| 1 |
710 |
jeremybenn |
/* Functions related to building classes and their related objects.
|
| 2 |
|
|
Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
| 3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
|
| 4 |
|
|
Free Software Foundation, Inc.
|
| 5 |
|
|
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GCC.
|
| 8 |
|
|
|
| 9 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 10 |
|
|
it under the terms of the GNU General Public License as published by
|
| 11 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 12 |
|
|
any later version.
|
| 13 |
|
|
|
| 14 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 17 |
|
|
GNU General Public License for more details.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License
|
| 20 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 21 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 22 |
|
|
|
| 23 |
|
|
|
| 24 |
|
|
/* High-level class interface. */
|
| 25 |
|
|
|
| 26 |
|
|
#include "config.h"
|
| 27 |
|
|
#include "system.h"
|
| 28 |
|
|
#include "coretypes.h"
|
| 29 |
|
|
#include "tm.h"
|
| 30 |
|
|
#include "tree.h"
|
| 31 |
|
|
#include "cp-tree.h"
|
| 32 |
|
|
#include "flags.h"
|
| 33 |
|
|
#include "output.h"
|
| 34 |
|
|
#include "toplev.h"
|
| 35 |
|
|
#include "target.h"
|
| 36 |
|
|
#include "convert.h"
|
| 37 |
|
|
#include "cgraph.h"
|
| 38 |
|
|
#include "tree-dump.h"
|
| 39 |
|
|
#include "splay-tree.h"
|
| 40 |
|
|
#include "pointer-set.h"
|
| 41 |
|
|
|
| 42 |
|
|
/* The number of nested classes being processed. If we are not in the
|
| 43 |
|
|
scope of any class, this is zero. */
|
| 44 |
|
|
|
| 45 |
|
|
int current_class_depth;
|
| 46 |
|
|
|
| 47 |
|
|
/* In order to deal with nested classes, we keep a stack of classes.
|
| 48 |
|
|
The topmost entry is the innermost class, and is the entry at index
|
| 49 |
|
|
CURRENT_CLASS_DEPTH */
|
| 50 |
|
|
|
| 51 |
|
|
typedef struct class_stack_node {
|
| 52 |
|
|
/* The name of the class. */
|
| 53 |
|
|
tree name;
|
| 54 |
|
|
|
| 55 |
|
|
/* The _TYPE node for the class. */
|
| 56 |
|
|
tree type;
|
| 57 |
|
|
|
| 58 |
|
|
/* The access specifier pending for new declarations in the scope of
|
| 59 |
|
|
this class. */
|
| 60 |
|
|
tree access;
|
| 61 |
|
|
|
| 62 |
|
|
/* If were defining TYPE, the names used in this class. */
|
| 63 |
|
|
splay_tree names_used;
|
| 64 |
|
|
|
| 65 |
|
|
/* Nonzero if this class is no longer open, because of a call to
|
| 66 |
|
|
push_to_top_level. */
|
| 67 |
|
|
size_t hidden;
|
| 68 |
|
|
}* class_stack_node_t;
|
| 69 |
|
|
|
| 70 |
|
|
typedef struct vtbl_init_data_s
|
| 71 |
|
|
{
|
| 72 |
|
|
/* The base for which we're building initializers. */
|
| 73 |
|
|
tree binfo;
|
| 74 |
|
|
/* The type of the most-derived type. */
|
| 75 |
|
|
tree derived;
|
| 76 |
|
|
/* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
|
| 77 |
|
|
unless ctor_vtbl_p is true. */
|
| 78 |
|
|
tree rtti_binfo;
|
| 79 |
|
|
/* The negative-index vtable initializers built up so far. These
|
| 80 |
|
|
are in order from least negative index to most negative index. */
|
| 81 |
|
|
VEC(constructor_elt,gc) *inits;
|
| 82 |
|
|
/* The binfo for the virtual base for which we're building
|
| 83 |
|
|
vcall offset initializers. */
|
| 84 |
|
|
tree vbase;
|
| 85 |
|
|
/* The functions in vbase for which we have already provided vcall
|
| 86 |
|
|
offsets. */
|
| 87 |
|
|
VEC(tree,gc) *fns;
|
| 88 |
|
|
/* The vtable index of the next vcall or vbase offset. */
|
| 89 |
|
|
tree index;
|
| 90 |
|
|
/* Nonzero if we are building the initializer for the primary
|
| 91 |
|
|
vtable. */
|
| 92 |
|
|
int primary_vtbl_p;
|
| 93 |
|
|
/* Nonzero if we are building the initializer for a construction
|
| 94 |
|
|
vtable. */
|
| 95 |
|
|
int ctor_vtbl_p;
|
| 96 |
|
|
/* True when adding vcall offset entries to the vtable. False when
|
| 97 |
|
|
merely computing the indices. */
|
| 98 |
|
|
bool generate_vcall_entries;
|
| 99 |
|
|
} vtbl_init_data;
|
| 100 |
|
|
|
| 101 |
|
|
/* The type of a function passed to walk_subobject_offsets. */
|
| 102 |
|
|
typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
|
| 103 |
|
|
|
| 104 |
|
|
/* The stack itself. This is a dynamically resized array. The
|
| 105 |
|
|
number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
|
| 106 |
|
|
static int current_class_stack_size;
|
| 107 |
|
|
static class_stack_node_t current_class_stack;
|
| 108 |
|
|
|
| 109 |
|
|
/* The size of the largest empty class seen in this translation unit. */
|
| 110 |
|
|
static GTY (()) tree sizeof_biggest_empty_class;
|
| 111 |
|
|
|
| 112 |
|
|
/* An array of all local classes present in this translation unit, in
|
| 113 |
|
|
declaration order. */
|
| 114 |
|
|
VEC(tree,gc) *local_classes;
|
| 115 |
|
|
|
| 116 |
|
|
static tree get_vfield_name (tree);
|
| 117 |
|
|
static void finish_struct_anon (tree);
|
| 118 |
|
|
static tree get_vtable_name (tree);
|
| 119 |
|
|
static tree get_basefndecls (tree, tree);
|
| 120 |
|
|
static int build_primary_vtable (tree, tree);
|
| 121 |
|
|
static int build_secondary_vtable (tree);
|
| 122 |
|
|
static void finish_vtbls (tree);
|
| 123 |
|
|
static void modify_vtable_entry (tree, tree, tree, tree, tree *);
|
| 124 |
|
|
static void finish_struct_bits (tree);
|
| 125 |
|
|
static int alter_access (tree, tree, tree);
|
| 126 |
|
|
static void handle_using_decl (tree, tree);
|
| 127 |
|
|
static tree dfs_modify_vtables (tree, void *);
|
| 128 |
|
|
static tree modify_all_vtables (tree, tree);
|
| 129 |
|
|
static void determine_primary_bases (tree);
|
| 130 |
|
|
static void finish_struct_methods (tree);
|
| 131 |
|
|
static void maybe_warn_about_overly_private_class (tree);
|
| 132 |
|
|
static int method_name_cmp (const void *, const void *);
|
| 133 |
|
|
static int resort_method_name_cmp (const void *, const void *);
|
| 134 |
|
|
static void add_implicitly_declared_members (tree, int, int);
|
| 135 |
|
|
static tree fixed_type_or_null (tree, int *, int *);
|
| 136 |
|
|
static tree build_simple_base_path (tree expr, tree binfo);
|
| 137 |
|
|
static tree build_vtbl_ref_1 (tree, tree);
|
| 138 |
|
|
static void build_vtbl_initializer (tree, tree, tree, tree, int *,
|
| 139 |
|
|
VEC(constructor_elt,gc) **);
|
| 140 |
|
|
static int count_fields (tree);
|
| 141 |
|
|
static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
|
| 142 |
|
|
static bool check_bitfield_decl (tree);
|
| 143 |
|
|
static void check_field_decl (tree, tree, int *, int *, int *);
|
| 144 |
|
|
static void check_field_decls (tree, tree *, int *, int *);
|
| 145 |
|
|
static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
|
| 146 |
|
|
static void build_base_fields (record_layout_info, splay_tree, tree *);
|
| 147 |
|
|
static void check_methods (tree);
|
| 148 |
|
|
static void remove_zero_width_bit_fields (tree);
|
| 149 |
|
|
static void check_bases (tree, int *, int *);
|
| 150 |
|
|
static void check_bases_and_members (tree);
|
| 151 |
|
|
static tree create_vtable_ptr (tree, tree *);
|
| 152 |
|
|
static void include_empty_classes (record_layout_info);
|
| 153 |
|
|
static void layout_class_type (tree, tree *);
|
| 154 |
|
|
static void propagate_binfo_offsets (tree, tree);
|
| 155 |
|
|
static void layout_virtual_bases (record_layout_info, splay_tree);
|
| 156 |
|
|
static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
|
| 157 |
|
|
static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
|
| 158 |
|
|
static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
|
| 159 |
|
|
static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
|
| 160 |
|
|
static void add_vcall_offset (tree, tree, vtbl_init_data *);
|
| 161 |
|
|
static void layout_vtable_decl (tree, int);
|
| 162 |
|
|
static tree dfs_find_final_overrider_pre (tree, void *);
|
| 163 |
|
|
static tree dfs_find_final_overrider_post (tree, void *);
|
| 164 |
|
|
static tree find_final_overrider (tree, tree, tree);
|
| 165 |
|
|
static int make_new_vtable (tree, tree);
|
| 166 |
|
|
static tree get_primary_binfo (tree);
|
| 167 |
|
|
static int maybe_indent_hierarchy (FILE *, int, int);
|
| 168 |
|
|
static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
|
| 169 |
|
|
static void dump_class_hierarchy (tree);
|
| 170 |
|
|
static void dump_class_hierarchy_1 (FILE *, int, tree);
|
| 171 |
|
|
static void dump_array (FILE *, tree);
|
| 172 |
|
|
static void dump_vtable (tree, tree, tree);
|
| 173 |
|
|
static void dump_vtt (tree, tree);
|
| 174 |
|
|
static void dump_thunk (FILE *, int, tree);
|
| 175 |
|
|
static tree build_vtable (tree, tree, tree);
|
| 176 |
|
|
static void initialize_vtable (tree, VEC(constructor_elt,gc) *);
|
| 177 |
|
|
static void layout_nonempty_base_or_field (record_layout_info,
|
| 178 |
|
|
tree, tree, splay_tree);
|
| 179 |
|
|
static tree end_of_class (tree, int);
|
| 180 |
|
|
static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
|
| 181 |
|
|
static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
|
| 182 |
|
|
VEC(constructor_elt,gc) **);
|
| 183 |
|
|
static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
|
| 184 |
|
|
VEC(constructor_elt,gc) **);
|
| 185 |
|
|
static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
|
| 186 |
|
|
static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
|
| 187 |
|
|
static void clone_constructors_and_destructors (tree);
|
| 188 |
|
|
static tree build_clone (tree, tree);
|
| 189 |
|
|
static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
|
| 190 |
|
|
static void build_ctor_vtbl_group (tree, tree);
|
| 191 |
|
|
static void build_vtt (tree);
|
| 192 |
|
|
static tree binfo_ctor_vtable (tree);
|
| 193 |
|
|
static void build_vtt_inits (tree, tree, VEC(constructor_elt,gc) **, tree *);
|
| 194 |
|
|
static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
|
| 195 |
|
|
static tree dfs_fixup_binfo_vtbls (tree, void *);
|
| 196 |
|
|
static int record_subobject_offset (tree, tree, splay_tree);
|
| 197 |
|
|
static int check_subobject_offset (tree, tree, splay_tree);
|
| 198 |
|
|
static int walk_subobject_offsets (tree, subobject_offset_fn,
|
| 199 |
|
|
tree, splay_tree, tree, int);
|
| 200 |
|
|
static void record_subobject_offsets (tree, tree, splay_tree, bool);
|
| 201 |
|
|
static int layout_conflict_p (tree, tree, splay_tree, int);
|
| 202 |
|
|
static int splay_tree_compare_integer_csts (splay_tree_key k1,
|
| 203 |
|
|
splay_tree_key k2);
|
| 204 |
|
|
static void warn_about_ambiguous_bases (tree);
|
| 205 |
|
|
static bool type_requires_array_cookie (tree);
|
| 206 |
|
|
static bool contains_empty_class_p (tree);
|
| 207 |
|
|
static bool base_derived_from (tree, tree);
|
| 208 |
|
|
static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
|
| 209 |
|
|
static tree end_of_base (tree);
|
| 210 |
|
|
static tree get_vcall_index (tree, tree);
|
| 211 |
|
|
|
| 212 |
|
|
/* Variables shared between class.c and call.c. */
|
| 213 |
|
|
|
| 214 |
|
|
#ifdef GATHER_STATISTICS
|
| 215 |
|
|
int n_vtables = 0;
|
| 216 |
|
|
int n_vtable_entries = 0;
|
| 217 |
|
|
int n_vtable_searches = 0;
|
| 218 |
|
|
int n_vtable_elems = 0;
|
| 219 |
|
|
int n_convert_harshness = 0;
|
| 220 |
|
|
int n_compute_conversion_costs = 0;
|
| 221 |
|
|
int n_inner_fields_searched = 0;
|
| 222 |
|
|
#endif
|
| 223 |
|
|
|
| 224 |
|
|
/* Convert to or from a base subobject. EXPR is an expression of type
|
| 225 |
|
|
`A' or `A*', an expression of type `B' or `B*' is returned. To
|
| 226 |
|
|
convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
|
| 227 |
|
|
the B base instance within A. To convert base A to derived B, CODE
|
| 228 |
|
|
is MINUS_EXPR and BINFO is the binfo for the A instance within B.
|
| 229 |
|
|
In this latter case, A must not be a morally virtual base of B.
|
| 230 |
|
|
NONNULL is true if EXPR is known to be non-NULL (this is only
|
| 231 |
|
|
needed when EXPR is of pointer type). CV qualifiers are preserved
|
| 232 |
|
|
from EXPR. */
|
| 233 |
|
|
|
| 234 |
|
|
tree
|
| 235 |
|
|
build_base_path (enum tree_code code,
|
| 236 |
|
|
tree expr,
|
| 237 |
|
|
tree binfo,
|
| 238 |
|
|
int nonnull,
|
| 239 |
|
|
tsubst_flags_t complain)
|
| 240 |
|
|
{
|
| 241 |
|
|
tree v_binfo = NULL_TREE;
|
| 242 |
|
|
tree d_binfo = NULL_TREE;
|
| 243 |
|
|
tree probe;
|
| 244 |
|
|
tree offset;
|
| 245 |
|
|
tree target_type;
|
| 246 |
|
|
tree null_test = NULL;
|
| 247 |
|
|
tree ptr_target_type;
|
| 248 |
|
|
int fixed_type_p;
|
| 249 |
|
|
int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
|
| 250 |
|
|
bool has_empty = false;
|
| 251 |
|
|
bool virtual_access;
|
| 252 |
|
|
|
| 253 |
|
|
if (expr == error_mark_node || binfo == error_mark_node || !binfo)
|
| 254 |
|
|
return error_mark_node;
|
| 255 |
|
|
|
| 256 |
|
|
for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
|
| 257 |
|
|
{
|
| 258 |
|
|
d_binfo = probe;
|
| 259 |
|
|
if (is_empty_class (BINFO_TYPE (probe)))
|
| 260 |
|
|
has_empty = true;
|
| 261 |
|
|
if (!v_binfo && BINFO_VIRTUAL_P (probe))
|
| 262 |
|
|
v_binfo = probe;
|
| 263 |
|
|
}
|
| 264 |
|
|
|
| 265 |
|
|
probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
|
| 266 |
|
|
if (want_pointer)
|
| 267 |
|
|
probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
|
| 268 |
|
|
|
| 269 |
|
|
if (code == PLUS_EXPR
|
| 270 |
|
|
&& !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
|
| 271 |
|
|
{
|
| 272 |
|
|
/* This can happen when adjust_result_of_qualified_name_lookup can't
|
| 273 |
|
|
find a unique base binfo in a call to a member function. We
|
| 274 |
|
|
couldn't give the diagnostic then since we might have been calling
|
| 275 |
|
|
a static member function, so we do it now. */
|
| 276 |
|
|
if (complain & tf_error)
|
| 277 |
|
|
{
|
| 278 |
|
|
tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
|
| 279 |
|
|
ba_unique, NULL);
|
| 280 |
|
|
gcc_assert (base == error_mark_node);
|
| 281 |
|
|
}
|
| 282 |
|
|
return error_mark_node;
|
| 283 |
|
|
}
|
| 284 |
|
|
|
| 285 |
|
|
gcc_assert ((code == MINUS_EXPR
|
| 286 |
|
|
&& SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
|
| 287 |
|
|
|| code == PLUS_EXPR);
|
| 288 |
|
|
|
| 289 |
|
|
if (binfo == d_binfo)
|
| 290 |
|
|
/* Nothing to do. */
|
| 291 |
|
|
return expr;
|
| 292 |
|
|
|
| 293 |
|
|
if (code == MINUS_EXPR && v_binfo)
|
| 294 |
|
|
{
|
| 295 |
|
|
if (complain & tf_error)
|
| 296 |
|
|
error ("cannot convert from base %qT to derived type %qT via "
|
| 297 |
|
|
"virtual base %qT", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
|
| 298 |
|
|
BINFO_TYPE (v_binfo));
|
| 299 |
|
|
return error_mark_node;
|
| 300 |
|
|
}
|
| 301 |
|
|
|
| 302 |
|
|
if (!want_pointer)
|
| 303 |
|
|
/* This must happen before the call to save_expr. */
|
| 304 |
|
|
expr = cp_build_addr_expr (expr, complain);
|
| 305 |
|
|
else
|
| 306 |
|
|
expr = mark_rvalue_use (expr);
|
| 307 |
|
|
|
| 308 |
|
|
offset = BINFO_OFFSET (binfo);
|
| 309 |
|
|
fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
|
| 310 |
|
|
target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
|
| 311 |
|
|
/* TARGET_TYPE has been extracted from BINFO, and, is therefore always
|
| 312 |
|
|
cv-unqualified. Extract the cv-qualifiers from EXPR so that the
|
| 313 |
|
|
expression returned matches the input. */
|
| 314 |
|
|
target_type = cp_build_qualified_type
|
| 315 |
|
|
(target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
|
| 316 |
|
|
ptr_target_type = build_pointer_type (target_type);
|
| 317 |
|
|
|
| 318 |
|
|
/* Do we need to look in the vtable for the real offset? */
|
| 319 |
|
|
virtual_access = (v_binfo && fixed_type_p <= 0);
|
| 320 |
|
|
|
| 321 |
|
|
/* Don't bother with the calculations inside sizeof; they'll ICE if the
|
| 322 |
|
|
source type is incomplete and the pointer value doesn't matter. In a
|
| 323 |
|
|
template (even in fold_non_dependent_expr), we don't have vtables set
|
| 324 |
|
|
up properly yet, and the value doesn't matter there either; we're just
|
| 325 |
|
|
interested in the result of overload resolution. */
|
| 326 |
|
|
if (cp_unevaluated_operand != 0
|
| 327 |
|
|
|| (current_function_decl
|
| 328 |
|
|
&& uses_template_parms (current_function_decl)))
|
| 329 |
|
|
{
|
| 330 |
|
|
expr = build_nop (ptr_target_type, expr);
|
| 331 |
|
|
if (!want_pointer)
|
| 332 |
|
|
expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
|
| 333 |
|
|
return expr;
|
| 334 |
|
|
}
|
| 335 |
|
|
|
| 336 |
|
|
/* If we're in an NSDMI, we don't have the full constructor context yet
|
| 337 |
|
|
that we need for converting to a virtual base, so just build a stub
|
| 338 |
|
|
CONVERT_EXPR and expand it later in bot_replace. */
|
| 339 |
|
|
if (virtual_access && fixed_type_p < 0
|
| 340 |
|
|
&& current_scope () != current_function_decl)
|
| 341 |
|
|
{
|
| 342 |
|
|
expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
|
| 343 |
|
|
CONVERT_EXPR_VBASE_PATH (expr) = true;
|
| 344 |
|
|
if (!want_pointer)
|
| 345 |
|
|
expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
|
| 346 |
|
|
return expr;
|
| 347 |
|
|
}
|
| 348 |
|
|
|
| 349 |
|
|
/* Do we need to check for a null pointer? */
|
| 350 |
|
|
if (want_pointer && !nonnull)
|
| 351 |
|
|
{
|
| 352 |
|
|
/* If we know the conversion will not actually change the value
|
| 353 |
|
|
of EXPR, then we can avoid testing the expression for NULL.
|
| 354 |
|
|
We have to avoid generating a COMPONENT_REF for a base class
|
| 355 |
|
|
field, because other parts of the compiler know that such
|
| 356 |
|
|
expressions are always non-NULL. */
|
| 357 |
|
|
if (!virtual_access && integer_zerop (offset))
|
| 358 |
|
|
return build_nop (ptr_target_type, expr);
|
| 359 |
|
|
null_test = error_mark_node;
|
| 360 |
|
|
}
|
| 361 |
|
|
|
| 362 |
|
|
/* Protect against multiple evaluation if necessary. */
|
| 363 |
|
|
if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
|
| 364 |
|
|
expr = save_expr (expr);
|
| 365 |
|
|
|
| 366 |
|
|
/* Now that we've saved expr, build the real null test. */
|
| 367 |
|
|
if (null_test)
|
| 368 |
|
|
{
|
| 369 |
|
|
tree zero = cp_convert (TREE_TYPE (expr), nullptr_node);
|
| 370 |
|
|
null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
|
| 371 |
|
|
expr, zero);
|
| 372 |
|
|
}
|
| 373 |
|
|
|
| 374 |
|
|
/* If this is a simple base reference, express it as a COMPONENT_REF. */
|
| 375 |
|
|
if (code == PLUS_EXPR && !virtual_access
|
| 376 |
|
|
/* We don't build base fields for empty bases, and they aren't very
|
| 377 |
|
|
interesting to the optimizers anyway. */
|
| 378 |
|
|
&& !has_empty)
|
| 379 |
|
|
{
|
| 380 |
|
|
expr = cp_build_indirect_ref (expr, RO_NULL, complain);
|
| 381 |
|
|
expr = build_simple_base_path (expr, binfo);
|
| 382 |
|
|
if (want_pointer)
|
| 383 |
|
|
expr = build_address (expr);
|
| 384 |
|
|
target_type = TREE_TYPE (expr);
|
| 385 |
|
|
goto out;
|
| 386 |
|
|
}
|
| 387 |
|
|
|
| 388 |
|
|
if (virtual_access)
|
| 389 |
|
|
{
|
| 390 |
|
|
/* Going via virtual base V_BINFO. We need the static offset
|
| 391 |
|
|
from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
|
| 392 |
|
|
V_BINFO. That offset is an entry in D_BINFO's vtable. */
|
| 393 |
|
|
tree v_offset;
|
| 394 |
|
|
|
| 395 |
|
|
if (fixed_type_p < 0 && in_base_initializer)
|
| 396 |
|
|
{
|
| 397 |
|
|
/* In a base member initializer, we cannot rely on the
|
| 398 |
|
|
vtable being set up. We have to indirect via the
|
| 399 |
|
|
vtt_parm. */
|
| 400 |
|
|
tree t;
|
| 401 |
|
|
|
| 402 |
|
|
t = TREE_TYPE (TYPE_VFIELD (current_class_type));
|
| 403 |
|
|
t = build_pointer_type (t);
|
| 404 |
|
|
v_offset = convert (t, current_vtt_parm);
|
| 405 |
|
|
v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
|
| 406 |
|
|
}
|
| 407 |
|
|
else
|
| 408 |
|
|
v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
|
| 409 |
|
|
complain),
|
| 410 |
|
|
TREE_TYPE (TREE_TYPE (expr)));
|
| 411 |
|
|
|
| 412 |
|
|
v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
|
| 413 |
|
|
v_offset = build1 (NOP_EXPR,
|
| 414 |
|
|
build_pointer_type (ptrdiff_type_node),
|
| 415 |
|
|
v_offset);
|
| 416 |
|
|
v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
|
| 417 |
|
|
TREE_CONSTANT (v_offset) = 1;
|
| 418 |
|
|
|
| 419 |
|
|
offset = convert_to_integer (ptrdiff_type_node,
|
| 420 |
|
|
size_diffop_loc (input_location, offset,
|
| 421 |
|
|
BINFO_OFFSET (v_binfo)));
|
| 422 |
|
|
|
| 423 |
|
|
if (!integer_zerop (offset))
|
| 424 |
|
|
v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
|
| 425 |
|
|
|
| 426 |
|
|
if (fixed_type_p < 0)
|
| 427 |
|
|
/* Negative fixed_type_p means this is a constructor or destructor;
|
| 428 |
|
|
virtual base layout is fixed in in-charge [cd]tors, but not in
|
| 429 |
|
|
base [cd]tors. */
|
| 430 |
|
|
offset = build3 (COND_EXPR, ptrdiff_type_node,
|
| 431 |
|
|
build2 (EQ_EXPR, boolean_type_node,
|
| 432 |
|
|
current_in_charge_parm, integer_zero_node),
|
| 433 |
|
|
v_offset,
|
| 434 |
|
|
convert_to_integer (ptrdiff_type_node,
|
| 435 |
|
|
BINFO_OFFSET (binfo)));
|
| 436 |
|
|
else
|
| 437 |
|
|
offset = v_offset;
|
| 438 |
|
|
}
|
| 439 |
|
|
|
| 440 |
|
|
if (want_pointer)
|
| 441 |
|
|
target_type = ptr_target_type;
|
| 442 |
|
|
|
| 443 |
|
|
expr = build1 (NOP_EXPR, ptr_target_type, expr);
|
| 444 |
|
|
|
| 445 |
|
|
if (!integer_zerop (offset))
|
| 446 |
|
|
{
|
| 447 |
|
|
offset = fold_convert (sizetype, offset);
|
| 448 |
|
|
if (code == MINUS_EXPR)
|
| 449 |
|
|
offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
|
| 450 |
|
|
expr = fold_build_pointer_plus (expr, offset);
|
| 451 |
|
|
}
|
| 452 |
|
|
else
|
| 453 |
|
|
null_test = NULL;
|
| 454 |
|
|
|
| 455 |
|
|
if (!want_pointer)
|
| 456 |
|
|
expr = cp_build_indirect_ref (expr, RO_NULL, complain);
|
| 457 |
|
|
|
| 458 |
|
|
out:
|
| 459 |
|
|
if (null_test)
|
| 460 |
|
|
expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
|
| 461 |
|
|
build_zero_cst (target_type));
|
| 462 |
|
|
|
| 463 |
|
|
return expr;
|
| 464 |
|
|
}
|
| 465 |
|
|
|
| 466 |
|
|
/* Subroutine of build_base_path; EXPR and BINFO are as in that function.
|
| 467 |
|
|
Perform a derived-to-base conversion by recursively building up a
|
| 468 |
|
|
sequence of COMPONENT_REFs to the appropriate base fields. */
|
| 469 |
|
|
|
| 470 |
|
|
static tree
|
| 471 |
|
|
build_simple_base_path (tree expr, tree binfo)
|
| 472 |
|
|
{
|
| 473 |
|
|
tree type = BINFO_TYPE (binfo);
|
| 474 |
|
|
tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
|
| 475 |
|
|
tree field;
|
| 476 |
|
|
|
| 477 |
|
|
if (d_binfo == NULL_TREE)
|
| 478 |
|
|
{
|
| 479 |
|
|
tree temp;
|
| 480 |
|
|
|
| 481 |
|
|
gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
|
| 482 |
|
|
|
| 483 |
|
|
/* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
|
| 484 |
|
|
into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
|
| 485 |
|
|
an lvalue in the front end; only _DECLs and _REFs are lvalues
|
| 486 |
|
|
in the back end. */
|
| 487 |
|
|
temp = unary_complex_lvalue (ADDR_EXPR, expr);
|
| 488 |
|
|
if (temp)
|
| 489 |
|
|
expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
|
| 490 |
|
|
|
| 491 |
|
|
return expr;
|
| 492 |
|
|
}
|
| 493 |
|
|
|
| 494 |
|
|
/* Recurse. */
|
| 495 |
|
|
expr = build_simple_base_path (expr, d_binfo);
|
| 496 |
|
|
|
| 497 |
|
|
for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
|
| 498 |
|
|
field; field = DECL_CHAIN (field))
|
| 499 |
|
|
/* Is this the base field created by build_base_field? */
|
| 500 |
|
|
if (TREE_CODE (field) == FIELD_DECL
|
| 501 |
|
|
&& DECL_FIELD_IS_BASE (field)
|
| 502 |
|
|
&& TREE_TYPE (field) == type
|
| 503 |
|
|
/* If we're looking for a field in the most-derived class,
|
| 504 |
|
|
also check the field offset; we can have two base fields
|
| 505 |
|
|
of the same type if one is an indirect virtual base and one
|
| 506 |
|
|
is a direct non-virtual base. */
|
| 507 |
|
|
&& (BINFO_INHERITANCE_CHAIN (d_binfo)
|
| 508 |
|
|
|| tree_int_cst_equal (byte_position (field),
|
| 509 |
|
|
BINFO_OFFSET (binfo))))
|
| 510 |
|
|
{
|
| 511 |
|
|
/* We don't use build_class_member_access_expr here, as that
|
| 512 |
|
|
has unnecessary checks, and more importantly results in
|
| 513 |
|
|
recursive calls to dfs_walk_once. */
|
| 514 |
|
|
int type_quals = cp_type_quals (TREE_TYPE (expr));
|
| 515 |
|
|
|
| 516 |
|
|
expr = build3 (COMPONENT_REF,
|
| 517 |
|
|
cp_build_qualified_type (type, type_quals),
|
| 518 |
|
|
expr, field, NULL_TREE);
|
| 519 |
|
|
expr = fold_if_not_in_template (expr);
|
| 520 |
|
|
|
| 521 |
|
|
/* Mark the expression const or volatile, as appropriate.
|
| 522 |
|
|
Even though we've dealt with the type above, we still have
|
| 523 |
|
|
to mark the expression itself. */
|
| 524 |
|
|
if (type_quals & TYPE_QUAL_CONST)
|
| 525 |
|
|
TREE_READONLY (expr) = 1;
|
| 526 |
|
|
if (type_quals & TYPE_QUAL_VOLATILE)
|
| 527 |
|
|
TREE_THIS_VOLATILE (expr) = 1;
|
| 528 |
|
|
|
| 529 |
|
|
return expr;
|
| 530 |
|
|
}
|
| 531 |
|
|
|
| 532 |
|
|
/* Didn't find the base field?!? */
|
| 533 |
|
|
gcc_unreachable ();
|
| 534 |
|
|
}
|
| 535 |
|
|
|
| 536 |
|
|
/* Convert OBJECT to the base TYPE. OBJECT is an expression whose
|
| 537 |
|
|
type is a class type or a pointer to a class type. In the former
|
| 538 |
|
|
case, TYPE is also a class type; in the latter it is another
|
| 539 |
|
|
pointer type. If CHECK_ACCESS is true, an error message is emitted
|
| 540 |
|
|
if TYPE is inaccessible. If OBJECT has pointer type, the value is
|
| 541 |
|
|
assumed to be non-NULL. */
|
| 542 |
|
|
|
| 543 |
|
|
tree
|
| 544 |
|
|
convert_to_base (tree object, tree type, bool check_access, bool nonnull,
|
| 545 |
|
|
tsubst_flags_t complain)
|
| 546 |
|
|
{
|
| 547 |
|
|
tree binfo;
|
| 548 |
|
|
tree object_type;
|
| 549 |
|
|
base_access access;
|
| 550 |
|
|
|
| 551 |
|
|
if (TYPE_PTR_P (TREE_TYPE (object)))
|
| 552 |
|
|
{
|
| 553 |
|
|
object_type = TREE_TYPE (TREE_TYPE (object));
|
| 554 |
|
|
type = TREE_TYPE (type);
|
| 555 |
|
|
}
|
| 556 |
|
|
else
|
| 557 |
|
|
object_type = TREE_TYPE (object);
|
| 558 |
|
|
|
| 559 |
|
|
access = check_access ? ba_check : ba_unique;
|
| 560 |
|
|
if (!(complain & tf_error))
|
| 561 |
|
|
access |= ba_quiet;
|
| 562 |
|
|
binfo = lookup_base (object_type, type,
|
| 563 |
|
|
access,
|
| 564 |
|
|
NULL);
|
| 565 |
|
|
if (!binfo || binfo == error_mark_node)
|
| 566 |
|
|
return error_mark_node;
|
| 567 |
|
|
|
| 568 |
|
|
return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
|
| 569 |
|
|
}
|
| 570 |
|
|
|
| 571 |
|
|
/* EXPR is an expression with unqualified class type. BASE is a base
|
| 572 |
|
|
binfo of that class type. Returns EXPR, converted to the BASE
|
| 573 |
|
|
type. This function assumes that EXPR is the most derived class;
|
| 574 |
|
|
therefore virtual bases can be found at their static offsets. */
|
| 575 |
|
|
|
| 576 |
|
|
tree
|
| 577 |
|
|
convert_to_base_statically (tree expr, tree base)
|
| 578 |
|
|
{
|
| 579 |
|
|
tree expr_type;
|
| 580 |
|
|
|
| 581 |
|
|
expr_type = TREE_TYPE (expr);
|
| 582 |
|
|
if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
|
| 583 |
|
|
{
|
| 584 |
|
|
/* If this is a non-empty base, use a COMPONENT_REF. */
|
| 585 |
|
|
if (!is_empty_class (BINFO_TYPE (base)))
|
| 586 |
|
|
return build_simple_base_path (expr, base);
|
| 587 |
|
|
|
| 588 |
|
|
/* We use fold_build2 and fold_convert below to simplify the trees
|
| 589 |
|
|
provided to the optimizers. It is not safe to call these functions
|
| 590 |
|
|
when processing a template because they do not handle C++-specific
|
| 591 |
|
|
trees. */
|
| 592 |
|
|
gcc_assert (!processing_template_decl);
|
| 593 |
|
|
expr = cp_build_addr_expr (expr, tf_warning_or_error);
|
| 594 |
|
|
if (!integer_zerop (BINFO_OFFSET (base)))
|
| 595 |
|
|
expr = fold_build_pointer_plus_loc (input_location,
|
| 596 |
|
|
expr, BINFO_OFFSET (base));
|
| 597 |
|
|
expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
|
| 598 |
|
|
expr = build_fold_indirect_ref_loc (input_location, expr);
|
| 599 |
|
|
}
|
| 600 |
|
|
|
| 601 |
|
|
return expr;
|
| 602 |
|
|
}
|
| 603 |
|
|
|
| 604 |
|
|
|
| 605 |
|
|
tree
|
| 606 |
|
|
build_vfield_ref (tree datum, tree type)
|
| 607 |
|
|
{
|
| 608 |
|
|
tree vfield, vcontext;
|
| 609 |
|
|
|
| 610 |
|
|
if (datum == error_mark_node)
|
| 611 |
|
|
return error_mark_node;
|
| 612 |
|
|
|
| 613 |
|
|
/* First, convert to the requested type. */
|
| 614 |
|
|
if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
|
| 615 |
|
|
datum = convert_to_base (datum, type, /*check_access=*/false,
|
| 616 |
|
|
/*nonnull=*/true, tf_warning_or_error);
|
| 617 |
|
|
|
| 618 |
|
|
/* Second, the requested type may not be the owner of its own vptr.
|
| 619 |
|
|
If not, convert to the base class that owns it. We cannot use
|
| 620 |
|
|
convert_to_base here, because VCONTEXT may appear more than once
|
| 621 |
|
|
in the inheritance hierarchy of TYPE, and thus direct conversion
|
| 622 |
|
|
between the types may be ambiguous. Following the path back up
|
| 623 |
|
|
one step at a time via primary bases avoids the problem. */
|
| 624 |
|
|
vfield = TYPE_VFIELD (type);
|
| 625 |
|
|
vcontext = DECL_CONTEXT (vfield);
|
| 626 |
|
|
while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
|
| 627 |
|
|
{
|
| 628 |
|
|
datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
|
| 629 |
|
|
type = TREE_TYPE (datum);
|
| 630 |
|
|
}
|
| 631 |
|
|
|
| 632 |
|
|
return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
|
| 633 |
|
|
}
|
| 634 |
|
|
|
| 635 |
|
|
/* Given an object INSTANCE, return an expression which yields the
|
| 636 |
|
|
vtable element corresponding to INDEX. There are many special
|
| 637 |
|
|
cases for INSTANCE which we take care of here, mainly to avoid
|
| 638 |
|
|
creating extra tree nodes when we don't have to. */
|
| 639 |
|
|
|
| 640 |
|
|
static tree
|
| 641 |
|
|
build_vtbl_ref_1 (tree instance, tree idx)
|
| 642 |
|
|
{
|
| 643 |
|
|
tree aref;
|
| 644 |
|
|
tree vtbl = NULL_TREE;
|
| 645 |
|
|
|
| 646 |
|
|
/* Try to figure out what a reference refers to, and
|
| 647 |
|
|
access its virtual function table directly. */
|
| 648 |
|
|
|
| 649 |
|
|
int cdtorp = 0;
|
| 650 |
|
|
tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
|
| 651 |
|
|
|
| 652 |
|
|
tree basetype = non_reference (TREE_TYPE (instance));
|
| 653 |
|
|
|
| 654 |
|
|
if (fixed_type && !cdtorp)
|
| 655 |
|
|
{
|
| 656 |
|
|
tree binfo = lookup_base (fixed_type, basetype,
|
| 657 |
|
|
ba_unique | ba_quiet, NULL);
|
| 658 |
|
|
if (binfo)
|
| 659 |
|
|
vtbl = unshare_expr (BINFO_VTABLE (binfo));
|
| 660 |
|
|
}
|
| 661 |
|
|
|
| 662 |
|
|
if (!vtbl)
|
| 663 |
|
|
vtbl = build_vfield_ref (instance, basetype);
|
| 664 |
|
|
|
| 665 |
|
|
aref = build_array_ref (input_location, vtbl, idx);
|
| 666 |
|
|
TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
|
| 667 |
|
|
|
| 668 |
|
|
return aref;
|
| 669 |
|
|
}
|
| 670 |
|
|
|
| 671 |
|
|
tree
|
| 672 |
|
|
build_vtbl_ref (tree instance, tree idx)
|
| 673 |
|
|
{
|
| 674 |
|
|
tree aref = build_vtbl_ref_1 (instance, idx);
|
| 675 |
|
|
|
| 676 |
|
|
return aref;
|
| 677 |
|
|
}
|
| 678 |
|
|
|
| 679 |
|
|
/* Given a stable object pointer INSTANCE_PTR, return an expression which
|
| 680 |
|
|
yields a function pointer corresponding to vtable element INDEX. */
|
| 681 |
|
|
|
| 682 |
|
|
tree
|
| 683 |
|
|
build_vfn_ref (tree instance_ptr, tree idx)
|
| 684 |
|
|
{
|
| 685 |
|
|
tree aref;
|
| 686 |
|
|
|
| 687 |
|
|
aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
|
| 688 |
|
|
tf_warning_or_error),
|
| 689 |
|
|
idx);
|
| 690 |
|
|
|
| 691 |
|
|
/* When using function descriptors, the address of the
|
| 692 |
|
|
vtable entry is treated as a function pointer. */
|
| 693 |
|
|
if (TARGET_VTABLE_USES_DESCRIPTORS)
|
| 694 |
|
|
aref = build1 (NOP_EXPR, TREE_TYPE (aref),
|
| 695 |
|
|
cp_build_addr_expr (aref, tf_warning_or_error));
|
| 696 |
|
|
|
| 697 |
|
|
/* Remember this as a method reference, for later devirtualization. */
|
| 698 |
|
|
aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
|
| 699 |
|
|
|
| 700 |
|
|
return aref;
|
| 701 |
|
|
}
|
| 702 |
|
|
|
| 703 |
|
|
/* Return the name of the virtual function table (as an IDENTIFIER_NODE)
|
| 704 |
|
|
for the given TYPE. */
|
| 705 |
|
|
|
| 706 |
|
|
static tree
|
| 707 |
|
|
get_vtable_name (tree type)
|
| 708 |
|
|
{
|
| 709 |
|
|
return mangle_vtbl_for_type (type);
|
| 710 |
|
|
}
|
| 711 |
|
|
|
| 712 |
|
|
/* DECL is an entity associated with TYPE, like a virtual table or an
|
| 713 |
|
|
implicitly generated constructor. Determine whether or not DECL
|
| 714 |
|
|
should have external or internal linkage at the object file
|
| 715 |
|
|
level. This routine does not deal with COMDAT linkage and other
|
| 716 |
|
|
similar complexities; it simply sets TREE_PUBLIC if it possible for
|
| 717 |
|
|
entities in other translation units to contain copies of DECL, in
|
| 718 |
|
|
the abstract. */
|
| 719 |
|
|
|
| 720 |
|
|
void
|
| 721 |
|
|
set_linkage_according_to_type (tree type ATTRIBUTE_UNUSED, tree decl)
|
| 722 |
|
|
{
|
| 723 |
|
|
TREE_PUBLIC (decl) = 1;
|
| 724 |
|
|
determine_visibility (decl);
|
| 725 |
|
|
}
|
| 726 |
|
|
|
| 727 |
|
|
/* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
|
| 728 |
|
|
(For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
|
| 729 |
|
|
Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
|
| 730 |
|
|
|
| 731 |
|
|
static tree
|
| 732 |
|
|
build_vtable (tree class_type, tree name, tree vtable_type)
|
| 733 |
|
|
{
|
| 734 |
|
|
tree decl;
|
| 735 |
|
|
|
| 736 |
|
|
decl = build_lang_decl (VAR_DECL, name, vtable_type);
|
| 737 |
|
|
/* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
|
| 738 |
|
|
now to avoid confusion in mangle_decl. */
|
| 739 |
|
|
SET_DECL_ASSEMBLER_NAME (decl, name);
|
| 740 |
|
|
DECL_CONTEXT (decl) = class_type;
|
| 741 |
|
|
DECL_ARTIFICIAL (decl) = 1;
|
| 742 |
|
|
TREE_STATIC (decl) = 1;
|
| 743 |
|
|
TREE_READONLY (decl) = 1;
|
| 744 |
|
|
DECL_VIRTUAL_P (decl) = 1;
|
| 745 |
|
|
DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
|
| 746 |
|
|
DECL_VTABLE_OR_VTT_P (decl) = 1;
|
| 747 |
|
|
/* At one time the vtable info was grabbed 2 words at a time. This
|
| 748 |
|
|
fails on sparc unless you have 8-byte alignment. (tiemann) */
|
| 749 |
|
|
DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
|
| 750 |
|
|
DECL_ALIGN (decl));
|
| 751 |
|
|
set_linkage_according_to_type (class_type, decl);
|
| 752 |
|
|
/* The vtable has not been defined -- yet. */
|
| 753 |
|
|
DECL_EXTERNAL (decl) = 1;
|
| 754 |
|
|
DECL_NOT_REALLY_EXTERN (decl) = 1;
|
| 755 |
|
|
|
| 756 |
|
|
/* Mark the VAR_DECL node representing the vtable itself as a
|
| 757 |
|
|
"gratuitous" one, thereby forcing dwarfout.c to ignore it. It
|
| 758 |
|
|
is rather important that such things be ignored because any
|
| 759 |
|
|
effort to actually generate DWARF for them will run into
|
| 760 |
|
|
trouble when/if we encounter code like:
|
| 761 |
|
|
|
| 762 |
|
|
#pragma interface
|
| 763 |
|
|
struct S { virtual void member (); };
|
| 764 |
|
|
|
| 765 |
|
|
because the artificial declaration of the vtable itself (as
|
| 766 |
|
|
manufactured by the g++ front end) will say that the vtable is
|
| 767 |
|
|
a static member of `S' but only *after* the debug output for
|
| 768 |
|
|
the definition of `S' has already been output. This causes
|
| 769 |
|
|
grief because the DWARF entry for the definition of the vtable
|
| 770 |
|
|
will try to refer back to an earlier *declaration* of the
|
| 771 |
|
|
vtable as a static member of `S' and there won't be one. We
|
| 772 |
|
|
might be able to arrange to have the "vtable static member"
|
| 773 |
|
|
attached to the member list for `S' before the debug info for
|
| 774 |
|
|
`S' get written (which would solve the problem) but that would
|
| 775 |
|
|
require more intrusive changes to the g++ front end. */
|
| 776 |
|
|
DECL_IGNORED_P (decl) = 1;
|
| 777 |
|
|
|
| 778 |
|
|
return decl;
|
| 779 |
|
|
}
|
| 780 |
|
|
|
| 781 |
|
|
/* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
|
| 782 |
|
|
or even complete. If this does not exist, create it. If COMPLETE is
|
| 783 |
|
|
nonzero, then complete the definition of it -- that will render it
|
| 784 |
|
|
impossible to actually build the vtable, but is useful to get at those
|
| 785 |
|
|
which are known to exist in the runtime. */
|
| 786 |
|
|
|
| 787 |
|
|
tree
|
| 788 |
|
|
get_vtable_decl (tree type, int complete)
|
| 789 |
|
|
{
|
| 790 |
|
|
tree decl;
|
| 791 |
|
|
|
| 792 |
|
|
if (CLASSTYPE_VTABLES (type))
|
| 793 |
|
|
return CLASSTYPE_VTABLES (type);
|
| 794 |
|
|
|
| 795 |
|
|
decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
|
| 796 |
|
|
CLASSTYPE_VTABLES (type) = decl;
|
| 797 |
|
|
|
| 798 |
|
|
if (complete)
|
| 799 |
|
|
{
|
| 800 |
|
|
DECL_EXTERNAL (decl) = 1;
|
| 801 |
|
|
cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
|
| 802 |
|
|
}
|
| 803 |
|
|
|
| 804 |
|
|
return decl;
|
| 805 |
|
|
}
|
| 806 |
|
|
|
| 807 |
|
|
/* Build the primary virtual function table for TYPE. If BINFO is
|
| 808 |
|
|
non-NULL, build the vtable starting with the initial approximation
|
| 809 |
|
|
that it is the same as the one which is the head of the association
|
| 810 |
|
|
list. Returns a nonzero value if a new vtable is actually
|
| 811 |
|
|
created. */
|
| 812 |
|
|
|
| 813 |
|
|
static int
|
| 814 |
|
|
build_primary_vtable (tree binfo, tree type)
|
| 815 |
|
|
{
|
| 816 |
|
|
tree decl;
|
| 817 |
|
|
tree virtuals;
|
| 818 |
|
|
|
| 819 |
|
|
decl = get_vtable_decl (type, /*complete=*/0);
|
| 820 |
|
|
|
| 821 |
|
|
if (binfo)
|
| 822 |
|
|
{
|
| 823 |
|
|
if (BINFO_NEW_VTABLE_MARKED (binfo))
|
| 824 |
|
|
/* We have already created a vtable for this base, so there's
|
| 825 |
|
|
no need to do it again. */
|
| 826 |
|
|
return 0;
|
| 827 |
|
|
|
| 828 |
|
|
virtuals = copy_list (BINFO_VIRTUALS (binfo));
|
| 829 |
|
|
TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
|
| 830 |
|
|
DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
|
| 831 |
|
|
DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
|
| 832 |
|
|
}
|
| 833 |
|
|
else
|
| 834 |
|
|
{
|
| 835 |
|
|
gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
|
| 836 |
|
|
virtuals = NULL_TREE;
|
| 837 |
|
|
}
|
| 838 |
|
|
|
| 839 |
|
|
#ifdef GATHER_STATISTICS
|
| 840 |
|
|
n_vtables += 1;
|
| 841 |
|
|
n_vtable_elems += list_length (virtuals);
|
| 842 |
|
|
#endif
|
| 843 |
|
|
|
| 844 |
|
|
/* Initialize the association list for this type, based
|
| 845 |
|
|
on our first approximation. */
|
| 846 |
|
|
BINFO_VTABLE (TYPE_BINFO (type)) = decl;
|
| 847 |
|
|
BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
|
| 848 |
|
|
SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
|
| 849 |
|
|
return 1;
|
| 850 |
|
|
}
|
| 851 |
|
|
|
| 852 |
|
|
/* Give BINFO a new virtual function table which is initialized
|
| 853 |
|
|
with a skeleton-copy of its original initialization. The only
|
| 854 |
|
|
entry that changes is the `delta' entry, so we can really
|
| 855 |
|
|
share a lot of structure.
|
| 856 |
|
|
|
| 857 |
|
|
FOR_TYPE is the most derived type which caused this table to
|
| 858 |
|
|
be needed.
|
| 859 |
|
|
|
| 860 |
|
|
Returns nonzero if we haven't met BINFO before.
|
| 861 |
|
|
|
| 862 |
|
|
The order in which vtables are built (by calling this function) for
|
| 863 |
|
|
an object must remain the same, otherwise a binary incompatibility
|
| 864 |
|
|
can result. */
|
| 865 |
|
|
|
| 866 |
|
|
static int
|
| 867 |
|
|
build_secondary_vtable (tree binfo)
|
| 868 |
|
|
{
|
| 869 |
|
|
if (BINFO_NEW_VTABLE_MARKED (binfo))
|
| 870 |
|
|
/* We already created a vtable for this base. There's no need to
|
| 871 |
|
|
do it again. */
|
| 872 |
|
|
return 0;
|
| 873 |
|
|
|
| 874 |
|
|
/* Remember that we've created a vtable for this BINFO, so that we
|
| 875 |
|
|
don't try to do so again. */
|
| 876 |
|
|
SET_BINFO_NEW_VTABLE_MARKED (binfo);
|
| 877 |
|
|
|
| 878 |
|
|
/* Make fresh virtual list, so we can smash it later. */
|
| 879 |
|
|
BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
|
| 880 |
|
|
|
| 881 |
|
|
/* Secondary vtables are laid out as part of the same structure as
|
| 882 |
|
|
the primary vtable. */
|
| 883 |
|
|
BINFO_VTABLE (binfo) = NULL_TREE;
|
| 884 |
|
|
return 1;
|
| 885 |
|
|
}
|
| 886 |
|
|
|
| 887 |
|
|
/* Create a new vtable for BINFO which is the hierarchy dominated by
|
| 888 |
|
|
T. Return nonzero if we actually created a new vtable. */
|
| 889 |
|
|
|
| 890 |
|
|
static int
|
| 891 |
|
|
make_new_vtable (tree t, tree binfo)
|
| 892 |
|
|
{
|
| 893 |
|
|
if (binfo == TYPE_BINFO (t))
|
| 894 |
|
|
/* In this case, it is *type*'s vtable we are modifying. We start
|
| 895 |
|
|
with the approximation that its vtable is that of the
|
| 896 |
|
|
immediate base class. */
|
| 897 |
|
|
return build_primary_vtable (binfo, t);
|
| 898 |
|
|
else
|
| 899 |
|
|
/* This is our very own copy of `basetype' to play with. Later,
|
| 900 |
|
|
we will fill in all the virtual functions that override the
|
| 901 |
|
|
virtual functions in these base classes which are not defined
|
| 902 |
|
|
by the current type. */
|
| 903 |
|
|
return build_secondary_vtable (binfo);
|
| 904 |
|
|
}
|
| 905 |
|
|
|
| 906 |
|
|
/* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
|
| 907 |
|
|
(which is in the hierarchy dominated by T) list FNDECL as its
|
| 908 |
|
|
BV_FN. DELTA is the required constant adjustment from the `this'
|
| 909 |
|
|
pointer where the vtable entry appears to the `this' required when
|
| 910 |
|
|
the function is actually called. */
|
| 911 |
|
|
|
| 912 |
|
|
static void
|
| 913 |
|
|
modify_vtable_entry (tree t,
|
| 914 |
|
|
tree binfo,
|
| 915 |
|
|
tree fndecl,
|
| 916 |
|
|
tree delta,
|
| 917 |
|
|
tree *virtuals)
|
| 918 |
|
|
{
|
| 919 |
|
|
tree v;
|
| 920 |
|
|
|
| 921 |
|
|
v = *virtuals;
|
| 922 |
|
|
|
| 923 |
|
|
if (fndecl != BV_FN (v)
|
| 924 |
|
|
|| !tree_int_cst_equal (delta, BV_DELTA (v)))
|
| 925 |
|
|
{
|
| 926 |
|
|
/* We need a new vtable for BINFO. */
|
| 927 |
|
|
if (make_new_vtable (t, binfo))
|
| 928 |
|
|
{
|
| 929 |
|
|
/* If we really did make a new vtable, we also made a copy
|
| 930 |
|
|
of the BINFO_VIRTUALS list. Now, we have to find the
|
| 931 |
|
|
corresponding entry in that list. */
|
| 932 |
|
|
*virtuals = BINFO_VIRTUALS (binfo);
|
| 933 |
|
|
while (BV_FN (*virtuals) != BV_FN (v))
|
| 934 |
|
|
*virtuals = TREE_CHAIN (*virtuals);
|
| 935 |
|
|
v = *virtuals;
|
| 936 |
|
|
}
|
| 937 |
|
|
|
| 938 |
|
|
BV_DELTA (v) = delta;
|
| 939 |
|
|
BV_VCALL_INDEX (v) = NULL_TREE;
|
| 940 |
|
|
BV_FN (v) = fndecl;
|
| 941 |
|
|
}
|
| 942 |
|
|
}
|
| 943 |
|
|
|
| 944 |
|
|
|
| 945 |
|
|
/* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
|
| 946 |
|
|
the USING_DECL naming METHOD. Returns true if the method could be
|
| 947 |
|
|
added to the method vec. */
|
| 948 |
|
|
|
| 949 |
|
|
bool
|
| 950 |
|
|
add_method (tree type, tree method, tree using_decl)
|
| 951 |
|
|
{
|
| 952 |
|
|
unsigned slot;
|
| 953 |
|
|
tree overload;
|
| 954 |
|
|
bool template_conv_p = false;
|
| 955 |
|
|
bool conv_p;
|
| 956 |
|
|
VEC(tree,gc) *method_vec;
|
| 957 |
|
|
bool complete_p;
|
| 958 |
|
|
bool insert_p = false;
|
| 959 |
|
|
tree current_fns;
|
| 960 |
|
|
tree fns;
|
| 961 |
|
|
|
| 962 |
|
|
if (method == error_mark_node)
|
| 963 |
|
|
return false;
|
| 964 |
|
|
|
| 965 |
|
|
complete_p = COMPLETE_TYPE_P (type);
|
| 966 |
|
|
conv_p = DECL_CONV_FN_P (method);
|
| 967 |
|
|
if (conv_p)
|
| 968 |
|
|
template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
|
| 969 |
|
|
&& DECL_TEMPLATE_CONV_FN_P (method));
|
| 970 |
|
|
|
| 971 |
|
|
method_vec = CLASSTYPE_METHOD_VEC (type);
|
| 972 |
|
|
if (!method_vec)
|
| 973 |
|
|
{
|
| 974 |
|
|
/* Make a new method vector. We start with 8 entries. We must
|
| 975 |
|
|
allocate at least two (for constructors and destructors), and
|
| 976 |
|
|
we're going to end up with an assignment operator at some
|
| 977 |
|
|
point as well. */
|
| 978 |
|
|
method_vec = VEC_alloc (tree, gc, 8);
|
| 979 |
|
|
/* Create slots for constructors and destructors. */
|
| 980 |
|
|
VEC_quick_push (tree, method_vec, NULL_TREE);
|
| 981 |
|
|
VEC_quick_push (tree, method_vec, NULL_TREE);
|
| 982 |
|
|
CLASSTYPE_METHOD_VEC (type) = method_vec;
|
| 983 |
|
|
}
|
| 984 |
|
|
|
| 985 |
|
|
/* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
|
| 986 |
|
|
grok_special_member_properties (method);
|
| 987 |
|
|
|
| 988 |
|
|
/* Constructors and destructors go in special slots. */
|
| 989 |
|
|
if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
|
| 990 |
|
|
slot = CLASSTYPE_CONSTRUCTOR_SLOT;
|
| 991 |
|
|
else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
|
| 992 |
|
|
{
|
| 993 |
|
|
slot = CLASSTYPE_DESTRUCTOR_SLOT;
|
| 994 |
|
|
|
| 995 |
|
|
if (TYPE_FOR_JAVA (type))
|
| 996 |
|
|
{
|
| 997 |
|
|
if (!DECL_ARTIFICIAL (method))
|
| 998 |
|
|
error ("Java class %qT cannot have a destructor", type);
|
| 999 |
|
|
else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
|
| 1000 |
|
|
error ("Java class %qT cannot have an implicit non-trivial "
|
| 1001 |
|
|
"destructor",
|
| 1002 |
|
|
type);
|
| 1003 |
|
|
}
|
| 1004 |
|
|
}
|
| 1005 |
|
|
else
|
| 1006 |
|
|
{
|
| 1007 |
|
|
tree m;
|
| 1008 |
|
|
|
| 1009 |
|
|
insert_p = true;
|
| 1010 |
|
|
/* See if we already have an entry with this name. */
|
| 1011 |
|
|
for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
|
| 1012 |
|
|
VEC_iterate (tree, method_vec, slot, m);
|
| 1013 |
|
|
++slot)
|
| 1014 |
|
|
{
|
| 1015 |
|
|
m = OVL_CURRENT (m);
|
| 1016 |
|
|
if (template_conv_p)
|
| 1017 |
|
|
{
|
| 1018 |
|
|
if (TREE_CODE (m) == TEMPLATE_DECL
|
| 1019 |
|
|
&& DECL_TEMPLATE_CONV_FN_P (m))
|
| 1020 |
|
|
insert_p = false;
|
| 1021 |
|
|
break;
|
| 1022 |
|
|
}
|
| 1023 |
|
|
if (conv_p && !DECL_CONV_FN_P (m))
|
| 1024 |
|
|
break;
|
| 1025 |
|
|
if (DECL_NAME (m) == DECL_NAME (method))
|
| 1026 |
|
|
{
|
| 1027 |
|
|
insert_p = false;
|
| 1028 |
|
|
break;
|
| 1029 |
|
|
}
|
| 1030 |
|
|
if (complete_p
|
| 1031 |
|
|
&& !DECL_CONV_FN_P (m)
|
| 1032 |
|
|
&& DECL_NAME (m) > DECL_NAME (method))
|
| 1033 |
|
|
break;
|
| 1034 |
|
|
}
|
| 1035 |
|
|
}
|
| 1036 |
|
|
current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
|
| 1037 |
|
|
|
| 1038 |
|
|
/* Check to see if we've already got this method. */
|
| 1039 |
|
|
for (fns = current_fns; fns; fns = OVL_NEXT (fns))
|
| 1040 |
|
|
{
|
| 1041 |
|
|
tree fn = OVL_CURRENT (fns);
|
| 1042 |
|
|
tree fn_type;
|
| 1043 |
|
|
tree method_type;
|
| 1044 |
|
|
tree parms1;
|
| 1045 |
|
|
tree parms2;
|
| 1046 |
|
|
|
| 1047 |
|
|
if (TREE_CODE (fn) != TREE_CODE (method))
|
| 1048 |
|
|
continue;
|
| 1049 |
|
|
|
| 1050 |
|
|
/* [over.load] Member function declarations with the
|
| 1051 |
|
|
same name and the same parameter types cannot be
|
| 1052 |
|
|
overloaded if any of them is a static member
|
| 1053 |
|
|
function declaration.
|
| 1054 |
|
|
|
| 1055 |
|
|
[namespace.udecl] When a using-declaration brings names
|
| 1056 |
|
|
from a base class into a derived class scope, member
|
| 1057 |
|
|
functions in the derived class override and/or hide member
|
| 1058 |
|
|
functions with the same name and parameter types in a base
|
| 1059 |
|
|
class (rather than conflicting). */
|
| 1060 |
|
|
fn_type = TREE_TYPE (fn);
|
| 1061 |
|
|
method_type = TREE_TYPE (method);
|
| 1062 |
|
|
parms1 = TYPE_ARG_TYPES (fn_type);
|
| 1063 |
|
|
parms2 = TYPE_ARG_TYPES (method_type);
|
| 1064 |
|
|
|
| 1065 |
|
|
/* Compare the quals on the 'this' parm. Don't compare
|
| 1066 |
|
|
the whole types, as used functions are treated as
|
| 1067 |
|
|
coming from the using class in overload resolution. */
|
| 1068 |
|
|
if (! DECL_STATIC_FUNCTION_P (fn)
|
| 1069 |
|
|
&& ! DECL_STATIC_FUNCTION_P (method)
|
| 1070 |
|
|
&& TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
|
| 1071 |
|
|
&& TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
|
| 1072 |
|
|
&& (cp_type_quals (TREE_TYPE (TREE_VALUE (parms1)))
|
| 1073 |
|
|
!= cp_type_quals (TREE_TYPE (TREE_VALUE (parms2)))))
|
| 1074 |
|
|
continue;
|
| 1075 |
|
|
|
| 1076 |
|
|
/* For templates, the return type and template parameters
|
| 1077 |
|
|
must be identical. */
|
| 1078 |
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL
|
| 1079 |
|
|
&& (!same_type_p (TREE_TYPE (fn_type),
|
| 1080 |
|
|
TREE_TYPE (method_type))
|
| 1081 |
|
|
|| !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
|
| 1082 |
|
|
DECL_TEMPLATE_PARMS (method))))
|
| 1083 |
|
|
continue;
|
| 1084 |
|
|
|
| 1085 |
|
|
if (! DECL_STATIC_FUNCTION_P (fn))
|
| 1086 |
|
|
parms1 = TREE_CHAIN (parms1);
|
| 1087 |
|
|
if (! DECL_STATIC_FUNCTION_P (method))
|
| 1088 |
|
|
parms2 = TREE_CHAIN (parms2);
|
| 1089 |
|
|
|
| 1090 |
|
|
if (compparms (parms1, parms2)
|
| 1091 |
|
|
&& (!DECL_CONV_FN_P (fn)
|
| 1092 |
|
|
|| same_type_p (TREE_TYPE (fn_type),
|
| 1093 |
|
|
TREE_TYPE (method_type))))
|
| 1094 |
|
|
{
|
| 1095 |
|
|
if (using_decl)
|
| 1096 |
|
|
{
|
| 1097 |
|
|
if (DECL_CONTEXT (fn) == type)
|
| 1098 |
|
|
/* Defer to the local function. */
|
| 1099 |
|
|
return false;
|
| 1100 |
|
|
}
|
| 1101 |
|
|
else
|
| 1102 |
|
|
{
|
| 1103 |
|
|
error ("%q+#D cannot be overloaded", method);
|
| 1104 |
|
|
error ("with %q+#D", fn);
|
| 1105 |
|
|
}
|
| 1106 |
|
|
|
| 1107 |
|
|
/* We don't call duplicate_decls here to merge the
|
| 1108 |
|
|
declarations because that will confuse things if the
|
| 1109 |
|
|
methods have inline definitions. In particular, we
|
| 1110 |
|
|
will crash while processing the definitions. */
|
| 1111 |
|
|
return false;
|
| 1112 |
|
|
}
|
| 1113 |
|
|
}
|
| 1114 |
|
|
|
| 1115 |
|
|
/* A class should never have more than one destructor. */
|
| 1116 |
|
|
if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
|
| 1117 |
|
|
return false;
|
| 1118 |
|
|
|
| 1119 |
|
|
/* Add the new binding. */
|
| 1120 |
|
|
overload = build_overload (method, current_fns);
|
| 1121 |
|
|
if (using_decl && TREE_CODE (overload) == OVERLOAD)
|
| 1122 |
|
|
OVL_USED (overload) = true;
|
| 1123 |
|
|
|
| 1124 |
|
|
if (conv_p)
|
| 1125 |
|
|
TYPE_HAS_CONVERSION (type) = 1;
|
| 1126 |
|
|
else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
|
| 1127 |
|
|
push_class_level_binding (DECL_NAME (method), overload);
|
| 1128 |
|
|
|
| 1129 |
|
|
if (insert_p)
|
| 1130 |
|
|
{
|
| 1131 |
|
|
bool reallocated;
|
| 1132 |
|
|
|
| 1133 |
|
|
/* We only expect to add few methods in the COMPLETE_P case, so
|
| 1134 |
|
|
just make room for one more method in that case. */
|
| 1135 |
|
|
if (complete_p)
|
| 1136 |
|
|
reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
|
| 1137 |
|
|
else
|
| 1138 |
|
|
reallocated = VEC_reserve (tree, gc, method_vec, 1);
|
| 1139 |
|
|
if (reallocated)
|
| 1140 |
|
|
CLASSTYPE_METHOD_VEC (type) = method_vec;
|
| 1141 |
|
|
if (slot == VEC_length (tree, method_vec))
|
| 1142 |
|
|
VEC_quick_push (tree, method_vec, overload);
|
| 1143 |
|
|
else
|
| 1144 |
|
|
VEC_quick_insert (tree, method_vec, slot, overload);
|
| 1145 |
|
|
}
|
| 1146 |
|
|
else
|
| 1147 |
|
|
/* Replace the current slot. */
|
| 1148 |
|
|
VEC_replace (tree, method_vec, slot, overload);
|
| 1149 |
|
|
return true;
|
| 1150 |
|
|
}
|
| 1151 |
|
|
|
| 1152 |
|
|
/* Subroutines of finish_struct. */
|
| 1153 |
|
|
|
| 1154 |
|
|
/* Change the access of FDECL to ACCESS in T. Return 1 if change was
|
| 1155 |
|
|
legit, otherwise return 0. */
|
| 1156 |
|
|
|
| 1157 |
|
|
static int
|
| 1158 |
|
|
alter_access (tree t, tree fdecl, tree access)
|
| 1159 |
|
|
{
|
| 1160 |
|
|
tree elem;
|
| 1161 |
|
|
|
| 1162 |
|
|
if (!DECL_LANG_SPECIFIC (fdecl))
|
| 1163 |
|
|
retrofit_lang_decl (fdecl);
|
| 1164 |
|
|
|
| 1165 |
|
|
gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
|
| 1166 |
|
|
|
| 1167 |
|
|
elem = purpose_member (t, DECL_ACCESS (fdecl));
|
| 1168 |
|
|
if (elem)
|
| 1169 |
|
|
{
|
| 1170 |
|
|
if (TREE_VALUE (elem) != access)
|
| 1171 |
|
|
{
|
| 1172 |
|
|
if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
|
| 1173 |
|
|
error ("conflicting access specifications for method"
|
| 1174 |
|
|
" %q+D, ignored", TREE_TYPE (fdecl));
|
| 1175 |
|
|
else
|
| 1176 |
|
|
error ("conflicting access specifications for field %qE, ignored",
|
| 1177 |
|
|
DECL_NAME (fdecl));
|
| 1178 |
|
|
}
|
| 1179 |
|
|
else
|
| 1180 |
|
|
{
|
| 1181 |
|
|
/* They're changing the access to the same thing they changed
|
| 1182 |
|
|
it to before. That's OK. */
|
| 1183 |
|
|
;
|
| 1184 |
|
|
}
|
| 1185 |
|
|
}
|
| 1186 |
|
|
else
|
| 1187 |
|
|
{
|
| 1188 |
|
|
perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
|
| 1189 |
|
|
DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
|
| 1190 |
|
|
return 1;
|
| 1191 |
|
|
}
|
| 1192 |
|
|
return 0;
|
| 1193 |
|
|
}
|
| 1194 |
|
|
|
| 1195 |
|
|
/* Process the USING_DECL, which is a member of T. */
|
| 1196 |
|
|
|
| 1197 |
|
|
static void
|
| 1198 |
|
|
handle_using_decl (tree using_decl, tree t)
|
| 1199 |
|
|
{
|
| 1200 |
|
|
tree decl = USING_DECL_DECLS (using_decl);
|
| 1201 |
|
|
tree name = DECL_NAME (using_decl);
|
| 1202 |
|
|
tree access
|
| 1203 |
|
|
= TREE_PRIVATE (using_decl) ? access_private_node
|
| 1204 |
|
|
: TREE_PROTECTED (using_decl) ? access_protected_node
|
| 1205 |
|
|
: access_public_node;
|
| 1206 |
|
|
tree flist = NULL_TREE;
|
| 1207 |
|
|
tree old_value;
|
| 1208 |
|
|
|
| 1209 |
|
|
gcc_assert (!processing_template_decl && decl);
|
| 1210 |
|
|
|
| 1211 |
|
|
old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
|
| 1212 |
|
|
tf_warning_or_error);
|
| 1213 |
|
|
if (old_value)
|
| 1214 |
|
|
{
|
| 1215 |
|
|
if (is_overloaded_fn (old_value))
|
| 1216 |
|
|
old_value = OVL_CURRENT (old_value);
|
| 1217 |
|
|
|
| 1218 |
|
|
if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
|
| 1219 |
|
|
/* OK */;
|
| 1220 |
|
|
else
|
| 1221 |
|
|
old_value = NULL_TREE;
|
| 1222 |
|
|
}
|
| 1223 |
|
|
|
| 1224 |
|
|
cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
|
| 1225 |
|
|
|
| 1226 |
|
|
if (is_overloaded_fn (decl))
|
| 1227 |
|
|
flist = decl;
|
| 1228 |
|
|
|
| 1229 |
|
|
if (! old_value)
|
| 1230 |
|
|
;
|
| 1231 |
|
|
else if (is_overloaded_fn (old_value))
|
| 1232 |
|
|
{
|
| 1233 |
|
|
if (flist)
|
| 1234 |
|
|
/* It's OK to use functions from a base when there are functions with
|
| 1235 |
|
|
the same name already present in the current class. */;
|
| 1236 |
|
|
else
|
| 1237 |
|
|
{
|
| 1238 |
|
|
error ("%q+D invalid in %q#T", using_decl, t);
|
| 1239 |
|
|
error (" because of local method %q+#D with same name",
|
| 1240 |
|
|
OVL_CURRENT (old_value));
|
| 1241 |
|
|
return;
|
| 1242 |
|
|
}
|
| 1243 |
|
|
}
|
| 1244 |
|
|
else if (!DECL_ARTIFICIAL (old_value))
|
| 1245 |
|
|
{
|
| 1246 |
|
|
error ("%q+D invalid in %q#T", using_decl, t);
|
| 1247 |
|
|
error (" because of local member %q+#D with same name", old_value);
|
| 1248 |
|
|
return;
|
| 1249 |
|
|
}
|
| 1250 |
|
|
|
| 1251 |
|
|
/* Make type T see field decl FDECL with access ACCESS. */
|
| 1252 |
|
|
if (flist)
|
| 1253 |
|
|
for (; flist; flist = OVL_NEXT (flist))
|
| 1254 |
|
|
{
|
| 1255 |
|
|
add_method (t, OVL_CURRENT (flist), using_decl);
|
| 1256 |
|
|
alter_access (t, OVL_CURRENT (flist), access);
|
| 1257 |
|
|
}
|
| 1258 |
|
|
else
|
| 1259 |
|
|
alter_access (t, decl, access);
|
| 1260 |
|
|
}
|
| 1261 |
|
|
|
| 1262 |
|
|
/* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
|
| 1263 |
|
|
and NO_CONST_ASN_REF_P. Also set flag bits in T based on
|
| 1264 |
|
|
properties of the bases. */
|
| 1265 |
|
|
|
| 1266 |
|
|
static void
|
| 1267 |
|
|
check_bases (tree t,
|
| 1268 |
|
|
int* cant_have_const_ctor_p,
|
| 1269 |
|
|
int* no_const_asn_ref_p)
|
| 1270 |
|
|
{
|
| 1271 |
|
|
int i;
|
| 1272 |
|
|
bool seen_non_virtual_nearly_empty_base_p = 0;
|
| 1273 |
|
|
int seen_tm_mask = 0;
|
| 1274 |
|
|
tree base_binfo;
|
| 1275 |
|
|
tree binfo;
|
| 1276 |
|
|
tree field = NULL_TREE;
|
| 1277 |
|
|
|
| 1278 |
|
|
if (!CLASSTYPE_NON_STD_LAYOUT (t))
|
| 1279 |
|
|
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
|
| 1280 |
|
|
if (TREE_CODE (field) == FIELD_DECL)
|
| 1281 |
|
|
break;
|
| 1282 |
|
|
|
| 1283 |
|
|
for (binfo = TYPE_BINFO (t), i = 0;
|
| 1284 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
| 1285 |
|
|
{
|
| 1286 |
|
|
tree basetype = TREE_TYPE (base_binfo);
|
| 1287 |
|
|
|
| 1288 |
|
|
gcc_assert (COMPLETE_TYPE_P (basetype));
|
| 1289 |
|
|
|
| 1290 |
|
|
if (CLASSTYPE_FINAL (basetype))
|
| 1291 |
|
|
error ("cannot derive from %<final%> base %qT in derived type %qT",
|
| 1292 |
|
|
basetype, t);
|
| 1293 |
|
|
|
| 1294 |
|
|
/* If any base class is non-literal, so is the derived class. */
|
| 1295 |
|
|
if (!CLASSTYPE_LITERAL_P (basetype))
|
| 1296 |
|
|
CLASSTYPE_LITERAL_P (t) = false;
|
| 1297 |
|
|
|
| 1298 |
|
|
/* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
|
| 1299 |
|
|
here because the case of virtual functions but non-virtual
|
| 1300 |
|
|
dtor is handled in finish_struct_1. */
|
| 1301 |
|
|
if (!TYPE_POLYMORPHIC_P (basetype))
|
| 1302 |
|
|
warning (OPT_Weffc__,
|
| 1303 |
|
|
"base class %q#T has a non-virtual destructor", basetype);
|
| 1304 |
|
|
|
| 1305 |
|
|
/* If the base class doesn't have copy constructors or
|
| 1306 |
|
|
assignment operators that take const references, then the
|
| 1307 |
|
|
derived class cannot have such a member automatically
|
| 1308 |
|
|
generated. */
|
| 1309 |
|
|
if (TYPE_HAS_COPY_CTOR (basetype)
|
| 1310 |
|
|
&& ! TYPE_HAS_CONST_COPY_CTOR (basetype))
|
| 1311 |
|
|
*cant_have_const_ctor_p = 1;
|
| 1312 |
|
|
if (TYPE_HAS_COPY_ASSIGN (basetype)
|
| 1313 |
|
|
&& !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
|
| 1314 |
|
|
*no_const_asn_ref_p = 1;
|
| 1315 |
|
|
|
| 1316 |
|
|
if (BINFO_VIRTUAL_P (base_binfo))
|
| 1317 |
|
|
/* A virtual base does not effect nearly emptiness. */
|
| 1318 |
|
|
;
|
| 1319 |
|
|
else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
|
| 1320 |
|
|
{
|
| 1321 |
|
|
if (seen_non_virtual_nearly_empty_base_p)
|
| 1322 |
|
|
/* And if there is more than one nearly empty base, then the
|
| 1323 |
|
|
derived class is not nearly empty either. */
|
| 1324 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
|
| 1325 |
|
|
else
|
| 1326 |
|
|
/* Remember we've seen one. */
|
| 1327 |
|
|
seen_non_virtual_nearly_empty_base_p = 1;
|
| 1328 |
|
|
}
|
| 1329 |
|
|
else if (!is_empty_class (basetype))
|
| 1330 |
|
|
/* If the base class is not empty or nearly empty, then this
|
| 1331 |
|
|
class cannot be nearly empty. */
|
| 1332 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
|
| 1333 |
|
|
|
| 1334 |
|
|
/* A lot of properties from the bases also apply to the derived
|
| 1335 |
|
|
class. */
|
| 1336 |
|
|
TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
|
| 1337 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
| 1338 |
|
|
|= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
|
| 1339 |
|
|
TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
|
| 1340 |
|
|
|= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
|
| 1341 |
|
|
|| !TYPE_HAS_COPY_ASSIGN (basetype));
|
| 1342 |
|
|
TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
|
| 1343 |
|
|
|| !TYPE_HAS_COPY_CTOR (basetype));
|
| 1344 |
|
|
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
|
| 1345 |
|
|
|= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
|
| 1346 |
|
|
TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
|
| 1347 |
|
|
TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
|
| 1348 |
|
|
CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
|
| 1349 |
|
|
|= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
|
| 1350 |
|
|
TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
|
| 1351 |
|
|
|| TYPE_HAS_COMPLEX_DFLT (basetype));
|
| 1352 |
|
|
|
| 1353 |
|
|
/* A standard-layout class is a class that:
|
| 1354 |
|
|
...
|
| 1355 |
|
|
* has no non-standard-layout base classes, */
|
| 1356 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
|
| 1357 |
|
|
if (!CLASSTYPE_NON_STD_LAYOUT (t))
|
| 1358 |
|
|
{
|
| 1359 |
|
|
tree basefield;
|
| 1360 |
|
|
/* ...has no base classes of the same type as the first non-static
|
| 1361 |
|
|
data member... */
|
| 1362 |
|
|
if (field && DECL_CONTEXT (field) == t
|
| 1363 |
|
|
&& (same_type_ignoring_top_level_qualifiers_p
|
| 1364 |
|
|
(TREE_TYPE (field), basetype)))
|
| 1365 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) = 1;
|
| 1366 |
|
|
else
|
| 1367 |
|
|
/* ...either has no non-static data members in the most-derived
|
| 1368 |
|
|
class and at most one base class with non-static data
|
| 1369 |
|
|
members, or has no base classes with non-static data
|
| 1370 |
|
|
members */
|
| 1371 |
|
|
for (basefield = TYPE_FIELDS (basetype); basefield;
|
| 1372 |
|
|
basefield = DECL_CHAIN (basefield))
|
| 1373 |
|
|
if (TREE_CODE (basefield) == FIELD_DECL)
|
| 1374 |
|
|
{
|
| 1375 |
|
|
if (field)
|
| 1376 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) = 1;
|
| 1377 |
|
|
else
|
| 1378 |
|
|
field = basefield;
|
| 1379 |
|
|
break;
|
| 1380 |
|
|
}
|
| 1381 |
|
|
}
|
| 1382 |
|
|
|
| 1383 |
|
|
/* Don't bother collecting tm attributes if transactional memory
|
| 1384 |
|
|
support is not enabled. */
|
| 1385 |
|
|
if (flag_tm)
|
| 1386 |
|
|
{
|
| 1387 |
|
|
tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
|
| 1388 |
|
|
if (tm_attr)
|
| 1389 |
|
|
seen_tm_mask |= tm_attr_to_mask (tm_attr);
|
| 1390 |
|
|
}
|
| 1391 |
|
|
}
|
| 1392 |
|
|
|
| 1393 |
|
|
/* If one of the base classes had TM attributes, and the current class
|
| 1394 |
|
|
doesn't define its own, then the current class inherits one. */
|
| 1395 |
|
|
if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
|
| 1396 |
|
|
{
|
| 1397 |
|
|
tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
|
| 1398 |
|
|
TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
|
| 1399 |
|
|
}
|
| 1400 |
|
|
}
|
| 1401 |
|
|
|
| 1402 |
|
|
/* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
|
| 1403 |
|
|
those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
|
| 1404 |
|
|
that have had a nearly-empty virtual primary base stolen by some
|
| 1405 |
|
|
other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
|
| 1406 |
|
|
T. */
|
| 1407 |
|
|
|
| 1408 |
|
|
static void
|
| 1409 |
|
|
determine_primary_bases (tree t)
|
| 1410 |
|
|
{
|
| 1411 |
|
|
unsigned i;
|
| 1412 |
|
|
tree primary = NULL_TREE;
|
| 1413 |
|
|
tree type_binfo = TYPE_BINFO (t);
|
| 1414 |
|
|
tree base_binfo;
|
| 1415 |
|
|
|
| 1416 |
|
|
/* Determine the primary bases of our bases. */
|
| 1417 |
|
|
for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
|
| 1418 |
|
|
base_binfo = TREE_CHAIN (base_binfo))
|
| 1419 |
|
|
{
|
| 1420 |
|
|
tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
|
| 1421 |
|
|
|
| 1422 |
|
|
/* See if we're the non-virtual primary of our inheritance
|
| 1423 |
|
|
chain. */
|
| 1424 |
|
|
if (!BINFO_VIRTUAL_P (base_binfo))
|
| 1425 |
|
|
{
|
| 1426 |
|
|
tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
|
| 1427 |
|
|
tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
|
| 1428 |
|
|
|
| 1429 |
|
|
if (parent_primary
|
| 1430 |
|
|
&& SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
|
| 1431 |
|
|
BINFO_TYPE (parent_primary)))
|
| 1432 |
|
|
/* We are the primary binfo. */
|
| 1433 |
|
|
BINFO_PRIMARY_P (base_binfo) = 1;
|
| 1434 |
|
|
}
|
| 1435 |
|
|
/* Determine if we have a virtual primary base, and mark it so.
|
| 1436 |
|
|
*/
|
| 1437 |
|
|
if (primary && BINFO_VIRTUAL_P (primary))
|
| 1438 |
|
|
{
|
| 1439 |
|
|
tree this_primary = copied_binfo (primary, base_binfo);
|
| 1440 |
|
|
|
| 1441 |
|
|
if (BINFO_PRIMARY_P (this_primary))
|
| 1442 |
|
|
/* Someone already claimed this base. */
|
| 1443 |
|
|
BINFO_LOST_PRIMARY_P (base_binfo) = 1;
|
| 1444 |
|
|
else
|
| 1445 |
|
|
{
|
| 1446 |
|
|
tree delta;
|
| 1447 |
|
|
|
| 1448 |
|
|
BINFO_PRIMARY_P (this_primary) = 1;
|
| 1449 |
|
|
BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
|
| 1450 |
|
|
|
| 1451 |
|
|
/* A virtual binfo might have been copied from within
|
| 1452 |
|
|
another hierarchy. As we're about to use it as a
|
| 1453 |
|
|
primary base, make sure the offsets match. */
|
| 1454 |
|
|
delta = size_diffop_loc (input_location,
|
| 1455 |
|
|
convert (ssizetype,
|
| 1456 |
|
|
BINFO_OFFSET (base_binfo)),
|
| 1457 |
|
|
convert (ssizetype,
|
| 1458 |
|
|
BINFO_OFFSET (this_primary)));
|
| 1459 |
|
|
|
| 1460 |
|
|
propagate_binfo_offsets (this_primary, delta);
|
| 1461 |
|
|
}
|
| 1462 |
|
|
}
|
| 1463 |
|
|
}
|
| 1464 |
|
|
|
| 1465 |
|
|
/* First look for a dynamic direct non-virtual base. */
|
| 1466 |
|
|
for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
|
| 1467 |
|
|
{
|
| 1468 |
|
|
tree basetype = BINFO_TYPE (base_binfo);
|
| 1469 |
|
|
|
| 1470 |
|
|
if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
|
| 1471 |
|
|
{
|
| 1472 |
|
|
primary = base_binfo;
|
| 1473 |
|
|
goto found;
|
| 1474 |
|
|
}
|
| 1475 |
|
|
}
|
| 1476 |
|
|
|
| 1477 |
|
|
/* A "nearly-empty" virtual base class can be the primary base
|
| 1478 |
|
|
class, if no non-virtual polymorphic base can be found. Look for
|
| 1479 |
|
|
a nearly-empty virtual dynamic base that is not already a primary
|
| 1480 |
|
|
base of something in the hierarchy. If there is no such base,
|
| 1481 |
|
|
just pick the first nearly-empty virtual base. */
|
| 1482 |
|
|
|
| 1483 |
|
|
for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
|
| 1484 |
|
|
base_binfo = TREE_CHAIN (base_binfo))
|
| 1485 |
|
|
if (BINFO_VIRTUAL_P (base_binfo)
|
| 1486 |
|
|
&& CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
|
| 1487 |
|
|
{
|
| 1488 |
|
|
if (!BINFO_PRIMARY_P (base_binfo))
|
| 1489 |
|
|
{
|
| 1490 |
|
|
/* Found one that is not primary. */
|
| 1491 |
|
|
primary = base_binfo;
|
| 1492 |
|
|
goto found;
|
| 1493 |
|
|
}
|
| 1494 |
|
|
else if (!primary)
|
| 1495 |
|
|
/* Remember the first candidate. */
|
| 1496 |
|
|
primary = base_binfo;
|
| 1497 |
|
|
}
|
| 1498 |
|
|
|
| 1499 |
|
|
found:
|
| 1500 |
|
|
/* If we've got a primary base, use it. */
|
| 1501 |
|
|
if (primary)
|
| 1502 |
|
|
{
|
| 1503 |
|
|
tree basetype = BINFO_TYPE (primary);
|
| 1504 |
|
|
|
| 1505 |
|
|
CLASSTYPE_PRIMARY_BINFO (t) = primary;
|
| 1506 |
|
|
if (BINFO_PRIMARY_P (primary))
|
| 1507 |
|
|
/* We are stealing a primary base. */
|
| 1508 |
|
|
BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
|
| 1509 |
|
|
BINFO_PRIMARY_P (primary) = 1;
|
| 1510 |
|
|
if (BINFO_VIRTUAL_P (primary))
|
| 1511 |
|
|
{
|
| 1512 |
|
|
tree delta;
|
| 1513 |
|
|
|
| 1514 |
|
|
BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
|
| 1515 |
|
|
/* A virtual binfo might have been copied from within
|
| 1516 |
|
|
another hierarchy. As we're about to use it as a primary
|
| 1517 |
|
|
base, make sure the offsets match. */
|
| 1518 |
|
|
delta = size_diffop_loc (input_location, ssize_int (0),
|
| 1519 |
|
|
convert (ssizetype, BINFO_OFFSET (primary)));
|
| 1520 |
|
|
|
| 1521 |
|
|
propagate_binfo_offsets (primary, delta);
|
| 1522 |
|
|
}
|
| 1523 |
|
|
|
| 1524 |
|
|
primary = TYPE_BINFO (basetype);
|
| 1525 |
|
|
|
| 1526 |
|
|
TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
|
| 1527 |
|
|
BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
|
| 1528 |
|
|
BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
|
| 1529 |
|
|
}
|
| 1530 |
|
|
}
|
| 1531 |
|
|
|
| 1532 |
|
|
/* Update the variant types of T. */
|
| 1533 |
|
|
|
| 1534 |
|
|
void
|
| 1535 |
|
|
fixup_type_variants (tree t)
|
| 1536 |
|
|
{
|
| 1537 |
|
|
tree variants;
|
| 1538 |
|
|
|
| 1539 |
|
|
if (!t)
|
| 1540 |
|
|
return;
|
| 1541 |
|
|
|
| 1542 |
|
|
for (variants = TYPE_NEXT_VARIANT (t);
|
| 1543 |
|
|
variants;
|
| 1544 |
|
|
variants = TYPE_NEXT_VARIANT (variants))
|
| 1545 |
|
|
{
|
| 1546 |
|
|
/* These fields are in the _TYPE part of the node, not in
|
| 1547 |
|
|
the TYPE_LANG_SPECIFIC component, so they are not shared. */
|
| 1548 |
|
|
TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
|
| 1549 |
|
|
TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
|
| 1550 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
|
| 1551 |
|
|
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
|
| 1552 |
|
|
|
| 1553 |
|
|
TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
|
| 1554 |
|
|
|
| 1555 |
|
|
TYPE_BINFO (variants) = TYPE_BINFO (t);
|
| 1556 |
|
|
|
| 1557 |
|
|
/* Copy whatever these are holding today. */
|
| 1558 |
|
|
TYPE_VFIELD (variants) = TYPE_VFIELD (t);
|
| 1559 |
|
|
TYPE_METHODS (variants) = TYPE_METHODS (t);
|
| 1560 |
|
|
TYPE_FIELDS (variants) = TYPE_FIELDS (t);
|
| 1561 |
|
|
}
|
| 1562 |
|
|
}
|
| 1563 |
|
|
|
| 1564 |
|
|
/* Early variant fixups: we apply attributes at the beginning of the class
|
| 1565 |
|
|
definition, and we need to fix up any variants that have already been
|
| 1566 |
|
|
made via elaborated-type-specifier so that check_qualified_type works. */
|
| 1567 |
|
|
|
| 1568 |
|
|
void
|
| 1569 |
|
|
fixup_attribute_variants (tree t)
|
| 1570 |
|
|
{
|
| 1571 |
|
|
tree variants;
|
| 1572 |
|
|
|
| 1573 |
|
|
if (!t)
|
| 1574 |
|
|
return;
|
| 1575 |
|
|
|
| 1576 |
|
|
for (variants = TYPE_NEXT_VARIANT (t);
|
| 1577 |
|
|
variants;
|
| 1578 |
|
|
variants = TYPE_NEXT_VARIANT (variants))
|
| 1579 |
|
|
{
|
| 1580 |
|
|
/* These are the two fields that check_qualified_type looks at and
|
| 1581 |
|
|
are affected by attributes. */
|
| 1582 |
|
|
TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
|
| 1583 |
|
|
TYPE_ALIGN (variants) = TYPE_ALIGN (t);
|
| 1584 |
|
|
}
|
| 1585 |
|
|
}
|
| 1586 |
|
|
|
| 1587 |
|
|
/* Set memoizing fields and bits of T (and its variants) for later
|
| 1588 |
|
|
use. */
|
| 1589 |
|
|
|
| 1590 |
|
|
static void
|
| 1591 |
|
|
finish_struct_bits (tree t)
|
| 1592 |
|
|
{
|
| 1593 |
|
|
/* Fix up variants (if any). */
|
| 1594 |
|
|
fixup_type_variants (t);
|
| 1595 |
|
|
|
| 1596 |
|
|
if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
|
| 1597 |
|
|
/* For a class w/o baseclasses, 'finish_struct' has set
|
| 1598 |
|
|
CLASSTYPE_PURE_VIRTUALS correctly (by definition).
|
| 1599 |
|
|
Similarly for a class whose base classes do not have vtables.
|
| 1600 |
|
|
When neither of these is true, we might have removed abstract
|
| 1601 |
|
|
virtuals (by providing a definition), added some (by declaring
|
| 1602 |
|
|
new ones), or redeclared ones from a base class. We need to
|
| 1603 |
|
|
recalculate what's really an abstract virtual at this point (by
|
| 1604 |
|
|
looking in the vtables). */
|
| 1605 |
|
|
get_pure_virtuals (t);
|
| 1606 |
|
|
|
| 1607 |
|
|
/* If this type has a copy constructor or a destructor, force its
|
| 1608 |
|
|
mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
|
| 1609 |
|
|
nonzero. This will cause it to be passed by invisible reference
|
| 1610 |
|
|
and prevent it from being returned in a register. */
|
| 1611 |
|
|
if (type_has_nontrivial_copy_init (t)
|
| 1612 |
|
|
|| TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
|
| 1613 |
|
|
{
|
| 1614 |
|
|
tree variants;
|
| 1615 |
|
|
DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
|
| 1616 |
|
|
for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
|
| 1617 |
|
|
{
|
| 1618 |
|
|
SET_TYPE_MODE (variants, BLKmode);
|
| 1619 |
|
|
TREE_ADDRESSABLE (variants) = 1;
|
| 1620 |
|
|
}
|
| 1621 |
|
|
}
|
| 1622 |
|
|
}
|
| 1623 |
|
|
|
| 1624 |
|
|
/* Issue warnings about T having private constructors, but no friends,
|
| 1625 |
|
|
and so forth.
|
| 1626 |
|
|
|
| 1627 |
|
|
HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
|
| 1628 |
|
|
static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
|
| 1629 |
|
|
non-private static member functions. */
|
| 1630 |
|
|
|
| 1631 |
|
|
static void
|
| 1632 |
|
|
maybe_warn_about_overly_private_class (tree t)
|
| 1633 |
|
|
{
|
| 1634 |
|
|
int has_member_fn = 0;
|
| 1635 |
|
|
int has_nonprivate_method = 0;
|
| 1636 |
|
|
tree fn;
|
| 1637 |
|
|
|
| 1638 |
|
|
if (!warn_ctor_dtor_privacy
|
| 1639 |
|
|
/* If the class has friends, those entities might create and
|
| 1640 |
|
|
access instances, so we should not warn. */
|
| 1641 |
|
|
|| (CLASSTYPE_FRIEND_CLASSES (t)
|
| 1642 |
|
|
|| DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
|
| 1643 |
|
|
/* We will have warned when the template was declared; there's
|
| 1644 |
|
|
no need to warn on every instantiation. */
|
| 1645 |
|
|
|| CLASSTYPE_TEMPLATE_INSTANTIATION (t))
|
| 1646 |
|
|
/* There's no reason to even consider warning about this
|
| 1647 |
|
|
class. */
|
| 1648 |
|
|
return;
|
| 1649 |
|
|
|
| 1650 |
|
|
/* We only issue one warning, if more than one applies, because
|
| 1651 |
|
|
otherwise, on code like:
|
| 1652 |
|
|
|
| 1653 |
|
|
class A {
|
| 1654 |
|
|
// Oops - forgot `public:'
|
| 1655 |
|
|
A();
|
| 1656 |
|
|
A(const A&);
|
| 1657 |
|
|
~A();
|
| 1658 |
|
|
};
|
| 1659 |
|
|
|
| 1660 |
|
|
we warn several times about essentially the same problem. */
|
| 1661 |
|
|
|
| 1662 |
|
|
/* Check to see if all (non-constructor, non-destructor) member
|
| 1663 |
|
|
functions are private. (Since there are no friends or
|
| 1664 |
|
|
non-private statics, we can't ever call any of the private member
|
| 1665 |
|
|
functions.) */
|
| 1666 |
|
|
for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
|
| 1667 |
|
|
/* We're not interested in compiler-generated methods; they don't
|
| 1668 |
|
|
provide any way to call private members. */
|
| 1669 |
|
|
if (!DECL_ARTIFICIAL (fn))
|
| 1670 |
|
|
{
|
| 1671 |
|
|
if (!TREE_PRIVATE (fn))
|
| 1672 |
|
|
{
|
| 1673 |
|
|
if (DECL_STATIC_FUNCTION_P (fn))
|
| 1674 |
|
|
/* A non-private static member function is just like a
|
| 1675 |
|
|
friend; it can create and invoke private member
|
| 1676 |
|
|
functions, and be accessed without a class
|
| 1677 |
|
|
instance. */
|
| 1678 |
|
|
return;
|
| 1679 |
|
|
|
| 1680 |
|
|
has_nonprivate_method = 1;
|
| 1681 |
|
|
/* Keep searching for a static member function. */
|
| 1682 |
|
|
}
|
| 1683 |
|
|
else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
|
| 1684 |
|
|
has_member_fn = 1;
|
| 1685 |
|
|
}
|
| 1686 |
|
|
|
| 1687 |
|
|
if (!has_nonprivate_method && has_member_fn)
|
| 1688 |
|
|
{
|
| 1689 |
|
|
/* There are no non-private methods, and there's at least one
|
| 1690 |
|
|
private member function that isn't a constructor or
|
| 1691 |
|
|
destructor. (If all the private members are
|
| 1692 |
|
|
constructors/destructors we want to use the code below that
|
| 1693 |
|
|
issues error messages specifically referring to
|
| 1694 |
|
|
constructors/destructors.) */
|
| 1695 |
|
|
unsigned i;
|
| 1696 |
|
|
tree binfo = TYPE_BINFO (t);
|
| 1697 |
|
|
|
| 1698 |
|
|
for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
|
| 1699 |
|
|
if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
|
| 1700 |
|
|
{
|
| 1701 |
|
|
has_nonprivate_method = 1;
|
| 1702 |
|
|
break;
|
| 1703 |
|
|
}
|
| 1704 |
|
|
if (!has_nonprivate_method)
|
| 1705 |
|
|
{
|
| 1706 |
|
|
warning (OPT_Wctor_dtor_privacy,
|
| 1707 |
|
|
"all member functions in class %qT are private", t);
|
| 1708 |
|
|
return;
|
| 1709 |
|
|
}
|
| 1710 |
|
|
}
|
| 1711 |
|
|
|
| 1712 |
|
|
/* Even if some of the member functions are non-private, the class
|
| 1713 |
|
|
won't be useful for much if all the constructors or destructors
|
| 1714 |
|
|
are private: such an object can never be created or destroyed. */
|
| 1715 |
|
|
fn = CLASSTYPE_DESTRUCTORS (t);
|
| 1716 |
|
|
if (fn && TREE_PRIVATE (fn))
|
| 1717 |
|
|
{
|
| 1718 |
|
|
warning (OPT_Wctor_dtor_privacy,
|
| 1719 |
|
|
"%q#T only defines a private destructor and has no friends",
|
| 1720 |
|
|
t);
|
| 1721 |
|
|
return;
|
| 1722 |
|
|
}
|
| 1723 |
|
|
|
| 1724 |
|
|
/* Warn about classes that have private constructors and no friends. */
|
| 1725 |
|
|
if (TYPE_HAS_USER_CONSTRUCTOR (t)
|
| 1726 |
|
|
/* Implicitly generated constructors are always public. */
|
| 1727 |
|
|
&& (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
|
| 1728 |
|
|
|| !CLASSTYPE_LAZY_COPY_CTOR (t)))
|
| 1729 |
|
|
{
|
| 1730 |
|
|
int nonprivate_ctor = 0;
|
| 1731 |
|
|
|
| 1732 |
|
|
/* If a non-template class does not define a copy
|
| 1733 |
|
|
constructor, one is defined for it, enabling it to avoid
|
| 1734 |
|
|
this warning. For a template class, this does not
|
| 1735 |
|
|
happen, and so we would normally get a warning on:
|
| 1736 |
|
|
|
| 1737 |
|
|
template <class T> class C { private: C(); };
|
| 1738 |
|
|
|
| 1739 |
|
|
To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
|
| 1740 |
|
|
complete non-template or fully instantiated classes have this
|
| 1741 |
|
|
flag set. */
|
| 1742 |
|
|
if (!TYPE_HAS_COPY_CTOR (t))
|
| 1743 |
|
|
nonprivate_ctor = 1;
|
| 1744 |
|
|
else
|
| 1745 |
|
|
for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
|
| 1746 |
|
|
{
|
| 1747 |
|
|
tree ctor = OVL_CURRENT (fn);
|
| 1748 |
|
|
/* Ideally, we wouldn't count copy constructors (or, in
|
| 1749 |
|
|
fact, any constructor that takes an argument of the
|
| 1750 |
|
|
class type as a parameter) because such things cannot
|
| 1751 |
|
|
be used to construct an instance of the class unless
|
| 1752 |
|
|
you already have one. But, for now at least, we're
|
| 1753 |
|
|
more generous. */
|
| 1754 |
|
|
if (! TREE_PRIVATE (ctor))
|
| 1755 |
|
|
{
|
| 1756 |
|
|
nonprivate_ctor = 1;
|
| 1757 |
|
|
break;
|
| 1758 |
|
|
}
|
| 1759 |
|
|
}
|
| 1760 |
|
|
|
| 1761 |
|
|
if (nonprivate_ctor == 0)
|
| 1762 |
|
|
{
|
| 1763 |
|
|
warning (OPT_Wctor_dtor_privacy,
|
| 1764 |
|
|
"%q#T only defines private constructors and has no friends",
|
| 1765 |
|
|
t);
|
| 1766 |
|
|
return;
|
| 1767 |
|
|
}
|
| 1768 |
|
|
}
|
| 1769 |
|
|
}
|
| 1770 |
|
|
|
| 1771 |
|
|
static struct {
|
| 1772 |
|
|
gt_pointer_operator new_value;
|
| 1773 |
|
|
void *cookie;
|
| 1774 |
|
|
} resort_data;
|
| 1775 |
|
|
|
| 1776 |
|
|
/* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
|
| 1777 |
|
|
|
| 1778 |
|
|
static int
|
| 1779 |
|
|
method_name_cmp (const void* m1_p, const void* m2_p)
|
| 1780 |
|
|
{
|
| 1781 |
|
|
const tree *const m1 = (const tree *) m1_p;
|
| 1782 |
|
|
const tree *const m2 = (const tree *) m2_p;
|
| 1783 |
|
|
|
| 1784 |
|
|
if (*m1 == NULL_TREE && *m2 == NULL_TREE)
|
| 1785 |
|
|
return 0;
|
| 1786 |
|
|
if (*m1 == NULL_TREE)
|
| 1787 |
|
|
return -1;
|
| 1788 |
|
|
if (*m2 == NULL_TREE)
|
| 1789 |
|
|
return 1;
|
| 1790 |
|
|
if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
|
| 1791 |
|
|
return -1;
|
| 1792 |
|
|
return 1;
|
| 1793 |
|
|
}
|
| 1794 |
|
|
|
| 1795 |
|
|
/* This routine compares two fields like method_name_cmp but using the
|
| 1796 |
|
|
pointer operator in resort_field_decl_data. */
|
| 1797 |
|
|
|
| 1798 |
|
|
static int
|
| 1799 |
|
|
resort_method_name_cmp (const void* m1_p, const void* m2_p)
|
| 1800 |
|
|
{
|
| 1801 |
|
|
const tree *const m1 = (const tree *) m1_p;
|
| 1802 |
|
|
const tree *const m2 = (const tree *) m2_p;
|
| 1803 |
|
|
if (*m1 == NULL_TREE && *m2 == NULL_TREE)
|
| 1804 |
|
|
return 0;
|
| 1805 |
|
|
if (*m1 == NULL_TREE)
|
| 1806 |
|
|
return -1;
|
| 1807 |
|
|
if (*m2 == NULL_TREE)
|
| 1808 |
|
|
return 1;
|
| 1809 |
|
|
{
|
| 1810 |
|
|
tree d1 = DECL_NAME (OVL_CURRENT (*m1));
|
| 1811 |
|
|
tree d2 = DECL_NAME (OVL_CURRENT (*m2));
|
| 1812 |
|
|
resort_data.new_value (&d1, resort_data.cookie);
|
| 1813 |
|
|
resort_data.new_value (&d2, resort_data.cookie);
|
| 1814 |
|
|
if (d1 < d2)
|
| 1815 |
|
|
return -1;
|
| 1816 |
|
|
}
|
| 1817 |
|
|
return 1;
|
| 1818 |
|
|
}
|
| 1819 |
|
|
|
| 1820 |
|
|
/* Resort TYPE_METHOD_VEC because pointers have been reordered. */
|
| 1821 |
|
|
|
| 1822 |
|
|
void
|
| 1823 |
|
|
resort_type_method_vec (void* obj,
|
| 1824 |
|
|
void* orig_obj ATTRIBUTE_UNUSED ,
|
| 1825 |
|
|
gt_pointer_operator new_value,
|
| 1826 |
|
|
void* cookie)
|
| 1827 |
|
|
{
|
| 1828 |
|
|
VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
|
| 1829 |
|
|
int len = VEC_length (tree, method_vec);
|
| 1830 |
|
|
size_t slot;
|
| 1831 |
|
|
tree fn;
|
| 1832 |
|
|
|
| 1833 |
|
|
/* The type conversion ops have to live at the front of the vec, so we
|
| 1834 |
|
|
can't sort them. */
|
| 1835 |
|
|
for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
|
| 1836 |
|
|
VEC_iterate (tree, method_vec, slot, fn);
|
| 1837 |
|
|
++slot)
|
| 1838 |
|
|
if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
|
| 1839 |
|
|
break;
|
| 1840 |
|
|
|
| 1841 |
|
|
if (len - slot > 1)
|
| 1842 |
|
|
{
|
| 1843 |
|
|
resort_data.new_value = new_value;
|
| 1844 |
|
|
resort_data.cookie = cookie;
|
| 1845 |
|
|
qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
|
| 1846 |
|
|
resort_method_name_cmp);
|
| 1847 |
|
|
}
|
| 1848 |
|
|
}
|
| 1849 |
|
|
|
| 1850 |
|
|
/* Warn about duplicate methods in fn_fields.
|
| 1851 |
|
|
|
| 1852 |
|
|
Sort methods that are not special (i.e., constructors, destructors,
|
| 1853 |
|
|
and type conversion operators) so that we can find them faster in
|
| 1854 |
|
|
search. */
|
| 1855 |
|
|
|
| 1856 |
|
|
static void
|
| 1857 |
|
|
finish_struct_methods (tree t)
|
| 1858 |
|
|
{
|
| 1859 |
|
|
tree fn_fields;
|
| 1860 |
|
|
VEC(tree,gc) *method_vec;
|
| 1861 |
|
|
int slot, len;
|
| 1862 |
|
|
|
| 1863 |
|
|
method_vec = CLASSTYPE_METHOD_VEC (t);
|
| 1864 |
|
|
if (!method_vec)
|
| 1865 |
|
|
return;
|
| 1866 |
|
|
|
| 1867 |
|
|
len = VEC_length (tree, method_vec);
|
| 1868 |
|
|
|
| 1869 |
|
|
/* Clear DECL_IN_AGGR_P for all functions. */
|
| 1870 |
|
|
for (fn_fields = TYPE_METHODS (t); fn_fields;
|
| 1871 |
|
|
fn_fields = DECL_CHAIN (fn_fields))
|
| 1872 |
|
|
DECL_IN_AGGR_P (fn_fields) = 0;
|
| 1873 |
|
|
|
| 1874 |
|
|
/* Issue warnings about private constructors and such. If there are
|
| 1875 |
|
|
no methods, then some public defaults are generated. */
|
| 1876 |
|
|
maybe_warn_about_overly_private_class (t);
|
| 1877 |
|
|
|
| 1878 |
|
|
/* The type conversion ops have to live at the front of the vec, so we
|
| 1879 |
|
|
can't sort them. */
|
| 1880 |
|
|
for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
|
| 1881 |
|
|
VEC_iterate (tree, method_vec, slot, fn_fields);
|
| 1882 |
|
|
++slot)
|
| 1883 |
|
|
if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
|
| 1884 |
|
|
break;
|
| 1885 |
|
|
if (len - slot > 1)
|
| 1886 |
|
|
qsort (VEC_address (tree, method_vec) + slot,
|
| 1887 |
|
|
len-slot, sizeof (tree), method_name_cmp);
|
| 1888 |
|
|
}
|
| 1889 |
|
|
|
| 1890 |
|
|
/* Make BINFO's vtable have N entries, including RTTI entries,
|
| 1891 |
|
|
vbase and vcall offsets, etc. Set its type and call the back end
|
| 1892 |
|
|
to lay it out. */
|
| 1893 |
|
|
|
| 1894 |
|
|
static void
|
| 1895 |
|
|
layout_vtable_decl (tree binfo, int n)
|
| 1896 |
|
|
{
|
| 1897 |
|
|
tree atype;
|
| 1898 |
|
|
tree vtable;
|
| 1899 |
|
|
|
| 1900 |
|
|
atype = build_array_of_n_type (vtable_entry_type, n);
|
| 1901 |
|
|
layout_type (atype);
|
| 1902 |
|
|
|
| 1903 |
|
|
/* We may have to grow the vtable. */
|
| 1904 |
|
|
vtable = get_vtbl_decl_for_binfo (binfo);
|
| 1905 |
|
|
if (!same_type_p (TREE_TYPE (vtable), atype))
|
| 1906 |
|
|
{
|
| 1907 |
|
|
TREE_TYPE (vtable) = atype;
|
| 1908 |
|
|
DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
|
| 1909 |
|
|
layout_decl (vtable, 0);
|
| 1910 |
|
|
}
|
| 1911 |
|
|
}
|
| 1912 |
|
|
|
| 1913 |
|
|
/* True iff FNDECL and BASE_FNDECL (both non-static member functions)
|
| 1914 |
|
|
have the same signature. */
|
| 1915 |
|
|
|
| 1916 |
|
|
int
|
| 1917 |
|
|
same_signature_p (const_tree fndecl, const_tree base_fndecl)
|
| 1918 |
|
|
{
|
| 1919 |
|
|
/* One destructor overrides another if they are the same kind of
|
| 1920 |
|
|
destructor. */
|
| 1921 |
|
|
if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
|
| 1922 |
|
|
&& special_function_p (base_fndecl) == special_function_p (fndecl))
|
| 1923 |
|
|
return 1;
|
| 1924 |
|
|
/* But a non-destructor never overrides a destructor, nor vice
|
| 1925 |
|
|
versa, nor do different kinds of destructors override
|
| 1926 |
|
|
one-another. For example, a complete object destructor does not
|
| 1927 |
|
|
override a deleting destructor. */
|
| 1928 |
|
|
if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
|
| 1929 |
|
|
return 0;
|
| 1930 |
|
|
|
| 1931 |
|
|
if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
|
| 1932 |
|
|
|| (DECL_CONV_FN_P (fndecl)
|
| 1933 |
|
|
&& DECL_CONV_FN_P (base_fndecl)
|
| 1934 |
|
|
&& same_type_p (DECL_CONV_FN_TYPE (fndecl),
|
| 1935 |
|
|
DECL_CONV_FN_TYPE (base_fndecl))))
|
| 1936 |
|
|
{
|
| 1937 |
|
|
tree types, base_types;
|
| 1938 |
|
|
types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
|
| 1939 |
|
|
base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
|
| 1940 |
|
|
if ((cp_type_quals (TREE_TYPE (TREE_VALUE (base_types)))
|
| 1941 |
|
|
== cp_type_quals (TREE_TYPE (TREE_VALUE (types))))
|
| 1942 |
|
|
&& compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
|
| 1943 |
|
|
return 1;
|
| 1944 |
|
|
}
|
| 1945 |
|
|
return 0;
|
| 1946 |
|
|
}
|
| 1947 |
|
|
|
| 1948 |
|
|
/* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
|
| 1949 |
|
|
subobject. */
|
| 1950 |
|
|
|
| 1951 |
|
|
static bool
|
| 1952 |
|
|
base_derived_from (tree derived, tree base)
|
| 1953 |
|
|
{
|
| 1954 |
|
|
tree probe;
|
| 1955 |
|
|
|
| 1956 |
|
|
for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
|
| 1957 |
|
|
{
|
| 1958 |
|
|
if (probe == derived)
|
| 1959 |
|
|
return true;
|
| 1960 |
|
|
else if (BINFO_VIRTUAL_P (probe))
|
| 1961 |
|
|
/* If we meet a virtual base, we can't follow the inheritance
|
| 1962 |
|
|
any more. See if the complete type of DERIVED contains
|
| 1963 |
|
|
such a virtual base. */
|
| 1964 |
|
|
return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
|
| 1965 |
|
|
!= NULL_TREE);
|
| 1966 |
|
|
}
|
| 1967 |
|
|
return false;
|
| 1968 |
|
|
}
|
| 1969 |
|
|
|
| 1970 |
|
|
typedef struct find_final_overrider_data_s {
|
| 1971 |
|
|
/* The function for which we are trying to find a final overrider. */
|
| 1972 |
|
|
tree fn;
|
| 1973 |
|
|
/* The base class in which the function was declared. */
|
| 1974 |
|
|
tree declaring_base;
|
| 1975 |
|
|
/* The candidate overriders. */
|
| 1976 |
|
|
tree candidates;
|
| 1977 |
|
|
/* Path to most derived. */
|
| 1978 |
|
|
VEC(tree,heap) *path;
|
| 1979 |
|
|
} find_final_overrider_data;
|
| 1980 |
|
|
|
| 1981 |
|
|
/* Add the overrider along the current path to FFOD->CANDIDATES.
|
| 1982 |
|
|
Returns true if an overrider was found; false otherwise. */
|
| 1983 |
|
|
|
| 1984 |
|
|
static bool
|
| 1985 |
|
|
dfs_find_final_overrider_1 (tree binfo,
|
| 1986 |
|
|
find_final_overrider_data *ffod,
|
| 1987 |
|
|
unsigned depth)
|
| 1988 |
|
|
{
|
| 1989 |
|
|
tree method;
|
| 1990 |
|
|
|
| 1991 |
|
|
/* If BINFO is not the most derived type, try a more derived class.
|
| 1992 |
|
|
A definition there will overrider a definition here. */
|
| 1993 |
|
|
if (depth)
|
| 1994 |
|
|
{
|
| 1995 |
|
|
depth--;
|
| 1996 |
|
|
if (dfs_find_final_overrider_1
|
| 1997 |
|
|
(VEC_index (tree, ffod->path, depth), ffod, depth))
|
| 1998 |
|
|
return true;
|
| 1999 |
|
|
}
|
| 2000 |
|
|
|
| 2001 |
|
|
method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
|
| 2002 |
|
|
if (method)
|
| 2003 |
|
|
{
|
| 2004 |
|
|
tree *candidate = &ffod->candidates;
|
| 2005 |
|
|
|
| 2006 |
|
|
/* Remove any candidates overridden by this new function. */
|
| 2007 |
|
|
while (*candidate)
|
| 2008 |
|
|
{
|
| 2009 |
|
|
/* If *CANDIDATE overrides METHOD, then METHOD
|
| 2010 |
|
|
cannot override anything else on the list. */
|
| 2011 |
|
|
if (base_derived_from (TREE_VALUE (*candidate), binfo))
|
| 2012 |
|
|
return true;
|
| 2013 |
|
|
/* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
|
| 2014 |
|
|
if (base_derived_from (binfo, TREE_VALUE (*candidate)))
|
| 2015 |
|
|
*candidate = TREE_CHAIN (*candidate);
|
| 2016 |
|
|
else
|
| 2017 |
|
|
candidate = &TREE_CHAIN (*candidate);
|
| 2018 |
|
|
}
|
| 2019 |
|
|
|
| 2020 |
|
|
/* Add the new function. */
|
| 2021 |
|
|
ffod->candidates = tree_cons (method, binfo, ffod->candidates);
|
| 2022 |
|
|
return true;
|
| 2023 |
|
|
}
|
| 2024 |
|
|
|
| 2025 |
|
|
return false;
|
| 2026 |
|
|
}
|
| 2027 |
|
|
|
| 2028 |
|
|
/* Called from find_final_overrider via dfs_walk. */
|
| 2029 |
|
|
|
| 2030 |
|
|
static tree
|
| 2031 |
|
|
dfs_find_final_overrider_pre (tree binfo, void *data)
|
| 2032 |
|
|
{
|
| 2033 |
|
|
find_final_overrider_data *ffod = (find_final_overrider_data *) data;
|
| 2034 |
|
|
|
| 2035 |
|
|
if (binfo == ffod->declaring_base)
|
| 2036 |
|
|
dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
|
| 2037 |
|
|
VEC_safe_push (tree, heap, ffod->path, binfo);
|
| 2038 |
|
|
|
| 2039 |
|
|
return NULL_TREE;
|
| 2040 |
|
|
}
|
| 2041 |
|
|
|
| 2042 |
|
|
static tree
|
| 2043 |
|
|
dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
|
| 2044 |
|
|
{
|
| 2045 |
|
|
find_final_overrider_data *ffod = (find_final_overrider_data *) data;
|
| 2046 |
|
|
VEC_pop (tree, ffod->path);
|
| 2047 |
|
|
|
| 2048 |
|
|
return NULL_TREE;
|
| 2049 |
|
|
}
|
| 2050 |
|
|
|
| 2051 |
|
|
/* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
|
| 2052 |
|
|
FN and whose TREE_VALUE is the binfo for the base where the
|
| 2053 |
|
|
overriding occurs. BINFO (in the hierarchy dominated by the binfo
|
| 2054 |
|
|
DERIVED) is the base object in which FN is declared. */
|
| 2055 |
|
|
|
| 2056 |
|
|
static tree
|
| 2057 |
|
|
find_final_overrider (tree derived, tree binfo, tree fn)
|
| 2058 |
|
|
{
|
| 2059 |
|
|
find_final_overrider_data ffod;
|
| 2060 |
|
|
|
| 2061 |
|
|
/* Getting this right is a little tricky. This is valid:
|
| 2062 |
|
|
|
| 2063 |
|
|
struct S { virtual void f (); };
|
| 2064 |
|
|
struct T { virtual void f (); };
|
| 2065 |
|
|
struct U : public S, public T { };
|
| 2066 |
|
|
|
| 2067 |
|
|
even though calling `f' in `U' is ambiguous. But,
|
| 2068 |
|
|
|
| 2069 |
|
|
struct R { virtual void f(); };
|
| 2070 |
|
|
struct S : virtual public R { virtual void f (); };
|
| 2071 |
|
|
struct T : virtual public R { virtual void f (); };
|
| 2072 |
|
|
struct U : public S, public T { };
|
| 2073 |
|
|
|
| 2074 |
|
|
is not -- there's no way to decide whether to put `S::f' or
|
| 2075 |
|
|
`T::f' in the vtable for `R'.
|
| 2076 |
|
|
|
| 2077 |
|
|
The solution is to look at all paths to BINFO. If we find
|
| 2078 |
|
|
different overriders along any two, then there is a problem. */
|
| 2079 |
|
|
if (DECL_THUNK_P (fn))
|
| 2080 |
|
|
fn = THUNK_TARGET (fn);
|
| 2081 |
|
|
|
| 2082 |
|
|
/* Determine the depth of the hierarchy. */
|
| 2083 |
|
|
ffod.fn = fn;
|
| 2084 |
|
|
ffod.declaring_base = binfo;
|
| 2085 |
|
|
ffod.candidates = NULL_TREE;
|
| 2086 |
|
|
ffod.path = VEC_alloc (tree, heap, 30);
|
| 2087 |
|
|
|
| 2088 |
|
|
dfs_walk_all (derived, dfs_find_final_overrider_pre,
|
| 2089 |
|
|
dfs_find_final_overrider_post, &ffod);
|
| 2090 |
|
|
|
| 2091 |
|
|
VEC_free (tree, heap, ffod.path);
|
| 2092 |
|
|
|
| 2093 |
|
|
/* If there was no winner, issue an error message. */
|
| 2094 |
|
|
if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
|
| 2095 |
|
|
return error_mark_node;
|
| 2096 |
|
|
|
| 2097 |
|
|
return ffod.candidates;
|
| 2098 |
|
|
}
|
| 2099 |
|
|
|
| 2100 |
|
|
/* Return the index of the vcall offset for FN when TYPE is used as a
|
| 2101 |
|
|
virtual base. */
|
| 2102 |
|
|
|
| 2103 |
|
|
static tree
|
| 2104 |
|
|
get_vcall_index (tree fn, tree type)
|
| 2105 |
|
|
{
|
| 2106 |
|
|
VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
|
| 2107 |
|
|
tree_pair_p p;
|
| 2108 |
|
|
unsigned ix;
|
| 2109 |
|
|
|
| 2110 |
|
|
FOR_EACH_VEC_ELT (tree_pair_s, indices, ix, p)
|
| 2111 |
|
|
if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
|
| 2112 |
|
|
|| same_signature_p (fn, p->purpose))
|
| 2113 |
|
|
return p->value;
|
| 2114 |
|
|
|
| 2115 |
|
|
/* There should always be an appropriate index. */
|
| 2116 |
|
|
gcc_unreachable ();
|
| 2117 |
|
|
}
|
| 2118 |
|
|
|
| 2119 |
|
|
/* Update an entry in the vtable for BINFO, which is in the hierarchy
|
| 2120 |
|
|
dominated by T. FN is the old function; VIRTUALS points to the
|
| 2121 |
|
|
corresponding position in the new BINFO_VIRTUALS list. IX is the index
|
| 2122 |
|
|
of that entry in the list. */
|
| 2123 |
|
|
|
| 2124 |
|
|
static void
|
| 2125 |
|
|
update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
|
| 2126 |
|
|
unsigned ix)
|
| 2127 |
|
|
{
|
| 2128 |
|
|
tree b;
|
| 2129 |
|
|
tree overrider;
|
| 2130 |
|
|
tree delta;
|
| 2131 |
|
|
tree virtual_base;
|
| 2132 |
|
|
tree first_defn;
|
| 2133 |
|
|
tree overrider_fn, overrider_target;
|
| 2134 |
|
|
tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
|
| 2135 |
|
|
tree over_return, base_return;
|
| 2136 |
|
|
bool lost = false;
|
| 2137 |
|
|
|
| 2138 |
|
|
/* Find the nearest primary base (possibly binfo itself) which defines
|
| 2139 |
|
|
this function; this is the class the caller will convert to when
|
| 2140 |
|
|
calling FN through BINFO. */
|
| 2141 |
|
|
for (b = binfo; ; b = get_primary_binfo (b))
|
| 2142 |
|
|
{
|
| 2143 |
|
|
gcc_assert (b);
|
| 2144 |
|
|
if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
|
| 2145 |
|
|
break;
|
| 2146 |
|
|
|
| 2147 |
|
|
/* The nearest definition is from a lost primary. */
|
| 2148 |
|
|
if (BINFO_LOST_PRIMARY_P (b))
|
| 2149 |
|
|
lost = true;
|
| 2150 |
|
|
}
|
| 2151 |
|
|
first_defn = b;
|
| 2152 |
|
|
|
| 2153 |
|
|
/* Find the final overrider. */
|
| 2154 |
|
|
overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
|
| 2155 |
|
|
if (overrider == error_mark_node)
|
| 2156 |
|
|
{
|
| 2157 |
|
|
error ("no unique final overrider for %qD in %qT", target_fn, t);
|
| 2158 |
|
|
return;
|
| 2159 |
|
|
}
|
| 2160 |
|
|
overrider_target = overrider_fn = TREE_PURPOSE (overrider);
|
| 2161 |
|
|
|
| 2162 |
|
|
/* Check for adjusting covariant return types. */
|
| 2163 |
|
|
over_return = TREE_TYPE (TREE_TYPE (overrider_target));
|
| 2164 |
|
|
base_return = TREE_TYPE (TREE_TYPE (target_fn));
|
| 2165 |
|
|
|
| 2166 |
|
|
if (POINTER_TYPE_P (over_return)
|
| 2167 |
|
|
&& TREE_CODE (over_return) == TREE_CODE (base_return)
|
| 2168 |
|
|
&& CLASS_TYPE_P (TREE_TYPE (over_return))
|
| 2169 |
|
|
&& CLASS_TYPE_P (TREE_TYPE (base_return))
|
| 2170 |
|
|
/* If the overrider is invalid, don't even try. */
|
| 2171 |
|
|
&& !DECL_INVALID_OVERRIDER_P (overrider_target))
|
| 2172 |
|
|
{
|
| 2173 |
|
|
/* If FN is a covariant thunk, we must figure out the adjustment
|
| 2174 |
|
|
to the final base FN was converting to. As OVERRIDER_TARGET might
|
| 2175 |
|
|
also be converting to the return type of FN, we have to
|
| 2176 |
|
|
combine the two conversions here. */
|
| 2177 |
|
|
tree fixed_offset, virtual_offset;
|
| 2178 |
|
|
|
| 2179 |
|
|
over_return = TREE_TYPE (over_return);
|
| 2180 |
|
|
base_return = TREE_TYPE (base_return);
|
| 2181 |
|
|
|
| 2182 |
|
|
if (DECL_THUNK_P (fn))
|
| 2183 |
|
|
{
|
| 2184 |
|
|
gcc_assert (DECL_RESULT_THUNK_P (fn));
|
| 2185 |
|
|
fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
|
| 2186 |
|
|
virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
|
| 2187 |
|
|
}
|
| 2188 |
|
|
else
|
| 2189 |
|
|
fixed_offset = virtual_offset = NULL_TREE;
|
| 2190 |
|
|
|
| 2191 |
|
|
if (virtual_offset)
|
| 2192 |
|
|
/* Find the equivalent binfo within the return type of the
|
| 2193 |
|
|
overriding function. We will want the vbase offset from
|
| 2194 |
|
|
there. */
|
| 2195 |
|
|
virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
|
| 2196 |
|
|
over_return);
|
| 2197 |
|
|
else if (!same_type_ignoring_top_level_qualifiers_p
|
| 2198 |
|
|
(over_return, base_return))
|
| 2199 |
|
|
{
|
| 2200 |
|
|
/* There was no existing virtual thunk (which takes
|
| 2201 |
|
|
precedence). So find the binfo of the base function's
|
| 2202 |
|
|
return type within the overriding function's return type.
|
| 2203 |
|
|
We cannot call lookup base here, because we're inside a
|
| 2204 |
|
|
dfs_walk, and will therefore clobber the BINFO_MARKED
|
| 2205 |
|
|
flags. Fortunately we know the covariancy is valid (it
|
| 2206 |
|
|
has already been checked), so we can just iterate along
|
| 2207 |
|
|
the binfos, which have been chained in inheritance graph
|
| 2208 |
|
|
order. Of course it is lame that we have to repeat the
|
| 2209 |
|
|
search here anyway -- we should really be caching pieces
|
| 2210 |
|
|
of the vtable and avoiding this repeated work. */
|
| 2211 |
|
|
tree thunk_binfo, base_binfo;
|
| 2212 |
|
|
|
| 2213 |
|
|
/* Find the base binfo within the overriding function's
|
| 2214 |
|
|
return type. We will always find a thunk_binfo, except
|
| 2215 |
|
|
when the covariancy is invalid (which we will have
|
| 2216 |
|
|
already diagnosed). */
|
| 2217 |
|
|
for (base_binfo = TYPE_BINFO (base_return),
|
| 2218 |
|
|
thunk_binfo = TYPE_BINFO (over_return);
|
| 2219 |
|
|
thunk_binfo;
|
| 2220 |
|
|
thunk_binfo = TREE_CHAIN (thunk_binfo))
|
| 2221 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
|
| 2222 |
|
|
BINFO_TYPE (base_binfo)))
|
| 2223 |
|
|
break;
|
| 2224 |
|
|
|
| 2225 |
|
|
/* See if virtual inheritance is involved. */
|
| 2226 |
|
|
for (virtual_offset = thunk_binfo;
|
| 2227 |
|
|
virtual_offset;
|
| 2228 |
|
|
virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
|
| 2229 |
|
|
if (BINFO_VIRTUAL_P (virtual_offset))
|
| 2230 |
|
|
break;
|
| 2231 |
|
|
|
| 2232 |
|
|
if (virtual_offset
|
| 2233 |
|
|
|| (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
|
| 2234 |
|
|
{
|
| 2235 |
|
|
tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
|
| 2236 |
|
|
|
| 2237 |
|
|
if (virtual_offset)
|
| 2238 |
|
|
{
|
| 2239 |
|
|
/* We convert via virtual base. Adjust the fixed
|
| 2240 |
|
|
offset to be from there. */
|
| 2241 |
|
|
offset =
|
| 2242 |
|
|
size_diffop (offset,
|
| 2243 |
|
|
convert (ssizetype,
|
| 2244 |
|
|
BINFO_OFFSET (virtual_offset)));
|
| 2245 |
|
|
}
|
| 2246 |
|
|
if (fixed_offset)
|
| 2247 |
|
|
/* There was an existing fixed offset, this must be
|
| 2248 |
|
|
from the base just converted to, and the base the
|
| 2249 |
|
|
FN was thunking to. */
|
| 2250 |
|
|
fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
|
| 2251 |
|
|
else
|
| 2252 |
|
|
fixed_offset = offset;
|
| 2253 |
|
|
}
|
| 2254 |
|
|
}
|
| 2255 |
|
|
|
| 2256 |
|
|
if (fixed_offset || virtual_offset)
|
| 2257 |
|
|
/* Replace the overriding function with a covariant thunk. We
|
| 2258 |
|
|
will emit the overriding function in its own slot as
|
| 2259 |
|
|
well. */
|
| 2260 |
|
|
overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
|
| 2261 |
|
|
fixed_offset, virtual_offset);
|
| 2262 |
|
|
}
|
| 2263 |
|
|
else
|
| 2264 |
|
|
gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
|
| 2265 |
|
|
!DECL_THUNK_P (fn));
|
| 2266 |
|
|
|
| 2267 |
|
|
/* If we need a covariant thunk, then we may need to adjust first_defn.
|
| 2268 |
|
|
The ABI specifies that the thunks emitted with a function are
|
| 2269 |
|
|
determined by which bases the function overrides, so we need to be
|
| 2270 |
|
|
sure that we're using a thunk for some overridden base; even if we
|
| 2271 |
|
|
know that the necessary this adjustment is zero, there may not be an
|
| 2272 |
|
|
appropriate zero-this-adjusment thunk for us to use since thunks for
|
| 2273 |
|
|
overriding virtual bases always use the vcall offset.
|
| 2274 |
|
|
|
| 2275 |
|
|
Furthermore, just choosing any base that overrides this function isn't
|
| 2276 |
|
|
quite right, as this slot won't be used for calls through a type that
|
| 2277 |
|
|
puts a covariant thunk here. Calling the function through such a type
|
| 2278 |
|
|
will use a different slot, and that slot is the one that determines
|
| 2279 |
|
|
the thunk emitted for that base.
|
| 2280 |
|
|
|
| 2281 |
|
|
So, keep looking until we find the base that we're really overriding
|
| 2282 |
|
|
in this slot: the nearest primary base that doesn't use a covariant
|
| 2283 |
|
|
thunk in this slot. */
|
| 2284 |
|
|
if (overrider_target != overrider_fn)
|
| 2285 |
|
|
{
|
| 2286 |
|
|
if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
|
| 2287 |
|
|
/* We already know that the overrider needs a covariant thunk. */
|
| 2288 |
|
|
b = get_primary_binfo (b);
|
| 2289 |
|
|
for (; ; b = get_primary_binfo (b))
|
| 2290 |
|
|
{
|
| 2291 |
|
|
tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
|
| 2292 |
|
|
tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
|
| 2293 |
|
|
if (!DECL_THUNK_P (TREE_VALUE (bv)))
|
| 2294 |
|
|
break;
|
| 2295 |
|
|
if (BINFO_LOST_PRIMARY_P (b))
|
| 2296 |
|
|
lost = true;
|
| 2297 |
|
|
}
|
| 2298 |
|
|
first_defn = b;
|
| 2299 |
|
|
}
|
| 2300 |
|
|
|
| 2301 |
|
|
/* Assume that we will produce a thunk that convert all the way to
|
| 2302 |
|
|
the final overrider, and not to an intermediate virtual base. */
|
| 2303 |
|
|
virtual_base = NULL_TREE;
|
| 2304 |
|
|
|
| 2305 |
|
|
/* See if we can convert to an intermediate virtual base first, and then
|
| 2306 |
|
|
use the vcall offset located there to finish the conversion. */
|
| 2307 |
|
|
for (; b; b = BINFO_INHERITANCE_CHAIN (b))
|
| 2308 |
|
|
{
|
| 2309 |
|
|
/* If we find the final overrider, then we can stop
|
| 2310 |
|
|
walking. */
|
| 2311 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
|
| 2312 |
|
|
BINFO_TYPE (TREE_VALUE (overrider))))
|
| 2313 |
|
|
break;
|
| 2314 |
|
|
|
| 2315 |
|
|
/* If we find a virtual base, and we haven't yet found the
|
| 2316 |
|
|
overrider, then there is a virtual base between the
|
| 2317 |
|
|
declaring base (first_defn) and the final overrider. */
|
| 2318 |
|
|
if (BINFO_VIRTUAL_P (b))
|
| 2319 |
|
|
{
|
| 2320 |
|
|
virtual_base = b;
|
| 2321 |
|
|
break;
|
| 2322 |
|
|
}
|
| 2323 |
|
|
}
|
| 2324 |
|
|
|
| 2325 |
|
|
/* Compute the constant adjustment to the `this' pointer. The
|
| 2326 |
|
|
`this' pointer, when this function is called, will point at BINFO
|
| 2327 |
|
|
(or one of its primary bases, which are at the same offset). */
|
| 2328 |
|
|
if (virtual_base)
|
| 2329 |
|
|
/* The `this' pointer needs to be adjusted from the declaration to
|
| 2330 |
|
|
the nearest virtual base. */
|
| 2331 |
|
|
delta = size_diffop_loc (input_location,
|
| 2332 |
|
|
convert (ssizetype, BINFO_OFFSET (virtual_base)),
|
| 2333 |
|
|
convert (ssizetype, BINFO_OFFSET (first_defn)));
|
| 2334 |
|
|
else if (lost)
|
| 2335 |
|
|
/* If the nearest definition is in a lost primary, we don't need an
|
| 2336 |
|
|
entry in our vtable. Except possibly in a constructor vtable,
|
| 2337 |
|
|
if we happen to get our primary back. In that case, the offset
|
| 2338 |
|
|
will be zero, as it will be a primary base. */
|
| 2339 |
|
|
delta = size_zero_node;
|
| 2340 |
|
|
else
|
| 2341 |
|
|
/* The `this' pointer needs to be adjusted from pointing to
|
| 2342 |
|
|
BINFO to pointing at the base where the final overrider
|
| 2343 |
|
|
appears. */
|
| 2344 |
|
|
delta = size_diffop_loc (input_location,
|
| 2345 |
|
|
convert (ssizetype,
|
| 2346 |
|
|
BINFO_OFFSET (TREE_VALUE (overrider))),
|
| 2347 |
|
|
convert (ssizetype, BINFO_OFFSET (binfo)));
|
| 2348 |
|
|
|
| 2349 |
|
|
modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
|
| 2350 |
|
|
|
| 2351 |
|
|
if (virtual_base)
|
| 2352 |
|
|
BV_VCALL_INDEX (*virtuals)
|
| 2353 |
|
|
= get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
|
| 2354 |
|
|
else
|
| 2355 |
|
|
BV_VCALL_INDEX (*virtuals) = NULL_TREE;
|
| 2356 |
|
|
|
| 2357 |
|
|
BV_LOST_PRIMARY (*virtuals) = lost;
|
| 2358 |
|
|
}
|
| 2359 |
|
|
|
| 2360 |
|
|
/* Called from modify_all_vtables via dfs_walk. */
|
| 2361 |
|
|
|
| 2362 |
|
|
static tree
|
| 2363 |
|
|
dfs_modify_vtables (tree binfo, void* data)
|
| 2364 |
|
|
{
|
| 2365 |
|
|
tree t = (tree) data;
|
| 2366 |
|
|
tree virtuals;
|
| 2367 |
|
|
tree old_virtuals;
|
| 2368 |
|
|
unsigned ix;
|
| 2369 |
|
|
|
| 2370 |
|
|
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
|
| 2371 |
|
|
/* A base without a vtable needs no modification, and its bases
|
| 2372 |
|
|
are uninteresting. */
|
| 2373 |
|
|
return dfs_skip_bases;
|
| 2374 |
|
|
|
| 2375 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
|
| 2376 |
|
|
&& !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
|
| 2377 |
|
|
/* Don't do the primary vtable, if it's new. */
|
| 2378 |
|
|
return NULL_TREE;
|
| 2379 |
|
|
|
| 2380 |
|
|
if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
|
| 2381 |
|
|
/* There's no need to modify the vtable for a non-virtual primary
|
| 2382 |
|
|
base; we're not going to use that vtable anyhow. We do still
|
| 2383 |
|
|
need to do this for virtual primary bases, as they could become
|
| 2384 |
|
|
non-primary in a construction vtable. */
|
| 2385 |
|
|
return NULL_TREE;
|
| 2386 |
|
|
|
| 2387 |
|
|
make_new_vtable (t, binfo);
|
| 2388 |
|
|
|
| 2389 |
|
|
/* Now, go through each of the virtual functions in the virtual
|
| 2390 |
|
|
function table for BINFO. Find the final overrider, and update
|
| 2391 |
|
|
the BINFO_VIRTUALS list appropriately. */
|
| 2392 |
|
|
for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
|
| 2393 |
|
|
old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
|
| 2394 |
|
|
virtuals;
|
| 2395 |
|
|
ix++, virtuals = TREE_CHAIN (virtuals),
|
| 2396 |
|
|
old_virtuals = TREE_CHAIN (old_virtuals))
|
| 2397 |
|
|
update_vtable_entry_for_fn (t,
|
| 2398 |
|
|
binfo,
|
| 2399 |
|
|
BV_FN (old_virtuals),
|
| 2400 |
|
|
&virtuals, ix);
|
| 2401 |
|
|
|
| 2402 |
|
|
return NULL_TREE;
|
| 2403 |
|
|
}
|
| 2404 |
|
|
|
| 2405 |
|
|
/* Update all of the primary and secondary vtables for T. Create new
|
| 2406 |
|
|
vtables as required, and initialize their RTTI information. Each
|
| 2407 |
|
|
of the functions in VIRTUALS is declared in T and may override a
|
| 2408 |
|
|
virtual function from a base class; find and modify the appropriate
|
| 2409 |
|
|
entries to point to the overriding functions. Returns a list, in
|
| 2410 |
|
|
declaration order, of the virtual functions that are declared in T,
|
| 2411 |
|
|
but do not appear in the primary base class vtable, and which
|
| 2412 |
|
|
should therefore be appended to the end of the vtable for T. */
|
| 2413 |
|
|
|
| 2414 |
|
|
static tree
|
| 2415 |
|
|
modify_all_vtables (tree t, tree virtuals)
|
| 2416 |
|
|
{
|
| 2417 |
|
|
tree binfo = TYPE_BINFO (t);
|
| 2418 |
|
|
tree *fnsp;
|
| 2419 |
|
|
|
| 2420 |
|
|
/* Update all of the vtables. */
|
| 2421 |
|
|
dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
|
| 2422 |
|
|
|
| 2423 |
|
|
/* Add virtual functions not already in our primary vtable. These
|
| 2424 |
|
|
will be both those introduced by this class, and those overridden
|
| 2425 |
|
|
from secondary bases. It does not include virtuals merely
|
| 2426 |
|
|
inherited from secondary bases. */
|
| 2427 |
|
|
for (fnsp = &virtuals; *fnsp; )
|
| 2428 |
|
|
{
|
| 2429 |
|
|
tree fn = TREE_VALUE (*fnsp);
|
| 2430 |
|
|
|
| 2431 |
|
|
if (!value_member (fn, BINFO_VIRTUALS (binfo))
|
| 2432 |
|
|
|| DECL_VINDEX (fn) == error_mark_node)
|
| 2433 |
|
|
{
|
| 2434 |
|
|
/* We don't need to adjust the `this' pointer when
|
| 2435 |
|
|
calling this function. */
|
| 2436 |
|
|
BV_DELTA (*fnsp) = integer_zero_node;
|
| 2437 |
|
|
BV_VCALL_INDEX (*fnsp) = NULL_TREE;
|
| 2438 |
|
|
|
| 2439 |
|
|
/* This is a function not already in our vtable. Keep it. */
|
| 2440 |
|
|
fnsp = &TREE_CHAIN (*fnsp);
|
| 2441 |
|
|
}
|
| 2442 |
|
|
else
|
| 2443 |
|
|
/* We've already got an entry for this function. Skip it. */
|
| 2444 |
|
|
*fnsp = TREE_CHAIN (*fnsp);
|
| 2445 |
|
|
}
|
| 2446 |
|
|
|
| 2447 |
|
|
return virtuals;
|
| 2448 |
|
|
}
|
| 2449 |
|
|
|
| 2450 |
|
|
/* Get the base virtual function declarations in T that have the
|
| 2451 |
|
|
indicated NAME. */
|
| 2452 |
|
|
|
| 2453 |
|
|
static tree
|
| 2454 |
|
|
get_basefndecls (tree name, tree t)
|
| 2455 |
|
|
{
|
| 2456 |
|
|
tree methods;
|
| 2457 |
|
|
tree base_fndecls = NULL_TREE;
|
| 2458 |
|
|
int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
|
| 2459 |
|
|
int i;
|
| 2460 |
|
|
|
| 2461 |
|
|
/* Find virtual functions in T with the indicated NAME. */
|
| 2462 |
|
|
i = lookup_fnfields_1 (t, name);
|
| 2463 |
|
|
if (i != -1)
|
| 2464 |
|
|
for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
|
| 2465 |
|
|
methods;
|
| 2466 |
|
|
methods = OVL_NEXT (methods))
|
| 2467 |
|
|
{
|
| 2468 |
|
|
tree method = OVL_CURRENT (methods);
|
| 2469 |
|
|
|
| 2470 |
|
|
if (TREE_CODE (method) == FUNCTION_DECL
|
| 2471 |
|
|
&& DECL_VINDEX (method))
|
| 2472 |
|
|
base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
|
| 2473 |
|
|
}
|
| 2474 |
|
|
|
| 2475 |
|
|
if (base_fndecls)
|
| 2476 |
|
|
return base_fndecls;
|
| 2477 |
|
|
|
| 2478 |
|
|
for (i = 0; i < n_baseclasses; i++)
|
| 2479 |
|
|
{
|
| 2480 |
|
|
tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
|
| 2481 |
|
|
base_fndecls = chainon (get_basefndecls (name, basetype),
|
| 2482 |
|
|
base_fndecls);
|
| 2483 |
|
|
}
|
| 2484 |
|
|
|
| 2485 |
|
|
return base_fndecls;
|
| 2486 |
|
|
}
|
| 2487 |
|
|
|
| 2488 |
|
|
/* If this declaration supersedes the declaration of
|
| 2489 |
|
|
a method declared virtual in the base class, then
|
| 2490 |
|
|
mark this field as being virtual as well. */
|
| 2491 |
|
|
|
| 2492 |
|
|
void
|
| 2493 |
|
|
check_for_override (tree decl, tree ctype)
|
| 2494 |
|
|
{
|
| 2495 |
|
|
bool overrides_found = false;
|
| 2496 |
|
|
if (TREE_CODE (decl) == TEMPLATE_DECL)
|
| 2497 |
|
|
/* In [temp.mem] we have:
|
| 2498 |
|
|
|
| 2499 |
|
|
A specialization of a member function template does not
|
| 2500 |
|
|
override a virtual function from a base class. */
|
| 2501 |
|
|
return;
|
| 2502 |
|
|
if ((DECL_DESTRUCTOR_P (decl)
|
| 2503 |
|
|
|| IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
|
| 2504 |
|
|
|| DECL_CONV_FN_P (decl))
|
| 2505 |
|
|
&& look_for_overrides (ctype, decl)
|
| 2506 |
|
|
&& !DECL_STATIC_FUNCTION_P (decl))
|
| 2507 |
|
|
/* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
|
| 2508 |
|
|
the error_mark_node so that we know it is an overriding
|
| 2509 |
|
|
function. */
|
| 2510 |
|
|
{
|
| 2511 |
|
|
DECL_VINDEX (decl) = decl;
|
| 2512 |
|
|
overrides_found = true;
|
| 2513 |
|
|
}
|
| 2514 |
|
|
|
| 2515 |
|
|
if (DECL_VIRTUAL_P (decl))
|
| 2516 |
|
|
{
|
| 2517 |
|
|
if (!DECL_VINDEX (decl))
|
| 2518 |
|
|
DECL_VINDEX (decl) = error_mark_node;
|
| 2519 |
|
|
IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
|
| 2520 |
|
|
if (DECL_DESTRUCTOR_P (decl))
|
| 2521 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
|
| 2522 |
|
|
}
|
| 2523 |
|
|
else if (DECL_FINAL_P (decl))
|
| 2524 |
|
|
error ("%q+#D marked final, but is not virtual", decl);
|
| 2525 |
|
|
if (DECL_OVERRIDE_P (decl) && !overrides_found)
|
| 2526 |
|
|
error ("%q+#D marked override, but does not override", decl);
|
| 2527 |
|
|
}
|
| 2528 |
|
|
|
| 2529 |
|
|
/* Warn about hidden virtual functions that are not overridden in t.
|
| 2530 |
|
|
We know that constructors and destructors don't apply. */
|
| 2531 |
|
|
|
| 2532 |
|
|
static void
|
| 2533 |
|
|
warn_hidden (tree t)
|
| 2534 |
|
|
{
|
| 2535 |
|
|
VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
|
| 2536 |
|
|
tree fns;
|
| 2537 |
|
|
size_t i;
|
| 2538 |
|
|
|
| 2539 |
|
|
/* We go through each separately named virtual function. */
|
| 2540 |
|
|
for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
|
| 2541 |
|
|
VEC_iterate (tree, method_vec, i, fns);
|
| 2542 |
|
|
++i)
|
| 2543 |
|
|
{
|
| 2544 |
|
|
tree fn;
|
| 2545 |
|
|
tree name;
|
| 2546 |
|
|
tree fndecl;
|
| 2547 |
|
|
tree base_fndecls;
|
| 2548 |
|
|
tree base_binfo;
|
| 2549 |
|
|
tree binfo;
|
| 2550 |
|
|
int j;
|
| 2551 |
|
|
|
| 2552 |
|
|
/* All functions in this slot in the CLASSTYPE_METHOD_VEC will
|
| 2553 |
|
|
have the same name. Figure out what name that is. */
|
| 2554 |
|
|
name = DECL_NAME (OVL_CURRENT (fns));
|
| 2555 |
|
|
/* There are no possibly hidden functions yet. */
|
| 2556 |
|
|
base_fndecls = NULL_TREE;
|
| 2557 |
|
|
/* Iterate through all of the base classes looking for possibly
|
| 2558 |
|
|
hidden functions. */
|
| 2559 |
|
|
for (binfo = TYPE_BINFO (t), j = 0;
|
| 2560 |
|
|
BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
|
| 2561 |
|
|
{
|
| 2562 |
|
|
tree basetype = BINFO_TYPE (base_binfo);
|
| 2563 |
|
|
base_fndecls = chainon (get_basefndecls (name, basetype),
|
| 2564 |
|
|
base_fndecls);
|
| 2565 |
|
|
}
|
| 2566 |
|
|
|
| 2567 |
|
|
/* If there are no functions to hide, continue. */
|
| 2568 |
|
|
if (!base_fndecls)
|
| 2569 |
|
|
continue;
|
| 2570 |
|
|
|
| 2571 |
|
|
/* Remove any overridden functions. */
|
| 2572 |
|
|
for (fn = fns; fn; fn = OVL_NEXT (fn))
|
| 2573 |
|
|
{
|
| 2574 |
|
|
fndecl = OVL_CURRENT (fn);
|
| 2575 |
|
|
if (DECL_VINDEX (fndecl))
|
| 2576 |
|
|
{
|
| 2577 |
|
|
tree *prev = &base_fndecls;
|
| 2578 |
|
|
|
| 2579 |
|
|
while (*prev)
|
| 2580 |
|
|
/* If the method from the base class has the same
|
| 2581 |
|
|
signature as the method from the derived class, it
|
| 2582 |
|
|
has been overridden. */
|
| 2583 |
|
|
if (same_signature_p (fndecl, TREE_VALUE (*prev)))
|
| 2584 |
|
|
*prev = TREE_CHAIN (*prev);
|
| 2585 |
|
|
else
|
| 2586 |
|
|
prev = &TREE_CHAIN (*prev);
|
| 2587 |
|
|
}
|
| 2588 |
|
|
}
|
| 2589 |
|
|
|
| 2590 |
|
|
/* Now give a warning for all base functions without overriders,
|
| 2591 |
|
|
as they are hidden. */
|
| 2592 |
|
|
while (base_fndecls)
|
| 2593 |
|
|
{
|
| 2594 |
|
|
/* Here we know it is a hider, and no overrider exists. */
|
| 2595 |
|
|
warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
|
| 2596 |
|
|
warning (OPT_Woverloaded_virtual, " by %q+D", fns);
|
| 2597 |
|
|
base_fndecls = TREE_CHAIN (base_fndecls);
|
| 2598 |
|
|
}
|
| 2599 |
|
|
}
|
| 2600 |
|
|
}
|
| 2601 |
|
|
|
| 2602 |
|
|
/* Check for things that are invalid. There are probably plenty of other
|
| 2603 |
|
|
things we should check for also. */
|
| 2604 |
|
|
|
| 2605 |
|
|
static void
|
| 2606 |
|
|
finish_struct_anon (tree t)
|
| 2607 |
|
|
{
|
| 2608 |
|
|
tree field;
|
| 2609 |
|
|
|
| 2610 |
|
|
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
|
| 2611 |
|
|
{
|
| 2612 |
|
|
if (TREE_STATIC (field))
|
| 2613 |
|
|
continue;
|
| 2614 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
| 2615 |
|
|
continue;
|
| 2616 |
|
|
|
| 2617 |
|
|
if (DECL_NAME (field) == NULL_TREE
|
| 2618 |
|
|
&& ANON_AGGR_TYPE_P (TREE_TYPE (field)))
|
| 2619 |
|
|
{
|
| 2620 |
|
|
bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
|
| 2621 |
|
|
tree elt = TYPE_FIELDS (TREE_TYPE (field));
|
| 2622 |
|
|
for (; elt; elt = DECL_CHAIN (elt))
|
| 2623 |
|
|
{
|
| 2624 |
|
|
/* We're generally only interested in entities the user
|
| 2625 |
|
|
declared, but we also find nested classes by noticing
|
| 2626 |
|
|
the TYPE_DECL that we create implicitly. You're
|
| 2627 |
|
|
allowed to put one anonymous union inside another,
|
| 2628 |
|
|
though, so we explicitly tolerate that. We use
|
| 2629 |
|
|
TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
|
| 2630 |
|
|
we also allow unnamed types used for defining fields. */
|
| 2631 |
|
|
if (DECL_ARTIFICIAL (elt)
|
| 2632 |
|
|
&& (!DECL_IMPLICIT_TYPEDEF_P (elt)
|
| 2633 |
|
|
|| TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
|
| 2634 |
|
|
continue;
|
| 2635 |
|
|
|
| 2636 |
|
|
if (TREE_CODE (elt) != FIELD_DECL)
|
| 2637 |
|
|
{
|
| 2638 |
|
|
if (is_union)
|
| 2639 |
|
|
permerror (input_location, "%q+#D invalid; an anonymous union can "
|
| 2640 |
|
|
"only have non-static data members", elt);
|
| 2641 |
|
|
else
|
| 2642 |
|
|
permerror (input_location, "%q+#D invalid; an anonymous struct can "
|
| 2643 |
|
|
"only have non-static data members", elt);
|
| 2644 |
|
|
continue;
|
| 2645 |
|
|
}
|
| 2646 |
|
|
|
| 2647 |
|
|
if (TREE_PRIVATE (elt))
|
| 2648 |
|
|
{
|
| 2649 |
|
|
if (is_union)
|
| 2650 |
|
|
permerror (input_location, "private member %q+#D in anonymous union", elt);
|
| 2651 |
|
|
else
|
| 2652 |
|
|
permerror (input_location, "private member %q+#D in anonymous struct", elt);
|
| 2653 |
|
|
}
|
| 2654 |
|
|
else if (TREE_PROTECTED (elt))
|
| 2655 |
|
|
{
|
| 2656 |
|
|
if (is_union)
|
| 2657 |
|
|
permerror (input_location, "protected member %q+#D in anonymous union", elt);
|
| 2658 |
|
|
else
|
| 2659 |
|
|
permerror (input_location, "protected member %q+#D in anonymous struct", elt);
|
| 2660 |
|
|
}
|
| 2661 |
|
|
|
| 2662 |
|
|
TREE_PRIVATE (elt) = TREE_PRIVATE (field);
|
| 2663 |
|
|
TREE_PROTECTED (elt) = TREE_PROTECTED (field);
|
| 2664 |
|
|
}
|
| 2665 |
|
|
}
|
| 2666 |
|
|
}
|
| 2667 |
|
|
}
|
| 2668 |
|
|
|
| 2669 |
|
|
/* Add T to CLASSTYPE_DECL_LIST of current_class_type which
|
| 2670 |
|
|
will be used later during class template instantiation.
|
| 2671 |
|
|
When FRIEND_P is zero, T can be a static member data (VAR_DECL),
|
| 2672 |
|
|
a non-static member data (FIELD_DECL), a member function
|
| 2673 |
|
|
(FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
|
| 2674 |
|
|
a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
|
| 2675 |
|
|
When FRIEND_P is nonzero, T is either a friend class
|
| 2676 |
|
|
(RECORD_TYPE, TEMPLATE_DECL) or a friend function
|
| 2677 |
|
|
(FUNCTION_DECL, TEMPLATE_DECL). */
|
| 2678 |
|
|
|
| 2679 |
|
|
void
|
| 2680 |
|
|
maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
|
| 2681 |
|
|
{
|
| 2682 |
|
|
/* Save some memory by not creating TREE_LIST if TYPE is not template. */
|
| 2683 |
|
|
if (CLASSTYPE_TEMPLATE_INFO (type))
|
| 2684 |
|
|
CLASSTYPE_DECL_LIST (type)
|
| 2685 |
|
|
= tree_cons (friend_p ? NULL_TREE : type,
|
| 2686 |
|
|
t, CLASSTYPE_DECL_LIST (type));
|
| 2687 |
|
|
}
|
| 2688 |
|
|
|
| 2689 |
|
|
/* This function is called from declare_virt_assop_and_dtor via
|
| 2690 |
|
|
dfs_walk_all.
|
| 2691 |
|
|
|
| 2692 |
|
|
DATA is a type that direcly or indirectly inherits the base
|
| 2693 |
|
|
represented by BINFO. If BINFO contains a virtual assignment [copy
|
| 2694 |
|
|
assignment or move assigment] operator or a virtual constructor,
|
| 2695 |
|
|
declare that function in DATA if it hasn't been already declared. */
|
| 2696 |
|
|
|
| 2697 |
|
|
static tree
|
| 2698 |
|
|
dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
|
| 2699 |
|
|
{
|
| 2700 |
|
|
tree bv, fn, t = (tree)data;
|
| 2701 |
|
|
tree opname = ansi_assopname (NOP_EXPR);
|
| 2702 |
|
|
|
| 2703 |
|
|
gcc_assert (t && CLASS_TYPE_P (t));
|
| 2704 |
|
|
gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
|
| 2705 |
|
|
|
| 2706 |
|
|
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
|
| 2707 |
|
|
/* A base without a vtable needs no modification, and its bases
|
| 2708 |
|
|
are uninteresting. */
|
| 2709 |
|
|
return dfs_skip_bases;
|
| 2710 |
|
|
|
| 2711 |
|
|
if (BINFO_PRIMARY_P (binfo))
|
| 2712 |
|
|
/* If this is a primary base, then we have already looked at the
|
| 2713 |
|
|
virtual functions of its vtable. */
|
| 2714 |
|
|
return NULL_TREE;
|
| 2715 |
|
|
|
| 2716 |
|
|
for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
|
| 2717 |
|
|
{
|
| 2718 |
|
|
fn = BV_FN (bv);
|
| 2719 |
|
|
|
| 2720 |
|
|
if (DECL_NAME (fn) == opname)
|
| 2721 |
|
|
{
|
| 2722 |
|
|
if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
|
| 2723 |
|
|
lazily_declare_fn (sfk_copy_assignment, t);
|
| 2724 |
|
|
if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
|
| 2725 |
|
|
lazily_declare_fn (sfk_move_assignment, t);
|
| 2726 |
|
|
}
|
| 2727 |
|
|
else if (DECL_DESTRUCTOR_P (fn)
|
| 2728 |
|
|
&& CLASSTYPE_LAZY_DESTRUCTOR (t))
|
| 2729 |
|
|
lazily_declare_fn (sfk_destructor, t);
|
| 2730 |
|
|
}
|
| 2731 |
|
|
|
| 2732 |
|
|
return NULL_TREE;
|
| 2733 |
|
|
}
|
| 2734 |
|
|
|
| 2735 |
|
|
/* If the class type T has a direct or indirect base that contains a
|
| 2736 |
|
|
virtual assignment operator or a virtual destructor, declare that
|
| 2737 |
|
|
function in T if it hasn't been already declared. */
|
| 2738 |
|
|
|
| 2739 |
|
|
static void
|
| 2740 |
|
|
declare_virt_assop_and_dtor (tree t)
|
| 2741 |
|
|
{
|
| 2742 |
|
|
if (!(TYPE_POLYMORPHIC_P (t)
|
| 2743 |
|
|
&& (CLASSTYPE_LAZY_COPY_ASSIGN (t)
|
| 2744 |
|
|
|| CLASSTYPE_LAZY_MOVE_ASSIGN (t)
|
| 2745 |
|
|
|| CLASSTYPE_LAZY_DESTRUCTOR (t))))
|
| 2746 |
|
|
return;
|
| 2747 |
|
|
|
| 2748 |
|
|
dfs_walk_all (TYPE_BINFO (t),
|
| 2749 |
|
|
dfs_declare_virt_assop_and_dtor,
|
| 2750 |
|
|
NULL, t);
|
| 2751 |
|
|
}
|
| 2752 |
|
|
|
| 2753 |
|
|
/* Create default constructors, assignment operators, and so forth for
|
| 2754 |
|
|
the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
|
| 2755 |
|
|
and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
|
| 2756 |
|
|
the class cannot have a default constructor, copy constructor
|
| 2757 |
|
|
taking a const reference argument, or an assignment operator taking
|
| 2758 |
|
|
a const reference, respectively. */
|
| 2759 |
|
|
|
| 2760 |
|
|
static void
|
| 2761 |
|
|
add_implicitly_declared_members (tree t,
|
| 2762 |
|
|
int cant_have_const_cctor,
|
| 2763 |
|
|
int cant_have_const_assignment)
|
| 2764 |
|
|
{
|
| 2765 |
|
|
bool move_ok = false;
|
| 2766 |
|
|
|
| 2767 |
|
|
if (cxx_dialect >= cxx0x && !CLASSTYPE_DESTRUCTORS (t)
|
| 2768 |
|
|
&& !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
|
| 2769 |
|
|
&& !type_has_move_constructor (t) && !type_has_move_assign (t))
|
| 2770 |
|
|
move_ok = true;
|
| 2771 |
|
|
|
| 2772 |
|
|
/* Destructor. */
|
| 2773 |
|
|
if (!CLASSTYPE_DESTRUCTORS (t))
|
| 2774 |
|
|
{
|
| 2775 |
|
|
/* In general, we create destructors lazily. */
|
| 2776 |
|
|
CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
|
| 2777 |
|
|
|
| 2778 |
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
| 2779 |
|
|
&& TYPE_FOR_JAVA (t))
|
| 2780 |
|
|
/* But if this is a Java class, any non-trivial destructor is
|
| 2781 |
|
|
invalid, even if compiler-generated. Therefore, if the
|
| 2782 |
|
|
destructor is non-trivial we create it now. */
|
| 2783 |
|
|
lazily_declare_fn (sfk_destructor, t);
|
| 2784 |
|
|
}
|
| 2785 |
|
|
|
| 2786 |
|
|
/* [class.ctor]
|
| 2787 |
|
|
|
| 2788 |
|
|
If there is no user-declared constructor for a class, a default
|
| 2789 |
|
|
constructor is implicitly declared. */
|
| 2790 |
|
|
if (! TYPE_HAS_USER_CONSTRUCTOR (t))
|
| 2791 |
|
|
{
|
| 2792 |
|
|
TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
|
| 2793 |
|
|
CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
|
| 2794 |
|
|
if (cxx_dialect >= cxx0x)
|
| 2795 |
|
|
TYPE_HAS_CONSTEXPR_CTOR (t)
|
| 2796 |
|
|
/* This might force the declaration. */
|
| 2797 |
|
|
= type_has_constexpr_default_constructor (t);
|
| 2798 |
|
|
}
|
| 2799 |
|
|
|
| 2800 |
|
|
/* [class.ctor]
|
| 2801 |
|
|
|
| 2802 |
|
|
If a class definition does not explicitly declare a copy
|
| 2803 |
|
|
constructor, one is declared implicitly. */
|
| 2804 |
|
|
if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
|
| 2805 |
|
|
{
|
| 2806 |
|
|
TYPE_HAS_COPY_CTOR (t) = 1;
|
| 2807 |
|
|
TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
|
| 2808 |
|
|
CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
|
| 2809 |
|
|
if (move_ok)
|
| 2810 |
|
|
CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
|
| 2811 |
|
|
}
|
| 2812 |
|
|
|
| 2813 |
|
|
/* If there is no assignment operator, one will be created if and
|
| 2814 |
|
|
when it is needed. For now, just record whether or not the type
|
| 2815 |
|
|
of the parameter to the assignment operator will be a const or
|
| 2816 |
|
|
non-const reference. */
|
| 2817 |
|
|
if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
|
| 2818 |
|
|
{
|
| 2819 |
|
|
TYPE_HAS_COPY_ASSIGN (t) = 1;
|
| 2820 |
|
|
TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
|
| 2821 |
|
|
CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
|
| 2822 |
|
|
if (move_ok)
|
| 2823 |
|
|
CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
|
| 2824 |
|
|
}
|
| 2825 |
|
|
|
| 2826 |
|
|
/* We can't be lazy about declaring functions that might override
|
| 2827 |
|
|
a virtual function from a base class. */
|
| 2828 |
|
|
declare_virt_assop_and_dtor (t);
|
| 2829 |
|
|
}
|
| 2830 |
|
|
|
| 2831 |
|
|
/* Subroutine of finish_struct_1. Recursively count the number of fields
|
| 2832 |
|
|
in TYPE, including anonymous union members. */
|
| 2833 |
|
|
|
| 2834 |
|
|
static int
|
| 2835 |
|
|
count_fields (tree fields)
|
| 2836 |
|
|
{
|
| 2837 |
|
|
tree x;
|
| 2838 |
|
|
int n_fields = 0;
|
| 2839 |
|
|
for (x = fields; x; x = DECL_CHAIN (x))
|
| 2840 |
|
|
{
|
| 2841 |
|
|
if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
|
| 2842 |
|
|
n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
|
| 2843 |
|
|
else
|
| 2844 |
|
|
n_fields += 1;
|
| 2845 |
|
|
}
|
| 2846 |
|
|
return n_fields;
|
| 2847 |
|
|
}
|
| 2848 |
|
|
|
| 2849 |
|
|
/* Subroutine of finish_struct_1. Recursively add all the fields in the
|
| 2850 |
|
|
TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
|
| 2851 |
|
|
|
| 2852 |
|
|
static int
|
| 2853 |
|
|
add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
|
| 2854 |
|
|
{
|
| 2855 |
|
|
tree x;
|
| 2856 |
|
|
for (x = fields; x; x = DECL_CHAIN (x))
|
| 2857 |
|
|
{
|
| 2858 |
|
|
if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
|
| 2859 |
|
|
idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
|
| 2860 |
|
|
else
|
| 2861 |
|
|
field_vec->elts[idx++] = x;
|
| 2862 |
|
|
}
|
| 2863 |
|
|
return idx;
|
| 2864 |
|
|
}
|
| 2865 |
|
|
|
| 2866 |
|
|
/* FIELD is a bit-field. We are finishing the processing for its
|
| 2867 |
|
|
enclosing type. Issue any appropriate messages and set appropriate
|
| 2868 |
|
|
flags. Returns false if an error has been diagnosed. */
|
| 2869 |
|
|
|
| 2870 |
|
|
static bool
|
| 2871 |
|
|
check_bitfield_decl (tree field)
|
| 2872 |
|
|
{
|
| 2873 |
|
|
tree type = TREE_TYPE (field);
|
| 2874 |
|
|
tree w;
|
| 2875 |
|
|
|
| 2876 |
|
|
/* Extract the declared width of the bitfield, which has been
|
| 2877 |
|
|
temporarily stashed in DECL_INITIAL. */
|
| 2878 |
|
|
w = DECL_INITIAL (field);
|
| 2879 |
|
|
gcc_assert (w != NULL_TREE);
|
| 2880 |
|
|
/* Remove the bit-field width indicator so that the rest of the
|
| 2881 |
|
|
compiler does not treat that value as an initializer. */
|
| 2882 |
|
|
DECL_INITIAL (field) = NULL_TREE;
|
| 2883 |
|
|
|
| 2884 |
|
|
/* Detect invalid bit-field type. */
|
| 2885 |
|
|
if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
|
| 2886 |
|
|
{
|
| 2887 |
|
|
error ("bit-field %q+#D with non-integral type", field);
|
| 2888 |
|
|
w = error_mark_node;
|
| 2889 |
|
|
}
|
| 2890 |
|
|
else
|
| 2891 |
|
|
{
|
| 2892 |
|
|
location_t loc = input_location;
|
| 2893 |
|
|
/* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
|
| 2894 |
|
|
STRIP_NOPS (w);
|
| 2895 |
|
|
|
| 2896 |
|
|
/* detect invalid field size. */
|
| 2897 |
|
|
input_location = DECL_SOURCE_LOCATION (field);
|
| 2898 |
|
|
w = cxx_constant_value (w);
|
| 2899 |
|
|
input_location = loc;
|
| 2900 |
|
|
|
| 2901 |
|
|
if (TREE_CODE (w) != INTEGER_CST)
|
| 2902 |
|
|
{
|
| 2903 |
|
|
error ("bit-field %q+D width not an integer constant", field);
|
| 2904 |
|
|
w = error_mark_node;
|
| 2905 |
|
|
}
|
| 2906 |
|
|
else if (tree_int_cst_sgn (w) < 0)
|
| 2907 |
|
|
{
|
| 2908 |
|
|
error ("negative width in bit-field %q+D", field);
|
| 2909 |
|
|
w = error_mark_node;
|
| 2910 |
|
|
}
|
| 2911 |
|
|
else if (integer_zerop (w) && DECL_NAME (field) != 0)
|
| 2912 |
|
|
{
|
| 2913 |
|
|
error ("zero width for bit-field %q+D", field);
|
| 2914 |
|
|
w = error_mark_node;
|
| 2915 |
|
|
}
|
| 2916 |
|
|
else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
|
| 2917 |
|
|
&& TREE_CODE (type) != ENUMERAL_TYPE
|
| 2918 |
|
|
&& TREE_CODE (type) != BOOLEAN_TYPE)
|
| 2919 |
|
|
warning (0, "width of %q+D exceeds its type", field);
|
| 2920 |
|
|
else if (TREE_CODE (type) == ENUMERAL_TYPE
|
| 2921 |
|
|
&& (0 > (compare_tree_int
|
| 2922 |
|
|
(w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
|
| 2923 |
|
|
warning (0, "%q+D is too small to hold all values of %q#T", field, type);
|
| 2924 |
|
|
}
|
| 2925 |
|
|
|
| 2926 |
|
|
if (w != error_mark_node)
|
| 2927 |
|
|
{
|
| 2928 |
|
|
DECL_SIZE (field) = convert (bitsizetype, w);
|
| 2929 |
|
|
DECL_BIT_FIELD (field) = 1;
|
| 2930 |
|
|
return true;
|
| 2931 |
|
|
}
|
| 2932 |
|
|
else
|
| 2933 |
|
|
{
|
| 2934 |
|
|
/* Non-bit-fields are aligned for their type. */
|
| 2935 |
|
|
DECL_BIT_FIELD (field) = 0;
|
| 2936 |
|
|
CLEAR_DECL_C_BIT_FIELD (field);
|
| 2937 |
|
|
return false;
|
| 2938 |
|
|
}
|
| 2939 |
|
|
}
|
| 2940 |
|
|
|
| 2941 |
|
|
/* FIELD is a non bit-field. We are finishing the processing for its
|
| 2942 |
|
|
enclosing type T. Issue any appropriate messages and set appropriate
|
| 2943 |
|
|
flags. */
|
| 2944 |
|
|
|
| 2945 |
|
|
static void
|
| 2946 |
|
|
check_field_decl (tree field,
|
| 2947 |
|
|
tree t,
|
| 2948 |
|
|
int* cant_have_const_ctor,
|
| 2949 |
|
|
int* no_const_asn_ref,
|
| 2950 |
|
|
int* any_default_members)
|
| 2951 |
|
|
{
|
| 2952 |
|
|
tree type = strip_array_types (TREE_TYPE (field));
|
| 2953 |
|
|
|
| 2954 |
|
|
/* In C++98 an anonymous union cannot contain any fields which would change
|
| 2955 |
|
|
the settings of CANT_HAVE_CONST_CTOR and friends. */
|
| 2956 |
|
|
if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx0x)
|
| 2957 |
|
|
;
|
| 2958 |
|
|
/* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
|
| 2959 |
|
|
structs. So, we recurse through their fields here. */
|
| 2960 |
|
|
else if (ANON_AGGR_TYPE_P (type))
|
| 2961 |
|
|
{
|
| 2962 |
|
|
tree fields;
|
| 2963 |
|
|
|
| 2964 |
|
|
for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
|
| 2965 |
|
|
if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
|
| 2966 |
|
|
check_field_decl (fields, t, cant_have_const_ctor,
|
| 2967 |
|
|
no_const_asn_ref, any_default_members);
|
| 2968 |
|
|
}
|
| 2969 |
|
|
/* Check members with class type for constructors, destructors,
|
| 2970 |
|
|
etc. */
|
| 2971 |
|
|
else if (CLASS_TYPE_P (type))
|
| 2972 |
|
|
{
|
| 2973 |
|
|
/* Never let anything with uninheritable virtuals
|
| 2974 |
|
|
make it through without complaint. */
|
| 2975 |
|
|
abstract_virtuals_error (field, type);
|
| 2976 |
|
|
|
| 2977 |
|
|
if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx0x)
|
| 2978 |
|
|
{
|
| 2979 |
|
|
static bool warned;
|
| 2980 |
|
|
int oldcount = errorcount;
|
| 2981 |
|
|
if (TYPE_NEEDS_CONSTRUCTING (type))
|
| 2982 |
|
|
error ("member %q+#D with constructor not allowed in union",
|
| 2983 |
|
|
field);
|
| 2984 |
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
|
| 2985 |
|
|
error ("member %q+#D with destructor not allowed in union", field);
|
| 2986 |
|
|
if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
|
| 2987 |
|
|
error ("member %q+#D with copy assignment operator not allowed in union",
|
| 2988 |
|
|
field);
|
| 2989 |
|
|
if (!warned && errorcount > oldcount)
|
| 2990 |
|
|
{
|
| 2991 |
|
|
inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
|
| 2992 |
|
|
"only available with -std=c++11 or -std=gnu++11");
|
| 2993 |
|
|
warned = true;
|
| 2994 |
|
|
}
|
| 2995 |
|
|
}
|
| 2996 |
|
|
else
|
| 2997 |
|
|
{
|
| 2998 |
|
|
TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
|
| 2999 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
| 3000 |
|
|
|= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
|
| 3001 |
|
|
TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
|
| 3002 |
|
|
|= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
|
| 3003 |
|
|
|| !TYPE_HAS_COPY_ASSIGN (type));
|
| 3004 |
|
|
TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
|
| 3005 |
|
|
|| !TYPE_HAS_COPY_CTOR (type));
|
| 3006 |
|
|
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
|
| 3007 |
|
|
TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
|
| 3008 |
|
|
TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
|
| 3009 |
|
|
|| TYPE_HAS_COMPLEX_DFLT (type));
|
| 3010 |
|
|
}
|
| 3011 |
|
|
|
| 3012 |
|
|
if (TYPE_HAS_COPY_CTOR (type)
|
| 3013 |
|
|
&& !TYPE_HAS_CONST_COPY_CTOR (type))
|
| 3014 |
|
|
*cant_have_const_ctor = 1;
|
| 3015 |
|
|
|
| 3016 |
|
|
if (TYPE_HAS_COPY_ASSIGN (type)
|
| 3017 |
|
|
&& !TYPE_HAS_CONST_COPY_ASSIGN (type))
|
| 3018 |
|
|
*no_const_asn_ref = 1;
|
| 3019 |
|
|
}
|
| 3020 |
|
|
if (DECL_INITIAL (field) != NULL_TREE)
|
| 3021 |
|
|
{
|
| 3022 |
|
|
/* `build_class_init_list' does not recognize
|
| 3023 |
|
|
non-FIELD_DECLs. */
|
| 3024 |
|
|
if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
|
| 3025 |
|
|
error ("multiple fields in union %qT initialized", t);
|
| 3026 |
|
|
*any_default_members = 1;
|
| 3027 |
|
|
}
|
| 3028 |
|
|
}
|
| 3029 |
|
|
|
| 3030 |
|
|
/* Check the data members (both static and non-static), class-scoped
|
| 3031 |
|
|
typedefs, etc., appearing in the declaration of T. Issue
|
| 3032 |
|
|
appropriate diagnostics. Sets ACCESS_DECLS to a list (in
|
| 3033 |
|
|
declaration order) of access declarations; each TREE_VALUE in this
|
| 3034 |
|
|
list is a USING_DECL.
|
| 3035 |
|
|
|
| 3036 |
|
|
In addition, set the following flags:
|
| 3037 |
|
|
|
| 3038 |
|
|
EMPTY_P
|
| 3039 |
|
|
The class is empty, i.e., contains no non-static data members.
|
| 3040 |
|
|
|
| 3041 |
|
|
CANT_HAVE_CONST_CTOR_P
|
| 3042 |
|
|
This class cannot have an implicitly generated copy constructor
|
| 3043 |
|
|
taking a const reference.
|
| 3044 |
|
|
|
| 3045 |
|
|
CANT_HAVE_CONST_ASN_REF
|
| 3046 |
|
|
This class cannot have an implicitly generated assignment
|
| 3047 |
|
|
operator taking a const reference.
|
| 3048 |
|
|
|
| 3049 |
|
|
All of these flags should be initialized before calling this
|
| 3050 |
|
|
function.
|
| 3051 |
|
|
|
| 3052 |
|
|
Returns a pointer to the end of the TYPE_FIELDs chain; additional
|
| 3053 |
|
|
fields can be added by adding to this chain. */
|
| 3054 |
|
|
|
| 3055 |
|
|
static void
|
| 3056 |
|
|
check_field_decls (tree t, tree *access_decls,
|
| 3057 |
|
|
int *cant_have_const_ctor_p,
|
| 3058 |
|
|
int *no_const_asn_ref_p)
|
| 3059 |
|
|
{
|
| 3060 |
|
|
tree *field;
|
| 3061 |
|
|
tree *next;
|
| 3062 |
|
|
bool has_pointers;
|
| 3063 |
|
|
int any_default_members;
|
| 3064 |
|
|
int cant_pack = 0;
|
| 3065 |
|
|
int field_access = -1;
|
| 3066 |
|
|
|
| 3067 |
|
|
/* Assume there are no access declarations. */
|
| 3068 |
|
|
*access_decls = NULL_TREE;
|
| 3069 |
|
|
/* Assume this class has no pointer members. */
|
| 3070 |
|
|
has_pointers = false;
|
| 3071 |
|
|
/* Assume none of the members of this class have default
|
| 3072 |
|
|
initializations. */
|
| 3073 |
|
|
any_default_members = 0;
|
| 3074 |
|
|
|
| 3075 |
|
|
for (field = &TYPE_FIELDS (t); *field; field = next)
|
| 3076 |
|
|
{
|
| 3077 |
|
|
tree x = *field;
|
| 3078 |
|
|
tree type = TREE_TYPE (x);
|
| 3079 |
|
|
int this_field_access;
|
| 3080 |
|
|
|
| 3081 |
|
|
next = &DECL_CHAIN (x);
|
| 3082 |
|
|
|
| 3083 |
|
|
if (TREE_CODE (x) == USING_DECL)
|
| 3084 |
|
|
{
|
| 3085 |
|
|
/* Save the access declarations for our caller. */
|
| 3086 |
|
|
*access_decls = tree_cons (NULL_TREE, x, *access_decls);
|
| 3087 |
|
|
continue;
|
| 3088 |
|
|
}
|
| 3089 |
|
|
|
| 3090 |
|
|
if (TREE_CODE (x) == TYPE_DECL
|
| 3091 |
|
|
|| TREE_CODE (x) == TEMPLATE_DECL)
|
| 3092 |
|
|
continue;
|
| 3093 |
|
|
|
| 3094 |
|
|
/* If we've gotten this far, it's a data member, possibly static,
|
| 3095 |
|
|
or an enumerator. */
|
| 3096 |
|
|
DECL_CONTEXT (x) = t;
|
| 3097 |
|
|
|
| 3098 |
|
|
/* When this goes into scope, it will be a non-local reference. */
|
| 3099 |
|
|
DECL_NONLOCAL (x) = 1;
|
| 3100 |
|
|
|
| 3101 |
|
|
if (TREE_CODE (t) == UNION_TYPE)
|
| 3102 |
|
|
{
|
| 3103 |
|
|
/* [class.union]
|
| 3104 |
|
|
|
| 3105 |
|
|
If a union contains a static data member, or a member of
|
| 3106 |
|
|
reference type, the program is ill-formed. */
|
| 3107 |
|
|
if (TREE_CODE (x) == VAR_DECL)
|
| 3108 |
|
|
{
|
| 3109 |
|
|
error ("%q+D may not be static because it is a member of a union", x);
|
| 3110 |
|
|
continue;
|
| 3111 |
|
|
}
|
| 3112 |
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
| 3113 |
|
|
{
|
| 3114 |
|
|
error ("%q+D may not have reference type %qT because"
|
| 3115 |
|
|
" it is a member of a union",
|
| 3116 |
|
|
x, type);
|
| 3117 |
|
|
continue;
|
| 3118 |
|
|
}
|
| 3119 |
|
|
}
|
| 3120 |
|
|
|
| 3121 |
|
|
/* Perform error checking that did not get done in
|
| 3122 |
|
|
grokdeclarator. */
|
| 3123 |
|
|
if (TREE_CODE (type) == FUNCTION_TYPE)
|
| 3124 |
|
|
{
|
| 3125 |
|
|
error ("field %q+D invalidly declared function type", x);
|
| 3126 |
|
|
type = build_pointer_type (type);
|
| 3127 |
|
|
TREE_TYPE (x) = type;
|
| 3128 |
|
|
}
|
| 3129 |
|
|
else if (TREE_CODE (type) == METHOD_TYPE)
|
| 3130 |
|
|
{
|
| 3131 |
|
|
error ("field %q+D invalidly declared method type", x);
|
| 3132 |
|
|
type = build_pointer_type (type);
|
| 3133 |
|
|
TREE_TYPE (x) = type;
|
| 3134 |
|
|
}
|
| 3135 |
|
|
|
| 3136 |
|
|
if (type == error_mark_node)
|
| 3137 |
|
|
continue;
|
| 3138 |
|
|
|
| 3139 |
|
|
if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
|
| 3140 |
|
|
continue;
|
| 3141 |
|
|
|
| 3142 |
|
|
/* Now it can only be a FIELD_DECL. */
|
| 3143 |
|
|
|
| 3144 |
|
|
if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
|
| 3145 |
|
|
CLASSTYPE_NON_AGGREGATE (t) = 1;
|
| 3146 |
|
|
|
| 3147 |
|
|
/* If at least one non-static data member is non-literal, the whole
|
| 3148 |
|
|
class becomes non-literal. */
|
| 3149 |
|
|
if (!literal_type_p (type))
|
| 3150 |
|
|
CLASSTYPE_LITERAL_P (t) = false;
|
| 3151 |
|
|
|
| 3152 |
|
|
/* A standard-layout class is a class that:
|
| 3153 |
|
|
...
|
| 3154 |
|
|
has the same access control (Clause 11) for all non-static data members,
|
| 3155 |
|
|
... */
|
| 3156 |
|
|
this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
|
| 3157 |
|
|
if (field_access == -1)
|
| 3158 |
|
|
field_access = this_field_access;
|
| 3159 |
|
|
else if (this_field_access != field_access)
|
| 3160 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) = 1;
|
| 3161 |
|
|
|
| 3162 |
|
|
/* If this is of reference type, check if it needs an init. */
|
| 3163 |
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
| 3164 |
|
|
{
|
| 3165 |
|
|
CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
|
| 3166 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) = 1;
|
| 3167 |
|
|
if (DECL_INITIAL (x) == NULL_TREE)
|
| 3168 |
|
|
SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
|
| 3169 |
|
|
|
| 3170 |
|
|
/* ARM $12.6.2: [A member initializer list] (or, for an
|
| 3171 |
|
|
aggregate, initialization by a brace-enclosed list) is the
|
| 3172 |
|
|
only way to initialize nonstatic const and reference
|
| 3173 |
|
|
members. */
|
| 3174 |
|
|
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
|
| 3175 |
|
|
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
|
| 3176 |
|
|
}
|
| 3177 |
|
|
|
| 3178 |
|
|
type = strip_array_types (type);
|
| 3179 |
|
|
|
| 3180 |
|
|
if (TYPE_PACKED (t))
|
| 3181 |
|
|
{
|
| 3182 |
|
|
if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
|
| 3183 |
|
|
{
|
| 3184 |
|
|
warning
|
| 3185 |
|
|
(0,
|
| 3186 |
|
|
"ignoring packed attribute because of unpacked non-POD field %q+#D",
|
| 3187 |
|
|
x);
|
| 3188 |
|
|
cant_pack = 1;
|
| 3189 |
|
|
}
|
| 3190 |
|
|
else if (DECL_C_BIT_FIELD (x)
|
| 3191 |
|
|
|| TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
|
| 3192 |
|
|
DECL_PACKED (x) = 1;
|
| 3193 |
|
|
}
|
| 3194 |
|
|
|
| 3195 |
|
|
if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
|
| 3196 |
|
|
/* We don't treat zero-width bitfields as making a class
|
| 3197 |
|
|
non-empty. */
|
| 3198 |
|
|
;
|
| 3199 |
|
|
else
|
| 3200 |
|
|
{
|
| 3201 |
|
|
/* The class is non-empty. */
|
| 3202 |
|
|
CLASSTYPE_EMPTY_P (t) = 0;
|
| 3203 |
|
|
/* The class is not even nearly empty. */
|
| 3204 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
|
| 3205 |
|
|
/* If one of the data members contains an empty class,
|
| 3206 |
|
|
so does T. */
|
| 3207 |
|
|
if (CLASS_TYPE_P (type)
|
| 3208 |
|
|
&& CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
|
| 3209 |
|
|
CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
|
| 3210 |
|
|
}
|
| 3211 |
|
|
|
| 3212 |
|
|
/* This is used by -Weffc++ (see below). Warn only for pointers
|
| 3213 |
|
|
to members which might hold dynamic memory. So do not warn
|
| 3214 |
|
|
for pointers to functions or pointers to members. */
|
| 3215 |
|
|
if (TYPE_PTR_P (type)
|
| 3216 |
|
|
&& !TYPE_PTRFN_P (type)
|
| 3217 |
|
|
&& !TYPE_PTR_TO_MEMBER_P (type))
|
| 3218 |
|
|
has_pointers = true;
|
| 3219 |
|
|
|
| 3220 |
|
|
if (CLASS_TYPE_P (type))
|
| 3221 |
|
|
{
|
| 3222 |
|
|
if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
|
| 3223 |
|
|
SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
|
| 3224 |
|
|
if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
|
| 3225 |
|
|
SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
|
| 3226 |
|
|
}
|
| 3227 |
|
|
|
| 3228 |
|
|
if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
|
| 3229 |
|
|
CLASSTYPE_HAS_MUTABLE (t) = 1;
|
| 3230 |
|
|
|
| 3231 |
|
|
if (! layout_pod_type_p (type))
|
| 3232 |
|
|
/* DR 148 now allows pointers to members (which are POD themselves),
|
| 3233 |
|
|
to be allowed in POD structs. */
|
| 3234 |
|
|
CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
|
| 3235 |
|
|
|
| 3236 |
|
|
if (!std_layout_type_p (type))
|
| 3237 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) = 1;
|
| 3238 |
|
|
|
| 3239 |
|
|
if (! zero_init_p (type))
|
| 3240 |
|
|
CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
|
| 3241 |
|
|
|
| 3242 |
|
|
/* We set DECL_C_BIT_FIELD in grokbitfield.
|
| 3243 |
|
|
If the type and width are valid, we'll also set DECL_BIT_FIELD. */
|
| 3244 |
|
|
if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
|
| 3245 |
|
|
check_field_decl (x, t,
|
| 3246 |
|
|
cant_have_const_ctor_p,
|
| 3247 |
|
|
no_const_asn_ref_p,
|
| 3248 |
|
|
&any_default_members);
|
| 3249 |
|
|
|
| 3250 |
|
|
/* Now that we've removed bit-field widths from DECL_INITIAL,
|
| 3251 |
|
|
anything left in DECL_INITIAL is an NSDMI that makes the class
|
| 3252 |
|
|
non-aggregate. */
|
| 3253 |
|
|
if (DECL_INITIAL (x))
|
| 3254 |
|
|
CLASSTYPE_NON_AGGREGATE (t) = true;
|
| 3255 |
|
|
|
| 3256 |
|
|
/* If any field is const, the structure type is pseudo-const. */
|
| 3257 |
|
|
if (CP_TYPE_CONST_P (type))
|
| 3258 |
|
|
{
|
| 3259 |
|
|
C_TYPE_FIELDS_READONLY (t) = 1;
|
| 3260 |
|
|
if (DECL_INITIAL (x) == NULL_TREE)
|
| 3261 |
|
|
SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
|
| 3262 |
|
|
|
| 3263 |
|
|
/* ARM $12.6.2: [A member initializer list] (or, for an
|
| 3264 |
|
|
aggregate, initialization by a brace-enclosed list) is the
|
| 3265 |
|
|
only way to initialize nonstatic const and reference
|
| 3266 |
|
|
members. */
|
| 3267 |
|
|
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
|
| 3268 |
|
|
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
|
| 3269 |
|
|
}
|
| 3270 |
|
|
/* A field that is pseudo-const makes the structure likewise. */
|
| 3271 |
|
|
else if (CLASS_TYPE_P (type))
|
| 3272 |
|
|
{
|
| 3273 |
|
|
C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
|
| 3274 |
|
|
SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
|
| 3275 |
|
|
CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
|
| 3276 |
|
|
| CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
|
| 3277 |
|
|
}
|
| 3278 |
|
|
|
| 3279 |
|
|
/* Core issue 80: A nonstatic data member is required to have a
|
| 3280 |
|
|
different name from the class iff the class has a
|
| 3281 |
|
|
user-declared constructor. */
|
| 3282 |
|
|
if (constructor_name_p (DECL_NAME (x), t)
|
| 3283 |
|
|
&& TYPE_HAS_USER_CONSTRUCTOR (t))
|
| 3284 |
|
|
permerror (input_location, "field %q+#D with same name as class", x);
|
| 3285 |
|
|
}
|
| 3286 |
|
|
|
| 3287 |
|
|
/* Effective C++ rule 11: if a class has dynamic memory held by pointers,
|
| 3288 |
|
|
it should also define a copy constructor and an assignment operator to
|
| 3289 |
|
|
implement the correct copy semantic (deep vs shallow, etc.). As it is
|
| 3290 |
|
|
not feasible to check whether the constructors do allocate dynamic memory
|
| 3291 |
|
|
and store it within members, we approximate the warning like this:
|
| 3292 |
|
|
|
| 3293 |
|
|
-- Warn only if there are members which are pointers
|
| 3294 |
|
|
-- Warn only if there is a non-trivial constructor (otherwise,
|
| 3295 |
|
|
there cannot be memory allocated).
|
| 3296 |
|
|
-- Warn only if there is a non-trivial destructor. We assume that the
|
| 3297 |
|
|
user at least implemented the cleanup correctly, and a destructor
|
| 3298 |
|
|
is needed to free dynamic memory.
|
| 3299 |
|
|
|
| 3300 |
|
|
This seems enough for practical purposes. */
|
| 3301 |
|
|
if (warn_ecpp
|
| 3302 |
|
|
&& has_pointers
|
| 3303 |
|
|
&& TYPE_HAS_USER_CONSTRUCTOR (t)
|
| 3304 |
|
|
&& TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
| 3305 |
|
|
&& !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
|
| 3306 |
|
|
{
|
| 3307 |
|
|
warning (OPT_Weffc__, "%q#T has pointer data members", t);
|
| 3308 |
|
|
|
| 3309 |
|
|
if (! TYPE_HAS_COPY_CTOR (t))
|
| 3310 |
|
|
{
|
| 3311 |
|
|
warning (OPT_Weffc__,
|
| 3312 |
|
|
" but does not override %<%T(const %T&)%>", t, t);
|
| 3313 |
|
|
if (!TYPE_HAS_COPY_ASSIGN (t))
|
| 3314 |
|
|
warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
|
| 3315 |
|
|
}
|
| 3316 |
|
|
else if (! TYPE_HAS_COPY_ASSIGN (t))
|
| 3317 |
|
|
warning (OPT_Weffc__,
|
| 3318 |
|
|
" but does not override %<operator=(const %T&)%>", t);
|
| 3319 |
|
|
}
|
| 3320 |
|
|
|
| 3321 |
|
|
/* Non-static data member initializers make the default constructor
|
| 3322 |
|
|
non-trivial. */
|
| 3323 |
|
|
if (any_default_members)
|
| 3324 |
|
|
{
|
| 3325 |
|
|
TYPE_NEEDS_CONSTRUCTING (t) = true;
|
| 3326 |
|
|
TYPE_HAS_COMPLEX_DFLT (t) = true;
|
| 3327 |
|
|
}
|
| 3328 |
|
|
|
| 3329 |
|
|
/* If any of the fields couldn't be packed, unset TYPE_PACKED. */
|
| 3330 |
|
|
if (cant_pack)
|
| 3331 |
|
|
TYPE_PACKED (t) = 0;
|
| 3332 |
|
|
|
| 3333 |
|
|
/* Check anonymous struct/anonymous union fields. */
|
| 3334 |
|
|
finish_struct_anon (t);
|
| 3335 |
|
|
|
| 3336 |
|
|
/* We've built up the list of access declarations in reverse order.
|
| 3337 |
|
|
Fix that now. */
|
| 3338 |
|
|
*access_decls = nreverse (*access_decls);
|
| 3339 |
|
|
}
|
| 3340 |
|
|
|
| 3341 |
|
|
/* If TYPE is an empty class type, records its OFFSET in the table of
|
| 3342 |
|
|
OFFSETS. */
|
| 3343 |
|
|
|
| 3344 |
|
|
static int
|
| 3345 |
|
|
record_subobject_offset (tree type, tree offset, splay_tree offsets)
|
| 3346 |
|
|
{
|
| 3347 |
|
|
splay_tree_node n;
|
| 3348 |
|
|
|
| 3349 |
|
|
if (!is_empty_class (type))
|
| 3350 |
|
|
return 0;
|
| 3351 |
|
|
|
| 3352 |
|
|
/* Record the location of this empty object in OFFSETS. */
|
| 3353 |
|
|
n = splay_tree_lookup (offsets, (splay_tree_key) offset);
|
| 3354 |
|
|
if (!n)
|
| 3355 |
|
|
n = splay_tree_insert (offsets,
|
| 3356 |
|
|
(splay_tree_key) offset,
|
| 3357 |
|
|
(splay_tree_value) NULL_TREE);
|
| 3358 |
|
|
n->value = ((splay_tree_value)
|
| 3359 |
|
|
tree_cons (NULL_TREE,
|
| 3360 |
|
|
type,
|
| 3361 |
|
|
(tree) n->value));
|
| 3362 |
|
|
|
| 3363 |
|
|
return 0;
|
| 3364 |
|
|
}
|
| 3365 |
|
|
|
| 3366 |
|
|
/* Returns nonzero if TYPE is an empty class type and there is
|
| 3367 |
|
|
already an entry in OFFSETS for the same TYPE as the same OFFSET. */
|
| 3368 |
|
|
|
| 3369 |
|
|
static int
|
| 3370 |
|
|
check_subobject_offset (tree type, tree offset, splay_tree offsets)
|
| 3371 |
|
|
{
|
| 3372 |
|
|
splay_tree_node n;
|
| 3373 |
|
|
tree t;
|
| 3374 |
|
|
|
| 3375 |
|
|
if (!is_empty_class (type))
|
| 3376 |
|
|
return 0;
|
| 3377 |
|
|
|
| 3378 |
|
|
/* Record the location of this empty object in OFFSETS. */
|
| 3379 |
|
|
n = splay_tree_lookup (offsets, (splay_tree_key) offset);
|
| 3380 |
|
|
if (!n)
|
| 3381 |
|
|
return 0;
|
| 3382 |
|
|
|
| 3383 |
|
|
for (t = (tree) n->value; t; t = TREE_CHAIN (t))
|
| 3384 |
|
|
if (same_type_p (TREE_VALUE (t), type))
|
| 3385 |
|
|
return 1;
|
| 3386 |
|
|
|
| 3387 |
|
|
return 0;
|
| 3388 |
|
|
}
|
| 3389 |
|
|
|
| 3390 |
|
|
/* Walk through all the subobjects of TYPE (located at OFFSET). Call
|
| 3391 |
|
|
F for every subobject, passing it the type, offset, and table of
|
| 3392 |
|
|
OFFSETS. If VBASES_P is one, then virtual non-primary bases should
|
| 3393 |
|
|
be traversed.
|
| 3394 |
|
|
|
| 3395 |
|
|
If MAX_OFFSET is non-NULL, then subobjects with an offset greater
|
| 3396 |
|
|
than MAX_OFFSET will not be walked.
|
| 3397 |
|
|
|
| 3398 |
|
|
If F returns a nonzero value, the traversal ceases, and that value
|
| 3399 |
|
|
is returned. Otherwise, returns zero. */
|
| 3400 |
|
|
|
| 3401 |
|
|
static int
|
| 3402 |
|
|
walk_subobject_offsets (tree type,
|
| 3403 |
|
|
subobject_offset_fn f,
|
| 3404 |
|
|
tree offset,
|
| 3405 |
|
|
splay_tree offsets,
|
| 3406 |
|
|
tree max_offset,
|
| 3407 |
|
|
int vbases_p)
|
| 3408 |
|
|
{
|
| 3409 |
|
|
int r = 0;
|
| 3410 |
|
|
tree type_binfo = NULL_TREE;
|
| 3411 |
|
|
|
| 3412 |
|
|
/* If this OFFSET is bigger than the MAX_OFFSET, then we should
|
| 3413 |
|
|
stop. */
|
| 3414 |
|
|
if (max_offset && INT_CST_LT (max_offset, offset))
|
| 3415 |
|
|
return 0;
|
| 3416 |
|
|
|
| 3417 |
|
|
if (type == error_mark_node)
|
| 3418 |
|
|
return 0;
|
| 3419 |
|
|
|
| 3420 |
|
|
if (!TYPE_P (type))
|
| 3421 |
|
|
{
|
| 3422 |
|
|
if (abi_version_at_least (2))
|
| 3423 |
|
|
type_binfo = type;
|
| 3424 |
|
|
type = BINFO_TYPE (type);
|
| 3425 |
|
|
}
|
| 3426 |
|
|
|
| 3427 |
|
|
if (CLASS_TYPE_P (type))
|
| 3428 |
|
|
{
|
| 3429 |
|
|
tree field;
|
| 3430 |
|
|
tree binfo;
|
| 3431 |
|
|
int i;
|
| 3432 |
|
|
|
| 3433 |
|
|
/* Avoid recursing into objects that are not interesting. */
|
| 3434 |
|
|
if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
|
| 3435 |
|
|
return 0;
|
| 3436 |
|
|
|
| 3437 |
|
|
/* Record the location of TYPE. */
|
| 3438 |
|
|
r = (*f) (type, offset, offsets);
|
| 3439 |
|
|
if (r)
|
| 3440 |
|
|
return r;
|
| 3441 |
|
|
|
| 3442 |
|
|
/* Iterate through the direct base classes of TYPE. */
|
| 3443 |
|
|
if (!type_binfo)
|
| 3444 |
|
|
type_binfo = TYPE_BINFO (type);
|
| 3445 |
|
|
for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
|
| 3446 |
|
|
{
|
| 3447 |
|
|
tree binfo_offset;
|
| 3448 |
|
|
|
| 3449 |
|
|
if (abi_version_at_least (2)
|
| 3450 |
|
|
&& BINFO_VIRTUAL_P (binfo))
|
| 3451 |
|
|
continue;
|
| 3452 |
|
|
|
| 3453 |
|
|
if (!vbases_p
|
| 3454 |
|
|
&& BINFO_VIRTUAL_P (binfo)
|
| 3455 |
|
|
&& !BINFO_PRIMARY_P (binfo))
|
| 3456 |
|
|
continue;
|
| 3457 |
|
|
|
| 3458 |
|
|
if (!abi_version_at_least (2))
|
| 3459 |
|
|
binfo_offset = size_binop (PLUS_EXPR,
|
| 3460 |
|
|
offset,
|
| 3461 |
|
|
BINFO_OFFSET (binfo));
|
| 3462 |
|
|
else
|
| 3463 |
|
|
{
|
| 3464 |
|
|
tree orig_binfo;
|
| 3465 |
|
|
/* We cannot rely on BINFO_OFFSET being set for the base
|
| 3466 |
|
|
class yet, but the offsets for direct non-virtual
|
| 3467 |
|
|
bases can be calculated by going back to the TYPE. */
|
| 3468 |
|
|
orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
|
| 3469 |
|
|
binfo_offset = size_binop (PLUS_EXPR,
|
| 3470 |
|
|
offset,
|
| 3471 |
|
|
BINFO_OFFSET (orig_binfo));
|
| 3472 |
|
|
}
|
| 3473 |
|
|
|
| 3474 |
|
|
r = walk_subobject_offsets (binfo,
|
| 3475 |
|
|
f,
|
| 3476 |
|
|
binfo_offset,
|
| 3477 |
|
|
offsets,
|
| 3478 |
|
|
max_offset,
|
| 3479 |
|
|
(abi_version_at_least (2)
|
| 3480 |
|
|
? /*vbases_p=*/0 : vbases_p));
|
| 3481 |
|
|
if (r)
|
| 3482 |
|
|
return r;
|
| 3483 |
|
|
}
|
| 3484 |
|
|
|
| 3485 |
|
|
if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
|
| 3486 |
|
|
{
|
| 3487 |
|
|
unsigned ix;
|
| 3488 |
|
|
VEC(tree,gc) *vbases;
|
| 3489 |
|
|
|
| 3490 |
|
|
/* Iterate through the virtual base classes of TYPE. In G++
|
| 3491 |
|
|
3.2, we included virtual bases in the direct base class
|
| 3492 |
|
|
loop above, which results in incorrect results; the
|
| 3493 |
|
|
correct offsets for virtual bases are only known when
|
| 3494 |
|
|
working with the most derived type. */
|
| 3495 |
|
|
if (vbases_p)
|
| 3496 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
|
| 3497 |
|
|
VEC_iterate (tree, vbases, ix, binfo); ix++)
|
| 3498 |
|
|
{
|
| 3499 |
|
|
r = walk_subobject_offsets (binfo,
|
| 3500 |
|
|
f,
|
| 3501 |
|
|
size_binop (PLUS_EXPR,
|
| 3502 |
|
|
offset,
|
| 3503 |
|
|
BINFO_OFFSET (binfo)),
|
| 3504 |
|
|
offsets,
|
| 3505 |
|
|
max_offset,
|
| 3506 |
|
|
/*vbases_p=*/0);
|
| 3507 |
|
|
if (r)
|
| 3508 |
|
|
return r;
|
| 3509 |
|
|
}
|
| 3510 |
|
|
else
|
| 3511 |
|
|
{
|
| 3512 |
|
|
/* We still have to walk the primary base, if it is
|
| 3513 |
|
|
virtual. (If it is non-virtual, then it was walked
|
| 3514 |
|
|
above.) */
|
| 3515 |
|
|
tree vbase = get_primary_binfo (type_binfo);
|
| 3516 |
|
|
|
| 3517 |
|
|
if (vbase && BINFO_VIRTUAL_P (vbase)
|
| 3518 |
|
|
&& BINFO_PRIMARY_P (vbase)
|
| 3519 |
|
|
&& BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
|
| 3520 |
|
|
{
|
| 3521 |
|
|
r = (walk_subobject_offsets
|
| 3522 |
|
|
(vbase, f, offset,
|
| 3523 |
|
|
offsets, max_offset, /*vbases_p=*/0));
|
| 3524 |
|
|
if (r)
|
| 3525 |
|
|
return r;
|
| 3526 |
|
|
}
|
| 3527 |
|
|
}
|
| 3528 |
|
|
}
|
| 3529 |
|
|
|
| 3530 |
|
|
/* Iterate through the fields of TYPE. */
|
| 3531 |
|
|
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
| 3532 |
|
|
if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
|
| 3533 |
|
|
{
|
| 3534 |
|
|
tree field_offset;
|
| 3535 |
|
|
|
| 3536 |
|
|
if (abi_version_at_least (2))
|
| 3537 |
|
|
field_offset = byte_position (field);
|
| 3538 |
|
|
else
|
| 3539 |
|
|
/* In G++ 3.2, DECL_FIELD_OFFSET was used. */
|
| 3540 |
|
|
field_offset = DECL_FIELD_OFFSET (field);
|
| 3541 |
|
|
|
| 3542 |
|
|
r = walk_subobject_offsets (TREE_TYPE (field),
|
| 3543 |
|
|
f,
|
| 3544 |
|
|
size_binop (PLUS_EXPR,
|
| 3545 |
|
|
offset,
|
| 3546 |
|
|
field_offset),
|
| 3547 |
|
|
offsets,
|
| 3548 |
|
|
max_offset,
|
| 3549 |
|
|
/*vbases_p=*/1);
|
| 3550 |
|
|
if (r)
|
| 3551 |
|
|
return r;
|
| 3552 |
|
|
}
|
| 3553 |
|
|
}
|
| 3554 |
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
| 3555 |
|
|
{
|
| 3556 |
|
|
tree element_type = strip_array_types (type);
|
| 3557 |
|
|
tree domain = TYPE_DOMAIN (type);
|
| 3558 |
|
|
tree index;
|
| 3559 |
|
|
|
| 3560 |
|
|
/* Avoid recursing into objects that are not interesting. */
|
| 3561 |
|
|
if (!CLASS_TYPE_P (element_type)
|
| 3562 |
|
|
|| !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
|
| 3563 |
|
|
return 0;
|
| 3564 |
|
|
|
| 3565 |
|
|
/* Step through each of the elements in the array. */
|
| 3566 |
|
|
for (index = size_zero_node;
|
| 3567 |
|
|
/* G++ 3.2 had an off-by-one error here. */
|
| 3568 |
|
|
(abi_version_at_least (2)
|
| 3569 |
|
|
? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
|
| 3570 |
|
|
: INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
|
| 3571 |
|
|
index = size_binop (PLUS_EXPR, index, size_one_node))
|
| 3572 |
|
|
{
|
| 3573 |
|
|
r = walk_subobject_offsets (TREE_TYPE (type),
|
| 3574 |
|
|
f,
|
| 3575 |
|
|
offset,
|
| 3576 |
|
|
offsets,
|
| 3577 |
|
|
max_offset,
|
| 3578 |
|
|
/*vbases_p=*/1);
|
| 3579 |
|
|
if (r)
|
| 3580 |
|
|
return r;
|
| 3581 |
|
|
offset = size_binop (PLUS_EXPR, offset,
|
| 3582 |
|
|
TYPE_SIZE_UNIT (TREE_TYPE (type)));
|
| 3583 |
|
|
/* If this new OFFSET is bigger than the MAX_OFFSET, then
|
| 3584 |
|
|
there's no point in iterating through the remaining
|
| 3585 |
|
|
elements of the array. */
|
| 3586 |
|
|
if (max_offset && INT_CST_LT (max_offset, offset))
|
| 3587 |
|
|
break;
|
| 3588 |
|
|
}
|
| 3589 |
|
|
}
|
| 3590 |
|
|
|
| 3591 |
|
|
return 0;
|
| 3592 |
|
|
}
|
| 3593 |
|
|
|
| 3594 |
|
|
/* Record all of the empty subobjects of TYPE (either a type or a
|
| 3595 |
|
|
binfo). If IS_DATA_MEMBER is true, then a non-static data member
|
| 3596 |
|
|
is being placed at OFFSET; otherwise, it is a base class that is
|
| 3597 |
|
|
being placed at OFFSET. */
|
| 3598 |
|
|
|
| 3599 |
|
|
static void
|
| 3600 |
|
|
record_subobject_offsets (tree type,
|
| 3601 |
|
|
tree offset,
|
| 3602 |
|
|
splay_tree offsets,
|
| 3603 |
|
|
bool is_data_member)
|
| 3604 |
|
|
{
|
| 3605 |
|
|
tree max_offset;
|
| 3606 |
|
|
/* If recording subobjects for a non-static data member or a
|
| 3607 |
|
|
non-empty base class , we do not need to record offsets beyond
|
| 3608 |
|
|
the size of the biggest empty class. Additional data members
|
| 3609 |
|
|
will go at the end of the class. Additional base classes will go
|
| 3610 |
|
|
either at offset zero (if empty, in which case they cannot
|
| 3611 |
|
|
overlap with offsets past the size of the biggest empty class) or
|
| 3612 |
|
|
at the end of the class.
|
| 3613 |
|
|
|
| 3614 |
|
|
However, if we are placing an empty base class, then we must record
|
| 3615 |
|
|
all offsets, as either the empty class is at offset zero (where
|
| 3616 |
|
|
other empty classes might later be placed) or at the end of the
|
| 3617 |
|
|
class (where other objects might then be placed, so other empty
|
| 3618 |
|
|
subobjects might later overlap). */
|
| 3619 |
|
|
if (is_data_member
|
| 3620 |
|
|
|| !is_empty_class (BINFO_TYPE (type)))
|
| 3621 |
|
|
max_offset = sizeof_biggest_empty_class;
|
| 3622 |
|
|
else
|
| 3623 |
|
|
max_offset = NULL_TREE;
|
| 3624 |
|
|
walk_subobject_offsets (type, record_subobject_offset, offset,
|
| 3625 |
|
|
offsets, max_offset, is_data_member);
|
| 3626 |
|
|
}
|
| 3627 |
|
|
|
| 3628 |
|
|
/* Returns nonzero if any of the empty subobjects of TYPE (located at
|
| 3629 |
|
|
OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
|
| 3630 |
|
|
virtual bases of TYPE are examined. */
|
| 3631 |
|
|
|
| 3632 |
|
|
static int
|
| 3633 |
|
|
layout_conflict_p (tree type,
|
| 3634 |
|
|
tree offset,
|
| 3635 |
|
|
splay_tree offsets,
|
| 3636 |
|
|
int vbases_p)
|
| 3637 |
|
|
{
|
| 3638 |
|
|
splay_tree_node max_node;
|
| 3639 |
|
|
|
| 3640 |
|
|
/* Get the node in OFFSETS that indicates the maximum offset where
|
| 3641 |
|
|
an empty subobject is located. */
|
| 3642 |
|
|
max_node = splay_tree_max (offsets);
|
| 3643 |
|
|
/* If there aren't any empty subobjects, then there's no point in
|
| 3644 |
|
|
performing this check. */
|
| 3645 |
|
|
if (!max_node)
|
| 3646 |
|
|
return 0;
|
| 3647 |
|
|
|
| 3648 |
|
|
return walk_subobject_offsets (type, check_subobject_offset, offset,
|
| 3649 |
|
|
offsets, (tree) (max_node->key),
|
| 3650 |
|
|
vbases_p);
|
| 3651 |
|
|
}
|
| 3652 |
|
|
|
| 3653 |
|
|
/* DECL is a FIELD_DECL corresponding either to a base subobject of a
|
| 3654 |
|
|
non-static data member of the type indicated by RLI. BINFO is the
|
| 3655 |
|
|
binfo corresponding to the base subobject, OFFSETS maps offsets to
|
| 3656 |
|
|
types already located at those offsets. This function determines
|
| 3657 |
|
|
the position of the DECL. */
|
| 3658 |
|
|
|
| 3659 |
|
|
static void
|
| 3660 |
|
|
layout_nonempty_base_or_field (record_layout_info rli,
|
| 3661 |
|
|
tree decl,
|
| 3662 |
|
|
tree binfo,
|
| 3663 |
|
|
splay_tree offsets)
|
| 3664 |
|
|
{
|
| 3665 |
|
|
tree offset = NULL_TREE;
|
| 3666 |
|
|
bool field_p;
|
| 3667 |
|
|
tree type;
|
| 3668 |
|
|
|
| 3669 |
|
|
if (binfo)
|
| 3670 |
|
|
{
|
| 3671 |
|
|
/* For the purposes of determining layout conflicts, we want to
|
| 3672 |
|
|
use the class type of BINFO; TREE_TYPE (DECL) will be the
|
| 3673 |
|
|
CLASSTYPE_AS_BASE version, which does not contain entries for
|
| 3674 |
|
|
zero-sized bases. */
|
| 3675 |
|
|
type = TREE_TYPE (binfo);
|
| 3676 |
|
|
field_p = false;
|
| 3677 |
|
|
}
|
| 3678 |
|
|
else
|
| 3679 |
|
|
{
|
| 3680 |
|
|
type = TREE_TYPE (decl);
|
| 3681 |
|
|
field_p = true;
|
| 3682 |
|
|
}
|
| 3683 |
|
|
|
| 3684 |
|
|
/* Try to place the field. It may take more than one try if we have
|
| 3685 |
|
|
a hard time placing the field without putting two objects of the
|
| 3686 |
|
|
same type at the same address. */
|
| 3687 |
|
|
while (1)
|
| 3688 |
|
|
{
|
| 3689 |
|
|
struct record_layout_info_s old_rli = *rli;
|
| 3690 |
|
|
|
| 3691 |
|
|
/* Place this field. */
|
| 3692 |
|
|
place_field (rli, decl);
|
| 3693 |
|
|
offset = byte_position (decl);
|
| 3694 |
|
|
|
| 3695 |
|
|
/* We have to check to see whether or not there is already
|
| 3696 |
|
|
something of the same type at the offset we're about to use.
|
| 3697 |
|
|
For example, consider:
|
| 3698 |
|
|
|
| 3699 |
|
|
struct S {};
|
| 3700 |
|
|
struct T : public S { int i; };
|
| 3701 |
|
|
struct U : public S, public T {};
|
| 3702 |
|
|
|
| 3703 |
|
|
Here, we put S at offset zero in U. Then, we can't put T at
|
| 3704 |
|
|
offset zero -- its S component would be at the same address
|
| 3705 |
|
|
as the S we already allocated. So, we have to skip ahead.
|
| 3706 |
|
|
Since all data members, including those whose type is an
|
| 3707 |
|
|
empty class, have nonzero size, any overlap can happen only
|
| 3708 |
|
|
with a direct or indirect base-class -- it can't happen with
|
| 3709 |
|
|
a data member. */
|
| 3710 |
|
|
/* In a union, overlap is permitted; all members are placed at
|
| 3711 |
|
|
offset zero. */
|
| 3712 |
|
|
if (TREE_CODE (rli->t) == UNION_TYPE)
|
| 3713 |
|
|
break;
|
| 3714 |
|
|
/* G++ 3.2 did not check for overlaps when placing a non-empty
|
| 3715 |
|
|
virtual base. */
|
| 3716 |
|
|
if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
|
| 3717 |
|
|
break;
|
| 3718 |
|
|
if (layout_conflict_p (field_p ? type : binfo, offset,
|
| 3719 |
|
|
offsets, field_p))
|
| 3720 |
|
|
{
|
| 3721 |
|
|
/* Strip off the size allocated to this field. That puts us
|
| 3722 |
|
|
at the first place we could have put the field with
|
| 3723 |
|
|
proper alignment. */
|
| 3724 |
|
|
*rli = old_rli;
|
| 3725 |
|
|
|
| 3726 |
|
|
/* Bump up by the alignment required for the type. */
|
| 3727 |
|
|
rli->bitpos
|
| 3728 |
|
|
= size_binop (PLUS_EXPR, rli->bitpos,
|
| 3729 |
|
|
bitsize_int (binfo
|
| 3730 |
|
|
? CLASSTYPE_ALIGN (type)
|
| 3731 |
|
|
: TYPE_ALIGN (type)));
|
| 3732 |
|
|
normalize_rli (rli);
|
| 3733 |
|
|
}
|
| 3734 |
|
|
else
|
| 3735 |
|
|
/* There was no conflict. We're done laying out this field. */
|
| 3736 |
|
|
break;
|
| 3737 |
|
|
}
|
| 3738 |
|
|
|
| 3739 |
|
|
/* Now that we know where it will be placed, update its
|
| 3740 |
|
|
BINFO_OFFSET. */
|
| 3741 |
|
|
if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
|
| 3742 |
|
|
/* Indirect virtual bases may have a nonzero BINFO_OFFSET at
|
| 3743 |
|
|
this point because their BINFO_OFFSET is copied from another
|
| 3744 |
|
|
hierarchy. Therefore, we may not need to add the entire
|
| 3745 |
|
|
OFFSET. */
|
| 3746 |
|
|
propagate_binfo_offsets (binfo,
|
| 3747 |
|
|
size_diffop_loc (input_location,
|
| 3748 |
|
|
convert (ssizetype, offset),
|
| 3749 |
|
|
convert (ssizetype,
|
| 3750 |
|
|
BINFO_OFFSET (binfo))));
|
| 3751 |
|
|
}
|
| 3752 |
|
|
|
| 3753 |
|
|
/* Returns true if TYPE is empty and OFFSET is nonzero. */
|
| 3754 |
|
|
|
| 3755 |
|
|
static int
|
| 3756 |
|
|
empty_base_at_nonzero_offset_p (tree type,
|
| 3757 |
|
|
tree offset,
|
| 3758 |
|
|
splay_tree offsets ATTRIBUTE_UNUSED)
|
| 3759 |
|
|
{
|
| 3760 |
|
|
return is_empty_class (type) && !integer_zerop (offset);
|
| 3761 |
|
|
}
|
| 3762 |
|
|
|
| 3763 |
|
|
/* Layout the empty base BINFO. EOC indicates the byte currently just
|
| 3764 |
|
|
past the end of the class, and should be correctly aligned for a
|
| 3765 |
|
|
class of the type indicated by BINFO; OFFSETS gives the offsets of
|
| 3766 |
|
|
the empty bases allocated so far. T is the most derived
|
| 3767 |
|
|
type. Return nonzero iff we added it at the end. */
|
| 3768 |
|
|
|
| 3769 |
|
|
static bool
|
| 3770 |
|
|
layout_empty_base (record_layout_info rli, tree binfo,
|
| 3771 |
|
|
tree eoc, splay_tree offsets)
|
| 3772 |
|
|
{
|
| 3773 |
|
|
tree alignment;
|
| 3774 |
|
|
tree basetype = BINFO_TYPE (binfo);
|
| 3775 |
|
|
bool atend = false;
|
| 3776 |
|
|
|
| 3777 |
|
|
/* This routine should only be used for empty classes. */
|
| 3778 |
|
|
gcc_assert (is_empty_class (basetype));
|
| 3779 |
|
|
alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
|
| 3780 |
|
|
|
| 3781 |
|
|
if (!integer_zerop (BINFO_OFFSET (binfo)))
|
| 3782 |
|
|
{
|
| 3783 |
|
|
if (abi_version_at_least (2))
|
| 3784 |
|
|
propagate_binfo_offsets
|
| 3785 |
|
|
(binfo, size_diffop_loc (input_location,
|
| 3786 |
|
|
size_zero_node, BINFO_OFFSET (binfo)));
|
| 3787 |
|
|
else
|
| 3788 |
|
|
warning (OPT_Wabi,
|
| 3789 |
|
|
"offset of empty base %qT may not be ABI-compliant and may"
|
| 3790 |
|
|
"change in a future version of GCC",
|
| 3791 |
|
|
BINFO_TYPE (binfo));
|
| 3792 |
|
|
}
|
| 3793 |
|
|
|
| 3794 |
|
|
/* This is an empty base class. We first try to put it at offset
|
| 3795 |
|
|
zero. */
|
| 3796 |
|
|
if (layout_conflict_p (binfo,
|
| 3797 |
|
|
BINFO_OFFSET (binfo),
|
| 3798 |
|
|
offsets,
|
| 3799 |
|
|
/*vbases_p=*/0))
|
| 3800 |
|
|
{
|
| 3801 |
|
|
/* That didn't work. Now, we move forward from the next
|
| 3802 |
|
|
available spot in the class. */
|
| 3803 |
|
|
atend = true;
|
| 3804 |
|
|
propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
|
| 3805 |
|
|
while (1)
|
| 3806 |
|
|
{
|
| 3807 |
|
|
if (!layout_conflict_p (binfo,
|
| 3808 |
|
|
BINFO_OFFSET (binfo),
|
| 3809 |
|
|
offsets,
|
| 3810 |
|
|
/*vbases_p=*/0))
|
| 3811 |
|
|
/* We finally found a spot where there's no overlap. */
|
| 3812 |
|
|
break;
|
| 3813 |
|
|
|
| 3814 |
|
|
/* There's overlap here, too. Bump along to the next spot. */
|
| 3815 |
|
|
propagate_binfo_offsets (binfo, alignment);
|
| 3816 |
|
|
}
|
| 3817 |
|
|
}
|
| 3818 |
|
|
|
| 3819 |
|
|
if (CLASSTYPE_USER_ALIGN (basetype))
|
| 3820 |
|
|
{
|
| 3821 |
|
|
rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
|
| 3822 |
|
|
if (warn_packed)
|
| 3823 |
|
|
rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
|
| 3824 |
|
|
TYPE_USER_ALIGN (rli->t) = 1;
|
| 3825 |
|
|
}
|
| 3826 |
|
|
|
| 3827 |
|
|
return atend;
|
| 3828 |
|
|
}
|
| 3829 |
|
|
|
| 3830 |
|
|
/* Layout the base given by BINFO in the class indicated by RLI.
|
| 3831 |
|
|
*BASE_ALIGN is a running maximum of the alignments of
|
| 3832 |
|
|
any base class. OFFSETS gives the location of empty base
|
| 3833 |
|
|
subobjects. T is the most derived type. Return nonzero if the new
|
| 3834 |
|
|
object cannot be nearly-empty. A new FIELD_DECL is inserted at
|
| 3835 |
|
|
*NEXT_FIELD, unless BINFO is for an empty base class.
|
| 3836 |
|
|
|
| 3837 |
|
|
Returns the location at which the next field should be inserted. */
|
| 3838 |
|
|
|
| 3839 |
|
|
static tree *
|
| 3840 |
|
|
build_base_field (record_layout_info rli, tree binfo,
|
| 3841 |
|
|
splay_tree offsets, tree *next_field)
|
| 3842 |
|
|
{
|
| 3843 |
|
|
tree t = rli->t;
|
| 3844 |
|
|
tree basetype = BINFO_TYPE (binfo);
|
| 3845 |
|
|
|
| 3846 |
|
|
if (!COMPLETE_TYPE_P (basetype))
|
| 3847 |
|
|
/* This error is now reported in xref_tag, thus giving better
|
| 3848 |
|
|
location information. */
|
| 3849 |
|
|
return next_field;
|
| 3850 |
|
|
|
| 3851 |
|
|
/* Place the base class. */
|
| 3852 |
|
|
if (!is_empty_class (basetype))
|
| 3853 |
|
|
{
|
| 3854 |
|
|
tree decl;
|
| 3855 |
|
|
|
| 3856 |
|
|
/* The containing class is non-empty because it has a non-empty
|
| 3857 |
|
|
base class. */
|
| 3858 |
|
|
CLASSTYPE_EMPTY_P (t) = 0;
|
| 3859 |
|
|
|
| 3860 |
|
|
/* Create the FIELD_DECL. */
|
| 3861 |
|
|
decl = build_decl (input_location,
|
| 3862 |
|
|
FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
|
| 3863 |
|
|
DECL_ARTIFICIAL (decl) = 1;
|
| 3864 |
|
|
DECL_IGNORED_P (decl) = 1;
|
| 3865 |
|
|
DECL_FIELD_CONTEXT (decl) = t;
|
| 3866 |
|
|
if (CLASSTYPE_AS_BASE (basetype))
|
| 3867 |
|
|
{
|
| 3868 |
|
|
DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
|
| 3869 |
|
|
DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
|
| 3870 |
|
|
DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
|
| 3871 |
|
|
DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
|
| 3872 |
|
|
DECL_MODE (decl) = TYPE_MODE (basetype);
|
| 3873 |
|
|
DECL_FIELD_IS_BASE (decl) = 1;
|
| 3874 |
|
|
|
| 3875 |
|
|
/* Try to place the field. It may take more than one try if we
|
| 3876 |
|
|
have a hard time placing the field without putting two
|
| 3877 |
|
|
objects of the same type at the same address. */
|
| 3878 |
|
|
layout_nonempty_base_or_field (rli, decl, binfo, offsets);
|
| 3879 |
|
|
/* Add the new FIELD_DECL to the list of fields for T. */
|
| 3880 |
|
|
DECL_CHAIN (decl) = *next_field;
|
| 3881 |
|
|
*next_field = decl;
|
| 3882 |
|
|
next_field = &DECL_CHAIN (decl);
|
| 3883 |
|
|
}
|
| 3884 |
|
|
}
|
| 3885 |
|
|
else
|
| 3886 |
|
|
{
|
| 3887 |
|
|
tree eoc;
|
| 3888 |
|
|
bool atend;
|
| 3889 |
|
|
|
| 3890 |
|
|
/* On some platforms (ARM), even empty classes will not be
|
| 3891 |
|
|
byte-aligned. */
|
| 3892 |
|
|
eoc = round_up_loc (input_location,
|
| 3893 |
|
|
rli_size_unit_so_far (rli),
|
| 3894 |
|
|
CLASSTYPE_ALIGN_UNIT (basetype));
|
| 3895 |
|
|
atend = layout_empty_base (rli, binfo, eoc, offsets);
|
| 3896 |
|
|
/* A nearly-empty class "has no proper base class that is empty,
|
| 3897 |
|
|
not morally virtual, and at an offset other than zero." */
|
| 3898 |
|
|
if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
|
| 3899 |
|
|
{
|
| 3900 |
|
|
if (atend)
|
| 3901 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
|
| 3902 |
|
|
/* The check above (used in G++ 3.2) is insufficient because
|
| 3903 |
|
|
an empty class placed at offset zero might itself have an
|
| 3904 |
|
|
empty base at a nonzero offset. */
|
| 3905 |
|
|
else if (walk_subobject_offsets (basetype,
|
| 3906 |
|
|
empty_base_at_nonzero_offset_p,
|
| 3907 |
|
|
size_zero_node,
|
| 3908 |
|
|
/*offsets=*/NULL,
|
| 3909 |
|
|
/*max_offset=*/NULL_TREE,
|
| 3910 |
|
|
/*vbases_p=*/true))
|
| 3911 |
|
|
{
|
| 3912 |
|
|
if (abi_version_at_least (2))
|
| 3913 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
|
| 3914 |
|
|
else
|
| 3915 |
|
|
warning (OPT_Wabi,
|
| 3916 |
|
|
"class %qT will be considered nearly empty in a "
|
| 3917 |
|
|
"future version of GCC", t);
|
| 3918 |
|
|
}
|
| 3919 |
|
|
}
|
| 3920 |
|
|
|
| 3921 |
|
|
/* We do not create a FIELD_DECL for empty base classes because
|
| 3922 |
|
|
it might overlap some other field. We want to be able to
|
| 3923 |
|
|
create CONSTRUCTORs for the class by iterating over the
|
| 3924 |
|
|
FIELD_DECLs, and the back end does not handle overlapping
|
| 3925 |
|
|
FIELD_DECLs. */
|
| 3926 |
|
|
|
| 3927 |
|
|
/* An empty virtual base causes a class to be non-empty
|
| 3928 |
|
|
-- but in that case we do not need to clear CLASSTYPE_EMPTY_P
|
| 3929 |
|
|
here because that was already done when the virtual table
|
| 3930 |
|
|
pointer was created. */
|
| 3931 |
|
|
}
|
| 3932 |
|
|
|
| 3933 |
|
|
/* Record the offsets of BINFO and its base subobjects. */
|
| 3934 |
|
|
record_subobject_offsets (binfo,
|
| 3935 |
|
|
BINFO_OFFSET (binfo),
|
| 3936 |
|
|
offsets,
|
| 3937 |
|
|
/*is_data_member=*/false);
|
| 3938 |
|
|
|
| 3939 |
|
|
return next_field;
|
| 3940 |
|
|
}
|
| 3941 |
|
|
|
| 3942 |
|
|
/* Layout all of the non-virtual base classes. Record empty
|
| 3943 |
|
|
subobjects in OFFSETS. T is the most derived type. Return nonzero
|
| 3944 |
|
|
if the type cannot be nearly empty. The fields created
|
| 3945 |
|
|
corresponding to the base classes will be inserted at
|
| 3946 |
|
|
*NEXT_FIELD. */
|
| 3947 |
|
|
|
| 3948 |
|
|
static void
|
| 3949 |
|
|
build_base_fields (record_layout_info rli,
|
| 3950 |
|
|
splay_tree offsets, tree *next_field)
|
| 3951 |
|
|
{
|
| 3952 |
|
|
/* Chain to hold all the new FIELD_DECLs which stand in for base class
|
| 3953 |
|
|
subobjects. */
|
| 3954 |
|
|
tree t = rli->t;
|
| 3955 |
|
|
int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
|
| 3956 |
|
|
int i;
|
| 3957 |
|
|
|
| 3958 |
|
|
/* The primary base class is always allocated first. */
|
| 3959 |
|
|
if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
|
| 3960 |
|
|
next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
|
| 3961 |
|
|
offsets, next_field);
|
| 3962 |
|
|
|
| 3963 |
|
|
/* Now allocate the rest of the bases. */
|
| 3964 |
|
|
for (i = 0; i < n_baseclasses; ++i)
|
| 3965 |
|
|
{
|
| 3966 |
|
|
tree base_binfo;
|
| 3967 |
|
|
|
| 3968 |
|
|
base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
|
| 3969 |
|
|
|
| 3970 |
|
|
/* The primary base was already allocated above, so we don't
|
| 3971 |
|
|
need to allocate it again here. */
|
| 3972 |
|
|
if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
|
| 3973 |
|
|
continue;
|
| 3974 |
|
|
|
| 3975 |
|
|
/* Virtual bases are added at the end (a primary virtual base
|
| 3976 |
|
|
will have already been added). */
|
| 3977 |
|
|
if (BINFO_VIRTUAL_P (base_binfo))
|
| 3978 |
|
|
continue;
|
| 3979 |
|
|
|
| 3980 |
|
|
next_field = build_base_field (rli, base_binfo,
|
| 3981 |
|
|
offsets, next_field);
|
| 3982 |
|
|
}
|
| 3983 |
|
|
}
|
| 3984 |
|
|
|
| 3985 |
|
|
/* Go through the TYPE_METHODS of T issuing any appropriate
|
| 3986 |
|
|
diagnostics, figuring out which methods override which other
|
| 3987 |
|
|
methods, and so forth. */
|
| 3988 |
|
|
|
| 3989 |
|
|
static void
|
| 3990 |
|
|
check_methods (tree t)
|
| 3991 |
|
|
{
|
| 3992 |
|
|
tree x;
|
| 3993 |
|
|
|
| 3994 |
|
|
for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
|
| 3995 |
|
|
{
|
| 3996 |
|
|
check_for_override (x, t);
|
| 3997 |
|
|
if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
|
| 3998 |
|
|
error ("initializer specified for non-virtual method %q+D", x);
|
| 3999 |
|
|
/* The name of the field is the original field name
|
| 4000 |
|
|
Save this in auxiliary field for later overloading. */
|
| 4001 |
|
|
if (DECL_VINDEX (x))
|
| 4002 |
|
|
{
|
| 4003 |
|
|
TYPE_POLYMORPHIC_P (t) = 1;
|
| 4004 |
|
|
if (DECL_PURE_VIRTUAL_P (x))
|
| 4005 |
|
|
VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
|
| 4006 |
|
|
}
|
| 4007 |
|
|
/* All user-provided destructors are non-trivial.
|
| 4008 |
|
|
Constructors and assignment ops are handled in
|
| 4009 |
|
|
grok_special_member_properties. */
|
| 4010 |
|
|
if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
|
| 4011 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
|
| 4012 |
|
|
}
|
| 4013 |
|
|
}
|
| 4014 |
|
|
|
| 4015 |
|
|
/* FN is a constructor or destructor. Clone the declaration to create
|
| 4016 |
|
|
a specialized in-charge or not-in-charge version, as indicated by
|
| 4017 |
|
|
NAME. */
|
| 4018 |
|
|
|
| 4019 |
|
|
static tree
|
| 4020 |
|
|
build_clone (tree fn, tree name)
|
| 4021 |
|
|
{
|
| 4022 |
|
|
tree parms;
|
| 4023 |
|
|
tree clone;
|
| 4024 |
|
|
|
| 4025 |
|
|
/* Copy the function. */
|
| 4026 |
|
|
clone = copy_decl (fn);
|
| 4027 |
|
|
/* Reset the function name. */
|
| 4028 |
|
|
DECL_NAME (clone) = name;
|
| 4029 |
|
|
SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
|
| 4030 |
|
|
/* Remember where this function came from. */
|
| 4031 |
|
|
DECL_ABSTRACT_ORIGIN (clone) = fn;
|
| 4032 |
|
|
/* Make it easy to find the CLONE given the FN. */
|
| 4033 |
|
|
DECL_CHAIN (clone) = DECL_CHAIN (fn);
|
| 4034 |
|
|
DECL_CHAIN (fn) = clone;
|
| 4035 |
|
|
|
| 4036 |
|
|
/* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
|
| 4037 |
|
|
if (TREE_CODE (clone) == TEMPLATE_DECL)
|
| 4038 |
|
|
{
|
| 4039 |
|
|
tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
|
| 4040 |
|
|
DECL_TEMPLATE_RESULT (clone) = result;
|
| 4041 |
|
|
DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
|
| 4042 |
|
|
DECL_TI_TEMPLATE (result) = clone;
|
| 4043 |
|
|
TREE_TYPE (clone) = TREE_TYPE (result);
|
| 4044 |
|
|
return clone;
|
| 4045 |
|
|
}
|
| 4046 |
|
|
|
| 4047 |
|
|
DECL_CLONED_FUNCTION (clone) = fn;
|
| 4048 |
|
|
/* There's no pending inline data for this function. */
|
| 4049 |
|
|
DECL_PENDING_INLINE_INFO (clone) = NULL;
|
| 4050 |
|
|
DECL_PENDING_INLINE_P (clone) = 0;
|
| 4051 |
|
|
|
| 4052 |
|
|
/* The base-class destructor is not virtual. */
|
| 4053 |
|
|
if (name == base_dtor_identifier)
|
| 4054 |
|
|
{
|
| 4055 |
|
|
DECL_VIRTUAL_P (clone) = 0;
|
| 4056 |
|
|
if (TREE_CODE (clone) != TEMPLATE_DECL)
|
| 4057 |
|
|
DECL_VINDEX (clone) = NULL_TREE;
|
| 4058 |
|
|
}
|
| 4059 |
|
|
|
| 4060 |
|
|
/* If there was an in-charge parameter, drop it from the function
|
| 4061 |
|
|
type. */
|
| 4062 |
|
|
if (DECL_HAS_IN_CHARGE_PARM_P (clone))
|
| 4063 |
|
|
{
|
| 4064 |
|
|
tree basetype;
|
| 4065 |
|
|
tree parmtypes;
|
| 4066 |
|
|
tree exceptions;
|
| 4067 |
|
|
|
| 4068 |
|
|
exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
|
| 4069 |
|
|
basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
|
| 4070 |
|
|
parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
|
| 4071 |
|
|
/* Skip the `this' parameter. */
|
| 4072 |
|
|
parmtypes = TREE_CHAIN (parmtypes);
|
| 4073 |
|
|
/* Skip the in-charge parameter. */
|
| 4074 |
|
|
parmtypes = TREE_CHAIN (parmtypes);
|
| 4075 |
|
|
/* And the VTT parm, in a complete [cd]tor. */
|
| 4076 |
|
|
if (DECL_HAS_VTT_PARM_P (fn)
|
| 4077 |
|
|
&& ! DECL_NEEDS_VTT_PARM_P (clone))
|
| 4078 |
|
|
parmtypes = TREE_CHAIN (parmtypes);
|
| 4079 |
|
|
/* If this is subobject constructor or destructor, add the vtt
|
| 4080 |
|
|
parameter. */
|
| 4081 |
|
|
TREE_TYPE (clone)
|
| 4082 |
|
|
= build_method_type_directly (basetype,
|
| 4083 |
|
|
TREE_TYPE (TREE_TYPE (clone)),
|
| 4084 |
|
|
parmtypes);
|
| 4085 |
|
|
if (exceptions)
|
| 4086 |
|
|
TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
|
| 4087 |
|
|
exceptions);
|
| 4088 |
|
|
TREE_TYPE (clone)
|
| 4089 |
|
|
= cp_build_type_attribute_variant (TREE_TYPE (clone),
|
| 4090 |
|
|
TYPE_ATTRIBUTES (TREE_TYPE (fn)));
|
| 4091 |
|
|
}
|
| 4092 |
|
|
|
| 4093 |
|
|
/* Copy the function parameters. */
|
| 4094 |
|
|
DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
|
| 4095 |
|
|
/* Remove the in-charge parameter. */
|
| 4096 |
|
|
if (DECL_HAS_IN_CHARGE_PARM_P (clone))
|
| 4097 |
|
|
{
|
| 4098 |
|
|
DECL_CHAIN (DECL_ARGUMENTS (clone))
|
| 4099 |
|
|
= DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
|
| 4100 |
|
|
DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
|
| 4101 |
|
|
}
|
| 4102 |
|
|
/* And the VTT parm, in a complete [cd]tor. */
|
| 4103 |
|
|
if (DECL_HAS_VTT_PARM_P (fn))
|
| 4104 |
|
|
{
|
| 4105 |
|
|
if (DECL_NEEDS_VTT_PARM_P (clone))
|
| 4106 |
|
|
DECL_HAS_VTT_PARM_P (clone) = 1;
|
| 4107 |
|
|
else
|
| 4108 |
|
|
{
|
| 4109 |
|
|
DECL_CHAIN (DECL_ARGUMENTS (clone))
|
| 4110 |
|
|
= DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
|
| 4111 |
|
|
DECL_HAS_VTT_PARM_P (clone) = 0;
|
| 4112 |
|
|
}
|
| 4113 |
|
|
}
|
| 4114 |
|
|
|
| 4115 |
|
|
for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
|
| 4116 |
|
|
{
|
| 4117 |
|
|
DECL_CONTEXT (parms) = clone;
|
| 4118 |
|
|
cxx_dup_lang_specific_decl (parms);
|
| 4119 |
|
|
}
|
| 4120 |
|
|
|
| 4121 |
|
|
/* Create the RTL for this function. */
|
| 4122 |
|
|
SET_DECL_RTL (clone, NULL);
|
| 4123 |
|
|
rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
|
| 4124 |
|
|
|
| 4125 |
|
|
if (pch_file)
|
| 4126 |
|
|
note_decl_for_pch (clone);
|
| 4127 |
|
|
|
| 4128 |
|
|
return clone;
|
| 4129 |
|
|
}
|
| 4130 |
|
|
|
| 4131 |
|
|
/* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
|
| 4132 |
|
|
not invoke this function directly.
|
| 4133 |
|
|
|
| 4134 |
|
|
For a non-thunk function, returns the address of the slot for storing
|
| 4135 |
|
|
the function it is a clone of. Otherwise returns NULL_TREE.
|
| 4136 |
|
|
|
| 4137 |
|
|
If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
|
| 4138 |
|
|
cloned_function is unset. This is to support the separate
|
| 4139 |
|
|
DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
|
| 4140 |
|
|
on a template makes sense, but not the former. */
|
| 4141 |
|
|
|
| 4142 |
|
|
tree *
|
| 4143 |
|
|
decl_cloned_function_p (const_tree decl, bool just_testing)
|
| 4144 |
|
|
{
|
| 4145 |
|
|
tree *ptr;
|
| 4146 |
|
|
if (just_testing)
|
| 4147 |
|
|
decl = STRIP_TEMPLATE (decl);
|
| 4148 |
|
|
|
| 4149 |
|
|
if (TREE_CODE (decl) != FUNCTION_DECL
|
| 4150 |
|
|
|| !DECL_LANG_SPECIFIC (decl)
|
| 4151 |
|
|
|| DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
|
| 4152 |
|
|
{
|
| 4153 |
|
|
#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
|
| 4154 |
|
|
if (!just_testing)
|
| 4155 |
|
|
lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
|
| 4156 |
|
|
else
|
| 4157 |
|
|
#endif
|
| 4158 |
|
|
return NULL;
|
| 4159 |
|
|
}
|
| 4160 |
|
|
|
| 4161 |
|
|
ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
|
| 4162 |
|
|
if (just_testing && *ptr == NULL_TREE)
|
| 4163 |
|
|
return NULL;
|
| 4164 |
|
|
else
|
| 4165 |
|
|
return ptr;
|
| 4166 |
|
|
}
|
| 4167 |
|
|
|
| 4168 |
|
|
/* Produce declarations for all appropriate clones of FN. If
|
| 4169 |
|
|
UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
|
| 4170 |
|
|
CLASTYPE_METHOD_VEC as well. */
|
| 4171 |
|
|
|
| 4172 |
|
|
void
|
| 4173 |
|
|
clone_function_decl (tree fn, int update_method_vec_p)
|
| 4174 |
|
|
{
|
| 4175 |
|
|
tree clone;
|
| 4176 |
|
|
|
| 4177 |
|
|
/* Avoid inappropriate cloning. */
|
| 4178 |
|
|
if (DECL_CHAIN (fn)
|
| 4179 |
|
|
&& DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
|
| 4180 |
|
|
return;
|
| 4181 |
|
|
|
| 4182 |
|
|
if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
|
| 4183 |
|
|
{
|
| 4184 |
|
|
/* For each constructor, we need two variants: an in-charge version
|
| 4185 |
|
|
and a not-in-charge version. */
|
| 4186 |
|
|
clone = build_clone (fn, complete_ctor_identifier);
|
| 4187 |
|
|
if (update_method_vec_p)
|
| 4188 |
|
|
add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
|
| 4189 |
|
|
clone = build_clone (fn, base_ctor_identifier);
|
| 4190 |
|
|
if (update_method_vec_p)
|
| 4191 |
|
|
add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
|
| 4192 |
|
|
}
|
| 4193 |
|
|
else
|
| 4194 |
|
|
{
|
| 4195 |
|
|
gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
|
| 4196 |
|
|
|
| 4197 |
|
|
/* For each destructor, we need three variants: an in-charge
|
| 4198 |
|
|
version, a not-in-charge version, and an in-charge deleting
|
| 4199 |
|
|
version. We clone the deleting version first because that
|
| 4200 |
|
|
means it will go second on the TYPE_METHODS list -- and that
|
| 4201 |
|
|
corresponds to the correct layout order in the virtual
|
| 4202 |
|
|
function table.
|
| 4203 |
|
|
|
| 4204 |
|
|
For a non-virtual destructor, we do not build a deleting
|
| 4205 |
|
|
destructor. */
|
| 4206 |
|
|
if (DECL_VIRTUAL_P (fn))
|
| 4207 |
|
|
{
|
| 4208 |
|
|
clone = build_clone (fn, deleting_dtor_identifier);
|
| 4209 |
|
|
if (update_method_vec_p)
|
| 4210 |
|
|
add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
|
| 4211 |
|
|
}
|
| 4212 |
|
|
clone = build_clone (fn, complete_dtor_identifier);
|
| 4213 |
|
|
if (update_method_vec_p)
|
| 4214 |
|
|
add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
|
| 4215 |
|
|
clone = build_clone (fn, base_dtor_identifier);
|
| 4216 |
|
|
if (update_method_vec_p)
|
| 4217 |
|
|
add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
|
| 4218 |
|
|
}
|
| 4219 |
|
|
|
| 4220 |
|
|
/* Note that this is an abstract function that is never emitted. */
|
| 4221 |
|
|
DECL_ABSTRACT (fn) = 1;
|
| 4222 |
|
|
}
|
| 4223 |
|
|
|
| 4224 |
|
|
/* DECL is an in charge constructor, which is being defined. This will
|
| 4225 |
|
|
have had an in class declaration, from whence clones were
|
| 4226 |
|
|
declared. An out-of-class definition can specify additional default
|
| 4227 |
|
|
arguments. As it is the clones that are involved in overload
|
| 4228 |
|
|
resolution, we must propagate the information from the DECL to its
|
| 4229 |
|
|
clones. */
|
| 4230 |
|
|
|
| 4231 |
|
|
void
|
| 4232 |
|
|
adjust_clone_args (tree decl)
|
| 4233 |
|
|
{
|
| 4234 |
|
|
tree clone;
|
| 4235 |
|
|
|
| 4236 |
|
|
for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
|
| 4237 |
|
|
clone = DECL_CHAIN (clone))
|
| 4238 |
|
|
{
|
| 4239 |
|
|
tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
|
| 4240 |
|
|
tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
|
| 4241 |
|
|
tree decl_parms, clone_parms;
|
| 4242 |
|
|
|
| 4243 |
|
|
clone_parms = orig_clone_parms;
|
| 4244 |
|
|
|
| 4245 |
|
|
/* Skip the 'this' parameter. */
|
| 4246 |
|
|
orig_clone_parms = TREE_CHAIN (orig_clone_parms);
|
| 4247 |
|
|
orig_decl_parms = TREE_CHAIN (orig_decl_parms);
|
| 4248 |
|
|
|
| 4249 |
|
|
if (DECL_HAS_IN_CHARGE_PARM_P (decl))
|
| 4250 |
|
|
orig_decl_parms = TREE_CHAIN (orig_decl_parms);
|
| 4251 |
|
|
if (DECL_HAS_VTT_PARM_P (decl))
|
| 4252 |
|
|
orig_decl_parms = TREE_CHAIN (orig_decl_parms);
|
| 4253 |
|
|
|
| 4254 |
|
|
clone_parms = orig_clone_parms;
|
| 4255 |
|
|
if (DECL_HAS_VTT_PARM_P (clone))
|
| 4256 |
|
|
clone_parms = TREE_CHAIN (clone_parms);
|
| 4257 |
|
|
|
| 4258 |
|
|
for (decl_parms = orig_decl_parms; decl_parms;
|
| 4259 |
|
|
decl_parms = TREE_CHAIN (decl_parms),
|
| 4260 |
|
|
clone_parms = TREE_CHAIN (clone_parms))
|
| 4261 |
|
|
{
|
| 4262 |
|
|
gcc_assert (same_type_p (TREE_TYPE (decl_parms),
|
| 4263 |
|
|
TREE_TYPE (clone_parms)));
|
| 4264 |
|
|
|
| 4265 |
|
|
if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
|
| 4266 |
|
|
{
|
| 4267 |
|
|
/* A default parameter has been added. Adjust the
|
| 4268 |
|
|
clone's parameters. */
|
| 4269 |
|
|
tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
|
| 4270 |
|
|
tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
|
| 4271 |
|
|
tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
|
| 4272 |
|
|
tree type;
|
| 4273 |
|
|
|
| 4274 |
|
|
clone_parms = orig_decl_parms;
|
| 4275 |
|
|
|
| 4276 |
|
|
if (DECL_HAS_VTT_PARM_P (clone))
|
| 4277 |
|
|
{
|
| 4278 |
|
|
clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
|
| 4279 |
|
|
TREE_VALUE (orig_clone_parms),
|
| 4280 |
|
|
clone_parms);
|
| 4281 |
|
|
TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
|
| 4282 |
|
|
}
|
| 4283 |
|
|
type = build_method_type_directly (basetype,
|
| 4284 |
|
|
TREE_TYPE (TREE_TYPE (clone)),
|
| 4285 |
|
|
clone_parms);
|
| 4286 |
|
|
if (exceptions)
|
| 4287 |
|
|
type = build_exception_variant (type, exceptions);
|
| 4288 |
|
|
if (attrs)
|
| 4289 |
|
|
type = cp_build_type_attribute_variant (type, attrs);
|
| 4290 |
|
|
TREE_TYPE (clone) = type;
|
| 4291 |
|
|
|
| 4292 |
|
|
clone_parms = NULL_TREE;
|
| 4293 |
|
|
break;
|
| 4294 |
|
|
}
|
| 4295 |
|
|
}
|
| 4296 |
|
|
gcc_assert (!clone_parms);
|
| 4297 |
|
|
}
|
| 4298 |
|
|
}
|
| 4299 |
|
|
|
| 4300 |
|
|
/* For each of the constructors and destructors in T, create an
|
| 4301 |
|
|
in-charge and not-in-charge variant. */
|
| 4302 |
|
|
|
| 4303 |
|
|
static void
|
| 4304 |
|
|
clone_constructors_and_destructors (tree t)
|
| 4305 |
|
|
{
|
| 4306 |
|
|
tree fns;
|
| 4307 |
|
|
|
| 4308 |
|
|
/* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
|
| 4309 |
|
|
out now. */
|
| 4310 |
|
|
if (!CLASSTYPE_METHOD_VEC (t))
|
| 4311 |
|
|
return;
|
| 4312 |
|
|
|
| 4313 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
| 4314 |
|
|
clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
|
| 4315 |
|
|
for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
| 4316 |
|
|
clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
|
| 4317 |
|
|
}
|
| 4318 |
|
|
|
| 4319 |
|
|
/* Subroutine of set_one_vmethod_tm_attributes. Search base classes
|
| 4320 |
|
|
of TYPE for virtual functions which FNDECL overrides. Return a
|
| 4321 |
|
|
mask of the tm attributes found therein. */
|
| 4322 |
|
|
|
| 4323 |
|
|
static int
|
| 4324 |
|
|
look_for_tm_attr_overrides (tree type, tree fndecl)
|
| 4325 |
|
|
{
|
| 4326 |
|
|
tree binfo = TYPE_BINFO (type);
|
| 4327 |
|
|
tree base_binfo;
|
| 4328 |
|
|
int ix, found = 0;
|
| 4329 |
|
|
|
| 4330 |
|
|
for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
|
| 4331 |
|
|
{
|
| 4332 |
|
|
tree o, basetype = BINFO_TYPE (base_binfo);
|
| 4333 |
|
|
|
| 4334 |
|
|
if (!TYPE_POLYMORPHIC_P (basetype))
|
| 4335 |
|
|
continue;
|
| 4336 |
|
|
|
| 4337 |
|
|
o = look_for_overrides_here (basetype, fndecl);
|
| 4338 |
|
|
if (o)
|
| 4339 |
|
|
found |= tm_attr_to_mask (find_tm_attribute
|
| 4340 |
|
|
(TYPE_ATTRIBUTES (TREE_TYPE (o))));
|
| 4341 |
|
|
else
|
| 4342 |
|
|
found |= look_for_tm_attr_overrides (basetype, fndecl);
|
| 4343 |
|
|
}
|
| 4344 |
|
|
|
| 4345 |
|
|
return found;
|
| 4346 |
|
|
}
|
| 4347 |
|
|
|
| 4348 |
|
|
/* Subroutine of set_method_tm_attributes. Handle the checks and
|
| 4349 |
|
|
inheritance for one virtual method FNDECL. */
|
| 4350 |
|
|
|
| 4351 |
|
|
static void
|
| 4352 |
|
|
set_one_vmethod_tm_attributes (tree type, tree fndecl)
|
| 4353 |
|
|
{
|
| 4354 |
|
|
tree tm_attr;
|
| 4355 |
|
|
int found, have;
|
| 4356 |
|
|
|
| 4357 |
|
|
found = look_for_tm_attr_overrides (type, fndecl);
|
| 4358 |
|
|
|
| 4359 |
|
|
/* If FNDECL doesn't actually override anything (i.e. T is the
|
| 4360 |
|
|
class that first declares FNDECL virtual), then we're done. */
|
| 4361 |
|
|
if (found == 0)
|
| 4362 |
|
|
return;
|
| 4363 |
|
|
|
| 4364 |
|
|
tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
|
| 4365 |
|
|
have = tm_attr_to_mask (tm_attr);
|
| 4366 |
|
|
|
| 4367 |
|
|
/* Intel STM Language Extension 3.0, Section 4.2 table 4:
|
| 4368 |
|
|
tm_pure must match exactly, otherwise no weakening of
|
| 4369 |
|
|
tm_safe > tm_callable > nothing. */
|
| 4370 |
|
|
/* ??? The tm_pure attribute didn't make the transition to the
|
| 4371 |
|
|
multivendor language spec. */
|
| 4372 |
|
|
if (have == TM_ATTR_PURE)
|
| 4373 |
|
|
{
|
| 4374 |
|
|
if (found != TM_ATTR_PURE)
|
| 4375 |
|
|
{
|
| 4376 |
|
|
found &= -found;
|
| 4377 |
|
|
goto err_override;
|
| 4378 |
|
|
}
|
| 4379 |
|
|
}
|
| 4380 |
|
|
/* If the overridden function is tm_pure, then FNDECL must be. */
|
| 4381 |
|
|
else if (found == TM_ATTR_PURE && tm_attr)
|
| 4382 |
|
|
goto err_override;
|
| 4383 |
|
|
/* Look for base class combinations that cannot be satisfied. */
|
| 4384 |
|
|
else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
|
| 4385 |
|
|
{
|
| 4386 |
|
|
found &= ~TM_ATTR_PURE;
|
| 4387 |
|
|
found &= -found;
|
| 4388 |
|
|
error_at (DECL_SOURCE_LOCATION (fndecl),
|
| 4389 |
|
|
"method overrides both %<transaction_pure%> and %qE methods",
|
| 4390 |
|
|
tm_mask_to_attr (found));
|
| 4391 |
|
|
}
|
| 4392 |
|
|
/* If FNDECL did not declare an attribute, then inherit the most
|
| 4393 |
|
|
restrictive one. */
|
| 4394 |
|
|
else if (tm_attr == NULL)
|
| 4395 |
|
|
{
|
| 4396 |
|
|
apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
|
| 4397 |
|
|
}
|
| 4398 |
|
|
/* Otherwise validate that we're not weaker than a function
|
| 4399 |
|
|
that is being overridden. */
|
| 4400 |
|
|
else
|
| 4401 |
|
|
{
|
| 4402 |
|
|
found &= -found;
|
| 4403 |
|
|
if (found <= TM_ATTR_CALLABLE && have > found)
|
| 4404 |
|
|
goto err_override;
|
| 4405 |
|
|
}
|
| 4406 |
|
|
return;
|
| 4407 |
|
|
|
| 4408 |
|
|
err_override:
|
| 4409 |
|
|
error_at (DECL_SOURCE_LOCATION (fndecl),
|
| 4410 |
|
|
"method declared %qE overriding %qE method",
|
| 4411 |
|
|
tm_attr, tm_mask_to_attr (found));
|
| 4412 |
|
|
}
|
| 4413 |
|
|
|
| 4414 |
|
|
/* For each of the methods in T, propagate a class-level tm attribute. */
|
| 4415 |
|
|
|
| 4416 |
|
|
static void
|
| 4417 |
|
|
set_method_tm_attributes (tree t)
|
| 4418 |
|
|
{
|
| 4419 |
|
|
tree class_tm_attr, fndecl;
|
| 4420 |
|
|
|
| 4421 |
|
|
/* Don't bother collecting tm attributes if transactional memory
|
| 4422 |
|
|
support is not enabled. */
|
| 4423 |
|
|
if (!flag_tm)
|
| 4424 |
|
|
return;
|
| 4425 |
|
|
|
| 4426 |
|
|
/* Process virtual methods first, as they inherit directly from the
|
| 4427 |
|
|
base virtual function and also require validation of new attributes. */
|
| 4428 |
|
|
if (TYPE_CONTAINS_VPTR_P (t))
|
| 4429 |
|
|
{
|
| 4430 |
|
|
tree vchain;
|
| 4431 |
|
|
for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
|
| 4432 |
|
|
vchain = TREE_CHAIN (vchain))
|
| 4433 |
|
|
{
|
| 4434 |
|
|
fndecl = BV_FN (vchain);
|
| 4435 |
|
|
if (DECL_THUNK_P (fndecl))
|
| 4436 |
|
|
fndecl = THUNK_TARGET (fndecl);
|
| 4437 |
|
|
set_one_vmethod_tm_attributes (t, fndecl);
|
| 4438 |
|
|
}
|
| 4439 |
|
|
}
|
| 4440 |
|
|
|
| 4441 |
|
|
/* If the class doesn't have an attribute, nothing more to do. */
|
| 4442 |
|
|
class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
|
| 4443 |
|
|
if (class_tm_attr == NULL)
|
| 4444 |
|
|
return;
|
| 4445 |
|
|
|
| 4446 |
|
|
/* Any method that does not yet have a tm attribute inherits
|
| 4447 |
|
|
the one from the class. */
|
| 4448 |
|
|
for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
|
| 4449 |
|
|
{
|
| 4450 |
|
|
if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
|
| 4451 |
|
|
apply_tm_attr (fndecl, class_tm_attr);
|
| 4452 |
|
|
}
|
| 4453 |
|
|
}
|
| 4454 |
|
|
|
| 4455 |
|
|
/* Returns true iff class T has a user-defined constructor other than
|
| 4456 |
|
|
the default constructor. */
|
| 4457 |
|
|
|
| 4458 |
|
|
bool
|
| 4459 |
|
|
type_has_user_nondefault_constructor (tree t)
|
| 4460 |
|
|
{
|
| 4461 |
|
|
tree fns;
|
| 4462 |
|
|
|
| 4463 |
|
|
if (!TYPE_HAS_USER_CONSTRUCTOR (t))
|
| 4464 |
|
|
return false;
|
| 4465 |
|
|
|
| 4466 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
| 4467 |
|
|
{
|
| 4468 |
|
|
tree fn = OVL_CURRENT (fns);
|
| 4469 |
|
|
if (!DECL_ARTIFICIAL (fn)
|
| 4470 |
|
|
&& (TREE_CODE (fn) == TEMPLATE_DECL
|
| 4471 |
|
|
|| (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
|
| 4472 |
|
|
!= NULL_TREE)))
|
| 4473 |
|
|
return true;
|
| 4474 |
|
|
}
|
| 4475 |
|
|
|
| 4476 |
|
|
return false;
|
| 4477 |
|
|
}
|
| 4478 |
|
|
|
| 4479 |
|
|
/* Returns the defaulted constructor if T has one. Otherwise, returns
|
| 4480 |
|
|
NULL_TREE. */
|
| 4481 |
|
|
|
| 4482 |
|
|
tree
|
| 4483 |
|
|
in_class_defaulted_default_constructor (tree t)
|
| 4484 |
|
|
{
|
| 4485 |
|
|
tree fns, args;
|
| 4486 |
|
|
|
| 4487 |
|
|
if (!TYPE_HAS_USER_CONSTRUCTOR (t))
|
| 4488 |
|
|
return NULL_TREE;
|
| 4489 |
|
|
|
| 4490 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
| 4491 |
|
|
{
|
| 4492 |
|
|
tree fn = OVL_CURRENT (fns);
|
| 4493 |
|
|
|
| 4494 |
|
|
if (DECL_DEFAULTED_IN_CLASS_P (fn))
|
| 4495 |
|
|
{
|
| 4496 |
|
|
args = FUNCTION_FIRST_USER_PARMTYPE (fn);
|
| 4497 |
|
|
while (args && TREE_PURPOSE (args))
|
| 4498 |
|
|
args = TREE_CHAIN (args);
|
| 4499 |
|
|
if (!args || args == void_list_node)
|
| 4500 |
|
|
return fn;
|
| 4501 |
|
|
}
|
| 4502 |
|
|
}
|
| 4503 |
|
|
|
| 4504 |
|
|
return NULL_TREE;
|
| 4505 |
|
|
}
|
| 4506 |
|
|
|
| 4507 |
|
|
/* Returns true iff FN is a user-provided function, i.e. user-declared
|
| 4508 |
|
|
and not defaulted at its first declaration; or explicit, private,
|
| 4509 |
|
|
protected, or non-const. */
|
| 4510 |
|
|
|
| 4511 |
|
|
bool
|
| 4512 |
|
|
user_provided_p (tree fn)
|
| 4513 |
|
|
{
|
| 4514 |
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL)
|
| 4515 |
|
|
return true;
|
| 4516 |
|
|
else
|
| 4517 |
|
|
return (!DECL_ARTIFICIAL (fn)
|
| 4518 |
|
|
&& !DECL_DEFAULTED_IN_CLASS_P (fn));
|
| 4519 |
|
|
}
|
| 4520 |
|
|
|
| 4521 |
|
|
/* Returns true iff class T has a user-provided constructor. */
|
| 4522 |
|
|
|
| 4523 |
|
|
bool
|
| 4524 |
|
|
type_has_user_provided_constructor (tree t)
|
| 4525 |
|
|
{
|
| 4526 |
|
|
tree fns;
|
| 4527 |
|
|
|
| 4528 |
|
|
if (!CLASS_TYPE_P (t))
|
| 4529 |
|
|
return false;
|
| 4530 |
|
|
|
| 4531 |
|
|
if (!TYPE_HAS_USER_CONSTRUCTOR (t))
|
| 4532 |
|
|
return false;
|
| 4533 |
|
|
|
| 4534 |
|
|
/* This can happen in error cases; avoid crashing. */
|
| 4535 |
|
|
if (!CLASSTYPE_METHOD_VEC (t))
|
| 4536 |
|
|
return false;
|
| 4537 |
|
|
|
| 4538 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
| 4539 |
|
|
if (user_provided_p (OVL_CURRENT (fns)))
|
| 4540 |
|
|
return true;
|
| 4541 |
|
|
|
| 4542 |
|
|
return false;
|
| 4543 |
|
|
}
|
| 4544 |
|
|
|
| 4545 |
|
|
/* Returns true iff class T has a user-provided default constructor. */
|
| 4546 |
|
|
|
| 4547 |
|
|
bool
|
| 4548 |
|
|
type_has_user_provided_default_constructor (tree t)
|
| 4549 |
|
|
{
|
| 4550 |
|
|
tree fns;
|
| 4551 |
|
|
|
| 4552 |
|
|
if (!TYPE_HAS_USER_CONSTRUCTOR (t))
|
| 4553 |
|
|
return false;
|
| 4554 |
|
|
|
| 4555 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
| 4556 |
|
|
{
|
| 4557 |
|
|
tree fn = OVL_CURRENT (fns);
|
| 4558 |
|
|
if (TREE_CODE (fn) == FUNCTION_DECL
|
| 4559 |
|
|
&& user_provided_p (fn)
|
| 4560 |
|
|
&& sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
|
| 4561 |
|
|
return true;
|
| 4562 |
|
|
}
|
| 4563 |
|
|
|
| 4564 |
|
|
return false;
|
| 4565 |
|
|
}
|
| 4566 |
|
|
|
| 4567 |
|
|
/* If default-initialization leaves part of TYPE uninitialized, returns
|
| 4568 |
|
|
a DECL for the field or TYPE itself (DR 253). */
|
| 4569 |
|
|
|
| 4570 |
|
|
tree
|
| 4571 |
|
|
default_init_uninitialized_part (tree type)
|
| 4572 |
|
|
{
|
| 4573 |
|
|
tree t, r, binfo;
|
| 4574 |
|
|
int i;
|
| 4575 |
|
|
|
| 4576 |
|
|
type = strip_array_types (type);
|
| 4577 |
|
|
if (!CLASS_TYPE_P (type))
|
| 4578 |
|
|
return type;
|
| 4579 |
|
|
if (type_has_user_provided_default_constructor (type))
|
| 4580 |
|
|
return NULL_TREE;
|
| 4581 |
|
|
for (binfo = TYPE_BINFO (type), i = 0;
|
| 4582 |
|
|
BINFO_BASE_ITERATE (binfo, i, t); ++i)
|
| 4583 |
|
|
{
|
| 4584 |
|
|
r = default_init_uninitialized_part (BINFO_TYPE (t));
|
| 4585 |
|
|
if (r)
|
| 4586 |
|
|
return r;
|
| 4587 |
|
|
}
|
| 4588 |
|
|
for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
|
| 4589 |
|
|
if (TREE_CODE (t) == FIELD_DECL
|
| 4590 |
|
|
&& !DECL_ARTIFICIAL (t)
|
| 4591 |
|
|
&& !DECL_INITIAL (t))
|
| 4592 |
|
|
{
|
| 4593 |
|
|
r = default_init_uninitialized_part (TREE_TYPE (t));
|
| 4594 |
|
|
if (r)
|
| 4595 |
|
|
return DECL_P (r) ? r : t;
|
| 4596 |
|
|
}
|
| 4597 |
|
|
|
| 4598 |
|
|
return NULL_TREE;
|
| 4599 |
|
|
}
|
| 4600 |
|
|
|
| 4601 |
|
|
/* Returns true iff for class T, a trivial synthesized default constructor
|
| 4602 |
|
|
would be constexpr. */
|
| 4603 |
|
|
|
| 4604 |
|
|
bool
|
| 4605 |
|
|
trivial_default_constructor_is_constexpr (tree t)
|
| 4606 |
|
|
{
|
| 4607 |
|
|
/* A defaulted trivial default constructor is constexpr
|
| 4608 |
|
|
if there is nothing to initialize. */
|
| 4609 |
|
|
gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
|
| 4610 |
|
|
return is_really_empty_class (t);
|
| 4611 |
|
|
}
|
| 4612 |
|
|
|
| 4613 |
|
|
/* Returns true iff class T has a constexpr default constructor. */
|
| 4614 |
|
|
|
| 4615 |
|
|
bool
|
| 4616 |
|
|
type_has_constexpr_default_constructor (tree t)
|
| 4617 |
|
|
{
|
| 4618 |
|
|
tree fns;
|
| 4619 |
|
|
|
| 4620 |
|
|
if (!CLASS_TYPE_P (t))
|
| 4621 |
|
|
{
|
| 4622 |
|
|
/* The caller should have stripped an enclosing array. */
|
| 4623 |
|
|
gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
|
| 4624 |
|
|
return false;
|
| 4625 |
|
|
}
|
| 4626 |
|
|
if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
|
| 4627 |
|
|
{
|
| 4628 |
|
|
if (!TYPE_HAS_COMPLEX_DFLT (t))
|
| 4629 |
|
|
return trivial_default_constructor_is_constexpr (t);
|
| 4630 |
|
|
/* Non-trivial, we need to check subobject constructors. */
|
| 4631 |
|
|
lazily_declare_fn (sfk_constructor, t);
|
| 4632 |
|
|
}
|
| 4633 |
|
|
fns = locate_ctor (t);
|
| 4634 |
|
|
return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
|
| 4635 |
|
|
}
|
| 4636 |
|
|
|
| 4637 |
|
|
/* Returns true iff class TYPE has a virtual destructor. */
|
| 4638 |
|
|
|
| 4639 |
|
|
bool
|
| 4640 |
|
|
type_has_virtual_destructor (tree type)
|
| 4641 |
|
|
{
|
| 4642 |
|
|
tree dtor;
|
| 4643 |
|
|
|
| 4644 |
|
|
if (!CLASS_TYPE_P (type))
|
| 4645 |
|
|
return false;
|
| 4646 |
|
|
|
| 4647 |
|
|
gcc_assert (COMPLETE_TYPE_P (type));
|
| 4648 |
|
|
dtor = CLASSTYPE_DESTRUCTORS (type);
|
| 4649 |
|
|
return (dtor && DECL_VIRTUAL_P (dtor));
|
| 4650 |
|
|
}
|
| 4651 |
|
|
|
| 4652 |
|
|
/* Returns true iff class T has a move constructor. */
|
| 4653 |
|
|
|
| 4654 |
|
|
bool
|
| 4655 |
|
|
type_has_move_constructor (tree t)
|
| 4656 |
|
|
{
|
| 4657 |
|
|
tree fns;
|
| 4658 |
|
|
|
| 4659 |
|
|
if (CLASSTYPE_LAZY_MOVE_CTOR (t))
|
| 4660 |
|
|
{
|
| 4661 |
|
|
gcc_assert (COMPLETE_TYPE_P (t));
|
| 4662 |
|
|
lazily_declare_fn (sfk_move_constructor, t);
|
| 4663 |
|
|
}
|
| 4664 |
|
|
|
| 4665 |
|
|
if (!CLASSTYPE_METHOD_VEC (t))
|
| 4666 |
|
|
return false;
|
| 4667 |
|
|
|
| 4668 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
| 4669 |
|
|
if (move_fn_p (OVL_CURRENT (fns)))
|
| 4670 |
|
|
return true;
|
| 4671 |
|
|
|
| 4672 |
|
|
return false;
|
| 4673 |
|
|
}
|
| 4674 |
|
|
|
| 4675 |
|
|
/* Returns true iff class T has a move assignment operator. */
|
| 4676 |
|
|
|
| 4677 |
|
|
bool
|
| 4678 |
|
|
type_has_move_assign (tree t)
|
| 4679 |
|
|
{
|
| 4680 |
|
|
tree fns;
|
| 4681 |
|
|
|
| 4682 |
|
|
if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
|
| 4683 |
|
|
{
|
| 4684 |
|
|
gcc_assert (COMPLETE_TYPE_P (t));
|
| 4685 |
|
|
lazily_declare_fn (sfk_move_assignment, t);
|
| 4686 |
|
|
}
|
| 4687 |
|
|
|
| 4688 |
|
|
for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
|
| 4689 |
|
|
fns; fns = OVL_NEXT (fns))
|
| 4690 |
|
|
if (move_fn_p (OVL_CURRENT (fns)))
|
| 4691 |
|
|
return true;
|
| 4692 |
|
|
|
| 4693 |
|
|
return false;
|
| 4694 |
|
|
}
|
| 4695 |
|
|
|
| 4696 |
|
|
/* Returns true iff class T has a move constructor that was explicitly
|
| 4697 |
|
|
declared in the class body. Note that this is different from
|
| 4698 |
|
|
"user-provided", which doesn't include functions that are defaulted in
|
| 4699 |
|
|
the class. */
|
| 4700 |
|
|
|
| 4701 |
|
|
bool
|
| 4702 |
|
|
type_has_user_declared_move_constructor (tree t)
|
| 4703 |
|
|
{
|
| 4704 |
|
|
tree fns;
|
| 4705 |
|
|
|
| 4706 |
|
|
if (CLASSTYPE_LAZY_MOVE_CTOR (t))
|
| 4707 |
|
|
return false;
|
| 4708 |
|
|
|
| 4709 |
|
|
if (!CLASSTYPE_METHOD_VEC (t))
|
| 4710 |
|
|
return false;
|
| 4711 |
|
|
|
| 4712 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
| 4713 |
|
|
{
|
| 4714 |
|
|
tree fn = OVL_CURRENT (fns);
|
| 4715 |
|
|
if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
|
| 4716 |
|
|
return true;
|
| 4717 |
|
|
}
|
| 4718 |
|
|
|
| 4719 |
|
|
return false;
|
| 4720 |
|
|
}
|
| 4721 |
|
|
|
| 4722 |
|
|
/* Returns true iff class T has a move assignment operator that was
|
| 4723 |
|
|
explicitly declared in the class body. */
|
| 4724 |
|
|
|
| 4725 |
|
|
bool
|
| 4726 |
|
|
type_has_user_declared_move_assign (tree t)
|
| 4727 |
|
|
{
|
| 4728 |
|
|
tree fns;
|
| 4729 |
|
|
|
| 4730 |
|
|
if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
|
| 4731 |
|
|
return false;
|
| 4732 |
|
|
|
| 4733 |
|
|
for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
|
| 4734 |
|
|
fns; fns = OVL_NEXT (fns))
|
| 4735 |
|
|
{
|
| 4736 |
|
|
tree fn = OVL_CURRENT (fns);
|
| 4737 |
|
|
if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
|
| 4738 |
|
|
return true;
|
| 4739 |
|
|
}
|
| 4740 |
|
|
|
| 4741 |
|
|
return false;
|
| 4742 |
|
|
}
|
| 4743 |
|
|
|
| 4744 |
|
|
/* Nonzero if we need to build up a constructor call when initializing an
|
| 4745 |
|
|
object of this class, either because it has a user-provided constructor
|
| 4746 |
|
|
or because it doesn't have a default constructor (so we need to give an
|
| 4747 |
|
|
error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
|
| 4748 |
|
|
what you care about is whether or not an object can be produced by a
|
| 4749 |
|
|
constructor (e.g. so we don't set TREE_READONLY on const variables of
|
| 4750 |
|
|
such type); use this function when what you care about is whether or not
|
| 4751 |
|
|
to try to call a constructor to create an object. The latter case is
|
| 4752 |
|
|
the former plus some cases of constructors that cannot be called. */
|
| 4753 |
|
|
|
| 4754 |
|
|
bool
|
| 4755 |
|
|
type_build_ctor_call (tree t)
|
| 4756 |
|
|
{
|
| 4757 |
|
|
tree inner;
|
| 4758 |
|
|
if (TYPE_NEEDS_CONSTRUCTING (t))
|
| 4759 |
|
|
return true;
|
| 4760 |
|
|
inner = strip_array_types (t);
|
| 4761 |
|
|
return (CLASS_TYPE_P (inner) && !TYPE_HAS_DEFAULT_CONSTRUCTOR (inner)
|
| 4762 |
|
|
&& !ANON_AGGR_TYPE_P (inner));
|
| 4763 |
|
|
}
|
| 4764 |
|
|
|
| 4765 |
|
|
/* Remove all zero-width bit-fields from T. */
|
| 4766 |
|
|
|
| 4767 |
|
|
static void
|
| 4768 |
|
|
remove_zero_width_bit_fields (tree t)
|
| 4769 |
|
|
{
|
| 4770 |
|
|
tree *fieldsp;
|
| 4771 |
|
|
|
| 4772 |
|
|
fieldsp = &TYPE_FIELDS (t);
|
| 4773 |
|
|
while (*fieldsp)
|
| 4774 |
|
|
{
|
| 4775 |
|
|
if (TREE_CODE (*fieldsp) == FIELD_DECL
|
| 4776 |
|
|
&& DECL_C_BIT_FIELD (*fieldsp)
|
| 4777 |
|
|
/* We should not be confused by the fact that grokbitfield
|
| 4778 |
|
|
temporarily sets the width of the bit field into
|
| 4779 |
|
|
DECL_INITIAL (*fieldsp).
|
| 4780 |
|
|
check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
|
| 4781 |
|
|
to that width. */
|
| 4782 |
|
|
&& integer_zerop (DECL_SIZE (*fieldsp)))
|
| 4783 |
|
|
*fieldsp = DECL_CHAIN (*fieldsp);
|
| 4784 |
|
|
else
|
| 4785 |
|
|
fieldsp = &DECL_CHAIN (*fieldsp);
|
| 4786 |
|
|
}
|
| 4787 |
|
|
}
|
| 4788 |
|
|
|
| 4789 |
|
|
/* Returns TRUE iff we need a cookie when dynamically allocating an
|
| 4790 |
|
|
array whose elements have the indicated class TYPE. */
|
| 4791 |
|
|
|
| 4792 |
|
|
static bool
|
| 4793 |
|
|
type_requires_array_cookie (tree type)
|
| 4794 |
|
|
{
|
| 4795 |
|
|
tree fns;
|
| 4796 |
|
|
bool has_two_argument_delete_p = false;
|
| 4797 |
|
|
|
| 4798 |
|
|
gcc_assert (CLASS_TYPE_P (type));
|
| 4799 |
|
|
|
| 4800 |
|
|
/* If there's a non-trivial destructor, we need a cookie. In order
|
| 4801 |
|
|
to iterate through the array calling the destructor for each
|
| 4802 |
|
|
element, we'll have to know how many elements there are. */
|
| 4803 |
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
|
| 4804 |
|
|
return true;
|
| 4805 |
|
|
|
| 4806 |
|
|
/* If the usual deallocation function is a two-argument whose second
|
| 4807 |
|
|
argument is of type `size_t', then we have to pass the size of
|
| 4808 |
|
|
the array to the deallocation function, so we will need to store
|
| 4809 |
|
|
a cookie. */
|
| 4810 |
|
|
fns = lookup_fnfields (TYPE_BINFO (type),
|
| 4811 |
|
|
ansi_opname (VEC_DELETE_EXPR),
|
| 4812 |
|
|
/*protect=*/0);
|
| 4813 |
|
|
/* If there are no `operator []' members, or the lookup is
|
| 4814 |
|
|
ambiguous, then we don't need a cookie. */
|
| 4815 |
|
|
if (!fns || fns == error_mark_node)
|
| 4816 |
|
|
return false;
|
| 4817 |
|
|
/* Loop through all of the functions. */
|
| 4818 |
|
|
for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
|
| 4819 |
|
|
{
|
| 4820 |
|
|
tree fn;
|
| 4821 |
|
|
tree second_parm;
|
| 4822 |
|
|
|
| 4823 |
|
|
/* Select the current function. */
|
| 4824 |
|
|
fn = OVL_CURRENT (fns);
|
| 4825 |
|
|
/* See if this function is a one-argument delete function. If
|
| 4826 |
|
|
it is, then it will be the usual deallocation function. */
|
| 4827 |
|
|
second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
|
| 4828 |
|
|
if (second_parm == void_list_node)
|
| 4829 |
|
|
return false;
|
| 4830 |
|
|
/* Do not consider this function if its second argument is an
|
| 4831 |
|
|
ellipsis. */
|
| 4832 |
|
|
if (!second_parm)
|
| 4833 |
|
|
continue;
|
| 4834 |
|
|
/* Otherwise, if we have a two-argument function and the second
|
| 4835 |
|
|
argument is `size_t', it will be the usual deallocation
|
| 4836 |
|
|
function -- unless there is one-argument function, too. */
|
| 4837 |
|
|
if (TREE_CHAIN (second_parm) == void_list_node
|
| 4838 |
|
|
&& same_type_p (TREE_VALUE (second_parm), size_type_node))
|
| 4839 |
|
|
has_two_argument_delete_p = true;
|
| 4840 |
|
|
}
|
| 4841 |
|
|
|
| 4842 |
|
|
return has_two_argument_delete_p;
|
| 4843 |
|
|
}
|
| 4844 |
|
|
|
| 4845 |
|
|
/* Finish computing the `literal type' property of class type T.
|
| 4846 |
|
|
|
| 4847 |
|
|
At this point, we have already processed base classes and
|
| 4848 |
|
|
non-static data members. We need to check whether the copy
|
| 4849 |
|
|
constructor is trivial, the destructor is trivial, and there
|
| 4850 |
|
|
is a trivial default constructor or at least one constexpr
|
| 4851 |
|
|
constructor other than the copy constructor. */
|
| 4852 |
|
|
|
| 4853 |
|
|
static void
|
| 4854 |
|
|
finalize_literal_type_property (tree t)
|
| 4855 |
|
|
{
|
| 4856 |
|
|
tree fn;
|
| 4857 |
|
|
|
| 4858 |
|
|
if (cxx_dialect < cxx0x
|
| 4859 |
|
|
|| TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
|
| 4860 |
|
|
CLASSTYPE_LITERAL_P (t) = false;
|
| 4861 |
|
|
else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
|
| 4862 |
|
|
&& CLASSTYPE_NON_AGGREGATE (t)
|
| 4863 |
|
|
&& !TYPE_HAS_CONSTEXPR_CTOR (t))
|
| 4864 |
|
|
CLASSTYPE_LITERAL_P (t) = false;
|
| 4865 |
|
|
|
| 4866 |
|
|
if (!CLASSTYPE_LITERAL_P (t))
|
| 4867 |
|
|
for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
|
| 4868 |
|
|
if (DECL_DECLARED_CONSTEXPR_P (fn)
|
| 4869 |
|
|
&& TREE_CODE (fn) != TEMPLATE_DECL
|
| 4870 |
|
|
&& DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
|
| 4871 |
|
|
&& !DECL_CONSTRUCTOR_P (fn))
|
| 4872 |
|
|
{
|
| 4873 |
|
|
DECL_DECLARED_CONSTEXPR_P (fn) = false;
|
| 4874 |
|
|
if (!DECL_GENERATED_P (fn))
|
| 4875 |
|
|
{
|
| 4876 |
|
|
error ("enclosing class of constexpr non-static member "
|
| 4877 |
|
|
"function %q+#D is not a literal type", fn);
|
| 4878 |
|
|
explain_non_literal_class (t);
|
| 4879 |
|
|
}
|
| 4880 |
|
|
}
|
| 4881 |
|
|
}
|
| 4882 |
|
|
|
| 4883 |
|
|
/* T is a non-literal type used in a context which requires a constant
|
| 4884 |
|
|
expression. Explain why it isn't literal. */
|
| 4885 |
|
|
|
| 4886 |
|
|
void
|
| 4887 |
|
|
explain_non_literal_class (tree t)
|
| 4888 |
|
|
{
|
| 4889 |
|
|
static struct pointer_set_t *diagnosed;
|
| 4890 |
|
|
|
| 4891 |
|
|
if (!CLASS_TYPE_P (t))
|
| 4892 |
|
|
return;
|
| 4893 |
|
|
t = TYPE_MAIN_VARIANT (t);
|
| 4894 |
|
|
|
| 4895 |
|
|
if (diagnosed == NULL)
|
| 4896 |
|
|
diagnosed = pointer_set_create ();
|
| 4897 |
|
|
if (pointer_set_insert (diagnosed, t) != 0)
|
| 4898 |
|
|
/* Already explained. */
|
| 4899 |
|
|
return;
|
| 4900 |
|
|
|
| 4901 |
|
|
inform (0, "%q+T is not literal because:", t);
|
| 4902 |
|
|
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
|
| 4903 |
|
|
inform (0, " %q+T has a non-trivial destructor", t);
|
| 4904 |
|
|
else if (CLASSTYPE_NON_AGGREGATE (t)
|
| 4905 |
|
|
&& !TYPE_HAS_TRIVIAL_DFLT (t)
|
| 4906 |
|
|
&& !TYPE_HAS_CONSTEXPR_CTOR (t))
|
| 4907 |
|
|
{
|
| 4908 |
|
|
inform (0, " %q+T is not an aggregate, does not have a trivial "
|
| 4909 |
|
|
"default constructor, and has no constexpr constructor that "
|
| 4910 |
|
|
"is not a copy or move constructor", t);
|
| 4911 |
|
|
if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
|
| 4912 |
|
|
&& !type_has_user_provided_default_constructor (t))
|
| 4913 |
|
|
{
|
| 4914 |
|
|
/* Note that we can't simply call locate_ctor because when the
|
| 4915 |
|
|
constructor is deleted it just returns NULL_TREE. */
|
| 4916 |
|
|
tree fns;
|
| 4917 |
|
|
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
|
| 4918 |
|
|
{
|
| 4919 |
|
|
tree fn = OVL_CURRENT (fns);
|
| 4920 |
|
|
tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
|
| 4921 |
|
|
|
| 4922 |
|
|
parms = skip_artificial_parms_for (fn, parms);
|
| 4923 |
|
|
|
| 4924 |
|
|
if (sufficient_parms_p (parms))
|
| 4925 |
|
|
{
|
| 4926 |
|
|
if (DECL_DELETED_FN (fn))
|
| 4927 |
|
|
maybe_explain_implicit_delete (fn);
|
| 4928 |
|
|
else
|
| 4929 |
|
|
explain_invalid_constexpr_fn (fn);
|
| 4930 |
|
|
break;
|
| 4931 |
|
|
}
|
| 4932 |
|
|
}
|
| 4933 |
|
|
}
|
| 4934 |
|
|
}
|
| 4935 |
|
|
else
|
| 4936 |
|
|
{
|
| 4937 |
|
|
tree binfo, base_binfo, field; int i;
|
| 4938 |
|
|
for (binfo = TYPE_BINFO (t), i = 0;
|
| 4939 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
| 4940 |
|
|
{
|
| 4941 |
|
|
tree basetype = TREE_TYPE (base_binfo);
|
| 4942 |
|
|
if (!CLASSTYPE_LITERAL_P (basetype))
|
| 4943 |
|
|
{
|
| 4944 |
|
|
inform (0, " base class %qT of %q+T is non-literal",
|
| 4945 |
|
|
basetype, t);
|
| 4946 |
|
|
explain_non_literal_class (basetype);
|
| 4947 |
|
|
return;
|
| 4948 |
|
|
}
|
| 4949 |
|
|
}
|
| 4950 |
|
|
for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
|
| 4951 |
|
|
{
|
| 4952 |
|
|
tree ftype;
|
| 4953 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
| 4954 |
|
|
continue;
|
| 4955 |
|
|
ftype = TREE_TYPE (field);
|
| 4956 |
|
|
if (!literal_type_p (ftype))
|
| 4957 |
|
|
{
|
| 4958 |
|
|
inform (0, " non-static data member %q+D has "
|
| 4959 |
|
|
"non-literal type", field);
|
| 4960 |
|
|
if (CLASS_TYPE_P (ftype))
|
| 4961 |
|
|
explain_non_literal_class (ftype);
|
| 4962 |
|
|
}
|
| 4963 |
|
|
}
|
| 4964 |
|
|
}
|
| 4965 |
|
|
}
|
| 4966 |
|
|
|
| 4967 |
|
|
/* Check the validity of the bases and members declared in T. Add any
|
| 4968 |
|
|
implicitly-generated functions (like copy-constructors and
|
| 4969 |
|
|
assignment operators). Compute various flag bits (like
|
| 4970 |
|
|
CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
|
| 4971 |
|
|
level: i.e., independently of the ABI in use. */
|
| 4972 |
|
|
|
| 4973 |
|
|
static void
|
| 4974 |
|
|
check_bases_and_members (tree t)
|
| 4975 |
|
|
{
|
| 4976 |
|
|
/* Nonzero if the implicitly generated copy constructor should take
|
| 4977 |
|
|
a non-const reference argument. */
|
| 4978 |
|
|
int cant_have_const_ctor;
|
| 4979 |
|
|
/* Nonzero if the implicitly generated assignment operator
|
| 4980 |
|
|
should take a non-const reference argument. */
|
| 4981 |
|
|
int no_const_asn_ref;
|
| 4982 |
|
|
tree access_decls;
|
| 4983 |
|
|
bool saved_complex_asn_ref;
|
| 4984 |
|
|
bool saved_nontrivial_dtor;
|
| 4985 |
|
|
tree fn;
|
| 4986 |
|
|
|
| 4987 |
|
|
/* By default, we use const reference arguments and generate default
|
| 4988 |
|
|
constructors. */
|
| 4989 |
|
|
cant_have_const_ctor = 0;
|
| 4990 |
|
|
no_const_asn_ref = 0;
|
| 4991 |
|
|
|
| 4992 |
|
|
/* Check all the base-classes. */
|
| 4993 |
|
|
check_bases (t, &cant_have_const_ctor,
|
| 4994 |
|
|
&no_const_asn_ref);
|
| 4995 |
|
|
|
| 4996 |
|
|
/* Check all the method declarations. */
|
| 4997 |
|
|
check_methods (t);
|
| 4998 |
|
|
|
| 4999 |
|
|
/* Save the initial values of these flags which only indicate whether
|
| 5000 |
|
|
or not the class has user-provided functions. As we analyze the
|
| 5001 |
|
|
bases and members we can set these flags for other reasons. */
|
| 5002 |
|
|
saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
|
| 5003 |
|
|
saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
|
| 5004 |
|
|
|
| 5005 |
|
|
/* Check all the data member declarations. We cannot call
|
| 5006 |
|
|
check_field_decls until we have called check_bases check_methods,
|
| 5007 |
|
|
as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
|
| 5008 |
|
|
being set appropriately. */
|
| 5009 |
|
|
check_field_decls (t, &access_decls,
|
| 5010 |
|
|
&cant_have_const_ctor,
|
| 5011 |
|
|
&no_const_asn_ref);
|
| 5012 |
|
|
|
| 5013 |
|
|
/* A nearly-empty class has to be vptr-containing; a nearly empty
|
| 5014 |
|
|
class contains just a vptr. */
|
| 5015 |
|
|
if (!TYPE_CONTAINS_VPTR_P (t))
|
| 5016 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
|
| 5017 |
|
|
|
| 5018 |
|
|
/* Do some bookkeeping that will guide the generation of implicitly
|
| 5019 |
|
|
declared member functions. */
|
| 5020 |
|
|
TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
|
| 5021 |
|
|
TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
|
| 5022 |
|
|
/* We need to call a constructor for this class if it has a
|
| 5023 |
|
|
user-provided constructor, or if the default constructor is going
|
| 5024 |
|
|
to initialize the vptr. (This is not an if-and-only-if;
|
| 5025 |
|
|
TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
|
| 5026 |
|
|
themselves need constructing.) */
|
| 5027 |
|
|
TYPE_NEEDS_CONSTRUCTING (t)
|
| 5028 |
|
|
|= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
|
| 5029 |
|
|
/* [dcl.init.aggr]
|
| 5030 |
|
|
|
| 5031 |
|
|
An aggregate is an array or a class with no user-provided
|
| 5032 |
|
|
constructors ... and no virtual functions.
|
| 5033 |
|
|
|
| 5034 |
|
|
Again, other conditions for being an aggregate are checked
|
| 5035 |
|
|
elsewhere. */
|
| 5036 |
|
|
CLASSTYPE_NON_AGGREGATE (t)
|
| 5037 |
|
|
|= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
|
| 5038 |
|
|
/* This is the C++98/03 definition of POD; it changed in C++0x, but we
|
| 5039 |
|
|
retain the old definition internally for ABI reasons. */
|
| 5040 |
|
|
CLASSTYPE_NON_LAYOUT_POD_P (t)
|
| 5041 |
|
|
|= (CLASSTYPE_NON_AGGREGATE (t)
|
| 5042 |
|
|
|| saved_nontrivial_dtor || saved_complex_asn_ref);
|
| 5043 |
|
|
CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
|
| 5044 |
|
|
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
|
| 5045 |
|
|
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
|
| 5046 |
|
|
TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
|
| 5047 |
|
|
|
| 5048 |
|
|
/* If the class has no user-declared constructor, but does have
|
| 5049 |
|
|
non-static const or reference data members that can never be
|
| 5050 |
|
|
initialized, issue a warning. */
|
| 5051 |
|
|
if (warn_uninitialized
|
| 5052 |
|
|
/* Classes with user-declared constructors are presumed to
|
| 5053 |
|
|
initialize these members. */
|
| 5054 |
|
|
&& !TYPE_HAS_USER_CONSTRUCTOR (t)
|
| 5055 |
|
|
/* Aggregates can be initialized with brace-enclosed
|
| 5056 |
|
|
initializers. */
|
| 5057 |
|
|
&& CLASSTYPE_NON_AGGREGATE (t))
|
| 5058 |
|
|
{
|
| 5059 |
|
|
tree field;
|
| 5060 |
|
|
|
| 5061 |
|
|
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
|
| 5062 |
|
|
{
|
| 5063 |
|
|
tree type;
|
| 5064 |
|
|
|
| 5065 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
| 5066 |
|
|
continue;
|
| 5067 |
|
|
|
| 5068 |
|
|
type = TREE_TYPE (field);
|
| 5069 |
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
| 5070 |
|
|
warning (OPT_Wuninitialized, "non-static reference %q+#D "
|
| 5071 |
|
|
"in class without a constructor", field);
|
| 5072 |
|
|
else if (CP_TYPE_CONST_P (type)
|
| 5073 |
|
|
&& (!CLASS_TYPE_P (type)
|
| 5074 |
|
|
|| !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
|
| 5075 |
|
|
warning (OPT_Wuninitialized, "non-static const member %q+#D "
|
| 5076 |
|
|
"in class without a constructor", field);
|
| 5077 |
|
|
}
|
| 5078 |
|
|
}
|
| 5079 |
|
|
|
| 5080 |
|
|
/* Synthesize any needed methods. */
|
| 5081 |
|
|
add_implicitly_declared_members (t,
|
| 5082 |
|
|
cant_have_const_ctor,
|
| 5083 |
|
|
no_const_asn_ref);
|
| 5084 |
|
|
|
| 5085 |
|
|
/* Check defaulted declarations here so we have cant_have_const_ctor
|
| 5086 |
|
|
and don't need to worry about clones. */
|
| 5087 |
|
|
for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
|
| 5088 |
|
|
if (DECL_DEFAULTED_IN_CLASS_P (fn))
|
| 5089 |
|
|
{
|
| 5090 |
|
|
int copy = copy_fn_p (fn);
|
| 5091 |
|
|
if (copy > 0)
|
| 5092 |
|
|
{
|
| 5093 |
|
|
bool imp_const_p
|
| 5094 |
|
|
= (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
|
| 5095 |
|
|
: !no_const_asn_ref);
|
| 5096 |
|
|
bool fn_const_p = (copy == 2);
|
| 5097 |
|
|
|
| 5098 |
|
|
if (fn_const_p && !imp_const_p)
|
| 5099 |
|
|
/* If the function is defaulted outside the class, we just
|
| 5100 |
|
|
give the synthesis error. */
|
| 5101 |
|
|
error ("%q+D declared to take const reference, but implicit "
|
| 5102 |
|
|
"declaration would take non-const", fn);
|
| 5103 |
|
|
else if (imp_const_p && !fn_const_p)
|
| 5104 |
|
|
error ("%q+D declared to take non-const reference cannot be "
|
| 5105 |
|
|
"defaulted in the class body", fn);
|
| 5106 |
|
|
}
|
| 5107 |
|
|
defaulted_late_check (fn);
|
| 5108 |
|
|
}
|
| 5109 |
|
|
|
| 5110 |
|
|
if (LAMBDA_TYPE_P (t))
|
| 5111 |
|
|
{
|
| 5112 |
|
|
/* "The closure type associated with a lambda-expression has a deleted
|
| 5113 |
|
|
default constructor and a deleted copy assignment operator." */
|
| 5114 |
|
|
TYPE_NEEDS_CONSTRUCTING (t) = 1;
|
| 5115 |
|
|
TYPE_HAS_COMPLEX_DFLT (t) = 1;
|
| 5116 |
|
|
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
|
| 5117 |
|
|
CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
|
| 5118 |
|
|
|
| 5119 |
|
|
/* "This class type is not an aggregate." */
|
| 5120 |
|
|
CLASSTYPE_NON_AGGREGATE (t) = 1;
|
| 5121 |
|
|
}
|
| 5122 |
|
|
|
| 5123 |
|
|
/* Compute the 'literal type' property before we
|
| 5124 |
|
|
do anything with non-static member functions. */
|
| 5125 |
|
|
finalize_literal_type_property (t);
|
| 5126 |
|
|
|
| 5127 |
|
|
/* Create the in-charge and not-in-charge variants of constructors
|
| 5128 |
|
|
and destructors. */
|
| 5129 |
|
|
clone_constructors_and_destructors (t);
|
| 5130 |
|
|
|
| 5131 |
|
|
/* Process the using-declarations. */
|
| 5132 |
|
|
for (; access_decls; access_decls = TREE_CHAIN (access_decls))
|
| 5133 |
|
|
handle_using_decl (TREE_VALUE (access_decls), t);
|
| 5134 |
|
|
|
| 5135 |
|
|
/* Build and sort the CLASSTYPE_METHOD_VEC. */
|
| 5136 |
|
|
finish_struct_methods (t);
|
| 5137 |
|
|
|
| 5138 |
|
|
/* Figure out whether or not we will need a cookie when dynamically
|
| 5139 |
|
|
allocating an array of this type. */
|
| 5140 |
|
|
TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
|
| 5141 |
|
|
= type_requires_array_cookie (t);
|
| 5142 |
|
|
}
|
| 5143 |
|
|
|
| 5144 |
|
|
/* If T needs a pointer to its virtual function table, set TYPE_VFIELD
|
| 5145 |
|
|
accordingly. If a new vfield was created (because T doesn't have a
|
| 5146 |
|
|
primary base class), then the newly created field is returned. It
|
| 5147 |
|
|
is not added to the TYPE_FIELDS list; it is the caller's
|
| 5148 |
|
|
responsibility to do that. Accumulate declared virtual functions
|
| 5149 |
|
|
on VIRTUALS_P. */
|
| 5150 |
|
|
|
| 5151 |
|
|
static tree
|
| 5152 |
|
|
create_vtable_ptr (tree t, tree* virtuals_p)
|
| 5153 |
|
|
{
|
| 5154 |
|
|
tree fn;
|
| 5155 |
|
|
|
| 5156 |
|
|
/* Collect the virtual functions declared in T. */
|
| 5157 |
|
|
for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
|
| 5158 |
|
|
if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
|
| 5159 |
|
|
&& TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
|
| 5160 |
|
|
{
|
| 5161 |
|
|
tree new_virtual = make_node (TREE_LIST);
|
| 5162 |
|
|
|
| 5163 |
|
|
BV_FN (new_virtual) = fn;
|
| 5164 |
|
|
BV_DELTA (new_virtual) = integer_zero_node;
|
| 5165 |
|
|
BV_VCALL_INDEX (new_virtual) = NULL_TREE;
|
| 5166 |
|
|
|
| 5167 |
|
|
TREE_CHAIN (new_virtual) = *virtuals_p;
|
| 5168 |
|
|
*virtuals_p = new_virtual;
|
| 5169 |
|
|
}
|
| 5170 |
|
|
|
| 5171 |
|
|
/* If we couldn't find an appropriate base class, create a new field
|
| 5172 |
|
|
here. Even if there weren't any new virtual functions, we might need a
|
| 5173 |
|
|
new virtual function table if we're supposed to include vptrs in
|
| 5174 |
|
|
all classes that need them. */
|
| 5175 |
|
|
if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
|
| 5176 |
|
|
{
|
| 5177 |
|
|
/* We build this decl with vtbl_ptr_type_node, which is a
|
| 5178 |
|
|
`vtable_entry_type*'. It might seem more precise to use
|
| 5179 |
|
|
`vtable_entry_type (*)[N]' where N is the number of virtual
|
| 5180 |
|
|
functions. However, that would require the vtable pointer in
|
| 5181 |
|
|
base classes to have a different type than the vtable pointer
|
| 5182 |
|
|
in derived classes. We could make that happen, but that
|
| 5183 |
|
|
still wouldn't solve all the problems. In particular, the
|
| 5184 |
|
|
type-based alias analysis code would decide that assignments
|
| 5185 |
|
|
to the base class vtable pointer can't alias assignments to
|
| 5186 |
|
|
the derived class vtable pointer, since they have different
|
| 5187 |
|
|
types. Thus, in a derived class destructor, where the base
|
| 5188 |
|
|
class constructor was inlined, we could generate bad code for
|
| 5189 |
|
|
setting up the vtable pointer.
|
| 5190 |
|
|
|
| 5191 |
|
|
Therefore, we use one type for all vtable pointers. We still
|
| 5192 |
|
|
use a type-correct type; it's just doesn't indicate the array
|
| 5193 |
|
|
bounds. That's better than using `void*' or some such; it's
|
| 5194 |
|
|
cleaner, and it let's the alias analysis code know that these
|
| 5195 |
|
|
stores cannot alias stores to void*! */
|
| 5196 |
|
|
tree field;
|
| 5197 |
|
|
|
| 5198 |
|
|
field = build_decl (input_location,
|
| 5199 |
|
|
FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
|
| 5200 |
|
|
DECL_VIRTUAL_P (field) = 1;
|
| 5201 |
|
|
DECL_ARTIFICIAL (field) = 1;
|
| 5202 |
|
|
DECL_FIELD_CONTEXT (field) = t;
|
| 5203 |
|
|
DECL_FCONTEXT (field) = t;
|
| 5204 |
|
|
if (TYPE_PACKED (t))
|
| 5205 |
|
|
DECL_PACKED (field) = 1;
|
| 5206 |
|
|
|
| 5207 |
|
|
TYPE_VFIELD (t) = field;
|
| 5208 |
|
|
|
| 5209 |
|
|
/* This class is non-empty. */
|
| 5210 |
|
|
CLASSTYPE_EMPTY_P (t) = 0;
|
| 5211 |
|
|
|
| 5212 |
|
|
return field;
|
| 5213 |
|
|
}
|
| 5214 |
|
|
|
| 5215 |
|
|
return NULL_TREE;
|
| 5216 |
|
|
}
|
| 5217 |
|
|
|
| 5218 |
|
|
/* Add OFFSET to all base types of BINFO which is a base in the
|
| 5219 |
|
|
hierarchy dominated by T.
|
| 5220 |
|
|
|
| 5221 |
|
|
OFFSET, which is a type offset, is number of bytes. */
|
| 5222 |
|
|
|
| 5223 |
|
|
static void
|
| 5224 |
|
|
propagate_binfo_offsets (tree binfo, tree offset)
|
| 5225 |
|
|
{
|
| 5226 |
|
|
int i;
|
| 5227 |
|
|
tree primary_binfo;
|
| 5228 |
|
|
tree base_binfo;
|
| 5229 |
|
|
|
| 5230 |
|
|
/* Update BINFO's offset. */
|
| 5231 |
|
|
BINFO_OFFSET (binfo)
|
| 5232 |
|
|
= convert (sizetype,
|
| 5233 |
|
|
size_binop (PLUS_EXPR,
|
| 5234 |
|
|
convert (ssizetype, BINFO_OFFSET (binfo)),
|
| 5235 |
|
|
offset));
|
| 5236 |
|
|
|
| 5237 |
|
|
/* Find the primary base class. */
|
| 5238 |
|
|
primary_binfo = get_primary_binfo (binfo);
|
| 5239 |
|
|
|
| 5240 |
|
|
if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
|
| 5241 |
|
|
propagate_binfo_offsets (primary_binfo, offset);
|
| 5242 |
|
|
|
| 5243 |
|
|
/* Scan all of the bases, pushing the BINFO_OFFSET adjust
|
| 5244 |
|
|
downwards. */
|
| 5245 |
|
|
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
| 5246 |
|
|
{
|
| 5247 |
|
|
/* Don't do the primary base twice. */
|
| 5248 |
|
|
if (base_binfo == primary_binfo)
|
| 5249 |
|
|
continue;
|
| 5250 |
|
|
|
| 5251 |
|
|
if (BINFO_VIRTUAL_P (base_binfo))
|
| 5252 |
|
|
continue;
|
| 5253 |
|
|
|
| 5254 |
|
|
propagate_binfo_offsets (base_binfo, offset);
|
| 5255 |
|
|
}
|
| 5256 |
|
|
}
|
| 5257 |
|
|
|
| 5258 |
|
|
/* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
|
| 5259 |
|
|
TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
|
| 5260 |
|
|
empty subobjects of T. */
|
| 5261 |
|
|
|
| 5262 |
|
|
static void
|
| 5263 |
|
|
layout_virtual_bases (record_layout_info rli, splay_tree offsets)
|
| 5264 |
|
|
{
|
| 5265 |
|
|
tree vbase;
|
| 5266 |
|
|
tree t = rli->t;
|
| 5267 |
|
|
bool first_vbase = true;
|
| 5268 |
|
|
tree *next_field;
|
| 5269 |
|
|
|
| 5270 |
|
|
if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
|
| 5271 |
|
|
return;
|
| 5272 |
|
|
|
| 5273 |
|
|
if (!abi_version_at_least(2))
|
| 5274 |
|
|
{
|
| 5275 |
|
|
/* In G++ 3.2, we incorrectly rounded the size before laying out
|
| 5276 |
|
|
the virtual bases. */
|
| 5277 |
|
|
finish_record_layout (rli, /*free_p=*/false);
|
| 5278 |
|
|
#ifdef STRUCTURE_SIZE_BOUNDARY
|
| 5279 |
|
|
/* Packed structures don't need to have minimum size. */
|
| 5280 |
|
|
if (! TYPE_PACKED (t))
|
| 5281 |
|
|
TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
|
| 5282 |
|
|
#endif
|
| 5283 |
|
|
rli->offset = TYPE_SIZE_UNIT (t);
|
| 5284 |
|
|
rli->bitpos = bitsize_zero_node;
|
| 5285 |
|
|
rli->record_align = TYPE_ALIGN (t);
|
| 5286 |
|
|
}
|
| 5287 |
|
|
|
| 5288 |
|
|
/* Find the last field. The artificial fields created for virtual
|
| 5289 |
|
|
bases will go after the last extant field to date. */
|
| 5290 |
|
|
next_field = &TYPE_FIELDS (t);
|
| 5291 |
|
|
while (*next_field)
|
| 5292 |
|
|
next_field = &DECL_CHAIN (*next_field);
|
| 5293 |
|
|
|
| 5294 |
|
|
/* Go through the virtual bases, allocating space for each virtual
|
| 5295 |
|
|
base that is not already a primary base class. These are
|
| 5296 |
|
|
allocated in inheritance graph order. */
|
| 5297 |
|
|
for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
|
| 5298 |
|
|
{
|
| 5299 |
|
|
if (!BINFO_VIRTUAL_P (vbase))
|
| 5300 |
|
|
continue;
|
| 5301 |
|
|
|
| 5302 |
|
|
if (!BINFO_PRIMARY_P (vbase))
|
| 5303 |
|
|
{
|
| 5304 |
|
|
tree basetype = TREE_TYPE (vbase);
|
| 5305 |
|
|
|
| 5306 |
|
|
/* This virtual base is not a primary base of any class in the
|
| 5307 |
|
|
hierarchy, so we have to add space for it. */
|
| 5308 |
|
|
next_field = build_base_field (rli, vbase,
|
| 5309 |
|
|
offsets, next_field);
|
| 5310 |
|
|
|
| 5311 |
|
|
/* If the first virtual base might have been placed at a
|
| 5312 |
|
|
lower address, had we started from CLASSTYPE_SIZE, rather
|
| 5313 |
|
|
than TYPE_SIZE, issue a warning. There can be both false
|
| 5314 |
|
|
positives and false negatives from this warning in rare
|
| 5315 |
|
|
cases; to deal with all the possibilities would probably
|
| 5316 |
|
|
require performing both layout algorithms and comparing
|
| 5317 |
|
|
the results which is not particularly tractable. */
|
| 5318 |
|
|
if (warn_abi
|
| 5319 |
|
|
&& first_vbase
|
| 5320 |
|
|
&& (tree_int_cst_lt
|
| 5321 |
|
|
(size_binop (CEIL_DIV_EXPR,
|
| 5322 |
|
|
round_up_loc (input_location,
|
| 5323 |
|
|
CLASSTYPE_SIZE (t),
|
| 5324 |
|
|
CLASSTYPE_ALIGN (basetype)),
|
| 5325 |
|
|
bitsize_unit_node),
|
| 5326 |
|
|
BINFO_OFFSET (vbase))))
|
| 5327 |
|
|
warning (OPT_Wabi,
|
| 5328 |
|
|
"offset of virtual base %qT is not ABI-compliant and "
|
| 5329 |
|
|
"may change in a future version of GCC",
|
| 5330 |
|
|
basetype);
|
| 5331 |
|
|
|
| 5332 |
|
|
first_vbase = false;
|
| 5333 |
|
|
}
|
| 5334 |
|
|
}
|
| 5335 |
|
|
}
|
| 5336 |
|
|
|
| 5337 |
|
|
/* Returns the offset of the byte just past the end of the base class
|
| 5338 |
|
|
BINFO. */
|
| 5339 |
|
|
|
| 5340 |
|
|
static tree
|
| 5341 |
|
|
end_of_base (tree binfo)
|
| 5342 |
|
|
{
|
| 5343 |
|
|
tree size;
|
| 5344 |
|
|
|
| 5345 |
|
|
if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
|
| 5346 |
|
|
size = TYPE_SIZE_UNIT (char_type_node);
|
| 5347 |
|
|
else if (is_empty_class (BINFO_TYPE (binfo)))
|
| 5348 |
|
|
/* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
|
| 5349 |
|
|
allocate some space for it. It cannot have virtual bases, so
|
| 5350 |
|
|
TYPE_SIZE_UNIT is fine. */
|
| 5351 |
|
|
size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
|
| 5352 |
|
|
else
|
| 5353 |
|
|
size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
|
| 5354 |
|
|
|
| 5355 |
|
|
return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
|
| 5356 |
|
|
}
|
| 5357 |
|
|
|
| 5358 |
|
|
/* Returns the offset of the byte just past the end of the base class
|
| 5359 |
|
|
with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
|
| 5360 |
|
|
only non-virtual bases are included. */
|
| 5361 |
|
|
|
| 5362 |
|
|
static tree
|
| 5363 |
|
|
end_of_class (tree t, int include_virtuals_p)
|
| 5364 |
|
|
{
|
| 5365 |
|
|
tree result = size_zero_node;
|
| 5366 |
|
|
VEC(tree,gc) *vbases;
|
| 5367 |
|
|
tree binfo;
|
| 5368 |
|
|
tree base_binfo;
|
| 5369 |
|
|
tree offset;
|
| 5370 |
|
|
int i;
|
| 5371 |
|
|
|
| 5372 |
|
|
for (binfo = TYPE_BINFO (t), i = 0;
|
| 5373 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
| 5374 |
|
|
{
|
| 5375 |
|
|
if (!include_virtuals_p
|
| 5376 |
|
|
&& BINFO_VIRTUAL_P (base_binfo)
|
| 5377 |
|
|
&& (!BINFO_PRIMARY_P (base_binfo)
|
| 5378 |
|
|
|| BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
|
| 5379 |
|
|
continue;
|
| 5380 |
|
|
|
| 5381 |
|
|
offset = end_of_base (base_binfo);
|
| 5382 |
|
|
if (INT_CST_LT_UNSIGNED (result, offset))
|
| 5383 |
|
|
result = offset;
|
| 5384 |
|
|
}
|
| 5385 |
|
|
|
| 5386 |
|
|
/* G++ 3.2 did not check indirect virtual bases. */
|
| 5387 |
|
|
if (abi_version_at_least (2) && include_virtuals_p)
|
| 5388 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
|
| 5389 |
|
|
VEC_iterate (tree, vbases, i, base_binfo); i++)
|
| 5390 |
|
|
{
|
| 5391 |
|
|
offset = end_of_base (base_binfo);
|
| 5392 |
|
|
if (INT_CST_LT_UNSIGNED (result, offset))
|
| 5393 |
|
|
result = offset;
|
| 5394 |
|
|
}
|
| 5395 |
|
|
|
| 5396 |
|
|
return result;
|
| 5397 |
|
|
}
|
| 5398 |
|
|
|
| 5399 |
|
|
/* Warn about bases of T that are inaccessible because they are
|
| 5400 |
|
|
ambiguous. For example:
|
| 5401 |
|
|
|
| 5402 |
|
|
struct S {};
|
| 5403 |
|
|
struct T : public S {};
|
| 5404 |
|
|
struct U : public S, public T {};
|
| 5405 |
|
|
|
| 5406 |
|
|
Here, `(S*) new U' is not allowed because there are two `S'
|
| 5407 |
|
|
subobjects of U. */
|
| 5408 |
|
|
|
| 5409 |
|
|
static void
|
| 5410 |
|
|
warn_about_ambiguous_bases (tree t)
|
| 5411 |
|
|
{
|
| 5412 |
|
|
int i;
|
| 5413 |
|
|
VEC(tree,gc) *vbases;
|
| 5414 |
|
|
tree basetype;
|
| 5415 |
|
|
tree binfo;
|
| 5416 |
|
|
tree base_binfo;
|
| 5417 |
|
|
|
| 5418 |
|
|
/* If there are no repeated bases, nothing can be ambiguous. */
|
| 5419 |
|
|
if (!CLASSTYPE_REPEATED_BASE_P (t))
|
| 5420 |
|
|
return;
|
| 5421 |
|
|
|
| 5422 |
|
|
/* Check direct bases. */
|
| 5423 |
|
|
for (binfo = TYPE_BINFO (t), i = 0;
|
| 5424 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
| 5425 |
|
|
{
|
| 5426 |
|
|
basetype = BINFO_TYPE (base_binfo);
|
| 5427 |
|
|
|
| 5428 |
|
|
if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
|
| 5429 |
|
|
warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
|
| 5430 |
|
|
basetype, t);
|
| 5431 |
|
|
}
|
| 5432 |
|
|
|
| 5433 |
|
|
/* Check for ambiguous virtual bases. */
|
| 5434 |
|
|
if (extra_warnings)
|
| 5435 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
|
| 5436 |
|
|
VEC_iterate (tree, vbases, i, binfo); i++)
|
| 5437 |
|
|
{
|
| 5438 |
|
|
basetype = BINFO_TYPE (binfo);
|
| 5439 |
|
|
|
| 5440 |
|
|
if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
|
| 5441 |
|
|
warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
|
| 5442 |
|
|
basetype, t);
|
| 5443 |
|
|
}
|
| 5444 |
|
|
}
|
| 5445 |
|
|
|
| 5446 |
|
|
/* Compare two INTEGER_CSTs K1 and K2. */
|
| 5447 |
|
|
|
| 5448 |
|
|
static int
|
| 5449 |
|
|
splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
|
| 5450 |
|
|
{
|
| 5451 |
|
|
return tree_int_cst_compare ((tree) k1, (tree) k2);
|
| 5452 |
|
|
}
|
| 5453 |
|
|
|
| 5454 |
|
|
/* Increase the size indicated in RLI to account for empty classes
|
| 5455 |
|
|
that are "off the end" of the class. */
|
| 5456 |
|
|
|
| 5457 |
|
|
static void
|
| 5458 |
|
|
include_empty_classes (record_layout_info rli)
|
| 5459 |
|
|
{
|
| 5460 |
|
|
tree eoc;
|
| 5461 |
|
|
tree rli_size;
|
| 5462 |
|
|
|
| 5463 |
|
|
/* It might be the case that we grew the class to allocate a
|
| 5464 |
|
|
zero-sized base class. That won't be reflected in RLI, yet,
|
| 5465 |
|
|
because we are willing to overlay multiple bases at the same
|
| 5466 |
|
|
offset. However, now we need to make sure that RLI is big enough
|
| 5467 |
|
|
to reflect the entire class. */
|
| 5468 |
|
|
eoc = end_of_class (rli->t,
|
| 5469 |
|
|
CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
|
| 5470 |
|
|
rli_size = rli_size_unit_so_far (rli);
|
| 5471 |
|
|
if (TREE_CODE (rli_size) == INTEGER_CST
|
| 5472 |
|
|
&& INT_CST_LT_UNSIGNED (rli_size, eoc))
|
| 5473 |
|
|
{
|
| 5474 |
|
|
if (!abi_version_at_least (2))
|
| 5475 |
|
|
/* In version 1 of the ABI, the size of a class that ends with
|
| 5476 |
|
|
a bitfield was not rounded up to a whole multiple of a
|
| 5477 |
|
|
byte. Because rli_size_unit_so_far returns only the number
|
| 5478 |
|
|
of fully allocated bytes, any extra bits were not included
|
| 5479 |
|
|
in the size. */
|
| 5480 |
|
|
rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
|
| 5481 |
|
|
else
|
| 5482 |
|
|
/* The size should have been rounded to a whole byte. */
|
| 5483 |
|
|
gcc_assert (tree_int_cst_equal
|
| 5484 |
|
|
(rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
|
| 5485 |
|
|
rli->bitpos
|
| 5486 |
|
|
= size_binop (PLUS_EXPR,
|
| 5487 |
|
|
rli->bitpos,
|
| 5488 |
|
|
size_binop (MULT_EXPR,
|
| 5489 |
|
|
convert (bitsizetype,
|
| 5490 |
|
|
size_binop (MINUS_EXPR,
|
| 5491 |
|
|
eoc, rli_size)),
|
| 5492 |
|
|
bitsize_int (BITS_PER_UNIT)));
|
| 5493 |
|
|
normalize_rli (rli);
|
| 5494 |
|
|
}
|
| 5495 |
|
|
}
|
| 5496 |
|
|
|
| 5497 |
|
|
/* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
|
| 5498 |
|
|
BINFO_OFFSETs for all of the base-classes. Position the vtable
|
| 5499 |
|
|
pointer. Accumulate declared virtual functions on VIRTUALS_P. */
|
| 5500 |
|
|
|
| 5501 |
|
|
static void
|
| 5502 |
|
|
layout_class_type (tree t, tree *virtuals_p)
|
| 5503 |
|
|
{
|
| 5504 |
|
|
tree non_static_data_members;
|
| 5505 |
|
|
tree field;
|
| 5506 |
|
|
tree vptr;
|
| 5507 |
|
|
record_layout_info rli;
|
| 5508 |
|
|
/* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
|
| 5509 |
|
|
types that appear at that offset. */
|
| 5510 |
|
|
splay_tree empty_base_offsets;
|
| 5511 |
|
|
/* True if the last field layed out was a bit-field. */
|
| 5512 |
|
|
bool last_field_was_bitfield = false;
|
| 5513 |
|
|
/* The location at which the next field should be inserted. */
|
| 5514 |
|
|
tree *next_field;
|
| 5515 |
|
|
/* T, as a base class. */
|
| 5516 |
|
|
tree base_t;
|
| 5517 |
|
|
|
| 5518 |
|
|
/* Keep track of the first non-static data member. */
|
| 5519 |
|
|
non_static_data_members = TYPE_FIELDS (t);
|
| 5520 |
|
|
|
| 5521 |
|
|
/* Start laying out the record. */
|
| 5522 |
|
|
rli = start_record_layout (t);
|
| 5523 |
|
|
|
| 5524 |
|
|
/* Mark all the primary bases in the hierarchy. */
|
| 5525 |
|
|
determine_primary_bases (t);
|
| 5526 |
|
|
|
| 5527 |
|
|
/* Create a pointer to our virtual function table. */
|
| 5528 |
|
|
vptr = create_vtable_ptr (t, virtuals_p);
|
| 5529 |
|
|
|
| 5530 |
|
|
/* The vptr is always the first thing in the class. */
|
| 5531 |
|
|
if (vptr)
|
| 5532 |
|
|
{
|
| 5533 |
|
|
DECL_CHAIN (vptr) = TYPE_FIELDS (t);
|
| 5534 |
|
|
TYPE_FIELDS (t) = vptr;
|
| 5535 |
|
|
next_field = &DECL_CHAIN (vptr);
|
| 5536 |
|
|
place_field (rli, vptr);
|
| 5537 |
|
|
}
|
| 5538 |
|
|
else
|
| 5539 |
|
|
next_field = &TYPE_FIELDS (t);
|
| 5540 |
|
|
|
| 5541 |
|
|
/* Build FIELD_DECLs for all of the non-virtual base-types. */
|
| 5542 |
|
|
empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
|
| 5543 |
|
|
NULL, NULL);
|
| 5544 |
|
|
build_base_fields (rli, empty_base_offsets, next_field);
|
| 5545 |
|
|
|
| 5546 |
|
|
/* Layout the non-static data members. */
|
| 5547 |
|
|
for (field = non_static_data_members; field; field = DECL_CHAIN (field))
|
| 5548 |
|
|
{
|
| 5549 |
|
|
tree type;
|
| 5550 |
|
|
tree padding;
|
| 5551 |
|
|
|
| 5552 |
|
|
/* We still pass things that aren't non-static data members to
|
| 5553 |
|
|
the back end, in case it wants to do something with them. */
|
| 5554 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
| 5555 |
|
|
{
|
| 5556 |
|
|
place_field (rli, field);
|
| 5557 |
|
|
/* If the static data member has incomplete type, keep track
|
| 5558 |
|
|
of it so that it can be completed later. (The handling
|
| 5559 |
|
|
of pending statics in finish_record_layout is
|
| 5560 |
|
|
insufficient; consider:
|
| 5561 |
|
|
|
| 5562 |
|
|
struct S1;
|
| 5563 |
|
|
struct S2 { static S1 s1; };
|
| 5564 |
|
|
|
| 5565 |
|
|
At this point, finish_record_layout will be called, but
|
| 5566 |
|
|
S1 is still incomplete.) */
|
| 5567 |
|
|
if (TREE_CODE (field) == VAR_DECL)
|
| 5568 |
|
|
{
|
| 5569 |
|
|
maybe_register_incomplete_var (field);
|
| 5570 |
|
|
/* The visibility of static data members is determined
|
| 5571 |
|
|
at their point of declaration, not their point of
|
| 5572 |
|
|
definition. */
|
| 5573 |
|
|
determine_visibility (field);
|
| 5574 |
|
|
}
|
| 5575 |
|
|
continue;
|
| 5576 |
|
|
}
|
| 5577 |
|
|
|
| 5578 |
|
|
type = TREE_TYPE (field);
|
| 5579 |
|
|
if (type == error_mark_node)
|
| 5580 |
|
|
continue;
|
| 5581 |
|
|
|
| 5582 |
|
|
padding = NULL_TREE;
|
| 5583 |
|
|
|
| 5584 |
|
|
/* If this field is a bit-field whose width is greater than its
|
| 5585 |
|
|
type, then there are some special rules for allocating
|
| 5586 |
|
|
it. */
|
| 5587 |
|
|
if (DECL_C_BIT_FIELD (field)
|
| 5588 |
|
|
&& INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
|
| 5589 |
|
|
{
|
| 5590 |
|
|
unsigned int itk;
|
| 5591 |
|
|
tree integer_type;
|
| 5592 |
|
|
bool was_unnamed_p = false;
|
| 5593 |
|
|
/* We must allocate the bits as if suitably aligned for the
|
| 5594 |
|
|
longest integer type that fits in this many bits. type
|
| 5595 |
|
|
of the field. Then, we are supposed to use the left over
|
| 5596 |
|
|
bits as additional padding. */
|
| 5597 |
|
|
for (itk = itk_char; itk != itk_none; ++itk)
|
| 5598 |
|
|
if (integer_types[itk] != NULL_TREE
|
| 5599 |
|
|
&& (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE),
|
| 5600 |
|
|
TYPE_SIZE (integer_types[itk]))
|
| 5601 |
|
|
|| INT_CST_LT (DECL_SIZE (field),
|
| 5602 |
|
|
TYPE_SIZE (integer_types[itk]))))
|
| 5603 |
|
|
break;
|
| 5604 |
|
|
|
| 5605 |
|
|
/* ITK now indicates a type that is too large for the
|
| 5606 |
|
|
field. We have to back up by one to find the largest
|
| 5607 |
|
|
type that fits. */
|
| 5608 |
|
|
do
|
| 5609 |
|
|
{
|
| 5610 |
|
|
--itk;
|
| 5611 |
|
|
integer_type = integer_types[itk];
|
| 5612 |
|
|
} while (itk > 0 && integer_type == NULL_TREE);
|
| 5613 |
|
|
|
| 5614 |
|
|
/* Figure out how much additional padding is required. GCC
|
| 5615 |
|
|
3.2 always created a padding field, even if it had zero
|
| 5616 |
|
|
width. */
|
| 5617 |
|
|
if (!abi_version_at_least (2)
|
| 5618 |
|
|
|| INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
|
| 5619 |
|
|
{
|
| 5620 |
|
|
if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
|
| 5621 |
|
|
/* In a union, the padding field must have the full width
|
| 5622 |
|
|
of the bit-field; all fields start at offset zero. */
|
| 5623 |
|
|
padding = DECL_SIZE (field);
|
| 5624 |
|
|
else
|
| 5625 |
|
|
{
|
| 5626 |
|
|
if (TREE_CODE (t) == UNION_TYPE)
|
| 5627 |
|
|
warning (OPT_Wabi, "size assigned to %qT may not be "
|
| 5628 |
|
|
"ABI-compliant and may change in a future "
|
| 5629 |
|
|
"version of GCC",
|
| 5630 |
|
|
t);
|
| 5631 |
|
|
padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
|
| 5632 |
|
|
TYPE_SIZE (integer_type));
|
| 5633 |
|
|
}
|
| 5634 |
|
|
}
|
| 5635 |
|
|
#ifdef PCC_BITFIELD_TYPE_MATTERS
|
| 5636 |
|
|
/* An unnamed bitfield does not normally affect the
|
| 5637 |
|
|
alignment of the containing class on a target where
|
| 5638 |
|
|
PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
|
| 5639 |
|
|
make any exceptions for unnamed bitfields when the
|
| 5640 |
|
|
bitfields are longer than their types. Therefore, we
|
| 5641 |
|
|
temporarily give the field a name. */
|
| 5642 |
|
|
if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
|
| 5643 |
|
|
{
|
| 5644 |
|
|
was_unnamed_p = true;
|
| 5645 |
|
|
DECL_NAME (field) = make_anon_name ();
|
| 5646 |
|
|
}
|
| 5647 |
|
|
#endif
|
| 5648 |
|
|
DECL_SIZE (field) = TYPE_SIZE (integer_type);
|
| 5649 |
|
|
DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
|
| 5650 |
|
|
DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
|
| 5651 |
|
|
layout_nonempty_base_or_field (rli, field, NULL_TREE,
|
| 5652 |
|
|
empty_base_offsets);
|
| 5653 |
|
|
if (was_unnamed_p)
|
| 5654 |
|
|
DECL_NAME (field) = NULL_TREE;
|
| 5655 |
|
|
/* Now that layout has been performed, set the size of the
|
| 5656 |
|
|
field to the size of its declared type; the rest of the
|
| 5657 |
|
|
field is effectively invisible. */
|
| 5658 |
|
|
DECL_SIZE (field) = TYPE_SIZE (type);
|
| 5659 |
|
|
/* We must also reset the DECL_MODE of the field. */
|
| 5660 |
|
|
if (abi_version_at_least (2))
|
| 5661 |
|
|
DECL_MODE (field) = TYPE_MODE (type);
|
| 5662 |
|
|
else if (warn_abi
|
| 5663 |
|
|
&& DECL_MODE (field) != TYPE_MODE (type))
|
| 5664 |
|
|
/* Versions of G++ before G++ 3.4 did not reset the
|
| 5665 |
|
|
DECL_MODE. */
|
| 5666 |
|
|
warning (OPT_Wabi,
|
| 5667 |
|
|
"the offset of %qD may not be ABI-compliant and may "
|
| 5668 |
|
|
"change in a future version of GCC", field);
|
| 5669 |
|
|
}
|
| 5670 |
|
|
else
|
| 5671 |
|
|
layout_nonempty_base_or_field (rli, field, NULL_TREE,
|
| 5672 |
|
|
empty_base_offsets);
|
| 5673 |
|
|
|
| 5674 |
|
|
/* Remember the location of any empty classes in FIELD. */
|
| 5675 |
|
|
if (abi_version_at_least (2))
|
| 5676 |
|
|
record_subobject_offsets (TREE_TYPE (field),
|
| 5677 |
|
|
byte_position(field),
|
| 5678 |
|
|
empty_base_offsets,
|
| 5679 |
|
|
/*is_data_member=*/true);
|
| 5680 |
|
|
|
| 5681 |
|
|
/* If a bit-field does not immediately follow another bit-field,
|
| 5682 |
|
|
and yet it starts in the middle of a byte, we have failed to
|
| 5683 |
|
|
comply with the ABI. */
|
| 5684 |
|
|
if (warn_abi
|
| 5685 |
|
|
&& DECL_C_BIT_FIELD (field)
|
| 5686 |
|
|
/* The TREE_NO_WARNING flag gets set by Objective-C when
|
| 5687 |
|
|
laying out an Objective-C class. The ObjC ABI differs
|
| 5688 |
|
|
from the C++ ABI, and so we do not want a warning
|
| 5689 |
|
|
here. */
|
| 5690 |
|
|
&& !TREE_NO_WARNING (field)
|
| 5691 |
|
|
&& !last_field_was_bitfield
|
| 5692 |
|
|
&& !integer_zerop (size_binop (TRUNC_MOD_EXPR,
|
| 5693 |
|
|
DECL_FIELD_BIT_OFFSET (field),
|
| 5694 |
|
|
bitsize_unit_node)))
|
| 5695 |
|
|
warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
|
| 5696 |
|
|
"change in a future version of GCC", field);
|
| 5697 |
|
|
|
| 5698 |
|
|
/* G++ used to use DECL_FIELD_OFFSET as if it were the byte
|
| 5699 |
|
|
offset of the field. */
|
| 5700 |
|
|
if (warn_abi
|
| 5701 |
|
|
&& !abi_version_at_least (2)
|
| 5702 |
|
|
&& !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
|
| 5703 |
|
|
byte_position (field))
|
| 5704 |
|
|
&& contains_empty_class_p (TREE_TYPE (field)))
|
| 5705 |
|
|
warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
|
| 5706 |
|
|
"classes to be placed at different locations in a "
|
| 5707 |
|
|
"future version of GCC", field);
|
| 5708 |
|
|
|
| 5709 |
|
|
/* The middle end uses the type of expressions to determine the
|
| 5710 |
|
|
possible range of expression values. In order to optimize
|
| 5711 |
|
|
"x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
|
| 5712 |
|
|
must be made aware of the width of "i", via its type.
|
| 5713 |
|
|
|
| 5714 |
|
|
Because C++ does not have integer types of arbitrary width,
|
| 5715 |
|
|
we must (for the purposes of the front end) convert from the
|
| 5716 |
|
|
type assigned here to the declared type of the bitfield
|
| 5717 |
|
|
whenever a bitfield expression is used as an rvalue.
|
| 5718 |
|
|
Similarly, when assigning a value to a bitfield, the value
|
| 5719 |
|
|
must be converted to the type given the bitfield here. */
|
| 5720 |
|
|
if (DECL_C_BIT_FIELD (field))
|
| 5721 |
|
|
{
|
| 5722 |
|
|
unsigned HOST_WIDE_INT width;
|
| 5723 |
|
|
tree ftype = TREE_TYPE (field);
|
| 5724 |
|
|
width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
|
| 5725 |
|
|
if (width != TYPE_PRECISION (ftype))
|
| 5726 |
|
|
{
|
| 5727 |
|
|
TREE_TYPE (field)
|
| 5728 |
|
|
= c_build_bitfield_integer_type (width,
|
| 5729 |
|
|
TYPE_UNSIGNED (ftype));
|
| 5730 |
|
|
TREE_TYPE (field)
|
| 5731 |
|
|
= cp_build_qualified_type (TREE_TYPE (field),
|
| 5732 |
|
|
cp_type_quals (ftype));
|
| 5733 |
|
|
}
|
| 5734 |
|
|
}
|
| 5735 |
|
|
|
| 5736 |
|
|
/* If we needed additional padding after this field, add it
|
| 5737 |
|
|
now. */
|
| 5738 |
|
|
if (padding)
|
| 5739 |
|
|
{
|
| 5740 |
|
|
tree padding_field;
|
| 5741 |
|
|
|
| 5742 |
|
|
padding_field = build_decl (input_location,
|
| 5743 |
|
|
FIELD_DECL,
|
| 5744 |
|
|
NULL_TREE,
|
| 5745 |
|
|
char_type_node);
|
| 5746 |
|
|
DECL_BIT_FIELD (padding_field) = 1;
|
| 5747 |
|
|
DECL_SIZE (padding_field) = padding;
|
| 5748 |
|
|
DECL_CONTEXT (padding_field) = t;
|
| 5749 |
|
|
DECL_ARTIFICIAL (padding_field) = 1;
|
| 5750 |
|
|
DECL_IGNORED_P (padding_field) = 1;
|
| 5751 |
|
|
layout_nonempty_base_or_field (rli, padding_field,
|
| 5752 |
|
|
NULL_TREE,
|
| 5753 |
|
|
empty_base_offsets);
|
| 5754 |
|
|
}
|
| 5755 |
|
|
|
| 5756 |
|
|
last_field_was_bitfield = DECL_C_BIT_FIELD (field);
|
| 5757 |
|
|
}
|
| 5758 |
|
|
|
| 5759 |
|
|
if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
|
| 5760 |
|
|
{
|
| 5761 |
|
|
/* Make sure that we are on a byte boundary so that the size of
|
| 5762 |
|
|
the class without virtual bases will always be a round number
|
| 5763 |
|
|
of bytes. */
|
| 5764 |
|
|
rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
|
| 5765 |
|
|
normalize_rli (rli);
|
| 5766 |
|
|
}
|
| 5767 |
|
|
|
| 5768 |
|
|
/* G++ 3.2 does not allow virtual bases to be overlaid with tail
|
| 5769 |
|
|
padding. */
|
| 5770 |
|
|
if (!abi_version_at_least (2))
|
| 5771 |
|
|
include_empty_classes(rli);
|
| 5772 |
|
|
|
| 5773 |
|
|
/* Delete all zero-width bit-fields from the list of fields. Now
|
| 5774 |
|
|
that the type is laid out they are no longer important. */
|
| 5775 |
|
|
remove_zero_width_bit_fields (t);
|
| 5776 |
|
|
|
| 5777 |
|
|
/* Create the version of T used for virtual bases. We do not use
|
| 5778 |
|
|
make_class_type for this version; this is an artificial type. For
|
| 5779 |
|
|
a POD type, we just reuse T. */
|
| 5780 |
|
|
if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
|
| 5781 |
|
|
{
|
| 5782 |
|
|
base_t = make_node (TREE_CODE (t));
|
| 5783 |
|
|
|
| 5784 |
|
|
/* Set the size and alignment for the new type. In G++ 3.2, all
|
| 5785 |
|
|
empty classes were considered to have size zero when used as
|
| 5786 |
|
|
base classes. */
|
| 5787 |
|
|
if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
|
| 5788 |
|
|
{
|
| 5789 |
|
|
TYPE_SIZE (base_t) = bitsize_zero_node;
|
| 5790 |
|
|
TYPE_SIZE_UNIT (base_t) = size_zero_node;
|
| 5791 |
|
|
if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
|
| 5792 |
|
|
warning (OPT_Wabi,
|
| 5793 |
|
|
"layout of classes derived from empty class %qT "
|
| 5794 |
|
|
"may change in a future version of GCC",
|
| 5795 |
|
|
t);
|
| 5796 |
|
|
}
|
| 5797 |
|
|
else
|
| 5798 |
|
|
{
|
| 5799 |
|
|
tree eoc;
|
| 5800 |
|
|
|
| 5801 |
|
|
/* If the ABI version is not at least two, and the last
|
| 5802 |
|
|
field was a bit-field, RLI may not be on a byte
|
| 5803 |
|
|
boundary. In particular, rli_size_unit_so_far might
|
| 5804 |
|
|
indicate the last complete byte, while rli_size_so_far
|
| 5805 |
|
|
indicates the total number of bits used. Therefore,
|
| 5806 |
|
|
rli_size_so_far, rather than rli_size_unit_so_far, is
|
| 5807 |
|
|
used to compute TYPE_SIZE_UNIT. */
|
| 5808 |
|
|
eoc = end_of_class (t, /*include_virtuals_p=*/0);
|
| 5809 |
|
|
TYPE_SIZE_UNIT (base_t)
|
| 5810 |
|
|
= size_binop (MAX_EXPR,
|
| 5811 |
|
|
convert (sizetype,
|
| 5812 |
|
|
size_binop (CEIL_DIV_EXPR,
|
| 5813 |
|
|
rli_size_so_far (rli),
|
| 5814 |
|
|
bitsize_int (BITS_PER_UNIT))),
|
| 5815 |
|
|
eoc);
|
| 5816 |
|
|
TYPE_SIZE (base_t)
|
| 5817 |
|
|
= size_binop (MAX_EXPR,
|
| 5818 |
|
|
rli_size_so_far (rli),
|
| 5819 |
|
|
size_binop (MULT_EXPR,
|
| 5820 |
|
|
convert (bitsizetype, eoc),
|
| 5821 |
|
|
bitsize_int (BITS_PER_UNIT)));
|
| 5822 |
|
|
}
|
| 5823 |
|
|
TYPE_ALIGN (base_t) = rli->record_align;
|
| 5824 |
|
|
TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
|
| 5825 |
|
|
|
| 5826 |
|
|
/* Copy the fields from T. */
|
| 5827 |
|
|
next_field = &TYPE_FIELDS (base_t);
|
| 5828 |
|
|
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
|
| 5829 |
|
|
if (TREE_CODE (field) == FIELD_DECL)
|
| 5830 |
|
|
{
|
| 5831 |
|
|
*next_field = build_decl (input_location,
|
| 5832 |
|
|
FIELD_DECL,
|
| 5833 |
|
|
DECL_NAME (field),
|
| 5834 |
|
|
TREE_TYPE (field));
|
| 5835 |
|
|
DECL_CONTEXT (*next_field) = base_t;
|
| 5836 |
|
|
DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
|
| 5837 |
|
|
DECL_FIELD_BIT_OFFSET (*next_field)
|
| 5838 |
|
|
= DECL_FIELD_BIT_OFFSET (field);
|
| 5839 |
|
|
DECL_SIZE (*next_field) = DECL_SIZE (field);
|
| 5840 |
|
|
DECL_MODE (*next_field) = DECL_MODE (field);
|
| 5841 |
|
|
next_field = &DECL_CHAIN (*next_field);
|
| 5842 |
|
|
}
|
| 5843 |
|
|
|
| 5844 |
|
|
/* Record the base version of the type. */
|
| 5845 |
|
|
CLASSTYPE_AS_BASE (t) = base_t;
|
| 5846 |
|
|
TYPE_CONTEXT (base_t) = t;
|
| 5847 |
|
|
}
|
| 5848 |
|
|
else
|
| 5849 |
|
|
CLASSTYPE_AS_BASE (t) = t;
|
| 5850 |
|
|
|
| 5851 |
|
|
/* Every empty class contains an empty class. */
|
| 5852 |
|
|
if (CLASSTYPE_EMPTY_P (t))
|
| 5853 |
|
|
CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
|
| 5854 |
|
|
|
| 5855 |
|
|
/* Set the TYPE_DECL for this type to contain the right
|
| 5856 |
|
|
value for DECL_OFFSET, so that we can use it as part
|
| 5857 |
|
|
of a COMPONENT_REF for multiple inheritance. */
|
| 5858 |
|
|
layout_decl (TYPE_MAIN_DECL (t), 0);
|
| 5859 |
|
|
|
| 5860 |
|
|
/* Now fix up any virtual base class types that we left lying
|
| 5861 |
|
|
around. We must get these done before we try to lay out the
|
| 5862 |
|
|
virtual function table. As a side-effect, this will remove the
|
| 5863 |
|
|
base subobject fields. */
|
| 5864 |
|
|
layout_virtual_bases (rli, empty_base_offsets);
|
| 5865 |
|
|
|
| 5866 |
|
|
/* Make sure that empty classes are reflected in RLI at this
|
| 5867 |
|
|
point. */
|
| 5868 |
|
|
include_empty_classes(rli);
|
| 5869 |
|
|
|
| 5870 |
|
|
/* Make sure not to create any structures with zero size. */
|
| 5871 |
|
|
if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
|
| 5872 |
|
|
place_field (rli,
|
| 5873 |
|
|
build_decl (input_location,
|
| 5874 |
|
|
FIELD_DECL, NULL_TREE, char_type_node));
|
| 5875 |
|
|
|
| 5876 |
|
|
/* If this is a non-POD, declaring it packed makes a difference to how it
|
| 5877 |
|
|
can be used as a field; don't let finalize_record_size undo it. */
|
| 5878 |
|
|
if (TYPE_PACKED (t) && !layout_pod_type_p (t))
|
| 5879 |
|
|
rli->packed_maybe_necessary = true;
|
| 5880 |
|
|
|
| 5881 |
|
|
/* Let the back end lay out the type. */
|
| 5882 |
|
|
finish_record_layout (rli, /*free_p=*/true);
|
| 5883 |
|
|
|
| 5884 |
|
|
/* Warn about bases that can't be talked about due to ambiguity. */
|
| 5885 |
|
|
warn_about_ambiguous_bases (t);
|
| 5886 |
|
|
|
| 5887 |
|
|
/* Now that we're done with layout, give the base fields the real types. */
|
| 5888 |
|
|
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
|
| 5889 |
|
|
if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
|
| 5890 |
|
|
TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
|
| 5891 |
|
|
|
| 5892 |
|
|
/* Clean up. */
|
| 5893 |
|
|
splay_tree_delete (empty_base_offsets);
|
| 5894 |
|
|
|
| 5895 |
|
|
if (CLASSTYPE_EMPTY_P (t)
|
| 5896 |
|
|
&& tree_int_cst_lt (sizeof_biggest_empty_class,
|
| 5897 |
|
|
TYPE_SIZE_UNIT (t)))
|
| 5898 |
|
|
sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
|
| 5899 |
|
|
}
|
| 5900 |
|
|
|
| 5901 |
|
|
/* Determine the "key method" for the class type indicated by TYPE,
|
| 5902 |
|
|
and set CLASSTYPE_KEY_METHOD accordingly. */
|
| 5903 |
|
|
|
| 5904 |
|
|
void
|
| 5905 |
|
|
determine_key_method (tree type)
|
| 5906 |
|
|
{
|
| 5907 |
|
|
tree method;
|
| 5908 |
|
|
|
| 5909 |
|
|
if (TYPE_FOR_JAVA (type)
|
| 5910 |
|
|
|| processing_template_decl
|
| 5911 |
|
|
|| CLASSTYPE_TEMPLATE_INSTANTIATION (type)
|
| 5912 |
|
|
|| CLASSTYPE_INTERFACE_KNOWN (type))
|
| 5913 |
|
|
return;
|
| 5914 |
|
|
|
| 5915 |
|
|
/* The key method is the first non-pure virtual function that is not
|
| 5916 |
|
|
inline at the point of class definition. On some targets the
|
| 5917 |
|
|
key function may not be inline; those targets should not call
|
| 5918 |
|
|
this function until the end of the translation unit. */
|
| 5919 |
|
|
for (method = TYPE_METHODS (type); method != NULL_TREE;
|
| 5920 |
|
|
method = DECL_CHAIN (method))
|
| 5921 |
|
|
if (DECL_VINDEX (method) != NULL_TREE
|
| 5922 |
|
|
&& ! DECL_DECLARED_INLINE_P (method)
|
| 5923 |
|
|
&& ! DECL_PURE_VIRTUAL_P (method))
|
| 5924 |
|
|
{
|
| 5925 |
|
|
CLASSTYPE_KEY_METHOD (type) = method;
|
| 5926 |
|
|
break;
|
| 5927 |
|
|
}
|
| 5928 |
|
|
|
| 5929 |
|
|
return;
|
| 5930 |
|
|
}
|
| 5931 |
|
|
|
| 5932 |
|
|
|
| 5933 |
|
|
/* Allocate and return an instance of struct sorted_fields_type with
|
| 5934 |
|
|
N fields. */
|
| 5935 |
|
|
|
| 5936 |
|
|
static struct sorted_fields_type *
|
| 5937 |
|
|
sorted_fields_type_new (int n)
|
| 5938 |
|
|
{
|
| 5939 |
|
|
struct sorted_fields_type *sft;
|
| 5940 |
|
|
sft = ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type)
|
| 5941 |
|
|
+ n * sizeof (tree));
|
| 5942 |
|
|
sft->len = n;
|
| 5943 |
|
|
|
| 5944 |
|
|
return sft;
|
| 5945 |
|
|
}
|
| 5946 |
|
|
|
| 5947 |
|
|
|
| 5948 |
|
|
/* Perform processing required when the definition of T (a class type)
|
| 5949 |
|
|
is complete. */
|
| 5950 |
|
|
|
| 5951 |
|
|
void
|
| 5952 |
|
|
finish_struct_1 (tree t)
|
| 5953 |
|
|
{
|
| 5954 |
|
|
tree x;
|
| 5955 |
|
|
/* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
|
| 5956 |
|
|
tree virtuals = NULL_TREE;
|
| 5957 |
|
|
int n_fields = 0;
|
| 5958 |
|
|
|
| 5959 |
|
|
if (COMPLETE_TYPE_P (t))
|
| 5960 |
|
|
{
|
| 5961 |
|
|
gcc_assert (MAYBE_CLASS_TYPE_P (t));
|
| 5962 |
|
|
error ("redefinition of %q#T", t);
|
| 5963 |
|
|
popclass ();
|
| 5964 |
|
|
return;
|
| 5965 |
|
|
}
|
| 5966 |
|
|
|
| 5967 |
|
|
/* If this type was previously laid out as a forward reference,
|
| 5968 |
|
|
make sure we lay it out again. */
|
| 5969 |
|
|
TYPE_SIZE (t) = NULL_TREE;
|
| 5970 |
|
|
CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
|
| 5971 |
|
|
|
| 5972 |
|
|
/* Make assumptions about the class; we'll reset the flags if
|
| 5973 |
|
|
necessary. */
|
| 5974 |
|
|
CLASSTYPE_EMPTY_P (t) = 1;
|
| 5975 |
|
|
CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
|
| 5976 |
|
|
CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
|
| 5977 |
|
|
CLASSTYPE_LITERAL_P (t) = true;
|
| 5978 |
|
|
|
| 5979 |
|
|
/* Do end-of-class semantic processing: checking the validity of the
|
| 5980 |
|
|
bases and members and add implicitly generated methods. */
|
| 5981 |
|
|
check_bases_and_members (t);
|
| 5982 |
|
|
|
| 5983 |
|
|
/* Find the key method. */
|
| 5984 |
|
|
if (TYPE_CONTAINS_VPTR_P (t))
|
| 5985 |
|
|
{
|
| 5986 |
|
|
/* The Itanium C++ ABI permits the key method to be chosen when
|
| 5987 |
|
|
the class is defined -- even though the key method so
|
| 5988 |
|
|
selected may later turn out to be an inline function. On
|
| 5989 |
|
|
some systems (such as ARM Symbian OS) the key method cannot
|
| 5990 |
|
|
be determined until the end of the translation unit. On such
|
| 5991 |
|
|
systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
|
| 5992 |
|
|
will cause the class to be added to KEYED_CLASSES. Then, in
|
| 5993 |
|
|
finish_file we will determine the key method. */
|
| 5994 |
|
|
if (targetm.cxx.key_method_may_be_inline ())
|
| 5995 |
|
|
determine_key_method (t);
|
| 5996 |
|
|
|
| 5997 |
|
|
/* If a polymorphic class has no key method, we may emit the vtable
|
| 5998 |
|
|
in every translation unit where the class definition appears. */
|
| 5999 |
|
|
if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
|
| 6000 |
|
|
keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
|
| 6001 |
|
|
}
|
| 6002 |
|
|
|
| 6003 |
|
|
/* Layout the class itself. */
|
| 6004 |
|
|
layout_class_type (t, &virtuals);
|
| 6005 |
|
|
if (CLASSTYPE_AS_BASE (t) != t)
|
| 6006 |
|
|
/* We use the base type for trivial assignments, and hence it
|
| 6007 |
|
|
needs a mode. */
|
| 6008 |
|
|
compute_record_mode (CLASSTYPE_AS_BASE (t));
|
| 6009 |
|
|
|
| 6010 |
|
|
virtuals = modify_all_vtables (t, nreverse (virtuals));
|
| 6011 |
|
|
|
| 6012 |
|
|
/* If necessary, create the primary vtable for this class. */
|
| 6013 |
|
|
if (virtuals || TYPE_CONTAINS_VPTR_P (t))
|
| 6014 |
|
|
{
|
| 6015 |
|
|
/* We must enter these virtuals into the table. */
|
| 6016 |
|
|
if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
|
| 6017 |
|
|
build_primary_vtable (NULL_TREE, t);
|
| 6018 |
|
|
else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
|
| 6019 |
|
|
/* Here we know enough to change the type of our virtual
|
| 6020 |
|
|
function table, but we will wait until later this function. */
|
| 6021 |
|
|
build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
|
| 6022 |
|
|
}
|
| 6023 |
|
|
|
| 6024 |
|
|
if (TYPE_CONTAINS_VPTR_P (t))
|
| 6025 |
|
|
{
|
| 6026 |
|
|
int vindex;
|
| 6027 |
|
|
tree fn;
|
| 6028 |
|
|
|
| 6029 |
|
|
if (BINFO_VTABLE (TYPE_BINFO (t)))
|
| 6030 |
|
|
gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
|
| 6031 |
|
|
if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
|
| 6032 |
|
|
gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
|
| 6033 |
|
|
|
| 6034 |
|
|
/* Add entries for virtual functions introduced by this class. */
|
| 6035 |
|
|
BINFO_VIRTUALS (TYPE_BINFO (t))
|
| 6036 |
|
|
= chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
|
| 6037 |
|
|
|
| 6038 |
|
|
/* Set DECL_VINDEX for all functions declared in this class. */
|
| 6039 |
|
|
for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
|
| 6040 |
|
|
fn;
|
| 6041 |
|
|
fn = TREE_CHAIN (fn),
|
| 6042 |
|
|
vindex += (TARGET_VTABLE_USES_DESCRIPTORS
|
| 6043 |
|
|
? TARGET_VTABLE_USES_DESCRIPTORS : 1))
|
| 6044 |
|
|
{
|
| 6045 |
|
|
tree fndecl = BV_FN (fn);
|
| 6046 |
|
|
|
| 6047 |
|
|
if (DECL_THUNK_P (fndecl))
|
| 6048 |
|
|
/* A thunk. We should never be calling this entry directly
|
| 6049 |
|
|
from this vtable -- we'd use the entry for the non
|
| 6050 |
|
|
thunk base function. */
|
| 6051 |
|
|
DECL_VINDEX (fndecl) = NULL_TREE;
|
| 6052 |
|
|
else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
|
| 6053 |
|
|
DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
|
| 6054 |
|
|
}
|
| 6055 |
|
|
}
|
| 6056 |
|
|
|
| 6057 |
|
|
finish_struct_bits (t);
|
| 6058 |
|
|
set_method_tm_attributes (t);
|
| 6059 |
|
|
|
| 6060 |
|
|
/* Complete the rtl for any static member objects of the type we're
|
| 6061 |
|
|
working on. */
|
| 6062 |
|
|
for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
|
| 6063 |
|
|
if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
|
| 6064 |
|
|
&& TREE_TYPE (x) != error_mark_node
|
| 6065 |
|
|
&& same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
|
| 6066 |
|
|
DECL_MODE (x) = TYPE_MODE (t);
|
| 6067 |
|
|
|
| 6068 |
|
|
/* Done with FIELDS...now decide whether to sort these for
|
| 6069 |
|
|
faster lookups later.
|
| 6070 |
|
|
|
| 6071 |
|
|
We use a small number because most searches fail (succeeding
|
| 6072 |
|
|
ultimately as the search bores through the inheritance
|
| 6073 |
|
|
hierarchy), and we want this failure to occur quickly. */
|
| 6074 |
|
|
|
| 6075 |
|
|
n_fields = count_fields (TYPE_FIELDS (t));
|
| 6076 |
|
|
if (n_fields > 7)
|
| 6077 |
|
|
{
|
| 6078 |
|
|
struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
|
| 6079 |
|
|
add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
|
| 6080 |
|
|
qsort (field_vec->elts, n_fields, sizeof (tree),
|
| 6081 |
|
|
field_decl_cmp);
|
| 6082 |
|
|
CLASSTYPE_SORTED_FIELDS (t) = field_vec;
|
| 6083 |
|
|
}
|
| 6084 |
|
|
|
| 6085 |
|
|
/* Complain if one of the field types requires lower visibility. */
|
| 6086 |
|
|
constrain_class_visibility (t);
|
| 6087 |
|
|
|
| 6088 |
|
|
/* Make the rtl for any new vtables we have created, and unmark
|
| 6089 |
|
|
the base types we marked. */
|
| 6090 |
|
|
finish_vtbls (t);
|
| 6091 |
|
|
|
| 6092 |
|
|
/* Build the VTT for T. */
|
| 6093 |
|
|
build_vtt (t);
|
| 6094 |
|
|
|
| 6095 |
|
|
/* This warning does not make sense for Java classes, since they
|
| 6096 |
|
|
cannot have destructors. */
|
| 6097 |
|
|
if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
|
| 6098 |
|
|
{
|
| 6099 |
|
|
tree dtor;
|
| 6100 |
|
|
|
| 6101 |
|
|
dtor = CLASSTYPE_DESTRUCTORS (t);
|
| 6102 |
|
|
if (/* An implicitly declared destructor is always public. And,
|
| 6103 |
|
|
if it were virtual, we would have created it by now. */
|
| 6104 |
|
|
!dtor
|
| 6105 |
|
|
|| (!DECL_VINDEX (dtor)
|
| 6106 |
|
|
&& (/* public non-virtual */
|
| 6107 |
|
|
(!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
|
| 6108 |
|
|
|| (/* non-public non-virtual with friends */
|
| 6109 |
|
|
(TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
|
| 6110 |
|
|
&& (CLASSTYPE_FRIEND_CLASSES (t)
|
| 6111 |
|
|
|| DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
|
| 6112 |
|
|
warning (OPT_Wnon_virtual_dtor,
|
| 6113 |
|
|
"%q#T has virtual functions and accessible"
|
| 6114 |
|
|
" non-virtual destructor", t);
|
| 6115 |
|
|
}
|
| 6116 |
|
|
|
| 6117 |
|
|
complete_vars (t);
|
| 6118 |
|
|
|
| 6119 |
|
|
if (warn_overloaded_virtual)
|
| 6120 |
|
|
warn_hidden (t);
|
| 6121 |
|
|
|
| 6122 |
|
|
/* Class layout, assignment of virtual table slots, etc., is now
|
| 6123 |
|
|
complete. Give the back end a chance to tweak the visibility of
|
| 6124 |
|
|
the class or perform any other required target modifications. */
|
| 6125 |
|
|
targetm.cxx.adjust_class_at_definition (t);
|
| 6126 |
|
|
|
| 6127 |
|
|
maybe_suppress_debug_info (t);
|
| 6128 |
|
|
|
| 6129 |
|
|
dump_class_hierarchy (t);
|
| 6130 |
|
|
|
| 6131 |
|
|
/* Finish debugging output for this type. */
|
| 6132 |
|
|
rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
|
| 6133 |
|
|
|
| 6134 |
|
|
if (TYPE_TRANSPARENT_AGGR (t))
|
| 6135 |
|
|
{
|
| 6136 |
|
|
tree field = first_field (t);
|
| 6137 |
|
|
if (field == NULL_TREE || error_operand_p (field))
|
| 6138 |
|
|
{
|
| 6139 |
|
|
error ("type transparent class %qT does not have any fields", t);
|
| 6140 |
|
|
TYPE_TRANSPARENT_AGGR (t) = 0;
|
| 6141 |
|
|
}
|
| 6142 |
|
|
else if (DECL_ARTIFICIAL (field))
|
| 6143 |
|
|
{
|
| 6144 |
|
|
if (DECL_FIELD_IS_BASE (field))
|
| 6145 |
|
|
error ("type transparent class %qT has base classes", t);
|
| 6146 |
|
|
else
|
| 6147 |
|
|
{
|
| 6148 |
|
|
gcc_checking_assert (DECL_VIRTUAL_P (field));
|
| 6149 |
|
|
error ("type transparent class %qT has virtual functions", t);
|
| 6150 |
|
|
}
|
| 6151 |
|
|
TYPE_TRANSPARENT_AGGR (t) = 0;
|
| 6152 |
|
|
}
|
| 6153 |
|
|
}
|
| 6154 |
|
|
}
|
| 6155 |
|
|
|
| 6156 |
|
|
/* When T was built up, the member declarations were added in reverse
|
| 6157 |
|
|
order. Rearrange them to declaration order. */
|
| 6158 |
|
|
|
| 6159 |
|
|
void
|
| 6160 |
|
|
unreverse_member_declarations (tree t)
|
| 6161 |
|
|
{
|
| 6162 |
|
|
tree next;
|
| 6163 |
|
|
tree prev;
|
| 6164 |
|
|
tree x;
|
| 6165 |
|
|
|
| 6166 |
|
|
/* The following lists are all in reverse order. Put them in
|
| 6167 |
|
|
declaration order now. */
|
| 6168 |
|
|
TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
|
| 6169 |
|
|
CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
|
| 6170 |
|
|
|
| 6171 |
|
|
/* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
|
| 6172 |
|
|
reverse order, so we can't just use nreverse. */
|
| 6173 |
|
|
prev = NULL_TREE;
|
| 6174 |
|
|
for (x = TYPE_FIELDS (t);
|
| 6175 |
|
|
x && TREE_CODE (x) != TYPE_DECL;
|
| 6176 |
|
|
x = next)
|
| 6177 |
|
|
{
|
| 6178 |
|
|
next = DECL_CHAIN (x);
|
| 6179 |
|
|
DECL_CHAIN (x) = prev;
|
| 6180 |
|
|
prev = x;
|
| 6181 |
|
|
}
|
| 6182 |
|
|
if (prev)
|
| 6183 |
|
|
{
|
| 6184 |
|
|
DECL_CHAIN (TYPE_FIELDS (t)) = x;
|
| 6185 |
|
|
if (prev)
|
| 6186 |
|
|
TYPE_FIELDS (t) = prev;
|
| 6187 |
|
|
}
|
| 6188 |
|
|
}
|
| 6189 |
|
|
|
| 6190 |
|
|
tree
|
| 6191 |
|
|
finish_struct (tree t, tree attributes)
|
| 6192 |
|
|
{
|
| 6193 |
|
|
location_t saved_loc = input_location;
|
| 6194 |
|
|
|
| 6195 |
|
|
/* Now that we've got all the field declarations, reverse everything
|
| 6196 |
|
|
as necessary. */
|
| 6197 |
|
|
unreverse_member_declarations (t);
|
| 6198 |
|
|
|
| 6199 |
|
|
cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
|
| 6200 |
|
|
|
| 6201 |
|
|
/* Nadger the current location so that diagnostics point to the start of
|
| 6202 |
|
|
the struct, not the end. */
|
| 6203 |
|
|
input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
|
| 6204 |
|
|
|
| 6205 |
|
|
if (processing_template_decl)
|
| 6206 |
|
|
{
|
| 6207 |
|
|
tree x;
|
| 6208 |
|
|
|
| 6209 |
|
|
finish_struct_methods (t);
|
| 6210 |
|
|
TYPE_SIZE (t) = bitsize_zero_node;
|
| 6211 |
|
|
TYPE_SIZE_UNIT (t) = size_zero_node;
|
| 6212 |
|
|
|
| 6213 |
|
|
/* We need to emit an error message if this type was used as a parameter
|
| 6214 |
|
|
and it is an abstract type, even if it is a template. We construct
|
| 6215 |
|
|
a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
|
| 6216 |
|
|
account and we call complete_vars with this type, which will check
|
| 6217 |
|
|
the PARM_DECLS. Note that while the type is being defined,
|
| 6218 |
|
|
CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
|
| 6219 |
|
|
(see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
|
| 6220 |
|
|
CLASSTYPE_PURE_VIRTUALS (t) = NULL;
|
| 6221 |
|
|
for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
|
| 6222 |
|
|
if (DECL_PURE_VIRTUAL_P (x))
|
| 6223 |
|
|
VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
|
| 6224 |
|
|
complete_vars (t);
|
| 6225 |
|
|
/* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
|
| 6226 |
|
|
an enclosing scope is a template class, so that this function be
|
| 6227 |
|
|
found by lookup_fnfields_1 when the using declaration is not
|
| 6228 |
|
|
instantiated yet. */
|
| 6229 |
|
|
for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
|
| 6230 |
|
|
if (TREE_CODE (x) == USING_DECL)
|
| 6231 |
|
|
{
|
| 6232 |
|
|
tree fn = strip_using_decl (x);
|
| 6233 |
|
|
if (is_overloaded_fn (fn))
|
| 6234 |
|
|
for (; fn; fn = OVL_NEXT (fn))
|
| 6235 |
|
|
add_method (t, OVL_CURRENT (fn), x);
|
| 6236 |
|
|
}
|
| 6237 |
|
|
|
| 6238 |
|
|
/* Remember current #pragma pack value. */
|
| 6239 |
|
|
TYPE_PRECISION (t) = maximum_field_alignment;
|
| 6240 |
|
|
}
|
| 6241 |
|
|
else
|
| 6242 |
|
|
finish_struct_1 (t);
|
| 6243 |
|
|
|
| 6244 |
|
|
input_location = saved_loc;
|
| 6245 |
|
|
|
| 6246 |
|
|
TYPE_BEING_DEFINED (t) = 0;
|
| 6247 |
|
|
|
| 6248 |
|
|
if (current_class_type)
|
| 6249 |
|
|
popclass ();
|
| 6250 |
|
|
else
|
| 6251 |
|
|
error ("trying to finish struct, but kicked out due to previous parse errors");
|
| 6252 |
|
|
|
| 6253 |
|
|
if (processing_template_decl && at_function_scope_p ())
|
| 6254 |
|
|
add_stmt (build_min (TAG_DEFN, t));
|
| 6255 |
|
|
|
| 6256 |
|
|
return t;
|
| 6257 |
|
|
}
|
| 6258 |
|
|
|
| 6259 |
|
|
/* Return the dynamic type of INSTANCE, if known.
|
| 6260 |
|
|
Used to determine whether the virtual function table is needed
|
| 6261 |
|
|
or not.
|
| 6262 |
|
|
|
| 6263 |
|
|
*NONNULL is set iff INSTANCE can be known to be nonnull, regardless
|
| 6264 |
|
|
of our knowledge of its type. *NONNULL should be initialized
|
| 6265 |
|
|
before this function is called. */
|
| 6266 |
|
|
|
| 6267 |
|
|
static tree
|
| 6268 |
|
|
fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
|
| 6269 |
|
|
{
|
| 6270 |
|
|
#define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
|
| 6271 |
|
|
|
| 6272 |
|
|
switch (TREE_CODE (instance))
|
| 6273 |
|
|
{
|
| 6274 |
|
|
case INDIRECT_REF:
|
| 6275 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (instance)))
|
| 6276 |
|
|
return NULL_TREE;
|
| 6277 |
|
|
else
|
| 6278 |
|
|
return RECUR (TREE_OPERAND (instance, 0));
|
| 6279 |
|
|
|
| 6280 |
|
|
case CALL_EXPR:
|
| 6281 |
|
|
/* This is a call to a constructor, hence it's never zero. */
|
| 6282 |
|
|
if (TREE_HAS_CONSTRUCTOR (instance))
|
| 6283 |
|
|
{
|
| 6284 |
|
|
if (nonnull)
|
| 6285 |
|
|
*nonnull = 1;
|
| 6286 |
|
|
return TREE_TYPE (instance);
|
| 6287 |
|
|
}
|
| 6288 |
|
|
return NULL_TREE;
|
| 6289 |
|
|
|
| 6290 |
|
|
case SAVE_EXPR:
|
| 6291 |
|
|
/* This is a call to a constructor, hence it's never zero. */
|
| 6292 |
|
|
if (TREE_HAS_CONSTRUCTOR (instance))
|
| 6293 |
|
|
{
|
| 6294 |
|
|
if (nonnull)
|
| 6295 |
|
|
*nonnull = 1;
|
| 6296 |
|
|
return TREE_TYPE (instance);
|
| 6297 |
|
|
}
|
| 6298 |
|
|
return RECUR (TREE_OPERAND (instance, 0));
|
| 6299 |
|
|
|
| 6300 |
|
|
case POINTER_PLUS_EXPR:
|
| 6301 |
|
|
case PLUS_EXPR:
|
| 6302 |
|
|
case MINUS_EXPR:
|
| 6303 |
|
|
if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
|
| 6304 |
|
|
return RECUR (TREE_OPERAND (instance, 0));
|
| 6305 |
|
|
if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
|
| 6306 |
|
|
/* Propagate nonnull. */
|
| 6307 |
|
|
return RECUR (TREE_OPERAND (instance, 0));
|
| 6308 |
|
|
|
| 6309 |
|
|
return NULL_TREE;
|
| 6310 |
|
|
|
| 6311 |
|
|
CASE_CONVERT:
|
| 6312 |
|
|
return RECUR (TREE_OPERAND (instance, 0));
|
| 6313 |
|
|
|
| 6314 |
|
|
case ADDR_EXPR:
|
| 6315 |
|
|
instance = TREE_OPERAND (instance, 0);
|
| 6316 |
|
|
if (nonnull)
|
| 6317 |
|
|
{
|
| 6318 |
|
|
/* Just because we see an ADDR_EXPR doesn't mean we're dealing
|
| 6319 |
|
|
with a real object -- given &p->f, p can still be null. */
|
| 6320 |
|
|
tree t = get_base_address (instance);
|
| 6321 |
|
|
/* ??? Probably should check DECL_WEAK here. */
|
| 6322 |
|
|
if (t && DECL_P (t))
|
| 6323 |
|
|
*nonnull = 1;
|
| 6324 |
|
|
}
|
| 6325 |
|
|
return RECUR (instance);
|
| 6326 |
|
|
|
| 6327 |
|
|
case COMPONENT_REF:
|
| 6328 |
|
|
/* If this component is really a base class reference, then the field
|
| 6329 |
|
|
itself isn't definitive. */
|
| 6330 |
|
|
if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
|
| 6331 |
|
|
return RECUR (TREE_OPERAND (instance, 0));
|
| 6332 |
|
|
return RECUR (TREE_OPERAND (instance, 1));
|
| 6333 |
|
|
|
| 6334 |
|
|
case VAR_DECL:
|
| 6335 |
|
|
case FIELD_DECL:
|
| 6336 |
|
|
if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
|
| 6337 |
|
|
&& MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
|
| 6338 |
|
|
{
|
| 6339 |
|
|
if (nonnull)
|
| 6340 |
|
|
*nonnull = 1;
|
| 6341 |
|
|
return TREE_TYPE (TREE_TYPE (instance));
|
| 6342 |
|
|
}
|
| 6343 |
|
|
/* fall through... */
|
| 6344 |
|
|
case TARGET_EXPR:
|
| 6345 |
|
|
case PARM_DECL:
|
| 6346 |
|
|
case RESULT_DECL:
|
| 6347 |
|
|
if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
|
| 6348 |
|
|
{
|
| 6349 |
|
|
if (nonnull)
|
| 6350 |
|
|
*nonnull = 1;
|
| 6351 |
|
|
return TREE_TYPE (instance);
|
| 6352 |
|
|
}
|
| 6353 |
|
|
else if (instance == current_class_ptr)
|
| 6354 |
|
|
{
|
| 6355 |
|
|
if (nonnull)
|
| 6356 |
|
|
*nonnull = 1;
|
| 6357 |
|
|
|
| 6358 |
|
|
/* if we're in a ctor or dtor, we know our type. If
|
| 6359 |
|
|
current_class_ptr is set but we aren't in a function, we're in
|
| 6360 |
|
|
an NSDMI (and therefore a constructor). */
|
| 6361 |
|
|
if (current_scope () != current_function_decl
|
| 6362 |
|
|
|| (DECL_LANG_SPECIFIC (current_function_decl)
|
| 6363 |
|
|
&& (DECL_CONSTRUCTOR_P (current_function_decl)
|
| 6364 |
|
|
|| DECL_DESTRUCTOR_P (current_function_decl))))
|
| 6365 |
|
|
{
|
| 6366 |
|
|
if (cdtorp)
|
| 6367 |
|
|
*cdtorp = 1;
|
| 6368 |
|
|
return TREE_TYPE (TREE_TYPE (instance));
|
| 6369 |
|
|
}
|
| 6370 |
|
|
}
|
| 6371 |
|
|
else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
|
| 6372 |
|
|
{
|
| 6373 |
|
|
/* We only need one hash table because it is always left empty. */
|
| 6374 |
|
|
static htab_t ht;
|
| 6375 |
|
|
if (!ht)
|
| 6376 |
|
|
ht = htab_create (37,
|
| 6377 |
|
|
htab_hash_pointer,
|
| 6378 |
|
|
htab_eq_pointer,
|
| 6379 |
|
|
/*htab_del=*/NULL);
|
| 6380 |
|
|
|
| 6381 |
|
|
/* Reference variables should be references to objects. */
|
| 6382 |
|
|
if (nonnull)
|
| 6383 |
|
|
*nonnull = 1;
|
| 6384 |
|
|
|
| 6385 |
|
|
/* Enter the INSTANCE in a table to prevent recursion; a
|
| 6386 |
|
|
variable's initializer may refer to the variable
|
| 6387 |
|
|
itself. */
|
| 6388 |
|
|
if (TREE_CODE (instance) == VAR_DECL
|
| 6389 |
|
|
&& DECL_INITIAL (instance)
|
| 6390 |
|
|
&& !type_dependent_expression_p_push (DECL_INITIAL (instance))
|
| 6391 |
|
|
&& !htab_find (ht, instance))
|
| 6392 |
|
|
{
|
| 6393 |
|
|
tree type;
|
| 6394 |
|
|
void **slot;
|
| 6395 |
|
|
|
| 6396 |
|
|
slot = htab_find_slot (ht, instance, INSERT);
|
| 6397 |
|
|
*slot = instance;
|
| 6398 |
|
|
type = RECUR (DECL_INITIAL (instance));
|
| 6399 |
|
|
htab_remove_elt (ht, instance);
|
| 6400 |
|
|
|
| 6401 |
|
|
return type;
|
| 6402 |
|
|
}
|
| 6403 |
|
|
}
|
| 6404 |
|
|
return NULL_TREE;
|
| 6405 |
|
|
|
| 6406 |
|
|
default:
|
| 6407 |
|
|
return NULL_TREE;
|
| 6408 |
|
|
}
|
| 6409 |
|
|
#undef RECUR
|
| 6410 |
|
|
}
|
| 6411 |
|
|
|
| 6412 |
|
|
/* Return nonzero if the dynamic type of INSTANCE is known, and
|
| 6413 |
|
|
equivalent to the static type. We also handle the case where
|
| 6414 |
|
|
INSTANCE is really a pointer. Return negative if this is a
|
| 6415 |
|
|
ctor/dtor. There the dynamic type is known, but this might not be
|
| 6416 |
|
|
the most derived base of the original object, and hence virtual
|
| 6417 |
|
|
bases may not be layed out according to this type.
|
| 6418 |
|
|
|
| 6419 |
|
|
Used to determine whether the virtual function table is needed
|
| 6420 |
|
|
or not.
|
| 6421 |
|
|
|
| 6422 |
|
|
*NONNULL is set iff INSTANCE can be known to be nonnull, regardless
|
| 6423 |
|
|
of our knowledge of its type. *NONNULL should be initialized
|
| 6424 |
|
|
before this function is called. */
|
| 6425 |
|
|
|
| 6426 |
|
|
int
|
| 6427 |
|
|
resolves_to_fixed_type_p (tree instance, int* nonnull)
|
| 6428 |
|
|
{
|
| 6429 |
|
|
tree t = TREE_TYPE (instance);
|
| 6430 |
|
|
int cdtorp = 0;
|
| 6431 |
|
|
tree fixed;
|
| 6432 |
|
|
|
| 6433 |
|
|
if (processing_template_decl)
|
| 6434 |
|
|
{
|
| 6435 |
|
|
/* In a template we only care about the type of the result. */
|
| 6436 |
|
|
if (nonnull)
|
| 6437 |
|
|
*nonnull = true;
|
| 6438 |
|
|
return true;
|
| 6439 |
|
|
}
|
| 6440 |
|
|
|
| 6441 |
|
|
fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
|
| 6442 |
|
|
if (fixed == NULL_TREE)
|
| 6443 |
|
|
return 0;
|
| 6444 |
|
|
if (POINTER_TYPE_P (t))
|
| 6445 |
|
|
t = TREE_TYPE (t);
|
| 6446 |
|
|
if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
|
| 6447 |
|
|
return 0;
|
| 6448 |
|
|
return cdtorp ? -1 : 1;
|
| 6449 |
|
|
}
|
| 6450 |
|
|
|
| 6451 |
|
|
|
| 6452 |
|
|
void
|
| 6453 |
|
|
init_class_processing (void)
|
| 6454 |
|
|
{
|
| 6455 |
|
|
current_class_depth = 0;
|
| 6456 |
|
|
current_class_stack_size = 10;
|
| 6457 |
|
|
current_class_stack
|
| 6458 |
|
|
= XNEWVEC (struct class_stack_node, current_class_stack_size);
|
| 6459 |
|
|
local_classes = VEC_alloc (tree, gc, 8);
|
| 6460 |
|
|
sizeof_biggest_empty_class = size_zero_node;
|
| 6461 |
|
|
|
| 6462 |
|
|
ridpointers[(int) RID_PUBLIC] = access_public_node;
|
| 6463 |
|
|
ridpointers[(int) RID_PRIVATE] = access_private_node;
|
| 6464 |
|
|
ridpointers[(int) RID_PROTECTED] = access_protected_node;
|
| 6465 |
|
|
}
|
| 6466 |
|
|
|
| 6467 |
|
|
/* Restore the cached PREVIOUS_CLASS_LEVEL. */
|
| 6468 |
|
|
|
| 6469 |
|
|
static void
|
| 6470 |
|
|
restore_class_cache (void)
|
| 6471 |
|
|
{
|
| 6472 |
|
|
tree type;
|
| 6473 |
|
|
|
| 6474 |
|
|
/* We are re-entering the same class we just left, so we don't
|
| 6475 |
|
|
have to search the whole inheritance matrix to find all the
|
| 6476 |
|
|
decls to bind again. Instead, we install the cached
|
| 6477 |
|
|
class_shadowed list and walk through it binding names. */
|
| 6478 |
|
|
push_binding_level (previous_class_level);
|
| 6479 |
|
|
class_binding_level = previous_class_level;
|
| 6480 |
|
|
/* Restore IDENTIFIER_TYPE_VALUE. */
|
| 6481 |
|
|
for (type = class_binding_level->type_shadowed;
|
| 6482 |
|
|
type;
|
| 6483 |
|
|
type = TREE_CHAIN (type))
|
| 6484 |
|
|
SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
|
| 6485 |
|
|
}
|
| 6486 |
|
|
|
| 6487 |
|
|
/* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
|
| 6488 |
|
|
appropriate for TYPE.
|
| 6489 |
|
|
|
| 6490 |
|
|
So that we may avoid calls to lookup_name, we cache the _TYPE
|
| 6491 |
|
|
nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
|
| 6492 |
|
|
|
| 6493 |
|
|
For multiple inheritance, we perform a two-pass depth-first search
|
| 6494 |
|
|
of the type lattice. */
|
| 6495 |
|
|
|
| 6496 |
|
|
void
|
| 6497 |
|
|
pushclass (tree type)
|
| 6498 |
|
|
{
|
| 6499 |
|
|
class_stack_node_t csn;
|
| 6500 |
|
|
|
| 6501 |
|
|
type = TYPE_MAIN_VARIANT (type);
|
| 6502 |
|
|
|
| 6503 |
|
|
/* Make sure there is enough room for the new entry on the stack. */
|
| 6504 |
|
|
if (current_class_depth + 1 >= current_class_stack_size)
|
| 6505 |
|
|
{
|
| 6506 |
|
|
current_class_stack_size *= 2;
|
| 6507 |
|
|
current_class_stack
|
| 6508 |
|
|
= XRESIZEVEC (struct class_stack_node, current_class_stack,
|
| 6509 |
|
|
current_class_stack_size);
|
| 6510 |
|
|
}
|
| 6511 |
|
|
|
| 6512 |
|
|
/* Insert a new entry on the class stack. */
|
| 6513 |
|
|
csn = current_class_stack + current_class_depth;
|
| 6514 |
|
|
csn->name = current_class_name;
|
| 6515 |
|
|
csn->type = current_class_type;
|
| 6516 |
|
|
csn->access = current_access_specifier;
|
| 6517 |
|
|
csn->names_used = 0;
|
| 6518 |
|
|
csn->hidden = 0;
|
| 6519 |
|
|
current_class_depth++;
|
| 6520 |
|
|
|
| 6521 |
|
|
/* Now set up the new type. */
|
| 6522 |
|
|
current_class_name = TYPE_NAME (type);
|
| 6523 |
|
|
if (TREE_CODE (current_class_name) == TYPE_DECL)
|
| 6524 |
|
|
current_class_name = DECL_NAME (current_class_name);
|
| 6525 |
|
|
current_class_type = type;
|
| 6526 |
|
|
|
| 6527 |
|
|
/* By default, things in classes are private, while things in
|
| 6528 |
|
|
structures or unions are public. */
|
| 6529 |
|
|
current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
|
| 6530 |
|
|
? access_private_node
|
| 6531 |
|
|
: access_public_node);
|
| 6532 |
|
|
|
| 6533 |
|
|
if (previous_class_level
|
| 6534 |
|
|
&& type != previous_class_level->this_entity
|
| 6535 |
|
|
&& current_class_depth == 1)
|
| 6536 |
|
|
{
|
| 6537 |
|
|
/* Forcibly remove any old class remnants. */
|
| 6538 |
|
|
invalidate_class_lookup_cache ();
|
| 6539 |
|
|
}
|
| 6540 |
|
|
|
| 6541 |
|
|
if (!previous_class_level
|
| 6542 |
|
|
|| type != previous_class_level->this_entity
|
| 6543 |
|
|
|| current_class_depth > 1)
|
| 6544 |
|
|
pushlevel_class ();
|
| 6545 |
|
|
else
|
| 6546 |
|
|
restore_class_cache ();
|
| 6547 |
|
|
}
|
| 6548 |
|
|
|
| 6549 |
|
|
/* When we exit a toplevel class scope, we save its binding level so
|
| 6550 |
|
|
that we can restore it quickly. Here, we've entered some other
|
| 6551 |
|
|
class, so we must invalidate our cache. */
|
| 6552 |
|
|
|
| 6553 |
|
|
void
|
| 6554 |
|
|
invalidate_class_lookup_cache (void)
|
| 6555 |
|
|
{
|
| 6556 |
|
|
previous_class_level = NULL;
|
| 6557 |
|
|
}
|
| 6558 |
|
|
|
| 6559 |
|
|
/* Get out of the current class scope. If we were in a class scope
|
| 6560 |
|
|
previously, that is the one popped to. */
|
| 6561 |
|
|
|
| 6562 |
|
|
void
|
| 6563 |
|
|
popclass (void)
|
| 6564 |
|
|
{
|
| 6565 |
|
|
poplevel_class ();
|
| 6566 |
|
|
|
| 6567 |
|
|
current_class_depth--;
|
| 6568 |
|
|
current_class_name = current_class_stack[current_class_depth].name;
|
| 6569 |
|
|
current_class_type = current_class_stack[current_class_depth].type;
|
| 6570 |
|
|
current_access_specifier = current_class_stack[current_class_depth].access;
|
| 6571 |
|
|
if (current_class_stack[current_class_depth].names_used)
|
| 6572 |
|
|
splay_tree_delete (current_class_stack[current_class_depth].names_used);
|
| 6573 |
|
|
}
|
| 6574 |
|
|
|
| 6575 |
|
|
/* Mark the top of the class stack as hidden. */
|
| 6576 |
|
|
|
| 6577 |
|
|
void
|
| 6578 |
|
|
push_class_stack (void)
|
| 6579 |
|
|
{
|
| 6580 |
|
|
if (current_class_depth)
|
| 6581 |
|
|
++current_class_stack[current_class_depth - 1].hidden;
|
| 6582 |
|
|
}
|
| 6583 |
|
|
|
| 6584 |
|
|
/* Mark the top of the class stack as un-hidden. */
|
| 6585 |
|
|
|
| 6586 |
|
|
void
|
| 6587 |
|
|
pop_class_stack (void)
|
| 6588 |
|
|
{
|
| 6589 |
|
|
if (current_class_depth)
|
| 6590 |
|
|
--current_class_stack[current_class_depth - 1].hidden;
|
| 6591 |
|
|
}
|
| 6592 |
|
|
|
| 6593 |
|
|
/* Returns 1 if the class type currently being defined is either T or
|
| 6594 |
|
|
a nested type of T. */
|
| 6595 |
|
|
|
| 6596 |
|
|
bool
|
| 6597 |
|
|
currently_open_class (tree t)
|
| 6598 |
|
|
{
|
| 6599 |
|
|
int i;
|
| 6600 |
|
|
|
| 6601 |
|
|
if (!CLASS_TYPE_P (t))
|
| 6602 |
|
|
return false;
|
| 6603 |
|
|
|
| 6604 |
|
|
t = TYPE_MAIN_VARIANT (t);
|
| 6605 |
|
|
|
| 6606 |
|
|
/* We start looking from 1 because entry 0 is from global scope,
|
| 6607 |
|
|
and has no type. */
|
| 6608 |
|
|
for (i = current_class_depth; i > 0; --i)
|
| 6609 |
|
|
{
|
| 6610 |
|
|
tree c;
|
| 6611 |
|
|
if (i == current_class_depth)
|
| 6612 |
|
|
c = current_class_type;
|
| 6613 |
|
|
else
|
| 6614 |
|
|
{
|
| 6615 |
|
|
if (current_class_stack[i].hidden)
|
| 6616 |
|
|
break;
|
| 6617 |
|
|
c = current_class_stack[i].type;
|
| 6618 |
|
|
}
|
| 6619 |
|
|
if (!c)
|
| 6620 |
|
|
continue;
|
| 6621 |
|
|
if (same_type_p (c, t))
|
| 6622 |
|
|
return true;
|
| 6623 |
|
|
}
|
| 6624 |
|
|
return false;
|
| 6625 |
|
|
}
|
| 6626 |
|
|
|
| 6627 |
|
|
/* If either current_class_type or one of its enclosing classes are derived
|
| 6628 |
|
|
from T, return the appropriate type. Used to determine how we found
|
| 6629 |
|
|
something via unqualified lookup. */
|
| 6630 |
|
|
|
| 6631 |
|
|
tree
|
| 6632 |
|
|
currently_open_derived_class (tree t)
|
| 6633 |
|
|
{
|
| 6634 |
|
|
int i;
|
| 6635 |
|
|
|
| 6636 |
|
|
/* The bases of a dependent type are unknown. */
|
| 6637 |
|
|
if (dependent_type_p (t))
|
| 6638 |
|
|
return NULL_TREE;
|
| 6639 |
|
|
|
| 6640 |
|
|
if (!current_class_type)
|
| 6641 |
|
|
return NULL_TREE;
|
| 6642 |
|
|
|
| 6643 |
|
|
if (DERIVED_FROM_P (t, current_class_type))
|
| 6644 |
|
|
return current_class_type;
|
| 6645 |
|
|
|
| 6646 |
|
|
for (i = current_class_depth - 1; i > 0; --i)
|
| 6647 |
|
|
{
|
| 6648 |
|
|
if (current_class_stack[i].hidden)
|
| 6649 |
|
|
break;
|
| 6650 |
|
|
if (DERIVED_FROM_P (t, current_class_stack[i].type))
|
| 6651 |
|
|
return current_class_stack[i].type;
|
| 6652 |
|
|
}
|
| 6653 |
|
|
|
| 6654 |
|
|
return NULL_TREE;
|
| 6655 |
|
|
}
|
| 6656 |
|
|
|
| 6657 |
|
|
/* Returns the innermost class type which is not a lambda closure type. */
|
| 6658 |
|
|
|
| 6659 |
|
|
tree
|
| 6660 |
|
|
current_nonlambda_class_type (void)
|
| 6661 |
|
|
{
|
| 6662 |
|
|
int i;
|
| 6663 |
|
|
|
| 6664 |
|
|
/* We start looking from 1 because entry 0 is from global scope,
|
| 6665 |
|
|
and has no type. */
|
| 6666 |
|
|
for (i = current_class_depth; i > 0; --i)
|
| 6667 |
|
|
{
|
| 6668 |
|
|
tree c;
|
| 6669 |
|
|
if (i == current_class_depth)
|
| 6670 |
|
|
c = current_class_type;
|
| 6671 |
|
|
else
|
| 6672 |
|
|
{
|
| 6673 |
|
|
if (current_class_stack[i].hidden)
|
| 6674 |
|
|
break;
|
| 6675 |
|
|
c = current_class_stack[i].type;
|
| 6676 |
|
|
}
|
| 6677 |
|
|
if (!c)
|
| 6678 |
|
|
continue;
|
| 6679 |
|
|
if (!LAMBDA_TYPE_P (c))
|
| 6680 |
|
|
return c;
|
| 6681 |
|
|
}
|
| 6682 |
|
|
return NULL_TREE;
|
| 6683 |
|
|
}
|
| 6684 |
|
|
|
| 6685 |
|
|
/* When entering a class scope, all enclosing class scopes' names with
|
| 6686 |
|
|
static meaning (static variables, static functions, types and
|
| 6687 |
|
|
enumerators) have to be visible. This recursive function calls
|
| 6688 |
|
|
pushclass for all enclosing class contexts until global or a local
|
| 6689 |
|
|
scope is reached. TYPE is the enclosed class. */
|
| 6690 |
|
|
|
| 6691 |
|
|
void
|
| 6692 |
|
|
push_nested_class (tree type)
|
| 6693 |
|
|
{
|
| 6694 |
|
|
/* A namespace might be passed in error cases, like A::B:C. */
|
| 6695 |
|
|
if (type == NULL_TREE
|
| 6696 |
|
|
|| !CLASS_TYPE_P (type))
|
| 6697 |
|
|
return;
|
| 6698 |
|
|
|
| 6699 |
|
|
push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
|
| 6700 |
|
|
|
| 6701 |
|
|
pushclass (type);
|
| 6702 |
|
|
}
|
| 6703 |
|
|
|
| 6704 |
|
|
/* Undoes a push_nested_class call. */
|
| 6705 |
|
|
|
| 6706 |
|
|
void
|
| 6707 |
|
|
pop_nested_class (void)
|
| 6708 |
|
|
{
|
| 6709 |
|
|
tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
|
| 6710 |
|
|
|
| 6711 |
|
|
popclass ();
|
| 6712 |
|
|
if (context && CLASS_TYPE_P (context))
|
| 6713 |
|
|
pop_nested_class ();
|
| 6714 |
|
|
}
|
| 6715 |
|
|
|
| 6716 |
|
|
/* Returns the number of extern "LANG" blocks we are nested within. */
|
| 6717 |
|
|
|
| 6718 |
|
|
int
|
| 6719 |
|
|
current_lang_depth (void)
|
| 6720 |
|
|
{
|
| 6721 |
|
|
return VEC_length (tree, current_lang_base);
|
| 6722 |
|
|
}
|
| 6723 |
|
|
|
| 6724 |
|
|
/* Set global variables CURRENT_LANG_NAME to appropriate value
|
| 6725 |
|
|
so that behavior of name-mangling machinery is correct. */
|
| 6726 |
|
|
|
| 6727 |
|
|
void
|
| 6728 |
|
|
push_lang_context (tree name)
|
| 6729 |
|
|
{
|
| 6730 |
|
|
VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
|
| 6731 |
|
|
|
| 6732 |
|
|
if (name == lang_name_cplusplus)
|
| 6733 |
|
|
{
|
| 6734 |
|
|
current_lang_name = name;
|
| 6735 |
|
|
}
|
| 6736 |
|
|
else if (name == lang_name_java)
|
| 6737 |
|
|
{
|
| 6738 |
|
|
current_lang_name = name;
|
| 6739 |
|
|
/* DECL_IGNORED_P is initially set for these types, to avoid clutter.
|
| 6740 |
|
|
(See record_builtin_java_type in decl.c.) However, that causes
|
| 6741 |
|
|
incorrect debug entries if these types are actually used.
|
| 6742 |
|
|
So we re-enable debug output after extern "Java". */
|
| 6743 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
|
| 6744 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
|
| 6745 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
|
| 6746 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
|
| 6747 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
|
| 6748 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
|
| 6749 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
|
| 6750 |
|
|
DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
|
| 6751 |
|
|
}
|
| 6752 |
|
|
else if (name == lang_name_c)
|
| 6753 |
|
|
{
|
| 6754 |
|
|
current_lang_name = name;
|
| 6755 |
|
|
}
|
| 6756 |
|
|
else
|
| 6757 |
|
|
error ("language string %<\"%E\"%> not recognized", name);
|
| 6758 |
|
|
}
|
| 6759 |
|
|
|
| 6760 |
|
|
/* Get out of the current language scope. */
|
| 6761 |
|
|
|
| 6762 |
|
|
void
|
| 6763 |
|
|
pop_lang_context (void)
|
| 6764 |
|
|
{
|
| 6765 |
|
|
current_lang_name = VEC_pop (tree, current_lang_base);
|
| 6766 |
|
|
}
|
| 6767 |
|
|
|
| 6768 |
|
|
/* Type instantiation routines. */
|
| 6769 |
|
|
|
| 6770 |
|
|
/* Given an OVERLOAD and a TARGET_TYPE, return the function that
|
| 6771 |
|
|
matches the TARGET_TYPE. If there is no satisfactory match, return
|
| 6772 |
|
|
error_mark_node, and issue an error & warning messages under
|
| 6773 |
|
|
control of FLAGS. Permit pointers to member function if FLAGS
|
| 6774 |
|
|
permits. If TEMPLATE_ONLY, the name of the overloaded function was
|
| 6775 |
|
|
a template-id, and EXPLICIT_TARGS are the explicitly provided
|
| 6776 |
|
|
template arguments.
|
| 6777 |
|
|
|
| 6778 |
|
|
If OVERLOAD is for one or more member functions, then ACCESS_PATH
|
| 6779 |
|
|
is the base path used to reference those member functions. If
|
| 6780 |
|
|
TF_NO_ACCESS_CONTROL is not set in FLAGS, and the address is
|
| 6781 |
|
|
resolved to a member function, access checks will be performed and
|
| 6782 |
|
|
errors issued if appropriate. */
|
| 6783 |
|
|
|
| 6784 |
|
|
static tree
|
| 6785 |
|
|
resolve_address_of_overloaded_function (tree target_type,
|
| 6786 |
|
|
tree overload,
|
| 6787 |
|
|
tsubst_flags_t flags,
|
| 6788 |
|
|
bool template_only,
|
| 6789 |
|
|
tree explicit_targs,
|
| 6790 |
|
|
tree access_path)
|
| 6791 |
|
|
{
|
| 6792 |
|
|
/* Here's what the standard says:
|
| 6793 |
|
|
|
| 6794 |
|
|
[over.over]
|
| 6795 |
|
|
|
| 6796 |
|
|
If the name is a function template, template argument deduction
|
| 6797 |
|
|
is done, and if the argument deduction succeeds, the deduced
|
| 6798 |
|
|
arguments are used to generate a single template function, which
|
| 6799 |
|
|
is added to the set of overloaded functions considered.
|
| 6800 |
|
|
|
| 6801 |
|
|
Non-member functions and static member functions match targets of
|
| 6802 |
|
|
type "pointer-to-function" or "reference-to-function." Nonstatic
|
| 6803 |
|
|
member functions match targets of type "pointer-to-member
|
| 6804 |
|
|
function;" the function type of the pointer to member is used to
|
| 6805 |
|
|
select the member function from the set of overloaded member
|
| 6806 |
|
|
functions. If a nonstatic member function is selected, the
|
| 6807 |
|
|
reference to the overloaded function name is required to have the
|
| 6808 |
|
|
form of a pointer to member as described in 5.3.1.
|
| 6809 |
|
|
|
| 6810 |
|
|
If more than one function is selected, any template functions in
|
| 6811 |
|
|
the set are eliminated if the set also contains a non-template
|
| 6812 |
|
|
function, and any given template function is eliminated if the
|
| 6813 |
|
|
set contains a second template function that is more specialized
|
| 6814 |
|
|
than the first according to the partial ordering rules 14.5.5.2.
|
| 6815 |
|
|
After such eliminations, if any, there shall remain exactly one
|
| 6816 |
|
|
selected function. */
|
| 6817 |
|
|
|
| 6818 |
|
|
int is_ptrmem = 0;
|
| 6819 |
|
|
/* We store the matches in a TREE_LIST rooted here. The functions
|
| 6820 |
|
|
are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
|
| 6821 |
|
|
interoperability with most_specialized_instantiation. */
|
| 6822 |
|
|
tree matches = NULL_TREE;
|
| 6823 |
|
|
tree fn;
|
| 6824 |
|
|
tree target_fn_type;
|
| 6825 |
|
|
|
| 6826 |
|
|
/* By the time we get here, we should be seeing only real
|
| 6827 |
|
|
pointer-to-member types, not the internal POINTER_TYPE to
|
| 6828 |
|
|
METHOD_TYPE representation. */
|
| 6829 |
|
|
gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
|
| 6830 |
|
|
|| TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
|
| 6831 |
|
|
|
| 6832 |
|
|
gcc_assert (is_overloaded_fn (overload));
|
| 6833 |
|
|
|
| 6834 |
|
|
/* Check that the TARGET_TYPE is reasonable. */
|
| 6835 |
|
|
if (TYPE_PTRFN_P (target_type))
|
| 6836 |
|
|
/* This is OK. */;
|
| 6837 |
|
|
else if (TYPE_PTRMEMFUNC_P (target_type))
|
| 6838 |
|
|
/* This is OK, too. */
|
| 6839 |
|
|
is_ptrmem = 1;
|
| 6840 |
|
|
else if (TREE_CODE (target_type) == FUNCTION_TYPE)
|
| 6841 |
|
|
/* This is OK, too. This comes from a conversion to reference
|
| 6842 |
|
|
type. */
|
| 6843 |
|
|
target_type = build_reference_type (target_type);
|
| 6844 |
|
|
else
|
| 6845 |
|
|
{
|
| 6846 |
|
|
if (flags & tf_error)
|
| 6847 |
|
|
error ("cannot resolve overloaded function %qD based on"
|
| 6848 |
|
|
" conversion to type %qT",
|
| 6849 |
|
|
DECL_NAME (OVL_FUNCTION (overload)), target_type);
|
| 6850 |
|
|
return error_mark_node;
|
| 6851 |
|
|
}
|
| 6852 |
|
|
|
| 6853 |
|
|
/* Non-member functions and static member functions match targets of type
|
| 6854 |
|
|
"pointer-to-function" or "reference-to-function." Nonstatic member
|
| 6855 |
|
|
functions match targets of type "pointer-to-member-function;" the
|
| 6856 |
|
|
function type of the pointer to member is used to select the member
|
| 6857 |
|
|
function from the set of overloaded member functions.
|
| 6858 |
|
|
|
| 6859 |
|
|
So figure out the FUNCTION_TYPE that we want to match against. */
|
| 6860 |
|
|
target_fn_type = static_fn_type (target_type);
|
| 6861 |
|
|
|
| 6862 |
|
|
/* If we can find a non-template function that matches, we can just
|
| 6863 |
|
|
use it. There's no point in generating template instantiations
|
| 6864 |
|
|
if we're just going to throw them out anyhow. But, of course, we
|
| 6865 |
|
|
can only do this when we don't *need* a template function. */
|
| 6866 |
|
|
if (!template_only)
|
| 6867 |
|
|
{
|
| 6868 |
|
|
tree fns;
|
| 6869 |
|
|
|
| 6870 |
|
|
for (fns = overload; fns; fns = OVL_NEXT (fns))
|
| 6871 |
|
|
{
|
| 6872 |
|
|
tree fn = OVL_CURRENT (fns);
|
| 6873 |
|
|
|
| 6874 |
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL)
|
| 6875 |
|
|
/* We're not looking for templates just yet. */
|
| 6876 |
|
|
continue;
|
| 6877 |
|
|
|
| 6878 |
|
|
if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
|
| 6879 |
|
|
!= is_ptrmem)
|
| 6880 |
|
|
/* We're looking for a non-static member, and this isn't
|
| 6881 |
|
|
one, or vice versa. */
|
| 6882 |
|
|
continue;
|
| 6883 |
|
|
|
| 6884 |
|
|
/* Ignore functions which haven't been explicitly
|
| 6885 |
|
|
declared. */
|
| 6886 |
|
|
if (DECL_ANTICIPATED (fn))
|
| 6887 |
|
|
continue;
|
| 6888 |
|
|
|
| 6889 |
|
|
/* See if there's a match. */
|
| 6890 |
|
|
if (same_type_p (target_fn_type, static_fn_type (fn)))
|
| 6891 |
|
|
matches = tree_cons (fn, NULL_TREE, matches);
|
| 6892 |
|
|
}
|
| 6893 |
|
|
}
|
| 6894 |
|
|
|
| 6895 |
|
|
/* Now, if we've already got a match (or matches), there's no need
|
| 6896 |
|
|
to proceed to the template functions. But, if we don't have a
|
| 6897 |
|
|
match we need to look at them, too. */
|
| 6898 |
|
|
if (!matches)
|
| 6899 |
|
|
{
|
| 6900 |
|
|
tree target_arg_types;
|
| 6901 |
|
|
tree target_ret_type;
|
| 6902 |
|
|
tree fns;
|
| 6903 |
|
|
tree *args;
|
| 6904 |
|
|
unsigned int nargs, ia;
|
| 6905 |
|
|
tree arg;
|
| 6906 |
|
|
|
| 6907 |
|
|
target_arg_types = TYPE_ARG_TYPES (target_fn_type);
|
| 6908 |
|
|
target_ret_type = TREE_TYPE (target_fn_type);
|
| 6909 |
|
|
|
| 6910 |
|
|
nargs = list_length (target_arg_types);
|
| 6911 |
|
|
args = XALLOCAVEC (tree, nargs);
|
| 6912 |
|
|
for (arg = target_arg_types, ia = 0;
|
| 6913 |
|
|
arg != NULL_TREE && arg != void_list_node;
|
| 6914 |
|
|
arg = TREE_CHAIN (arg), ++ia)
|
| 6915 |
|
|
args[ia] = TREE_VALUE (arg);
|
| 6916 |
|
|
nargs = ia;
|
| 6917 |
|
|
|
| 6918 |
|
|
for (fns = overload; fns; fns = OVL_NEXT (fns))
|
| 6919 |
|
|
{
|
| 6920 |
|
|
tree fn = OVL_CURRENT (fns);
|
| 6921 |
|
|
tree instantiation;
|
| 6922 |
|
|
tree targs;
|
| 6923 |
|
|
|
| 6924 |
|
|
if (TREE_CODE (fn) != TEMPLATE_DECL)
|
| 6925 |
|
|
/* We're only looking for templates. */
|
| 6926 |
|
|
continue;
|
| 6927 |
|
|
|
| 6928 |
|
|
if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
|
| 6929 |
|
|
!= is_ptrmem)
|
| 6930 |
|
|
/* We're not looking for a non-static member, and this is
|
| 6931 |
|
|
one, or vice versa. */
|
| 6932 |
|
|
continue;
|
| 6933 |
|
|
|
| 6934 |
|
|
/* Try to do argument deduction. */
|
| 6935 |
|
|
targs = make_tree_vec (DECL_NTPARMS (fn));
|
| 6936 |
|
|
if (fn_type_unification (fn, explicit_targs, targs, args, nargs,
|
| 6937 |
|
|
target_ret_type, DEDUCE_EXACT,
|
| 6938 |
|
|
LOOKUP_NORMAL, false))
|
| 6939 |
|
|
/* Argument deduction failed. */
|
| 6940 |
|
|
continue;
|
| 6941 |
|
|
|
| 6942 |
|
|
/* Instantiate the template. */
|
| 6943 |
|
|
instantiation = instantiate_template (fn, targs, flags);
|
| 6944 |
|
|
if (instantiation == error_mark_node)
|
| 6945 |
|
|
/* Instantiation failed. */
|
| 6946 |
|
|
continue;
|
| 6947 |
|
|
|
| 6948 |
|
|
/* See if there's a match. */
|
| 6949 |
|
|
if (same_type_p (target_fn_type, static_fn_type (instantiation)))
|
| 6950 |
|
|
matches = tree_cons (instantiation, fn, matches);
|
| 6951 |
|
|
}
|
| 6952 |
|
|
|
| 6953 |
|
|
/* Now, remove all but the most specialized of the matches. */
|
| 6954 |
|
|
if (matches)
|
| 6955 |
|
|
{
|
| 6956 |
|
|
tree match = most_specialized_instantiation (matches);
|
| 6957 |
|
|
|
| 6958 |
|
|
if (match != error_mark_node)
|
| 6959 |
|
|
matches = tree_cons (TREE_PURPOSE (match),
|
| 6960 |
|
|
NULL_TREE,
|
| 6961 |
|
|
NULL_TREE);
|
| 6962 |
|
|
}
|
| 6963 |
|
|
}
|
| 6964 |
|
|
|
| 6965 |
|
|
/* Now we should have exactly one function in MATCHES. */
|
| 6966 |
|
|
if (matches == NULL_TREE)
|
| 6967 |
|
|
{
|
| 6968 |
|
|
/* There were *no* matches. */
|
| 6969 |
|
|
if (flags & tf_error)
|
| 6970 |
|
|
{
|
| 6971 |
|
|
error ("no matches converting function %qD to type %q#T",
|
| 6972 |
|
|
DECL_NAME (OVL_CURRENT (overload)),
|
| 6973 |
|
|
target_type);
|
| 6974 |
|
|
|
| 6975 |
|
|
print_candidates (overload);
|
| 6976 |
|
|
}
|
| 6977 |
|
|
return error_mark_node;
|
| 6978 |
|
|
}
|
| 6979 |
|
|
else if (TREE_CHAIN (matches))
|
| 6980 |
|
|
{
|
| 6981 |
|
|
/* There were too many matches. First check if they're all
|
| 6982 |
|
|
the same function. */
|
| 6983 |
|
|
tree match;
|
| 6984 |
|
|
|
| 6985 |
|
|
fn = TREE_PURPOSE (matches);
|
| 6986 |
|
|
for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
|
| 6987 |
|
|
if (!decls_match (fn, TREE_PURPOSE (match)))
|
| 6988 |
|
|
break;
|
| 6989 |
|
|
|
| 6990 |
|
|
if (match)
|
| 6991 |
|
|
{
|
| 6992 |
|
|
if (flags & tf_error)
|
| 6993 |
|
|
{
|
| 6994 |
|
|
error ("converting overloaded function %qD to type %q#T is ambiguous",
|
| 6995 |
|
|
DECL_NAME (OVL_FUNCTION (overload)),
|
| 6996 |
|
|
target_type);
|
| 6997 |
|
|
|
| 6998 |
|
|
/* Since print_candidates expects the functions in the
|
| 6999 |
|
|
TREE_VALUE slot, we flip them here. */
|
| 7000 |
|
|
for (match = matches; match; match = TREE_CHAIN (match))
|
| 7001 |
|
|
TREE_VALUE (match) = TREE_PURPOSE (match);
|
| 7002 |
|
|
|
| 7003 |
|
|
print_candidates (matches);
|
| 7004 |
|
|
}
|
| 7005 |
|
|
|
| 7006 |
|
|
return error_mark_node;
|
| 7007 |
|
|
}
|
| 7008 |
|
|
}
|
| 7009 |
|
|
|
| 7010 |
|
|
/* Good, exactly one match. Now, convert it to the correct type. */
|
| 7011 |
|
|
fn = TREE_PURPOSE (matches);
|
| 7012 |
|
|
|
| 7013 |
|
|
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
|
| 7014 |
|
|
&& !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
|
| 7015 |
|
|
{
|
| 7016 |
|
|
static int explained;
|
| 7017 |
|
|
|
| 7018 |
|
|
if (!(flags & tf_error))
|
| 7019 |
|
|
return error_mark_node;
|
| 7020 |
|
|
|
| 7021 |
|
|
permerror (input_location, "assuming pointer to member %qD", fn);
|
| 7022 |
|
|
if (!explained)
|
| 7023 |
|
|
{
|
| 7024 |
|
|
inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
|
| 7025 |
|
|
explained = 1;
|
| 7026 |
|
|
}
|
| 7027 |
|
|
}
|
| 7028 |
|
|
|
| 7029 |
|
|
/* If we're doing overload resolution purely for the purpose of
|
| 7030 |
|
|
determining conversion sequences, we should not consider the
|
| 7031 |
|
|
function used. If this conversion sequence is selected, the
|
| 7032 |
|
|
function will be marked as used at this point. */
|
| 7033 |
|
|
if (!(flags & tf_conv))
|
| 7034 |
|
|
{
|
| 7035 |
|
|
/* Make =delete work with SFINAE. */
|
| 7036 |
|
|
if (DECL_DELETED_FN (fn) && !(flags & tf_error))
|
| 7037 |
|
|
return error_mark_node;
|
| 7038 |
|
|
|
| 7039 |
|
|
mark_used (fn);
|
| 7040 |
|
|
}
|
| 7041 |
|
|
|
| 7042 |
|
|
/* We could not check access to member functions when this
|
| 7043 |
|
|
expression was originally created since we did not know at that
|
| 7044 |
|
|
time to which function the expression referred. */
|
| 7045 |
|
|
if (!(flags & tf_no_access_control)
|
| 7046 |
|
|
&& DECL_FUNCTION_MEMBER_P (fn))
|
| 7047 |
|
|
{
|
| 7048 |
|
|
gcc_assert (access_path);
|
| 7049 |
|
|
perform_or_defer_access_check (access_path, fn, fn);
|
| 7050 |
|
|
}
|
| 7051 |
|
|
|
| 7052 |
|
|
if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
|
| 7053 |
|
|
return cp_build_addr_expr (fn, flags);
|
| 7054 |
|
|
else
|
| 7055 |
|
|
{
|
| 7056 |
|
|
/* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
|
| 7057 |
|
|
will mark the function as addressed, but here we must do it
|
| 7058 |
|
|
explicitly. */
|
| 7059 |
|
|
cxx_mark_addressable (fn);
|
| 7060 |
|
|
|
| 7061 |
|
|
return fn;
|
| 7062 |
|
|
}
|
| 7063 |
|
|
}
|
| 7064 |
|
|
|
| 7065 |
|
|
/* This function will instantiate the type of the expression given in
|
| 7066 |
|
|
RHS to match the type of LHSTYPE. If errors exist, then return
|
| 7067 |
|
|
error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
|
| 7068 |
|
|
we complain on errors. If we are not complaining, never modify rhs,
|
| 7069 |
|
|
as overload resolution wants to try many possible instantiations, in
|
| 7070 |
|
|
the hope that at least one will work.
|
| 7071 |
|
|
|
| 7072 |
|
|
For non-recursive calls, LHSTYPE should be a function, pointer to
|
| 7073 |
|
|
function, or a pointer to member function. */
|
| 7074 |
|
|
|
| 7075 |
|
|
tree
|
| 7076 |
|
|
instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
|
| 7077 |
|
|
{
|
| 7078 |
|
|
tsubst_flags_t flags_in = flags;
|
| 7079 |
|
|
tree access_path = NULL_TREE;
|
| 7080 |
|
|
|
| 7081 |
|
|
flags &= ~tf_ptrmem_ok;
|
| 7082 |
|
|
|
| 7083 |
|
|
if (lhstype == unknown_type_node)
|
| 7084 |
|
|
{
|
| 7085 |
|
|
if (flags & tf_error)
|
| 7086 |
|
|
error ("not enough type information");
|
| 7087 |
|
|
return error_mark_node;
|
| 7088 |
|
|
}
|
| 7089 |
|
|
|
| 7090 |
|
|
if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
|
| 7091 |
|
|
{
|
| 7092 |
|
|
if (same_type_p (lhstype, TREE_TYPE (rhs)))
|
| 7093 |
|
|
return rhs;
|
| 7094 |
|
|
if (flag_ms_extensions
|
| 7095 |
|
|
&& TYPE_PTRMEMFUNC_P (lhstype)
|
| 7096 |
|
|
&& !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
|
| 7097 |
|
|
/* Microsoft allows `A::f' to be resolved to a
|
| 7098 |
|
|
pointer-to-member. */
|
| 7099 |
|
|
;
|
| 7100 |
|
|
else
|
| 7101 |
|
|
{
|
| 7102 |
|
|
if (flags & tf_error)
|
| 7103 |
|
|
error ("cannot convert %qE from type %qT to type %qT",
|
| 7104 |
|
|
rhs, TREE_TYPE (rhs), lhstype);
|
| 7105 |
|
|
return error_mark_node;
|
| 7106 |
|
|
}
|
| 7107 |
|
|
}
|
| 7108 |
|
|
|
| 7109 |
|
|
if (BASELINK_P (rhs))
|
| 7110 |
|
|
{
|
| 7111 |
|
|
access_path = BASELINK_ACCESS_BINFO (rhs);
|
| 7112 |
|
|
rhs = BASELINK_FUNCTIONS (rhs);
|
| 7113 |
|
|
}
|
| 7114 |
|
|
|
| 7115 |
|
|
/* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
|
| 7116 |
|
|
deduce any type information. */
|
| 7117 |
|
|
if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
|
| 7118 |
|
|
{
|
| 7119 |
|
|
if (flags & tf_error)
|
| 7120 |
|
|
error ("not enough type information");
|
| 7121 |
|
|
return error_mark_node;
|
| 7122 |
|
|
}
|
| 7123 |
|
|
|
| 7124 |
|
|
/* There only a few kinds of expressions that may have a type
|
| 7125 |
|
|
dependent on overload resolution. */
|
| 7126 |
|
|
gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
|
| 7127 |
|
|
|| TREE_CODE (rhs) == COMPONENT_REF
|
| 7128 |
|
|
|| really_overloaded_fn (rhs)
|
| 7129 |
|
|
|| (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
|
| 7130 |
|
|
|
| 7131 |
|
|
/* This should really only be used when attempting to distinguish
|
| 7132 |
|
|
what sort of a pointer to function we have. For now, any
|
| 7133 |
|
|
arithmetic operation which is not supported on pointers
|
| 7134 |
|
|
is rejected as an error. */
|
| 7135 |
|
|
|
| 7136 |
|
|
switch (TREE_CODE (rhs))
|
| 7137 |
|
|
{
|
| 7138 |
|
|
case COMPONENT_REF:
|
| 7139 |
|
|
{
|
| 7140 |
|
|
tree member = TREE_OPERAND (rhs, 1);
|
| 7141 |
|
|
|
| 7142 |
|
|
member = instantiate_type (lhstype, member, flags);
|
| 7143 |
|
|
if (member != error_mark_node
|
| 7144 |
|
|
&& TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
|
| 7145 |
|
|
/* Do not lose object's side effects. */
|
| 7146 |
|
|
return build2 (COMPOUND_EXPR, TREE_TYPE (member),
|
| 7147 |
|
|
TREE_OPERAND (rhs, 0), member);
|
| 7148 |
|
|
return member;
|
| 7149 |
|
|
}
|
| 7150 |
|
|
|
| 7151 |
|
|
case OFFSET_REF:
|
| 7152 |
|
|
rhs = TREE_OPERAND (rhs, 1);
|
| 7153 |
|
|
if (BASELINK_P (rhs))
|
| 7154 |
|
|
return instantiate_type (lhstype, rhs, flags_in);
|
| 7155 |
|
|
|
| 7156 |
|
|
/* This can happen if we are forming a pointer-to-member for a
|
| 7157 |
|
|
member template. */
|
| 7158 |
|
|
gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
|
| 7159 |
|
|
|
| 7160 |
|
|
/* Fall through. */
|
| 7161 |
|
|
|
| 7162 |
|
|
case TEMPLATE_ID_EXPR:
|
| 7163 |
|
|
{
|
| 7164 |
|
|
tree fns = TREE_OPERAND (rhs, 0);
|
| 7165 |
|
|
tree args = TREE_OPERAND (rhs, 1);
|
| 7166 |
|
|
|
| 7167 |
|
|
return
|
| 7168 |
|
|
resolve_address_of_overloaded_function (lhstype, fns, flags_in,
|
| 7169 |
|
|
/*template_only=*/true,
|
| 7170 |
|
|
args, access_path);
|
| 7171 |
|
|
}
|
| 7172 |
|
|
|
| 7173 |
|
|
case OVERLOAD:
|
| 7174 |
|
|
case FUNCTION_DECL:
|
| 7175 |
|
|
return
|
| 7176 |
|
|
resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
|
| 7177 |
|
|
/*template_only=*/false,
|
| 7178 |
|
|
/*explicit_targs=*/NULL_TREE,
|
| 7179 |
|
|
access_path);
|
| 7180 |
|
|
|
| 7181 |
|
|
case ADDR_EXPR:
|
| 7182 |
|
|
{
|
| 7183 |
|
|
if (PTRMEM_OK_P (rhs))
|
| 7184 |
|
|
flags |= tf_ptrmem_ok;
|
| 7185 |
|
|
|
| 7186 |
|
|
return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
|
| 7187 |
|
|
}
|
| 7188 |
|
|
|
| 7189 |
|
|
case ERROR_MARK:
|
| 7190 |
|
|
return error_mark_node;
|
| 7191 |
|
|
|
| 7192 |
|
|
default:
|
| 7193 |
|
|
gcc_unreachable ();
|
| 7194 |
|
|
}
|
| 7195 |
|
|
return error_mark_node;
|
| 7196 |
|
|
}
|
| 7197 |
|
|
|
| 7198 |
|
|
/* Return the name of the virtual function pointer field
|
| 7199 |
|
|
(as an IDENTIFIER_NODE) for the given TYPE. Note that
|
| 7200 |
|
|
this may have to look back through base types to find the
|
| 7201 |
|
|
ultimate field name. (For single inheritance, these could
|
| 7202 |
|
|
all be the same name. Who knows for multiple inheritance). */
|
| 7203 |
|
|
|
| 7204 |
|
|
static tree
|
| 7205 |
|
|
get_vfield_name (tree type)
|
| 7206 |
|
|
{
|
| 7207 |
|
|
tree binfo, base_binfo;
|
| 7208 |
|
|
char *buf;
|
| 7209 |
|
|
|
| 7210 |
|
|
for (binfo = TYPE_BINFO (type);
|
| 7211 |
|
|
BINFO_N_BASE_BINFOS (binfo);
|
| 7212 |
|
|
binfo = base_binfo)
|
| 7213 |
|
|
{
|
| 7214 |
|
|
base_binfo = BINFO_BASE_BINFO (binfo, 0);
|
| 7215 |
|
|
|
| 7216 |
|
|
if (BINFO_VIRTUAL_P (base_binfo)
|
| 7217 |
|
|
|| !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
|
| 7218 |
|
|
break;
|
| 7219 |
|
|
}
|
| 7220 |
|
|
|
| 7221 |
|
|
type = BINFO_TYPE (binfo);
|
| 7222 |
|
|
buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
|
| 7223 |
|
|
+ TYPE_NAME_LENGTH (type) + 2);
|
| 7224 |
|
|
sprintf (buf, VFIELD_NAME_FORMAT,
|
| 7225 |
|
|
IDENTIFIER_POINTER (constructor_name (type)));
|
| 7226 |
|
|
return get_identifier (buf);
|
| 7227 |
|
|
}
|
| 7228 |
|
|
|
| 7229 |
|
|
void
|
| 7230 |
|
|
print_class_statistics (void)
|
| 7231 |
|
|
{
|
| 7232 |
|
|
#ifdef GATHER_STATISTICS
|
| 7233 |
|
|
fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
|
| 7234 |
|
|
fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
|
| 7235 |
|
|
if (n_vtables)
|
| 7236 |
|
|
{
|
| 7237 |
|
|
fprintf (stderr, "vtables = %d; vtable searches = %d\n",
|
| 7238 |
|
|
n_vtables, n_vtable_searches);
|
| 7239 |
|
|
fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
|
| 7240 |
|
|
n_vtable_entries, n_vtable_elems);
|
| 7241 |
|
|
}
|
| 7242 |
|
|
#endif
|
| 7243 |
|
|
}
|
| 7244 |
|
|
|
| 7245 |
|
|
/* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
|
| 7246 |
|
|
according to [class]:
|
| 7247 |
|
|
The class-name is also inserted
|
| 7248 |
|
|
into the scope of the class itself. For purposes of access checking,
|
| 7249 |
|
|
the inserted class name is treated as if it were a public member name. */
|
| 7250 |
|
|
|
| 7251 |
|
|
void
|
| 7252 |
|
|
build_self_reference (void)
|
| 7253 |
|
|
{
|
| 7254 |
|
|
tree name = constructor_name (current_class_type);
|
| 7255 |
|
|
tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
|
| 7256 |
|
|
tree saved_cas;
|
| 7257 |
|
|
|
| 7258 |
|
|
DECL_NONLOCAL (value) = 1;
|
| 7259 |
|
|
DECL_CONTEXT (value) = current_class_type;
|
| 7260 |
|
|
DECL_ARTIFICIAL (value) = 1;
|
| 7261 |
|
|
SET_DECL_SELF_REFERENCE_P (value);
|
| 7262 |
|
|
set_underlying_type (value);
|
| 7263 |
|
|
|
| 7264 |
|
|
if (processing_template_decl)
|
| 7265 |
|
|
value = push_template_decl (value);
|
| 7266 |
|
|
|
| 7267 |
|
|
saved_cas = current_access_specifier;
|
| 7268 |
|
|
current_access_specifier = access_public_node;
|
| 7269 |
|
|
finish_member_declaration (value);
|
| 7270 |
|
|
current_access_specifier = saved_cas;
|
| 7271 |
|
|
}
|
| 7272 |
|
|
|
| 7273 |
|
|
/* Returns 1 if TYPE contains only padding bytes. */
|
| 7274 |
|
|
|
| 7275 |
|
|
int
|
| 7276 |
|
|
is_empty_class (tree type)
|
| 7277 |
|
|
{
|
| 7278 |
|
|
if (type == error_mark_node)
|
| 7279 |
|
|
return 0;
|
| 7280 |
|
|
|
| 7281 |
|
|
if (! CLASS_TYPE_P (type))
|
| 7282 |
|
|
return 0;
|
| 7283 |
|
|
|
| 7284 |
|
|
/* In G++ 3.2, whether or not a class was empty was determined by
|
| 7285 |
|
|
looking at its size. */
|
| 7286 |
|
|
if (abi_version_at_least (2))
|
| 7287 |
|
|
return CLASSTYPE_EMPTY_P (type);
|
| 7288 |
|
|
else
|
| 7289 |
|
|
return integer_zerop (CLASSTYPE_SIZE (type));
|
| 7290 |
|
|
}
|
| 7291 |
|
|
|
| 7292 |
|
|
/* Returns true if TYPE contains an empty class. */
|
| 7293 |
|
|
|
| 7294 |
|
|
static bool
|
| 7295 |
|
|
contains_empty_class_p (tree type)
|
| 7296 |
|
|
{
|
| 7297 |
|
|
if (is_empty_class (type))
|
| 7298 |
|
|
return true;
|
| 7299 |
|
|
if (CLASS_TYPE_P (type))
|
| 7300 |
|
|
{
|
| 7301 |
|
|
tree field;
|
| 7302 |
|
|
tree binfo;
|
| 7303 |
|
|
tree base_binfo;
|
| 7304 |
|
|
int i;
|
| 7305 |
|
|
|
| 7306 |
|
|
for (binfo = TYPE_BINFO (type), i = 0;
|
| 7307 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
| 7308 |
|
|
if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
|
| 7309 |
|
|
return true;
|
| 7310 |
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
| 7311 |
|
|
if (TREE_CODE (field) == FIELD_DECL
|
| 7312 |
|
|
&& !DECL_ARTIFICIAL (field)
|
| 7313 |
|
|
&& is_empty_class (TREE_TYPE (field)))
|
| 7314 |
|
|
return true;
|
| 7315 |
|
|
}
|
| 7316 |
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
| 7317 |
|
|
return contains_empty_class_p (TREE_TYPE (type));
|
| 7318 |
|
|
return false;
|
| 7319 |
|
|
}
|
| 7320 |
|
|
|
| 7321 |
|
|
/* Returns true if TYPE contains no actual data, just various
|
| 7322 |
|
|
possible combinations of empty classes and possibly a vptr. */
|
| 7323 |
|
|
|
| 7324 |
|
|
bool
|
| 7325 |
|
|
is_really_empty_class (tree type)
|
| 7326 |
|
|
{
|
| 7327 |
|
|
if (CLASS_TYPE_P (type))
|
| 7328 |
|
|
{
|
| 7329 |
|
|
tree field;
|
| 7330 |
|
|
tree binfo;
|
| 7331 |
|
|
tree base_binfo;
|
| 7332 |
|
|
int i;
|
| 7333 |
|
|
|
| 7334 |
|
|
/* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
|
| 7335 |
|
|
out, but we'd like to be able to check this before then. */
|
| 7336 |
|
|
if (COMPLETE_TYPE_P (type) && is_empty_class (type))
|
| 7337 |
|
|
return true;
|
| 7338 |
|
|
|
| 7339 |
|
|
for (binfo = TYPE_BINFO (type), i = 0;
|
| 7340 |
|
|
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
| 7341 |
|
|
if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
|
| 7342 |
|
|
return false;
|
| 7343 |
|
|
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
| 7344 |
|
|
if (TREE_CODE (field) == FIELD_DECL
|
| 7345 |
|
|
&& !DECL_ARTIFICIAL (field)
|
| 7346 |
|
|
&& !is_really_empty_class (TREE_TYPE (field)))
|
| 7347 |
|
|
return false;
|
| 7348 |
|
|
return true;
|
| 7349 |
|
|
}
|
| 7350 |
|
|
else if (TREE_CODE (type) == ARRAY_TYPE)
|
| 7351 |
|
|
return is_really_empty_class (TREE_TYPE (type));
|
| 7352 |
|
|
return false;
|
| 7353 |
|
|
}
|
| 7354 |
|
|
|
| 7355 |
|
|
/* Note that NAME was looked up while the current class was being
|
| 7356 |
|
|
defined and that the result of that lookup was DECL. */
|
| 7357 |
|
|
|
| 7358 |
|
|
void
|
| 7359 |
|
|
maybe_note_name_used_in_class (tree name, tree decl)
|
| 7360 |
|
|
{
|
| 7361 |
|
|
splay_tree names_used;
|
| 7362 |
|
|
|
| 7363 |
|
|
/* If we're not defining a class, there's nothing to do. */
|
| 7364 |
|
|
if (!(innermost_scope_kind() == sk_class
|
| 7365 |
|
|
&& TYPE_BEING_DEFINED (current_class_type)
|
| 7366 |
|
|
&& !LAMBDA_TYPE_P (current_class_type)))
|
| 7367 |
|
|
return;
|
| 7368 |
|
|
|
| 7369 |
|
|
/* If there's already a binding for this NAME, then we don't have
|
| 7370 |
|
|
anything to worry about. */
|
| 7371 |
|
|
if (lookup_member (current_class_type, name,
|
| 7372 |
|
|
/*protect=*/0, /*want_type=*/false, tf_warning_or_error))
|
| 7373 |
|
|
return;
|
| 7374 |
|
|
|
| 7375 |
|
|
if (!current_class_stack[current_class_depth - 1].names_used)
|
| 7376 |
|
|
current_class_stack[current_class_depth - 1].names_used
|
| 7377 |
|
|
= splay_tree_new (splay_tree_compare_pointers, 0, 0);
|
| 7378 |
|
|
names_used = current_class_stack[current_class_depth - 1].names_used;
|
| 7379 |
|
|
|
| 7380 |
|
|
splay_tree_insert (names_used,
|
| 7381 |
|
|
(splay_tree_key) name,
|
| 7382 |
|
|
(splay_tree_value) decl);
|
| 7383 |
|
|
}
|
| 7384 |
|
|
|
| 7385 |
|
|
/* Note that NAME was declared (as DECL) in the current class. Check
|
| 7386 |
|
|
to see that the declaration is valid. */
|
| 7387 |
|
|
|
| 7388 |
|
|
void
|
| 7389 |
|
|
note_name_declared_in_class (tree name, tree decl)
|
| 7390 |
|
|
{
|
| 7391 |
|
|
splay_tree names_used;
|
| 7392 |
|
|
splay_tree_node n;
|
| 7393 |
|
|
|
| 7394 |
|
|
/* Look to see if we ever used this name. */
|
| 7395 |
|
|
names_used
|
| 7396 |
|
|
= current_class_stack[current_class_depth - 1].names_used;
|
| 7397 |
|
|
if (!names_used)
|
| 7398 |
|
|
return;
|
| 7399 |
|
|
/* The C language allows members to be declared with a type of the same
|
| 7400 |
|
|
name, and the C++ standard says this diagnostic is not required. So
|
| 7401 |
|
|
allow it in extern "C" blocks unless predantic is specified.
|
| 7402 |
|
|
Allow it in all cases if -ms-extensions is specified. */
|
| 7403 |
|
|
if ((!pedantic && current_lang_name == lang_name_c)
|
| 7404 |
|
|
|| flag_ms_extensions)
|
| 7405 |
|
|
return;
|
| 7406 |
|
|
n = splay_tree_lookup (names_used, (splay_tree_key) name);
|
| 7407 |
|
|
if (n)
|
| 7408 |
|
|
{
|
| 7409 |
|
|
/* [basic.scope.class]
|
| 7410 |
|
|
|
| 7411 |
|
|
A name N used in a class S shall refer to the same declaration
|
| 7412 |
|
|
in its context and when re-evaluated in the completed scope of
|
| 7413 |
|
|
S. */
|
| 7414 |
|
|
permerror (input_location, "declaration of %q#D", decl);
|
| 7415 |
|
|
permerror (input_location, "changes meaning of %qD from %q+#D",
|
| 7416 |
|
|
DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
|
| 7417 |
|
|
}
|
| 7418 |
|
|
}
|
| 7419 |
|
|
|
| 7420 |
|
|
/* Returns the VAR_DECL for the complete vtable associated with BINFO.
|
| 7421 |
|
|
Secondary vtables are merged with primary vtables; this function
|
| 7422 |
|
|
will return the VAR_DECL for the primary vtable. */
|
| 7423 |
|
|
|
| 7424 |
|
|
tree
|
| 7425 |
|
|
get_vtbl_decl_for_binfo (tree binfo)
|
| 7426 |
|
|
{
|
| 7427 |
|
|
tree decl;
|
| 7428 |
|
|
|
| 7429 |
|
|
decl = BINFO_VTABLE (binfo);
|
| 7430 |
|
|
if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
|
| 7431 |
|
|
{
|
| 7432 |
|
|
gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
|
| 7433 |
|
|
decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
|
| 7434 |
|
|
}
|
| 7435 |
|
|
if (decl)
|
| 7436 |
|
|
gcc_assert (TREE_CODE (decl) == VAR_DECL);
|
| 7437 |
|
|
return decl;
|
| 7438 |
|
|
}
|
| 7439 |
|
|
|
| 7440 |
|
|
|
| 7441 |
|
|
/* Returns the binfo for the primary base of BINFO. If the resulting
|
| 7442 |
|
|
BINFO is a virtual base, and it is inherited elsewhere in the
|
| 7443 |
|
|
hierarchy, then the returned binfo might not be the primary base of
|
| 7444 |
|
|
BINFO in the complete object. Check BINFO_PRIMARY_P or
|
| 7445 |
|
|
BINFO_LOST_PRIMARY_P to be sure. */
|
| 7446 |
|
|
|
| 7447 |
|
|
static tree
|
| 7448 |
|
|
get_primary_binfo (tree binfo)
|
| 7449 |
|
|
{
|
| 7450 |
|
|
tree primary_base;
|
| 7451 |
|
|
|
| 7452 |
|
|
primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
|
| 7453 |
|
|
if (!primary_base)
|
| 7454 |
|
|
return NULL_TREE;
|
| 7455 |
|
|
|
| 7456 |
|
|
return copied_binfo (primary_base, binfo);
|
| 7457 |
|
|
}
|
| 7458 |
|
|
|
| 7459 |
|
|
/* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
|
| 7460 |
|
|
|
| 7461 |
|
|
static int
|
| 7462 |
|
|
maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
|
| 7463 |
|
|
{
|
| 7464 |
|
|
if (!indented_p)
|
| 7465 |
|
|
fprintf (stream, "%*s", indent, "");
|
| 7466 |
|
|
return 1;
|
| 7467 |
|
|
}
|
| 7468 |
|
|
|
| 7469 |
|
|
/* Dump the offsets of all the bases rooted at BINFO to STREAM.
|
| 7470 |
|
|
INDENT should be zero when called from the top level; it is
|
| 7471 |
|
|
incremented recursively. IGO indicates the next expected BINFO in
|
| 7472 |
|
|
inheritance graph ordering. */
|
| 7473 |
|
|
|
| 7474 |
|
|
static tree
|
| 7475 |
|
|
dump_class_hierarchy_r (FILE *stream,
|
| 7476 |
|
|
int flags,
|
| 7477 |
|
|
tree binfo,
|
| 7478 |
|
|
tree igo,
|
| 7479 |
|
|
int indent)
|
| 7480 |
|
|
{
|
| 7481 |
|
|
int indented = 0;
|
| 7482 |
|
|
tree base_binfo;
|
| 7483 |
|
|
int i;
|
| 7484 |
|
|
|
| 7485 |
|
|
indented = maybe_indent_hierarchy (stream, indent, 0);
|
| 7486 |
|
|
fprintf (stream, "%s (0x%lx) ",
|
| 7487 |
|
|
type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
|
| 7488 |
|
|
(unsigned long) binfo);
|
| 7489 |
|
|
if (binfo != igo)
|
| 7490 |
|
|
{
|
| 7491 |
|
|
fprintf (stream, "alternative-path\n");
|
| 7492 |
|
|
return igo;
|
| 7493 |
|
|
}
|
| 7494 |
|
|
igo = TREE_CHAIN (binfo);
|
| 7495 |
|
|
|
| 7496 |
|
|
fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
|
| 7497 |
|
|
tree_low_cst (BINFO_OFFSET (binfo), 0));
|
| 7498 |
|
|
if (is_empty_class (BINFO_TYPE (binfo)))
|
| 7499 |
|
|
fprintf (stream, " empty");
|
| 7500 |
|
|
else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
|
| 7501 |
|
|
fprintf (stream, " nearly-empty");
|
| 7502 |
|
|
if (BINFO_VIRTUAL_P (binfo))
|
| 7503 |
|
|
fprintf (stream, " virtual");
|
| 7504 |
|
|
fprintf (stream, "\n");
|
| 7505 |
|
|
|
| 7506 |
|
|
indented = 0;
|
| 7507 |
|
|
if (BINFO_PRIMARY_P (binfo))
|
| 7508 |
|
|
{
|
| 7509 |
|
|
indented = maybe_indent_hierarchy (stream, indent + 3, indented);
|
| 7510 |
|
|
fprintf (stream, " primary-for %s (0x%lx)",
|
| 7511 |
|
|
type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
|
| 7512 |
|
|
TFF_PLAIN_IDENTIFIER),
|
| 7513 |
|
|
(unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
|
| 7514 |
|
|
}
|
| 7515 |
|
|
if (BINFO_LOST_PRIMARY_P (binfo))
|
| 7516 |
|
|
{
|
| 7517 |
|
|
indented = maybe_indent_hierarchy (stream, indent + 3, indented);
|
| 7518 |
|
|
fprintf (stream, " lost-primary");
|
| 7519 |
|
|
}
|
| 7520 |
|
|
if (indented)
|
| 7521 |
|
|
fprintf (stream, "\n");
|
| 7522 |
|
|
|
| 7523 |
|
|
if (!(flags & TDF_SLIM))
|
| 7524 |
|
|
{
|
| 7525 |
|
|
int indented = 0;
|
| 7526 |
|
|
|
| 7527 |
|
|
if (BINFO_SUBVTT_INDEX (binfo))
|
| 7528 |
|
|
{
|
| 7529 |
|
|
indented = maybe_indent_hierarchy (stream, indent + 3, indented);
|
| 7530 |
|
|
fprintf (stream, " subvttidx=%s",
|
| 7531 |
|
|
expr_as_string (BINFO_SUBVTT_INDEX (binfo),
|
| 7532 |
|
|
TFF_PLAIN_IDENTIFIER));
|
| 7533 |
|
|
}
|
| 7534 |
|
|
if (BINFO_VPTR_INDEX (binfo))
|
| 7535 |
|
|
{
|
| 7536 |
|
|
indented = maybe_indent_hierarchy (stream, indent + 3, indented);
|
| 7537 |
|
|
fprintf (stream, " vptridx=%s",
|
| 7538 |
|
|
expr_as_string (BINFO_VPTR_INDEX (binfo),
|
| 7539 |
|
|
TFF_PLAIN_IDENTIFIER));
|
| 7540 |
|
|
}
|
| 7541 |
|
|
if (BINFO_VPTR_FIELD (binfo))
|
| 7542 |
|
|
{
|
| 7543 |
|
|
indented = maybe_indent_hierarchy (stream, indent + 3, indented);
|
| 7544 |
|
|
fprintf (stream, " vbaseoffset=%s",
|
| 7545 |
|
|
expr_as_string (BINFO_VPTR_FIELD (binfo),
|
| 7546 |
|
|
TFF_PLAIN_IDENTIFIER));
|
| 7547 |
|
|
}
|
| 7548 |
|
|
if (BINFO_VTABLE (binfo))
|
| 7549 |
|
|
{
|
| 7550 |
|
|
indented = maybe_indent_hierarchy (stream, indent + 3, indented);
|
| 7551 |
|
|
fprintf (stream, " vptr=%s",
|
| 7552 |
|
|
expr_as_string (BINFO_VTABLE (binfo),
|
| 7553 |
|
|
TFF_PLAIN_IDENTIFIER));
|
| 7554 |
|
|
}
|
| 7555 |
|
|
|
| 7556 |
|
|
if (indented)
|
| 7557 |
|
|
fprintf (stream, "\n");
|
| 7558 |
|
|
}
|
| 7559 |
|
|
|
| 7560 |
|
|
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
| 7561 |
|
|
igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
|
| 7562 |
|
|
|
| 7563 |
|
|
return igo;
|
| 7564 |
|
|
}
|
| 7565 |
|
|
|
| 7566 |
|
|
/* Dump the BINFO hierarchy for T. */
|
| 7567 |
|
|
|
| 7568 |
|
|
static void
|
| 7569 |
|
|
dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
|
| 7570 |
|
|
{
|
| 7571 |
|
|
fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
|
| 7572 |
|
|
fprintf (stream, " size=%lu align=%lu\n",
|
| 7573 |
|
|
(unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
|
| 7574 |
|
|
(unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
|
| 7575 |
|
|
fprintf (stream, " base size=%lu base align=%lu\n",
|
| 7576 |
|
|
(unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
|
| 7577 |
|
|
/ BITS_PER_UNIT),
|
| 7578 |
|
|
(unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
|
| 7579 |
|
|
/ BITS_PER_UNIT));
|
| 7580 |
|
|
dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
|
| 7581 |
|
|
fprintf (stream, "\n");
|
| 7582 |
|
|
}
|
| 7583 |
|
|
|
| 7584 |
|
|
/* Debug interface to hierarchy dumping. */
|
| 7585 |
|
|
|
| 7586 |
|
|
void
|
| 7587 |
|
|
debug_class (tree t)
|
| 7588 |
|
|
{
|
| 7589 |
|
|
dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
|
| 7590 |
|
|
}
|
| 7591 |
|
|
|
| 7592 |
|
|
static void
|
| 7593 |
|
|
dump_class_hierarchy (tree t)
|
| 7594 |
|
|
{
|
| 7595 |
|
|
int flags;
|
| 7596 |
|
|
FILE *stream = dump_begin (TDI_class, &flags);
|
| 7597 |
|
|
|
| 7598 |
|
|
if (stream)
|
| 7599 |
|
|
{
|
| 7600 |
|
|
dump_class_hierarchy_1 (stream, flags, t);
|
| 7601 |
|
|
dump_end (TDI_class, stream);
|
| 7602 |
|
|
}
|
| 7603 |
|
|
}
|
| 7604 |
|
|
|
| 7605 |
|
|
static void
|
| 7606 |
|
|
dump_array (FILE * stream, tree decl)
|
| 7607 |
|
|
{
|
| 7608 |
|
|
tree value;
|
| 7609 |
|
|
unsigned HOST_WIDE_INT ix;
|
| 7610 |
|
|
HOST_WIDE_INT elt;
|
| 7611 |
|
|
tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
|
| 7612 |
|
|
|
| 7613 |
|
|
elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
|
| 7614 |
|
|
/ BITS_PER_UNIT);
|
| 7615 |
|
|
fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
|
| 7616 |
|
|
fprintf (stream, " %s entries",
|
| 7617 |
|
|
expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
|
| 7618 |
|
|
TFF_PLAIN_IDENTIFIER));
|
| 7619 |
|
|
fprintf (stream, "\n");
|
| 7620 |
|
|
|
| 7621 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
|
| 7622 |
|
|
ix, value)
|
| 7623 |
|
|
fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
|
| 7624 |
|
|
expr_as_string (value, TFF_PLAIN_IDENTIFIER));
|
| 7625 |
|
|
}
|
| 7626 |
|
|
|
| 7627 |
|
|
static void
|
| 7628 |
|
|
dump_vtable (tree t, tree binfo, tree vtable)
|
| 7629 |
|
|
{
|
| 7630 |
|
|
int flags;
|
| 7631 |
|
|
FILE *stream = dump_begin (TDI_class, &flags);
|
| 7632 |
|
|
|
| 7633 |
|
|
if (!stream)
|
| 7634 |
|
|
return;
|
| 7635 |
|
|
|
| 7636 |
|
|
if (!(flags & TDF_SLIM))
|
| 7637 |
|
|
{
|
| 7638 |
|
|
int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
|
| 7639 |
|
|
|
| 7640 |
|
|
fprintf (stream, "%s for %s",
|
| 7641 |
|
|
ctor_vtbl_p ? "Construction vtable" : "Vtable",
|
| 7642 |
|
|
type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
|
| 7643 |
|
|
if (ctor_vtbl_p)
|
| 7644 |
|
|
{
|
| 7645 |
|
|
if (!BINFO_VIRTUAL_P (binfo))
|
| 7646 |
|
|
fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
|
| 7647 |
|
|
fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
|
| 7648 |
|
|
}
|
| 7649 |
|
|
fprintf (stream, "\n");
|
| 7650 |
|
|
dump_array (stream, vtable);
|
| 7651 |
|
|
fprintf (stream, "\n");
|
| 7652 |
|
|
}
|
| 7653 |
|
|
|
| 7654 |
|
|
dump_end (TDI_class, stream);
|
| 7655 |
|
|
}
|
| 7656 |
|
|
|
| 7657 |
|
|
static void
|
| 7658 |
|
|
dump_vtt (tree t, tree vtt)
|
| 7659 |
|
|
{
|
| 7660 |
|
|
int flags;
|
| 7661 |
|
|
FILE *stream = dump_begin (TDI_class, &flags);
|
| 7662 |
|
|
|
| 7663 |
|
|
if (!stream)
|
| 7664 |
|
|
return;
|
| 7665 |
|
|
|
| 7666 |
|
|
if (!(flags & TDF_SLIM))
|
| 7667 |
|
|
{
|
| 7668 |
|
|
fprintf (stream, "VTT for %s\n",
|
| 7669 |
|
|
type_as_string (t, TFF_PLAIN_IDENTIFIER));
|
| 7670 |
|
|
dump_array (stream, vtt);
|
| 7671 |
|
|
fprintf (stream, "\n");
|
| 7672 |
|
|
}
|
| 7673 |
|
|
|
| 7674 |
|
|
dump_end (TDI_class, stream);
|
| 7675 |
|
|
}
|
| 7676 |
|
|
|
| 7677 |
|
|
/* Dump a function or thunk and its thunkees. */
|
| 7678 |
|
|
|
| 7679 |
|
|
static void
|
| 7680 |
|
|
dump_thunk (FILE *stream, int indent, tree thunk)
|
| 7681 |
|
|
{
|
| 7682 |
|
|
static const char spaces[] = " ";
|
| 7683 |
|
|
tree name = DECL_NAME (thunk);
|
| 7684 |
|
|
tree thunks;
|
| 7685 |
|
|
|
| 7686 |
|
|
fprintf (stream, "%.*s%p %s %s", indent, spaces,
|
| 7687 |
|
|
(void *)thunk,
|
| 7688 |
|
|
!DECL_THUNK_P (thunk) ? "function"
|
| 7689 |
|
|
: DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
|
| 7690 |
|
|
name ? IDENTIFIER_POINTER (name) : "<unset>");
|
| 7691 |
|
|
if (DECL_THUNK_P (thunk))
|
| 7692 |
|
|
{
|
| 7693 |
|
|
HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
|
| 7694 |
|
|
tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
|
| 7695 |
|
|
|
| 7696 |
|
|
fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
|
| 7697 |
|
|
if (!virtual_adjust)
|
| 7698 |
|
|
/*NOP*/;
|
| 7699 |
|
|
else if (DECL_THIS_THUNK_P (thunk))
|
| 7700 |
|
|
fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
|
| 7701 |
|
|
tree_low_cst (virtual_adjust, 0));
|
| 7702 |
|
|
else
|
| 7703 |
|
|
fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
|
| 7704 |
|
|
tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
|
| 7705 |
|
|
type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
|
| 7706 |
|
|
if (THUNK_ALIAS (thunk))
|
| 7707 |
|
|
fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
|
| 7708 |
|
|
}
|
| 7709 |
|
|
fprintf (stream, "\n");
|
| 7710 |
|
|
for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
|
| 7711 |
|
|
dump_thunk (stream, indent + 2, thunks);
|
| 7712 |
|
|
}
|
| 7713 |
|
|
|
| 7714 |
|
|
/* Dump the thunks for FN. */
|
| 7715 |
|
|
|
| 7716 |
|
|
void
|
| 7717 |
|
|
debug_thunks (tree fn)
|
| 7718 |
|
|
{
|
| 7719 |
|
|
dump_thunk (stderr, 0, fn);
|
| 7720 |
|
|
}
|
| 7721 |
|
|
|
| 7722 |
|
|
/* Virtual function table initialization. */
|
| 7723 |
|
|
|
| 7724 |
|
|
/* Create all the necessary vtables for T and its base classes. */
|
| 7725 |
|
|
|
| 7726 |
|
|
static void
|
| 7727 |
|
|
finish_vtbls (tree t)
|
| 7728 |
|
|
{
|
| 7729 |
|
|
tree vbase;
|
| 7730 |
|
|
VEC(constructor_elt,gc) *v = NULL;
|
| 7731 |
|
|
tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
|
| 7732 |
|
|
|
| 7733 |
|
|
/* We lay out the primary and secondary vtables in one contiguous
|
| 7734 |
|
|
vtable. The primary vtable is first, followed by the non-virtual
|
| 7735 |
|
|
secondary vtables in inheritance graph order. */
|
| 7736 |
|
|
accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
|
| 7737 |
|
|
vtable, t, &v);
|
| 7738 |
|
|
|
| 7739 |
|
|
/* Then come the virtual bases, also in inheritance graph order. */
|
| 7740 |
|
|
for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
|
| 7741 |
|
|
{
|
| 7742 |
|
|
if (!BINFO_VIRTUAL_P (vbase))
|
| 7743 |
|
|
continue;
|
| 7744 |
|
|
accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
|
| 7745 |
|
|
}
|
| 7746 |
|
|
|
| 7747 |
|
|
if (BINFO_VTABLE (TYPE_BINFO (t)))
|
| 7748 |
|
|
initialize_vtable (TYPE_BINFO (t), v);
|
| 7749 |
|
|
}
|
| 7750 |
|
|
|
| 7751 |
|
|
/* Initialize the vtable for BINFO with the INITS. */
|
| 7752 |
|
|
|
| 7753 |
|
|
static void
|
| 7754 |
|
|
initialize_vtable (tree binfo, VEC(constructor_elt,gc) *inits)
|
| 7755 |
|
|
{
|
| 7756 |
|
|
tree decl;
|
| 7757 |
|
|
|
| 7758 |
|
|
layout_vtable_decl (binfo, VEC_length (constructor_elt, inits));
|
| 7759 |
|
|
decl = get_vtbl_decl_for_binfo (binfo);
|
| 7760 |
|
|
initialize_artificial_var (decl, inits);
|
| 7761 |
|
|
dump_vtable (BINFO_TYPE (binfo), binfo, decl);
|
| 7762 |
|
|
}
|
| 7763 |
|
|
|
| 7764 |
|
|
/* Build the VTT (virtual table table) for T.
|
| 7765 |
|
|
A class requires a VTT if it has virtual bases.
|
| 7766 |
|
|
|
| 7767 |
|
|
This holds
|
| 7768 |
|
|
1 - primary virtual pointer for complete object T
|
| 7769 |
|
|
2 - secondary VTTs for each direct non-virtual base of T which requires a
|
| 7770 |
|
|
VTT
|
| 7771 |
|
|
3 - secondary virtual pointers for each direct or indirect base of T which
|
| 7772 |
|
|
has virtual bases or is reachable via a virtual path from T.
|
| 7773 |
|
|
4 - secondary VTTs for each direct or indirect virtual base of T.
|
| 7774 |
|
|
|
| 7775 |
|
|
Secondary VTTs look like complete object VTTs without part 4. */
|
| 7776 |
|
|
|
| 7777 |
|
|
static void
|
| 7778 |
|
|
build_vtt (tree t)
|
| 7779 |
|
|
{
|
| 7780 |
|
|
tree type;
|
| 7781 |
|
|
tree vtt;
|
| 7782 |
|
|
tree index;
|
| 7783 |
|
|
VEC(constructor_elt,gc) *inits;
|
| 7784 |
|
|
|
| 7785 |
|
|
/* Build up the initializers for the VTT. */
|
| 7786 |
|
|
inits = NULL;
|
| 7787 |
|
|
index = size_zero_node;
|
| 7788 |
|
|
build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
|
| 7789 |
|
|
|
| 7790 |
|
|
/* If we didn't need a VTT, we're done. */
|
| 7791 |
|
|
if (!inits)
|
| 7792 |
|
|
return;
|
| 7793 |
|
|
|
| 7794 |
|
|
/* Figure out the type of the VTT. */
|
| 7795 |
|
|
type = build_array_of_n_type (const_ptr_type_node,
|
| 7796 |
|
|
VEC_length (constructor_elt, inits));
|
| 7797 |
|
|
|
| 7798 |
|
|
/* Now, build the VTT object itself. */
|
| 7799 |
|
|
vtt = build_vtable (t, mangle_vtt_for_type (t), type);
|
| 7800 |
|
|
initialize_artificial_var (vtt, inits);
|
| 7801 |
|
|
/* Add the VTT to the vtables list. */
|
| 7802 |
|
|
DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
|
| 7803 |
|
|
DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
|
| 7804 |
|
|
|
| 7805 |
|
|
dump_vtt (t, vtt);
|
| 7806 |
|
|
}
|
| 7807 |
|
|
|
| 7808 |
|
|
/* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
|
| 7809 |
|
|
PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
|
| 7810 |
|
|
and CHAIN the vtable pointer for this binfo after construction is
|
| 7811 |
|
|
complete. VALUE can also be another BINFO, in which case we recurse. */
|
| 7812 |
|
|
|
| 7813 |
|
|
static tree
|
| 7814 |
|
|
binfo_ctor_vtable (tree binfo)
|
| 7815 |
|
|
{
|
| 7816 |
|
|
tree vt;
|
| 7817 |
|
|
|
| 7818 |
|
|
while (1)
|
| 7819 |
|
|
{
|
| 7820 |
|
|
vt = BINFO_VTABLE (binfo);
|
| 7821 |
|
|
if (TREE_CODE (vt) == TREE_LIST)
|
| 7822 |
|
|
vt = TREE_VALUE (vt);
|
| 7823 |
|
|
if (TREE_CODE (vt) == TREE_BINFO)
|
| 7824 |
|
|
binfo = vt;
|
| 7825 |
|
|
else
|
| 7826 |
|
|
break;
|
| 7827 |
|
|
}
|
| 7828 |
|
|
|
| 7829 |
|
|
return vt;
|
| 7830 |
|
|
}
|
| 7831 |
|
|
|
| 7832 |
|
|
/* Data for secondary VTT initialization. */
|
| 7833 |
|
|
typedef struct secondary_vptr_vtt_init_data_s
|
| 7834 |
|
|
{
|
| 7835 |
|
|
/* Is this the primary VTT? */
|
| 7836 |
|
|
bool top_level_p;
|
| 7837 |
|
|
|
| 7838 |
|
|
/* Current index into the VTT. */
|
| 7839 |
|
|
tree index;
|
| 7840 |
|
|
|
| 7841 |
|
|
/* Vector of initializers built up. */
|
| 7842 |
|
|
VEC(constructor_elt,gc) *inits;
|
| 7843 |
|
|
|
| 7844 |
|
|
/* The type being constructed by this secondary VTT. */
|
| 7845 |
|
|
tree type_being_constructed;
|
| 7846 |
|
|
} secondary_vptr_vtt_init_data;
|
| 7847 |
|
|
|
| 7848 |
|
|
/* Recursively build the VTT-initializer for BINFO (which is in the
|
| 7849 |
|
|
hierarchy dominated by T). INITS points to the end of the initializer
|
| 7850 |
|
|
list to date. INDEX is the VTT index where the next element will be
|
| 7851 |
|
|
replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
|
| 7852 |
|
|
not a subvtt for some base of T). When that is so, we emit the sub-VTTs
|
| 7853 |
|
|
for virtual bases of T. When it is not so, we build the constructor
|
| 7854 |
|
|
vtables for the BINFO-in-T variant. */
|
| 7855 |
|
|
|
| 7856 |
|
|
static void
|
| 7857 |
|
|
build_vtt_inits (tree binfo, tree t, VEC(constructor_elt,gc) **inits, tree *index)
|
| 7858 |
|
|
{
|
| 7859 |
|
|
int i;
|
| 7860 |
|
|
tree b;
|
| 7861 |
|
|
tree init;
|
| 7862 |
|
|
secondary_vptr_vtt_init_data data;
|
| 7863 |
|
|
int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
|
| 7864 |
|
|
|
| 7865 |
|
|
/* We only need VTTs for subobjects with virtual bases. */
|
| 7866 |
|
|
if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
|
| 7867 |
|
|
return;
|
| 7868 |
|
|
|
| 7869 |
|
|
/* We need to use a construction vtable if this is not the primary
|
| 7870 |
|
|
VTT. */
|
| 7871 |
|
|
if (!top_level_p)
|
| 7872 |
|
|
{
|
| 7873 |
|
|
build_ctor_vtbl_group (binfo, t);
|
| 7874 |
|
|
|
| 7875 |
|
|
/* Record the offset in the VTT where this sub-VTT can be found. */
|
| 7876 |
|
|
BINFO_SUBVTT_INDEX (binfo) = *index;
|
| 7877 |
|
|
}
|
| 7878 |
|
|
|
| 7879 |
|
|
/* Add the address of the primary vtable for the complete object. */
|
| 7880 |
|
|
init = binfo_ctor_vtable (binfo);
|
| 7881 |
|
|
CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
|
| 7882 |
|
|
if (top_level_p)
|
| 7883 |
|
|
{
|
| 7884 |
|
|
gcc_assert (!BINFO_VPTR_INDEX (binfo));
|
| 7885 |
|
|
BINFO_VPTR_INDEX (binfo) = *index;
|
| 7886 |
|
|
}
|
| 7887 |
|
|
*index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
|
| 7888 |
|
|
|
| 7889 |
|
|
/* Recursively add the secondary VTTs for non-virtual bases. */
|
| 7890 |
|
|
for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
|
| 7891 |
|
|
if (!BINFO_VIRTUAL_P (b))
|
| 7892 |
|
|
build_vtt_inits (b, t, inits, index);
|
| 7893 |
|
|
|
| 7894 |
|
|
/* Add secondary virtual pointers for all subobjects of BINFO with
|
| 7895 |
|
|
either virtual bases or reachable along a virtual path, except
|
| 7896 |
|
|
subobjects that are non-virtual primary bases. */
|
| 7897 |
|
|
data.top_level_p = top_level_p;
|
| 7898 |
|
|
data.index = *index;
|
| 7899 |
|
|
data.inits = *inits;
|
| 7900 |
|
|
data.type_being_constructed = BINFO_TYPE (binfo);
|
| 7901 |
|
|
|
| 7902 |
|
|
dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
|
| 7903 |
|
|
|
| 7904 |
|
|
*index = data.index;
|
| 7905 |
|
|
|
| 7906 |
|
|
/* data.inits might have grown as we added secondary virtual pointers.
|
| 7907 |
|
|
Make sure our caller knows about the new vector. */
|
| 7908 |
|
|
*inits = data.inits;
|
| 7909 |
|
|
|
| 7910 |
|
|
if (top_level_p)
|
| 7911 |
|
|
/* Add the secondary VTTs for virtual bases in inheritance graph
|
| 7912 |
|
|
order. */
|
| 7913 |
|
|
for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
|
| 7914 |
|
|
{
|
| 7915 |
|
|
if (!BINFO_VIRTUAL_P (b))
|
| 7916 |
|
|
continue;
|
| 7917 |
|
|
|
| 7918 |
|
|
build_vtt_inits (b, t, inits, index);
|
| 7919 |
|
|
}
|
| 7920 |
|
|
else
|
| 7921 |
|
|
/* Remove the ctor vtables we created. */
|
| 7922 |
|
|
dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
|
| 7923 |
|
|
}
|
| 7924 |
|
|
|
| 7925 |
|
|
/* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
|
| 7926 |
|
|
in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
|
| 7927 |
|
|
|
| 7928 |
|
|
static tree
|
| 7929 |
|
|
dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
|
| 7930 |
|
|
{
|
| 7931 |
|
|
secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
|
| 7932 |
|
|
|
| 7933 |
|
|
/* We don't care about bases that don't have vtables. */
|
| 7934 |
|
|
if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
|
| 7935 |
|
|
return dfs_skip_bases;
|
| 7936 |
|
|
|
| 7937 |
|
|
/* We're only interested in proper subobjects of the type being
|
| 7938 |
|
|
constructed. */
|
| 7939 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
|
| 7940 |
|
|
return NULL_TREE;
|
| 7941 |
|
|
|
| 7942 |
|
|
/* We're only interested in bases with virtual bases or reachable
|
| 7943 |
|
|
via a virtual path from the type being constructed. */
|
| 7944 |
|
|
if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
|
| 7945 |
|
|
|| binfo_via_virtual (binfo, data->type_being_constructed)))
|
| 7946 |
|
|
return dfs_skip_bases;
|
| 7947 |
|
|
|
| 7948 |
|
|
/* We're not interested in non-virtual primary bases. */
|
| 7949 |
|
|
if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
|
| 7950 |
|
|
return NULL_TREE;
|
| 7951 |
|
|
|
| 7952 |
|
|
/* Record the index where this secondary vptr can be found. */
|
| 7953 |
|
|
if (data->top_level_p)
|
| 7954 |
|
|
{
|
| 7955 |
|
|
gcc_assert (!BINFO_VPTR_INDEX (binfo));
|
| 7956 |
|
|
BINFO_VPTR_INDEX (binfo) = data->index;
|
| 7957 |
|
|
|
| 7958 |
|
|
if (BINFO_VIRTUAL_P (binfo))
|
| 7959 |
|
|
{
|
| 7960 |
|
|
/* It's a primary virtual base, and this is not a
|
| 7961 |
|
|
construction vtable. Find the base this is primary of in
|
| 7962 |
|
|
the inheritance graph, and use that base's vtable
|
| 7963 |
|
|
now. */
|
| 7964 |
|
|
while (BINFO_PRIMARY_P (binfo))
|
| 7965 |
|
|
binfo = BINFO_INHERITANCE_CHAIN (binfo);
|
| 7966 |
|
|
}
|
| 7967 |
|
|
}
|
| 7968 |
|
|
|
| 7969 |
|
|
/* Add the initializer for the secondary vptr itself. */
|
| 7970 |
|
|
CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
|
| 7971 |
|
|
|
| 7972 |
|
|
/* Advance the vtt index. */
|
| 7973 |
|
|
data->index = size_binop (PLUS_EXPR, data->index,
|
| 7974 |
|
|
TYPE_SIZE_UNIT (ptr_type_node));
|
| 7975 |
|
|
|
| 7976 |
|
|
return NULL_TREE;
|
| 7977 |
|
|
}
|
| 7978 |
|
|
|
| 7979 |
|
|
/* Called from build_vtt_inits via dfs_walk. After building
|
| 7980 |
|
|
constructor vtables and generating the sub-vtt from them, we need
|
| 7981 |
|
|
to restore the BINFO_VTABLES that were scribbled on. DATA is the
|
| 7982 |
|
|
binfo of the base whose sub vtt was generated. */
|
| 7983 |
|
|
|
| 7984 |
|
|
static tree
|
| 7985 |
|
|
dfs_fixup_binfo_vtbls (tree binfo, void* data)
|
| 7986 |
|
|
{
|
| 7987 |
|
|
tree vtable = BINFO_VTABLE (binfo);
|
| 7988 |
|
|
|
| 7989 |
|
|
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
|
| 7990 |
|
|
/* If this class has no vtable, none of its bases do. */
|
| 7991 |
|
|
return dfs_skip_bases;
|
| 7992 |
|
|
|
| 7993 |
|
|
if (!vtable)
|
| 7994 |
|
|
/* This might be a primary base, so have no vtable in this
|
| 7995 |
|
|
hierarchy. */
|
| 7996 |
|
|
return NULL_TREE;
|
| 7997 |
|
|
|
| 7998 |
|
|
/* If we scribbled the construction vtable vptr into BINFO, clear it
|
| 7999 |
|
|
out now. */
|
| 8000 |
|
|
if (TREE_CODE (vtable) == TREE_LIST
|
| 8001 |
|
|
&& (TREE_PURPOSE (vtable) == (tree) data))
|
| 8002 |
|
|
BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
|
| 8003 |
|
|
|
| 8004 |
|
|
return NULL_TREE;
|
| 8005 |
|
|
}
|
| 8006 |
|
|
|
| 8007 |
|
|
/* Build the construction vtable group for BINFO which is in the
|
| 8008 |
|
|
hierarchy dominated by T. */
|
| 8009 |
|
|
|
| 8010 |
|
|
static void
|
| 8011 |
|
|
build_ctor_vtbl_group (tree binfo, tree t)
|
| 8012 |
|
|
{
|
| 8013 |
|
|
tree type;
|
| 8014 |
|
|
tree vtbl;
|
| 8015 |
|
|
tree id;
|
| 8016 |
|
|
tree vbase;
|
| 8017 |
|
|
VEC(constructor_elt,gc) *v;
|
| 8018 |
|
|
|
| 8019 |
|
|
/* See if we've already created this construction vtable group. */
|
| 8020 |
|
|
id = mangle_ctor_vtbl_for_type (t, binfo);
|
| 8021 |
|
|
if (IDENTIFIER_GLOBAL_VALUE (id))
|
| 8022 |
|
|
return;
|
| 8023 |
|
|
|
| 8024 |
|
|
gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
|
| 8025 |
|
|
/* Build a version of VTBL (with the wrong type) for use in
|
| 8026 |
|
|
constructing the addresses of secondary vtables in the
|
| 8027 |
|
|
construction vtable group. */
|
| 8028 |
|
|
vtbl = build_vtable (t, id, ptr_type_node);
|
| 8029 |
|
|
DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
|
| 8030 |
|
|
|
| 8031 |
|
|
v = NULL;
|
| 8032 |
|
|
accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
|
| 8033 |
|
|
binfo, vtbl, t, &v);
|
| 8034 |
|
|
|
| 8035 |
|
|
/* Add the vtables for each of our virtual bases using the vbase in T
|
| 8036 |
|
|
binfo. */
|
| 8037 |
|
|
for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
|
| 8038 |
|
|
vbase;
|
| 8039 |
|
|
vbase = TREE_CHAIN (vbase))
|
| 8040 |
|
|
{
|
| 8041 |
|
|
tree b;
|
| 8042 |
|
|
|
| 8043 |
|
|
if (!BINFO_VIRTUAL_P (vbase))
|
| 8044 |
|
|
continue;
|
| 8045 |
|
|
b = copied_binfo (vbase, binfo);
|
| 8046 |
|
|
|
| 8047 |
|
|
accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
|
| 8048 |
|
|
}
|
| 8049 |
|
|
|
| 8050 |
|
|
/* Figure out the type of the construction vtable. */
|
| 8051 |
|
|
type = build_array_of_n_type (vtable_entry_type,
|
| 8052 |
|
|
VEC_length (constructor_elt, v));
|
| 8053 |
|
|
layout_type (type);
|
| 8054 |
|
|
TREE_TYPE (vtbl) = type;
|
| 8055 |
|
|
DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
|
| 8056 |
|
|
layout_decl (vtbl, 0);
|
| 8057 |
|
|
|
| 8058 |
|
|
/* Initialize the construction vtable. */
|
| 8059 |
|
|
CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
|
| 8060 |
|
|
initialize_artificial_var (vtbl, v);
|
| 8061 |
|
|
dump_vtable (t, binfo, vtbl);
|
| 8062 |
|
|
}
|
| 8063 |
|
|
|
| 8064 |
|
|
/* Add the vtbl initializers for BINFO (and its bases other than
|
| 8065 |
|
|
non-virtual primaries) to the list of INITS. BINFO is in the
|
| 8066 |
|
|
hierarchy dominated by T. RTTI_BINFO is the binfo within T of
|
| 8067 |
|
|
the constructor the vtbl inits should be accumulated for. (If this
|
| 8068 |
|
|
is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
|
| 8069 |
|
|
ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
|
| 8070 |
|
|
BINFO is the active base equivalent of ORIG_BINFO in the inheritance
|
| 8071 |
|
|
graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
|
| 8072 |
|
|
but are not necessarily the same in terms of layout. */
|
| 8073 |
|
|
|
| 8074 |
|
|
static void
|
| 8075 |
|
|
accumulate_vtbl_inits (tree binfo,
|
| 8076 |
|
|
tree orig_binfo,
|
| 8077 |
|
|
tree rtti_binfo,
|
| 8078 |
|
|
tree vtbl,
|
| 8079 |
|
|
tree t,
|
| 8080 |
|
|
VEC(constructor_elt,gc) **inits)
|
| 8081 |
|
|
{
|
| 8082 |
|
|
int i;
|
| 8083 |
|
|
tree base_binfo;
|
| 8084 |
|
|
int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
|
| 8085 |
|
|
|
| 8086 |
|
|
gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
|
| 8087 |
|
|
|
| 8088 |
|
|
/* If it doesn't have a vptr, we don't do anything. */
|
| 8089 |
|
|
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
|
| 8090 |
|
|
return;
|
| 8091 |
|
|
|
| 8092 |
|
|
/* If we're building a construction vtable, we're not interested in
|
| 8093 |
|
|
subobjects that don't require construction vtables. */
|
| 8094 |
|
|
if (ctor_vtbl_p
|
| 8095 |
|
|
&& !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
|
| 8096 |
|
|
&& !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
|
| 8097 |
|
|
return;
|
| 8098 |
|
|
|
| 8099 |
|
|
/* Build the initializers for the BINFO-in-T vtable. */
|
| 8100 |
|
|
dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
|
| 8101 |
|
|
|
| 8102 |
|
|
/* Walk the BINFO and its bases. We walk in preorder so that as we
|
| 8103 |
|
|
initialize each vtable we can figure out at what offset the
|
| 8104 |
|
|
secondary vtable lies from the primary vtable. We can't use
|
| 8105 |
|
|
dfs_walk here because we need to iterate through bases of BINFO
|
| 8106 |
|
|
and RTTI_BINFO simultaneously. */
|
| 8107 |
|
|
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
| 8108 |
|
|
{
|
| 8109 |
|
|
/* Skip virtual bases. */
|
| 8110 |
|
|
if (BINFO_VIRTUAL_P (base_binfo))
|
| 8111 |
|
|
continue;
|
| 8112 |
|
|
accumulate_vtbl_inits (base_binfo,
|
| 8113 |
|
|
BINFO_BASE_BINFO (orig_binfo, i),
|
| 8114 |
|
|
rtti_binfo, vtbl, t,
|
| 8115 |
|
|
inits);
|
| 8116 |
|
|
}
|
| 8117 |
|
|
}
|
| 8118 |
|
|
|
| 8119 |
|
|
/* Called from accumulate_vtbl_inits. Adds the initializers for the
|
| 8120 |
|
|
BINFO vtable to L. */
|
| 8121 |
|
|
|
| 8122 |
|
|
static void
|
| 8123 |
|
|
dfs_accumulate_vtbl_inits (tree binfo,
|
| 8124 |
|
|
tree orig_binfo,
|
| 8125 |
|
|
tree rtti_binfo,
|
| 8126 |
|
|
tree orig_vtbl,
|
| 8127 |
|
|
tree t,
|
| 8128 |
|
|
VEC(constructor_elt,gc) **l)
|
| 8129 |
|
|
{
|
| 8130 |
|
|
tree vtbl = NULL_TREE;
|
| 8131 |
|
|
int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
|
| 8132 |
|
|
int n_inits;
|
| 8133 |
|
|
|
| 8134 |
|
|
if (ctor_vtbl_p
|
| 8135 |
|
|
&& BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
|
| 8136 |
|
|
{
|
| 8137 |
|
|
/* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
|
| 8138 |
|
|
primary virtual base. If it is not the same primary in
|
| 8139 |
|
|
the hierarchy of T, we'll need to generate a ctor vtable
|
| 8140 |
|
|
for it, to place at its location in T. If it is the same
|
| 8141 |
|
|
primary, we still need a VTT entry for the vtable, but it
|
| 8142 |
|
|
should point to the ctor vtable for the base it is a
|
| 8143 |
|
|
primary for within the sub-hierarchy of RTTI_BINFO.
|
| 8144 |
|
|
|
| 8145 |
|
|
There are three possible cases:
|
| 8146 |
|
|
|
| 8147 |
|
|
1) We are in the same place.
|
| 8148 |
|
|
2) We are a primary base within a lost primary virtual base of
|
| 8149 |
|
|
RTTI_BINFO.
|
| 8150 |
|
|
3) We are primary to something not a base of RTTI_BINFO. */
|
| 8151 |
|
|
|
| 8152 |
|
|
tree b;
|
| 8153 |
|
|
tree last = NULL_TREE;
|
| 8154 |
|
|
|
| 8155 |
|
|
/* First, look through the bases we are primary to for RTTI_BINFO
|
| 8156 |
|
|
or a virtual base. */
|
| 8157 |
|
|
b = binfo;
|
| 8158 |
|
|
while (BINFO_PRIMARY_P (b))
|
| 8159 |
|
|
{
|
| 8160 |
|
|
b = BINFO_INHERITANCE_CHAIN (b);
|
| 8161 |
|
|
last = b;
|
| 8162 |
|
|
if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
|
| 8163 |
|
|
goto found;
|
| 8164 |
|
|
}
|
| 8165 |
|
|
/* If we run out of primary links, keep looking down our
|
| 8166 |
|
|
inheritance chain; we might be an indirect primary. */
|
| 8167 |
|
|
for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
|
| 8168 |
|
|
if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
|
| 8169 |
|
|
break;
|
| 8170 |
|
|
found:
|
| 8171 |
|
|
|
| 8172 |
|
|
/* If we found RTTI_BINFO, this is case 1. If we found a virtual
|
| 8173 |
|
|
base B and it is a base of RTTI_BINFO, this is case 2. In
|
| 8174 |
|
|
either case, we share our vtable with LAST, i.e. the
|
| 8175 |
|
|
derived-most base within B of which we are a primary. */
|
| 8176 |
|
|
if (b == rtti_binfo
|
| 8177 |
|
|
|| (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
|
| 8178 |
|
|
/* Just set our BINFO_VTABLE to point to LAST, as we may not have
|
| 8179 |
|
|
set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
|
| 8180 |
|
|
binfo_ctor_vtable after everything's been set up. */
|
| 8181 |
|
|
vtbl = last;
|
| 8182 |
|
|
|
| 8183 |
|
|
/* Otherwise, this is case 3 and we get our own. */
|
| 8184 |
|
|
}
|
| 8185 |
|
|
else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
|
| 8186 |
|
|
return;
|
| 8187 |
|
|
|
| 8188 |
|
|
n_inits = VEC_length (constructor_elt, *l);
|
| 8189 |
|
|
|
| 8190 |
|
|
if (!vtbl)
|
| 8191 |
|
|
{
|
| 8192 |
|
|
tree index;
|
| 8193 |
|
|
int non_fn_entries;
|
| 8194 |
|
|
|
| 8195 |
|
|
/* Add the initializer for this vtable. */
|
| 8196 |
|
|
build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
|
| 8197 |
|
|
&non_fn_entries, l);
|
| 8198 |
|
|
|
| 8199 |
|
|
/* Figure out the position to which the VPTR should point. */
|
| 8200 |
|
|
vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
|
| 8201 |
|
|
index = size_binop (MULT_EXPR,
|
| 8202 |
|
|
TYPE_SIZE_UNIT (vtable_entry_type),
|
| 8203 |
|
|
size_int (non_fn_entries + n_inits));
|
| 8204 |
|
|
vtbl = fold_build_pointer_plus (vtbl, index);
|
| 8205 |
|
|
}
|
| 8206 |
|
|
|
| 8207 |
|
|
if (ctor_vtbl_p)
|
| 8208 |
|
|
/* For a construction vtable, we can't overwrite BINFO_VTABLE.
|
| 8209 |
|
|
So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
|
| 8210 |
|
|
straighten this out. */
|
| 8211 |
|
|
BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
|
| 8212 |
|
|
else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
|
| 8213 |
|
|
/* Throw away any unneeded intializers. */
|
| 8214 |
|
|
VEC_truncate (constructor_elt, *l, n_inits);
|
| 8215 |
|
|
else
|
| 8216 |
|
|
/* For an ordinary vtable, set BINFO_VTABLE. */
|
| 8217 |
|
|
BINFO_VTABLE (binfo) = vtbl;
|
| 8218 |
|
|
}
|
| 8219 |
|
|
|
| 8220 |
|
|
static GTY(()) tree abort_fndecl_addr;
|
| 8221 |
|
|
|
| 8222 |
|
|
/* Construct the initializer for BINFO's virtual function table. BINFO
|
| 8223 |
|
|
is part of the hierarchy dominated by T. If we're building a
|
| 8224 |
|
|
construction vtable, the ORIG_BINFO is the binfo we should use to
|
| 8225 |
|
|
find the actual function pointers to put in the vtable - but they
|
| 8226 |
|
|
can be overridden on the path to most-derived in the graph that
|
| 8227 |
|
|
ORIG_BINFO belongs. Otherwise,
|
| 8228 |
|
|
ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
|
| 8229 |
|
|
BINFO that should be indicated by the RTTI information in the
|
| 8230 |
|
|
vtable; it will be a base class of T, rather than T itself, if we
|
| 8231 |
|
|
are building a construction vtable.
|
| 8232 |
|
|
|
| 8233 |
|
|
The value returned is a TREE_LIST suitable for wrapping in a
|
| 8234 |
|
|
CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
|
| 8235 |
|
|
NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
|
| 8236 |
|
|
number of non-function entries in the vtable.
|
| 8237 |
|
|
|
| 8238 |
|
|
It might seem that this function should never be called with a
|
| 8239 |
|
|
BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
|
| 8240 |
|
|
base is always subsumed by a derived class vtable. However, when
|
| 8241 |
|
|
we are building construction vtables, we do build vtables for
|
| 8242 |
|
|
primary bases; we need these while the primary base is being
|
| 8243 |
|
|
constructed. */
|
| 8244 |
|
|
|
| 8245 |
|
|
static void
|
| 8246 |
|
|
build_vtbl_initializer (tree binfo,
|
| 8247 |
|
|
tree orig_binfo,
|
| 8248 |
|
|
tree t,
|
| 8249 |
|
|
tree rtti_binfo,
|
| 8250 |
|
|
int* non_fn_entries_p,
|
| 8251 |
|
|
VEC(constructor_elt,gc) **inits)
|
| 8252 |
|
|
{
|
| 8253 |
|
|
tree v;
|
| 8254 |
|
|
vtbl_init_data vid;
|
| 8255 |
|
|
unsigned ix, jx;
|
| 8256 |
|
|
tree vbinfo;
|
| 8257 |
|
|
VEC(tree,gc) *vbases;
|
| 8258 |
|
|
constructor_elt *e;
|
| 8259 |
|
|
|
| 8260 |
|
|
/* Initialize VID. */
|
| 8261 |
|
|
memset (&vid, 0, sizeof (vid));
|
| 8262 |
|
|
vid.binfo = binfo;
|
| 8263 |
|
|
vid.derived = t;
|
| 8264 |
|
|
vid.rtti_binfo = rtti_binfo;
|
| 8265 |
|
|
vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
|
| 8266 |
|
|
vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
|
| 8267 |
|
|
vid.generate_vcall_entries = true;
|
| 8268 |
|
|
/* The first vbase or vcall offset is at index -3 in the vtable. */
|
| 8269 |
|
|
vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
|
| 8270 |
|
|
|
| 8271 |
|
|
/* Add entries to the vtable for RTTI. */
|
| 8272 |
|
|
build_rtti_vtbl_entries (binfo, &vid);
|
| 8273 |
|
|
|
| 8274 |
|
|
/* Create an array for keeping track of the functions we've
|
| 8275 |
|
|
processed. When we see multiple functions with the same
|
| 8276 |
|
|
signature, we share the vcall offsets. */
|
| 8277 |
|
|
vid.fns = VEC_alloc (tree, gc, 32);
|
| 8278 |
|
|
/* Add the vcall and vbase offset entries. */
|
| 8279 |
|
|
build_vcall_and_vbase_vtbl_entries (binfo, &vid);
|
| 8280 |
|
|
|
| 8281 |
|
|
/* Clear BINFO_VTABLE_PATH_MARKED; it's set by
|
| 8282 |
|
|
build_vbase_offset_vtbl_entries. */
|
| 8283 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
|
| 8284 |
|
|
VEC_iterate (tree, vbases, ix, vbinfo); ix++)
|
| 8285 |
|
|
BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
|
| 8286 |
|
|
|
| 8287 |
|
|
/* If the target requires padding between data entries, add that now. */
|
| 8288 |
|
|
if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
|
| 8289 |
|
|
{
|
| 8290 |
|
|
int n_entries = VEC_length (constructor_elt, vid.inits);
|
| 8291 |
|
|
|
| 8292 |
|
|
VEC_safe_grow (constructor_elt, gc, vid.inits,
|
| 8293 |
|
|
TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
|
| 8294 |
|
|
|
| 8295 |
|
|
/* Move data entries into their new positions and add padding
|
| 8296 |
|
|
after the new positions. Iterate backwards so we don't
|
| 8297 |
|
|
overwrite entries that we would need to process later. */
|
| 8298 |
|
|
for (ix = n_entries - 1;
|
| 8299 |
|
|
VEC_iterate (constructor_elt, vid.inits, ix, e);
|
| 8300 |
|
|
ix--)
|
| 8301 |
|
|
{
|
| 8302 |
|
|
int j;
|
| 8303 |
|
|
int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
|
| 8304 |
|
|
+ (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
|
| 8305 |
|
|
|
| 8306 |
|
|
VEC_replace (constructor_elt, vid.inits, new_position, e);
|
| 8307 |
|
|
|
| 8308 |
|
|
for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
|
| 8309 |
|
|
{
|
| 8310 |
|
|
constructor_elt *f = VEC_index (constructor_elt, vid.inits,
|
| 8311 |
|
|
new_position - j);
|
| 8312 |
|
|
f->index = NULL_TREE;
|
| 8313 |
|
|
f->value = build1 (NOP_EXPR, vtable_entry_type,
|
| 8314 |
|
|
null_pointer_node);
|
| 8315 |
|
|
}
|
| 8316 |
|
|
}
|
| 8317 |
|
|
}
|
| 8318 |
|
|
|
| 8319 |
|
|
if (non_fn_entries_p)
|
| 8320 |
|
|
*non_fn_entries_p = VEC_length (constructor_elt, vid.inits);
|
| 8321 |
|
|
|
| 8322 |
|
|
/* The initializers for virtual functions were built up in reverse
|
| 8323 |
|
|
order. Straighten them out and add them to the running list in one
|
| 8324 |
|
|
step. */
|
| 8325 |
|
|
jx = VEC_length (constructor_elt, *inits);
|
| 8326 |
|
|
VEC_safe_grow (constructor_elt, gc, *inits,
|
| 8327 |
|
|
(jx + VEC_length (constructor_elt, vid.inits)));
|
| 8328 |
|
|
|
| 8329 |
|
|
for (ix = VEC_length (constructor_elt, vid.inits) - 1;
|
| 8330 |
|
|
VEC_iterate (constructor_elt, vid.inits, ix, e);
|
| 8331 |
|
|
ix--, jx++)
|
| 8332 |
|
|
VEC_replace (constructor_elt, *inits, jx, e);
|
| 8333 |
|
|
|
| 8334 |
|
|
/* Go through all the ordinary virtual functions, building up
|
| 8335 |
|
|
initializers. */
|
| 8336 |
|
|
for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
|
| 8337 |
|
|
{
|
| 8338 |
|
|
tree delta;
|
| 8339 |
|
|
tree vcall_index;
|
| 8340 |
|
|
tree fn, fn_original;
|
| 8341 |
|
|
tree init = NULL_TREE;
|
| 8342 |
|
|
|
| 8343 |
|
|
fn = BV_FN (v);
|
| 8344 |
|
|
fn_original = fn;
|
| 8345 |
|
|
if (DECL_THUNK_P (fn))
|
| 8346 |
|
|
{
|
| 8347 |
|
|
if (!DECL_NAME (fn))
|
| 8348 |
|
|
finish_thunk (fn);
|
| 8349 |
|
|
if (THUNK_ALIAS (fn))
|
| 8350 |
|
|
{
|
| 8351 |
|
|
fn = THUNK_ALIAS (fn);
|
| 8352 |
|
|
BV_FN (v) = fn;
|
| 8353 |
|
|
}
|
| 8354 |
|
|
fn_original = THUNK_TARGET (fn);
|
| 8355 |
|
|
}
|
| 8356 |
|
|
|
| 8357 |
|
|
/* If the only definition of this function signature along our
|
| 8358 |
|
|
primary base chain is from a lost primary, this vtable slot will
|
| 8359 |
|
|
never be used, so just zero it out. This is important to avoid
|
| 8360 |
|
|
requiring extra thunks which cannot be generated with the function.
|
| 8361 |
|
|
|
| 8362 |
|
|
We first check this in update_vtable_entry_for_fn, so we handle
|
| 8363 |
|
|
restored primary bases properly; we also need to do it here so we
|
| 8364 |
|
|
zero out unused slots in ctor vtables, rather than filling them
|
| 8365 |
|
|
with erroneous values (though harmless, apart from relocation
|
| 8366 |
|
|
costs). */
|
| 8367 |
|
|
if (BV_LOST_PRIMARY (v))
|
| 8368 |
|
|
init = size_zero_node;
|
| 8369 |
|
|
|
| 8370 |
|
|
if (! init)
|
| 8371 |
|
|
{
|
| 8372 |
|
|
/* Pull the offset for `this', and the function to call, out of
|
| 8373 |
|
|
the list. */
|
| 8374 |
|
|
delta = BV_DELTA (v);
|
| 8375 |
|
|
vcall_index = BV_VCALL_INDEX (v);
|
| 8376 |
|
|
|
| 8377 |
|
|
gcc_assert (TREE_CODE (delta) == INTEGER_CST);
|
| 8378 |
|
|
gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
|
| 8379 |
|
|
|
| 8380 |
|
|
/* You can't call an abstract virtual function; it's abstract.
|
| 8381 |
|
|
So, we replace these functions with __pure_virtual. */
|
| 8382 |
|
|
if (DECL_PURE_VIRTUAL_P (fn_original))
|
| 8383 |
|
|
{
|
| 8384 |
|
|
fn = abort_fndecl;
|
| 8385 |
|
|
if (!TARGET_VTABLE_USES_DESCRIPTORS)
|
| 8386 |
|
|
{
|
| 8387 |
|
|
if (abort_fndecl_addr == NULL)
|
| 8388 |
|
|
abort_fndecl_addr
|
| 8389 |
|
|
= fold_convert (vfunc_ptr_type_node,
|
| 8390 |
|
|
build_fold_addr_expr (fn));
|
| 8391 |
|
|
init = abort_fndecl_addr;
|
| 8392 |
|
|
}
|
| 8393 |
|
|
}
|
| 8394 |
|
|
/* Likewise for deleted virtuals. */
|
| 8395 |
|
|
else if (DECL_DELETED_FN (fn_original))
|
| 8396 |
|
|
{
|
| 8397 |
|
|
fn = get_identifier ("__cxa_deleted_virtual");
|
| 8398 |
|
|
if (!get_global_value_if_present (fn, &fn))
|
| 8399 |
|
|
fn = push_library_fn (fn, (build_function_type_list
|
| 8400 |
|
|
(void_type_node, NULL_TREE)),
|
| 8401 |
|
|
NULL_TREE);
|
| 8402 |
|
|
if (!TARGET_VTABLE_USES_DESCRIPTORS)
|
| 8403 |
|
|
init = fold_convert (vfunc_ptr_type_node,
|
| 8404 |
|
|
build_fold_addr_expr (fn));
|
| 8405 |
|
|
}
|
| 8406 |
|
|
else
|
| 8407 |
|
|
{
|
| 8408 |
|
|
if (!integer_zerop (delta) || vcall_index)
|
| 8409 |
|
|
{
|
| 8410 |
|
|
fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
|
| 8411 |
|
|
if (!DECL_NAME (fn))
|
| 8412 |
|
|
finish_thunk (fn);
|
| 8413 |
|
|
}
|
| 8414 |
|
|
/* Take the address of the function, considering it to be of an
|
| 8415 |
|
|
appropriate generic type. */
|
| 8416 |
|
|
if (!TARGET_VTABLE_USES_DESCRIPTORS)
|
| 8417 |
|
|
init = fold_convert (vfunc_ptr_type_node,
|
| 8418 |
|
|
build_fold_addr_expr (fn));
|
| 8419 |
|
|
}
|
| 8420 |
|
|
}
|
| 8421 |
|
|
|
| 8422 |
|
|
/* And add it to the chain of initializers. */
|
| 8423 |
|
|
if (TARGET_VTABLE_USES_DESCRIPTORS)
|
| 8424 |
|
|
{
|
| 8425 |
|
|
int i;
|
| 8426 |
|
|
if (init == size_zero_node)
|
| 8427 |
|
|
for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
|
| 8428 |
|
|
CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
|
| 8429 |
|
|
else
|
| 8430 |
|
|
for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
|
| 8431 |
|
|
{
|
| 8432 |
|
|
tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
|
| 8433 |
|
|
fn, build_int_cst (NULL_TREE, i));
|
| 8434 |
|
|
TREE_CONSTANT (fdesc) = 1;
|
| 8435 |
|
|
|
| 8436 |
|
|
CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
|
| 8437 |
|
|
}
|
| 8438 |
|
|
}
|
| 8439 |
|
|
else
|
| 8440 |
|
|
CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
|
| 8441 |
|
|
}
|
| 8442 |
|
|
}
|
| 8443 |
|
|
|
| 8444 |
|
|
/* Adds to vid->inits the initializers for the vbase and vcall
|
| 8445 |
|
|
offsets in BINFO, which is in the hierarchy dominated by T. */
|
| 8446 |
|
|
|
| 8447 |
|
|
static void
|
| 8448 |
|
|
build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
|
| 8449 |
|
|
{
|
| 8450 |
|
|
tree b;
|
| 8451 |
|
|
|
| 8452 |
|
|
/* If this is a derived class, we must first create entries
|
| 8453 |
|
|
corresponding to the primary base class. */
|
| 8454 |
|
|
b = get_primary_binfo (binfo);
|
| 8455 |
|
|
if (b)
|
| 8456 |
|
|
build_vcall_and_vbase_vtbl_entries (b, vid);
|
| 8457 |
|
|
|
| 8458 |
|
|
/* Add the vbase entries for this base. */
|
| 8459 |
|
|
build_vbase_offset_vtbl_entries (binfo, vid);
|
| 8460 |
|
|
/* Add the vcall entries for this base. */
|
| 8461 |
|
|
build_vcall_offset_vtbl_entries (binfo, vid);
|
| 8462 |
|
|
}
|
| 8463 |
|
|
|
| 8464 |
|
|
/* Returns the initializers for the vbase offset entries in the vtable
|
| 8465 |
|
|
for BINFO (which is part of the class hierarchy dominated by T), in
|
| 8466 |
|
|
reverse order. VBASE_OFFSET_INDEX gives the vtable index
|
| 8467 |
|
|
where the next vbase offset will go. */
|
| 8468 |
|
|
|
| 8469 |
|
|
static void
|
| 8470 |
|
|
build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
|
| 8471 |
|
|
{
|
| 8472 |
|
|
tree vbase;
|
| 8473 |
|
|
tree t;
|
| 8474 |
|
|
tree non_primary_binfo;
|
| 8475 |
|
|
|
| 8476 |
|
|
/* If there are no virtual baseclasses, then there is nothing to
|
| 8477 |
|
|
do. */
|
| 8478 |
|
|
if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
|
| 8479 |
|
|
return;
|
| 8480 |
|
|
|
| 8481 |
|
|
t = vid->derived;
|
| 8482 |
|
|
|
| 8483 |
|
|
/* We might be a primary base class. Go up the inheritance hierarchy
|
| 8484 |
|
|
until we find the most derived class of which we are a primary base:
|
| 8485 |
|
|
it is the offset of that which we need to use. */
|
| 8486 |
|
|
non_primary_binfo = binfo;
|
| 8487 |
|
|
while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
|
| 8488 |
|
|
{
|
| 8489 |
|
|
tree b;
|
| 8490 |
|
|
|
| 8491 |
|
|
/* If we have reached a virtual base, then it must be a primary
|
| 8492 |
|
|
base (possibly multi-level) of vid->binfo, or we wouldn't
|
| 8493 |
|
|
have called build_vcall_and_vbase_vtbl_entries for it. But it
|
| 8494 |
|
|
might be a lost primary, so just skip down to vid->binfo. */
|
| 8495 |
|
|
if (BINFO_VIRTUAL_P (non_primary_binfo))
|
| 8496 |
|
|
{
|
| 8497 |
|
|
non_primary_binfo = vid->binfo;
|
| 8498 |
|
|
break;
|
| 8499 |
|
|
}
|
| 8500 |
|
|
|
| 8501 |
|
|
b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
|
| 8502 |
|
|
if (get_primary_binfo (b) != non_primary_binfo)
|
| 8503 |
|
|
break;
|
| 8504 |
|
|
non_primary_binfo = b;
|
| 8505 |
|
|
}
|
| 8506 |
|
|
|
| 8507 |
|
|
/* Go through the virtual bases, adding the offsets. */
|
| 8508 |
|
|
for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
|
| 8509 |
|
|
vbase;
|
| 8510 |
|
|
vbase = TREE_CHAIN (vbase))
|
| 8511 |
|
|
{
|
| 8512 |
|
|
tree b;
|
| 8513 |
|
|
tree delta;
|
| 8514 |
|
|
|
| 8515 |
|
|
if (!BINFO_VIRTUAL_P (vbase))
|
| 8516 |
|
|
continue;
|
| 8517 |
|
|
|
| 8518 |
|
|
/* Find the instance of this virtual base in the complete
|
| 8519 |
|
|
object. */
|
| 8520 |
|
|
b = copied_binfo (vbase, binfo);
|
| 8521 |
|
|
|
| 8522 |
|
|
/* If we've already got an offset for this virtual base, we
|
| 8523 |
|
|
don't need another one. */
|
| 8524 |
|
|
if (BINFO_VTABLE_PATH_MARKED (b))
|
| 8525 |
|
|
continue;
|
| 8526 |
|
|
BINFO_VTABLE_PATH_MARKED (b) = 1;
|
| 8527 |
|
|
|
| 8528 |
|
|
/* Figure out where we can find this vbase offset. */
|
| 8529 |
|
|
delta = size_binop (MULT_EXPR,
|
| 8530 |
|
|
vid->index,
|
| 8531 |
|
|
convert (ssizetype,
|
| 8532 |
|
|
TYPE_SIZE_UNIT (vtable_entry_type)));
|
| 8533 |
|
|
if (vid->primary_vtbl_p)
|
| 8534 |
|
|
BINFO_VPTR_FIELD (b) = delta;
|
| 8535 |
|
|
|
| 8536 |
|
|
if (binfo != TYPE_BINFO (t))
|
| 8537 |
|
|
/* The vbase offset had better be the same. */
|
| 8538 |
|
|
gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
|
| 8539 |
|
|
|
| 8540 |
|
|
/* The next vbase will come at a more negative offset. */
|
| 8541 |
|
|
vid->index = size_binop (MINUS_EXPR, vid->index,
|
| 8542 |
|
|
ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
|
| 8543 |
|
|
|
| 8544 |
|
|
/* The initializer is the delta from BINFO to this virtual base.
|
| 8545 |
|
|
The vbase offsets go in reverse inheritance-graph order, and
|
| 8546 |
|
|
we are walking in inheritance graph order so these end up in
|
| 8547 |
|
|
the right order. */
|
| 8548 |
|
|
delta = size_diffop_loc (input_location,
|
| 8549 |
|
|
BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
|
| 8550 |
|
|
|
| 8551 |
|
|
CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
|
| 8552 |
|
|
fold_build1_loc (input_location, NOP_EXPR,
|
| 8553 |
|
|
vtable_entry_type, delta));
|
| 8554 |
|
|
}
|
| 8555 |
|
|
}
|
| 8556 |
|
|
|
| 8557 |
|
|
/* Adds the initializers for the vcall offset entries in the vtable
|
| 8558 |
|
|
for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
|
| 8559 |
|
|
to VID->INITS. */
|
| 8560 |
|
|
|
| 8561 |
|
|
static void
|
| 8562 |
|
|
build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
|
| 8563 |
|
|
{
|
| 8564 |
|
|
/* We only need these entries if this base is a virtual base. We
|
| 8565 |
|
|
compute the indices -- but do not add to the vtable -- when
|
| 8566 |
|
|
building the main vtable for a class. */
|
| 8567 |
|
|
if (binfo == TYPE_BINFO (vid->derived)
|
| 8568 |
|
|
|| (BINFO_VIRTUAL_P (binfo)
|
| 8569 |
|
|
/* If BINFO is RTTI_BINFO, then (since BINFO does not
|
| 8570 |
|
|
correspond to VID->DERIVED), we are building a primary
|
| 8571 |
|
|
construction virtual table. Since this is a primary
|
| 8572 |
|
|
virtual table, we do not need the vcall offsets for
|
| 8573 |
|
|
BINFO. */
|
| 8574 |
|
|
&& binfo != vid->rtti_binfo))
|
| 8575 |
|
|
{
|
| 8576 |
|
|
/* We need a vcall offset for each of the virtual functions in this
|
| 8577 |
|
|
vtable. For example:
|
| 8578 |
|
|
|
| 8579 |
|
|
class A { virtual void f (); };
|
| 8580 |
|
|
class B1 : virtual public A { virtual void f (); };
|
| 8581 |
|
|
class B2 : virtual public A { virtual void f (); };
|
| 8582 |
|
|
class C: public B1, public B2 { virtual void f (); };
|
| 8583 |
|
|
|
| 8584 |
|
|
A C object has a primary base of B1, which has a primary base of A. A
|
| 8585 |
|
|
C also has a secondary base of B2, which no longer has a primary base
|
| 8586 |
|
|
of A. So the B2-in-C construction vtable needs a secondary vtable for
|
| 8587 |
|
|
A, which will adjust the A* to a B2* to call f. We have no way of
|
| 8588 |
|
|
knowing what (or even whether) this offset will be when we define B2,
|
| 8589 |
|
|
so we store this "vcall offset" in the A sub-vtable and look it up in
|
| 8590 |
|
|
a "virtual thunk" for B2::f.
|
| 8591 |
|
|
|
| 8592 |
|
|
We need entries for all the functions in our primary vtable and
|
| 8593 |
|
|
in our non-virtual bases' secondary vtables. */
|
| 8594 |
|
|
vid->vbase = binfo;
|
| 8595 |
|
|
/* If we are just computing the vcall indices -- but do not need
|
| 8596 |
|
|
the actual entries -- not that. */
|
| 8597 |
|
|
if (!BINFO_VIRTUAL_P (binfo))
|
| 8598 |
|
|
vid->generate_vcall_entries = false;
|
| 8599 |
|
|
/* Now, walk through the non-virtual bases, adding vcall offsets. */
|
| 8600 |
|
|
add_vcall_offset_vtbl_entries_r (binfo, vid);
|
| 8601 |
|
|
}
|
| 8602 |
|
|
}
|
| 8603 |
|
|
|
| 8604 |
|
|
/* Build vcall offsets, starting with those for BINFO. */
|
| 8605 |
|
|
|
| 8606 |
|
|
static void
|
| 8607 |
|
|
add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
|
| 8608 |
|
|
{
|
| 8609 |
|
|
int i;
|
| 8610 |
|
|
tree primary_binfo;
|
| 8611 |
|
|
tree base_binfo;
|
| 8612 |
|
|
|
| 8613 |
|
|
/* Don't walk into virtual bases -- except, of course, for the
|
| 8614 |
|
|
virtual base for which we are building vcall offsets. Any
|
| 8615 |
|
|
primary virtual base will have already had its offsets generated
|
| 8616 |
|
|
through the recursion in build_vcall_and_vbase_vtbl_entries. */
|
| 8617 |
|
|
if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
|
| 8618 |
|
|
return;
|
| 8619 |
|
|
|
| 8620 |
|
|
/* If BINFO has a primary base, process it first. */
|
| 8621 |
|
|
primary_binfo = get_primary_binfo (binfo);
|
| 8622 |
|
|
if (primary_binfo)
|
| 8623 |
|
|
add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
|
| 8624 |
|
|
|
| 8625 |
|
|
/* Add BINFO itself to the list. */
|
| 8626 |
|
|
add_vcall_offset_vtbl_entries_1 (binfo, vid);
|
| 8627 |
|
|
|
| 8628 |
|
|
/* Scan the non-primary bases of BINFO. */
|
| 8629 |
|
|
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
| 8630 |
|
|
if (base_binfo != primary_binfo)
|
| 8631 |
|
|
add_vcall_offset_vtbl_entries_r (base_binfo, vid);
|
| 8632 |
|
|
}
|
| 8633 |
|
|
|
| 8634 |
|
|
/* Called from build_vcall_offset_vtbl_entries_r. */
|
| 8635 |
|
|
|
| 8636 |
|
|
static void
|
| 8637 |
|
|
add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
|
| 8638 |
|
|
{
|
| 8639 |
|
|
/* Make entries for the rest of the virtuals. */
|
| 8640 |
|
|
if (abi_version_at_least (2))
|
| 8641 |
|
|
{
|
| 8642 |
|
|
tree orig_fn;
|
| 8643 |
|
|
|
| 8644 |
|
|
/* The ABI requires that the methods be processed in declaration
|
| 8645 |
|
|
order. G++ 3.2 used the order in the vtable. */
|
| 8646 |
|
|
for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
|
| 8647 |
|
|
orig_fn;
|
| 8648 |
|
|
orig_fn = DECL_CHAIN (orig_fn))
|
| 8649 |
|
|
if (DECL_VINDEX (orig_fn))
|
| 8650 |
|
|
add_vcall_offset (orig_fn, binfo, vid);
|
| 8651 |
|
|
}
|
| 8652 |
|
|
else
|
| 8653 |
|
|
{
|
| 8654 |
|
|
tree derived_virtuals;
|
| 8655 |
|
|
tree base_virtuals;
|
| 8656 |
|
|
tree orig_virtuals;
|
| 8657 |
|
|
/* If BINFO is a primary base, the most derived class which has
|
| 8658 |
|
|
BINFO as a primary base; otherwise, just BINFO. */
|
| 8659 |
|
|
tree non_primary_binfo;
|
| 8660 |
|
|
|
| 8661 |
|
|
/* We might be a primary base class. Go up the inheritance hierarchy
|
| 8662 |
|
|
until we find the most derived class of which we are a primary base:
|
| 8663 |
|
|
it is the BINFO_VIRTUALS there that we need to consider. */
|
| 8664 |
|
|
non_primary_binfo = binfo;
|
| 8665 |
|
|
while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
|
| 8666 |
|
|
{
|
| 8667 |
|
|
tree b;
|
| 8668 |
|
|
|
| 8669 |
|
|
/* If we have reached a virtual base, then it must be vid->vbase,
|
| 8670 |
|
|
because we ignore other virtual bases in
|
| 8671 |
|
|
add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
|
| 8672 |
|
|
base (possibly multi-level) of vid->binfo, or we wouldn't
|
| 8673 |
|
|
have called build_vcall_and_vbase_vtbl_entries for it. But it
|
| 8674 |
|
|
might be a lost primary, so just skip down to vid->binfo. */
|
| 8675 |
|
|
if (BINFO_VIRTUAL_P (non_primary_binfo))
|
| 8676 |
|
|
{
|
| 8677 |
|
|
gcc_assert (non_primary_binfo == vid->vbase);
|
| 8678 |
|
|
non_primary_binfo = vid->binfo;
|
| 8679 |
|
|
break;
|
| 8680 |
|
|
}
|
| 8681 |
|
|
|
| 8682 |
|
|
b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
|
| 8683 |
|
|
if (get_primary_binfo (b) != non_primary_binfo)
|
| 8684 |
|
|
break;
|
| 8685 |
|
|
non_primary_binfo = b;
|
| 8686 |
|
|
}
|
| 8687 |
|
|
|
| 8688 |
|
|
if (vid->ctor_vtbl_p)
|
| 8689 |
|
|
/* For a ctor vtable we need the equivalent binfo within the hierarchy
|
| 8690 |
|
|
where rtti_binfo is the most derived type. */
|
| 8691 |
|
|
non_primary_binfo
|
| 8692 |
|
|
= original_binfo (non_primary_binfo, vid->rtti_binfo);
|
| 8693 |
|
|
|
| 8694 |
|
|
for (base_virtuals = BINFO_VIRTUALS (binfo),
|
| 8695 |
|
|
derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
|
| 8696 |
|
|
orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
|
| 8697 |
|
|
base_virtuals;
|
| 8698 |
|
|
base_virtuals = TREE_CHAIN (base_virtuals),
|
| 8699 |
|
|
derived_virtuals = TREE_CHAIN (derived_virtuals),
|
| 8700 |
|
|
orig_virtuals = TREE_CHAIN (orig_virtuals))
|
| 8701 |
|
|
{
|
| 8702 |
|
|
tree orig_fn;
|
| 8703 |
|
|
|
| 8704 |
|
|
/* Find the declaration that originally caused this function to
|
| 8705 |
|
|
be present in BINFO_TYPE (binfo). */
|
| 8706 |
|
|
orig_fn = BV_FN (orig_virtuals);
|
| 8707 |
|
|
|
| 8708 |
|
|
/* When processing BINFO, we only want to generate vcall slots for
|
| 8709 |
|
|
function slots introduced in BINFO. So don't try to generate
|
| 8710 |
|
|
one if the function isn't even defined in BINFO. */
|
| 8711 |
|
|
if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
|
| 8712 |
|
|
continue;
|
| 8713 |
|
|
|
| 8714 |
|
|
add_vcall_offset (orig_fn, binfo, vid);
|
| 8715 |
|
|
}
|
| 8716 |
|
|
}
|
| 8717 |
|
|
}
|
| 8718 |
|
|
|
| 8719 |
|
|
/* Add a vcall offset entry for ORIG_FN to the vtable. */
|
| 8720 |
|
|
|
| 8721 |
|
|
static void
|
| 8722 |
|
|
add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
|
| 8723 |
|
|
{
|
| 8724 |
|
|
size_t i;
|
| 8725 |
|
|
tree vcall_offset;
|
| 8726 |
|
|
tree derived_entry;
|
| 8727 |
|
|
|
| 8728 |
|
|
/* If there is already an entry for a function with the same
|
| 8729 |
|
|
signature as FN, then we do not need a second vcall offset.
|
| 8730 |
|
|
Check the list of functions already present in the derived
|
| 8731 |
|
|
class vtable. */
|
| 8732 |
|
|
FOR_EACH_VEC_ELT (tree, vid->fns, i, derived_entry)
|
| 8733 |
|
|
{
|
| 8734 |
|
|
if (same_signature_p (derived_entry, orig_fn)
|
| 8735 |
|
|
/* We only use one vcall offset for virtual destructors,
|
| 8736 |
|
|
even though there are two virtual table entries. */
|
| 8737 |
|
|
|| (DECL_DESTRUCTOR_P (derived_entry)
|
| 8738 |
|
|
&& DECL_DESTRUCTOR_P (orig_fn)))
|
| 8739 |
|
|
return;
|
| 8740 |
|
|
}
|
| 8741 |
|
|
|
| 8742 |
|
|
/* If we are building these vcall offsets as part of building
|
| 8743 |
|
|
the vtable for the most derived class, remember the vcall
|
| 8744 |
|
|
offset. */
|
| 8745 |
|
|
if (vid->binfo == TYPE_BINFO (vid->derived))
|
| 8746 |
|
|
{
|
| 8747 |
|
|
tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
|
| 8748 |
|
|
CLASSTYPE_VCALL_INDICES (vid->derived),
|
| 8749 |
|
|
NULL);
|
| 8750 |
|
|
elt->purpose = orig_fn;
|
| 8751 |
|
|
elt->value = vid->index;
|
| 8752 |
|
|
}
|
| 8753 |
|
|
|
| 8754 |
|
|
/* The next vcall offset will be found at a more negative
|
| 8755 |
|
|
offset. */
|
| 8756 |
|
|
vid->index = size_binop (MINUS_EXPR, vid->index,
|
| 8757 |
|
|
ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
|
| 8758 |
|
|
|
| 8759 |
|
|
/* Keep track of this function. */
|
| 8760 |
|
|
VEC_safe_push (tree, gc, vid->fns, orig_fn);
|
| 8761 |
|
|
|
| 8762 |
|
|
if (vid->generate_vcall_entries)
|
| 8763 |
|
|
{
|
| 8764 |
|
|
tree base;
|
| 8765 |
|
|
tree fn;
|
| 8766 |
|
|
|
| 8767 |
|
|
/* Find the overriding function. */
|
| 8768 |
|
|
fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
|
| 8769 |
|
|
if (fn == error_mark_node)
|
| 8770 |
|
|
vcall_offset = build_zero_cst (vtable_entry_type);
|
| 8771 |
|
|
else
|
| 8772 |
|
|
{
|
| 8773 |
|
|
base = TREE_VALUE (fn);
|
| 8774 |
|
|
|
| 8775 |
|
|
/* The vbase we're working on is a primary base of
|
| 8776 |
|
|
vid->binfo. But it might be a lost primary, so its
|
| 8777 |
|
|
BINFO_OFFSET might be wrong, so we just use the
|
| 8778 |
|
|
BINFO_OFFSET from vid->binfo. */
|
| 8779 |
|
|
vcall_offset = size_diffop_loc (input_location,
|
| 8780 |
|
|
BINFO_OFFSET (base),
|
| 8781 |
|
|
BINFO_OFFSET (vid->binfo));
|
| 8782 |
|
|
vcall_offset = fold_build1_loc (input_location,
|
| 8783 |
|
|
NOP_EXPR, vtable_entry_type,
|
| 8784 |
|
|
vcall_offset);
|
| 8785 |
|
|
}
|
| 8786 |
|
|
/* Add the initializer to the vtable. */
|
| 8787 |
|
|
CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
|
| 8788 |
|
|
}
|
| 8789 |
|
|
}
|
| 8790 |
|
|
|
| 8791 |
|
|
/* Return vtbl initializers for the RTTI entries corresponding to the
|
| 8792 |
|
|
BINFO's vtable. The RTTI entries should indicate the object given
|
| 8793 |
|
|
by VID->rtti_binfo. */
|
| 8794 |
|
|
|
| 8795 |
|
|
static void
|
| 8796 |
|
|
build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
|
| 8797 |
|
|
{
|
| 8798 |
|
|
tree b;
|
| 8799 |
|
|
tree t;
|
| 8800 |
|
|
tree offset;
|
| 8801 |
|
|
tree decl;
|
| 8802 |
|
|
tree init;
|
| 8803 |
|
|
|
| 8804 |
|
|
t = BINFO_TYPE (vid->rtti_binfo);
|
| 8805 |
|
|
|
| 8806 |
|
|
/* To find the complete object, we will first convert to our most
|
| 8807 |
|
|
primary base, and then add the offset in the vtbl to that value. */
|
| 8808 |
|
|
b = binfo;
|
| 8809 |
|
|
while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
|
| 8810 |
|
|
&& !BINFO_LOST_PRIMARY_P (b))
|
| 8811 |
|
|
{
|
| 8812 |
|
|
tree primary_base;
|
| 8813 |
|
|
|
| 8814 |
|
|
primary_base = get_primary_binfo (b);
|
| 8815 |
|
|
gcc_assert (BINFO_PRIMARY_P (primary_base)
|
| 8816 |
|
|
&& BINFO_INHERITANCE_CHAIN (primary_base) == b);
|
| 8817 |
|
|
b = primary_base;
|
| 8818 |
|
|
}
|
| 8819 |
|
|
offset = size_diffop_loc (input_location,
|
| 8820 |
|
|
BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
|
| 8821 |
|
|
|
| 8822 |
|
|
/* The second entry is the address of the typeinfo object. */
|
| 8823 |
|
|
if (flag_rtti)
|
| 8824 |
|
|
decl = build_address (get_tinfo_decl (t));
|
| 8825 |
|
|
else
|
| 8826 |
|
|
decl = integer_zero_node;
|
| 8827 |
|
|
|
| 8828 |
|
|
/* Convert the declaration to a type that can be stored in the
|
| 8829 |
|
|
vtable. */
|
| 8830 |
|
|
init = build_nop (vfunc_ptr_type_node, decl);
|
| 8831 |
|
|
CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
|
| 8832 |
|
|
|
| 8833 |
|
|
/* Add the offset-to-top entry. It comes earlier in the vtable than
|
| 8834 |
|
|
the typeinfo entry. Convert the offset to look like a
|
| 8835 |
|
|
function pointer, so that we can put it in the vtable. */
|
| 8836 |
|
|
init = build_nop (vfunc_ptr_type_node, offset);
|
| 8837 |
|
|
CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
|
| 8838 |
|
|
}
|
| 8839 |
|
|
|
| 8840 |
|
|
#include "gt-cp-class.h"
|