OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [sparc/] [sparc.h] - Blame information for rev 801

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 709 jeremybenn
/* Definitions of target machine for GNU compiler, for Sun SPARC.
2
   Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4
   Free Software Foundation, Inc.
5
   Contributed by Michael Tiemann (tiemann@cygnus.com).
6
   64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
7
   at Cygnus Support.
8
 
9
This file is part of GCC.
10
 
11
GCC is free software; you can redistribute it and/or modify
12
it under the terms of the GNU General Public License as published by
13
the Free Software Foundation; either version 3, or (at your option)
14
any later version.
15
 
16
GCC is distributed in the hope that it will be useful,
17
but WITHOUT ANY WARRANTY; without even the implied warranty of
18
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19
GNU General Public License for more details.
20
 
21
You should have received a copy of the GNU General Public License
22
along with GCC; see the file COPYING3.  If not see
23
<http://www.gnu.org/licenses/>.  */
24
 
25
#include "config/vxworks-dummy.h"
26
 
27
/* Note that some other tm.h files include this one and then override
28
   whatever definitions are necessary.  */
29
 
30
#define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
31
 
32
/* Specify this in a cover file to provide bi-architecture (32/64) support.  */
33
/* #define SPARC_BI_ARCH */
34
 
35
/* Macro used later in this file to determine default architecture.  */
36
#define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
37
 
38
/* TARGET_ARCH{32,64} are the main macros to decide which of the two
39
   architectures to compile for.  We allow targets to choose compile time or
40
   runtime selection.  */
41
#ifdef IN_LIBGCC2
42
#if defined(__sparcv9) || defined(__arch64__)
43
#define TARGET_ARCH32 0
44
#else
45
#define TARGET_ARCH32 1
46
#endif /* sparc64 */
47
#else
48
#ifdef SPARC_BI_ARCH
49
#define TARGET_ARCH32 (! TARGET_64BIT)
50
#else
51
#define TARGET_ARCH32 (DEFAULT_ARCH32_P)
52
#endif /* SPARC_BI_ARCH */
53
#endif /* IN_LIBGCC2 */
54
#define TARGET_ARCH64 (! TARGET_ARCH32)
55
 
56
/* Code model selection in 64-bit environment.
57
 
58
   The machine mode used for addresses is 32-bit wide:
59
 
60
   TARGET_CM_32:     32-bit address space.
61
                     It is the code model used when generating 32-bit code.
62
 
63
   The machine mode used for addresses is 64-bit wide:
64
 
65
   TARGET_CM_MEDLOW: 32-bit address space.
66
                     The executable must be in the low 32 bits of memory.
67
                     This avoids generating %uhi and %ulo terms.  Programs
68
                     can be statically or dynamically linked.
69
 
70
   TARGET_CM_MEDMID: 44-bit address space.
71
                     The executable must be in the low 44 bits of memory,
72
                     and the %[hml]44 terms are used.  The text and data
73
                     segments have a maximum size of 2GB (31-bit span).
74
                     The maximum offset from any instruction to the label
75
                     _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
76
 
77
   TARGET_CM_MEDANY: 64-bit address space.
78
                     The text and data segments have a maximum size of 2GB
79
                     (31-bit span) and may be located anywhere in memory.
80
                     The maximum offset from any instruction to the label
81
                     _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
82
 
83
   TARGET_CM_EMBMEDANY: 64-bit address space.
84
                     The text and data segments have a maximum size of 2GB
85
                     (31-bit span) and may be located anywhere in memory.
86
                     The global register %g4 contains the start address of
87
                     the data segment.  Programs are statically linked and
88
                     PIC is not supported.
89
 
90
   Different code models are not supported in 32-bit environment.  */
91
 
92
enum cmodel {
93
  CM_32,
94
  CM_MEDLOW,
95
  CM_MEDMID,
96
  CM_MEDANY,
97
  CM_EMBMEDANY
98
};
99
 
100
/* One of CM_FOO.  */
101
extern enum cmodel sparc_cmodel;
102
 
103
/* V9 code model selection.  */
104
#define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
105
#define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
106
#define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
107
#define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
108
 
109
#define SPARC_DEFAULT_CMODEL CM_32
110
 
111
/* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
112
   which requires the following macro to be true if enabled.  Prior to V9,
113
   there are no instructions to even talk about memory synchronization.
114
   Note that the UltraSPARC III processors don't implement RMO, unlike the
115
   UltraSPARC II processors.  Niagara, Niagara-2, and Niagara-3 do not
116
   implement RMO either.
117
 
118
   Default to false; for example, Solaris never enables RMO, only ever uses
119
   total memory ordering (TMO).  */
120
#define SPARC_RELAXED_ORDERING false
121
 
122
/* Do not use the .note.GNU-stack convention by default.  */
123
#define NEED_INDICATE_EXEC_STACK 0
124
 
125
/* This is call-clobbered in the normal ABI, but is reserved in the
126
   home grown (aka upward compatible) embedded ABI.  */
127
#define EMBMEDANY_BASE_REG "%g4"
128
 
129
/* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
130
   and specified by the user via --with-cpu=foo.
131
   This specifies the cpu implementation, not the architecture size.  */
132
/* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
133
   capable cpu's.  */
134
#define TARGET_CPU_sparc        0
135
#define TARGET_CPU_v7           0        /* alias */
136
#define TARGET_CPU_cypress      0       /* alias */
137
#define TARGET_CPU_v8           1       /* generic v8 implementation */
138
#define TARGET_CPU_supersparc   2
139
#define TARGET_CPU_hypersparc   3
140
#define TARGET_CPU_leon         4
141
#define TARGET_CPU_sparclite    5
142
#define TARGET_CPU_f930         5       /* alias */
143
#define TARGET_CPU_f934         5       /* alias */
144
#define TARGET_CPU_sparclite86x 6
145
#define TARGET_CPU_sparclet     7
146
#define TARGET_CPU_tsc701       7       /* alias */
147
#define TARGET_CPU_v9           8       /* generic v9 implementation */
148
#define TARGET_CPU_sparcv9      8       /* alias */
149
#define TARGET_CPU_sparc64      8       /* alias */
150
#define TARGET_CPU_ultrasparc   9
151
#define TARGET_CPU_ultrasparc3  10
152
#define TARGET_CPU_niagara      11
153
#define TARGET_CPU_niagara2     12
154
#define TARGET_CPU_niagara3     13
155
#define TARGET_CPU_niagara4     14
156
 
157
#if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
158
 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
159
 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
160
 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
161
 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
162
 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
163
 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
164
 
165
#define CPP_CPU32_DEFAULT_SPEC ""
166
#define ASM_CPU32_DEFAULT_SPEC ""
167
 
168
#if TARGET_CPU_DEFAULT == TARGET_CPU_v9
169
/* ??? What does Sun's CC pass?  */
170
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
171
/* ??? It's not clear how other assemblers will handle this, so by default
172
   use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
173
   is handled in sol2.h.  */
174
#define ASM_CPU64_DEFAULT_SPEC "-Av9"
175
#endif
176
#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
177
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
178
#define ASM_CPU64_DEFAULT_SPEC "-Av9a"
179
#endif
180
#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
181
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
182
#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
183
#endif
184
#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
185
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
186
#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
187
#endif
188
#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
189
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
190
#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
191
#endif
192
#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
193
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
194
#define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
195
#endif
196
#if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
197
#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
198
#define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
199
#endif
200
 
201
#else
202
 
203
#define CPP_CPU64_DEFAULT_SPEC ""
204
#define ASM_CPU64_DEFAULT_SPEC ""
205
 
206
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
207
 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
208
#define CPP_CPU32_DEFAULT_SPEC ""
209
#define ASM_CPU32_DEFAULT_SPEC ""
210
#endif
211
 
212
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
213
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
214
#define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
215
#endif
216
 
217
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
218
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
219
#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
220
#endif
221
 
222
#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
223
#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
224
#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
225
#endif
226
 
227
#if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
228
#define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
229
#define ASM_CPU32_DEFAULT_SPEC ""
230
#endif
231
 
232
#if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
233
#define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
234
#define ASM_CPU32_DEFAULT_SPEC ""
235
#endif
236
 
237
#if TARGET_CPU_DEFAULT == TARGET_CPU_leon
238
#define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
239
#define ASM_CPU32_DEFAULT_SPEC ""
240
#endif
241
 
242
#endif
243
 
244
#if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
245
 #error Unrecognized value in TARGET_CPU_DEFAULT.
246
#endif
247
 
248
#ifdef SPARC_BI_ARCH
249
 
250
#define CPP_CPU_DEFAULT_SPEC \
251
(DEFAULT_ARCH32_P ? "\
252
%{m64:" CPP_CPU64_DEFAULT_SPEC "} \
253
%{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
254
" : "\
255
%{m32:" CPP_CPU32_DEFAULT_SPEC "} \
256
%{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
257
")
258
#define ASM_CPU_DEFAULT_SPEC \
259
(DEFAULT_ARCH32_P ? "\
260
%{m64:" ASM_CPU64_DEFAULT_SPEC "} \
261
%{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
262
" : "\
263
%{m32:" ASM_CPU32_DEFAULT_SPEC "} \
264
%{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
265
")
266
 
267
#else /* !SPARC_BI_ARCH */
268
 
269
#define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
270
#define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
271
 
272
#endif /* !SPARC_BI_ARCH */
273
 
274
/* Define macros to distinguish architectures.  */
275
 
276
/* Common CPP definitions used by CPP_SPEC amongst the various targets
277
   for handling -mcpu=xxx switches.  */
278
#define CPP_CPU_SPEC "\
279
%{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
280
%{mcpu=sparclite:-D__sparclite__} \
281
%{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
282
%{mcpu=sparclite86x:-D__sparclite86x__} \
283
%{mcpu=v8:-D__sparc_v8__} \
284
%{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
285
%{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
286
%{mcpu=leon:-D__leon__ -D__sparc_v8__} \
287
%{mcpu=v9:-D__sparc_v9__} \
288
%{mcpu=ultrasparc:-D__sparc_v9__} \
289
%{mcpu=ultrasparc3:-D__sparc_v9__} \
290
%{mcpu=niagara:-D__sparc_v9__} \
291
%{mcpu=niagara2:-D__sparc_v9__} \
292
%{mcpu=niagara3:-D__sparc_v9__} \
293
%{mcpu=niagara4:-D__sparc_v9__} \
294
%{!mcpu*:%(cpp_cpu_default)} \
295
"
296
#define CPP_ARCH32_SPEC ""
297
#define CPP_ARCH64_SPEC "-D__arch64__"
298
 
299
#define CPP_ARCH_DEFAULT_SPEC \
300
(DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
301
 
302
#define CPP_ARCH_SPEC "\
303
%{m32:%(cpp_arch32)} \
304
%{m64:%(cpp_arch64)} \
305
%{!m32:%{!m64:%(cpp_arch_default)}} \
306
"
307
 
308
/* Macros to distinguish the endianness, window model and FP support.  */
309
#define CPP_OTHER_SPEC "\
310
%{mflat:-D_FLAT} \
311
%{msoft-float:-D_SOFT_FLOAT} \
312
"
313
 
314
/* Macros to distinguish the particular subtarget.  */
315
#define CPP_SUBTARGET_SPEC ""
316
 
317
#define CPP_SPEC \
318
  "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
319
 
320
/* This used to translate -dalign to -malign, but that is no good
321
   because it can't turn off the usual meaning of making debugging dumps.  */
322
 
323
#define CC1_SPEC ""
324
 
325
/* Override in target specific files.  */
326
#define ASM_CPU_SPEC "\
327
%{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
328
%{mcpu=sparclite:-Asparclite} \
329
%{mcpu=sparclite86x:-Asparclite} \
330
%{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
331
%{mcpu=v8:-Av8} \
332
%{mv8plus:-Av8plus} \
333
%{mcpu=v9:-Av9} \
334
%{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
335
%{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
336
%{mcpu=niagara:%{!mv8plus:-Av9b}} \
337
%{mcpu=niagara2:%{!mv8plus:-Av9b}} \
338
%{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
339
%{mcpu=niagara4:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
340
%{!mcpu*:%(asm_cpu_default)} \
341
"
342
 
343
/* Word size selection, among other things.
344
   This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
345
 
346
#define ASM_ARCH32_SPEC "-32"
347
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
348
#define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
349
#else
350
#define ASM_ARCH64_SPEC "-64"
351
#endif
352
#define ASM_ARCH_DEFAULT_SPEC \
353
(DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
354
 
355
#define ASM_ARCH_SPEC "\
356
%{m32:%(asm_arch32)} \
357
%{m64:%(asm_arch64)} \
358
%{!m32:%{!m64:%(asm_arch_default)}} \
359
"
360
 
361
#ifdef HAVE_AS_RELAX_OPTION
362
#define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
363
#else
364
#define ASM_RELAX_SPEC ""
365
#endif
366
 
367
/* Special flags to the Sun-4 assembler when using pipe for input.  */
368
 
369
#define ASM_SPEC "\
370
%{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
371
%(asm_cpu) %(asm_relax)"
372
 
373
/* This macro defines names of additional specifications to put in the specs
374
   that can be used in various specifications like CC1_SPEC.  Its definition
375
   is an initializer with a subgrouping for each command option.
376
 
377
   Each subgrouping contains a string constant, that defines the
378
   specification name, and a string constant that used by the GCC driver
379
   program.
380
 
381
   Do not define this macro if it does not need to do anything.  */
382
 
383
#define EXTRA_SPECS \
384
  { "cpp_cpu",          CPP_CPU_SPEC },         \
385
  { "cpp_cpu_default",  CPP_CPU_DEFAULT_SPEC }, \
386
  { "cpp_arch32",       CPP_ARCH32_SPEC },      \
387
  { "cpp_arch64",       CPP_ARCH64_SPEC },      \
388
  { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
389
  { "cpp_arch",         CPP_ARCH_SPEC },        \
390
  { "cpp_other",        CPP_OTHER_SPEC },       \
391
  { "cpp_subtarget",    CPP_SUBTARGET_SPEC },   \
392
  { "asm_cpu",          ASM_CPU_SPEC },         \
393
  { "asm_cpu_default",  ASM_CPU_DEFAULT_SPEC }, \
394
  { "asm_arch32",       ASM_ARCH32_SPEC },      \
395
  { "asm_arch64",       ASM_ARCH64_SPEC },      \
396
  { "asm_relax",        ASM_RELAX_SPEC },       \
397
  { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
398
  { "asm_arch",         ASM_ARCH_SPEC },        \
399
  SUBTARGET_EXTRA_SPECS
400
 
401
#define SUBTARGET_EXTRA_SPECS
402
 
403
/* Because libgcc can generate references back to libc (via .umul etc.) we have
404
   to list libc again after the second libgcc.  */
405
#define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
406
 
407
 
408
#define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
409
#define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
410
 
411
/* ??? This should be 32 bits for v9 but what can we do?  */
412
#define WCHAR_TYPE "short unsigned int"
413
#define WCHAR_TYPE_SIZE 16
414
 
415
/* Mask of all CPU selection flags.  */
416
#define MASK_ISA \
417
(MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
418
 
419
/* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
420
   TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
421
   to get high 32 bits.  False in V8+ or V9 because multiply stores
422
   a 64-bit result in a register.  */
423
 
424
#define TARGET_HARD_MUL32                               \
425
  ((TARGET_V8 || TARGET_SPARCLITE                       \
426
    || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS)   \
427
   && ! TARGET_V8PLUS && TARGET_ARCH32)
428
 
429
#define TARGET_HARD_MUL                                 \
430
  (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET     \
431
   || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
432
 
433
/* MASK_APP_REGS must always be the default because that's what
434
   FIXED_REGISTERS is set to and -ffixed- is processed before
435
   TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
436
   -mno-app-regs).  */
437
#define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
438
 
439
/* Recast the cpu class to be the cpu attribute.
440
   Every file includes us, but not every file includes insn-attr.h.  */
441
#define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
442
 
443
/* Support for a compile-time default CPU, et cetera.  The rules are:
444
   --with-cpu is ignored if -mcpu is specified.
445
   --with-tune is ignored if -mtune is specified.
446
   --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
447
     are specified.  */
448
#define OPTION_DEFAULT_SPECS \
449
  {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
450
  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
451
  {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
452
 
453
/* target machine storage layout */
454
 
455
/* Define this if most significant bit is lowest numbered
456
   in instructions that operate on numbered bit-fields.  */
457
#define BITS_BIG_ENDIAN 1
458
 
459
/* Define this if most significant byte of a word is the lowest numbered.  */
460
#define BYTES_BIG_ENDIAN 1
461
 
462
/* Define this if most significant word of a multiword number is the lowest
463
   numbered.  */
464
#define WORDS_BIG_ENDIAN 1
465
 
466
#define MAX_BITS_PER_WORD       64
467
 
468
/* Width of a word, in units (bytes).  */
469
#define UNITS_PER_WORD          (TARGET_ARCH64 ? 8 : 4)
470
#ifdef IN_LIBGCC2
471
#define MIN_UNITS_PER_WORD      UNITS_PER_WORD
472
#else
473
#define MIN_UNITS_PER_WORD      4
474
#endif
475
 
476
/* Now define the sizes of the C data types.  */
477
 
478
#define SHORT_TYPE_SIZE         16
479
#define INT_TYPE_SIZE           32
480
#define LONG_TYPE_SIZE          (TARGET_ARCH64 ? 64 : 32)
481
#define LONG_LONG_TYPE_SIZE     64
482
#define FLOAT_TYPE_SIZE         32
483
#define DOUBLE_TYPE_SIZE        64
484
 
485
/* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
486
   SPARC ABI says that it is 128-bit wide.  */
487
/* #define LONG_DOUBLE_TYPE_SIZE        128 */
488
 
489
/* The widest floating-point format really supported by the hardware.  */
490
#define WIDEST_HARDWARE_FP_SIZE 64
491
 
492
/* Width in bits of a pointer.  This is the size of ptr_mode.  */
493
#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
494
 
495
/* This is the machine mode used for addresses.  */
496
#define Pmode (TARGET_ARCH64 ? DImode : SImode)
497
 
498
/* If we have to extend pointers (only when TARGET_ARCH64 and not
499
   TARGET_PTR64), we want to do it unsigned.   This macro does nothing
500
   if ptr_mode and Pmode are the same.  */
501
#define POINTERS_EXTEND_UNSIGNED 1
502
 
503
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
504
#define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
505
 
506
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
507
/* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
508
   then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
509
#define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
510
/* Temporary hack until the FIXME above is fixed.  */
511
#define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
512
 
513
/* ALIGN FRAMES on double word boundaries */
514
 
515
#define SPARC_STACK_ALIGN(LOC) \
516
  (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
517
 
518
/* Allocation boundary (in *bits*) for the code of a function.  */
519
#define FUNCTION_BOUNDARY 32
520
 
521
/* Alignment of field after `int : 0' in a structure.  */
522
#define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
523
 
524
/* Every structure's size must be a multiple of this.  */
525
#define STRUCTURE_SIZE_BOUNDARY 8
526
 
527
/* A bit-field declared as `int' forces `int' alignment for the struct.  */
528
#define PCC_BITFIELD_TYPE_MATTERS 1
529
 
530
/* No data type wants to be aligned rounder than this.  */
531
#define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
532
 
533
/* The best alignment to use in cases where we have a choice.  */
534
#define FASTEST_ALIGNMENT 64
535
 
536
/* Define this macro as an expression for the alignment of a structure
537
   (given by STRUCT as a tree node) if the alignment computed in the
538
   usual way is COMPUTED and the alignment explicitly specified was
539
   SPECIFIED.
540
 
541
   The default is to use SPECIFIED if it is larger; otherwise, use
542
   the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
543
#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)   \
544
 (TARGET_FASTER_STRUCTS ?                               \
545
  ((TREE_CODE (STRUCT) == RECORD_TYPE                   \
546
    || TREE_CODE (STRUCT) == UNION_TYPE                 \
547
    || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
548
   && TYPE_FIELDS (STRUCT) != 0                         \
549
     ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
550
     : MAX ((COMPUTED), (SPECIFIED)))                   \
551
   :  MAX ((COMPUTED), (SPECIFIED)))
552
 
553
/* We need 2 words, so we can save the stack pointer and the return register
554
   of the function containing a non-local goto target.  */
555
#define STACK_SAVEAREA_MODE(LEVEL) \
556
  ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
557
 
558
/* Make strings word-aligned so strcpy from constants will be faster.  */
559
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
560
  ((TREE_CODE (EXP) == STRING_CST       \
561
    && (ALIGN) < FASTEST_ALIGNMENT)     \
562
   ? FASTEST_ALIGNMENT : (ALIGN))
563
 
564
/* Make arrays of chars word-aligned for the same reasons.  */
565
#define DATA_ALIGNMENT(TYPE, ALIGN)             \
566
  (TREE_CODE (TYPE) == ARRAY_TYPE               \
567
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
568
   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
569
 
570
/* Make local arrays of chars word-aligned for the same reasons.  */
571
#define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
572
 
573
/* Set this nonzero if move instructions will actually fail to work
574
   when given unaligned data.  */
575
#define STRICT_ALIGNMENT 1
576
 
577
/* Things that must be doubleword aligned cannot go in the text section,
578
   because the linker fails to align the text section enough!
579
   Put them in the data section.  This macro is only used in this file.  */
580
#define MAX_TEXT_ALIGN 32
581
 
582
/* Standard register usage.  */
583
 
584
/* Number of actual hardware registers.
585
   The hardware registers are assigned numbers for the compiler
586
   from 0 to just below FIRST_PSEUDO_REGISTER.
587
   All registers that the compiler knows about must be given numbers,
588
   even those that are not normally considered general registers.
589
 
590
   SPARC has 32 integer registers and 32 floating point registers.
591
   64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
592
   accessible.  We still account for them to simplify register computations
593
   (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
594
   32+32+32+4 == 100.
595
   Register 100 is used as the integer condition code register.
596
   Register 101 is used as the soft frame pointer register.  */
597
 
598
#define FIRST_PSEUDO_REGISTER 103
599
 
600
#define SPARC_FIRST_INT_REG     0
601
#define SPARC_LAST_INT_REG     31
602
#define SPARC_FIRST_FP_REG     32
603
/* Additional V9 fp regs.  */
604
#define SPARC_FIRST_V9_FP_REG  64
605
#define SPARC_LAST_V9_FP_REG   95
606
/* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
607
#define SPARC_FIRST_V9_FCC_REG 96
608
#define SPARC_LAST_V9_FCC_REG  99
609
/* V8 fcc reg.  */
610
#define SPARC_FCC_REG 96
611
/* Integer CC reg.  We don't distinguish %icc from %xcc.  */
612
#define SPARC_ICC_REG 100
613
#define SPARC_GSR_REG 102
614
 
615
/* Nonzero if REGNO is an fp reg.  */
616
#define SPARC_FP_REG_P(REGNO) \
617
((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
618
 
619
/* Nonzero if REGNO is an int reg.  */
620
#define SPARC_INT_REG_P(REGNO) \
621
(((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
622
 
623
/* Argument passing regs.  */
624
#define SPARC_OUTGOING_INT_ARG_FIRST 8
625
#define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
626
#define SPARC_FP_ARG_FIRST           32
627
 
628
/* 1 for registers that have pervasive standard uses
629
   and are not available for the register allocator.
630
 
631
   On non-v9 systems:
632
   g1 is free to use as temporary.
633
   g2-g4 are reserved for applications.  Gcc normally uses them as
634
   temporaries, but this can be disabled via the -mno-app-regs option.
635
   g5 through g7 are reserved for the operating system.
636
 
637
   On v9 systems:
638
   g1,g5 are free to use as temporaries, and are free to use between calls
639
   if the call is to an external function via the PLT.
640
   g4 is free to use as a temporary in the non-embedded case.
641
   g4 is reserved in the embedded case.
642
   g2-g3 are reserved for applications.  Gcc normally uses them as
643
   temporaries, but this can be disabled via the -mno-app-regs option.
644
   g6-g7 are reserved for the operating system (or application in
645
   embedded case).
646
   ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
647
   currently be a fixed register until this pattern is rewritten.
648
   Register 1 is also used when restoring call-preserved registers in large
649
   stack frames.
650
 
651
   Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
652
   TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
653
*/
654
 
655
#define FIXED_REGISTERS  \
656
 {1, 0, 2, 2, 2, 2, 1, 1,       \
657
  0, 0, 0, 0, 0, 0, 1, 0,       \
658
  0, 0, 0, 0, 0, 0, 0, 0,       \
659
  0, 0, 0, 0, 0, 0, 0, 1,       \
660
                                \
661
  0, 0, 0, 0, 0, 0, 0, 0,       \
662
  0, 0, 0, 0, 0, 0, 0, 0,       \
663
  0, 0, 0, 0, 0, 0, 0, 0,       \
664
  0, 0, 0, 0, 0, 0, 0, 0,       \
665
                                \
666
  0, 0, 0, 0, 0, 0, 0, 0,       \
667
  0, 0, 0, 0, 0, 0, 0, 0,       \
668
  0, 0, 0, 0, 0, 0, 0, 0,       \
669
  0, 0, 0, 0, 0, 0, 0, 0,       \
670
                                \
671
  0, 0, 0, 0, 0, 1, 1}
672
 
673
/* 1 for registers not available across function calls.
674
   These must include the FIXED_REGISTERS and also any
675
   registers that can be used without being saved.
676
   The latter must include the registers where values are returned
677
   and the register where structure-value addresses are passed.
678
   Aside from that, you can include as many other registers as you like.  */
679
 
680
#define CALL_USED_REGISTERS  \
681
 {1, 1, 1, 1, 1, 1, 1, 1,       \
682
  1, 1, 1, 1, 1, 1, 1, 1,       \
683
  0, 0, 0, 0, 0, 0, 0, 0,       \
684
  0, 0, 0, 0, 0, 0, 0, 1,       \
685
                                \
686
  1, 1, 1, 1, 1, 1, 1, 1,       \
687
  1, 1, 1, 1, 1, 1, 1, 1,       \
688
  1, 1, 1, 1, 1, 1, 1, 1,       \
689
  1, 1, 1, 1, 1, 1, 1, 1,       \
690
                                \
691
  1, 1, 1, 1, 1, 1, 1, 1,       \
692
  1, 1, 1, 1, 1, 1, 1, 1,       \
693
  1, 1, 1, 1, 1, 1, 1, 1,       \
694
  1, 1, 1, 1, 1, 1, 1, 1,       \
695
                                \
696
  1, 1, 1, 1, 1, 1, 1}
697
 
698
/* Return number of consecutive hard regs needed starting at reg REGNO
699
   to hold something of mode MODE.
700
   This is ordinarily the length in words of a value of mode MODE
701
   but can be less for certain modes in special long registers.
702
 
703
   On SPARC, ordinary registers hold 32 bits worth;
704
   this means both integer and floating point registers.
705
   On v9, integer regs hold 64 bits worth; floating point regs hold
706
   32 bits worth (this includes the new fp regs as even the odd ones are
707
   included in the hard register count).  */
708
 
709
#define HARD_REGNO_NREGS(REGNO, MODE) \
710
  ((REGNO) == SPARC_GSR_REG ? 1 :                                       \
711
   (TARGET_ARCH64                                                       \
712
    ? (SPARC_INT_REG_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM                       \
713
       ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD   \
714
       : (GET_MODE_SIZE (MODE) + 3) / 4)                                \
715
    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
716
 
717
/* Due to the ARCH64 discrepancy above we must override this next
718
   macro too.  */
719
#define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
720
 
721
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
722
   See sparc.c for how we initialize this.  */
723
extern const int *hard_regno_mode_classes;
724
extern int sparc_mode_class[];
725
 
726
/* ??? Because of the funny way we pass parameters we should allow certain
727
   ??? types of float/complex values to be in integer registers during
728
   ??? RTL generation.  This only matters on arch32.  */
729
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
730
  ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
731
 
732
/* Value is 1 if it is OK to rename a hard register FROM to another hard
733
   register TO.  We cannot rename %g1 as it may be used before the save
734
   register window instruction in the prologue.  */
735
#define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
736
 
737
#define MODES_TIEABLE_P(MODE1, MODE2) sparc_modes_tieable_p (MODE1, MODE2)
738
 
739
/* Specify the registers used for certain standard purposes.
740
   The values of these macros are register numbers.  */
741
 
742
/* Register to use for pushing function arguments.  */
743
#define STACK_POINTER_REGNUM 14
744
 
745
/* The stack bias (amount by which the hardware register is offset by).  */
746
#define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
747
 
748
/* Actual top-of-stack address is 92/176 greater than the contents of the
749
   stack pointer register for !v9/v9.  That is:
750
   - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
751
     address, and 6*4 bytes for the 6 register parameters.
752
   - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
753
     parameter regs.  */
754
#define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
755
 
756
/* Base register for access to local variables of the function.  */
757
#define HARD_FRAME_POINTER_REGNUM 30
758
 
759
/* The soft frame pointer does not have the stack bias applied.  */
760
#define FRAME_POINTER_REGNUM 101
761
 
762
/* Given the stack bias, the stack pointer isn't actually aligned.  */
763
#define INIT_EXPANDERS                                                   \
764
  do {                                                                   \
765
    if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS)      \
766
      {                                                                  \
767
        REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT;      \
768
        REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
769
      }                                                                  \
770
  } while (0)
771
 
772
/* Base register for access to arguments of the function.  */
773
#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
774
 
775
/* Register in which static-chain is passed to a function.  This must
776
   not be a register used by the prologue.  */
777
#define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
778
 
779
/* Register which holds the global offset table, if any.  */
780
 
781
#define GLOBAL_OFFSET_TABLE_REGNUM 23
782
 
783
/* Register which holds offset table for position-independent
784
   data references.  */
785
 
786
#define PIC_OFFSET_TABLE_REGNUM \
787
  (flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
788
 
789
/* Pick a default value we can notice from override_options:
790
   !v9: Default is on.
791
   v9: Default is off.
792
   Originally it was -1, but later on the container of options changed to
793
   unsigned byte, so we decided to pick 127 as default value, which does
794
   reflect an undefined default value in case of 0/1.  */
795
 
796
#define DEFAULT_PCC_STRUCT_RETURN 127
797
 
798
/* Functions which return large structures get the address
799
   to place the wanted value at offset 64 from the frame.
800
   Must reserve 64 bytes for the in and local registers.
801
   v9: Functions which return large structures get the address to place the
802
   wanted value from an invisible first argument.  */
803
#define STRUCT_VALUE_OFFSET 64
804
 
805
/* Define the classes of registers for register constraints in the
806
   machine description.  Also define ranges of constants.
807
 
808
   One of the classes must always be named ALL_REGS and include all hard regs.
809
   If there is more than one class, another class must be named NO_REGS
810
   and contain no registers.
811
 
812
   The name GENERAL_REGS must be the name of a class (or an alias for
813
   another name such as ALL_REGS).  This is the class of registers
814
   that is allowed by "g" or "r" in a register constraint.
815
   Also, registers outside this class are allocated only when
816
   instructions express preferences for them.
817
 
818
   The classes must be numbered in nondecreasing order; that is,
819
   a larger-numbered class must never be contained completely
820
   in a smaller-numbered class.
821
 
822
   For any two classes, it is very desirable that there be another
823
   class that represents their union.  */
824
 
825
/* The SPARC has various kinds of registers: general, floating point,
826
   and condition codes [well, it has others as well, but none that we
827
   care directly about].
828
 
829
   For v9 we must distinguish between the upper and lower floating point
830
   registers because the upper ones can't hold SFmode values.
831
   HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
832
   satisfying a group need for a class will also satisfy a single need for
833
   that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
834
   regs.
835
 
836
   It is important that one class contains all the general and all the standard
837
   fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
838
   because reg_class_record() will bias the selection in favor of fp regs,
839
   because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
840
   because FP_REGS > GENERAL_REGS.
841
 
842
   It is also important that one class contain all the general and all
843
   the fp regs.  Otherwise when spilling a DFmode reg, it may be from
844
   EXTRA_FP_REGS but find_reloads() may use class
845
   GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
846
   because the compiler thinks it doesn't have a spill reg when in
847
   fact it does.
848
 
849
   v9 also has 4 floating point condition code registers.  Since we don't
850
   have a class that is the union of FPCC_REGS with either of the others,
851
   it is important that it appear first.  Otherwise the compiler will die
852
   trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
853
   constraints.
854
 
855
   It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
856
   may try to use it to hold an SImode value.  See register_operand.
857
   ??? Should %fcc[0123] be handled similarly?
858
*/
859
 
860
enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
861
                 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
862
                 ALL_REGS, LIM_REG_CLASSES };
863
 
864
#define N_REG_CLASSES (int) LIM_REG_CLASSES
865
 
866
/* Give names of register classes as strings for dump file.  */
867
 
868
#define REG_CLASS_NAMES \
869
  { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",      \
870
     "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
871
     "ALL_REGS" }
872
 
873
/* Define which registers fit in which classes.
874
   This is an initializer for a vector of HARD_REG_SET
875
   of length N_REG_CLASSES.  */
876
 
877
#define REG_CLASS_CONTENTS                              \
878
  {{0, 0, 0, 0},        /* NO_REGS */                   \
879
   {0, 0, 0, 0xf},      /* FPCC_REGS */                 \
880
   {0xffff, 0, 0, 0},   /* I64_REGS */                  \
881
   {-1, 0, 0, 0x20},    /* GENERAL_REGS */              \
882
   {0, -1, 0, 0},       /* FP_REGS */                   \
883
   {0, -1, -1, 0},      /* EXTRA_FP_REGS */             \
884
   {-1, -1, 0, 0x20},   /* GENERAL_OR_FP_REGS */        \
885
   {-1, -1, -1, 0x20},  /* GENERAL_OR_EXTRA_FP_REGS */  \
886
   {-1, -1, -1, 0x7f}}  /* ALL_REGS */
887
 
888
/* The same information, inverted:
889
   Return the class number of the smallest class containing
890
   reg number REGNO.  This could be a conditional expression
891
   or could index an array.  */
892
 
893
extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
894
 
895
#define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
896
 
897
/* Defines invalid mode changes.  Borrowed from the PA port.
898
 
899
   SImode loads to floating-point registers are not zero-extended.
900
   The definition for LOAD_EXTEND_OP specifies that integer loads
901
   narrower than BITS_PER_WORD will be zero-extended.  As a result,
902
   we inhibit changes from SImode unless they are to a mode that is
903
   identical in size.
904
 
905
   Likewise for SFmode, since word-mode paradoxical subregs are
906
   problematic on big-endian architectures.  */
907
 
908
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)               \
909
  (TARGET_ARCH64                                                \
910
   && GET_MODE_SIZE (FROM) == 4                                 \
911
   && GET_MODE_SIZE (TO) != 4                                   \
912
   ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
913
 
914
/* This is the order in which to allocate registers normally.
915
 
916
   We put %f0-%f7 last among the float registers, so as to make it more
917
   likely that a pseudo-register which dies in the float return register
918
   area will get allocated to the float return register, thus saving a move
919
   instruction at the end of the function.
920
 
921
   Similarly for integer return value registers.
922
 
923
   We know in this case that we will not end up with a leaf function.
924
 
925
   The register allocator is given the global and out registers first
926
   because these registers are call clobbered and thus less useful to
927
   global register allocation.
928
 
929
   Next we list the local and in registers.  They are not call clobbered
930
   and thus very useful for global register allocation.  We list the input
931
   registers before the locals so that it is more likely the incoming
932
   arguments received in those registers can just stay there and not be
933
   reloaded.  */
934
 
935
#define REG_ALLOC_ORDER \
936
{ 1, 2, 3, 4, 5, 6, 7,                  /* %g1-%g7 */   \
937
  13, 12, 11, 10, 9, 8,                 /* %o5-%o0 */   \
938
  15,                                   /* %o7 */       \
939
  16, 17, 18, 19, 20, 21, 22, 23,       /* %l0-%l7 */   \
940
  29, 28, 27, 26, 25, 24, 31,           /* %i5-%i0,%i7 */\
941
  40, 41, 42, 43, 44, 45, 46, 47,       /* %f8-%f15 */  \
942
  48, 49, 50, 51, 52, 53, 54, 55,       /* %f16-%f23 */ \
943
  56, 57, 58, 59, 60, 61, 62, 63,       /* %f24-%f31 */ \
944
  64, 65, 66, 67, 68, 69, 70, 71,       /* %f32-%f39 */ \
945
  72, 73, 74, 75, 76, 77, 78, 79,       /* %f40-%f47 */ \
946
  80, 81, 82, 83, 84, 85, 86, 87,       /* %f48-%f55 */ \
947
  88, 89, 90, 91, 92, 93, 94, 95,       /* %f56-%f63 */ \
948
  39, 38, 37, 36, 35, 34, 33, 32,       /* %f7-%f0 */   \
949
  96, 97, 98, 99,                       /* %fcc0-3 */   \
950
  100, 0, 14, 30, 101, 102 }            /* %icc, %g0, %o6, %i6, %sfp, %gsr */
951
 
952
/* This is the order in which to allocate registers for
953
   leaf functions.  If all registers can fit in the global and
954
   output registers, then we have the possibility of having a leaf
955
   function.
956
 
957
   The macro actually mentioned the input registers first,
958
   because they get renumbered into the output registers once
959
   we know really do have a leaf function.
960
 
961
   To be more precise, this register allocation order is used
962
   when %o7 is found to not be clobbered right before register
963
   allocation.  Normally, the reason %o7 would be clobbered is
964
   due to a call which could not be transformed into a sibling
965
   call.
966
 
967
   As a consequence, it is possible to use the leaf register
968
   allocation order and not end up with a leaf function.  We will
969
   not get suboptimal register allocation in that case because by
970
   definition of being potentially leaf, there were no function
971
   calls.  Therefore, allocation order within the local register
972
   window is not critical like it is when we do have function calls.  */
973
 
974
#define REG_LEAF_ALLOC_ORDER \
975
{ 1, 2, 3, 4, 5, 6, 7,                  /* %g1-%g7 */   \
976
  29, 28, 27, 26, 25, 24,               /* %i5-%i0 */   \
977
  15,                                   /* %o7 */       \
978
  13, 12, 11, 10, 9, 8,                 /* %o5-%o0 */   \
979
  16, 17, 18, 19, 20, 21, 22, 23,       /* %l0-%l7 */   \
980
  40, 41, 42, 43, 44, 45, 46, 47,       /* %f8-%f15 */  \
981
  48, 49, 50, 51, 52, 53, 54, 55,       /* %f16-%f23 */ \
982
  56, 57, 58, 59, 60, 61, 62, 63,       /* %f24-%f31 */ \
983
  64, 65, 66, 67, 68, 69, 70, 71,       /* %f32-%f39 */ \
984
  72, 73, 74, 75, 76, 77, 78, 79,       /* %f40-%f47 */ \
985
  80, 81, 82, 83, 84, 85, 86, 87,       /* %f48-%f55 */ \
986
  88, 89, 90, 91, 92, 93, 94, 95,       /* %f56-%f63 */ \
987
  39, 38, 37, 36, 35, 34, 33, 32,       /* %f7-%f0 */   \
988
  96, 97, 98, 99,                       /* %fcc0-3 */   \
989
  100, 0, 14, 30, 31, 101, 102 }        /* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
990
 
991
#define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
992
 
993
extern char sparc_leaf_regs[];
994
#define LEAF_REGISTERS sparc_leaf_regs
995
 
996
extern char leaf_reg_remap[];
997
#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
998
 
999
/* The class value for index registers, and the one for base regs.  */
1000
#define INDEX_REG_CLASS GENERAL_REGS
1001
#define BASE_REG_CLASS GENERAL_REGS
1002
 
1003
/* Local macro to handle the two v9 classes of FP regs.  */
1004
#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1005
 
1006
/* Predicates for 10-bit, 11-bit and 13-bit signed constants.  */
1007
#define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1008
#define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1009
#define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1010
 
1011
/* 10- and 11-bit immediates are only used for a few specific insns.
1012
   SMALL_INT is used throughout the port so we continue to use it.  */
1013
#define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1014
 
1015
/* Predicate for constants that can be loaded with a sethi instruction.
1016
   This is the general, 64-bit aware, bitwise version that ensures that
1017
   only constants whose representation fits in the mask
1018
 
1019
     0x00000000fffffc00
1020
 
1021
   are accepted.  It will reject, for example, negative SImode constants
1022
   on 64-bit hosts, so correct handling is to mask the value beforehand
1023
   according to the mode of the instruction.  */
1024
#define SPARC_SETHI_P(X) \
1025
  (((unsigned HOST_WIDE_INT) (X) \
1026
    & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1027
 
1028
/* Version of the above predicate for SImode constants and below.  */
1029
#define SPARC_SETHI32_P(X) \
1030
  (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1031
 
1032
/* On SPARC when not VIS3 it is not possible to directly move data
1033
   between GENERAL_REGS and FP_REGS.  */
1034
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1035
  ((FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)) \
1036
   && (! TARGET_VIS3 \
1037
       || GET_MODE_SIZE (MODE) > 8 \
1038
       || GET_MODE_SIZE (MODE) < 4))
1039
 
1040
/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1041
   because the movsi and movsf patterns don't handle r/f moves.
1042
   For v8 we copy the default definition.  */
1043
#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1044
  (TARGET_ARCH64                                                \
1045
   ? (GET_MODE_BITSIZE (MODE) < 32                              \
1046
      ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)            \
1047
      : MODE)                                                   \
1048
   : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD                   \
1049
      ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1050
      : MODE))
1051
 
1052
/* Return the maximum number of consecutive registers
1053
   needed to represent mode MODE in a register of class CLASS.  */
1054
/* On SPARC, this is the size of MODE in words.  */
1055
#define CLASS_MAX_NREGS(CLASS, MODE)    \
1056
  (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1057
   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1058
 
1059
/* Stack layout; function entry, exit and calling.  */
1060
 
1061
/* Define this if pushing a word on the stack
1062
   makes the stack pointer a smaller address.  */
1063
#define STACK_GROWS_DOWNWARD
1064
 
1065
/* Define this to nonzero if the nominal address of the stack frame
1066
   is at the high-address end of the local variables;
1067
   that is, each additional local variable allocated
1068
   goes at a more negative offset in the frame.  */
1069
#define FRAME_GROWS_DOWNWARD 1
1070
 
1071
/* Offset within stack frame to start allocating local variables at.
1072
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1073
   first local allocated.  Otherwise, it is the offset to the BEGINNING
1074
   of the first local allocated.  */
1075
#define STARTING_FRAME_OFFSET 0
1076
 
1077
/* Offset of first parameter from the argument pointer register value.
1078
   !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1079
   even if this function isn't going to use it.
1080
   v9: This is 128 for the ins and locals.  */
1081
#define FIRST_PARM_OFFSET(FNDECL) \
1082
  (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1083
 
1084
/* Offset from the argument pointer register value to the CFA.
1085
   This is different from FIRST_PARM_OFFSET because the register window
1086
   comes between the CFA and the arguments.  */
1087
#define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1088
 
1089
/* When a parameter is passed in a register, stack space is still
1090
   allocated for it.
1091
   !v9: All 6 possible integer registers have backing store allocated.
1092
   v9: Only space for the arguments passed is allocated.  */
1093
/* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1094
   meaning to the backend.  Further, we need to be able to detect if a
1095
   varargs/unprototyped function is called, as they may want to spill more
1096
   registers than we've provided space.  Ugly, ugly.  So for now we retain
1097
   all 6 slots even for v9.  */
1098
#define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1099
 
1100
/* Definitions for register elimination.  */
1101
 
1102
#define ELIMINABLE_REGS \
1103
  {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1104
   { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1105
 
1106
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
1107
  do {                                                                  \
1108
    if ((TO) == STACK_POINTER_REGNUM)                                   \
1109
      (OFFSET) = sparc_compute_frame_size (get_frame_size (),           \
1110
                                           current_function_is_leaf);   \
1111
    else                                                                \
1112
      (OFFSET) = 0;                                                     \
1113
    (OFFSET) += SPARC_STACK_BIAS;                                       \
1114
  } while (0)
1115
 
1116
/* Keep the stack pointer constant throughout the function.
1117
   This is both an optimization and a necessity: longjmp
1118
   doesn't behave itself when the stack pointer moves within
1119
   the function!  */
1120
#define ACCUMULATE_OUTGOING_ARGS 1
1121
 
1122
/* Define this macro if the target machine has "register windows".  This
1123
   C expression returns the register number as seen by the called function
1124
   corresponding to register number OUT as seen by the calling function.
1125
   Return OUT if register number OUT is not an outbound register.  */
1126
 
1127
#define INCOMING_REGNO(OUT) \
1128
 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1129
 
1130
/* Define this macro if the target machine has "register windows".  This
1131
   C expression returns the register number as seen by the calling function
1132
   corresponding to register number IN as seen by the called function.
1133
   Return IN if register number IN is not an inbound register.  */
1134
 
1135
#define OUTGOING_REGNO(IN) \
1136
 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1137
 
1138
/* Define this macro if the target machine has register windows.  This
1139
   C expression returns true if the register is call-saved but is in the
1140
   register window.  */
1141
 
1142
#define LOCAL_REGNO(REGNO) \
1143
  (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1144
 
1145
/* Define the size of space to allocate for the return value of an
1146
   untyped_call.  */
1147
 
1148
#define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1149
 
1150
/* 1 if N is a possible register number for function argument passing.
1151
   On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1152
 
1153
#define FUNCTION_ARG_REGNO_P(N) \
1154
(TARGET_ARCH64 \
1155
 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1156
 : ((N) >= 8 && (N) <= 13))
1157
 
1158
/* Define a data type for recording info about an argument list
1159
   during the scan of that argument list.  This data type should
1160
   hold all necessary information about the function itself
1161
   and about the args processed so far, enough to enable macros
1162
   such as FUNCTION_ARG to determine where the next arg should go.
1163
 
1164
   On SPARC (!v9), this is a single integer, which is a number of words
1165
   of arguments scanned so far (including the invisible argument,
1166
   if any, which holds the structure-value-address).
1167
   Thus 7 or more means all following args should go on the stack.
1168
 
1169
   For v9, we also need to know whether a prototype is present.  */
1170
 
1171
struct sparc_args {
1172
  int words;       /* number of words passed so far */
1173
  int prototype_p; /* nonzero if a prototype is present */
1174
  int libcall_p;   /* nonzero if a library call */
1175
};
1176
#define CUMULATIVE_ARGS struct sparc_args
1177
 
1178
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1179
   for a call to a function whose data type is FNTYPE.
1180
   For a library call, FNTYPE is 0.  */
1181
 
1182
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1183
init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1184
 
1185
/* If defined, a C expression which determines whether, and in which direction,
1186
   to pad out an argument with extra space.  The value should be of type
1187
   `enum direction': either `upward' to pad above the argument,
1188
   `downward' to pad below, or `none' to inhibit padding.  */
1189
 
1190
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
1191
function_arg_padding ((MODE), (TYPE))
1192
 
1193
 
1194
/* Generate the special assembly code needed to tell the assembler whatever
1195
   it might need to know about the return value of a function.
1196
 
1197
   For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1198
   information to the assembler relating to peephole optimization (done in
1199
   the assembler).  */
1200
 
1201
#define ASM_DECLARE_RESULT(FILE, RESULT) \
1202
  fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1203
 
1204
/* Output the special assembly code needed to tell the assembler some
1205
   register is used as global register variable.
1206
 
1207
   SPARC 64bit psABI declares registers %g2 and %g3 as application
1208
   registers and %g6 and %g7 as OS registers.  Any object using them
1209
   should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1210
   and how they are used (scratch or some global variable).
1211
   Linker will then refuse to link together objects which use those
1212
   registers incompatibly.
1213
 
1214
   Unless the registers are used for scratch, two different global
1215
   registers cannot be declared to the same name, so in the unlikely
1216
   case of a global register variable occupying more than one register
1217
   we prefix the second and following registers with .gnu.part1. etc.  */
1218
 
1219
extern GTY(()) char sparc_hard_reg_printed[8];
1220
 
1221
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
1222
#define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)            \
1223
do {                                                                    \
1224
  if (TARGET_ARCH64)                                                    \
1225
    {                                                                   \
1226
      int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1227
      int reg;                                                          \
1228
      for (reg = (REGNO); reg < 8 && reg < end; reg++)                  \
1229
        if ((reg & ~1) == 2 || (reg & ~1) == 6)                         \
1230
          {                                                             \
1231
            if (reg == (REGNO))                                         \
1232
              fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1233
            else                                                        \
1234
              fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",  \
1235
                       reg, reg - (REGNO), (NAME));                     \
1236
            sparc_hard_reg_printed[reg] = 1;                            \
1237
          }                                                             \
1238
    }                                                                   \
1239
} while (0)
1240
#endif
1241
 
1242
 
1243
/* Emit rtl for profiling.  */
1244
#define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1245
 
1246
/* All the work done in PROFILE_HOOK, but still required.  */
1247
#define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1248
 
1249
/* Set the name of the mcount function for the system.  */
1250
#define MCOUNT_FUNCTION "*mcount"
1251
 
1252
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1253
   the stack pointer does not matter.  The value is tested only in
1254
   functions that have frame pointers.  */
1255
#define EXIT_IGNORE_STACK 1
1256
 
1257
/* Length in units of the trampoline for entering a nested function.  */
1258
#define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1259
 
1260
/* Alignment required for trampolines, in bits.  */
1261
#define TRAMPOLINE_ALIGNMENT 128
1262
 
1263
/* Generate RTL to flush the register windows so as to make arbitrary frames
1264
   available.  */
1265
#define SETUP_FRAME_ADDRESSES()                 \
1266
  do {                                          \
1267
    if (!TARGET_FLAT)                           \
1268
      emit_insn (gen_flush_register_windows ());\
1269
  } while (0)
1270
 
1271
/* Given an rtx for the address of a frame,
1272
   return an rtx for the address of the word in the frame
1273
   that holds the dynamic chain--the previous frame's address.  */
1274
#define DYNAMIC_CHAIN_ADDRESS(frame)    \
1275
  plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1276
 
1277
/* Given an rtx for the frame pointer,
1278
   return an rtx for the address of the frame.  */
1279
#define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS)
1280
 
1281
/* The return address isn't on the stack, it is in a register, so we can't
1282
   access it from the current frame pointer.  We can access it from the
1283
   previous frame pointer though by reading a value from the register window
1284
   save area.  */
1285
#define RETURN_ADDR_IN_PREVIOUS_FRAME
1286
 
1287
/* This is the offset of the return address to the true next instruction to be
1288
   executed for the current function.  */
1289
#define RETURN_ADDR_OFFSET \
1290
  (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1291
 
1292
/* The current return address is in %i7.  The return address of anything
1293
   farther back is in the register window save area at [%fp+60].  */
1294
/* ??? This ignores the fact that the actual return address is +8 for normal
1295
   returns, and +12 for structure returns.  */
1296
#define RETURN_ADDR_REGNUM 31
1297
#define RETURN_ADDR_RTX(count, frame)           \
1298
  ((count == -1)                                \
1299
   ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)                    \
1300
   : gen_rtx_MEM (Pmode,                        \
1301
                  memory_address (Pmode, plus_constant (frame, \
1302
                                                        15 * UNITS_PER_WORD \
1303
                                                        + SPARC_STACK_BIAS))))
1304
 
1305
/* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1306
   +12, but always using +8 is close enough for frame unwind purposes.
1307
   Actually, just using %o7 is close enough for unwinding, but %o7+8
1308
   is something you can return to.  */
1309
#define INCOMING_RETURN_ADDR_REGNUM 15
1310
#define INCOMING_RETURN_ADDR_RTX \
1311
  plus_constant (gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1312
#define DWARF_FRAME_RETURN_COLUMN \
1313
  DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1314
 
1315
/* The offset from the incoming value of %sp to the top of the stack frame
1316
   for the current function.  On sparc64, we have to account for the stack
1317
   bias if present.  */
1318
#define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1319
 
1320
/* Describe how we implement __builtin_eh_return.  */
1321
#define EH_RETURN_REGNUM 1
1322
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1323
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1324
 
1325
/* Define registers used by the epilogue and return instruction.  */
1326
#define EPILOGUE_USES(REGNO)                                    \
1327
  ((REGNO) == RETURN_ADDR_REGNUM                                \
1328
   || (TARGET_FLAT                                              \
1329
       && epilogue_completed                                    \
1330
       && (REGNO) == INCOMING_RETURN_ADDR_REGNUM)               \
1331
   || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1332
 
1333
/* Select a format to encode pointers in exception handling data.  CODE
1334
   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1335
   true if the symbol may be affected by dynamic relocations.
1336
 
1337
   If assembler and linker properly support .uaword %r_disp32(foo),
1338
   then use PC relative 32-bit relocations instead of absolute relocs
1339
   for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1340
   for binaries, to save memory.
1341
 
1342
   binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1343
   symbol %r_disp32() is against was not local, but .hidden.  In that
1344
   case, we have to use DW_EH_PE_absptr for pic personality.  */
1345
#ifdef HAVE_AS_SPARC_UA_PCREL
1346
#ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1347
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
1348
  (flag_pic                                                             \
1349
   ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1350
   : ((TARGET_ARCH64 && ! GLOBAL)                                       \
1351
      ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)                              \
1352
      : DW_EH_PE_absptr))
1353
#else
1354
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)                       \
1355
  (flag_pic                                                             \
1356
   ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))    \
1357
   : ((TARGET_ARCH64 && ! GLOBAL)                                       \
1358
      ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)                              \
1359
      : DW_EH_PE_absptr))
1360
#endif
1361
 
1362
/* Emit a PC-relative relocation.  */
1363
#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)       \
1364
  do {                                                  \
1365
    fputs (integer_asm_op (SIZE, FALSE), FILE);         \
1366
    fprintf (FILE, "%%r_disp%d(", SIZE * 8);            \
1367
    assemble_name (FILE, LABEL);                        \
1368
    fputc (')', FILE);                                  \
1369
  } while (0)
1370
#endif
1371
 
1372
/* Addressing modes, and classification of registers for them.  */
1373
 
1374
/* Macros to check register numbers against specific register classes.  */
1375
 
1376
/* These assume that REGNO is a hard or pseudo reg number.
1377
   They give nonzero only if REGNO is a hard reg of the suitable class
1378
   or a pseudo reg currently allocated to a suitable hard reg.
1379
   Since they use reg_renumber, they are safe only once reg_renumber
1380
   has been allocated, which happens in local-alloc.c.  */
1381
 
1382
#define REGNO_OK_FOR_INDEX_P(REGNO) \
1383
(SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1384
 || (REGNO) == FRAME_POINTER_REGNUM                               \
1385
 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1386
 
1387
#define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1388
 
1389
#define REGNO_OK_FOR_FP_P(REGNO) \
1390
  (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1391
   || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1392
 
1393
#define REGNO_OK_FOR_CCFP_P(REGNO) \
1394
 (TARGET_V9 \
1395
  && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1396
      || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1397
 
1398
/* Maximum number of registers that can appear in a valid memory address.  */
1399
 
1400
#define MAX_REGS_PER_ADDRESS 2
1401
 
1402
/* Recognize any constant value that is a valid address.
1403
   When PIC, we do not accept an address that would require a scratch reg
1404
   to load into a register.  */
1405
 
1406
#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1407
 
1408
/* Define this, so that when PIC, reload won't try to reload invalid
1409
   addresses which require two reload registers.  */
1410
 
1411
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1412
 
1413
/* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1414
 
1415
#ifdef HAVE_AS_OFFSETABLE_LO10
1416
#define USE_AS_OFFSETABLE_LO10 1
1417
#else
1418
#define USE_AS_OFFSETABLE_LO10 0
1419
#endif
1420
 
1421
/* Try a machine-dependent way of reloading an illegitimate address
1422
   operand.  If we find one, push the reload and jump to WIN.  This
1423
   macro is used in only one place: `find_reloads_address' in reload.c.  */
1424
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)        \
1425
do {                                                                       \
1426
  int win;                                                                 \
1427
  (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM),             \
1428
                                         (int)(TYPE), (IND_LEVELS), &win); \
1429
  if (win)                                                                 \
1430
    goto WIN;                                                              \
1431
} while (0)
1432
 
1433
/* Specify the machine mode that this machine uses
1434
   for the index in the tablejump instruction.  */
1435
/* If we ever implement any of the full models (such as CM_FULLANY),
1436
   this has to be DImode in that case */
1437
#ifdef HAVE_GAS_SUBSECTION_ORDERING
1438
#define CASE_VECTOR_MODE \
1439
(! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1440
#else
1441
/* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1442
   we have to sign extend which slows things down.  */
1443
#define CASE_VECTOR_MODE \
1444
(! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1445
#endif
1446
 
1447
/* Define this as 1 if `char' should by default be signed; else as 0.  */
1448
#define DEFAULT_SIGNED_CHAR 1
1449
 
1450
/* Max number of bytes we can move from memory to memory
1451
   in one reasonably fast instruction.  */
1452
#define MOVE_MAX 8
1453
 
1454
/* If a memory-to-memory move would take MOVE_RATIO or more simple
1455
   move-instruction pairs, we will do a movmem or libcall instead.  */
1456
 
1457
#define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1458
 
1459
/* Define if operations between registers always perform the operation
1460
   on the full register even if a narrower mode is specified.  */
1461
#define WORD_REGISTER_OPERATIONS
1462
 
1463
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1464
   will either zero-extend or sign-extend.  The value of this macro should
1465
   be the code that says which one of the two operations is implicitly
1466
   done, UNKNOWN if none.  */
1467
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1468
 
1469
/* Nonzero if access to memory by bytes is slow and undesirable.
1470
   For RISC chips, it means that access to memory by bytes is no
1471
   better than access by words when possible, so grab a whole word
1472
   and maybe make use of that.  */
1473
#define SLOW_BYTE_ACCESS 1
1474
 
1475
/* Define this to be nonzero if shift instructions ignore all but the low-order
1476
   few bits.  */
1477
#define SHIFT_COUNT_TRUNCATED 1
1478
 
1479
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1480
   is done just by pretending it is already truncated.  */
1481
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1482
 
1483
/* For SImode, we make sure the top 32-bits of the register are clear and
1484
   then we subtract 32 from the lzd instruction result.  */
1485
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1486
  ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1487
 
1488
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1489
   return the mode to be used for the comparison.  For floating-point,
1490
   CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand
1491
   is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
1492
   processing is needed.  */
1493
#define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
1494
 
1495
/* Return nonzero if MODE implies a floating point inequality can be
1496
   reversed.  For SPARC this is always true because we have a full
1497
   compliment of ordered and unordered comparisons, but until generic
1498
   code knows how to reverse it correctly we keep the old definition.  */
1499
#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1500
 
1501
/* A function address in a call instruction for indexing purposes.  */
1502
#define FUNCTION_MODE Pmode
1503
 
1504
/* Define this if addresses of constant functions
1505
   shouldn't be put through pseudo regs where they can be cse'd.
1506
   Desirable on machines where ordinary constants are expensive
1507
   but a CALL with constant address is cheap.  */
1508
#define NO_FUNCTION_CSE
1509
 
1510
/* The _Q_* comparison libcalls return booleans.  */
1511
#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1512
 
1513
/* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1514
   that the inputs are fully consumed before the output memory is clobbered.  */
1515
 
1516
#define TARGET_BUGGY_QP_LIB     0
1517
 
1518
/* Assume by default that we do not have the Solaris-specific conversion
1519
   routines nor 64-bit integer multiply and divide routines.  */
1520
 
1521
#define SUN_CONVERSION_LIBFUNCS         0
1522
#define DITF_CONVERSION_LIBFUNCS        0
1523
#define SUN_INTEGER_MULTIPLY_64         0
1524
 
1525
/* Provide the cost of a branch.  For pre-v9 processors we use
1526
   a value of 3 to take into account the potential annulling of
1527
   the delay slot (which ends up being a bubble in the pipeline slot)
1528
   plus a cycle to take into consideration the instruction cache
1529
   effects.
1530
 
1531
   On v9 and later, which have branch prediction facilities, we set
1532
   it to the depth of the pipeline as that is the cost of a
1533
   mispredicted branch.
1534
 
1535
   On Niagara, normal branches insert 3 bubbles into the pipe
1536
   and annulled branches insert 4 bubbles.
1537
 
1538
   On Niagara-2 and Niagara-3, a not-taken branch costs 1 cycle whereas
1539
   a taken branch costs 6 cycles.  */
1540
 
1541
#define BRANCH_COST(speed_p, predictable_p) \
1542
        ((sparc_cpu == PROCESSOR_V9 \
1543
          || sparc_cpu == PROCESSOR_ULTRASPARC) \
1544
         ? 7 \
1545
         : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1546
            ? 9 \
1547
         : (sparc_cpu == PROCESSOR_NIAGARA \
1548
            ? 4 \
1549
         : ((sparc_cpu == PROCESSOR_NIAGARA2 \
1550
             || sparc_cpu == PROCESSOR_NIAGARA3) \
1551
            ? 5 \
1552
         : 3))))
1553
 
1554
/* Control the assembler format that we output.  */
1555
 
1556
/* A C string constant describing how to begin a comment in the target
1557
   assembler language.  The compiler assumes that the comment will end at
1558
   the end of the line.  */
1559
 
1560
#define ASM_COMMENT_START "!"
1561
 
1562
/* Output to assembler file text saying following lines
1563
   may contain character constants, extra white space, comments, etc.  */
1564
 
1565
#define ASM_APP_ON ""
1566
 
1567
/* Output to assembler file text saying following lines
1568
   no longer contain unusual constructs.  */
1569
 
1570
#define ASM_APP_OFF ""
1571
 
1572
/* How to refer to registers in assembler output.
1573
   This sequence is indexed by compiler's hard-register-number (see above).  */
1574
 
1575
#define REGISTER_NAMES \
1576
{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",                \
1577
 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",                \
1578
 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",                \
1579
 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",                \
1580
 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",                \
1581
 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",          \
1582
 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",        \
1583
 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",        \
1584
 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",        \
1585
 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",        \
1586
 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",        \
1587
 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",        \
1588
 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1589
 
1590
/* Define additional names for use in asm clobbers and asm declarations.  */
1591
 
1592
#define ADDITIONAL_REGISTER_NAMES \
1593
{{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1594
 
1595
/* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
1596
   can run past this up to a continuation point.  Once we used 1500, but
1597
   a single entry in C++ can run more than 500 bytes, due to the length of
1598
   mangled symbol names.  dbxout.c should really be fixed to do
1599
   continuations when they are actually needed instead of trying to
1600
   guess...  */
1601
#define DBX_CONTIN_LENGTH 1000
1602
 
1603
/* This is how to output a command to make the user-level label named NAME
1604
   defined for reference from other files.  */
1605
 
1606
/* Globalizing directive for a label.  */
1607
#define GLOBAL_ASM_OP "\t.global "
1608
 
1609
/* The prefix to add to user-visible assembler symbols.  */
1610
 
1611
#define USER_LABEL_PREFIX "_"
1612
 
1613
/* This is how to store into the string LABEL
1614
   the symbol_ref name of an internal numbered label where
1615
   PREFIX is the class of label and NUM is the number within the class.
1616
   This is suitable for output with `assemble_name'.  */
1617
 
1618
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)   \
1619
  sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1620
 
1621
/* This is how we hook in and defer the case-vector until the end of
1622
   the function.  */
1623
#define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1624
  sparc_defer_case_vector ((LAB),(VEC), 0)
1625
 
1626
#define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1627
  sparc_defer_case_vector ((LAB),(VEC), 1)
1628
 
1629
/* This is how to output an element of a case-vector that is absolute.  */
1630
 
1631
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1632
do {                                                                    \
1633
  char label[30];                                                       \
1634
  ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);                      \
1635
  if (CASE_VECTOR_MODE == SImode)                                       \
1636
    fprintf (FILE, "\t.word\t");                                        \
1637
  else                                                                  \
1638
    fprintf (FILE, "\t.xword\t");                                       \
1639
  assemble_name (FILE, label);                                          \
1640
  fputc ('\n', FILE);                                                   \
1641
} while (0)
1642
 
1643
/* This is how to output an element of a case-vector that is relative.
1644
   (SPARC uses such vectors only when generating PIC.)  */
1645
 
1646
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)                \
1647
do {                                                                    \
1648
  char label[30];                                                       \
1649
  ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));                    \
1650
  if (CASE_VECTOR_MODE == SImode)                                       \
1651
    fprintf (FILE, "\t.word\t");                                        \
1652
  else                                                                  \
1653
    fprintf (FILE, "\t.xword\t");                                       \
1654
  assemble_name (FILE, label);                                          \
1655
  ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));                      \
1656
  fputc ('-', FILE);                                                    \
1657
  assemble_name (FILE, label);                                          \
1658
  fputc ('\n', FILE);                                                   \
1659
} while (0)
1660
 
1661
/* This is what to output before and after case-vector (both
1662
   relative and absolute).  If .subsection -1 works, we put case-vectors
1663
   at the beginning of the current section.  */
1664
 
1665
#ifdef HAVE_GAS_SUBSECTION_ORDERING
1666
 
1667
#define ASM_OUTPUT_ADDR_VEC_START(FILE)                                 \
1668
  fprintf(FILE, "\t.subsection\t-1\n")
1669
 
1670
#define ASM_OUTPUT_ADDR_VEC_END(FILE)                                   \
1671
  fprintf(FILE, "\t.previous\n")
1672
 
1673
#endif
1674
 
1675
/* This is how to output an assembler line
1676
   that says to advance the location counter
1677
   to a multiple of 2**LOG bytes.  */
1678
 
1679
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
1680
  if ((LOG) != 0)                       \
1681
    fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1682
 
1683
#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1684
  fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1685
 
1686
/* This says how to output an assembler line
1687
   to define a global common symbol.  */
1688
 
1689
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1690
( fputs ("\t.common ", (FILE)),         \
1691
  assemble_name ((FILE), (NAME)),               \
1692
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1693
 
1694
/* This says how to output an assembler line to define a local common
1695
   symbol.  */
1696
 
1697
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)             \
1698
( fputs ("\t.reserve ", (FILE)),                                        \
1699
  assemble_name ((FILE), (NAME)),                                       \
1700
  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",      \
1701
           (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1702
 
1703
/* A C statement (sans semicolon) to output to the stdio stream
1704
   FILE the assembler definition of uninitialized global DECL named
1705
   NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1706
   Try to use asm_output_aligned_bss to implement this macro.  */
1707
 
1708
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)   \
1709
  do {                                                          \
1710
    ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);         \
1711
  } while (0)
1712
 
1713
#define IDENT_ASM_OP "\t.ident\t"
1714
 
1715
/* Output #ident as a .ident.  */
1716
 
1717
#define ASM_OUTPUT_IDENT(FILE, NAME) \
1718
  fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
1719
 
1720
/* Prettify the assembly.  */
1721
 
1722
extern int sparc_indent_opcode;
1723
 
1724
#define ASM_OUTPUT_OPCODE(FILE, PTR)    \
1725
  do {                                  \
1726
    if (sparc_indent_opcode)            \
1727
      {                                 \
1728
        putc (' ', FILE);               \
1729
        sparc_indent_opcode = 0; \
1730
      }                                 \
1731
  } while (0)
1732
 
1733
/* TLS support defaulting to original Sun flavor.  GNU extensions
1734
   must be activated in separate configuration files.  */
1735
#ifdef HAVE_AS_TLS
1736
#define TARGET_TLS 1
1737
#else
1738
#define TARGET_TLS 0
1739
#endif
1740
 
1741
#define TARGET_SUN_TLS TARGET_TLS
1742
#define TARGET_GNU_TLS 0
1743
 
1744
#ifndef HAVE_AS_FMAF_HPC_VIS3
1745
#define AS_NIAGARA3_FLAG "b"
1746
#else
1747
#define AS_NIAGARA3_FLAG "d"
1748
#endif
1749
 
1750
/* The number of Pmode words for the setjmp buffer.  */
1751
#define JMP_BUF_SIZE 12
1752
 
1753
/* We use gcc _mcount for profiling.  */
1754
#define NO_PROFILE_COUNTERS 0
1755
 
1756
/* Debug support */
1757
#define MASK_DEBUG_OPTIONS              0x01    /* debug option handling */
1758
#define MASK_DEBUG_ALL                  MASK_DEBUG_OPTIONS
1759
 
1760
#define TARGET_DEBUG_OPTIONS            (sparc_debug & MASK_DEBUG_OPTIONS)
1761
 
1762
/* By default, use the weakest memory model for the cpu.  */
1763
#ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1764
#define SUBTARGET_DEFAULT_MEMORY_MODEL  SMM_DEFAULT
1765
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.