OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [cp/] [search.c] - Blame information for rev 720

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 710 jeremybenn
/* Breadth-first and depth-first routines for
2
   searching multiple-inheritance lattice for GNU C++.
3
   Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4
   1999, 2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
5
   Free Software Foundation, Inc.
6
   Contributed by Michael Tiemann (tiemann@cygnus.com)
7
 
8
This file is part of GCC.
9
 
10
GCC is free software; you can redistribute it and/or modify
11
it under the terms of the GNU General Public License as published by
12
the Free Software Foundation; either version 3, or (at your option)
13
any later version.
14
 
15
GCC is distributed in the hope that it will be useful,
16
but WITHOUT ANY WARRANTY; without even the implied warranty of
17
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
GNU General Public License for more details.
19
 
20
You should have received a copy of the GNU General Public License
21
along with GCC; see the file COPYING3.  If not see
22
<http://www.gnu.org/licenses/>.  */
23
 
24
/* High-level class interface.  */
25
 
26
#include "config.h"
27
#include "system.h"
28
#include "coretypes.h"
29
#include "tm.h"
30
#include "tree.h"
31
#include "cp-tree.h"
32
#include "intl.h"
33
#include "flags.h"
34
#include "output.h"
35
#include "toplev.h"
36
#include "target.h"
37
 
38
static int is_subobject_of_p (tree, tree);
39
static tree dfs_lookup_base (tree, void *);
40
static tree dfs_dcast_hint_pre (tree, void *);
41
static tree dfs_dcast_hint_post (tree, void *);
42
static tree dfs_debug_mark (tree, void *);
43
static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
44
                             tree (*post_fn) (tree, void *), void *data);
45
static void dfs_unmark_r (tree);
46
static int check_hidden_convs (tree, int, int, tree, tree, tree);
47
static tree split_conversions (tree, tree, tree, tree);
48
static int lookup_conversions_r (tree, int, int,
49
                                 tree, tree, tree, tree, tree *, tree *);
50
static int look_for_overrides_r (tree, tree);
51
static tree lookup_field_r (tree, void *);
52
static tree dfs_accessible_post (tree, void *);
53
static tree dfs_walk_once_accessible_r (tree, bool, bool,
54
                                        tree (*pre_fn) (tree, void *),
55
                                        tree (*post_fn) (tree, void *),
56
                                        void *data);
57
static tree dfs_walk_once_accessible (tree, bool,
58
                                      tree (*pre_fn) (tree, void *),
59
                                      tree (*post_fn) (tree, void *),
60
                                      void *data);
61
static tree dfs_access_in_type (tree, void *);
62
static access_kind access_in_type (tree, tree);
63
static int protected_accessible_p (tree, tree, tree);
64
static int friend_accessible_p (tree, tree, tree);
65
static tree dfs_get_pure_virtuals (tree, void *);
66
 
67
 
68
/* Variables for gathering statistics.  */
69
#ifdef GATHER_STATISTICS
70
static int n_fields_searched;
71
static int n_calls_lookup_field, n_calls_lookup_field_1;
72
static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
73
static int n_calls_get_base_type;
74
static int n_outer_fields_searched;
75
static int n_contexts_saved;
76
#endif /* GATHER_STATISTICS */
77
 
78
 
79
/* Data for lookup_base and its workers.  */
80
 
81
struct lookup_base_data_s
82
{
83
  tree t;               /* type being searched.  */
84
  tree base;            /* The base type we're looking for.  */
85
  tree binfo;           /* Found binfo.  */
86
  bool via_virtual;     /* Found via a virtual path.  */
87
  bool ambiguous;       /* Found multiply ambiguous */
88
  bool repeated_base;   /* Whether there are repeated bases in the
89
                            hierarchy.  */
90
  bool want_any;        /* Whether we want any matching binfo.  */
91
};
92
 
93
/* Worker function for lookup_base.  See if we've found the desired
94
   base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S).  */
95
 
96
static tree
97
dfs_lookup_base (tree binfo, void *data_)
98
{
99
  struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
100
 
101
  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
102
    {
103
      if (!data->binfo)
104
        {
105
          data->binfo = binfo;
106
          data->via_virtual
107
            = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
108
 
109
          if (!data->repeated_base)
110
            /* If there are no repeated bases, we can stop now.  */
111
            return binfo;
112
 
113
          if (data->want_any && !data->via_virtual)
114
            /* If this is a non-virtual base, then we can't do
115
               better.  */
116
            return binfo;
117
 
118
          return dfs_skip_bases;
119
        }
120
      else
121
        {
122
          gcc_assert (binfo != data->binfo);
123
 
124
          /* We've found more than one matching binfo.  */
125
          if (!data->want_any)
126
            {
127
              /* This is immediately ambiguous.  */
128
              data->binfo = NULL_TREE;
129
              data->ambiguous = true;
130
              return error_mark_node;
131
            }
132
 
133
          /* Prefer one via a non-virtual path.  */
134
          if (!binfo_via_virtual (binfo, data->t))
135
            {
136
              data->binfo = binfo;
137
              data->via_virtual = false;
138
              return binfo;
139
            }
140
 
141
          /* There must be repeated bases, otherwise we'd have stopped
142
             on the first base we found.  */
143
          return dfs_skip_bases;
144
        }
145
    }
146
 
147
  return NULL_TREE;
148
}
149
 
150
/* Returns true if type BASE is accessible in T.  (BASE is known to be
151
   a (possibly non-proper) base class of T.)  If CONSIDER_LOCAL_P is
152
   true, consider any special access of the current scope, or access
153
   bestowed by friendship.  */
154
 
155
bool
156
accessible_base_p (tree t, tree base, bool consider_local_p)
157
{
158
  tree decl;
159
 
160
  /* [class.access.base]
161
 
162
     A base class is said to be accessible if an invented public
163
     member of the base class is accessible.
164
 
165
     If BASE is a non-proper base, this condition is trivially
166
     true.  */
167
  if (same_type_p (t, base))
168
    return true;
169
  /* Rather than inventing a public member, we use the implicit
170
     public typedef created in the scope of every class.  */
171
  decl = TYPE_FIELDS (base);
172
  while (!DECL_SELF_REFERENCE_P (decl))
173
    decl = DECL_CHAIN (decl);
174
  while (ANON_AGGR_TYPE_P (t))
175
    t = TYPE_CONTEXT (t);
176
  return accessible_p (t, decl, consider_local_p);
177
}
178
 
179
/* Lookup BASE in the hierarchy dominated by T.  Do access checking as
180
   ACCESS specifies.  Return the binfo we discover.  If KIND_PTR is
181
   non-NULL, fill with information about what kind of base we
182
   discovered.
183
 
184
   If the base is inaccessible, or ambiguous, and the ba_quiet bit is
185
   not set in ACCESS, then an error is issued and error_mark_node is
186
   returned.  If the ba_quiet bit is set, then no error is issued and
187
   NULL_TREE is returned.  */
188
 
189
tree
190
lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
191
{
192
  tree binfo;
193
  tree t_binfo;
194
  base_kind bk;
195
 
196
  if (t == error_mark_node || base == error_mark_node)
197
    {
198
      if (kind_ptr)
199
        *kind_ptr = bk_not_base;
200
      return error_mark_node;
201
    }
202
  gcc_assert (TYPE_P (base));
203
 
204
  if (!TYPE_P (t))
205
    {
206
      t_binfo = t;
207
      t = BINFO_TYPE (t);
208
    }
209
  else
210
    {
211
      t = complete_type (TYPE_MAIN_VARIANT (t));
212
      t_binfo = TYPE_BINFO (t);
213
    }
214
 
215
  base = TYPE_MAIN_VARIANT (base);
216
 
217
  /* If BASE is incomplete, it can't be a base of T--and instantiating it
218
     might cause an error.  */
219
  if (t_binfo && CLASS_TYPE_P (base) && COMPLETE_OR_OPEN_TYPE_P (base))
220
    {
221
      struct lookup_base_data_s data;
222
 
223
      data.t = t;
224
      data.base = base;
225
      data.binfo = NULL_TREE;
226
      data.ambiguous = data.via_virtual = false;
227
      data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
228
      data.want_any = access == ba_any;
229
 
230
      dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
231
      binfo = data.binfo;
232
 
233
      if (!binfo)
234
        bk = data.ambiguous ? bk_ambig : bk_not_base;
235
      else if (binfo == t_binfo)
236
        bk = bk_same_type;
237
      else if (data.via_virtual)
238
        bk = bk_via_virtual;
239
      else
240
        bk = bk_proper_base;
241
    }
242
  else
243
    {
244
      binfo = NULL_TREE;
245
      bk = bk_not_base;
246
    }
247
 
248
  /* Check that the base is unambiguous and accessible.  */
249
  if (access != ba_any)
250
    switch (bk)
251
      {
252
      case bk_not_base:
253
        break;
254
 
255
      case bk_ambig:
256
        if (!(access & ba_quiet))
257
          {
258
            error ("%qT is an ambiguous base of %qT", base, t);
259
            binfo = error_mark_node;
260
          }
261
        break;
262
 
263
      default:
264
        if ((access & ba_check_bit)
265
            /* If BASE is incomplete, then BASE and TYPE are probably
266
               the same, in which case BASE is accessible.  If they
267
               are not the same, then TYPE is invalid.  In that case,
268
               there's no need to issue another error here, and
269
               there's no implicit typedef to use in the code that
270
               follows, so we skip the check.  */
271
            && COMPLETE_TYPE_P (base)
272
            && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
273
          {
274
            if (!(access & ba_quiet))
275
              {
276
                error ("%qT is an inaccessible base of %qT", base, t);
277
                binfo = error_mark_node;
278
              }
279
            else
280
              binfo = NULL_TREE;
281
            bk = bk_inaccessible;
282
          }
283
        break;
284
      }
285
 
286
  if (kind_ptr)
287
    *kind_ptr = bk;
288
 
289
  return binfo;
290
}
291
 
292
/* Data for dcast_base_hint walker.  */
293
 
294
struct dcast_data_s
295
{
296
  tree subtype;   /* The base type we're looking for.  */
297
  int virt_depth; /* Number of virtual bases encountered from most
298
                     derived.  */
299
  tree offset;    /* Best hint offset discovered so far.  */
300
  bool repeated_base;  /* Whether there are repeated bases in the
301
                          hierarchy.  */
302
};
303
 
304
/* Worker for dcast_base_hint.  Search for the base type being cast
305
   from.  */
306
 
307
static tree
308
dfs_dcast_hint_pre (tree binfo, void *data_)
309
{
310
  struct dcast_data_s *data = (struct dcast_data_s *) data_;
311
 
312
  if (BINFO_VIRTUAL_P (binfo))
313
    data->virt_depth++;
314
 
315
  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
316
    {
317
      if (data->virt_depth)
318
        {
319
          data->offset = ssize_int (-1);
320
          return data->offset;
321
        }
322
      if (data->offset)
323
        data->offset = ssize_int (-3);
324
      else
325
        data->offset = BINFO_OFFSET (binfo);
326
 
327
      return data->repeated_base ? dfs_skip_bases : data->offset;
328
    }
329
 
330
  return NULL_TREE;
331
}
332
 
333
/* Worker for dcast_base_hint.  Track the virtual depth.  */
334
 
335
static tree
336
dfs_dcast_hint_post (tree binfo, void *data_)
337
{
338
  struct dcast_data_s *data = (struct dcast_data_s *) data_;
339
 
340
  if (BINFO_VIRTUAL_P (binfo))
341
    data->virt_depth--;
342
 
343
  return NULL_TREE;
344
}
345
 
346
/* The dynamic cast runtime needs a hint about how the static SUBTYPE type
347
   started from is related to the required TARGET type, in order to optimize
348
   the inheritance graph search. This information is independent of the
349
   current context, and ignores private paths, hence get_base_distance is
350
   inappropriate. Return a TREE specifying the base offset, BOFF.
351
   BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
352
      and there are no public virtual SUBTYPE bases.
353
   BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
354
   BOFF == -2, SUBTYPE is not a public base.
355
   BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases.  */
356
 
357
tree
358
dcast_base_hint (tree subtype, tree target)
359
{
360
  struct dcast_data_s data;
361
 
362
  data.subtype = subtype;
363
  data.virt_depth = 0;
364
  data.offset = NULL_TREE;
365
  data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
366
 
367
  dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
368
                            dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
369
  return data.offset ? data.offset : ssize_int (-2);
370
}
371
 
372
/* Search for a member with name NAME in a multiple inheritance
373
   lattice specified by TYPE.  If it does not exist, return NULL_TREE.
374
   If the member is ambiguously referenced, return `error_mark_node'.
375
   Otherwise, return a DECL with the indicated name.  If WANT_TYPE is
376
   true, type declarations are preferred.  */
377
 
378
/* Do a 1-level search for NAME as a member of TYPE.  The caller must
379
   figure out whether it can access this field.  (Since it is only one
380
   level, this is reasonable.)  */
381
 
382
tree
383
lookup_field_1 (tree type, tree name, bool want_type)
384
{
385
  tree field;
386
 
387
  if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
388
      || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
389
      || TREE_CODE (type) == TYPENAME_TYPE)
390
    /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
391
       BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
392
       instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX.  (Miraculously,
393
       the code often worked even when we treated the index as a list
394
       of fields!)
395
       The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME.  */
396
    return NULL_TREE;
397
 
398
  if (CLASSTYPE_SORTED_FIELDS (type))
399
    {
400
      tree *fields = &CLASSTYPE_SORTED_FIELDS (type)->elts[0];
401
      int lo = 0, hi = CLASSTYPE_SORTED_FIELDS (type)->len;
402
      int i;
403
 
404
      while (lo < hi)
405
        {
406
          i = (lo + hi) / 2;
407
 
408
#ifdef GATHER_STATISTICS
409
          n_fields_searched++;
410
#endif /* GATHER_STATISTICS */
411
 
412
          if (DECL_NAME (fields[i]) > name)
413
            hi = i;
414
          else if (DECL_NAME (fields[i]) < name)
415
            lo = i + 1;
416
          else
417
            {
418
              field = NULL_TREE;
419
 
420
              /* We might have a nested class and a field with the
421
                 same name; we sorted them appropriately via
422
                 field_decl_cmp, so just look for the first or last
423
                 field with this name.  */
424
              if (want_type)
425
                {
426
                  do
427
                    field = fields[i--];
428
                  while (i >= lo && DECL_NAME (fields[i]) == name);
429
                  if (TREE_CODE (field) != TYPE_DECL
430
                      && !DECL_TYPE_TEMPLATE_P (field))
431
                    field = NULL_TREE;
432
                }
433
              else
434
                {
435
                  do
436
                    field = fields[i++];
437
                  while (i < hi && DECL_NAME (fields[i]) == name);
438
                }
439
 
440
              if (field)
441
                {
442
                  field = strip_using_decl (field);
443
                  if (is_overloaded_fn (field))
444
                    field = NULL_TREE;
445
                }
446
 
447
              return field;
448
            }
449
        }
450
      return NULL_TREE;
451
    }
452
 
453
  field = TYPE_FIELDS (type);
454
 
455
#ifdef GATHER_STATISTICS
456
  n_calls_lookup_field_1++;
457
#endif /* GATHER_STATISTICS */
458
  for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
459
    {
460
      tree decl = field;
461
 
462
#ifdef GATHER_STATISTICS
463
      n_fields_searched++;
464
#endif /* GATHER_STATISTICS */
465
      gcc_assert (DECL_P (field));
466
      if (DECL_NAME (field) == NULL_TREE
467
          && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
468
        {
469
          tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
470
          if (temp)
471
            return temp;
472
        }
473
 
474
      if (TREE_CODE (decl) == USING_DECL
475
          && DECL_NAME (decl) == name)
476
        {
477
          decl = strip_using_decl (decl);
478
          if (is_overloaded_fn (decl))
479
            continue;
480
        }
481
 
482
      if (DECL_NAME (decl) == name
483
          && (!want_type
484
              || TREE_CODE (decl) == TYPE_DECL
485
              || DECL_TYPE_TEMPLATE_P (decl)))
486
        return decl;
487
    }
488
  /* Not found.  */
489
  if (name == vptr_identifier)
490
    {
491
      /* Give the user what s/he thinks s/he wants.  */
492
      if (TYPE_POLYMORPHIC_P (type))
493
        return TYPE_VFIELD (type);
494
    }
495
  return NULL_TREE;
496
}
497
 
498
/* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
499
   NAMESPACE_DECL corresponding to the innermost non-block scope.  */
500
 
501
tree
502
current_scope (void)
503
{
504
  /* There are a number of cases we need to be aware of here:
505
                         current_class_type     current_function_decl
506
     global                     NULL                    NULL
507
     fn-local                   NULL                    SET
508
     class-local                SET                     NULL
509
     class->fn                  SET                     SET
510
     fn->class                  SET                     SET
511
 
512
     Those last two make life interesting.  If we're in a function which is
513
     itself inside a class, we need decls to go into the fn's decls (our
514
     second case below).  But if we're in a class and the class itself is
515
     inside a function, we need decls to go into the decls for the class.  To
516
     achieve this last goal, we must see if, when both current_class_ptr and
517
     current_function_decl are set, the class was declared inside that
518
     function.  If so, we know to put the decls into the class's scope.  */
519
  if (current_function_decl && current_class_type
520
      && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
521
           && same_type_p (DECL_CONTEXT (current_function_decl),
522
                           current_class_type))
523
          || (DECL_FRIEND_CONTEXT (current_function_decl)
524
              && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
525
                              current_class_type))))
526
    return current_function_decl;
527
  if (current_class_type)
528
    return current_class_type;
529
  if (current_function_decl)
530
    return current_function_decl;
531
  return current_namespace;
532
}
533
 
534
/* Returns nonzero if we are currently in a function scope.  Note
535
   that this function returns zero if we are within a local class, but
536
   not within a member function body of the local class.  */
537
 
538
int
539
at_function_scope_p (void)
540
{
541
  tree cs = current_scope ();
542
  /* Also check cfun to make sure that we're really compiling
543
     this function (as opposed to having set current_function_decl
544
     for access checking or some such).  */
545
  return (cs && TREE_CODE (cs) == FUNCTION_DECL
546
          && cfun && cfun->decl == current_function_decl);
547
}
548
 
549
/* Returns true if the innermost active scope is a class scope.  */
550
 
551
bool
552
at_class_scope_p (void)
553
{
554
  tree cs = current_scope ();
555
  return cs && TYPE_P (cs);
556
}
557
 
558
/* Returns true if the innermost active scope is a namespace scope.  */
559
 
560
bool
561
at_namespace_scope_p (void)
562
{
563
  tree cs = current_scope ();
564
  return cs && TREE_CODE (cs) == NAMESPACE_DECL;
565
}
566
 
567
/* Return the scope of DECL, as appropriate when doing name-lookup.  */
568
 
569
tree
570
context_for_name_lookup (tree decl)
571
{
572
  /* [class.union]
573
 
574
     For the purposes of name lookup, after the anonymous union
575
     definition, the members of the anonymous union are considered to
576
     have been defined in the scope in which the anonymous union is
577
     declared.  */
578
  tree context = DECL_CONTEXT (decl);
579
 
580
  while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
581
    context = TYPE_CONTEXT (context);
582
  if (!context)
583
    context = global_namespace;
584
 
585
  return context;
586
}
587
 
588
/* The accessibility routines use BINFO_ACCESS for scratch space
589
   during the computation of the accessibility of some declaration.  */
590
 
591
#define BINFO_ACCESS(NODE) \
592
  ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
593
 
594
/* Set the access associated with NODE to ACCESS.  */
595
 
596
#define SET_BINFO_ACCESS(NODE, ACCESS)                  \
597
  ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0),   \
598
   (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
599
 
600
/* Called from access_in_type via dfs_walk.  Calculate the access to
601
   DATA (which is really a DECL) in BINFO.  */
602
 
603
static tree
604
dfs_access_in_type (tree binfo, void *data)
605
{
606
  tree decl = (tree) data;
607
  tree type = BINFO_TYPE (binfo);
608
  access_kind access = ak_none;
609
 
610
  if (context_for_name_lookup (decl) == type)
611
    {
612
      /* If we have descended to the scope of DECL, just note the
613
         appropriate access.  */
614
      if (TREE_PRIVATE (decl))
615
        access = ak_private;
616
      else if (TREE_PROTECTED (decl))
617
        access = ak_protected;
618
      else
619
        access = ak_public;
620
    }
621
  else
622
    {
623
      /* First, check for an access-declaration that gives us more
624
         access to the DECL.  The CONST_DECL for an enumeration
625
         constant will not have DECL_LANG_SPECIFIC, and thus no
626
         DECL_ACCESS.  */
627
      if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
628
        {
629
          tree decl_access = purpose_member (type, DECL_ACCESS (decl));
630
 
631
          if (decl_access)
632
            {
633
              decl_access = TREE_VALUE (decl_access);
634
 
635
              if (decl_access == access_public_node)
636
                access = ak_public;
637
              else if (decl_access == access_protected_node)
638
                access = ak_protected;
639
              else if (decl_access == access_private_node)
640
                access = ak_private;
641
              else
642
                gcc_unreachable ();
643
            }
644
        }
645
 
646
      if (!access)
647
        {
648
          int i;
649
          tree base_binfo;
650
          VEC(tree,gc) *accesses;
651
 
652
          /* Otherwise, scan our baseclasses, and pick the most favorable
653
             access.  */
654
          accesses = BINFO_BASE_ACCESSES (binfo);
655
          for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
656
            {
657
              tree base_access = VEC_index (tree, accesses, i);
658
              access_kind base_access_now = BINFO_ACCESS (base_binfo);
659
 
660
              if (base_access_now == ak_none || base_access_now == ak_private)
661
                /* If it was not accessible in the base, or only
662
                   accessible as a private member, we can't access it
663
                   all.  */
664
                base_access_now = ak_none;
665
              else if (base_access == access_protected_node)
666
                /* Public and protected members in the base become
667
                   protected here.  */
668
                base_access_now = ak_protected;
669
              else if (base_access == access_private_node)
670
                /* Public and protected members in the base become
671
                   private here.  */
672
                base_access_now = ak_private;
673
 
674
              /* See if the new access, via this base, gives more
675
                 access than our previous best access.  */
676
              if (base_access_now != ak_none
677
                  && (access == ak_none || base_access_now < access))
678
                {
679
                  access = base_access_now;
680
 
681
                  /* If the new access is public, we can't do better.  */
682
                  if (access == ak_public)
683
                    break;
684
                }
685
            }
686
        }
687
    }
688
 
689
  /* Note the access to DECL in TYPE.  */
690
  SET_BINFO_ACCESS (binfo, access);
691
 
692
  return NULL_TREE;
693
}
694
 
695
/* Return the access to DECL in TYPE.  */
696
 
697
static access_kind
698
access_in_type (tree type, tree decl)
699
{
700
  tree binfo = TYPE_BINFO (type);
701
 
702
  /* We must take into account
703
 
704
       [class.paths]
705
 
706
       If a name can be reached by several paths through a multiple
707
       inheritance graph, the access is that of the path that gives
708
       most access.
709
 
710
    The algorithm we use is to make a post-order depth-first traversal
711
    of the base-class hierarchy.  As we come up the tree, we annotate
712
    each node with the most lenient access.  */
713
  dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
714
 
715
  return BINFO_ACCESS (binfo);
716
}
717
 
718
/* Returns nonzero if it is OK to access DECL through an object
719
   indicated by BINFO in the context of DERIVED.  */
720
 
721
static int
722
protected_accessible_p (tree decl, tree derived, tree binfo)
723
{
724
  access_kind access;
725
 
726
  /* We're checking this clause from [class.access.base]
727
 
728
       m as a member of N is protected, and the reference occurs in a
729
       member or friend of class N, or in a member or friend of a
730
       class P derived from N, where m as a member of P is public, private
731
       or protected.
732
 
733
    Here DERIVED is a possible P, DECL is m and BINFO_TYPE (binfo) is N.  */
734
 
735
  /* If DERIVED isn't derived from N, then it can't be a P.  */
736
  if (!DERIVED_FROM_P (BINFO_TYPE (binfo), derived))
737
    return 0;
738
 
739
  access = access_in_type (derived, decl);
740
 
741
  /* If m is inaccessible in DERIVED, then it's not a P.  */
742
  if (access == ak_none)
743
    return 0;
744
 
745
  /* [class.protected]
746
 
747
     When a friend or a member function of a derived class references
748
     a protected nonstatic member of a base class, an access check
749
     applies in addition to those described earlier in clause
750
     _class.access_) Except when forming a pointer to member
751
     (_expr.unary.op_), the access must be through a pointer to,
752
     reference to, or object of the derived class itself (or any class
753
     derived from that class) (_expr.ref_).  If the access is to form
754
     a pointer to member, the nested-name-specifier shall name the
755
     derived class (or any class derived from that class).  */
756
  if (DECL_NONSTATIC_MEMBER_P (decl))
757
    {
758
      /* We can tell through what the reference is occurring by
759
         chasing BINFO up to the root.  */
760
      tree t = binfo;
761
      while (BINFO_INHERITANCE_CHAIN (t))
762
        t = BINFO_INHERITANCE_CHAIN (t);
763
 
764
      if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
765
        return 0;
766
    }
767
 
768
  return 1;
769
}
770
 
771
/* Returns nonzero if SCOPE is a friend of a type which would be able
772
   to access DECL through the object indicated by BINFO.  */
773
 
774
static int
775
friend_accessible_p (tree scope, tree decl, tree binfo)
776
{
777
  tree befriending_classes;
778
  tree t;
779
 
780
  if (!scope)
781
    return 0;
782
 
783
  if (TREE_CODE (scope) == FUNCTION_DECL
784
      || DECL_FUNCTION_TEMPLATE_P (scope))
785
    befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
786
  else if (TYPE_P (scope))
787
    befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
788
  else
789
    return 0;
790
 
791
  for (t = befriending_classes; t; t = TREE_CHAIN (t))
792
    if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
793
      return 1;
794
 
795
  /* Nested classes have the same access as their enclosing types, as
796
     per DR 45 (this is a change from the standard).  */
797
  if (TYPE_P (scope))
798
    for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
799
      if (protected_accessible_p (decl, t, binfo))
800
        return 1;
801
 
802
  if (TREE_CODE (scope) == FUNCTION_DECL
803
      || DECL_FUNCTION_TEMPLATE_P (scope))
804
    {
805
      /* Perhaps this SCOPE is a member of a class which is a
806
         friend.  */
807
      if (DECL_CLASS_SCOPE_P (scope)
808
          && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
809
        return 1;
810
 
811
      /* Or an instantiation of something which is a friend.  */
812
      if (DECL_TEMPLATE_INFO (scope))
813
        {
814
          int ret;
815
          /* Increment processing_template_decl to make sure that
816
             dependent_type_p works correctly.  */
817
          ++processing_template_decl;
818
          ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
819
          --processing_template_decl;
820
          return ret;
821
        }
822
    }
823
 
824
  return 0;
825
}
826
 
827
/* Called via dfs_walk_once_accessible from accessible_p */
828
 
829
static tree
830
dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
831
{
832
  if (BINFO_ACCESS (binfo) != ak_none)
833
    {
834
      tree scope = current_scope ();
835
      if (scope && TREE_CODE (scope) != NAMESPACE_DECL
836
          && is_friend (BINFO_TYPE (binfo), scope))
837
        return binfo;
838
    }
839
 
840
  return NULL_TREE;
841
}
842
 
843
/* DECL is a declaration from a base class of TYPE, which was the
844
   class used to name DECL.  Return nonzero if, in the current
845
   context, DECL is accessible.  If TYPE is actually a BINFO node,
846
   then we can tell in what context the access is occurring by looking
847
   at the most derived class along the path indicated by BINFO.  If
848
   CONSIDER_LOCAL is true, do consider special access the current
849
   scope or friendship thereof we might have.  */
850
 
851
int
852
accessible_p (tree type, tree decl, bool consider_local_p)
853
{
854
  tree binfo;
855
  tree scope;
856
  access_kind access;
857
 
858
  /* Nonzero if it's OK to access DECL if it has protected
859
     accessibility in TYPE.  */
860
  int protected_ok = 0;
861
 
862
  /* If this declaration is in a block or namespace scope, there's no
863
     access control.  */
864
  if (!TYPE_P (context_for_name_lookup (decl)))
865
    return 1;
866
 
867
  /* There is no need to perform access checks inside a thunk.  */
868
  scope = current_scope ();
869
  if (scope && DECL_THUNK_P (scope))
870
    return 1;
871
 
872
  /* In a template declaration, we cannot be sure whether the
873
     particular specialization that is instantiated will be a friend
874
     or not.  Therefore, all access checks are deferred until
875
     instantiation.  However, PROCESSING_TEMPLATE_DECL is set in the
876
     parameter list for a template (because we may see dependent types
877
     in default arguments for template parameters), and access
878
     checking should be performed in the outermost parameter list.  */
879
  if (processing_template_decl
880
      && (!processing_template_parmlist || processing_template_decl > 1))
881
    return 1;
882
 
883
  if (!TYPE_P (type))
884
    {
885
      binfo = type;
886
      type = BINFO_TYPE (type);
887
    }
888
  else
889
    binfo = TYPE_BINFO (type);
890
 
891
  /* [class.access.base]
892
 
893
     A member m is accessible when named in class N if
894
 
895
     --m as a member of N is public, or
896
 
897
     --m as a member of N is private, and the reference occurs in a
898
       member or friend of class N, or
899
 
900
     --m as a member of N is protected, and the reference occurs in a
901
       member or friend of class N, or in a member or friend of a
902
       class P derived from N, where m as a member of P is private or
903
       protected, or
904
 
905
     --there exists a base class B of N that is accessible at the point
906
       of reference, and m is accessible when named in class B.
907
 
908
    We walk the base class hierarchy, checking these conditions.  */
909
 
910
  if (consider_local_p)
911
    {
912
      /* Figure out where the reference is occurring.  Check to see if
913
         DECL is private or protected in this scope, since that will
914
         determine whether protected access is allowed.  */
915
      if (current_class_type)
916
        protected_ok = protected_accessible_p (decl,
917
                                               current_class_type, binfo);
918
 
919
      /* Now, loop through the classes of which we are a friend.  */
920
      if (!protected_ok)
921
        protected_ok = friend_accessible_p (scope, decl, binfo);
922
    }
923
 
924
  /* Standardize the binfo that access_in_type will use.  We don't
925
     need to know what path was chosen from this point onwards.  */
926
  binfo = TYPE_BINFO (type);
927
 
928
  /* Compute the accessibility of DECL in the class hierarchy
929
     dominated by type.  */
930
  access = access_in_type (type, decl);
931
  if (access == ak_public
932
      || (access == ak_protected && protected_ok))
933
    return 1;
934
 
935
  if (!consider_local_p)
936
    return 0;
937
 
938
  /* Walk the hierarchy again, looking for a base class that allows
939
     access.  */
940
  return dfs_walk_once_accessible (binfo, /*friends=*/true,
941
                                   NULL, dfs_accessible_post, NULL)
942
    != NULL_TREE;
943
}
944
 
945
struct lookup_field_info {
946
  /* The type in which we're looking.  */
947
  tree type;
948
  /* The name of the field for which we're looking.  */
949
  tree name;
950
  /* If non-NULL, the current result of the lookup.  */
951
  tree rval;
952
  /* The path to RVAL.  */
953
  tree rval_binfo;
954
  /* If non-NULL, the lookup was ambiguous, and this is a list of the
955
     candidates.  */
956
  tree ambiguous;
957
  /* If nonzero, we are looking for types, not data members.  */
958
  int want_type;
959
  /* If something went wrong, a message indicating what.  */
960
  const char *errstr;
961
};
962
 
963
/* Nonzero for a class member means that it is shared between all objects
964
   of that class.
965
 
966
   [class.member.lookup]:If the resulting set of declarations are not all
967
   from sub-objects of the same type, or the set has a  nonstatic  member
968
   and  includes members from distinct sub-objects, there is an ambiguity
969
   and the program is ill-formed.
970
 
971
   This function checks that T contains no nonstatic members.  */
972
 
973
int
974
shared_member_p (tree t)
975
{
976
  if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
977
      || TREE_CODE (t) == CONST_DECL)
978
    return 1;
979
  if (is_overloaded_fn (t))
980
    {
981
      t = get_fns (t);
982
      for (; t; t = OVL_NEXT (t))
983
        {
984
          tree fn = OVL_CURRENT (t);
985
          if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
986
            return 0;
987
        }
988
      return 1;
989
    }
990
  return 0;
991
}
992
 
993
/* Routine to see if the sub-object denoted by the binfo PARENT can be
994
   found as a base class and sub-object of the object denoted by
995
   BINFO.  */
996
 
997
static int
998
is_subobject_of_p (tree parent, tree binfo)
999
{
1000
  tree probe;
1001
 
1002
  for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1003
    {
1004
      if (probe == binfo)
1005
        return 1;
1006
      if (BINFO_VIRTUAL_P (probe))
1007
        return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1008
                != NULL_TREE);
1009
    }
1010
  return 0;
1011
}
1012
 
1013
/* DATA is really a struct lookup_field_info.  Look for a field with
1014
   the name indicated there in BINFO.  If this function returns a
1015
   non-NULL value it is the result of the lookup.  Called from
1016
   lookup_field via breadth_first_search.  */
1017
 
1018
static tree
1019
lookup_field_r (tree binfo, void *data)
1020
{
1021
  struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1022
  tree type = BINFO_TYPE (binfo);
1023
  tree nval = NULL_TREE;
1024
 
1025
  /* If this is a dependent base, don't look in it.  */
1026
  if (BINFO_DEPENDENT_BASE_P (binfo))
1027
    return NULL_TREE;
1028
 
1029
  /* If this base class is hidden by the best-known value so far, we
1030
     don't need to look.  */
1031
  if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1032
      && !BINFO_VIRTUAL_P (binfo))
1033
    return dfs_skip_bases;
1034
 
1035
  /* First, look for a function.  There can't be a function and a data
1036
     member with the same name, and if there's a function and a type
1037
     with the same name, the type is hidden by the function.  */
1038
  if (!lfi->want_type)
1039
    nval = lookup_fnfields_slot (type, lfi->name);
1040
 
1041
  if (!nval)
1042
    /* Look for a data member or type.  */
1043
    nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1044
 
1045
  /* If there is no declaration with the indicated name in this type,
1046
     then there's nothing to do.  */
1047
  if (!nval)
1048
    goto done;
1049
 
1050
  /* If we're looking up a type (as with an elaborated type specifier)
1051
     we ignore all non-types we find.  */
1052
  if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1053
      && !DECL_TYPE_TEMPLATE_P (nval))
1054
    {
1055
      if (lfi->name == TYPE_IDENTIFIER (type))
1056
        {
1057
          /* If the aggregate has no user defined constructors, we allow
1058
             it to have fields with the same name as the enclosing type.
1059
             If we are looking for that name, find the corresponding
1060
             TYPE_DECL.  */
1061
          for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1062
            if (DECL_NAME (nval) == lfi->name
1063
                && TREE_CODE (nval) == TYPE_DECL)
1064
              break;
1065
        }
1066
      else
1067
        nval = NULL_TREE;
1068
      if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1069
        {
1070
          binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1071
                                                lfi->name);
1072
          if (e != NULL)
1073
            nval = TYPE_MAIN_DECL (e->type);
1074
          else
1075
            goto done;
1076
        }
1077
    }
1078
 
1079
  /* If the lookup already found a match, and the new value doesn't
1080
     hide the old one, we might have an ambiguity.  */
1081
  if (lfi->rval_binfo
1082
      && !is_subobject_of_p (lfi->rval_binfo, binfo))
1083
 
1084
    {
1085
      if (nval == lfi->rval && shared_member_p (nval))
1086
        /* The two things are really the same.  */
1087
        ;
1088
      else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1089
        /* The previous value hides the new one.  */
1090
        ;
1091
      else
1092
        {
1093
          /* We have a real ambiguity.  We keep a chain of all the
1094
             candidates.  */
1095
          if (!lfi->ambiguous && lfi->rval)
1096
            {
1097
              /* This is the first time we noticed an ambiguity.  Add
1098
                 what we previously thought was a reasonable candidate
1099
                 to the list.  */
1100
              lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1101
              TREE_TYPE (lfi->ambiguous) = error_mark_node;
1102
            }
1103
 
1104
          /* Add the new value.  */
1105
          lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1106
          TREE_TYPE (lfi->ambiguous) = error_mark_node;
1107
          lfi->errstr = G_("request for member %qD is ambiguous");
1108
        }
1109
    }
1110
  else
1111
    {
1112
      lfi->rval = nval;
1113
      lfi->rval_binfo = binfo;
1114
    }
1115
 
1116
 done:
1117
  /* Don't look for constructors or destructors in base classes.  */
1118
  if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1119
    return dfs_skip_bases;
1120
  return NULL_TREE;
1121
}
1122
 
1123
/* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1124
   BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1125
   FUNCTIONS, and OPTYPE respectively.  */
1126
 
1127
tree
1128
build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1129
{
1130
  tree baselink;
1131
 
1132
  gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1133
              || TREE_CODE (functions) == TEMPLATE_DECL
1134
              || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1135
              || TREE_CODE (functions) == OVERLOAD);
1136
  gcc_assert (!optype || TYPE_P (optype));
1137
  gcc_assert (TREE_TYPE (functions));
1138
 
1139
  baselink = make_node (BASELINK);
1140
  TREE_TYPE (baselink) = TREE_TYPE (functions);
1141
  BASELINK_BINFO (baselink) = binfo;
1142
  BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1143
  BASELINK_FUNCTIONS (baselink) = functions;
1144
  BASELINK_OPTYPE (baselink) = optype;
1145
 
1146
  return baselink;
1147
}
1148
 
1149
/* Look for a member named NAME in an inheritance lattice dominated by
1150
   XBASETYPE.  If PROTECT is 0 or two, we do not check access.  If it
1151
   is 1, we enforce accessibility.  If PROTECT is zero, then, for an
1152
   ambiguous lookup, we return NULL.  If PROTECT is 1, we issue error
1153
   messages about inaccessible or ambiguous lookup.  If PROTECT is 2,
1154
   we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1155
   TREE_VALUEs are the list of ambiguous candidates.
1156
 
1157
   WANT_TYPE is 1 when we should only return TYPE_DECLs.
1158
 
1159
   If nothing can be found return NULL_TREE and do not issue an error.  */
1160
 
1161
tree
1162
lookup_member (tree xbasetype, tree name, int protect, bool want_type,
1163
               tsubst_flags_t complain)
1164
{
1165
  tree rval, rval_binfo = NULL_TREE;
1166
  tree type = NULL_TREE, basetype_path = NULL_TREE;
1167
  struct lookup_field_info lfi;
1168
 
1169
  /* rval_binfo is the binfo associated with the found member, note,
1170
     this can be set with useful information, even when rval is not
1171
     set, because it must deal with ALL members, not just non-function
1172
     members.  It is used for ambiguity checking and the hidden
1173
     checks.  Whereas rval is only set if a proper (not hidden)
1174
     non-function member is found.  */
1175
 
1176
  const char *errstr = 0;
1177
 
1178
  if (name == error_mark_node
1179
      || xbasetype == NULL_TREE
1180
      || xbasetype == error_mark_node)
1181
    return NULL_TREE;
1182
 
1183
  gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1184
 
1185
  if (TREE_CODE (xbasetype) == TREE_BINFO)
1186
    {
1187
      type = BINFO_TYPE (xbasetype);
1188
      basetype_path = xbasetype;
1189
    }
1190
  else
1191
    {
1192
      if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1193
        return NULL_TREE;
1194
      type = xbasetype;
1195
      xbasetype = NULL_TREE;
1196
    }
1197
 
1198
  type = complete_type (type);
1199
  if (!basetype_path)
1200
    basetype_path = TYPE_BINFO (type);
1201
 
1202
  if (!basetype_path)
1203
    return NULL_TREE;
1204
 
1205
#ifdef GATHER_STATISTICS
1206
  n_calls_lookup_field++;
1207
#endif /* GATHER_STATISTICS */
1208
 
1209
  memset (&lfi, 0, sizeof (lfi));
1210
  lfi.type = type;
1211
  lfi.name = name;
1212
  lfi.want_type = want_type;
1213
  dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1214
  rval = lfi.rval;
1215
  rval_binfo = lfi.rval_binfo;
1216
  if (rval_binfo)
1217
    type = BINFO_TYPE (rval_binfo);
1218
  errstr = lfi.errstr;
1219
 
1220
  /* If we are not interested in ambiguities, don't report them;
1221
     just return NULL_TREE.  */
1222
  if (!protect && lfi.ambiguous)
1223
    return NULL_TREE;
1224
 
1225
  if (protect == 2)
1226
    {
1227
      if (lfi.ambiguous)
1228
        return lfi.ambiguous;
1229
      else
1230
        protect = 0;
1231
    }
1232
 
1233
  /* [class.access]
1234
 
1235
     In the case of overloaded function names, access control is
1236
     applied to the function selected by overloaded resolution.
1237
 
1238
     We cannot check here, even if RVAL is only a single non-static
1239
     member function, since we do not know what the "this" pointer
1240
     will be.  For:
1241
 
1242
        class A { protected: void f(); };
1243
        class B : public A {
1244
          void g(A *p) {
1245
            f(); // OK
1246
            p->f(); // Not OK.
1247
          }
1248
        };
1249
 
1250
    only the first call to "f" is valid.  However, if the function is
1251
    static, we can check.  */
1252
  if (rval && protect
1253
      && !really_overloaded_fn (rval)
1254
      && !(TREE_CODE (rval) == FUNCTION_DECL
1255
           && DECL_NONSTATIC_MEMBER_FUNCTION_P (rval)))
1256
    perform_or_defer_access_check (basetype_path, rval, rval);
1257
 
1258
  if (errstr && protect)
1259
    {
1260
      if (complain & tf_error)
1261
        {
1262
          error (errstr, name, type);
1263
          if (lfi.ambiguous)
1264
            print_candidates (lfi.ambiguous);
1265
        }
1266
      rval = error_mark_node;
1267
    }
1268
 
1269
  if (rval && is_overloaded_fn (rval))
1270
    rval = build_baselink (rval_binfo, basetype_path, rval,
1271
                           (IDENTIFIER_TYPENAME_P (name)
1272
                           ? TREE_TYPE (name): NULL_TREE));
1273
  return rval;
1274
}
1275
 
1276
/* Like lookup_member, except that if we find a function member we
1277
   return NULL_TREE.  */
1278
 
1279
tree
1280
lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1281
{
1282
  tree rval = lookup_member (xbasetype, name, protect, want_type,
1283
                             tf_warning_or_error);
1284
 
1285
  /* Ignore functions, but propagate the ambiguity list.  */
1286
  if (!error_operand_p (rval)
1287
      && (rval && BASELINK_P (rval)))
1288
    return NULL_TREE;
1289
 
1290
  return rval;
1291
}
1292
 
1293
/* Like lookup_member, except that if we find a non-function member we
1294
   return NULL_TREE.  */
1295
 
1296
tree
1297
lookup_fnfields (tree xbasetype, tree name, int protect)
1298
{
1299
  tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false,
1300
                             tf_warning_or_error);
1301
 
1302
  /* Ignore non-functions, but propagate the ambiguity list.  */
1303
  if (!error_operand_p (rval)
1304
      && (rval && !BASELINK_P (rval)))
1305
    return NULL_TREE;
1306
 
1307
  return rval;
1308
}
1309
 
1310
/* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1311
   corresponding to "operator TYPE ()", or -1 if there is no such
1312
   operator.  Only CLASS_TYPE itself is searched; this routine does
1313
   not scan the base classes of CLASS_TYPE.  */
1314
 
1315
static int
1316
lookup_conversion_operator (tree class_type, tree type)
1317
{
1318
  int tpl_slot = -1;
1319
 
1320
  if (TYPE_HAS_CONVERSION (class_type))
1321
    {
1322
      int i;
1323
      tree fn;
1324
      VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (class_type);
1325
 
1326
      for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1327
           VEC_iterate (tree, methods, i, fn); ++i)
1328
        {
1329
          /* All the conversion operators come near the beginning of
1330
             the class.  Therefore, if FN is not a conversion
1331
             operator, there is no matching conversion operator in
1332
             CLASS_TYPE.  */
1333
          fn = OVL_CURRENT (fn);
1334
          if (!DECL_CONV_FN_P (fn))
1335
            break;
1336
 
1337
          if (TREE_CODE (fn) == TEMPLATE_DECL)
1338
            /* All the templated conversion functions are on the same
1339
               slot, so remember it.  */
1340
            tpl_slot = i;
1341
          else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1342
            return i;
1343
        }
1344
    }
1345
 
1346
  return tpl_slot;
1347
}
1348
 
1349
/* TYPE is a class type. Return the index of the fields within
1350
   the method vector with name NAME, or -1 if no such field exists.
1351
   Does not lazily declare implicitly-declared member functions.  */
1352
 
1353
static int
1354
lookup_fnfields_idx_nolazy (tree type, tree name)
1355
{
1356
  VEC(tree,gc) *method_vec;
1357
  tree fn;
1358
  tree tmp;
1359
  size_t i;
1360
 
1361
  if (!CLASS_TYPE_P (type))
1362
    return -1;
1363
 
1364
  method_vec = CLASSTYPE_METHOD_VEC (type);
1365
  if (!method_vec)
1366
    return -1;
1367
 
1368
#ifdef GATHER_STATISTICS
1369
  n_calls_lookup_fnfields_1++;
1370
#endif /* GATHER_STATISTICS */
1371
 
1372
  /* Constructors are first...  */
1373
  if (name == ctor_identifier)
1374
    {
1375
      fn = CLASSTYPE_CONSTRUCTORS (type);
1376
      return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1377
    }
1378
  /* and destructors are second.  */
1379
  if (name == dtor_identifier)
1380
    {
1381
      fn = CLASSTYPE_DESTRUCTORS (type);
1382
      return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1383
    }
1384
  if (IDENTIFIER_TYPENAME_P (name))
1385
    return lookup_conversion_operator (type, TREE_TYPE (name));
1386
 
1387
  /* Skip the conversion operators.  */
1388
  for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1389
       VEC_iterate (tree, method_vec, i, fn);
1390
       ++i)
1391
    if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1392
      break;
1393
 
1394
  /* If the type is complete, use binary search.  */
1395
  if (COMPLETE_TYPE_P (type))
1396
    {
1397
      int lo;
1398
      int hi;
1399
 
1400
      lo = i;
1401
      hi = VEC_length (tree, method_vec);
1402
      while (lo < hi)
1403
        {
1404
          i = (lo + hi) / 2;
1405
 
1406
#ifdef GATHER_STATISTICS
1407
          n_outer_fields_searched++;
1408
#endif /* GATHER_STATISTICS */
1409
 
1410
          tmp = VEC_index (tree, method_vec, i);
1411
          tmp = DECL_NAME (OVL_CURRENT (tmp));
1412
          if (tmp > name)
1413
            hi = i;
1414
          else if (tmp < name)
1415
            lo = i + 1;
1416
          else
1417
            return i;
1418
        }
1419
    }
1420
  else
1421
    for (; VEC_iterate (tree, method_vec, i, fn); ++i)
1422
      {
1423
#ifdef GATHER_STATISTICS
1424
        n_outer_fields_searched++;
1425
#endif /* GATHER_STATISTICS */
1426
        if (DECL_NAME (OVL_CURRENT (fn)) == name)
1427
          return i;
1428
      }
1429
 
1430
  return -1;
1431
}
1432
 
1433
/* TYPE is a class type. Return the index of the fields within
1434
   the method vector with name NAME, or -1 if no such field exists.  */
1435
 
1436
int
1437
lookup_fnfields_1 (tree type, tree name)
1438
{
1439
  if (!CLASS_TYPE_P (type))
1440
    return -1;
1441
 
1442
  if (COMPLETE_TYPE_P (type))
1443
    {
1444
      if ((name == ctor_identifier
1445
           || name == base_ctor_identifier
1446
           || name == complete_ctor_identifier))
1447
        {
1448
          if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1449
            lazily_declare_fn (sfk_constructor, type);
1450
          if (CLASSTYPE_LAZY_COPY_CTOR (type))
1451
            lazily_declare_fn (sfk_copy_constructor, type);
1452
          if (CLASSTYPE_LAZY_MOVE_CTOR (type))
1453
            lazily_declare_fn (sfk_move_constructor, type);
1454
        }
1455
      else if (name == ansi_assopname (NOP_EXPR))
1456
        {
1457
          if (CLASSTYPE_LAZY_COPY_ASSIGN (type))
1458
            lazily_declare_fn (sfk_copy_assignment, type);
1459
          if (CLASSTYPE_LAZY_MOVE_ASSIGN (type))
1460
            lazily_declare_fn (sfk_move_assignment, type);
1461
        }
1462
      else if ((name == dtor_identifier
1463
                || name == base_dtor_identifier
1464
                || name == complete_dtor_identifier
1465
                || name == deleting_dtor_identifier)
1466
               && CLASSTYPE_LAZY_DESTRUCTOR (type))
1467
        lazily_declare_fn (sfk_destructor, type);
1468
    }
1469
 
1470
  return lookup_fnfields_idx_nolazy (type, name);
1471
}
1472
 
1473
/* TYPE is a class type. Return the field within the method vector with
1474
   name NAME, or NULL_TREE if no such field exists.  */
1475
 
1476
tree
1477
lookup_fnfields_slot (tree type, tree name)
1478
{
1479
  int ix = lookup_fnfields_1 (complete_type (type), name);
1480
  if (ix < 0)
1481
    return NULL_TREE;
1482
  return VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1483
}
1484
 
1485
/* As above, but avoid lazily declaring functions.  */
1486
 
1487
tree
1488
lookup_fnfields_slot_nolazy (tree type, tree name)
1489
{
1490
  int ix = lookup_fnfields_idx_nolazy (complete_type (type), name);
1491
  if (ix < 0)
1492
    return NULL_TREE;
1493
  return VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
1494
}
1495
 
1496
/* Like lookup_fnfields_1, except that the name is extracted from
1497
   FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL.  */
1498
 
1499
int
1500
class_method_index_for_fn (tree class_type, tree function)
1501
{
1502
  gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1503
              || DECL_FUNCTION_TEMPLATE_P (function));
1504
 
1505
  return lookup_fnfields_1 (class_type,
1506
                            DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1507
                            DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1508
                            DECL_NAME (function));
1509
}
1510
 
1511
 
1512
/* DECL is the result of a qualified name lookup.  QUALIFYING_SCOPE is
1513
   the class or namespace used to qualify the name.  CONTEXT_CLASS is
1514
   the class corresponding to the object in which DECL will be used.
1515
   Return a possibly modified version of DECL that takes into account
1516
   the CONTEXT_CLASS.
1517
 
1518
   In particular, consider an expression like `B::m' in the context of
1519
   a derived class `D'.  If `B::m' has been resolved to a BASELINK,
1520
   then the most derived class indicated by the BASELINK_BINFO will be
1521
   `B', not `D'.  This function makes that adjustment.  */
1522
 
1523
tree
1524
adjust_result_of_qualified_name_lookup (tree decl,
1525
                                        tree qualifying_scope,
1526
                                        tree context_class)
1527
{
1528
  if (context_class && context_class != error_mark_node
1529
      && CLASS_TYPE_P (context_class)
1530
      && CLASS_TYPE_P (qualifying_scope)
1531
      && DERIVED_FROM_P (qualifying_scope, context_class)
1532
      && BASELINK_P (decl))
1533
    {
1534
      tree base;
1535
 
1536
      /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1537
         Because we do not yet know which function will be chosen by
1538
         overload resolution, we cannot yet check either accessibility
1539
         or ambiguity -- in either case, the choice of a static member
1540
         function might make the usage valid.  */
1541
      base = lookup_base (context_class, qualifying_scope,
1542
                          ba_unique | ba_quiet, NULL);
1543
      if (base)
1544
        {
1545
          BASELINK_ACCESS_BINFO (decl) = base;
1546
          BASELINK_BINFO (decl)
1547
            = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1548
                           ba_unique | ba_quiet,
1549
                           NULL);
1550
        }
1551
    }
1552
 
1553
  if (BASELINK_P (decl))
1554
    BASELINK_QUALIFIED_P (decl) = true;
1555
 
1556
  return decl;
1557
}
1558
 
1559
 
1560
/* Walk the class hierarchy within BINFO, in a depth-first traversal.
1561
   PRE_FN is called in preorder, while POST_FN is called in postorder.
1562
   If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1563
   walked.  If PRE_FN or POST_FN returns a different non-NULL value,
1564
   that value is immediately returned and the walk is terminated.  One
1565
   of PRE_FN and POST_FN can be NULL.  At each node, PRE_FN and
1566
   POST_FN are passed the binfo to examine and the caller's DATA
1567
   value.  All paths are walked, thus virtual and morally virtual
1568
   binfos can be multiply walked.  */
1569
 
1570
tree
1571
dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1572
              tree (*post_fn) (tree, void *), void *data)
1573
{
1574
  tree rval;
1575
  unsigned ix;
1576
  tree base_binfo;
1577
 
1578
  /* Call the pre-order walking function.  */
1579
  if (pre_fn)
1580
    {
1581
      rval = pre_fn (binfo, data);
1582
      if (rval)
1583
        {
1584
          if (rval == dfs_skip_bases)
1585
            goto skip_bases;
1586
          return rval;
1587
        }
1588
    }
1589
 
1590
  /* Find the next child binfo to walk.  */
1591
  for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1592
    {
1593
      rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1594
      if (rval)
1595
        return rval;
1596
    }
1597
 
1598
 skip_bases:
1599
  /* Call the post-order walking function.  */
1600
  if (post_fn)
1601
    {
1602
      rval = post_fn (binfo, data);
1603
      gcc_assert (rval != dfs_skip_bases);
1604
      return rval;
1605
    }
1606
 
1607
  return NULL_TREE;
1608
}
1609
 
1610
/* Worker for dfs_walk_once.  This behaves as dfs_walk_all, except
1611
   that binfos are walked at most once.  */
1612
 
1613
static tree
1614
dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1615
                 tree (*post_fn) (tree, void *), void *data)
1616
{
1617
  tree rval;
1618
  unsigned ix;
1619
  tree base_binfo;
1620
 
1621
  /* Call the pre-order walking function.  */
1622
  if (pre_fn)
1623
    {
1624
      rval = pre_fn (binfo, data);
1625
      if (rval)
1626
        {
1627
          if (rval == dfs_skip_bases)
1628
            goto skip_bases;
1629
 
1630
          return rval;
1631
        }
1632
    }
1633
 
1634
  /* Find the next child binfo to walk.  */
1635
  for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1636
    {
1637
      if (BINFO_VIRTUAL_P (base_binfo))
1638
        {
1639
          if (BINFO_MARKED (base_binfo))
1640
            continue;
1641
          BINFO_MARKED (base_binfo) = 1;
1642
        }
1643
 
1644
      rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1645
      if (rval)
1646
        return rval;
1647
    }
1648
 
1649
 skip_bases:
1650
  /* Call the post-order walking function.  */
1651
  if (post_fn)
1652
    {
1653
      rval = post_fn (binfo, data);
1654
      gcc_assert (rval != dfs_skip_bases);
1655
      return rval;
1656
    }
1657
 
1658
  return NULL_TREE;
1659
}
1660
 
1661
/* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1662
   BINFO.  */
1663
 
1664
static void
1665
dfs_unmark_r (tree binfo)
1666
{
1667
  unsigned ix;
1668
  tree base_binfo;
1669
 
1670
  /* Process the basetypes.  */
1671
  for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1672
    {
1673
      if (BINFO_VIRTUAL_P (base_binfo))
1674
        {
1675
          if (!BINFO_MARKED (base_binfo))
1676
            continue;
1677
          BINFO_MARKED (base_binfo) = 0;
1678
        }
1679
      /* Only walk, if it can contain more virtual bases.  */
1680
      if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1681
        dfs_unmark_r (base_binfo);
1682
    }
1683
}
1684
 
1685
/* Like dfs_walk_all, except that binfos are not multiply walked.  For
1686
   non-diamond shaped hierarchies this is the same as dfs_walk_all.
1687
   For diamond shaped hierarchies we must mark the virtual bases, to
1688
   avoid multiple walks.  */
1689
 
1690
tree
1691
dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1692
               tree (*post_fn) (tree, void *), void *data)
1693
{
1694
  static int active = 0;  /* We must not be called recursively. */
1695
  tree rval;
1696
 
1697
  gcc_assert (pre_fn || post_fn);
1698
  gcc_assert (!active);
1699
  active++;
1700
 
1701
  if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1702
    /* We are not diamond shaped, and therefore cannot encounter the
1703
       same binfo twice.  */
1704
    rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1705
  else
1706
    {
1707
      rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1708
      if (!BINFO_INHERITANCE_CHAIN (binfo))
1709
        {
1710
          /* We are at the top of the hierarchy, and can use the
1711
             CLASSTYPE_VBASECLASSES list for unmarking the virtual
1712
             bases.  */
1713
          VEC(tree,gc) *vbases;
1714
          unsigned ix;
1715
          tree base_binfo;
1716
 
1717
          for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1718
               VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1719
            BINFO_MARKED (base_binfo) = 0;
1720
        }
1721
      else
1722
        dfs_unmark_r (binfo);
1723
    }
1724
 
1725
  active--;
1726
 
1727
  return rval;
1728
}
1729
 
1730
/* Worker function for dfs_walk_once_accessible.  Behaves like
1731
   dfs_walk_once_r, except (a) FRIENDS_P is true if special
1732
   access given by the current context should be considered, (b) ONCE
1733
   indicates whether bases should be marked during traversal.  */
1734
 
1735
static tree
1736
dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1737
                            tree (*pre_fn) (tree, void *),
1738
                            tree (*post_fn) (tree, void *), void *data)
1739
{
1740
  tree rval = NULL_TREE;
1741
  unsigned ix;
1742
  tree base_binfo;
1743
 
1744
  /* Call the pre-order walking function.  */
1745
  if (pre_fn)
1746
    {
1747
      rval = pre_fn (binfo, data);
1748
      if (rval)
1749
        {
1750
          if (rval == dfs_skip_bases)
1751
            goto skip_bases;
1752
 
1753
          return rval;
1754
        }
1755
    }
1756
 
1757
  /* Find the next child binfo to walk.  */
1758
  for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1759
    {
1760
      bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1761
 
1762
      if (mark && BINFO_MARKED (base_binfo))
1763
        continue;
1764
 
1765
      /* If the base is inherited via private or protected
1766
         inheritance, then we can't see it, unless we are a friend of
1767
         the current binfo.  */
1768
      if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1769
        {
1770
          tree scope;
1771
          if (!friends_p)
1772
            continue;
1773
          scope = current_scope ();
1774
          if (!scope
1775
              || TREE_CODE (scope) == NAMESPACE_DECL
1776
              || !is_friend (BINFO_TYPE (binfo), scope))
1777
            continue;
1778
        }
1779
 
1780
      if (mark)
1781
        BINFO_MARKED (base_binfo) = 1;
1782
 
1783
      rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1784
                                         pre_fn, post_fn, data);
1785
      if (rval)
1786
        return rval;
1787
    }
1788
 
1789
 skip_bases:
1790
  /* Call the post-order walking function.  */
1791
  if (post_fn)
1792
    {
1793
      rval = post_fn (binfo, data);
1794
      gcc_assert (rval != dfs_skip_bases);
1795
      return rval;
1796
    }
1797
 
1798
  return NULL_TREE;
1799
}
1800
 
1801
/* Like dfs_walk_once except that only accessible bases are walked.
1802
   FRIENDS_P indicates whether friendship of the local context
1803
   should be considered when determining accessibility.  */
1804
 
1805
static tree
1806
dfs_walk_once_accessible (tree binfo, bool friends_p,
1807
                            tree (*pre_fn) (tree, void *),
1808
                            tree (*post_fn) (tree, void *), void *data)
1809
{
1810
  bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1811
  tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1812
                                          pre_fn, post_fn, data);
1813
 
1814
  if (diamond_shaped)
1815
    {
1816
      if (!BINFO_INHERITANCE_CHAIN (binfo))
1817
        {
1818
          /* We are at the top of the hierarchy, and can use the
1819
             CLASSTYPE_VBASECLASSES list for unmarking the virtual
1820
             bases.  */
1821
          VEC(tree,gc) *vbases;
1822
          unsigned ix;
1823
          tree base_binfo;
1824
 
1825
          for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1826
               VEC_iterate (tree, vbases, ix, base_binfo); ix++)
1827
            BINFO_MARKED (base_binfo) = 0;
1828
        }
1829
      else
1830
        dfs_unmark_r (binfo);
1831
    }
1832
  return rval;
1833
}
1834
 
1835
/* Check that virtual overrider OVERRIDER is acceptable for base function
1836
   BASEFN. Issue diagnostic, and return zero, if unacceptable.  */
1837
 
1838
static int
1839
check_final_overrider (tree overrider, tree basefn)
1840
{
1841
  tree over_type = TREE_TYPE (overrider);
1842
  tree base_type = TREE_TYPE (basefn);
1843
  tree over_return = TREE_TYPE (over_type);
1844
  tree base_return = TREE_TYPE (base_type);
1845
  tree over_throw, base_throw;
1846
 
1847
  int fail = 0;
1848
 
1849
  if (DECL_INVALID_OVERRIDER_P (overrider))
1850
    return 0;
1851
 
1852
  if (same_type_p (base_return, over_return))
1853
    /* OK */;
1854
  else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1855
           || (TREE_CODE (base_return) == TREE_CODE (over_return)
1856
               && POINTER_TYPE_P (base_return)))
1857
    {
1858
      /* Potentially covariant.  */
1859
      unsigned base_quals, over_quals;
1860
 
1861
      fail = !POINTER_TYPE_P (base_return);
1862
      if (!fail)
1863
        {
1864
          fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1865
 
1866
          base_return = TREE_TYPE (base_return);
1867
          over_return = TREE_TYPE (over_return);
1868
        }
1869
      base_quals = cp_type_quals (base_return);
1870
      over_quals = cp_type_quals (over_return);
1871
 
1872
      if ((base_quals & over_quals) != over_quals)
1873
        fail = 1;
1874
 
1875
      if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1876
        {
1877
          /* Strictly speaking, the standard requires the return type to be
1878
             complete even if it only differs in cv-quals, but that seems
1879
             like a bug in the wording.  */
1880
          if (!same_type_ignoring_top_level_qualifiers_p (base_return, over_return))
1881
            {
1882
              tree binfo = lookup_base (over_return, base_return,
1883
                                        ba_check | ba_quiet, NULL);
1884
 
1885
              if (!binfo)
1886
                fail = 1;
1887
            }
1888
        }
1889
      else if (!pedantic
1890
               && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1891
        /* GNU extension, allow trivial pointer conversions such as
1892
           converting to void *, or qualification conversion.  */
1893
        {
1894
          /* can_convert will permit user defined conversion from a
1895
             (reference to) class type. We must reject them.  */
1896
          over_return = non_reference (TREE_TYPE (over_type));
1897
          if (CLASS_TYPE_P (over_return))
1898
            fail = 2;
1899
          else
1900
            {
1901
              warning (0, "deprecated covariant return type for %q+#D",
1902
                             overrider);
1903
              warning (0, "  overriding %q+#D", basefn);
1904
            }
1905
        }
1906
      else
1907
        fail = 2;
1908
    }
1909
  else
1910
    fail = 2;
1911
  if (!fail)
1912
    /* OK */;
1913
  else
1914
    {
1915
      if (fail == 1)
1916
        {
1917
          error ("invalid covariant return type for %q+#D", overrider);
1918
          error ("  overriding %q+#D", basefn);
1919
        }
1920
      else
1921
        {
1922
          error ("conflicting return type specified for %q+#D", overrider);
1923
          error ("  overriding %q+#D", basefn);
1924
        }
1925
      DECL_INVALID_OVERRIDER_P (overrider) = 1;
1926
      return 0;
1927
    }
1928
 
1929
  /* Check throw specifier is at least as strict.  */
1930
  maybe_instantiate_noexcept (basefn);
1931
  maybe_instantiate_noexcept (overrider);
1932
  base_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (basefn));
1933
  over_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (overrider));
1934
 
1935
  if (!comp_except_specs (base_throw, over_throw, ce_derived))
1936
    {
1937
      error ("looser throw specifier for %q+#F", overrider);
1938
      error ("  overriding %q+#F", basefn);
1939
      DECL_INVALID_OVERRIDER_P (overrider) = 1;
1940
      return 0;
1941
    }
1942
 
1943
  /* Check for conflicting type attributes.  */
1944
  if (!comp_type_attributes (over_type, base_type))
1945
    {
1946
      error ("conflicting type attributes specified for %q+#D", overrider);
1947
      error ("  overriding %q+#D", basefn);
1948
      DECL_INVALID_OVERRIDER_P (overrider) = 1;
1949
      return 0;
1950
    }
1951
 
1952
  if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider))
1953
    {
1954
      if (DECL_DELETED_FN (overrider))
1955
        {
1956
          error ("deleted function %q+D", overrider);
1957
          error ("overriding non-deleted function %q+D", basefn);
1958
          maybe_explain_implicit_delete (overrider);
1959
        }
1960
      else
1961
        {
1962
          error ("non-deleted function %q+D", overrider);
1963
          error ("overriding deleted function %q+D", basefn);
1964
        }
1965
      return 0;
1966
    }
1967
  if (DECL_FINAL_P (basefn))
1968
    {
1969
      error ("virtual function %q+D", overrider);
1970
      error ("overriding final function %q+D", basefn);
1971
      return 0;
1972
    }
1973
  return 1;
1974
}
1975
 
1976
/* Given a class TYPE, and a function decl FNDECL, look for
1977
   virtual functions in TYPE's hierarchy which FNDECL overrides.
1978
   We do not look in TYPE itself, only its bases.
1979
 
1980
   Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1981
   find that it overrides anything.
1982
 
1983
   We check that every function which is overridden, is correctly
1984
   overridden.  */
1985
 
1986
int
1987
look_for_overrides (tree type, tree fndecl)
1988
{
1989
  tree binfo = TYPE_BINFO (type);
1990
  tree base_binfo;
1991
  int ix;
1992
  int found = 0;
1993
 
1994
  /* A constructor for a class T does not override a function T
1995
     in a base class.  */
1996
  if (DECL_CONSTRUCTOR_P (fndecl))
1997
    return 0;
1998
 
1999
  for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2000
    {
2001
      tree basetype = BINFO_TYPE (base_binfo);
2002
 
2003
      if (TYPE_POLYMORPHIC_P (basetype))
2004
        found += look_for_overrides_r (basetype, fndecl);
2005
    }
2006
  return found;
2007
}
2008
 
2009
/* Look in TYPE for virtual functions with the same signature as
2010
   FNDECL.  */
2011
 
2012
tree
2013
look_for_overrides_here (tree type, tree fndecl)
2014
{
2015
  int ix;
2016
 
2017
  /* If there are no methods in TYPE (meaning that only implicitly
2018
     declared methods will ever be provided for TYPE), then there are
2019
     no virtual functions.  */
2020
  if (!CLASSTYPE_METHOD_VEC (type))
2021
    return NULL_TREE;
2022
 
2023
  if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
2024
    ix = CLASSTYPE_DESTRUCTOR_SLOT;
2025
  else
2026
    ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
2027
  if (ix >= 0)
2028
    {
2029
      tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
2030
 
2031
      for (; fns; fns = OVL_NEXT (fns))
2032
        {
2033
          tree fn = OVL_CURRENT (fns);
2034
 
2035
          if (!DECL_VIRTUAL_P (fn))
2036
            /* Not a virtual.  */;
2037
          else if (DECL_CONTEXT (fn) != type)
2038
            /* Introduced with a using declaration.  */;
2039
          else if (DECL_STATIC_FUNCTION_P (fndecl))
2040
            {
2041
              tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
2042
              tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2043
              if (compparms (TREE_CHAIN (btypes), dtypes))
2044
                return fn;
2045
            }
2046
          else if (same_signature_p (fndecl, fn))
2047
            return fn;
2048
        }
2049
    }
2050
  return NULL_TREE;
2051
}
2052
 
2053
/* Look in TYPE for virtual functions overridden by FNDECL. Check both
2054
   TYPE itself and its bases.  */
2055
 
2056
static int
2057
look_for_overrides_r (tree type, tree fndecl)
2058
{
2059
  tree fn = look_for_overrides_here (type, fndecl);
2060
  if (fn)
2061
    {
2062
      if (DECL_STATIC_FUNCTION_P (fndecl))
2063
        {
2064
          /* A static member function cannot match an inherited
2065
             virtual member function.  */
2066
          error ("%q+#D cannot be declared", fndecl);
2067
          error ("  since %q+#D declared in base class", fn);
2068
        }
2069
      else
2070
        {
2071
          /* It's definitely virtual, even if not explicitly set.  */
2072
          DECL_VIRTUAL_P (fndecl) = 1;
2073
          check_final_overrider (fndecl, fn);
2074
        }
2075
      return 1;
2076
    }
2077
 
2078
  /* We failed to find one declared in this class. Look in its bases.  */
2079
  return look_for_overrides (type, fndecl);
2080
}
2081
 
2082
/* Called via dfs_walk from dfs_get_pure_virtuals.  */
2083
 
2084
static tree
2085
dfs_get_pure_virtuals (tree binfo, void *data)
2086
{
2087
  tree type = (tree) data;
2088
 
2089
  /* We're not interested in primary base classes; the derived class
2090
     of which they are a primary base will contain the information we
2091
     need.  */
2092
  if (!BINFO_PRIMARY_P (binfo))
2093
    {
2094
      tree virtuals;
2095
 
2096
      for (virtuals = BINFO_VIRTUALS (binfo);
2097
           virtuals;
2098
           virtuals = TREE_CHAIN (virtuals))
2099
        if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2100
          VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (type),
2101
                         BV_FN (virtuals));
2102
    }
2103
 
2104
  return NULL_TREE;
2105
}
2106
 
2107
/* Set CLASSTYPE_PURE_VIRTUALS for TYPE.  */
2108
 
2109
void
2110
get_pure_virtuals (tree type)
2111
{
2112
  /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2113
     is going to be overridden.  */
2114
  CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2115
  /* Now, run through all the bases which are not primary bases, and
2116
     collect the pure virtual functions.  We look at the vtable in
2117
     each class to determine what pure virtual functions are present.
2118
     (A primary base is not interesting because the derived class of
2119
     which it is a primary base will contain vtable entries for the
2120
     pure virtuals in the base class.  */
2121
  dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2122
}
2123
 
2124
/* Debug info for C++ classes can get very large; try to avoid
2125
   emitting it everywhere.
2126
 
2127
   Note that this optimization wins even when the target supports
2128
   BINCL (if only slightly), and reduces the amount of work for the
2129
   linker.  */
2130
 
2131
void
2132
maybe_suppress_debug_info (tree t)
2133
{
2134
  if (write_symbols == NO_DEBUG)
2135
    return;
2136
 
2137
  /* We might have set this earlier in cp_finish_decl.  */
2138
  TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2139
 
2140
  /* Always emit the information for each class every time. */
2141
  if (flag_emit_class_debug_always)
2142
    return;
2143
 
2144
  /* If we already know how we're handling this class, handle debug info
2145
     the same way.  */
2146
  if (CLASSTYPE_INTERFACE_KNOWN (t))
2147
    {
2148
      if (CLASSTYPE_INTERFACE_ONLY (t))
2149
        TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2150
      /* else don't set it.  */
2151
    }
2152
  /* If the class has a vtable, write out the debug info along with
2153
     the vtable.  */
2154
  else if (TYPE_CONTAINS_VPTR_P (t))
2155
    TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2156
 
2157
  /* Otherwise, just emit the debug info normally.  */
2158
}
2159
 
2160
/* Note that we want debugging information for a base class of a class
2161
   whose vtable is being emitted.  Normally, this would happen because
2162
   calling the constructor for a derived class implies calling the
2163
   constructors for all bases, which involve initializing the
2164
   appropriate vptr with the vtable for the base class; but in the
2165
   presence of optimization, this initialization may be optimized
2166
   away, so we tell finish_vtable_vardecl that we want the debugging
2167
   information anyway.  */
2168
 
2169
static tree
2170
dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2171
{
2172
  tree t = BINFO_TYPE (binfo);
2173
 
2174
  if (CLASSTYPE_DEBUG_REQUESTED (t))
2175
    return dfs_skip_bases;
2176
 
2177
  CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2178
 
2179
  return NULL_TREE;
2180
}
2181
 
2182
/* Write out the debugging information for TYPE, whose vtable is being
2183
   emitted.  Also walk through our bases and note that we want to
2184
   write out information for them.  This avoids the problem of not
2185
   writing any debug info for intermediate basetypes whose
2186
   constructors, and thus the references to their vtables, and thus
2187
   the vtables themselves, were optimized away.  */
2188
 
2189
void
2190
note_debug_info_needed (tree type)
2191
{
2192
  if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2193
    {
2194
      TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2195
      rest_of_type_compilation (type, toplevel_bindings_p ());
2196
    }
2197
 
2198
  dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2199
}
2200
 
2201
void
2202
print_search_statistics (void)
2203
{
2204
#ifdef GATHER_STATISTICS
2205
  fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2206
           n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2207
  fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2208
           n_outer_fields_searched, n_calls_lookup_fnfields);
2209
  fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2210
#else /* GATHER_STATISTICS */
2211
  fprintf (stderr, "no search statistics\n");
2212
#endif /* GATHER_STATISTICS */
2213
}
2214
 
2215
void
2216
reinit_search_statistics (void)
2217
{
2218
#ifdef GATHER_STATISTICS
2219
  n_fields_searched = 0;
2220
  n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2221
  n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2222
  n_calls_get_base_type = 0;
2223
  n_outer_fields_searched = 0;
2224
  n_contexts_saved = 0;
2225
#endif /* GATHER_STATISTICS */
2226
}
2227
 
2228
/* Helper for lookup_conversions_r.  TO_TYPE is the type converted to
2229
   by a conversion op in base BINFO.  VIRTUAL_DEPTH is nonzero if
2230
   BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2231
   bases have been encountered already in the tree walk.  PARENT_CONVS
2232
   is the list of lists of conversion functions that could hide CONV
2233
   and OTHER_CONVS is the list of lists of conversion functions that
2234
   could hide or be hidden by CONV, should virtualness be involved in
2235
   the hierarchy.  Merely checking the conversion op's name is not
2236
   enough because two conversion operators to the same type can have
2237
   different names.  Return nonzero if we are visible.  */
2238
 
2239
static int
2240
check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2241
                    tree to_type, tree parent_convs, tree other_convs)
2242
{
2243
  tree level, probe;
2244
 
2245
  /* See if we are hidden by a parent conversion.  */
2246
  for (level = parent_convs; level; level = TREE_CHAIN (level))
2247
    for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2248
      if (same_type_p (to_type, TREE_TYPE (probe)))
2249
        return 0;
2250
 
2251
  if (virtual_depth || virtualness)
2252
    {
2253
     /* In a virtual hierarchy, we could be hidden, or could hide a
2254
        conversion function on the other_convs list.  */
2255
      for (level = other_convs; level; level = TREE_CHAIN (level))
2256
        {
2257
          int we_hide_them;
2258
          int they_hide_us;
2259
          tree *prev, other;
2260
 
2261
          if (!(virtual_depth || TREE_STATIC (level)))
2262
            /* Neither is morally virtual, so cannot hide each other.  */
2263
            continue;
2264
 
2265
          if (!TREE_VALUE (level))
2266
            /* They evaporated away already.  */
2267
            continue;
2268
 
2269
          they_hide_us = (virtual_depth
2270
                          && original_binfo (binfo, TREE_PURPOSE (level)));
2271
          we_hide_them = (!they_hide_us && TREE_STATIC (level)
2272
                          && original_binfo (TREE_PURPOSE (level), binfo));
2273
 
2274
          if (!(we_hide_them || they_hide_us))
2275
            /* Neither is within the other, so no hiding can occur.  */
2276
            continue;
2277
 
2278
          for (prev = &TREE_VALUE (level), other = *prev; other;)
2279
            {
2280
              if (same_type_p (to_type, TREE_TYPE (other)))
2281
                {
2282
                  if (they_hide_us)
2283
                    /* We are hidden.  */
2284
                    return 0;
2285
 
2286
                  if (we_hide_them)
2287
                    {
2288
                      /* We hide the other one.  */
2289
                      other = TREE_CHAIN (other);
2290
                      *prev = other;
2291
                      continue;
2292
                    }
2293
                }
2294
              prev = &TREE_CHAIN (other);
2295
              other = *prev;
2296
            }
2297
        }
2298
    }
2299
  return 1;
2300
}
2301
 
2302
/* Helper for lookup_conversions_r.  PARENT_CONVS is a list of lists
2303
   of conversion functions, the first slot will be for the current
2304
   binfo, if MY_CONVS is non-NULL.  CHILD_CONVS is the list of lists
2305
   of conversion functions from children of the current binfo,
2306
   concatenated with conversions from elsewhere in the hierarchy --
2307
   that list begins with OTHER_CONVS.  Return a single list of lists
2308
   containing only conversions from the current binfo and its
2309
   children.  */
2310
 
2311
static tree
2312
split_conversions (tree my_convs, tree parent_convs,
2313
                   tree child_convs, tree other_convs)
2314
{
2315
  tree t;
2316
  tree prev;
2317
 
2318
  /* Remove the original other_convs portion from child_convs.  */
2319
  for (prev = NULL, t = child_convs;
2320
       t != other_convs; prev = t, t = TREE_CHAIN (t))
2321
    continue;
2322
 
2323
  if (prev)
2324
    TREE_CHAIN (prev) = NULL_TREE;
2325
  else
2326
    child_convs = NULL_TREE;
2327
 
2328
  /* Attach the child convs to any we had at this level.  */
2329
  if (my_convs)
2330
    {
2331
      my_convs = parent_convs;
2332
      TREE_CHAIN (my_convs) = child_convs;
2333
    }
2334
  else
2335
    my_convs = child_convs;
2336
 
2337
  return my_convs;
2338
}
2339
 
2340
/* Worker for lookup_conversions.  Lookup conversion functions in
2341
   BINFO and its children.  VIRTUAL_DEPTH is nonzero, if BINFO is in
2342
   a morally virtual base, and VIRTUALNESS is nonzero, if we've
2343
   encountered virtual bases already in the tree walk.  PARENT_CONVS &
2344
   PARENT_TPL_CONVS are lists of list of conversions within parent
2345
   binfos.  OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2346
   elsewhere in the tree.  Return the conversions found within this
2347
   portion of the graph in CONVS and TPL_CONVS.  Return nonzero is we
2348
   encountered virtualness.  We keep template and non-template
2349
   conversions separate, to avoid unnecessary type comparisons.
2350
 
2351
   The located conversion functions are held in lists of lists.  The
2352
   TREE_VALUE of the outer list is the list of conversion functions
2353
   found in a particular binfo.  The TREE_PURPOSE of both the outer
2354
   and inner lists is the binfo at which those conversions were
2355
   found.  TREE_STATIC is set for those lists within of morally
2356
   virtual binfos.  The TREE_VALUE of the inner list is the conversion
2357
   function or overload itself.  The TREE_TYPE of each inner list node
2358
   is the converted-to type.  */
2359
 
2360
static int
2361
lookup_conversions_r (tree binfo,
2362
                      int virtual_depth, int virtualness,
2363
                      tree parent_convs, tree parent_tpl_convs,
2364
                      tree other_convs, tree other_tpl_convs,
2365
                      tree *convs, tree *tpl_convs)
2366
{
2367
  int my_virtualness = 0;
2368
  tree my_convs = NULL_TREE;
2369
  tree my_tpl_convs = NULL_TREE;
2370
  tree child_convs = NULL_TREE;
2371
  tree child_tpl_convs = NULL_TREE;
2372
  unsigned i;
2373
  tree base_binfo;
2374
  VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2375
  tree conv;
2376
 
2377
  /* If we have no conversion operators, then don't look.  */
2378
  if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2379
    {
2380
      *convs = *tpl_convs = NULL_TREE;
2381
 
2382
      return 0;
2383
    }
2384
 
2385
  if (BINFO_VIRTUAL_P (binfo))
2386
    virtual_depth++;
2387
 
2388
  /* First, locate the unhidden ones at this level.  */
2389
  for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2390
       VEC_iterate (tree, method_vec, i, conv);
2391
       ++i)
2392
    {
2393
      tree cur = OVL_CURRENT (conv);
2394
 
2395
      if (!DECL_CONV_FN_P (cur))
2396
        break;
2397
 
2398
      if (TREE_CODE (cur) == TEMPLATE_DECL)
2399
        {
2400
          /* Only template conversions can be overloaded, and we must
2401
             flatten them out and check each one individually.  */
2402
          tree tpls;
2403
 
2404
          for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2405
            {
2406
              tree tpl = OVL_CURRENT (tpls);
2407
              tree type = DECL_CONV_FN_TYPE (tpl);
2408
 
2409
              if (check_hidden_convs (binfo, virtual_depth, virtualness,
2410
                                      type, parent_tpl_convs, other_tpl_convs))
2411
                {
2412
                  my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2413
                  TREE_TYPE (my_tpl_convs) = type;
2414
                  if (virtual_depth)
2415
                    {
2416
                      TREE_STATIC (my_tpl_convs) = 1;
2417
                      my_virtualness = 1;
2418
                    }
2419
                }
2420
            }
2421
        }
2422
      else
2423
        {
2424
          tree name = DECL_NAME (cur);
2425
 
2426
          if (!IDENTIFIER_MARKED (name))
2427
            {
2428
              tree type = DECL_CONV_FN_TYPE (cur);
2429
 
2430
              if (check_hidden_convs (binfo, virtual_depth, virtualness,
2431
                                      type, parent_convs, other_convs))
2432
                {
2433
                  my_convs = tree_cons (binfo, conv, my_convs);
2434
                  TREE_TYPE (my_convs) = type;
2435
                  if (virtual_depth)
2436
                    {
2437
                      TREE_STATIC (my_convs) = 1;
2438
                      my_virtualness = 1;
2439
                    }
2440
                  IDENTIFIER_MARKED (name) = 1;
2441
                }
2442
            }
2443
        }
2444
    }
2445
 
2446
  if (my_convs)
2447
    {
2448
      parent_convs = tree_cons (binfo, my_convs, parent_convs);
2449
      if (virtual_depth)
2450
        TREE_STATIC (parent_convs) = 1;
2451
    }
2452
 
2453
  if (my_tpl_convs)
2454
    {
2455
      parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2456
      if (virtual_depth)
2457
        TREE_STATIC (parent_tpl_convs) = 1;
2458
    }
2459
 
2460
  child_convs = other_convs;
2461
  child_tpl_convs = other_tpl_convs;
2462
 
2463
  /* Now iterate over each base, looking for more conversions.  */
2464
  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2465
    {
2466
      tree base_convs, base_tpl_convs;
2467
      unsigned base_virtualness;
2468
 
2469
      base_virtualness = lookup_conversions_r (base_binfo,
2470
                                               virtual_depth, virtualness,
2471
                                               parent_convs, parent_tpl_convs,
2472
                                               child_convs, child_tpl_convs,
2473
                                               &base_convs, &base_tpl_convs);
2474
      if (base_virtualness)
2475
        my_virtualness = virtualness = 1;
2476
      child_convs = chainon (base_convs, child_convs);
2477
      child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2478
    }
2479
 
2480
  /* Unmark the conversions found at this level  */
2481
  for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2482
    IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2483
 
2484
  *convs = split_conversions (my_convs, parent_convs,
2485
                              child_convs, other_convs);
2486
  *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2487
                                  child_tpl_convs, other_tpl_convs);
2488
 
2489
  return my_virtualness;
2490
}
2491
 
2492
/* Return a TREE_LIST containing all the non-hidden user-defined
2493
   conversion functions for TYPE (and its base-classes).  The
2494
   TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2495
   function.  The TREE_PURPOSE is the BINFO from which the conversion
2496
   functions in this node were selected.  This function is effectively
2497
   performing a set of member lookups as lookup_fnfield does, but
2498
   using the type being converted to as the unique key, rather than the
2499
   field name.  */
2500
 
2501
tree
2502
lookup_conversions (tree type)
2503
{
2504
  tree convs, tpl_convs;
2505
  tree list = NULL_TREE;
2506
 
2507
  complete_type (type);
2508
  if (!TYPE_BINFO (type))
2509
    return NULL_TREE;
2510
 
2511
  lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2512
                        NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2513
                        &convs, &tpl_convs);
2514
 
2515
  /* Flatten the list-of-lists */
2516
  for (; convs; convs = TREE_CHAIN (convs))
2517
    {
2518
      tree probe, next;
2519
 
2520
      for (probe = TREE_VALUE (convs); probe; probe = next)
2521
        {
2522
          next = TREE_CHAIN (probe);
2523
 
2524
          TREE_CHAIN (probe) = list;
2525
          list = probe;
2526
        }
2527
    }
2528
 
2529
  for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2530
    {
2531
      tree probe, next;
2532
 
2533
      for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2534
        {
2535
          next = TREE_CHAIN (probe);
2536
 
2537
          TREE_CHAIN (probe) = list;
2538
          list = probe;
2539
        }
2540
    }
2541
 
2542
  return list;
2543
}
2544
 
2545
/* Returns the binfo of the first direct or indirect virtual base derived
2546
   from BINFO, or NULL if binfo is not via virtual.  */
2547
 
2548
tree
2549
binfo_from_vbase (tree binfo)
2550
{
2551
  for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2552
    {
2553
      if (BINFO_VIRTUAL_P (binfo))
2554
        return binfo;
2555
    }
2556
  return NULL_TREE;
2557
}
2558
 
2559
/* Returns the binfo of the first direct or indirect virtual base derived
2560
   from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2561
   via virtual.  */
2562
 
2563
tree
2564
binfo_via_virtual (tree binfo, tree limit)
2565
{
2566
  if (limit && !CLASSTYPE_VBASECLASSES (limit))
2567
    /* LIMIT has no virtual bases, so BINFO cannot be via one.  */
2568
    return NULL_TREE;
2569
 
2570
  for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2571
       binfo = BINFO_INHERITANCE_CHAIN (binfo))
2572
    {
2573
      if (BINFO_VIRTUAL_P (binfo))
2574
        return binfo;
2575
    }
2576
  return NULL_TREE;
2577
}
2578
 
2579
/* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2580
   Find the equivalent binfo within whatever graph HERE is located.
2581
   This is the inverse of original_binfo.  */
2582
 
2583
tree
2584
copied_binfo (tree binfo, tree here)
2585
{
2586
  tree result = NULL_TREE;
2587
 
2588
  if (BINFO_VIRTUAL_P (binfo))
2589
    {
2590
      tree t;
2591
 
2592
      for (t = here; BINFO_INHERITANCE_CHAIN (t);
2593
           t = BINFO_INHERITANCE_CHAIN (t))
2594
        continue;
2595
 
2596
      result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2597
    }
2598
  else if (BINFO_INHERITANCE_CHAIN (binfo))
2599
    {
2600
      tree cbinfo;
2601
      tree base_binfo;
2602
      int ix;
2603
 
2604
      cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2605
      for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2606
        if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2607
          {
2608
            result = base_binfo;
2609
            break;
2610
          }
2611
    }
2612
  else
2613
    {
2614
      gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2615
      result = here;
2616
    }
2617
 
2618
  gcc_assert (result);
2619
  return result;
2620
}
2621
 
2622
tree
2623
binfo_for_vbase (tree base, tree t)
2624
{
2625
  unsigned ix;
2626
  tree binfo;
2627
  VEC(tree,gc) *vbases;
2628
 
2629
  for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2630
       VEC_iterate (tree, vbases, ix, binfo); ix++)
2631
    if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2632
      return binfo;
2633
  return NULL;
2634
}
2635
 
2636
/* BINFO is some base binfo of HERE, within some other
2637
   hierarchy. Return the equivalent binfo, but in the hierarchy
2638
   dominated by HERE.  This is the inverse of copied_binfo.  If BINFO
2639
   is not a base binfo of HERE, returns NULL_TREE.  */
2640
 
2641
tree
2642
original_binfo (tree binfo, tree here)
2643
{
2644
  tree result = NULL;
2645
 
2646
  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2647
    result = here;
2648
  else if (BINFO_VIRTUAL_P (binfo))
2649
    result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2650
              ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2651
              : NULL_TREE);
2652
  else if (BINFO_INHERITANCE_CHAIN (binfo))
2653
    {
2654
      tree base_binfos;
2655
 
2656
      base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2657
      if (base_binfos)
2658
        {
2659
          int ix;
2660
          tree base_binfo;
2661
 
2662
          for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2663
            if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2664
                                   BINFO_TYPE (binfo)))
2665
              {
2666
                result = base_binfo;
2667
                break;
2668
              }
2669
        }
2670
    }
2671
 
2672
  return result;
2673
}
2674
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.