1 |
710 |
jeremybenn |
/* Functions related to building classes and their related objects.
|
2 |
|
|
Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
12 |
|
|
any later version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
|
24 |
|
|
/* High-level class interface. */
|
25 |
|
|
|
26 |
|
|
#include "config.h"
|
27 |
|
|
#include "system.h"
|
28 |
|
|
#include "coretypes.h"
|
29 |
|
|
#include "tm.h"
|
30 |
|
|
#include "tree.h"
|
31 |
|
|
#include "cp-tree.h"
|
32 |
|
|
#include "flags.h"
|
33 |
|
|
#include "output.h"
|
34 |
|
|
#include "toplev.h"
|
35 |
|
|
#include "target.h"
|
36 |
|
|
#include "convert.h"
|
37 |
|
|
#include "cgraph.h"
|
38 |
|
|
#include "tree-dump.h"
|
39 |
|
|
#include "splay-tree.h"
|
40 |
|
|
#include "pointer-set.h"
|
41 |
|
|
|
42 |
|
|
/* The number of nested classes being processed. If we are not in the
|
43 |
|
|
scope of any class, this is zero. */
|
44 |
|
|
|
45 |
|
|
int current_class_depth;
|
46 |
|
|
|
47 |
|
|
/* In order to deal with nested classes, we keep a stack of classes.
|
48 |
|
|
The topmost entry is the innermost class, and is the entry at index
|
49 |
|
|
CURRENT_CLASS_DEPTH */
|
50 |
|
|
|
51 |
|
|
typedef struct class_stack_node {
|
52 |
|
|
/* The name of the class. */
|
53 |
|
|
tree name;
|
54 |
|
|
|
55 |
|
|
/* The _TYPE node for the class. */
|
56 |
|
|
tree type;
|
57 |
|
|
|
58 |
|
|
/* The access specifier pending for new declarations in the scope of
|
59 |
|
|
this class. */
|
60 |
|
|
tree access;
|
61 |
|
|
|
62 |
|
|
/* If were defining TYPE, the names used in this class. */
|
63 |
|
|
splay_tree names_used;
|
64 |
|
|
|
65 |
|
|
/* Nonzero if this class is no longer open, because of a call to
|
66 |
|
|
push_to_top_level. */
|
67 |
|
|
size_t hidden;
|
68 |
|
|
}* class_stack_node_t;
|
69 |
|
|
|
70 |
|
|
typedef struct vtbl_init_data_s
|
71 |
|
|
{
|
72 |
|
|
/* The base for which we're building initializers. */
|
73 |
|
|
tree binfo;
|
74 |
|
|
/* The type of the most-derived type. */
|
75 |
|
|
tree derived;
|
76 |
|
|
/* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
|
77 |
|
|
unless ctor_vtbl_p is true. */
|
78 |
|
|
tree rtti_binfo;
|
79 |
|
|
/* The negative-index vtable initializers built up so far. These
|
80 |
|
|
are in order from least negative index to most negative index. */
|
81 |
|
|
VEC(constructor_elt,gc) *inits;
|
82 |
|
|
/* The binfo for the virtual base for which we're building
|
83 |
|
|
vcall offset initializers. */
|
84 |
|
|
tree vbase;
|
85 |
|
|
/* The functions in vbase for which we have already provided vcall
|
86 |
|
|
offsets. */
|
87 |
|
|
VEC(tree,gc) *fns;
|
88 |
|
|
/* The vtable index of the next vcall or vbase offset. */
|
89 |
|
|
tree index;
|
90 |
|
|
/* Nonzero if we are building the initializer for the primary
|
91 |
|
|
vtable. */
|
92 |
|
|
int primary_vtbl_p;
|
93 |
|
|
/* Nonzero if we are building the initializer for a construction
|
94 |
|
|
vtable. */
|
95 |
|
|
int ctor_vtbl_p;
|
96 |
|
|
/* True when adding vcall offset entries to the vtable. False when
|
97 |
|
|
merely computing the indices. */
|
98 |
|
|
bool generate_vcall_entries;
|
99 |
|
|
} vtbl_init_data;
|
100 |
|
|
|
101 |
|
|
/* The type of a function passed to walk_subobject_offsets. */
|
102 |
|
|
typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
|
103 |
|
|
|
104 |
|
|
/* The stack itself. This is a dynamically resized array. The
|
105 |
|
|
number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
|
106 |
|
|
static int current_class_stack_size;
|
107 |
|
|
static class_stack_node_t current_class_stack;
|
108 |
|
|
|
109 |
|
|
/* The size of the largest empty class seen in this translation unit. */
|
110 |
|
|
static GTY (()) tree sizeof_biggest_empty_class;
|
111 |
|
|
|
112 |
|
|
/* An array of all local classes present in this translation unit, in
|
113 |
|
|
declaration order. */
|
114 |
|
|
VEC(tree,gc) *local_classes;
|
115 |
|
|
|
116 |
|
|
static tree get_vfield_name (tree);
|
117 |
|
|
static void finish_struct_anon (tree);
|
118 |
|
|
static tree get_vtable_name (tree);
|
119 |
|
|
static tree get_basefndecls (tree, tree);
|
120 |
|
|
static int build_primary_vtable (tree, tree);
|
121 |
|
|
static int build_secondary_vtable (tree);
|
122 |
|
|
static void finish_vtbls (tree);
|
123 |
|
|
static void modify_vtable_entry (tree, tree, tree, tree, tree *);
|
124 |
|
|
static void finish_struct_bits (tree);
|
125 |
|
|
static int alter_access (tree, tree, tree);
|
126 |
|
|
static void handle_using_decl (tree, tree);
|
127 |
|
|
static tree dfs_modify_vtables (tree, void *);
|
128 |
|
|
static tree modify_all_vtables (tree, tree);
|
129 |
|
|
static void determine_primary_bases (tree);
|
130 |
|
|
static void finish_struct_methods (tree);
|
131 |
|
|
static void maybe_warn_about_overly_private_class (tree);
|
132 |
|
|
static int method_name_cmp (const void *, const void *);
|
133 |
|
|
static int resort_method_name_cmp (const void *, const void *);
|
134 |
|
|
static void add_implicitly_declared_members (tree, int, int);
|
135 |
|
|
static tree fixed_type_or_null (tree, int *, int *);
|
136 |
|
|
static tree build_simple_base_path (tree expr, tree binfo);
|
137 |
|
|
static tree build_vtbl_ref_1 (tree, tree);
|
138 |
|
|
static void build_vtbl_initializer (tree, tree, tree, tree, int *,
|
139 |
|
|
VEC(constructor_elt,gc) **);
|
140 |
|
|
static int count_fields (tree);
|
141 |
|
|
static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
|
142 |
|
|
static bool check_bitfield_decl (tree);
|
143 |
|
|
static void check_field_decl (tree, tree, int *, int *, int *);
|
144 |
|
|
static void check_field_decls (tree, tree *, int *, int *);
|
145 |
|
|
static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
|
146 |
|
|
static void build_base_fields (record_layout_info, splay_tree, tree *);
|
147 |
|
|
static void check_methods (tree);
|
148 |
|
|
static void remove_zero_width_bit_fields (tree);
|
149 |
|
|
static void check_bases (tree, int *, int *);
|
150 |
|
|
static void check_bases_and_members (tree);
|
151 |
|
|
static tree create_vtable_ptr (tree, tree *);
|
152 |
|
|
static void include_empty_classes (record_layout_info);
|
153 |
|
|
static void layout_class_type (tree, tree *);
|
154 |
|
|
static void propagate_binfo_offsets (tree, tree);
|
155 |
|
|
static void layout_virtual_bases (record_layout_info, splay_tree);
|
156 |
|
|
static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
|
157 |
|
|
static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
|
158 |
|
|
static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
|
159 |
|
|
static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
|
160 |
|
|
static void add_vcall_offset (tree, tree, vtbl_init_data *);
|
161 |
|
|
static void layout_vtable_decl (tree, int);
|
162 |
|
|
static tree dfs_find_final_overrider_pre (tree, void *);
|
163 |
|
|
static tree dfs_find_final_overrider_post (tree, void *);
|
164 |
|
|
static tree find_final_overrider (tree, tree, tree);
|
165 |
|
|
static int make_new_vtable (tree, tree);
|
166 |
|
|
static tree get_primary_binfo (tree);
|
167 |
|
|
static int maybe_indent_hierarchy (FILE *, int, int);
|
168 |
|
|
static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
|
169 |
|
|
static void dump_class_hierarchy (tree);
|
170 |
|
|
static void dump_class_hierarchy_1 (FILE *, int, tree);
|
171 |
|
|
static void dump_array (FILE *, tree);
|
172 |
|
|
static void dump_vtable (tree, tree, tree);
|
173 |
|
|
static void dump_vtt (tree, tree);
|
174 |
|
|
static void dump_thunk (FILE *, int, tree);
|
175 |
|
|
static tree build_vtable (tree, tree, tree);
|
176 |
|
|
static void initialize_vtable (tree, VEC(constructor_elt,gc) *);
|
177 |
|
|
static void layout_nonempty_base_or_field (record_layout_info,
|
178 |
|
|
tree, tree, splay_tree);
|
179 |
|
|
static tree end_of_class (tree, int);
|
180 |
|
|
static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
|
181 |
|
|
static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
|
182 |
|
|
VEC(constructor_elt,gc) **);
|
183 |
|
|
static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
|
184 |
|
|
VEC(constructor_elt,gc) **);
|
185 |
|
|
static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
|
186 |
|
|
static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
|
187 |
|
|
static void clone_constructors_and_destructors (tree);
|
188 |
|
|
static tree build_clone (tree, tree);
|
189 |
|
|
static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
|
190 |
|
|
static void build_ctor_vtbl_group (tree, tree);
|
191 |
|
|
static void build_vtt (tree);
|
192 |
|
|
static tree binfo_ctor_vtable (tree);
|
193 |
|
|
static void build_vtt_inits (tree, tree, VEC(constructor_elt,gc) **, tree *);
|
194 |
|
|
static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
|
195 |
|
|
static tree dfs_fixup_binfo_vtbls (tree, void *);
|
196 |
|
|
static int record_subobject_offset (tree, tree, splay_tree);
|
197 |
|
|
static int check_subobject_offset (tree, tree, splay_tree);
|
198 |
|
|
static int walk_subobject_offsets (tree, subobject_offset_fn,
|
199 |
|
|
tree, splay_tree, tree, int);
|
200 |
|
|
static void record_subobject_offsets (tree, tree, splay_tree, bool);
|
201 |
|
|
static int layout_conflict_p (tree, tree, splay_tree, int);
|
202 |
|
|
static int splay_tree_compare_integer_csts (splay_tree_key k1,
|
203 |
|
|
splay_tree_key k2);
|
204 |
|
|
static void warn_about_ambiguous_bases (tree);
|
205 |
|
|
static bool type_requires_array_cookie (tree);
|
206 |
|
|
static bool contains_empty_class_p (tree);
|
207 |
|
|
static bool base_derived_from (tree, tree);
|
208 |
|
|
static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
|
209 |
|
|
static tree end_of_base (tree);
|
210 |
|
|
static tree get_vcall_index (tree, tree);
|
211 |
|
|
|
212 |
|
|
/* Variables shared between class.c and call.c. */
|
213 |
|
|
|
214 |
|
|
#ifdef GATHER_STATISTICS
|
215 |
|
|
int n_vtables = 0;
|
216 |
|
|
int n_vtable_entries = 0;
|
217 |
|
|
int n_vtable_searches = 0;
|
218 |
|
|
int n_vtable_elems = 0;
|
219 |
|
|
int n_convert_harshness = 0;
|
220 |
|
|
int n_compute_conversion_costs = 0;
|
221 |
|
|
int n_inner_fields_searched = 0;
|
222 |
|
|
#endif
|
223 |
|
|
|
224 |
|
|
/* Convert to or from a base subobject. EXPR is an expression of type
|
225 |
|
|
`A' or `A*', an expression of type `B' or `B*' is returned. To
|
226 |
|
|
convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
|
227 |
|
|
the B base instance within A. To convert base A to derived B, CODE
|
228 |
|
|
is MINUS_EXPR and BINFO is the binfo for the A instance within B.
|
229 |
|
|
In this latter case, A must not be a morally virtual base of B.
|
230 |
|
|
NONNULL is true if EXPR is known to be non-NULL (this is only
|
231 |
|
|
needed when EXPR is of pointer type). CV qualifiers are preserved
|
232 |
|
|
from EXPR. */
|
233 |
|
|
|
234 |
|
|
tree
|
235 |
|
|
build_base_path (enum tree_code code,
|
236 |
|
|
tree expr,
|
237 |
|
|
tree binfo,
|
238 |
|
|
int nonnull,
|
239 |
|
|
tsubst_flags_t complain)
|
240 |
|
|
{
|
241 |
|
|
tree v_binfo = NULL_TREE;
|
242 |
|
|
tree d_binfo = NULL_TREE;
|
243 |
|
|
tree probe;
|
244 |
|
|
tree offset;
|
245 |
|
|
tree target_type;
|
246 |
|
|
tree null_test = NULL;
|
247 |
|
|
tree ptr_target_type;
|
248 |
|
|
int fixed_type_p;
|
249 |
|
|
int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
|
250 |
|
|
bool has_empty = false;
|
251 |
|
|
bool virtual_access;
|
252 |
|
|
|
253 |
|
|
if (expr == error_mark_node || binfo == error_mark_node || !binfo)
|
254 |
|
|
return error_mark_node;
|
255 |
|
|
|
256 |
|
|
for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
|
257 |
|
|
{
|
258 |
|
|
d_binfo = probe;
|
259 |
|
|
if (is_empty_class (BINFO_TYPE (probe)))
|
260 |
|
|
has_empty = true;
|
261 |
|
|
if (!v_binfo && BINFO_VIRTUAL_P (probe))
|
262 |
|
|
v_binfo = probe;
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
|
266 |
|
|
if (want_pointer)
|
267 |
|
|
probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
|
268 |
|
|
|
269 |
|
|
if (code == PLUS_EXPR
|
270 |
|
|
&& !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
|
271 |
|
|
{
|
272 |
|
|
/* This can happen when adjust_result_of_qualified_name_lookup can't
|
273 |
|
|
find a unique base binfo in a call to a member function. We
|
274 |
|
|
couldn't give the diagnostic then since we might have been calling
|
275 |
|
|
a static member function, so we do it now. */
|
276 |
|
|
if (complain & tf_error)
|
277 |
|
|
{
|
278 |
|
|
tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
|
279 |
|
|
ba_unique, NULL);
|
280 |
|
|
gcc_assert (base == error_mark_node);
|
281 |
|
|
}
|
282 |
|
|
return error_mark_node;
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
gcc_assert ((code == MINUS_EXPR
|
286 |
|
|
&& SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
|
287 |
|
|
|| code == PLUS_EXPR);
|
288 |
|
|
|
289 |
|
|
if (binfo == d_binfo)
|
290 |
|
|
/* Nothing to do. */
|
291 |
|
|
return expr;
|
292 |
|
|
|
293 |
|
|
if (code == MINUS_EXPR && v_binfo)
|
294 |
|
|
{
|
295 |
|
|
if (complain & tf_error)
|
296 |
|
|
error ("cannot convert from base %qT to derived type %qT via "
|
297 |
|
|
"virtual base %qT", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
|
298 |
|
|
BINFO_TYPE (v_binfo));
|
299 |
|
|
return error_mark_node;
|
300 |
|
|
}
|
301 |
|
|
|
302 |
|
|
if (!want_pointer)
|
303 |
|
|
/* This must happen before the call to save_expr. */
|
304 |
|
|
expr = cp_build_addr_expr (expr, complain);
|
305 |
|
|
else
|
306 |
|
|
expr = mark_rvalue_use (expr);
|
307 |
|
|
|
308 |
|
|
offset = BINFO_OFFSET (binfo);
|
309 |
|
|
fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
|
310 |
|
|
target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
|
311 |
|
|
/* TARGET_TYPE has been extracted from BINFO, and, is therefore always
|
312 |
|
|
cv-unqualified. Extract the cv-qualifiers from EXPR so that the
|
313 |
|
|
expression returned matches the input. */
|
314 |
|
|
target_type = cp_build_qualified_type
|
315 |
|
|
(target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
|
316 |
|
|
ptr_target_type = build_pointer_type (target_type);
|
317 |
|
|
|
318 |
|
|
/* Do we need to look in the vtable for the real offset? */
|
319 |
|
|
virtual_access = (v_binfo && fixed_type_p <= 0);
|
320 |
|
|
|
321 |
|
|
/* Don't bother with the calculations inside sizeof; they'll ICE if the
|
322 |
|
|
source type is incomplete and the pointer value doesn't matter. In a
|
323 |
|
|
template (even in fold_non_dependent_expr), we don't have vtables set
|
324 |
|
|
up properly yet, and the value doesn't matter there either; we're just
|
325 |
|
|
interested in the result of overload resolution. */
|
326 |
|
|
if (cp_unevaluated_operand != 0
|
327 |
|
|
|| (current_function_decl
|
328 |
|
|
&& uses_template_parms (current_function_decl)))
|
329 |
|
|
{
|
330 |
|
|
expr = build_nop (ptr_target_type, expr);
|
331 |
|
|
if (!want_pointer)
|
332 |
|
|
expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
|
333 |
|
|
return expr;
|
334 |
|
|
}
|
335 |
|
|
|
336 |
|
|
/* If we're in an NSDMI, we don't have the full constructor context yet
|
337 |
|
|
that we need for converting to a virtual base, so just build a stub
|
338 |
|
|
CONVERT_EXPR and expand it later in bot_replace. */
|
339 |
|
|
if (virtual_access && fixed_type_p < 0
|
340 |
|
|
&& current_scope () != current_function_decl)
|
341 |
|
|
{
|
342 |
|
|
expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
|
343 |
|
|
CONVERT_EXPR_VBASE_PATH (expr) = true;
|
344 |
|
|
if (!want_pointer)
|
345 |
|
|
expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
|
346 |
|
|
return expr;
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
/* Do we need to check for a null pointer? */
|
350 |
|
|
if (want_pointer && !nonnull)
|
351 |
|
|
{
|
352 |
|
|
/* If we know the conversion will not actually change the value
|
353 |
|
|
of EXPR, then we can avoid testing the expression for NULL.
|
354 |
|
|
We have to avoid generating a COMPONENT_REF for a base class
|
355 |
|
|
field, because other parts of the compiler know that such
|
356 |
|
|
expressions are always non-NULL. */
|
357 |
|
|
if (!virtual_access && integer_zerop (offset))
|
358 |
|
|
return build_nop (ptr_target_type, expr);
|
359 |
|
|
null_test = error_mark_node;
|
360 |
|
|
}
|
361 |
|
|
|
362 |
|
|
/* Protect against multiple evaluation if necessary. */
|
363 |
|
|
if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
|
364 |
|
|
expr = save_expr (expr);
|
365 |
|
|
|
366 |
|
|
/* Now that we've saved expr, build the real null test. */
|
367 |
|
|
if (null_test)
|
368 |
|
|
{
|
369 |
|
|
tree zero = cp_convert (TREE_TYPE (expr), nullptr_node);
|
370 |
|
|
null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
|
371 |
|
|
expr, zero);
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
/* If this is a simple base reference, express it as a COMPONENT_REF. */
|
375 |
|
|
if (code == PLUS_EXPR && !virtual_access
|
376 |
|
|
/* We don't build base fields for empty bases, and they aren't very
|
377 |
|
|
interesting to the optimizers anyway. */
|
378 |
|
|
&& !has_empty)
|
379 |
|
|
{
|
380 |
|
|
expr = cp_build_indirect_ref (expr, RO_NULL, complain);
|
381 |
|
|
expr = build_simple_base_path (expr, binfo);
|
382 |
|
|
if (want_pointer)
|
383 |
|
|
expr = build_address (expr);
|
384 |
|
|
target_type = TREE_TYPE (expr);
|
385 |
|
|
goto out;
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
if (virtual_access)
|
389 |
|
|
{
|
390 |
|
|
/* Going via virtual base V_BINFO. We need the static offset
|
391 |
|
|
from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
|
392 |
|
|
V_BINFO. That offset is an entry in D_BINFO's vtable. */
|
393 |
|
|
tree v_offset;
|
394 |
|
|
|
395 |
|
|
if (fixed_type_p < 0 && in_base_initializer)
|
396 |
|
|
{
|
397 |
|
|
/* In a base member initializer, we cannot rely on the
|
398 |
|
|
vtable being set up. We have to indirect via the
|
399 |
|
|
vtt_parm. */
|
400 |
|
|
tree t;
|
401 |
|
|
|
402 |
|
|
t = TREE_TYPE (TYPE_VFIELD (current_class_type));
|
403 |
|
|
t = build_pointer_type (t);
|
404 |
|
|
v_offset = convert (t, current_vtt_parm);
|
405 |
|
|
v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
|
406 |
|
|
}
|
407 |
|
|
else
|
408 |
|
|
v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
|
409 |
|
|
complain),
|
410 |
|
|
TREE_TYPE (TREE_TYPE (expr)));
|
411 |
|
|
|
412 |
|
|
v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
|
413 |
|
|
v_offset = build1 (NOP_EXPR,
|
414 |
|
|
build_pointer_type (ptrdiff_type_node),
|
415 |
|
|
v_offset);
|
416 |
|
|
v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
|
417 |
|
|
TREE_CONSTANT (v_offset) = 1;
|
418 |
|
|
|
419 |
|
|
offset = convert_to_integer (ptrdiff_type_node,
|
420 |
|
|
size_diffop_loc (input_location, offset,
|
421 |
|
|
BINFO_OFFSET (v_binfo)));
|
422 |
|
|
|
423 |
|
|
if (!integer_zerop (offset))
|
424 |
|
|
v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
|
425 |
|
|
|
426 |
|
|
if (fixed_type_p < 0)
|
427 |
|
|
/* Negative fixed_type_p means this is a constructor or destructor;
|
428 |
|
|
virtual base layout is fixed in in-charge [cd]tors, but not in
|
429 |
|
|
base [cd]tors. */
|
430 |
|
|
offset = build3 (COND_EXPR, ptrdiff_type_node,
|
431 |
|
|
build2 (EQ_EXPR, boolean_type_node,
|
432 |
|
|
current_in_charge_parm, integer_zero_node),
|
433 |
|
|
v_offset,
|
434 |
|
|
convert_to_integer (ptrdiff_type_node,
|
435 |
|
|
BINFO_OFFSET (binfo)));
|
436 |
|
|
else
|
437 |
|
|
offset = v_offset;
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
if (want_pointer)
|
441 |
|
|
target_type = ptr_target_type;
|
442 |
|
|
|
443 |
|
|
expr = build1 (NOP_EXPR, ptr_target_type, expr);
|
444 |
|
|
|
445 |
|
|
if (!integer_zerop (offset))
|
446 |
|
|
{
|
447 |
|
|
offset = fold_convert (sizetype, offset);
|
448 |
|
|
if (code == MINUS_EXPR)
|
449 |
|
|
offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
|
450 |
|
|
expr = fold_build_pointer_plus (expr, offset);
|
451 |
|
|
}
|
452 |
|
|
else
|
453 |
|
|
null_test = NULL;
|
454 |
|
|
|
455 |
|
|
if (!want_pointer)
|
456 |
|
|
expr = cp_build_indirect_ref (expr, RO_NULL, complain);
|
457 |
|
|
|
458 |
|
|
out:
|
459 |
|
|
if (null_test)
|
460 |
|
|
expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
|
461 |
|
|
build_zero_cst (target_type));
|
462 |
|
|
|
463 |
|
|
return expr;
|
464 |
|
|
}
|
465 |
|
|
|
466 |
|
|
/* Subroutine of build_base_path; EXPR and BINFO are as in that function.
|
467 |
|
|
Perform a derived-to-base conversion by recursively building up a
|
468 |
|
|
sequence of COMPONENT_REFs to the appropriate base fields. */
|
469 |
|
|
|
470 |
|
|
static tree
|
471 |
|
|
build_simple_base_path (tree expr, tree binfo)
|
472 |
|
|
{
|
473 |
|
|
tree type = BINFO_TYPE (binfo);
|
474 |
|
|
tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
|
475 |
|
|
tree field;
|
476 |
|
|
|
477 |
|
|
if (d_binfo == NULL_TREE)
|
478 |
|
|
{
|
479 |
|
|
tree temp;
|
480 |
|
|
|
481 |
|
|
gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
|
482 |
|
|
|
483 |
|
|
/* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
|
484 |
|
|
into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
|
485 |
|
|
an lvalue in the front end; only _DECLs and _REFs are lvalues
|
486 |
|
|
in the back end. */
|
487 |
|
|
temp = unary_complex_lvalue (ADDR_EXPR, expr);
|
488 |
|
|
if (temp)
|
489 |
|
|
expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
|
490 |
|
|
|
491 |
|
|
return expr;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
/* Recurse. */
|
495 |
|
|
expr = build_simple_base_path (expr, d_binfo);
|
496 |
|
|
|
497 |
|
|
for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
|
498 |
|
|
field; field = DECL_CHAIN (field))
|
499 |
|
|
/* Is this the base field created by build_base_field? */
|
500 |
|
|
if (TREE_CODE (field) == FIELD_DECL
|
501 |
|
|
&& DECL_FIELD_IS_BASE (field)
|
502 |
|
|
&& TREE_TYPE (field) == type
|
503 |
|
|
/* If we're looking for a field in the most-derived class,
|
504 |
|
|
also check the field offset; we can have two base fields
|
505 |
|
|
of the same type if one is an indirect virtual base and one
|
506 |
|
|
is a direct non-virtual base. */
|
507 |
|
|
&& (BINFO_INHERITANCE_CHAIN (d_binfo)
|
508 |
|
|
|| tree_int_cst_equal (byte_position (field),
|
509 |
|
|
BINFO_OFFSET (binfo))))
|
510 |
|
|
{
|
511 |
|
|
/* We don't use build_class_member_access_expr here, as that
|
512 |
|
|
has unnecessary checks, and more importantly results in
|
513 |
|
|
recursive calls to dfs_walk_once. */
|
514 |
|
|
int type_quals = cp_type_quals (TREE_TYPE (expr));
|
515 |
|
|
|
516 |
|
|
expr = build3 (COMPONENT_REF,
|
517 |
|
|
cp_build_qualified_type (type, type_quals),
|
518 |
|
|
expr, field, NULL_TREE);
|
519 |
|
|
expr = fold_if_not_in_template (expr);
|
520 |
|
|
|
521 |
|
|
/* Mark the expression const or volatile, as appropriate.
|
522 |
|
|
Even though we've dealt with the type above, we still have
|
523 |
|
|
to mark the expression itself. */
|
524 |
|
|
if (type_quals & TYPE_QUAL_CONST)
|
525 |
|
|
TREE_READONLY (expr) = 1;
|
526 |
|
|
if (type_quals & TYPE_QUAL_VOLATILE)
|
527 |
|
|
TREE_THIS_VOLATILE (expr) = 1;
|
528 |
|
|
|
529 |
|
|
return expr;
|
530 |
|
|
}
|
531 |
|
|
|
532 |
|
|
/* Didn't find the base field?!? */
|
533 |
|
|
gcc_unreachable ();
|
534 |
|
|
}
|
535 |
|
|
|
536 |
|
|
/* Convert OBJECT to the base TYPE. OBJECT is an expression whose
|
537 |
|
|
type is a class type or a pointer to a class type. In the former
|
538 |
|
|
case, TYPE is also a class type; in the latter it is another
|
539 |
|
|
pointer type. If CHECK_ACCESS is true, an error message is emitted
|
540 |
|
|
if TYPE is inaccessible. If OBJECT has pointer type, the value is
|
541 |
|
|
assumed to be non-NULL. */
|
542 |
|
|
|
543 |
|
|
tree
|
544 |
|
|
convert_to_base (tree object, tree type, bool check_access, bool nonnull,
|
545 |
|
|
tsubst_flags_t complain)
|
546 |
|
|
{
|
547 |
|
|
tree binfo;
|
548 |
|
|
tree object_type;
|
549 |
|
|
base_access access;
|
550 |
|
|
|
551 |
|
|
if (TYPE_PTR_P (TREE_TYPE (object)))
|
552 |
|
|
{
|
553 |
|
|
object_type = TREE_TYPE (TREE_TYPE (object));
|
554 |
|
|
type = TREE_TYPE (type);
|
555 |
|
|
}
|
556 |
|
|
else
|
557 |
|
|
object_type = TREE_TYPE (object);
|
558 |
|
|
|
559 |
|
|
access = check_access ? ba_check : ba_unique;
|
560 |
|
|
if (!(complain & tf_error))
|
561 |
|
|
access |= ba_quiet;
|
562 |
|
|
binfo = lookup_base (object_type, type,
|
563 |
|
|
access,
|
564 |
|
|
NULL);
|
565 |
|
|
if (!binfo || binfo == error_mark_node)
|
566 |
|
|
return error_mark_node;
|
567 |
|
|
|
568 |
|
|
return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
|
569 |
|
|
}
|
570 |
|
|
|
571 |
|
|
/* EXPR is an expression with unqualified class type. BASE is a base
|
572 |
|
|
binfo of that class type. Returns EXPR, converted to the BASE
|
573 |
|
|
type. This function assumes that EXPR is the most derived class;
|
574 |
|
|
therefore virtual bases can be found at their static offsets. */
|
575 |
|
|
|
576 |
|
|
tree
|
577 |
|
|
convert_to_base_statically (tree expr, tree base)
|
578 |
|
|
{
|
579 |
|
|
tree expr_type;
|
580 |
|
|
|
581 |
|
|
expr_type = TREE_TYPE (expr);
|
582 |
|
|
if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
|
583 |
|
|
{
|
584 |
|
|
/* If this is a non-empty base, use a COMPONENT_REF. */
|
585 |
|
|
if (!is_empty_class (BINFO_TYPE (base)))
|
586 |
|
|
return build_simple_base_path (expr, base);
|
587 |
|
|
|
588 |
|
|
/* We use fold_build2 and fold_convert below to simplify the trees
|
589 |
|
|
provided to the optimizers. It is not safe to call these functions
|
590 |
|
|
when processing a template because they do not handle C++-specific
|
591 |
|
|
trees. */
|
592 |
|
|
gcc_assert (!processing_template_decl);
|
593 |
|
|
expr = cp_build_addr_expr (expr, tf_warning_or_error);
|
594 |
|
|
if (!integer_zerop (BINFO_OFFSET (base)))
|
595 |
|
|
expr = fold_build_pointer_plus_loc (input_location,
|
596 |
|
|
expr, BINFO_OFFSET (base));
|
597 |
|
|
expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
|
598 |
|
|
expr = build_fold_indirect_ref_loc (input_location, expr);
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
return expr;
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
|
605 |
|
|
tree
|
606 |
|
|
build_vfield_ref (tree datum, tree type)
|
607 |
|
|
{
|
608 |
|
|
tree vfield, vcontext;
|
609 |
|
|
|
610 |
|
|
if (datum == error_mark_node)
|
611 |
|
|
return error_mark_node;
|
612 |
|
|
|
613 |
|
|
/* First, convert to the requested type. */
|
614 |
|
|
if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
|
615 |
|
|
datum = convert_to_base (datum, type, /*check_access=*/false,
|
616 |
|
|
/*nonnull=*/true, tf_warning_or_error);
|
617 |
|
|
|
618 |
|
|
/* Second, the requested type may not be the owner of its own vptr.
|
619 |
|
|
If not, convert to the base class that owns it. We cannot use
|
620 |
|
|
convert_to_base here, because VCONTEXT may appear more than once
|
621 |
|
|
in the inheritance hierarchy of TYPE, and thus direct conversion
|
622 |
|
|
between the types may be ambiguous. Following the path back up
|
623 |
|
|
one step at a time via primary bases avoids the problem. */
|
624 |
|
|
vfield = TYPE_VFIELD (type);
|
625 |
|
|
vcontext = DECL_CONTEXT (vfield);
|
626 |
|
|
while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
|
627 |
|
|
{
|
628 |
|
|
datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
|
629 |
|
|
type = TREE_TYPE (datum);
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
|
633 |
|
|
}
|
634 |
|
|
|
635 |
|
|
/* Given an object INSTANCE, return an expression which yields the
|
636 |
|
|
vtable element corresponding to INDEX. There are many special
|
637 |
|
|
cases for INSTANCE which we take care of here, mainly to avoid
|
638 |
|
|
creating extra tree nodes when we don't have to. */
|
639 |
|
|
|
640 |
|
|
static tree
|
641 |
|
|
build_vtbl_ref_1 (tree instance, tree idx)
|
642 |
|
|
{
|
643 |
|
|
tree aref;
|
644 |
|
|
tree vtbl = NULL_TREE;
|
645 |
|
|
|
646 |
|
|
/* Try to figure out what a reference refers to, and
|
647 |
|
|
access its virtual function table directly. */
|
648 |
|
|
|
649 |
|
|
int cdtorp = 0;
|
650 |
|
|
tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
|
651 |
|
|
|
652 |
|
|
tree basetype = non_reference (TREE_TYPE (instance));
|
653 |
|
|
|
654 |
|
|
if (fixed_type && !cdtorp)
|
655 |
|
|
{
|
656 |
|
|
tree binfo = lookup_base (fixed_type, basetype,
|
657 |
|
|
ba_unique | ba_quiet, NULL);
|
658 |
|
|
if (binfo)
|
659 |
|
|
vtbl = unshare_expr (BINFO_VTABLE (binfo));
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
if (!vtbl)
|
663 |
|
|
vtbl = build_vfield_ref (instance, basetype);
|
664 |
|
|
|
665 |
|
|
aref = build_array_ref (input_location, vtbl, idx);
|
666 |
|
|
TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
|
667 |
|
|
|
668 |
|
|
return aref;
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
tree
|
672 |
|
|
build_vtbl_ref (tree instance, tree idx)
|
673 |
|
|
{
|
674 |
|
|
tree aref = build_vtbl_ref_1 (instance, idx);
|
675 |
|
|
|
676 |
|
|
return aref;
|
677 |
|
|
}
|
678 |
|
|
|
679 |
|
|
/* Given a stable object pointer INSTANCE_PTR, return an expression which
|
680 |
|
|
yields a function pointer corresponding to vtable element INDEX. */
|
681 |
|
|
|
682 |
|
|
tree
|
683 |
|
|
build_vfn_ref (tree instance_ptr, tree idx)
|
684 |
|
|
{
|
685 |
|
|
tree aref;
|
686 |
|
|
|
687 |
|
|
aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
|
688 |
|
|
tf_warning_or_error),
|
689 |
|
|
idx);
|
690 |
|
|
|
691 |
|
|
/* When using function descriptors, the address of the
|
692 |
|
|
vtable entry is treated as a function pointer. */
|
693 |
|
|
if (TARGET_VTABLE_USES_DESCRIPTORS)
|
694 |
|
|
aref = build1 (NOP_EXPR, TREE_TYPE (aref),
|
695 |
|
|
cp_build_addr_expr (aref, tf_warning_or_error));
|
696 |
|
|
|
697 |
|
|
/* Remember this as a method reference, for later devirtualization. */
|
698 |
|
|
aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
|
699 |
|
|
|
700 |
|
|
return aref;
|
701 |
|
|
}
|
702 |
|
|
|
703 |
|
|
/* Return the name of the virtual function table (as an IDENTIFIER_NODE)
|
704 |
|
|
for the given TYPE. */
|
705 |
|
|
|
706 |
|
|
static tree
|
707 |
|
|
get_vtable_name (tree type)
|
708 |
|
|
{
|
709 |
|
|
return mangle_vtbl_for_type (type);
|
710 |
|
|
}
|
711 |
|
|
|
712 |
|
|
/* DECL is an entity associated with TYPE, like a virtual table or an
|
713 |
|
|
implicitly generated constructor. Determine whether or not DECL
|
714 |
|
|
should have external or internal linkage at the object file
|
715 |
|
|
level. This routine does not deal with COMDAT linkage and other
|
716 |
|
|
similar complexities; it simply sets TREE_PUBLIC if it possible for
|
717 |
|
|
entities in other translation units to contain copies of DECL, in
|
718 |
|
|
the abstract. */
|
719 |
|
|
|
720 |
|
|
void
|
721 |
|
|
set_linkage_according_to_type (tree type ATTRIBUTE_UNUSED, tree decl)
|
722 |
|
|
{
|
723 |
|
|
TREE_PUBLIC (decl) = 1;
|
724 |
|
|
determine_visibility (decl);
|
725 |
|
|
}
|
726 |
|
|
|
727 |
|
|
/* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
|
728 |
|
|
(For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
|
729 |
|
|
Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
|
730 |
|
|
|
731 |
|
|
static tree
|
732 |
|
|
build_vtable (tree class_type, tree name, tree vtable_type)
|
733 |
|
|
{
|
734 |
|
|
tree decl;
|
735 |
|
|
|
736 |
|
|
decl = build_lang_decl (VAR_DECL, name, vtable_type);
|
737 |
|
|
/* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
|
738 |
|
|
now to avoid confusion in mangle_decl. */
|
739 |
|
|
SET_DECL_ASSEMBLER_NAME (decl, name);
|
740 |
|
|
DECL_CONTEXT (decl) = class_type;
|
741 |
|
|
DECL_ARTIFICIAL (decl) = 1;
|
742 |
|
|
TREE_STATIC (decl) = 1;
|
743 |
|
|
TREE_READONLY (decl) = 1;
|
744 |
|
|
DECL_VIRTUAL_P (decl) = 1;
|
745 |
|
|
DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
|
746 |
|
|
DECL_VTABLE_OR_VTT_P (decl) = 1;
|
747 |
|
|
/* At one time the vtable info was grabbed 2 words at a time. This
|
748 |
|
|
fails on sparc unless you have 8-byte alignment. (tiemann) */
|
749 |
|
|
DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
|
750 |
|
|
DECL_ALIGN (decl));
|
751 |
|
|
set_linkage_according_to_type (class_type, decl);
|
752 |
|
|
/* The vtable has not been defined -- yet. */
|
753 |
|
|
DECL_EXTERNAL (decl) = 1;
|
754 |
|
|
DECL_NOT_REALLY_EXTERN (decl) = 1;
|
755 |
|
|
|
756 |
|
|
/* Mark the VAR_DECL node representing the vtable itself as a
|
757 |
|
|
"gratuitous" one, thereby forcing dwarfout.c to ignore it. It
|
758 |
|
|
is rather important that such things be ignored because any
|
759 |
|
|
effort to actually generate DWARF for them will run into
|
760 |
|
|
trouble when/if we encounter code like:
|
761 |
|
|
|
762 |
|
|
#pragma interface
|
763 |
|
|
struct S { virtual void member (); };
|
764 |
|
|
|
765 |
|
|
because the artificial declaration of the vtable itself (as
|
766 |
|
|
manufactured by the g++ front end) will say that the vtable is
|
767 |
|
|
a static member of `S' but only *after* the debug output for
|
768 |
|
|
the definition of `S' has already been output. This causes
|
769 |
|
|
grief because the DWARF entry for the definition of the vtable
|
770 |
|
|
will try to refer back to an earlier *declaration* of the
|
771 |
|
|
vtable as a static member of `S' and there won't be one. We
|
772 |
|
|
might be able to arrange to have the "vtable static member"
|
773 |
|
|
attached to the member list for `S' before the debug info for
|
774 |
|
|
`S' get written (which would solve the problem) but that would
|
775 |
|
|
require more intrusive changes to the g++ front end. */
|
776 |
|
|
DECL_IGNORED_P (decl) = 1;
|
777 |
|
|
|
778 |
|
|
return decl;
|
779 |
|
|
}
|
780 |
|
|
|
781 |
|
|
/* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
|
782 |
|
|
or even complete. If this does not exist, create it. If COMPLETE is
|
783 |
|
|
nonzero, then complete the definition of it -- that will render it
|
784 |
|
|
impossible to actually build the vtable, but is useful to get at those
|
785 |
|
|
which are known to exist in the runtime. */
|
786 |
|
|
|
787 |
|
|
tree
|
788 |
|
|
get_vtable_decl (tree type, int complete)
|
789 |
|
|
{
|
790 |
|
|
tree decl;
|
791 |
|
|
|
792 |
|
|
if (CLASSTYPE_VTABLES (type))
|
793 |
|
|
return CLASSTYPE_VTABLES (type);
|
794 |
|
|
|
795 |
|
|
decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
|
796 |
|
|
CLASSTYPE_VTABLES (type) = decl;
|
797 |
|
|
|
798 |
|
|
if (complete)
|
799 |
|
|
{
|
800 |
|
|
DECL_EXTERNAL (decl) = 1;
|
801 |
|
|
cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
|
802 |
|
|
}
|
803 |
|
|
|
804 |
|
|
return decl;
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
/* Build the primary virtual function table for TYPE. If BINFO is
|
808 |
|
|
non-NULL, build the vtable starting with the initial approximation
|
809 |
|
|
that it is the same as the one which is the head of the association
|
810 |
|
|
list. Returns a nonzero value if a new vtable is actually
|
811 |
|
|
created. */
|
812 |
|
|
|
813 |
|
|
static int
|
814 |
|
|
build_primary_vtable (tree binfo, tree type)
|
815 |
|
|
{
|
816 |
|
|
tree decl;
|
817 |
|
|
tree virtuals;
|
818 |
|
|
|
819 |
|
|
decl = get_vtable_decl (type, /*complete=*/0);
|
820 |
|
|
|
821 |
|
|
if (binfo)
|
822 |
|
|
{
|
823 |
|
|
if (BINFO_NEW_VTABLE_MARKED (binfo))
|
824 |
|
|
/* We have already created a vtable for this base, so there's
|
825 |
|
|
no need to do it again. */
|
826 |
|
|
return 0;
|
827 |
|
|
|
828 |
|
|
virtuals = copy_list (BINFO_VIRTUALS (binfo));
|
829 |
|
|
TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
|
830 |
|
|
DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
|
831 |
|
|
DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
|
832 |
|
|
}
|
833 |
|
|
else
|
834 |
|
|
{
|
835 |
|
|
gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
|
836 |
|
|
virtuals = NULL_TREE;
|
837 |
|
|
}
|
838 |
|
|
|
839 |
|
|
#ifdef GATHER_STATISTICS
|
840 |
|
|
n_vtables += 1;
|
841 |
|
|
n_vtable_elems += list_length (virtuals);
|
842 |
|
|
#endif
|
843 |
|
|
|
844 |
|
|
/* Initialize the association list for this type, based
|
845 |
|
|
on our first approximation. */
|
846 |
|
|
BINFO_VTABLE (TYPE_BINFO (type)) = decl;
|
847 |
|
|
BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
|
848 |
|
|
SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
|
849 |
|
|
return 1;
|
850 |
|
|
}
|
851 |
|
|
|
852 |
|
|
/* Give BINFO a new virtual function table which is initialized
|
853 |
|
|
with a skeleton-copy of its original initialization. The only
|
854 |
|
|
entry that changes is the `delta' entry, so we can really
|
855 |
|
|
share a lot of structure.
|
856 |
|
|
|
857 |
|
|
FOR_TYPE is the most derived type which caused this table to
|
858 |
|
|
be needed.
|
859 |
|
|
|
860 |
|
|
Returns nonzero if we haven't met BINFO before.
|
861 |
|
|
|
862 |
|
|
The order in which vtables are built (by calling this function) for
|
863 |
|
|
an object must remain the same, otherwise a binary incompatibility
|
864 |
|
|
can result. */
|
865 |
|
|
|
866 |
|
|
static int
|
867 |
|
|
build_secondary_vtable (tree binfo)
|
868 |
|
|
{
|
869 |
|
|
if (BINFO_NEW_VTABLE_MARKED (binfo))
|
870 |
|
|
/* We already created a vtable for this base. There's no need to
|
871 |
|
|
do it again. */
|
872 |
|
|
return 0;
|
873 |
|
|
|
874 |
|
|
/* Remember that we've created a vtable for this BINFO, so that we
|
875 |
|
|
don't try to do so again. */
|
876 |
|
|
SET_BINFO_NEW_VTABLE_MARKED (binfo);
|
877 |
|
|
|
878 |
|
|
/* Make fresh virtual list, so we can smash it later. */
|
879 |
|
|
BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
|
880 |
|
|
|
881 |
|
|
/* Secondary vtables are laid out as part of the same structure as
|
882 |
|
|
the primary vtable. */
|
883 |
|
|
BINFO_VTABLE (binfo) = NULL_TREE;
|
884 |
|
|
return 1;
|
885 |
|
|
}
|
886 |
|
|
|
887 |
|
|
/* Create a new vtable for BINFO which is the hierarchy dominated by
|
888 |
|
|
T. Return nonzero if we actually created a new vtable. */
|
889 |
|
|
|
890 |
|
|
static int
|
891 |
|
|
make_new_vtable (tree t, tree binfo)
|
892 |
|
|
{
|
893 |
|
|
if (binfo == TYPE_BINFO (t))
|
894 |
|
|
/* In this case, it is *type*'s vtable we are modifying. We start
|
895 |
|
|
with the approximation that its vtable is that of the
|
896 |
|
|
immediate base class. */
|
897 |
|
|
return build_primary_vtable (binfo, t);
|
898 |
|
|
else
|
899 |
|
|
/* This is our very own copy of `basetype' to play with. Later,
|
900 |
|
|
we will fill in all the virtual functions that override the
|
901 |
|
|
virtual functions in these base classes which are not defined
|
902 |
|
|
by the current type. */
|
903 |
|
|
return build_secondary_vtable (binfo);
|
904 |
|
|
}
|
905 |
|
|
|
906 |
|
|
/* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
|
907 |
|
|
(which is in the hierarchy dominated by T) list FNDECL as its
|
908 |
|
|
BV_FN. DELTA is the required constant adjustment from the `this'
|
909 |
|
|
pointer where the vtable entry appears to the `this' required when
|
910 |
|
|
the function is actually called. */
|
911 |
|
|
|
912 |
|
|
static void
|
913 |
|
|
modify_vtable_entry (tree t,
|
914 |
|
|
tree binfo,
|
915 |
|
|
tree fndecl,
|
916 |
|
|
tree delta,
|
917 |
|
|
tree *virtuals)
|
918 |
|
|
{
|
919 |
|
|
tree v;
|
920 |
|
|
|
921 |
|
|
v = *virtuals;
|
922 |
|
|
|
923 |
|
|
if (fndecl != BV_FN (v)
|
924 |
|
|
|| !tree_int_cst_equal (delta, BV_DELTA (v)))
|
925 |
|
|
{
|
926 |
|
|
/* We need a new vtable for BINFO. */
|
927 |
|
|
if (make_new_vtable (t, binfo))
|
928 |
|
|
{
|
929 |
|
|
/* If we really did make a new vtable, we also made a copy
|
930 |
|
|
of the BINFO_VIRTUALS list. Now, we have to find the
|
931 |
|
|
corresponding entry in that list. */
|
932 |
|
|
*virtuals = BINFO_VIRTUALS (binfo);
|
933 |
|
|
while (BV_FN (*virtuals) != BV_FN (v))
|
934 |
|
|
*virtuals = TREE_CHAIN (*virtuals);
|
935 |
|
|
v = *virtuals;
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
BV_DELTA (v) = delta;
|
939 |
|
|
BV_VCALL_INDEX (v) = NULL_TREE;
|
940 |
|
|
BV_FN (v) = fndecl;
|
941 |
|
|
}
|
942 |
|
|
}
|
943 |
|
|
|
944 |
|
|
|
945 |
|
|
/* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
|
946 |
|
|
the USING_DECL naming METHOD. Returns true if the method could be
|
947 |
|
|
added to the method vec. */
|
948 |
|
|
|
949 |
|
|
bool
|
950 |
|
|
add_method (tree type, tree method, tree using_decl)
|
951 |
|
|
{
|
952 |
|
|
unsigned slot;
|
953 |
|
|
tree overload;
|
954 |
|
|
bool template_conv_p = false;
|
955 |
|
|
bool conv_p;
|
956 |
|
|
VEC(tree,gc) *method_vec;
|
957 |
|
|
bool complete_p;
|
958 |
|
|
bool insert_p = false;
|
959 |
|
|
tree current_fns;
|
960 |
|
|
tree fns;
|
961 |
|
|
|
962 |
|
|
if (method == error_mark_node)
|
963 |
|
|
return false;
|
964 |
|
|
|
965 |
|
|
complete_p = COMPLETE_TYPE_P (type);
|
966 |
|
|
conv_p = DECL_CONV_FN_P (method);
|
967 |
|
|
if (conv_p)
|
968 |
|
|
template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
|
969 |
|
|
&& DECL_TEMPLATE_CONV_FN_P (method));
|
970 |
|
|
|
971 |
|
|
method_vec = CLASSTYPE_METHOD_VEC (type);
|
972 |
|
|
if (!method_vec)
|
973 |
|
|
{
|
974 |
|
|
/* Make a new method vector. We start with 8 entries. We must
|
975 |
|
|
allocate at least two (for constructors and destructors), and
|
976 |
|
|
we're going to end up with an assignment operator at some
|
977 |
|
|
point as well. */
|
978 |
|
|
method_vec = VEC_alloc (tree, gc, 8);
|
979 |
|
|
/* Create slots for constructors and destructors. */
|
980 |
|
|
VEC_quick_push (tree, method_vec, NULL_TREE);
|
981 |
|
|
VEC_quick_push (tree, method_vec, NULL_TREE);
|
982 |
|
|
CLASSTYPE_METHOD_VEC (type) = method_vec;
|
983 |
|
|
}
|
984 |
|
|
|
985 |
|
|
/* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
|
986 |
|
|
grok_special_member_properties (method);
|
987 |
|
|
|
988 |
|
|
/* Constructors and destructors go in special slots. */
|
989 |
|
|
if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
|
990 |
|
|
slot = CLASSTYPE_CONSTRUCTOR_SLOT;
|
991 |
|
|
else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
|
992 |
|
|
{
|
993 |
|
|
slot = CLASSTYPE_DESTRUCTOR_SLOT;
|
994 |
|
|
|
995 |
|
|
if (TYPE_FOR_JAVA (type))
|
996 |
|
|
{
|
997 |
|
|
if (!DECL_ARTIFICIAL (method))
|
998 |
|
|
error ("Java class %qT cannot have a destructor", type);
|
999 |
|
|
else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
|
1000 |
|
|
error ("Java class %qT cannot have an implicit non-trivial "
|
1001 |
|
|
"destructor",
|
1002 |
|
|
type);
|
1003 |
|
|
}
|
1004 |
|
|
}
|
1005 |
|
|
else
|
1006 |
|
|
{
|
1007 |
|
|
tree m;
|
1008 |
|
|
|
1009 |
|
|
insert_p = true;
|
1010 |
|
|
/* See if we already have an entry with this name. */
|
1011 |
|
|
for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
|
1012 |
|
|
VEC_iterate (tree, method_vec, slot, m);
|
1013 |
|
|
++slot)
|
1014 |
|
|
{
|
1015 |
|
|
m = OVL_CURRENT (m);
|
1016 |
|
|
if (template_conv_p)
|
1017 |
|
|
{
|
1018 |
|
|
if (TREE_CODE (m) == TEMPLATE_DECL
|
1019 |
|
|
&& DECL_TEMPLATE_CONV_FN_P (m))
|
1020 |
|
|
insert_p = false;
|
1021 |
|
|
break;
|
1022 |
|
|
}
|
1023 |
|
|
if (conv_p && !DECL_CONV_FN_P (m))
|
1024 |
|
|
break;
|
1025 |
|
|
if (DECL_NAME (m) == DECL_NAME (method))
|
1026 |
|
|
{
|
1027 |
|
|
insert_p = false;
|
1028 |
|
|
break;
|
1029 |
|
|
}
|
1030 |
|
|
if (complete_p
|
1031 |
|
|
&& !DECL_CONV_FN_P (m)
|
1032 |
|
|
&& DECL_NAME (m) > DECL_NAME (method))
|
1033 |
|
|
break;
|
1034 |
|
|
}
|
1035 |
|
|
}
|
1036 |
|
|
current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
|
1037 |
|
|
|
1038 |
|
|
/* Check to see if we've already got this method. */
|
1039 |
|
|
for (fns = current_fns; fns; fns = OVL_NEXT (fns))
|
1040 |
|
|
{
|
1041 |
|
|
tree fn = OVL_CURRENT (fns);
|
1042 |
|
|
tree fn_type;
|
1043 |
|
|
tree method_type;
|
1044 |
|
|
tree parms1;
|
1045 |
|
|
tree parms2;
|
1046 |
|
|
|
1047 |
|
|
if (TREE_CODE (fn) != TREE_CODE (method))
|
1048 |
|
|
continue;
|
1049 |
|
|
|
1050 |
|
|
/* [over.load] Member function declarations with the
|
1051 |
|
|
same name and the same parameter types cannot be
|
1052 |
|
|
overloaded if any of them is a static member
|
1053 |
|
|
function declaration.
|
1054 |
|
|
|
1055 |
|
|
[namespace.udecl] When a using-declaration brings names
|
1056 |
|
|
from a base class into a derived class scope, member
|
1057 |
|
|
functions in the derived class override and/or hide member
|
1058 |
|
|
functions with the same name and parameter types in a base
|
1059 |
|
|
class (rather than conflicting). */
|
1060 |
|
|
fn_type = TREE_TYPE (fn);
|
1061 |
|
|
method_type = TREE_TYPE (method);
|
1062 |
|
|
parms1 = TYPE_ARG_TYPES (fn_type);
|
1063 |
|
|
parms2 = TYPE_ARG_TYPES (method_type);
|
1064 |
|
|
|
1065 |
|
|
/* Compare the quals on the 'this' parm. Don't compare
|
1066 |
|
|
the whole types, as used functions are treated as
|
1067 |
|
|
coming from the using class in overload resolution. */
|
1068 |
|
|
if (! DECL_STATIC_FUNCTION_P (fn)
|
1069 |
|
|
&& ! DECL_STATIC_FUNCTION_P (method)
|
1070 |
|
|
&& TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
|
1071 |
|
|
&& TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
|
1072 |
|
|
&& (cp_type_quals (TREE_TYPE (TREE_VALUE (parms1)))
|
1073 |
|
|
!= cp_type_quals (TREE_TYPE (TREE_VALUE (parms2)))))
|
1074 |
|
|
continue;
|
1075 |
|
|
|
1076 |
|
|
/* For templates, the return type and template parameters
|
1077 |
|
|
must be identical. */
|
1078 |
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL
|
1079 |
|
|
&& (!same_type_p (TREE_TYPE (fn_type),
|
1080 |
|
|
TREE_TYPE (method_type))
|
1081 |
|
|
|| !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
|
1082 |
|
|
DECL_TEMPLATE_PARMS (method))))
|
1083 |
|
|
continue;
|
1084 |
|
|
|
1085 |
|
|
if (! DECL_STATIC_FUNCTION_P (fn))
|
1086 |
|
|
parms1 = TREE_CHAIN (parms1);
|
1087 |
|
|
if (! DECL_STATIC_FUNCTION_P (method))
|
1088 |
|
|
parms2 = TREE_CHAIN (parms2);
|
1089 |
|
|
|
1090 |
|
|
if (compparms (parms1, parms2)
|
1091 |
|
|
&& (!DECL_CONV_FN_P (fn)
|
1092 |
|
|
|| same_type_p (TREE_TYPE (fn_type),
|
1093 |
|
|
TREE_TYPE (method_type))))
|
1094 |
|
|
{
|
1095 |
|
|
if (using_decl)
|
1096 |
|
|
{
|
1097 |
|
|
if (DECL_CONTEXT (fn) == type)
|
1098 |
|
|
/* Defer to the local function. */
|
1099 |
|
|
return false;
|
1100 |
|
|
}
|
1101 |
|
|
else
|
1102 |
|
|
{
|
1103 |
|
|
error ("%q+#D cannot be overloaded", method);
|
1104 |
|
|
error ("with %q+#D", fn);
|
1105 |
|
|
}
|
1106 |
|
|
|
1107 |
|
|
/* We don't call duplicate_decls here to merge the
|
1108 |
|
|
declarations because that will confuse things if the
|
1109 |
|
|
methods have inline definitions. In particular, we
|
1110 |
|
|
will crash while processing the definitions. */
|
1111 |
|
|
return false;
|
1112 |
|
|
}
|
1113 |
|
|
}
|
1114 |
|
|
|
1115 |
|
|
/* A class should never have more than one destructor. */
|
1116 |
|
|
if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
|
1117 |
|
|
return false;
|
1118 |
|
|
|
1119 |
|
|
/* Add the new binding. */
|
1120 |
|
|
overload = build_overload (method, current_fns);
|
1121 |
|
|
if (using_decl && TREE_CODE (overload) == OVERLOAD)
|
1122 |
|
|
OVL_USED (overload) = true;
|
1123 |
|
|
|
1124 |
|
|
if (conv_p)
|
1125 |
|
|
TYPE_HAS_CONVERSION (type) = 1;
|
1126 |
|
|
else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
|
1127 |
|
|
push_class_level_binding (DECL_NAME (method), overload);
|
1128 |
|
|
|
1129 |
|
|
if (insert_p)
|
1130 |
|
|
{
|
1131 |
|
|
bool reallocated;
|
1132 |
|
|
|
1133 |
|
|
/* We only expect to add few methods in the COMPLETE_P case, so
|
1134 |
|
|
just make room for one more method in that case. */
|
1135 |
|
|
if (complete_p)
|
1136 |
|
|
reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
|
1137 |
|
|
else
|
1138 |
|
|
reallocated = VEC_reserve (tree, gc, method_vec, 1);
|
1139 |
|
|
if (reallocated)
|
1140 |
|
|
CLASSTYPE_METHOD_VEC (type) = method_vec;
|
1141 |
|
|
if (slot == VEC_length (tree, method_vec))
|
1142 |
|
|
VEC_quick_push (tree, method_vec, overload);
|
1143 |
|
|
else
|
1144 |
|
|
VEC_quick_insert (tree, method_vec, slot, overload);
|
1145 |
|
|
}
|
1146 |
|
|
else
|
1147 |
|
|
/* Replace the current slot. */
|
1148 |
|
|
VEC_replace (tree, method_vec, slot, overload);
|
1149 |
|
|
return true;
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
/* Subroutines of finish_struct. */
|
1153 |
|
|
|
1154 |
|
|
/* Change the access of FDECL to ACCESS in T. Return 1 if change was
|
1155 |
|
|
legit, otherwise return 0. */
|
1156 |
|
|
|
1157 |
|
|
static int
|
1158 |
|
|
alter_access (tree t, tree fdecl, tree access)
|
1159 |
|
|
{
|
1160 |
|
|
tree elem;
|
1161 |
|
|
|
1162 |
|
|
if (!DECL_LANG_SPECIFIC (fdecl))
|
1163 |
|
|
retrofit_lang_decl (fdecl);
|
1164 |
|
|
|
1165 |
|
|
gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
|
1166 |
|
|
|
1167 |
|
|
elem = purpose_member (t, DECL_ACCESS (fdecl));
|
1168 |
|
|
if (elem)
|
1169 |
|
|
{
|
1170 |
|
|
if (TREE_VALUE (elem) != access)
|
1171 |
|
|
{
|
1172 |
|
|
if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
|
1173 |
|
|
error ("conflicting access specifications for method"
|
1174 |
|
|
" %q+D, ignored", TREE_TYPE (fdecl));
|
1175 |
|
|
else
|
1176 |
|
|
error ("conflicting access specifications for field %qE, ignored",
|
1177 |
|
|
DECL_NAME (fdecl));
|
1178 |
|
|
}
|
1179 |
|
|
else
|
1180 |
|
|
{
|
1181 |
|
|
/* They're changing the access to the same thing they changed
|
1182 |
|
|
it to before. That's OK. */
|
1183 |
|
|
;
|
1184 |
|
|
}
|
1185 |
|
|
}
|
1186 |
|
|
else
|
1187 |
|
|
{
|
1188 |
|
|
perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
|
1189 |
|
|
DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
|
1190 |
|
|
return 1;
|
1191 |
|
|
}
|
1192 |
|
|
return 0;
|
1193 |
|
|
}
|
1194 |
|
|
|
1195 |
|
|
/* Process the USING_DECL, which is a member of T. */
|
1196 |
|
|
|
1197 |
|
|
static void
|
1198 |
|
|
handle_using_decl (tree using_decl, tree t)
|
1199 |
|
|
{
|
1200 |
|
|
tree decl = USING_DECL_DECLS (using_decl);
|
1201 |
|
|
tree name = DECL_NAME (using_decl);
|
1202 |
|
|
tree access
|
1203 |
|
|
= TREE_PRIVATE (using_decl) ? access_private_node
|
1204 |
|
|
: TREE_PROTECTED (using_decl) ? access_protected_node
|
1205 |
|
|
: access_public_node;
|
1206 |
|
|
tree flist = NULL_TREE;
|
1207 |
|
|
tree old_value;
|
1208 |
|
|
|
1209 |
|
|
gcc_assert (!processing_template_decl && decl);
|
1210 |
|
|
|
1211 |
|
|
old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
|
1212 |
|
|
tf_warning_or_error);
|
1213 |
|
|
if (old_value)
|
1214 |
|
|
{
|
1215 |
|
|
if (is_overloaded_fn (old_value))
|
1216 |
|
|
old_value = OVL_CURRENT (old_value);
|
1217 |
|
|
|
1218 |
|
|
if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
|
1219 |
|
|
/* OK */;
|
1220 |
|
|
else
|
1221 |
|
|
old_value = NULL_TREE;
|
1222 |
|
|
}
|
1223 |
|
|
|
1224 |
|
|
cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
|
1225 |
|
|
|
1226 |
|
|
if (is_overloaded_fn (decl))
|
1227 |
|
|
flist = decl;
|
1228 |
|
|
|
1229 |
|
|
if (! old_value)
|
1230 |
|
|
;
|
1231 |
|
|
else if (is_overloaded_fn (old_value))
|
1232 |
|
|
{
|
1233 |
|
|
if (flist)
|
1234 |
|
|
/* It's OK to use functions from a base when there are functions with
|
1235 |
|
|
the same name already present in the current class. */;
|
1236 |
|
|
else
|
1237 |
|
|
{
|
1238 |
|
|
error ("%q+D invalid in %q#T", using_decl, t);
|
1239 |
|
|
error (" because of local method %q+#D with same name",
|
1240 |
|
|
OVL_CURRENT (old_value));
|
1241 |
|
|
return;
|
1242 |
|
|
}
|
1243 |
|
|
}
|
1244 |
|
|
else if (!DECL_ARTIFICIAL (old_value))
|
1245 |
|
|
{
|
1246 |
|
|
error ("%q+D invalid in %q#T", using_decl, t);
|
1247 |
|
|
error (" because of local member %q+#D with same name", old_value);
|
1248 |
|
|
return;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
/* Make type T see field decl FDECL with access ACCESS. */
|
1252 |
|
|
if (flist)
|
1253 |
|
|
for (; flist; flist = OVL_NEXT (flist))
|
1254 |
|
|
{
|
1255 |
|
|
add_method (t, OVL_CURRENT (flist), using_decl);
|
1256 |
|
|
alter_access (t, OVL_CURRENT (flist), access);
|
1257 |
|
|
}
|
1258 |
|
|
else
|
1259 |
|
|
alter_access (t, decl, access);
|
1260 |
|
|
}
|
1261 |
|
|
|
1262 |
|
|
/* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
|
1263 |
|
|
and NO_CONST_ASN_REF_P. Also set flag bits in T based on
|
1264 |
|
|
properties of the bases. */
|
1265 |
|
|
|
1266 |
|
|
static void
|
1267 |
|
|
check_bases (tree t,
|
1268 |
|
|
int* cant_have_const_ctor_p,
|
1269 |
|
|
int* no_const_asn_ref_p)
|
1270 |
|
|
{
|
1271 |
|
|
int i;
|
1272 |
|
|
bool seen_non_virtual_nearly_empty_base_p = 0;
|
1273 |
|
|
int seen_tm_mask = 0;
|
1274 |
|
|
tree base_binfo;
|
1275 |
|
|
tree binfo;
|
1276 |
|
|
tree field = NULL_TREE;
|
1277 |
|
|
|
1278 |
|
|
if (!CLASSTYPE_NON_STD_LAYOUT (t))
|
1279 |
|
|
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
|
1280 |
|
|
if (TREE_CODE (field) == FIELD_DECL)
|
1281 |
|
|
break;
|
1282 |
|
|
|
1283 |
|
|
for (binfo = TYPE_BINFO (t), i = 0;
|
1284 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
1285 |
|
|
{
|
1286 |
|
|
tree basetype = TREE_TYPE (base_binfo);
|
1287 |
|
|
|
1288 |
|
|
gcc_assert (COMPLETE_TYPE_P (basetype));
|
1289 |
|
|
|
1290 |
|
|
if (CLASSTYPE_FINAL (basetype))
|
1291 |
|
|
error ("cannot derive from %<final%> base %qT in derived type %qT",
|
1292 |
|
|
basetype, t);
|
1293 |
|
|
|
1294 |
|
|
/* If any base class is non-literal, so is the derived class. */
|
1295 |
|
|
if (!CLASSTYPE_LITERAL_P (basetype))
|
1296 |
|
|
CLASSTYPE_LITERAL_P (t) = false;
|
1297 |
|
|
|
1298 |
|
|
/* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
|
1299 |
|
|
here because the case of virtual functions but non-virtual
|
1300 |
|
|
dtor is handled in finish_struct_1. */
|
1301 |
|
|
if (!TYPE_POLYMORPHIC_P (basetype))
|
1302 |
|
|
warning (OPT_Weffc__,
|
1303 |
|
|
"base class %q#T has a non-virtual destructor", basetype);
|
1304 |
|
|
|
1305 |
|
|
/* If the base class doesn't have copy constructors or
|
1306 |
|
|
assignment operators that take const references, then the
|
1307 |
|
|
derived class cannot have such a member automatically
|
1308 |
|
|
generated. */
|
1309 |
|
|
if (TYPE_HAS_COPY_CTOR (basetype)
|
1310 |
|
|
&& ! TYPE_HAS_CONST_COPY_CTOR (basetype))
|
1311 |
|
|
*cant_have_const_ctor_p = 1;
|
1312 |
|
|
if (TYPE_HAS_COPY_ASSIGN (basetype)
|
1313 |
|
|
&& !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
|
1314 |
|
|
*no_const_asn_ref_p = 1;
|
1315 |
|
|
|
1316 |
|
|
if (BINFO_VIRTUAL_P (base_binfo))
|
1317 |
|
|
/* A virtual base does not effect nearly emptiness. */
|
1318 |
|
|
;
|
1319 |
|
|
else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
|
1320 |
|
|
{
|
1321 |
|
|
if (seen_non_virtual_nearly_empty_base_p)
|
1322 |
|
|
/* And if there is more than one nearly empty base, then the
|
1323 |
|
|
derived class is not nearly empty either. */
|
1324 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
|
1325 |
|
|
else
|
1326 |
|
|
/* Remember we've seen one. */
|
1327 |
|
|
seen_non_virtual_nearly_empty_base_p = 1;
|
1328 |
|
|
}
|
1329 |
|
|
else if (!is_empty_class (basetype))
|
1330 |
|
|
/* If the base class is not empty or nearly empty, then this
|
1331 |
|
|
class cannot be nearly empty. */
|
1332 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
|
1333 |
|
|
|
1334 |
|
|
/* A lot of properties from the bases also apply to the derived
|
1335 |
|
|
class. */
|
1336 |
|
|
TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
|
1337 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
1338 |
|
|
|= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
|
1339 |
|
|
TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
|
1340 |
|
|
|= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
|
1341 |
|
|
|| !TYPE_HAS_COPY_ASSIGN (basetype));
|
1342 |
|
|
TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
|
1343 |
|
|
|| !TYPE_HAS_COPY_CTOR (basetype));
|
1344 |
|
|
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
|
1345 |
|
|
|= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
|
1346 |
|
|
TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
|
1347 |
|
|
TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
|
1348 |
|
|
CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
|
1349 |
|
|
|= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
|
1350 |
|
|
TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
|
1351 |
|
|
|| TYPE_HAS_COMPLEX_DFLT (basetype));
|
1352 |
|
|
|
1353 |
|
|
/* A standard-layout class is a class that:
|
1354 |
|
|
...
|
1355 |
|
|
* has no non-standard-layout base classes, */
|
1356 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
|
1357 |
|
|
if (!CLASSTYPE_NON_STD_LAYOUT (t))
|
1358 |
|
|
{
|
1359 |
|
|
tree basefield;
|
1360 |
|
|
/* ...has no base classes of the same type as the first non-static
|
1361 |
|
|
data member... */
|
1362 |
|
|
if (field && DECL_CONTEXT (field) == t
|
1363 |
|
|
&& (same_type_ignoring_top_level_qualifiers_p
|
1364 |
|
|
(TREE_TYPE (field), basetype)))
|
1365 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) = 1;
|
1366 |
|
|
else
|
1367 |
|
|
/* ...either has no non-static data members in the most-derived
|
1368 |
|
|
class and at most one base class with non-static data
|
1369 |
|
|
members, or has no base classes with non-static data
|
1370 |
|
|
members */
|
1371 |
|
|
for (basefield = TYPE_FIELDS (basetype); basefield;
|
1372 |
|
|
basefield = DECL_CHAIN (basefield))
|
1373 |
|
|
if (TREE_CODE (basefield) == FIELD_DECL)
|
1374 |
|
|
{
|
1375 |
|
|
if (field)
|
1376 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) = 1;
|
1377 |
|
|
else
|
1378 |
|
|
field = basefield;
|
1379 |
|
|
break;
|
1380 |
|
|
}
|
1381 |
|
|
}
|
1382 |
|
|
|
1383 |
|
|
/* Don't bother collecting tm attributes if transactional memory
|
1384 |
|
|
support is not enabled. */
|
1385 |
|
|
if (flag_tm)
|
1386 |
|
|
{
|
1387 |
|
|
tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
|
1388 |
|
|
if (tm_attr)
|
1389 |
|
|
seen_tm_mask |= tm_attr_to_mask (tm_attr);
|
1390 |
|
|
}
|
1391 |
|
|
}
|
1392 |
|
|
|
1393 |
|
|
/* If one of the base classes had TM attributes, and the current class
|
1394 |
|
|
doesn't define its own, then the current class inherits one. */
|
1395 |
|
|
if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
|
1396 |
|
|
{
|
1397 |
|
|
tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
|
1398 |
|
|
TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
|
1399 |
|
|
}
|
1400 |
|
|
}
|
1401 |
|
|
|
1402 |
|
|
/* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
|
1403 |
|
|
those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
|
1404 |
|
|
that have had a nearly-empty virtual primary base stolen by some
|
1405 |
|
|
other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
|
1406 |
|
|
T. */
|
1407 |
|
|
|
1408 |
|
|
static void
|
1409 |
|
|
determine_primary_bases (tree t)
|
1410 |
|
|
{
|
1411 |
|
|
unsigned i;
|
1412 |
|
|
tree primary = NULL_TREE;
|
1413 |
|
|
tree type_binfo = TYPE_BINFO (t);
|
1414 |
|
|
tree base_binfo;
|
1415 |
|
|
|
1416 |
|
|
/* Determine the primary bases of our bases. */
|
1417 |
|
|
for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
|
1418 |
|
|
base_binfo = TREE_CHAIN (base_binfo))
|
1419 |
|
|
{
|
1420 |
|
|
tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
|
1421 |
|
|
|
1422 |
|
|
/* See if we're the non-virtual primary of our inheritance
|
1423 |
|
|
chain. */
|
1424 |
|
|
if (!BINFO_VIRTUAL_P (base_binfo))
|
1425 |
|
|
{
|
1426 |
|
|
tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
|
1427 |
|
|
tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
|
1428 |
|
|
|
1429 |
|
|
if (parent_primary
|
1430 |
|
|
&& SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
|
1431 |
|
|
BINFO_TYPE (parent_primary)))
|
1432 |
|
|
/* We are the primary binfo. */
|
1433 |
|
|
BINFO_PRIMARY_P (base_binfo) = 1;
|
1434 |
|
|
}
|
1435 |
|
|
/* Determine if we have a virtual primary base, and mark it so.
|
1436 |
|
|
*/
|
1437 |
|
|
if (primary && BINFO_VIRTUAL_P (primary))
|
1438 |
|
|
{
|
1439 |
|
|
tree this_primary = copied_binfo (primary, base_binfo);
|
1440 |
|
|
|
1441 |
|
|
if (BINFO_PRIMARY_P (this_primary))
|
1442 |
|
|
/* Someone already claimed this base. */
|
1443 |
|
|
BINFO_LOST_PRIMARY_P (base_binfo) = 1;
|
1444 |
|
|
else
|
1445 |
|
|
{
|
1446 |
|
|
tree delta;
|
1447 |
|
|
|
1448 |
|
|
BINFO_PRIMARY_P (this_primary) = 1;
|
1449 |
|
|
BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
|
1450 |
|
|
|
1451 |
|
|
/* A virtual binfo might have been copied from within
|
1452 |
|
|
another hierarchy. As we're about to use it as a
|
1453 |
|
|
primary base, make sure the offsets match. */
|
1454 |
|
|
delta = size_diffop_loc (input_location,
|
1455 |
|
|
convert (ssizetype,
|
1456 |
|
|
BINFO_OFFSET (base_binfo)),
|
1457 |
|
|
convert (ssizetype,
|
1458 |
|
|
BINFO_OFFSET (this_primary)));
|
1459 |
|
|
|
1460 |
|
|
propagate_binfo_offsets (this_primary, delta);
|
1461 |
|
|
}
|
1462 |
|
|
}
|
1463 |
|
|
}
|
1464 |
|
|
|
1465 |
|
|
/* First look for a dynamic direct non-virtual base. */
|
1466 |
|
|
for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
|
1467 |
|
|
{
|
1468 |
|
|
tree basetype = BINFO_TYPE (base_binfo);
|
1469 |
|
|
|
1470 |
|
|
if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
|
1471 |
|
|
{
|
1472 |
|
|
primary = base_binfo;
|
1473 |
|
|
goto found;
|
1474 |
|
|
}
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
/* A "nearly-empty" virtual base class can be the primary base
|
1478 |
|
|
class, if no non-virtual polymorphic base can be found. Look for
|
1479 |
|
|
a nearly-empty virtual dynamic base that is not already a primary
|
1480 |
|
|
base of something in the hierarchy. If there is no such base,
|
1481 |
|
|
just pick the first nearly-empty virtual base. */
|
1482 |
|
|
|
1483 |
|
|
for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
|
1484 |
|
|
base_binfo = TREE_CHAIN (base_binfo))
|
1485 |
|
|
if (BINFO_VIRTUAL_P (base_binfo)
|
1486 |
|
|
&& CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
|
1487 |
|
|
{
|
1488 |
|
|
if (!BINFO_PRIMARY_P (base_binfo))
|
1489 |
|
|
{
|
1490 |
|
|
/* Found one that is not primary. */
|
1491 |
|
|
primary = base_binfo;
|
1492 |
|
|
goto found;
|
1493 |
|
|
}
|
1494 |
|
|
else if (!primary)
|
1495 |
|
|
/* Remember the first candidate. */
|
1496 |
|
|
primary = base_binfo;
|
1497 |
|
|
}
|
1498 |
|
|
|
1499 |
|
|
found:
|
1500 |
|
|
/* If we've got a primary base, use it. */
|
1501 |
|
|
if (primary)
|
1502 |
|
|
{
|
1503 |
|
|
tree basetype = BINFO_TYPE (primary);
|
1504 |
|
|
|
1505 |
|
|
CLASSTYPE_PRIMARY_BINFO (t) = primary;
|
1506 |
|
|
if (BINFO_PRIMARY_P (primary))
|
1507 |
|
|
/* We are stealing a primary base. */
|
1508 |
|
|
BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
|
1509 |
|
|
BINFO_PRIMARY_P (primary) = 1;
|
1510 |
|
|
if (BINFO_VIRTUAL_P (primary))
|
1511 |
|
|
{
|
1512 |
|
|
tree delta;
|
1513 |
|
|
|
1514 |
|
|
BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
|
1515 |
|
|
/* A virtual binfo might have been copied from within
|
1516 |
|
|
another hierarchy. As we're about to use it as a primary
|
1517 |
|
|
base, make sure the offsets match. */
|
1518 |
|
|
delta = size_diffop_loc (input_location, ssize_int (0),
|
1519 |
|
|
convert (ssizetype, BINFO_OFFSET (primary)));
|
1520 |
|
|
|
1521 |
|
|
propagate_binfo_offsets (primary, delta);
|
1522 |
|
|
}
|
1523 |
|
|
|
1524 |
|
|
primary = TYPE_BINFO (basetype);
|
1525 |
|
|
|
1526 |
|
|
TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
|
1527 |
|
|
BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
|
1528 |
|
|
BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
|
1529 |
|
|
}
|
1530 |
|
|
}
|
1531 |
|
|
|
1532 |
|
|
/* Update the variant types of T. */
|
1533 |
|
|
|
1534 |
|
|
void
|
1535 |
|
|
fixup_type_variants (tree t)
|
1536 |
|
|
{
|
1537 |
|
|
tree variants;
|
1538 |
|
|
|
1539 |
|
|
if (!t)
|
1540 |
|
|
return;
|
1541 |
|
|
|
1542 |
|
|
for (variants = TYPE_NEXT_VARIANT (t);
|
1543 |
|
|
variants;
|
1544 |
|
|
variants = TYPE_NEXT_VARIANT (variants))
|
1545 |
|
|
{
|
1546 |
|
|
/* These fields are in the _TYPE part of the node, not in
|
1547 |
|
|
the TYPE_LANG_SPECIFIC component, so they are not shared. */
|
1548 |
|
|
TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
|
1549 |
|
|
TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
|
1550 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
|
1551 |
|
|
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
|
1552 |
|
|
|
1553 |
|
|
TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
|
1554 |
|
|
|
1555 |
|
|
TYPE_BINFO (variants) = TYPE_BINFO (t);
|
1556 |
|
|
|
1557 |
|
|
/* Copy whatever these are holding today. */
|
1558 |
|
|
TYPE_VFIELD (variants) = TYPE_VFIELD (t);
|
1559 |
|
|
TYPE_METHODS (variants) = TYPE_METHODS (t);
|
1560 |
|
|
TYPE_FIELDS (variants) = TYPE_FIELDS (t);
|
1561 |
|
|
}
|
1562 |
|
|
}
|
1563 |
|
|
|
1564 |
|
|
/* Early variant fixups: we apply attributes at the beginning of the class
|
1565 |
|
|
definition, and we need to fix up any variants that have already been
|
1566 |
|
|
made via elaborated-type-specifier so that check_qualified_type works. */
|
1567 |
|
|
|
1568 |
|
|
void
|
1569 |
|
|
fixup_attribute_variants (tree t)
|
1570 |
|
|
{
|
1571 |
|
|
tree variants;
|
1572 |
|
|
|
1573 |
|
|
if (!t)
|
1574 |
|
|
return;
|
1575 |
|
|
|
1576 |
|
|
for (variants = TYPE_NEXT_VARIANT (t);
|
1577 |
|
|
variants;
|
1578 |
|
|
variants = TYPE_NEXT_VARIANT (variants))
|
1579 |
|
|
{
|
1580 |
|
|
/* These are the two fields that check_qualified_type looks at and
|
1581 |
|
|
are affected by attributes. */
|
1582 |
|
|
TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
|
1583 |
|
|
TYPE_ALIGN (variants) = TYPE_ALIGN (t);
|
1584 |
|
|
}
|
1585 |
|
|
}
|
1586 |
|
|
|
1587 |
|
|
/* Set memoizing fields and bits of T (and its variants) for later
|
1588 |
|
|
use. */
|
1589 |
|
|
|
1590 |
|
|
static void
|
1591 |
|
|
finish_struct_bits (tree t)
|
1592 |
|
|
{
|
1593 |
|
|
/* Fix up variants (if any). */
|
1594 |
|
|
fixup_type_variants (t);
|
1595 |
|
|
|
1596 |
|
|
if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
|
1597 |
|
|
/* For a class w/o baseclasses, 'finish_struct' has set
|
1598 |
|
|
CLASSTYPE_PURE_VIRTUALS correctly (by definition).
|
1599 |
|
|
Similarly for a class whose base classes do not have vtables.
|
1600 |
|
|
When neither of these is true, we might have removed abstract
|
1601 |
|
|
virtuals (by providing a definition), added some (by declaring
|
1602 |
|
|
new ones), or redeclared ones from a base class. We need to
|
1603 |
|
|
recalculate what's really an abstract virtual at this point (by
|
1604 |
|
|
looking in the vtables). */
|
1605 |
|
|
get_pure_virtuals (t);
|
1606 |
|
|
|
1607 |
|
|
/* If this type has a copy constructor or a destructor, force its
|
1608 |
|
|
mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
|
1609 |
|
|
nonzero. This will cause it to be passed by invisible reference
|
1610 |
|
|
and prevent it from being returned in a register. */
|
1611 |
|
|
if (type_has_nontrivial_copy_init (t)
|
1612 |
|
|
|| TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
|
1613 |
|
|
{
|
1614 |
|
|
tree variants;
|
1615 |
|
|
DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
|
1616 |
|
|
for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
|
1617 |
|
|
{
|
1618 |
|
|
SET_TYPE_MODE (variants, BLKmode);
|
1619 |
|
|
TREE_ADDRESSABLE (variants) = 1;
|
1620 |
|
|
}
|
1621 |
|
|
}
|
1622 |
|
|
}
|
1623 |
|
|
|
1624 |
|
|
/* Issue warnings about T having private constructors, but no friends,
|
1625 |
|
|
and so forth.
|
1626 |
|
|
|
1627 |
|
|
HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
|
1628 |
|
|
static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
|
1629 |
|
|
non-private static member functions. */
|
1630 |
|
|
|
1631 |
|
|
static void
|
1632 |
|
|
maybe_warn_about_overly_private_class (tree t)
|
1633 |
|
|
{
|
1634 |
|
|
int has_member_fn = 0;
|
1635 |
|
|
int has_nonprivate_method = 0;
|
1636 |
|
|
tree fn;
|
1637 |
|
|
|
1638 |
|
|
if (!warn_ctor_dtor_privacy
|
1639 |
|
|
/* If the class has friends, those entities might create and
|
1640 |
|
|
access instances, so we should not warn. */
|
1641 |
|
|
|| (CLASSTYPE_FRIEND_CLASSES (t)
|
1642 |
|
|
|| DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
|
1643 |
|
|
/* We will have warned when the template was declared; there's
|
1644 |
|
|
no need to warn on every instantiation. */
|
1645 |
|
|
|| CLASSTYPE_TEMPLATE_INSTANTIATION (t))
|
1646 |
|
|
/* There's no reason to even consider warning about this
|
1647 |
|
|
class. */
|
1648 |
|
|
return;
|
1649 |
|
|
|
1650 |
|
|
/* We only issue one warning, if more than one applies, because
|
1651 |
|
|
otherwise, on code like:
|
1652 |
|
|
|
1653 |
|
|
class A {
|
1654 |
|
|
// Oops - forgot `public:'
|
1655 |
|
|
A();
|
1656 |
|
|
A(const A&);
|
1657 |
|
|
~A();
|
1658 |
|
|
};
|
1659 |
|
|
|
1660 |
|
|
we warn several times about essentially the same problem. */
|
1661 |
|
|
|
1662 |
|
|
/* Check to see if all (non-constructor, non-destructor) member
|
1663 |
|
|
functions are private. (Since there are no friends or
|
1664 |
|
|
non-private statics, we can't ever call any of the private member
|
1665 |
|
|
functions.) */
|
1666 |
|
|
for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
|
1667 |
|
|
/* We're not interested in compiler-generated methods; they don't
|
1668 |
|
|
provide any way to call private members. */
|
1669 |
|
|
if (!DECL_ARTIFICIAL (fn))
|
1670 |
|
|
{
|
1671 |
|
|
if (!TREE_PRIVATE (fn))
|
1672 |
|
|
{
|
1673 |
|
|
if (DECL_STATIC_FUNCTION_P (fn))
|
1674 |
|
|
/* A non-private static member function is just like a
|
1675 |
|
|
friend; it can create and invoke private member
|
1676 |
|
|
functions, and be accessed without a class
|
1677 |
|
|
instance. */
|
1678 |
|
|
return;
|
1679 |
|
|
|
1680 |
|
|
has_nonprivate_method = 1;
|
1681 |
|
|
/* Keep searching for a static member function. */
|
1682 |
|
|
}
|
1683 |
|
|
else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
|
1684 |
|
|
has_member_fn = 1;
|
1685 |
|
|
}
|
1686 |
|
|
|
1687 |
|
|
if (!has_nonprivate_method && has_member_fn)
|
1688 |
|
|
{
|
1689 |
|
|
/* There are no non-private methods, and there's at least one
|
1690 |
|
|
private member function that isn't a constructor or
|
1691 |
|
|
destructor. (If all the private members are
|
1692 |
|
|
constructors/destructors we want to use the code below that
|
1693 |
|
|
issues error messages specifically referring to
|
1694 |
|
|
constructors/destructors.) */
|
1695 |
|
|
unsigned i;
|
1696 |
|
|
tree binfo = TYPE_BINFO (t);
|
1697 |
|
|
|
1698 |
|
|
for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
|
1699 |
|
|
if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
|
1700 |
|
|
{
|
1701 |
|
|
has_nonprivate_method = 1;
|
1702 |
|
|
break;
|
1703 |
|
|
}
|
1704 |
|
|
if (!has_nonprivate_method)
|
1705 |
|
|
{
|
1706 |
|
|
warning (OPT_Wctor_dtor_privacy,
|
1707 |
|
|
"all member functions in class %qT are private", t);
|
1708 |
|
|
return;
|
1709 |
|
|
}
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
/* Even if some of the member functions are non-private, the class
|
1713 |
|
|
won't be useful for much if all the constructors or destructors
|
1714 |
|
|
are private: such an object can never be created or destroyed. */
|
1715 |
|
|
fn = CLASSTYPE_DESTRUCTORS (t);
|
1716 |
|
|
if (fn && TREE_PRIVATE (fn))
|
1717 |
|
|
{
|
1718 |
|
|
warning (OPT_Wctor_dtor_privacy,
|
1719 |
|
|
"%q#T only defines a private destructor and has no friends",
|
1720 |
|
|
t);
|
1721 |
|
|
return;
|
1722 |
|
|
}
|
1723 |
|
|
|
1724 |
|
|
/* Warn about classes that have private constructors and no friends. */
|
1725 |
|
|
if (TYPE_HAS_USER_CONSTRUCTOR (t)
|
1726 |
|
|
/* Implicitly generated constructors are always public. */
|
1727 |
|
|
&& (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
|
1728 |
|
|
|| !CLASSTYPE_LAZY_COPY_CTOR (t)))
|
1729 |
|
|
{
|
1730 |
|
|
int nonprivate_ctor = 0;
|
1731 |
|
|
|
1732 |
|
|
/* If a non-template class does not define a copy
|
1733 |
|
|
constructor, one is defined for it, enabling it to avoid
|
1734 |
|
|
this warning. For a template class, this does not
|
1735 |
|
|
happen, and so we would normally get a warning on:
|
1736 |
|
|
|
1737 |
|
|
template <class T> class C { private: C(); };
|
1738 |
|
|
|
1739 |
|
|
To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
|
1740 |
|
|
complete non-template or fully instantiated classes have this
|
1741 |
|
|
flag set. */
|
1742 |
|
|
if (!TYPE_HAS_COPY_CTOR (t))
|
1743 |
|
|
nonprivate_ctor = 1;
|
1744 |
|
|
else
|
1745 |
|
|
for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
|
1746 |
|
|
{
|
1747 |
|
|
tree ctor = OVL_CURRENT (fn);
|
1748 |
|
|
/* Ideally, we wouldn't count copy constructors (or, in
|
1749 |
|
|
fact, any constructor that takes an argument of the
|
1750 |
|
|
class type as a parameter) because such things cannot
|
1751 |
|
|
be used to construct an instance of the class unless
|
1752 |
|
|
you already have one. But, for now at least, we're
|
1753 |
|
|
more generous. */
|
1754 |
|
|
if (! TREE_PRIVATE (ctor))
|
1755 |
|
|
{
|
1756 |
|
|
nonprivate_ctor = 1;
|
1757 |
|
|
break;
|
1758 |
|
|
}
|
1759 |
|
|
}
|
1760 |
|
|
|
1761 |
|
|
if (nonprivate_ctor == 0)
|
1762 |
|
|
{
|
1763 |
|
|
warning (OPT_Wctor_dtor_privacy,
|
1764 |
|
|
"%q#T only defines private constructors and has no friends",
|
1765 |
|
|
t);
|
1766 |
|
|
return;
|
1767 |
|
|
}
|
1768 |
|
|
}
|
1769 |
|
|
}
|
1770 |
|
|
|
1771 |
|
|
static struct {
|
1772 |
|
|
gt_pointer_operator new_value;
|
1773 |
|
|
void *cookie;
|
1774 |
|
|
} resort_data;
|
1775 |
|
|
|
1776 |
|
|
/* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
|
1777 |
|
|
|
1778 |
|
|
static int
|
1779 |
|
|
method_name_cmp (const void* m1_p, const void* m2_p)
|
1780 |
|
|
{
|
1781 |
|
|
const tree *const m1 = (const tree *) m1_p;
|
1782 |
|
|
const tree *const m2 = (const tree *) m2_p;
|
1783 |
|
|
|
1784 |
|
|
if (*m1 == NULL_TREE && *m2 == NULL_TREE)
|
1785 |
|
|
return 0;
|
1786 |
|
|
if (*m1 == NULL_TREE)
|
1787 |
|
|
return -1;
|
1788 |
|
|
if (*m2 == NULL_TREE)
|
1789 |
|
|
return 1;
|
1790 |
|
|
if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
|
1791 |
|
|
return -1;
|
1792 |
|
|
return 1;
|
1793 |
|
|
}
|
1794 |
|
|
|
1795 |
|
|
/* This routine compares two fields like method_name_cmp but using the
|
1796 |
|
|
pointer operator in resort_field_decl_data. */
|
1797 |
|
|
|
1798 |
|
|
static int
|
1799 |
|
|
resort_method_name_cmp (const void* m1_p, const void* m2_p)
|
1800 |
|
|
{
|
1801 |
|
|
const tree *const m1 = (const tree *) m1_p;
|
1802 |
|
|
const tree *const m2 = (const tree *) m2_p;
|
1803 |
|
|
if (*m1 == NULL_TREE && *m2 == NULL_TREE)
|
1804 |
|
|
return 0;
|
1805 |
|
|
if (*m1 == NULL_TREE)
|
1806 |
|
|
return -1;
|
1807 |
|
|
if (*m2 == NULL_TREE)
|
1808 |
|
|
return 1;
|
1809 |
|
|
{
|
1810 |
|
|
tree d1 = DECL_NAME (OVL_CURRENT (*m1));
|
1811 |
|
|
tree d2 = DECL_NAME (OVL_CURRENT (*m2));
|
1812 |
|
|
resort_data.new_value (&d1, resort_data.cookie);
|
1813 |
|
|
resort_data.new_value (&d2, resort_data.cookie);
|
1814 |
|
|
if (d1 < d2)
|
1815 |
|
|
return -1;
|
1816 |
|
|
}
|
1817 |
|
|
return 1;
|
1818 |
|
|
}
|
1819 |
|
|
|
1820 |
|
|
/* Resort TYPE_METHOD_VEC because pointers have been reordered. */
|
1821 |
|
|
|
1822 |
|
|
void
|
1823 |
|
|
resort_type_method_vec (void* obj,
|
1824 |
|
|
void* orig_obj ATTRIBUTE_UNUSED ,
|
1825 |
|
|
gt_pointer_operator new_value,
|
1826 |
|
|
void* cookie)
|
1827 |
|
|
{
|
1828 |
|
|
VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
|
1829 |
|
|
int len = VEC_length (tree, method_vec);
|
1830 |
|
|
size_t slot;
|
1831 |
|
|
tree fn;
|
1832 |
|
|
|
1833 |
|
|
/* The type conversion ops have to live at the front of the vec, so we
|
1834 |
|
|
can't sort them. */
|
1835 |
|
|
for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
|
1836 |
|
|
VEC_iterate (tree, method_vec, slot, fn);
|
1837 |
|
|
++slot)
|
1838 |
|
|
if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
|
1839 |
|
|
break;
|
1840 |
|
|
|
1841 |
|
|
if (len - slot > 1)
|
1842 |
|
|
{
|
1843 |
|
|
resort_data.new_value = new_value;
|
1844 |
|
|
resort_data.cookie = cookie;
|
1845 |
|
|
qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
|
1846 |
|
|
resort_method_name_cmp);
|
1847 |
|
|
}
|
1848 |
|
|
}
|
1849 |
|
|
|
1850 |
|
|
/* Warn about duplicate methods in fn_fields.
|
1851 |
|
|
|
1852 |
|
|
Sort methods that are not special (i.e., constructors, destructors,
|
1853 |
|
|
and type conversion operators) so that we can find them faster in
|
1854 |
|
|
search. */
|
1855 |
|
|
|
1856 |
|
|
static void
|
1857 |
|
|
finish_struct_methods (tree t)
|
1858 |
|
|
{
|
1859 |
|
|
tree fn_fields;
|
1860 |
|
|
VEC(tree,gc) *method_vec;
|
1861 |
|
|
int slot, len;
|
1862 |
|
|
|
1863 |
|
|
method_vec = CLASSTYPE_METHOD_VEC (t);
|
1864 |
|
|
if (!method_vec)
|
1865 |
|
|
return;
|
1866 |
|
|
|
1867 |
|
|
len = VEC_length (tree, method_vec);
|
1868 |
|
|
|
1869 |
|
|
/* Clear DECL_IN_AGGR_P for all functions. */
|
1870 |
|
|
for (fn_fields = TYPE_METHODS (t); fn_fields;
|
1871 |
|
|
fn_fields = DECL_CHAIN (fn_fields))
|
1872 |
|
|
DECL_IN_AGGR_P (fn_fields) = 0;
|
1873 |
|
|
|
1874 |
|
|
/* Issue warnings about private constructors and such. If there are
|
1875 |
|
|
no methods, then some public defaults are generated. */
|
1876 |
|
|
maybe_warn_about_overly_private_class (t);
|
1877 |
|
|
|
1878 |
|
|
/* The type conversion ops have to live at the front of the vec, so we
|
1879 |
|
|
can't sort them. */
|
1880 |
|
|
for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
|
1881 |
|
|
VEC_iterate (tree, method_vec, slot, fn_fields);
|
1882 |
|
|
++slot)
|
1883 |
|
|
if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
|
1884 |
|
|
break;
|
1885 |
|
|
if (len - slot > 1)
|
1886 |
|
|
qsort (VEC_address (tree, method_vec) + slot,
|
1887 |
|
|
len-slot, sizeof (tree), method_name_cmp);
|
1888 |
|
|
}
|
1889 |
|
|
|
1890 |
|
|
/* Make BINFO's vtable have N entries, including RTTI entries,
|
1891 |
|
|
vbase and vcall offsets, etc. Set its type and call the back end
|
1892 |
|
|
to lay it out. */
|
1893 |
|
|
|
1894 |
|
|
static void
|
1895 |
|
|
layout_vtable_decl (tree binfo, int n)
|
1896 |
|
|
{
|
1897 |
|
|
tree atype;
|
1898 |
|
|
tree vtable;
|
1899 |
|
|
|
1900 |
|
|
atype = build_array_of_n_type (vtable_entry_type, n);
|
1901 |
|
|
layout_type (atype);
|
1902 |
|
|
|
1903 |
|
|
/* We may have to grow the vtable. */
|
1904 |
|
|
vtable = get_vtbl_decl_for_binfo (binfo);
|
1905 |
|
|
if (!same_type_p (TREE_TYPE (vtable), atype))
|
1906 |
|
|
{
|
1907 |
|
|
TREE_TYPE (vtable) = atype;
|
1908 |
|
|
DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
|
1909 |
|
|
layout_decl (vtable, 0);
|
1910 |
|
|
}
|
1911 |
|
|
}
|
1912 |
|
|
|
1913 |
|
|
/* True iff FNDECL and BASE_FNDECL (both non-static member functions)
|
1914 |
|
|
have the same signature. */
|
1915 |
|
|
|
1916 |
|
|
int
|
1917 |
|
|
same_signature_p (const_tree fndecl, const_tree base_fndecl)
|
1918 |
|
|
{
|
1919 |
|
|
/* One destructor overrides another if they are the same kind of
|
1920 |
|
|
destructor. */
|
1921 |
|
|
if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
|
1922 |
|
|
&& special_function_p (base_fndecl) == special_function_p (fndecl))
|
1923 |
|
|
return 1;
|
1924 |
|
|
/* But a non-destructor never overrides a destructor, nor vice
|
1925 |
|
|
versa, nor do different kinds of destructors override
|
1926 |
|
|
one-another. For example, a complete object destructor does not
|
1927 |
|
|
override a deleting destructor. */
|
1928 |
|
|
if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
|
1929 |
|
|
return 0;
|
1930 |
|
|
|
1931 |
|
|
if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
|
1932 |
|
|
|| (DECL_CONV_FN_P (fndecl)
|
1933 |
|
|
&& DECL_CONV_FN_P (base_fndecl)
|
1934 |
|
|
&& same_type_p (DECL_CONV_FN_TYPE (fndecl),
|
1935 |
|
|
DECL_CONV_FN_TYPE (base_fndecl))))
|
1936 |
|
|
{
|
1937 |
|
|
tree types, base_types;
|
1938 |
|
|
types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
|
1939 |
|
|
base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
|
1940 |
|
|
if ((cp_type_quals (TREE_TYPE (TREE_VALUE (base_types)))
|
1941 |
|
|
== cp_type_quals (TREE_TYPE (TREE_VALUE (types))))
|
1942 |
|
|
&& compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
|
1943 |
|
|
return 1;
|
1944 |
|
|
}
|
1945 |
|
|
return 0;
|
1946 |
|
|
}
|
1947 |
|
|
|
1948 |
|
|
/* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
|
1949 |
|
|
subobject. */
|
1950 |
|
|
|
1951 |
|
|
static bool
|
1952 |
|
|
base_derived_from (tree derived, tree base)
|
1953 |
|
|
{
|
1954 |
|
|
tree probe;
|
1955 |
|
|
|
1956 |
|
|
for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
|
1957 |
|
|
{
|
1958 |
|
|
if (probe == derived)
|
1959 |
|
|
return true;
|
1960 |
|
|
else if (BINFO_VIRTUAL_P (probe))
|
1961 |
|
|
/* If we meet a virtual base, we can't follow the inheritance
|
1962 |
|
|
any more. See if the complete type of DERIVED contains
|
1963 |
|
|
such a virtual base. */
|
1964 |
|
|
return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
|
1965 |
|
|
!= NULL_TREE);
|
1966 |
|
|
}
|
1967 |
|
|
return false;
|
1968 |
|
|
}
|
1969 |
|
|
|
1970 |
|
|
typedef struct find_final_overrider_data_s {
|
1971 |
|
|
/* The function for which we are trying to find a final overrider. */
|
1972 |
|
|
tree fn;
|
1973 |
|
|
/* The base class in which the function was declared. */
|
1974 |
|
|
tree declaring_base;
|
1975 |
|
|
/* The candidate overriders. */
|
1976 |
|
|
tree candidates;
|
1977 |
|
|
/* Path to most derived. */
|
1978 |
|
|
VEC(tree,heap) *path;
|
1979 |
|
|
} find_final_overrider_data;
|
1980 |
|
|
|
1981 |
|
|
/* Add the overrider along the current path to FFOD->CANDIDATES.
|
1982 |
|
|
Returns true if an overrider was found; false otherwise. */
|
1983 |
|
|
|
1984 |
|
|
static bool
|
1985 |
|
|
dfs_find_final_overrider_1 (tree binfo,
|
1986 |
|
|
find_final_overrider_data *ffod,
|
1987 |
|
|
unsigned depth)
|
1988 |
|
|
{
|
1989 |
|
|
tree method;
|
1990 |
|
|
|
1991 |
|
|
/* If BINFO is not the most derived type, try a more derived class.
|
1992 |
|
|
A definition there will overrider a definition here. */
|
1993 |
|
|
if (depth)
|
1994 |
|
|
{
|
1995 |
|
|
depth--;
|
1996 |
|
|
if (dfs_find_final_overrider_1
|
1997 |
|
|
(VEC_index (tree, ffod->path, depth), ffod, depth))
|
1998 |
|
|
return true;
|
1999 |
|
|
}
|
2000 |
|
|
|
2001 |
|
|
method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
|
2002 |
|
|
if (method)
|
2003 |
|
|
{
|
2004 |
|
|
tree *candidate = &ffod->candidates;
|
2005 |
|
|
|
2006 |
|
|
/* Remove any candidates overridden by this new function. */
|
2007 |
|
|
while (*candidate)
|
2008 |
|
|
{
|
2009 |
|
|
/* If *CANDIDATE overrides METHOD, then METHOD
|
2010 |
|
|
cannot override anything else on the list. */
|
2011 |
|
|
if (base_derived_from (TREE_VALUE (*candidate), binfo))
|
2012 |
|
|
return true;
|
2013 |
|
|
/* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
|
2014 |
|
|
if (base_derived_from (binfo, TREE_VALUE (*candidate)))
|
2015 |
|
|
*candidate = TREE_CHAIN (*candidate);
|
2016 |
|
|
else
|
2017 |
|
|
candidate = &TREE_CHAIN (*candidate);
|
2018 |
|
|
}
|
2019 |
|
|
|
2020 |
|
|
/* Add the new function. */
|
2021 |
|
|
ffod->candidates = tree_cons (method, binfo, ffod->candidates);
|
2022 |
|
|
return true;
|
2023 |
|
|
}
|
2024 |
|
|
|
2025 |
|
|
return false;
|
2026 |
|
|
}
|
2027 |
|
|
|
2028 |
|
|
/* Called from find_final_overrider via dfs_walk. */
|
2029 |
|
|
|
2030 |
|
|
static tree
|
2031 |
|
|
dfs_find_final_overrider_pre (tree binfo, void *data)
|
2032 |
|
|
{
|
2033 |
|
|
find_final_overrider_data *ffod = (find_final_overrider_data *) data;
|
2034 |
|
|
|
2035 |
|
|
if (binfo == ffod->declaring_base)
|
2036 |
|
|
dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
|
2037 |
|
|
VEC_safe_push (tree, heap, ffod->path, binfo);
|
2038 |
|
|
|
2039 |
|
|
return NULL_TREE;
|
2040 |
|
|
}
|
2041 |
|
|
|
2042 |
|
|
static tree
|
2043 |
|
|
dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
|
2044 |
|
|
{
|
2045 |
|
|
find_final_overrider_data *ffod = (find_final_overrider_data *) data;
|
2046 |
|
|
VEC_pop (tree, ffod->path);
|
2047 |
|
|
|
2048 |
|
|
return NULL_TREE;
|
2049 |
|
|
}
|
2050 |
|
|
|
2051 |
|
|
/* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
|
2052 |
|
|
FN and whose TREE_VALUE is the binfo for the base where the
|
2053 |
|
|
overriding occurs. BINFO (in the hierarchy dominated by the binfo
|
2054 |
|
|
DERIVED) is the base object in which FN is declared. */
|
2055 |
|
|
|
2056 |
|
|
static tree
|
2057 |
|
|
find_final_overrider (tree derived, tree binfo, tree fn)
|
2058 |
|
|
{
|
2059 |
|
|
find_final_overrider_data ffod;
|
2060 |
|
|
|
2061 |
|
|
/* Getting this right is a little tricky. This is valid:
|
2062 |
|
|
|
2063 |
|
|
struct S { virtual void f (); };
|
2064 |
|
|
struct T { virtual void f (); };
|
2065 |
|
|
struct U : public S, public T { };
|
2066 |
|
|
|
2067 |
|
|
even though calling `f' in `U' is ambiguous. But,
|
2068 |
|
|
|
2069 |
|
|
struct R { virtual void f(); };
|
2070 |
|
|
struct S : virtual public R { virtual void f (); };
|
2071 |
|
|
struct T : virtual public R { virtual void f (); };
|
2072 |
|
|
struct U : public S, public T { };
|
2073 |
|
|
|
2074 |
|
|
is not -- there's no way to decide whether to put `S::f' or
|
2075 |
|
|
`T::f' in the vtable for `R'.
|
2076 |
|
|
|
2077 |
|
|
The solution is to look at all paths to BINFO. If we find
|
2078 |
|
|
different overriders along any two, then there is a problem. */
|
2079 |
|
|
if (DECL_THUNK_P (fn))
|
2080 |
|
|
fn = THUNK_TARGET (fn);
|
2081 |
|
|
|
2082 |
|
|
/* Determine the depth of the hierarchy. */
|
2083 |
|
|
ffod.fn = fn;
|
2084 |
|
|
ffod.declaring_base = binfo;
|
2085 |
|
|
ffod.candidates = NULL_TREE;
|
2086 |
|
|
ffod.path = VEC_alloc (tree, heap, 30);
|
2087 |
|
|
|
2088 |
|
|
dfs_walk_all (derived, dfs_find_final_overrider_pre,
|
2089 |
|
|
dfs_find_final_overrider_post, &ffod);
|
2090 |
|
|
|
2091 |
|
|
VEC_free (tree, heap, ffod.path);
|
2092 |
|
|
|
2093 |
|
|
/* If there was no winner, issue an error message. */
|
2094 |
|
|
if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
|
2095 |
|
|
return error_mark_node;
|
2096 |
|
|
|
2097 |
|
|
return ffod.candidates;
|
2098 |
|
|
}
|
2099 |
|
|
|
2100 |
|
|
/* Return the index of the vcall offset for FN when TYPE is used as a
|
2101 |
|
|
virtual base. */
|
2102 |
|
|
|
2103 |
|
|
static tree
|
2104 |
|
|
get_vcall_index (tree fn, tree type)
|
2105 |
|
|
{
|
2106 |
|
|
VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
|
2107 |
|
|
tree_pair_p p;
|
2108 |
|
|
unsigned ix;
|
2109 |
|
|
|
2110 |
|
|
FOR_EACH_VEC_ELT (tree_pair_s, indices, ix, p)
|
2111 |
|
|
if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
|
2112 |
|
|
|| same_signature_p (fn, p->purpose))
|
2113 |
|
|
return p->value;
|
2114 |
|
|
|
2115 |
|
|
/* There should always be an appropriate index. */
|
2116 |
|
|
gcc_unreachable ();
|
2117 |
|
|
}
|
2118 |
|
|
|
2119 |
|
|
/* Update an entry in the vtable for BINFO, which is in the hierarchy
|
2120 |
|
|
dominated by T. FN is the old function; VIRTUALS points to the
|
2121 |
|
|
corresponding position in the new BINFO_VIRTUALS list. IX is the index
|
2122 |
|
|
of that entry in the list. */
|
2123 |
|
|
|
2124 |
|
|
static void
|
2125 |
|
|
update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
|
2126 |
|
|
unsigned ix)
|
2127 |
|
|
{
|
2128 |
|
|
tree b;
|
2129 |
|
|
tree overrider;
|
2130 |
|
|
tree delta;
|
2131 |
|
|
tree virtual_base;
|
2132 |
|
|
tree first_defn;
|
2133 |
|
|
tree overrider_fn, overrider_target;
|
2134 |
|
|
tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
|
2135 |
|
|
tree over_return, base_return;
|
2136 |
|
|
bool lost = false;
|
2137 |
|
|
|
2138 |
|
|
/* Find the nearest primary base (possibly binfo itself) which defines
|
2139 |
|
|
this function; this is the class the caller will convert to when
|
2140 |
|
|
calling FN through BINFO. */
|
2141 |
|
|
for (b = binfo; ; b = get_primary_binfo (b))
|
2142 |
|
|
{
|
2143 |
|
|
gcc_assert (b);
|
2144 |
|
|
if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
|
2145 |
|
|
break;
|
2146 |
|
|
|
2147 |
|
|
/* The nearest definition is from a lost primary. */
|
2148 |
|
|
if (BINFO_LOST_PRIMARY_P (b))
|
2149 |
|
|
lost = true;
|
2150 |
|
|
}
|
2151 |
|
|
first_defn = b;
|
2152 |
|
|
|
2153 |
|
|
/* Find the final overrider. */
|
2154 |
|
|
overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
|
2155 |
|
|
if (overrider == error_mark_node)
|
2156 |
|
|
{
|
2157 |
|
|
error ("no unique final overrider for %qD in %qT", target_fn, t);
|
2158 |
|
|
return;
|
2159 |
|
|
}
|
2160 |
|
|
overrider_target = overrider_fn = TREE_PURPOSE (overrider);
|
2161 |
|
|
|
2162 |
|
|
/* Check for adjusting covariant return types. */
|
2163 |
|
|
over_return = TREE_TYPE (TREE_TYPE (overrider_target));
|
2164 |
|
|
base_return = TREE_TYPE (TREE_TYPE (target_fn));
|
2165 |
|
|
|
2166 |
|
|
if (POINTER_TYPE_P (over_return)
|
2167 |
|
|
&& TREE_CODE (over_return) == TREE_CODE (base_return)
|
2168 |
|
|
&& CLASS_TYPE_P (TREE_TYPE (over_return))
|
2169 |
|
|
&& CLASS_TYPE_P (TREE_TYPE (base_return))
|
2170 |
|
|
/* If the overrider is invalid, don't even try. */
|
2171 |
|
|
&& !DECL_INVALID_OVERRIDER_P (overrider_target))
|
2172 |
|
|
{
|
2173 |
|
|
/* If FN is a covariant thunk, we must figure out the adjustment
|
2174 |
|
|
to the final base FN was converting to. As OVERRIDER_TARGET might
|
2175 |
|
|
also be converting to the return type of FN, we have to
|
2176 |
|
|
combine the two conversions here. */
|
2177 |
|
|
tree fixed_offset, virtual_offset;
|
2178 |
|
|
|
2179 |
|
|
over_return = TREE_TYPE (over_return);
|
2180 |
|
|
base_return = TREE_TYPE (base_return);
|
2181 |
|
|
|
2182 |
|
|
if (DECL_THUNK_P (fn))
|
2183 |
|
|
{
|
2184 |
|
|
gcc_assert (DECL_RESULT_THUNK_P (fn));
|
2185 |
|
|
fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
|
2186 |
|
|
virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
|
2187 |
|
|
}
|
2188 |
|
|
else
|
2189 |
|
|
fixed_offset = virtual_offset = NULL_TREE;
|
2190 |
|
|
|
2191 |
|
|
if (virtual_offset)
|
2192 |
|
|
/* Find the equivalent binfo within the return type of the
|
2193 |
|
|
overriding function. We will want the vbase offset from
|
2194 |
|
|
there. */
|
2195 |
|
|
virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
|
2196 |
|
|
over_return);
|
2197 |
|
|
else if (!same_type_ignoring_top_level_qualifiers_p
|
2198 |
|
|
(over_return, base_return))
|
2199 |
|
|
{
|
2200 |
|
|
/* There was no existing virtual thunk (which takes
|
2201 |
|
|
precedence). So find the binfo of the base function's
|
2202 |
|
|
return type within the overriding function's return type.
|
2203 |
|
|
We cannot call lookup base here, because we're inside a
|
2204 |
|
|
dfs_walk, and will therefore clobber the BINFO_MARKED
|
2205 |
|
|
flags. Fortunately we know the covariancy is valid (it
|
2206 |
|
|
has already been checked), so we can just iterate along
|
2207 |
|
|
the binfos, which have been chained in inheritance graph
|
2208 |
|
|
order. Of course it is lame that we have to repeat the
|
2209 |
|
|
search here anyway -- we should really be caching pieces
|
2210 |
|
|
of the vtable and avoiding this repeated work. */
|
2211 |
|
|
tree thunk_binfo, base_binfo;
|
2212 |
|
|
|
2213 |
|
|
/* Find the base binfo within the overriding function's
|
2214 |
|
|
return type. We will always find a thunk_binfo, except
|
2215 |
|
|
when the covariancy is invalid (which we will have
|
2216 |
|
|
already diagnosed). */
|
2217 |
|
|
for (base_binfo = TYPE_BINFO (base_return),
|
2218 |
|
|
thunk_binfo = TYPE_BINFO (over_return);
|
2219 |
|
|
thunk_binfo;
|
2220 |
|
|
thunk_binfo = TREE_CHAIN (thunk_binfo))
|
2221 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
|
2222 |
|
|
BINFO_TYPE (base_binfo)))
|
2223 |
|
|
break;
|
2224 |
|
|
|
2225 |
|
|
/* See if virtual inheritance is involved. */
|
2226 |
|
|
for (virtual_offset = thunk_binfo;
|
2227 |
|
|
virtual_offset;
|
2228 |
|
|
virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
|
2229 |
|
|
if (BINFO_VIRTUAL_P (virtual_offset))
|
2230 |
|
|
break;
|
2231 |
|
|
|
2232 |
|
|
if (virtual_offset
|
2233 |
|
|
|| (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
|
2234 |
|
|
{
|
2235 |
|
|
tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
|
2236 |
|
|
|
2237 |
|
|
if (virtual_offset)
|
2238 |
|
|
{
|
2239 |
|
|
/* We convert via virtual base. Adjust the fixed
|
2240 |
|
|
offset to be from there. */
|
2241 |
|
|
offset =
|
2242 |
|
|
size_diffop (offset,
|
2243 |
|
|
convert (ssizetype,
|
2244 |
|
|
BINFO_OFFSET (virtual_offset)));
|
2245 |
|
|
}
|
2246 |
|
|
if (fixed_offset)
|
2247 |
|
|
/* There was an existing fixed offset, this must be
|
2248 |
|
|
from the base just converted to, and the base the
|
2249 |
|
|
FN was thunking to. */
|
2250 |
|
|
fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
|
2251 |
|
|
else
|
2252 |
|
|
fixed_offset = offset;
|
2253 |
|
|
}
|
2254 |
|
|
}
|
2255 |
|
|
|
2256 |
|
|
if (fixed_offset || virtual_offset)
|
2257 |
|
|
/* Replace the overriding function with a covariant thunk. We
|
2258 |
|
|
will emit the overriding function in its own slot as
|
2259 |
|
|
well. */
|
2260 |
|
|
overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
|
2261 |
|
|
fixed_offset, virtual_offset);
|
2262 |
|
|
}
|
2263 |
|
|
else
|
2264 |
|
|
gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
|
2265 |
|
|
!DECL_THUNK_P (fn));
|
2266 |
|
|
|
2267 |
|
|
/* If we need a covariant thunk, then we may need to adjust first_defn.
|
2268 |
|
|
The ABI specifies that the thunks emitted with a function are
|
2269 |
|
|
determined by which bases the function overrides, so we need to be
|
2270 |
|
|
sure that we're using a thunk for some overridden base; even if we
|
2271 |
|
|
know that the necessary this adjustment is zero, there may not be an
|
2272 |
|
|
appropriate zero-this-adjusment thunk for us to use since thunks for
|
2273 |
|
|
overriding virtual bases always use the vcall offset.
|
2274 |
|
|
|
2275 |
|
|
Furthermore, just choosing any base that overrides this function isn't
|
2276 |
|
|
quite right, as this slot won't be used for calls through a type that
|
2277 |
|
|
puts a covariant thunk here. Calling the function through such a type
|
2278 |
|
|
will use a different slot, and that slot is the one that determines
|
2279 |
|
|
the thunk emitted for that base.
|
2280 |
|
|
|
2281 |
|
|
So, keep looking until we find the base that we're really overriding
|
2282 |
|
|
in this slot: the nearest primary base that doesn't use a covariant
|
2283 |
|
|
thunk in this slot. */
|
2284 |
|
|
if (overrider_target != overrider_fn)
|
2285 |
|
|
{
|
2286 |
|
|
if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
|
2287 |
|
|
/* We already know that the overrider needs a covariant thunk. */
|
2288 |
|
|
b = get_primary_binfo (b);
|
2289 |
|
|
for (; ; b = get_primary_binfo (b))
|
2290 |
|
|
{
|
2291 |
|
|
tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
|
2292 |
|
|
tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
|
2293 |
|
|
if (!DECL_THUNK_P (TREE_VALUE (bv)))
|
2294 |
|
|
break;
|
2295 |
|
|
if (BINFO_LOST_PRIMARY_P (b))
|
2296 |
|
|
lost = true;
|
2297 |
|
|
}
|
2298 |
|
|
first_defn = b;
|
2299 |
|
|
}
|
2300 |
|
|
|
2301 |
|
|
/* Assume that we will produce a thunk that convert all the way to
|
2302 |
|
|
the final overrider, and not to an intermediate virtual base. */
|
2303 |
|
|
virtual_base = NULL_TREE;
|
2304 |
|
|
|
2305 |
|
|
/* See if we can convert to an intermediate virtual base first, and then
|
2306 |
|
|
use the vcall offset located there to finish the conversion. */
|
2307 |
|
|
for (; b; b = BINFO_INHERITANCE_CHAIN (b))
|
2308 |
|
|
{
|
2309 |
|
|
/* If we find the final overrider, then we can stop
|
2310 |
|
|
walking. */
|
2311 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
|
2312 |
|
|
BINFO_TYPE (TREE_VALUE (overrider))))
|
2313 |
|
|
break;
|
2314 |
|
|
|
2315 |
|
|
/* If we find a virtual base, and we haven't yet found the
|
2316 |
|
|
overrider, then there is a virtual base between the
|
2317 |
|
|
declaring base (first_defn) and the final overrider. */
|
2318 |
|
|
if (BINFO_VIRTUAL_P (b))
|
2319 |
|
|
{
|
2320 |
|
|
virtual_base = b;
|
2321 |
|
|
break;
|
2322 |
|
|
}
|
2323 |
|
|
}
|
2324 |
|
|
|
2325 |
|
|
/* Compute the constant adjustment to the `this' pointer. The
|
2326 |
|
|
`this' pointer, when this function is called, will point at BINFO
|
2327 |
|
|
(or one of its primary bases, which are at the same offset). */
|
2328 |
|
|
if (virtual_base)
|
2329 |
|
|
/* The `this' pointer needs to be adjusted from the declaration to
|
2330 |
|
|
the nearest virtual base. */
|
2331 |
|
|
delta = size_diffop_loc (input_location,
|
2332 |
|
|
convert (ssizetype, BINFO_OFFSET (virtual_base)),
|
2333 |
|
|
convert (ssizetype, BINFO_OFFSET (first_defn)));
|
2334 |
|
|
else if (lost)
|
2335 |
|
|
/* If the nearest definition is in a lost primary, we don't need an
|
2336 |
|
|
entry in our vtable. Except possibly in a constructor vtable,
|
2337 |
|
|
if we happen to get our primary back. In that case, the offset
|
2338 |
|
|
will be zero, as it will be a primary base. */
|
2339 |
|
|
delta = size_zero_node;
|
2340 |
|
|
else
|
2341 |
|
|
/* The `this' pointer needs to be adjusted from pointing to
|
2342 |
|
|
BINFO to pointing at the base where the final overrider
|
2343 |
|
|
appears. */
|
2344 |
|
|
delta = size_diffop_loc (input_location,
|
2345 |
|
|
convert (ssizetype,
|
2346 |
|
|
BINFO_OFFSET (TREE_VALUE (overrider))),
|
2347 |
|
|
convert (ssizetype, BINFO_OFFSET (binfo)));
|
2348 |
|
|
|
2349 |
|
|
modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
|
2350 |
|
|
|
2351 |
|
|
if (virtual_base)
|
2352 |
|
|
BV_VCALL_INDEX (*virtuals)
|
2353 |
|
|
= get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
|
2354 |
|
|
else
|
2355 |
|
|
BV_VCALL_INDEX (*virtuals) = NULL_TREE;
|
2356 |
|
|
|
2357 |
|
|
BV_LOST_PRIMARY (*virtuals) = lost;
|
2358 |
|
|
}
|
2359 |
|
|
|
2360 |
|
|
/* Called from modify_all_vtables via dfs_walk. */
|
2361 |
|
|
|
2362 |
|
|
static tree
|
2363 |
|
|
dfs_modify_vtables (tree binfo, void* data)
|
2364 |
|
|
{
|
2365 |
|
|
tree t = (tree) data;
|
2366 |
|
|
tree virtuals;
|
2367 |
|
|
tree old_virtuals;
|
2368 |
|
|
unsigned ix;
|
2369 |
|
|
|
2370 |
|
|
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
|
2371 |
|
|
/* A base without a vtable needs no modification, and its bases
|
2372 |
|
|
are uninteresting. */
|
2373 |
|
|
return dfs_skip_bases;
|
2374 |
|
|
|
2375 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
|
2376 |
|
|
&& !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
|
2377 |
|
|
/* Don't do the primary vtable, if it's new. */
|
2378 |
|
|
return NULL_TREE;
|
2379 |
|
|
|
2380 |
|
|
if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
|
2381 |
|
|
/* There's no need to modify the vtable for a non-virtual primary
|
2382 |
|
|
base; we're not going to use that vtable anyhow. We do still
|
2383 |
|
|
need to do this for virtual primary bases, as they could become
|
2384 |
|
|
non-primary in a construction vtable. */
|
2385 |
|
|
return NULL_TREE;
|
2386 |
|
|
|
2387 |
|
|
make_new_vtable (t, binfo);
|
2388 |
|
|
|
2389 |
|
|
/* Now, go through each of the virtual functions in the virtual
|
2390 |
|
|
function table for BINFO. Find the final overrider, and update
|
2391 |
|
|
the BINFO_VIRTUALS list appropriately. */
|
2392 |
|
|
for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
|
2393 |
|
|
old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
|
2394 |
|
|
virtuals;
|
2395 |
|
|
ix++, virtuals = TREE_CHAIN (virtuals),
|
2396 |
|
|
old_virtuals = TREE_CHAIN (old_virtuals))
|
2397 |
|
|
update_vtable_entry_for_fn (t,
|
2398 |
|
|
binfo,
|
2399 |
|
|
BV_FN (old_virtuals),
|
2400 |
|
|
&virtuals, ix);
|
2401 |
|
|
|
2402 |
|
|
return NULL_TREE;
|
2403 |
|
|
}
|
2404 |
|
|
|
2405 |
|
|
/* Update all of the primary and secondary vtables for T. Create new
|
2406 |
|
|
vtables as required, and initialize their RTTI information. Each
|
2407 |
|
|
of the functions in VIRTUALS is declared in T and may override a
|
2408 |
|
|
virtual function from a base class; find and modify the appropriate
|
2409 |
|
|
entries to point to the overriding functions. Returns a list, in
|
2410 |
|
|
declaration order, of the virtual functions that are declared in T,
|
2411 |
|
|
but do not appear in the primary base class vtable, and which
|
2412 |
|
|
should therefore be appended to the end of the vtable for T. */
|
2413 |
|
|
|
2414 |
|
|
static tree
|
2415 |
|
|
modify_all_vtables (tree t, tree virtuals)
|
2416 |
|
|
{
|
2417 |
|
|
tree binfo = TYPE_BINFO (t);
|
2418 |
|
|
tree *fnsp;
|
2419 |
|
|
|
2420 |
|
|
/* Update all of the vtables. */
|
2421 |
|
|
dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
|
2422 |
|
|
|
2423 |
|
|
/* Add virtual functions not already in our primary vtable. These
|
2424 |
|
|
will be both those introduced by this class, and those overridden
|
2425 |
|
|
from secondary bases. It does not include virtuals merely
|
2426 |
|
|
inherited from secondary bases. */
|
2427 |
|
|
for (fnsp = &virtuals; *fnsp; )
|
2428 |
|
|
{
|
2429 |
|
|
tree fn = TREE_VALUE (*fnsp);
|
2430 |
|
|
|
2431 |
|
|
if (!value_member (fn, BINFO_VIRTUALS (binfo))
|
2432 |
|
|
|| DECL_VINDEX (fn) == error_mark_node)
|
2433 |
|
|
{
|
2434 |
|
|
/* We don't need to adjust the `this' pointer when
|
2435 |
|
|
calling this function. */
|
2436 |
|
|
BV_DELTA (*fnsp) = integer_zero_node;
|
2437 |
|
|
BV_VCALL_INDEX (*fnsp) = NULL_TREE;
|
2438 |
|
|
|
2439 |
|
|
/* This is a function not already in our vtable. Keep it. */
|
2440 |
|
|
fnsp = &TREE_CHAIN (*fnsp);
|
2441 |
|
|
}
|
2442 |
|
|
else
|
2443 |
|
|
/* We've already got an entry for this function. Skip it. */
|
2444 |
|
|
*fnsp = TREE_CHAIN (*fnsp);
|
2445 |
|
|
}
|
2446 |
|
|
|
2447 |
|
|
return virtuals;
|
2448 |
|
|
}
|
2449 |
|
|
|
2450 |
|
|
/* Get the base virtual function declarations in T that have the
|
2451 |
|
|
indicated NAME. */
|
2452 |
|
|
|
2453 |
|
|
static tree
|
2454 |
|
|
get_basefndecls (tree name, tree t)
|
2455 |
|
|
{
|
2456 |
|
|
tree methods;
|
2457 |
|
|
tree base_fndecls = NULL_TREE;
|
2458 |
|
|
int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
|
2459 |
|
|
int i;
|
2460 |
|
|
|
2461 |
|
|
/* Find virtual functions in T with the indicated NAME. */
|
2462 |
|
|
i = lookup_fnfields_1 (t, name);
|
2463 |
|
|
if (i != -1)
|
2464 |
|
|
for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
|
2465 |
|
|
methods;
|
2466 |
|
|
methods = OVL_NEXT (methods))
|
2467 |
|
|
{
|
2468 |
|
|
tree method = OVL_CURRENT (methods);
|
2469 |
|
|
|
2470 |
|
|
if (TREE_CODE (method) == FUNCTION_DECL
|
2471 |
|
|
&& DECL_VINDEX (method))
|
2472 |
|
|
base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
|
2473 |
|
|
}
|
2474 |
|
|
|
2475 |
|
|
if (base_fndecls)
|
2476 |
|
|
return base_fndecls;
|
2477 |
|
|
|
2478 |
|
|
for (i = 0; i < n_baseclasses; i++)
|
2479 |
|
|
{
|
2480 |
|
|
tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
|
2481 |
|
|
base_fndecls = chainon (get_basefndecls (name, basetype),
|
2482 |
|
|
base_fndecls);
|
2483 |
|
|
}
|
2484 |
|
|
|
2485 |
|
|
return base_fndecls;
|
2486 |
|
|
}
|
2487 |
|
|
|
2488 |
|
|
/* If this declaration supersedes the declaration of
|
2489 |
|
|
a method declared virtual in the base class, then
|
2490 |
|
|
mark this field as being virtual as well. */
|
2491 |
|
|
|
2492 |
|
|
void
|
2493 |
|
|
check_for_override (tree decl, tree ctype)
|
2494 |
|
|
{
|
2495 |
|
|
bool overrides_found = false;
|
2496 |
|
|
if (TREE_CODE (decl) == TEMPLATE_DECL)
|
2497 |
|
|
/* In [temp.mem] we have:
|
2498 |
|
|
|
2499 |
|
|
A specialization of a member function template does not
|
2500 |
|
|
override a virtual function from a base class. */
|
2501 |
|
|
return;
|
2502 |
|
|
if ((DECL_DESTRUCTOR_P (decl)
|
2503 |
|
|
|| IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
|
2504 |
|
|
|| DECL_CONV_FN_P (decl))
|
2505 |
|
|
&& look_for_overrides (ctype, decl)
|
2506 |
|
|
&& !DECL_STATIC_FUNCTION_P (decl))
|
2507 |
|
|
/* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
|
2508 |
|
|
the error_mark_node so that we know it is an overriding
|
2509 |
|
|
function. */
|
2510 |
|
|
{
|
2511 |
|
|
DECL_VINDEX (decl) = decl;
|
2512 |
|
|
overrides_found = true;
|
2513 |
|
|
}
|
2514 |
|
|
|
2515 |
|
|
if (DECL_VIRTUAL_P (decl))
|
2516 |
|
|
{
|
2517 |
|
|
if (!DECL_VINDEX (decl))
|
2518 |
|
|
DECL_VINDEX (decl) = error_mark_node;
|
2519 |
|
|
IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
|
2520 |
|
|
if (DECL_DESTRUCTOR_P (decl))
|
2521 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
|
2522 |
|
|
}
|
2523 |
|
|
else if (DECL_FINAL_P (decl))
|
2524 |
|
|
error ("%q+#D marked final, but is not virtual", decl);
|
2525 |
|
|
if (DECL_OVERRIDE_P (decl) && !overrides_found)
|
2526 |
|
|
error ("%q+#D marked override, but does not override", decl);
|
2527 |
|
|
}
|
2528 |
|
|
|
2529 |
|
|
/* Warn about hidden virtual functions that are not overridden in t.
|
2530 |
|
|
We know that constructors and destructors don't apply. */
|
2531 |
|
|
|
2532 |
|
|
static void
|
2533 |
|
|
warn_hidden (tree t)
|
2534 |
|
|
{
|
2535 |
|
|
VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
|
2536 |
|
|
tree fns;
|
2537 |
|
|
size_t i;
|
2538 |
|
|
|
2539 |
|
|
/* We go through each separately named virtual function. */
|
2540 |
|
|
for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
|
2541 |
|
|
VEC_iterate (tree, method_vec, i, fns);
|
2542 |
|
|
++i)
|
2543 |
|
|
{
|
2544 |
|
|
tree fn;
|
2545 |
|
|
tree name;
|
2546 |
|
|
tree fndecl;
|
2547 |
|
|
tree base_fndecls;
|
2548 |
|
|
tree base_binfo;
|
2549 |
|
|
tree binfo;
|
2550 |
|
|
int j;
|
2551 |
|
|
|
2552 |
|
|
/* All functions in this slot in the CLASSTYPE_METHOD_VEC will
|
2553 |
|
|
have the same name. Figure out what name that is. */
|
2554 |
|
|
name = DECL_NAME (OVL_CURRENT (fns));
|
2555 |
|
|
/* There are no possibly hidden functions yet. */
|
2556 |
|
|
base_fndecls = NULL_TREE;
|
2557 |
|
|
/* Iterate through all of the base classes looking for possibly
|
2558 |
|
|
hidden functions. */
|
2559 |
|
|
for (binfo = TYPE_BINFO (t), j = 0;
|
2560 |
|
|
BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
|
2561 |
|
|
{
|
2562 |
|
|
tree basetype = BINFO_TYPE (base_binfo);
|
2563 |
|
|
base_fndecls = chainon (get_basefndecls (name, basetype),
|
2564 |
|
|
base_fndecls);
|
2565 |
|
|
}
|
2566 |
|
|
|
2567 |
|
|
/* If there are no functions to hide, continue. */
|
2568 |
|
|
if (!base_fndecls)
|
2569 |
|
|
continue;
|
2570 |
|
|
|
2571 |
|
|
/* Remove any overridden functions. */
|
2572 |
|
|
for (fn = fns; fn; fn = OVL_NEXT (fn))
|
2573 |
|
|
{
|
2574 |
|
|
fndecl = OVL_CURRENT (fn);
|
2575 |
|
|
if (DECL_VINDEX (fndecl))
|
2576 |
|
|
{
|
2577 |
|
|
tree *prev = &base_fndecls;
|
2578 |
|
|
|
2579 |
|
|
while (*prev)
|
2580 |
|
|
/* If the method from the base class has the same
|
2581 |
|
|
signature as the method from the derived class, it
|
2582 |
|
|
has been overridden. */
|
2583 |
|
|
if (same_signature_p (fndecl, TREE_VALUE (*prev)))
|
2584 |
|
|
*prev = TREE_CHAIN (*prev);
|
2585 |
|
|
else
|
2586 |
|
|
prev = &TREE_CHAIN (*prev);
|
2587 |
|
|
}
|
2588 |
|
|
}
|
2589 |
|
|
|
2590 |
|
|
/* Now give a warning for all base functions without overriders,
|
2591 |
|
|
as they are hidden. */
|
2592 |
|
|
while (base_fndecls)
|
2593 |
|
|
{
|
2594 |
|
|
/* Here we know it is a hider, and no overrider exists. */
|
2595 |
|
|
warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
|
2596 |
|
|
warning (OPT_Woverloaded_virtual, " by %q+D", fns);
|
2597 |
|
|
base_fndecls = TREE_CHAIN (base_fndecls);
|
2598 |
|
|
}
|
2599 |
|
|
}
|
2600 |
|
|
}
|
2601 |
|
|
|
2602 |
|
|
/* Check for things that are invalid. There are probably plenty of other
|
2603 |
|
|
things we should check for also. */
|
2604 |
|
|
|
2605 |
|
|
static void
|
2606 |
|
|
finish_struct_anon (tree t)
|
2607 |
|
|
{
|
2608 |
|
|
tree field;
|
2609 |
|
|
|
2610 |
|
|
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
|
2611 |
|
|
{
|
2612 |
|
|
if (TREE_STATIC (field))
|
2613 |
|
|
continue;
|
2614 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
2615 |
|
|
continue;
|
2616 |
|
|
|
2617 |
|
|
if (DECL_NAME (field) == NULL_TREE
|
2618 |
|
|
&& ANON_AGGR_TYPE_P (TREE_TYPE (field)))
|
2619 |
|
|
{
|
2620 |
|
|
bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
|
2621 |
|
|
tree elt = TYPE_FIELDS (TREE_TYPE (field));
|
2622 |
|
|
for (; elt; elt = DECL_CHAIN (elt))
|
2623 |
|
|
{
|
2624 |
|
|
/* We're generally only interested in entities the user
|
2625 |
|
|
declared, but we also find nested classes by noticing
|
2626 |
|
|
the TYPE_DECL that we create implicitly. You're
|
2627 |
|
|
allowed to put one anonymous union inside another,
|
2628 |
|
|
though, so we explicitly tolerate that. We use
|
2629 |
|
|
TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
|
2630 |
|
|
we also allow unnamed types used for defining fields. */
|
2631 |
|
|
if (DECL_ARTIFICIAL (elt)
|
2632 |
|
|
&& (!DECL_IMPLICIT_TYPEDEF_P (elt)
|
2633 |
|
|
|| TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
|
2634 |
|
|
continue;
|
2635 |
|
|
|
2636 |
|
|
if (TREE_CODE (elt) != FIELD_DECL)
|
2637 |
|
|
{
|
2638 |
|
|
if (is_union)
|
2639 |
|
|
permerror (input_location, "%q+#D invalid; an anonymous union can "
|
2640 |
|
|
"only have non-static data members", elt);
|
2641 |
|
|
else
|
2642 |
|
|
permerror (input_location, "%q+#D invalid; an anonymous struct can "
|
2643 |
|
|
"only have non-static data members", elt);
|
2644 |
|
|
continue;
|
2645 |
|
|
}
|
2646 |
|
|
|
2647 |
|
|
if (TREE_PRIVATE (elt))
|
2648 |
|
|
{
|
2649 |
|
|
if (is_union)
|
2650 |
|
|
permerror (input_location, "private member %q+#D in anonymous union", elt);
|
2651 |
|
|
else
|
2652 |
|
|
permerror (input_location, "private member %q+#D in anonymous struct", elt);
|
2653 |
|
|
}
|
2654 |
|
|
else if (TREE_PROTECTED (elt))
|
2655 |
|
|
{
|
2656 |
|
|
if (is_union)
|
2657 |
|
|
permerror (input_location, "protected member %q+#D in anonymous union", elt);
|
2658 |
|
|
else
|
2659 |
|
|
permerror (input_location, "protected member %q+#D in anonymous struct", elt);
|
2660 |
|
|
}
|
2661 |
|
|
|
2662 |
|
|
TREE_PRIVATE (elt) = TREE_PRIVATE (field);
|
2663 |
|
|
TREE_PROTECTED (elt) = TREE_PROTECTED (field);
|
2664 |
|
|
}
|
2665 |
|
|
}
|
2666 |
|
|
}
|
2667 |
|
|
}
|
2668 |
|
|
|
2669 |
|
|
/* Add T to CLASSTYPE_DECL_LIST of current_class_type which
|
2670 |
|
|
will be used later during class template instantiation.
|
2671 |
|
|
When FRIEND_P is zero, T can be a static member data (VAR_DECL),
|
2672 |
|
|
a non-static member data (FIELD_DECL), a member function
|
2673 |
|
|
(FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
|
2674 |
|
|
a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
|
2675 |
|
|
When FRIEND_P is nonzero, T is either a friend class
|
2676 |
|
|
(RECORD_TYPE, TEMPLATE_DECL) or a friend function
|
2677 |
|
|
(FUNCTION_DECL, TEMPLATE_DECL). */
|
2678 |
|
|
|
2679 |
|
|
void
|
2680 |
|
|
maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
|
2681 |
|
|
{
|
2682 |
|
|
/* Save some memory by not creating TREE_LIST if TYPE is not template. */
|
2683 |
|
|
if (CLASSTYPE_TEMPLATE_INFO (type))
|
2684 |
|
|
CLASSTYPE_DECL_LIST (type)
|
2685 |
|
|
= tree_cons (friend_p ? NULL_TREE : type,
|
2686 |
|
|
t, CLASSTYPE_DECL_LIST (type));
|
2687 |
|
|
}
|
2688 |
|
|
|
2689 |
|
|
/* This function is called from declare_virt_assop_and_dtor via
|
2690 |
|
|
dfs_walk_all.
|
2691 |
|
|
|
2692 |
|
|
DATA is a type that direcly or indirectly inherits the base
|
2693 |
|
|
represented by BINFO. If BINFO contains a virtual assignment [copy
|
2694 |
|
|
assignment or move assigment] operator or a virtual constructor,
|
2695 |
|
|
declare that function in DATA if it hasn't been already declared. */
|
2696 |
|
|
|
2697 |
|
|
static tree
|
2698 |
|
|
dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
|
2699 |
|
|
{
|
2700 |
|
|
tree bv, fn, t = (tree)data;
|
2701 |
|
|
tree opname = ansi_assopname (NOP_EXPR);
|
2702 |
|
|
|
2703 |
|
|
gcc_assert (t && CLASS_TYPE_P (t));
|
2704 |
|
|
gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
|
2705 |
|
|
|
2706 |
|
|
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
|
2707 |
|
|
/* A base without a vtable needs no modification, and its bases
|
2708 |
|
|
are uninteresting. */
|
2709 |
|
|
return dfs_skip_bases;
|
2710 |
|
|
|
2711 |
|
|
if (BINFO_PRIMARY_P (binfo))
|
2712 |
|
|
/* If this is a primary base, then we have already looked at the
|
2713 |
|
|
virtual functions of its vtable. */
|
2714 |
|
|
return NULL_TREE;
|
2715 |
|
|
|
2716 |
|
|
for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
|
2717 |
|
|
{
|
2718 |
|
|
fn = BV_FN (bv);
|
2719 |
|
|
|
2720 |
|
|
if (DECL_NAME (fn) == opname)
|
2721 |
|
|
{
|
2722 |
|
|
if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
|
2723 |
|
|
lazily_declare_fn (sfk_copy_assignment, t);
|
2724 |
|
|
if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
|
2725 |
|
|
lazily_declare_fn (sfk_move_assignment, t);
|
2726 |
|
|
}
|
2727 |
|
|
else if (DECL_DESTRUCTOR_P (fn)
|
2728 |
|
|
&& CLASSTYPE_LAZY_DESTRUCTOR (t))
|
2729 |
|
|
lazily_declare_fn (sfk_destructor, t);
|
2730 |
|
|
}
|
2731 |
|
|
|
2732 |
|
|
return NULL_TREE;
|
2733 |
|
|
}
|
2734 |
|
|
|
2735 |
|
|
/* If the class type T has a direct or indirect base that contains a
|
2736 |
|
|
virtual assignment operator or a virtual destructor, declare that
|
2737 |
|
|
function in T if it hasn't been already declared. */
|
2738 |
|
|
|
2739 |
|
|
static void
|
2740 |
|
|
declare_virt_assop_and_dtor (tree t)
|
2741 |
|
|
{
|
2742 |
|
|
if (!(TYPE_POLYMORPHIC_P (t)
|
2743 |
|
|
&& (CLASSTYPE_LAZY_COPY_ASSIGN (t)
|
2744 |
|
|
|| CLASSTYPE_LAZY_MOVE_ASSIGN (t)
|
2745 |
|
|
|| CLASSTYPE_LAZY_DESTRUCTOR (t))))
|
2746 |
|
|
return;
|
2747 |
|
|
|
2748 |
|
|
dfs_walk_all (TYPE_BINFO (t),
|
2749 |
|
|
dfs_declare_virt_assop_and_dtor,
|
2750 |
|
|
NULL, t);
|
2751 |
|
|
}
|
2752 |
|
|
|
2753 |
|
|
/* Create default constructors, assignment operators, and so forth for
|
2754 |
|
|
the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
|
2755 |
|
|
and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
|
2756 |
|
|
the class cannot have a default constructor, copy constructor
|
2757 |
|
|
taking a const reference argument, or an assignment operator taking
|
2758 |
|
|
a const reference, respectively. */
|
2759 |
|
|
|
2760 |
|
|
static void
|
2761 |
|
|
add_implicitly_declared_members (tree t,
|
2762 |
|
|
int cant_have_const_cctor,
|
2763 |
|
|
int cant_have_const_assignment)
|
2764 |
|
|
{
|
2765 |
|
|
bool move_ok = false;
|
2766 |
|
|
|
2767 |
|
|
if (cxx_dialect >= cxx0x && !CLASSTYPE_DESTRUCTORS (t)
|
2768 |
|
|
&& !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
|
2769 |
|
|
&& !type_has_move_constructor (t) && !type_has_move_assign (t))
|
2770 |
|
|
move_ok = true;
|
2771 |
|
|
|
2772 |
|
|
/* Destructor. */
|
2773 |
|
|
if (!CLASSTYPE_DESTRUCTORS (t))
|
2774 |
|
|
{
|
2775 |
|
|
/* In general, we create destructors lazily. */
|
2776 |
|
|
CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
|
2777 |
|
|
|
2778 |
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
2779 |
|
|
&& TYPE_FOR_JAVA (t))
|
2780 |
|
|
/* But if this is a Java class, any non-trivial destructor is
|
2781 |
|
|
invalid, even if compiler-generated. Therefore, if the
|
2782 |
|
|
destructor is non-trivial we create it now. */
|
2783 |
|
|
lazily_declare_fn (sfk_destructor, t);
|
2784 |
|
|
}
|
2785 |
|
|
|
2786 |
|
|
/* [class.ctor]
|
2787 |
|
|
|
2788 |
|
|
If there is no user-declared constructor for a class, a default
|
2789 |
|
|
constructor is implicitly declared. */
|
2790 |
|
|
if (! TYPE_HAS_USER_CONSTRUCTOR (t))
|
2791 |
|
|
{
|
2792 |
|
|
TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
|
2793 |
|
|
CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
|
2794 |
|
|
if (cxx_dialect >= cxx0x)
|
2795 |
|
|
TYPE_HAS_CONSTEXPR_CTOR (t)
|
2796 |
|
|
/* This might force the declaration. */
|
2797 |
|
|
= type_has_constexpr_default_constructor (t);
|
2798 |
|
|
}
|
2799 |
|
|
|
2800 |
|
|
/* [class.ctor]
|
2801 |
|
|
|
2802 |
|
|
If a class definition does not explicitly declare a copy
|
2803 |
|
|
constructor, one is declared implicitly. */
|
2804 |
|
|
if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
|
2805 |
|
|
{
|
2806 |
|
|
TYPE_HAS_COPY_CTOR (t) = 1;
|
2807 |
|
|
TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
|
2808 |
|
|
CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
|
2809 |
|
|
if (move_ok)
|
2810 |
|
|
CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
|
2811 |
|
|
}
|
2812 |
|
|
|
2813 |
|
|
/* If there is no assignment operator, one will be created if and
|
2814 |
|
|
when it is needed. For now, just record whether or not the type
|
2815 |
|
|
of the parameter to the assignment operator will be a const or
|
2816 |
|
|
non-const reference. */
|
2817 |
|
|
if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
|
2818 |
|
|
{
|
2819 |
|
|
TYPE_HAS_COPY_ASSIGN (t) = 1;
|
2820 |
|
|
TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
|
2821 |
|
|
CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
|
2822 |
|
|
if (move_ok)
|
2823 |
|
|
CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
|
2824 |
|
|
}
|
2825 |
|
|
|
2826 |
|
|
/* We can't be lazy about declaring functions that might override
|
2827 |
|
|
a virtual function from a base class. */
|
2828 |
|
|
declare_virt_assop_and_dtor (t);
|
2829 |
|
|
}
|
2830 |
|
|
|
2831 |
|
|
/* Subroutine of finish_struct_1. Recursively count the number of fields
|
2832 |
|
|
in TYPE, including anonymous union members. */
|
2833 |
|
|
|
2834 |
|
|
static int
|
2835 |
|
|
count_fields (tree fields)
|
2836 |
|
|
{
|
2837 |
|
|
tree x;
|
2838 |
|
|
int n_fields = 0;
|
2839 |
|
|
for (x = fields; x; x = DECL_CHAIN (x))
|
2840 |
|
|
{
|
2841 |
|
|
if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
|
2842 |
|
|
n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
|
2843 |
|
|
else
|
2844 |
|
|
n_fields += 1;
|
2845 |
|
|
}
|
2846 |
|
|
return n_fields;
|
2847 |
|
|
}
|
2848 |
|
|
|
2849 |
|
|
/* Subroutine of finish_struct_1. Recursively add all the fields in the
|
2850 |
|
|
TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
|
2851 |
|
|
|
2852 |
|
|
static int
|
2853 |
|
|
add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
|
2854 |
|
|
{
|
2855 |
|
|
tree x;
|
2856 |
|
|
for (x = fields; x; x = DECL_CHAIN (x))
|
2857 |
|
|
{
|
2858 |
|
|
if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
|
2859 |
|
|
idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
|
2860 |
|
|
else
|
2861 |
|
|
field_vec->elts[idx++] = x;
|
2862 |
|
|
}
|
2863 |
|
|
return idx;
|
2864 |
|
|
}
|
2865 |
|
|
|
2866 |
|
|
/* FIELD is a bit-field. We are finishing the processing for its
|
2867 |
|
|
enclosing type. Issue any appropriate messages and set appropriate
|
2868 |
|
|
flags. Returns false if an error has been diagnosed. */
|
2869 |
|
|
|
2870 |
|
|
static bool
|
2871 |
|
|
check_bitfield_decl (tree field)
|
2872 |
|
|
{
|
2873 |
|
|
tree type = TREE_TYPE (field);
|
2874 |
|
|
tree w;
|
2875 |
|
|
|
2876 |
|
|
/* Extract the declared width of the bitfield, which has been
|
2877 |
|
|
temporarily stashed in DECL_INITIAL. */
|
2878 |
|
|
w = DECL_INITIAL (field);
|
2879 |
|
|
gcc_assert (w != NULL_TREE);
|
2880 |
|
|
/* Remove the bit-field width indicator so that the rest of the
|
2881 |
|
|
compiler does not treat that value as an initializer. */
|
2882 |
|
|
DECL_INITIAL (field) = NULL_TREE;
|
2883 |
|
|
|
2884 |
|
|
/* Detect invalid bit-field type. */
|
2885 |
|
|
if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
|
2886 |
|
|
{
|
2887 |
|
|
error ("bit-field %q+#D with non-integral type", field);
|
2888 |
|
|
w = error_mark_node;
|
2889 |
|
|
}
|
2890 |
|
|
else
|
2891 |
|
|
{
|
2892 |
|
|
location_t loc = input_location;
|
2893 |
|
|
/* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
|
2894 |
|
|
STRIP_NOPS (w);
|
2895 |
|
|
|
2896 |
|
|
/* detect invalid field size. */
|
2897 |
|
|
input_location = DECL_SOURCE_LOCATION (field);
|
2898 |
|
|
w = cxx_constant_value (w);
|
2899 |
|
|
input_location = loc;
|
2900 |
|
|
|
2901 |
|
|
if (TREE_CODE (w) != INTEGER_CST)
|
2902 |
|
|
{
|
2903 |
|
|
error ("bit-field %q+D width not an integer constant", field);
|
2904 |
|
|
w = error_mark_node;
|
2905 |
|
|
}
|
2906 |
|
|
else if (tree_int_cst_sgn (w) < 0)
|
2907 |
|
|
{
|
2908 |
|
|
error ("negative width in bit-field %q+D", field);
|
2909 |
|
|
w = error_mark_node;
|
2910 |
|
|
}
|
2911 |
|
|
else if (integer_zerop (w) && DECL_NAME (field) != 0)
|
2912 |
|
|
{
|
2913 |
|
|
error ("zero width for bit-field %q+D", field);
|
2914 |
|
|
w = error_mark_node;
|
2915 |
|
|
}
|
2916 |
|
|
else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
|
2917 |
|
|
&& TREE_CODE (type) != ENUMERAL_TYPE
|
2918 |
|
|
&& TREE_CODE (type) != BOOLEAN_TYPE)
|
2919 |
|
|
warning (0, "width of %q+D exceeds its type", field);
|
2920 |
|
|
else if (TREE_CODE (type) == ENUMERAL_TYPE
|
2921 |
|
|
&& (0 > (compare_tree_int
|
2922 |
|
|
(w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
|
2923 |
|
|
warning (0, "%q+D is too small to hold all values of %q#T", field, type);
|
2924 |
|
|
}
|
2925 |
|
|
|
2926 |
|
|
if (w != error_mark_node)
|
2927 |
|
|
{
|
2928 |
|
|
DECL_SIZE (field) = convert (bitsizetype, w);
|
2929 |
|
|
DECL_BIT_FIELD (field) = 1;
|
2930 |
|
|
return true;
|
2931 |
|
|
}
|
2932 |
|
|
else
|
2933 |
|
|
{
|
2934 |
|
|
/* Non-bit-fields are aligned for their type. */
|
2935 |
|
|
DECL_BIT_FIELD (field) = 0;
|
2936 |
|
|
CLEAR_DECL_C_BIT_FIELD (field);
|
2937 |
|
|
return false;
|
2938 |
|
|
}
|
2939 |
|
|
}
|
2940 |
|
|
|
2941 |
|
|
/* FIELD is a non bit-field. We are finishing the processing for its
|
2942 |
|
|
enclosing type T. Issue any appropriate messages and set appropriate
|
2943 |
|
|
flags. */
|
2944 |
|
|
|
2945 |
|
|
static void
|
2946 |
|
|
check_field_decl (tree field,
|
2947 |
|
|
tree t,
|
2948 |
|
|
int* cant_have_const_ctor,
|
2949 |
|
|
int* no_const_asn_ref,
|
2950 |
|
|
int* any_default_members)
|
2951 |
|
|
{
|
2952 |
|
|
tree type = strip_array_types (TREE_TYPE (field));
|
2953 |
|
|
|
2954 |
|
|
/* In C++98 an anonymous union cannot contain any fields which would change
|
2955 |
|
|
the settings of CANT_HAVE_CONST_CTOR and friends. */
|
2956 |
|
|
if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx0x)
|
2957 |
|
|
;
|
2958 |
|
|
/* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
|
2959 |
|
|
structs. So, we recurse through their fields here. */
|
2960 |
|
|
else if (ANON_AGGR_TYPE_P (type))
|
2961 |
|
|
{
|
2962 |
|
|
tree fields;
|
2963 |
|
|
|
2964 |
|
|
for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
|
2965 |
|
|
if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
|
2966 |
|
|
check_field_decl (fields, t, cant_have_const_ctor,
|
2967 |
|
|
no_const_asn_ref, any_default_members);
|
2968 |
|
|
}
|
2969 |
|
|
/* Check members with class type for constructors, destructors,
|
2970 |
|
|
etc. */
|
2971 |
|
|
else if (CLASS_TYPE_P (type))
|
2972 |
|
|
{
|
2973 |
|
|
/* Never let anything with uninheritable virtuals
|
2974 |
|
|
make it through without complaint. */
|
2975 |
|
|
abstract_virtuals_error (field, type);
|
2976 |
|
|
|
2977 |
|
|
if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx0x)
|
2978 |
|
|
{
|
2979 |
|
|
static bool warned;
|
2980 |
|
|
int oldcount = errorcount;
|
2981 |
|
|
if (TYPE_NEEDS_CONSTRUCTING (type))
|
2982 |
|
|
error ("member %q+#D with constructor not allowed in union",
|
2983 |
|
|
field);
|
2984 |
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
|
2985 |
|
|
error ("member %q+#D with destructor not allowed in union", field);
|
2986 |
|
|
if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
|
2987 |
|
|
error ("member %q+#D with copy assignment operator not allowed in union",
|
2988 |
|
|
field);
|
2989 |
|
|
if (!warned && errorcount > oldcount)
|
2990 |
|
|
{
|
2991 |
|
|
inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
|
2992 |
|
|
"only available with -std=c++11 or -std=gnu++11");
|
2993 |
|
|
warned = true;
|
2994 |
|
|
}
|
2995 |
|
|
}
|
2996 |
|
|
else
|
2997 |
|
|
{
|
2998 |
|
|
TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
|
2999 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
3000 |
|
|
|= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
|
3001 |
|
|
TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
|
3002 |
|
|
|= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
|
3003 |
|
|
|| !TYPE_HAS_COPY_ASSIGN (type));
|
3004 |
|
|
TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
|
3005 |
|
|
|| !TYPE_HAS_COPY_CTOR (type));
|
3006 |
|
|
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
|
3007 |
|
|
TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
|
3008 |
|
|
TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
|
3009 |
|
|
|| TYPE_HAS_COMPLEX_DFLT (type));
|
3010 |
|
|
}
|
3011 |
|
|
|
3012 |
|
|
if (TYPE_HAS_COPY_CTOR (type)
|
3013 |
|
|
&& !TYPE_HAS_CONST_COPY_CTOR (type))
|
3014 |
|
|
*cant_have_const_ctor = 1;
|
3015 |
|
|
|
3016 |
|
|
if (TYPE_HAS_COPY_ASSIGN (type)
|
3017 |
|
|
&& !TYPE_HAS_CONST_COPY_ASSIGN (type))
|
3018 |
|
|
*no_const_asn_ref = 1;
|
3019 |
|
|
}
|
3020 |
|
|
if (DECL_INITIAL (field) != NULL_TREE)
|
3021 |
|
|
{
|
3022 |
|
|
/* `build_class_init_list' does not recognize
|
3023 |
|
|
non-FIELD_DECLs. */
|
3024 |
|
|
if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
|
3025 |
|
|
error ("multiple fields in union %qT initialized", t);
|
3026 |
|
|
*any_default_members = 1;
|
3027 |
|
|
}
|
3028 |
|
|
}
|
3029 |
|
|
|
3030 |
|
|
/* Check the data members (both static and non-static), class-scoped
|
3031 |
|
|
typedefs, etc., appearing in the declaration of T. Issue
|
3032 |
|
|
appropriate diagnostics. Sets ACCESS_DECLS to a list (in
|
3033 |
|
|
declaration order) of access declarations; each TREE_VALUE in this
|
3034 |
|
|
list is a USING_DECL.
|
3035 |
|
|
|
3036 |
|
|
In addition, set the following flags:
|
3037 |
|
|
|
3038 |
|
|
EMPTY_P
|
3039 |
|
|
The class is empty, i.e., contains no non-static data members.
|
3040 |
|
|
|
3041 |
|
|
CANT_HAVE_CONST_CTOR_P
|
3042 |
|
|
This class cannot have an implicitly generated copy constructor
|
3043 |
|
|
taking a const reference.
|
3044 |
|
|
|
3045 |
|
|
CANT_HAVE_CONST_ASN_REF
|
3046 |
|
|
This class cannot have an implicitly generated assignment
|
3047 |
|
|
operator taking a const reference.
|
3048 |
|
|
|
3049 |
|
|
All of these flags should be initialized before calling this
|
3050 |
|
|
function.
|
3051 |
|
|
|
3052 |
|
|
Returns a pointer to the end of the TYPE_FIELDs chain; additional
|
3053 |
|
|
fields can be added by adding to this chain. */
|
3054 |
|
|
|
3055 |
|
|
static void
|
3056 |
|
|
check_field_decls (tree t, tree *access_decls,
|
3057 |
|
|
int *cant_have_const_ctor_p,
|
3058 |
|
|
int *no_const_asn_ref_p)
|
3059 |
|
|
{
|
3060 |
|
|
tree *field;
|
3061 |
|
|
tree *next;
|
3062 |
|
|
bool has_pointers;
|
3063 |
|
|
int any_default_members;
|
3064 |
|
|
int cant_pack = 0;
|
3065 |
|
|
int field_access = -1;
|
3066 |
|
|
|
3067 |
|
|
/* Assume there are no access declarations. */
|
3068 |
|
|
*access_decls = NULL_TREE;
|
3069 |
|
|
/* Assume this class has no pointer members. */
|
3070 |
|
|
has_pointers = false;
|
3071 |
|
|
/* Assume none of the members of this class have default
|
3072 |
|
|
initializations. */
|
3073 |
|
|
any_default_members = 0;
|
3074 |
|
|
|
3075 |
|
|
for (field = &TYPE_FIELDS (t); *field; field = next)
|
3076 |
|
|
{
|
3077 |
|
|
tree x = *field;
|
3078 |
|
|
tree type = TREE_TYPE (x);
|
3079 |
|
|
int this_field_access;
|
3080 |
|
|
|
3081 |
|
|
next = &DECL_CHAIN (x);
|
3082 |
|
|
|
3083 |
|
|
if (TREE_CODE (x) == USING_DECL)
|
3084 |
|
|
{
|
3085 |
|
|
/* Save the access declarations for our caller. */
|
3086 |
|
|
*access_decls = tree_cons (NULL_TREE, x, *access_decls);
|
3087 |
|
|
continue;
|
3088 |
|
|
}
|
3089 |
|
|
|
3090 |
|
|
if (TREE_CODE (x) == TYPE_DECL
|
3091 |
|
|
|| TREE_CODE (x) == TEMPLATE_DECL)
|
3092 |
|
|
continue;
|
3093 |
|
|
|
3094 |
|
|
/* If we've gotten this far, it's a data member, possibly static,
|
3095 |
|
|
or an enumerator. */
|
3096 |
|
|
DECL_CONTEXT (x) = t;
|
3097 |
|
|
|
3098 |
|
|
/* When this goes into scope, it will be a non-local reference. */
|
3099 |
|
|
DECL_NONLOCAL (x) = 1;
|
3100 |
|
|
|
3101 |
|
|
if (TREE_CODE (t) == UNION_TYPE)
|
3102 |
|
|
{
|
3103 |
|
|
/* [class.union]
|
3104 |
|
|
|
3105 |
|
|
If a union contains a static data member, or a member of
|
3106 |
|
|
reference type, the program is ill-formed. */
|
3107 |
|
|
if (TREE_CODE (x) == VAR_DECL)
|
3108 |
|
|
{
|
3109 |
|
|
error ("%q+D may not be static because it is a member of a union", x);
|
3110 |
|
|
continue;
|
3111 |
|
|
}
|
3112 |
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
3113 |
|
|
{
|
3114 |
|
|
error ("%q+D may not have reference type %qT because"
|
3115 |
|
|
" it is a member of a union",
|
3116 |
|
|
x, type);
|
3117 |
|
|
continue;
|
3118 |
|
|
}
|
3119 |
|
|
}
|
3120 |
|
|
|
3121 |
|
|
/* Perform error checking that did not get done in
|
3122 |
|
|
grokdeclarator. */
|
3123 |
|
|
if (TREE_CODE (type) == FUNCTION_TYPE)
|
3124 |
|
|
{
|
3125 |
|
|
error ("field %q+D invalidly declared function type", x);
|
3126 |
|
|
type = build_pointer_type (type);
|
3127 |
|
|
TREE_TYPE (x) = type;
|
3128 |
|
|
}
|
3129 |
|
|
else if (TREE_CODE (type) == METHOD_TYPE)
|
3130 |
|
|
{
|
3131 |
|
|
error ("field %q+D invalidly declared method type", x);
|
3132 |
|
|
type = build_pointer_type (type);
|
3133 |
|
|
TREE_TYPE (x) = type;
|
3134 |
|
|
}
|
3135 |
|
|
|
3136 |
|
|
if (type == error_mark_node)
|
3137 |
|
|
continue;
|
3138 |
|
|
|
3139 |
|
|
if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
|
3140 |
|
|
continue;
|
3141 |
|
|
|
3142 |
|
|
/* Now it can only be a FIELD_DECL. */
|
3143 |
|
|
|
3144 |
|
|
if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
|
3145 |
|
|
CLASSTYPE_NON_AGGREGATE (t) = 1;
|
3146 |
|
|
|
3147 |
|
|
/* If at least one non-static data member is non-literal, the whole
|
3148 |
|
|
class becomes non-literal. */
|
3149 |
|
|
if (!literal_type_p (type))
|
3150 |
|
|
CLASSTYPE_LITERAL_P (t) = false;
|
3151 |
|
|
|
3152 |
|
|
/* A standard-layout class is a class that:
|
3153 |
|
|
...
|
3154 |
|
|
has the same access control (Clause 11) for all non-static data members,
|
3155 |
|
|
... */
|
3156 |
|
|
this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
|
3157 |
|
|
if (field_access == -1)
|
3158 |
|
|
field_access = this_field_access;
|
3159 |
|
|
else if (this_field_access != field_access)
|
3160 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) = 1;
|
3161 |
|
|
|
3162 |
|
|
/* If this is of reference type, check if it needs an init. */
|
3163 |
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
3164 |
|
|
{
|
3165 |
|
|
CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
|
3166 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) = 1;
|
3167 |
|
|
if (DECL_INITIAL (x) == NULL_TREE)
|
3168 |
|
|
SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
|
3169 |
|
|
|
3170 |
|
|
/* ARM $12.6.2: [A member initializer list] (or, for an
|
3171 |
|
|
aggregate, initialization by a brace-enclosed list) is the
|
3172 |
|
|
only way to initialize nonstatic const and reference
|
3173 |
|
|
members. */
|
3174 |
|
|
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
|
3175 |
|
|
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
|
3176 |
|
|
}
|
3177 |
|
|
|
3178 |
|
|
type = strip_array_types (type);
|
3179 |
|
|
|
3180 |
|
|
if (TYPE_PACKED (t))
|
3181 |
|
|
{
|
3182 |
|
|
if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
|
3183 |
|
|
{
|
3184 |
|
|
warning
|
3185 |
|
|
(0,
|
3186 |
|
|
"ignoring packed attribute because of unpacked non-POD field %q+#D",
|
3187 |
|
|
x);
|
3188 |
|
|
cant_pack = 1;
|
3189 |
|
|
}
|
3190 |
|
|
else if (DECL_C_BIT_FIELD (x)
|
3191 |
|
|
|| TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
|
3192 |
|
|
DECL_PACKED (x) = 1;
|
3193 |
|
|
}
|
3194 |
|
|
|
3195 |
|
|
if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
|
3196 |
|
|
/* We don't treat zero-width bitfields as making a class
|
3197 |
|
|
non-empty. */
|
3198 |
|
|
;
|
3199 |
|
|
else
|
3200 |
|
|
{
|
3201 |
|
|
/* The class is non-empty. */
|
3202 |
|
|
CLASSTYPE_EMPTY_P (t) = 0;
|
3203 |
|
|
/* The class is not even nearly empty. */
|
3204 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
|
3205 |
|
|
/* If one of the data members contains an empty class,
|
3206 |
|
|
so does T. */
|
3207 |
|
|
if (CLASS_TYPE_P (type)
|
3208 |
|
|
&& CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
|
3209 |
|
|
CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
|
3210 |
|
|
}
|
3211 |
|
|
|
3212 |
|
|
/* This is used by -Weffc++ (see below). Warn only for pointers
|
3213 |
|
|
to members which might hold dynamic memory. So do not warn
|
3214 |
|
|
for pointers to functions or pointers to members. */
|
3215 |
|
|
if (TYPE_PTR_P (type)
|
3216 |
|
|
&& !TYPE_PTRFN_P (type)
|
3217 |
|
|
&& !TYPE_PTR_TO_MEMBER_P (type))
|
3218 |
|
|
has_pointers = true;
|
3219 |
|
|
|
3220 |
|
|
if (CLASS_TYPE_P (type))
|
3221 |
|
|
{
|
3222 |
|
|
if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
|
3223 |
|
|
SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
|
3224 |
|
|
if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
|
3225 |
|
|
SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
|
3226 |
|
|
}
|
3227 |
|
|
|
3228 |
|
|
if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
|
3229 |
|
|
CLASSTYPE_HAS_MUTABLE (t) = 1;
|
3230 |
|
|
|
3231 |
|
|
if (! layout_pod_type_p (type))
|
3232 |
|
|
/* DR 148 now allows pointers to members (which are POD themselves),
|
3233 |
|
|
to be allowed in POD structs. */
|
3234 |
|
|
CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
|
3235 |
|
|
|
3236 |
|
|
if (!std_layout_type_p (type))
|
3237 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) = 1;
|
3238 |
|
|
|
3239 |
|
|
if (! zero_init_p (type))
|
3240 |
|
|
CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
|
3241 |
|
|
|
3242 |
|
|
/* We set DECL_C_BIT_FIELD in grokbitfield.
|
3243 |
|
|
If the type and width are valid, we'll also set DECL_BIT_FIELD. */
|
3244 |
|
|
if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
|
3245 |
|
|
check_field_decl (x, t,
|
3246 |
|
|
cant_have_const_ctor_p,
|
3247 |
|
|
no_const_asn_ref_p,
|
3248 |
|
|
&any_default_members);
|
3249 |
|
|
|
3250 |
|
|
/* Now that we've removed bit-field widths from DECL_INITIAL,
|
3251 |
|
|
anything left in DECL_INITIAL is an NSDMI that makes the class
|
3252 |
|
|
non-aggregate. */
|
3253 |
|
|
if (DECL_INITIAL (x))
|
3254 |
|
|
CLASSTYPE_NON_AGGREGATE (t) = true;
|
3255 |
|
|
|
3256 |
|
|
/* If any field is const, the structure type is pseudo-const. */
|
3257 |
|
|
if (CP_TYPE_CONST_P (type))
|
3258 |
|
|
{
|
3259 |
|
|
C_TYPE_FIELDS_READONLY (t) = 1;
|
3260 |
|
|
if (DECL_INITIAL (x) == NULL_TREE)
|
3261 |
|
|
SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
|
3262 |
|
|
|
3263 |
|
|
/* ARM $12.6.2: [A member initializer list] (or, for an
|
3264 |
|
|
aggregate, initialization by a brace-enclosed list) is the
|
3265 |
|
|
only way to initialize nonstatic const and reference
|
3266 |
|
|
members. */
|
3267 |
|
|
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
|
3268 |
|
|
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
|
3269 |
|
|
}
|
3270 |
|
|
/* A field that is pseudo-const makes the structure likewise. */
|
3271 |
|
|
else if (CLASS_TYPE_P (type))
|
3272 |
|
|
{
|
3273 |
|
|
C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
|
3274 |
|
|
SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
|
3275 |
|
|
CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
|
3276 |
|
|
| CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
|
3277 |
|
|
}
|
3278 |
|
|
|
3279 |
|
|
/* Core issue 80: A nonstatic data member is required to have a
|
3280 |
|
|
different name from the class iff the class has a
|
3281 |
|
|
user-declared constructor. */
|
3282 |
|
|
if (constructor_name_p (DECL_NAME (x), t)
|
3283 |
|
|
&& TYPE_HAS_USER_CONSTRUCTOR (t))
|
3284 |
|
|
permerror (input_location, "field %q+#D with same name as class", x);
|
3285 |
|
|
}
|
3286 |
|
|
|
3287 |
|
|
/* Effective C++ rule 11: if a class has dynamic memory held by pointers,
|
3288 |
|
|
it should also define a copy constructor and an assignment operator to
|
3289 |
|
|
implement the correct copy semantic (deep vs shallow, etc.). As it is
|
3290 |
|
|
not feasible to check whether the constructors do allocate dynamic memory
|
3291 |
|
|
and store it within members, we approximate the warning like this:
|
3292 |
|
|
|
3293 |
|
|
-- Warn only if there are members which are pointers
|
3294 |
|
|
-- Warn only if there is a non-trivial constructor (otherwise,
|
3295 |
|
|
there cannot be memory allocated).
|
3296 |
|
|
-- Warn only if there is a non-trivial destructor. We assume that the
|
3297 |
|
|
user at least implemented the cleanup correctly, and a destructor
|
3298 |
|
|
is needed to free dynamic memory.
|
3299 |
|
|
|
3300 |
|
|
This seems enough for practical purposes. */
|
3301 |
|
|
if (warn_ecpp
|
3302 |
|
|
&& has_pointers
|
3303 |
|
|
&& TYPE_HAS_USER_CONSTRUCTOR (t)
|
3304 |
|
|
&& TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
3305 |
|
|
&& !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
|
3306 |
|
|
{
|
3307 |
|
|
warning (OPT_Weffc__, "%q#T has pointer data members", t);
|
3308 |
|
|
|
3309 |
|
|
if (! TYPE_HAS_COPY_CTOR (t))
|
3310 |
|
|
{
|
3311 |
|
|
warning (OPT_Weffc__,
|
3312 |
|
|
" but does not override %<%T(const %T&)%>", t, t);
|
3313 |
|
|
if (!TYPE_HAS_COPY_ASSIGN (t))
|
3314 |
|
|
warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
|
3315 |
|
|
}
|
3316 |
|
|
else if (! TYPE_HAS_COPY_ASSIGN (t))
|
3317 |
|
|
warning (OPT_Weffc__,
|
3318 |
|
|
" but does not override %<operator=(const %T&)%>", t);
|
3319 |
|
|
}
|
3320 |
|
|
|
3321 |
|
|
/* Non-static data member initializers make the default constructor
|
3322 |
|
|
non-trivial. */
|
3323 |
|
|
if (any_default_members)
|
3324 |
|
|
{
|
3325 |
|
|
TYPE_NEEDS_CONSTRUCTING (t) = true;
|
3326 |
|
|
TYPE_HAS_COMPLEX_DFLT (t) = true;
|
3327 |
|
|
}
|
3328 |
|
|
|
3329 |
|
|
/* If any of the fields couldn't be packed, unset TYPE_PACKED. */
|
3330 |
|
|
if (cant_pack)
|
3331 |
|
|
TYPE_PACKED (t) = 0;
|
3332 |
|
|
|
3333 |
|
|
/* Check anonymous struct/anonymous union fields. */
|
3334 |
|
|
finish_struct_anon (t);
|
3335 |
|
|
|
3336 |
|
|
/* We've built up the list of access declarations in reverse order.
|
3337 |
|
|
Fix that now. */
|
3338 |
|
|
*access_decls = nreverse (*access_decls);
|
3339 |
|
|
}
|
3340 |
|
|
|
3341 |
|
|
/* If TYPE is an empty class type, records its OFFSET in the table of
|
3342 |
|
|
OFFSETS. */
|
3343 |
|
|
|
3344 |
|
|
static int
|
3345 |
|
|
record_subobject_offset (tree type, tree offset, splay_tree offsets)
|
3346 |
|
|
{
|
3347 |
|
|
splay_tree_node n;
|
3348 |
|
|
|
3349 |
|
|
if (!is_empty_class (type))
|
3350 |
|
|
return 0;
|
3351 |
|
|
|
3352 |
|
|
/* Record the location of this empty object in OFFSETS. */
|
3353 |
|
|
n = splay_tree_lookup (offsets, (splay_tree_key) offset);
|
3354 |
|
|
if (!n)
|
3355 |
|
|
n = splay_tree_insert (offsets,
|
3356 |
|
|
(splay_tree_key) offset,
|
3357 |
|
|
(splay_tree_value) NULL_TREE);
|
3358 |
|
|
n->value = ((splay_tree_value)
|
3359 |
|
|
tree_cons (NULL_TREE,
|
3360 |
|
|
type,
|
3361 |
|
|
(tree) n->value));
|
3362 |
|
|
|
3363 |
|
|
return 0;
|
3364 |
|
|
}
|
3365 |
|
|
|
3366 |
|
|
/* Returns nonzero if TYPE is an empty class type and there is
|
3367 |
|
|
already an entry in OFFSETS for the same TYPE as the same OFFSET. */
|
3368 |
|
|
|
3369 |
|
|
static int
|
3370 |
|
|
check_subobject_offset (tree type, tree offset, splay_tree offsets)
|
3371 |
|
|
{
|
3372 |
|
|
splay_tree_node n;
|
3373 |
|
|
tree t;
|
3374 |
|
|
|
3375 |
|
|
if (!is_empty_class (type))
|
3376 |
|
|
return 0;
|
3377 |
|
|
|
3378 |
|
|
/* Record the location of this empty object in OFFSETS. */
|
3379 |
|
|
n = splay_tree_lookup (offsets, (splay_tree_key) offset);
|
3380 |
|
|
if (!n)
|
3381 |
|
|
return 0;
|
3382 |
|
|
|
3383 |
|
|
for (t = (tree) n->value; t; t = TREE_CHAIN (t))
|
3384 |
|
|
if (same_type_p (TREE_VALUE (t), type))
|
3385 |
|
|
return 1;
|
3386 |
|
|
|
3387 |
|
|
return 0;
|
3388 |
|
|
}
|
3389 |
|
|
|
3390 |
|
|
/* Walk through all the subobjects of TYPE (located at OFFSET). Call
|
3391 |
|
|
F for every subobject, passing it the type, offset, and table of
|
3392 |
|
|
OFFSETS. If VBASES_P is one, then virtual non-primary bases should
|
3393 |
|
|
be traversed.
|
3394 |
|
|
|
3395 |
|
|
If MAX_OFFSET is non-NULL, then subobjects with an offset greater
|
3396 |
|
|
than MAX_OFFSET will not be walked.
|
3397 |
|
|
|
3398 |
|
|
If F returns a nonzero value, the traversal ceases, and that value
|
3399 |
|
|
is returned. Otherwise, returns zero. */
|
3400 |
|
|
|
3401 |
|
|
static int
|
3402 |
|
|
walk_subobject_offsets (tree type,
|
3403 |
|
|
subobject_offset_fn f,
|
3404 |
|
|
tree offset,
|
3405 |
|
|
splay_tree offsets,
|
3406 |
|
|
tree max_offset,
|
3407 |
|
|
int vbases_p)
|
3408 |
|
|
{
|
3409 |
|
|
int r = 0;
|
3410 |
|
|
tree type_binfo = NULL_TREE;
|
3411 |
|
|
|
3412 |
|
|
/* If this OFFSET is bigger than the MAX_OFFSET, then we should
|
3413 |
|
|
stop. */
|
3414 |
|
|
if (max_offset && INT_CST_LT (max_offset, offset))
|
3415 |
|
|
return 0;
|
3416 |
|
|
|
3417 |
|
|
if (type == error_mark_node)
|
3418 |
|
|
return 0;
|
3419 |
|
|
|
3420 |
|
|
if (!TYPE_P (type))
|
3421 |
|
|
{
|
3422 |
|
|
if (abi_version_at_least (2))
|
3423 |
|
|
type_binfo = type;
|
3424 |
|
|
type = BINFO_TYPE (type);
|
3425 |
|
|
}
|
3426 |
|
|
|
3427 |
|
|
if (CLASS_TYPE_P (type))
|
3428 |
|
|
{
|
3429 |
|
|
tree field;
|
3430 |
|
|
tree binfo;
|
3431 |
|
|
int i;
|
3432 |
|
|
|
3433 |
|
|
/* Avoid recursing into objects that are not interesting. */
|
3434 |
|
|
if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
|
3435 |
|
|
return 0;
|
3436 |
|
|
|
3437 |
|
|
/* Record the location of TYPE. */
|
3438 |
|
|
r = (*f) (type, offset, offsets);
|
3439 |
|
|
if (r)
|
3440 |
|
|
return r;
|
3441 |
|
|
|
3442 |
|
|
/* Iterate through the direct base classes of TYPE. */
|
3443 |
|
|
if (!type_binfo)
|
3444 |
|
|
type_binfo = TYPE_BINFO (type);
|
3445 |
|
|
for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
|
3446 |
|
|
{
|
3447 |
|
|
tree binfo_offset;
|
3448 |
|
|
|
3449 |
|
|
if (abi_version_at_least (2)
|
3450 |
|
|
&& BINFO_VIRTUAL_P (binfo))
|
3451 |
|
|
continue;
|
3452 |
|
|
|
3453 |
|
|
if (!vbases_p
|
3454 |
|
|
&& BINFO_VIRTUAL_P (binfo)
|
3455 |
|
|
&& !BINFO_PRIMARY_P (binfo))
|
3456 |
|
|
continue;
|
3457 |
|
|
|
3458 |
|
|
if (!abi_version_at_least (2))
|
3459 |
|
|
binfo_offset = size_binop (PLUS_EXPR,
|
3460 |
|
|
offset,
|
3461 |
|
|
BINFO_OFFSET (binfo));
|
3462 |
|
|
else
|
3463 |
|
|
{
|
3464 |
|
|
tree orig_binfo;
|
3465 |
|
|
/* We cannot rely on BINFO_OFFSET being set for the base
|
3466 |
|
|
class yet, but the offsets for direct non-virtual
|
3467 |
|
|
bases can be calculated by going back to the TYPE. */
|
3468 |
|
|
orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
|
3469 |
|
|
binfo_offset = size_binop (PLUS_EXPR,
|
3470 |
|
|
offset,
|
3471 |
|
|
BINFO_OFFSET (orig_binfo));
|
3472 |
|
|
}
|
3473 |
|
|
|
3474 |
|
|
r = walk_subobject_offsets (binfo,
|
3475 |
|
|
f,
|
3476 |
|
|
binfo_offset,
|
3477 |
|
|
offsets,
|
3478 |
|
|
max_offset,
|
3479 |
|
|
(abi_version_at_least (2)
|
3480 |
|
|
? /*vbases_p=*/0 : vbases_p));
|
3481 |
|
|
if (r)
|
3482 |
|
|
return r;
|
3483 |
|
|
}
|
3484 |
|
|
|
3485 |
|
|
if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
|
3486 |
|
|
{
|
3487 |
|
|
unsigned ix;
|
3488 |
|
|
VEC(tree,gc) *vbases;
|
3489 |
|
|
|
3490 |
|
|
/* Iterate through the virtual base classes of TYPE. In G++
|
3491 |
|
|
3.2, we included virtual bases in the direct base class
|
3492 |
|
|
loop above, which results in incorrect results; the
|
3493 |
|
|
correct offsets for virtual bases are only known when
|
3494 |
|
|
working with the most derived type. */
|
3495 |
|
|
if (vbases_p)
|
3496 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
|
3497 |
|
|
VEC_iterate (tree, vbases, ix, binfo); ix++)
|
3498 |
|
|
{
|
3499 |
|
|
r = walk_subobject_offsets (binfo,
|
3500 |
|
|
f,
|
3501 |
|
|
size_binop (PLUS_EXPR,
|
3502 |
|
|
offset,
|
3503 |
|
|
BINFO_OFFSET (binfo)),
|
3504 |
|
|
offsets,
|
3505 |
|
|
max_offset,
|
3506 |
|
|
/*vbases_p=*/0);
|
3507 |
|
|
if (r)
|
3508 |
|
|
return r;
|
3509 |
|
|
}
|
3510 |
|
|
else
|
3511 |
|
|
{
|
3512 |
|
|
/* We still have to walk the primary base, if it is
|
3513 |
|
|
virtual. (If it is non-virtual, then it was walked
|
3514 |
|
|
above.) */
|
3515 |
|
|
tree vbase = get_primary_binfo (type_binfo);
|
3516 |
|
|
|
3517 |
|
|
if (vbase && BINFO_VIRTUAL_P (vbase)
|
3518 |
|
|
&& BINFO_PRIMARY_P (vbase)
|
3519 |
|
|
&& BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
|
3520 |
|
|
{
|
3521 |
|
|
r = (walk_subobject_offsets
|
3522 |
|
|
(vbase, f, offset,
|
3523 |
|
|
offsets, max_offset, /*vbases_p=*/0));
|
3524 |
|
|
if (r)
|
3525 |
|
|
return r;
|
3526 |
|
|
}
|
3527 |
|
|
}
|
3528 |
|
|
}
|
3529 |
|
|
|
3530 |
|
|
/* Iterate through the fields of TYPE. */
|
3531 |
|
|
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
3532 |
|
|
if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
|
3533 |
|
|
{
|
3534 |
|
|
tree field_offset;
|
3535 |
|
|
|
3536 |
|
|
if (abi_version_at_least (2))
|
3537 |
|
|
field_offset = byte_position (field);
|
3538 |
|
|
else
|
3539 |
|
|
/* In G++ 3.2, DECL_FIELD_OFFSET was used. */
|
3540 |
|
|
field_offset = DECL_FIELD_OFFSET (field);
|
3541 |
|
|
|
3542 |
|
|
r = walk_subobject_offsets (TREE_TYPE (field),
|
3543 |
|
|
f,
|
3544 |
|
|
size_binop (PLUS_EXPR,
|
3545 |
|
|
offset,
|
3546 |
|
|
field_offset),
|
3547 |
|
|
offsets,
|
3548 |
|
|
max_offset,
|
3549 |
|
|
/*vbases_p=*/1);
|
3550 |
|
|
if (r)
|
3551 |
|
|
return r;
|
3552 |
|
|
}
|
3553 |
|
|
}
|
3554 |
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
3555 |
|
|
{
|
3556 |
|
|
tree element_type = strip_array_types (type);
|
3557 |
|
|
tree domain = TYPE_DOMAIN (type);
|
3558 |
|
|
tree index;
|
3559 |
|
|
|
3560 |
|
|
/* Avoid recursing into objects that are not interesting. */
|
3561 |
|
|
if (!CLASS_TYPE_P (element_type)
|
3562 |
|
|
|| !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
|
3563 |
|
|
return 0;
|
3564 |
|
|
|
3565 |
|
|
/* Step through each of the elements in the array. */
|
3566 |
|
|
for (index = size_zero_node;
|
3567 |
|
|
/* G++ 3.2 had an off-by-one error here. */
|
3568 |
|
|
(abi_version_at_least (2)
|
3569 |
|
|
? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
|
3570 |
|
|
: INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
|
3571 |
|
|
index = size_binop (PLUS_EXPR, index, size_one_node))
|
3572 |
|
|
{
|
3573 |
|
|
r = walk_subobject_offsets (TREE_TYPE (type),
|
3574 |
|
|
f,
|
3575 |
|
|
offset,
|
3576 |
|
|
offsets,
|
3577 |
|
|
max_offset,
|
3578 |
|
|
/*vbases_p=*/1);
|
3579 |
|
|
if (r)
|
3580 |
|
|
return r;
|
3581 |
|
|
offset = size_binop (PLUS_EXPR, offset,
|
3582 |
|
|
TYPE_SIZE_UNIT (TREE_TYPE (type)));
|
3583 |
|
|
/* If this new OFFSET is bigger than the MAX_OFFSET, then
|
3584 |
|
|
there's no point in iterating through the remaining
|
3585 |
|
|
elements of the array. */
|
3586 |
|
|
if (max_offset && INT_CST_LT (max_offset, offset))
|
3587 |
|
|
break;
|
3588 |
|
|
}
|
3589 |
|
|
}
|
3590 |
|
|
|
3591 |
|
|
return 0;
|
3592 |
|
|
}
|
3593 |
|
|
|
3594 |
|
|
/* Record all of the empty subobjects of TYPE (either a type or a
|
3595 |
|
|
binfo). If IS_DATA_MEMBER is true, then a non-static data member
|
3596 |
|
|
is being placed at OFFSET; otherwise, it is a base class that is
|
3597 |
|
|
being placed at OFFSET. */
|
3598 |
|
|
|
3599 |
|
|
static void
|
3600 |
|
|
record_subobject_offsets (tree type,
|
3601 |
|
|
tree offset,
|
3602 |
|
|
splay_tree offsets,
|
3603 |
|
|
bool is_data_member)
|
3604 |
|
|
{
|
3605 |
|
|
tree max_offset;
|
3606 |
|
|
/* If recording subobjects for a non-static data member or a
|
3607 |
|
|
non-empty base class , we do not need to record offsets beyond
|
3608 |
|
|
the size of the biggest empty class. Additional data members
|
3609 |
|
|
will go at the end of the class. Additional base classes will go
|
3610 |
|
|
either at offset zero (if empty, in which case they cannot
|
3611 |
|
|
overlap with offsets past the size of the biggest empty class) or
|
3612 |
|
|
at the end of the class.
|
3613 |
|
|
|
3614 |
|
|
However, if we are placing an empty base class, then we must record
|
3615 |
|
|
all offsets, as either the empty class is at offset zero (where
|
3616 |
|
|
other empty classes might later be placed) or at the end of the
|
3617 |
|
|
class (where other objects might then be placed, so other empty
|
3618 |
|
|
subobjects might later overlap). */
|
3619 |
|
|
if (is_data_member
|
3620 |
|
|
|| !is_empty_class (BINFO_TYPE (type)))
|
3621 |
|
|
max_offset = sizeof_biggest_empty_class;
|
3622 |
|
|
else
|
3623 |
|
|
max_offset = NULL_TREE;
|
3624 |
|
|
walk_subobject_offsets (type, record_subobject_offset, offset,
|
3625 |
|
|
offsets, max_offset, is_data_member);
|
3626 |
|
|
}
|
3627 |
|
|
|
3628 |
|
|
/* Returns nonzero if any of the empty subobjects of TYPE (located at
|
3629 |
|
|
OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
|
3630 |
|
|
virtual bases of TYPE are examined. */
|
3631 |
|
|
|
3632 |
|
|
static int
|
3633 |
|
|
layout_conflict_p (tree type,
|
3634 |
|
|
tree offset,
|
3635 |
|
|
splay_tree offsets,
|
3636 |
|
|
int vbases_p)
|
3637 |
|
|
{
|
3638 |
|
|
splay_tree_node max_node;
|
3639 |
|
|
|
3640 |
|
|
/* Get the node in OFFSETS that indicates the maximum offset where
|
3641 |
|
|
an empty subobject is located. */
|
3642 |
|
|
max_node = splay_tree_max (offsets);
|
3643 |
|
|
/* If there aren't any empty subobjects, then there's no point in
|
3644 |
|
|
performing this check. */
|
3645 |
|
|
if (!max_node)
|
3646 |
|
|
return 0;
|
3647 |
|
|
|
3648 |
|
|
return walk_subobject_offsets (type, check_subobject_offset, offset,
|
3649 |
|
|
offsets, (tree) (max_node->key),
|
3650 |
|
|
vbases_p);
|
3651 |
|
|
}
|
3652 |
|
|
|
3653 |
|
|
/* DECL is a FIELD_DECL corresponding either to a base subobject of a
|
3654 |
|
|
non-static data member of the type indicated by RLI. BINFO is the
|
3655 |
|
|
binfo corresponding to the base subobject, OFFSETS maps offsets to
|
3656 |
|
|
types already located at those offsets. This function determines
|
3657 |
|
|
the position of the DECL. */
|
3658 |
|
|
|
3659 |
|
|
static void
|
3660 |
|
|
layout_nonempty_base_or_field (record_layout_info rli,
|
3661 |
|
|
tree decl,
|
3662 |
|
|
tree binfo,
|
3663 |
|
|
splay_tree offsets)
|
3664 |
|
|
{
|
3665 |
|
|
tree offset = NULL_TREE;
|
3666 |
|
|
bool field_p;
|
3667 |
|
|
tree type;
|
3668 |
|
|
|
3669 |
|
|
if (binfo)
|
3670 |
|
|
{
|
3671 |
|
|
/* For the purposes of determining layout conflicts, we want to
|
3672 |
|
|
use the class type of BINFO; TREE_TYPE (DECL) will be the
|
3673 |
|
|
CLASSTYPE_AS_BASE version, which does not contain entries for
|
3674 |
|
|
zero-sized bases. */
|
3675 |
|
|
type = TREE_TYPE (binfo);
|
3676 |
|
|
field_p = false;
|
3677 |
|
|
}
|
3678 |
|
|
else
|
3679 |
|
|
{
|
3680 |
|
|
type = TREE_TYPE (decl);
|
3681 |
|
|
field_p = true;
|
3682 |
|
|
}
|
3683 |
|
|
|
3684 |
|
|
/* Try to place the field. It may take more than one try if we have
|
3685 |
|
|
a hard time placing the field without putting two objects of the
|
3686 |
|
|
same type at the same address. */
|
3687 |
|
|
while (1)
|
3688 |
|
|
{
|
3689 |
|
|
struct record_layout_info_s old_rli = *rli;
|
3690 |
|
|
|
3691 |
|
|
/* Place this field. */
|
3692 |
|
|
place_field (rli, decl);
|
3693 |
|
|
offset = byte_position (decl);
|
3694 |
|
|
|
3695 |
|
|
/* We have to check to see whether or not there is already
|
3696 |
|
|
something of the same type at the offset we're about to use.
|
3697 |
|
|
For example, consider:
|
3698 |
|
|
|
3699 |
|
|
struct S {};
|
3700 |
|
|
struct T : public S { int i; };
|
3701 |
|
|
struct U : public S, public T {};
|
3702 |
|
|
|
3703 |
|
|
Here, we put S at offset zero in U. Then, we can't put T at
|
3704 |
|
|
offset zero -- its S component would be at the same address
|
3705 |
|
|
as the S we already allocated. So, we have to skip ahead.
|
3706 |
|
|
Since all data members, including those whose type is an
|
3707 |
|
|
empty class, have nonzero size, any overlap can happen only
|
3708 |
|
|
with a direct or indirect base-class -- it can't happen with
|
3709 |
|
|
a data member. */
|
3710 |
|
|
/* In a union, overlap is permitted; all members are placed at
|
3711 |
|
|
offset zero. */
|
3712 |
|
|
if (TREE_CODE (rli->t) == UNION_TYPE)
|
3713 |
|
|
break;
|
3714 |
|
|
/* G++ 3.2 did not check for overlaps when placing a non-empty
|
3715 |
|
|
virtual base. */
|
3716 |
|
|
if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
|
3717 |
|
|
break;
|
3718 |
|
|
if (layout_conflict_p (field_p ? type : binfo, offset,
|
3719 |
|
|
offsets, field_p))
|
3720 |
|
|
{
|
3721 |
|
|
/* Strip off the size allocated to this field. That puts us
|
3722 |
|
|
at the first place we could have put the field with
|
3723 |
|
|
proper alignment. */
|
3724 |
|
|
*rli = old_rli;
|
3725 |
|
|
|
3726 |
|
|
/* Bump up by the alignment required for the type. */
|
3727 |
|
|
rli->bitpos
|
3728 |
|
|
= size_binop (PLUS_EXPR, rli->bitpos,
|
3729 |
|
|
bitsize_int (binfo
|
3730 |
|
|
? CLASSTYPE_ALIGN (type)
|
3731 |
|
|
: TYPE_ALIGN (type)));
|
3732 |
|
|
normalize_rli (rli);
|
3733 |
|
|
}
|
3734 |
|
|
else
|
3735 |
|
|
/* There was no conflict. We're done laying out this field. */
|
3736 |
|
|
break;
|
3737 |
|
|
}
|
3738 |
|
|
|
3739 |
|
|
/* Now that we know where it will be placed, update its
|
3740 |
|
|
BINFO_OFFSET. */
|
3741 |
|
|
if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
|
3742 |
|
|
/* Indirect virtual bases may have a nonzero BINFO_OFFSET at
|
3743 |
|
|
this point because their BINFO_OFFSET is copied from another
|
3744 |
|
|
hierarchy. Therefore, we may not need to add the entire
|
3745 |
|
|
OFFSET. */
|
3746 |
|
|
propagate_binfo_offsets (binfo,
|
3747 |
|
|
size_diffop_loc (input_location,
|
3748 |
|
|
convert (ssizetype, offset),
|
3749 |
|
|
convert (ssizetype,
|
3750 |
|
|
BINFO_OFFSET (binfo))));
|
3751 |
|
|
}
|
3752 |
|
|
|
3753 |
|
|
/* Returns true if TYPE is empty and OFFSET is nonzero. */
|
3754 |
|
|
|
3755 |
|
|
static int
|
3756 |
|
|
empty_base_at_nonzero_offset_p (tree type,
|
3757 |
|
|
tree offset,
|
3758 |
|
|
splay_tree offsets ATTRIBUTE_UNUSED)
|
3759 |
|
|
{
|
3760 |
|
|
return is_empty_class (type) && !integer_zerop (offset);
|
3761 |
|
|
}
|
3762 |
|
|
|
3763 |
|
|
/* Layout the empty base BINFO. EOC indicates the byte currently just
|
3764 |
|
|
past the end of the class, and should be correctly aligned for a
|
3765 |
|
|
class of the type indicated by BINFO; OFFSETS gives the offsets of
|
3766 |
|
|
the empty bases allocated so far. T is the most derived
|
3767 |
|
|
type. Return nonzero iff we added it at the end. */
|
3768 |
|
|
|
3769 |
|
|
static bool
|
3770 |
|
|
layout_empty_base (record_layout_info rli, tree binfo,
|
3771 |
|
|
tree eoc, splay_tree offsets)
|
3772 |
|
|
{
|
3773 |
|
|
tree alignment;
|
3774 |
|
|
tree basetype = BINFO_TYPE (binfo);
|
3775 |
|
|
bool atend = false;
|
3776 |
|
|
|
3777 |
|
|
/* This routine should only be used for empty classes. */
|
3778 |
|
|
gcc_assert (is_empty_class (basetype));
|
3779 |
|
|
alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
|
3780 |
|
|
|
3781 |
|
|
if (!integer_zerop (BINFO_OFFSET (binfo)))
|
3782 |
|
|
{
|
3783 |
|
|
if (abi_version_at_least (2))
|
3784 |
|
|
propagate_binfo_offsets
|
3785 |
|
|
(binfo, size_diffop_loc (input_location,
|
3786 |
|
|
size_zero_node, BINFO_OFFSET (binfo)));
|
3787 |
|
|
else
|
3788 |
|
|
warning (OPT_Wabi,
|
3789 |
|
|
"offset of empty base %qT may not be ABI-compliant and may"
|
3790 |
|
|
"change in a future version of GCC",
|
3791 |
|
|
BINFO_TYPE (binfo));
|
3792 |
|
|
}
|
3793 |
|
|
|
3794 |
|
|
/* This is an empty base class. We first try to put it at offset
|
3795 |
|
|
zero. */
|
3796 |
|
|
if (layout_conflict_p (binfo,
|
3797 |
|
|
BINFO_OFFSET (binfo),
|
3798 |
|
|
offsets,
|
3799 |
|
|
/*vbases_p=*/0))
|
3800 |
|
|
{
|
3801 |
|
|
/* That didn't work. Now, we move forward from the next
|
3802 |
|
|
available spot in the class. */
|
3803 |
|
|
atend = true;
|
3804 |
|
|
propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
|
3805 |
|
|
while (1)
|
3806 |
|
|
{
|
3807 |
|
|
if (!layout_conflict_p (binfo,
|
3808 |
|
|
BINFO_OFFSET (binfo),
|
3809 |
|
|
offsets,
|
3810 |
|
|
/*vbases_p=*/0))
|
3811 |
|
|
/* We finally found a spot where there's no overlap. */
|
3812 |
|
|
break;
|
3813 |
|
|
|
3814 |
|
|
/* There's overlap here, too. Bump along to the next spot. */
|
3815 |
|
|
propagate_binfo_offsets (binfo, alignment);
|
3816 |
|
|
}
|
3817 |
|
|
}
|
3818 |
|
|
|
3819 |
|
|
if (CLASSTYPE_USER_ALIGN (basetype))
|
3820 |
|
|
{
|
3821 |
|
|
rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
|
3822 |
|
|
if (warn_packed)
|
3823 |
|
|
rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
|
3824 |
|
|
TYPE_USER_ALIGN (rli->t) = 1;
|
3825 |
|
|
}
|
3826 |
|
|
|
3827 |
|
|
return atend;
|
3828 |
|
|
}
|
3829 |
|
|
|
3830 |
|
|
/* Layout the base given by BINFO in the class indicated by RLI.
|
3831 |
|
|
*BASE_ALIGN is a running maximum of the alignments of
|
3832 |
|
|
any base class. OFFSETS gives the location of empty base
|
3833 |
|
|
subobjects. T is the most derived type. Return nonzero if the new
|
3834 |
|
|
object cannot be nearly-empty. A new FIELD_DECL is inserted at
|
3835 |
|
|
*NEXT_FIELD, unless BINFO is for an empty base class.
|
3836 |
|
|
|
3837 |
|
|
Returns the location at which the next field should be inserted. */
|
3838 |
|
|
|
3839 |
|
|
static tree *
|
3840 |
|
|
build_base_field (record_layout_info rli, tree binfo,
|
3841 |
|
|
splay_tree offsets, tree *next_field)
|
3842 |
|
|
{
|
3843 |
|
|
tree t = rli->t;
|
3844 |
|
|
tree basetype = BINFO_TYPE (binfo);
|
3845 |
|
|
|
3846 |
|
|
if (!COMPLETE_TYPE_P (basetype))
|
3847 |
|
|
/* This error is now reported in xref_tag, thus giving better
|
3848 |
|
|
location information. */
|
3849 |
|
|
return next_field;
|
3850 |
|
|
|
3851 |
|
|
/* Place the base class. */
|
3852 |
|
|
if (!is_empty_class (basetype))
|
3853 |
|
|
{
|
3854 |
|
|
tree decl;
|
3855 |
|
|
|
3856 |
|
|
/* The containing class is non-empty because it has a non-empty
|
3857 |
|
|
base class. */
|
3858 |
|
|
CLASSTYPE_EMPTY_P (t) = 0;
|
3859 |
|
|
|
3860 |
|
|
/* Create the FIELD_DECL. */
|
3861 |
|
|
decl = build_decl (input_location,
|
3862 |
|
|
FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
|
3863 |
|
|
DECL_ARTIFICIAL (decl) = 1;
|
3864 |
|
|
DECL_IGNORED_P (decl) = 1;
|
3865 |
|
|
DECL_FIELD_CONTEXT (decl) = t;
|
3866 |
|
|
if (CLASSTYPE_AS_BASE (basetype))
|
3867 |
|
|
{
|
3868 |
|
|
DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
|
3869 |
|
|
DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
|
3870 |
|
|
DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
|
3871 |
|
|
DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
|
3872 |
|
|
DECL_MODE (decl) = TYPE_MODE (basetype);
|
3873 |
|
|
DECL_FIELD_IS_BASE (decl) = 1;
|
3874 |
|
|
|
3875 |
|
|
/* Try to place the field. It may take more than one try if we
|
3876 |
|
|
have a hard time placing the field without putting two
|
3877 |
|
|
objects of the same type at the same address. */
|
3878 |
|
|
layout_nonempty_base_or_field (rli, decl, binfo, offsets);
|
3879 |
|
|
/* Add the new FIELD_DECL to the list of fields for T. */
|
3880 |
|
|
DECL_CHAIN (decl) = *next_field;
|
3881 |
|
|
*next_field = decl;
|
3882 |
|
|
next_field = &DECL_CHAIN (decl);
|
3883 |
|
|
}
|
3884 |
|
|
}
|
3885 |
|
|
else
|
3886 |
|
|
{
|
3887 |
|
|
tree eoc;
|
3888 |
|
|
bool atend;
|
3889 |
|
|
|
3890 |
|
|
/* On some platforms (ARM), even empty classes will not be
|
3891 |
|
|
byte-aligned. */
|
3892 |
|
|
eoc = round_up_loc (input_location,
|
3893 |
|
|
rli_size_unit_so_far (rli),
|
3894 |
|
|
CLASSTYPE_ALIGN_UNIT (basetype));
|
3895 |
|
|
atend = layout_empty_base (rli, binfo, eoc, offsets);
|
3896 |
|
|
/* A nearly-empty class "has no proper base class that is empty,
|
3897 |
|
|
not morally virtual, and at an offset other than zero." */
|
3898 |
|
|
if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
|
3899 |
|
|
{
|
3900 |
|
|
if (atend)
|
3901 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
|
3902 |
|
|
/* The check above (used in G++ 3.2) is insufficient because
|
3903 |
|
|
an empty class placed at offset zero might itself have an
|
3904 |
|
|
empty base at a nonzero offset. */
|
3905 |
|
|
else if (walk_subobject_offsets (basetype,
|
3906 |
|
|
empty_base_at_nonzero_offset_p,
|
3907 |
|
|
size_zero_node,
|
3908 |
|
|
/*offsets=*/NULL,
|
3909 |
|
|
/*max_offset=*/NULL_TREE,
|
3910 |
|
|
/*vbases_p=*/true))
|
3911 |
|
|
{
|
3912 |
|
|
if (abi_version_at_least (2))
|
3913 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
|
3914 |
|
|
else
|
3915 |
|
|
warning (OPT_Wabi,
|
3916 |
|
|
"class %qT will be considered nearly empty in a "
|
3917 |
|
|
"future version of GCC", t);
|
3918 |
|
|
}
|
3919 |
|
|
}
|
3920 |
|
|
|
3921 |
|
|
/* We do not create a FIELD_DECL for empty base classes because
|
3922 |
|
|
it might overlap some other field. We want to be able to
|
3923 |
|
|
create CONSTRUCTORs for the class by iterating over the
|
3924 |
|
|
FIELD_DECLs, and the back end does not handle overlapping
|
3925 |
|
|
FIELD_DECLs. */
|
3926 |
|
|
|
3927 |
|
|
/* An empty virtual base causes a class to be non-empty
|
3928 |
|
|
-- but in that case we do not need to clear CLASSTYPE_EMPTY_P
|
3929 |
|
|
here because that was already done when the virtual table
|
3930 |
|
|
pointer was created. */
|
3931 |
|
|
}
|
3932 |
|
|
|
3933 |
|
|
/* Record the offsets of BINFO and its base subobjects. */
|
3934 |
|
|
record_subobject_offsets (binfo,
|
3935 |
|
|
BINFO_OFFSET (binfo),
|
3936 |
|
|
offsets,
|
3937 |
|
|
/*is_data_member=*/false);
|
3938 |
|
|
|
3939 |
|
|
return next_field;
|
3940 |
|
|
}
|
3941 |
|
|
|
3942 |
|
|
/* Layout all of the non-virtual base classes. Record empty
|
3943 |
|
|
subobjects in OFFSETS. T is the most derived type. Return nonzero
|
3944 |
|
|
if the type cannot be nearly empty. The fields created
|
3945 |
|
|
corresponding to the base classes will be inserted at
|
3946 |
|
|
*NEXT_FIELD. */
|
3947 |
|
|
|
3948 |
|
|
static void
|
3949 |
|
|
build_base_fields (record_layout_info rli,
|
3950 |
|
|
splay_tree offsets, tree *next_field)
|
3951 |
|
|
{
|
3952 |
|
|
/* Chain to hold all the new FIELD_DECLs which stand in for base class
|
3953 |
|
|
subobjects. */
|
3954 |
|
|
tree t = rli->t;
|
3955 |
|
|
int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
|
3956 |
|
|
int i;
|
3957 |
|
|
|
3958 |
|
|
/* The primary base class is always allocated first. */
|
3959 |
|
|
if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
|
3960 |
|
|
next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
|
3961 |
|
|
offsets, next_field);
|
3962 |
|
|
|
3963 |
|
|
/* Now allocate the rest of the bases. */
|
3964 |
|
|
for (i = 0; i < n_baseclasses; ++i)
|
3965 |
|
|
{
|
3966 |
|
|
tree base_binfo;
|
3967 |
|
|
|
3968 |
|
|
base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
|
3969 |
|
|
|
3970 |
|
|
/* The primary base was already allocated above, so we don't
|
3971 |
|
|
need to allocate it again here. */
|
3972 |
|
|
if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
|
3973 |
|
|
continue;
|
3974 |
|
|
|
3975 |
|
|
/* Virtual bases are added at the end (a primary virtual base
|
3976 |
|
|
will have already been added). */
|
3977 |
|
|
if (BINFO_VIRTUAL_P (base_binfo))
|
3978 |
|
|
continue;
|
3979 |
|
|
|
3980 |
|
|
next_field = build_base_field (rli, base_binfo,
|
3981 |
|
|
offsets, next_field);
|
3982 |
|
|
}
|
3983 |
|
|
}
|
3984 |
|
|
|
3985 |
|
|
/* Go through the TYPE_METHODS of T issuing any appropriate
|
3986 |
|
|
diagnostics, figuring out which methods override which other
|
3987 |
|
|
methods, and so forth. */
|
3988 |
|
|
|
3989 |
|
|
static void
|
3990 |
|
|
check_methods (tree t)
|
3991 |
|
|
{
|
3992 |
|
|
tree x;
|
3993 |
|
|
|
3994 |
|
|
for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
|
3995 |
|
|
{
|
3996 |
|
|
check_for_override (x, t);
|
3997 |
|
|
if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
|
3998 |
|
|
error ("initializer specified for non-virtual method %q+D", x);
|
3999 |
|
|
/* The name of the field is the original field name
|
4000 |
|
|
Save this in auxiliary field for later overloading. */
|
4001 |
|
|
if (DECL_VINDEX (x))
|
4002 |
|
|
{
|
4003 |
|
|
TYPE_POLYMORPHIC_P (t) = 1;
|
4004 |
|
|
if (DECL_PURE_VIRTUAL_P (x))
|
4005 |
|
|
VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
|
4006 |
|
|
}
|
4007 |
|
|
/* All user-provided destructors are non-trivial.
|
4008 |
|
|
Constructors and assignment ops are handled in
|
4009 |
|
|
grok_special_member_properties. */
|
4010 |
|
|
if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
|
4011 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
|
4012 |
|
|
}
|
4013 |
|
|
}
|
4014 |
|
|
|
4015 |
|
|
/* FN is a constructor or destructor. Clone the declaration to create
|
4016 |
|
|
a specialized in-charge or not-in-charge version, as indicated by
|
4017 |
|
|
NAME. */
|
4018 |
|
|
|
4019 |
|
|
static tree
|
4020 |
|
|
build_clone (tree fn, tree name)
|
4021 |
|
|
{
|
4022 |
|
|
tree parms;
|
4023 |
|
|
tree clone;
|
4024 |
|
|
|
4025 |
|
|
/* Copy the function. */
|
4026 |
|
|
clone = copy_decl (fn);
|
4027 |
|
|
/* Reset the function name. */
|
4028 |
|
|
DECL_NAME (clone) = name;
|
4029 |
|
|
SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
|
4030 |
|
|
/* Remember where this function came from. */
|
4031 |
|
|
DECL_ABSTRACT_ORIGIN (clone) = fn;
|
4032 |
|
|
/* Make it easy to find the CLONE given the FN. */
|
4033 |
|
|
DECL_CHAIN (clone) = DECL_CHAIN (fn);
|
4034 |
|
|
DECL_CHAIN (fn) = clone;
|
4035 |
|
|
|
4036 |
|
|
/* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
|
4037 |
|
|
if (TREE_CODE (clone) == TEMPLATE_DECL)
|
4038 |
|
|
{
|
4039 |
|
|
tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
|
4040 |
|
|
DECL_TEMPLATE_RESULT (clone) = result;
|
4041 |
|
|
DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
|
4042 |
|
|
DECL_TI_TEMPLATE (result) = clone;
|
4043 |
|
|
TREE_TYPE (clone) = TREE_TYPE (result);
|
4044 |
|
|
return clone;
|
4045 |
|
|
}
|
4046 |
|
|
|
4047 |
|
|
DECL_CLONED_FUNCTION (clone) = fn;
|
4048 |
|
|
/* There's no pending inline data for this function. */
|
4049 |
|
|
DECL_PENDING_INLINE_INFO (clone) = NULL;
|
4050 |
|
|
DECL_PENDING_INLINE_P (clone) = 0;
|
4051 |
|
|
|
4052 |
|
|
/* The base-class destructor is not virtual. */
|
4053 |
|
|
if (name == base_dtor_identifier)
|
4054 |
|
|
{
|
4055 |
|
|
DECL_VIRTUAL_P (clone) = 0;
|
4056 |
|
|
if (TREE_CODE (clone) != TEMPLATE_DECL)
|
4057 |
|
|
DECL_VINDEX (clone) = NULL_TREE;
|
4058 |
|
|
}
|
4059 |
|
|
|
4060 |
|
|
/* If there was an in-charge parameter, drop it from the function
|
4061 |
|
|
type. */
|
4062 |
|
|
if (DECL_HAS_IN_CHARGE_PARM_P (clone))
|
4063 |
|
|
{
|
4064 |
|
|
tree basetype;
|
4065 |
|
|
tree parmtypes;
|
4066 |
|
|
tree exceptions;
|
4067 |
|
|
|
4068 |
|
|
exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
|
4069 |
|
|
basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
|
4070 |
|
|
parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
|
4071 |
|
|
/* Skip the `this' parameter. */
|
4072 |
|
|
parmtypes = TREE_CHAIN (parmtypes);
|
4073 |
|
|
/* Skip the in-charge parameter. */
|
4074 |
|
|
parmtypes = TREE_CHAIN (parmtypes);
|
4075 |
|
|
/* And the VTT parm, in a complete [cd]tor. */
|
4076 |
|
|
if (DECL_HAS_VTT_PARM_P (fn)
|
4077 |
|
|
&& ! DECL_NEEDS_VTT_PARM_P (clone))
|
4078 |
|
|
parmtypes = TREE_CHAIN (parmtypes);
|
4079 |
|
|
/* If this is subobject constructor or destructor, add the vtt
|
4080 |
|
|
parameter. */
|
4081 |
|
|
TREE_TYPE (clone)
|
4082 |
|
|
= build_method_type_directly (basetype,
|
4083 |
|
|
TREE_TYPE (TREE_TYPE (clone)),
|
4084 |
|
|
parmtypes);
|
4085 |
|
|
if (exceptions)
|
4086 |
|
|
TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
|
4087 |
|
|
exceptions);
|
4088 |
|
|
TREE_TYPE (clone)
|
4089 |
|
|
= cp_build_type_attribute_variant (TREE_TYPE (clone),
|
4090 |
|
|
TYPE_ATTRIBUTES (TREE_TYPE (fn)));
|
4091 |
|
|
}
|
4092 |
|
|
|
4093 |
|
|
/* Copy the function parameters. */
|
4094 |
|
|
DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
|
4095 |
|
|
/* Remove the in-charge parameter. */
|
4096 |
|
|
if (DECL_HAS_IN_CHARGE_PARM_P (clone))
|
4097 |
|
|
{
|
4098 |
|
|
DECL_CHAIN (DECL_ARGUMENTS (clone))
|
4099 |
|
|
= DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
|
4100 |
|
|
DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
|
4101 |
|
|
}
|
4102 |
|
|
/* And the VTT parm, in a complete [cd]tor. */
|
4103 |
|
|
if (DECL_HAS_VTT_PARM_P (fn))
|
4104 |
|
|
{
|
4105 |
|
|
if (DECL_NEEDS_VTT_PARM_P (clone))
|
4106 |
|
|
DECL_HAS_VTT_PARM_P (clone) = 1;
|
4107 |
|
|
else
|
4108 |
|
|
{
|
4109 |
|
|
DECL_CHAIN (DECL_ARGUMENTS (clone))
|
4110 |
|
|
= DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
|
4111 |
|
|
DECL_HAS_VTT_PARM_P (clone) = 0;
|
4112 |
|
|
}
|
4113 |
|
|
}
|
4114 |
|
|
|
4115 |
|
|
for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
|
4116 |
|
|
{
|
4117 |
|
|
DECL_CONTEXT (parms) = clone;
|
4118 |
|
|
cxx_dup_lang_specific_decl (parms);
|
4119 |
|
|
}
|
4120 |
|
|
|
4121 |
|
|
/* Create the RTL for this function. */
|
4122 |
|
|
SET_DECL_RTL (clone, NULL);
|
4123 |
|
|
rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
|
4124 |
|
|
|
4125 |
|
|
if (pch_file)
|
4126 |
|
|
note_decl_for_pch (clone);
|
4127 |
|
|
|
4128 |
|
|
return clone;
|
4129 |
|
|
}
|
4130 |
|
|
|
4131 |
|
|
/* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
|
4132 |
|
|
not invoke this function directly.
|
4133 |
|
|
|
4134 |
|
|
For a non-thunk function, returns the address of the slot for storing
|
4135 |
|
|
the function it is a clone of. Otherwise returns NULL_TREE.
|
4136 |
|
|
|
4137 |
|
|
If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
|
4138 |
|
|
cloned_function is unset. This is to support the separate
|
4139 |
|
|
DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
|
4140 |
|
|
on a template makes sense, but not the former. */
|
4141 |
|
|
|
4142 |
|
|
tree *
|
4143 |
|
|
decl_cloned_function_p (const_tree decl, bool just_testing)
|
4144 |
|
|
{
|
4145 |
|
|
tree *ptr;
|
4146 |
|
|
if (just_testing)
|
4147 |
|
|
decl = STRIP_TEMPLATE (decl);
|
4148 |
|
|
|
4149 |
|
|
if (TREE_CODE (decl) != FUNCTION_DECL
|
4150 |
|
|
|| !DECL_LANG_SPECIFIC (decl)
|
4151 |
|
|
|| DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
|
4152 |
|
|
{
|
4153 |
|
|
#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
|
4154 |
|
|
if (!just_testing)
|
4155 |
|
|
lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
|
4156 |
|
|
else
|
4157 |
|
|
#endif
|
4158 |
|
|
return NULL;
|
4159 |
|
|
}
|
4160 |
|
|
|
4161 |
|
|
ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
|
4162 |
|
|
if (just_testing && *ptr == NULL_TREE)
|
4163 |
|
|
return NULL;
|
4164 |
|
|
else
|
4165 |
|
|
return ptr;
|
4166 |
|
|
}
|
4167 |
|
|
|
4168 |
|
|
/* Produce declarations for all appropriate clones of FN. If
|
4169 |
|
|
UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
|
4170 |
|
|
CLASTYPE_METHOD_VEC as well. */
|
4171 |
|
|
|
4172 |
|
|
void
|
4173 |
|
|
clone_function_decl (tree fn, int update_method_vec_p)
|
4174 |
|
|
{
|
4175 |
|
|
tree clone;
|
4176 |
|
|
|
4177 |
|
|
/* Avoid inappropriate cloning. */
|
4178 |
|
|
if (DECL_CHAIN (fn)
|
4179 |
|
|
&& DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
|
4180 |
|
|
return;
|
4181 |
|
|
|
4182 |
|
|
if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
|
4183 |
|
|
{
|
4184 |
|
|
/* For each constructor, we need two variants: an in-charge version
|
4185 |
|
|
and a not-in-charge version. */
|
4186 |
|
|
clone = build_clone (fn, complete_ctor_identifier);
|
4187 |
|
|
if (update_method_vec_p)
|
4188 |
|
|
add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
|
4189 |
|
|
clone = build_clone (fn, base_ctor_identifier);
|
4190 |
|
|
if (update_method_vec_p)
|
4191 |
|
|
add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
|
4192 |
|
|
}
|
4193 |
|
|
else
|
4194 |
|
|
{
|
4195 |
|
|
gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
|
4196 |
|
|
|
4197 |
|
|
/* For each destructor, we need three variants: an in-charge
|
4198 |
|
|
version, a not-in-charge version, and an in-charge deleting
|
4199 |
|
|
version. We clone the deleting version first because that
|
4200 |
|
|
means it will go second on the TYPE_METHODS list -- and that
|
4201 |
|
|
corresponds to the correct layout order in the virtual
|
4202 |
|
|
function table.
|
4203 |
|
|
|
4204 |
|
|
For a non-virtual destructor, we do not build a deleting
|
4205 |
|
|
destructor. */
|
4206 |
|
|
if (DECL_VIRTUAL_P (fn))
|
4207 |
|
|
{
|
4208 |
|
|
clone = build_clone (fn, deleting_dtor_identifier);
|
4209 |
|
|
if (update_method_vec_p)
|
4210 |
|
|
add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
|
4211 |
|
|
}
|
4212 |
|
|
clone = build_clone (fn, complete_dtor_identifier);
|
4213 |
|
|
if (update_method_vec_p)
|
4214 |
|
|
add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
|
4215 |
|
|
clone = build_clone (fn, base_dtor_identifier);
|
4216 |
|
|
if (update_method_vec_p)
|
4217 |
|
|
add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
|
4218 |
|
|
}
|
4219 |
|
|
|
4220 |
|
|
/* Note that this is an abstract function that is never emitted. */
|
4221 |
|
|
DECL_ABSTRACT (fn) = 1;
|
4222 |
|
|
}
|
4223 |
|
|
|
4224 |
|
|
/* DECL is an in charge constructor, which is being defined. This will
|
4225 |
|
|
have had an in class declaration, from whence clones were
|
4226 |
|
|
declared. An out-of-class definition can specify additional default
|
4227 |
|
|
arguments. As it is the clones that are involved in overload
|
4228 |
|
|
resolution, we must propagate the information from the DECL to its
|
4229 |
|
|
clones. */
|
4230 |
|
|
|
4231 |
|
|
void
|
4232 |
|
|
adjust_clone_args (tree decl)
|
4233 |
|
|
{
|
4234 |
|
|
tree clone;
|
4235 |
|
|
|
4236 |
|
|
for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
|
4237 |
|
|
clone = DECL_CHAIN (clone))
|
4238 |
|
|
{
|
4239 |
|
|
tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
|
4240 |
|
|
tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
|
4241 |
|
|
tree decl_parms, clone_parms;
|
4242 |
|
|
|
4243 |
|
|
clone_parms = orig_clone_parms;
|
4244 |
|
|
|
4245 |
|
|
/* Skip the 'this' parameter. */
|
4246 |
|
|
orig_clone_parms = TREE_CHAIN (orig_clone_parms);
|
4247 |
|
|
orig_decl_parms = TREE_CHAIN (orig_decl_parms);
|
4248 |
|
|
|
4249 |
|
|
if (DECL_HAS_IN_CHARGE_PARM_P (decl))
|
4250 |
|
|
orig_decl_parms = TREE_CHAIN (orig_decl_parms);
|
4251 |
|
|
if (DECL_HAS_VTT_PARM_P (decl))
|
4252 |
|
|
orig_decl_parms = TREE_CHAIN (orig_decl_parms);
|
4253 |
|
|
|
4254 |
|
|
clone_parms = orig_clone_parms;
|
4255 |
|
|
if (DECL_HAS_VTT_PARM_P (clone))
|
4256 |
|
|
clone_parms = TREE_CHAIN (clone_parms);
|
4257 |
|
|
|
4258 |
|
|
for (decl_parms = orig_decl_parms; decl_parms;
|
4259 |
|
|
decl_parms = TREE_CHAIN (decl_parms),
|
4260 |
|
|
clone_parms = TREE_CHAIN (clone_parms))
|
4261 |
|
|
{
|
4262 |
|
|
gcc_assert (same_type_p (TREE_TYPE (decl_parms),
|
4263 |
|
|
TREE_TYPE (clone_parms)));
|
4264 |
|
|
|
4265 |
|
|
if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
|
4266 |
|
|
{
|
4267 |
|
|
/* A default parameter has been added. Adjust the
|
4268 |
|
|
clone's parameters. */
|
4269 |
|
|
tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
|
4270 |
|
|
tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
|
4271 |
|
|
tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
|
4272 |
|
|
tree type;
|
4273 |
|
|
|
4274 |
|
|
clone_parms = orig_decl_parms;
|
4275 |
|
|
|
4276 |
|
|
if (DECL_HAS_VTT_PARM_P (clone))
|
4277 |
|
|
{
|
4278 |
|
|
clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
|
4279 |
|
|
TREE_VALUE (orig_clone_parms),
|
4280 |
|
|
clone_parms);
|
4281 |
|
|
TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
|
4282 |
|
|
}
|
4283 |
|
|
type = build_method_type_directly (basetype,
|
4284 |
|
|
TREE_TYPE (TREE_TYPE (clone)),
|
4285 |
|
|
clone_parms);
|
4286 |
|
|
if (exceptions)
|
4287 |
|
|
type = build_exception_variant (type, exceptions);
|
4288 |
|
|
if (attrs)
|
4289 |
|
|
type = cp_build_type_attribute_variant (type, attrs);
|
4290 |
|
|
TREE_TYPE (clone) = type;
|
4291 |
|
|
|
4292 |
|
|
clone_parms = NULL_TREE;
|
4293 |
|
|
break;
|
4294 |
|
|
}
|
4295 |
|
|
}
|
4296 |
|
|
gcc_assert (!clone_parms);
|
4297 |
|
|
}
|
4298 |
|
|
}
|
4299 |
|
|
|
4300 |
|
|
/* For each of the constructors and destructors in T, create an
|
4301 |
|
|
in-charge and not-in-charge variant. */
|
4302 |
|
|
|
4303 |
|
|
static void
|
4304 |
|
|
clone_constructors_and_destructors (tree t)
|
4305 |
|
|
{
|
4306 |
|
|
tree fns;
|
4307 |
|
|
|
4308 |
|
|
/* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
|
4309 |
|
|
out now. */
|
4310 |
|
|
if (!CLASSTYPE_METHOD_VEC (t))
|
4311 |
|
|
return;
|
4312 |
|
|
|
4313 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
4314 |
|
|
clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
|
4315 |
|
|
for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
4316 |
|
|
clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
|
4317 |
|
|
}
|
4318 |
|
|
|
4319 |
|
|
/* Subroutine of set_one_vmethod_tm_attributes. Search base classes
|
4320 |
|
|
of TYPE for virtual functions which FNDECL overrides. Return a
|
4321 |
|
|
mask of the tm attributes found therein. */
|
4322 |
|
|
|
4323 |
|
|
static int
|
4324 |
|
|
look_for_tm_attr_overrides (tree type, tree fndecl)
|
4325 |
|
|
{
|
4326 |
|
|
tree binfo = TYPE_BINFO (type);
|
4327 |
|
|
tree base_binfo;
|
4328 |
|
|
int ix, found = 0;
|
4329 |
|
|
|
4330 |
|
|
for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
|
4331 |
|
|
{
|
4332 |
|
|
tree o, basetype = BINFO_TYPE (base_binfo);
|
4333 |
|
|
|
4334 |
|
|
if (!TYPE_POLYMORPHIC_P (basetype))
|
4335 |
|
|
continue;
|
4336 |
|
|
|
4337 |
|
|
o = look_for_overrides_here (basetype, fndecl);
|
4338 |
|
|
if (o)
|
4339 |
|
|
found |= tm_attr_to_mask (find_tm_attribute
|
4340 |
|
|
(TYPE_ATTRIBUTES (TREE_TYPE (o))));
|
4341 |
|
|
else
|
4342 |
|
|
found |= look_for_tm_attr_overrides (basetype, fndecl);
|
4343 |
|
|
}
|
4344 |
|
|
|
4345 |
|
|
return found;
|
4346 |
|
|
}
|
4347 |
|
|
|
4348 |
|
|
/* Subroutine of set_method_tm_attributes. Handle the checks and
|
4349 |
|
|
inheritance for one virtual method FNDECL. */
|
4350 |
|
|
|
4351 |
|
|
static void
|
4352 |
|
|
set_one_vmethod_tm_attributes (tree type, tree fndecl)
|
4353 |
|
|
{
|
4354 |
|
|
tree tm_attr;
|
4355 |
|
|
int found, have;
|
4356 |
|
|
|
4357 |
|
|
found = look_for_tm_attr_overrides (type, fndecl);
|
4358 |
|
|
|
4359 |
|
|
/* If FNDECL doesn't actually override anything (i.e. T is the
|
4360 |
|
|
class that first declares FNDECL virtual), then we're done. */
|
4361 |
|
|
if (found == 0)
|
4362 |
|
|
return;
|
4363 |
|
|
|
4364 |
|
|
tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
|
4365 |
|
|
have = tm_attr_to_mask (tm_attr);
|
4366 |
|
|
|
4367 |
|
|
/* Intel STM Language Extension 3.0, Section 4.2 table 4:
|
4368 |
|
|
tm_pure must match exactly, otherwise no weakening of
|
4369 |
|
|
tm_safe > tm_callable > nothing. */
|
4370 |
|
|
/* ??? The tm_pure attribute didn't make the transition to the
|
4371 |
|
|
multivendor language spec. */
|
4372 |
|
|
if (have == TM_ATTR_PURE)
|
4373 |
|
|
{
|
4374 |
|
|
if (found != TM_ATTR_PURE)
|
4375 |
|
|
{
|
4376 |
|
|
found &= -found;
|
4377 |
|
|
goto err_override;
|
4378 |
|
|
}
|
4379 |
|
|
}
|
4380 |
|
|
/* If the overridden function is tm_pure, then FNDECL must be. */
|
4381 |
|
|
else if (found == TM_ATTR_PURE && tm_attr)
|
4382 |
|
|
goto err_override;
|
4383 |
|
|
/* Look for base class combinations that cannot be satisfied. */
|
4384 |
|
|
else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
|
4385 |
|
|
{
|
4386 |
|
|
found &= ~TM_ATTR_PURE;
|
4387 |
|
|
found &= -found;
|
4388 |
|
|
error_at (DECL_SOURCE_LOCATION (fndecl),
|
4389 |
|
|
"method overrides both %<transaction_pure%> and %qE methods",
|
4390 |
|
|
tm_mask_to_attr (found));
|
4391 |
|
|
}
|
4392 |
|
|
/* If FNDECL did not declare an attribute, then inherit the most
|
4393 |
|
|
restrictive one. */
|
4394 |
|
|
else if (tm_attr == NULL)
|
4395 |
|
|
{
|
4396 |
|
|
apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
|
4397 |
|
|
}
|
4398 |
|
|
/* Otherwise validate that we're not weaker than a function
|
4399 |
|
|
that is being overridden. */
|
4400 |
|
|
else
|
4401 |
|
|
{
|
4402 |
|
|
found &= -found;
|
4403 |
|
|
if (found <= TM_ATTR_CALLABLE && have > found)
|
4404 |
|
|
goto err_override;
|
4405 |
|
|
}
|
4406 |
|
|
return;
|
4407 |
|
|
|
4408 |
|
|
err_override:
|
4409 |
|
|
error_at (DECL_SOURCE_LOCATION (fndecl),
|
4410 |
|
|
"method declared %qE overriding %qE method",
|
4411 |
|
|
tm_attr, tm_mask_to_attr (found));
|
4412 |
|
|
}
|
4413 |
|
|
|
4414 |
|
|
/* For each of the methods in T, propagate a class-level tm attribute. */
|
4415 |
|
|
|
4416 |
|
|
static void
|
4417 |
|
|
set_method_tm_attributes (tree t)
|
4418 |
|
|
{
|
4419 |
|
|
tree class_tm_attr, fndecl;
|
4420 |
|
|
|
4421 |
|
|
/* Don't bother collecting tm attributes if transactional memory
|
4422 |
|
|
support is not enabled. */
|
4423 |
|
|
if (!flag_tm)
|
4424 |
|
|
return;
|
4425 |
|
|
|
4426 |
|
|
/* Process virtual methods first, as they inherit directly from the
|
4427 |
|
|
base virtual function and also require validation of new attributes. */
|
4428 |
|
|
if (TYPE_CONTAINS_VPTR_P (t))
|
4429 |
|
|
{
|
4430 |
|
|
tree vchain;
|
4431 |
|
|
for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
|
4432 |
|
|
vchain = TREE_CHAIN (vchain))
|
4433 |
|
|
{
|
4434 |
|
|
fndecl = BV_FN (vchain);
|
4435 |
|
|
if (DECL_THUNK_P (fndecl))
|
4436 |
|
|
fndecl = THUNK_TARGET (fndecl);
|
4437 |
|
|
set_one_vmethod_tm_attributes (t, fndecl);
|
4438 |
|
|
}
|
4439 |
|
|
}
|
4440 |
|
|
|
4441 |
|
|
/* If the class doesn't have an attribute, nothing more to do. */
|
4442 |
|
|
class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
|
4443 |
|
|
if (class_tm_attr == NULL)
|
4444 |
|
|
return;
|
4445 |
|
|
|
4446 |
|
|
/* Any method that does not yet have a tm attribute inherits
|
4447 |
|
|
the one from the class. */
|
4448 |
|
|
for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
|
4449 |
|
|
{
|
4450 |
|
|
if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
|
4451 |
|
|
apply_tm_attr (fndecl, class_tm_attr);
|
4452 |
|
|
}
|
4453 |
|
|
}
|
4454 |
|
|
|
4455 |
|
|
/* Returns true iff class T has a user-defined constructor other than
|
4456 |
|
|
the default constructor. */
|
4457 |
|
|
|
4458 |
|
|
bool
|
4459 |
|
|
type_has_user_nondefault_constructor (tree t)
|
4460 |
|
|
{
|
4461 |
|
|
tree fns;
|
4462 |
|
|
|
4463 |
|
|
if (!TYPE_HAS_USER_CONSTRUCTOR (t))
|
4464 |
|
|
return false;
|
4465 |
|
|
|
4466 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
4467 |
|
|
{
|
4468 |
|
|
tree fn = OVL_CURRENT (fns);
|
4469 |
|
|
if (!DECL_ARTIFICIAL (fn)
|
4470 |
|
|
&& (TREE_CODE (fn) == TEMPLATE_DECL
|
4471 |
|
|
|| (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
|
4472 |
|
|
!= NULL_TREE)))
|
4473 |
|
|
return true;
|
4474 |
|
|
}
|
4475 |
|
|
|
4476 |
|
|
return false;
|
4477 |
|
|
}
|
4478 |
|
|
|
4479 |
|
|
/* Returns the defaulted constructor if T has one. Otherwise, returns
|
4480 |
|
|
NULL_TREE. */
|
4481 |
|
|
|
4482 |
|
|
tree
|
4483 |
|
|
in_class_defaulted_default_constructor (tree t)
|
4484 |
|
|
{
|
4485 |
|
|
tree fns, args;
|
4486 |
|
|
|
4487 |
|
|
if (!TYPE_HAS_USER_CONSTRUCTOR (t))
|
4488 |
|
|
return NULL_TREE;
|
4489 |
|
|
|
4490 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
4491 |
|
|
{
|
4492 |
|
|
tree fn = OVL_CURRENT (fns);
|
4493 |
|
|
|
4494 |
|
|
if (DECL_DEFAULTED_IN_CLASS_P (fn))
|
4495 |
|
|
{
|
4496 |
|
|
args = FUNCTION_FIRST_USER_PARMTYPE (fn);
|
4497 |
|
|
while (args && TREE_PURPOSE (args))
|
4498 |
|
|
args = TREE_CHAIN (args);
|
4499 |
|
|
if (!args || args == void_list_node)
|
4500 |
|
|
return fn;
|
4501 |
|
|
}
|
4502 |
|
|
}
|
4503 |
|
|
|
4504 |
|
|
return NULL_TREE;
|
4505 |
|
|
}
|
4506 |
|
|
|
4507 |
|
|
/* Returns true iff FN is a user-provided function, i.e. user-declared
|
4508 |
|
|
and not defaulted at its first declaration; or explicit, private,
|
4509 |
|
|
protected, or non-const. */
|
4510 |
|
|
|
4511 |
|
|
bool
|
4512 |
|
|
user_provided_p (tree fn)
|
4513 |
|
|
{
|
4514 |
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL)
|
4515 |
|
|
return true;
|
4516 |
|
|
else
|
4517 |
|
|
return (!DECL_ARTIFICIAL (fn)
|
4518 |
|
|
&& !DECL_DEFAULTED_IN_CLASS_P (fn));
|
4519 |
|
|
}
|
4520 |
|
|
|
4521 |
|
|
/* Returns true iff class T has a user-provided constructor. */
|
4522 |
|
|
|
4523 |
|
|
bool
|
4524 |
|
|
type_has_user_provided_constructor (tree t)
|
4525 |
|
|
{
|
4526 |
|
|
tree fns;
|
4527 |
|
|
|
4528 |
|
|
if (!CLASS_TYPE_P (t))
|
4529 |
|
|
return false;
|
4530 |
|
|
|
4531 |
|
|
if (!TYPE_HAS_USER_CONSTRUCTOR (t))
|
4532 |
|
|
return false;
|
4533 |
|
|
|
4534 |
|
|
/* This can happen in error cases; avoid crashing. */
|
4535 |
|
|
if (!CLASSTYPE_METHOD_VEC (t))
|
4536 |
|
|
return false;
|
4537 |
|
|
|
4538 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
4539 |
|
|
if (user_provided_p (OVL_CURRENT (fns)))
|
4540 |
|
|
return true;
|
4541 |
|
|
|
4542 |
|
|
return false;
|
4543 |
|
|
}
|
4544 |
|
|
|
4545 |
|
|
/* Returns true iff class T has a user-provided default constructor. */
|
4546 |
|
|
|
4547 |
|
|
bool
|
4548 |
|
|
type_has_user_provided_default_constructor (tree t)
|
4549 |
|
|
{
|
4550 |
|
|
tree fns;
|
4551 |
|
|
|
4552 |
|
|
if (!TYPE_HAS_USER_CONSTRUCTOR (t))
|
4553 |
|
|
return false;
|
4554 |
|
|
|
4555 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
4556 |
|
|
{
|
4557 |
|
|
tree fn = OVL_CURRENT (fns);
|
4558 |
|
|
if (TREE_CODE (fn) == FUNCTION_DECL
|
4559 |
|
|
&& user_provided_p (fn)
|
4560 |
|
|
&& sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
|
4561 |
|
|
return true;
|
4562 |
|
|
}
|
4563 |
|
|
|
4564 |
|
|
return false;
|
4565 |
|
|
}
|
4566 |
|
|
|
4567 |
|
|
/* If default-initialization leaves part of TYPE uninitialized, returns
|
4568 |
|
|
a DECL for the field or TYPE itself (DR 253). */
|
4569 |
|
|
|
4570 |
|
|
tree
|
4571 |
|
|
default_init_uninitialized_part (tree type)
|
4572 |
|
|
{
|
4573 |
|
|
tree t, r, binfo;
|
4574 |
|
|
int i;
|
4575 |
|
|
|
4576 |
|
|
type = strip_array_types (type);
|
4577 |
|
|
if (!CLASS_TYPE_P (type))
|
4578 |
|
|
return type;
|
4579 |
|
|
if (type_has_user_provided_default_constructor (type))
|
4580 |
|
|
return NULL_TREE;
|
4581 |
|
|
for (binfo = TYPE_BINFO (type), i = 0;
|
4582 |
|
|
BINFO_BASE_ITERATE (binfo, i, t); ++i)
|
4583 |
|
|
{
|
4584 |
|
|
r = default_init_uninitialized_part (BINFO_TYPE (t));
|
4585 |
|
|
if (r)
|
4586 |
|
|
return r;
|
4587 |
|
|
}
|
4588 |
|
|
for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
|
4589 |
|
|
if (TREE_CODE (t) == FIELD_DECL
|
4590 |
|
|
&& !DECL_ARTIFICIAL (t)
|
4591 |
|
|
&& !DECL_INITIAL (t))
|
4592 |
|
|
{
|
4593 |
|
|
r = default_init_uninitialized_part (TREE_TYPE (t));
|
4594 |
|
|
if (r)
|
4595 |
|
|
return DECL_P (r) ? r : t;
|
4596 |
|
|
}
|
4597 |
|
|
|
4598 |
|
|
return NULL_TREE;
|
4599 |
|
|
}
|
4600 |
|
|
|
4601 |
|
|
/* Returns true iff for class T, a trivial synthesized default constructor
|
4602 |
|
|
would be constexpr. */
|
4603 |
|
|
|
4604 |
|
|
bool
|
4605 |
|
|
trivial_default_constructor_is_constexpr (tree t)
|
4606 |
|
|
{
|
4607 |
|
|
/* A defaulted trivial default constructor is constexpr
|
4608 |
|
|
if there is nothing to initialize. */
|
4609 |
|
|
gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
|
4610 |
|
|
return is_really_empty_class (t);
|
4611 |
|
|
}
|
4612 |
|
|
|
4613 |
|
|
/* Returns true iff class T has a constexpr default constructor. */
|
4614 |
|
|
|
4615 |
|
|
bool
|
4616 |
|
|
type_has_constexpr_default_constructor (tree t)
|
4617 |
|
|
{
|
4618 |
|
|
tree fns;
|
4619 |
|
|
|
4620 |
|
|
if (!CLASS_TYPE_P (t))
|
4621 |
|
|
{
|
4622 |
|
|
/* The caller should have stripped an enclosing array. */
|
4623 |
|
|
gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
|
4624 |
|
|
return false;
|
4625 |
|
|
}
|
4626 |
|
|
if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
|
4627 |
|
|
{
|
4628 |
|
|
if (!TYPE_HAS_COMPLEX_DFLT (t))
|
4629 |
|
|
return trivial_default_constructor_is_constexpr (t);
|
4630 |
|
|
/* Non-trivial, we need to check subobject constructors. */
|
4631 |
|
|
lazily_declare_fn (sfk_constructor, t);
|
4632 |
|
|
}
|
4633 |
|
|
fns = locate_ctor (t);
|
4634 |
|
|
return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
|
4635 |
|
|
}
|
4636 |
|
|
|
4637 |
|
|
/* Returns true iff class TYPE has a virtual destructor. */
|
4638 |
|
|
|
4639 |
|
|
bool
|
4640 |
|
|
type_has_virtual_destructor (tree type)
|
4641 |
|
|
{
|
4642 |
|
|
tree dtor;
|
4643 |
|
|
|
4644 |
|
|
if (!CLASS_TYPE_P (type))
|
4645 |
|
|
return false;
|
4646 |
|
|
|
4647 |
|
|
gcc_assert (COMPLETE_TYPE_P (type));
|
4648 |
|
|
dtor = CLASSTYPE_DESTRUCTORS (type);
|
4649 |
|
|
return (dtor && DECL_VIRTUAL_P (dtor));
|
4650 |
|
|
}
|
4651 |
|
|
|
4652 |
|
|
/* Returns true iff class T has a move constructor. */
|
4653 |
|
|
|
4654 |
|
|
bool
|
4655 |
|
|
type_has_move_constructor (tree t)
|
4656 |
|
|
{
|
4657 |
|
|
tree fns;
|
4658 |
|
|
|
4659 |
|
|
if (CLASSTYPE_LAZY_MOVE_CTOR (t))
|
4660 |
|
|
{
|
4661 |
|
|
gcc_assert (COMPLETE_TYPE_P (t));
|
4662 |
|
|
lazily_declare_fn (sfk_move_constructor, t);
|
4663 |
|
|
}
|
4664 |
|
|
|
4665 |
|
|
if (!CLASSTYPE_METHOD_VEC (t))
|
4666 |
|
|
return false;
|
4667 |
|
|
|
4668 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
4669 |
|
|
if (move_fn_p (OVL_CURRENT (fns)))
|
4670 |
|
|
return true;
|
4671 |
|
|
|
4672 |
|
|
return false;
|
4673 |
|
|
}
|
4674 |
|
|
|
4675 |
|
|
/* Returns true iff class T has a move assignment operator. */
|
4676 |
|
|
|
4677 |
|
|
bool
|
4678 |
|
|
type_has_move_assign (tree t)
|
4679 |
|
|
{
|
4680 |
|
|
tree fns;
|
4681 |
|
|
|
4682 |
|
|
if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
|
4683 |
|
|
{
|
4684 |
|
|
gcc_assert (COMPLETE_TYPE_P (t));
|
4685 |
|
|
lazily_declare_fn (sfk_move_assignment, t);
|
4686 |
|
|
}
|
4687 |
|
|
|
4688 |
|
|
for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
|
4689 |
|
|
fns; fns = OVL_NEXT (fns))
|
4690 |
|
|
if (move_fn_p (OVL_CURRENT (fns)))
|
4691 |
|
|
return true;
|
4692 |
|
|
|
4693 |
|
|
return false;
|
4694 |
|
|
}
|
4695 |
|
|
|
4696 |
|
|
/* Returns true iff class T has a move constructor that was explicitly
|
4697 |
|
|
declared in the class body. Note that this is different from
|
4698 |
|
|
"user-provided", which doesn't include functions that are defaulted in
|
4699 |
|
|
the class. */
|
4700 |
|
|
|
4701 |
|
|
bool
|
4702 |
|
|
type_has_user_declared_move_constructor (tree t)
|
4703 |
|
|
{
|
4704 |
|
|
tree fns;
|
4705 |
|
|
|
4706 |
|
|
if (CLASSTYPE_LAZY_MOVE_CTOR (t))
|
4707 |
|
|
return false;
|
4708 |
|
|
|
4709 |
|
|
if (!CLASSTYPE_METHOD_VEC (t))
|
4710 |
|
|
return false;
|
4711 |
|
|
|
4712 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
4713 |
|
|
{
|
4714 |
|
|
tree fn = OVL_CURRENT (fns);
|
4715 |
|
|
if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
|
4716 |
|
|
return true;
|
4717 |
|
|
}
|
4718 |
|
|
|
4719 |
|
|
return false;
|
4720 |
|
|
}
|
4721 |
|
|
|
4722 |
|
|
/* Returns true iff class T has a move assignment operator that was
|
4723 |
|
|
explicitly declared in the class body. */
|
4724 |
|
|
|
4725 |
|
|
bool
|
4726 |
|
|
type_has_user_declared_move_assign (tree t)
|
4727 |
|
|
{
|
4728 |
|
|
tree fns;
|
4729 |
|
|
|
4730 |
|
|
if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
|
4731 |
|
|
return false;
|
4732 |
|
|
|
4733 |
|
|
for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
|
4734 |
|
|
fns; fns = OVL_NEXT (fns))
|
4735 |
|
|
{
|
4736 |
|
|
tree fn = OVL_CURRENT (fns);
|
4737 |
|
|
if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
|
4738 |
|
|
return true;
|
4739 |
|
|
}
|
4740 |
|
|
|
4741 |
|
|
return false;
|
4742 |
|
|
}
|
4743 |
|
|
|
4744 |
|
|
/* Nonzero if we need to build up a constructor call when initializing an
|
4745 |
|
|
object of this class, either because it has a user-provided constructor
|
4746 |
|
|
or because it doesn't have a default constructor (so we need to give an
|
4747 |
|
|
error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
|
4748 |
|
|
what you care about is whether or not an object can be produced by a
|
4749 |
|
|
constructor (e.g. so we don't set TREE_READONLY on const variables of
|
4750 |
|
|
such type); use this function when what you care about is whether or not
|
4751 |
|
|
to try to call a constructor to create an object. The latter case is
|
4752 |
|
|
the former plus some cases of constructors that cannot be called. */
|
4753 |
|
|
|
4754 |
|
|
bool
|
4755 |
|
|
type_build_ctor_call (tree t)
|
4756 |
|
|
{
|
4757 |
|
|
tree inner;
|
4758 |
|
|
if (TYPE_NEEDS_CONSTRUCTING (t))
|
4759 |
|
|
return true;
|
4760 |
|
|
inner = strip_array_types (t);
|
4761 |
|
|
return (CLASS_TYPE_P (inner) && !TYPE_HAS_DEFAULT_CONSTRUCTOR (inner)
|
4762 |
|
|
&& !ANON_AGGR_TYPE_P (inner));
|
4763 |
|
|
}
|
4764 |
|
|
|
4765 |
|
|
/* Remove all zero-width bit-fields from T. */
|
4766 |
|
|
|
4767 |
|
|
static void
|
4768 |
|
|
remove_zero_width_bit_fields (tree t)
|
4769 |
|
|
{
|
4770 |
|
|
tree *fieldsp;
|
4771 |
|
|
|
4772 |
|
|
fieldsp = &TYPE_FIELDS (t);
|
4773 |
|
|
while (*fieldsp)
|
4774 |
|
|
{
|
4775 |
|
|
if (TREE_CODE (*fieldsp) == FIELD_DECL
|
4776 |
|
|
&& DECL_C_BIT_FIELD (*fieldsp)
|
4777 |
|
|
/* We should not be confused by the fact that grokbitfield
|
4778 |
|
|
temporarily sets the width of the bit field into
|
4779 |
|
|
DECL_INITIAL (*fieldsp).
|
4780 |
|
|
check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
|
4781 |
|
|
to that width. */
|
4782 |
|
|
&& integer_zerop (DECL_SIZE (*fieldsp)))
|
4783 |
|
|
*fieldsp = DECL_CHAIN (*fieldsp);
|
4784 |
|
|
else
|
4785 |
|
|
fieldsp = &DECL_CHAIN (*fieldsp);
|
4786 |
|
|
}
|
4787 |
|
|
}
|
4788 |
|
|
|
4789 |
|
|
/* Returns TRUE iff we need a cookie when dynamically allocating an
|
4790 |
|
|
array whose elements have the indicated class TYPE. */
|
4791 |
|
|
|
4792 |
|
|
static bool
|
4793 |
|
|
type_requires_array_cookie (tree type)
|
4794 |
|
|
{
|
4795 |
|
|
tree fns;
|
4796 |
|
|
bool has_two_argument_delete_p = false;
|
4797 |
|
|
|
4798 |
|
|
gcc_assert (CLASS_TYPE_P (type));
|
4799 |
|
|
|
4800 |
|
|
/* If there's a non-trivial destructor, we need a cookie. In order
|
4801 |
|
|
to iterate through the array calling the destructor for each
|
4802 |
|
|
element, we'll have to know how many elements there are. */
|
4803 |
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
|
4804 |
|
|
return true;
|
4805 |
|
|
|
4806 |
|
|
/* If the usual deallocation function is a two-argument whose second
|
4807 |
|
|
argument is of type `size_t', then we have to pass the size of
|
4808 |
|
|
the array to the deallocation function, so we will need to store
|
4809 |
|
|
a cookie. */
|
4810 |
|
|
fns = lookup_fnfields (TYPE_BINFO (type),
|
4811 |
|
|
ansi_opname (VEC_DELETE_EXPR),
|
4812 |
|
|
/*protect=*/0);
|
4813 |
|
|
/* If there are no `operator []' members, or the lookup is
|
4814 |
|
|
ambiguous, then we don't need a cookie. */
|
4815 |
|
|
if (!fns || fns == error_mark_node)
|
4816 |
|
|
return false;
|
4817 |
|
|
/* Loop through all of the functions. */
|
4818 |
|
|
for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
|
4819 |
|
|
{
|
4820 |
|
|
tree fn;
|
4821 |
|
|
tree second_parm;
|
4822 |
|
|
|
4823 |
|
|
/* Select the current function. */
|
4824 |
|
|
fn = OVL_CURRENT (fns);
|
4825 |
|
|
/* See if this function is a one-argument delete function. If
|
4826 |
|
|
it is, then it will be the usual deallocation function. */
|
4827 |
|
|
second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
|
4828 |
|
|
if (second_parm == void_list_node)
|
4829 |
|
|
return false;
|
4830 |
|
|
/* Do not consider this function if its second argument is an
|
4831 |
|
|
ellipsis. */
|
4832 |
|
|
if (!second_parm)
|
4833 |
|
|
continue;
|
4834 |
|
|
/* Otherwise, if we have a two-argument function and the second
|
4835 |
|
|
argument is `size_t', it will be the usual deallocation
|
4836 |
|
|
function -- unless there is one-argument function, too. */
|
4837 |
|
|
if (TREE_CHAIN (second_parm) == void_list_node
|
4838 |
|
|
&& same_type_p (TREE_VALUE (second_parm), size_type_node))
|
4839 |
|
|
has_two_argument_delete_p = true;
|
4840 |
|
|
}
|
4841 |
|
|
|
4842 |
|
|
return has_two_argument_delete_p;
|
4843 |
|
|
}
|
4844 |
|
|
|
4845 |
|
|
/* Finish computing the `literal type' property of class type T.
|
4846 |
|
|
|
4847 |
|
|
At this point, we have already processed base classes and
|
4848 |
|
|
non-static data members. We need to check whether the copy
|
4849 |
|
|
constructor is trivial, the destructor is trivial, and there
|
4850 |
|
|
is a trivial default constructor or at least one constexpr
|
4851 |
|
|
constructor other than the copy constructor. */
|
4852 |
|
|
|
4853 |
|
|
static void
|
4854 |
|
|
finalize_literal_type_property (tree t)
|
4855 |
|
|
{
|
4856 |
|
|
tree fn;
|
4857 |
|
|
|
4858 |
|
|
if (cxx_dialect < cxx0x
|
4859 |
|
|
|| TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
|
4860 |
|
|
CLASSTYPE_LITERAL_P (t) = false;
|
4861 |
|
|
else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
|
4862 |
|
|
&& CLASSTYPE_NON_AGGREGATE (t)
|
4863 |
|
|
&& !TYPE_HAS_CONSTEXPR_CTOR (t))
|
4864 |
|
|
CLASSTYPE_LITERAL_P (t) = false;
|
4865 |
|
|
|
4866 |
|
|
if (!CLASSTYPE_LITERAL_P (t))
|
4867 |
|
|
for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
|
4868 |
|
|
if (DECL_DECLARED_CONSTEXPR_P (fn)
|
4869 |
|
|
&& TREE_CODE (fn) != TEMPLATE_DECL
|
4870 |
|
|
&& DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
|
4871 |
|
|
&& !DECL_CONSTRUCTOR_P (fn))
|
4872 |
|
|
{
|
4873 |
|
|
DECL_DECLARED_CONSTEXPR_P (fn) = false;
|
4874 |
|
|
if (!DECL_GENERATED_P (fn))
|
4875 |
|
|
{
|
4876 |
|
|
error ("enclosing class of constexpr non-static member "
|
4877 |
|
|
"function %q+#D is not a literal type", fn);
|
4878 |
|
|
explain_non_literal_class (t);
|
4879 |
|
|
}
|
4880 |
|
|
}
|
4881 |
|
|
}
|
4882 |
|
|
|
4883 |
|
|
/* T is a non-literal type used in a context which requires a constant
|
4884 |
|
|
expression. Explain why it isn't literal. */
|
4885 |
|
|
|
4886 |
|
|
void
|
4887 |
|
|
explain_non_literal_class (tree t)
|
4888 |
|
|
{
|
4889 |
|
|
static struct pointer_set_t *diagnosed;
|
4890 |
|
|
|
4891 |
|
|
if (!CLASS_TYPE_P (t))
|
4892 |
|
|
return;
|
4893 |
|
|
t = TYPE_MAIN_VARIANT (t);
|
4894 |
|
|
|
4895 |
|
|
if (diagnosed == NULL)
|
4896 |
|
|
diagnosed = pointer_set_create ();
|
4897 |
|
|
if (pointer_set_insert (diagnosed, t) != 0)
|
4898 |
|
|
/* Already explained. */
|
4899 |
|
|
return;
|
4900 |
|
|
|
4901 |
|
|
inform (0, "%q+T is not literal because:", t);
|
4902 |
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
|
4903 |
|
|
inform (0, " %q+T has a non-trivial destructor", t);
|
4904 |
|
|
else if (CLASSTYPE_NON_AGGREGATE (t)
|
4905 |
|
|
&& !TYPE_HAS_TRIVIAL_DFLT (t)
|
4906 |
|
|
&& !TYPE_HAS_CONSTEXPR_CTOR (t))
|
4907 |
|
|
{
|
4908 |
|
|
inform (0, " %q+T is not an aggregate, does not have a trivial "
|
4909 |
|
|
"default constructor, and has no constexpr constructor that "
|
4910 |
|
|
"is not a copy or move constructor", t);
|
4911 |
|
|
if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
|
4912 |
|
|
&& !type_has_user_provided_default_constructor (t))
|
4913 |
|
|
{
|
4914 |
|
|
/* Note that we can't simply call locate_ctor because when the
|
4915 |
|
|
constructor is deleted it just returns NULL_TREE. */
|
4916 |
|
|
tree fns;
|
4917 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
4918 |
|
|
{
|
4919 |
|
|
tree fn = OVL_CURRENT (fns);
|
4920 |
|
|
tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
|
4921 |
|
|
|
4922 |
|
|
parms = skip_artificial_parms_for (fn, parms);
|
4923 |
|
|
|
4924 |
|
|
if (sufficient_parms_p (parms))
|
4925 |
|
|
{
|
4926 |
|
|
if (DECL_DELETED_FN (fn))
|
4927 |
|
|
maybe_explain_implicit_delete (fn);
|
4928 |
|
|
else
|
4929 |
|
|
explain_invalid_constexpr_fn (fn);
|
4930 |
|
|
break;
|
4931 |
|
|
}
|
4932 |
|
|
}
|
4933 |
|
|
}
|
4934 |
|
|
}
|
4935 |
|
|
else
|
4936 |
|
|
{
|
4937 |
|
|
tree binfo, base_binfo, field; int i;
|
4938 |
|
|
for (binfo = TYPE_BINFO (t), i = 0;
|
4939 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
4940 |
|
|
{
|
4941 |
|
|
tree basetype = TREE_TYPE (base_binfo);
|
4942 |
|
|
if (!CLASSTYPE_LITERAL_P (basetype))
|
4943 |
|
|
{
|
4944 |
|
|
inform (0, " base class %qT of %q+T is non-literal",
|
4945 |
|
|
basetype, t);
|
4946 |
|
|
explain_non_literal_class (basetype);
|
4947 |
|
|
return;
|
4948 |
|
|
}
|
4949 |
|
|
}
|
4950 |
|
|
for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
|
4951 |
|
|
{
|
4952 |
|
|
tree ftype;
|
4953 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
4954 |
|
|
continue;
|
4955 |
|
|
ftype = TREE_TYPE (field);
|
4956 |
|
|
if (!literal_type_p (ftype))
|
4957 |
|
|
{
|
4958 |
|
|
inform (0, " non-static data member %q+D has "
|
4959 |
|
|
"non-literal type", field);
|
4960 |
|
|
if (CLASS_TYPE_P (ftype))
|
4961 |
|
|
explain_non_literal_class (ftype);
|
4962 |
|
|
}
|
4963 |
|
|
}
|
4964 |
|
|
}
|
4965 |
|
|
}
|
4966 |
|
|
|
4967 |
|
|
/* Check the validity of the bases and members declared in T. Add any
|
4968 |
|
|
implicitly-generated functions (like copy-constructors and
|
4969 |
|
|
assignment operators). Compute various flag bits (like
|
4970 |
|
|
CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
|
4971 |
|
|
level: i.e., independently of the ABI in use. */
|
4972 |
|
|
|
4973 |
|
|
static void
|
4974 |
|
|
check_bases_and_members (tree t)
|
4975 |
|
|
{
|
4976 |
|
|
/* Nonzero if the implicitly generated copy constructor should take
|
4977 |
|
|
a non-const reference argument. */
|
4978 |
|
|
int cant_have_const_ctor;
|
4979 |
|
|
/* Nonzero if the implicitly generated assignment operator
|
4980 |
|
|
should take a non-const reference argument. */
|
4981 |
|
|
int no_const_asn_ref;
|
4982 |
|
|
tree access_decls;
|
4983 |
|
|
bool saved_complex_asn_ref;
|
4984 |
|
|
bool saved_nontrivial_dtor;
|
4985 |
|
|
tree fn;
|
4986 |
|
|
|
4987 |
|
|
/* By default, we use const reference arguments and generate default
|
4988 |
|
|
constructors. */
|
4989 |
|
|
cant_have_const_ctor = 0;
|
4990 |
|
|
no_const_asn_ref = 0;
|
4991 |
|
|
|
4992 |
|
|
/* Check all the base-classes. */
|
4993 |
|
|
check_bases (t, &cant_have_const_ctor,
|
4994 |
|
|
&no_const_asn_ref);
|
4995 |
|
|
|
4996 |
|
|
/* Check all the method declarations. */
|
4997 |
|
|
check_methods (t);
|
4998 |
|
|
|
4999 |
|
|
/* Save the initial values of these flags which only indicate whether
|
5000 |
|
|
or not the class has user-provided functions. As we analyze the
|
5001 |
|
|
bases and members we can set these flags for other reasons. */
|
5002 |
|
|
saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
|
5003 |
|
|
saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
|
5004 |
|
|
|
5005 |
|
|
/* Check all the data member declarations. We cannot call
|
5006 |
|
|
check_field_decls until we have called check_bases check_methods,
|
5007 |
|
|
as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
|
5008 |
|
|
being set appropriately. */
|
5009 |
|
|
check_field_decls (t, &access_decls,
|
5010 |
|
|
&cant_have_const_ctor,
|
5011 |
|
|
&no_const_asn_ref);
|
5012 |
|
|
|
5013 |
|
|
/* A nearly-empty class has to be vptr-containing; a nearly empty
|
5014 |
|
|
class contains just a vptr. */
|
5015 |
|
|
if (!TYPE_CONTAINS_VPTR_P (t))
|
5016 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
|
5017 |
|
|
|
5018 |
|
|
/* Do some bookkeeping that will guide the generation of implicitly
|
5019 |
|
|
declared member functions. */
|
5020 |
|
|
TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
|
5021 |
|
|
TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
|
5022 |
|
|
/* We need to call a constructor for this class if it has a
|
5023 |
|
|
user-provided constructor, or if the default constructor is going
|
5024 |
|
|
to initialize the vptr. (This is not an if-and-only-if;
|
5025 |
|
|
TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
|
5026 |
|
|
themselves need constructing.) */
|
5027 |
|
|
TYPE_NEEDS_CONSTRUCTING (t)
|
5028 |
|
|
|= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
|
5029 |
|
|
/* [dcl.init.aggr]
|
5030 |
|
|
|
5031 |
|
|
An aggregate is an array or a class with no user-provided
|
5032 |
|
|
constructors ... and no virtual functions.
|
5033 |
|
|
|
5034 |
|
|
Again, other conditions for being an aggregate are checked
|
5035 |
|
|
elsewhere. */
|
5036 |
|
|
CLASSTYPE_NON_AGGREGATE (t)
|
5037 |
|
|
|= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
|
5038 |
|
|
/* This is the C++98/03 definition of POD; it changed in C++0x, but we
|
5039 |
|
|
retain the old definition internally for ABI reasons. */
|
5040 |
|
|
CLASSTYPE_NON_LAYOUT_POD_P (t)
|
5041 |
|
|
|= (CLASSTYPE_NON_AGGREGATE (t)
|
5042 |
|
|
|| saved_nontrivial_dtor || saved_complex_asn_ref);
|
5043 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
|
5044 |
|
|
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
|
5045 |
|
|
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
|
5046 |
|
|
TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
|
5047 |
|
|
|
5048 |
|
|
/* If the class has no user-declared constructor, but does have
|
5049 |
|
|
non-static const or reference data members that can never be
|
5050 |
|
|
initialized, issue a warning. */
|
5051 |
|
|
if (warn_uninitialized
|
5052 |
|
|
/* Classes with user-declared constructors are presumed to
|
5053 |
|
|
initialize these members. */
|
5054 |
|
|
&& !TYPE_HAS_USER_CONSTRUCTOR (t)
|
5055 |
|
|
/* Aggregates can be initialized with brace-enclosed
|
5056 |
|
|
initializers. */
|
5057 |
|
|
&& CLASSTYPE_NON_AGGREGATE (t))
|
5058 |
|
|
{
|
5059 |
|
|
tree field;
|
5060 |
|
|
|
5061 |
|
|
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
|
5062 |
|
|
{
|
5063 |
|
|
tree type;
|
5064 |
|
|
|
5065 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
5066 |
|
|
continue;
|
5067 |
|
|
|
5068 |
|
|
type = TREE_TYPE (field);
|
5069 |
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
5070 |
|
|
warning (OPT_Wuninitialized, "non-static reference %q+#D "
|
5071 |
|
|
"in class without a constructor", field);
|
5072 |
|
|
else if (CP_TYPE_CONST_P (type)
|
5073 |
|
|
&& (!CLASS_TYPE_P (type)
|
5074 |
|
|
|| !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
|
5075 |
|
|
warning (OPT_Wuninitialized, "non-static const member %q+#D "
|
5076 |
|
|
"in class without a constructor", field);
|
5077 |
|
|
}
|
5078 |
|
|
}
|
5079 |
|
|
|
5080 |
|
|
/* Synthesize any needed methods. */
|
5081 |
|
|
add_implicitly_declared_members (t,
|
5082 |
|
|
cant_have_const_ctor,
|
5083 |
|
|
no_const_asn_ref);
|
5084 |
|
|
|
5085 |
|
|
/* Check defaulted declarations here so we have cant_have_const_ctor
|
5086 |
|
|
and don't need to worry about clones. */
|
5087 |
|
|
for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
|
5088 |
|
|
if (DECL_DEFAULTED_IN_CLASS_P (fn))
|
5089 |
|
|
{
|
5090 |
|
|
int copy = copy_fn_p (fn);
|
5091 |
|
|
if (copy > 0)
|
5092 |
|
|
{
|
5093 |
|
|
bool imp_const_p
|
5094 |
|
|
= (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
|
5095 |
|
|
: !no_const_asn_ref);
|
5096 |
|
|
bool fn_const_p = (copy == 2);
|
5097 |
|
|
|
5098 |
|
|
if (fn_const_p && !imp_const_p)
|
5099 |
|
|
/* If the function is defaulted outside the class, we just
|
5100 |
|
|
give the synthesis error. */
|
5101 |
|
|
error ("%q+D declared to take const reference, but implicit "
|
5102 |
|
|
"declaration would take non-const", fn);
|
5103 |
|
|
else if (imp_const_p && !fn_const_p)
|
5104 |
|
|
error ("%q+D declared to take non-const reference cannot be "
|
5105 |
|
|
"defaulted in the class body", fn);
|
5106 |
|
|
}
|
5107 |
|
|
defaulted_late_check (fn);
|
5108 |
|
|
}
|
5109 |
|
|
|
5110 |
|
|
if (LAMBDA_TYPE_P (t))
|
5111 |
|
|
{
|
5112 |
|
|
/* "The closure type associated with a lambda-expression has a deleted
|
5113 |
|
|
default constructor and a deleted copy assignment operator." */
|
5114 |
|
|
TYPE_NEEDS_CONSTRUCTING (t) = 1;
|
5115 |
|
|
TYPE_HAS_COMPLEX_DFLT (t) = 1;
|
5116 |
|
|
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
|
5117 |
|
|
CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
|
5118 |
|
|
|
5119 |
|
|
/* "This class type is not an aggregate." */
|
5120 |
|
|
CLASSTYPE_NON_AGGREGATE (t) = 1;
|
5121 |
|
|
}
|
5122 |
|
|
|
5123 |
|
|
/* Compute the 'literal type' property before we
|
5124 |
|
|
do anything with non-static member functions. */
|
5125 |
|
|
finalize_literal_type_property (t);
|
5126 |
|
|
|
5127 |
|
|
/* Create the in-charge and not-in-charge variants of constructors
|
5128 |
|
|
and destructors. */
|
5129 |
|
|
clone_constructors_and_destructors (t);
|
5130 |
|
|
|
5131 |
|
|
/* Process the using-declarations. */
|
5132 |
|
|
for (; access_decls; access_decls = TREE_CHAIN (access_decls))
|
5133 |
|
|
handle_using_decl (TREE_VALUE (access_decls), t);
|
5134 |
|
|
|
5135 |
|
|
/* Build and sort the CLASSTYPE_METHOD_VEC. */
|
5136 |
|
|
finish_struct_methods (t);
|
5137 |
|
|
|
5138 |
|
|
/* Figure out whether or not we will need a cookie when dynamically
|
5139 |
|
|
allocating an array of this type. */
|
5140 |
|
|
TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
|
5141 |
|
|
= type_requires_array_cookie (t);
|
5142 |
|
|
}
|
5143 |
|
|
|
5144 |
|
|
/* If T needs a pointer to its virtual function table, set TYPE_VFIELD
|
5145 |
|
|
accordingly. If a new vfield was created (because T doesn't have a
|
5146 |
|
|
primary base class), then the newly created field is returned. It
|
5147 |
|
|
is not added to the TYPE_FIELDS list; it is the caller's
|
5148 |
|
|
responsibility to do that. Accumulate declared virtual functions
|
5149 |
|
|
on VIRTUALS_P. */
|
5150 |
|
|
|
5151 |
|
|
static tree
|
5152 |
|
|
create_vtable_ptr (tree t, tree* virtuals_p)
|
5153 |
|
|
{
|
5154 |
|
|
tree fn;
|
5155 |
|
|
|
5156 |
|
|
/* Collect the virtual functions declared in T. */
|
5157 |
|
|
for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
|
5158 |
|
|
if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
|
5159 |
|
|
&& TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
|
5160 |
|
|
{
|
5161 |
|
|
tree new_virtual = make_node (TREE_LIST);
|
5162 |
|
|
|
5163 |
|
|
BV_FN (new_virtual) = fn;
|
5164 |
|
|
BV_DELTA (new_virtual) = integer_zero_node;
|
5165 |
|
|
BV_VCALL_INDEX (new_virtual) = NULL_TREE;
|
5166 |
|
|
|
5167 |
|
|
TREE_CHAIN (new_virtual) = *virtuals_p;
|
5168 |
|
|
*virtuals_p = new_virtual;
|
5169 |
|
|
}
|
5170 |
|
|
|
5171 |
|
|
/* If we couldn't find an appropriate base class, create a new field
|
5172 |
|
|
here. Even if there weren't any new virtual functions, we might need a
|
5173 |
|
|
new virtual function table if we're supposed to include vptrs in
|
5174 |
|
|
all classes that need them. */
|
5175 |
|
|
if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
|
5176 |
|
|
{
|
5177 |
|
|
/* We build this decl with vtbl_ptr_type_node, which is a
|
5178 |
|
|
`vtable_entry_type*'. It might seem more precise to use
|
5179 |
|
|
`vtable_entry_type (*)[N]' where N is the number of virtual
|
5180 |
|
|
functions. However, that would require the vtable pointer in
|
5181 |
|
|
base classes to have a different type than the vtable pointer
|
5182 |
|
|
in derived classes. We could make that happen, but that
|
5183 |
|
|
still wouldn't solve all the problems. In particular, the
|
5184 |
|
|
type-based alias analysis code would decide that assignments
|
5185 |
|
|
to the base class vtable pointer can't alias assignments to
|
5186 |
|
|
the derived class vtable pointer, since they have different
|
5187 |
|
|
types. Thus, in a derived class destructor, where the base
|
5188 |
|
|
class constructor was inlined, we could generate bad code for
|
5189 |
|
|
setting up the vtable pointer.
|
5190 |
|
|
|
5191 |
|
|
Therefore, we use one type for all vtable pointers. We still
|
5192 |
|
|
use a type-correct type; it's just doesn't indicate the array
|
5193 |
|
|
bounds. That's better than using `void*' or some such; it's
|
5194 |
|
|
cleaner, and it let's the alias analysis code know that these
|
5195 |
|
|
stores cannot alias stores to void*! */
|
5196 |
|
|
tree field;
|
5197 |
|
|
|
5198 |
|
|
field = build_decl (input_location,
|
5199 |
|
|
FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
|
5200 |
|
|
DECL_VIRTUAL_P (field) = 1;
|
5201 |
|
|
DECL_ARTIFICIAL (field) = 1;
|
5202 |
|
|
DECL_FIELD_CONTEXT (field) = t;
|
5203 |
|
|
DECL_FCONTEXT (field) = t;
|
5204 |
|
|
if (TYPE_PACKED (t))
|
5205 |
|
|
DECL_PACKED (field) = 1;
|
5206 |
|
|
|
5207 |
|
|
TYPE_VFIELD (t) = field;
|
5208 |
|
|
|
5209 |
|
|
/* This class is non-empty. */
|
5210 |
|
|
CLASSTYPE_EMPTY_P (t) = 0;
|
5211 |
|
|
|
5212 |
|
|
return field;
|
5213 |
|
|
}
|
5214 |
|
|
|
5215 |
|
|
return NULL_TREE;
|
5216 |
|
|
}
|
5217 |
|
|
|
5218 |
|
|
/* Add OFFSET to all base types of BINFO which is a base in the
|
5219 |
|
|
hierarchy dominated by T.
|
5220 |
|
|
|
5221 |
|
|
OFFSET, which is a type offset, is number of bytes. */
|
5222 |
|
|
|
5223 |
|
|
static void
|
5224 |
|
|
propagate_binfo_offsets (tree binfo, tree offset)
|
5225 |
|
|
{
|
5226 |
|
|
int i;
|
5227 |
|
|
tree primary_binfo;
|
5228 |
|
|
tree base_binfo;
|
5229 |
|
|
|
5230 |
|
|
/* Update BINFO's offset. */
|
5231 |
|
|
BINFO_OFFSET (binfo)
|
5232 |
|
|
= convert (sizetype,
|
5233 |
|
|
size_binop (PLUS_EXPR,
|
5234 |
|
|
convert (ssizetype, BINFO_OFFSET (binfo)),
|
5235 |
|
|
offset));
|
5236 |
|
|
|
5237 |
|
|
/* Find the primary base class. */
|
5238 |
|
|
primary_binfo = get_primary_binfo (binfo);
|
5239 |
|
|
|
5240 |
|
|
if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
|
5241 |
|
|
propagate_binfo_offsets (primary_binfo, offset);
|
5242 |
|
|
|
5243 |
|
|
/* Scan all of the bases, pushing the BINFO_OFFSET adjust
|
5244 |
|
|
downwards. */
|
5245 |
|
|
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
5246 |
|
|
{
|
5247 |
|
|
/* Don't do the primary base twice. */
|
5248 |
|
|
if (base_binfo == primary_binfo)
|
5249 |
|
|
continue;
|
5250 |
|
|
|
5251 |
|
|
if (BINFO_VIRTUAL_P (base_binfo))
|
5252 |
|
|
continue;
|
5253 |
|
|
|
5254 |
|
|
propagate_binfo_offsets (base_binfo, offset);
|
5255 |
|
|
}
|
5256 |
|
|
}
|
5257 |
|
|
|
5258 |
|
|
/* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
|
5259 |
|
|
TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
|
5260 |
|
|
empty subobjects of T. */
|
5261 |
|
|
|
5262 |
|
|
static void
|
5263 |
|
|
layout_virtual_bases (record_layout_info rli, splay_tree offsets)
|
5264 |
|
|
{
|
5265 |
|
|
tree vbase;
|
5266 |
|
|
tree t = rli->t;
|
5267 |
|
|
bool first_vbase = true;
|
5268 |
|
|
tree *next_field;
|
5269 |
|
|
|
5270 |
|
|
if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
|
5271 |
|
|
return;
|
5272 |
|
|
|
5273 |
|
|
if (!abi_version_at_least(2))
|
5274 |
|
|
{
|
5275 |
|
|
/* In G++ 3.2, we incorrectly rounded the size before laying out
|
5276 |
|
|
the virtual bases. */
|
5277 |
|
|
finish_record_layout (rli, /*free_p=*/false);
|
5278 |
|
|
#ifdef STRUCTURE_SIZE_BOUNDARY
|
5279 |
|
|
/* Packed structures don't need to have minimum size. */
|
5280 |
|
|
if (! TYPE_PACKED (t))
|
5281 |
|
|
TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
|
5282 |
|
|
#endif
|
5283 |
|
|
rli->offset = TYPE_SIZE_UNIT (t);
|
5284 |
|
|
rli->bitpos = bitsize_zero_node;
|
5285 |
|
|
rli->record_align = TYPE_ALIGN (t);
|
5286 |
|
|
}
|
5287 |
|
|
|
5288 |
|
|
/* Find the last field. The artificial fields created for virtual
|
5289 |
|
|
bases will go after the last extant field to date. */
|
5290 |
|
|
next_field = &TYPE_FIELDS (t);
|
5291 |
|
|
while (*next_field)
|
5292 |
|
|
next_field = &DECL_CHAIN (*next_field);
|
5293 |
|
|
|
5294 |
|
|
/* Go through the virtual bases, allocating space for each virtual
|
5295 |
|
|
base that is not already a primary base class. These are
|
5296 |
|
|
allocated in inheritance graph order. */
|
5297 |
|
|
for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
|
5298 |
|
|
{
|
5299 |
|
|
if (!BINFO_VIRTUAL_P (vbase))
|
5300 |
|
|
continue;
|
5301 |
|
|
|
5302 |
|
|
if (!BINFO_PRIMARY_P (vbase))
|
5303 |
|
|
{
|
5304 |
|
|
tree basetype = TREE_TYPE (vbase);
|
5305 |
|
|
|
5306 |
|
|
/* This virtual base is not a primary base of any class in the
|
5307 |
|
|
hierarchy, so we have to add space for it. */
|
5308 |
|
|
next_field = build_base_field (rli, vbase,
|
5309 |
|
|
offsets, next_field);
|
5310 |
|
|
|
5311 |
|
|
/* If the first virtual base might have been placed at a
|
5312 |
|
|
lower address, had we started from CLASSTYPE_SIZE, rather
|
5313 |
|
|
than TYPE_SIZE, issue a warning. There can be both false
|
5314 |
|
|
positives and false negatives from this warning in rare
|
5315 |
|
|
cases; to deal with all the possibilities would probably
|
5316 |
|
|
require performing both layout algorithms and comparing
|
5317 |
|
|
the results which is not particularly tractable. */
|
5318 |
|
|
if (warn_abi
|
5319 |
|
|
&& first_vbase
|
5320 |
|
|
&& (tree_int_cst_lt
|
5321 |
|
|
(size_binop (CEIL_DIV_EXPR,
|
5322 |
|
|
round_up_loc (input_location,
|
5323 |
|
|
CLASSTYPE_SIZE (t),
|
5324 |
|
|
CLASSTYPE_ALIGN (basetype)),
|
5325 |
|
|
bitsize_unit_node),
|
5326 |
|
|
BINFO_OFFSET (vbase))))
|
5327 |
|
|
warning (OPT_Wabi,
|
5328 |
|
|
"offset of virtual base %qT is not ABI-compliant and "
|
5329 |
|
|
"may change in a future version of GCC",
|
5330 |
|
|
basetype);
|
5331 |
|
|
|
5332 |
|
|
first_vbase = false;
|
5333 |
|
|
}
|
5334 |
|
|
}
|
5335 |
|
|
}
|
5336 |
|
|
|
5337 |
|
|
/* Returns the offset of the byte just past the end of the base class
|
5338 |
|
|
BINFO. */
|
5339 |
|
|
|
5340 |
|
|
static tree
|
5341 |
|
|
end_of_base (tree binfo)
|
5342 |
|
|
{
|
5343 |
|
|
tree size;
|
5344 |
|
|
|
5345 |
|
|
if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
|
5346 |
|
|
size = TYPE_SIZE_UNIT (char_type_node);
|
5347 |
|
|
else if (is_empty_class (BINFO_TYPE (binfo)))
|
5348 |
|
|
/* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
|
5349 |
|
|
allocate some space for it. It cannot have virtual bases, so
|
5350 |
|
|
TYPE_SIZE_UNIT is fine. */
|
5351 |
|
|
size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
|
5352 |
|
|
else
|
5353 |
|
|
size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
|
5354 |
|
|
|
5355 |
|
|
return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
|
5356 |
|
|
}
|
5357 |
|
|
|
5358 |
|
|
/* Returns the offset of the byte just past the end of the base class
|
5359 |
|
|
with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
|
5360 |
|
|
only non-virtual bases are included. */
|
5361 |
|
|
|
5362 |
|
|
static tree
|
5363 |
|
|
end_of_class (tree t, int include_virtuals_p)
|
5364 |
|
|
{
|
5365 |
|
|
tree result = size_zero_node;
|
5366 |
|
|
VEC(tree,gc) *vbases;
|
5367 |
|
|
tree binfo;
|
5368 |
|
|
tree base_binfo;
|
5369 |
|
|
tree offset;
|
5370 |
|
|
int i;
|
5371 |
|
|
|
5372 |
|
|
for (binfo = TYPE_BINFO (t), i = 0;
|
5373 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
5374 |
|
|
{
|
5375 |
|
|
if (!include_virtuals_p
|
5376 |
|
|
&& BINFO_VIRTUAL_P (base_binfo)
|
5377 |
|
|
&& (!BINFO_PRIMARY_P (base_binfo)
|
5378 |
|
|
|| BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
|
5379 |
|
|
continue;
|
5380 |
|
|
|
5381 |
|
|
offset = end_of_base (base_binfo);
|
5382 |
|
|
if (INT_CST_LT_UNSIGNED (result, offset))
|
5383 |
|
|
result = offset;
|
5384 |
|
|
}
|
5385 |
|
|
|
5386 |
|
|
/* G++ 3.2 did not check indirect virtual bases. */
|
5387 |
|
|
if (abi_version_at_least (2) && include_virtuals_p)
|
5388 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
|
5389 |
|
|
VEC_iterate (tree, vbases, i, base_binfo); i++)
|
5390 |
|
|
{
|
5391 |
|
|
offset = end_of_base (base_binfo);
|
5392 |
|
|
if (INT_CST_LT_UNSIGNED (result, offset))
|
5393 |
|
|
result = offset;
|
5394 |
|
|
}
|
5395 |
|
|
|
5396 |
|
|
return result;
|
5397 |
|
|
}
|
5398 |
|
|
|
5399 |
|
|
/* Warn about bases of T that are inaccessible because they are
|
5400 |
|
|
ambiguous. For example:
|
5401 |
|
|
|
5402 |
|
|
struct S {};
|
5403 |
|
|
struct T : public S {};
|
5404 |
|
|
struct U : public S, public T {};
|
5405 |
|
|
|
5406 |
|
|
Here, `(S*) new U' is not allowed because there are two `S'
|
5407 |
|
|
subobjects of U. */
|
5408 |
|
|
|
5409 |
|
|
static void
|
5410 |
|
|
warn_about_ambiguous_bases (tree t)
|
5411 |
|
|
{
|
5412 |
|
|
int i;
|
5413 |
|
|
VEC(tree,gc) *vbases;
|
5414 |
|
|
tree basetype;
|
5415 |
|
|
tree binfo;
|
5416 |
|
|
tree base_binfo;
|
5417 |
|
|
|
5418 |
|
|
/* If there are no repeated bases, nothing can be ambiguous. */
|
5419 |
|
|
if (!CLASSTYPE_REPEATED_BASE_P (t))
|
5420 |
|
|
return;
|
5421 |
|
|
|
5422 |
|
|
/* Check direct bases. */
|
5423 |
|
|
for (binfo = TYPE_BINFO (t), i = 0;
|
5424 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
5425 |
|
|
{
|
5426 |
|
|
basetype = BINFO_TYPE (base_binfo);
|
5427 |
|
|
|
5428 |
|
|
if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
|
5429 |
|
|
warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
|
5430 |
|
|
basetype, t);
|
5431 |
|
|
}
|
5432 |
|
|
|
5433 |
|
|
/* Check for ambiguous virtual bases. */
|
5434 |
|
|
if (extra_warnings)
|
5435 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
|
5436 |
|
|
VEC_iterate (tree, vbases, i, binfo); i++)
|
5437 |
|
|
{
|
5438 |
|
|
basetype = BINFO_TYPE (binfo);
|
5439 |
|
|
|
5440 |
|
|
if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
|
5441 |
|
|
warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
|
5442 |
|
|
basetype, t);
|
5443 |
|
|
}
|
5444 |
|
|
}
|
5445 |
|
|
|
5446 |
|
|
/* Compare two INTEGER_CSTs K1 and K2. */
|
5447 |
|
|
|
5448 |
|
|
static int
|
5449 |
|
|
splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
|
5450 |
|
|
{
|
5451 |
|
|
return tree_int_cst_compare ((tree) k1, (tree) k2);
|
5452 |
|
|
}
|
5453 |
|
|
|
5454 |
|
|
/* Increase the size indicated in RLI to account for empty classes
|
5455 |
|
|
that are "off the end" of the class. */
|
5456 |
|
|
|
5457 |
|
|
static void
|
5458 |
|
|
include_empty_classes (record_layout_info rli)
|
5459 |
|
|
{
|
5460 |
|
|
tree eoc;
|
5461 |
|
|
tree rli_size;
|
5462 |
|
|
|
5463 |
|
|
/* It might be the case that we grew the class to allocate a
|
5464 |
|
|
zero-sized base class. That won't be reflected in RLI, yet,
|
5465 |
|
|
because we are willing to overlay multiple bases at the same
|
5466 |
|
|
offset. However, now we need to make sure that RLI is big enough
|
5467 |
|
|
to reflect the entire class. */
|
5468 |
|
|
eoc = end_of_class (rli->t,
|
5469 |
|
|
CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
|
5470 |
|
|
rli_size = rli_size_unit_so_far (rli);
|
5471 |
|
|
if (TREE_CODE (rli_size) == INTEGER_CST
|
5472 |
|
|
&& INT_CST_LT_UNSIGNED (rli_size, eoc))
|
5473 |
|
|
{
|
5474 |
|
|
if (!abi_version_at_least (2))
|
5475 |
|
|
/* In version 1 of the ABI, the size of a class that ends with
|
5476 |
|
|
a bitfield was not rounded up to a whole multiple of a
|
5477 |
|
|
byte. Because rli_size_unit_so_far returns only the number
|
5478 |
|
|
of fully allocated bytes, any extra bits were not included
|
5479 |
|
|
in the size. */
|
5480 |
|
|
rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
|
5481 |
|
|
else
|
5482 |
|
|
/* The size should have been rounded to a whole byte. */
|
5483 |
|
|
gcc_assert (tree_int_cst_equal
|
5484 |
|
|
(rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
|
5485 |
|
|
rli->bitpos
|
5486 |
|
|
= size_binop (PLUS_EXPR,
|
5487 |
|
|
rli->bitpos,
|
5488 |
|
|
size_binop (MULT_EXPR,
|
5489 |
|
|
convert (bitsizetype,
|
5490 |
|
|
size_binop (MINUS_EXPR,
|
5491 |
|
|
eoc, rli_size)),
|
5492 |
|
|
bitsize_int (BITS_PER_UNIT)));
|
5493 |
|
|
normalize_rli (rli);
|
5494 |
|
|
}
|
5495 |
|
|
}
|
5496 |
|
|
|
5497 |
|
|
/* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
|
5498 |
|
|
BINFO_OFFSETs for all of the base-classes. Position the vtable
|
5499 |
|
|
pointer. Accumulate declared virtual functions on VIRTUALS_P. */
|
5500 |
|
|
|
5501 |
|
|
static void
|
5502 |
|
|
layout_class_type (tree t, tree *virtuals_p)
|
5503 |
|
|
{
|
5504 |
|
|
tree non_static_data_members;
|
5505 |
|
|
tree field;
|
5506 |
|
|
tree vptr;
|
5507 |
|
|
record_layout_info rli;
|
5508 |
|
|
/* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
|
5509 |
|
|
types that appear at that offset. */
|
5510 |
|
|
splay_tree empty_base_offsets;
|
5511 |
|
|
/* True if the last field layed out was a bit-field. */
|
5512 |
|
|
bool last_field_was_bitfield = false;
|
5513 |
|
|
/* The location at which the next field should be inserted. */
|
5514 |
|
|
tree *next_field;
|
5515 |
|
|
/* T, as a base class. */
|
5516 |
|
|
tree base_t;
|
5517 |
|
|
|
5518 |
|
|
/* Keep track of the first non-static data member. */
|
5519 |
|
|
non_static_data_members = TYPE_FIELDS (t);
|
5520 |
|
|
|
5521 |
|
|
/* Start laying out the record. */
|
5522 |
|
|
rli = start_record_layout (t);
|
5523 |
|
|
|
5524 |
|
|
/* Mark all the primary bases in the hierarchy. */
|
5525 |
|
|
determine_primary_bases (t);
|
5526 |
|
|
|
5527 |
|
|
/* Create a pointer to our virtual function table. */
|
5528 |
|
|
vptr = create_vtable_ptr (t, virtuals_p);
|
5529 |
|
|
|
5530 |
|
|
/* The vptr is always the first thing in the class. */
|
5531 |
|
|
if (vptr)
|
5532 |
|
|
{
|
5533 |
|
|
DECL_CHAIN (vptr) = TYPE_FIELDS (t);
|
5534 |
|
|
TYPE_FIELDS (t) = vptr;
|
5535 |
|
|
next_field = &DECL_CHAIN (vptr);
|
5536 |
|
|
place_field (rli, vptr);
|
5537 |
|
|
}
|
5538 |
|
|
else
|
5539 |
|
|
next_field = &TYPE_FIELDS (t);
|
5540 |
|
|
|
5541 |
|
|
/* Build FIELD_DECLs for all of the non-virtual base-types. */
|
5542 |
|
|
empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
|
5543 |
|
|
NULL, NULL);
|
5544 |
|
|
build_base_fields (rli, empty_base_offsets, next_field);
|
5545 |
|
|
|
5546 |
|
|
/* Layout the non-static data members. */
|
5547 |
|
|
for (field = non_static_data_members; field; field = DECL_CHAIN (field))
|
5548 |
|
|
{
|
5549 |
|
|
tree type;
|
5550 |
|
|
tree padding;
|
5551 |
|
|
|
5552 |
|
|
/* We still pass things that aren't non-static data members to
|
5553 |
|
|
the back end, in case it wants to do something with them. */
|
5554 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
5555 |
|
|
{
|
5556 |
|
|
place_field (rli, field);
|
5557 |
|
|
/* If the static data member has incomplete type, keep track
|
5558 |
|
|
of it so that it can be completed later. (The handling
|
5559 |
|
|
of pending statics in finish_record_layout is
|
5560 |
|
|
insufficient; consider:
|
5561 |
|
|
|
5562 |
|
|
struct S1;
|
5563 |
|
|
struct S2 { static S1 s1; };
|
5564 |
|
|
|
5565 |
|
|
At this point, finish_record_layout will be called, but
|
5566 |
|
|
S1 is still incomplete.) */
|
5567 |
|
|
if (TREE_CODE (field) == VAR_DECL)
|
5568 |
|
|
{
|
5569 |
|
|
maybe_register_incomplete_var (field);
|
5570 |
|
|
/* The visibility of static data members is determined
|
5571 |
|
|
at their point of declaration, not their point of
|
5572 |
|
|
definition. */
|
5573 |
|
|
determine_visibility (field);
|
5574 |
|
|
}
|
5575 |
|
|
continue;
|
5576 |
|
|
}
|
5577 |
|
|
|
5578 |
|
|
type = TREE_TYPE (field);
|
5579 |
|
|
if (type == error_mark_node)
|
5580 |
|
|
continue;
|
5581 |
|
|
|
5582 |
|
|
padding = NULL_TREE;
|
5583 |
|
|
|
5584 |
|
|
/* If this field is a bit-field whose width is greater than its
|
5585 |
|
|
type, then there are some special rules for allocating
|
5586 |
|
|
it. */
|
5587 |
|
|
if (DECL_C_BIT_FIELD (field)
|
5588 |
|
|
&& INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
|
5589 |
|
|
{
|
5590 |
|
|
unsigned int itk;
|
5591 |
|
|
tree integer_type;
|
5592 |
|
|
bool was_unnamed_p = false;
|
5593 |
|
|
/* We must allocate the bits as if suitably aligned for the
|
5594 |
|
|
longest integer type that fits in this many bits. type
|
5595 |
|
|
of the field. Then, we are supposed to use the left over
|
5596 |
|
|
bits as additional padding. */
|
5597 |
|
|
for (itk = itk_char; itk != itk_none; ++itk)
|
5598 |
|
|
if (integer_types[itk] != NULL_TREE
|
5599 |
|
|
&& (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE),
|
5600 |
|
|
TYPE_SIZE (integer_types[itk]))
|
5601 |
|
|
|| INT_CST_LT (DECL_SIZE (field),
|
5602 |
|
|
TYPE_SIZE (integer_types[itk]))))
|
5603 |
|
|
break;
|
5604 |
|
|
|
5605 |
|
|
/* ITK now indicates a type that is too large for the
|
5606 |
|
|
field. We have to back up by one to find the largest
|
5607 |
|
|
type that fits. */
|
5608 |
|
|
do
|
5609 |
|
|
{
|
5610 |
|
|
--itk;
|
5611 |
|
|
integer_type = integer_types[itk];
|
5612 |
|
|
} while (itk > 0 && integer_type == NULL_TREE);
|
5613 |
|
|
|
5614 |
|
|
/* Figure out how much additional padding is required. GCC
|
5615 |
|
|
3.2 always created a padding field, even if it had zero
|
5616 |
|
|
width. */
|
5617 |
|
|
if (!abi_version_at_least (2)
|
5618 |
|
|
|| INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
|
5619 |
|
|
{
|
5620 |
|
|
if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
|
5621 |
|
|
/* In a union, the padding field must have the full width
|
5622 |
|
|
of the bit-field; all fields start at offset zero. */
|
5623 |
|
|
padding = DECL_SIZE (field);
|
5624 |
|
|
else
|
5625 |
|
|
{
|
5626 |
|
|
if (TREE_CODE (t) == UNION_TYPE)
|
5627 |
|
|
warning (OPT_Wabi, "size assigned to %qT may not be "
|
5628 |
|
|
"ABI-compliant and may change in a future "
|
5629 |
|
|
"version of GCC",
|
5630 |
|
|
t);
|
5631 |
|
|
padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
|
5632 |
|
|
TYPE_SIZE (integer_type));
|
5633 |
|
|
}
|
5634 |
|
|
}
|
5635 |
|
|
#ifdef PCC_BITFIELD_TYPE_MATTERS
|
5636 |
|
|
/* An unnamed bitfield does not normally affect the
|
5637 |
|
|
alignment of the containing class on a target where
|
5638 |
|
|
PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
|
5639 |
|
|
make any exceptions for unnamed bitfields when the
|
5640 |
|
|
bitfields are longer than their types. Therefore, we
|
5641 |
|
|
temporarily give the field a name. */
|
5642 |
|
|
if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
|
5643 |
|
|
{
|
5644 |
|
|
was_unnamed_p = true;
|
5645 |
|
|
DECL_NAME (field) = make_anon_name ();
|
5646 |
|
|
}
|
5647 |
|
|
#endif
|
5648 |
|
|
DECL_SIZE (field) = TYPE_SIZE (integer_type);
|
5649 |
|
|
DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
|
5650 |
|
|
DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
|
5651 |
|
|
layout_nonempty_base_or_field (rli, field, NULL_TREE,
|
5652 |
|
|
empty_base_offsets);
|
5653 |
|
|
if (was_unnamed_p)
|
5654 |
|
|
DECL_NAME (field) = NULL_TREE;
|
5655 |
|
|
/* Now that layout has been performed, set the size of the
|
5656 |
|
|
field to the size of its declared type; the rest of the
|
5657 |
|
|
field is effectively invisible. */
|
5658 |
|
|
DECL_SIZE (field) = TYPE_SIZE (type);
|
5659 |
|
|
/* We must also reset the DECL_MODE of the field. */
|
5660 |
|
|
if (abi_version_at_least (2))
|
5661 |
|
|
DECL_MODE (field) = TYPE_MODE (type);
|
5662 |
|
|
else if (warn_abi
|
5663 |
|
|
&& DECL_MODE (field) != TYPE_MODE (type))
|
5664 |
|
|
/* Versions of G++ before G++ 3.4 did not reset the
|
5665 |
|
|
DECL_MODE. */
|
5666 |
|
|
warning (OPT_Wabi,
|
5667 |
|
|
"the offset of %qD may not be ABI-compliant and may "
|
5668 |
|
|
"change in a future version of GCC", field);
|
5669 |
|
|
}
|
5670 |
|
|
else
|
5671 |
|
|
layout_nonempty_base_or_field (rli, field, NULL_TREE,
|
5672 |
|
|
empty_base_offsets);
|
5673 |
|
|
|
5674 |
|
|
/* Remember the location of any empty classes in FIELD. */
|
5675 |
|
|
if (abi_version_at_least (2))
|
5676 |
|
|
record_subobject_offsets (TREE_TYPE (field),
|
5677 |
|
|
byte_position(field),
|
5678 |
|
|
empty_base_offsets,
|
5679 |
|
|
/*is_data_member=*/true);
|
5680 |
|
|
|
5681 |
|
|
/* If a bit-field does not immediately follow another bit-field,
|
5682 |
|
|
and yet it starts in the middle of a byte, we have failed to
|
5683 |
|
|
comply with the ABI. */
|
5684 |
|
|
if (warn_abi
|
5685 |
|
|
&& DECL_C_BIT_FIELD (field)
|
5686 |
|
|
/* The TREE_NO_WARNING flag gets set by Objective-C when
|
5687 |
|
|
laying out an Objective-C class. The ObjC ABI differs
|
5688 |
|
|
from the C++ ABI, and so we do not want a warning
|
5689 |
|
|
here. */
|
5690 |
|
|
&& !TREE_NO_WARNING (field)
|
5691 |
|
|
&& !last_field_was_bitfield
|
5692 |
|
|
&& !integer_zerop (size_binop (TRUNC_MOD_EXPR,
|
5693 |
|
|
DECL_FIELD_BIT_OFFSET (field),
|
5694 |
|
|
bitsize_unit_node)))
|
5695 |
|
|
warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
|
5696 |
|
|
"change in a future version of GCC", field);
|
5697 |
|
|
|
5698 |
|
|
/* G++ used to use DECL_FIELD_OFFSET as if it were the byte
|
5699 |
|
|
offset of the field. */
|
5700 |
|
|
if (warn_abi
|
5701 |
|
|
&& !abi_version_at_least (2)
|
5702 |
|
|
&& !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
|
5703 |
|
|
byte_position (field))
|
5704 |
|
|
&& contains_empty_class_p (TREE_TYPE (field)))
|
5705 |
|
|
warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
|
5706 |
|
|
"classes to be placed at different locations in a "
|
5707 |
|
|
"future version of GCC", field);
|
5708 |
|
|
|
5709 |
|
|
/* The middle end uses the type of expressions to determine the
|
5710 |
|
|
possible range of expression values. In order to optimize
|
5711 |
|
|
"x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
|
5712 |
|
|
must be made aware of the width of "i", via its type.
|
5713 |
|
|
|
5714 |
|
|
Because C++ does not have integer types of arbitrary width,
|
5715 |
|
|
we must (for the purposes of the front end) convert from the
|
5716 |
|
|
type assigned here to the declared type of the bitfield
|
5717 |
|
|
whenever a bitfield expression is used as an rvalue.
|
5718 |
|
|
Similarly, when assigning a value to a bitfield, the value
|
5719 |
|
|
must be converted to the type given the bitfield here. */
|
5720 |
|
|
if (DECL_C_BIT_FIELD (field))
|
5721 |
|
|
{
|
5722 |
|
|
unsigned HOST_WIDE_INT width;
|
5723 |
|
|
tree ftype = TREE_TYPE (field);
|
5724 |
|
|
width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
|
5725 |
|
|
if (width != TYPE_PRECISION (ftype))
|
5726 |
|
|
{
|
5727 |
|
|
TREE_TYPE (field)
|
5728 |
|
|
= c_build_bitfield_integer_type (width,
|
5729 |
|
|
TYPE_UNSIGNED (ftype));
|
5730 |
|
|
TREE_TYPE (field)
|
5731 |
|
|
= cp_build_qualified_type (TREE_TYPE (field),
|
5732 |
|
|
cp_type_quals (ftype));
|
5733 |
|
|
}
|
5734 |
|
|
}
|
5735 |
|
|
|
5736 |
|
|
/* If we needed additional padding after this field, add it
|
5737 |
|
|
now. */
|
5738 |
|
|
if (padding)
|
5739 |
|
|
{
|
5740 |
|
|
tree padding_field;
|
5741 |
|
|
|
5742 |
|
|
padding_field = build_decl (input_location,
|
5743 |
|
|
FIELD_DECL,
|
5744 |
|
|
NULL_TREE,
|
5745 |
|
|
char_type_node);
|
5746 |
|
|
DECL_BIT_FIELD (padding_field) = 1;
|
5747 |
|
|
DECL_SIZE (padding_field) = padding;
|
5748 |
|
|
DECL_CONTEXT (padding_field) = t;
|
5749 |
|
|
DECL_ARTIFICIAL (padding_field) = 1;
|
5750 |
|
|
DECL_IGNORED_P (padding_field) = 1;
|
5751 |
|
|
layout_nonempty_base_or_field (rli, padding_field,
|
5752 |
|
|
NULL_TREE,
|
5753 |
|
|
empty_base_offsets);
|
5754 |
|
|
}
|
5755 |
|
|
|
5756 |
|
|
last_field_was_bitfield = DECL_C_BIT_FIELD (field);
|
5757 |
|
|
}
|
5758 |
|
|
|
5759 |
|
|
if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
|
5760 |
|
|
{
|
5761 |
|
|
/* Make sure that we are on a byte boundary so that the size of
|
5762 |
|
|
the class without virtual bases will always be a round number
|
5763 |
|
|
of bytes. */
|
5764 |
|
|
rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
|
5765 |
|
|
normalize_rli (rli);
|
5766 |
|
|
}
|
5767 |
|
|
|
5768 |
|
|
/* G++ 3.2 does not allow virtual bases to be overlaid with tail
|
5769 |
|
|
padding. */
|
5770 |
|
|
if (!abi_version_at_least (2))
|
5771 |
|
|
include_empty_classes(rli);
|
5772 |
|
|
|
5773 |
|
|
/* Delete all zero-width bit-fields from the list of fields. Now
|
5774 |
|
|
that the type is laid out they are no longer important. */
|
5775 |
|
|
remove_zero_width_bit_fields (t);
|
5776 |
|
|
|
5777 |
|
|
/* Create the version of T used for virtual bases. We do not use
|
5778 |
|
|
make_class_type for this version; this is an artificial type. For
|
5779 |
|
|
a POD type, we just reuse T. */
|
5780 |
|
|
if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
|
5781 |
|
|
{
|
5782 |
|
|
base_t = make_node (TREE_CODE (t));
|
5783 |
|
|
|
5784 |
|
|
/* Set the size and alignment for the new type. In G++ 3.2, all
|
5785 |
|
|
empty classes were considered to have size zero when used as
|
5786 |
|
|
base classes. */
|
5787 |
|
|
if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
|
5788 |
|
|
{
|
5789 |
|
|
TYPE_SIZE (base_t) = bitsize_zero_node;
|
5790 |
|
|
TYPE_SIZE_UNIT (base_t) = size_zero_node;
|
5791 |
|
|
if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
|
5792 |
|
|
warning (OPT_Wabi,
|
5793 |
|
|
"layout of classes derived from empty class %qT "
|
5794 |
|
|
"may change in a future version of GCC",
|
5795 |
|
|
t);
|
5796 |
|
|
}
|
5797 |
|
|
else
|
5798 |
|
|
{
|
5799 |
|
|
tree eoc;
|
5800 |
|
|
|
5801 |
|
|
/* If the ABI version is not at least two, and the last
|
5802 |
|
|
field was a bit-field, RLI may not be on a byte
|
5803 |
|
|
boundary. In particular, rli_size_unit_so_far might
|
5804 |
|
|
indicate the last complete byte, while rli_size_so_far
|
5805 |
|
|
indicates the total number of bits used. Therefore,
|
5806 |
|
|
rli_size_so_far, rather than rli_size_unit_so_far, is
|
5807 |
|
|
used to compute TYPE_SIZE_UNIT. */
|
5808 |
|
|
eoc = end_of_class (t, /*include_virtuals_p=*/0);
|
5809 |
|
|
TYPE_SIZE_UNIT (base_t)
|
5810 |
|
|
= size_binop (MAX_EXPR,
|
5811 |
|
|
convert (sizetype,
|
5812 |
|
|
size_binop (CEIL_DIV_EXPR,
|
5813 |
|
|
rli_size_so_far (rli),
|
5814 |
|
|
bitsize_int (BITS_PER_UNIT))),
|
5815 |
|
|
eoc);
|
5816 |
|
|
TYPE_SIZE (base_t)
|
5817 |
|
|
= size_binop (MAX_EXPR,
|
5818 |
|
|
rli_size_so_far (rli),
|
5819 |
|
|
size_binop (MULT_EXPR,
|
5820 |
|
|
convert (bitsizetype, eoc),
|
5821 |
|
|
bitsize_int (BITS_PER_UNIT)));
|
5822 |
|
|
}
|
5823 |
|
|
TYPE_ALIGN (base_t) = rli->record_align;
|
5824 |
|
|
TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
|
5825 |
|
|
|
5826 |
|
|
/* Copy the fields from T. */
|
5827 |
|
|
next_field = &TYPE_FIELDS (base_t);
|
5828 |
|
|
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
|
5829 |
|
|
if (TREE_CODE (field) == FIELD_DECL)
|
5830 |
|
|
{
|
5831 |
|
|
*next_field = build_decl (input_location,
|
5832 |
|
|
FIELD_DECL,
|
5833 |
|
|
DECL_NAME (field),
|
5834 |
|
|
TREE_TYPE (field));
|
5835 |
|
|
DECL_CONTEXT (*next_field) = base_t;
|
5836 |
|
|
DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
|
5837 |
|
|
DECL_FIELD_BIT_OFFSET (*next_field)
|
5838 |
|
|
= DECL_FIELD_BIT_OFFSET (field);
|
5839 |
|
|
DECL_SIZE (*next_field) = DECL_SIZE (field);
|
5840 |
|
|
DECL_MODE (*next_field) = DECL_MODE (field);
|
5841 |
|
|
next_field = &DECL_CHAIN (*next_field);
|
5842 |
|
|
}
|
5843 |
|
|
|
5844 |
|
|
/* Record the base version of the type. */
|
5845 |
|
|
CLASSTYPE_AS_BASE (t) = base_t;
|
5846 |
|
|
TYPE_CONTEXT (base_t) = t;
|
5847 |
|
|
}
|
5848 |
|
|
else
|
5849 |
|
|
CLASSTYPE_AS_BASE (t) = t;
|
5850 |
|
|
|
5851 |
|
|
/* Every empty class contains an empty class. */
|
5852 |
|
|
if (CLASSTYPE_EMPTY_P (t))
|
5853 |
|
|
CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
|
5854 |
|
|
|
5855 |
|
|
/* Set the TYPE_DECL for this type to contain the right
|
5856 |
|
|
value for DECL_OFFSET, so that we can use it as part
|
5857 |
|
|
of a COMPONENT_REF for multiple inheritance. */
|
5858 |
|
|
layout_decl (TYPE_MAIN_DECL (t), 0);
|
5859 |
|
|
|
5860 |
|
|
/* Now fix up any virtual base class types that we left lying
|
5861 |
|
|
around. We must get these done before we try to lay out the
|
5862 |
|
|
virtual function table. As a side-effect, this will remove the
|
5863 |
|
|
base subobject fields. */
|
5864 |
|
|
layout_virtual_bases (rli, empty_base_offsets);
|
5865 |
|
|
|
5866 |
|
|
/* Make sure that empty classes are reflected in RLI at this
|
5867 |
|
|
point. */
|
5868 |
|
|
include_empty_classes(rli);
|
5869 |
|
|
|
5870 |
|
|
/* Make sure not to create any structures with zero size. */
|
5871 |
|
|
if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
|
5872 |
|
|
place_field (rli,
|
5873 |
|
|
build_decl (input_location,
|
5874 |
|
|
FIELD_DECL, NULL_TREE, char_type_node));
|
5875 |
|
|
|
5876 |
|
|
/* If this is a non-POD, declaring it packed makes a difference to how it
|
5877 |
|
|
can be used as a field; don't let finalize_record_size undo it. */
|
5878 |
|
|
if (TYPE_PACKED (t) && !layout_pod_type_p (t))
|
5879 |
|
|
rli->packed_maybe_necessary = true;
|
5880 |
|
|
|
5881 |
|
|
/* Let the back end lay out the type. */
|
5882 |
|
|
finish_record_layout (rli, /*free_p=*/true);
|
5883 |
|
|
|
5884 |
|
|
/* Warn about bases that can't be talked about due to ambiguity. */
|
5885 |
|
|
warn_about_ambiguous_bases (t);
|
5886 |
|
|
|
5887 |
|
|
/* Now that we're done with layout, give the base fields the real types. */
|
5888 |
|
|
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
|
5889 |
|
|
if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
|
5890 |
|
|
TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
|
5891 |
|
|
|
5892 |
|
|
/* Clean up. */
|
5893 |
|
|
splay_tree_delete (empty_base_offsets);
|
5894 |
|
|
|
5895 |
|
|
if (CLASSTYPE_EMPTY_P (t)
|
5896 |
|
|
&& tree_int_cst_lt (sizeof_biggest_empty_class,
|
5897 |
|
|
TYPE_SIZE_UNIT (t)))
|
5898 |
|
|
sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
|
5899 |
|
|
}
|
5900 |
|
|
|
5901 |
|
|
/* Determine the "key method" for the class type indicated by TYPE,
|
5902 |
|
|
and set CLASSTYPE_KEY_METHOD accordingly. */
|
5903 |
|
|
|
5904 |
|
|
void
|
5905 |
|
|
determine_key_method (tree type)
|
5906 |
|
|
{
|
5907 |
|
|
tree method;
|
5908 |
|
|
|
5909 |
|
|
if (TYPE_FOR_JAVA (type)
|
5910 |
|
|
|| processing_template_decl
|
5911 |
|
|
|| CLASSTYPE_TEMPLATE_INSTANTIATION (type)
|
5912 |
|
|
|| CLASSTYPE_INTERFACE_KNOWN (type))
|
5913 |
|
|
return;
|
5914 |
|
|
|
5915 |
|
|
/* The key method is the first non-pure virtual function that is not
|
5916 |
|
|
inline at the point of class definition. On some targets the
|
5917 |
|
|
key function may not be inline; those targets should not call
|
5918 |
|
|
this function until the end of the translation unit. */
|
5919 |
|
|
for (method = TYPE_METHODS (type); method != NULL_TREE;
|
5920 |
|
|
method = DECL_CHAIN (method))
|
5921 |
|
|
if (DECL_VINDEX (method) != NULL_TREE
|
5922 |
|
|
&& ! DECL_DECLARED_INLINE_P (method)
|
5923 |
|
|
&& ! DECL_PURE_VIRTUAL_P (method))
|
5924 |
|
|
{
|
5925 |
|
|
CLASSTYPE_KEY_METHOD (type) = method;
|
5926 |
|
|
break;
|
5927 |
|
|
}
|
5928 |
|
|
|
5929 |
|
|
return;
|
5930 |
|
|
}
|
5931 |
|
|
|
5932 |
|
|
|
5933 |
|
|
/* Allocate and return an instance of struct sorted_fields_type with
|
5934 |
|
|
N fields. */
|
5935 |
|
|
|
5936 |
|
|
static struct sorted_fields_type *
|
5937 |
|
|
sorted_fields_type_new (int n)
|
5938 |
|
|
{
|
5939 |
|
|
struct sorted_fields_type *sft;
|
5940 |
|
|
sft = ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type)
|
5941 |
|
|
+ n * sizeof (tree));
|
5942 |
|
|
sft->len = n;
|
5943 |
|
|
|
5944 |
|
|
return sft;
|
5945 |
|
|
}
|
5946 |
|
|
|
5947 |
|
|
|
5948 |
|
|
/* Perform processing required when the definition of T (a class type)
|
5949 |
|
|
is complete. */
|
5950 |
|
|
|
5951 |
|
|
void
|
5952 |
|
|
finish_struct_1 (tree t)
|
5953 |
|
|
{
|
5954 |
|
|
tree x;
|
5955 |
|
|
/* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
|
5956 |
|
|
tree virtuals = NULL_TREE;
|
5957 |
|
|
int n_fields = 0;
|
5958 |
|
|
|
5959 |
|
|
if (COMPLETE_TYPE_P (t))
|
5960 |
|
|
{
|
5961 |
|
|
gcc_assert (MAYBE_CLASS_TYPE_P (t));
|
5962 |
|
|
error ("redefinition of %q#T", t);
|
5963 |
|
|
popclass ();
|
5964 |
|
|
return;
|
5965 |
|
|
}
|
5966 |
|
|
|
5967 |
|
|
/* If this type was previously laid out as a forward reference,
|
5968 |
|
|
make sure we lay it out again. */
|
5969 |
|
|
TYPE_SIZE (t) = NULL_TREE;
|
5970 |
|
|
CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
|
5971 |
|
|
|
5972 |
|
|
/* Make assumptions about the class; we'll reset the flags if
|
5973 |
|
|
necessary. */
|
5974 |
|
|
CLASSTYPE_EMPTY_P (t) = 1;
|
5975 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
|
5976 |
|
|
CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
|
5977 |
|
|
CLASSTYPE_LITERAL_P (t) = true;
|
5978 |
|
|
|
5979 |
|
|
/* Do end-of-class semantic processing: checking the validity of the
|
5980 |
|
|
bases and members and add implicitly generated methods. */
|
5981 |
|
|
check_bases_and_members (t);
|
5982 |
|
|
|
5983 |
|
|
/* Find the key method. */
|
5984 |
|
|
if (TYPE_CONTAINS_VPTR_P (t))
|
5985 |
|
|
{
|
5986 |
|
|
/* The Itanium C++ ABI permits the key method to be chosen when
|
5987 |
|
|
the class is defined -- even though the key method so
|
5988 |
|
|
selected may later turn out to be an inline function. On
|
5989 |
|
|
some systems (such as ARM Symbian OS) the key method cannot
|
5990 |
|
|
be determined until the end of the translation unit. On such
|
5991 |
|
|
systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
|
5992 |
|
|
will cause the class to be added to KEYED_CLASSES. Then, in
|
5993 |
|
|
finish_file we will determine the key method. */
|
5994 |
|
|
if (targetm.cxx.key_method_may_be_inline ())
|
5995 |
|
|
determine_key_method (t);
|
5996 |
|
|
|
5997 |
|
|
/* If a polymorphic class has no key method, we may emit the vtable
|
5998 |
|
|
in every translation unit where the class definition appears. */
|
5999 |
|
|
if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
|
6000 |
|
|
keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
|
6001 |
|
|
}
|
6002 |
|
|
|
6003 |
|
|
/* Layout the class itself. */
|
6004 |
|
|
layout_class_type (t, &virtuals);
|
6005 |
|
|
if (CLASSTYPE_AS_BASE (t) != t)
|
6006 |
|
|
/* We use the base type for trivial assignments, and hence it
|
6007 |
|
|
needs a mode. */
|
6008 |
|
|
compute_record_mode (CLASSTYPE_AS_BASE (t));
|
6009 |
|
|
|
6010 |
|
|
virtuals = modify_all_vtables (t, nreverse (virtuals));
|
6011 |
|
|
|
6012 |
|
|
/* If necessary, create the primary vtable for this class. */
|
6013 |
|
|
if (virtuals || TYPE_CONTAINS_VPTR_P (t))
|
6014 |
|
|
{
|
6015 |
|
|
/* We must enter these virtuals into the table. */
|
6016 |
|
|
if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
|
6017 |
|
|
build_primary_vtable (NULL_TREE, t);
|
6018 |
|
|
else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
|
6019 |
|
|
/* Here we know enough to change the type of our virtual
|
6020 |
|
|
function table, but we will wait until later this function. */
|
6021 |
|
|
build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
|
6022 |
|
|
}
|
6023 |
|
|
|
6024 |
|
|
if (TYPE_CONTAINS_VPTR_P (t))
|
6025 |
|
|
{
|
6026 |
|
|
int vindex;
|
6027 |
|
|
tree fn;
|
6028 |
|
|
|
6029 |
|
|
if (BINFO_VTABLE (TYPE_BINFO (t)))
|
6030 |
|
|
gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
|
6031 |
|
|
if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
|
6032 |
|
|
gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
|
6033 |
|
|
|
6034 |
|
|
/* Add entries for virtual functions introduced by this class. */
|
6035 |
|
|
BINFO_VIRTUALS (TYPE_BINFO (t))
|
6036 |
|
|
= chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
|
6037 |
|
|
|
6038 |
|
|
/* Set DECL_VINDEX for all functions declared in this class. */
|
6039 |
|
|
for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
|
6040 |
|
|
fn;
|
6041 |
|
|
fn = TREE_CHAIN (fn),
|
6042 |
|
|
vindex += (TARGET_VTABLE_USES_DESCRIPTORS
|
6043 |
|
|
? TARGET_VTABLE_USES_DESCRIPTORS : 1))
|
6044 |
|
|
{
|
6045 |
|
|
tree fndecl = BV_FN (fn);
|
6046 |
|
|
|
6047 |
|
|
if (DECL_THUNK_P (fndecl))
|
6048 |
|
|
/* A thunk. We should never be calling this entry directly
|
6049 |
|
|
from this vtable -- we'd use the entry for the non
|
6050 |
|
|
thunk base function. */
|
6051 |
|
|
DECL_VINDEX (fndecl) = NULL_TREE;
|
6052 |
|
|
else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
|
6053 |
|
|
DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
|
6054 |
|
|
}
|
6055 |
|
|
}
|
6056 |
|
|
|
6057 |
|
|
finish_struct_bits (t);
|
6058 |
|
|
set_method_tm_attributes (t);
|
6059 |
|
|
|
6060 |
|
|
/* Complete the rtl for any static member objects of the type we're
|
6061 |
|
|
working on. */
|
6062 |
|
|
for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
|
6063 |
|
|
if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
|
6064 |
|
|
&& TREE_TYPE (x) != error_mark_node
|
6065 |
|
|
&& same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
|
6066 |
|
|
DECL_MODE (x) = TYPE_MODE (t);
|
6067 |
|
|
|
6068 |
|
|
/* Done with FIELDS...now decide whether to sort these for
|
6069 |
|
|
faster lookups later.
|
6070 |
|
|
|
6071 |
|
|
We use a small number because most searches fail (succeeding
|
6072 |
|
|
ultimately as the search bores through the inheritance
|
6073 |
|
|
hierarchy), and we want this failure to occur quickly. */
|
6074 |
|
|
|
6075 |
|
|
n_fields = count_fields (TYPE_FIELDS (t));
|
6076 |
|
|
if (n_fields > 7)
|
6077 |
|
|
{
|
6078 |
|
|
struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
|
6079 |
|
|
add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
|
6080 |
|
|
qsort (field_vec->elts, n_fields, sizeof (tree),
|
6081 |
|
|
field_decl_cmp);
|
6082 |
|
|
CLASSTYPE_SORTED_FIELDS (t) = field_vec;
|
6083 |
|
|
}
|
6084 |
|
|
|
6085 |
|
|
/* Complain if one of the field types requires lower visibility. */
|
6086 |
|
|
constrain_class_visibility (t);
|
6087 |
|
|
|
6088 |
|
|
/* Make the rtl for any new vtables we have created, and unmark
|
6089 |
|
|
the base types we marked. */
|
6090 |
|
|
finish_vtbls (t);
|
6091 |
|
|
|
6092 |
|
|
/* Build the VTT for T. */
|
6093 |
|
|
build_vtt (t);
|
6094 |
|
|
|
6095 |
|
|
/* This warning does not make sense for Java classes, since they
|
6096 |
|
|
cannot have destructors. */
|
6097 |
|
|
if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
|
6098 |
|
|
{
|
6099 |
|
|
tree dtor;
|
6100 |
|
|
|
6101 |
|
|
dtor = CLASSTYPE_DESTRUCTORS (t);
|
6102 |
|
|
if (/* An implicitly declared destructor is always public. And,
|
6103 |
|
|
if it were virtual, we would have created it by now. */
|
6104 |
|
|
!dtor
|
6105 |
|
|
|| (!DECL_VINDEX (dtor)
|
6106 |
|
|
&& (/* public non-virtual */
|
6107 |
|
|
(!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
|
6108 |
|
|
|| (/* non-public non-virtual with friends */
|
6109 |
|
|
(TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
|
6110 |
|
|
&& (CLASSTYPE_FRIEND_CLASSES (t)
|
6111 |
|
|
|| DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
|
6112 |
|
|
warning (OPT_Wnon_virtual_dtor,
|
6113 |
|
|
"%q#T has virtual functions and accessible"
|
6114 |
|
|
" non-virtual destructor", t);
|
6115 |
|
|
}
|
6116 |
|
|
|
6117 |
|
|
complete_vars (t);
|
6118 |
|
|
|
6119 |
|
|
if (warn_overloaded_virtual)
|
6120 |
|
|
warn_hidden (t);
|
6121 |
|
|
|
6122 |
|
|
/* Class layout, assignment of virtual table slots, etc., is now
|
6123 |
|
|
complete. Give the back end a chance to tweak the visibility of
|
6124 |
|
|
the class or perform any other required target modifications. */
|
6125 |
|
|
targetm.cxx.adjust_class_at_definition (t);
|
6126 |
|
|
|
6127 |
|
|
maybe_suppress_debug_info (t);
|
6128 |
|
|
|
6129 |
|
|
dump_class_hierarchy (t);
|
6130 |
|
|
|
6131 |
|
|
/* Finish debugging output for this type. */
|
6132 |
|
|
rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
|
6133 |
|
|
|
6134 |
|
|
if (TYPE_TRANSPARENT_AGGR (t))
|
6135 |
|
|
{
|
6136 |
|
|
tree field = first_field (t);
|
6137 |
|
|
if (field == NULL_TREE || error_operand_p (field))
|
6138 |
|
|
{
|
6139 |
|
|
error ("type transparent class %qT does not have any fields", t);
|
6140 |
|
|
TYPE_TRANSPARENT_AGGR (t) = 0;
|
6141 |
|
|
}
|
6142 |
|
|
else if (DECL_ARTIFICIAL (field))
|
6143 |
|
|
{
|
6144 |
|
|
if (DECL_FIELD_IS_BASE (field))
|
6145 |
|
|
error ("type transparent class %qT has base classes", t);
|
6146 |
|
|
else
|
6147 |
|
|
{
|
6148 |
|
|
gcc_checking_assert (DECL_VIRTUAL_P (field));
|
6149 |
|
|
error ("type transparent class %qT has virtual functions", t);
|
6150 |
|
|
}
|
6151 |
|
|
TYPE_TRANSPARENT_AGGR (t) = 0;
|
6152 |
|
|
}
|
6153 |
|
|
}
|
6154 |
|
|
}
|
6155 |
|
|
|
6156 |
|
|
/* When T was built up, the member declarations were added in reverse
|
6157 |
|
|
order. Rearrange them to declaration order. */
|
6158 |
|
|
|
6159 |
|
|
void
|
6160 |
|
|
unreverse_member_declarations (tree t)
|
6161 |
|
|
{
|
6162 |
|
|
tree next;
|
6163 |
|
|
tree prev;
|
6164 |
|
|
tree x;
|
6165 |
|
|
|
6166 |
|
|
/* The following lists are all in reverse order. Put them in
|
6167 |
|
|
declaration order now. */
|
6168 |
|
|
TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
|
6169 |
|
|
CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
|
6170 |
|
|
|
6171 |
|
|
/* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
|
6172 |
|
|
reverse order, so we can't just use nreverse. */
|
6173 |
|
|
prev = NULL_TREE;
|
6174 |
|
|
for (x = TYPE_FIELDS (t);
|
6175 |
|
|
x && TREE_CODE (x) != TYPE_DECL;
|
6176 |
|
|
x = next)
|
6177 |
|
|
{
|
6178 |
|
|
next = DECL_CHAIN (x);
|
6179 |
|
|
DECL_CHAIN (x) = prev;
|
6180 |
|
|
prev = x;
|
6181 |
|
|
}
|
6182 |
|
|
if (prev)
|
6183 |
|
|
{
|
6184 |
|
|
DECL_CHAIN (TYPE_FIELDS (t)) = x;
|
6185 |
|
|
if (prev)
|
6186 |
|
|
TYPE_FIELDS (t) = prev;
|
6187 |
|
|
}
|
6188 |
|
|
}
|
6189 |
|
|
|
6190 |
|
|
tree
|
6191 |
|
|
finish_struct (tree t, tree attributes)
|
6192 |
|
|
{
|
6193 |
|
|
location_t saved_loc = input_location;
|
6194 |
|
|
|
6195 |
|
|
/* Now that we've got all the field declarations, reverse everything
|
6196 |
|
|
as necessary. */
|
6197 |
|
|
unreverse_member_declarations (t);
|
6198 |
|
|
|
6199 |
|
|
cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
|
6200 |
|
|
|
6201 |
|
|
/* Nadger the current location so that diagnostics point to the start of
|
6202 |
|
|
the struct, not the end. */
|
6203 |
|
|
input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
|
6204 |
|
|
|
6205 |
|
|
if (processing_template_decl)
|
6206 |
|
|
{
|
6207 |
|
|
tree x;
|
6208 |
|
|
|
6209 |
|
|
finish_struct_methods (t);
|
6210 |
|
|
TYPE_SIZE (t) = bitsize_zero_node;
|
6211 |
|
|
TYPE_SIZE_UNIT (t) = size_zero_node;
|
6212 |
|
|
|
6213 |
|
|
/* We need to emit an error message if this type was used as a parameter
|
6214 |
|
|
and it is an abstract type, even if it is a template. We construct
|
6215 |
|
|
a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
|
6216 |
|
|
account and we call complete_vars with this type, which will check
|
6217 |
|
|
the PARM_DECLS. Note that while the type is being defined,
|
6218 |
|
|
CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
|
6219 |
|
|
(see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
|
6220 |
|
|
CLASSTYPE_PURE_VIRTUALS (t) = NULL;
|
6221 |
|
|
for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
|
6222 |
|
|
if (DECL_PURE_VIRTUAL_P (x))
|
6223 |
|
|
VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
|
6224 |
|
|
complete_vars (t);
|
6225 |
|
|
/* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
|
6226 |
|
|
an enclosing scope is a template class, so that this function be
|
6227 |
|
|
found by lookup_fnfields_1 when the using declaration is not
|
6228 |
|
|
instantiated yet. */
|
6229 |
|
|
for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
|
6230 |
|
|
if (TREE_CODE (x) == USING_DECL)
|
6231 |
|
|
{
|
6232 |
|
|
tree fn = strip_using_decl (x);
|
6233 |
|
|
if (is_overloaded_fn (fn))
|
6234 |
|
|
for (; fn; fn = OVL_NEXT (fn))
|
6235 |
|
|
add_method (t, OVL_CURRENT (fn), x);
|
6236 |
|
|
}
|
6237 |
|
|
|
6238 |
|
|
/* Remember current #pragma pack value. */
|
6239 |
|
|
TYPE_PRECISION (t) = maximum_field_alignment;
|
6240 |
|
|
}
|
6241 |
|
|
else
|
6242 |
|
|
finish_struct_1 (t);
|
6243 |
|
|
|
6244 |
|
|
input_location = saved_loc;
|
6245 |
|
|
|
6246 |
|
|
TYPE_BEING_DEFINED (t) = 0;
|
6247 |
|
|
|
6248 |
|
|
if (current_class_type)
|
6249 |
|
|
popclass ();
|
6250 |
|
|
else
|
6251 |
|
|
error ("trying to finish struct, but kicked out due to previous parse errors");
|
6252 |
|
|
|
6253 |
|
|
if (processing_template_decl && at_function_scope_p ())
|
6254 |
|
|
add_stmt (build_min (TAG_DEFN, t));
|
6255 |
|
|
|
6256 |
|
|
return t;
|
6257 |
|
|
}
|
6258 |
|
|
|
6259 |
|
|
/* Return the dynamic type of INSTANCE, if known.
|
6260 |
|
|
Used to determine whether the virtual function table is needed
|
6261 |
|
|
or not.
|
6262 |
|
|
|
6263 |
|
|
*NONNULL is set iff INSTANCE can be known to be nonnull, regardless
|
6264 |
|
|
of our knowledge of its type. *NONNULL should be initialized
|
6265 |
|
|
before this function is called. */
|
6266 |
|
|
|
6267 |
|
|
static tree
|
6268 |
|
|
fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
|
6269 |
|
|
{
|
6270 |
|
|
#define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
|
6271 |
|
|
|
6272 |
|
|
switch (TREE_CODE (instance))
|
6273 |
|
|
{
|
6274 |
|
|
case INDIRECT_REF:
|
6275 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (instance)))
|
6276 |
|
|
return NULL_TREE;
|
6277 |
|
|
else
|
6278 |
|
|
return RECUR (TREE_OPERAND (instance, 0));
|
6279 |
|
|
|
6280 |
|
|
case CALL_EXPR:
|
6281 |
|
|
/* This is a call to a constructor, hence it's never zero. */
|
6282 |
|
|
if (TREE_HAS_CONSTRUCTOR (instance))
|
6283 |
|
|
{
|
6284 |
|
|
if (nonnull)
|
6285 |
|
|
*nonnull = 1;
|
6286 |
|
|
return TREE_TYPE (instance);
|
6287 |
|
|
}
|
6288 |
|
|
return NULL_TREE;
|
6289 |
|
|
|
6290 |
|
|
case SAVE_EXPR:
|
6291 |
|
|
/* This is a call to a constructor, hence it's never zero. */
|
6292 |
|
|
if (TREE_HAS_CONSTRUCTOR (instance))
|
6293 |
|
|
{
|
6294 |
|
|
if (nonnull)
|
6295 |
|
|
*nonnull = 1;
|
6296 |
|
|
return TREE_TYPE (instance);
|
6297 |
|
|
}
|
6298 |
|
|
return RECUR (TREE_OPERAND (instance, 0));
|
6299 |
|
|
|
6300 |
|
|
case POINTER_PLUS_EXPR:
|
6301 |
|
|
case PLUS_EXPR:
|
6302 |
|
|
case MINUS_EXPR:
|
6303 |
|
|
if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
|
6304 |
|
|
return RECUR (TREE_OPERAND (instance, 0));
|
6305 |
|
|
if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
|
6306 |
|
|
/* Propagate nonnull. */
|
6307 |
|
|
return RECUR (TREE_OPERAND (instance, 0));
|
6308 |
|
|
|
6309 |
|
|
return NULL_TREE;
|
6310 |
|
|
|
6311 |
|
|
CASE_CONVERT:
|
6312 |
|
|
return RECUR (TREE_OPERAND (instance, 0));
|
6313 |
|
|
|
6314 |
|
|
case ADDR_EXPR:
|
6315 |
|
|
instance = TREE_OPERAND (instance, 0);
|
6316 |
|
|
if (nonnull)
|
6317 |
|
|
{
|
6318 |
|
|
/* Just because we see an ADDR_EXPR doesn't mean we're dealing
|
6319 |
|
|
with a real object -- given &p->f, p can still be null. */
|
6320 |
|
|
tree t = get_base_address (instance);
|
6321 |
|
|
/* ??? Probably should check DECL_WEAK here. */
|
6322 |
|
|
if (t && DECL_P (t))
|
6323 |
|
|
*nonnull = 1;
|
6324 |
|
|
}
|
6325 |
|
|
return RECUR (instance);
|
6326 |
|
|
|
6327 |
|
|
case COMPONENT_REF:
|
6328 |
|
|
/* If this component is really a base class reference, then the field
|
6329 |
|
|
itself isn't definitive. */
|
6330 |
|
|
if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
|
6331 |
|
|
return RECUR (TREE_OPERAND (instance, 0));
|
6332 |
|
|
return RECUR (TREE_OPERAND (instance, 1));
|
6333 |
|
|
|
6334 |
|
|
case VAR_DECL:
|
6335 |
|
|
case FIELD_DECL:
|
6336 |
|
|
if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
|
6337 |
|
|
&& MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
|
6338 |
|
|
{
|
6339 |
|
|
if (nonnull)
|
6340 |
|
|
*nonnull = 1;
|
6341 |
|
|
return TREE_TYPE (TREE_TYPE (instance));
|
6342 |
|
|
}
|
6343 |
|
|
/* fall through... */
|
6344 |
|
|
case TARGET_EXPR:
|
6345 |
|
|
case PARM_DECL:
|
6346 |
|
|
case RESULT_DECL:
|
6347 |
|
|
if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
|
6348 |
|
|
{
|
6349 |
|
|
if (nonnull)
|
6350 |
|
|
*nonnull = 1;
|
6351 |
|
|
return TREE_TYPE (instance);
|
6352 |
|
|
}
|
6353 |
|
|
else if (instance == current_class_ptr)
|
6354 |
|
|
{
|
6355 |
|
|
if (nonnull)
|
6356 |
|
|
*nonnull = 1;
|
6357 |
|
|
|
6358 |
|
|
/* if we're in a ctor or dtor, we know our type. If
|
6359 |
|
|
current_class_ptr is set but we aren't in a function, we're in
|
6360 |
|
|
an NSDMI (and therefore a constructor). */
|
6361 |
|
|
if (current_scope () != current_function_decl
|
6362 |
|
|
|| (DECL_LANG_SPECIFIC (current_function_decl)
|
6363 |
|
|
&& (DECL_CONSTRUCTOR_P (current_function_decl)
|
6364 |
|
|
|| DECL_DESTRUCTOR_P (current_function_decl))))
|
6365 |
|
|
{
|
6366 |
|
|
if (cdtorp)
|
6367 |
|
|
*cdtorp = 1;
|
6368 |
|
|
return TREE_TYPE (TREE_TYPE (instance));
|
6369 |
|
|
}
|
6370 |
|
|
}
|
6371 |
|
|
else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
|
6372 |
|
|
{
|
6373 |
|
|
/* We only need one hash table because it is always left empty. */
|
6374 |
|
|
static htab_t ht;
|
6375 |
|
|
if (!ht)
|
6376 |
|
|
ht = htab_create (37,
|
6377 |
|
|
htab_hash_pointer,
|
6378 |
|
|
htab_eq_pointer,
|
6379 |
|
|
/*htab_del=*/NULL);
|
6380 |
|
|
|
6381 |
|
|
/* Reference variables should be references to objects. */
|
6382 |
|
|
if (nonnull)
|
6383 |
|
|
*nonnull = 1;
|
6384 |
|
|
|
6385 |
|
|
/* Enter the INSTANCE in a table to prevent recursion; a
|
6386 |
|
|
variable's initializer may refer to the variable
|
6387 |
|
|
itself. */
|
6388 |
|
|
if (TREE_CODE (instance) == VAR_DECL
|
6389 |
|
|
&& DECL_INITIAL (instance)
|
6390 |
|
|
&& !type_dependent_expression_p_push (DECL_INITIAL (instance))
|
6391 |
|
|
&& !htab_find (ht, instance))
|
6392 |
|
|
{
|
6393 |
|
|
tree type;
|
6394 |
|
|
void **slot;
|
6395 |
|
|
|
6396 |
|
|
slot = htab_find_slot (ht, instance, INSERT);
|
6397 |
|
|
*slot = instance;
|
6398 |
|
|
type = RECUR (DECL_INITIAL (instance));
|
6399 |
|
|
htab_remove_elt (ht, instance);
|
6400 |
|
|
|
6401 |
|
|
return type;
|
6402 |
|
|
}
|
6403 |
|
|
}
|
6404 |
|
|
return NULL_TREE;
|
6405 |
|
|
|
6406 |
|
|
default:
|
6407 |
|
|
return NULL_TREE;
|
6408 |
|
|
}
|
6409 |
|
|
#undef RECUR
|
6410 |
|
|
}
|
6411 |
|
|
|
6412 |
|
|
/* Return nonzero if the dynamic type of INSTANCE is known, and
|
6413 |
|
|
equivalent to the static type. We also handle the case where
|
6414 |
|
|
INSTANCE is really a pointer. Return negative if this is a
|
6415 |
|
|
ctor/dtor. There the dynamic type is known, but this might not be
|
6416 |
|
|
the most derived base of the original object, and hence virtual
|
6417 |
|
|
bases may not be layed out according to this type.
|
6418 |
|
|
|
6419 |
|
|
Used to determine whether the virtual function table is needed
|
6420 |
|
|
or not.
|
6421 |
|
|
|
6422 |
|
|
*NONNULL is set iff INSTANCE can be known to be nonnull, regardless
|
6423 |
|
|
of our knowledge of its type. *NONNULL should be initialized
|
6424 |
|
|
before this function is called. */
|
6425 |
|
|
|
6426 |
|
|
int
|
6427 |
|
|
resolves_to_fixed_type_p (tree instance, int* nonnull)
|
6428 |
|
|
{
|
6429 |
|
|
tree t = TREE_TYPE (instance);
|
6430 |
|
|
int cdtorp = 0;
|
6431 |
|
|
tree fixed;
|
6432 |
|
|
|
6433 |
|
|
if (processing_template_decl)
|
6434 |
|
|
{
|
6435 |
|
|
/* In a template we only care about the type of the result. */
|
6436 |
|
|
if (nonnull)
|
6437 |
|
|
*nonnull = true;
|
6438 |
|
|
return true;
|
6439 |
|
|
}
|
6440 |
|
|
|
6441 |
|
|
fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
|
6442 |
|
|
if (fixed == NULL_TREE)
|
6443 |
|
|
return 0;
|
6444 |
|
|
if (POINTER_TYPE_P (t))
|
6445 |
|
|
t = TREE_TYPE (t);
|
6446 |
|
|
if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
|
6447 |
|
|
return 0;
|
6448 |
|
|
return cdtorp ? -1 : 1;
|
6449 |
|
|
}
|
6450 |
|
|
|
6451 |
|
|
|
6452 |
|
|
void
|
6453 |
|
|
init_class_processing (void)
|
6454 |
|
|
{
|
6455 |
|
|
current_class_depth = 0;
|
6456 |
|
|
current_class_stack_size = 10;
|
6457 |
|
|
current_class_stack
|
6458 |
|
|
= XNEWVEC (struct class_stack_node, current_class_stack_size);
|
6459 |
|
|
local_classes = VEC_alloc (tree, gc, 8);
|
6460 |
|
|
sizeof_biggest_empty_class = size_zero_node;
|
6461 |
|
|
|
6462 |
|
|
ridpointers[(int) RID_PUBLIC] = access_public_node;
|
6463 |
|
|
ridpointers[(int) RID_PRIVATE] = access_private_node;
|
6464 |
|
|
ridpointers[(int) RID_PROTECTED] = access_protected_node;
|
6465 |
|
|
}
|
6466 |
|
|
|
6467 |
|
|
/* Restore the cached PREVIOUS_CLASS_LEVEL. */
|
6468 |
|
|
|
6469 |
|
|
static void
|
6470 |
|
|
restore_class_cache (void)
|
6471 |
|
|
{
|
6472 |
|
|
tree type;
|
6473 |
|
|
|
6474 |
|
|
/* We are re-entering the same class we just left, so we don't
|
6475 |
|
|
have to search the whole inheritance matrix to find all the
|
6476 |
|
|
decls to bind again. Instead, we install the cached
|
6477 |
|
|
class_shadowed list and walk through it binding names. */
|
6478 |
|
|
push_binding_level (previous_class_level);
|
6479 |
|
|
class_binding_level = previous_class_level;
|
6480 |
|
|
/* Restore IDENTIFIER_TYPE_VALUE. */
|
6481 |
|
|
for (type = class_binding_level->type_shadowed;
|
6482 |
|
|
type;
|
6483 |
|
|
type = TREE_CHAIN (type))
|
6484 |
|
|
SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
|
6485 |
|
|
}
|
6486 |
|
|
|
6487 |
|
|
/* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
|
6488 |
|
|
appropriate for TYPE.
|
6489 |
|
|
|
6490 |
|
|
So that we may avoid calls to lookup_name, we cache the _TYPE
|
6491 |
|
|
nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
|
6492 |
|
|
|
6493 |
|
|
For multiple inheritance, we perform a two-pass depth-first search
|
6494 |
|
|
of the type lattice. */
|
6495 |
|
|
|
6496 |
|
|
void
|
6497 |
|
|
pushclass (tree type)
|
6498 |
|
|
{
|
6499 |
|
|
class_stack_node_t csn;
|
6500 |
|
|
|
6501 |
|
|
type = TYPE_MAIN_VARIANT (type);
|
6502 |
|
|
|
6503 |
|
|
/* Make sure there is enough room for the new entry on the stack. */
|
6504 |
|
|
if (current_class_depth + 1 >= current_class_stack_size)
|
6505 |
|
|
{
|
6506 |
|
|
current_class_stack_size *= 2;
|
6507 |
|
|
current_class_stack
|
6508 |
|
|
= XRESIZEVEC (struct class_stack_node, current_class_stack,
|
6509 |
|
|
current_class_stack_size);
|
6510 |
|
|
}
|
6511 |
|
|
|
6512 |
|
|
/* Insert a new entry on the class stack. */
|
6513 |
|
|
csn = current_class_stack + current_class_depth;
|
6514 |
|
|
csn->name = current_class_name;
|
6515 |
|
|
csn->type = current_class_type;
|
6516 |
|
|
csn->access = current_access_specifier;
|
6517 |
|
|
csn->names_used = 0;
|
6518 |
|
|
csn->hidden = 0;
|
6519 |
|
|
current_class_depth++;
|
6520 |
|
|
|
6521 |
|
|
/* Now set up the new type. */
|
6522 |
|
|
current_class_name = TYPE_NAME (type);
|
6523 |
|
|
if (TREE_CODE (current_class_name) == TYPE_DECL)
|
6524 |
|
|
current_class_name = DECL_NAME (current_class_name);
|
6525 |
|
|
current_class_type = type;
|
6526 |
|
|
|
6527 |
|
|
/* By default, things in classes are private, while things in
|
6528 |
|
|
structures or unions are public. */
|
6529 |
|
|
current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
|
6530 |
|
|
? access_private_node
|
6531 |
|
|
: access_public_node);
|
6532 |
|
|
|
6533 |
|
|
if (previous_class_level
|
6534 |
|
|
&& type != previous_class_level->this_entity
|
6535 |
|
|
&& current_class_depth == 1)
|
6536 |
|
|
{
|
6537 |
|
|
/* Forcibly remove any old class remnants. */
|
6538 |
|
|
invalidate_class_lookup_cache ();
|
6539 |
|
|
}
|
6540 |
|
|
|
6541 |
|
|
if (!previous_class_level
|
6542 |
|
|
|| type != previous_class_level->this_entity
|
6543 |
|
|
|| current_class_depth > 1)
|
6544 |
|
|
pushlevel_class ();
|
6545 |
|
|
else
|
6546 |
|
|
restore_class_cache ();
|
6547 |
|
|
}
|
6548 |
|
|
|
6549 |
|
|
/* When we exit a toplevel class scope, we save its binding level so
|
6550 |
|
|
that we can restore it quickly. Here, we've entered some other
|
6551 |
|
|
class, so we must invalidate our cache. */
|
6552 |
|
|
|
6553 |
|
|
void
|
6554 |
|
|
invalidate_class_lookup_cache (void)
|
6555 |
|
|
{
|
6556 |
|
|
previous_class_level = NULL;
|
6557 |
|
|
}
|
6558 |
|
|
|
6559 |
|
|
/* Get out of the current class scope. If we were in a class scope
|
6560 |
|
|
previously, that is the one popped to. */
|
6561 |
|
|
|
6562 |
|
|
void
|
6563 |
|
|
popclass (void)
|
6564 |
|
|
{
|
6565 |
|
|
poplevel_class ();
|
6566 |
|
|
|
6567 |
|
|
current_class_depth--;
|
6568 |
|
|
current_class_name = current_class_stack[current_class_depth].name;
|
6569 |
|
|
current_class_type = current_class_stack[current_class_depth].type;
|
6570 |
|
|
current_access_specifier = current_class_stack[current_class_depth].access;
|
6571 |
|
|
if (current_class_stack[current_class_depth].names_used)
|
6572 |
|
|
splay_tree_delete (current_class_stack[current_class_depth].names_used);
|
6573 |
|
|
}
|
6574 |
|
|
|
6575 |
|
|
/* Mark the top of the class stack as hidden. */
|
6576 |
|
|
|
6577 |
|
|
void
|
6578 |
|
|
push_class_stack (void)
|
6579 |
|
|
{
|
6580 |
|
|
if (current_class_depth)
|
6581 |
|
|
++current_class_stack[current_class_depth - 1].hidden;
|
6582 |
|
|
}
|
6583 |
|
|
|
6584 |
|
|
/* Mark the top of the class stack as un-hidden. */
|
6585 |
|
|
|
6586 |
|
|
void
|
6587 |
|
|
pop_class_stack (void)
|
6588 |
|
|
{
|
6589 |
|
|
if (current_class_depth)
|
6590 |
|
|
--current_class_stack[current_class_depth - 1].hidden;
|
6591 |
|
|
}
|
6592 |
|
|
|
6593 |
|
|
/* Returns 1 if the class type currently being defined is either T or
|
6594 |
|
|
a nested type of T. */
|
6595 |
|
|
|
6596 |
|
|
bool
|
6597 |
|
|
currently_open_class (tree t)
|
6598 |
|
|
{
|
6599 |
|
|
int i;
|
6600 |
|
|
|
6601 |
|
|
if (!CLASS_TYPE_P (t))
|
6602 |
|
|
return false;
|
6603 |
|
|
|
6604 |
|
|
t = TYPE_MAIN_VARIANT (t);
|
6605 |
|
|
|
6606 |
|
|
/* We start looking from 1 because entry 0 is from global scope,
|
6607 |
|
|
and has no type. */
|
6608 |
|
|
for (i = current_class_depth; i > 0; --i)
|
6609 |
|
|
{
|
6610 |
|
|
tree c;
|
6611 |
|
|
if (i == current_class_depth)
|
6612 |
|
|
c = current_class_type;
|
6613 |
|
|
else
|
6614 |
|
|
{
|
6615 |
|
|
if (current_class_stack[i].hidden)
|
6616 |
|
|
break;
|
6617 |
|
|
c = current_class_stack[i].type;
|
6618 |
|
|
}
|
6619 |
|
|
if (!c)
|
6620 |
|
|
continue;
|
6621 |
|
|
if (same_type_p (c, t))
|
6622 |
|
|
return true;
|
6623 |
|
|
}
|
6624 |
|
|
return false;
|
6625 |
|
|
}
|
6626 |
|
|
|
6627 |
|
|
/* If either current_class_type or one of its enclosing classes are derived
|
6628 |
|
|
from T, return the appropriate type. Used to determine how we found
|
6629 |
|
|
something via unqualified lookup. */
|
6630 |
|
|
|
6631 |
|
|
tree
|
6632 |
|
|
currently_open_derived_class (tree t)
|
6633 |
|
|
{
|
6634 |
|
|
int i;
|
6635 |
|
|
|
6636 |
|
|
/* The bases of a dependent type are unknown. */
|
6637 |
|
|
if (dependent_type_p (t))
|
6638 |
|
|
return NULL_TREE;
|
6639 |
|
|
|
6640 |
|
|
if (!current_class_type)
|
6641 |
|
|
return NULL_TREE;
|
6642 |
|
|
|
6643 |
|
|
if (DERIVED_FROM_P (t, current_class_type))
|
6644 |
|
|
return current_class_type;
|
6645 |
|
|
|
6646 |
|
|
for (i = current_class_depth - 1; i > 0; --i)
|
6647 |
|
|
{
|
6648 |
|
|
if (current_class_stack[i].hidden)
|
6649 |
|
|
break;
|
6650 |
|
|
if (DERIVED_FROM_P (t, current_class_stack[i].type))
|
6651 |
|
|
return current_class_stack[i].type;
|
6652 |
|
|
}
|
6653 |
|
|
|
6654 |
|
|
return NULL_TREE;
|
6655 |
|
|
}
|
6656 |
|
|
|
6657 |
|
|
/* Returns the innermost class type which is not a lambda closure type. */
|
6658 |
|
|
|
6659 |
|
|
tree
|
6660 |
|
|
current_nonlambda_class_type (void)
|
6661 |
|
|
{
|
6662 |
|
|
int i;
|
6663 |
|
|
|
6664 |
|
|
/* We start looking from 1 because entry 0 is from global scope,
|
6665 |
|
|
and has no type. */
|
6666 |
|
|
for (i = current_class_depth; i > 0; --i)
|
6667 |
|
|
{
|
6668 |
|
|
tree c;
|
6669 |
|
|
if (i == current_class_depth)
|
6670 |
|
|
c = current_class_type;
|
6671 |
|
|
else
|
6672 |
|
|
{
|
6673 |
|
|
if (current_class_stack[i].hidden)
|
6674 |
|
|
break;
|
6675 |
|
|
c = current_class_stack[i].type;
|
6676 |
|
|
}
|
6677 |
|
|
if (!c)
|
6678 |
|
|
continue;
|
6679 |
|
|
if (!LAMBDA_TYPE_P (c))
|
6680 |
|
|
return c;
|
6681 |
|
|
}
|
6682 |
|
|
return NULL_TREE;
|
6683 |
|
|
}
|
6684 |
|
|
|
6685 |
|
|
/* When entering a class scope, all enclosing class scopes' names with
|
6686 |
|
|
static meaning (static variables, static functions, types and
|
6687 |
|
|
enumerators) have to be visible. This recursive function calls
|
6688 |
|
|
pushclass for all enclosing class contexts until global or a local
|
6689 |
|
|
scope is reached. TYPE is the enclosed class. */
|
6690 |
|
|
|
6691 |
|
|
void
|
6692 |
|
|
push_nested_class (tree type)
|
6693 |
|
|
{
|
6694 |
|
|
/* A namespace might be passed in error cases, like A::B:C. */
|
6695 |
|
|
if (type == NULL_TREE
|
6696 |
|
|
|| !CLASS_TYPE_P (type))
|
6697 |
|
|
return;
|
6698 |
|
|
|
6699 |
|
|
push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
|
6700 |
|
|
|
6701 |
|
|
pushclass (type);
|
6702 |
|
|
}
|
6703 |
|
|
|
6704 |
|
|
/* Undoes a push_nested_class call. */
|
6705 |
|
|
|
6706 |
|
|
void
|
6707 |
|
|
pop_nested_class (void)
|
6708 |
|
|
{
|
6709 |
|
|
tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
|
6710 |
|
|
|
6711 |
|
|
popclass ();
|
6712 |
|
|
if (context && CLASS_TYPE_P (context))
|
6713 |
|
|
pop_nested_class ();
|
6714 |
|
|
}
|
6715 |
|
|
|
6716 |
|
|
/* Returns the number of extern "LANG" blocks we are nested within. */
|
6717 |
|
|
|
6718 |
|
|
int
|
6719 |
|
|
current_lang_depth (void)
|
6720 |
|
|
{
|
6721 |
|
|
return VEC_length (tree, current_lang_base);
|
6722 |
|
|
}
|
6723 |
|
|
|
6724 |
|
|
/* Set global variables CURRENT_LANG_NAME to appropriate value
|
6725 |
|
|
so that behavior of name-mangling machinery is correct. */
|
6726 |
|
|
|
6727 |
|
|
void
|
6728 |
|
|
push_lang_context (tree name)
|
6729 |
|
|
{
|
6730 |
|
|
VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
|
6731 |
|
|
|
6732 |
|
|
if (name == lang_name_cplusplus)
|
6733 |
|
|
{
|
6734 |
|
|
current_lang_name = name;
|
6735 |
|
|
}
|
6736 |
|
|
else if (name == lang_name_java)
|
6737 |
|
|
{
|
6738 |
|
|
current_lang_name = name;
|
6739 |
|
|
/* DECL_IGNORED_P is initially set for these types, to avoid clutter.
|
6740 |
|
|
(See record_builtin_java_type in decl.c.) However, that causes
|
6741 |
|
|
incorrect debug entries if these types are actually used.
|
6742 |
|
|
So we re-enable debug output after extern "Java". */
|
6743 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
|
6744 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
|
6745 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
|
6746 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
|
6747 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
|
6748 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
|
6749 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
|
6750 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
|
6751 |
|
|
}
|
6752 |
|
|
else if (name == lang_name_c)
|
6753 |
|
|
{
|
6754 |
|
|
current_lang_name = name;
|
6755 |
|
|
}
|
6756 |
|
|
else
|
6757 |
|
|
error ("language string %<\"%E\"%> not recognized", name);
|
6758 |
|
|
}
|
6759 |
|
|
|
6760 |
|
|
/* Get out of the current language scope. */
|
6761 |
|
|
|
6762 |
|
|
void
|
6763 |
|
|
pop_lang_context (void)
|
6764 |
|
|
{
|
6765 |
|
|
current_lang_name = VEC_pop (tree, current_lang_base);
|
6766 |
|
|
}
|
6767 |
|
|
|
6768 |
|
|
/* Type instantiation routines. */
|
6769 |
|
|
|
6770 |
|
|
/* Given an OVERLOAD and a TARGET_TYPE, return the function that
|
6771 |
|
|
matches the TARGET_TYPE. If there is no satisfactory match, return
|
6772 |
|
|
error_mark_node, and issue an error & warning messages under
|
6773 |
|
|
control of FLAGS. Permit pointers to member function if FLAGS
|
6774 |
|
|
permits. If TEMPLATE_ONLY, the name of the overloaded function was
|
6775 |
|
|
a template-id, and EXPLICIT_TARGS are the explicitly provided
|
6776 |
|
|
template arguments.
|
6777 |
|
|
|
6778 |
|
|
If OVERLOAD is for one or more member functions, then ACCESS_PATH
|
6779 |
|
|
is the base path used to reference those member functions. If
|
6780 |
|
|
TF_NO_ACCESS_CONTROL is not set in FLAGS, and the address is
|
6781 |
|
|
resolved to a member function, access checks will be performed and
|
6782 |
|
|
errors issued if appropriate. */
|
6783 |
|
|
|
6784 |
|
|
static tree
|
6785 |
|
|
resolve_address_of_overloaded_function (tree target_type,
|
6786 |
|
|
tree overload,
|
6787 |
|
|
tsubst_flags_t flags,
|
6788 |
|
|
bool template_only,
|
6789 |
|
|
tree explicit_targs,
|
6790 |
|
|
tree access_path)
|
6791 |
|
|
{
|
6792 |
|
|
/* Here's what the standard says:
|
6793 |
|
|
|
6794 |
|
|
[over.over]
|
6795 |
|
|
|
6796 |
|
|
If the name is a function template, template argument deduction
|
6797 |
|
|
is done, and if the argument deduction succeeds, the deduced
|
6798 |
|
|
arguments are used to generate a single template function, which
|
6799 |
|
|
is added to the set of overloaded functions considered.
|
6800 |
|
|
|
6801 |
|
|
Non-member functions and static member functions match targets of
|
6802 |
|
|
type "pointer-to-function" or "reference-to-function." Nonstatic
|
6803 |
|
|
member functions match targets of type "pointer-to-member
|
6804 |
|
|
function;" the function type of the pointer to member is used to
|
6805 |
|
|
select the member function from the set of overloaded member
|
6806 |
|
|
functions. If a nonstatic member function is selected, the
|
6807 |
|
|
reference to the overloaded function name is required to have the
|
6808 |
|
|
form of a pointer to member as described in 5.3.1.
|
6809 |
|
|
|
6810 |
|
|
If more than one function is selected, any template functions in
|
6811 |
|
|
the set are eliminated if the set also contains a non-template
|
6812 |
|
|
function, and any given template function is eliminated if the
|
6813 |
|
|
set contains a second template function that is more specialized
|
6814 |
|
|
than the first according to the partial ordering rules 14.5.5.2.
|
6815 |
|
|
After such eliminations, if any, there shall remain exactly one
|
6816 |
|
|
selected function. */
|
6817 |
|
|
|
6818 |
|
|
int is_ptrmem = 0;
|
6819 |
|
|
/* We store the matches in a TREE_LIST rooted here. The functions
|
6820 |
|
|
are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
|
6821 |
|
|
interoperability with most_specialized_instantiation. */
|
6822 |
|
|
tree matches = NULL_TREE;
|
6823 |
|
|
tree fn;
|
6824 |
|
|
tree target_fn_type;
|
6825 |
|
|
|
6826 |
|
|
/* By the time we get here, we should be seeing only real
|
6827 |
|
|
pointer-to-member types, not the internal POINTER_TYPE to
|
6828 |
|
|
METHOD_TYPE representation. */
|
6829 |
|
|
gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
|
6830 |
|
|
|| TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
|
6831 |
|
|
|
6832 |
|
|
gcc_assert (is_overloaded_fn (overload));
|
6833 |
|
|
|
6834 |
|
|
/* Check that the TARGET_TYPE is reasonable. */
|
6835 |
|
|
if (TYPE_PTRFN_P (target_type))
|
6836 |
|
|
/* This is OK. */;
|
6837 |
|
|
else if (TYPE_PTRMEMFUNC_P (target_type))
|
6838 |
|
|
/* This is OK, too. */
|
6839 |
|
|
is_ptrmem = 1;
|
6840 |
|
|
else if (TREE_CODE (target_type) == FUNCTION_TYPE)
|
6841 |
|
|
/* This is OK, too. This comes from a conversion to reference
|
6842 |
|
|
type. */
|
6843 |
|
|
target_type = build_reference_type (target_type);
|
6844 |
|
|
else
|
6845 |
|
|
{
|
6846 |
|
|
if (flags & tf_error)
|
6847 |
|
|
error ("cannot resolve overloaded function %qD based on"
|
6848 |
|
|
" conversion to type %qT",
|
6849 |
|
|
DECL_NAME (OVL_FUNCTION (overload)), target_type);
|
6850 |
|
|
return error_mark_node;
|
6851 |
|
|
}
|
6852 |
|
|
|
6853 |
|
|
/* Non-member functions and static member functions match targets of type
|
6854 |
|
|
"pointer-to-function" or "reference-to-function." Nonstatic member
|
6855 |
|
|
functions match targets of type "pointer-to-member-function;" the
|
6856 |
|
|
function type of the pointer to member is used to select the member
|
6857 |
|
|
function from the set of overloaded member functions.
|
6858 |
|
|
|
6859 |
|
|
So figure out the FUNCTION_TYPE that we want to match against. */
|
6860 |
|
|
target_fn_type = static_fn_type (target_type);
|
6861 |
|
|
|
6862 |
|
|
/* If we can find a non-template function that matches, we can just
|
6863 |
|
|
use it. There's no point in generating template instantiations
|
6864 |
|
|
if we're just going to throw them out anyhow. But, of course, we
|
6865 |
|
|
can only do this when we don't *need* a template function. */
|
6866 |
|
|
if (!template_only)
|
6867 |
|
|
{
|
6868 |
|
|
tree fns;
|
6869 |
|
|
|
6870 |
|
|
for (fns = overload; fns; fns = OVL_NEXT (fns))
|
6871 |
|
|
{
|
6872 |
|
|
tree fn = OVL_CURRENT (fns);
|
6873 |
|
|
|
6874 |
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL)
|
6875 |
|
|
/* We're not looking for templates just yet. */
|
6876 |
|
|
continue;
|
6877 |
|
|
|
6878 |
|
|
if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
|
6879 |
|
|
!= is_ptrmem)
|
6880 |
|
|
/* We're looking for a non-static member, and this isn't
|
6881 |
|
|
one, or vice versa. */
|
6882 |
|
|
continue;
|
6883 |
|
|
|
6884 |
|
|
/* Ignore functions which haven't been explicitly
|
6885 |
|
|
declared. */
|
6886 |
|
|
if (DECL_ANTICIPATED (fn))
|
6887 |
|
|
continue;
|
6888 |
|
|
|
6889 |
|
|
/* See if there's a match. */
|
6890 |
|
|
if (same_type_p (target_fn_type, static_fn_type (fn)))
|
6891 |
|
|
matches = tree_cons (fn, NULL_TREE, matches);
|
6892 |
|
|
}
|
6893 |
|
|
}
|
6894 |
|
|
|
6895 |
|
|
/* Now, if we've already got a match (or matches), there's no need
|
6896 |
|
|
to proceed to the template functions. But, if we don't have a
|
6897 |
|
|
match we need to look at them, too. */
|
6898 |
|
|
if (!matches)
|
6899 |
|
|
{
|
6900 |
|
|
tree target_arg_types;
|
6901 |
|
|
tree target_ret_type;
|
6902 |
|
|
tree fns;
|
6903 |
|
|
tree *args;
|
6904 |
|
|
unsigned int nargs, ia;
|
6905 |
|
|
tree arg;
|
6906 |
|
|
|
6907 |
|
|
target_arg_types = TYPE_ARG_TYPES (target_fn_type);
|
6908 |
|
|
target_ret_type = TREE_TYPE (target_fn_type);
|
6909 |
|
|
|
6910 |
|
|
nargs = list_length (target_arg_types);
|
6911 |
|
|
args = XALLOCAVEC (tree, nargs);
|
6912 |
|
|
for (arg = target_arg_types, ia = 0;
|
6913 |
|
|
arg != NULL_TREE && arg != void_list_node;
|
6914 |
|
|
arg = TREE_CHAIN (arg), ++ia)
|
6915 |
|
|
args[ia] = TREE_VALUE (arg);
|
6916 |
|
|
nargs = ia;
|
6917 |
|
|
|
6918 |
|
|
for (fns = overload; fns; fns = OVL_NEXT (fns))
|
6919 |
|
|
{
|
6920 |
|
|
tree fn = OVL_CURRENT (fns);
|
6921 |
|
|
tree instantiation;
|
6922 |
|
|
tree targs;
|
6923 |
|
|
|
6924 |
|
|
if (TREE_CODE (fn) != TEMPLATE_DECL)
|
6925 |
|
|
/* We're only looking for templates. */
|
6926 |
|
|
continue;
|
6927 |
|
|
|
6928 |
|
|
if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
|
6929 |
|
|
!= is_ptrmem)
|
6930 |
|
|
/* We're not looking for a non-static member, and this is
|
6931 |
|
|
one, or vice versa. */
|
6932 |
|
|
continue;
|
6933 |
|
|
|
6934 |
|
|
/* Try to do argument deduction. */
|
6935 |
|
|
targs = make_tree_vec (DECL_NTPARMS (fn));
|
6936 |
|
|
if (fn_type_unification (fn, explicit_targs, targs, args, nargs,
|
6937 |
|
|
target_ret_type, DEDUCE_EXACT,
|
6938 |
|
|
LOOKUP_NORMAL, false))
|
6939 |
|
|
/* Argument deduction failed. */
|
6940 |
|
|
continue;
|
6941 |
|
|
|
6942 |
|
|
/* Instantiate the template. */
|
6943 |
|
|
instantiation = instantiate_template (fn, targs, flags);
|
6944 |
|
|
if (instantiation == error_mark_node)
|
6945 |
|
|
/* Instantiation failed. */
|
6946 |
|
|
continue;
|
6947 |
|
|
|
6948 |
|
|
/* See if there's a match. */
|
6949 |
|
|
if (same_type_p (target_fn_type, static_fn_type (instantiation)))
|
6950 |
|
|
matches = tree_cons (instantiation, fn, matches);
|
6951 |
|
|
}
|
6952 |
|
|
|
6953 |
|
|
/* Now, remove all but the most specialized of the matches. */
|
6954 |
|
|
if (matches)
|
6955 |
|
|
{
|
6956 |
|
|
tree match = most_specialized_instantiation (matches);
|
6957 |
|
|
|
6958 |
|
|
if (match != error_mark_node)
|
6959 |
|
|
matches = tree_cons (TREE_PURPOSE (match),
|
6960 |
|
|
NULL_TREE,
|
6961 |
|
|
NULL_TREE);
|
6962 |
|
|
}
|
6963 |
|
|
}
|
6964 |
|
|
|
6965 |
|
|
/* Now we should have exactly one function in MATCHES. */
|
6966 |
|
|
if (matches == NULL_TREE)
|
6967 |
|
|
{
|
6968 |
|
|
/* There were *no* matches. */
|
6969 |
|
|
if (flags & tf_error)
|
6970 |
|
|
{
|
6971 |
|
|
error ("no matches converting function %qD to type %q#T",
|
6972 |
|
|
DECL_NAME (OVL_CURRENT (overload)),
|
6973 |
|
|
target_type);
|
6974 |
|
|
|
6975 |
|
|
print_candidates (overload);
|
6976 |
|
|
}
|
6977 |
|
|
return error_mark_node;
|
6978 |
|
|
}
|
6979 |
|
|
else if (TREE_CHAIN (matches))
|
6980 |
|
|
{
|
6981 |
|
|
/* There were too many matches. First check if they're all
|
6982 |
|
|
the same function. */
|
6983 |
|
|
tree match;
|
6984 |
|
|
|
6985 |
|
|
fn = TREE_PURPOSE (matches);
|
6986 |
|
|
for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
|
6987 |
|
|
if (!decls_match (fn, TREE_PURPOSE (match)))
|
6988 |
|
|
break;
|
6989 |
|
|
|
6990 |
|
|
if (match)
|
6991 |
|
|
{
|
6992 |
|
|
if (flags & tf_error)
|
6993 |
|
|
{
|
6994 |
|
|
error ("converting overloaded function %qD to type %q#T is ambiguous",
|
6995 |
|
|
DECL_NAME (OVL_FUNCTION (overload)),
|
6996 |
|
|
target_type);
|
6997 |
|
|
|
6998 |
|
|
/* Since print_candidates expects the functions in the
|
6999 |
|
|
TREE_VALUE slot, we flip them here. */
|
7000 |
|
|
for (match = matches; match; match = TREE_CHAIN (match))
|
7001 |
|
|
TREE_VALUE (match) = TREE_PURPOSE (match);
|
7002 |
|
|
|
7003 |
|
|
print_candidates (matches);
|
7004 |
|
|
}
|
7005 |
|
|
|
7006 |
|
|
return error_mark_node;
|
7007 |
|
|
}
|
7008 |
|
|
}
|
7009 |
|
|
|
7010 |
|
|
/* Good, exactly one match. Now, convert it to the correct type. */
|
7011 |
|
|
fn = TREE_PURPOSE (matches);
|
7012 |
|
|
|
7013 |
|
|
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
|
7014 |
|
|
&& !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
|
7015 |
|
|
{
|
7016 |
|
|
static int explained;
|
7017 |
|
|
|
7018 |
|
|
if (!(flags & tf_error))
|
7019 |
|
|
return error_mark_node;
|
7020 |
|
|
|
7021 |
|
|
permerror (input_location, "assuming pointer to member %qD", fn);
|
7022 |
|
|
if (!explained)
|
7023 |
|
|
{
|
7024 |
|
|
inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
|
7025 |
|
|
explained = 1;
|
7026 |
|
|
}
|
7027 |
|
|
}
|
7028 |
|
|
|
7029 |
|
|
/* If we're doing overload resolution purely for the purpose of
|
7030 |
|
|
determining conversion sequences, we should not consider the
|
7031 |
|
|
function used. If this conversion sequence is selected, the
|
7032 |
|
|
function will be marked as used at this point. */
|
7033 |
|
|
if (!(flags & tf_conv))
|
7034 |
|
|
{
|
7035 |
|
|
/* Make =delete work with SFINAE. */
|
7036 |
|
|
if (DECL_DELETED_FN (fn) && !(flags & tf_error))
|
7037 |
|
|
return error_mark_node;
|
7038 |
|
|
|
7039 |
|
|
mark_used (fn);
|
7040 |
|
|
}
|
7041 |
|
|
|
7042 |
|
|
/* We could not check access to member functions when this
|
7043 |
|
|
expression was originally created since we did not know at that
|
7044 |
|
|
time to which function the expression referred. */
|
7045 |
|
|
if (!(flags & tf_no_access_control)
|
7046 |
|
|
&& DECL_FUNCTION_MEMBER_P (fn))
|
7047 |
|
|
{
|
7048 |
|
|
gcc_assert (access_path);
|
7049 |
|
|
perform_or_defer_access_check (access_path, fn, fn);
|
7050 |
|
|
}
|
7051 |
|
|
|
7052 |
|
|
if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
|
7053 |
|
|
return cp_build_addr_expr (fn, flags);
|
7054 |
|
|
else
|
7055 |
|
|
{
|
7056 |
|
|
/* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
|
7057 |
|
|
will mark the function as addressed, but here we must do it
|
7058 |
|
|
explicitly. */
|
7059 |
|
|
cxx_mark_addressable (fn);
|
7060 |
|
|
|
7061 |
|
|
return fn;
|
7062 |
|
|
}
|
7063 |
|
|
}
|
7064 |
|
|
|
7065 |
|
|
/* This function will instantiate the type of the expression given in
|
7066 |
|
|
RHS to match the type of LHSTYPE. If errors exist, then return
|
7067 |
|
|
error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
|
7068 |
|
|
we complain on errors. If we are not complaining, never modify rhs,
|
7069 |
|
|
as overload resolution wants to try many possible instantiations, in
|
7070 |
|
|
the hope that at least one will work.
|
7071 |
|
|
|
7072 |
|
|
For non-recursive calls, LHSTYPE should be a function, pointer to
|
7073 |
|
|
function, or a pointer to member function. */
|
7074 |
|
|
|
7075 |
|
|
tree
|
7076 |
|
|
instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
|
7077 |
|
|
{
|
7078 |
|
|
tsubst_flags_t flags_in = flags;
|
7079 |
|
|
tree access_path = NULL_TREE;
|
7080 |
|
|
|
7081 |
|
|
flags &= ~tf_ptrmem_ok;
|
7082 |
|
|
|
7083 |
|
|
if (lhstype == unknown_type_node)
|
7084 |
|
|
{
|
7085 |
|
|
if (flags & tf_error)
|
7086 |
|
|
error ("not enough type information");
|
7087 |
|
|
return error_mark_node;
|
7088 |
|
|
}
|
7089 |
|
|
|
7090 |
|
|
if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
|
7091 |
|
|
{
|
7092 |
|
|
if (same_type_p (lhstype, TREE_TYPE (rhs)))
|
7093 |
|
|
return rhs;
|
7094 |
|
|
if (flag_ms_extensions
|
7095 |
|
|
&& TYPE_PTRMEMFUNC_P (lhstype)
|
7096 |
|
|
&& !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
|
7097 |
|
|
/* Microsoft allows `A::f' to be resolved to a
|
7098 |
|
|
pointer-to-member. */
|
7099 |
|
|
;
|
7100 |
|
|
else
|
7101 |
|
|
{
|
7102 |
|
|
if (flags & tf_error)
|
7103 |
|
|
error ("cannot convert %qE from type %qT to type %qT",
|
7104 |
|
|
rhs, TREE_TYPE (rhs), lhstype);
|
7105 |
|
|
return error_mark_node;
|
7106 |
|
|
}
|
7107 |
|
|
}
|
7108 |
|
|
|
7109 |
|
|
if (BASELINK_P (rhs))
|
7110 |
|
|
{
|
7111 |
|
|
access_path = BASELINK_ACCESS_BINFO (rhs);
|
7112 |
|
|
rhs = BASELINK_FUNCTIONS (rhs);
|
7113 |
|
|
}
|
7114 |
|
|
|
7115 |
|
|
/* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
|
7116 |
|
|
deduce any type information. */
|
7117 |
|
|
if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
|
7118 |
|
|
{
|
7119 |
|
|
if (flags & tf_error)
|
7120 |
|
|
error ("not enough type information");
|
7121 |
|
|
return error_mark_node;
|
7122 |
|
|
}
|
7123 |
|
|
|
7124 |
|
|
/* There only a few kinds of expressions that may have a type
|
7125 |
|
|
dependent on overload resolution. */
|
7126 |
|
|
gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
|
7127 |
|
|
|| TREE_CODE (rhs) == COMPONENT_REF
|
7128 |
|
|
|| really_overloaded_fn (rhs)
|
7129 |
|
|
|| (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
|
7130 |
|
|
|
7131 |
|
|
/* This should really only be used when attempting to distinguish
|
7132 |
|
|
what sort of a pointer to function we have. For now, any
|
7133 |
|
|
arithmetic operation which is not supported on pointers
|
7134 |
|
|
is rejected as an error. */
|
7135 |
|
|
|
7136 |
|
|
switch (TREE_CODE (rhs))
|
7137 |
|
|
{
|
7138 |
|
|
case COMPONENT_REF:
|
7139 |
|
|
{
|
7140 |
|
|
tree member = TREE_OPERAND (rhs, 1);
|
7141 |
|
|
|
7142 |
|
|
member = instantiate_type (lhstype, member, flags);
|
7143 |
|
|
if (member != error_mark_node
|
7144 |
|
|
&& TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
|
7145 |
|
|
/* Do not lose object's side effects. */
|
7146 |
|
|
return build2 (COMPOUND_EXPR, TREE_TYPE (member),
|
7147 |
|
|
TREE_OPERAND (rhs, 0), member);
|
7148 |
|
|
return member;
|
7149 |
|
|
}
|
7150 |
|
|
|
7151 |
|
|
case OFFSET_REF:
|
7152 |
|
|
rhs = TREE_OPERAND (rhs, 1);
|
7153 |
|
|
if (BASELINK_P (rhs))
|
7154 |
|
|
return instantiate_type (lhstype, rhs, flags_in);
|
7155 |
|
|
|
7156 |
|
|
/* This can happen if we are forming a pointer-to-member for a
|
7157 |
|
|
member template. */
|
7158 |
|
|
gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
|
7159 |
|
|
|
7160 |
|
|
/* Fall through. */
|
7161 |
|
|
|
7162 |
|
|
case TEMPLATE_ID_EXPR:
|
7163 |
|
|
{
|
7164 |
|
|
tree fns = TREE_OPERAND (rhs, 0);
|
7165 |
|
|
tree args = TREE_OPERAND (rhs, 1);
|
7166 |
|
|
|
7167 |
|
|
return
|
7168 |
|
|
resolve_address_of_overloaded_function (lhstype, fns, flags_in,
|
7169 |
|
|
/*template_only=*/true,
|
7170 |
|
|
args, access_path);
|
7171 |
|
|
}
|
7172 |
|
|
|
7173 |
|
|
case OVERLOAD:
|
7174 |
|
|
case FUNCTION_DECL:
|
7175 |
|
|
return
|
7176 |
|
|
resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
|
7177 |
|
|
/*template_only=*/false,
|
7178 |
|
|
/*explicit_targs=*/NULL_TREE,
|
7179 |
|
|
access_path);
|
7180 |
|
|
|
7181 |
|
|
case ADDR_EXPR:
|
7182 |
|
|
{
|
7183 |
|
|
if (PTRMEM_OK_P (rhs))
|
7184 |
|
|
flags |= tf_ptrmem_ok;
|
7185 |
|
|
|
7186 |
|
|
return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
|
7187 |
|
|
}
|
7188 |
|
|
|
7189 |
|
|
case ERROR_MARK:
|
7190 |
|
|
return error_mark_node;
|
7191 |
|
|
|
7192 |
|
|
default:
|
7193 |
|
|
gcc_unreachable ();
|
7194 |
|
|
}
|
7195 |
|
|
return error_mark_node;
|
7196 |
|
|
}
|
7197 |
|
|
|
7198 |
|
|
/* Return the name of the virtual function pointer field
|
7199 |
|
|
(as an IDENTIFIER_NODE) for the given TYPE. Note that
|
7200 |
|
|
this may have to look back through base types to find the
|
7201 |
|
|
ultimate field name. (For single inheritance, these could
|
7202 |
|
|
all be the same name. Who knows for multiple inheritance). */
|
7203 |
|
|
|
7204 |
|
|
static tree
|
7205 |
|
|
get_vfield_name (tree type)
|
7206 |
|
|
{
|
7207 |
|
|
tree binfo, base_binfo;
|
7208 |
|
|
char *buf;
|
7209 |
|
|
|
7210 |
|
|
for (binfo = TYPE_BINFO (type);
|
7211 |
|
|
BINFO_N_BASE_BINFOS (binfo);
|
7212 |
|
|
binfo = base_binfo)
|
7213 |
|
|
{
|
7214 |
|
|
base_binfo = BINFO_BASE_BINFO (binfo, 0);
|
7215 |
|
|
|
7216 |
|
|
if (BINFO_VIRTUAL_P (base_binfo)
|
7217 |
|
|
|| !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
|
7218 |
|
|
break;
|
7219 |
|
|
}
|
7220 |
|
|
|
7221 |
|
|
type = BINFO_TYPE (binfo);
|
7222 |
|
|
buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
|
7223 |
|
|
+ TYPE_NAME_LENGTH (type) + 2);
|
7224 |
|
|
sprintf (buf, VFIELD_NAME_FORMAT,
|
7225 |
|
|
IDENTIFIER_POINTER (constructor_name (type)));
|
7226 |
|
|
return get_identifier (buf);
|
7227 |
|
|
}
|
7228 |
|
|
|
7229 |
|
|
void
|
7230 |
|
|
print_class_statistics (void)
|
7231 |
|
|
{
|
7232 |
|
|
#ifdef GATHER_STATISTICS
|
7233 |
|
|
fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
|
7234 |
|
|
fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
|
7235 |
|
|
if (n_vtables)
|
7236 |
|
|
{
|
7237 |
|
|
fprintf (stderr, "vtables = %d; vtable searches = %d\n",
|
7238 |
|
|
n_vtables, n_vtable_searches);
|
7239 |
|
|
fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
|
7240 |
|
|
n_vtable_entries, n_vtable_elems);
|
7241 |
|
|
}
|
7242 |
|
|
#endif
|
7243 |
|
|
}
|
7244 |
|
|
|
7245 |
|
|
/* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
|
7246 |
|
|
according to [class]:
|
7247 |
|
|
The class-name is also inserted
|
7248 |
|
|
into the scope of the class itself. For purposes of access checking,
|
7249 |
|
|
the inserted class name is treated as if it were a public member name. */
|
7250 |
|
|
|
7251 |
|
|
void
|
7252 |
|
|
build_self_reference (void)
|
7253 |
|
|
{
|
7254 |
|
|
tree name = constructor_name (current_class_type);
|
7255 |
|
|
tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
|
7256 |
|
|
tree saved_cas;
|
7257 |
|
|
|
7258 |
|
|
DECL_NONLOCAL (value) = 1;
|
7259 |
|
|
DECL_CONTEXT (value) = current_class_type;
|
7260 |
|
|
DECL_ARTIFICIAL (value) = 1;
|
7261 |
|
|
SET_DECL_SELF_REFERENCE_P (value);
|
7262 |
|
|
set_underlying_type (value);
|
7263 |
|
|
|
7264 |
|
|
if (processing_template_decl)
|
7265 |
|
|
value = push_template_decl (value);
|
7266 |
|
|
|
7267 |
|
|
saved_cas = current_access_specifier;
|
7268 |
|
|
current_access_specifier = access_public_node;
|
7269 |
|
|
finish_member_declaration (value);
|
7270 |
|
|
current_access_specifier = saved_cas;
|
7271 |
|
|
}
|
7272 |
|
|
|
7273 |
|
|
/* Returns 1 if TYPE contains only padding bytes. */
|
7274 |
|
|
|
7275 |
|
|
int
|
7276 |
|
|
is_empty_class (tree type)
|
7277 |
|
|
{
|
7278 |
|
|
if (type == error_mark_node)
|
7279 |
|
|
return 0;
|
7280 |
|
|
|
7281 |
|
|
if (! CLASS_TYPE_P (type))
|
7282 |
|
|
return 0;
|
7283 |
|
|
|
7284 |
|
|
/* In G++ 3.2, whether or not a class was empty was determined by
|
7285 |
|
|
looking at its size. */
|
7286 |
|
|
if (abi_version_at_least (2))
|
7287 |
|
|
return CLASSTYPE_EMPTY_P (type);
|
7288 |
|
|
else
|
7289 |
|
|
return integer_zerop (CLASSTYPE_SIZE (type));
|
7290 |
|
|
}
|
7291 |
|
|
|
7292 |
|
|
/* Returns true if TYPE contains an empty class. */
|
7293 |
|
|
|
7294 |
|
|
static bool
|
7295 |
|
|
contains_empty_class_p (tree type)
|
7296 |
|
|
{
|
7297 |
|
|
if (is_empty_class (type))
|
7298 |
|
|
return true;
|
7299 |
|
|
if (CLASS_TYPE_P (type))
|
7300 |
|
|
{
|
7301 |
|
|
tree field;
|
7302 |
|
|
tree binfo;
|
7303 |
|
|
tree base_binfo;
|
7304 |
|
|
int i;
|
7305 |
|
|
|
7306 |
|
|
for (binfo = TYPE_BINFO (type), i = 0;
|
7307 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
7308 |
|
|
if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
|
7309 |
|
|
return true;
|
7310 |
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
7311 |
|
|
if (TREE_CODE (field) == FIELD_DECL
|
7312 |
|
|
&& !DECL_ARTIFICIAL (field)
|
7313 |
|
|
&& is_empty_class (TREE_TYPE (field)))
|
7314 |
|
|
return true;
|
7315 |
|
|
}
|
7316 |
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
7317 |
|
|
return contains_empty_class_p (TREE_TYPE (type));
|
7318 |
|
|
return false;
|
7319 |
|
|
}
|
7320 |
|
|
|
7321 |
|
|
/* Returns true if TYPE contains no actual data, just various
|
7322 |
|
|
possible combinations of empty classes and possibly a vptr. */
|
7323 |
|
|
|
7324 |
|
|
bool
|
7325 |
|
|
is_really_empty_class (tree type)
|
7326 |
|
|
{
|
7327 |
|
|
if (CLASS_TYPE_P (type))
|
7328 |
|
|
{
|
7329 |
|
|
tree field;
|
7330 |
|
|
tree binfo;
|
7331 |
|
|
tree base_binfo;
|
7332 |
|
|
int i;
|
7333 |
|
|
|
7334 |
|
|
/* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
|
7335 |
|
|
out, but we'd like to be able to check this before then. */
|
7336 |
|
|
if (COMPLETE_TYPE_P (type) && is_empty_class (type))
|
7337 |
|
|
return true;
|
7338 |
|
|
|
7339 |
|
|
for (binfo = TYPE_BINFO (type), i = 0;
|
7340 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
7341 |
|
|
if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
|
7342 |
|
|
return false;
|
7343 |
|
|
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
7344 |
|
|
if (TREE_CODE (field) == FIELD_DECL
|
7345 |
|
|
&& !DECL_ARTIFICIAL (field)
|
7346 |
|
|
&& !is_really_empty_class (TREE_TYPE (field)))
|
7347 |
|
|
return false;
|
7348 |
|
|
return true;
|
7349 |
|
|
}
|
7350 |
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
7351 |
|
|
return is_really_empty_class (TREE_TYPE (type));
|
7352 |
|
|
return false;
|
7353 |
|
|
}
|
7354 |
|
|
|
7355 |
|
|
/* Note that NAME was looked up while the current class was being
|
7356 |
|
|
defined and that the result of that lookup was DECL. */
|
7357 |
|
|
|
7358 |
|
|
void
|
7359 |
|
|
maybe_note_name_used_in_class (tree name, tree decl)
|
7360 |
|
|
{
|
7361 |
|
|
splay_tree names_used;
|
7362 |
|
|
|
7363 |
|
|
/* If we're not defining a class, there's nothing to do. */
|
7364 |
|
|
if (!(innermost_scope_kind() == sk_class
|
7365 |
|
|
&& TYPE_BEING_DEFINED (current_class_type)
|
7366 |
|
|
&& !LAMBDA_TYPE_P (current_class_type)))
|
7367 |
|
|
return;
|
7368 |
|
|
|
7369 |
|
|
/* If there's already a binding for this NAME, then we don't have
|
7370 |
|
|
anything to worry about. */
|
7371 |
|
|
if (lookup_member (current_class_type, name,
|
7372 |
|
|
/*protect=*/0, /*want_type=*/false, tf_warning_or_error))
|
7373 |
|
|
return;
|
7374 |
|
|
|
7375 |
|
|
if (!current_class_stack[current_class_depth - 1].names_used)
|
7376 |
|
|
current_class_stack[current_class_depth - 1].names_used
|
7377 |
|
|
= splay_tree_new (splay_tree_compare_pointers, 0, 0);
|
7378 |
|
|
names_used = current_class_stack[current_class_depth - 1].names_used;
|
7379 |
|
|
|
7380 |
|
|
splay_tree_insert (names_used,
|
7381 |
|
|
(splay_tree_key) name,
|
7382 |
|
|
(splay_tree_value) decl);
|
7383 |
|
|
}
|
7384 |
|
|
|
7385 |
|
|
/* Note that NAME was declared (as DECL) in the current class. Check
|
7386 |
|
|
to see that the declaration is valid. */
|
7387 |
|
|
|
7388 |
|
|
void
|
7389 |
|
|
note_name_declared_in_class (tree name, tree decl)
|
7390 |
|
|
{
|
7391 |
|
|
splay_tree names_used;
|
7392 |
|
|
splay_tree_node n;
|
7393 |
|
|
|
7394 |
|
|
/* Look to see if we ever used this name. */
|
7395 |
|
|
names_used
|
7396 |
|
|
= current_class_stack[current_class_depth - 1].names_used;
|
7397 |
|
|
if (!names_used)
|
7398 |
|
|
return;
|
7399 |
|
|
/* The C language allows members to be declared with a type of the same
|
7400 |
|
|
name, and the C++ standard says this diagnostic is not required. So
|
7401 |
|
|
allow it in extern "C" blocks unless predantic is specified.
|
7402 |
|
|
Allow it in all cases if -ms-extensions is specified. */
|
7403 |
|
|
if ((!pedantic && current_lang_name == lang_name_c)
|
7404 |
|
|
|| flag_ms_extensions)
|
7405 |
|
|
return;
|
7406 |
|
|
n = splay_tree_lookup (names_used, (splay_tree_key) name);
|
7407 |
|
|
if (n)
|
7408 |
|
|
{
|
7409 |
|
|
/* [basic.scope.class]
|
7410 |
|
|
|
7411 |
|
|
A name N used in a class S shall refer to the same declaration
|
7412 |
|
|
in its context and when re-evaluated in the completed scope of
|
7413 |
|
|
S. */
|
7414 |
|
|
permerror (input_location, "declaration of %q#D", decl);
|
7415 |
|
|
permerror (input_location, "changes meaning of %qD from %q+#D",
|
7416 |
|
|
DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
|
7417 |
|
|
}
|
7418 |
|
|
}
|
7419 |
|
|
|
7420 |
|
|
/* Returns the VAR_DECL for the complete vtable associated with BINFO.
|
7421 |
|
|
Secondary vtables are merged with primary vtables; this function
|
7422 |
|
|
will return the VAR_DECL for the primary vtable. */
|
7423 |
|
|
|
7424 |
|
|
tree
|
7425 |
|
|
get_vtbl_decl_for_binfo (tree binfo)
|
7426 |
|
|
{
|
7427 |
|
|
tree decl;
|
7428 |
|
|
|
7429 |
|
|
decl = BINFO_VTABLE (binfo);
|
7430 |
|
|
if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
|
7431 |
|
|
{
|
7432 |
|
|
gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
|
7433 |
|
|
decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
|
7434 |
|
|
}
|
7435 |
|
|
if (decl)
|
7436 |
|
|
gcc_assert (TREE_CODE (decl) == VAR_DECL);
|
7437 |
|
|
return decl;
|
7438 |
|
|
}
|
7439 |
|
|
|
7440 |
|
|
|
7441 |
|
|
/* Returns the binfo for the primary base of BINFO. If the resulting
|
7442 |
|
|
BINFO is a virtual base, and it is inherited elsewhere in the
|
7443 |
|
|
hierarchy, then the returned binfo might not be the primary base of
|
7444 |
|
|
BINFO in the complete object. Check BINFO_PRIMARY_P or
|
7445 |
|
|
BINFO_LOST_PRIMARY_P to be sure. */
|
7446 |
|
|
|
7447 |
|
|
static tree
|
7448 |
|
|
get_primary_binfo (tree binfo)
|
7449 |
|
|
{
|
7450 |
|
|
tree primary_base;
|
7451 |
|
|
|
7452 |
|
|
primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
|
7453 |
|
|
if (!primary_base)
|
7454 |
|
|
return NULL_TREE;
|
7455 |
|
|
|
7456 |
|
|
return copied_binfo (primary_base, binfo);
|
7457 |
|
|
}
|
7458 |
|
|
|
7459 |
|
|
/* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
|
7460 |
|
|
|
7461 |
|
|
static int
|
7462 |
|
|
maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
|
7463 |
|
|
{
|
7464 |
|
|
if (!indented_p)
|
7465 |
|
|
fprintf (stream, "%*s", indent, "");
|
7466 |
|
|
return 1;
|
7467 |
|
|
}
|
7468 |
|
|
|
7469 |
|
|
/* Dump the offsets of all the bases rooted at BINFO to STREAM.
|
7470 |
|
|
INDENT should be zero when called from the top level; it is
|
7471 |
|
|
incremented recursively. IGO indicates the next expected BINFO in
|
7472 |
|
|
inheritance graph ordering. */
|
7473 |
|
|
|
7474 |
|
|
static tree
|
7475 |
|
|
dump_class_hierarchy_r (FILE *stream,
|
7476 |
|
|
int flags,
|
7477 |
|
|
tree binfo,
|
7478 |
|
|
tree igo,
|
7479 |
|
|
int indent)
|
7480 |
|
|
{
|
7481 |
|
|
int indented = 0;
|
7482 |
|
|
tree base_binfo;
|
7483 |
|
|
int i;
|
7484 |
|
|
|
7485 |
|
|
indented = maybe_indent_hierarchy (stream, indent, 0);
|
7486 |
|
|
fprintf (stream, "%s (0x%lx) ",
|
7487 |
|
|
type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
|
7488 |
|
|
(unsigned long) binfo);
|
7489 |
|
|
if (binfo != igo)
|
7490 |
|
|
{
|
7491 |
|
|
fprintf (stream, "alternative-path\n");
|
7492 |
|
|
return igo;
|
7493 |
|
|
}
|
7494 |
|
|
igo = TREE_CHAIN (binfo);
|
7495 |
|
|
|
7496 |
|
|
fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
|
7497 |
|
|
tree_low_cst (BINFO_OFFSET (binfo), 0));
|
7498 |
|
|
if (is_empty_class (BINFO_TYPE (binfo)))
|
7499 |
|
|
fprintf (stream, " empty");
|
7500 |
|
|
else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
|
7501 |
|
|
fprintf (stream, " nearly-empty");
|
7502 |
|
|
if (BINFO_VIRTUAL_P (binfo))
|
7503 |
|
|
fprintf (stream, " virtual");
|
7504 |
|
|
fprintf (stream, "\n");
|
7505 |
|
|
|
7506 |
|
|
indented = 0;
|
7507 |
|
|
if (BINFO_PRIMARY_P (binfo))
|
7508 |
|
|
{
|
7509 |
|
|
indented = maybe_indent_hierarchy (stream, indent + 3, indented);
|
7510 |
|
|
fprintf (stream, " primary-for %s (0x%lx)",
|
7511 |
|
|
type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
|
7512 |
|
|
TFF_PLAIN_IDENTIFIER),
|
7513 |
|
|
(unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
|
7514 |
|
|
}
|
7515 |
|
|
if (BINFO_LOST_PRIMARY_P (binfo))
|
7516 |
|
|
{
|
7517 |
|
|
indented = maybe_indent_hierarchy (stream, indent + 3, indented);
|
7518 |
|
|
fprintf (stream, " lost-primary");
|
7519 |
|
|
}
|
7520 |
|
|
if (indented)
|
7521 |
|
|
fprintf (stream, "\n");
|
7522 |
|
|
|
7523 |
|
|
if (!(flags & TDF_SLIM))
|
7524 |
|
|
{
|
7525 |
|
|
int indented = 0;
|
7526 |
|
|
|
7527 |
|
|
if (BINFO_SUBVTT_INDEX (binfo))
|
7528 |
|
|
{
|
7529 |
|
|
indented = maybe_indent_hierarchy (stream, indent + 3, indented);
|
7530 |
|
|
fprintf (stream, " subvttidx=%s",
|
7531 |
|
|
expr_as_string (BINFO_SUBVTT_INDEX (binfo),
|
7532 |
|
|
TFF_PLAIN_IDENTIFIER));
|
7533 |
|
|
}
|
7534 |
|
|
if (BINFO_VPTR_INDEX (binfo))
|
7535 |
|
|
{
|
7536 |
|
|
indented = maybe_indent_hierarchy (stream, indent + 3, indented);
|
7537 |
|
|
fprintf (stream, " vptridx=%s",
|
7538 |
|
|
expr_as_string (BINFO_VPTR_INDEX (binfo),
|
7539 |
|
|
TFF_PLAIN_IDENTIFIER));
|
7540 |
|
|
}
|
7541 |
|
|
if (BINFO_VPTR_FIELD (binfo))
|
7542 |
|
|
{
|
7543 |
|
|
indented = maybe_indent_hierarchy (stream, indent + 3, indented);
|
7544 |
|
|
fprintf (stream, " vbaseoffset=%s",
|
7545 |
|
|
expr_as_string (BINFO_VPTR_FIELD (binfo),
|
7546 |
|
|
TFF_PLAIN_IDENTIFIER));
|
7547 |
|
|
}
|
7548 |
|
|
if (BINFO_VTABLE (binfo))
|
7549 |
|
|
{
|
7550 |
|
|
indented = maybe_indent_hierarchy (stream, indent + 3, indented);
|
7551 |
|
|
fprintf (stream, " vptr=%s",
|
7552 |
|
|
expr_as_string (BINFO_VTABLE (binfo),
|
7553 |
|
|
TFF_PLAIN_IDENTIFIER));
|
7554 |
|
|
}
|
7555 |
|
|
|
7556 |
|
|
if (indented)
|
7557 |
|
|
fprintf (stream, "\n");
|
7558 |
|
|
}
|
7559 |
|
|
|
7560 |
|
|
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
7561 |
|
|
igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
|
7562 |
|
|
|
7563 |
|
|
return igo;
|
7564 |
|
|
}
|
7565 |
|
|
|
7566 |
|
|
/* Dump the BINFO hierarchy for T. */
|
7567 |
|
|
|
7568 |
|
|
static void
|
7569 |
|
|
dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
|
7570 |
|
|
{
|
7571 |
|
|
fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
|
7572 |
|
|
fprintf (stream, " size=%lu align=%lu\n",
|
7573 |
|
|
(unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
|
7574 |
|
|
(unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
|
7575 |
|
|
fprintf (stream, " base size=%lu base align=%lu\n",
|
7576 |
|
|
(unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
|
7577 |
|
|
/ BITS_PER_UNIT),
|
7578 |
|
|
(unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
|
7579 |
|
|
/ BITS_PER_UNIT));
|
7580 |
|
|
dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
|
7581 |
|
|
fprintf (stream, "\n");
|
7582 |
|
|
}
|
7583 |
|
|
|
7584 |
|
|
/* Debug interface to hierarchy dumping. */
|
7585 |
|
|
|
7586 |
|
|
void
|
7587 |
|
|
debug_class (tree t)
|
7588 |
|
|
{
|
7589 |
|
|
dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
|
7590 |
|
|
}
|
7591 |
|
|
|
7592 |
|
|
static void
|
7593 |
|
|
dump_class_hierarchy (tree t)
|
7594 |
|
|
{
|
7595 |
|
|
int flags;
|
7596 |
|
|
FILE *stream = dump_begin (TDI_class, &flags);
|
7597 |
|
|
|
7598 |
|
|
if (stream)
|
7599 |
|
|
{
|
7600 |
|
|
dump_class_hierarchy_1 (stream, flags, t);
|
7601 |
|
|
dump_end (TDI_class, stream);
|
7602 |
|
|
}
|
7603 |
|
|
}
|
7604 |
|
|
|
7605 |
|
|
static void
|
7606 |
|
|
dump_array (FILE * stream, tree decl)
|
7607 |
|
|
{
|
7608 |
|
|
tree value;
|
7609 |
|
|
unsigned HOST_WIDE_INT ix;
|
7610 |
|
|
HOST_WIDE_INT elt;
|
7611 |
|
|
tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
|
7612 |
|
|
|
7613 |
|
|
elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
|
7614 |
|
|
/ BITS_PER_UNIT);
|
7615 |
|
|
fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
|
7616 |
|
|
fprintf (stream, " %s entries",
|
7617 |
|
|
expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
|
7618 |
|
|
TFF_PLAIN_IDENTIFIER));
|
7619 |
|
|
fprintf (stream, "\n");
|
7620 |
|
|
|
7621 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
|
7622 |
|
|
ix, value)
|
7623 |
|
|
fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
|
7624 |
|
|
expr_as_string (value, TFF_PLAIN_IDENTIFIER));
|
7625 |
|
|
}
|
7626 |
|
|
|
7627 |
|
|
static void
|
7628 |
|
|
dump_vtable (tree t, tree binfo, tree vtable)
|
7629 |
|
|
{
|
7630 |
|
|
int flags;
|
7631 |
|
|
FILE *stream = dump_begin (TDI_class, &flags);
|
7632 |
|
|
|
7633 |
|
|
if (!stream)
|
7634 |
|
|
return;
|
7635 |
|
|
|
7636 |
|
|
if (!(flags & TDF_SLIM))
|
7637 |
|
|
{
|
7638 |
|
|
int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
|
7639 |
|
|
|
7640 |
|
|
fprintf (stream, "%s for %s",
|
7641 |
|
|
ctor_vtbl_p ? "Construction vtable" : "Vtable",
|
7642 |
|
|
type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
|
7643 |
|
|
if (ctor_vtbl_p)
|
7644 |
|
|
{
|
7645 |
|
|
if (!BINFO_VIRTUAL_P (binfo))
|
7646 |
|
|
fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
|
7647 |
|
|
fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
|
7648 |
|
|
}
|
7649 |
|
|
fprintf (stream, "\n");
|
7650 |
|
|
dump_array (stream, vtable);
|
7651 |
|
|
fprintf (stream, "\n");
|
7652 |
|
|
}
|
7653 |
|
|
|
7654 |
|
|
dump_end (TDI_class, stream);
|
7655 |
|
|
}
|
7656 |
|
|
|
7657 |
|
|
static void
|
7658 |
|
|
dump_vtt (tree t, tree vtt)
|
7659 |
|
|
{
|
7660 |
|
|
int flags;
|
7661 |
|
|
FILE *stream = dump_begin (TDI_class, &flags);
|
7662 |
|
|
|
7663 |
|
|
if (!stream)
|
7664 |
|
|
return;
|
7665 |
|
|
|
7666 |
|
|
if (!(flags & TDF_SLIM))
|
7667 |
|
|
{
|
7668 |
|
|
fprintf (stream, "VTT for %s\n",
|
7669 |
|
|
type_as_string (t, TFF_PLAIN_IDENTIFIER));
|
7670 |
|
|
dump_array (stream, vtt);
|
7671 |
|
|
fprintf (stream, "\n");
|
7672 |
|
|
}
|
7673 |
|
|
|
7674 |
|
|
dump_end (TDI_class, stream);
|
7675 |
|
|
}
|
7676 |
|
|
|
7677 |
|
|
/* Dump a function or thunk and its thunkees. */
|
7678 |
|
|
|
7679 |
|
|
static void
|
7680 |
|
|
dump_thunk (FILE *stream, int indent, tree thunk)
|
7681 |
|
|
{
|
7682 |
|
|
static const char spaces[] = " ";
|
7683 |
|
|
tree name = DECL_NAME (thunk);
|
7684 |
|
|
tree thunks;
|
7685 |
|
|
|
7686 |
|
|
fprintf (stream, "%.*s%p %s %s", indent, spaces,
|
7687 |
|
|
(void *)thunk,
|
7688 |
|
|
!DECL_THUNK_P (thunk) ? "function"
|
7689 |
|
|
: DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
|
7690 |
|
|
name ? IDENTIFIER_POINTER (name) : "<unset>");
|
7691 |
|
|
if (DECL_THUNK_P (thunk))
|
7692 |
|
|
{
|
7693 |
|
|
HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
|
7694 |
|
|
tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
|
7695 |
|
|
|
7696 |
|
|
fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
|
7697 |
|
|
if (!virtual_adjust)
|
7698 |
|
|
/*NOP*/;
|
7699 |
|
|
else if (DECL_THIS_THUNK_P (thunk))
|
7700 |
|
|
fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
|
7701 |
|
|
tree_low_cst (virtual_adjust, 0));
|
7702 |
|
|
else
|
7703 |
|
|
fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
|
7704 |
|
|
tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
|
7705 |
|
|
type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
|
7706 |
|
|
if (THUNK_ALIAS (thunk))
|
7707 |
|
|
fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
|
7708 |
|
|
}
|
7709 |
|
|
fprintf (stream, "\n");
|
7710 |
|
|
for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
|
7711 |
|
|
dump_thunk (stream, indent + 2, thunks);
|
7712 |
|
|
}
|
7713 |
|
|
|
7714 |
|
|
/* Dump the thunks for FN. */
|
7715 |
|
|
|
7716 |
|
|
void
|
7717 |
|
|
debug_thunks (tree fn)
|
7718 |
|
|
{
|
7719 |
|
|
dump_thunk (stderr, 0, fn);
|
7720 |
|
|
}
|
7721 |
|
|
|
7722 |
|
|
/* Virtual function table initialization. */
|
7723 |
|
|
|
7724 |
|
|
/* Create all the necessary vtables for T and its base classes. */
|
7725 |
|
|
|
7726 |
|
|
static void
|
7727 |
|
|
finish_vtbls (tree t)
|
7728 |
|
|
{
|
7729 |
|
|
tree vbase;
|
7730 |
|
|
VEC(constructor_elt,gc) *v = NULL;
|
7731 |
|
|
tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
|
7732 |
|
|
|
7733 |
|
|
/* We lay out the primary and secondary vtables in one contiguous
|
7734 |
|
|
vtable. The primary vtable is first, followed by the non-virtual
|
7735 |
|
|
secondary vtables in inheritance graph order. */
|
7736 |
|
|
accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
|
7737 |
|
|
vtable, t, &v);
|
7738 |
|
|
|
7739 |
|
|
/* Then come the virtual bases, also in inheritance graph order. */
|
7740 |
|
|
for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
|
7741 |
|
|
{
|
7742 |
|
|
if (!BINFO_VIRTUAL_P (vbase))
|
7743 |
|
|
continue;
|
7744 |
|
|
accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
|
7745 |
|
|
}
|
7746 |
|
|
|
7747 |
|
|
if (BINFO_VTABLE (TYPE_BINFO (t)))
|
7748 |
|
|
initialize_vtable (TYPE_BINFO (t), v);
|
7749 |
|
|
}
|
7750 |
|
|
|
7751 |
|
|
/* Initialize the vtable for BINFO with the INITS. */
|
7752 |
|
|
|
7753 |
|
|
static void
|
7754 |
|
|
initialize_vtable (tree binfo, VEC(constructor_elt,gc) *inits)
|
7755 |
|
|
{
|
7756 |
|
|
tree decl;
|
7757 |
|
|
|
7758 |
|
|
layout_vtable_decl (binfo, VEC_length (constructor_elt, inits));
|
7759 |
|
|
decl = get_vtbl_decl_for_binfo (binfo);
|
7760 |
|
|
initialize_artificial_var (decl, inits);
|
7761 |
|
|
dump_vtable (BINFO_TYPE (binfo), binfo, decl);
|
7762 |
|
|
}
|
7763 |
|
|
|
7764 |
|
|
/* Build the VTT (virtual table table) for T.
|
7765 |
|
|
A class requires a VTT if it has virtual bases.
|
7766 |
|
|
|
7767 |
|
|
This holds
|
7768 |
|
|
1 - primary virtual pointer for complete object T
|
7769 |
|
|
2 - secondary VTTs for each direct non-virtual base of T which requires a
|
7770 |
|
|
VTT
|
7771 |
|
|
3 - secondary virtual pointers for each direct or indirect base of T which
|
7772 |
|
|
has virtual bases or is reachable via a virtual path from T.
|
7773 |
|
|
4 - secondary VTTs for each direct or indirect virtual base of T.
|
7774 |
|
|
|
7775 |
|
|
Secondary VTTs look like complete object VTTs without part 4. */
|
7776 |
|
|
|
7777 |
|
|
static void
|
7778 |
|
|
build_vtt (tree t)
|
7779 |
|
|
{
|
7780 |
|
|
tree type;
|
7781 |
|
|
tree vtt;
|
7782 |
|
|
tree index;
|
7783 |
|
|
VEC(constructor_elt,gc) *inits;
|
7784 |
|
|
|
7785 |
|
|
/* Build up the initializers for the VTT. */
|
7786 |
|
|
inits = NULL;
|
7787 |
|
|
index = size_zero_node;
|
7788 |
|
|
build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
|
7789 |
|
|
|
7790 |
|
|
/* If we didn't need a VTT, we're done. */
|
7791 |
|
|
if (!inits)
|
7792 |
|
|
return;
|
7793 |
|
|
|
7794 |
|
|
/* Figure out the type of the VTT. */
|
7795 |
|
|
type = build_array_of_n_type (const_ptr_type_node,
|
7796 |
|
|
VEC_length (constructor_elt, inits));
|
7797 |
|
|
|
7798 |
|
|
/* Now, build the VTT object itself. */
|
7799 |
|
|
vtt = build_vtable (t, mangle_vtt_for_type (t), type);
|
7800 |
|
|
initialize_artificial_var (vtt, inits);
|
7801 |
|
|
/* Add the VTT to the vtables list. */
|
7802 |
|
|
DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
|
7803 |
|
|
DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
|
7804 |
|
|
|
7805 |
|
|
dump_vtt (t, vtt);
|
7806 |
|
|
}
|
7807 |
|
|
|
7808 |
|
|
/* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
|
7809 |
|
|
PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
|
7810 |
|
|
and CHAIN the vtable pointer for this binfo after construction is
|
7811 |
|
|
complete. VALUE can also be another BINFO, in which case we recurse. */
|
7812 |
|
|
|
7813 |
|
|
static tree
|
7814 |
|
|
binfo_ctor_vtable (tree binfo)
|
7815 |
|
|
{
|
7816 |
|
|
tree vt;
|
7817 |
|
|
|
7818 |
|
|
while (1)
|
7819 |
|
|
{
|
7820 |
|
|
vt = BINFO_VTABLE (binfo);
|
7821 |
|
|
if (TREE_CODE (vt) == TREE_LIST)
|
7822 |
|
|
vt = TREE_VALUE (vt);
|
7823 |
|
|
if (TREE_CODE (vt) == TREE_BINFO)
|
7824 |
|
|
binfo = vt;
|
7825 |
|
|
else
|
7826 |
|
|
break;
|
7827 |
|
|
}
|
7828 |
|
|
|
7829 |
|
|
return vt;
|
7830 |
|
|
}
|
7831 |
|
|
|
7832 |
|
|
/* Data for secondary VTT initialization. */
|
7833 |
|
|
typedef struct secondary_vptr_vtt_init_data_s
|
7834 |
|
|
{
|
7835 |
|
|
/* Is this the primary VTT? */
|
7836 |
|
|
bool top_level_p;
|
7837 |
|
|
|
7838 |
|
|
/* Current index into the VTT. */
|
7839 |
|
|
tree index;
|
7840 |
|
|
|
7841 |
|
|
/* Vector of initializers built up. */
|
7842 |
|
|
VEC(constructor_elt,gc) *inits;
|
7843 |
|
|
|
7844 |
|
|
/* The type being constructed by this secondary VTT. */
|
7845 |
|
|
tree type_being_constructed;
|
7846 |
|
|
} secondary_vptr_vtt_init_data;
|
7847 |
|
|
|
7848 |
|
|
/* Recursively build the VTT-initializer for BINFO (which is in the
|
7849 |
|
|
hierarchy dominated by T). INITS points to the end of the initializer
|
7850 |
|
|
list to date. INDEX is the VTT index where the next element will be
|
7851 |
|
|
replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
|
7852 |
|
|
not a subvtt for some base of T). When that is so, we emit the sub-VTTs
|
7853 |
|
|
for virtual bases of T. When it is not so, we build the constructor
|
7854 |
|
|
vtables for the BINFO-in-T variant. */
|
7855 |
|
|
|
7856 |
|
|
static void
|
7857 |
|
|
build_vtt_inits (tree binfo, tree t, VEC(constructor_elt,gc) **inits, tree *index)
|
7858 |
|
|
{
|
7859 |
|
|
int i;
|
7860 |
|
|
tree b;
|
7861 |
|
|
tree init;
|
7862 |
|
|
secondary_vptr_vtt_init_data data;
|
7863 |
|
|
int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
|
7864 |
|
|
|
7865 |
|
|
/* We only need VTTs for subobjects with virtual bases. */
|
7866 |
|
|
if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
|
7867 |
|
|
return;
|
7868 |
|
|
|
7869 |
|
|
/* We need to use a construction vtable if this is not the primary
|
7870 |
|
|
VTT. */
|
7871 |
|
|
if (!top_level_p)
|
7872 |
|
|
{
|
7873 |
|
|
build_ctor_vtbl_group (binfo, t);
|
7874 |
|
|
|
7875 |
|
|
/* Record the offset in the VTT where this sub-VTT can be found. */
|
7876 |
|
|
BINFO_SUBVTT_INDEX (binfo) = *index;
|
7877 |
|
|
}
|
7878 |
|
|
|
7879 |
|
|
/* Add the address of the primary vtable for the complete object. */
|
7880 |
|
|
init = binfo_ctor_vtable (binfo);
|
7881 |
|
|
CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
|
7882 |
|
|
if (top_level_p)
|
7883 |
|
|
{
|
7884 |
|
|
gcc_assert (!BINFO_VPTR_INDEX (binfo));
|
7885 |
|
|
BINFO_VPTR_INDEX (binfo) = *index;
|
7886 |
|
|
}
|
7887 |
|
|
*index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
|
7888 |
|
|
|
7889 |
|
|
/* Recursively add the secondary VTTs for non-virtual bases. */
|
7890 |
|
|
for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
|
7891 |
|
|
if (!BINFO_VIRTUAL_P (b))
|
7892 |
|
|
build_vtt_inits (b, t, inits, index);
|
7893 |
|
|
|
7894 |
|
|
/* Add secondary virtual pointers for all subobjects of BINFO with
|
7895 |
|
|
either virtual bases or reachable along a virtual path, except
|
7896 |
|
|
subobjects that are non-virtual primary bases. */
|
7897 |
|
|
data.top_level_p = top_level_p;
|
7898 |
|
|
data.index = *index;
|
7899 |
|
|
data.inits = *inits;
|
7900 |
|
|
data.type_being_constructed = BINFO_TYPE (binfo);
|
7901 |
|
|
|
7902 |
|
|
dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
|
7903 |
|
|
|
7904 |
|
|
*index = data.index;
|
7905 |
|
|
|
7906 |
|
|
/* data.inits might have grown as we added secondary virtual pointers.
|
7907 |
|
|
Make sure our caller knows about the new vector. */
|
7908 |
|
|
*inits = data.inits;
|
7909 |
|
|
|
7910 |
|
|
if (top_level_p)
|
7911 |
|
|
/* Add the secondary VTTs for virtual bases in inheritance graph
|
7912 |
|
|
order. */
|
7913 |
|
|
for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
|
7914 |
|
|
{
|
7915 |
|
|
if (!BINFO_VIRTUAL_P (b))
|
7916 |
|
|
continue;
|
7917 |
|
|
|
7918 |
|
|
build_vtt_inits (b, t, inits, index);
|
7919 |
|
|
}
|
7920 |
|
|
else
|
7921 |
|
|
/* Remove the ctor vtables we created. */
|
7922 |
|
|
dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
|
7923 |
|
|
}
|
7924 |
|
|
|
7925 |
|
|
/* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
|
7926 |
|
|
in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
|
7927 |
|
|
|
7928 |
|
|
static tree
|
7929 |
|
|
dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
|
7930 |
|
|
{
|
7931 |
|
|
secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
|
7932 |
|
|
|
7933 |
|
|
/* We don't care about bases that don't have vtables. */
|
7934 |
|
|
if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
|
7935 |
|
|
return dfs_skip_bases;
|
7936 |
|
|
|
7937 |
|
|
/* We're only interested in proper subobjects of the type being
|
7938 |
|
|
constructed. */
|
7939 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
|
7940 |
|
|
return NULL_TREE;
|
7941 |
|
|
|
7942 |
|
|
/* We're only interested in bases with virtual bases or reachable
|
7943 |
|
|
via a virtual path from the type being constructed. */
|
7944 |
|
|
if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
|
7945 |
|
|
|| binfo_via_virtual (binfo, data->type_being_constructed)))
|
7946 |
|
|
return dfs_skip_bases;
|
7947 |
|
|
|
7948 |
|
|
/* We're not interested in non-virtual primary bases. */
|
7949 |
|
|
if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
|
7950 |
|
|
return NULL_TREE;
|
7951 |
|
|
|
7952 |
|
|
/* Record the index where this secondary vptr can be found. */
|
7953 |
|
|
if (data->top_level_p)
|
7954 |
|
|
{
|
7955 |
|
|
gcc_assert (!BINFO_VPTR_INDEX (binfo));
|
7956 |
|
|
BINFO_VPTR_INDEX (binfo) = data->index;
|
7957 |
|
|
|
7958 |
|
|
if (BINFO_VIRTUAL_P (binfo))
|
7959 |
|
|
{
|
7960 |
|
|
/* It's a primary virtual base, and this is not a
|
7961 |
|
|
construction vtable. Find the base this is primary of in
|
7962 |
|
|
the inheritance graph, and use that base's vtable
|
7963 |
|
|
now. */
|
7964 |
|
|
while (BINFO_PRIMARY_P (binfo))
|
7965 |
|
|
binfo = BINFO_INHERITANCE_CHAIN (binfo);
|
7966 |
|
|
}
|
7967 |
|
|
}
|
7968 |
|
|
|
7969 |
|
|
/* Add the initializer for the secondary vptr itself. */
|
7970 |
|
|
CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
|
7971 |
|
|
|
7972 |
|
|
/* Advance the vtt index. */
|
7973 |
|
|
data->index = size_binop (PLUS_EXPR, data->index,
|
7974 |
|
|
TYPE_SIZE_UNIT (ptr_type_node));
|
7975 |
|
|
|
7976 |
|
|
return NULL_TREE;
|
7977 |
|
|
}
|
7978 |
|
|
|
7979 |
|
|
/* Called from build_vtt_inits via dfs_walk. After building
|
7980 |
|
|
constructor vtables and generating the sub-vtt from them, we need
|
7981 |
|
|
to restore the BINFO_VTABLES that were scribbled on. DATA is the
|
7982 |
|
|
binfo of the base whose sub vtt was generated. */
|
7983 |
|
|
|
7984 |
|
|
static tree
|
7985 |
|
|
dfs_fixup_binfo_vtbls (tree binfo, void* data)
|
7986 |
|
|
{
|
7987 |
|
|
tree vtable = BINFO_VTABLE (binfo);
|
7988 |
|
|
|
7989 |
|
|
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
|
7990 |
|
|
/* If this class has no vtable, none of its bases do. */
|
7991 |
|
|
return dfs_skip_bases;
|
7992 |
|
|
|
7993 |
|
|
if (!vtable)
|
7994 |
|
|
/* This might be a primary base, so have no vtable in this
|
7995 |
|
|
hierarchy. */
|
7996 |
|
|
return NULL_TREE;
|
7997 |
|
|
|
7998 |
|
|
/* If we scribbled the construction vtable vptr into BINFO, clear it
|
7999 |
|
|
out now. */
|
8000 |
|
|
if (TREE_CODE (vtable) == TREE_LIST
|
8001 |
|
|
&& (TREE_PURPOSE (vtable) == (tree) data))
|
8002 |
|
|
BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
|
8003 |
|
|
|
8004 |
|
|
return NULL_TREE;
|
8005 |
|
|
}
|
8006 |
|
|
|
8007 |
|
|
/* Build the construction vtable group for BINFO which is in the
|
8008 |
|
|
hierarchy dominated by T. */
|
8009 |
|
|
|
8010 |
|
|
static void
|
8011 |
|
|
build_ctor_vtbl_group (tree binfo, tree t)
|
8012 |
|
|
{
|
8013 |
|
|
tree type;
|
8014 |
|
|
tree vtbl;
|
8015 |
|
|
tree id;
|
8016 |
|
|
tree vbase;
|
8017 |
|
|
VEC(constructor_elt,gc) *v;
|
8018 |
|
|
|
8019 |
|
|
/* See if we've already created this construction vtable group. */
|
8020 |
|
|
id = mangle_ctor_vtbl_for_type (t, binfo);
|
8021 |
|
|
if (IDENTIFIER_GLOBAL_VALUE (id))
|
8022 |
|
|
return;
|
8023 |
|
|
|
8024 |
|
|
gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
|
8025 |
|
|
/* Build a version of VTBL (with the wrong type) for use in
|
8026 |
|
|
constructing the addresses of secondary vtables in the
|
8027 |
|
|
construction vtable group. */
|
8028 |
|
|
vtbl = build_vtable (t, id, ptr_type_node);
|
8029 |
|
|
DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
|
8030 |
|
|
|
8031 |
|
|
v = NULL;
|
8032 |
|
|
accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
|
8033 |
|
|
binfo, vtbl, t, &v);
|
8034 |
|
|
|
8035 |
|
|
/* Add the vtables for each of our virtual bases using the vbase in T
|
8036 |
|
|
binfo. */
|
8037 |
|
|
for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
|
8038 |
|
|
vbase;
|
8039 |
|
|
vbase = TREE_CHAIN (vbase))
|
8040 |
|
|
{
|
8041 |
|
|
tree b;
|
8042 |
|
|
|
8043 |
|
|
if (!BINFO_VIRTUAL_P (vbase))
|
8044 |
|
|
continue;
|
8045 |
|
|
b = copied_binfo (vbase, binfo);
|
8046 |
|
|
|
8047 |
|
|
accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
|
8048 |
|
|
}
|
8049 |
|
|
|
8050 |
|
|
/* Figure out the type of the construction vtable. */
|
8051 |
|
|
type = build_array_of_n_type (vtable_entry_type,
|
8052 |
|
|
VEC_length (constructor_elt, v));
|
8053 |
|
|
layout_type (type);
|
8054 |
|
|
TREE_TYPE (vtbl) = type;
|
8055 |
|
|
DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
|
8056 |
|
|
layout_decl (vtbl, 0);
|
8057 |
|
|
|
8058 |
|
|
/* Initialize the construction vtable. */
|
8059 |
|
|
CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
|
8060 |
|
|
initialize_artificial_var (vtbl, v);
|
8061 |
|
|
dump_vtable (t, binfo, vtbl);
|
8062 |
|
|
}
|
8063 |
|
|
|
8064 |
|
|
/* Add the vtbl initializers for BINFO (and its bases other than
|
8065 |
|
|
non-virtual primaries) to the list of INITS. BINFO is in the
|
8066 |
|
|
hierarchy dominated by T. RTTI_BINFO is the binfo within T of
|
8067 |
|
|
the constructor the vtbl inits should be accumulated for. (If this
|
8068 |
|
|
is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
|
8069 |
|
|
ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
|
8070 |
|
|
BINFO is the active base equivalent of ORIG_BINFO in the inheritance
|
8071 |
|
|
graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
|
8072 |
|
|
but are not necessarily the same in terms of layout. */
|
8073 |
|
|
|
8074 |
|
|
static void
|
8075 |
|
|
accumulate_vtbl_inits (tree binfo,
|
8076 |
|
|
tree orig_binfo,
|
8077 |
|
|
tree rtti_binfo,
|
8078 |
|
|
tree vtbl,
|
8079 |
|
|
tree t,
|
8080 |
|
|
VEC(constructor_elt,gc) **inits)
|
8081 |
|
|
{
|
8082 |
|
|
int i;
|
8083 |
|
|
tree base_binfo;
|
8084 |
|
|
int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
|
8085 |
|
|
|
8086 |
|
|
gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
|
8087 |
|
|
|
8088 |
|
|
/* If it doesn't have a vptr, we don't do anything. */
|
8089 |
|
|
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
|
8090 |
|
|
return;
|
8091 |
|
|
|
8092 |
|
|
/* If we're building a construction vtable, we're not interested in
|
8093 |
|
|
subobjects that don't require construction vtables. */
|
8094 |
|
|
if (ctor_vtbl_p
|
8095 |
|
|
&& !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
|
8096 |
|
|
&& !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
|
8097 |
|
|
return;
|
8098 |
|
|
|
8099 |
|
|
/* Build the initializers for the BINFO-in-T vtable. */
|
8100 |
|
|
dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
|
8101 |
|
|
|
8102 |
|
|
/* Walk the BINFO and its bases. We walk in preorder so that as we
|
8103 |
|
|
initialize each vtable we can figure out at what offset the
|
8104 |
|
|
secondary vtable lies from the primary vtable. We can't use
|
8105 |
|
|
dfs_walk here because we need to iterate through bases of BINFO
|
8106 |
|
|
and RTTI_BINFO simultaneously. */
|
8107 |
|
|
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
8108 |
|
|
{
|
8109 |
|
|
/* Skip virtual bases. */
|
8110 |
|
|
if (BINFO_VIRTUAL_P (base_binfo))
|
8111 |
|
|
continue;
|
8112 |
|
|
accumulate_vtbl_inits (base_binfo,
|
8113 |
|
|
BINFO_BASE_BINFO (orig_binfo, i),
|
8114 |
|
|
rtti_binfo, vtbl, t,
|
8115 |
|
|
inits);
|
8116 |
|
|
}
|
8117 |
|
|
}
|
8118 |
|
|
|
8119 |
|
|
/* Called from accumulate_vtbl_inits. Adds the initializers for the
|
8120 |
|
|
BINFO vtable to L. */
|
8121 |
|
|
|
8122 |
|
|
static void
|
8123 |
|
|
dfs_accumulate_vtbl_inits (tree binfo,
|
8124 |
|
|
tree orig_binfo,
|
8125 |
|
|
tree rtti_binfo,
|
8126 |
|
|
tree orig_vtbl,
|
8127 |
|
|
tree t,
|
8128 |
|
|
VEC(constructor_elt,gc) **l)
|
8129 |
|
|
{
|
8130 |
|
|
tree vtbl = NULL_TREE;
|
8131 |
|
|
int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
|
8132 |
|
|
int n_inits;
|
8133 |
|
|
|
8134 |
|
|
if (ctor_vtbl_p
|
8135 |
|
|
&& BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
|
8136 |
|
|
{
|
8137 |
|
|
/* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
|
8138 |
|
|
primary virtual base. If it is not the same primary in
|
8139 |
|
|
the hierarchy of T, we'll need to generate a ctor vtable
|
8140 |
|
|
for it, to place at its location in T. If it is the same
|
8141 |
|
|
primary, we still need a VTT entry for the vtable, but it
|
8142 |
|
|
should point to the ctor vtable for the base it is a
|
8143 |
|
|
primary for within the sub-hierarchy of RTTI_BINFO.
|
8144 |
|
|
|
8145 |
|
|
There are three possible cases:
|
8146 |
|
|
|
8147 |
|
|
1) We are in the same place.
|
8148 |
|
|
2) We are a primary base within a lost primary virtual base of
|
8149 |
|
|
RTTI_BINFO.
|
8150 |
|
|
3) We are primary to something not a base of RTTI_BINFO. */
|
8151 |
|
|
|
8152 |
|
|
tree b;
|
8153 |
|
|
tree last = NULL_TREE;
|
8154 |
|
|
|
8155 |
|
|
/* First, look through the bases we are primary to for RTTI_BINFO
|
8156 |
|
|
or a virtual base. */
|
8157 |
|
|
b = binfo;
|
8158 |
|
|
while (BINFO_PRIMARY_P (b))
|
8159 |
|
|
{
|
8160 |
|
|
b = BINFO_INHERITANCE_CHAIN (b);
|
8161 |
|
|
last = b;
|
8162 |
|
|
if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
|
8163 |
|
|
goto found;
|
8164 |
|
|
}
|
8165 |
|
|
/* If we run out of primary links, keep looking down our
|
8166 |
|
|
inheritance chain; we might be an indirect primary. */
|
8167 |
|
|
for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
|
8168 |
|
|
if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
|
8169 |
|
|
break;
|
8170 |
|
|
found:
|
8171 |
|
|
|
8172 |
|
|
/* If we found RTTI_BINFO, this is case 1. If we found a virtual
|
8173 |
|
|
base B and it is a base of RTTI_BINFO, this is case 2. In
|
8174 |
|
|
either case, we share our vtable with LAST, i.e. the
|
8175 |
|
|
derived-most base within B of which we are a primary. */
|
8176 |
|
|
if (b == rtti_binfo
|
8177 |
|
|
|| (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
|
8178 |
|
|
/* Just set our BINFO_VTABLE to point to LAST, as we may not have
|
8179 |
|
|
set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
|
8180 |
|
|
binfo_ctor_vtable after everything's been set up. */
|
8181 |
|
|
vtbl = last;
|
8182 |
|
|
|
8183 |
|
|
/* Otherwise, this is case 3 and we get our own. */
|
8184 |
|
|
}
|
8185 |
|
|
else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
|
8186 |
|
|
return;
|
8187 |
|
|
|
8188 |
|
|
n_inits = VEC_length (constructor_elt, *l);
|
8189 |
|
|
|
8190 |
|
|
if (!vtbl)
|
8191 |
|
|
{
|
8192 |
|
|
tree index;
|
8193 |
|
|
int non_fn_entries;
|
8194 |
|
|
|
8195 |
|
|
/* Add the initializer for this vtable. */
|
8196 |
|
|
build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
|
8197 |
|
|
&non_fn_entries, l);
|
8198 |
|
|
|
8199 |
|
|
/* Figure out the position to which the VPTR should point. */
|
8200 |
|
|
vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
|
8201 |
|
|
index = size_binop (MULT_EXPR,
|
8202 |
|
|
TYPE_SIZE_UNIT (vtable_entry_type),
|
8203 |
|
|
size_int (non_fn_entries + n_inits));
|
8204 |
|
|
vtbl = fold_build_pointer_plus (vtbl, index);
|
8205 |
|
|
}
|
8206 |
|
|
|
8207 |
|
|
if (ctor_vtbl_p)
|
8208 |
|
|
/* For a construction vtable, we can't overwrite BINFO_VTABLE.
|
8209 |
|
|
So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
|
8210 |
|
|
straighten this out. */
|
8211 |
|
|
BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
|
8212 |
|
|
else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
|
8213 |
|
|
/* Throw away any unneeded intializers. */
|
8214 |
|
|
VEC_truncate (constructor_elt, *l, n_inits);
|
8215 |
|
|
else
|
8216 |
|
|
/* For an ordinary vtable, set BINFO_VTABLE. */
|
8217 |
|
|
BINFO_VTABLE (binfo) = vtbl;
|
8218 |
|
|
}
|
8219 |
|
|
|
8220 |
|
|
static GTY(()) tree abort_fndecl_addr;
|
8221 |
|
|
|
8222 |
|
|
/* Construct the initializer for BINFO's virtual function table. BINFO
|
8223 |
|
|
is part of the hierarchy dominated by T. If we're building a
|
8224 |
|
|
construction vtable, the ORIG_BINFO is the binfo we should use to
|
8225 |
|
|
find the actual function pointers to put in the vtable - but they
|
8226 |
|
|
can be overridden on the path to most-derived in the graph that
|
8227 |
|
|
ORIG_BINFO belongs. Otherwise,
|
8228 |
|
|
ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
|
8229 |
|
|
BINFO that should be indicated by the RTTI information in the
|
8230 |
|
|
vtable; it will be a base class of T, rather than T itself, if we
|
8231 |
|
|
are building a construction vtable.
|
8232 |
|
|
|
8233 |
|
|
The value returned is a TREE_LIST suitable for wrapping in a
|
8234 |
|
|
CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
|
8235 |
|
|
NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
|
8236 |
|
|
number of non-function entries in the vtable.
|
8237 |
|
|
|
8238 |
|
|
It might seem that this function should never be called with a
|
8239 |
|
|
BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
|
8240 |
|
|
base is always subsumed by a derived class vtable. However, when
|
8241 |
|
|
we are building construction vtables, we do build vtables for
|
8242 |
|
|
primary bases; we need these while the primary base is being
|
8243 |
|
|
constructed. */
|
8244 |
|
|
|
8245 |
|
|
static void
|
8246 |
|
|
build_vtbl_initializer (tree binfo,
|
8247 |
|
|
tree orig_binfo,
|
8248 |
|
|
tree t,
|
8249 |
|
|
tree rtti_binfo,
|
8250 |
|
|
int* non_fn_entries_p,
|
8251 |
|
|
VEC(constructor_elt,gc) **inits)
|
8252 |
|
|
{
|
8253 |
|
|
tree v;
|
8254 |
|
|
vtbl_init_data vid;
|
8255 |
|
|
unsigned ix, jx;
|
8256 |
|
|
tree vbinfo;
|
8257 |
|
|
VEC(tree,gc) *vbases;
|
8258 |
|
|
constructor_elt *e;
|
8259 |
|
|
|
8260 |
|
|
/* Initialize VID. */
|
8261 |
|
|
memset (&vid, 0, sizeof (vid));
|
8262 |
|
|
vid.binfo = binfo;
|
8263 |
|
|
vid.derived = t;
|
8264 |
|
|
vid.rtti_binfo = rtti_binfo;
|
8265 |
|
|
vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
|
8266 |
|
|
vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
|
8267 |
|
|
vid.generate_vcall_entries = true;
|
8268 |
|
|
/* The first vbase or vcall offset is at index -3 in the vtable. */
|
8269 |
|
|
vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
|
8270 |
|
|
|
8271 |
|
|
/* Add entries to the vtable for RTTI. */
|
8272 |
|
|
build_rtti_vtbl_entries (binfo, &vid);
|
8273 |
|
|
|
8274 |
|
|
/* Create an array for keeping track of the functions we've
|
8275 |
|
|
processed. When we see multiple functions with the same
|
8276 |
|
|
signature, we share the vcall offsets. */
|
8277 |
|
|
vid.fns = VEC_alloc (tree, gc, 32);
|
8278 |
|
|
/* Add the vcall and vbase offset entries. */
|
8279 |
|
|
build_vcall_and_vbase_vtbl_entries (binfo, &vid);
|
8280 |
|
|
|
8281 |
|
|
/* Clear BINFO_VTABLE_PATH_MARKED; it's set by
|
8282 |
|
|
build_vbase_offset_vtbl_entries. */
|
8283 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
|
8284 |
|
|
VEC_iterate (tree, vbases, ix, vbinfo); ix++)
|
8285 |
|
|
BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
|
8286 |
|
|
|
8287 |
|
|
/* If the target requires padding between data entries, add that now. */
|
8288 |
|
|
if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
|
8289 |
|
|
{
|
8290 |
|
|
int n_entries = VEC_length (constructor_elt, vid.inits);
|
8291 |
|
|
|
8292 |
|
|
VEC_safe_grow (constructor_elt, gc, vid.inits,
|
8293 |
|
|
TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
|
8294 |
|
|
|
8295 |
|
|
/* Move data entries into their new positions and add padding
|
8296 |
|
|
after the new positions. Iterate backwards so we don't
|
8297 |
|
|
overwrite entries that we would need to process later. */
|
8298 |
|
|
for (ix = n_entries - 1;
|
8299 |
|
|
VEC_iterate (constructor_elt, vid.inits, ix, e);
|
8300 |
|
|
ix--)
|
8301 |
|
|
{
|
8302 |
|
|
int j;
|
8303 |
|
|
int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
|
8304 |
|
|
+ (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
|
8305 |
|
|
|
8306 |
|
|
VEC_replace (constructor_elt, vid.inits, new_position, e);
|
8307 |
|
|
|
8308 |
|
|
for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
|
8309 |
|
|
{
|
8310 |
|
|
constructor_elt *f = VEC_index (constructor_elt, vid.inits,
|
8311 |
|
|
new_position - j);
|
8312 |
|
|
f->index = NULL_TREE;
|
8313 |
|
|
f->value = build1 (NOP_EXPR, vtable_entry_type,
|
8314 |
|
|
null_pointer_node);
|
8315 |
|
|
}
|
8316 |
|
|
}
|
8317 |
|
|
}
|
8318 |
|
|
|
8319 |
|
|
if (non_fn_entries_p)
|
8320 |
|
|
*non_fn_entries_p = VEC_length (constructor_elt, vid.inits);
|
8321 |
|
|
|
8322 |
|
|
/* The initializers for virtual functions were built up in reverse
|
8323 |
|
|
order. Straighten them out and add them to the running list in one
|
8324 |
|
|
step. */
|
8325 |
|
|
jx = VEC_length (constructor_elt, *inits);
|
8326 |
|
|
VEC_safe_grow (constructor_elt, gc, *inits,
|
8327 |
|
|
(jx + VEC_length (constructor_elt, vid.inits)));
|
8328 |
|
|
|
8329 |
|
|
for (ix = VEC_length (constructor_elt, vid.inits) - 1;
|
8330 |
|
|
VEC_iterate (constructor_elt, vid.inits, ix, e);
|
8331 |
|
|
ix--, jx++)
|
8332 |
|
|
VEC_replace (constructor_elt, *inits, jx, e);
|
8333 |
|
|
|
8334 |
|
|
/* Go through all the ordinary virtual functions, building up
|
8335 |
|
|
initializers. */
|
8336 |
|
|
for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
|
8337 |
|
|
{
|
8338 |
|
|
tree delta;
|
8339 |
|
|
tree vcall_index;
|
8340 |
|
|
tree fn, fn_original;
|
8341 |
|
|
tree init = NULL_TREE;
|
8342 |
|
|
|
8343 |
|
|
fn = BV_FN (v);
|
8344 |
|
|
fn_original = fn;
|
8345 |
|
|
if (DECL_THUNK_P (fn))
|
8346 |
|
|
{
|
8347 |
|
|
if (!DECL_NAME (fn))
|
8348 |
|
|
finish_thunk (fn);
|
8349 |
|
|
if (THUNK_ALIAS (fn))
|
8350 |
|
|
{
|
8351 |
|
|
fn = THUNK_ALIAS (fn);
|
8352 |
|
|
BV_FN (v) = fn;
|
8353 |
|
|
}
|
8354 |
|
|
fn_original = THUNK_TARGET (fn);
|
8355 |
|
|
}
|
8356 |
|
|
|
8357 |
|
|
/* If the only definition of this function signature along our
|
8358 |
|
|
primary base chain is from a lost primary, this vtable slot will
|
8359 |
|
|
never be used, so just zero it out. This is important to avoid
|
8360 |
|
|
requiring extra thunks which cannot be generated with the function.
|
8361 |
|
|
|
8362 |
|
|
We first check this in update_vtable_entry_for_fn, so we handle
|
8363 |
|
|
restored primary bases properly; we also need to do it here so we
|
8364 |
|
|
zero out unused slots in ctor vtables, rather than filling them
|
8365 |
|
|
with erroneous values (though harmless, apart from relocation
|
8366 |
|
|
costs). */
|
8367 |
|
|
if (BV_LOST_PRIMARY (v))
|
8368 |
|
|
init = size_zero_node;
|
8369 |
|
|
|
8370 |
|
|
if (! init)
|
8371 |
|
|
{
|
8372 |
|
|
/* Pull the offset for `this', and the function to call, out of
|
8373 |
|
|
the list. */
|
8374 |
|
|
delta = BV_DELTA (v);
|
8375 |
|
|
vcall_index = BV_VCALL_INDEX (v);
|
8376 |
|
|
|
8377 |
|
|
gcc_assert (TREE_CODE (delta) == INTEGER_CST);
|
8378 |
|
|
gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
|
8379 |
|
|
|
8380 |
|
|
/* You can't call an abstract virtual function; it's abstract.
|
8381 |
|
|
So, we replace these functions with __pure_virtual. */
|
8382 |
|
|
if (DECL_PURE_VIRTUAL_P (fn_original))
|
8383 |
|
|
{
|
8384 |
|
|
fn = abort_fndecl;
|
8385 |
|
|
if (!TARGET_VTABLE_USES_DESCRIPTORS)
|
8386 |
|
|
{
|
8387 |
|
|
if (abort_fndecl_addr == NULL)
|
8388 |
|
|
abort_fndecl_addr
|
8389 |
|
|
= fold_convert (vfunc_ptr_type_node,
|
8390 |
|
|
build_fold_addr_expr (fn));
|
8391 |
|
|
init = abort_fndecl_addr;
|
8392 |
|
|
}
|
8393 |
|
|
}
|
8394 |
|
|
/* Likewise for deleted virtuals. */
|
8395 |
|
|
else if (DECL_DELETED_FN (fn_original))
|
8396 |
|
|
{
|
8397 |
|
|
fn = get_identifier ("__cxa_deleted_virtual");
|
8398 |
|
|
if (!get_global_value_if_present (fn, &fn))
|
8399 |
|
|
fn = push_library_fn (fn, (build_function_type_list
|
8400 |
|
|
(void_type_node, NULL_TREE)),
|
8401 |
|
|
NULL_TREE);
|
8402 |
|
|
if (!TARGET_VTABLE_USES_DESCRIPTORS)
|
8403 |
|
|
init = fold_convert (vfunc_ptr_type_node,
|
8404 |
|
|
build_fold_addr_expr (fn));
|
8405 |
|
|
}
|
8406 |
|
|
else
|
8407 |
|
|
{
|
8408 |
|
|
if (!integer_zerop (delta) || vcall_index)
|
8409 |
|
|
{
|
8410 |
|
|
fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
|
8411 |
|
|
if (!DECL_NAME (fn))
|
8412 |
|
|
finish_thunk (fn);
|
8413 |
|
|
}
|
8414 |
|
|
/* Take the address of the function, considering it to be of an
|
8415 |
|
|
appropriate generic type. */
|
8416 |
|
|
if (!TARGET_VTABLE_USES_DESCRIPTORS)
|
8417 |
|
|
init = fold_convert (vfunc_ptr_type_node,
|
8418 |
|
|
build_fold_addr_expr (fn));
|
8419 |
|
|
}
|
8420 |
|
|
}
|
8421 |
|
|
|
8422 |
|
|
/* And add it to the chain of initializers. */
|
8423 |
|
|
if (TARGET_VTABLE_USES_DESCRIPTORS)
|
8424 |
|
|
{
|
8425 |
|
|
int i;
|
8426 |
|
|
if (init == size_zero_node)
|
8427 |
|
|
for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
|
8428 |
|
|
CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
|
8429 |
|
|
else
|
8430 |
|
|
for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
|
8431 |
|
|
{
|
8432 |
|
|
tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
|
8433 |
|
|
fn, build_int_cst (NULL_TREE, i));
|
8434 |
|
|
TREE_CONSTANT (fdesc) = 1;
|
8435 |
|
|
|
8436 |
|
|
CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
|
8437 |
|
|
}
|
8438 |
|
|
}
|
8439 |
|
|
else
|
8440 |
|
|
CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
|
8441 |
|
|
}
|
8442 |
|
|
}
|
8443 |
|
|
|
8444 |
|
|
/* Adds to vid->inits the initializers for the vbase and vcall
|
8445 |
|
|
offsets in BINFO, which is in the hierarchy dominated by T. */
|
8446 |
|
|
|
8447 |
|
|
static void
|
8448 |
|
|
build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
|
8449 |
|
|
{
|
8450 |
|
|
tree b;
|
8451 |
|
|
|
8452 |
|
|
/* If this is a derived class, we must first create entries
|
8453 |
|
|
corresponding to the primary base class. */
|
8454 |
|
|
b = get_primary_binfo (binfo);
|
8455 |
|
|
if (b)
|
8456 |
|
|
build_vcall_and_vbase_vtbl_entries (b, vid);
|
8457 |
|
|
|
8458 |
|
|
/* Add the vbase entries for this base. */
|
8459 |
|
|
build_vbase_offset_vtbl_entries (binfo, vid);
|
8460 |
|
|
/* Add the vcall entries for this base. */
|
8461 |
|
|
build_vcall_offset_vtbl_entries (binfo, vid);
|
8462 |
|
|
}
|
8463 |
|
|
|
8464 |
|
|
/* Returns the initializers for the vbase offset entries in the vtable
|
8465 |
|
|
for BINFO (which is part of the class hierarchy dominated by T), in
|
8466 |
|
|
reverse order. VBASE_OFFSET_INDEX gives the vtable index
|
8467 |
|
|
where the next vbase offset will go. */
|
8468 |
|
|
|
8469 |
|
|
static void
|
8470 |
|
|
build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
|
8471 |
|
|
{
|
8472 |
|
|
tree vbase;
|
8473 |
|
|
tree t;
|
8474 |
|
|
tree non_primary_binfo;
|
8475 |
|
|
|
8476 |
|
|
/* If there are no virtual baseclasses, then there is nothing to
|
8477 |
|
|
do. */
|
8478 |
|
|
if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
|
8479 |
|
|
return;
|
8480 |
|
|
|
8481 |
|
|
t = vid->derived;
|
8482 |
|
|
|
8483 |
|
|
/* We might be a primary base class. Go up the inheritance hierarchy
|
8484 |
|
|
until we find the most derived class of which we are a primary base:
|
8485 |
|
|
it is the offset of that which we need to use. */
|
8486 |
|
|
non_primary_binfo = binfo;
|
8487 |
|
|
while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
|
8488 |
|
|
{
|
8489 |
|
|
tree b;
|
8490 |
|
|
|
8491 |
|
|
/* If we have reached a virtual base, then it must be a primary
|
8492 |
|
|
base (possibly multi-level) of vid->binfo, or we wouldn't
|
8493 |
|
|
have called build_vcall_and_vbase_vtbl_entries for it. But it
|
8494 |
|
|
might be a lost primary, so just skip down to vid->binfo. */
|
8495 |
|
|
if (BINFO_VIRTUAL_P (non_primary_binfo))
|
8496 |
|
|
{
|
8497 |
|
|
non_primary_binfo = vid->binfo;
|
8498 |
|
|
break;
|
8499 |
|
|
}
|
8500 |
|
|
|
8501 |
|
|
b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
|
8502 |
|
|
if (get_primary_binfo (b) != non_primary_binfo)
|
8503 |
|
|
break;
|
8504 |
|
|
non_primary_binfo = b;
|
8505 |
|
|
}
|
8506 |
|
|
|
8507 |
|
|
/* Go through the virtual bases, adding the offsets. */
|
8508 |
|
|
for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
|
8509 |
|
|
vbase;
|
8510 |
|
|
vbase = TREE_CHAIN (vbase))
|
8511 |
|
|
{
|
8512 |
|
|
tree b;
|
8513 |
|
|
tree delta;
|
8514 |
|
|
|
8515 |
|
|
if (!BINFO_VIRTUAL_P (vbase))
|
8516 |
|
|
continue;
|
8517 |
|
|
|
8518 |
|
|
/* Find the instance of this virtual base in the complete
|
8519 |
|
|
object. */
|
8520 |
|
|
b = copied_binfo (vbase, binfo);
|
8521 |
|
|
|
8522 |
|
|
/* If we've already got an offset for this virtual base, we
|
8523 |
|
|
don't need another one. */
|
8524 |
|
|
if (BINFO_VTABLE_PATH_MARKED (b))
|
8525 |
|
|
continue;
|
8526 |
|
|
BINFO_VTABLE_PATH_MARKED (b) = 1;
|
8527 |
|
|
|
8528 |
|
|
/* Figure out where we can find this vbase offset. */
|
8529 |
|
|
delta = size_binop (MULT_EXPR,
|
8530 |
|
|
vid->index,
|
8531 |
|
|
convert (ssizetype,
|
8532 |
|
|
TYPE_SIZE_UNIT (vtable_entry_type)));
|
8533 |
|
|
if (vid->primary_vtbl_p)
|
8534 |
|
|
BINFO_VPTR_FIELD (b) = delta;
|
8535 |
|
|
|
8536 |
|
|
if (binfo != TYPE_BINFO (t))
|
8537 |
|
|
/* The vbase offset had better be the same. */
|
8538 |
|
|
gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
|
8539 |
|
|
|
8540 |
|
|
/* The next vbase will come at a more negative offset. */
|
8541 |
|
|
vid->index = size_binop (MINUS_EXPR, vid->index,
|
8542 |
|
|
ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
|
8543 |
|
|
|
8544 |
|
|
/* The initializer is the delta from BINFO to this virtual base.
|
8545 |
|
|
The vbase offsets go in reverse inheritance-graph order, and
|
8546 |
|
|
we are walking in inheritance graph order so these end up in
|
8547 |
|
|
the right order. */
|
8548 |
|
|
delta = size_diffop_loc (input_location,
|
8549 |
|
|
BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
|
8550 |
|
|
|
8551 |
|
|
CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
|
8552 |
|
|
fold_build1_loc (input_location, NOP_EXPR,
|
8553 |
|
|
vtable_entry_type, delta));
|
8554 |
|
|
}
|
8555 |
|
|
}
|
8556 |
|
|
|
8557 |
|
|
/* Adds the initializers for the vcall offset entries in the vtable
|
8558 |
|
|
for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
|
8559 |
|
|
to VID->INITS. */
|
8560 |
|
|
|
8561 |
|
|
static void
|
8562 |
|
|
build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
|
8563 |
|
|
{
|
8564 |
|
|
/* We only need these entries if this base is a virtual base. We
|
8565 |
|
|
compute the indices -- but do not add to the vtable -- when
|
8566 |
|
|
building the main vtable for a class. */
|
8567 |
|
|
if (binfo == TYPE_BINFO (vid->derived)
|
8568 |
|
|
|| (BINFO_VIRTUAL_P (binfo)
|
8569 |
|
|
/* If BINFO is RTTI_BINFO, then (since BINFO does not
|
8570 |
|
|
correspond to VID->DERIVED), we are building a primary
|
8571 |
|
|
construction virtual table. Since this is a primary
|
8572 |
|
|
virtual table, we do not need the vcall offsets for
|
8573 |
|
|
BINFO. */
|
8574 |
|
|
&& binfo != vid->rtti_binfo))
|
8575 |
|
|
{
|
8576 |
|
|
/* We need a vcall offset for each of the virtual functions in this
|
8577 |
|
|
vtable. For example:
|
8578 |
|
|
|
8579 |
|
|
class A { virtual void f (); };
|
8580 |
|
|
class B1 : virtual public A { virtual void f (); };
|
8581 |
|
|
class B2 : virtual public A { virtual void f (); };
|
8582 |
|
|
class C: public B1, public B2 { virtual void f (); };
|
8583 |
|
|
|
8584 |
|
|
A C object has a primary base of B1, which has a primary base of A. A
|
8585 |
|
|
C also has a secondary base of B2, which no longer has a primary base
|
8586 |
|
|
of A. So the B2-in-C construction vtable needs a secondary vtable for
|
8587 |
|
|
A, which will adjust the A* to a B2* to call f. We have no way of
|
8588 |
|
|
knowing what (or even whether) this offset will be when we define B2,
|
8589 |
|
|
so we store this "vcall offset" in the A sub-vtable and look it up in
|
8590 |
|
|
a "virtual thunk" for B2::f.
|
8591 |
|
|
|
8592 |
|
|
We need entries for all the functions in our primary vtable and
|
8593 |
|
|
in our non-virtual bases' secondary vtables. */
|
8594 |
|
|
vid->vbase = binfo;
|
8595 |
|
|
/* If we are just computing the vcall indices -- but do not need
|
8596 |
|
|
the actual entries -- not that. */
|
8597 |
|
|
if (!BINFO_VIRTUAL_P (binfo))
|
8598 |
|
|
vid->generate_vcall_entries = false;
|
8599 |
|
|
/* Now, walk through the non-virtual bases, adding vcall offsets. */
|
8600 |
|
|
add_vcall_offset_vtbl_entries_r (binfo, vid);
|
8601 |
|
|
}
|
8602 |
|
|
}
|
8603 |
|
|
|
8604 |
|
|
/* Build vcall offsets, starting with those for BINFO. */
|
8605 |
|
|
|
8606 |
|
|
static void
|
8607 |
|
|
add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
|
8608 |
|
|
{
|
8609 |
|
|
int i;
|
8610 |
|
|
tree primary_binfo;
|
8611 |
|
|
tree base_binfo;
|
8612 |
|
|
|
8613 |
|
|
/* Don't walk into virtual bases -- except, of course, for the
|
8614 |
|
|
virtual base for which we are building vcall offsets. Any
|
8615 |
|
|
primary virtual base will have already had its offsets generated
|
8616 |
|
|
through the recursion in build_vcall_and_vbase_vtbl_entries. */
|
8617 |
|
|
if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
|
8618 |
|
|
return;
|
8619 |
|
|
|
8620 |
|
|
/* If BINFO has a primary base, process it first. */
|
8621 |
|
|
primary_binfo = get_primary_binfo (binfo);
|
8622 |
|
|
if (primary_binfo)
|
8623 |
|
|
add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
|
8624 |
|
|
|
8625 |
|
|
/* Add BINFO itself to the list. */
|
8626 |
|
|
add_vcall_offset_vtbl_entries_1 (binfo, vid);
|
8627 |
|
|
|
8628 |
|
|
/* Scan the non-primary bases of BINFO. */
|
8629 |
|
|
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
8630 |
|
|
if (base_binfo != primary_binfo)
|
8631 |
|
|
add_vcall_offset_vtbl_entries_r (base_binfo, vid);
|
8632 |
|
|
}
|
8633 |
|
|
|
8634 |
|
|
/* Called from build_vcall_offset_vtbl_entries_r. */
|
8635 |
|
|
|
8636 |
|
|
static void
|
8637 |
|
|
add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
|
8638 |
|
|
{
|
8639 |
|
|
/* Make entries for the rest of the virtuals. */
|
8640 |
|
|
if (abi_version_at_least (2))
|
8641 |
|
|
{
|
8642 |
|
|
tree orig_fn;
|
8643 |
|
|
|
8644 |
|
|
/* The ABI requires that the methods be processed in declaration
|
8645 |
|
|
order. G++ 3.2 used the order in the vtable. */
|
8646 |
|
|
for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
|
8647 |
|
|
orig_fn;
|
8648 |
|
|
orig_fn = DECL_CHAIN (orig_fn))
|
8649 |
|
|
if (DECL_VINDEX (orig_fn))
|
8650 |
|
|
add_vcall_offset (orig_fn, binfo, vid);
|
8651 |
|
|
}
|
8652 |
|
|
else
|
8653 |
|
|
{
|
8654 |
|
|
tree derived_virtuals;
|
8655 |
|
|
tree base_virtuals;
|
8656 |
|
|
tree orig_virtuals;
|
8657 |
|
|
/* If BINFO is a primary base, the most derived class which has
|
8658 |
|
|
BINFO as a primary base; otherwise, just BINFO. */
|
8659 |
|
|
tree non_primary_binfo;
|
8660 |
|
|
|
8661 |
|
|
/* We might be a primary base class. Go up the inheritance hierarchy
|
8662 |
|
|
until we find the most derived class of which we are a primary base:
|
8663 |
|
|
it is the BINFO_VIRTUALS there that we need to consider. */
|
8664 |
|
|
non_primary_binfo = binfo;
|
8665 |
|
|
while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
|
8666 |
|
|
{
|
8667 |
|
|
tree b;
|
8668 |
|
|
|
8669 |
|
|
/* If we have reached a virtual base, then it must be vid->vbase,
|
8670 |
|
|
because we ignore other virtual bases in
|
8671 |
|
|
add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
|
8672 |
|
|
base (possibly multi-level) of vid->binfo, or we wouldn't
|
8673 |
|
|
have called build_vcall_and_vbase_vtbl_entries for it. But it
|
8674 |
|
|
might be a lost primary, so just skip down to vid->binfo. */
|
8675 |
|
|
if (BINFO_VIRTUAL_P (non_primary_binfo))
|
8676 |
|
|
{
|
8677 |
|
|
gcc_assert (non_primary_binfo == vid->vbase);
|
8678 |
|
|
non_primary_binfo = vid->binfo;
|
8679 |
|
|
break;
|
8680 |
|
|
}
|
8681 |
|
|
|
8682 |
|
|
b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
|
8683 |
|
|
if (get_primary_binfo (b) != non_primary_binfo)
|
8684 |
|
|
break;
|
8685 |
|
|
non_primary_binfo = b;
|
8686 |
|
|
}
|
8687 |
|
|
|
8688 |
|
|
if (vid->ctor_vtbl_p)
|
8689 |
|
|
/* For a ctor vtable we need the equivalent binfo within the hierarchy
|
8690 |
|
|
where rtti_binfo is the most derived type. */
|
8691 |
|
|
non_primary_binfo
|
8692 |
|
|
= original_binfo (non_primary_binfo, vid->rtti_binfo);
|
8693 |
|
|
|
8694 |
|
|
for (base_virtuals = BINFO_VIRTUALS (binfo),
|
8695 |
|
|
derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
|
8696 |
|
|
orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
|
8697 |
|
|
base_virtuals;
|
8698 |
|
|
base_virtuals = TREE_CHAIN (base_virtuals),
|
8699 |
|
|
derived_virtuals = TREE_CHAIN (derived_virtuals),
|
8700 |
|
|
orig_virtuals = TREE_CHAIN (orig_virtuals))
|
8701 |
|
|
{
|
8702 |
|
|
tree orig_fn;
|
8703 |
|
|
|
8704 |
|
|
/* Find the declaration that originally caused this function to
|
8705 |
|
|
be present in BINFO_TYPE (binfo). */
|
8706 |
|
|
orig_fn = BV_FN (orig_virtuals);
|
8707 |
|
|
|
8708 |
|
|
/* When processing BINFO, we only want to generate vcall slots for
|
8709 |
|
|
function slots introduced in BINFO. So don't try to generate
|
8710 |
|
|
one if the function isn't even defined in BINFO. */
|
8711 |
|
|
if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
|
8712 |
|
|
continue;
|
8713 |
|
|
|
8714 |
|
|
add_vcall_offset (orig_fn, binfo, vid);
|
8715 |
|
|
}
|
8716 |
|
|
}
|
8717 |
|
|
}
|
8718 |
|
|
|
8719 |
|
|
/* Add a vcall offset entry for ORIG_FN to the vtable. */
|
8720 |
|
|
|
8721 |
|
|
static void
|
8722 |
|
|
add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
|
8723 |
|
|
{
|
8724 |
|
|
size_t i;
|
8725 |
|
|
tree vcall_offset;
|
8726 |
|
|
tree derived_entry;
|
8727 |
|
|
|
8728 |
|
|
/* If there is already an entry for a function with the same
|
8729 |
|
|
signature as FN, then we do not need a second vcall offset.
|
8730 |
|
|
Check the list of functions already present in the derived
|
8731 |
|
|
class vtable. */
|
8732 |
|
|
FOR_EACH_VEC_ELT (tree, vid->fns, i, derived_entry)
|
8733 |
|
|
{
|
8734 |
|
|
if (same_signature_p (derived_entry, orig_fn)
|
8735 |
|
|
/* We only use one vcall offset for virtual destructors,
|
8736 |
|
|
even though there are two virtual table entries. */
|
8737 |
|
|
|| (DECL_DESTRUCTOR_P (derived_entry)
|
8738 |
|
|
&& DECL_DESTRUCTOR_P (orig_fn)))
|
8739 |
|
|
return;
|
8740 |
|
|
}
|
8741 |
|
|
|
8742 |
|
|
/* If we are building these vcall offsets as part of building
|
8743 |
|
|
the vtable for the most derived class, remember the vcall
|
8744 |
|
|
offset. */
|
8745 |
|
|
if (vid->binfo == TYPE_BINFO (vid->derived))
|
8746 |
|
|
{
|
8747 |
|
|
tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
|
8748 |
|
|
CLASSTYPE_VCALL_INDICES (vid->derived),
|
8749 |
|
|
NULL);
|
8750 |
|
|
elt->purpose = orig_fn;
|
8751 |
|
|
elt->value = vid->index;
|
8752 |
|
|
}
|
8753 |
|
|
|
8754 |
|
|
/* The next vcall offset will be found at a more negative
|
8755 |
|
|
offset. */
|
8756 |
|
|
vid->index = size_binop (MINUS_EXPR, vid->index,
|
8757 |
|
|
ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
|
8758 |
|
|
|
8759 |
|
|
/* Keep track of this function. */
|
8760 |
|
|
VEC_safe_push (tree, gc, vid->fns, orig_fn);
|
8761 |
|
|
|
8762 |
|
|
if (vid->generate_vcall_entries)
|
8763 |
|
|
{
|
8764 |
|
|
tree base;
|
8765 |
|
|
tree fn;
|
8766 |
|
|
|
8767 |
|
|
/* Find the overriding function. */
|
8768 |
|
|
fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
|
8769 |
|
|
if (fn == error_mark_node)
|
8770 |
|
|
vcall_offset = build_zero_cst (vtable_entry_type);
|
8771 |
|
|
else
|
8772 |
|
|
{
|
8773 |
|
|
base = TREE_VALUE (fn);
|
8774 |
|
|
|
8775 |
|
|
/* The vbase we're working on is a primary base of
|
8776 |
|
|
vid->binfo. But it might be a lost primary, so its
|
8777 |
|
|
BINFO_OFFSET might be wrong, so we just use the
|
8778 |
|
|
BINFO_OFFSET from vid->binfo. */
|
8779 |
|
|
vcall_offset = size_diffop_loc (input_location,
|
8780 |
|
|
BINFO_OFFSET (base),
|
8781 |
|
|
BINFO_OFFSET (vid->binfo));
|
8782 |
|
|
vcall_offset = fold_build1_loc (input_location,
|
8783 |
|
|
NOP_EXPR, vtable_entry_type,
|
8784 |
|
|
vcall_offset);
|
8785 |
|
|
}
|
8786 |
|
|
/* Add the initializer to the vtable. */
|
8787 |
|
|
CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
|
8788 |
|
|
}
|
8789 |
|
|
}
|
8790 |
|
|
|
8791 |
|
|
/* Return vtbl initializers for the RTTI entries corresponding to the
|
8792 |
|
|
BINFO's vtable. The RTTI entries should indicate the object given
|
8793 |
|
|
by VID->rtti_binfo. */
|
8794 |
|
|
|
8795 |
|
|
static void
|
8796 |
|
|
build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
|
8797 |
|
|
{
|
8798 |
|
|
tree b;
|
8799 |
|
|
tree t;
|
8800 |
|
|
tree offset;
|
8801 |
|
|
tree decl;
|
8802 |
|
|
tree init;
|
8803 |
|
|
|
8804 |
|
|
t = BINFO_TYPE (vid->rtti_binfo);
|
8805 |
|
|
|
8806 |
|
|
/* To find the complete object, we will first convert to our most
|
8807 |
|
|
primary base, and then add the offset in the vtbl to that value. */
|
8808 |
|
|
b = binfo;
|
8809 |
|
|
while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
|
8810 |
|
|
&& !BINFO_LOST_PRIMARY_P (b))
|
8811 |
|
|
{
|
8812 |
|
|
tree primary_base;
|
8813 |
|
|
|
8814 |
|
|
primary_base = get_primary_binfo (b);
|
8815 |
|
|
gcc_assert (BINFO_PRIMARY_P (primary_base)
|
8816 |
|
|
&& BINFO_INHERITANCE_CHAIN (primary_base) == b);
|
8817 |
|
|
b = primary_base;
|
8818 |
|
|
}
|
8819 |
|
|
offset = size_diffop_loc (input_location,
|
8820 |
|
|
BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
|
8821 |
|
|
|
8822 |
|
|
/* The second entry is the address of the typeinfo object. */
|
8823 |
|
|
if (flag_rtti)
|
8824 |
|
|
decl = build_address (get_tinfo_decl (t));
|
8825 |
|
|
else
|
8826 |
|
|
decl = integer_zero_node;
|
8827 |
|
|
|
8828 |
|
|
/* Convert the declaration to a type that can be stored in the
|
8829 |
|
|
vtable. */
|
8830 |
|
|
init = build_nop (vfunc_ptr_type_node, decl);
|
8831 |
|
|
CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
|
8832 |
|
|
|
8833 |
|
|
/* Add the offset-to-top entry. It comes earlier in the vtable than
|
8834 |
|
|
the typeinfo entry. Convert the offset to look like a
|
8835 |
|
|
function pointer, so that we can put it in the vtable. */
|
8836 |
|
|
init = build_nop (vfunc_ptr_type_node, offset);
|
8837 |
|
|
CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
|
8838 |
|
|
}
|
8839 |
|
|
|
8840 |
|
|
#include "gt-cp-class.h"
|