| 1 |
709 |
jeremybenn |
;; Predicate definitions for NEC V850.
|
| 2 |
|
|
;; Copyright (C) 2005, 2007, 2010 Free Software Foundation, Inc.
|
| 3 |
|
|
;;
|
| 4 |
|
|
;; This file is part of GCC.
|
| 5 |
|
|
;;
|
| 6 |
|
|
;; GCC is free software; you can redistribute it and/or modify
|
| 7 |
|
|
;; it under the terms of the GNU General Public License as published by
|
| 8 |
|
|
;; the Free Software Foundation; either version 3, or (at your option)
|
| 9 |
|
|
;; any later version.
|
| 10 |
|
|
;;
|
| 11 |
|
|
;; GCC is distributed in the hope that it will be useful,
|
| 12 |
|
|
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 14 |
|
|
;; GNU General Public License for more details.
|
| 15 |
|
|
;;
|
| 16 |
|
|
;; You should have received a copy of the GNU General Public License
|
| 17 |
|
|
;; along with GCC; see the file COPYING3. If not see
|
| 18 |
|
|
;; .
|
| 19 |
|
|
|
| 20 |
|
|
;; Return true if OP is either a register or 0.
|
| 21 |
|
|
|
| 22 |
|
|
(define_predicate "reg_or_0_operand"
|
| 23 |
|
|
(match_code "reg,subreg,const_int,const_double")
|
| 24 |
|
|
{
|
| 25 |
|
|
if (GET_CODE (op) == CONST_INT)
|
| 26 |
|
|
return INTVAL (op) == 0;
|
| 27 |
|
|
|
| 28 |
|
|
else if (GET_CODE (op) == CONST_DOUBLE)
|
| 29 |
|
|
return satisfies_constraint_G (op);
|
| 30 |
|
|
|
| 31 |
|
|
else
|
| 32 |
|
|
return register_operand (op, mode);
|
| 33 |
|
|
})
|
| 34 |
|
|
|
| 35 |
|
|
;; Return true if OP is either a register or a signed five bit
|
| 36 |
|
|
;; integer.
|
| 37 |
|
|
|
| 38 |
|
|
(define_predicate "reg_or_int5_operand"
|
| 39 |
|
|
(match_code "reg,subreg,const_int")
|
| 40 |
|
|
{
|
| 41 |
|
|
if (GET_CODE (op) == CONST_INT)
|
| 42 |
|
|
return CONST_OK_FOR_J (INTVAL (op));
|
| 43 |
|
|
|
| 44 |
|
|
else
|
| 45 |
|
|
return register_operand (op, mode);
|
| 46 |
|
|
})
|
| 47 |
|
|
|
| 48 |
|
|
;; Return true if OP is either a register or a signed nine bit
|
| 49 |
|
|
;; integer.
|
| 50 |
|
|
|
| 51 |
|
|
(define_predicate "reg_or_int9_operand"
|
| 52 |
|
|
(match_code "reg,subreg,const_int")
|
| 53 |
|
|
{
|
| 54 |
|
|
if (GET_CODE (op) == CONST_INT)
|
| 55 |
|
|
return CONST_OK_FOR_O (INTVAL (op));
|
| 56 |
|
|
|
| 57 |
|
|
return register_operand (op, mode);
|
| 58 |
|
|
})
|
| 59 |
|
|
|
| 60 |
|
|
;; Return true if OP is either a register or a const integer.
|
| 61 |
|
|
|
| 62 |
|
|
(define_predicate "reg_or_const_operand"
|
| 63 |
|
|
(match_code "reg,const_int")
|
| 64 |
|
|
{
|
| 65 |
|
|
if (GET_CODE (op) == CONST_INT)
|
| 66 |
|
|
return TRUE;
|
| 67 |
|
|
|
| 68 |
|
|
return register_operand (op, mode);
|
| 69 |
|
|
})
|
| 70 |
|
|
|
| 71 |
|
|
;; Return true if OP is a even number register.
|
| 72 |
|
|
|
| 73 |
|
|
(define_predicate "even_reg_operand"
|
| 74 |
|
|
(match_code "reg")
|
| 75 |
|
|
{
|
| 76 |
|
|
return (GET_CODE (op) == REG
|
| 77 |
|
|
&& (REGNO (op) >= FIRST_PSEUDO_REGISTER
|
| 78 |
|
|
|| ((REGNO (op) > 0) && (REGNO (op) < 32)
|
| 79 |
|
|
&& ((REGNO (op) & 1)==0))));
|
| 80 |
|
|
})
|
| 81 |
|
|
|
| 82 |
|
|
;; Return true if OP is a valid call operand.
|
| 83 |
|
|
|
| 84 |
|
|
(define_predicate "call_address_operand"
|
| 85 |
|
|
(match_code "reg,symbol_ref")
|
| 86 |
|
|
{
|
| 87 |
|
|
/* Only registers are valid call operands if TARGET_LONG_CALLS. */
|
| 88 |
|
|
if (TARGET_LONG_CALLS)
|
| 89 |
|
|
return GET_CODE (op) == REG;
|
| 90 |
|
|
return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == REG);
|
| 91 |
|
|
})
|
| 92 |
|
|
|
| 93 |
|
|
;; Return true if OP is a valid source operand for SImode move.
|
| 94 |
|
|
|
| 95 |
|
|
(define_predicate "movsi_source_operand"
|
| 96 |
|
|
(match_code "label_ref,symbol_ref,const_int,const_double,const,high,mem,reg,subreg")
|
| 97 |
|
|
{
|
| 98 |
|
|
/* Some constants, as well as symbolic operands
|
| 99 |
|
|
must be done with HIGH & LO_SUM patterns. */
|
| 100 |
|
|
if (CONSTANT_P (op)
|
| 101 |
|
|
&& GET_CODE (op) != HIGH
|
| 102 |
|
|
&& !(GET_CODE (op) == CONST_INT
|
| 103 |
|
|
&& (CONST_OK_FOR_J (INTVAL (op))
|
| 104 |
|
|
|| CONST_OK_FOR_K (INTVAL (op))
|
| 105 |
|
|
|| CONST_OK_FOR_L (INTVAL (op)))))
|
| 106 |
|
|
return special_symbolref_operand (op, mode);
|
| 107 |
|
|
else
|
| 108 |
|
|
return general_operand (op, mode);
|
| 109 |
|
|
})
|
| 110 |
|
|
|
| 111 |
|
|
;; Return true if OP is a valid operand for 23 bit displacement
|
| 112 |
|
|
;; operations.
|
| 113 |
|
|
|
| 114 |
|
|
(define_predicate "disp23_operand"
|
| 115 |
|
|
(match_code "const_int")
|
| 116 |
|
|
{
|
| 117 |
|
|
if (GET_CODE (op) == CONST_INT
|
| 118 |
|
|
&& ((unsigned)(INTVAL (op)) >= 0x8000)
|
| 119 |
|
|
&& ((unsigned)(INTVAL (op)) < 0x400000))
|
| 120 |
|
|
return 1;
|
| 121 |
|
|
else
|
| 122 |
|
|
return 0;
|
| 123 |
|
|
})
|
| 124 |
|
|
|
| 125 |
|
|
;; Return true if OP is a symbol ref with 16-bit signed value.
|
| 126 |
|
|
|
| 127 |
|
|
(define_predicate "special_symbolref_operand"
|
| 128 |
|
|
(match_code "symbol_ref")
|
| 129 |
|
|
{
|
| 130 |
|
|
if (GET_CODE (op) == CONST
|
| 131 |
|
|
&& GET_CODE (XEXP (op, 0)) == PLUS
|
| 132 |
|
|
&& satisfies_constraint_K (XEXP (XEXP (op, 0), 1)))
|
| 133 |
|
|
op = XEXP (XEXP (op, 0), 0);
|
| 134 |
|
|
|
| 135 |
|
|
if (GET_CODE (op) == SYMBOL_REF)
|
| 136 |
|
|
return (SYMBOL_REF_FLAGS (op)
|
| 137 |
|
|
& (SYMBOL_FLAG_ZDA | SYMBOL_FLAG_TDA | SYMBOL_FLAG_SDA)) != 0;
|
| 138 |
|
|
|
| 139 |
|
|
return FALSE;
|
| 140 |
|
|
})
|
| 141 |
|
|
|
| 142 |
|
|
;; Return true if OP is a valid operand for bit related operations
|
| 143 |
|
|
;; containing only single 1 in its binary representation.
|
| 144 |
|
|
|
| 145 |
|
|
(define_predicate "power_of_two_operand"
|
| 146 |
|
|
(match_code "const_int")
|
| 147 |
|
|
{
|
| 148 |
|
|
if (GET_CODE (op) != CONST_INT)
|
| 149 |
|
|
return 0;
|
| 150 |
|
|
|
| 151 |
|
|
if (exact_log2 (INTVAL (op)) == -1)
|
| 152 |
|
|
return 0;
|
| 153 |
|
|
return 1;
|
| 154 |
|
|
})
|
| 155 |
|
|
|
| 156 |
|
|
;; Return nonzero if the given RTX is suitable for collapsing into a
|
| 157 |
|
|
;; jump to a function prologue.
|
| 158 |
|
|
|
| 159 |
|
|
(define_predicate "pattern_is_ok_for_prologue"
|
| 160 |
|
|
(match_code "parallel")
|
| 161 |
|
|
{
|
| 162 |
|
|
int count = XVECLEN (op, 0);
|
| 163 |
|
|
int i;
|
| 164 |
|
|
rtx vector_element;
|
| 165 |
|
|
|
| 166 |
|
|
/* If there are no registers to save then the function prologue
|
| 167 |
|
|
is not suitable. */
|
| 168 |
|
|
if (count <= (TARGET_LONG_CALLS ? 3 : 2))
|
| 169 |
|
|
return 0;
|
| 170 |
|
|
|
| 171 |
|
|
/* The pattern matching has already established that we are adjusting the
|
| 172 |
|
|
stack and pushing at least one register. We must now check that the
|
| 173 |
|
|
remaining entries in the vector to make sure that they are also register
|
| 174 |
|
|
pushes, except for the last entry which should be a CLOBBER of r10.
|
| 175 |
|
|
|
| 176 |
|
|
The test below performs the C equivalent of this machine description
|
| 177 |
|
|
pattern match:
|
| 178 |
|
|
|
| 179 |
|
|
(set (mem:SI (plus:SI (reg:SI 3)
|
| 180 |
|
|
(match_operand:SI 2 "immediate_operand" "i")))
|
| 181 |
|
|
(match_operand:SI 3 "register_is_ok_for_epilogue" "r"))
|
| 182 |
|
|
|
| 183 |
|
|
*/
|
| 184 |
|
|
|
| 185 |
|
|
for (i = 2; i < count - (TARGET_LONG_CALLS ? 2: 1); i++)
|
| 186 |
|
|
{
|
| 187 |
|
|
rtx dest;
|
| 188 |
|
|
rtx src;
|
| 189 |
|
|
rtx plus;
|
| 190 |
|
|
|
| 191 |
|
|
vector_element = XVECEXP (op, 0, i);
|
| 192 |
|
|
|
| 193 |
|
|
if (GET_CODE (vector_element) != SET)
|
| 194 |
|
|
return 0;
|
| 195 |
|
|
|
| 196 |
|
|
dest = SET_DEST (vector_element);
|
| 197 |
|
|
src = SET_SRC (vector_element);
|
| 198 |
|
|
|
| 199 |
|
|
if (GET_CODE (dest) != MEM
|
| 200 |
|
|
|| GET_MODE (dest) != SImode
|
| 201 |
|
|
|| GET_CODE (src) != REG
|
| 202 |
|
|
|| GET_MODE (src) != SImode
|
| 203 |
|
|
|| ! register_is_ok_for_epilogue (src, SImode))
|
| 204 |
|
|
return 0;
|
| 205 |
|
|
|
| 206 |
|
|
plus = XEXP (dest, 0);
|
| 207 |
|
|
|
| 208 |
|
|
if ( GET_CODE (plus) != PLUS
|
| 209 |
|
|
|| GET_CODE (XEXP (plus, 0)) != REG
|
| 210 |
|
|
|| GET_MODE (XEXP (plus, 0)) != SImode
|
| 211 |
|
|
|| REGNO (XEXP (plus, 0)) != STACK_POINTER_REGNUM
|
| 212 |
|
|
|| GET_CODE (XEXP (plus, 1)) != CONST_INT)
|
| 213 |
|
|
return 0;
|
| 214 |
|
|
|
| 215 |
|
|
/* If the register is being pushed somewhere other than the stack
|
| 216 |
|
|
space just acquired by the first operand then abandon this quest.
|
| 217 |
|
|
Note: the test is <= because both values are negative. */
|
| 218 |
|
|
if (INTVAL (XEXP (plus, 1))
|
| 219 |
|
|
<= INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1)))
|
| 220 |
|
|
{
|
| 221 |
|
|
return 0;
|
| 222 |
|
|
}
|
| 223 |
|
|
}
|
| 224 |
|
|
|
| 225 |
|
|
/* Make sure that the last entries in the vector are clobbers. */
|
| 226 |
|
|
vector_element = XVECEXP (op, 0, i++);
|
| 227 |
|
|
|
| 228 |
|
|
if (GET_CODE (vector_element) != CLOBBER
|
| 229 |
|
|
|| GET_CODE (XEXP (vector_element, 0)) != REG
|
| 230 |
|
|
|| REGNO (XEXP (vector_element, 0)) != 10)
|
| 231 |
|
|
return 0;
|
| 232 |
|
|
|
| 233 |
|
|
if (TARGET_LONG_CALLS)
|
| 234 |
|
|
{
|
| 235 |
|
|
vector_element = XVECEXP (op, 0, i++);
|
| 236 |
|
|
|
| 237 |
|
|
if (GET_CODE (vector_element) != CLOBBER
|
| 238 |
|
|
|| GET_CODE (XEXP (vector_element, 0)) != REG
|
| 239 |
|
|
|| REGNO (XEXP (vector_element, 0)) != 11)
|
| 240 |
|
|
return 0;
|
| 241 |
|
|
}
|
| 242 |
|
|
|
| 243 |
|
|
return i == count;
|
| 244 |
|
|
})
|
| 245 |
|
|
|
| 246 |
|
|
;; Return nonzero if the given RTX is suitable for collapsing into
|
| 247 |
|
|
;; jump to a function epilogue.
|
| 248 |
|
|
|
| 249 |
|
|
(define_predicate "pattern_is_ok_for_epilogue"
|
| 250 |
|
|
(match_code "parallel")
|
| 251 |
|
|
{
|
| 252 |
|
|
int count = XVECLEN (op, 0);
|
| 253 |
|
|
int i;
|
| 254 |
|
|
|
| 255 |
|
|
/* If there are no registers to restore then the function epilogue
|
| 256 |
|
|
is not suitable. */
|
| 257 |
|
|
if (count <= 2)
|
| 258 |
|
|
return 0;
|
| 259 |
|
|
|
| 260 |
|
|
/* The pattern matching has already established that we are performing a
|
| 261 |
|
|
function epilogue and that we are popping at least one register. We must
|
| 262 |
|
|
now check the remaining entries in the vector to make sure that they are
|
| 263 |
|
|
also register pops. There is no good reason why there should ever be
|
| 264 |
|
|
anything else in this vector, but being paranoid always helps...
|
| 265 |
|
|
|
| 266 |
|
|
The test below performs the C equivalent of this machine description
|
| 267 |
|
|
pattern match:
|
| 268 |
|
|
|
| 269 |
|
|
(set (match_operand:SI n "register_is_ok_for_epilogue" "r")
|
| 270 |
|
|
(mem:SI (plus:SI (reg:SI 3) (match_operand:SI n "immediate_operand" "i"))))
|
| 271 |
|
|
*/
|
| 272 |
|
|
|
| 273 |
|
|
for (i = 2; i < count; i++)
|
| 274 |
|
|
{
|
| 275 |
|
|
rtx vector_element = XVECEXP (op, 0, i);
|
| 276 |
|
|
rtx dest;
|
| 277 |
|
|
rtx src;
|
| 278 |
|
|
rtx plus;
|
| 279 |
|
|
|
| 280 |
|
|
if (GET_CODE (vector_element) != SET)
|
| 281 |
|
|
return 0;
|
| 282 |
|
|
|
| 283 |
|
|
dest = SET_DEST (vector_element);
|
| 284 |
|
|
src = SET_SRC (vector_element);
|
| 285 |
|
|
|
| 286 |
|
|
if (GET_CODE (dest) != REG
|
| 287 |
|
|
|| GET_MODE (dest) != SImode
|
| 288 |
|
|
|| ! register_is_ok_for_epilogue (dest, SImode)
|
| 289 |
|
|
|| GET_CODE (src) != MEM
|
| 290 |
|
|
|| GET_MODE (src) != SImode)
|
| 291 |
|
|
return 0;
|
| 292 |
|
|
|
| 293 |
|
|
plus = XEXP (src, 0);
|
| 294 |
|
|
|
| 295 |
|
|
if (GET_CODE (plus) != PLUS
|
| 296 |
|
|
|| GET_CODE (XEXP (plus, 0)) != REG
|
| 297 |
|
|
|| GET_MODE (XEXP (plus, 0)) != SImode
|
| 298 |
|
|
|| REGNO (XEXP (plus, 0)) != STACK_POINTER_REGNUM
|
| 299 |
|
|
|| GET_CODE (XEXP (plus, 1)) != CONST_INT)
|
| 300 |
|
|
return 0;
|
| 301 |
|
|
}
|
| 302 |
|
|
|
| 303 |
|
|
return 1;
|
| 304 |
|
|
})
|
| 305 |
|
|
|
| 306 |
|
|
;; Return true if the given RTX is a register which can be restored by
|
| 307 |
|
|
;; a function epilogue.
|
| 308 |
|
|
|
| 309 |
|
|
(define_predicate "register_is_ok_for_epilogue"
|
| 310 |
|
|
(match_code "reg")
|
| 311 |
|
|
{
|
| 312 |
|
|
/* The save/restore routines can only cope with registers 20 - 31. */
|
| 313 |
|
|
return ((GET_CODE (op) == REG)
|
| 314 |
|
|
&& (((REGNO (op) >= 20) && REGNO (op) <= 31)));
|
| 315 |
|
|
})
|
| 316 |
|
|
|
| 317 |
|
|
;; Return nonzero if the given RTX is suitable for collapsing into a
|
| 318 |
|
|
;; DISPOSE instruction.
|
| 319 |
|
|
|
| 320 |
|
|
(define_predicate "pattern_is_ok_for_dispose"
|
| 321 |
|
|
(match_code "parallel")
|
| 322 |
|
|
{
|
| 323 |
|
|
int count = XVECLEN (op, 0);
|
| 324 |
|
|
int i;
|
| 325 |
|
|
|
| 326 |
|
|
/* If there are no registers to restore then
|
| 327 |
|
|
the dispose instruction is not suitable. */
|
| 328 |
|
|
if (count <= 2)
|
| 329 |
|
|
return 0;
|
| 330 |
|
|
|
| 331 |
|
|
/* The pattern matching has already established that we are performing a
|
| 332 |
|
|
function epilogue and that we are popping at least one register. We must
|
| 333 |
|
|
now check the remaining entries in the vector to make sure that they are
|
| 334 |
|
|
also register pops. There is no good reason why there should ever be
|
| 335 |
|
|
anything else in this vector, but being paranoid always helps...
|
| 336 |
|
|
|
| 337 |
|
|
The test below performs the C equivalent of this machine description
|
| 338 |
|
|
pattern match:
|
| 339 |
|
|
|
| 340 |
|
|
(set (match_operand:SI n "register_is_ok_for_epilogue" "r")
|
| 341 |
|
|
(mem:SI (plus:SI (reg:SI 3)
|
| 342 |
|
|
(match_operand:SI n "immediate_operand" "i"))))
|
| 343 |
|
|
*/
|
| 344 |
|
|
|
| 345 |
|
|
for (i = 3; i < count; i++)
|
| 346 |
|
|
{
|
| 347 |
|
|
rtx vector_element = XVECEXP (op, 0, i);
|
| 348 |
|
|
rtx dest;
|
| 349 |
|
|
rtx src;
|
| 350 |
|
|
rtx plus;
|
| 351 |
|
|
|
| 352 |
|
|
if (GET_CODE (vector_element) != SET)
|
| 353 |
|
|
return 0;
|
| 354 |
|
|
|
| 355 |
|
|
dest = SET_DEST (vector_element);
|
| 356 |
|
|
src = SET_SRC (vector_element);
|
| 357 |
|
|
|
| 358 |
|
|
if ( GET_CODE (dest) != REG
|
| 359 |
|
|
|| GET_MODE (dest) != SImode
|
| 360 |
|
|
|| ! register_is_ok_for_epilogue (dest, SImode)
|
| 361 |
|
|
|| GET_CODE (src) != MEM
|
| 362 |
|
|
|| GET_MODE (src) != SImode)
|
| 363 |
|
|
return 0;
|
| 364 |
|
|
|
| 365 |
|
|
plus = XEXP (src, 0);
|
| 366 |
|
|
|
| 367 |
|
|
if ( GET_CODE (plus) != PLUS
|
| 368 |
|
|
|| GET_CODE (XEXP (plus, 0)) != REG
|
| 369 |
|
|
|| GET_MODE (XEXP (plus, 0)) != SImode
|
| 370 |
|
|
|| REGNO (XEXP (plus, 0)) != STACK_POINTER_REGNUM
|
| 371 |
|
|
|| GET_CODE (XEXP (plus, 1)) != CONST_INT)
|
| 372 |
|
|
return 0;
|
| 373 |
|
|
}
|
| 374 |
|
|
|
| 375 |
|
|
return 1;
|
| 376 |
|
|
})
|
| 377 |
|
|
|
| 378 |
|
|
;; Return nonzero if the given RTX is suitable for collapsing into a
|
| 379 |
|
|
;; PREPARE instruction.
|
| 380 |
|
|
|
| 381 |
|
|
(define_predicate "pattern_is_ok_for_prepare"
|
| 382 |
|
|
(match_code "parallel")
|
| 383 |
|
|
{
|
| 384 |
|
|
int count = XVECLEN (op, 0);
|
| 385 |
|
|
int i;
|
| 386 |
|
|
|
| 387 |
|
|
/* If there are no registers to restore then the prepare instruction
|
| 388 |
|
|
is not suitable. */
|
| 389 |
|
|
if (count <= 1)
|
| 390 |
|
|
return 0;
|
| 391 |
|
|
|
| 392 |
|
|
/* The pattern matching has already established that we are adjusting the
|
| 393 |
|
|
stack and pushing at least one register. We must now check that the
|
| 394 |
|
|
remaining entries in the vector to make sure that they are also register
|
| 395 |
|
|
pushes.
|
| 396 |
|
|
|
| 397 |
|
|
The test below performs the C equivalent of this machine description
|
| 398 |
|
|
pattern match:
|
| 399 |
|
|
|
| 400 |
|
|
(set (mem:SI (plus:SI (reg:SI 3)
|
| 401 |
|
|
(match_operand:SI 2 "immediate_operand" "i")))
|
| 402 |
|
|
(match_operand:SI 3 "register_is_ok_for_epilogue" "r"))
|
| 403 |
|
|
|
| 404 |
|
|
*/
|
| 405 |
|
|
|
| 406 |
|
|
for (i = 1; i < count; i++)
|
| 407 |
|
|
{
|
| 408 |
|
|
rtx vector_element = XVECEXP (op, 0, i);
|
| 409 |
|
|
rtx dest;
|
| 410 |
|
|
rtx src;
|
| 411 |
|
|
rtx plus;
|
| 412 |
|
|
|
| 413 |
|
|
if (GET_CODE (vector_element) == CLOBBER)
|
| 414 |
|
|
continue;
|
| 415 |
|
|
|
| 416 |
|
|
if (GET_CODE (vector_element) != SET)
|
| 417 |
|
|
return 0;
|
| 418 |
|
|
|
| 419 |
|
|
dest = SET_DEST (vector_element);
|
| 420 |
|
|
src = SET_SRC (vector_element);
|
| 421 |
|
|
|
| 422 |
|
|
if ( GET_CODE (dest) != MEM
|
| 423 |
|
|
|| GET_MODE (dest) != SImode
|
| 424 |
|
|
|| GET_CODE (src) != REG
|
| 425 |
|
|
|| GET_MODE (src) != SImode
|
| 426 |
|
|
|| ! register_is_ok_for_epilogue (src, SImode)
|
| 427 |
|
|
)
|
| 428 |
|
|
return 0;
|
| 429 |
|
|
|
| 430 |
|
|
plus = XEXP (dest, 0);
|
| 431 |
|
|
|
| 432 |
|
|
if ( GET_CODE (plus) != PLUS
|
| 433 |
|
|
|| GET_CODE (XEXP (plus, 0)) != REG
|
| 434 |
|
|
|| GET_MODE (XEXP (plus, 0)) != SImode
|
| 435 |
|
|
|| REGNO (XEXP (plus, 0)) != STACK_POINTER_REGNUM
|
| 436 |
|
|
|| GET_CODE (XEXP (plus, 1)) != CONST_INT)
|
| 437 |
|
|
return 0;
|
| 438 |
|
|
|
| 439 |
|
|
/* If the register is being pushed somewhere other than the stack
|
| 440 |
|
|
space just acquired by the first operand then abandon this quest.
|
| 441 |
|
|
Note: the test is <= because both values are negative. */
|
| 442 |
|
|
if (INTVAL (XEXP (plus, 1))
|
| 443 |
|
|
< INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1)))
|
| 444 |
|
|
return 0;
|
| 445 |
|
|
}
|
| 446 |
|
|
|
| 447 |
|
|
return 1;
|
| 448 |
|
|
})
|
| 449 |
|
|
|
| 450 |
|
|
;; Return true if OP is a valid operand for bit related operations
|
| 451 |
|
|
;; containing only single 0 in its binary representation.
|
| 452 |
|
|
|
| 453 |
|
|
(define_predicate "not_power_of_two_operand"
|
| 454 |
|
|
(match_code "const_int")
|
| 455 |
|
|
{
|
| 456 |
|
|
unsigned int mask;
|
| 457 |
|
|
|
| 458 |
|
|
if (mode == QImode)
|
| 459 |
|
|
mask = 0xff;
|
| 460 |
|
|
else if (mode == HImode)
|
| 461 |
|
|
mask = 0xffff;
|
| 462 |
|
|
else if (mode == SImode)
|
| 463 |
|
|
mask = 0xffffffff;
|
| 464 |
|
|
else
|
| 465 |
|
|
return 0;
|
| 466 |
|
|
|
| 467 |
|
|
if (GET_CODE (op) != CONST_INT)
|
| 468 |
|
|
return 0;
|
| 469 |
|
|
|
| 470 |
|
|
if (exact_log2 (~INTVAL (op) & mask) == -1)
|
| 471 |
|
|
return 0;
|
| 472 |
|
|
return 1;
|
| 473 |
|
|
})
|
| 474 |
|
|
|
| 475 |
|
|
;; Return true if OP is a float value operand with value as 1.
|
| 476 |
|
|
|
| 477 |
|
|
(define_predicate "const_float_1_operand"
|
| 478 |
|
|
(match_code "const_int")
|
| 479 |
|
|
{
|
| 480 |
|
|
if (GET_CODE (op) != CONST_DOUBLE
|
| 481 |
|
|
|| mode != GET_MODE (op)
|
| 482 |
|
|
|| (mode != DFmode && mode != SFmode))
|
| 483 |
|
|
return 0;
|
| 484 |
|
|
|
| 485 |
|
|
return op == CONST1_RTX(mode);
|
| 486 |
|
|
})
|
| 487 |
|
|
|
| 488 |
|
|
;; Return true if OP is a float value operand with value as 0.
|
| 489 |
|
|
|
| 490 |
|
|
(define_predicate "const_float_0_operand"
|
| 491 |
|
|
(match_code "const_int")
|
| 492 |
|
|
{
|
| 493 |
|
|
if (GET_CODE (op) != CONST_DOUBLE
|
| 494 |
|
|
|| mode != GET_MODE (op)
|
| 495 |
|
|
|| (mode != DFmode && mode != SFmode))
|
| 496 |
|
|
return 0;
|
| 497 |
|
|
|
| 498 |
|
|
return op == CONST0_RTX(mode);
|
| 499 |
|
|
})
|
| 500 |
|
|
|
| 501 |
|
|
|