|
|
targeting ppc64 and the move to/from fpr to gpr instructions
|
| 1341 |
|
|
are available.*/
|
| 1342 |
|
|
|
| 1343 |
|
|
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
|
| 1344 |
|
|
rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
|
| 1345 |
|
|
|
| 1346 |
|
|
/* For cpus that cannot load/store SDmode values from the 64-bit
|
| 1347 |
|
|
FP registers without using a full 64-bit load/store, we need
|
| 1348 |
|
|
to allocate a full 64-bit stack slot for them. */
|
| 1349 |
|
|
|
| 1350 |
|
|
#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
|
| 1351 |
|
|
rs6000_secondary_memory_needed_rtx (MODE)
|
| 1352 |
|
|
|
| 1353 |
|
|
/* Return the maximum number of consecutive registers
|
| 1354 |
|
|
needed to represent mode MODE in a register of class CLASS.
|
| 1355 |
|
|
|
| 1356 |
|
|
On RS/6000, this is the size of MODE in words, except in the FP regs, where
|
| 1357 |
|
|
a single reg is enough for two words, unless we have VSX, where the FP
|
| 1358 |
|
|
registers can hold 128 bits. */
|
| 1359 |
|
|
#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
|
| 1360 |
|
|
|
| 1361 |
|
|
/* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
|
| 1362 |
|
|
|
| 1363 |
|
|
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
|
| 1364 |
|
|
rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
|
| 1365 |
|
|
|
| 1366 |
|
|
/* Stack layout; function entry, exit and calling. */
|
| 1367 |
|
|
|
| 1368 |
|
|
/* Define this if pushing a word on the stack
|
| 1369 |
|
|
makes the stack pointer a smaller address. */
|
| 1370 |
|
|
#define STACK_GROWS_DOWNWARD
|
| 1371 |
|
|
|
| 1372 |
|
|
/* Offsets recorded in opcodes are a multiple of this alignment factor. */
|
| 1373 |
|
|
#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
|
| 1374 |
|
|
|
| 1375 |
|
|
/* Define this to nonzero if the nominal address of the stack frame
|
| 1376 |
|
|
is at the high-address end of the local variables;
|
| 1377 |
|
|
that is, each additional local variable allocated
|
| 1378 |
|
|
goes at a more negative offset in the frame.
|
| 1379 |
|
|
|
| 1380 |
|
|
On the RS/6000, we grow upwards, from the area after the outgoing
|
| 1381 |
|
|
arguments. */
|
| 1382 |
|
|
#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
|
| 1383 |
|
|
|
| 1384 |
|
|
/* Size of the outgoing register save area */
|
| 1385 |
|
|
#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
|
| 1386 |
|
|
|| DEFAULT_ABI == ABI_DARWIN) \
|
| 1387 |
|
|
? (TARGET_64BIT ? 64 : 32) \
|
| 1388 |
|
|
: 0)
|
| 1389 |
|
|
|
| 1390 |
|
|
/* Size of the fixed area on the stack */
|
| 1391 |
|
|
#define RS6000_SAVE_AREA \
|
| 1392 |
|
|
(((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
|
| 1393 |
|
|
<< (TARGET_64BIT ? 1 : 0))
|
| 1394 |
|
|
|
| 1395 |
|
|
/* MEM representing address to save the TOC register */
|
| 1396 |
|
|
#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
|
| 1397 |
|
|
plus_constant (stack_pointer_rtx, \
|
| 1398 |
|
|
(TARGET_32BIT ? 20 : 40)))
|
| 1399 |
|
|
|
| 1400 |
|
|
/* Align an address */
|
| 1401 |
|
|
#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
|
| 1402 |
|
|
|
| 1403 |
|
|
/* Offset within stack frame to start allocating local variables at.
|
| 1404 |
|
|
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
| 1405 |
|
|
first local allocated. Otherwise, it is the offset to the BEGINNING
|
| 1406 |
|
|
of the first local allocated.
|
| 1407 |
|
|
|
| 1408 |
|
|
On the RS/6000, the frame pointer is the same as the stack pointer,
|
| 1409 |
|
|
except for dynamic allocations. So we start after the fixed area and
|
| 1410 |
|
|
outgoing parameter area. */
|
| 1411 |
|
|
|
| 1412 |
|
|
#define STARTING_FRAME_OFFSET \
|
| 1413 |
|
|
(FRAME_GROWS_DOWNWARD \
|
| 1414 |
|
|
? 0 \
|
| 1415 |
|
|
: (RS6000_ALIGN (crtl->outgoing_args_size, \
|
| 1416 |
|
|
(TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
|
| 1417 |
|
|
+ RS6000_SAVE_AREA))
|
| 1418 |
|
|
|
| 1419 |
|
|
/* Offset from the stack pointer register to an item dynamically
|
| 1420 |
|
|
allocated on the stack, e.g., by `alloca'.
|
| 1421 |
|
|
|
| 1422 |
|
|
The default value for this macro is `STACK_POINTER_OFFSET' plus the
|
| 1423 |
|
|
length of the outgoing arguments. The default is correct for most
|
| 1424 |
|
|
machines. See `function.c' for details. */
|
| 1425 |
|
|
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
|
| 1426 |
|
|
(RS6000_ALIGN (crtl->outgoing_args_size, \
|
| 1427 |
|
|
(TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
|
| 1428 |
|
|
+ (STACK_POINTER_OFFSET))
|
| 1429 |
|
|
|
| 1430 |
|
|
/* If we generate an insn to push BYTES bytes,
|
| 1431 |
|
|
this says how many the stack pointer really advances by.
|
| 1432 |
|
|
On RS/6000, don't define this because there are no push insns. */
|
| 1433 |
|
|
/* #define PUSH_ROUNDING(BYTES) */
|
| 1434 |
|
|
|
| 1435 |
|
|
/* Offset of first parameter from the argument pointer register value.
|
| 1436 |
|
|
On the RS/6000, we define the argument pointer to the start of the fixed
|
| 1437 |
|
|
area. */
|
| 1438 |
|
|
#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
|
| 1439 |
|
|
|
| 1440 |
|
|
/* Offset from the argument pointer register value to the top of
|
| 1441 |
|
|
stack. This is different from FIRST_PARM_OFFSET because of the
|
| 1442 |
|
|
register save area. */
|
| 1443 |
|
|
#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
|
| 1444 |
|
|
|
| 1445 |
|
|
/* Define this if stack space is still allocated for a parameter passed
|
| 1446 |
|
|
in a register. The value is the number of bytes allocated to this
|
| 1447 |
|
|
area. */
|
| 1448 |
|
|
#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
|
| 1449 |
|
|
|
| 1450 |
|
|
/* Define this if the above stack space is to be considered part of the
|
| 1451 |
|
|
space allocated by the caller. */
|
| 1452 |
|
|
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
|
| 1453 |
|
|
|
| 1454 |
|
|
/* This is the difference between the logical top of stack and the actual sp.
|
| 1455 |
|
|
|
| 1456 |
|
|
For the RS/6000, sp points past the fixed area. */
|
| 1457 |
|
|
#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
|
| 1458 |
|
|
|
| 1459 |
|
|
/* Define this if the maximum size of all the outgoing args is to be
|
| 1460 |
|
|
accumulated and pushed during the prologue. The amount can be
|
| 1461 |
|
|
found in the variable crtl->outgoing_args_size. */
|
| 1462 |
|
|
#define ACCUMULATE_OUTGOING_ARGS 1
|
| 1463 |
|
|
|
| 1464 |
|
|
/* Define how to find the value returned by a library function
|
| 1465 |
|
|
assuming the value has mode MODE. */
|
| 1466 |
|
|
|
| 1467 |
|
|
#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
|
| 1468 |
|
|
|
| 1469 |
|
|
/* DRAFT_V4_STRUCT_RET defaults off. */
|
| 1470 |
|
|
#define DRAFT_V4_STRUCT_RET 0
|
| 1471 |
|
|
|
| 1472 |
|
|
/* Let TARGET_RETURN_IN_MEMORY control what happens. */
|
| 1473 |
|
|
#define DEFAULT_PCC_STRUCT_RETURN 0
|
| 1474 |
|
|
|
| 1475 |
|
|
/* Mode of stack savearea.
|
| 1476 |
|
|
FUNCTION is VOIDmode because calling convention maintains SP.
|
| 1477 |
|
|
BLOCK needs Pmode for SP.
|
| 1478 |
|
|
NONLOCAL needs twice Pmode to maintain both backchain and SP. */
|
| 1479 |
|
|
#define STACK_SAVEAREA_MODE(LEVEL) \
|
| 1480 |
|
|
(LEVEL == SAVE_FUNCTION ? VOIDmode \
|
| 1481 |
|
|
: LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
|
| 1482 |
|
|
|
| 1483 |
|
|
/* Minimum and maximum general purpose registers used to hold arguments. */
|
| 1484 |
|
|
#define GP_ARG_MIN_REG 3
|
| 1485 |
|
|
#define GP_ARG_MAX_REG 10
|
| 1486 |
|
|
#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
|
| 1487 |
|
|
|
| 1488 |
|
|
/* Minimum and maximum floating point registers used to hold arguments. */
|
| 1489 |
|
|
#define FP_ARG_MIN_REG 33
|
| 1490 |
|
|
#define FP_ARG_AIX_MAX_REG 45
|
| 1491 |
|
|
#define FP_ARG_V4_MAX_REG 40
|
| 1492 |
|
|
#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
|
| 1493 |
|
|
|| DEFAULT_ABI == ABI_DARWIN) \
|
| 1494 |
|
|
? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
|
| 1495 |
|
|
#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
|
| 1496 |
|
|
|
| 1497 |
|
|
/* Minimum and maximum AltiVec registers used to hold arguments. */
|
| 1498 |
|
|
#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
|
| 1499 |
|
|
#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
|
| 1500 |
|
|
#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
|
| 1501 |
|
|
|
| 1502 |
|
|
/* Return registers */
|
| 1503 |
|
|
#define GP_ARG_RETURN GP_ARG_MIN_REG
|
| 1504 |
|
|
#define FP_ARG_RETURN FP_ARG_MIN_REG
|
| 1505 |
|
|
#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
|
| 1506 |
|
|
|
| 1507 |
|
|
/* Flags for the call/call_value rtl operations set up by function_arg */
|
| 1508 |
|
|
#define CALL_NORMAL 0x00000000 /* no special processing */
|
| 1509 |
|
|
/* Bits in 0x00000001 are unused. */
|
| 1510 |
|
|
#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
|
| 1511 |
|
|
#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
|
| 1512 |
|
|
#define CALL_LONG 0x00000008 /* always call indirect */
|
| 1513 |
|
|
#define CALL_LIBCALL 0x00000010 /* libcall */
|
| 1514 |
|
|
|
| 1515 |
|
|
/* We don't have prologue and epilogue functions to save/restore
|
| 1516 |
|
|
everything for most ABIs. */
|
| 1517 |
|
|
#define WORLD_SAVE_P(INFO) 0
|
| 1518 |
|
|
|
| 1519 |
|
|
/* 1 if N is a possible register number for a function value
|
| 1520 |
|
|
as seen by the caller.
|
| 1521 |
|
|
|
| 1522 |
|
|
On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
|
| 1523 |
|
|
#define FUNCTION_VALUE_REGNO_P(N) \
|
| 1524 |
|
|
((N) == GP_ARG_RETURN \
|
| 1525 |
|
|
|| ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
|
| 1526 |
|
|
|| ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
|
| 1527 |
|
|
|
| 1528 |
|
|
/* 1 if N is a possible register number for function argument passing.
|
| 1529 |
|
|
On RS/6000, these are r3-r10 and fp1-fp13.
|
| 1530 |
|
|
On AltiVec, v2 - v13 are used for passing vectors. */
|
| 1531 |
|
|
#define FUNCTION_ARG_REGNO_P(N) \
|
| 1532 |
|
|
((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
|
| 1533 |
|
|
|| ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
|
| 1534 |
|
|
&& TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
|
| 1535 |
|
|
|| ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
|
| 1536 |
|
|
&& TARGET_HARD_FLOAT && TARGET_FPRS))
|
| 1537 |
|
|
|
| 1538 |
|
|
/* Define a data type for recording info about an argument list
|
| 1539 |
|
|
during the scan of that argument list. This data type should
|
| 1540 |
|
|
hold all necessary information about the function itself
|
| 1541 |
|
|
and about the args processed so far, enough to enable macros
|
| 1542 |
|
|
such as FUNCTION_ARG to determine where the next arg should go.
|
| 1543 |
|
|
|
| 1544 |
|
|
On the RS/6000, this is a structure. The first element is the number of
|
| 1545 |
|
|
total argument words, the second is used to store the next
|
| 1546 |
|
|
floating-point register number, and the third says how many more args we
|
| 1547 |
|
|
have prototype types for.
|
| 1548 |
|
|
|
| 1549 |
|
|
For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
|
| 1550 |
|
|
the next available GP register, `fregno' is the next available FP
|
| 1551 |
|
|
register, and `words' is the number of words used on the stack.
|
| 1552 |
|
|
|
| 1553 |
|
|
The varargs/stdarg support requires that this structure's size
|
| 1554 |
|
|
be a multiple of sizeof(int). */
|
| 1555 |
|
|
|
| 1556 |
|
|
typedef struct rs6000_args
|
| 1557 |
|
|
{
|
| 1558 |
|
|
int words; /* # words used for passing GP registers */
|
| 1559 |
|
|
int fregno; /* next available FP register */
|
| 1560 |
|
|
int vregno; /* next available AltiVec register */
|
| 1561 |
|
|
int nargs_prototype; /* # args left in the current prototype */
|
| 1562 |
|
|
int prototype; /* Whether a prototype was defined */
|
| 1563 |
|
|
int stdarg; /* Whether function is a stdarg function. */
|
| 1564 |
|
|
int call_cookie; /* Do special things for this call */
|
| 1565 |
|
|
int sysv_gregno; /* next available GP register */
|
| 1566 |
|
|
int intoffset; /* running offset in struct (darwin64) */
|
| 1567 |
|
|
int use_stack; /* any part of struct on stack (darwin64) */
|
| 1568 |
|
|
int floats_in_gpr; /* count of SFmode floats taking up
|
| 1569 |
|
|
GPR space (darwin64) */
|
| 1570 |
|
|
int named; /* false for varargs params */
|
| 1571 |
|
|
int escapes; /* if function visible outside tu */
|
| 1572 |
|
|
} CUMULATIVE_ARGS;
|
| 1573 |
|
|
|
| 1574 |
|
|
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
| 1575 |
|
|
for a call to a function whose data type is FNTYPE.
|
| 1576 |
|
|
For a library call, FNTYPE is 0. */
|
| 1577 |
|
|
|
| 1578 |
|
|
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
|
| 1579 |
|
|
init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
|
| 1580 |
|
|
N_NAMED_ARGS, FNDECL, VOIDmode)
|
| 1581 |
|
|
|
| 1582 |
|
|
/* Similar, but when scanning the definition of a procedure. We always
|
| 1583 |
|
|
set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
|
| 1584 |
|
|
|
| 1585 |
|
|
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
|
| 1586 |
|
|
init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
|
| 1587 |
|
|
1000, current_function_decl, VOIDmode)
|
| 1588 |
|
|
|
| 1589 |
|
|
/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
|
| 1590 |
|
|
|
| 1591 |
|
|
#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
|
| 1592 |
|
|
init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
|
| 1593 |
|
|
0, NULL_TREE, MODE)
|
| 1594 |
|
|
|
| 1595 |
|
|
/* If defined, a C expression which determines whether, and in which
|
| 1596 |
|
|
direction, to pad out an argument with extra space. The value
|
| 1597 |
|
|
should be of type `enum direction': either `upward' to pad above
|
| 1598 |
|
|
the argument, `downward' to pad below, or `none' to inhibit
|
| 1599 |
|
|
padding. */
|
| 1600 |
|
|
|
| 1601 |
|
|
#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
|
| 1602 |
|
|
|
| 1603 |
|
|
#define PAD_VARARGS_DOWN \
|
| 1604 |
|
|
(FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
|
| 1605 |
|
|
|
| 1606 |
|
|
/* Output assembler code to FILE to increment profiler label # LABELNO
|
| 1607 |
|
|
for profiling a function entry. */
|
| 1608 |
|
|
|
| 1609 |
|
|
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
| 1610 |
|
|
output_function_profiler ((FILE), (LABELNO));
|
| 1611 |
|
|
|
| 1612 |
|
|
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
| 1613 |
|
|
the stack pointer does not matter. No definition is equivalent to
|
| 1614 |
|
|
always zero.
|
| 1615 |
|
|
|
| 1616 |
|
|
On the RS/6000, this is nonzero because we can restore the stack from
|
| 1617 |
|
|
its backpointer, which we maintain. */
|
| 1618 |
|
|
#define EXIT_IGNORE_STACK 1
|
| 1619 |
|
|
|
| 1620 |
|
|
/* Define this macro as a C expression that is nonzero for registers
|
| 1621 |
|
|
that are used by the epilogue or the return' pattern. The stack
|
| 1622 |
|
|
and frame pointer registers are already be assumed to be used as
|
| 1623 |
|
|
needed. */
|
| 1624 |
|
|
|
| 1625 |
|
|
#define EPILOGUE_USES(REGNO) \
|
| 1626 |
|
|
((reload_completed && (REGNO) == LR_REGNO) \
|
| 1627 |
|
|
|| (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
|
| 1628 |
|
|
|| (crtl->calls_eh_return \
|
| 1629 |
|
|
&& TARGET_AIX \
|
| 1630 |
|
|
&& (REGNO) == 2))
|
| 1631 |
|
|
|
| 1632 |
|
|
|
| 1633 |
|
|
/* Length in units of the trampoline for entering a nested function. */
|
| 1634 |
|
|
|
| 1635 |
|
|
#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
|
| 1636 |
|
|
|
| 1637 |
|
|
/* Definitions for __builtin_return_address and __builtin_frame_address.
|
| 1638 |
|
|
__builtin_return_address (0) should give link register (65), enable
|
| 1639 |
|
|
this. */
|
| 1640 |
|
|
/* This should be uncommented, so that the link register is used, but
|
| 1641 |
|
|
currently this would result in unmatched insns and spilling fixed
|
| 1642 |
|
|
registers so we'll leave it for another day. When these problems are
|
| 1643 |
|
|
taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
|
| 1644 |
|
|
(mrs) */
|
| 1645 |
|
|
/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
|
| 1646 |
|
|
|
| 1647 |
|
|
/* Number of bytes into the frame return addresses can be found. See
|
| 1648 |
|
|
rs6000_stack_info in rs6000.c for more information on how the different
|
| 1649 |
|
|
abi's store the return address. */
|
| 1650 |
|
|
#define RETURN_ADDRESS_OFFSET \
|
| 1651 |
|
|
((DEFAULT_ABI == ABI_AIX \
|
| 1652 |
|
|
|| DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
|
| 1653 |
|
|
(DEFAULT_ABI == ABI_V4) ? 4 : \
|
| 1654 |
|
|
(internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
|
| 1655 |
|
|
|
| 1656 |
|
|
/* The current return address is in link register (65). The return address
|
| 1657 |
|
|
of anything farther back is accessed normally at an offset of 8 from the
|
| 1658 |
|
|
frame pointer. */
|
| 1659 |
|
|
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
| 1660 |
|
|
(rs6000_return_addr (COUNT, FRAME))
|
| 1661 |
|
|
|
| 1662 |
|
|
|
| 1663 |
|
|
/* Definitions for register eliminations.
|
| 1664 |
|
|
|
| 1665 |
|
|
We have two registers that can be eliminated on the RS/6000. First, the
|
| 1666 |
|
|
frame pointer register can often be eliminated in favor of the stack
|
| 1667 |
|
|
pointer register. Secondly, the argument pointer register can always be
|
| 1668 |
|
|
eliminated; it is replaced with either the stack or frame pointer.
|
| 1669 |
|
|
|
| 1670 |
|
|
In addition, we use the elimination mechanism to see if r30 is needed
|
| 1671 |
|
|
Initially we assume that it isn't. If it is, we spill it. This is done
|
| 1672 |
|
|
by making it an eliminable register. We replace it with itself so that
|
| 1673 |
|
|
if it isn't needed, then existing uses won't be modified. */
|
| 1674 |
|
|
|
| 1675 |
|
|
/* This is an array of structures. Each structure initializes one pair
|
| 1676 |
|
|
of eliminable registers. The "from" register number is given first,
|
| 1677 |
|
|
followed by "to". Eliminations of the same "from" register are listed
|
| 1678 |
|
|
in order of preference. */
|
| 1679 |
|
|
#define ELIMINABLE_REGS \
|
| 1680 |
|
|
{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
| 1681 |
|
|
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
| 1682 |
|
|
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
| 1683 |
|
|
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
| 1684 |
|
|
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
| 1685 |
|
|
{ RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
|
| 1686 |
|
|
|
| 1687 |
|
|
/* Define the offset between two registers, one to be eliminated, and the other
|
| 1688 |
|
|
its replacement, at the start of a routine. */
|
| 1689 |
|
|
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
| 1690 |
|
|
((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
|
| 1691 |
|
|
|
| 1692 |
|
|
/* Addressing modes, and classification of registers for them. */
|
| 1693 |
|
|
|
| 1694 |
|
|
#define HAVE_PRE_DECREMENT 1
|
| 1695 |
|
|
#define HAVE_PRE_INCREMENT 1
|
| 1696 |
|
|
#define HAVE_PRE_MODIFY_DISP 1
|
| 1697 |
|
|
#define HAVE_PRE_MODIFY_REG 1
|
| 1698 |
|
|
|
| 1699 |
|
|
/* Macros to check register numbers against specific register classes. */
|
| 1700 |
|
|
|
| 1701 |
|
|
/* These assume that REGNO is a hard or pseudo reg number.
|
| 1702 |
|
|
They give nonzero only if REGNO is a hard reg of the suitable class
|
| 1703 |
|
|
or a pseudo reg currently allocated to a suitable hard reg.
|
| 1704 |
|
|
Since they use reg_renumber, they are safe only once reg_renumber
|
| 1705 |
|
|
has been allocated, which happens in local-alloc.c. */
|
| 1706 |
|
|
|
| 1707 |
|
|
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
| 1708 |
|
|
((REGNO) < FIRST_PSEUDO_REGISTER \
|
| 1709 |
|
|
? (REGNO) <= 31 || (REGNO) == 67 \
|
| 1710 |
|
|
|| (REGNO) == FRAME_POINTER_REGNUM \
|
| 1711 |
|
|
: (reg_renumber[REGNO] >= 0 \
|
| 1712 |
|
|
&& (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
|
| 1713 |
|
|
|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
|
| 1714 |
|
|
|
| 1715 |
|
|
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
| 1716 |
|
|
((REGNO) < FIRST_PSEUDO_REGISTER \
|
| 1717 |
|
|
? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
|
| 1718 |
|
|
|| (REGNO) == FRAME_POINTER_REGNUM \
|
| 1719 |
|
|
: (reg_renumber[REGNO] > 0 \
|
| 1720 |
|
|
&& (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
|
| 1721 |
|
|
|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
|
| 1722 |
|
|
|
| 1723 |
|
|
/* Nonzero if X is a hard reg that can be used as an index
|
| 1724 |
|
|
or if it is a pseudo reg in the non-strict case. */
|
| 1725 |
|
|
#define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
|
| 1726 |
|
|
((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
|
| 1727 |
|
|
|| REGNO_OK_FOR_INDEX_P (REGNO (X)))
|
| 1728 |
|
|
|
| 1729 |
|
|
/* Nonzero if X is a hard reg that can be used as a base reg
|
| 1730 |
|
|
or if it is a pseudo reg in the non-strict case. */
|
| 1731 |
|
|
#define INT_REG_OK_FOR_BASE_P(X, STRICT) \
|
| 1732 |
|
|
((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
|
| 1733 |
|
|
|| REGNO_OK_FOR_BASE_P (REGNO (X)))
|
| 1734 |
|
|
|
| 1735 |
|
|
|
| 1736 |
|
|
/* Maximum number of registers that can appear in a valid memory address. */
|
| 1737 |
|
|
|
| 1738 |
|
|
#define MAX_REGS_PER_ADDRESS 2
|
| 1739 |
|
|
|
| 1740 |
|
|
/* Recognize any constant value that is a valid address. */
|
| 1741 |
|
|
|
| 1742 |
|
|
#define CONSTANT_ADDRESS_P(X) \
|
| 1743 |
|
|
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
| 1744 |
|
|
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|
| 1745 |
|
|
|| GET_CODE (X) == HIGH)
|
| 1746 |
|
|
|
| 1747 |
|
|
#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
|
| 1748 |
|
|
#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
|
| 1749 |
|
|
&& EASY_VECTOR_15((n) >> 1) \
|
| 1750 |
|
|
&& ((n) & 1) == 0)
|
| 1751 |
|
|
|
| 1752 |
|
|
#define EASY_VECTOR_MSB(n,mode) \
|
| 1753 |
|
|
(((unsigned HOST_WIDE_INT)n) == \
|
| 1754 |
|
|
((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
|
| 1755 |
|
|
|
| 1756 |
|
|
|
| 1757 |
|
|
/* Try a machine-dependent way of reloading an illegitimate address
|
| 1758 |
|
|
operand. If we find one, push the reload and jump to WIN. This
|
| 1759 |
|
|
macro is used in only one place: `find_reloads_address' in reload.c.
|
| 1760 |
|
|
|
| 1761 |
|
|
Implemented on rs6000 by rs6000_legitimize_reload_address.
|
| 1762 |
|
|
Note that (X) is evaluated twice; this is safe in current usage. */
|
| 1763 |
|
|
|
| 1764 |
|
|
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
|
| 1765 |
|
|
do { \
|
| 1766 |
|
|
int win; \
|
| 1767 |
|
|
(X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
|
| 1768 |
|
|
(int)(TYPE), (IND_LEVELS), &win); \
|
| 1769 |
|
|
if ( win ) \
|
| 1770 |
|
|
goto WIN; \
|
| 1771 |
|
|
} while (0)
|
| 1772 |
|
|
|
| 1773 |
|
|
#define FIND_BASE_TERM rs6000_find_base_term
|
| 1774 |
|
|
|
| 1775 |
|
|
/* The register number of the register used to address a table of
|
| 1776 |
|
|
static data addresses in memory. In some cases this register is
|
| 1777 |
|
|
defined by a processor's "application binary interface" (ABI).
|
| 1778 |
|
|
When this macro is defined, RTL is generated for this register
|
| 1779 |
|
|
once, as with the stack pointer and frame pointer registers. If
|
| 1780 |
|
|
this macro is not defined, it is up to the machine-dependent files
|
| 1781 |
|
|
to allocate such a register (if necessary). */
|
| 1782 |
|
|
|
| 1783 |
|
|
#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
|
| 1784 |
|
|
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
|
| 1785 |
|
|
|
| 1786 |
|
|
#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
|
| 1787 |
|
|
|
| 1788 |
|
|
/* Define this macro if the register defined by
|
| 1789 |
|
|
`PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
|
| 1790 |
|
|
this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
|
| 1791 |
|
|
|
| 1792 |
|
|
/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
|
| 1793 |
|
|
|
| 1794 |
|
|
/* A C expression that is nonzero if X is a legitimate immediate
|
| 1795 |
|
|
operand on the target machine when generating position independent
|
| 1796 |
|
|
code. You can assume that X satisfies `CONSTANT_P', so you need
|
| 1797 |
|
|
not check this. You can also assume FLAG_PIC is true, so you need
|
| 1798 |
|
|
not check it either. You need not define this macro if all
|
| 1799 |
|
|
constants (including `SYMBOL_REF') can be immediate operands when
|
| 1800 |
|
|
generating position independent code. */
|
| 1801 |
|
|
|
| 1802 |
|
|
/* #define LEGITIMATE_PIC_OPERAND_P (X) */
|
| 1803 |
|
|
|
| 1804 |
|
|
/* Define this if some processing needs to be done immediately before
|
| 1805 |
|
|
emitting code for an insn. */
|
| 1806 |
|
|
|
| 1807 |
|
|
#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
|
| 1808 |
|
|
rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
|
| 1809 |
|
|
|
| 1810 |
|
|
/* Specify the machine mode that this machine uses
|
| 1811 |
|
|
for the index in the tablejump instruction. */
|
| 1812 |
|
|
#define CASE_VECTOR_MODE SImode
|
| 1813 |
|
|
|
| 1814 |
|
|
/* Define as C expression which evaluates to nonzero if the tablejump
|
| 1815 |
|
|
instruction expects the table to contain offsets from the address of the
|
| 1816 |
|
|
table.
|
| 1817 |
|
|
Do not define this if the table should contain absolute addresses. */
|
| 1818 |
|
|
#define CASE_VECTOR_PC_RELATIVE 1
|
| 1819 |
|
|
|
| 1820 |
|
|
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
| 1821 |
|
|
#define DEFAULT_SIGNED_CHAR 0
|
| 1822 |
|
|
|
| 1823 |
|
|
/* This flag, if defined, says the same insns that convert to a signed fixnum
|
| 1824 |
|
|
also convert validly to an unsigned one. */
|
| 1825 |
|
|
|
| 1826 |
|
|
/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
|
| 1827 |
|
|
|
| 1828 |
|
|
/* An integer expression for the size in bits of the largest integer machine
|
| 1829 |
|
|
mode that should actually be used. */
|
| 1830 |
|
|
|
| 1831 |
|
|
/* Allow pairs of registers to be used, which is the intent of the default. */
|
| 1832 |
|
|
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
|
| 1833 |
|
|
|
| 1834 |
|
|
/* Max number of bytes we can move from memory to memory
|
| 1835 |
|
|
in one reasonably fast instruction. */
|
| 1836 |
|
|
#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
|
| 1837 |
|
|
#define MAX_MOVE_MAX 8
|
| 1838 |
|
|
|
| 1839 |
|
|
/* Nonzero if access to memory by bytes is no faster than for words.
|
| 1840 |
|
|
Also nonzero if doing byte operations (specifically shifts) in registers
|
| 1841 |
|
|
is undesirable. */
|
| 1842 |
|
|
#define SLOW_BYTE_ACCESS 1
|
| 1843 |
|
|
|
| 1844 |
|
|
/* Define if operations between registers always perform the operation
|
| 1845 |
|
|
on the full register even if a narrower mode is specified. */
|
| 1846 |
|
|
#define WORD_REGISTER_OPERATIONS
|
| 1847 |
|
|
|
| 1848 |
|
|
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
| 1849 |
|
|
will either zero-extend or sign-extend. The value of this macro should
|
| 1850 |
|
|
be the code that says which one of the two operations is implicitly
|
| 1851 |
|
|
done, UNKNOWN if none. */
|
| 1852 |
|
|
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
|
| 1853 |
|
|
|
| 1854 |
|
|
/* Define if loading short immediate values into registers sign extends. */
|
| 1855 |
|
|
#define SHORT_IMMEDIATES_SIGN_EXTEND
|
| 1856 |
|
|
|
| 1857 |
|
|
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
| 1858 |
|
|
is done just by pretending it is already truncated. */
|
| 1859 |
|
|
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
| 1860 |
|
|
|
| 1861 |
|
|
/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
|
| 1862 |
|
|
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
|
| 1863 |
|
|
((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
|
| 1864 |
|
|
|
| 1865 |
|
|
/* The CTZ patterns return -1 for input of zero. */
|
| 1866 |
|
|
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
|
| 1867 |
|
|
|
| 1868 |
|
|
/* Specify the machine mode that pointers have.
|
| 1869 |
|
|
After generation of rtl, the compiler makes no further distinction
|
| 1870 |
|
|
between pointers and any other objects of this machine mode. */
|
| 1871 |
|
|
extern unsigned rs6000_pmode;
|
| 1872 |
|
|
#define Pmode ((enum machine_mode)rs6000_pmode)
|
| 1873 |
|
|
|
| 1874 |
|
|
/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
|
| 1875 |
|
|
#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
|
| 1876 |
|
|
|
| 1877 |
|
|
/* Mode of a function address in a call instruction (for indexing purposes).
|
| 1878 |
|
|
Doesn't matter on RS/6000. */
|
| 1879 |
|
|
#define FUNCTION_MODE SImode
|
| 1880 |
|
|
|
| 1881 |
|
|
/* Define this if addresses of constant functions
|
| 1882 |
|
|
shouldn't be put through pseudo regs where they can be cse'd.
|
| 1883 |
|
|
Desirable on machines where ordinary constants are expensive
|
| 1884 |
|
|
but a CALL with constant address is cheap. */
|
| 1885 |
|
|
#define NO_FUNCTION_CSE
|
| 1886 |
|
|
|
| 1887 |
|
|
/* Define this to be nonzero if shift instructions ignore all but the low-order
|
| 1888 |
|
|
few bits.
|
| 1889 |
|
|
|
| 1890 |
|
|
The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
|
| 1891 |
|
|
have been dropped from the PowerPC architecture. */
|
| 1892 |
|
|
|
| 1893 |
|
|
#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
|
| 1894 |
|
|
|
| 1895 |
|
|
/* Adjust the length of an INSN. LENGTH is the currently-computed length and
|
| 1896 |
|
|
should be adjusted to reflect any required changes. This macro is used when
|
| 1897 |
|
|
there is some systematic length adjustment required that would be difficult
|
| 1898 |
|
|
to express in the length attribute. */
|
| 1899 |
|
|
|
| 1900 |
|
|
/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
|
| 1901 |
|
|
|
| 1902 |
|
|
/* Given a comparison code (EQ, NE, etc.) and the first operand of a
|
| 1903 |
|
|
COMPARE, return the mode to be used for the comparison. For
|
| 1904 |
|
|
floating-point, CCFPmode should be used. CCUNSmode should be used
|
| 1905 |
|
|
for unsigned comparisons. CCEQmode should be used when we are
|
| 1906 |
|
|
doing an inequality comparison on the result of a
|
| 1907 |
|
|
comparison. CCmode should be used in all other cases. */
|
| 1908 |
|
|
|
| 1909 |
|
|
#define SELECT_CC_MODE(OP,X,Y) \
|
| 1910 |
|
|
(SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
|
| 1911 |
|
|
: (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
|
| 1912 |
|
|
: (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
|
| 1913 |
|
|
? CCEQmode : CCmode))
|
| 1914 |
|
|
|
| 1915 |
|
|
/* Can the condition code MODE be safely reversed? This is safe in
|
| 1916 |
|
|
all cases on this port, because at present it doesn't use the
|
| 1917 |
|
|
trapping FP comparisons (fcmpo). */
|
| 1918 |
|
|
#define REVERSIBLE_CC_MODE(MODE) 1
|
| 1919 |
|
|
|
| 1920 |
|
|
/* Given a condition code and a mode, return the inverse condition. */
|
| 1921 |
|
|
#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
|
| 1922 |
|
|
|
| 1923 |
|
|
|
| 1924 |
|
|
/* Control the assembler format that we output. */
|
| 1925 |
|
|
|
| 1926 |
|
|
/* A C string constant describing how to begin a comment in the target
|
| 1927 |
|
|
assembler language. The compiler assumes that the comment will end at
|
| 1928 |
|
|
the end of the line. */
|
| 1929 |
|
|
#define ASM_COMMENT_START " #"
|
| 1930 |
|
|
|
| 1931 |
|
|
/* Flag to say the TOC is initialized */
|
| 1932 |
|
|
extern int toc_initialized;
|
| 1933 |
|
|
|
| 1934 |
|
|
/* Macro to output a special constant pool entry. Go to WIN if we output
|
| 1935 |
|
|
it. Otherwise, it is written the usual way.
|
| 1936 |
|
|
|
| 1937 |
|
|
On the RS/6000, toc entries are handled this way. */
|
| 1938 |
|
|
|
| 1939 |
|
|
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
|
| 1940 |
|
|
{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
|
| 1941 |
|
|
{ \
|
| 1942 |
|
|
output_toc (FILE, X, LABELNO, MODE); \
|
| 1943 |
|
|
goto WIN; \
|
| 1944 |
|
|
} \
|
| 1945 |
|
|
}
|
| 1946 |
|
|
|
| 1947 |
|
|
#ifdef HAVE_GAS_WEAK
|
| 1948 |
|
|
#define RS6000_WEAK 1
|
| 1949 |
|
|
#else
|
| 1950 |
|
|
#define RS6000_WEAK 0
|
| 1951 |
|
|
#endif
|
| 1952 |
|
|
|
| 1953 |
|
|
#if RS6000_WEAK
|
| 1954 |
|
|
/* Used in lieu of ASM_WEAKEN_LABEL. */
|
| 1955 |
|
|
#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
|
| 1956 |
|
|
do \
|
| 1957 |
|
|
{ \
|
| 1958 |
|
|
fputs ("\t.weak\t", (FILE)); \
|
| 1959 |
|
|
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
|
| 1960 |
|
|
if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
|
| 1961 |
|
|
&& DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
|
| 1962 |
|
|
{ \
|
| 1963 |
|
|
if (TARGET_XCOFF) \
|
| 1964 |
|
|
fputs ("[DS]", (FILE)); \
|
| 1965 |
|
|
fputs ("\n\t.weak\t.", (FILE)); \
|
| 1966 |
|
|
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
|
| 1967 |
|
|
} \
|
| 1968 |
|
|
fputc ('\n', (FILE)); \
|
| 1969 |
|
|
if (VAL) \
|
| 1970 |
|
|
{ \
|
| 1971 |
|
|
ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
|
| 1972 |
|
|
if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
|
| 1973 |
|
|
&& DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
|
| 1974 |
|
|
{ \
|
| 1975 |
|
|
fputs ("\t.set\t.", (FILE)); \
|
| 1976 |
|
|
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
|
| 1977 |
|
|
fputs (",.", (FILE)); \
|
| 1978 |
|
|
RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
|
| 1979 |
|
|
fputc ('\n', (FILE)); \
|
| 1980 |
|
|
} \
|
| 1981 |
|
|
} \
|
| 1982 |
|
|
} \
|
| 1983 |
|
|
while (0)
|
| 1984 |
|
|
#endif
|
| 1985 |
|
|
|
| 1986 |
|
|
#if HAVE_GAS_WEAKREF
|
| 1987 |
|
|
#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
|
| 1988 |
|
|
do \
|
| 1989 |
|
|
{ \
|
| 1990 |
|
|
fputs ("\t.weakref\t", (FILE)); \
|
| 1991 |
|
|
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
|
| 1992 |
|
|
fputs (", ", (FILE)); \
|
| 1993 |
|
|
RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
|
| 1994 |
|
|
if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
|
| 1995 |
|
|
&& DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
|
| 1996 |
|
|
{ \
|
| 1997 |
|
|
fputs ("\n\t.weakref\t.", (FILE)); \
|
| 1998 |
|
|
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
|
| 1999 |
|
|
fputs (", .", (FILE)); \
|
| 2000 |
|
|
RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
|
| 2001 |
|
|
} \
|
| 2002 |
|
|
fputc ('\n', (FILE)); \
|
| 2003 |
|
|
} while (0)
|
| 2004 |
|
|
#endif
|
| 2005 |
|
|
|
| 2006 |
|
|
/* This implements the `alias' attribute. */
|
| 2007 |
|
|
#undef ASM_OUTPUT_DEF_FROM_DECLS
|
| 2008 |
|
|
#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
|
| 2009 |
|
|
do \
|
| 2010 |
|
|
{ \
|
| 2011 |
|
|
const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
|
| 2012 |
|
|
const char *name = IDENTIFIER_POINTER (TARGET); \
|
| 2013 |
|
|
if (TREE_CODE (DECL) == FUNCTION_DECL \
|
| 2014 |
|
|
&& DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
|
| 2015 |
|
|
{ \
|
| 2016 |
|
|
if (TREE_PUBLIC (DECL)) \
|
| 2017 |
|
|
{ \
|
| 2018 |
|
|
if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
|
| 2019 |
|
|
{ \
|
| 2020 |
|
|
fputs ("\t.globl\t.", FILE); \
|
| 2021 |
|
|
RS6000_OUTPUT_BASENAME (FILE, alias); \
|
| 2022 |
|
|
putc ('\n', FILE); \
|
| 2023 |
|
|
} \
|
| 2024 |
|
|
} \
|
| 2025 |
|
|
else if (TARGET_XCOFF) \
|
| 2026 |
|
|
{ \
|
| 2027 |
|
|
fputs ("\t.lglobl\t.", FILE); \
|
| 2028 |
|
|
RS6000_OUTPUT_BASENAME (FILE, alias); \
|
| 2029 |
|
|
putc ('\n', FILE); \
|
| 2030 |
|
|
} \
|
| 2031 |
|
|
fputs ("\t.set\t.", FILE); \
|
| 2032 |
|
|
RS6000_OUTPUT_BASENAME (FILE, alias); \
|
| 2033 |
|
|
fputs (",.", FILE); \
|
| 2034 |
|
|
RS6000_OUTPUT_BASENAME (FILE, name); \
|
| 2035 |
|
|
fputc ('\n', FILE); \
|
| 2036 |
|
|
} \
|
| 2037 |
|
|
ASM_OUTPUT_DEF (FILE, alias, name); \
|
| 2038 |
|
|
} \
|
| 2039 |
|
|
while (0)
|
| 2040 |
|
|
|
| 2041 |
|
|
#define TARGET_ASM_FILE_START rs6000_file_start
|
| 2042 |
|
|
|
| 2043 |
|
|
/* Output to assembler file text saying following lines
|
| 2044 |
|
|
may contain character constants, extra white space, comments, etc. */
|
| 2045 |
|
|
|
| 2046 |
|
|
#define ASM_APP_ON ""
|
| 2047 |
|
|
|
| 2048 |
|
|
/* Output to assembler file text saying following lines
|
| 2049 |
|
|
no longer contain unusual constructs. */
|
| 2050 |
|
|
|
| 2051 |
|
|
#define ASM_APP_OFF ""
|
| 2052 |
|
|
|
| 2053 |
|
|
/* How to refer to registers in assembler output.
|
| 2054 |
|
|
This sequence is indexed by compiler's hard-register-number (see above). */
|
| 2055 |
|
|
|
| 2056 |
|
|
extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
|
| 2057 |
|
|
|
| 2058 |
|
|
#define REGISTER_NAMES \
|
| 2059 |
|
|
{ \
|
| 2060 |
|
|
&rs6000_reg_names[ 0][0], /* r0 */ \
|
| 2061 |
|
|
&rs6000_reg_names[ 1][0], /* r1 */ \
|
| 2062 |
|
|
&rs6000_reg_names[ 2][0], /* r2 */ \
|
| 2063 |
|
|
&rs6000_reg_names[ 3][0], /* r3 */ \
|
| 2064 |
|
|
&rs6000_reg_names[ 4][0], /* r4 */ \
|
| 2065 |
|
|
&rs6000_reg_names[ 5][0], /* r5 */ \
|
| 2066 |
|
|
&rs6000_reg_names[ 6][0], /* r6 */ \
|
| 2067 |
|
|
&rs6000_reg_names[ 7][0], /* r7 */ \
|
| 2068 |
|
|
&rs6000_reg_names[ 8][0], /* r8 */ \
|
| 2069 |
|
|
&rs6000_reg_names[ 9][0], /* r9 */ \
|
| 2070 |
|
|
&rs6000_reg_names[10][0], /* r10 */ \
|
| 2071 |
|
|
&rs6000_reg_names[11][0], /* r11 */ \
|
| 2072 |
|
|
&rs6000_reg_names[12][0], /* r12 */ \
|
| 2073 |
|
|
&rs6000_reg_names[13][0], /* r13 */ \
|
| 2074 |
|
|
&rs6000_reg_names[14][0], /* r14 */ \
|
| 2075 |
|
|
&rs6000_reg_names[15][0], /* r15 */ \
|
| 2076 |
|
|
&rs6000_reg_names[16][0], /* r16 */ \
|
| 2077 |
|
|
&rs6000_reg_names[17][0], /* r17 */ \
|
| 2078 |
|
|
&rs6000_reg_names[18][0], /* r18 */ \
|
| 2079 |
|
|
&rs6000_reg_names[19][0], /* r19 */ \
|
| 2080 |
|
|
&rs6000_reg_names[20][0], /* r20 */ \
|
| 2081 |
|
|
&rs6000_reg_names[21][0], /* r21 */ \
|
| 2082 |
|
|
&rs6000_reg_names[22][0], /* r22 */ \
|
| 2083 |
|
|
&rs6000_reg_names[23][0], /* r23 */ \
|
| 2084 |
|
|
&rs6000_reg_names[24][0], /* r24 */ \
|
| 2085 |
|
|
&rs6000_reg_names[25][0], /* r25 */ \
|
| 2086 |
|
|
&rs6000_reg_names[26][0], /* r26 */ \
|
| 2087 |
|
|
&rs6000_reg_names[27][0], /* r27 */ \
|
| 2088 |
|
|
&rs6000_reg_names[28][0], /* r28 */ \
|
| 2089 |
|
|
&rs6000_reg_names[29][0], /* r29 */ \
|
| 2090 |
|
|
&rs6000_reg_names[30][0], /* r30 */ \
|
| 2091 |
|
|
&rs6000_reg_names[31][0], /* r31 */ \
|
| 2092 |
|
|
\
|
| 2093 |
|
|
&rs6000_reg_names[32][0], /* fr0 */ \
|
| 2094 |
|
|
&rs6000_reg_names[33][0], /* fr1 */ \
|
| 2095 |
|
|
&rs6000_reg_names[34][0], /* fr2 */ \
|
| 2096 |
|
|
&rs6000_reg_names[35][0], /* fr3 */ \
|
| 2097 |
|
|
&rs6000_reg_names[36][0], /* fr4 */ \
|
| 2098 |
|
|
&rs6000_reg_names[37][0], /* fr5 */ \
|
| 2099 |
|
|
&rs6000_reg_names[38][0], /* fr6 */ \
|
| 2100 |
|
|
&rs6000_reg_names[39][0], /* fr7 */ \
|
| 2101 |
|
|
&rs6000_reg_names[40][0], /* fr8 */ \
|
| 2102 |
|
|
&rs6000_reg_names[41][0], /* fr9 */ \
|
| 2103 |
|
|
&rs6000_reg_names[42][0], /* fr10 */ \
|
| 2104 |
|
|
&rs6000_reg_names[43][0], /* fr11 */ \
|
| 2105 |
|
|
&rs6000_reg_names[44][0], /* fr12 */ \
|
| 2106 |
|
|
&rs6000_reg_names[45][0], /* fr13 */ \
|
| 2107 |
|
|
&rs6000_reg_names[46][0], /* fr14 */ \
|
| 2108 |
|
|
&rs6000_reg_names[47][0], /* fr15 */ \
|
| 2109 |
|
|
&rs6000_reg_names[48][0], /* fr16 */ \
|
| 2110 |
|
|
&rs6000_reg_names[49][0], /* fr17 */ \
|
| 2111 |
|
|
&rs6000_reg_names[50][0], /* fr18 */ \
|
| 2112 |
|
|
&rs6000_reg_names[51][0], /* fr19 */ \
|
| 2113 |
|
|
&rs6000_reg_names[52][0], /* fr20 */ \
|
| 2114 |
|
|
&rs6000_reg_names[53][0], /* fr21 */ \
|
| 2115 |
|
|
&rs6000_reg_names[54][0], /* fr22 */ \
|
| 2116 |
|
|
&rs6000_reg_names[55][0], /* fr23 */ \
|
| 2117 |
|
|
&rs6000_reg_names[56][0], /* fr24 */ \
|
| 2118 |
|
|
&rs6000_reg_names[57][0], /* fr25 */ \
|
| 2119 |
|
|
&rs6000_reg_names[58][0], /* fr26 */ \
|
| 2120 |
|
|
&rs6000_reg_names[59][0], /* fr27 */ \
|
| 2121 |
|
|
&rs6000_reg_names[60][0], /* fr28 */ \
|
| 2122 |
|
|
&rs6000_reg_names[61][0], /* fr29 */ \
|
| 2123 |
|
|
&rs6000_reg_names[62][0], /* fr30 */ \
|
| 2124 |
|
|
&rs6000_reg_names[63][0], /* fr31 */ \
|
| 2125 |
|
|
\
|
| 2126 |
|
|
&rs6000_reg_names[64][0], /* mq */ \
|
| 2127 |
|
|
&rs6000_reg_names[65][0], /* lr */ \
|
| 2128 |
|
|
&rs6000_reg_names[66][0], /* ctr */ \
|
| 2129 |
|
|
&rs6000_reg_names[67][0], /* ap */ \
|
| 2130 |
|
|
\
|
| 2131 |
|
|
&rs6000_reg_names[68][0], /* cr0 */ \
|
| 2132 |
|
|
&rs6000_reg_names[69][0], /* cr1 */ \
|
| 2133 |
|
|
&rs6000_reg_names[70][0], /* cr2 */ \
|
| 2134 |
|
|
&rs6000_reg_names[71][0], /* cr3 */ \
|
| 2135 |
|
|
&rs6000_reg_names[72][0], /* cr4 */ \
|
| 2136 |
|
|
&rs6000_reg_names[73][0], /* cr5 */ \
|
| 2137 |
|
|
&rs6000_reg_names[74][0], /* cr6 */ \
|
| 2138 |
|
|
&rs6000_reg_names[75][0], /* cr7 */ \
|
| 2139 |
|
|
\
|
| 2140 |
|
|
&rs6000_reg_names[76][0], /* ca */ \
|
| 2141 |
|
|
\
|
| 2142 |
|
|
&rs6000_reg_names[77][0], /* v0 */ \
|
| 2143 |
|
|
&rs6000_reg_names[78][0], /* v1 */ \
|
| 2144 |
|
|
&rs6000_reg_names[79][0], /* v2 */ \
|
| 2145 |
|
|
&rs6000_reg_names[80][0], /* v3 */ \
|
| 2146 |
|
|
&rs6000_reg_names[81][0], /* v4 */ \
|
| 2147 |
|
|
&rs6000_reg_names[82][0], /* v5 */ \
|
| 2148 |
|
|
&rs6000_reg_names[83][0], /* v6 */ \
|
| 2149 |
|
|
&rs6000_reg_names[84][0], /* v7 */ \
|
| 2150 |
|
|
&rs6000_reg_names[85][0], /* v8 */ \
|
| 2151 |
|
|
&rs6000_reg_names[86][0], /* v9 */ \
|
| 2152 |
|
|
&rs6000_reg_names[87][0], /* v10 */ \
|
| 2153 |
|
|
&rs6000_reg_names[88][0], /* v11 */ \
|
| 2154 |
|
|
&rs6000_reg_names[89][0], /* v12 */ \
|
| 2155 |
|
|
&rs6000_reg_names[90][0], /* v13 */ \
|
| 2156 |
|
|
&rs6000_reg_names[91][0], /* v14 */ \
|
| 2157 |
|
|
&rs6000_reg_names[92][0], /* v15 */ \
|
| 2158 |
|
|
&rs6000_reg_names[93][0], /* v16 */ \
|
| 2159 |
|
|
&rs6000_reg_names[94][0], /* v17 */ \
|
| 2160 |
|
|
&rs6000_reg_names[95][0], /* v18 */ \
|
| 2161 |
|
|
&rs6000_reg_names[96][0], /* v19 */ \
|
| 2162 |
|
|
&rs6000_reg_names[97][0], /* v20 */ \
|
| 2163 |
|
|
&rs6000_reg_names[98][0], /* v21 */ \
|
| 2164 |
|
|
&rs6000_reg_names[99][0], /* v22 */ \
|
| 2165 |
|
|
&rs6000_reg_names[100][0], /* v23 */ \
|
| 2166 |
|
|
&rs6000_reg_names[101][0], /* v24 */ \
|
| 2167 |
|
|
&rs6000_reg_names[102][0], /* v25 */ \
|
| 2168 |
|
|
&rs6000_reg_names[103][0], /* v26 */ \
|
| 2169 |
|
|
&rs6000_reg_names[104][0], /* v27 */ \
|
| 2170 |
|
|
&rs6000_reg_names[105][0], /* v28 */ \
|
| 2171 |
|
|
&rs6000_reg_names[106][0], /* v29 */ \
|
| 2172 |
|
|
&rs6000_reg_names[107][0], /* v30 */ \
|
| 2173 |
|
|
&rs6000_reg_names[108][0], /* v31 */ \
|
| 2174 |
|
|
&rs6000_reg_names[109][0], /* vrsave */ \
|
| 2175 |
|
|
&rs6000_reg_names[110][0], /* vscr */ \
|
| 2176 |
|
|
&rs6000_reg_names[111][0], /* spe_acc */ \
|
| 2177 |
|
|
&rs6000_reg_names[112][0], /* spefscr */ \
|
| 2178 |
|
|
&rs6000_reg_names[113][0], /* sfp */ \
|
| 2179 |
|
|
}
|
| 2180 |
|
|
|
| 2181 |
|
|
/* Table of additional register names to use in user input. */
|
| 2182 |
|
|
|
| 2183 |
|
|
#define ADDITIONAL_REGISTER_NAMES \
|
| 2184 |
|
|
{{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
|
| 2185 |
|
|
{"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
|
| 2186 |
|
|
{"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
|
| 2187 |
|
|
{"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
|
| 2188 |
|
|
{"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
|
| 2189 |
|
|
{"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
|
| 2190 |
|
|
{"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
|
| 2191 |
|
|
{"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
|
| 2192 |
|
|
{"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
|
| 2193 |
|
|
{"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
|
| 2194 |
|
|
{"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
|
| 2195 |
|
|
{"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
|
| 2196 |
|
|
{"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
|
| 2197 |
|
|
{"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
|
| 2198 |
|
|
{"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
|
| 2199 |
|
|
{"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
|
| 2200 |
|
|
{"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
|
| 2201 |
|
|
{"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
|
| 2202 |
|
|
{"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
|
| 2203 |
|
|
{"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
|
| 2204 |
|
|
{"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
|
| 2205 |
|
|
{"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
|
| 2206 |
|
|
{"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
|
| 2207 |
|
|
{"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
|
| 2208 |
|
|
{"vrsave", 109}, {"vscr", 110}, \
|
| 2209 |
|
|
{"spe_acc", 111}, {"spefscr", 112}, \
|
| 2210 |
|
|
/* no additional names for: mq, lr, ctr, ap */ \
|
| 2211 |
|
|
{"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
|
| 2212 |
|
|
{"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
|
| 2213 |
|
|
{"cc", 68}, {"sp", 1}, {"toc", 2}, \
|
| 2214 |
|
|
/* CA is only part of XER, but we do not model the other parts (yet). */ \
|
| 2215 |
|
|
{"xer", 76}, \
|
| 2216 |
|
|
/* VSX registers overlaid on top of FR, Altivec registers */ \
|
| 2217 |
|
|
{"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
|
| 2218 |
|
|
{"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
|
| 2219 |
|
|
{"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
|
| 2220 |
|
|
{"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
|
| 2221 |
|
|
{"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
|
| 2222 |
|
|
{"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
|
| 2223 |
|
|
{"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
|
| 2224 |
|
|
{"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
|
| 2225 |
|
|
{"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
|
| 2226 |
|
|
{"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
|
| 2227 |
|
|
{"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
|
| 2228 |
|
|
{"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
|
| 2229 |
|
|
{"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
|
| 2230 |
|
|
{"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
|
| 2231 |
|
|
{"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
|
| 2232 |
|
|
{"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} }
|
| 2233 |
|
|
|
| 2234 |
|
|
/* Text to write out after a CALL that may be replaced by glue code by
|
| 2235 |
|
|
the loader. This depends on the AIX version. */
|
| 2236 |
|
|
#define RS6000_CALL_GLUE "cror 31,31,31"
|
| 2237 |
|
|
|
| 2238 |
|
|
/* This is how to output an element of a case-vector that is relative. */
|
| 2239 |
|
|
|
| 2240 |
|
|
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
| 2241 |
|
|
do { char buf[100]; \
|
| 2242 |
|
|
fputs ("\t.long ", FILE); \
|
| 2243 |
|
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
|
| 2244 |
|
|
assemble_name (FILE, buf); \
|
| 2245 |
|
|
putc ('-', FILE); \
|
| 2246 |
|
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
|
| 2247 |
|
|
assemble_name (FILE, buf); \
|
| 2248 |
|
|
putc ('\n', FILE); \
|
| 2249 |
|
|
} while (0)
|
| 2250 |
|
|
|
| 2251 |
|
|
/* This is how to output an assembler line
|
| 2252 |
|
|
that says to advance the location counter
|
| 2253 |
|
|
to a multiple of 2**LOG bytes. */
|
| 2254 |
|
|
|
| 2255 |
|
|
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
| 2256 |
|
|
if ((LOG) != 0) \
|
| 2257 |
|
|
fprintf (FILE, "\t.align %d\n", (LOG))
|
| 2258 |
|
|
|
| 2259 |
|
|
/* How to align the given loop. */
|
| 2260 |
|
|
#define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
|
| 2261 |
|
|
|
| 2262 |
|
|
/* Pick up the return address upon entry to a procedure. Used for
|
| 2263 |
|
|
dwarf2 unwind information. This also enables the table driven
|
| 2264 |
|
|
mechanism. */
|
| 2265 |
|
|
|
| 2266 |
|
|
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
|
| 2267 |
|
|
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
|
| 2268 |
|
|
|
| 2269 |
|
|
/* Describe how we implement __builtin_eh_return. */
|
| 2270 |
|
|
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
|
| 2271 |
|
|
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
|
| 2272 |
|
|
|
| 2273 |
|
|
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
| 2274 |
|
|
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
| 2275 |
|
|
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
| 2276 |
|
|
|
| 2277 |
|
|
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
| 2278 |
|
|
|
| 2279 |
|
|
/* Define which CODE values are valid. */
|
| 2280 |
|
|
|
| 2281 |
|
|
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
| 2282 |
|
|
((CODE) == '.' || (CODE) == '&')
|
| 2283 |
|
|
|
| 2284 |
|
|
/* Print a memory address as an operand to reference that memory location. */
|
| 2285 |
|
|
|
| 2286 |
|
|
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
|
| 2287 |
|
|
|
| 2288 |
|
|
/* uncomment for disabling the corresponding default options */
|
| 2289 |
|
|
/* #define MACHINE_no_sched_interblock */
|
| 2290 |
|
|
/* #define MACHINE_no_sched_speculative */
|
| 2291 |
|
|
/* #define MACHINE_no_sched_speculative_load */
|
| 2292 |
|
|
|
| 2293 |
|
|
/* General flags. */
|
| 2294 |
|
|
extern int frame_pointer_needed;
|
| 2295 |
|
|
|
| 2296 |
|
|
/* Classification of the builtin functions as to which switches enable the
|
| 2297 |
|
|
builtin, and what attributes it should have. We used to use the target
|
| 2298 |
|
|
flags macros, but we've run out of bits, so we now map the options into new
|
| 2299 |
|
|
settings used here. */
|
| 2300 |
|
|
|
| 2301 |
|
|
/* Builtin attributes. */
|
| 2302 |
|
|
#define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
|
| 2303 |
|
|
#define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
|
| 2304 |
|
|
#define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
|
| 2305 |
|
|
#define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
|
| 2306 |
|
|
#define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
|
| 2307 |
|
|
#define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
|
| 2308 |
|
|
#define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
|
| 2309 |
|
|
#define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
|
| 2310 |
|
|
#define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
|
| 2311 |
|
|
|
| 2312 |
|
|
#define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
|
| 2313 |
|
|
#define RS6000_BTC_CONST 0x00000100 /* uses no global state. */
|
| 2314 |
|
|
#define RS6000_BTC_PURE 0x00000200 /* reads global state/mem. */
|
| 2315 |
|
|
#define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
|
| 2316 |
|
|
#define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
|
| 2317 |
|
|
|
| 2318 |
|
|
/* Miscellaneous information. */
|
| 2319 |
|
|
#define RS6000_BTC_OVERLOADED 0x4000000 /* function is overloaded. */
|
| 2320 |
|
|
|
| 2321 |
|
|
/* Convenience macros to document the instruction type. */
|
| 2322 |
|
|
#define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
|
| 2323 |
|
|
#define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
|
| 2324 |
|
|
|
| 2325 |
|
|
/* Builtin targets. For now, we reuse the masks for those options that are in
|
| 2326 |
|
|
target flags, and pick two random bits for SPE and paired which aren't in
|
| 2327 |
|
|
target_flags. */
|
| 2328 |
|
|
#define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
|
| 2329 |
|
|
#define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
|
| 2330 |
|
|
#define RS6000_BTM_SPE MASK_STRING /* E500 */
|
| 2331 |
|
|
#define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
|
| 2332 |
|
|
#define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
|
| 2333 |
|
|
#define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
|
| 2334 |
|
|
#define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
|
| 2335 |
|
|
#define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
|
| 2336 |
|
|
#define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
|
| 2337 |
|
|
#define RS6000_BTM_POWERPC MASK_POWERPC /* Target is powerpc. */
|
| 2338 |
|
|
#define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
|
| 2339 |
|
|
|
| 2340 |
|
|
#define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
|
| 2341 |
|
|
| RS6000_BTM_VSX \
|
| 2342 |
|
|
| RS6000_BTM_FRE \
|
| 2343 |
|
|
| RS6000_BTM_FRES \
|
| 2344 |
|
|
| RS6000_BTM_FRSQRTE \
|
| 2345 |
|
|
| RS6000_BTM_FRSQRTES \
|
| 2346 |
|
|
| RS6000_BTM_POPCNTD \
|
| 2347 |
|
|
| RS6000_BTM_POWERPC \
|
| 2348 |
|
|
| RS6000_BTM_CELL)
|
| 2349 |
|
|
|
| 2350 |
|
|
/* Define builtin enum index. */
|
| 2351 |
|
|
|
| 2352 |
|
|
#undef RS6000_BUILTIN_1
|
| 2353 |
|
|
#undef RS6000_BUILTIN_2
|
| 2354 |
|
|
#undef RS6000_BUILTIN_3
|
| 2355 |
|
|
#undef RS6000_BUILTIN_A
|
| 2356 |
|
|
#undef RS6000_BUILTIN_D
|
| 2357 |
|
|
#undef RS6000_BUILTIN_E
|
| 2358 |
|
|
#undef RS6000_BUILTIN_P
|
| 2359 |
|
|
#undef RS6000_BUILTIN_Q
|
| 2360 |
|
|
#undef RS6000_BUILTIN_S
|
| 2361 |
|
|
#undef RS6000_BUILTIN_X
|
| 2362 |
|
|
|
| 2363 |
|
|
#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
|
| 2364 |
|
|
#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
|
| 2365 |
|
|
#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
|
| 2366 |
|
|
#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
|
| 2367 |
|
|
#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
|
| 2368 |
|
|
#define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
|
| 2369 |
|
|
#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
|
| 2370 |
|
|
#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
|
| 2371 |
|
|
#define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
|
| 2372 |
|
|
#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
|
| 2373 |
|
|
|
| 2374 |
|
|
enum rs6000_builtins
|
| 2375 |
|
|
{
|
| 2376 |
|
|
#include "rs6000-builtin.def"
|
| 2377 |
|
|
|
| 2378 |
|
|
RS6000_BUILTIN_COUNT
|
| 2379 |
|
|
};
|
| 2380 |
|
|
|
| 2381 |
|
|
#undef RS6000_BUILTIN_1
|
| 2382 |
|
|
#undef RS6000_BUILTIN_2
|
| 2383 |
|
|
#undef RS6000_BUILTIN_3
|
| 2384 |
|
|
#undef RS6000_BUILTIN_A
|
| 2385 |
|
|
#undef RS6000_BUILTIN_D
|
| 2386 |
|
|
#undef RS6000_BUILTIN_E
|
| 2387 |
|
|
#undef RS6000_BUILTIN_P
|
| 2388 |
|
|
#undef RS6000_BUILTIN_Q
|
| 2389 |
|
|
#undef RS6000_BUILTIN_S
|
| 2390 |
|
|
#undef RS6000_BUILTIN_X
|
| 2391 |
|
|
|
| 2392 |
|
|
enum rs6000_builtin_type_index
|
| 2393 |
|
|
{
|
| 2394 |
|
|
RS6000_BTI_NOT_OPAQUE,
|
| 2395 |
|
|
RS6000_BTI_opaque_V2SI,
|
| 2396 |
|
|
RS6000_BTI_opaque_V2SF,
|
| 2397 |
|
|
RS6000_BTI_opaque_p_V2SI,
|
| 2398 |
|
|
RS6000_BTI_opaque_V4SI,
|
| 2399 |
|
|
RS6000_BTI_V16QI,
|
| 2400 |
|
|
RS6000_BTI_V2SI,
|
| 2401 |
|
|
RS6000_BTI_V2SF,
|
| 2402 |
|
|
RS6000_BTI_V2DI,
|
| 2403 |
|
|
RS6000_BTI_V2DF,
|
| 2404 |
|
|
RS6000_BTI_V4HI,
|
| 2405 |
|
|
RS6000_BTI_V4SI,
|
| 2406 |
|
|
RS6000_BTI_V4SF,
|
| 2407 |
|
|
RS6000_BTI_V8HI,
|
| 2408 |
|
|
RS6000_BTI_unsigned_V16QI,
|
| 2409 |
|
|
RS6000_BTI_unsigned_V8HI,
|
| 2410 |
|
|
RS6000_BTI_unsigned_V4SI,
|
| 2411 |
|
|
RS6000_BTI_unsigned_V2DI,
|
| 2412 |
|
|
RS6000_BTI_bool_char, /* __bool char */
|
| 2413 |
|
|
RS6000_BTI_bool_short, /* __bool short */
|
| 2414 |
|
|
RS6000_BTI_bool_int, /* __bool int */
|
| 2415 |
|
|
RS6000_BTI_bool_long, /* __bool long */
|
| 2416 |
|
|
RS6000_BTI_pixel, /* __pixel */
|
| 2417 |
|
|
RS6000_BTI_bool_V16QI, /* __vector __bool char */
|
| 2418 |
|
|
RS6000_BTI_bool_V8HI, /* __vector __bool short */
|
| 2419 |
|
|
RS6000_BTI_bool_V4SI, /* __vector __bool int */
|
| 2420 |
|
|
RS6000_BTI_bool_V2DI, /* __vector __bool long */
|
| 2421 |
|
|
RS6000_BTI_pixel_V8HI, /* __vector __pixel */
|
| 2422 |
|
|
RS6000_BTI_long, /* long_integer_type_node */
|
| 2423 |
|
|
RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
|
| 2424 |
|
|
RS6000_BTI_long_long, /* long_long_integer_type_node */
|
| 2425 |
|
|
RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
|
| 2426 |
|
|
RS6000_BTI_INTQI, /* intQI_type_node */
|
| 2427 |
|
|
RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
|
| 2428 |
|
|
RS6000_BTI_INTHI, /* intHI_type_node */
|
| 2429 |
|
|
RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
|
| 2430 |
|
|
RS6000_BTI_INTSI, /* intSI_type_node */
|
| 2431 |
|
|
RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
|
| 2432 |
|
|
RS6000_BTI_INTDI, /* intDI_type_node */
|
| 2433 |
|
|
RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
|
| 2434 |
|
|
RS6000_BTI_float, /* float_type_node */
|
| 2435 |
|
|
RS6000_BTI_double, /* double_type_node */
|
| 2436 |
|
|
RS6000_BTI_void, /* void_type_node */
|
| 2437 |
|
|
RS6000_BTI_MAX
|
| 2438 |
|
|
};
|
| 2439 |
|
|
|
| 2440 |
|
|
|
| 2441 |
|
|
#define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
|
| 2442 |
|
|
#define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
|
| 2443 |
|
|
#define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
|
| 2444 |
|
|
#define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
|
| 2445 |
|
|
#define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
|
| 2446 |
|
|
#define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
|
| 2447 |
|
|
#define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
|
| 2448 |
|
|
#define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
|
| 2449 |
|
|
#define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
|
| 2450 |
|
|
#define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
|
| 2451 |
|
|
#define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
|
| 2452 |
|
|
#define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
|
| 2453 |
|
|
#define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
|
| 2454 |
|
|
#define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
|
| 2455 |
|
|
#define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
|
| 2456 |
|
|
#define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
|
| 2457 |
|
|
#define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
|
| 2458 |
|
|
#define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
|
| 2459 |
|
|
#define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
|
| 2460 |
|
|
#define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
|
| 2461 |
|
|
#define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
|
| 2462 |
|
|
#define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
|
| 2463 |
|
|
#define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
|
| 2464 |
|
|
#define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
|
| 2465 |
|
|
#define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
|
| 2466 |
|
|
#define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
|
| 2467 |
|
|
#define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
|
| 2468 |
|
|
|
| 2469 |
|
|
#define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
|
| 2470 |
|
|
#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
|
| 2471 |
|
|
#define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
|
| 2472 |
|
|
#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
|
| 2473 |
|
|
#define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
|
| 2474 |
|
|
#define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
|
| 2475 |
|
|
#define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
|
| 2476 |
|
|
#define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
|
| 2477 |
|
|
#define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
|
| 2478 |
|
|
#define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
|
| 2479 |
|
|
#define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
|
| 2480 |
|
|
#define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
|
| 2481 |
|
|
#define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
|
| 2482 |
|
|
#define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
|
| 2483 |
|
|
#define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
|
| 2484 |
|
|
|
| 2485 |
|
|
extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
|
| 2486 |
|
|
extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
|
| 2487 |
|
|
|