| 1 |
709 |
jeremybenn |
/* Definitions of target machine for GNU compiler, for IBM S/390
|
| 2 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
|
| 3 |
|
|
2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Hartmut Penner (hpenner@de.ibm.com) and
|
| 5 |
|
|
Ulrich Weigand (uweigand@de.ibm.com).
|
| 6 |
|
|
Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
|
| 7 |
|
|
|
| 8 |
|
|
This file is part of GCC.
|
| 9 |
|
|
|
| 10 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 11 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 12 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 13 |
|
|
version.
|
| 14 |
|
|
|
| 15 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 16 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 17 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 18 |
|
|
for more details.
|
| 19 |
|
|
|
| 20 |
|
|
You should have received a copy of the GNU General Public License
|
| 21 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 22 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 23 |
|
|
|
| 24 |
|
|
#ifndef _S390_H
|
| 25 |
|
|
#define _S390_H
|
| 26 |
|
|
|
| 27 |
|
|
/* Optional architectural facilities supported by the processor. */
|
| 28 |
|
|
|
| 29 |
|
|
enum processor_flags
|
| 30 |
|
|
{
|
| 31 |
|
|
PF_IEEE_FLOAT = 1,
|
| 32 |
|
|
PF_ZARCH = 2,
|
| 33 |
|
|
PF_LONG_DISPLACEMENT = 4,
|
| 34 |
|
|
PF_EXTIMM = 8,
|
| 35 |
|
|
PF_DFP = 16,
|
| 36 |
|
|
PF_Z10 = 32,
|
| 37 |
|
|
PF_Z196 = 64
|
| 38 |
|
|
};
|
| 39 |
|
|
|
| 40 |
|
|
/* This is necessary to avoid a warning about comparing different enum
|
| 41 |
|
|
types. */
|
| 42 |
|
|
#define s390_tune_attr ((enum attr_cpu)s390_tune)
|
| 43 |
|
|
|
| 44 |
|
|
/* These flags indicate that the generated code should run on a cpu
|
| 45 |
|
|
providing the respective hardware facility regardless of the
|
| 46 |
|
|
current cpu mode (ESA or z/Architecture). */
|
| 47 |
|
|
|
| 48 |
|
|
#define TARGET_CPU_IEEE_FLOAT \
|
| 49 |
|
|
(s390_arch_flags & PF_IEEE_FLOAT)
|
| 50 |
|
|
#define TARGET_CPU_ZARCH \
|
| 51 |
|
|
(s390_arch_flags & PF_ZARCH)
|
| 52 |
|
|
#define TARGET_CPU_LONG_DISPLACEMENT \
|
| 53 |
|
|
(s390_arch_flags & PF_LONG_DISPLACEMENT)
|
| 54 |
|
|
#define TARGET_CPU_EXTIMM \
|
| 55 |
|
|
(s390_arch_flags & PF_EXTIMM)
|
| 56 |
|
|
#define TARGET_CPU_DFP \
|
| 57 |
|
|
(s390_arch_flags & PF_DFP)
|
| 58 |
|
|
#define TARGET_CPU_Z10 \
|
| 59 |
|
|
(s390_arch_flags & PF_Z10)
|
| 60 |
|
|
#define TARGET_CPU_Z196 \
|
| 61 |
|
|
(s390_arch_flags & PF_Z196)
|
| 62 |
|
|
|
| 63 |
|
|
/* These flags indicate that the generated code should run on a cpu
|
| 64 |
|
|
providing the respective hardware facility when run in
|
| 65 |
|
|
z/Architecture mode. */
|
| 66 |
|
|
|
| 67 |
|
|
#define TARGET_LONG_DISPLACEMENT \
|
| 68 |
|
|
(TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
|
| 69 |
|
|
#define TARGET_EXTIMM \
|
| 70 |
|
|
(TARGET_ZARCH && TARGET_CPU_EXTIMM)
|
| 71 |
|
|
#define TARGET_DFP \
|
| 72 |
|
|
(TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
|
| 73 |
|
|
#define TARGET_Z10 \
|
| 74 |
|
|
(TARGET_ZARCH && TARGET_CPU_Z10)
|
| 75 |
|
|
#define TARGET_Z196 \
|
| 76 |
|
|
(TARGET_ZARCH && TARGET_CPU_Z196)
|
| 77 |
|
|
|
| 78 |
|
|
|
| 79 |
|
|
#define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
|
| 80 |
|
|
|
| 81 |
|
|
/* Run-time target specification. */
|
| 82 |
|
|
|
| 83 |
|
|
/* Defaults for option flags defined only on some subtargets. */
|
| 84 |
|
|
#ifndef TARGET_TPF_PROFILING
|
| 85 |
|
|
#define TARGET_TPF_PROFILING 0
|
| 86 |
|
|
#endif
|
| 87 |
|
|
|
| 88 |
|
|
/* This will be overridden by OS headers. */
|
| 89 |
|
|
#define TARGET_TPF 0
|
| 90 |
|
|
|
| 91 |
|
|
/* Target CPU builtins. */
|
| 92 |
|
|
#define TARGET_CPU_CPP_BUILTINS() \
|
| 93 |
|
|
do \
|
| 94 |
|
|
{ \
|
| 95 |
|
|
builtin_assert ("cpu=s390"); \
|
| 96 |
|
|
builtin_assert ("machine=s390"); \
|
| 97 |
|
|
builtin_define ("__s390__"); \
|
| 98 |
|
|
if (TARGET_ZARCH) \
|
| 99 |
|
|
builtin_define ("__zarch__"); \
|
| 100 |
|
|
if (TARGET_64BIT) \
|
| 101 |
|
|
builtin_define ("__s390x__"); \
|
| 102 |
|
|
if (TARGET_LONG_DOUBLE_128) \
|
| 103 |
|
|
builtin_define ("__LONG_DOUBLE_128__"); \
|
| 104 |
|
|
} \
|
| 105 |
|
|
while (0)
|
| 106 |
|
|
|
| 107 |
|
|
#ifdef DEFAULT_TARGET_64BIT
|
| 108 |
|
|
#define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP)
|
| 109 |
|
|
#else
|
| 110 |
|
|
#define TARGET_DEFAULT 0
|
| 111 |
|
|
#endif
|
| 112 |
|
|
|
| 113 |
|
|
/* Support for configure-time defaults. */
|
| 114 |
|
|
#define OPTION_DEFAULT_SPECS \
|
| 115 |
|
|
{ "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
|
| 116 |
|
|
{ "arch", "%{!march=*:-march=%(VALUE)}" }, \
|
| 117 |
|
|
{ "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
|
| 118 |
|
|
|
| 119 |
|
|
/* Defaulting rules. */
|
| 120 |
|
|
#ifdef DEFAULT_TARGET_64BIT
|
| 121 |
|
|
#define DRIVER_SELF_SPECS \
|
| 122 |
|
|
"%{!m31:%{!m64:-m64}}", \
|
| 123 |
|
|
"%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
|
| 124 |
|
|
"%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
|
| 125 |
|
|
#else
|
| 126 |
|
|
#define DRIVER_SELF_SPECS \
|
| 127 |
|
|
"%{!m31:%{!m64:-m31}}", \
|
| 128 |
|
|
"%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
|
| 129 |
|
|
"%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
|
| 130 |
|
|
#endif
|
| 131 |
|
|
|
| 132 |
|
|
/* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
|
| 133 |
|
|
#define S390_TDC_POSITIVE_ZERO (1 << 11)
|
| 134 |
|
|
#define S390_TDC_NEGATIVE_ZERO (1 << 10)
|
| 135 |
|
|
#define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
|
| 136 |
|
|
#define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
|
| 137 |
|
|
#define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
|
| 138 |
|
|
#define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
|
| 139 |
|
|
#define S390_TDC_POSITIVE_INFINITY (1 << 5)
|
| 140 |
|
|
#define S390_TDC_NEGATIVE_INFINITY (1 << 4)
|
| 141 |
|
|
#define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
|
| 142 |
|
|
#define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
|
| 143 |
|
|
#define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
|
| 144 |
|
|
#define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
|
| 145 |
|
|
|
| 146 |
|
|
/* The following values are different for DFP. */
|
| 147 |
|
|
#define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
|
| 148 |
|
|
#define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
|
| 149 |
|
|
#define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
|
| 150 |
|
|
#define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
|
| 151 |
|
|
|
| 152 |
|
|
/* For signbit, the BFP-DFP-difference makes no difference. */
|
| 153 |
|
|
#define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
|
| 154 |
|
|
| S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
|
| 155 |
|
|
| S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
|
| 156 |
|
|
| S390_TDC_NEGATIVE_INFINITY \
|
| 157 |
|
|
| S390_TDC_NEGATIVE_QUIET_NAN \
|
| 158 |
|
|
| S390_TDC_NEGATIVE_SIGNALING_NAN )
|
| 159 |
|
|
|
| 160 |
|
|
#define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
|
| 161 |
|
|
| S390_TDC_NEGATIVE_INFINITY )
|
| 162 |
|
|
|
| 163 |
|
|
/* Target machine storage layout. */
|
| 164 |
|
|
|
| 165 |
|
|
/* Everything is big-endian. */
|
| 166 |
|
|
#define BITS_BIG_ENDIAN 1
|
| 167 |
|
|
#define BYTES_BIG_ENDIAN 1
|
| 168 |
|
|
#define WORDS_BIG_ENDIAN 1
|
| 169 |
|
|
|
| 170 |
|
|
#define STACK_SIZE_MODE (Pmode)
|
| 171 |
|
|
|
| 172 |
|
|
#ifndef IN_LIBGCC2
|
| 173 |
|
|
|
| 174 |
|
|
/* Width of a word, in units (bytes). */
|
| 175 |
|
|
#define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
|
| 176 |
|
|
|
| 177 |
|
|
/* Width of a pointer. To be used instead of UNITS_PER_WORD in
|
| 178 |
|
|
ABI-relevant contexts. This always matches
|
| 179 |
|
|
GET_MODE_SIZE (Pmode). */
|
| 180 |
|
|
#define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
|
| 181 |
|
|
#define MIN_UNITS_PER_WORD 4
|
| 182 |
|
|
#define MAX_BITS_PER_WORD 64
|
| 183 |
|
|
#else
|
| 184 |
|
|
|
| 185 |
|
|
/* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
|
| 186 |
|
|
the library should export TImode functions or not. Thus, we have
|
| 187 |
|
|
to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
|
| 188 |
|
|
#ifdef __s390x__
|
| 189 |
|
|
#define UNITS_PER_WORD 8
|
| 190 |
|
|
#else
|
| 191 |
|
|
#define UNITS_PER_WORD 4
|
| 192 |
|
|
#endif
|
| 193 |
|
|
#endif
|
| 194 |
|
|
|
| 195 |
|
|
/* Width of a pointer, in bits. */
|
| 196 |
|
|
#define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
|
| 197 |
|
|
|
| 198 |
|
|
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
| 199 |
|
|
#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
|
| 200 |
|
|
|
| 201 |
|
|
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
| 202 |
|
|
#define STACK_BOUNDARY 64
|
| 203 |
|
|
|
| 204 |
|
|
/* Allocation boundary (in *bits*) for the code of a function. */
|
| 205 |
|
|
#define FUNCTION_BOUNDARY 32
|
| 206 |
|
|
|
| 207 |
|
|
/* There is no point aligning anything to a rounder boundary than this. */
|
| 208 |
|
|
#define BIGGEST_ALIGNMENT 64
|
| 209 |
|
|
|
| 210 |
|
|
/* Alignment of field after `int : 0' in a structure. */
|
| 211 |
|
|
#define EMPTY_FIELD_BOUNDARY 32
|
| 212 |
|
|
|
| 213 |
|
|
/* Alignment on even addresses for LARL instruction. */
|
| 214 |
|
|
#define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
|
| 215 |
|
|
#define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
|
| 216 |
|
|
|
| 217 |
|
|
/* Alignment is not required by the hardware. */
|
| 218 |
|
|
#define STRICT_ALIGNMENT 0
|
| 219 |
|
|
|
| 220 |
|
|
/* Mode of stack savearea.
|
| 221 |
|
|
FUNCTION is VOIDmode because calling convention maintains SP.
|
| 222 |
|
|
BLOCK needs Pmode for SP.
|
| 223 |
|
|
NONLOCAL needs twice Pmode to maintain both backchain and SP. */
|
| 224 |
|
|
#define STACK_SAVEAREA_MODE(LEVEL) \
|
| 225 |
|
|
(LEVEL == SAVE_FUNCTION ? VOIDmode \
|
| 226 |
|
|
: LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
|
| 227 |
|
|
|
| 228 |
|
|
|
| 229 |
|
|
/* Type layout. */
|
| 230 |
|
|
|
| 231 |
|
|
/* Sizes in bits of the source language data types. */
|
| 232 |
|
|
#define SHORT_TYPE_SIZE 16
|
| 233 |
|
|
#define INT_TYPE_SIZE 32
|
| 234 |
|
|
#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
|
| 235 |
|
|
#define LONG_LONG_TYPE_SIZE 64
|
| 236 |
|
|
#define FLOAT_TYPE_SIZE 32
|
| 237 |
|
|
#define DOUBLE_TYPE_SIZE 64
|
| 238 |
|
|
#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
|
| 239 |
|
|
|
| 240 |
|
|
/* Define this to set long double type size to use in libgcc2.c, which can
|
| 241 |
|
|
not depend on target_flags. */
|
| 242 |
|
|
#ifdef __LONG_DOUBLE_128__
|
| 243 |
|
|
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
|
| 244 |
|
|
#else
|
| 245 |
|
|
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
|
| 246 |
|
|
#endif
|
| 247 |
|
|
|
| 248 |
|
|
/* Work around target_flags dependency in ada/targtyps.c. */
|
| 249 |
|
|
#define WIDEST_HARDWARE_FP_SIZE 64
|
| 250 |
|
|
|
| 251 |
|
|
/* We use "unsigned char" as default. */
|
| 252 |
|
|
#define DEFAULT_SIGNED_CHAR 0
|
| 253 |
|
|
|
| 254 |
|
|
|
| 255 |
|
|
/* Register usage. */
|
| 256 |
|
|
|
| 257 |
|
|
/* We have 16 general purpose registers (registers 0-15),
|
| 258 |
|
|
and 16 floating point registers (registers 16-31).
|
| 259 |
|
|
(On non-IEEE machines, we have only 4 fp registers.)
|
| 260 |
|
|
|
| 261 |
|
|
Amongst the general purpose registers, some are used
|
| 262 |
|
|
for specific purposes:
|
| 263 |
|
|
GPR 11: Hard frame pointer (if needed)
|
| 264 |
|
|
GPR 12: Global offset table pointer (if needed)
|
| 265 |
|
|
GPR 13: Literal pool base register
|
| 266 |
|
|
GPR 14: Return address register
|
| 267 |
|
|
GPR 15: Stack pointer
|
| 268 |
|
|
|
| 269 |
|
|
Registers 32-35 are 'fake' hard registers that do not
|
| 270 |
|
|
correspond to actual hardware:
|
| 271 |
|
|
Reg 32: Argument pointer
|
| 272 |
|
|
Reg 33: Condition code
|
| 273 |
|
|
Reg 34: Frame pointer
|
| 274 |
|
|
Reg 35: Return address pointer
|
| 275 |
|
|
|
| 276 |
|
|
Registers 36 and 37 are mapped to access registers
|
| 277 |
|
|
|
| 278 |
|
|
|
| 279 |
|
|
#define FIRST_PSEUDO_REGISTER 38
|
| 280 |
|
|
|
| 281 |
|
|
/* Standard register usage. */
|
| 282 |
|
|
#define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
|
| 283 |
|
|
#define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
|
| 284 |
|
|
#define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
|
| 285 |
|
|
#define CC_REGNO_P(N) ((N) == 33)
|
| 286 |
|
|
#define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
|
| 287 |
|
|
#define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
|
| 288 |
|
|
|
| 289 |
|
|
#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
|
| 290 |
|
|
#define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
|
| 291 |
|
|
#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
|
| 292 |
|
|
#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
|
| 293 |
|
|
#define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
|
| 294 |
|
|
#define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
|
| 295 |
|
|
|
| 296 |
|
|
/* Set up fixed registers and calling convention:
|
| 297 |
|
|
|
| 298 |
|
|
GPRs 0-5 are always call-clobbered,
|
| 299 |
|
|
GPRs 6-15 are always call-saved.
|
| 300 |
|
|
GPR 12 is fixed if used as GOT pointer.
|
| 301 |
|
|
GPR 13 is always fixed (as literal pool pointer).
|
| 302 |
|
|
GPR 14 is always fixed on S/390 machines (as return address).
|
| 303 |
|
|
GPR 15 is always fixed (as stack pointer).
|
| 304 |
|
|
The 'fake' hard registers are call-clobbered and fixed.
|
| 305 |
|
|
The access registers are call-saved and fixed.
|
| 306 |
|
|
|
| 307 |
|
|
On 31-bit, FPRs 18-19 are call-clobbered;
|
| 308 |
|
|
on 64-bit, FPRs 24-31 are call-clobbered.
|
| 309 |
|
|
The remaining FPRs are call-saved. */
|
| 310 |
|
|
|
| 311 |
|
|
#define FIXED_REGISTERS \
|
| 312 |
|
|
{ 0, 0, 0, 0, \
|
| 313 |
|
|
0, 0, 0, 0, \
|
| 314 |
|
|
0, 0, 0, 0, \
|
| 315 |
|
|
0, 1, 1, 1, \
|
| 316 |
|
|
0, 0, 0, 0, \
|
| 317 |
|
|
0, 0, 0, 0, \
|
| 318 |
|
|
0, 0, 0, 0, \
|
| 319 |
|
|
0, 0, 0, 0, \
|
| 320 |
|
|
1, 1, 1, 1, \
|
| 321 |
|
|
1, 1 }
|
| 322 |
|
|
|
| 323 |
|
|
#define CALL_USED_REGISTERS \
|
| 324 |
|
|
{ 1, 1, 1, 1, \
|
| 325 |
|
|
1, 1, 0, 0, \
|
| 326 |
|
|
0, 0, 0, 0, \
|
| 327 |
|
|
0, 1, 1, 1, \
|
| 328 |
|
|
1, 1, 1, 1, \
|
| 329 |
|
|
1, 1, 1, 1, \
|
| 330 |
|
|
1, 1, 1, 1, \
|
| 331 |
|
|
1, 1, 1, 1, \
|
| 332 |
|
|
1, 1, 1, 1, \
|
| 333 |
|
|
1, 1 }
|
| 334 |
|
|
|
| 335 |
|
|
#define CALL_REALLY_USED_REGISTERS \
|
| 336 |
|
|
{ 1, 1, 1, 1, \
|
| 337 |
|
|
1, 1, 0, 0, \
|
| 338 |
|
|
0, 0, 0, 0, \
|
| 339 |
|
|
0, 0, 0, 0, \
|
| 340 |
|
|
1, 1, 1, 1, \
|
| 341 |
|
|
1, 1, 1, 1, \
|
| 342 |
|
|
1, 1, 1, 1, \
|
| 343 |
|
|
1, 1, 1, 1, \
|
| 344 |
|
|
1, 1, 1, 1, \
|
| 345 |
|
|
0, 0 }
|
| 346 |
|
|
|
| 347 |
|
|
/* Preferred register allocation order. */
|
| 348 |
|
|
#define REG_ALLOC_ORDER \
|
| 349 |
|
|
{ 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
|
| 350 |
|
|
16, 17, 18, 19, 20, 21, 22, 23, \
|
| 351 |
|
|
24, 25, 26, 27, 28, 29, 30, 31, \
|
| 352 |
|
|
15, 32, 33, 34, 35, 36, 37 }
|
| 353 |
|
|
|
| 354 |
|
|
|
| 355 |
|
|
/* Fitting values into registers. */
|
| 356 |
|
|
|
| 357 |
|
|
/* Integer modes <= word size fit into any GPR.
|
| 358 |
|
|
Integer modes > word size fit into successive GPRs, starting with
|
| 359 |
|
|
an even-numbered register.
|
| 360 |
|
|
SImode and DImode fit into FPRs as well.
|
| 361 |
|
|
|
| 362 |
|
|
Floating point modes <= word size fit into any FPR or GPR.
|
| 363 |
|
|
Floating point modes > word size (i.e. DFmode on 32-bit) fit
|
| 364 |
|
|
into any FPR, or an even-odd GPR pair.
|
| 365 |
|
|
TFmode fits only into an even-odd FPR pair.
|
| 366 |
|
|
|
| 367 |
|
|
Complex floating point modes fit either into two FPRs, or into
|
| 368 |
|
|
successive GPRs (again starting with an even number).
|
| 369 |
|
|
TCmode fits only into two successive even-odd FPR pairs.
|
| 370 |
|
|
|
| 371 |
|
|
Condition code modes fit only into the CC register. */
|
| 372 |
|
|
|
| 373 |
|
|
/* Because all registers in a class have the same size HARD_REGNO_NREGS
|
| 374 |
|
|
is equivalent to CLASS_MAX_NREGS. */
|
| 375 |
|
|
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
| 376 |
|
|
s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))
|
| 377 |
|
|
|
| 378 |
|
|
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
| 379 |
|
|
s390_hard_regno_mode_ok ((REGNO), (MODE))
|
| 380 |
|
|
|
| 381 |
|
|
#define HARD_REGNO_RENAME_OK(FROM, TO) \
|
| 382 |
|
|
s390_hard_regno_rename_ok (FROM, TO)
|
| 383 |
|
|
|
| 384 |
|
|
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
| 385 |
|
|
(((MODE1) == SFmode || (MODE1) == DFmode) \
|
| 386 |
|
|
== ((MODE2) == SFmode || (MODE2) == DFmode))
|
| 387 |
|
|
|
| 388 |
|
|
/* When generating code that runs in z/Architecture mode,
|
| 389 |
|
|
but conforms to the 31-bit ABI, GPRs can hold 8 bytes;
|
| 390 |
|
|
the ABI guarantees only that the lower 4 bytes are
|
| 391 |
|
|
saved across calls, however. */
|
| 392 |
|
|
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
|
| 393 |
|
|
(!TARGET_64BIT && TARGET_ZARCH \
|
| 394 |
|
|
&& GET_MODE_SIZE (MODE) > 4 \
|
| 395 |
|
|
&& (((REGNO) >= 6 && (REGNO) <= 15) || (REGNO) == 32))
|
| 396 |
|
|
|
| 397 |
|
|
/* Maximum number of registers to represent a value of mode MODE
|
| 398 |
|
|
in a register of class CLASS. */
|
| 399 |
|
|
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
| 400 |
|
|
s390_class_max_nregs ((CLASS), (MODE))
|
| 401 |
|
|
|
| 402 |
|
|
/* If a 4-byte value is loaded into a FPR, it is placed into the
|
| 403 |
|
|
*upper* half of the register, not the lower. Therefore, we
|
| 404 |
|
|
cannot use SUBREGs to switch between modes in FP registers.
|
| 405 |
|
|
Likewise for access registers, since they have only half the
|
| 406 |
|
|
word size on 64-bit. */
|
| 407 |
|
|
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
|
| 408 |
|
|
(GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
|
| 409 |
|
|
? ((reg_classes_intersect_p (FP_REGS, CLASS) \
|
| 410 |
|
|
&& (GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8)) \
|
| 411 |
|
|
|| reg_classes_intersect_p (ACCESS_REGS, CLASS)) : 0)
|
| 412 |
|
|
|
| 413 |
|
|
/* Register classes. */
|
| 414 |
|
|
|
| 415 |
|
|
/* We use the following register classes:
|
| 416 |
|
|
GENERAL_REGS All general purpose registers
|
| 417 |
|
|
ADDR_REGS All general purpose registers except %r0
|
| 418 |
|
|
(These registers can be used in address generation)
|
| 419 |
|
|
FP_REGS All floating point registers
|
| 420 |
|
|
CC_REGS The condition code register
|
| 421 |
|
|
ACCESS_REGS The access registers
|
| 422 |
|
|
|
| 423 |
|
|
GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
|
| 424 |
|
|
ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
|
| 425 |
|
|
GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
|
| 426 |
|
|
ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
|
| 427 |
|
|
|
| 428 |
|
|
NO_REGS No registers
|
| 429 |
|
|
ALL_REGS All registers
|
| 430 |
|
|
|
| 431 |
|
|
Note that the 'fake' frame pointer and argument pointer registers
|
| 432 |
|
|
are included amongst the address registers here. */
|
| 433 |
|
|
|
| 434 |
|
|
enum reg_class
|
| 435 |
|
|
{
|
| 436 |
|
|
NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
|
| 437 |
|
|
ADDR_CC_REGS, GENERAL_CC_REGS,
|
| 438 |
|
|
FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
|
| 439 |
|
|
ALL_REGS, LIM_REG_CLASSES
|
| 440 |
|
|
};
|
| 441 |
|
|
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
| 442 |
|
|
|
| 443 |
|
|
#define REG_CLASS_NAMES \
|
| 444 |
|
|
{ "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
|
| 445 |
|
|
"ADDR_CC_REGS", "GENERAL_CC_REGS", \
|
| 446 |
|
|
"FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
|
| 447 |
|
|
|
| 448 |
|
|
/* Class -> register mapping. */
|
| 449 |
|
|
#define REG_CLASS_CONTENTS \
|
| 450 |
|
|
{ \
|
| 451 |
|
|
{ 0x00000000, 0x00000000 }, /* NO_REGS */ \
|
| 452 |
|
|
{ 0x00000000, 0x00000002 }, /* CC_REGS */ \
|
| 453 |
|
|
{ 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
|
| 454 |
|
|
{ 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
|
| 455 |
|
|
{ 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
|
| 456 |
|
|
{ 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
|
| 457 |
|
|
{ 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
|
| 458 |
|
|
{ 0xffff0000, 0x00000000 }, /* FP_REGS */ \
|
| 459 |
|
|
{ 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
|
| 460 |
|
|
{ 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
|
| 461 |
|
|
{ 0xffffffff, 0x0000003f }, /* ALL_REGS */ \
|
| 462 |
|
|
}
|
| 463 |
|
|
|
| 464 |
|
|
/* In some case register allocation order is not enough for IRA to
|
| 465 |
|
|
generate a good code. The following macro (if defined) increases
|
| 466 |
|
|
cost of REGNO for a pseudo approximately by pseudo usage frequency
|
| 467 |
|
|
multiplied by the macro value.
|
| 468 |
|
|
|
| 469 |
|
|
We avoid usage of BASE_REGNUM by nonzero macro value because the
|
| 470 |
|
|
reload can decide not to use the hard register because some
|
| 471 |
|
|
constant was forced to be in memory. */
|
| 472 |
|
|
#define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
|
| 473 |
|
|
(regno == BASE_REGNUM ? 0.0 : 0.5)
|
| 474 |
|
|
|
| 475 |
|
|
/* Register -> class mapping. */
|
| 476 |
|
|
extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
|
| 477 |
|
|
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
|
| 478 |
|
|
|
| 479 |
|
|
/* ADDR_REGS can be used as base or index register. */
|
| 480 |
|
|
#define INDEX_REG_CLASS ADDR_REGS
|
| 481 |
|
|
#define BASE_REG_CLASS ADDR_REGS
|
| 482 |
|
|
|
| 483 |
|
|
/* Check whether REGNO is a hard register of the suitable class
|
| 484 |
|
|
or a pseudo register currently allocated to one such. */
|
| 485 |
|
|
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
| 486 |
|
|
(((REGNO) < FIRST_PSEUDO_REGISTER \
|
| 487 |
|
|
&& REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
|
| 488 |
|
|
|| ADDR_REGNO_P (reg_renumber[REGNO]))
|
| 489 |
|
|
#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
|
| 490 |
|
|
|
| 491 |
|
|
|
| 492 |
|
|
/* We need secondary memory to move data between GPRs and FPRs. With
|
| 493 |
|
|
DFP the ldgr lgdr instructions are available. But these
|
| 494 |
|
|
instructions do not handle GPR pairs so it is not possible for 31
|
| 495 |
|
|
bit. */
|
| 496 |
|
|
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
|
| 497 |
|
|
((CLASS1) != (CLASS2) \
|
| 498 |
|
|
&& ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS) \
|
| 499 |
|
|
&& (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8))
|
| 500 |
|
|
|
| 501 |
|
|
/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
|
| 502 |
|
|
because the movsi and movsf patterns don't handle r/f moves. */
|
| 503 |
|
|
#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
|
| 504 |
|
|
(GET_MODE_BITSIZE (MODE) < 32 \
|
| 505 |
|
|
? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
|
| 506 |
|
|
: MODE)
|
| 507 |
|
|
|
| 508 |
|
|
|
| 509 |
|
|
/* Stack layout and calling conventions. */
|
| 510 |
|
|
|
| 511 |
|
|
/* Our stack grows from higher to lower addresses. However, local variables
|
| 512 |
|
|
are accessed by positive offsets, and function arguments are stored at
|
| 513 |
|
|
increasing addresses. */
|
| 514 |
|
|
#define STACK_GROWS_DOWNWARD
|
| 515 |
|
|
#define FRAME_GROWS_DOWNWARD 1
|
| 516 |
|
|
/* #undef ARGS_GROW_DOWNWARD */
|
| 517 |
|
|
|
| 518 |
|
|
/* The basic stack layout looks like this: the stack pointer points
|
| 519 |
|
|
to the register save area for called functions. Above that area
|
| 520 |
|
|
is the location to place outgoing arguments. Above those follow
|
| 521 |
|
|
dynamic allocations (alloca), and finally the local variables. */
|
| 522 |
|
|
|
| 523 |
|
|
/* Offset from stack-pointer to first location of outgoing args. */
|
| 524 |
|
|
#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
|
| 525 |
|
|
|
| 526 |
|
|
/* Offset within stack frame to start allocating local variables at. */
|
| 527 |
|
|
#define STARTING_FRAME_OFFSET 0
|
| 528 |
|
|
|
| 529 |
|
|
/* Offset from the stack pointer register to an item dynamically
|
| 530 |
|
|
allocated on the stack, e.g., by `alloca'. */
|
| 531 |
|
|
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
|
| 532 |
|
|
(STACK_POINTER_OFFSET + crtl->outgoing_args_size)
|
| 533 |
|
|
|
| 534 |
|
|
/* Offset of first parameter from the argument pointer register value.
|
| 535 |
|
|
We have a fake argument pointer register that points directly to
|
| 536 |
|
|
the argument area. */
|
| 537 |
|
|
#define FIRST_PARM_OFFSET(FNDECL) 0
|
| 538 |
|
|
|
| 539 |
|
|
/* Defining this macro makes __builtin_frame_address(0) and
|
| 540 |
|
|
__builtin_return_address(0) work with -fomit-frame-pointer. */
|
| 541 |
|
|
#define INITIAL_FRAME_ADDRESS_RTX \
|
| 542 |
|
|
(plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
|
| 543 |
|
|
|
| 544 |
|
|
/* The return address of the current frame is retrieved
|
| 545 |
|
|
from the initial value of register RETURN_REGNUM.
|
| 546 |
|
|
For frames farther back, we use the stack slot where
|
| 547 |
|
|
the corresponding RETURN_REGNUM register was saved. */
|
| 548 |
|
|
#define DYNAMIC_CHAIN_ADDRESS(FRAME) \
|
| 549 |
|
|
(TARGET_PACKED_STACK ? \
|
| 550 |
|
|
plus_constant ((FRAME), STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
|
| 551 |
|
|
|
| 552 |
|
|
/* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
|
| 553 |
|
|
builtin_frame_address. Otherwise arg pointer -
|
| 554 |
|
|
STACK_POINTER_OFFSET would be returned for
|
| 555 |
|
|
__builtin_frame_address(0) what might result in an address pointing
|
| 556 |
|
|
somewhere into the middle of the local variables since the packed
|
| 557 |
|
|
stack layout generally does not need all the bytes in the register
|
| 558 |
|
|
save area. */
|
| 559 |
|
|
#define FRAME_ADDR_RTX(FRAME) \
|
| 560 |
|
|
DYNAMIC_CHAIN_ADDRESS ((FRAME))
|
| 561 |
|
|
|
| 562 |
|
|
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
| 563 |
|
|
s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
|
| 564 |
|
|
|
| 565 |
|
|
/* In 31-bit mode, we need to mask off the high bit of return addresses. */
|
| 566 |
|
|
#define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
|
| 567 |
|
|
|
| 568 |
|
|
|
| 569 |
|
|
/* Exception handling. */
|
| 570 |
|
|
|
| 571 |
|
|
/* Describe calling conventions for DWARF-2 exception handling. */
|
| 572 |
|
|
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
|
| 573 |
|
|
#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
|
| 574 |
|
|
#define DWARF_FRAME_RETURN_COLUMN 14
|
| 575 |
|
|
|
| 576 |
|
|
/* Describe how we implement __builtin_eh_return. */
|
| 577 |
|
|
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
|
| 578 |
|
|
#define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
|
| 579 |
|
|
|
| 580 |
|
|
/* Select a format to encode pointers in exception handling data. */
|
| 581 |
|
|
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
|
| 582 |
|
|
(flag_pic \
|
| 583 |
|
|
? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
|
| 584 |
|
|
: DW_EH_PE_absptr)
|
| 585 |
|
|
|
| 586 |
|
|
/* Register save slot alignment. */
|
| 587 |
|
|
#define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
|
| 588 |
|
|
|
| 589 |
|
|
|
| 590 |
|
|
/* Frame registers. */
|
| 591 |
|
|
|
| 592 |
|
|
#define STACK_POINTER_REGNUM 15
|
| 593 |
|
|
#define FRAME_POINTER_REGNUM 34
|
| 594 |
|
|
#define HARD_FRAME_POINTER_REGNUM 11
|
| 595 |
|
|
#define ARG_POINTER_REGNUM 32
|
| 596 |
|
|
#define RETURN_ADDRESS_POINTER_REGNUM 35
|
| 597 |
|
|
|
| 598 |
|
|
/* The static chain must be call-clobbered, but not used for
|
| 599 |
|
|
function argument passing. As register 1 is clobbered by
|
| 600 |
|
|
the trampoline code, we only have one option. */
|
| 601 |
|
|
#define STATIC_CHAIN_REGNUM 0
|
| 602 |
|
|
|
| 603 |
|
|
/* Number of hardware registers that go into the DWARF-2 unwind info.
|
| 604 |
|
|
To avoid ABI incompatibility, this number must not change even as
|
| 605 |
|
|
'fake' hard registers are added or removed. */
|
| 606 |
|
|
#define DWARF_FRAME_REGISTERS 34
|
| 607 |
|
|
|
| 608 |
|
|
|
| 609 |
|
|
/* Frame pointer and argument pointer elimination. */
|
| 610 |
|
|
|
| 611 |
|
|
#define ELIMINABLE_REGS \
|
| 612 |
|
|
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
|
| 613 |
|
|
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
|
| 614 |
|
|
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
|
| 615 |
|
|
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
|
| 616 |
|
|
{ RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
|
| 617 |
|
|
{ RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
|
| 618 |
|
|
{ BASE_REGNUM, BASE_REGNUM }}
|
| 619 |
|
|
|
| 620 |
|
|
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
| 621 |
|
|
(OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
|
| 622 |
|
|
|
| 623 |
|
|
|
| 624 |
|
|
/* Stack arguments. */
|
| 625 |
|
|
|
| 626 |
|
|
/* We need current_function_outgoing_args to be valid. */
|
| 627 |
|
|
#define ACCUMULATE_OUTGOING_ARGS 1
|
| 628 |
|
|
|
| 629 |
|
|
|
| 630 |
|
|
/* Register arguments. */
|
| 631 |
|
|
|
| 632 |
|
|
typedef struct s390_arg_structure
|
| 633 |
|
|
{
|
| 634 |
|
|
int gprs; /* gpr so far */
|
| 635 |
|
|
int fprs; /* fpr so far */
|
| 636 |
|
|
}
|
| 637 |
|
|
CUMULATIVE_ARGS;
|
| 638 |
|
|
|
| 639 |
|
|
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
|
| 640 |
|
|
((CUM).gprs=0, (CUM).fprs=0)
|
| 641 |
|
|
|
| 642 |
|
|
/* Arguments can be placed in general registers 2 to 6, or in floating
|
| 643 |
|
|
point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
|
| 644 |
|
|
bit. */
|
| 645 |
|
|
#define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
|
| 646 |
|
|
(N) == 16 || (N) == 17 || (TARGET_64BIT && ((N) == 18 || (N) == 19)))
|
| 647 |
|
|
|
| 648 |
|
|
|
| 649 |
|
|
/* Only gpr 2 and fpr 0 are ever used as return registers. */
|
| 650 |
|
|
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
|
| 651 |
|
|
|
| 652 |
|
|
|
| 653 |
|
|
/* Function entry and exit. */
|
| 654 |
|
|
|
| 655 |
|
|
/* When returning from a function, the stack pointer does not matter. */
|
| 656 |
|
|
#define EXIT_IGNORE_STACK 1
|
| 657 |
|
|
|
| 658 |
|
|
|
| 659 |
|
|
/* Profiling. */
|
| 660 |
|
|
|
| 661 |
|
|
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
| 662 |
|
|
s390_function_profiler ((FILE), ((LABELNO)))
|
| 663 |
|
|
|
| 664 |
|
|
#define PROFILE_BEFORE_PROLOGUE 1
|
| 665 |
|
|
|
| 666 |
|
|
|
| 667 |
|
|
/* Trampolines for nested functions. */
|
| 668 |
|
|
|
| 669 |
|
|
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
|
| 670 |
|
|
#define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
|
| 671 |
|
|
|
| 672 |
|
|
/* Addressing modes, and classification of registers for them. */
|
| 673 |
|
|
|
| 674 |
|
|
/* Recognize any constant value that is a valid address. */
|
| 675 |
|
|
#define CONSTANT_ADDRESS_P(X) 0
|
| 676 |
|
|
|
| 677 |
|
|
/* Maximum number of registers that can appear in a valid memory address. */
|
| 678 |
|
|
#define MAX_REGS_PER_ADDRESS 2
|
| 679 |
|
|
|
| 680 |
|
|
/* This definition replaces the formerly used 'm' constraint with a
|
| 681 |
|
|
different constraint letter in order to avoid changing semantics of
|
| 682 |
|
|
the 'm' constraint when accepting new address formats in
|
| 683 |
|
|
TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
|
| 684 |
|
|
must not be used in insn definitions or inline assemblies. */
|
| 685 |
|
|
#define TARGET_MEM_CONSTRAINT 'e'
|
| 686 |
|
|
|
| 687 |
|
|
/* Try a machine-dependent way of reloading an illegitimate address
|
| 688 |
|
|
operand. If we find one, push the reload and jump to WIN. This
|
| 689 |
|
|
macro is used in only one place: `find_reloads_address' in reload.c. */
|
| 690 |
|
|
#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
|
| 691 |
|
|
do { \
|
| 692 |
|
|
rtx new_rtx = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE)); \
|
| 693 |
|
|
if (new_rtx) \
|
| 694 |
|
|
{ \
|
| 695 |
|
|
(AD) = new_rtx; \
|
| 696 |
|
|
goto WIN; \
|
| 697 |
|
|
} \
|
| 698 |
|
|
} while (0)
|
| 699 |
|
|
|
| 700 |
|
|
/* Helper macro for s390.c and s390.md to check for symbolic constants. */
|
| 701 |
|
|
#define SYMBOLIC_CONST(X) \
|
| 702 |
|
|
(GET_CODE (X) == SYMBOL_REF \
|
| 703 |
|
|
|| GET_CODE (X) == LABEL_REF \
|
| 704 |
|
|
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
|
| 705 |
|
|
|
| 706 |
|
|
#define TLS_SYMBOLIC_CONST(X) \
|
| 707 |
|
|
((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
|
| 708 |
|
|
|| (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
|
| 709 |
|
|
|
| 710 |
|
|
|
| 711 |
|
|
/* Condition codes. */
|
| 712 |
|
|
|
| 713 |
|
|
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
|
| 714 |
|
|
return the mode to be used for the comparison. */
|
| 715 |
|
|
#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
|
| 716 |
|
|
|
| 717 |
|
|
/* Canonicalize a comparison from one we don't have to one we do have. */
|
| 718 |
|
|
#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
|
| 719 |
|
|
s390_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
|
| 720 |
|
|
|
| 721 |
|
|
/* Relative costs of operations. */
|
| 722 |
|
|
|
| 723 |
|
|
/* A C expression for the cost of a branch instruction. A value of 1
|
| 724 |
|
|
is the default; other values are interpreted relative to that. */
|
| 725 |
|
|
#define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
|
| 726 |
|
|
|
| 727 |
|
|
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
| 728 |
|
|
#define SLOW_BYTE_ACCESS 1
|
| 729 |
|
|
|
| 730 |
|
|
/* An integer expression for the size in bits of the largest integer machine
|
| 731 |
|
|
mode that should actually be used. We allow pairs of registers. */
|
| 732 |
|
|
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
|
| 733 |
|
|
|
| 734 |
|
|
/* The maximum number of bytes that a single instruction can move quickly
|
| 735 |
|
|
between memory and registers or between two memory locations. */
|
| 736 |
|
|
#define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
|
| 737 |
|
|
#define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
|
| 738 |
|
|
#define MAX_MOVE_MAX 16
|
| 739 |
|
|
|
| 740 |
|
|
/* Determine whether to use move_by_pieces or block move insn. */
|
| 741 |
|
|
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
|
| 742 |
|
|
( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
|
| 743 |
|
|
|| (TARGET_ZARCH && (SIZE) == 8) )
|
| 744 |
|
|
|
| 745 |
|
|
/* Determine whether to use clear_by_pieces or block clear insn. */
|
| 746 |
|
|
#define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
|
| 747 |
|
|
( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
|
| 748 |
|
|
|| (TARGET_ZARCH && (SIZE) == 8) )
|
| 749 |
|
|
|
| 750 |
|
|
/* This macro is used to determine whether store_by_pieces should be
|
| 751 |
|
|
called to "memcpy" storage when the source is a constant string. */
|
| 752 |
|
|
#define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN)
|
| 753 |
|
|
|
| 754 |
|
|
/* Likewise to decide whether to "memset" storage with byte values
|
| 755 |
|
|
other than zero. */
|
| 756 |
|
|
#define SET_BY_PIECES_P(SIZE, ALIGN) STORE_BY_PIECES_P (SIZE, ALIGN)
|
| 757 |
|
|
|
| 758 |
|
|
/* Don't perform CSE on function addresses. */
|
| 759 |
|
|
#define NO_FUNCTION_CSE
|
| 760 |
|
|
|
| 761 |
|
|
/* This value is used in tree-sra to decide whether it might benefical
|
| 762 |
|
|
to split a struct move into several word-size moves. For S/390
|
| 763 |
|
|
only small values make sense here since struct moves are relatively
|
| 764 |
|
|
cheap thanks to mvc so the small default value choosen for archs
|
| 765 |
|
|
with memmove patterns should be ok. But this value is multiplied
|
| 766 |
|
|
in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
|
| 767 |
|
|
here to compensate for that factor since mvc costs exactly the same
|
| 768 |
|
|
on 31 and 64 bit. */
|
| 769 |
|
|
#define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
|
| 770 |
|
|
|
| 771 |
|
|
|
| 772 |
|
|
/* Sections. */
|
| 773 |
|
|
|
| 774 |
|
|
/* Output before read-only data. */
|
| 775 |
|
|
#define TEXT_SECTION_ASM_OP ".text"
|
| 776 |
|
|
|
| 777 |
|
|
/* Output before writable (initialized) data. */
|
| 778 |
|
|
#define DATA_SECTION_ASM_OP ".data"
|
| 779 |
|
|
|
| 780 |
|
|
/* Output before writable (uninitialized) data. */
|
| 781 |
|
|
#define BSS_SECTION_ASM_OP ".bss"
|
| 782 |
|
|
|
| 783 |
|
|
/* S/390 constant pool breaks the devices in crtstuff.c to control section
|
| 784 |
|
|
in where code resides. We have to write it as asm code. */
|
| 785 |
|
|
#ifndef __s390x__
|
| 786 |
|
|
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
|
| 787 |
|
|
asm (SECTION_OP "\n\
|
| 788 |
|
|
bras\t%r2,1f\n\
|
| 789 |
|
|
0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
|
| 790 |
|
|
1: l\t%r3,0(%r2)\n\
|
| 791 |
|
|
bas\t%r14,0(%r3,%r2)\n\
|
| 792 |
|
|
.previous");
|
| 793 |
|
|
#endif
|
| 794 |
|
|
|
| 795 |
|
|
|
| 796 |
|
|
/* Position independent code. */
|
| 797 |
|
|
|
| 798 |
|
|
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
|
| 799 |
|
|
|
| 800 |
|
|
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
|
| 801 |
|
|
|
| 802 |
|
|
|
| 803 |
|
|
/* Assembler file format. */
|
| 804 |
|
|
|
| 805 |
|
|
/* Character to start a comment. */
|
| 806 |
|
|
#define ASM_COMMENT_START "#"
|
| 807 |
|
|
|
| 808 |
|
|
/* Declare an uninitialized external linkage data object. */
|
| 809 |
|
|
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
| 810 |
|
|
asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
|
| 811 |
|
|
|
| 812 |
|
|
/* Globalizing directive for a label. */
|
| 813 |
|
|
#define GLOBAL_ASM_OP ".globl "
|
| 814 |
|
|
|
| 815 |
|
|
/* Advance the location counter to a multiple of 2**LOG bytes. */
|
| 816 |
|
|
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
|
| 817 |
|
|
if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
|
| 818 |
|
|
|
| 819 |
|
|
/* Advance the location counter by SIZE bytes. */
|
| 820 |
|
|
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
|
| 821 |
|
|
fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
|
| 822 |
|
|
|
| 823 |
|
|
/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
|
| 824 |
|
|
#define LOCAL_LABEL_PREFIX "."
|
| 825 |
|
|
|
| 826 |
|
|
#define LABEL_ALIGN(LABEL) \
|
| 827 |
|
|
s390_label_align (LABEL)
|
| 828 |
|
|
|
| 829 |
|
|
/* How to refer to registers in assembler output. This sequence is
|
| 830 |
|
|
indexed by compiler's hard-register-number (see above). */
|
| 831 |
|
|
#define REGISTER_NAMES \
|
| 832 |
|
|
{ "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
|
| 833 |
|
|
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
|
| 834 |
|
|
"%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
|
| 835 |
|
|
"%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
|
| 836 |
|
|
"%ap", "%cc", "%fp", "%rp", "%a0", "%a1" \
|
| 837 |
|
|
}
|
| 838 |
|
|
|
| 839 |
|
|
/* Print operand X (an rtx) in assembler syntax to file FILE. */
|
| 840 |
|
|
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
| 841 |
|
|
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
|
| 842 |
|
|
|
| 843 |
|
|
/* Output an element of a case-vector that is absolute. */
|
| 844 |
|
|
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
| 845 |
|
|
do { \
|
| 846 |
|
|
char buf[32]; \
|
| 847 |
|
|
fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
|
| 848 |
|
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
|
| 849 |
|
|
assemble_name ((FILE), buf); \
|
| 850 |
|
|
fputc ('\n', (FILE)); \
|
| 851 |
|
|
} while (0)
|
| 852 |
|
|
|
| 853 |
|
|
/* Output an element of a case-vector that is relative. */
|
| 854 |
|
|
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
| 855 |
|
|
do { \
|
| 856 |
|
|
char buf[32]; \
|
| 857 |
|
|
fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
|
| 858 |
|
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
|
| 859 |
|
|
assemble_name ((FILE), buf); \
|
| 860 |
|
|
fputc ('-', (FILE)); \
|
| 861 |
|
|
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
|
| 862 |
|
|
assemble_name ((FILE), buf); \
|
| 863 |
|
|
fputc ('\n', (FILE)); \
|
| 864 |
|
|
} while (0)
|
| 865 |
|
|
|
| 866 |
|
|
|
| 867 |
|
|
/* Miscellaneous parameters. */
|
| 868 |
|
|
|
| 869 |
|
|
/* Specify the machine mode that this machine uses for the index in the
|
| 870 |
|
|
tablejump instruction. */
|
| 871 |
|
|
#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
|
| 872 |
|
|
|
| 873 |
|
|
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
| 874 |
|
|
is done just by pretending it is already truncated. */
|
| 875 |
|
|
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
| 876 |
|
|
|
| 877 |
|
|
/* Specify the machine mode that pointers have.
|
| 878 |
|
|
After generation of rtl, the compiler makes no further distinction
|
| 879 |
|
|
between pointers and any other objects of this machine mode. */
|
| 880 |
|
|
#define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
|
| 881 |
|
|
|
| 882 |
|
|
/* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
|
| 883 |
|
|
#define POINTERS_EXTEND_UNSIGNED -1
|
| 884 |
|
|
|
| 885 |
|
|
/* A function address in a call instruction is a byte address (for
|
| 886 |
|
|
indexing purposes) so give the MEM rtx a byte's mode. */
|
| 887 |
|
|
#define FUNCTION_MODE QImode
|
| 888 |
|
|
|
| 889 |
|
|
/* Specify the value which is used when clz operand is zero. */
|
| 890 |
|
|
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
|
| 891 |
|
|
|
| 892 |
|
|
/* Machine-specific symbol_ref flags. */
|
| 893 |
|
|
#define SYMBOL_FLAG_ALIGN1 (SYMBOL_FLAG_MACH_DEP << 0)
|
| 894 |
|
|
#define SYMBOL_REF_ALIGN1_P(X) \
|
| 895 |
|
|
((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN1))
|
| 896 |
|
|
#define SYMBOL_FLAG_NOT_NATURALLY_ALIGNED (SYMBOL_FLAG_MACH_DEP << 1)
|
| 897 |
|
|
#define SYMBOL_REF_NOT_NATURALLY_ALIGNED_P(X) \
|
| 898 |
|
|
((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_NOT_NATURALLY_ALIGNED))
|
| 899 |
|
|
|
| 900 |
|
|
/* Check whether integer displacement is in range. */
|
| 901 |
|
|
#define DISP_IN_RANGE(d) \
|
| 902 |
|
|
(TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
|
| 903 |
|
|
: ((d) >= 0 && (d) <= 4095))
|
| 904 |
|
|
|
| 905 |
|
|
/* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
|
| 906 |
|
|
#define READ_CAN_USE_WRITE_PREFETCH 1
|
| 907 |
|
|
|
| 908 |
|
|
extern const int processor_flags_table[];
|
| 909 |
|
|
#endif
|