OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [rs6000/] [rs6000.h] - Blame information for rev 711

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 709 jeremybenn
/* Definitions of target machine for GNU compiler, for IBM RS/6000.
2
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4
   2010, 2011
5
   Free Software Foundation, Inc.
6
   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
7
 
8
   This file is part of GCC.
9
 
10
   GCC is free software; you can redistribute it and/or modify it
11
   under the terms of the GNU General Public License as published
12
   by the Free Software Foundation; either version 3, or (at your
13
   option) any later version.
14
 
15
   GCC is distributed in the hope that it will be useful, but WITHOUT
16
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
18
   License for more details.
19
 
20
   Under Section 7 of GPL version 3, you are granted additional
21
   permissions described in the GCC Runtime Library Exception, version
22
   3.1, as published by the Free Software Foundation.
23
 
24
   You should have received a copy of the GNU General Public License and
25
   a copy of the GCC Runtime Library Exception along with this program;
26
   see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
27
   <http://www.gnu.org/licenses/>.  */
28
 
29
/* Note that some other tm.h files include this one and then override
30
   many of the definitions.  */
31
 
32
#ifndef RS6000_OPTS_H
33
#include "config/rs6000/rs6000-opts.h"
34
#endif
35
 
36
/* Definitions for the object file format.  These are set at
37
   compile-time.  */
38
 
39
#define OBJECT_XCOFF 1
40
#define OBJECT_ELF 2
41
#define OBJECT_PEF 3
42
#define OBJECT_MACHO 4
43
 
44
#define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
45
#define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
46
#define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
47
#define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
48
 
49
#ifndef TARGET_AIX
50
#define TARGET_AIX 0
51
#endif
52
 
53
#ifndef TARGET_AIX_OS
54
#define TARGET_AIX_OS 0
55
#endif
56
 
57
/* Control whether function entry points use a "dot" symbol when
58
   ABI_AIX.  */
59
#define DOT_SYMBOLS 1
60
 
61
/* Default string to use for cpu if not specified.  */
62
#ifndef TARGET_CPU_DEFAULT
63
#define TARGET_CPU_DEFAULT ((char *)0)
64
#endif
65
 
66
/* If configured for PPC405, support PPC405CR Erratum77.  */
67
#ifdef CONFIG_PPC405CR
68
#define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
69
#else
70
#define PPC405_ERRATUM77 0
71
#endif
72
 
73
#ifndef TARGET_PAIRED_FLOAT
74
#define TARGET_PAIRED_FLOAT 0
75
#endif
76
 
77
#ifdef HAVE_AS_POPCNTB
78
#define ASM_CPU_POWER5_SPEC "-mpower5"
79
#else
80
#define ASM_CPU_POWER5_SPEC "-mpower4"
81
#endif
82
 
83
#ifdef HAVE_AS_DFP
84
#define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
85
#else
86
#define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
87
#endif
88
 
89
#ifdef HAVE_AS_POPCNTD
90
#define ASM_CPU_POWER7_SPEC "-mpower7"
91
#else
92
#define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
93
#endif
94
 
95
#ifdef HAVE_AS_DCI
96
#define ASM_CPU_476_SPEC "-m476"
97
#else
98
#define ASM_CPU_476_SPEC "-mpower4"
99
#endif
100
 
101
/* Common ASM definitions used by ASM_SPEC among the various targets for
102
   handling -mcpu=xxx switches.  There is a parallel list in driver-rs6000.c to
103
   provide the default assembler options if the user uses -mcpu=native, so if
104
   you make changes here, make them also there.  */
105
#define ASM_CPU_SPEC \
106
"%{!mcpu*: \
107
  %{mpower: %{!mpower2: -mpwr}} \
108
  %{mpower2: -mpwrx} \
109
  %{mpowerpc64*: -mppc64} \
110
  %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
111
  %{mno-power: %{!mpowerpc*: -mcom}} \
112
  %{!mno-power: %{!mpower*: %(asm_default)}}} \
113
%{mcpu=native: %(asm_cpu_native)} \
114
%{mcpu=common: -mcom} \
115
%{mcpu=cell: -mcell} \
116
%{mcpu=power: -mpwr} \
117
%{mcpu=power2: -mpwrx} \
118
%{mcpu=power3: -mppc64} \
119
%{mcpu=power4: -mpower4} \
120
%{mcpu=power5: %(asm_cpu_power5)} \
121
%{mcpu=power5+: %(asm_cpu_power5)} \
122
%{mcpu=power6: %(asm_cpu_power6) -maltivec} \
123
%{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
124
%{mcpu=power7: %(asm_cpu_power7)} \
125
%{mcpu=a2: -ma2} \
126
%{mcpu=powerpc: -mppc} \
127
%{mcpu=rios: -mpwr} \
128
%{mcpu=rios1: -mpwr} \
129
%{mcpu=rios2: -mpwrx} \
130
%{mcpu=rsc: -mpwr} \
131
%{mcpu=rsc1: -mpwr} \
132
%{mcpu=rs64a: -mppc64} \
133
%{mcpu=401: -mppc} \
134
%{mcpu=403: -m403} \
135
%{mcpu=405: -m405} \
136
%{mcpu=405fp: -m405} \
137
%{mcpu=440: -m440} \
138
%{mcpu=440fp: -m440} \
139
%{mcpu=464: -m440} \
140
%{mcpu=464fp: -m440} \
141
%{mcpu=476: %(asm_cpu_476)} \
142
%{mcpu=476fp: %(asm_cpu_476)} \
143
%{mcpu=505: -mppc} \
144
%{mcpu=601: -m601} \
145
%{mcpu=602: -mppc} \
146
%{mcpu=603: -mppc} \
147
%{mcpu=603e: -mppc} \
148
%{mcpu=ec603e: -mppc} \
149
%{mcpu=604: -mppc} \
150
%{mcpu=604e: -mppc} \
151
%{mcpu=620: -mppc64} \
152
%{mcpu=630: -mppc64} \
153
%{mcpu=740: -mppc} \
154
%{mcpu=750: -mppc} \
155
%{mcpu=G3: -mppc} \
156
%{mcpu=7400: -mppc -maltivec} \
157
%{mcpu=7450: -mppc -maltivec} \
158
%{mcpu=G4: -mppc -maltivec} \
159
%{mcpu=801: -mppc} \
160
%{mcpu=821: -mppc} \
161
%{mcpu=823: -mppc} \
162
%{mcpu=860: -mppc} \
163
%{mcpu=970: -mpower4 -maltivec} \
164
%{mcpu=G5: -mpower4 -maltivec} \
165
%{mcpu=8540: -me500} \
166
%{mcpu=8548: -me500} \
167
%{mcpu=e300c2: -me300} \
168
%{mcpu=e300c3: -me300} \
169
%{mcpu=e500mc: -me500mc} \
170
%{mcpu=e500mc64: -me500mc64} \
171
%{maltivec: -maltivec} \
172
%{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
173
-many"
174
 
175
#define CPP_DEFAULT_SPEC ""
176
 
177
#define ASM_DEFAULT_SPEC ""
178
 
179
/* This macro defines names of additional specifications to put in the specs
180
   that can be used in various specifications like CC1_SPEC.  Its definition
181
   is an initializer with a subgrouping for each command option.
182
 
183
   Each subgrouping contains a string constant, that defines the
184
   specification name, and a string constant that used by the GCC driver
185
   program.
186
 
187
   Do not define this macro if it does not need to do anything.  */
188
 
189
#define SUBTARGET_EXTRA_SPECS
190
 
191
#define EXTRA_SPECS                                                     \
192
  { "cpp_default",              CPP_DEFAULT_SPEC },                     \
193
  { "asm_cpu",                  ASM_CPU_SPEC },                         \
194
  { "asm_cpu_native",           ASM_CPU_NATIVE_SPEC },                  \
195
  { "asm_default",              ASM_DEFAULT_SPEC },                     \
196
  { "cc1_cpu",                  CC1_CPU_SPEC },                         \
197
  { "asm_cpu_power5",           ASM_CPU_POWER5_SPEC },                  \
198
  { "asm_cpu_power6",           ASM_CPU_POWER6_SPEC },                  \
199
  { "asm_cpu_power7",           ASM_CPU_POWER7_SPEC },                  \
200
  { "asm_cpu_476",              ASM_CPU_476_SPEC },                     \
201
  SUBTARGET_EXTRA_SPECS
202
 
203
/* -mcpu=native handling only makes sense with compiler running on
204
   an PowerPC chip.  If changing this condition, also change
205
   the condition in driver-rs6000.c.  */
206
#if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
207
/* In driver-rs6000.c.  */
208
extern const char *host_detect_local_cpu (int argc, const char **argv);
209
#define EXTRA_SPEC_FUNCTIONS \
210
  { "local_cpu_detect", host_detect_local_cpu },
211
#define HAVE_LOCAL_CPU_DETECT
212
#define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
213
 
214
#else
215
#define ASM_CPU_NATIVE_SPEC "%(asm_default)"
216
#endif
217
 
218
#ifndef CC1_CPU_SPEC
219
#ifdef HAVE_LOCAL_CPU_DETECT
220
#define CC1_CPU_SPEC \
221
"%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
222
 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
223
#else
224
#define CC1_CPU_SPEC ""
225
#endif
226
#endif
227
 
228
/* Architecture type.  */
229
 
230
/* Define TARGET_MFCRF if the target assembler does not support the
231
   optional field operand for mfcr.  */
232
 
233
#ifndef HAVE_AS_MFCRF
234
#undef  TARGET_MFCRF
235
#define TARGET_MFCRF 0
236
#endif
237
 
238
/* Define TARGET_POPCNTB if the target assembler does not support the
239
   popcount byte instruction.  */
240
 
241
#ifndef HAVE_AS_POPCNTB
242
#undef  TARGET_POPCNTB
243
#define TARGET_POPCNTB 0
244
#endif
245
 
246
/* Define TARGET_FPRND if the target assembler does not support the
247
   fp rounding instructions.  */
248
 
249
#ifndef HAVE_AS_FPRND
250
#undef  TARGET_FPRND
251
#define TARGET_FPRND 0
252
#endif
253
 
254
/* Define TARGET_CMPB if the target assembler does not support the
255
   cmpb instruction.  */
256
 
257
#ifndef HAVE_AS_CMPB
258
#undef  TARGET_CMPB
259
#define TARGET_CMPB 0
260
#endif
261
 
262
/* Define TARGET_MFPGPR if the target assembler does not support the
263
   mffpr and mftgpr instructions. */
264
 
265
#ifndef HAVE_AS_MFPGPR
266
#undef  TARGET_MFPGPR
267
#define TARGET_MFPGPR 0
268
#endif
269
 
270
/* Define TARGET_DFP if the target assembler does not support decimal
271
   floating point instructions.  */
272
#ifndef HAVE_AS_DFP
273
#undef  TARGET_DFP
274
#define TARGET_DFP 0
275
#endif
276
 
277
/* Define TARGET_POPCNTD if the target assembler does not support the
278
   popcount word and double word instructions.  */
279
 
280
#ifndef HAVE_AS_POPCNTD
281
#undef  TARGET_POPCNTD
282
#define TARGET_POPCNTD 0
283
#endif
284
 
285
/* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync.  If
286
   not, generate the lwsync code as an integer constant.  */
287
#ifdef HAVE_AS_LWSYNC
288
#define TARGET_LWSYNC_INSTRUCTION 1
289
#else
290
#define TARGET_LWSYNC_INSTRUCTION 0
291
#endif
292
 
293
/* Define TARGET_TLS_MARKERS if the target assembler does not support
294
   arg markers for __tls_get_addr calls.  */
295
#ifndef HAVE_AS_TLS_MARKERS
296
#undef  TARGET_TLS_MARKERS
297
#define TARGET_TLS_MARKERS 0
298
#else
299
#define TARGET_TLS_MARKERS tls_markers
300
#endif
301
 
302
#ifndef TARGET_SECURE_PLT
303
#define TARGET_SECURE_PLT 0
304
#endif
305
 
306
#ifndef TARGET_CMODEL
307
#define TARGET_CMODEL CMODEL_SMALL
308
#endif
309
 
310
#define TARGET_32BIT            (! TARGET_64BIT)
311
 
312
#ifndef HAVE_AS_TLS
313
#define HAVE_AS_TLS 0
314
#endif
315
 
316
#ifndef TARGET_LINK_STACK
317
#define TARGET_LINK_STACK 0
318
#endif
319
 
320
#ifndef SET_TARGET_LINK_STACK
321
#define SET_TARGET_LINK_STACK(X) do { } while (0)
322
#endif
323
 
324
/* Return 1 for a symbol ref for a thread-local storage symbol.  */
325
#define RS6000_SYMBOL_REF_TLS_P(RTX) \
326
  (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
327
 
328
#ifdef IN_LIBGCC2
329
/* For libgcc2 we make sure this is a compile time constant */
330
#if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
331
#undef TARGET_POWERPC64
332
#define TARGET_POWERPC64        1
333
#else
334
#undef TARGET_POWERPC64
335
#define TARGET_POWERPC64        0
336
#endif
337
#else
338
    /* The option machinery will define this.  */
339
#endif
340
 
341
#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
342
 
343
/* FPU operations supported.
344
   Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
345
   also test TARGET_HARD_FLOAT.  */
346
#define TARGET_SINGLE_FLOAT 1
347
#define TARGET_DOUBLE_FLOAT 1
348
#define TARGET_SINGLE_FPU   0
349
#define TARGET_SIMPLE_FPU   0
350
#define TARGET_XILINX_FPU   0
351
 
352
/* Recast the processor type to the cpu attribute.  */
353
#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
354
 
355
/* Define generic processor types based upon current deployment.  */
356
#define PROCESSOR_COMMON    PROCESSOR_PPC601
357
#define PROCESSOR_POWER     PROCESSOR_RIOS1
358
#define PROCESSOR_POWERPC   PROCESSOR_PPC604
359
#define PROCESSOR_POWERPC64 PROCESSOR_RS64A
360
 
361
/* Define the default processor.  This is overridden by other tm.h files.  */
362
#define PROCESSOR_DEFAULT   PROCESSOR_RIOS1
363
#define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
364
 
365
/* Specify the dialect of assembler to use.  New mnemonics is dialect one
366
   and the old mnemonics are dialect zero.  */
367
#define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
368
 
369
/* Debug support */
370
#define MASK_DEBUG_STACK        0x01    /* debug stack applications */
371
#define MASK_DEBUG_ARG          0x02    /* debug argument handling */
372
#define MASK_DEBUG_REG          0x04    /* debug register handling */
373
#define MASK_DEBUG_ADDR         0x08    /* debug memory addressing */
374
#define MASK_DEBUG_COST         0x10    /* debug rtx codes */
375
#define MASK_DEBUG_TARGET       0x20    /* debug target attribute/pragma */
376
#define MASK_DEBUG_BUILTIN      0x40    /* debug builtins */
377
#define MASK_DEBUG_ALL          (MASK_DEBUG_STACK \
378
                                 | MASK_DEBUG_ARG \
379
                                 | MASK_DEBUG_REG \
380
                                 | MASK_DEBUG_ADDR \
381
                                 | MASK_DEBUG_COST \
382
                                 | MASK_DEBUG_TARGET \
383
                                 | MASK_DEBUG_BUILTIN)
384
 
385
#define TARGET_DEBUG_STACK      (rs6000_debug & MASK_DEBUG_STACK)
386
#define TARGET_DEBUG_ARG        (rs6000_debug & MASK_DEBUG_ARG)
387
#define TARGET_DEBUG_REG        (rs6000_debug & MASK_DEBUG_REG)
388
#define TARGET_DEBUG_ADDR       (rs6000_debug & MASK_DEBUG_ADDR)
389
#define TARGET_DEBUG_COST       (rs6000_debug & MASK_DEBUG_COST)
390
#define TARGET_DEBUG_TARGET     (rs6000_debug & MASK_DEBUG_TARGET)
391
#define TARGET_DEBUG_BUILTIN    (rs6000_debug & MASK_DEBUG_BUILTIN)
392
 
393
extern enum rs6000_vector rs6000_vector_unit[];
394
 
395
#define VECTOR_UNIT_NONE_P(MODE)                        \
396
  (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
397
 
398
#define VECTOR_UNIT_VSX_P(MODE)                         \
399
  (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
400
 
401
#define VECTOR_UNIT_ALTIVEC_P(MODE)                     \
402
  (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
403
 
404
#define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE)              \
405
  (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC         \
406
   || rs6000_vector_unit[(MODE)] == VECTOR_VSX)
407
 
408
/* Describe whether to use VSX loads or Altivec loads.  For now, just use the
409
   same unit as the vector unit we are using, but we may want to migrate to
410
   using VSX style loads even for types handled by altivec.  */
411
extern enum rs6000_vector rs6000_vector_mem[];
412
 
413
#define VECTOR_MEM_NONE_P(MODE)                         \
414
  (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
415
 
416
#define VECTOR_MEM_VSX_P(MODE)                          \
417
  (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
418
 
419
#define VECTOR_MEM_ALTIVEC_P(MODE)                      \
420
  (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
421
 
422
#define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE)               \
423
  (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC  \
424
   || rs6000_vector_mem[(MODE)] == VECTOR_VSX)
425
 
426
/* Return the alignment of a given vector type, which is set based on the
427
   vector unit use.  VSX for instance can load 32 or 64 bit aligned words
428
   without problems, while Altivec requires 128-bit aligned vectors.  */
429
extern int rs6000_vector_align[];
430
 
431
#define VECTOR_ALIGN(MODE)                                              \
432
  ((rs6000_vector_align[(MODE)] != 0)                                    \
433
   ? rs6000_vector_align[(MODE)]                                        \
434
   : (int)GET_MODE_BITSIZE ((MODE)))
435
 
436
/* Alignment options for fields in structures for sub-targets following
437
   AIX-like ABI.
438
   ALIGN_POWER word-aligns FP doubles (default AIX ABI).
439
   ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
440
 
441
   Override the macro definitions when compiling libobjc to avoid undefined
442
   reference to rs6000_alignment_flags due to library's use of GCC alignment
443
   macros which use the macros below.  */
444
 
445
#ifndef IN_TARGET_LIBS
446
#define MASK_ALIGN_POWER   0x00000000
447
#define MASK_ALIGN_NATURAL 0x00000001
448
#define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
449
#else
450
#define TARGET_ALIGN_NATURAL 0
451
#endif
452
 
453
#define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
454
#define TARGET_IEEEQUAD rs6000_ieeequad
455
#define TARGET_ALTIVEC_ABI rs6000_altivec_abi
456
#define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
457
 
458
#define TARGET_SPE_ABI 0
459
#define TARGET_SPE 0
460
#define TARGET_E500 0
461
#define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
462
#define TARGET_FPRS 1
463
#define TARGET_E500_SINGLE 0
464
#define TARGET_E500_DOUBLE 0
465
#define CHECK_E500_OPTIONS do { } while (0)
466
 
467
/* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
468
   Enable 32-bit fcfid's on any of the switches for newer ISA machines or
469
   XILINX.  */
470
#define TARGET_FCFID    (TARGET_POWERPC64 \
471
                         || TARGET_POPCNTB      /* ISA 2.02 */ \
472
                         || TARGET_CMPB         /* ISA 2.05 */ \
473
                         || TARGET_POPCNTD      /* ISA 2.06 */ \
474
                         || TARGET_XILINX_FPU)
475
 
476
#define TARGET_FCTIDZ   TARGET_FCFID
477
#define TARGET_STFIWX   TARGET_PPC_GFXOPT
478
#define TARGET_LFIWAX   TARGET_CMPB
479
#define TARGET_LFIWZX   TARGET_POPCNTD
480
#define TARGET_FCFIDS   TARGET_POPCNTD
481
#define TARGET_FCFIDU   TARGET_POPCNTD
482
#define TARGET_FCFIDUS  TARGET_POPCNTD
483
#define TARGET_FCTIDUZ  TARGET_POPCNTD
484
#define TARGET_FCTIWUZ  TARGET_POPCNTD
485
 
486
/* For power systems, we want to enable Altivec and VSX builtins even if the
487
   user did not use -maltivec or -mvsx to allow the builtins to be used inside
488
   of #pragma GCC target or the target attribute to change the code level for a
489
   given system.  The SPE and Paired builtins are only enabled if you configure
490
   the compiler for those builtins, and those machines don't support altivec or
491
   VSX.  */
492
 
493
#define TARGET_EXTRA_BUILTINS   (!TARGET_SPE && !TARGET_PAIRED_FLOAT     \
494
                                 && ((TARGET_POWERPC64                   \
495
                                      || TARGET_PPC_GPOPT /* 970 */      \
496
                                      || TARGET_POPCNTB   /* ISA 2.02 */ \
497
                                      || TARGET_CMPB      /* ISA 2.05 */ \
498
                                      || TARGET_POPCNTD   /* ISA 2.06 */ \
499
                                      || TARGET_ALTIVEC                  \
500
                                      || TARGET_VSX)))
501
 
502
 
503
 
504
/* E500 processors only support plain "sync", not lwsync.  */
505
#define TARGET_NO_LWSYNC TARGET_E500
506
 
507
/* Which machine supports the various reciprocal estimate instructions.  */
508
#define TARGET_FRES     (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
509
                         && TARGET_FPRS && TARGET_SINGLE_FLOAT)
510
 
511
#define TARGET_FRE      (TARGET_HARD_FLOAT && TARGET_FPRS \
512
                         && TARGET_DOUBLE_FLOAT \
513
                         && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
514
 
515
#define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
516
                         && TARGET_FPRS && TARGET_SINGLE_FLOAT)
517
 
518
#define TARGET_FRSQRTE  (TARGET_HARD_FLOAT && TARGET_FPRS \
519
                         && TARGET_DOUBLE_FLOAT \
520
                         && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
521
 
522
/* Whether the various reciprocal divide/square root estimate instructions
523
   exist, and whether we should automatically generate code for the instruction
524
   by default.  */
525
#define RS6000_RECIP_MASK_HAVE_RE       0x1     /* have RE instruction.  */
526
#define RS6000_RECIP_MASK_AUTO_RE       0x2     /* generate RE by default.  */
527
#define RS6000_RECIP_MASK_HAVE_RSQRTE   0x4     /* have RSQRTE instruction.  */
528
#define RS6000_RECIP_MASK_AUTO_RSQRTE   0x8     /* gen. RSQRTE by default.  */
529
 
530
extern unsigned char rs6000_recip_bits[];
531
 
532
#define RS6000_RECIP_HAVE_RE_P(MODE) \
533
  (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
534
 
535
#define RS6000_RECIP_AUTO_RE_P(MODE) \
536
  (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
537
 
538
#define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
539
  (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
540
 
541
#define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
542
  (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
543
 
544
#define RS6000_RECIP_HIGH_PRECISION_P(MODE) \
545
  ((MODE) == SFmode || (MODE) == V4SFmode || TARGET_RECIP_PRECISION)
546
 
547
/* The default CPU for TARGET_OPTION_OVERRIDE.  */
548
#define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
549
 
550
/* Target pragma.  */
551
#define REGISTER_TARGET_PRAGMAS() do {                          \
552
  c_register_pragma (0, "longcall", rs6000_pragma_longcall);     \
553
  targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
554
  targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
555
  rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
556
} while (0)
557
 
558
/* Target #defines.  */
559
#define TARGET_CPU_CPP_BUILTINS() \
560
  rs6000_cpu_cpp_builtins (pfile)
561
 
562
/* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
563
   we're compiling for.  Some configurations may need to override it.  */
564
#define RS6000_CPU_CPP_ENDIAN_BUILTINS()        \
565
  do                                            \
566
    {                                           \
567
      if (BYTES_BIG_ENDIAN)                     \
568
        {                                       \
569
          builtin_define ("__BIG_ENDIAN__");    \
570
          builtin_define ("_BIG_ENDIAN");       \
571
          builtin_assert ("machine=bigendian"); \
572
        }                                       \
573
      else                                      \
574
        {                                       \
575
          builtin_define ("__LITTLE_ENDIAN__"); \
576
          builtin_define ("_LITTLE_ENDIAN");    \
577
          builtin_assert ("machine=littleendian"); \
578
        }                                       \
579
    }                                           \
580
  while (0)
581
 
582
/* Target machine storage layout.  */
583
 
584
/* Define this macro if it is advisable to hold scalars in registers
585
   in a wider mode than that declared by the program.  In such cases,
586
   the value is constrained to be within the bounds of the declared
587
   type, but kept valid in the wider mode.  The signedness of the
588
   extension may differ from that of the type.  */
589
 
590
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)       \
591
  if (GET_MODE_CLASS (MODE) == MODE_INT         \
592
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
593
    (MODE) = TARGET_32BIT ? SImode : DImode;
594
 
595
/* Define this if most significant bit is lowest numbered
596
   in instructions that operate on numbered bit-fields.  */
597
/* That is true on RS/6000.  */
598
#define BITS_BIG_ENDIAN 1
599
 
600
/* Define this if most significant byte of a word is the lowest numbered.  */
601
/* That is true on RS/6000.  */
602
#define BYTES_BIG_ENDIAN 1
603
 
604
/* Define this if most significant word of a multiword number is lowest
605
   numbered.
606
 
607
   For RS/6000 we can decide arbitrarily since there are no machine
608
   instructions for them.  Might as well be consistent with bits and bytes.  */
609
#define WORDS_BIG_ENDIAN 1
610
 
611
#define MAX_BITS_PER_WORD 64
612
 
613
/* Width of a word, in units (bytes).  */
614
#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
615
#ifdef IN_LIBGCC2
616
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
617
#else
618
#define MIN_UNITS_PER_WORD 4
619
#endif
620
#define UNITS_PER_FP_WORD 8
621
#define UNITS_PER_ALTIVEC_WORD 16
622
#define UNITS_PER_VSX_WORD 16
623
#define UNITS_PER_SPE_WORD 8
624
#define UNITS_PER_PAIRED_WORD 8
625
 
626
/* Type used for ptrdiff_t, as a string used in a declaration.  */
627
#define PTRDIFF_TYPE "int"
628
 
629
/* Type used for size_t, as a string used in a declaration.  */
630
#define SIZE_TYPE "long unsigned int"
631
 
632
/* Type used for wchar_t, as a string used in a declaration.  */
633
#define WCHAR_TYPE "short unsigned int"
634
 
635
/* Width of wchar_t in bits.  */
636
#define WCHAR_TYPE_SIZE 16
637
 
638
/* A C expression for the size in bits of the type `short' on the
639
   target machine.  If you don't define this, the default is half a
640
   word.  (If this would be less than one storage unit, it is
641
   rounded up to one unit.)  */
642
#define SHORT_TYPE_SIZE 16
643
 
644
/* A C expression for the size in bits of the type `int' on the
645
   target machine.  If you don't define this, the default is one
646
   word.  */
647
#define INT_TYPE_SIZE 32
648
 
649
/* A C expression for the size in bits of the type `long' on the
650
   target machine.  If you don't define this, the default is one
651
   word.  */
652
#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
653
 
654
/* A C expression for the size in bits of the type `long long' on the
655
   target machine.  If you don't define this, the default is two
656
   words.  */
657
#define LONG_LONG_TYPE_SIZE 64
658
 
659
/* A C expression for the size in bits of the type `float' on the
660
   target machine.  If you don't define this, the default is one
661
   word.  */
662
#define FLOAT_TYPE_SIZE 32
663
 
664
/* A C expression for the size in bits of the type `double' on the
665
   target machine.  If you don't define this, the default is two
666
   words.  */
667
#define DOUBLE_TYPE_SIZE 64
668
 
669
/* A C expression for the size in bits of the type `long double' on
670
   the target machine.  If you don't define this, the default is two
671
   words.  */
672
#define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
673
 
674
/* Define this to set long double type size to use in libgcc2.c, which can
675
   not depend on target_flags.  */
676
#ifdef __LONG_DOUBLE_128__
677
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
678
#else
679
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
680
#endif
681
 
682
/* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
683
#define WIDEST_HARDWARE_FP_SIZE 64
684
 
685
/* Width in bits of a pointer.
686
   See also the macro `Pmode' defined below.  */
687
extern unsigned rs6000_pointer_size;
688
#define POINTER_SIZE rs6000_pointer_size
689
 
690
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
691
#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
692
 
693
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
694
#define STACK_BOUNDARY  \
695
  ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
696
    ? 64 : 128)
697
 
698
/* Allocation boundary (in *bits*) for the code of a function.  */
699
#define FUNCTION_BOUNDARY 32
700
 
701
/* No data type wants to be aligned rounder than this.  */
702
#define BIGGEST_ALIGNMENT 128
703
 
704
/* A C expression to compute the alignment for a variables in the
705
   local store.  TYPE is the data type, and ALIGN is the alignment
706
   that the object would ordinarily have.  */
707
#define LOCAL_ALIGNMENT(TYPE, ALIGN)                            \
708
  DATA_ALIGNMENT (TYPE, ALIGN)
709
 
710
/* Alignment of field after `int : 0' in a structure.  */
711
#define EMPTY_FIELD_BOUNDARY 32
712
 
713
/* Every structure's size must be a multiple of this.  */
714
#define STRUCTURE_SIZE_BOUNDARY 8
715
 
716
/* Return 1 if a structure or array containing FIELD should be
717
   accessed using `BLKMODE'.
718
 
719
   For the SPE, simd types are V2SI, and gcc can be tempted to put the
720
   entire thing in a DI and use subregs to access the internals.
721
   store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
722
   back-end.  Because a single GPR can hold a V2SI, but not a DI, the
723
   best thing to do is set structs to BLKmode and avoid Severe Tire
724
   Damage.
725
 
726
   On e500 v2, DF and DI modes suffer from the same anomaly.  DF can
727
   fit into 1, whereas DI still needs two.  */
728
#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
729
  ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
730
   || (TARGET_E500_DOUBLE && (MODE) == DFmode))
731
 
732
/* A bit-field declared as `int' forces `int' alignment for the struct.  */
733
#define PCC_BITFIELD_TYPE_MATTERS 1
734
 
735
/* Make strings word-aligned so strcpy from constants will be faster.
736
   Make vector constants quadword aligned.  */
737
#define CONSTANT_ALIGNMENT(EXP, ALIGN)                           \
738
  (TREE_CODE (EXP) == STRING_CST                                 \
739
   && (STRICT_ALIGNMENT || !optimize_size)                       \
740
   && (ALIGN) < BITS_PER_WORD                                    \
741
   ? BITS_PER_WORD                                               \
742
   : (ALIGN))
743
 
744
/* Make arrays of chars word-aligned for the same reasons.
745
   Align vectors to 128 bits.  Align SPE vectors and E500 v2 doubles to
746
   64 bits.  */
747
#define DATA_ALIGNMENT(TYPE, ALIGN)                                     \
748
  (TREE_CODE (TYPE) == VECTOR_TYPE                                      \
749
   ? (((TARGET_SPE && SPE_VECTOR_MODE (TYPE_MODE (TYPE)))               \
750
       || (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) \
751
      ? 64 : 128)                                                       \
752
   : ((TARGET_E500_DOUBLE                                               \
753
       && TREE_CODE (TYPE) == REAL_TYPE                                 \
754
       && TYPE_MODE (TYPE) == DFmode)                                   \
755
      ? 64                                                              \
756
      : (TREE_CODE (TYPE) == ARRAY_TYPE                                 \
757
         && TYPE_MODE (TREE_TYPE (TYPE)) == QImode                      \
758
         && (ALIGN) < BITS_PER_WORD) ? BITS_PER_WORD : (ALIGN)))
759
 
760
/* Nonzero if move instructions will actually fail to work
761
   when given unaligned data.  */
762
#define STRICT_ALIGNMENT 0
763
 
764
/* Define this macro to be the value 1 if unaligned accesses have a cost
765
   many times greater than aligned accesses, for example if they are
766
   emulated in a trap handler.  */
767
/* Altivec vector memory instructions simply ignore the low bits; SPE vector
768
   memory instructions trap on unaligned accesses; VSX memory instructions are
769
   aligned to 4 or 8 bytes.  */
770
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN)                              \
771
  (STRICT_ALIGNMENT                                                     \
772
   || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode        \
773
        || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode     \
774
        || (MODE) == DImode)                                            \
775
       && (ALIGN) < 32)                                                 \
776
   || (VECTOR_MODE_P ((MODE)) && (((int)(ALIGN)) < VECTOR_ALIGN (MODE))))
777
 
778
 
779
/* Standard register usage.  */
780
 
781
/* Number of actual hardware registers.
782
   The hardware registers are assigned numbers for the compiler
783
   from 0 to just below FIRST_PSEUDO_REGISTER.
784
   All registers that the compiler knows about must be given numbers,
785
   even those that are not normally considered general registers.
786
 
787
   RS/6000 has 32 fixed-point registers, 32 floating-point registers,
788
   an MQ register, a count register, a link register, and 8 condition
789
   register fields, which we view here as separate registers.  AltiVec
790
   adds 32 vector registers and a VRsave register.
791
 
792
   In addition, the difference between the frame and argument pointers is
793
   a function of the number of registers saved, so we need to have a
794
   register for AP that will later be eliminated in favor of SP or FP.
795
   This is a normal register, but it is fixed.
796
 
797
   We also create a pseudo register for float/int conversions, that will
798
   really represent the memory location used.  It is represented here as
799
   a register, in order to work around problems in allocating stack storage
800
   in inline functions.
801
 
802
   Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
803
   pointer, which is eventually eliminated in favor of SP or FP.  */
804
 
805
#define FIRST_PSEUDO_REGISTER 114
806
 
807
/* This must be included for pre gcc 3.0 glibc compatibility.  */
808
#define PRE_GCC3_DWARF_FRAME_REGISTERS 77
809
 
810
/* Add 32 dwarf columns for synthetic SPE registers.  */
811
#define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
812
 
813
/* The SPE has an additional 32 synthetic registers, with DWARF debug
814
   info numbering for these registers starting at 1200.  While eh_frame
815
   register numbering need not be the same as the debug info numbering,
816
   we choose to number these regs for eh_frame at 1200 too.  This allows
817
   future versions of the rs6000 backend to add hard registers and
818
   continue to use the gcc hard register numbering for eh_frame.  If the
819
   extra SPE registers in eh_frame were numbered starting from the
820
   current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
821
   changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
822
   avoid invalidating older SPE eh_frame info.
823
 
824
   We must map them here to avoid huge unwinder tables mostly consisting
825
   of unused space.  */
826
#define DWARF_REG_TO_UNWIND_COLUMN(r) \
827
  ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
828
 
829
/* Use standard DWARF numbering for DWARF debugging information.  */
830
#define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
831
 
832
/* Use gcc hard register numbering for eh_frame.  */
833
#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
834
 
835
/* Map register numbers held in the call frame info that gcc has
836
   collected using DWARF_FRAME_REGNUM to those that should be output in
837
   .debug_frame and .eh_frame.  We continue to use gcc hard reg numbers
838
   for .eh_frame, but use the numbers mandated by the various ABIs for
839
   .debug_frame.  rs6000_emit_prologue has translated any combination of
840
   CR2, CR3, CR4 saves to a save of CR2.  The actual code emitted saves
841
   the whole of CR, so we map CR2_REGNO to the DWARF reg for CR.  */
842
#define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH)     \
843
  ((FOR_EH) ? (REGNO)                           \
844
   : (REGNO) == CR2_REGNO ? 64                  \
845
   : DBX_REGISTER_NUMBER (REGNO))
846
 
847
/* 1 for registers that have pervasive standard uses
848
   and are not available for the register allocator.
849
 
850
   On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
851
   as a local register; for all other OS's r2 is the TOC pointer.
852
 
853
   cr5 is not supposed to be used.
854
 
855
   On System V implementations, r13 is fixed and not available for use.  */
856
 
857
#define FIXED_REGISTERS  \
858
  {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
859
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
860
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
861
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
862
   0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,    \
863
   /* AltiVec registers.  */                       \
864
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
865
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
866
   1, 1                                            \
867
   , 1, 1, 1                                       \
868
}
869
 
870
/* 1 for registers not available across function calls.
871
   These must include the FIXED_REGISTERS and also any
872
   registers that can be used without being saved.
873
   The latter must include the registers where values are returned
874
   and the register where structure-value addresses are passed.
875
   Aside from that, you can include as many other registers as you like.  */
876
 
877
#define CALL_USED_REGISTERS  \
878
  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
879
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
880
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
881
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
882
   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,     \
883
   /* AltiVec registers.  */                       \
884
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
885
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
886
   1, 1                                            \
887
   , 1, 1, 1                                       \
888
}
889
 
890
/* Like `CALL_USED_REGISTERS' except this macro doesn't require that
891
   the entire set of `FIXED_REGISTERS' be included.
892
   (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
893
   This macro is optional.  If not specified, it defaults to the value
894
   of `CALL_USED_REGISTERS'.  */
895
 
896
#define CALL_REALLY_USED_REGISTERS  \
897
  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
898
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
899
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
900
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
901
   1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,     \
902
   /* AltiVec registers.  */                       \
903
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
904
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
905
   0, 0                                              \
906
   , 0, 0, 0                                       \
907
}
908
 
909
#define TOTAL_ALTIVEC_REGS      (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
910
 
911
#define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
912
#define FIRST_SAVED_FP_REGNO    (14+32)
913
#define FIRST_SAVED_GP_REGNO 13
914
 
915
/* List the order in which to allocate registers.  Each register must be
916
   listed once, even those in FIXED_REGISTERS.
917
 
918
   We allocate in the following order:
919
        fp0             (not saved or used for anything)
920
        fp13 - fp2      (not saved; incoming fp arg registers)
921
        fp1             (not saved; return value)
922
        fp31 - fp14     (saved; order given to save least number)
923
        cr7, cr6        (not saved or special)
924
        cr1             (not saved, but used for FP operations)
925
        cr0             (not saved, but used for arithmetic operations)
926
        cr4, cr3, cr2   (saved)
927
        r9              (not saved; best for TImode)
928
        r10, r8-r4      (not saved; highest first for less conflict with params)
929
        r3              (not saved; return value register)
930
        r11             (not saved; later alloc to help shrink-wrap)
931
        r0              (not saved; cannot be base reg)
932
        r31 - r13       (saved; order given to save least number)
933
        r12             (not saved; if used for DImode or DFmode would use r13)
934
        mq              (not saved; best to use it if we can)
935
        ctr             (not saved; when we have the choice ctr is better)
936
        lr              (saved)
937
        cr5, r1, r2, ap, ca (fixed)
938
        v0 - v1         (not saved or used for anything)
939
        v13 - v3        (not saved; incoming vector arg registers)
940
        v2              (not saved; incoming vector arg reg; return value)
941
        v19 - v14       (not saved or used for anything)
942
        v31 - v20       (saved; order given to save least number)
943
        vrsave, vscr    (fixed)
944
        spe_acc, spefscr (fixed)
945
        sfp             (fixed)
946
*/
947
 
948
#if FIXED_R2 == 1
949
#define MAYBE_R2_AVAILABLE
950
#define MAYBE_R2_FIXED 2,
951
#else
952
#define MAYBE_R2_AVAILABLE 2,
953
#define MAYBE_R2_FIXED
954
#endif
955
 
956
#if FIXED_R13 == 1
957
#define EARLY_R12 12,
958
#define LATE_R12
959
#else
960
#define EARLY_R12
961
#define LATE_R12 12,
962
#endif
963
 
964
#define REG_ALLOC_ORDER                                         \
965
  {32,                                                          \
966
   45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,              \
967
   33,                                                          \
968
   63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,          \
969
   50, 49, 48, 47, 46,                                          \
970
   75, 74, 69, 68, 72, 71, 70,                                  \
971
   MAYBE_R2_AVAILABLE                                           \
972
   9, 10, 8, 7, 6, 5, 4,                                        \
973
   3, EARLY_R12 11, 0,                                           \
974
   31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,          \
975
   18, 17, 16, 15, 14, 13, LATE_R12                             \
976
   64, 66, 65,                                                  \
977
   73, 1, MAYBE_R2_FIXED 67, 76,                                \
978
   /* AltiVec registers.  */                                    \
979
   77, 78,                                                      \
980
   90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,                  \
981
   79,                                                          \
982
   96, 95, 94, 93, 92, 91,                                      \
983
   108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97,     \
984
   109, 110,                                                    \
985
   111, 112, 113                                                \
986
}
987
 
988
/* True if register is floating-point.  */
989
#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
990
 
991
/* True if register is a condition register.  */
992
#define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
993
 
994
/* True if register is a condition register, but not cr0.  */
995
#define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
996
 
997
/* True if register is an integer register.  */
998
#define INT_REGNO_P(N) \
999
  ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1000
 
1001
/* SPE SIMD registers are just the GPRs.  */
1002
#define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1003
 
1004
/* PAIRED SIMD registers are just the FPRs.  */
1005
#define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1006
 
1007
/* True if register is the CA register.  */
1008
#define CA_REGNO_P(N) ((N) == CA_REGNO)
1009
 
1010
/* True if register is an AltiVec register.  */
1011
#define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1012
 
1013
/* True if register is a VSX register.  */
1014
#define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1015
 
1016
/* Alternate name for any vector register supporting floating point, no matter
1017
   which instruction set(s) are available.  */
1018
#define VFLOAT_REGNO_P(N) \
1019
  (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1020
 
1021
/* Alternate name for any vector register supporting integer, no matter which
1022
   instruction set(s) are available.  */
1023
#define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1024
 
1025
/* Alternate name for any vector register supporting logical operations, no
1026
   matter which instruction set(s) are available.  */
1027
#define VLOGICAL_REGNO_P(N) VFLOAT_REGNO_P (N)
1028
 
1029
/* Return number of consecutive hard regs needed starting at reg REGNO
1030
   to hold something of mode MODE.  */
1031
 
1032
#define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1033
 
1034
/* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1035
   enough space to account for vectors in FP regs. */
1036
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)                 \
1037
  (TARGET_VSX                                                           \
1038
   && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE))         \
1039
   && FP_REGNO_P (REGNO)                                \
1040
   ? V2DFmode                                           \
1041
   : choose_hard_reg_mode ((REGNO), (NREGS), false))
1042
 
1043
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)                     \
1044
  (((TARGET_32BIT && TARGET_POWERPC64                                   \
1045
     && (GET_MODE_SIZE (MODE) > 4)                                      \
1046
     && INT_REGNO_P (REGNO)) ? 1 : 0)                                    \
1047
   || (TARGET_VSX && FP_REGNO_P (REGNO)                                 \
1048
       && GET_MODE_SIZE (MODE) > 8))
1049
 
1050
#define VSX_VECTOR_MODE(MODE)           \
1051
         ((MODE) == V4SFmode            \
1052
          || (MODE) == V2DFmode)        \
1053
 
1054
#define ALTIVEC_VECTOR_MODE(MODE)       \
1055
         ((MODE) == V16QImode           \
1056
          || (MODE) == V8HImode         \
1057
          || (MODE) == V4SFmode         \
1058
          || (MODE) == V4SImode)
1059
 
1060
#define ALTIVEC_OR_VSX_VECTOR_MODE(MODE)                                \
1061
  (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE)                 \
1062
   || (MODE) == V2DImode)
1063
 
1064
#define SPE_VECTOR_MODE(MODE)           \
1065
        ((MODE) == V4HImode             \
1066
         || (MODE) == V2SFmode          \
1067
         || (MODE) == V1DImode          \
1068
         || (MODE) == V2SImode)
1069
 
1070
#define PAIRED_VECTOR_MODE(MODE)        \
1071
         ((MODE) == V2SFmode)
1072
 
1073
/* Value is TRUE if hard register REGNO can hold a value of
1074
   machine-mode MODE.  */
1075
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1076
  rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1077
 
1078
/* Value is 1 if it is a good idea to tie two pseudo registers
1079
   when one has mode MODE1 and one has mode MODE2.
1080
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1081
   for any hard reg, then this must be 0 for correct output.  */
1082
#define MODES_TIEABLE_P(MODE1, MODE2) \
1083
  (SCALAR_FLOAT_MODE_P (MODE1)                  \
1084
   ? SCALAR_FLOAT_MODE_P (MODE2)                \
1085
   : SCALAR_FLOAT_MODE_P (MODE2)                \
1086
   ? SCALAR_FLOAT_MODE_P (MODE1)                \
1087
   : GET_MODE_CLASS (MODE1) == MODE_CC          \
1088
   ? GET_MODE_CLASS (MODE2) == MODE_CC          \
1089
   : GET_MODE_CLASS (MODE2) == MODE_CC          \
1090
   ? GET_MODE_CLASS (MODE1) == MODE_CC          \
1091
   : SPE_VECTOR_MODE (MODE1)                    \
1092
   ? SPE_VECTOR_MODE (MODE2)                    \
1093
   : SPE_VECTOR_MODE (MODE2)                    \
1094
   ? SPE_VECTOR_MODE (MODE1)                    \
1095
   : ALTIVEC_VECTOR_MODE (MODE1)                \
1096
   ? ALTIVEC_VECTOR_MODE (MODE2)                \
1097
   : ALTIVEC_VECTOR_MODE (MODE2)                \
1098
   ? ALTIVEC_VECTOR_MODE (MODE1)                \
1099
   : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1)         \
1100
   ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2)         \
1101
   : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2)         \
1102
   ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE1)         \
1103
   : 1)
1104
 
1105
/* Post-reload, we can't use any new AltiVec registers, as we already
1106
   emitted the vrsave mask.  */
1107
 
1108
#define HARD_REGNO_RENAME_OK(SRC, DST) \
1109
  (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1110
 
1111
/* Specify the cost of a branch insn; roughly the number of extra insns that
1112
   should be added to avoid a branch.
1113
 
1114
   Set this to 3 on the RS/6000 since that is roughly the average cost of an
1115
   unscheduled conditional branch.  */
1116
 
1117
#define BRANCH_COST(speed_p, predictable_p) 3
1118
 
1119
/* Override BRANCH_COST heuristic which empirically produces worse
1120
   performance for removing short circuiting from the logical ops.  */
1121
 
1122
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1123
 
1124
/* A fixed register used at epilogue generation to address SPE registers
1125
   with negative offsets.  The 64-bit load/store instructions on the SPE
1126
   only take positive offsets (and small ones at that), so we need to
1127
   reserve a register for consing up negative offsets.  */
1128
 
1129
#define FIXED_SCRATCH 0
1130
 
1131
/* Specify the registers used for certain standard purposes.
1132
   The values of these macros are register numbers.  */
1133
 
1134
/* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1135
/* #define PC_REGNUM  */
1136
 
1137
/* Register to use for pushing function arguments.  */
1138
#define STACK_POINTER_REGNUM 1
1139
 
1140
/* Base register for access to local variables of the function.  */
1141
#define HARD_FRAME_POINTER_REGNUM 31
1142
 
1143
/* Base register for access to local variables of the function.  */
1144
#define FRAME_POINTER_REGNUM 113
1145
 
1146
/* Base register for access to arguments of the function.  */
1147
#define ARG_POINTER_REGNUM 67
1148
 
1149
/* Place to put static chain when calling a function that requires it.  */
1150
#define STATIC_CHAIN_REGNUM 11
1151
 
1152
 
1153
/* Define the classes of registers for register constraints in the
1154
   machine description.  Also define ranges of constants.
1155
 
1156
   One of the classes must always be named ALL_REGS and include all hard regs.
1157
   If there is more than one class, another class must be named NO_REGS
1158
   and contain no registers.
1159
 
1160
   The name GENERAL_REGS must be the name of a class (or an alias for
1161
   another name such as ALL_REGS).  This is the class of registers
1162
   that is allowed by "g" or "r" in a register constraint.
1163
   Also, registers outside this class are allocated only when
1164
   instructions express preferences for them.
1165
 
1166
   The classes must be numbered in nondecreasing order; that is,
1167
   a larger-numbered class must never be contained completely
1168
   in a smaller-numbered class.
1169
 
1170
   For any two classes, it is very desirable that there be another
1171
   class that represents their union.  */
1172
 
1173
/* The RS/6000 has three types of registers, fixed-point, floating-point, and
1174
   condition registers, plus three special registers, MQ, CTR, and the link
1175
   register.  AltiVec adds a vector register class.  VSX registers overlap the
1176
   FPR registers and the Altivec registers.
1177
 
1178
   However, r0 is special in that it cannot be used as a base register.
1179
   So make a class for registers valid as base registers.
1180
 
1181
   Also, cr0 is the only condition code register that can be used in
1182
   arithmetic insns, so make a separate class for it.  */
1183
 
1184
enum reg_class
1185
{
1186
  NO_REGS,
1187
  BASE_REGS,
1188
  GENERAL_REGS,
1189
  FLOAT_REGS,
1190
  ALTIVEC_REGS,
1191
  VSX_REGS,
1192
  VRSAVE_REGS,
1193
  VSCR_REGS,
1194
  SPE_ACC_REGS,
1195
  SPEFSCR_REGS,
1196
  NON_SPECIAL_REGS,
1197
  MQ_REGS,
1198
  LINK_REGS,
1199
  CTR_REGS,
1200
  LINK_OR_CTR_REGS,
1201
  SPECIAL_REGS,
1202
  SPEC_OR_GEN_REGS,
1203
  CR0_REGS,
1204
  CR_REGS,
1205
  NON_FLOAT_REGS,
1206
  CA_REGS,
1207
  ALL_REGS,
1208
  LIM_REG_CLASSES
1209
};
1210
 
1211
#define N_REG_CLASSES (int) LIM_REG_CLASSES
1212
 
1213
/* Give names of register classes as strings for dump file.  */
1214
 
1215
#define REG_CLASS_NAMES                                                 \
1216
{                                                                       \
1217
  "NO_REGS",                                                            \
1218
  "BASE_REGS",                                                          \
1219
  "GENERAL_REGS",                                                       \
1220
  "FLOAT_REGS",                                                         \
1221
  "ALTIVEC_REGS",                                                       \
1222
  "VSX_REGS",                                                           \
1223
  "VRSAVE_REGS",                                                        \
1224
  "VSCR_REGS",                                                          \
1225
  "SPE_ACC_REGS",                                                       \
1226
  "SPEFSCR_REGS",                                                       \
1227
  "NON_SPECIAL_REGS",                                                   \
1228
  "MQ_REGS",                                                            \
1229
  "LINK_REGS",                                                          \
1230
  "CTR_REGS",                                                           \
1231
  "LINK_OR_CTR_REGS",                                                   \
1232
  "SPECIAL_REGS",                                                       \
1233
  "SPEC_OR_GEN_REGS",                                                   \
1234
  "CR0_REGS",                                                           \
1235
  "CR_REGS",                                                            \
1236
  "NON_FLOAT_REGS",                                                     \
1237
  "CA_REGS",                                                            \
1238
  "ALL_REGS"                                                            \
1239
}
1240
 
1241
/* Define which registers fit in which classes.
1242
   This is an initializer for a vector of HARD_REG_SET
1243
   of length N_REG_CLASSES.  */
1244
 
1245
#define REG_CLASS_CONTENTS                                                   \
1246
{                                                                            \
1247
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */          \
1248
  { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */        \
1249
  { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */     \
1250
  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */       \
1251
  { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */     \
1252
  { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, /* VSX_REGS */         \
1253
  { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */      \
1254
  { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */        \
1255
  { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */     \
1256
  { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */     \
1257
  { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1258
  { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */          \
1259
  { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */        \
1260
  { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */         \
1261
  { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1262
  { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */     \
1263
  { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1264
  { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */         \
1265
  { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */          \
1266
  { 0xffffffff, 0x00000000, 0x00000fff, 0x00020000 }, /* NON_FLOAT_REGS */   \
1267
  { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* CA_REGS */          \
1268
  { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff }  /* ALL_REGS */         \
1269
}
1270
 
1271
/* The same information, inverted:
1272
   Return the class number of the smallest class containing
1273
   reg number REGNO.  This could be a conditional expression
1274
   or could index an array.  */
1275
 
1276
extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1277
 
1278
#if ENABLE_CHECKING
1279
#define REGNO_REG_CLASS(REGNO)                                          \
1280
  (gcc_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),          \
1281
   rs6000_regno_regclass[(REGNO)])
1282
 
1283
#else
1284
#define REGNO_REG_CLASS(REGNO) rs6000_regno_regclass[(REGNO)]
1285
#endif
1286
 
1287
/* Register classes for various constraints that are based on the target
1288
   switches.  */
1289
enum r6000_reg_class_enum {
1290
  RS6000_CONSTRAINT_d,          /* fpr registers for double values */
1291
  RS6000_CONSTRAINT_f,          /* fpr registers for single values */
1292
  RS6000_CONSTRAINT_v,          /* Altivec registers */
1293
  RS6000_CONSTRAINT_wa,         /* Any VSX register */
1294
  RS6000_CONSTRAINT_wd,         /* VSX register for V2DF */
1295
  RS6000_CONSTRAINT_wf,         /* VSX register for V4SF */
1296
  RS6000_CONSTRAINT_ws,         /* VSX register for DF */
1297
  RS6000_CONSTRAINT_MAX
1298
};
1299
 
1300
extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1301
 
1302
/* The class value for index registers, and the one for base regs.  */
1303
#define INDEX_REG_CLASS GENERAL_REGS
1304
#define BASE_REG_CLASS BASE_REGS
1305
 
1306
/* Return whether a given register class can hold VSX objects.  */
1307
#define VSX_REG_CLASS_P(CLASS)                  \
1308
  ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1309
 
1310
/* Given an rtx X being reloaded into a reg required to be
1311
   in class CLASS, return the class of reg to actually use.
1312
   In general this is just CLASS; but on some machines
1313
   in some cases it is preferable to use a more restrictive class.
1314
 
1315
   On the RS/6000, we have to return NO_REGS when we want to reload a
1316
   floating-point CONST_DOUBLE to force it to be copied to memory.
1317
 
1318
   We also don't want to reload integer values into floating-point
1319
   registers if we can at all help it.  In fact, this can
1320
   cause reload to die, if it tries to generate a reload of CTR
1321
   into a FP register and discovers it doesn't have the memory location
1322
   required.
1323
 
1324
   ??? Would it be a good idea to have reload do the converse, that is
1325
   try to reload floating modes into FP registers if possible?
1326
 */
1327
 
1328
#define PREFERRED_RELOAD_CLASS(X,CLASS)                 \
1329
  rs6000_preferred_reload_class_ptr (X, CLASS)
1330
 
1331
/* Return the register class of a scratch register needed to copy IN into
1332
   or out of a register in CLASS in MODE.  If it can be done directly,
1333
   NO_REGS is returned.  */
1334
 
1335
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1336
  rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1337
 
1338
/* If we are copying between FP or AltiVec registers and anything
1339
   else, we need a memory location.  The exception is when we are
1340
   targeting ppc64 and the move to/from fpr to gpr instructions
1341
   are available.*/
1342
 
1343
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE)                     \
1344
  rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1345
 
1346
/* For cpus that cannot load/store SDmode values from the 64-bit
1347
   FP registers without using a full 64-bit load/store, we need
1348
   to allocate a full 64-bit stack slot for them.  */
1349
 
1350
#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1351
  rs6000_secondary_memory_needed_rtx (MODE)
1352
 
1353
/* Return the maximum number of consecutive registers
1354
   needed to represent mode MODE in a register of class CLASS.
1355
 
1356
   On RS/6000, this is the size of MODE in words, except in the FP regs, where
1357
   a single reg is enough for two words, unless we have VSX, where the FP
1358
   registers can hold 128 bits.  */
1359
#define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1360
 
1361
/* Return nonzero if for CLASS a mode change from FROM to TO is invalid.  */
1362
 
1363
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)                       \
1364
  rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1365
 
1366
/* Stack layout; function entry, exit and calling.  */
1367
 
1368
/* Define this if pushing a word on the stack
1369
   makes the stack pointer a smaller address.  */
1370
#define STACK_GROWS_DOWNWARD
1371
 
1372
/* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1373
#define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1374
 
1375
/* Define this to nonzero if the nominal address of the stack frame
1376
   is at the high-address end of the local variables;
1377
   that is, each additional local variable allocated
1378
   goes at a more negative offset in the frame.
1379
 
1380
   On the RS/6000, we grow upwards, from the area after the outgoing
1381
   arguments.  */
1382
#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1383
 
1384
/* Size of the outgoing register save area */
1385
#define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX                        \
1386
                          || DEFAULT_ABI == ABI_DARWIN)                 \
1387
                         ? (TARGET_64BIT ? 64 : 32)                     \
1388
                         : 0)
1389
 
1390
/* Size of the fixed area on the stack */
1391
#define RS6000_SAVE_AREA \
1392
  (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8)     \
1393
   << (TARGET_64BIT ? 1 : 0))
1394
 
1395
/* MEM representing address to save the TOC register */
1396
#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1397
                                     plus_constant (stack_pointer_rtx, \
1398
                                                    (TARGET_32BIT ? 20 : 40)))
1399
 
1400
/* Align an address */
1401
#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1402
 
1403
/* Offset within stack frame to start allocating local variables at.
1404
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1405
   first local allocated.  Otherwise, it is the offset to the BEGINNING
1406
   of the first local allocated.
1407
 
1408
   On the RS/6000, the frame pointer is the same as the stack pointer,
1409
   except for dynamic allocations.  So we start after the fixed area and
1410
   outgoing parameter area.  */
1411
 
1412
#define STARTING_FRAME_OFFSET                                           \
1413
  (FRAME_GROWS_DOWNWARD                                                 \
1414
   ? 0                                                                   \
1415
   : (RS6000_ALIGN (crtl->outgoing_args_size,                           \
1416
                    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)            \
1417
      + RS6000_SAVE_AREA))
1418
 
1419
/* Offset from the stack pointer register to an item dynamically
1420
   allocated on the stack, e.g., by `alloca'.
1421
 
1422
   The default value for this macro is `STACK_POINTER_OFFSET' plus the
1423
   length of the outgoing arguments.  The default is correct for most
1424
   machines.  See `function.c' for details.  */
1425
#define STACK_DYNAMIC_OFFSET(FUNDECL)                                   \
1426
  (RS6000_ALIGN (crtl->outgoing_args_size,                              \
1427
                 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)               \
1428
   + (STACK_POINTER_OFFSET))
1429
 
1430
/* If we generate an insn to push BYTES bytes,
1431
   this says how many the stack pointer really advances by.
1432
   On RS/6000, don't define this because there are no push insns.  */
1433
/*  #define PUSH_ROUNDING(BYTES) */
1434
 
1435
/* Offset of first parameter from the argument pointer register value.
1436
   On the RS/6000, we define the argument pointer to the start of the fixed
1437
   area.  */
1438
#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1439
 
1440
/* Offset from the argument pointer register value to the top of
1441
   stack.  This is different from FIRST_PARM_OFFSET because of the
1442
   register save area.  */
1443
#define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1444
 
1445
/* Define this if stack space is still allocated for a parameter passed
1446
   in a register.  The value is the number of bytes allocated to this
1447
   area.  */
1448
#define REG_PARM_STACK_SPACE(FNDECL)    RS6000_REG_SAVE
1449
 
1450
/* Define this if the above stack space is to be considered part of the
1451
   space allocated by the caller.  */
1452
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1453
 
1454
/* This is the difference between the logical top of stack and the actual sp.
1455
 
1456
   For the RS/6000, sp points past the fixed area.  */
1457
#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1458
 
1459
/* Define this if the maximum size of all the outgoing args is to be
1460
   accumulated and pushed during the prologue.  The amount can be
1461
   found in the variable crtl->outgoing_args_size.  */
1462
#define ACCUMULATE_OUTGOING_ARGS 1
1463
 
1464
/* Define how to find the value returned by a library function
1465
   assuming the value has mode MODE.  */
1466
 
1467
#define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1468
 
1469
/* DRAFT_V4_STRUCT_RET defaults off.  */
1470
#define DRAFT_V4_STRUCT_RET 0
1471
 
1472
/* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1473
#define DEFAULT_PCC_STRUCT_RETURN 0
1474
 
1475
/* Mode of stack savearea.
1476
   FUNCTION is VOIDmode because calling convention maintains SP.
1477
   BLOCK needs Pmode for SP.
1478
   NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1479
#define STACK_SAVEAREA_MODE(LEVEL)      \
1480
  (LEVEL == SAVE_FUNCTION ? VOIDmode    \
1481
  : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1482
 
1483
/* Minimum and maximum general purpose registers used to hold arguments.  */
1484
#define GP_ARG_MIN_REG 3
1485
#define GP_ARG_MAX_REG 10
1486
#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1487
 
1488
/* Minimum and maximum floating point registers used to hold arguments.  */
1489
#define FP_ARG_MIN_REG 33
1490
#define FP_ARG_AIX_MAX_REG 45
1491
#define FP_ARG_V4_MAX_REG  40
1492
#define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX                         \
1493
                         || DEFAULT_ABI == ABI_DARWIN)                  \
1494
                        ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1495
#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1496
 
1497
/* Minimum and maximum AltiVec registers used to hold arguments.  */
1498
#define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1499
#define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1500
#define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1501
 
1502
/* Return registers */
1503
#define GP_ARG_RETURN GP_ARG_MIN_REG
1504
#define FP_ARG_RETURN FP_ARG_MIN_REG
1505
#define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1506
 
1507
/* Flags for the call/call_value rtl operations set up by function_arg */
1508
#define CALL_NORMAL             0x00000000      /* no special processing */
1509
/* Bits in 0x00000001 are unused.  */
1510
#define CALL_V4_CLEAR_FP_ARGS   0x00000002      /* V.4, no FP args passed */
1511
#define CALL_V4_SET_FP_ARGS     0x00000004      /* V.4, FP args were passed */
1512
#define CALL_LONG               0x00000008      /* always call indirect */
1513
#define CALL_LIBCALL            0x00000010      /* libcall */
1514
 
1515
/* We don't have prologue and epilogue functions to save/restore
1516
   everything for most ABIs.  */
1517
#define WORLD_SAVE_P(INFO) 0
1518
 
1519
/* 1 if N is a possible register number for a function value
1520
   as seen by the caller.
1521
 
1522
   On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1523
#define FUNCTION_VALUE_REGNO_P(N)                                       \
1524
  ((N) == GP_ARG_RETURN                                                 \
1525
   || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS)        \
1526
   || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1527
 
1528
/* 1 if N is a possible register number for function argument passing.
1529
   On RS/6000, these are r3-r10 and fp1-fp13.
1530
   On AltiVec, v2 - v13 are used for passing vectors.  */
1531
#define FUNCTION_ARG_REGNO_P(N)                                         \
1532
  ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG                     \
1533
   || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG       \
1534
       && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)                         \
1535
   || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG                 \
1536
       && TARGET_HARD_FLOAT && TARGET_FPRS))
1537
 
1538
/* Define a data type for recording info about an argument list
1539
   during the scan of that argument list.  This data type should
1540
   hold all necessary information about the function itself
1541
   and about the args processed so far, enough to enable macros
1542
   such as FUNCTION_ARG to determine where the next arg should go.
1543
 
1544
   On the RS/6000, this is a structure.  The first element is the number of
1545
   total argument words, the second is used to store the next
1546
   floating-point register number, and the third says how many more args we
1547
   have prototype types for.
1548
 
1549
   For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1550
   the next available GP register, `fregno' is the next available FP
1551
   register, and `words' is the number of words used on the stack.
1552
 
1553
   The varargs/stdarg support requires that this structure's size
1554
   be a multiple of sizeof(int).  */
1555
 
1556
typedef struct rs6000_args
1557
{
1558
  int words;                    /* # words used for passing GP registers */
1559
  int fregno;                   /* next available FP register */
1560
  int vregno;                   /* next available AltiVec register */
1561
  int nargs_prototype;          /* # args left in the current prototype */
1562
  int prototype;                /* Whether a prototype was defined */
1563
  int stdarg;                   /* Whether function is a stdarg function.  */
1564
  int call_cookie;              /* Do special things for this call */
1565
  int sysv_gregno;              /* next available GP register */
1566
  int intoffset;                /* running offset in struct (darwin64) */
1567
  int use_stack;                /* any part of struct on stack (darwin64) */
1568
  int floats_in_gpr;            /* count of SFmode floats taking up
1569
                                   GPR space (darwin64) */
1570
  int named;                    /* false for varargs params */
1571
  int escapes;                  /* if function visible outside tu */
1572
} CUMULATIVE_ARGS;
1573
 
1574
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1575
   for a call to a function whose data type is FNTYPE.
1576
   For a library call, FNTYPE is 0.  */
1577
 
1578
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1579
  init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1580
                        N_NAMED_ARGS, FNDECL, VOIDmode)
1581
 
1582
/* Similar, but when scanning the definition of a procedure.  We always
1583
   set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1584
 
1585
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1586
  init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1587
                        1000, current_function_decl, VOIDmode)
1588
 
1589
/* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1590
 
1591
#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1592
  init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1593
                        0, NULL_TREE, MODE)
1594
 
1595
/* If defined, a C expression which determines whether, and in which
1596
   direction, to pad out an argument with extra space.  The value
1597
   should be of type `enum direction': either `upward' to pad above
1598
   the argument, `downward' to pad below, or `none' to inhibit
1599
   padding.  */
1600
 
1601
#define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1602
 
1603
#define PAD_VARARGS_DOWN \
1604
   (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1605
 
1606
/* Output assembler code to FILE to increment profiler label # LABELNO
1607
   for profiling a function entry.  */
1608
 
1609
#define FUNCTION_PROFILER(FILE, LABELNO)        \
1610
  output_function_profiler ((FILE), (LABELNO));
1611
 
1612
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1613
   the stack pointer does not matter. No definition is equivalent to
1614
   always zero.
1615
 
1616
   On the RS/6000, this is nonzero because we can restore the stack from
1617
   its backpointer, which we maintain.  */
1618
#define EXIT_IGNORE_STACK       1
1619
 
1620
/* Define this macro as a C expression that is nonzero for registers
1621
   that are used by the epilogue or the return' pattern.  The stack
1622
   and frame pointer registers are already be assumed to be used as
1623
   needed.  */
1624
 
1625
#define EPILOGUE_USES(REGNO)                                    \
1626
  ((reload_completed && (REGNO) == LR_REGNO)                    \
1627
   || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)               \
1628
   || (crtl->calls_eh_return                                    \
1629
       && TARGET_AIX                                            \
1630
       && (REGNO) == 2))
1631
 
1632
 
1633
/* Length in units of the trampoline for entering a nested function.  */
1634
 
1635
#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1636
 
1637
/* Definitions for __builtin_return_address and __builtin_frame_address.
1638
   __builtin_return_address (0) should give link register (65), enable
1639
   this.  */
1640
/* This should be uncommented, so that the link register is used, but
1641
   currently this would result in unmatched insns and spilling fixed
1642
   registers so we'll leave it for another day.  When these problems are
1643
   taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1644
   (mrs) */
1645
/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1646
 
1647
/* Number of bytes into the frame return addresses can be found.  See
1648
   rs6000_stack_info in rs6000.c for more information on how the different
1649
   abi's store the return address.  */
1650
#define RETURN_ADDRESS_OFFSET                                           \
1651
 ((DEFAULT_ABI == ABI_AIX                                               \
1652
   || DEFAULT_ABI == ABI_DARWIN)        ? (TARGET_32BIT ? 8 : 16) :     \
1653
  (DEFAULT_ABI == ABI_V4)               ? 4 :                           \
1654
  (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1655
 
1656
/* The current return address is in link register (65).  The return address
1657
   of anything farther back is accessed normally at an offset of 8 from the
1658
   frame pointer.  */
1659
#define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1660
  (rs6000_return_addr (COUNT, FRAME))
1661
 
1662
 
1663
/* Definitions for register eliminations.
1664
 
1665
   We have two registers that can be eliminated on the RS/6000.  First, the
1666
   frame pointer register can often be eliminated in favor of the stack
1667
   pointer register.  Secondly, the argument pointer register can always be
1668
   eliminated; it is replaced with either the stack or frame pointer.
1669
 
1670
   In addition, we use the elimination mechanism to see if r30 is needed
1671
   Initially we assume that it isn't.  If it is, we spill it.  This is done
1672
   by making it an eliminable register.  We replace it with itself so that
1673
   if it isn't needed, then existing uses won't be modified.  */
1674
 
1675
/* This is an array of structures.  Each structure initializes one pair
1676
   of eliminable registers.  The "from" register number is given first,
1677
   followed by "to".  Eliminations of the same "from" register are listed
1678
   in order of preference.  */
1679
#define ELIMINABLE_REGS                                 \
1680
{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},    \
1681
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},         \
1682
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},    \
1683
 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},           \
1684
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},      \
1685
 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1686
 
1687
/* Define the offset between two registers, one to be eliminated, and the other
1688
   its replacement, at the start of a routine.  */
1689
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1690
  ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1691
 
1692
/* Addressing modes, and classification of registers for them.  */
1693
 
1694
#define HAVE_PRE_DECREMENT 1
1695
#define HAVE_PRE_INCREMENT 1
1696
#define HAVE_PRE_MODIFY_DISP 1
1697
#define HAVE_PRE_MODIFY_REG 1
1698
 
1699
/* Macros to check register numbers against specific register classes.  */
1700
 
1701
/* These assume that REGNO is a hard or pseudo reg number.
1702
   They give nonzero only if REGNO is a hard reg of the suitable class
1703
   or a pseudo reg currently allocated to a suitable hard reg.
1704
   Since they use reg_renumber, they are safe only once reg_renumber
1705
   has been allocated, which happens in local-alloc.c.  */
1706
 
1707
#define REGNO_OK_FOR_INDEX_P(REGNO)                             \
1708
((REGNO) < FIRST_PSEUDO_REGISTER                                \
1709
 ? (REGNO) <= 31 || (REGNO) == 67                               \
1710
   || (REGNO) == FRAME_POINTER_REGNUM                           \
1711
 : (reg_renumber[REGNO] >= 0                                     \
1712
    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67  \
1713
        || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1714
 
1715
#define REGNO_OK_FOR_BASE_P(REGNO)                              \
1716
((REGNO) < FIRST_PSEUDO_REGISTER                                \
1717
 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67               \
1718
   || (REGNO) == FRAME_POINTER_REGNUM                           \
1719
 : (reg_renumber[REGNO] > 0                                      \
1720
    && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67  \
1721
        || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1722
 
1723
/* Nonzero if X is a hard reg that can be used as an index
1724
   or if it is a pseudo reg in the non-strict case.  */
1725
#define INT_REG_OK_FOR_INDEX_P(X, STRICT)                       \
1726
  ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)            \
1727
   || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1728
 
1729
/* Nonzero if X is a hard reg that can be used as a base reg
1730
   or if it is a pseudo reg in the non-strict case.  */
1731
#define INT_REG_OK_FOR_BASE_P(X, STRICT)                        \
1732
  ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)            \
1733
   || REGNO_OK_FOR_BASE_P (REGNO (X)))
1734
 
1735
 
1736
/* Maximum number of registers that can appear in a valid memory address.  */
1737
 
1738
#define MAX_REGS_PER_ADDRESS 2
1739
 
1740
/* Recognize any constant value that is a valid address.  */
1741
 
1742
#define CONSTANT_ADDRESS_P(X)   \
1743
  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF              \
1744
   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST                \
1745
   || GET_CODE (X) == HIGH)
1746
 
1747
#define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1748
#define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))        \
1749
                                    && EASY_VECTOR_15((n) >> 1) \
1750
                                    && ((n) & 1) == 0)
1751
 
1752
#define EASY_VECTOR_MSB(n,mode)                                         \
1753
  (((unsigned HOST_WIDE_INT)n) ==                                       \
1754
   ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1755
 
1756
 
1757
/* Try a machine-dependent way of reloading an illegitimate address
1758
   operand.  If we find one, push the reload and jump to WIN.  This
1759
   macro is used in only one place: `find_reloads_address' in reload.c.
1760
 
1761
   Implemented on rs6000 by rs6000_legitimize_reload_address.
1762
   Note that (X) is evaluated twice; this is safe in current usage.  */
1763
 
1764
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)          \
1765
do {                                                                         \
1766
  int win;                                                                   \
1767
  (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM),          \
1768
                        (int)(TYPE), (IND_LEVELS), &win);                    \
1769
  if ( win )                                                                 \
1770
    goto WIN;                                                                \
1771
} while (0)
1772
 
1773
#define FIND_BASE_TERM rs6000_find_base_term
1774
 
1775
/* The register number of the register used to address a table of
1776
   static data addresses in memory.  In some cases this register is
1777
   defined by a processor's "application binary interface" (ABI).
1778
   When this macro is defined, RTL is generated for this register
1779
   once, as with the stack pointer and frame pointer registers.  If
1780
   this macro is not defined, it is up to the machine-dependent files
1781
   to allocate such a register (if necessary).  */
1782
 
1783
#define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1784
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1785
 
1786
#define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1787
 
1788
/* Define this macro if the register defined by
1789
   `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
1790
   this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
1791
 
1792
/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1793
 
1794
/* A C expression that is nonzero if X is a legitimate immediate
1795
   operand on the target machine when generating position independent
1796
   code.  You can assume that X satisfies `CONSTANT_P', so you need
1797
   not check this.  You can also assume FLAG_PIC is true, so you need
1798
   not check it either.  You need not define this macro if all
1799
   constants (including `SYMBOL_REF') can be immediate operands when
1800
   generating position independent code.  */
1801
 
1802
/* #define LEGITIMATE_PIC_OPERAND_P (X) */
1803
 
1804
/* Define this if some processing needs to be done immediately before
1805
   emitting code for an insn.  */
1806
 
1807
#define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1808
  rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1809
 
1810
/* Specify the machine mode that this machine uses
1811
   for the index in the tablejump instruction.  */
1812
#define CASE_VECTOR_MODE SImode
1813
 
1814
/* Define as C expression which evaluates to nonzero if the tablejump
1815
   instruction expects the table to contain offsets from the address of the
1816
   table.
1817
   Do not define this if the table should contain absolute addresses.  */
1818
#define CASE_VECTOR_PC_RELATIVE 1
1819
 
1820
/* Define this as 1 if `char' should by default be signed; else as 0.  */
1821
#define DEFAULT_SIGNED_CHAR 0
1822
 
1823
/* This flag, if defined, says the same insns that convert to a signed fixnum
1824
   also convert validly to an unsigned one.  */
1825
 
1826
/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1827
 
1828
/* An integer expression for the size in bits of the largest integer machine
1829
   mode that should actually be used.  */
1830
 
1831
/* Allow pairs of registers to be used, which is the intent of the default.  */
1832
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1833
 
1834
/* Max number of bytes we can move from memory to memory
1835
   in one reasonably fast instruction.  */
1836
#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1837
#define MAX_MOVE_MAX 8
1838
 
1839
/* Nonzero if access to memory by bytes is no faster than for words.
1840
   Also nonzero if doing byte operations (specifically shifts) in registers
1841
   is undesirable.  */
1842
#define SLOW_BYTE_ACCESS 1
1843
 
1844
/* Define if operations between registers always perform the operation
1845
   on the full register even if a narrower mode is specified.  */
1846
#define WORD_REGISTER_OPERATIONS
1847
 
1848
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1849
   will either zero-extend or sign-extend.  The value of this macro should
1850
   be the code that says which one of the two operations is implicitly
1851
   done, UNKNOWN if none.  */
1852
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1853
 
1854
/* Define if loading short immediate values into registers sign extends.  */
1855
#define SHORT_IMMEDIATES_SIGN_EXTEND
1856
 
1857
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1858
   is done just by pretending it is already truncated.  */
1859
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1860
 
1861
/* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
1862
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1863
  ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1864
 
1865
/* The CTZ patterns return -1 for input of zero.  */
1866
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
1867
 
1868
/* Specify the machine mode that pointers have.
1869
   After generation of rtl, the compiler makes no further distinction
1870
   between pointers and any other objects of this machine mode.  */
1871
extern unsigned rs6000_pmode;
1872
#define Pmode ((enum machine_mode)rs6000_pmode)
1873
 
1874
/* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
1875
#define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1876
 
1877
/* Mode of a function address in a call instruction (for indexing purposes).
1878
   Doesn't matter on RS/6000.  */
1879
#define FUNCTION_MODE SImode
1880
 
1881
/* Define this if addresses of constant functions
1882
   shouldn't be put through pseudo regs where they can be cse'd.
1883
   Desirable on machines where ordinary constants are expensive
1884
   but a CALL with constant address is cheap.  */
1885
#define NO_FUNCTION_CSE
1886
 
1887
/* Define this to be nonzero if shift instructions ignore all but the low-order
1888
   few bits.
1889
 
1890
   The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1891
   have been dropped from the PowerPC architecture.  */
1892
 
1893
#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
1894
 
1895
/* Adjust the length of an INSN.  LENGTH is the currently-computed length and
1896
   should be adjusted to reflect any required changes.  This macro is used when
1897
   there is some systematic length adjustment required that would be difficult
1898
   to express in the length attribute.  */
1899
 
1900
/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1901
 
1902
/* Given a comparison code (EQ, NE, etc.) and the first operand of a
1903
   COMPARE, return the mode to be used for the comparison.  For
1904
   floating-point, CCFPmode should be used.  CCUNSmode should be used
1905
   for unsigned comparisons.  CCEQmode should be used when we are
1906
   doing an inequality comparison on the result of a
1907
   comparison.  CCmode should be used in all other cases.  */
1908
 
1909
#define SELECT_CC_MODE(OP,X,Y) \
1910
  (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode        \
1911
   : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1912
   : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)                      \
1913
      ? CCEQmode : CCmode))
1914
 
1915
/* Can the condition code MODE be safely reversed?  This is safe in
1916
   all cases on this port, because at present it doesn't use the
1917
   trapping FP comparisons (fcmpo).  */
1918
#define REVERSIBLE_CC_MODE(MODE) 1
1919
 
1920
/* Given a condition code and a mode, return the inverse condition.  */
1921
#define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1922
 
1923
 
1924
/* Control the assembler format that we output.  */
1925
 
1926
/* A C string constant describing how to begin a comment in the target
1927
   assembler language.  The compiler assumes that the comment will end at
1928
   the end of the line.  */
1929
#define ASM_COMMENT_START " #"
1930
 
1931
/* Flag to say the TOC is initialized */
1932
extern int toc_initialized;
1933
 
1934
/* Macro to output a special constant pool entry.  Go to WIN if we output
1935
   it.  Otherwise, it is written the usual way.
1936
 
1937
   On the RS/6000, toc entries are handled this way.  */
1938
 
1939
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1940
{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))                          \
1941
    {                                                                     \
1942
      output_toc (FILE, X, LABELNO, MODE);                                \
1943
      goto WIN;                                                           \
1944
    }                                                                     \
1945
}
1946
 
1947
#ifdef HAVE_GAS_WEAK
1948
#define RS6000_WEAK 1
1949
#else
1950
#define RS6000_WEAK 0
1951
#endif
1952
 
1953
#if RS6000_WEAK
1954
/* Used in lieu of ASM_WEAKEN_LABEL.  */
1955
#define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL)                          \
1956
  do                                                                    \
1957
    {                                                                   \
1958
      fputs ("\t.weak\t", (FILE));                                      \
1959
      RS6000_OUTPUT_BASENAME ((FILE), (NAME));                          \
1960
      if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL                   \
1961
          && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)                     \
1962
        {                                                               \
1963
          if (TARGET_XCOFF)                                             \
1964
            fputs ("[DS]", (FILE));                                     \
1965
          fputs ("\n\t.weak\t.", (FILE));                               \
1966
          RS6000_OUTPUT_BASENAME ((FILE), (NAME));                      \
1967
        }                                                               \
1968
      fputc ('\n', (FILE));                                             \
1969
      if (VAL)                                                          \
1970
        {                                                               \
1971
          ASM_OUTPUT_DEF ((FILE), (NAME), (VAL));                       \
1972
          if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL               \
1973
              && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)                 \
1974
            {                                                           \
1975
              fputs ("\t.set\t.", (FILE));                              \
1976
              RS6000_OUTPUT_BASENAME ((FILE), (NAME));                  \
1977
              fputs (",.", (FILE));                                     \
1978
              RS6000_OUTPUT_BASENAME ((FILE), (VAL));                   \
1979
              fputc ('\n', (FILE));                                     \
1980
            }                                                           \
1981
        }                                                               \
1982
    }                                                                   \
1983
  while (0)
1984
#endif
1985
 
1986
#if HAVE_GAS_WEAKREF
1987
#define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)                     \
1988
  do                                                                    \
1989
    {                                                                   \
1990
      fputs ("\t.weakref\t", (FILE));                                   \
1991
      RS6000_OUTPUT_BASENAME ((FILE), (NAME));                          \
1992
      fputs (", ", (FILE));                                             \
1993
      RS6000_OUTPUT_BASENAME ((FILE), (VALUE));                         \
1994
      if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL                   \
1995
          && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)                     \
1996
        {                                                               \
1997
          fputs ("\n\t.weakref\t.", (FILE));                            \
1998
          RS6000_OUTPUT_BASENAME ((FILE), (NAME));                      \
1999
          fputs (", .", (FILE));                                        \
2000
          RS6000_OUTPUT_BASENAME ((FILE), (VALUE));                     \
2001
        }                                                               \
2002
      fputc ('\n', (FILE));                                             \
2003
    } while (0)
2004
#endif
2005
 
2006
/* This implements the `alias' attribute.  */
2007
#undef  ASM_OUTPUT_DEF_FROM_DECLS
2008
#define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)                   \
2009
  do                                                                    \
2010
    {                                                                   \
2011
      const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);            \
2012
      const char *name = IDENTIFIER_POINTER (TARGET);                   \
2013
      if (TREE_CODE (DECL) == FUNCTION_DECL                             \
2014
          && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)                     \
2015
        {                                                               \
2016
          if (TREE_PUBLIC (DECL))                                       \
2017
            {                                                           \
2018
              if (!RS6000_WEAK || !DECL_WEAK (DECL))                    \
2019
                {                                                       \
2020
                  fputs ("\t.globl\t.", FILE);                          \
2021
                  RS6000_OUTPUT_BASENAME (FILE, alias);                 \
2022
                  putc ('\n', FILE);                                    \
2023
                }                                                       \
2024
            }                                                           \
2025
          else if (TARGET_XCOFF)                                        \
2026
            {                                                           \
2027
              fputs ("\t.lglobl\t.", FILE);                             \
2028
              RS6000_OUTPUT_BASENAME (FILE, alias);                     \
2029
              putc ('\n', FILE);                                        \
2030
            }                                                           \
2031
          fputs ("\t.set\t.", FILE);                                    \
2032
          RS6000_OUTPUT_BASENAME (FILE, alias);                         \
2033
          fputs (",.", FILE);                                           \
2034
          RS6000_OUTPUT_BASENAME (FILE, name);                          \
2035
          fputc ('\n', FILE);                                           \
2036
        }                                                               \
2037
      ASM_OUTPUT_DEF (FILE, alias, name);                               \
2038
    }                                                                   \
2039
   while (0)
2040
 
2041
#define TARGET_ASM_FILE_START rs6000_file_start
2042
 
2043
/* Output to assembler file text saying following lines
2044
   may contain character constants, extra white space, comments, etc.  */
2045
 
2046
#define ASM_APP_ON ""
2047
 
2048
/* Output to assembler file text saying following lines
2049
   no longer contain unusual constructs.  */
2050
 
2051
#define ASM_APP_OFF ""
2052
 
2053
/* How to refer to registers in assembler output.
2054
   This sequence is indexed by compiler's hard-register-number (see above).  */
2055
 
2056
extern char rs6000_reg_names[][8];      /* register names (0 vs. %r0).  */
2057
 
2058
#define REGISTER_NAMES                                                  \
2059
{                                                                       \
2060
  &rs6000_reg_names[ 0][0],       /* r0   */                              \
2061
  &rs6000_reg_names[ 1][0],      /* r1   */                              \
2062
  &rs6000_reg_names[ 2][0],     /* r2    */                              \
2063
  &rs6000_reg_names[ 3][0],      /* r3   */                              \
2064
  &rs6000_reg_names[ 4][0],      /* r4   */                              \
2065
  &rs6000_reg_names[ 5][0],      /* r5   */                              \
2066
  &rs6000_reg_names[ 6][0],      /* r6   */                              \
2067
  &rs6000_reg_names[ 7][0],      /* r7   */                              \
2068
  &rs6000_reg_names[ 8][0],      /* r8   */                              \
2069
  &rs6000_reg_names[ 9][0],      /* r9   */                              \
2070
  &rs6000_reg_names[10][0],      /* r10  */                              \
2071
  &rs6000_reg_names[11][0],      /* r11  */                              \
2072
  &rs6000_reg_names[12][0],      /* r12  */                              \
2073
  &rs6000_reg_names[13][0],      /* r13  */                              \
2074
  &rs6000_reg_names[14][0],      /* r14  */                              \
2075
  &rs6000_reg_names[15][0],      /* r15  */                              \
2076
  &rs6000_reg_names[16][0],      /* r16  */                              \
2077
  &rs6000_reg_names[17][0],      /* r17  */                              \
2078
  &rs6000_reg_names[18][0],      /* r18  */                              \
2079
  &rs6000_reg_names[19][0],      /* r19  */                              \
2080
  &rs6000_reg_names[20][0],      /* r20  */                              \
2081
  &rs6000_reg_names[21][0],      /* r21  */                              \
2082
  &rs6000_reg_names[22][0],      /* r22  */                              \
2083
  &rs6000_reg_names[23][0],      /* r23  */                              \
2084
  &rs6000_reg_names[24][0],      /* r24  */                              \
2085
  &rs6000_reg_names[25][0],      /* r25  */                              \
2086
  &rs6000_reg_names[26][0],      /* r26  */                              \
2087
  &rs6000_reg_names[27][0],      /* r27  */                              \
2088
  &rs6000_reg_names[28][0],      /* r28  */                              \
2089
  &rs6000_reg_names[29][0],      /* r29  */                              \
2090
  &rs6000_reg_names[30][0],      /* r30  */                              \
2091
  &rs6000_reg_names[31][0],      /* r31  */                              \
2092
                                                                        \
2093
  &rs6000_reg_names[32][0],     /* fr0  */                               \
2094
  &rs6000_reg_names[33][0],      /* fr1  */                              \
2095
  &rs6000_reg_names[34][0],      /* fr2  */                              \
2096
  &rs6000_reg_names[35][0],      /* fr3  */                              \
2097
  &rs6000_reg_names[36][0],      /* fr4  */                              \
2098
  &rs6000_reg_names[37][0],      /* fr5  */                              \
2099
  &rs6000_reg_names[38][0],      /* fr6  */                              \
2100
  &rs6000_reg_names[39][0],      /* fr7  */                              \
2101
  &rs6000_reg_names[40][0],      /* fr8  */                              \
2102
  &rs6000_reg_names[41][0],      /* fr9  */                              \
2103
  &rs6000_reg_names[42][0],      /* fr10 */                              \
2104
  &rs6000_reg_names[43][0],      /* fr11 */                              \
2105
  &rs6000_reg_names[44][0],      /* fr12 */                              \
2106
  &rs6000_reg_names[45][0],      /* fr13 */                              \
2107
  &rs6000_reg_names[46][0],      /* fr14 */                              \
2108
  &rs6000_reg_names[47][0],      /* fr15 */                              \
2109
  &rs6000_reg_names[48][0],      /* fr16 */                              \
2110
  &rs6000_reg_names[49][0],      /* fr17 */                              \
2111
  &rs6000_reg_names[50][0],      /* fr18 */                              \
2112
  &rs6000_reg_names[51][0],      /* fr19 */                              \
2113
  &rs6000_reg_names[52][0],      /* fr20 */                              \
2114
  &rs6000_reg_names[53][0],      /* fr21 */                              \
2115
  &rs6000_reg_names[54][0],      /* fr22 */                              \
2116
  &rs6000_reg_names[55][0],      /* fr23 */                              \
2117
  &rs6000_reg_names[56][0],      /* fr24 */                              \
2118
  &rs6000_reg_names[57][0],      /* fr25 */                              \
2119
  &rs6000_reg_names[58][0],      /* fr26 */                              \
2120
  &rs6000_reg_names[59][0],      /* fr27 */                              \
2121
  &rs6000_reg_names[60][0],      /* fr28 */                              \
2122
  &rs6000_reg_names[61][0],      /* fr29 */                              \
2123
  &rs6000_reg_names[62][0],      /* fr30 */                              \
2124
  &rs6000_reg_names[63][0],      /* fr31 */                              \
2125
                                                                        \
2126
  &rs6000_reg_names[64][0],     /* mq   */                               \
2127
  &rs6000_reg_names[65][0],      /* lr   */                              \
2128
  &rs6000_reg_names[66][0],      /* ctr  */                              \
2129
  &rs6000_reg_names[67][0],      /* ap   */                              \
2130
                                                                        \
2131
  &rs6000_reg_names[68][0],      /* cr0  */                              \
2132
  &rs6000_reg_names[69][0],      /* cr1  */                              \
2133
  &rs6000_reg_names[70][0],      /* cr2  */                              \
2134
  &rs6000_reg_names[71][0],      /* cr3  */                              \
2135
  &rs6000_reg_names[72][0],      /* cr4  */                              \
2136
  &rs6000_reg_names[73][0],      /* cr5  */                              \
2137
  &rs6000_reg_names[74][0],      /* cr6  */                              \
2138
  &rs6000_reg_names[75][0],      /* cr7  */                              \
2139
                                                                        \
2140
  &rs6000_reg_names[76][0],      /* ca  */                               \
2141
                                                                        \
2142
  &rs6000_reg_names[77][0],      /* v0  */                               \
2143
  &rs6000_reg_names[78][0],      /* v1  */                               \
2144
  &rs6000_reg_names[79][0],      /* v2  */                               \
2145
  &rs6000_reg_names[80][0],      /* v3  */                               \
2146
  &rs6000_reg_names[81][0],      /* v4  */                               \
2147
  &rs6000_reg_names[82][0],      /* v5  */                               \
2148
  &rs6000_reg_names[83][0],      /* v6  */                               \
2149
  &rs6000_reg_names[84][0],      /* v7  */                               \
2150
  &rs6000_reg_names[85][0],      /* v8  */                               \
2151
  &rs6000_reg_names[86][0],      /* v9  */                               \
2152
  &rs6000_reg_names[87][0],      /* v10  */                              \
2153
  &rs6000_reg_names[88][0],      /* v11  */                              \
2154
  &rs6000_reg_names[89][0],      /* v12  */                              \
2155
  &rs6000_reg_names[90][0],      /* v13  */                              \
2156
  &rs6000_reg_names[91][0],      /* v14  */                              \
2157
  &rs6000_reg_names[92][0],      /* v15  */                              \
2158
  &rs6000_reg_names[93][0],      /* v16  */                              \
2159
  &rs6000_reg_names[94][0],      /* v17  */                              \
2160
  &rs6000_reg_names[95][0],      /* v18  */                              \
2161
  &rs6000_reg_names[96][0],      /* v19  */                              \
2162
  &rs6000_reg_names[97][0],      /* v20  */                              \
2163
  &rs6000_reg_names[98][0],      /* v21  */                              \
2164
  &rs6000_reg_names[99][0],      /* v22  */                              \
2165
  &rs6000_reg_names[100][0],     /* v23  */                              \
2166
  &rs6000_reg_names[101][0],     /* v24  */                              \
2167
  &rs6000_reg_names[102][0],     /* v25  */                              \
2168
  &rs6000_reg_names[103][0],     /* v26  */                              \
2169
  &rs6000_reg_names[104][0],     /* v27  */                              \
2170
  &rs6000_reg_names[105][0],     /* v28  */                              \
2171
  &rs6000_reg_names[106][0],     /* v29  */                              \
2172
  &rs6000_reg_names[107][0],     /* v30  */                              \
2173
  &rs6000_reg_names[108][0],     /* v31  */                              \
2174
  &rs6000_reg_names[109][0],     /* vrsave  */                           \
2175
  &rs6000_reg_names[110][0],     /* vscr  */                             \
2176
  &rs6000_reg_names[111][0],     /* spe_acc */                           \
2177
  &rs6000_reg_names[112][0],     /* spefscr */                           \
2178
  &rs6000_reg_names[113][0],     /* sfp  */                              \
2179
}
2180
 
2181
/* Table of additional register names to use in user input.  */
2182
 
2183
#define ADDITIONAL_REGISTER_NAMES \
2184
 {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},        \
2185
  {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},       \
2186
  {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},       \
2187
  {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},       \
2188
  {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},       \
2189
  {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},       \
2190
  {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},       \
2191
  {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},       \
2192
  {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},       \
2193
  {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},       \
2194
  {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},       \
2195
  {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},       \
2196
  {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},       \
2197
  {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},       \
2198
  {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},       \
2199
  {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},       \
2200
  {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2201
  {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2202
  {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2203
  {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2204
  {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2205
  {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},      \
2206
  {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2207
  {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2208
  {"vrsave", 109}, {"vscr", 110},                               \
2209
  {"spe_acc", 111}, {"spefscr", 112},                           \
2210
  /* no additional names for: mq, lr, ctr, ap */                \
2211
  {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},       \
2212
  {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},       \
2213
  {"cc",   68}, {"sp",    1}, {"toc",   2},                     \
2214
  /* CA is only part of XER, but we do not model the other parts (yet).  */ \
2215
  {"xer",  76},                                                 \
2216
  /* VSX registers overlaid on top of FR, Altivec registers */  \
2217
  {"vs0",  32}, {"vs1",  33}, {"vs2",  34}, {"vs3",  35},       \
2218
  {"vs4",  36}, {"vs5",  37}, {"vs6",  38}, {"vs7",  39},       \
2219
  {"vs8",  40}, {"vs9",  41}, {"vs10", 42}, {"vs11", 43},       \
2220
  {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47},       \
2221
  {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51},       \
2222
  {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55},       \
2223
  {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59},       \
2224
  {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63},       \
2225
  {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80},       \
2226
  {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84},       \
2227
  {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88},       \
2228
  {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92},       \
2229
  {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96},       \
2230
  {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100},      \
2231
  {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104},      \
2232
  {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108} }
2233
 
2234
/* Text to write out after a CALL that may be replaced by glue code by
2235
   the loader.  This depends on the AIX version.  */
2236
#define RS6000_CALL_GLUE "cror 31,31,31"
2237
 
2238
/* This is how to output an element of a case-vector that is relative.  */
2239
 
2240
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2241
  do { char buf[100];                                   \
2242
       fputs ("\t.long ", FILE);                        \
2243
       ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);   \
2244
       assemble_name (FILE, buf);                       \
2245
       putc ('-', FILE);                                \
2246
       ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);     \
2247
       assemble_name (FILE, buf);                       \
2248
       putc ('\n', FILE);                               \
2249
     } while (0)
2250
 
2251
/* This is how to output an assembler line
2252
   that says to advance the location counter
2253
   to a multiple of 2**LOG bytes.  */
2254
 
2255
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
2256
  if ((LOG) != 0)                        \
2257
    fprintf (FILE, "\t.align %d\n", (LOG))
2258
 
2259
/* How to align the given loop. */
2260
#define LOOP_ALIGN(LABEL)  rs6000_loop_align(LABEL)
2261
 
2262
/* Pick up the return address upon entry to a procedure. Used for
2263
   dwarf2 unwind information.  This also enables the table driven
2264
   mechanism.  */
2265
 
2266
#define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LR_REGNO)
2267
#define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LR_REGNO)
2268
 
2269
/* Describe how we implement __builtin_eh_return.  */
2270
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2271
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2272
 
2273
/* Print operand X (an rtx) in assembler syntax to file FILE.
2274
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2275
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2276
 
2277
#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2278
 
2279
/* Define which CODE values are valid.  */
2280
 
2281
#define PRINT_OPERAND_PUNCT_VALID_P(CODE)  \
2282
  ((CODE) == '.' || (CODE) == '&')
2283
 
2284
/* Print a memory address as an operand to reference that memory location.  */
2285
 
2286
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2287
 
2288
/* uncomment for disabling the corresponding default options */
2289
/* #define  MACHINE_no_sched_interblock */
2290
/* #define  MACHINE_no_sched_speculative */
2291
/* #define  MACHINE_no_sched_speculative_load */
2292
 
2293
/* General flags.  */
2294
extern int frame_pointer_needed;
2295
 
2296
/* Classification of the builtin functions as to which switches enable the
2297
   builtin, and what attributes it should have.  We used to use the target
2298
   flags macros, but we've run out of bits, so we now map the options into new
2299
   settings used here.  */
2300
 
2301
/* Builtin attributes.  */
2302
#define RS6000_BTC_SPECIAL      0x00000000      /* Special function.  */
2303
#define RS6000_BTC_UNARY        0x00000001      /* normal unary function.  */
2304
#define RS6000_BTC_BINARY       0x00000002      /* normal binary function.  */
2305
#define RS6000_BTC_TERNARY      0x00000003      /* normal ternary function.  */
2306
#define RS6000_BTC_PREDICATE    0x00000004      /* predicate function.  */
2307
#define RS6000_BTC_ABS          0x00000005      /* Altivec/VSX ABS function.  */
2308
#define RS6000_BTC_EVSEL        0x00000006      /* SPE EVSEL function.  */
2309
#define RS6000_BTC_DST          0x00000007      /* Altivec DST function.  */
2310
#define RS6000_BTC_TYPE_MASK    0x0000000f      /* Mask to isolate types */
2311
 
2312
#define RS6000_BTC_MISC         0x00000000      /* No special attributes.  */
2313
#define RS6000_BTC_CONST        0x00000100      /* uses no global state.  */
2314
#define RS6000_BTC_PURE         0x00000200      /* reads global state/mem.  */
2315
#define RS6000_BTC_FP           0x00000400      /* depends on rounding mode.  */
2316
#define RS6000_BTC_ATTR_MASK    0x00000700      /* Mask of the attributes.  */
2317
 
2318
/* Miscellaneous information.  */
2319
#define RS6000_BTC_OVERLOADED   0x4000000       /* function is overloaded.  */
2320
 
2321
/* Convenience macros to document the instruction type.  */
2322
#define RS6000_BTC_MEM          RS6000_BTC_MISC /* load/store touches mem.  */
2323
#define RS6000_BTC_SAT          RS6000_BTC_MISC /* saturate sets VSCR.  */
2324
 
2325
/* Builtin targets.  For now, we reuse the masks for those options that are in
2326
   target flags, and pick two random bits for SPE and paired which aren't in
2327
   target_flags.  */
2328
#define RS6000_BTM_ALTIVEC      MASK_ALTIVEC    /* VMX/altivec vectors.  */
2329
#define RS6000_BTM_VSX          MASK_VSX        /* VSX (vector/scalar).  */
2330
#define RS6000_BTM_SPE          MASK_STRING     /* E500 */
2331
#define RS6000_BTM_PAIRED       MASK_MULHW      /* 750CL paired insns.  */
2332
#define RS6000_BTM_FRE          MASK_POPCNTB    /* FRE instruction.  */
2333
#define RS6000_BTM_FRES         MASK_PPC_GFXOPT /* FRES instruction.  */
2334
#define RS6000_BTM_FRSQRTE      MASK_PPC_GFXOPT /* FRSQRTE instruction.  */
2335
#define RS6000_BTM_FRSQRTES     MASK_POPCNTB    /* FRSQRTES instruction.  */
2336
#define RS6000_BTM_POPCNTD      MASK_POPCNTD    /* Target supports ISA 2.06.  */
2337
#define RS6000_BTM_POWERPC      MASK_POWERPC    /* Target is powerpc.  */
2338
#define RS6000_BTM_CELL         MASK_FPRND      /* Target is cell powerpc.  */
2339
 
2340
#define RS6000_BTM_COMMON       (RS6000_BTM_ALTIVEC                     \
2341
                                 | RS6000_BTM_VSX                       \
2342
                                 | RS6000_BTM_FRE                       \
2343
                                 | RS6000_BTM_FRES                      \
2344
                                 | RS6000_BTM_FRSQRTE                   \
2345
                                 | RS6000_BTM_FRSQRTES                  \
2346
                                 | RS6000_BTM_POPCNTD                   \
2347
                                 | RS6000_BTM_POWERPC                   \
2348
                                 | RS6000_BTM_CELL)
2349
 
2350
/* Define builtin enum index.  */
2351
 
2352
#undef RS6000_BUILTIN_1
2353
#undef RS6000_BUILTIN_2
2354
#undef RS6000_BUILTIN_3
2355
#undef RS6000_BUILTIN_A
2356
#undef RS6000_BUILTIN_D
2357
#undef RS6000_BUILTIN_E
2358
#undef RS6000_BUILTIN_P
2359
#undef RS6000_BUILTIN_Q
2360
#undef RS6000_BUILTIN_S
2361
#undef RS6000_BUILTIN_X
2362
 
2363
#define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2364
#define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2365
#define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2366
#define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2367
#define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2368
#define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2369
#define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2370
#define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2371
#define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2372
#define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2373
 
2374
enum rs6000_builtins
2375
{
2376
#include "rs6000-builtin.def"
2377
 
2378
  RS6000_BUILTIN_COUNT
2379
};
2380
 
2381
#undef RS6000_BUILTIN_1
2382
#undef RS6000_BUILTIN_2
2383
#undef RS6000_BUILTIN_3
2384
#undef RS6000_BUILTIN_A
2385
#undef RS6000_BUILTIN_D
2386
#undef RS6000_BUILTIN_E
2387
#undef RS6000_BUILTIN_P
2388
#undef RS6000_BUILTIN_Q
2389
#undef RS6000_BUILTIN_S
2390
#undef RS6000_BUILTIN_X
2391
 
2392
enum rs6000_builtin_type_index
2393
{
2394
  RS6000_BTI_NOT_OPAQUE,
2395
  RS6000_BTI_opaque_V2SI,
2396
  RS6000_BTI_opaque_V2SF,
2397
  RS6000_BTI_opaque_p_V2SI,
2398
  RS6000_BTI_opaque_V4SI,
2399
  RS6000_BTI_V16QI,
2400
  RS6000_BTI_V2SI,
2401
  RS6000_BTI_V2SF,
2402
  RS6000_BTI_V2DI,
2403
  RS6000_BTI_V2DF,
2404
  RS6000_BTI_V4HI,
2405
  RS6000_BTI_V4SI,
2406
  RS6000_BTI_V4SF,
2407
  RS6000_BTI_V8HI,
2408
  RS6000_BTI_unsigned_V16QI,
2409
  RS6000_BTI_unsigned_V8HI,
2410
  RS6000_BTI_unsigned_V4SI,
2411
  RS6000_BTI_unsigned_V2DI,
2412
  RS6000_BTI_bool_char,          /* __bool char */
2413
  RS6000_BTI_bool_short,         /* __bool short */
2414
  RS6000_BTI_bool_int,           /* __bool int */
2415
  RS6000_BTI_bool_long,          /* __bool long */
2416
  RS6000_BTI_pixel,              /* __pixel */
2417
  RS6000_BTI_bool_V16QI,         /* __vector __bool char */
2418
  RS6000_BTI_bool_V8HI,          /* __vector __bool short */
2419
  RS6000_BTI_bool_V4SI,          /* __vector __bool int */
2420
  RS6000_BTI_bool_V2DI,          /* __vector __bool long */
2421
  RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
2422
  RS6000_BTI_long,               /* long_integer_type_node */
2423
  RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
2424
  RS6000_BTI_long_long,          /* long_long_integer_type_node */
2425
  RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2426
  RS6000_BTI_INTQI,              /* intQI_type_node */
2427
  RS6000_BTI_UINTQI,             /* unsigned_intQI_type_node */
2428
  RS6000_BTI_INTHI,              /* intHI_type_node */
2429
  RS6000_BTI_UINTHI,             /* unsigned_intHI_type_node */
2430
  RS6000_BTI_INTSI,              /* intSI_type_node */
2431
  RS6000_BTI_UINTSI,             /* unsigned_intSI_type_node */
2432
  RS6000_BTI_INTDI,              /* intDI_type_node */
2433
  RS6000_BTI_UINTDI,             /* unsigned_intDI_type_node */
2434
  RS6000_BTI_float,              /* float_type_node */
2435
  RS6000_BTI_double,             /* double_type_node */
2436
  RS6000_BTI_void,               /* void_type_node */
2437
  RS6000_BTI_MAX
2438
};
2439
 
2440
 
2441
#define opaque_V2SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2442
#define opaque_V2SF_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2443
#define opaque_p_V2SI_type_node       (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2444
#define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2445
#define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
2446
#define V2DI_type_node                (rs6000_builtin_types[RS6000_BTI_V2DI])
2447
#define V2DF_type_node                (rs6000_builtin_types[RS6000_BTI_V2DF])
2448
#define V2SI_type_node                (rs6000_builtin_types[RS6000_BTI_V2SI])
2449
#define V2SF_type_node                (rs6000_builtin_types[RS6000_BTI_V2SF])
2450
#define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
2451
#define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
2452
#define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
2453
#define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
2454
#define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2455
#define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2456
#define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2457
#define unsigned_V2DI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2458
#define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
2459
#define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
2460
#define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
2461
#define bool_long_type_node           (rs6000_builtin_types[RS6000_BTI_bool_long])
2462
#define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
2463
#define bool_V16QI_type_node          (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2464
#define bool_V8HI_type_node           (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2465
#define bool_V4SI_type_node           (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2466
#define bool_V2DI_type_node           (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2467
#define pixel_V8HI_type_node          (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2468
 
2469
#define long_long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long_long])
2470
#define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2471
#define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
2472
#define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2473
#define intQI_type_internal_node         (rs6000_builtin_types[RS6000_BTI_INTQI])
2474
#define uintQI_type_internal_node        (rs6000_builtin_types[RS6000_BTI_UINTQI])
2475
#define intHI_type_internal_node         (rs6000_builtin_types[RS6000_BTI_INTHI])
2476
#define uintHI_type_internal_node        (rs6000_builtin_types[RS6000_BTI_UINTHI])
2477
#define intSI_type_internal_node         (rs6000_builtin_types[RS6000_BTI_INTSI])
2478
#define uintSI_type_internal_node        (rs6000_builtin_types[RS6000_BTI_UINTSI])
2479
#define intDI_type_internal_node         (rs6000_builtin_types[RS6000_BTI_INTDI])
2480
#define uintDI_type_internal_node        (rs6000_builtin_types[RS6000_BTI_UINTDI])
2481
#define float_type_internal_node         (rs6000_builtin_types[RS6000_BTI_float])
2482
#define double_type_internal_node        (rs6000_builtin_types[RS6000_BTI_double])
2483
#define void_type_internal_node          (rs6000_builtin_types[RS6000_BTI_void])
2484
 
2485
extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2486
extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2487
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.