OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [config/] [xtensa/] [xtensa.h] - Blame information for rev 750

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 709 jeremybenn
/* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2
   Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3
   Free Software Foundation, Inc.
4
   Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
/* Get Xtensa configuration settings */
23
#include "xtensa-config.h"
24
 
25
/* External variables defined in xtensa.c.  */
26
 
27
extern unsigned xtensa_current_frame_size;
28
 
29
/* Macros used in the machine description to select various Xtensa
30
   configuration options.  */
31
#ifndef XCHAL_HAVE_MUL32_HIGH
32
#define XCHAL_HAVE_MUL32_HIGH 0
33
#endif
34
#ifndef XCHAL_HAVE_RELEASE_SYNC
35
#define XCHAL_HAVE_RELEASE_SYNC 0
36
#endif
37
#ifndef XCHAL_HAVE_S32C1I
38
#define XCHAL_HAVE_S32C1I 0
39
#endif
40
#ifndef XCHAL_HAVE_THREADPTR
41
#define XCHAL_HAVE_THREADPTR 0
42
#endif
43
#define TARGET_BIG_ENDIAN       XCHAL_HAVE_BE
44
#define TARGET_DENSITY          XCHAL_HAVE_DENSITY
45
#define TARGET_MAC16            XCHAL_HAVE_MAC16
46
#define TARGET_MUL16            XCHAL_HAVE_MUL16
47
#define TARGET_MUL32            XCHAL_HAVE_MUL32
48
#define TARGET_MUL32_HIGH       XCHAL_HAVE_MUL32_HIGH
49
#define TARGET_DIV32            XCHAL_HAVE_DIV32
50
#define TARGET_NSA              XCHAL_HAVE_NSA
51
#define TARGET_MINMAX           XCHAL_HAVE_MINMAX
52
#define TARGET_SEXT             XCHAL_HAVE_SEXT
53
#define TARGET_BOOLEANS         XCHAL_HAVE_BOOLEANS
54
#define TARGET_HARD_FLOAT       XCHAL_HAVE_FP
55
#define TARGET_HARD_FLOAT_DIV   XCHAL_HAVE_FP_DIV
56
#define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
57
#define TARGET_HARD_FLOAT_SQRT  XCHAL_HAVE_FP_SQRT
58
#define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
59
#define TARGET_ABS              XCHAL_HAVE_ABS
60
#define TARGET_ADDX             XCHAL_HAVE_ADDX
61
#define TARGET_RELEASE_SYNC     XCHAL_HAVE_RELEASE_SYNC
62
#define TARGET_S32C1I           XCHAL_HAVE_S32C1I
63
#define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
64
#define TARGET_THREADPTR        XCHAL_HAVE_THREADPTR
65
 
66
#define TARGET_DEFAULT \
67
  ((XCHAL_HAVE_L32R     ? 0 : MASK_CONST16) |                            \
68
   MASK_SERIALIZE_VOLATILE)
69
 
70
#ifndef HAVE_AS_TLS
71
#define HAVE_AS_TLS 0
72
#endif
73
 
74
 
75
/* Target CPU builtins.  */
76
#define TARGET_CPU_CPP_BUILTINS()                                       \
77
  do {                                                                  \
78
    builtin_assert ("cpu=xtensa");                                      \
79
    builtin_assert ("machine=xtensa");                                  \
80
    builtin_define ("__xtensa__");                                      \
81
    builtin_define ("__XTENSA__");                                      \
82
    builtin_define ("__XTENSA_WINDOWED_ABI__");                         \
83
    builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
84
    if (!TARGET_HARD_FLOAT)                                             \
85
      builtin_define ("__XTENSA_SOFT_FLOAT__");                         \
86
  } while (0)
87
 
88
#define CPP_SPEC " %(subtarget_cpp_spec) "
89
 
90
#ifndef SUBTARGET_CPP_SPEC
91
#define SUBTARGET_CPP_SPEC ""
92
#endif
93
 
94
#define EXTRA_SPECS                                                     \
95
  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
96
 
97
/* Target machine storage layout */
98
 
99
/* Define this if most significant bit is lowest numbered
100
   in instructions that operate on numbered bit-fields.  */
101
#define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
102
 
103
/* Define this if most significant byte of a word is the lowest numbered.  */
104
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
105
 
106
/* Define this if most significant word of a multiword number is the lowest.  */
107
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
108
 
109
#define MAX_BITS_PER_WORD 32
110
 
111
/* Width of a word, in units (bytes).  */
112
#define UNITS_PER_WORD 4
113
#define MIN_UNITS_PER_WORD 4
114
 
115
/* Width of a floating point register.  */
116
#define UNITS_PER_FPREG 4
117
 
118
/* Size in bits of various types on the target machine.  */
119
#define INT_TYPE_SIZE 32
120
#define SHORT_TYPE_SIZE 16
121
#define LONG_TYPE_SIZE 32
122
#define LONG_LONG_TYPE_SIZE 64
123
#define FLOAT_TYPE_SIZE 32
124
#define DOUBLE_TYPE_SIZE 64
125
#define LONG_DOUBLE_TYPE_SIZE 64
126
 
127
/* Allocation boundary (in *bits*) for storing pointers in memory.  */
128
#define POINTER_BOUNDARY 32
129
 
130
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
131
#define PARM_BOUNDARY 32
132
 
133
/* Allocation boundary (in *bits*) for the code of a function.  */
134
#define FUNCTION_BOUNDARY 32
135
 
136
/* Alignment of field after 'int : 0' in a structure.  */
137
#define EMPTY_FIELD_BOUNDARY 32
138
 
139
/* Every structure's size must be a multiple of this.  */
140
#define STRUCTURE_SIZE_BOUNDARY 8
141
 
142
/* There is no point aligning anything to a rounder boundary than this.  */
143
#define BIGGEST_ALIGNMENT 128
144
 
145
/* Set this nonzero if move instructions will actually fail to work
146
   when given unaligned data.  */
147
#define STRICT_ALIGNMENT 1
148
 
149
/* Promote integer modes smaller than a word to SImode.  Set UNSIGNEDP
150
   for QImode, because there is no 8-bit load from memory with sign
151
   extension.  Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
152
   loads both with and without sign extension.  */
153
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)                             \
154
  do {                                                                  \
155
    if (GET_MODE_CLASS (MODE) == MODE_INT                               \
156
        && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)                       \
157
      {                                                                 \
158
        if ((MODE) == QImode)                                           \
159
          (UNSIGNEDP) = 1;                                              \
160
        (MODE) = SImode;                                                \
161
      }                                                                 \
162
  } while (0)
163
 
164
/* Imitate the way many other C compilers handle alignment of
165
   bitfields and the structures that contain them.  */
166
#define PCC_BITFIELD_TYPE_MATTERS 1
167
 
168
/* Disable the use of word-sized or smaller complex modes for structures,
169
   and for function arguments in particular, where they cause problems with
170
   register a7.  The xtensa_copy_incoming_a7 function assumes that there is
171
   a single reference to an argument in a7, but with small complex modes the
172
   real and imaginary components may be extracted separately, leading to two
173
   uses of the register, only one of which would be replaced.  */
174
#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
175
  ((MODE) == CQImode || (MODE) == CHImode)
176
 
177
/* Align string constants and constructors to at least a word boundary.
178
   The typical use of this macro is to increase alignment for string
179
   constants to be word aligned so that 'strcpy' calls that copy
180
   constants can be done inline.  */
181
#define CONSTANT_ALIGNMENT(EXP, ALIGN)                                  \
182
  ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR)    \
183
   && (ALIGN) < BITS_PER_WORD                                           \
184
        ? BITS_PER_WORD                                                 \
185
        : (ALIGN))
186
 
187
/* Align arrays, unions and records to at least a word boundary.
188
   One use of this macro is to increase alignment of medium-size
189
   data to make it all fit in fewer cache lines.  Another is to
190
   cause character arrays to be word-aligned so that 'strcpy' calls
191
   that copy constants to character arrays can be done inline.  */
192
#undef DATA_ALIGNMENT
193
#define DATA_ALIGNMENT(TYPE, ALIGN)                                     \
194
  ((((ALIGN) < BITS_PER_WORD)                                           \
195
    && (TREE_CODE (TYPE) == ARRAY_TYPE                                  \
196
        || TREE_CODE (TYPE) == UNION_TYPE                               \
197
        || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
198
 
199
/* Operations between registers always perform the operation
200
   on the full register even if a narrower mode is specified.  */
201
#define WORD_REGISTER_OPERATIONS
202
 
203
/* Xtensa loads are zero-extended by default.  */
204
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
205
 
206
/* Standard register usage.  */
207
 
208
/* Number of actual hardware registers.
209
   The hardware registers are assigned numbers for the compiler
210
   from 0 to just below FIRST_PSEUDO_REGISTER.
211
   All registers that the compiler knows about must be given numbers,
212
   even those that are not normally considered general registers.
213
 
214
   The fake frame pointer and argument pointer will never appear in
215
   the generated code, since they will always be eliminated and replaced
216
   by either the stack pointer or the hard frame pointer.
217
 
218
 
219
   16           FRAME_POINTER (fake = initial sp)
220
   17           ARG_POINTER (fake = initial sp + framesize)
221
   18           BR[0] for floating-point CC
222
   19 - 34      FR[0] - FR[15]
223
   35           MAC16 accumulator */
224
 
225
#define FIRST_PSEUDO_REGISTER 36
226
 
227
/* Return the stabs register number to use for REGNO.  */
228
#define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
229
 
230
/* 1 for registers that have pervasive standard uses
231
   and are not available for the register allocator.  */
232
#define FIXED_REGISTERS                                                 \
233
{                                                                       \
234
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                     \
235
  1, 1, 0,                                                               \
236
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
237
  0,                                                                     \
238
}
239
 
240
/* 1 for registers not available across function calls.
241
   These must include the FIXED_REGISTERS and also any
242
   registers that can be used without being saved.
243
   The latter must include the registers where values are returned
244
   and the register where structure-value addresses are passed.
245
   Aside from that, you can include as many other registers as you like.  */
246
#define CALL_USED_REGISTERS                                             \
247
{                                                                       \
248
  1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,                     \
249
  1, 1, 1,                                                              \
250
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
251
  1,                                                                    \
252
}
253
 
254
/* For non-leaf procedures on Xtensa processors, the allocation order
255
   is as specified below by REG_ALLOC_ORDER.  For leaf procedures, we
256
   want to use the lowest numbered registers first to minimize
257
   register window overflows.  However, local-alloc is not smart
258
   enough to consider conflicts with incoming arguments.  If an
259
   incoming argument in a2 is live throughout the function and
260
   local-alloc decides to use a2, then the incoming argument must
261
   either be spilled or copied to another register.  To get around
262
   this, we define ADJUST_REG_ALLOC_ORDER to redefine
263
   reg_alloc_order for leaf functions such that lowest numbered
264
   registers are used first with the exception that the incoming
265
   argument registers are not used until after other register choices
266
   have been exhausted.  */
267
 
268
#define REG_ALLOC_ORDER \
269
{  8,  9, 10, 11, 12, 13, 14, 15,  7,  6,  5,  4,  3,  2, \
270
  18, \
271
  19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
272
   0,  1, 16, 17, \
273
  35, \
274
}
275
 
276
#define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
277
 
278
/* For Xtensa, the only point of this is to prevent GCC from otherwise
279
   giving preference to call-used registers.  To minimize window
280
   overflows for the AR registers, we want to give preference to the
281
   lower-numbered AR registers.  For other register files, which are
282
   not windowed, we still prefer call-used registers, if there are any.  */
283
extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
284
#define LEAF_REGISTERS xtensa_leaf_regs
285
 
286
/* For Xtensa, no remapping is necessary, but this macro must be
287
   defined if LEAF_REGISTERS is defined.  */
288
#define LEAF_REG_REMAP(REGNO) (REGNO)
289
 
290
/* This must be declared if LEAF_REGISTERS is set.  */
291
extern int leaf_function;
292
 
293
/* Internal macros to classify a register number.  */
294
 
295
/* 16 address registers + fake registers */
296
#define GP_REG_FIRST 0
297
#define GP_REG_LAST  17
298
#define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
299
 
300
/* Coprocessor registers */
301
#define BR_REG_FIRST 18
302
#define BR_REG_LAST  18 
303
#define BR_REG_NUM   (BR_REG_LAST - BR_REG_FIRST + 1)
304
 
305
/* 16 floating-point registers */
306
#define FP_REG_FIRST 19
307
#define FP_REG_LAST  34
308
#define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
309
 
310
/* MAC16 accumulator */
311
#define ACC_REG_FIRST 35
312
#define ACC_REG_LAST 35
313
#define ACC_REG_NUM  (ACC_REG_LAST - ACC_REG_FIRST + 1)
314
 
315
#define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
316
#define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
317
#define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
318
#define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
319
 
320
/* Return number of consecutive hard regs needed starting at reg REGNO
321
   to hold something of mode MODE.  */
322
#define HARD_REGNO_NREGS(REGNO, MODE)                                   \
323
  (FP_REG_P (REGNO) ?                                                   \
324
        ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
325
        ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
326
 
327
/* Value is 1 if hard register REGNO can hold a value of machine-mode
328
   MODE.  */
329
extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
330
 
331
#define HARD_REGNO_MODE_OK(REGNO, MODE)                                 \
332
  xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
333
 
334
/* Value is 1 if it is a good idea to tie two pseudo registers
335
   when one has mode MODE1 and one has mode MODE2.
336
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
337
   for any hard reg, then this must be 0 for correct output.  */
338
#define MODES_TIEABLE_P(MODE1, MODE2)                                   \
339
  ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||                             \
340
    GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)                       \
341
   == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||                          \
342
       GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
343
 
344
/* Register to use for pushing function arguments.  */
345
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
346
 
347
/* Base register for access to local variables of the function.  */
348
#define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
349
 
350
/* The register number of the frame pointer register, which is used to
351
   access automatic variables in the stack frame.  For Xtensa, this
352
   register never appears in the output.  It is always eliminated to
353
   either the stack pointer or the hard frame pointer.  */
354
#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
355
 
356
/* Base register for access to arguments of the function.  */
357
#define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
358
 
359
/* For now we don't try to use the full set of boolean registers.  Without
360
   software pipelining of FP operations, there's not much to gain and it's
361
   a real pain to get them reloaded.  */
362
#define FPCC_REGNUM (BR_REG_FIRST + 0)
363
 
364
/* It is as good or better to call a constant function address than to
365
   call an address kept in a register.  */
366
#define NO_FUNCTION_CSE 1
367
 
368
/* Xtensa processors have "register windows".  GCC does not currently
369
   take advantage of the possibility for variable-sized windows; instead,
370
   we use a fixed window size of 8.  */
371
 
372
#define INCOMING_REGNO(OUT)                                             \
373
  ((GP_REG_P (OUT) &&                                                   \
374
    ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ?               \
375
   (OUT) - WINDOW_SIZE : (OUT))
376
 
377
#define OUTGOING_REGNO(IN)                                              \
378
  ((GP_REG_P (IN) &&                                                    \
379
    ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ?                 \
380
   (IN) + WINDOW_SIZE : (IN))
381
 
382
 
383
/* Define the classes of registers for register constraints in the
384
   machine description.  */
385
enum reg_class
386
{
387
  NO_REGS,                      /* no registers in set */
388
  BR_REGS,                      /* coprocessor boolean registers */
389
  FP_REGS,                      /* floating point registers */
390
  ACC_REG,                      /* MAC16 accumulator */
391
  SP_REG,                       /* sp register (aka a1) */
392
  RL_REGS,                      /* preferred reload regs (not sp or fp) */
393
  GR_REGS,                      /* integer registers except sp */
394
  AR_REGS,                      /* all integer registers */
395
  ALL_REGS,                     /* all registers */
396
  LIM_REG_CLASSES               /* max value + 1 */
397
};
398
 
399
#define N_REG_CLASSES (int) LIM_REG_CLASSES
400
 
401
#define GENERAL_REGS AR_REGS
402
 
403
/* An initializer containing the names of the register classes as C
404
   string constants.  These names are used in writing some of the
405
   debugging dumps.  */
406
#define REG_CLASS_NAMES                                                 \
407
{                                                                       \
408
  "NO_REGS",                                                            \
409
  "BR_REGS",                                                            \
410
  "FP_REGS",                                                            \
411
  "ACC_REG",                                                            \
412
  "SP_REG",                                                             \
413
  "RL_REGS",                                                            \
414
  "GR_REGS",                                                            \
415
  "AR_REGS",                                                            \
416
  "ALL_REGS"                                                            \
417
}
418
 
419
/* Contents of the register classes.  The Nth integer specifies the
420
   contents of class N.  The way the integer MASK is interpreted is
421
   that register R is in the class if 'MASK & (1 << R)' is 1.  */
422
#define REG_CLASS_CONTENTS \
423
{ \
424
  { 0x00000000, 0x00000000 }, /* no registers */ \
425
  { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
426
  { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
427
  { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
428
  { 0x00000002, 0x00000000 }, /* stack pointer register */ \
429
  { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
430
  { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
431
  { 0x0003ffff, 0x00000000 }, /* integer registers */ \
432
  { 0xffffffff, 0x0000000f }  /* all registers */ \
433
}
434
 
435
/* A C expression whose value is a register class containing hard
436
   register REGNO.  In general there is more that one such class;
437
   choose a class which is "minimal", meaning that no smaller class
438
   also contains the register.  */
439
extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
440
 
441
#define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
442
 
443
/* Use the Xtensa AR register file for base registers.
444
   No index registers.  */
445
#define BASE_REG_CLASS AR_REGS
446
#define INDEX_REG_CLASS NO_REGS
447
 
448
/* The small_register_classes_for_mode_p hook must always return true for
449
   Xtrnase, because all of the 16 AR registers may be explicitly used in
450
   the RTL, as either incoming or outgoing arguments.  */
451
#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
452
 
453
/* Stack layout; function entry, exit and calling.  */
454
 
455
#define STACK_GROWS_DOWNWARD
456
 
457
/* Offset within stack frame to start allocating local variables at.  */
458
#define STARTING_FRAME_OFFSET                                           \
459
  crtl->outgoing_args_size
460
 
461
/* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
462
   they are eliminated to either the stack pointer or hard frame pointer.  */
463
#define ELIMINABLE_REGS                                                 \
464
{{ ARG_POINTER_REGNUM,          STACK_POINTER_REGNUM},                  \
465
 { ARG_POINTER_REGNUM,          HARD_FRAME_POINTER_REGNUM},             \
466
 { FRAME_POINTER_REGNUM,        STACK_POINTER_REGNUM},                  \
467
 { FRAME_POINTER_REGNUM,        HARD_FRAME_POINTER_REGNUM}}
468
 
469
/* Specify the initial difference between the specified pair of registers.  */
470
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)                    \
471
  do {                                                                  \
472
    compute_frame_size (get_frame_size ());                             \
473
    switch (FROM)                                                       \
474
      {                                                                 \
475
      case FRAME_POINTER_REGNUM:                                        \
476
        (OFFSET) = 0;                                                    \
477
        break;                                                          \
478
      case ARG_POINTER_REGNUM:                                          \
479
        (OFFSET) = xtensa_current_frame_size;                           \
480
        break;                                                          \
481
      default:                                                          \
482
        gcc_unreachable ();                                             \
483
      }                                                                 \
484
  } while (0)
485
 
486
/* If defined, the maximum amount of space required for outgoing
487
   arguments will be computed and placed into the variable
488
   'crtl->outgoing_args_size'.  No space will be pushed
489
   onto the stack for each call; instead, the function prologue
490
   should increase the stack frame size by this amount.  */
491
#define ACCUMULATE_OUTGOING_ARGS 1
492
 
493
/* Offset from the argument pointer register to the first argument's
494
   address.  On some machines it may depend on the data type of the
495
   function.  If 'ARGS_GROW_DOWNWARD', this is the offset to the
496
   location above the first argument's address.  */
497
#define FIRST_PARM_OFFSET(FNDECL) 0
498
 
499
/* Align stack frames on 128 bits for Xtensa.  This is necessary for
500
   128-bit datatypes defined in TIE (e.g., for Vectra).  */
501
#define STACK_BOUNDARY 128
502
 
503
/* Use a fixed register window size of 8.  */
504
#define WINDOW_SIZE 8
505
 
506
/* Symbolic macros for the registers used to return integer, floating
507
   point, and values of coprocessor and user-defined modes.  */
508
#define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
509
#define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
510
 
511
/* Symbolic macros for the first/last argument registers.  */
512
#define GP_ARG_FIRST (GP_REG_FIRST + 2)
513
#define GP_ARG_LAST  (GP_REG_FIRST + 7)
514
#define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
515
#define GP_OUTGOING_ARG_LAST  (GP_REG_FIRST + 7 + WINDOW_SIZE)
516
 
517
#define MAX_ARGS_IN_REGISTERS 6
518
 
519
/* Don't worry about compatibility with PCC.  */
520
#define DEFAULT_PCC_STRUCT_RETURN 0
521
 
522
/* A C expression that is nonzero if REGNO is the number of a hard
523
   register in which function arguments are sometimes passed.  This
524
   does *not* include implicit arguments such as the static chain and
525
   the structure-value address.  On many machines, no registers can be
526
   used for this purpose since all function arguments are pushed on
527
   the stack.  */
528
#define FUNCTION_ARG_REGNO_P(N)                                         \
529
  ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
530
 
531
/* Record the number of argument words seen so far, along with a flag to
532
   indicate whether these are incoming arguments.  (FUNCTION_INCOMING_ARG
533
   is used for both incoming and outgoing args, so a separate flag is
534
   needed.  */
535
typedef struct xtensa_args
536
{
537
  int arg_words;
538
  int incoming;
539
} CUMULATIVE_ARGS;
540
 
541
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
542
  init_cumulative_args (&CUM, 0)
543
 
544
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME)             \
545
  init_cumulative_args (&CUM, 1)
546
 
547
/* Profiling Xtensa code is typically done with the built-in profiling
548
   feature of Tensilica's instruction set simulator, which does not
549
   require any compiler support.  Profiling code on a real (i.e.,
550
   non-simulated) Xtensa processor is currently only supported by
551
   GNU/Linux with glibc.  The glibc version of _mcount doesn't require
552
   counter variables.  The _mcount function needs the current PC and
553
   the current return address to identify an arc in the call graph.
554
   Pass the current return address as the first argument; the current
555
   PC is available as a0 in _mcount's register window.  Both of these
556
   values contain window size information in the two most significant
557
   bits; we assume that _mcount will mask off those bits.  The call to
558
   _mcount uses a window size of 8 to make sure that it doesn't clobber
559
   any incoming argument values.  */
560
 
561
#define NO_PROFILE_COUNTERS     1
562
 
563
#define FUNCTION_PROFILER(FILE, LABELNO) \
564
  do {                                                                  \
565
    fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
566
    if (flag_pic)                                                       \
567
      {                                                                 \
568
        fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n");                    \
569
        fprintf (FILE, "\tcallx8\ta8\n");                               \
570
      }                                                                 \
571
    else                                                                \
572
      fprintf (FILE, "\tcall8\t_mcount\n");                             \
573
  } while (0)
574
 
575
/* Stack pointer value doesn't matter at exit.  */
576
#define EXIT_IGNORE_STACK 1
577
 
578
/* Size in bytes of the trampoline, as an integer.  Make sure this is
579
   a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings.  */
580
#define TRAMPOLINE_SIZE (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? 60 : 52)
581
 
582
/* Alignment required for trampolines, in bits.  */
583
#define TRAMPOLINE_ALIGNMENT 32
584
 
585
/* If defined, a C expression that produces the machine-specific code
586
   to setup the stack so that arbitrary frames can be accessed.
587
 
588
   On Xtensa, a stack back-trace must always begin from the stack pointer,
589
   so that the register overflow save area can be located.  However, the
590
   stack-walking code in GCC always begins from the hard_frame_pointer
591
   register, not the stack pointer.  The frame pointer is usually equal
592
   to the stack pointer, but the __builtin_return_address and
593
   __builtin_frame_address functions will not work if count > 0 and
594
   they are called from a routine that uses alloca.  These functions
595
   are not guaranteed to work at all if count > 0 so maybe that is OK.
596
 
597
   A nicer solution would be to allow the architecture-specific files to
598
   specify whether to start from the stack pointer or frame pointer.  That
599
   would also allow us to skip the machine->accesses_prev_frame stuff that
600
   we currently need to ensure that there is a frame pointer when these
601
   builtin functions are used.  */
602
 
603
#define SETUP_FRAME_ADDRESSES  xtensa_setup_frame_addresses
604
 
605
/* A C expression whose value is RTL representing the address in a
606
   stack frame where the pointer to the caller's frame is stored.
607
   Assume that FRAMEADDR is an RTL expression for the address of the
608
   stack frame itself.
609
 
610
   For Xtensa, there is no easy way to get the frame pointer if it is
611
   not equivalent to the stack pointer.  Moreover, the result of this
612
   macro is used for continuing to walk back up the stack, so it must
613
   return the stack pointer address.  Thus, there is some inconsistency
614
   here in that __builtin_frame_address will return the frame pointer
615
   when count == 0 and the stack pointer when count > 0.  */
616
 
617
#define DYNAMIC_CHAIN_ADDRESS(frame)                                    \
618
  gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
619
 
620
/* Define this if the return address of a particular stack frame is
621
   accessed from the frame pointer of the previous stack frame.  */
622
#define RETURN_ADDR_IN_PREVIOUS_FRAME
623
 
624
/* A C expression whose value is RTL representing the value of the
625
   return address for the frame COUNT steps up from the current
626
   frame, after the prologue.  */
627
#define RETURN_ADDR_RTX  xtensa_return_addr
628
 
629
/* Addressing modes, and classification of registers for them.  */
630
 
631
/* C expressions which are nonzero if register number NUM is suitable
632
   for use as a base or index register in operand addresses.  */
633
 
634
#define REGNO_OK_FOR_INDEX_P(NUM) 0
635
#define REGNO_OK_FOR_BASE_P(NUM) \
636
  (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
637
 
638
/* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
639
   valid for use as a base or index register.  */
640
 
641
#ifdef REG_OK_STRICT
642
#define REG_OK_STRICT_FLAG 1
643
#else
644
#define REG_OK_STRICT_FLAG 0
645
#endif
646
 
647
#define BASE_REG_P(X, STRICT)                                           \
648
  ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)                    \
649
   || REGNO_OK_FOR_BASE_P (REGNO (X)))
650
 
651
#define REG_OK_FOR_INDEX_P(X) 0
652
#define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
653
 
654
/* Maximum number of registers that can appear in a valid memory address.  */
655
#define MAX_REGS_PER_ADDRESS 1
656
 
657
/* A C expression that is 1 if the RTX X is a constant which is a
658
   valid address.  This is defined to be the same as 'CONSTANT_P (X)',
659
   but rejecting CONST_DOUBLE.  */
660
#define CONSTANT_ADDRESS_P(X)                                           \
661
  ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF             \
662
    || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH                \
663
    || (GET_CODE (X) == CONST)))
664
 
665
/* A C expression that is nonzero if X is a legitimate immediate
666
   operand on the target machine when generating position independent
667
   code.  */
668
#define LEGITIMATE_PIC_OPERAND_P(X)                                     \
669
  ((GET_CODE (X) != SYMBOL_REF                                          \
670
    || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X)))          \
671
   && GET_CODE (X) != LABEL_REF                                         \
672
   && GET_CODE (X) != CONST)
673
 
674
/* Specify the machine mode that this machine uses
675
   for the index in the tablejump instruction.  */
676
#define CASE_VECTOR_MODE (SImode)
677
 
678
/* Define this as 1 if 'char' should by default be signed; else as 0.  */
679
#define DEFAULT_SIGNED_CHAR 0
680
 
681
/* Max number of bytes we can move from memory to memory
682
   in one reasonably fast instruction.  */
683
#define MOVE_MAX 4
684
#define MAX_MOVE_MAX 4
685
 
686
/* Prefer word-sized loads.  */
687
#define SLOW_BYTE_ACCESS 1
688
 
689
/* Shift instructions ignore all but the low-order few bits.  */
690
#define SHIFT_COUNT_TRUNCATED 1
691
 
692
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
693
   is done just by pretending it is already truncated.  */
694
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
695
 
696
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = 32, 1)
697
#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)  ((VALUE) = -1, 1)
698
 
699
/* Specify the machine mode that pointers have.
700
   After generation of rtl, the compiler makes no further distinction
701
   between pointers and any other objects of this machine mode.  */
702
#define Pmode SImode
703
 
704
/* A function address in a call instruction is a word address (for
705
   indexing purposes) so give the MEM rtx a words's mode.  */
706
#define FUNCTION_MODE SImode
707
 
708
#define BRANCH_COST(speed_p, predictable_p) 3
709
 
710
/* How to refer to registers in assembler output.
711
   This sequence is indexed by compiler's hard-register-number (see above).  */
712
#define REGISTER_NAMES                                                  \
713
{                                                                       \
714
  "a0",   "sp",   "a2",   "a3",   "a4",   "a5",   "a6",   "a7",         \
715
  "a8",   "a9",   "a10",  "a11",  "a12",  "a13",  "a14",  "a15",        \
716
  "fp",   "argp", "b0",                                                 \
717
  "f0",   "f1",   "f2",   "f3",   "f4",   "f5",   "f6",   "f7",         \
718
  "f8",   "f9",   "f10",  "f11",  "f12",  "f13",  "f14",  "f15",        \
719
  "acc"                                                                 \
720
}
721
 
722
/* If defined, a C initializer for an array of structures containing a
723
   name and a register number.  This macro defines additional names
724
   for hard registers, thus allowing the 'asm' option in declarations
725
   to refer to registers using alternate names.  */
726
#define ADDITIONAL_REGISTER_NAMES                                       \
727
{                                                                       \
728
  { "a1",        1 + GP_REG_FIRST }                                     \
729
}
730
 
731
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
732
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
733
 
734
/* Globalizing directive for a label.  */
735
#define GLOBAL_ASM_OP "\t.global\t"
736
 
737
/* Declare an uninitialized external linkage data object.  */
738
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
739
  asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
740
 
741
/* This is how to output an element of a case-vector that is absolute.  */
742
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)                          \
743
  fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE),               \
744
           LOCAL_LABEL_PREFIX, VALUE)
745
 
746
/* This is how to output an element of a case-vector that is relative.
747
   This is used for pc-relative code.  */
748
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)              \
749
  do {                                                                  \
750
    fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE),       \
751
             LOCAL_LABEL_PREFIX, (VALUE),                               \
752
             LOCAL_LABEL_PREFIX, (REL));                                \
753
  } while (0)
754
 
755
/* This is how to output an assembler line that says to advance the
756
   location counter to a multiple of 2**LOG bytes.  */
757
#define ASM_OUTPUT_ALIGN(STREAM, LOG)                                   \
758
  do {                                                                  \
759
    if ((LOG) != 0)                                                      \
760
      fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG));                   \
761
  } while (0)
762
 
763
/* Indicate that jump tables go in the text section.  This is
764
   necessary when compiling PIC code.  */
765
#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
766
 
767
 
768
/* Define the strings to put out for each section in the object file.  */
769
#define TEXT_SECTION_ASM_OP     "\t.text"
770
#define DATA_SECTION_ASM_OP     "\t.data"
771
#define BSS_SECTION_ASM_OP      "\t.section\t.bss"
772
 
773
 
774
/* Define output to appear before the constant pool.  */
775
#define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE)          \
776
  do {                                                                  \
777
    if ((SIZE) > 0)                                                      \
778
      {                                                                 \
779
        resolve_unique_section ((FUNDECL), 0, flag_function_sections);   \
780
        switch_to_section (function_section (FUNDECL));                 \
781
        fprintf (FILE, "\t.literal_position\n");                        \
782
      }                                                                 \
783
  } while (0)
784
 
785
 
786
/* A C statement (with or without semicolon) to output a constant in
787
   the constant pool, if it needs special treatment.  */
788
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
789
  do {                                                                  \
790
    xtensa_output_literal (FILE, X, MODE, LABELNO);                     \
791
    goto JUMPTO;                                                        \
792
  } while (0)
793
 
794
/* How to start an assembler comment.  */
795
#define ASM_COMMENT_START "#"
796
 
797
/* Exception handling.  Xtensa uses much of the standard DWARF2 unwinding
798
   machinery, but the variable size register window save areas are too
799
   complicated to efficiently describe with CFI entries.  The CFA must
800
   still be specified in DWARF so that DW_AT_frame_base is set correctly
801
   for debugging.  */
802
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
803
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
804
#define DWARF_FRAME_REGISTERS 16
805
#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
806
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)                      \
807
  (flag_pic                                                             \
808
   ? (((GLOBAL) ? DW_EH_PE_indirect : 0)                         \
809
      | DW_EH_PE_pcrel | DW_EH_PE_sdata4)                               \
810
   : DW_EH_PE_absptr)
811
 
812
/* Emit a PC-relative relocation.  */
813
#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)                       \
814
  do {                                                                  \
815
    fputs (integer_asm_op (SIZE, FALSE), FILE);                         \
816
    assemble_name (FILE, LABEL);                                        \
817
    fputs ("@pcrel", FILE);                                             \
818
  } while (0)
819
 
820
/* Xtensa constant pool breaks the devices in crtstuff.c to control
821
   section in where code resides.  We have to write it as asm code.  Use
822
   a MOVI and let the assembler relax it -- for the .init and .fini
823
   sections, the assembler knows to put the literal in the right
824
   place.  */
825
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
826
    asm (SECTION_OP "\n\
827
        movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
828
        callx8\ta8\n" \
829
        TEXT_SECTION_ASM_OP);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.