1 |
710 |
jeremybenn |
/* Breadth-first and depth-first routines for
|
2 |
|
|
searching multiple-inheritance lattice for GNU C++.
|
3 |
|
|
Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
4 |
|
|
1999, 2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
7 |
|
|
|
8 |
|
|
This file is part of GCC.
|
9 |
|
|
|
10 |
|
|
GCC is free software; you can redistribute it and/or modify
|
11 |
|
|
it under the terms of the GNU General Public License as published by
|
12 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
13 |
|
|
any later version.
|
14 |
|
|
|
15 |
|
|
GCC is distributed in the hope that it will be useful,
|
16 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
18 |
|
|
GNU General Public License for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with GCC; see the file COPYING3. If not see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
/* High-level class interface. */
|
25 |
|
|
|
26 |
|
|
#include "config.h"
|
27 |
|
|
#include "system.h"
|
28 |
|
|
#include "coretypes.h"
|
29 |
|
|
#include "tm.h"
|
30 |
|
|
#include "tree.h"
|
31 |
|
|
#include "cp-tree.h"
|
32 |
|
|
#include "intl.h"
|
33 |
|
|
#include "flags.h"
|
34 |
|
|
#include "output.h"
|
35 |
|
|
#include "toplev.h"
|
36 |
|
|
#include "target.h"
|
37 |
|
|
|
38 |
|
|
static int is_subobject_of_p (tree, tree);
|
39 |
|
|
static tree dfs_lookup_base (tree, void *);
|
40 |
|
|
static tree dfs_dcast_hint_pre (tree, void *);
|
41 |
|
|
static tree dfs_dcast_hint_post (tree, void *);
|
42 |
|
|
static tree dfs_debug_mark (tree, void *);
|
43 |
|
|
static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
|
44 |
|
|
tree (*post_fn) (tree, void *), void *data);
|
45 |
|
|
static void dfs_unmark_r (tree);
|
46 |
|
|
static int check_hidden_convs (tree, int, int, tree, tree, tree);
|
47 |
|
|
static tree split_conversions (tree, tree, tree, tree);
|
48 |
|
|
static int lookup_conversions_r (tree, int, int,
|
49 |
|
|
tree, tree, tree, tree, tree *, tree *);
|
50 |
|
|
static int look_for_overrides_r (tree, tree);
|
51 |
|
|
static tree lookup_field_r (tree, void *);
|
52 |
|
|
static tree dfs_accessible_post (tree, void *);
|
53 |
|
|
static tree dfs_walk_once_accessible_r (tree, bool, bool,
|
54 |
|
|
tree (*pre_fn) (tree, void *),
|
55 |
|
|
tree (*post_fn) (tree, void *),
|
56 |
|
|
void *data);
|
57 |
|
|
static tree dfs_walk_once_accessible (tree, bool,
|
58 |
|
|
tree (*pre_fn) (tree, void *),
|
59 |
|
|
tree (*post_fn) (tree, void *),
|
60 |
|
|
void *data);
|
61 |
|
|
static tree dfs_access_in_type (tree, void *);
|
62 |
|
|
static access_kind access_in_type (tree, tree);
|
63 |
|
|
static int protected_accessible_p (tree, tree, tree);
|
64 |
|
|
static int friend_accessible_p (tree, tree, tree);
|
65 |
|
|
static tree dfs_get_pure_virtuals (tree, void *);
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
/* Variables for gathering statistics. */
|
69 |
|
|
#ifdef GATHER_STATISTICS
|
70 |
|
|
static int n_fields_searched;
|
71 |
|
|
static int n_calls_lookup_field, n_calls_lookup_field_1;
|
72 |
|
|
static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
|
73 |
|
|
static int n_calls_get_base_type;
|
74 |
|
|
static int n_outer_fields_searched;
|
75 |
|
|
static int n_contexts_saved;
|
76 |
|
|
#endif /* GATHER_STATISTICS */
|
77 |
|
|
|
78 |
|
|
|
79 |
|
|
/* Data for lookup_base and its workers. */
|
80 |
|
|
|
81 |
|
|
struct lookup_base_data_s
|
82 |
|
|
{
|
83 |
|
|
tree t; /* type being searched. */
|
84 |
|
|
tree base; /* The base type we're looking for. */
|
85 |
|
|
tree binfo; /* Found binfo. */
|
86 |
|
|
bool via_virtual; /* Found via a virtual path. */
|
87 |
|
|
bool ambiguous; /* Found multiply ambiguous */
|
88 |
|
|
bool repeated_base; /* Whether there are repeated bases in the
|
89 |
|
|
hierarchy. */
|
90 |
|
|
bool want_any; /* Whether we want any matching binfo. */
|
91 |
|
|
};
|
92 |
|
|
|
93 |
|
|
/* Worker function for lookup_base. See if we've found the desired
|
94 |
|
|
base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
|
95 |
|
|
|
96 |
|
|
static tree
|
97 |
|
|
dfs_lookup_base (tree binfo, void *data_)
|
98 |
|
|
{
|
99 |
|
|
struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
|
100 |
|
|
|
101 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
|
102 |
|
|
{
|
103 |
|
|
if (!data->binfo)
|
104 |
|
|
{
|
105 |
|
|
data->binfo = binfo;
|
106 |
|
|
data->via_virtual
|
107 |
|
|
= binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
|
108 |
|
|
|
109 |
|
|
if (!data->repeated_base)
|
110 |
|
|
/* If there are no repeated bases, we can stop now. */
|
111 |
|
|
return binfo;
|
112 |
|
|
|
113 |
|
|
if (data->want_any && !data->via_virtual)
|
114 |
|
|
/* If this is a non-virtual base, then we can't do
|
115 |
|
|
better. */
|
116 |
|
|
return binfo;
|
117 |
|
|
|
118 |
|
|
return dfs_skip_bases;
|
119 |
|
|
}
|
120 |
|
|
else
|
121 |
|
|
{
|
122 |
|
|
gcc_assert (binfo != data->binfo);
|
123 |
|
|
|
124 |
|
|
/* We've found more than one matching binfo. */
|
125 |
|
|
if (!data->want_any)
|
126 |
|
|
{
|
127 |
|
|
/* This is immediately ambiguous. */
|
128 |
|
|
data->binfo = NULL_TREE;
|
129 |
|
|
data->ambiguous = true;
|
130 |
|
|
return error_mark_node;
|
131 |
|
|
}
|
132 |
|
|
|
133 |
|
|
/* Prefer one via a non-virtual path. */
|
134 |
|
|
if (!binfo_via_virtual (binfo, data->t))
|
135 |
|
|
{
|
136 |
|
|
data->binfo = binfo;
|
137 |
|
|
data->via_virtual = false;
|
138 |
|
|
return binfo;
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
/* There must be repeated bases, otherwise we'd have stopped
|
142 |
|
|
on the first base we found. */
|
143 |
|
|
return dfs_skip_bases;
|
144 |
|
|
}
|
145 |
|
|
}
|
146 |
|
|
|
147 |
|
|
return NULL_TREE;
|
148 |
|
|
}
|
149 |
|
|
|
150 |
|
|
/* Returns true if type BASE is accessible in T. (BASE is known to be
|
151 |
|
|
a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
|
152 |
|
|
true, consider any special access of the current scope, or access
|
153 |
|
|
bestowed by friendship. */
|
154 |
|
|
|
155 |
|
|
bool
|
156 |
|
|
accessible_base_p (tree t, tree base, bool consider_local_p)
|
157 |
|
|
{
|
158 |
|
|
tree decl;
|
159 |
|
|
|
160 |
|
|
/* [class.access.base]
|
161 |
|
|
|
162 |
|
|
A base class is said to be accessible if an invented public
|
163 |
|
|
member of the base class is accessible.
|
164 |
|
|
|
165 |
|
|
If BASE is a non-proper base, this condition is trivially
|
166 |
|
|
true. */
|
167 |
|
|
if (same_type_p (t, base))
|
168 |
|
|
return true;
|
169 |
|
|
/* Rather than inventing a public member, we use the implicit
|
170 |
|
|
public typedef created in the scope of every class. */
|
171 |
|
|
decl = TYPE_FIELDS (base);
|
172 |
|
|
while (!DECL_SELF_REFERENCE_P (decl))
|
173 |
|
|
decl = DECL_CHAIN (decl);
|
174 |
|
|
while (ANON_AGGR_TYPE_P (t))
|
175 |
|
|
t = TYPE_CONTEXT (t);
|
176 |
|
|
return accessible_p (t, decl, consider_local_p);
|
177 |
|
|
}
|
178 |
|
|
|
179 |
|
|
/* Lookup BASE in the hierarchy dominated by T. Do access checking as
|
180 |
|
|
ACCESS specifies. Return the binfo we discover. If KIND_PTR is
|
181 |
|
|
non-NULL, fill with information about what kind of base we
|
182 |
|
|
discovered.
|
183 |
|
|
|
184 |
|
|
If the base is inaccessible, or ambiguous, and the ba_quiet bit is
|
185 |
|
|
not set in ACCESS, then an error is issued and error_mark_node is
|
186 |
|
|
returned. If the ba_quiet bit is set, then no error is issued and
|
187 |
|
|
NULL_TREE is returned. */
|
188 |
|
|
|
189 |
|
|
tree
|
190 |
|
|
lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
|
191 |
|
|
{
|
192 |
|
|
tree binfo;
|
193 |
|
|
tree t_binfo;
|
194 |
|
|
base_kind bk;
|
195 |
|
|
|
196 |
|
|
if (t == error_mark_node || base == error_mark_node)
|
197 |
|
|
{
|
198 |
|
|
if (kind_ptr)
|
199 |
|
|
*kind_ptr = bk_not_base;
|
200 |
|
|
return error_mark_node;
|
201 |
|
|
}
|
202 |
|
|
gcc_assert (TYPE_P (base));
|
203 |
|
|
|
204 |
|
|
if (!TYPE_P (t))
|
205 |
|
|
{
|
206 |
|
|
t_binfo = t;
|
207 |
|
|
t = BINFO_TYPE (t);
|
208 |
|
|
}
|
209 |
|
|
else
|
210 |
|
|
{
|
211 |
|
|
t = complete_type (TYPE_MAIN_VARIANT (t));
|
212 |
|
|
t_binfo = TYPE_BINFO (t);
|
213 |
|
|
}
|
214 |
|
|
|
215 |
|
|
base = TYPE_MAIN_VARIANT (base);
|
216 |
|
|
|
217 |
|
|
/* If BASE is incomplete, it can't be a base of T--and instantiating it
|
218 |
|
|
might cause an error. */
|
219 |
|
|
if (t_binfo && CLASS_TYPE_P (base) && COMPLETE_OR_OPEN_TYPE_P (base))
|
220 |
|
|
{
|
221 |
|
|
struct lookup_base_data_s data;
|
222 |
|
|
|
223 |
|
|
data.t = t;
|
224 |
|
|
data.base = base;
|
225 |
|
|
data.binfo = NULL_TREE;
|
226 |
|
|
data.ambiguous = data.via_virtual = false;
|
227 |
|
|
data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
|
228 |
|
|
data.want_any = access == ba_any;
|
229 |
|
|
|
230 |
|
|
dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
|
231 |
|
|
binfo = data.binfo;
|
232 |
|
|
|
233 |
|
|
if (!binfo)
|
234 |
|
|
bk = data.ambiguous ? bk_ambig : bk_not_base;
|
235 |
|
|
else if (binfo == t_binfo)
|
236 |
|
|
bk = bk_same_type;
|
237 |
|
|
else if (data.via_virtual)
|
238 |
|
|
bk = bk_via_virtual;
|
239 |
|
|
else
|
240 |
|
|
bk = bk_proper_base;
|
241 |
|
|
}
|
242 |
|
|
else
|
243 |
|
|
{
|
244 |
|
|
binfo = NULL_TREE;
|
245 |
|
|
bk = bk_not_base;
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
/* Check that the base is unambiguous and accessible. */
|
249 |
|
|
if (access != ba_any)
|
250 |
|
|
switch (bk)
|
251 |
|
|
{
|
252 |
|
|
case bk_not_base:
|
253 |
|
|
break;
|
254 |
|
|
|
255 |
|
|
case bk_ambig:
|
256 |
|
|
if (!(access & ba_quiet))
|
257 |
|
|
{
|
258 |
|
|
error ("%qT is an ambiguous base of %qT", base, t);
|
259 |
|
|
binfo = error_mark_node;
|
260 |
|
|
}
|
261 |
|
|
break;
|
262 |
|
|
|
263 |
|
|
default:
|
264 |
|
|
if ((access & ba_check_bit)
|
265 |
|
|
/* If BASE is incomplete, then BASE and TYPE are probably
|
266 |
|
|
the same, in which case BASE is accessible. If they
|
267 |
|
|
are not the same, then TYPE is invalid. In that case,
|
268 |
|
|
there's no need to issue another error here, and
|
269 |
|
|
there's no implicit typedef to use in the code that
|
270 |
|
|
follows, so we skip the check. */
|
271 |
|
|
&& COMPLETE_TYPE_P (base)
|
272 |
|
|
&& !accessible_base_p (t, base, !(access & ba_ignore_scope)))
|
273 |
|
|
{
|
274 |
|
|
if (!(access & ba_quiet))
|
275 |
|
|
{
|
276 |
|
|
error ("%qT is an inaccessible base of %qT", base, t);
|
277 |
|
|
binfo = error_mark_node;
|
278 |
|
|
}
|
279 |
|
|
else
|
280 |
|
|
binfo = NULL_TREE;
|
281 |
|
|
bk = bk_inaccessible;
|
282 |
|
|
}
|
283 |
|
|
break;
|
284 |
|
|
}
|
285 |
|
|
|
286 |
|
|
if (kind_ptr)
|
287 |
|
|
*kind_ptr = bk;
|
288 |
|
|
|
289 |
|
|
return binfo;
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
/* Data for dcast_base_hint walker. */
|
293 |
|
|
|
294 |
|
|
struct dcast_data_s
|
295 |
|
|
{
|
296 |
|
|
tree subtype; /* The base type we're looking for. */
|
297 |
|
|
int virt_depth; /* Number of virtual bases encountered from most
|
298 |
|
|
derived. */
|
299 |
|
|
tree offset; /* Best hint offset discovered so far. */
|
300 |
|
|
bool repeated_base; /* Whether there are repeated bases in the
|
301 |
|
|
hierarchy. */
|
302 |
|
|
};
|
303 |
|
|
|
304 |
|
|
/* Worker for dcast_base_hint. Search for the base type being cast
|
305 |
|
|
from. */
|
306 |
|
|
|
307 |
|
|
static tree
|
308 |
|
|
dfs_dcast_hint_pre (tree binfo, void *data_)
|
309 |
|
|
{
|
310 |
|
|
struct dcast_data_s *data = (struct dcast_data_s *) data_;
|
311 |
|
|
|
312 |
|
|
if (BINFO_VIRTUAL_P (binfo))
|
313 |
|
|
data->virt_depth++;
|
314 |
|
|
|
315 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
|
316 |
|
|
{
|
317 |
|
|
if (data->virt_depth)
|
318 |
|
|
{
|
319 |
|
|
data->offset = ssize_int (-1);
|
320 |
|
|
return data->offset;
|
321 |
|
|
}
|
322 |
|
|
if (data->offset)
|
323 |
|
|
data->offset = ssize_int (-3);
|
324 |
|
|
else
|
325 |
|
|
data->offset = BINFO_OFFSET (binfo);
|
326 |
|
|
|
327 |
|
|
return data->repeated_base ? dfs_skip_bases : data->offset;
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
return NULL_TREE;
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
/* Worker for dcast_base_hint. Track the virtual depth. */
|
334 |
|
|
|
335 |
|
|
static tree
|
336 |
|
|
dfs_dcast_hint_post (tree binfo, void *data_)
|
337 |
|
|
{
|
338 |
|
|
struct dcast_data_s *data = (struct dcast_data_s *) data_;
|
339 |
|
|
|
340 |
|
|
if (BINFO_VIRTUAL_P (binfo))
|
341 |
|
|
data->virt_depth--;
|
342 |
|
|
|
343 |
|
|
return NULL_TREE;
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
/* The dynamic cast runtime needs a hint about how the static SUBTYPE type
|
347 |
|
|
started from is related to the required TARGET type, in order to optimize
|
348 |
|
|
the inheritance graph search. This information is independent of the
|
349 |
|
|
current context, and ignores private paths, hence get_base_distance is
|
350 |
|
|
inappropriate. Return a TREE specifying the base offset, BOFF.
|
351 |
|
|
BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
|
352 |
|
|
and there are no public virtual SUBTYPE bases.
|
353 |
|
|
BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
|
354 |
|
|
BOFF == -2, SUBTYPE is not a public base.
|
355 |
|
|
BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
|
356 |
|
|
|
357 |
|
|
tree
|
358 |
|
|
dcast_base_hint (tree subtype, tree target)
|
359 |
|
|
{
|
360 |
|
|
struct dcast_data_s data;
|
361 |
|
|
|
362 |
|
|
data.subtype = subtype;
|
363 |
|
|
data.virt_depth = 0;
|
364 |
|
|
data.offset = NULL_TREE;
|
365 |
|
|
data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
|
366 |
|
|
|
367 |
|
|
dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
|
368 |
|
|
dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
|
369 |
|
|
return data.offset ? data.offset : ssize_int (-2);
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
/* Search for a member with name NAME in a multiple inheritance
|
373 |
|
|
lattice specified by TYPE. If it does not exist, return NULL_TREE.
|
374 |
|
|
If the member is ambiguously referenced, return `error_mark_node'.
|
375 |
|
|
Otherwise, return a DECL with the indicated name. If WANT_TYPE is
|
376 |
|
|
true, type declarations are preferred. */
|
377 |
|
|
|
378 |
|
|
/* Do a 1-level search for NAME as a member of TYPE. The caller must
|
379 |
|
|
figure out whether it can access this field. (Since it is only one
|
380 |
|
|
level, this is reasonable.) */
|
381 |
|
|
|
382 |
|
|
tree
|
383 |
|
|
lookup_field_1 (tree type, tree name, bool want_type)
|
384 |
|
|
{
|
385 |
|
|
tree field;
|
386 |
|
|
|
387 |
|
|
if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
|
388 |
|
|
|| TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
|
389 |
|
|
|| TREE_CODE (type) == TYPENAME_TYPE)
|
390 |
|
|
/* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
|
391 |
|
|
BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
|
392 |
|
|
instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
|
393 |
|
|
the code often worked even when we treated the index as a list
|
394 |
|
|
of fields!)
|
395 |
|
|
The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
|
396 |
|
|
return NULL_TREE;
|
397 |
|
|
|
398 |
|
|
if (CLASSTYPE_SORTED_FIELDS (type))
|
399 |
|
|
{
|
400 |
|
|
tree *fields = &CLASSTYPE_SORTED_FIELDS (type)->elts[0];
|
401 |
|
|
int lo = 0, hi = CLASSTYPE_SORTED_FIELDS (type)->len;
|
402 |
|
|
int i;
|
403 |
|
|
|
404 |
|
|
while (lo < hi)
|
405 |
|
|
{
|
406 |
|
|
i = (lo + hi) / 2;
|
407 |
|
|
|
408 |
|
|
#ifdef GATHER_STATISTICS
|
409 |
|
|
n_fields_searched++;
|
410 |
|
|
#endif /* GATHER_STATISTICS */
|
411 |
|
|
|
412 |
|
|
if (DECL_NAME (fields[i]) > name)
|
413 |
|
|
hi = i;
|
414 |
|
|
else if (DECL_NAME (fields[i]) < name)
|
415 |
|
|
lo = i + 1;
|
416 |
|
|
else
|
417 |
|
|
{
|
418 |
|
|
field = NULL_TREE;
|
419 |
|
|
|
420 |
|
|
/* We might have a nested class and a field with the
|
421 |
|
|
same name; we sorted them appropriately via
|
422 |
|
|
field_decl_cmp, so just look for the first or last
|
423 |
|
|
field with this name. */
|
424 |
|
|
if (want_type)
|
425 |
|
|
{
|
426 |
|
|
do
|
427 |
|
|
field = fields[i--];
|
428 |
|
|
while (i >= lo && DECL_NAME (fields[i]) == name);
|
429 |
|
|
if (TREE_CODE (field) != TYPE_DECL
|
430 |
|
|
&& !DECL_TYPE_TEMPLATE_P (field))
|
431 |
|
|
field = NULL_TREE;
|
432 |
|
|
}
|
433 |
|
|
else
|
434 |
|
|
{
|
435 |
|
|
do
|
436 |
|
|
field = fields[i++];
|
437 |
|
|
while (i < hi && DECL_NAME (fields[i]) == name);
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
if (field)
|
441 |
|
|
{
|
442 |
|
|
field = strip_using_decl (field);
|
443 |
|
|
if (is_overloaded_fn (field))
|
444 |
|
|
field = NULL_TREE;
|
445 |
|
|
}
|
446 |
|
|
|
447 |
|
|
return field;
|
448 |
|
|
}
|
449 |
|
|
}
|
450 |
|
|
return NULL_TREE;
|
451 |
|
|
}
|
452 |
|
|
|
453 |
|
|
field = TYPE_FIELDS (type);
|
454 |
|
|
|
455 |
|
|
#ifdef GATHER_STATISTICS
|
456 |
|
|
n_calls_lookup_field_1++;
|
457 |
|
|
#endif /* GATHER_STATISTICS */
|
458 |
|
|
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
459 |
|
|
{
|
460 |
|
|
tree decl = field;
|
461 |
|
|
|
462 |
|
|
#ifdef GATHER_STATISTICS
|
463 |
|
|
n_fields_searched++;
|
464 |
|
|
#endif /* GATHER_STATISTICS */
|
465 |
|
|
gcc_assert (DECL_P (field));
|
466 |
|
|
if (DECL_NAME (field) == NULL_TREE
|
467 |
|
|
&& ANON_AGGR_TYPE_P (TREE_TYPE (field)))
|
468 |
|
|
{
|
469 |
|
|
tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
|
470 |
|
|
if (temp)
|
471 |
|
|
return temp;
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
if (TREE_CODE (decl) == USING_DECL
|
475 |
|
|
&& DECL_NAME (decl) == name)
|
476 |
|
|
{
|
477 |
|
|
decl = strip_using_decl (decl);
|
478 |
|
|
if (is_overloaded_fn (decl))
|
479 |
|
|
continue;
|
480 |
|
|
}
|
481 |
|
|
|
482 |
|
|
if (DECL_NAME (decl) == name
|
483 |
|
|
&& (!want_type
|
484 |
|
|
|| TREE_CODE (decl) == TYPE_DECL
|
485 |
|
|
|| DECL_TYPE_TEMPLATE_P (decl)))
|
486 |
|
|
return decl;
|
487 |
|
|
}
|
488 |
|
|
/* Not found. */
|
489 |
|
|
if (name == vptr_identifier)
|
490 |
|
|
{
|
491 |
|
|
/* Give the user what s/he thinks s/he wants. */
|
492 |
|
|
if (TYPE_POLYMORPHIC_P (type))
|
493 |
|
|
return TYPE_VFIELD (type);
|
494 |
|
|
}
|
495 |
|
|
return NULL_TREE;
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
/* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
|
499 |
|
|
NAMESPACE_DECL corresponding to the innermost non-block scope. */
|
500 |
|
|
|
501 |
|
|
tree
|
502 |
|
|
current_scope (void)
|
503 |
|
|
{
|
504 |
|
|
/* There are a number of cases we need to be aware of here:
|
505 |
|
|
current_class_type current_function_decl
|
506 |
|
|
global NULL NULL
|
507 |
|
|
fn-local NULL SET
|
508 |
|
|
class-local SET NULL
|
509 |
|
|
class->fn SET SET
|
510 |
|
|
fn->class SET SET
|
511 |
|
|
|
512 |
|
|
Those last two make life interesting. If we're in a function which is
|
513 |
|
|
itself inside a class, we need decls to go into the fn's decls (our
|
514 |
|
|
second case below). But if we're in a class and the class itself is
|
515 |
|
|
inside a function, we need decls to go into the decls for the class. To
|
516 |
|
|
achieve this last goal, we must see if, when both current_class_ptr and
|
517 |
|
|
current_function_decl are set, the class was declared inside that
|
518 |
|
|
function. If so, we know to put the decls into the class's scope. */
|
519 |
|
|
if (current_function_decl && current_class_type
|
520 |
|
|
&& ((DECL_FUNCTION_MEMBER_P (current_function_decl)
|
521 |
|
|
&& same_type_p (DECL_CONTEXT (current_function_decl),
|
522 |
|
|
current_class_type))
|
523 |
|
|
|| (DECL_FRIEND_CONTEXT (current_function_decl)
|
524 |
|
|
&& same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
|
525 |
|
|
current_class_type))))
|
526 |
|
|
return current_function_decl;
|
527 |
|
|
if (current_class_type)
|
528 |
|
|
return current_class_type;
|
529 |
|
|
if (current_function_decl)
|
530 |
|
|
return current_function_decl;
|
531 |
|
|
return current_namespace;
|
532 |
|
|
}
|
533 |
|
|
|
534 |
|
|
/* Returns nonzero if we are currently in a function scope. Note
|
535 |
|
|
that this function returns zero if we are within a local class, but
|
536 |
|
|
not within a member function body of the local class. */
|
537 |
|
|
|
538 |
|
|
int
|
539 |
|
|
at_function_scope_p (void)
|
540 |
|
|
{
|
541 |
|
|
tree cs = current_scope ();
|
542 |
|
|
/* Also check cfun to make sure that we're really compiling
|
543 |
|
|
this function (as opposed to having set current_function_decl
|
544 |
|
|
for access checking or some such). */
|
545 |
|
|
return (cs && TREE_CODE (cs) == FUNCTION_DECL
|
546 |
|
|
&& cfun && cfun->decl == current_function_decl);
|
547 |
|
|
}
|
548 |
|
|
|
549 |
|
|
/* Returns true if the innermost active scope is a class scope. */
|
550 |
|
|
|
551 |
|
|
bool
|
552 |
|
|
at_class_scope_p (void)
|
553 |
|
|
{
|
554 |
|
|
tree cs = current_scope ();
|
555 |
|
|
return cs && TYPE_P (cs);
|
556 |
|
|
}
|
557 |
|
|
|
558 |
|
|
/* Returns true if the innermost active scope is a namespace scope. */
|
559 |
|
|
|
560 |
|
|
bool
|
561 |
|
|
at_namespace_scope_p (void)
|
562 |
|
|
{
|
563 |
|
|
tree cs = current_scope ();
|
564 |
|
|
return cs && TREE_CODE (cs) == NAMESPACE_DECL;
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
/* Return the scope of DECL, as appropriate when doing name-lookup. */
|
568 |
|
|
|
569 |
|
|
tree
|
570 |
|
|
context_for_name_lookup (tree decl)
|
571 |
|
|
{
|
572 |
|
|
/* [class.union]
|
573 |
|
|
|
574 |
|
|
For the purposes of name lookup, after the anonymous union
|
575 |
|
|
definition, the members of the anonymous union are considered to
|
576 |
|
|
have been defined in the scope in which the anonymous union is
|
577 |
|
|
declared. */
|
578 |
|
|
tree context = DECL_CONTEXT (decl);
|
579 |
|
|
|
580 |
|
|
while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
|
581 |
|
|
context = TYPE_CONTEXT (context);
|
582 |
|
|
if (!context)
|
583 |
|
|
context = global_namespace;
|
584 |
|
|
|
585 |
|
|
return context;
|
586 |
|
|
}
|
587 |
|
|
|
588 |
|
|
/* The accessibility routines use BINFO_ACCESS for scratch space
|
589 |
|
|
during the computation of the accessibility of some declaration. */
|
590 |
|
|
|
591 |
|
|
#define BINFO_ACCESS(NODE) \
|
592 |
|
|
((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
|
593 |
|
|
|
594 |
|
|
/* Set the access associated with NODE to ACCESS. */
|
595 |
|
|
|
596 |
|
|
#define SET_BINFO_ACCESS(NODE, ACCESS) \
|
597 |
|
|
((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
|
598 |
|
|
(TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
|
599 |
|
|
|
600 |
|
|
/* Called from access_in_type via dfs_walk. Calculate the access to
|
601 |
|
|
DATA (which is really a DECL) in BINFO. */
|
602 |
|
|
|
603 |
|
|
static tree
|
604 |
|
|
dfs_access_in_type (tree binfo, void *data)
|
605 |
|
|
{
|
606 |
|
|
tree decl = (tree) data;
|
607 |
|
|
tree type = BINFO_TYPE (binfo);
|
608 |
|
|
access_kind access = ak_none;
|
609 |
|
|
|
610 |
|
|
if (context_for_name_lookup (decl) == type)
|
611 |
|
|
{
|
612 |
|
|
/* If we have descended to the scope of DECL, just note the
|
613 |
|
|
appropriate access. */
|
614 |
|
|
if (TREE_PRIVATE (decl))
|
615 |
|
|
access = ak_private;
|
616 |
|
|
else if (TREE_PROTECTED (decl))
|
617 |
|
|
access = ak_protected;
|
618 |
|
|
else
|
619 |
|
|
access = ak_public;
|
620 |
|
|
}
|
621 |
|
|
else
|
622 |
|
|
{
|
623 |
|
|
/* First, check for an access-declaration that gives us more
|
624 |
|
|
access to the DECL. The CONST_DECL for an enumeration
|
625 |
|
|
constant will not have DECL_LANG_SPECIFIC, and thus no
|
626 |
|
|
DECL_ACCESS. */
|
627 |
|
|
if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
|
628 |
|
|
{
|
629 |
|
|
tree decl_access = purpose_member (type, DECL_ACCESS (decl));
|
630 |
|
|
|
631 |
|
|
if (decl_access)
|
632 |
|
|
{
|
633 |
|
|
decl_access = TREE_VALUE (decl_access);
|
634 |
|
|
|
635 |
|
|
if (decl_access == access_public_node)
|
636 |
|
|
access = ak_public;
|
637 |
|
|
else if (decl_access == access_protected_node)
|
638 |
|
|
access = ak_protected;
|
639 |
|
|
else if (decl_access == access_private_node)
|
640 |
|
|
access = ak_private;
|
641 |
|
|
else
|
642 |
|
|
gcc_unreachable ();
|
643 |
|
|
}
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
if (!access)
|
647 |
|
|
{
|
648 |
|
|
int i;
|
649 |
|
|
tree base_binfo;
|
650 |
|
|
VEC(tree,gc) *accesses;
|
651 |
|
|
|
652 |
|
|
/* Otherwise, scan our baseclasses, and pick the most favorable
|
653 |
|
|
access. */
|
654 |
|
|
accesses = BINFO_BASE_ACCESSES (binfo);
|
655 |
|
|
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
656 |
|
|
{
|
657 |
|
|
tree base_access = VEC_index (tree, accesses, i);
|
658 |
|
|
access_kind base_access_now = BINFO_ACCESS (base_binfo);
|
659 |
|
|
|
660 |
|
|
if (base_access_now == ak_none || base_access_now == ak_private)
|
661 |
|
|
/* If it was not accessible in the base, or only
|
662 |
|
|
accessible as a private member, we can't access it
|
663 |
|
|
all. */
|
664 |
|
|
base_access_now = ak_none;
|
665 |
|
|
else if (base_access == access_protected_node)
|
666 |
|
|
/* Public and protected members in the base become
|
667 |
|
|
protected here. */
|
668 |
|
|
base_access_now = ak_protected;
|
669 |
|
|
else if (base_access == access_private_node)
|
670 |
|
|
/* Public and protected members in the base become
|
671 |
|
|
private here. */
|
672 |
|
|
base_access_now = ak_private;
|
673 |
|
|
|
674 |
|
|
/* See if the new access, via this base, gives more
|
675 |
|
|
access than our previous best access. */
|
676 |
|
|
if (base_access_now != ak_none
|
677 |
|
|
&& (access == ak_none || base_access_now < access))
|
678 |
|
|
{
|
679 |
|
|
access = base_access_now;
|
680 |
|
|
|
681 |
|
|
/* If the new access is public, we can't do better. */
|
682 |
|
|
if (access == ak_public)
|
683 |
|
|
break;
|
684 |
|
|
}
|
685 |
|
|
}
|
686 |
|
|
}
|
687 |
|
|
}
|
688 |
|
|
|
689 |
|
|
/* Note the access to DECL in TYPE. */
|
690 |
|
|
SET_BINFO_ACCESS (binfo, access);
|
691 |
|
|
|
692 |
|
|
return NULL_TREE;
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
/* Return the access to DECL in TYPE. */
|
696 |
|
|
|
697 |
|
|
static access_kind
|
698 |
|
|
access_in_type (tree type, tree decl)
|
699 |
|
|
{
|
700 |
|
|
tree binfo = TYPE_BINFO (type);
|
701 |
|
|
|
702 |
|
|
/* We must take into account
|
703 |
|
|
|
704 |
|
|
[class.paths]
|
705 |
|
|
|
706 |
|
|
If a name can be reached by several paths through a multiple
|
707 |
|
|
inheritance graph, the access is that of the path that gives
|
708 |
|
|
most access.
|
709 |
|
|
|
710 |
|
|
The algorithm we use is to make a post-order depth-first traversal
|
711 |
|
|
of the base-class hierarchy. As we come up the tree, we annotate
|
712 |
|
|
each node with the most lenient access. */
|
713 |
|
|
dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
|
714 |
|
|
|
715 |
|
|
return BINFO_ACCESS (binfo);
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
/* Returns nonzero if it is OK to access DECL through an object
|
719 |
|
|
indicated by BINFO in the context of DERIVED. */
|
720 |
|
|
|
721 |
|
|
static int
|
722 |
|
|
protected_accessible_p (tree decl, tree derived, tree binfo)
|
723 |
|
|
{
|
724 |
|
|
access_kind access;
|
725 |
|
|
|
726 |
|
|
/* We're checking this clause from [class.access.base]
|
727 |
|
|
|
728 |
|
|
m as a member of N is protected, and the reference occurs in a
|
729 |
|
|
member or friend of class N, or in a member or friend of a
|
730 |
|
|
class P derived from N, where m as a member of P is public, private
|
731 |
|
|
or protected.
|
732 |
|
|
|
733 |
|
|
Here DERIVED is a possible P, DECL is m and BINFO_TYPE (binfo) is N. */
|
734 |
|
|
|
735 |
|
|
/* If DERIVED isn't derived from N, then it can't be a P. */
|
736 |
|
|
if (!DERIVED_FROM_P (BINFO_TYPE (binfo), derived))
|
737 |
|
|
return 0;
|
738 |
|
|
|
739 |
|
|
access = access_in_type (derived, decl);
|
740 |
|
|
|
741 |
|
|
/* If m is inaccessible in DERIVED, then it's not a P. */
|
742 |
|
|
if (access == ak_none)
|
743 |
|
|
return 0;
|
744 |
|
|
|
745 |
|
|
/* [class.protected]
|
746 |
|
|
|
747 |
|
|
When a friend or a member function of a derived class references
|
748 |
|
|
a protected nonstatic member of a base class, an access check
|
749 |
|
|
applies in addition to those described earlier in clause
|
750 |
|
|
_class.access_) Except when forming a pointer to member
|
751 |
|
|
(_expr.unary.op_), the access must be through a pointer to,
|
752 |
|
|
reference to, or object of the derived class itself (or any class
|
753 |
|
|
derived from that class) (_expr.ref_). If the access is to form
|
754 |
|
|
a pointer to member, the nested-name-specifier shall name the
|
755 |
|
|
derived class (or any class derived from that class). */
|
756 |
|
|
if (DECL_NONSTATIC_MEMBER_P (decl))
|
757 |
|
|
{
|
758 |
|
|
/* We can tell through what the reference is occurring by
|
759 |
|
|
chasing BINFO up to the root. */
|
760 |
|
|
tree t = binfo;
|
761 |
|
|
while (BINFO_INHERITANCE_CHAIN (t))
|
762 |
|
|
t = BINFO_INHERITANCE_CHAIN (t);
|
763 |
|
|
|
764 |
|
|
if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
|
765 |
|
|
return 0;
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
return 1;
|
769 |
|
|
}
|
770 |
|
|
|
771 |
|
|
/* Returns nonzero if SCOPE is a friend of a type which would be able
|
772 |
|
|
to access DECL through the object indicated by BINFO. */
|
773 |
|
|
|
774 |
|
|
static int
|
775 |
|
|
friend_accessible_p (tree scope, tree decl, tree binfo)
|
776 |
|
|
{
|
777 |
|
|
tree befriending_classes;
|
778 |
|
|
tree t;
|
779 |
|
|
|
780 |
|
|
if (!scope)
|
781 |
|
|
return 0;
|
782 |
|
|
|
783 |
|
|
if (TREE_CODE (scope) == FUNCTION_DECL
|
784 |
|
|
|| DECL_FUNCTION_TEMPLATE_P (scope))
|
785 |
|
|
befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
|
786 |
|
|
else if (TYPE_P (scope))
|
787 |
|
|
befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
|
788 |
|
|
else
|
789 |
|
|
return 0;
|
790 |
|
|
|
791 |
|
|
for (t = befriending_classes; t; t = TREE_CHAIN (t))
|
792 |
|
|
if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
|
793 |
|
|
return 1;
|
794 |
|
|
|
795 |
|
|
/* Nested classes have the same access as their enclosing types, as
|
796 |
|
|
per DR 45 (this is a change from the standard). */
|
797 |
|
|
if (TYPE_P (scope))
|
798 |
|
|
for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
|
799 |
|
|
if (protected_accessible_p (decl, t, binfo))
|
800 |
|
|
return 1;
|
801 |
|
|
|
802 |
|
|
if (TREE_CODE (scope) == FUNCTION_DECL
|
803 |
|
|
|| DECL_FUNCTION_TEMPLATE_P (scope))
|
804 |
|
|
{
|
805 |
|
|
/* Perhaps this SCOPE is a member of a class which is a
|
806 |
|
|
friend. */
|
807 |
|
|
if (DECL_CLASS_SCOPE_P (scope)
|
808 |
|
|
&& friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
|
809 |
|
|
return 1;
|
810 |
|
|
|
811 |
|
|
/* Or an instantiation of something which is a friend. */
|
812 |
|
|
if (DECL_TEMPLATE_INFO (scope))
|
813 |
|
|
{
|
814 |
|
|
int ret;
|
815 |
|
|
/* Increment processing_template_decl to make sure that
|
816 |
|
|
dependent_type_p works correctly. */
|
817 |
|
|
++processing_template_decl;
|
818 |
|
|
ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
|
819 |
|
|
--processing_template_decl;
|
820 |
|
|
return ret;
|
821 |
|
|
}
|
822 |
|
|
}
|
823 |
|
|
|
824 |
|
|
return 0;
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
/* Called via dfs_walk_once_accessible from accessible_p */
|
828 |
|
|
|
829 |
|
|
static tree
|
830 |
|
|
dfs_accessible_post (tree binfo, void *data ATTRIBUTE_UNUSED)
|
831 |
|
|
{
|
832 |
|
|
if (BINFO_ACCESS (binfo) != ak_none)
|
833 |
|
|
{
|
834 |
|
|
tree scope = current_scope ();
|
835 |
|
|
if (scope && TREE_CODE (scope) != NAMESPACE_DECL
|
836 |
|
|
&& is_friend (BINFO_TYPE (binfo), scope))
|
837 |
|
|
return binfo;
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
return NULL_TREE;
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
/* DECL is a declaration from a base class of TYPE, which was the
|
844 |
|
|
class used to name DECL. Return nonzero if, in the current
|
845 |
|
|
context, DECL is accessible. If TYPE is actually a BINFO node,
|
846 |
|
|
then we can tell in what context the access is occurring by looking
|
847 |
|
|
at the most derived class along the path indicated by BINFO. If
|
848 |
|
|
CONSIDER_LOCAL is true, do consider special access the current
|
849 |
|
|
scope or friendship thereof we might have. */
|
850 |
|
|
|
851 |
|
|
int
|
852 |
|
|
accessible_p (tree type, tree decl, bool consider_local_p)
|
853 |
|
|
{
|
854 |
|
|
tree binfo;
|
855 |
|
|
tree scope;
|
856 |
|
|
access_kind access;
|
857 |
|
|
|
858 |
|
|
/* Nonzero if it's OK to access DECL if it has protected
|
859 |
|
|
accessibility in TYPE. */
|
860 |
|
|
int protected_ok = 0;
|
861 |
|
|
|
862 |
|
|
/* If this declaration is in a block or namespace scope, there's no
|
863 |
|
|
access control. */
|
864 |
|
|
if (!TYPE_P (context_for_name_lookup (decl)))
|
865 |
|
|
return 1;
|
866 |
|
|
|
867 |
|
|
/* There is no need to perform access checks inside a thunk. */
|
868 |
|
|
scope = current_scope ();
|
869 |
|
|
if (scope && DECL_THUNK_P (scope))
|
870 |
|
|
return 1;
|
871 |
|
|
|
872 |
|
|
/* In a template declaration, we cannot be sure whether the
|
873 |
|
|
particular specialization that is instantiated will be a friend
|
874 |
|
|
or not. Therefore, all access checks are deferred until
|
875 |
|
|
instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
|
876 |
|
|
parameter list for a template (because we may see dependent types
|
877 |
|
|
in default arguments for template parameters), and access
|
878 |
|
|
checking should be performed in the outermost parameter list. */
|
879 |
|
|
if (processing_template_decl
|
880 |
|
|
&& (!processing_template_parmlist || processing_template_decl > 1))
|
881 |
|
|
return 1;
|
882 |
|
|
|
883 |
|
|
if (!TYPE_P (type))
|
884 |
|
|
{
|
885 |
|
|
binfo = type;
|
886 |
|
|
type = BINFO_TYPE (type);
|
887 |
|
|
}
|
888 |
|
|
else
|
889 |
|
|
binfo = TYPE_BINFO (type);
|
890 |
|
|
|
891 |
|
|
/* [class.access.base]
|
892 |
|
|
|
893 |
|
|
A member m is accessible when named in class N if
|
894 |
|
|
|
895 |
|
|
--m as a member of N is public, or
|
896 |
|
|
|
897 |
|
|
--m as a member of N is private, and the reference occurs in a
|
898 |
|
|
member or friend of class N, or
|
899 |
|
|
|
900 |
|
|
--m as a member of N is protected, and the reference occurs in a
|
901 |
|
|
member or friend of class N, or in a member or friend of a
|
902 |
|
|
class P derived from N, where m as a member of P is private or
|
903 |
|
|
protected, or
|
904 |
|
|
|
905 |
|
|
--there exists a base class B of N that is accessible at the point
|
906 |
|
|
of reference, and m is accessible when named in class B.
|
907 |
|
|
|
908 |
|
|
We walk the base class hierarchy, checking these conditions. */
|
909 |
|
|
|
910 |
|
|
if (consider_local_p)
|
911 |
|
|
{
|
912 |
|
|
/* Figure out where the reference is occurring. Check to see if
|
913 |
|
|
DECL is private or protected in this scope, since that will
|
914 |
|
|
determine whether protected access is allowed. */
|
915 |
|
|
if (current_class_type)
|
916 |
|
|
protected_ok = protected_accessible_p (decl,
|
917 |
|
|
current_class_type, binfo);
|
918 |
|
|
|
919 |
|
|
/* Now, loop through the classes of which we are a friend. */
|
920 |
|
|
if (!protected_ok)
|
921 |
|
|
protected_ok = friend_accessible_p (scope, decl, binfo);
|
922 |
|
|
}
|
923 |
|
|
|
924 |
|
|
/* Standardize the binfo that access_in_type will use. We don't
|
925 |
|
|
need to know what path was chosen from this point onwards. */
|
926 |
|
|
binfo = TYPE_BINFO (type);
|
927 |
|
|
|
928 |
|
|
/* Compute the accessibility of DECL in the class hierarchy
|
929 |
|
|
dominated by type. */
|
930 |
|
|
access = access_in_type (type, decl);
|
931 |
|
|
if (access == ak_public
|
932 |
|
|
|| (access == ak_protected && protected_ok))
|
933 |
|
|
return 1;
|
934 |
|
|
|
935 |
|
|
if (!consider_local_p)
|
936 |
|
|
return 0;
|
937 |
|
|
|
938 |
|
|
/* Walk the hierarchy again, looking for a base class that allows
|
939 |
|
|
access. */
|
940 |
|
|
return dfs_walk_once_accessible (binfo, /*friends=*/true,
|
941 |
|
|
NULL, dfs_accessible_post, NULL)
|
942 |
|
|
!= NULL_TREE;
|
943 |
|
|
}
|
944 |
|
|
|
945 |
|
|
struct lookup_field_info {
|
946 |
|
|
/* The type in which we're looking. */
|
947 |
|
|
tree type;
|
948 |
|
|
/* The name of the field for which we're looking. */
|
949 |
|
|
tree name;
|
950 |
|
|
/* If non-NULL, the current result of the lookup. */
|
951 |
|
|
tree rval;
|
952 |
|
|
/* The path to RVAL. */
|
953 |
|
|
tree rval_binfo;
|
954 |
|
|
/* If non-NULL, the lookup was ambiguous, and this is a list of the
|
955 |
|
|
candidates. */
|
956 |
|
|
tree ambiguous;
|
957 |
|
|
/* If nonzero, we are looking for types, not data members. */
|
958 |
|
|
int want_type;
|
959 |
|
|
/* If something went wrong, a message indicating what. */
|
960 |
|
|
const char *errstr;
|
961 |
|
|
};
|
962 |
|
|
|
963 |
|
|
/* Nonzero for a class member means that it is shared between all objects
|
964 |
|
|
of that class.
|
965 |
|
|
|
966 |
|
|
[class.member.lookup]:If the resulting set of declarations are not all
|
967 |
|
|
from sub-objects of the same type, or the set has a nonstatic member
|
968 |
|
|
and includes members from distinct sub-objects, there is an ambiguity
|
969 |
|
|
and the program is ill-formed.
|
970 |
|
|
|
971 |
|
|
This function checks that T contains no nonstatic members. */
|
972 |
|
|
|
973 |
|
|
int
|
974 |
|
|
shared_member_p (tree t)
|
975 |
|
|
{
|
976 |
|
|
if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
|
977 |
|
|
|| TREE_CODE (t) == CONST_DECL)
|
978 |
|
|
return 1;
|
979 |
|
|
if (is_overloaded_fn (t))
|
980 |
|
|
{
|
981 |
|
|
t = get_fns (t);
|
982 |
|
|
for (; t; t = OVL_NEXT (t))
|
983 |
|
|
{
|
984 |
|
|
tree fn = OVL_CURRENT (t);
|
985 |
|
|
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
|
986 |
|
|
return 0;
|
987 |
|
|
}
|
988 |
|
|
return 1;
|
989 |
|
|
}
|
990 |
|
|
return 0;
|
991 |
|
|
}
|
992 |
|
|
|
993 |
|
|
/* Routine to see if the sub-object denoted by the binfo PARENT can be
|
994 |
|
|
found as a base class and sub-object of the object denoted by
|
995 |
|
|
BINFO. */
|
996 |
|
|
|
997 |
|
|
static int
|
998 |
|
|
is_subobject_of_p (tree parent, tree binfo)
|
999 |
|
|
{
|
1000 |
|
|
tree probe;
|
1001 |
|
|
|
1002 |
|
|
for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
|
1003 |
|
|
{
|
1004 |
|
|
if (probe == binfo)
|
1005 |
|
|
return 1;
|
1006 |
|
|
if (BINFO_VIRTUAL_P (probe))
|
1007 |
|
|
return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
|
1008 |
|
|
!= NULL_TREE);
|
1009 |
|
|
}
|
1010 |
|
|
return 0;
|
1011 |
|
|
}
|
1012 |
|
|
|
1013 |
|
|
/* DATA is really a struct lookup_field_info. Look for a field with
|
1014 |
|
|
the name indicated there in BINFO. If this function returns a
|
1015 |
|
|
non-NULL value it is the result of the lookup. Called from
|
1016 |
|
|
lookup_field via breadth_first_search. */
|
1017 |
|
|
|
1018 |
|
|
static tree
|
1019 |
|
|
lookup_field_r (tree binfo, void *data)
|
1020 |
|
|
{
|
1021 |
|
|
struct lookup_field_info *lfi = (struct lookup_field_info *) data;
|
1022 |
|
|
tree type = BINFO_TYPE (binfo);
|
1023 |
|
|
tree nval = NULL_TREE;
|
1024 |
|
|
|
1025 |
|
|
/* If this is a dependent base, don't look in it. */
|
1026 |
|
|
if (BINFO_DEPENDENT_BASE_P (binfo))
|
1027 |
|
|
return NULL_TREE;
|
1028 |
|
|
|
1029 |
|
|
/* If this base class is hidden by the best-known value so far, we
|
1030 |
|
|
don't need to look. */
|
1031 |
|
|
if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
|
1032 |
|
|
&& !BINFO_VIRTUAL_P (binfo))
|
1033 |
|
|
return dfs_skip_bases;
|
1034 |
|
|
|
1035 |
|
|
/* First, look for a function. There can't be a function and a data
|
1036 |
|
|
member with the same name, and if there's a function and a type
|
1037 |
|
|
with the same name, the type is hidden by the function. */
|
1038 |
|
|
if (!lfi->want_type)
|
1039 |
|
|
nval = lookup_fnfields_slot (type, lfi->name);
|
1040 |
|
|
|
1041 |
|
|
if (!nval)
|
1042 |
|
|
/* Look for a data member or type. */
|
1043 |
|
|
nval = lookup_field_1 (type, lfi->name, lfi->want_type);
|
1044 |
|
|
|
1045 |
|
|
/* If there is no declaration with the indicated name in this type,
|
1046 |
|
|
then there's nothing to do. */
|
1047 |
|
|
if (!nval)
|
1048 |
|
|
goto done;
|
1049 |
|
|
|
1050 |
|
|
/* If we're looking up a type (as with an elaborated type specifier)
|
1051 |
|
|
we ignore all non-types we find. */
|
1052 |
|
|
if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
|
1053 |
|
|
&& !DECL_TYPE_TEMPLATE_P (nval))
|
1054 |
|
|
{
|
1055 |
|
|
if (lfi->name == TYPE_IDENTIFIER (type))
|
1056 |
|
|
{
|
1057 |
|
|
/* If the aggregate has no user defined constructors, we allow
|
1058 |
|
|
it to have fields with the same name as the enclosing type.
|
1059 |
|
|
If we are looking for that name, find the corresponding
|
1060 |
|
|
TYPE_DECL. */
|
1061 |
|
|
for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
|
1062 |
|
|
if (DECL_NAME (nval) == lfi->name
|
1063 |
|
|
&& TREE_CODE (nval) == TYPE_DECL)
|
1064 |
|
|
break;
|
1065 |
|
|
}
|
1066 |
|
|
else
|
1067 |
|
|
nval = NULL_TREE;
|
1068 |
|
|
if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
|
1069 |
|
|
{
|
1070 |
|
|
binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
|
1071 |
|
|
lfi->name);
|
1072 |
|
|
if (e != NULL)
|
1073 |
|
|
nval = TYPE_MAIN_DECL (e->type);
|
1074 |
|
|
else
|
1075 |
|
|
goto done;
|
1076 |
|
|
}
|
1077 |
|
|
}
|
1078 |
|
|
|
1079 |
|
|
/* If the lookup already found a match, and the new value doesn't
|
1080 |
|
|
hide the old one, we might have an ambiguity. */
|
1081 |
|
|
if (lfi->rval_binfo
|
1082 |
|
|
&& !is_subobject_of_p (lfi->rval_binfo, binfo))
|
1083 |
|
|
|
1084 |
|
|
{
|
1085 |
|
|
if (nval == lfi->rval && shared_member_p (nval))
|
1086 |
|
|
/* The two things are really the same. */
|
1087 |
|
|
;
|
1088 |
|
|
else if (is_subobject_of_p (binfo, lfi->rval_binfo))
|
1089 |
|
|
/* The previous value hides the new one. */
|
1090 |
|
|
;
|
1091 |
|
|
else
|
1092 |
|
|
{
|
1093 |
|
|
/* We have a real ambiguity. We keep a chain of all the
|
1094 |
|
|
candidates. */
|
1095 |
|
|
if (!lfi->ambiguous && lfi->rval)
|
1096 |
|
|
{
|
1097 |
|
|
/* This is the first time we noticed an ambiguity. Add
|
1098 |
|
|
what we previously thought was a reasonable candidate
|
1099 |
|
|
to the list. */
|
1100 |
|
|
lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
|
1101 |
|
|
TREE_TYPE (lfi->ambiguous) = error_mark_node;
|
1102 |
|
|
}
|
1103 |
|
|
|
1104 |
|
|
/* Add the new value. */
|
1105 |
|
|
lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
|
1106 |
|
|
TREE_TYPE (lfi->ambiguous) = error_mark_node;
|
1107 |
|
|
lfi->errstr = G_("request for member %qD is ambiguous");
|
1108 |
|
|
}
|
1109 |
|
|
}
|
1110 |
|
|
else
|
1111 |
|
|
{
|
1112 |
|
|
lfi->rval = nval;
|
1113 |
|
|
lfi->rval_binfo = binfo;
|
1114 |
|
|
}
|
1115 |
|
|
|
1116 |
|
|
done:
|
1117 |
|
|
/* Don't look for constructors or destructors in base classes. */
|
1118 |
|
|
if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
|
1119 |
|
|
return dfs_skip_bases;
|
1120 |
|
|
return NULL_TREE;
|
1121 |
|
|
}
|
1122 |
|
|
|
1123 |
|
|
/* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
|
1124 |
|
|
BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
|
1125 |
|
|
FUNCTIONS, and OPTYPE respectively. */
|
1126 |
|
|
|
1127 |
|
|
tree
|
1128 |
|
|
build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
|
1129 |
|
|
{
|
1130 |
|
|
tree baselink;
|
1131 |
|
|
|
1132 |
|
|
gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
|
1133 |
|
|
|| TREE_CODE (functions) == TEMPLATE_DECL
|
1134 |
|
|
|| TREE_CODE (functions) == TEMPLATE_ID_EXPR
|
1135 |
|
|
|| TREE_CODE (functions) == OVERLOAD);
|
1136 |
|
|
gcc_assert (!optype || TYPE_P (optype));
|
1137 |
|
|
gcc_assert (TREE_TYPE (functions));
|
1138 |
|
|
|
1139 |
|
|
baselink = make_node (BASELINK);
|
1140 |
|
|
TREE_TYPE (baselink) = TREE_TYPE (functions);
|
1141 |
|
|
BASELINK_BINFO (baselink) = binfo;
|
1142 |
|
|
BASELINK_ACCESS_BINFO (baselink) = access_binfo;
|
1143 |
|
|
BASELINK_FUNCTIONS (baselink) = functions;
|
1144 |
|
|
BASELINK_OPTYPE (baselink) = optype;
|
1145 |
|
|
|
1146 |
|
|
return baselink;
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
/* Look for a member named NAME in an inheritance lattice dominated by
|
1150 |
|
|
XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
|
1151 |
|
|
is 1, we enforce accessibility. If PROTECT is zero, then, for an
|
1152 |
|
|
ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
|
1153 |
|
|
messages about inaccessible or ambiguous lookup. If PROTECT is 2,
|
1154 |
|
|
we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
|
1155 |
|
|
TREE_VALUEs are the list of ambiguous candidates.
|
1156 |
|
|
|
1157 |
|
|
WANT_TYPE is 1 when we should only return TYPE_DECLs.
|
1158 |
|
|
|
1159 |
|
|
If nothing can be found return NULL_TREE and do not issue an error. */
|
1160 |
|
|
|
1161 |
|
|
tree
|
1162 |
|
|
lookup_member (tree xbasetype, tree name, int protect, bool want_type,
|
1163 |
|
|
tsubst_flags_t complain)
|
1164 |
|
|
{
|
1165 |
|
|
tree rval, rval_binfo = NULL_TREE;
|
1166 |
|
|
tree type = NULL_TREE, basetype_path = NULL_TREE;
|
1167 |
|
|
struct lookup_field_info lfi;
|
1168 |
|
|
|
1169 |
|
|
/* rval_binfo is the binfo associated with the found member, note,
|
1170 |
|
|
this can be set with useful information, even when rval is not
|
1171 |
|
|
set, because it must deal with ALL members, not just non-function
|
1172 |
|
|
members. It is used for ambiguity checking and the hidden
|
1173 |
|
|
checks. Whereas rval is only set if a proper (not hidden)
|
1174 |
|
|
non-function member is found. */
|
1175 |
|
|
|
1176 |
|
|
const char *errstr = 0;
|
1177 |
|
|
|
1178 |
|
|
if (name == error_mark_node
|
1179 |
|
|
|| xbasetype == NULL_TREE
|
1180 |
|
|
|| xbasetype == error_mark_node)
|
1181 |
|
|
return NULL_TREE;
|
1182 |
|
|
|
1183 |
|
|
gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
|
1184 |
|
|
|
1185 |
|
|
if (TREE_CODE (xbasetype) == TREE_BINFO)
|
1186 |
|
|
{
|
1187 |
|
|
type = BINFO_TYPE (xbasetype);
|
1188 |
|
|
basetype_path = xbasetype;
|
1189 |
|
|
}
|
1190 |
|
|
else
|
1191 |
|
|
{
|
1192 |
|
|
if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
|
1193 |
|
|
return NULL_TREE;
|
1194 |
|
|
type = xbasetype;
|
1195 |
|
|
xbasetype = NULL_TREE;
|
1196 |
|
|
}
|
1197 |
|
|
|
1198 |
|
|
type = complete_type (type);
|
1199 |
|
|
if (!basetype_path)
|
1200 |
|
|
basetype_path = TYPE_BINFO (type);
|
1201 |
|
|
|
1202 |
|
|
if (!basetype_path)
|
1203 |
|
|
return NULL_TREE;
|
1204 |
|
|
|
1205 |
|
|
#ifdef GATHER_STATISTICS
|
1206 |
|
|
n_calls_lookup_field++;
|
1207 |
|
|
#endif /* GATHER_STATISTICS */
|
1208 |
|
|
|
1209 |
|
|
memset (&lfi, 0, sizeof (lfi));
|
1210 |
|
|
lfi.type = type;
|
1211 |
|
|
lfi.name = name;
|
1212 |
|
|
lfi.want_type = want_type;
|
1213 |
|
|
dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
|
1214 |
|
|
rval = lfi.rval;
|
1215 |
|
|
rval_binfo = lfi.rval_binfo;
|
1216 |
|
|
if (rval_binfo)
|
1217 |
|
|
type = BINFO_TYPE (rval_binfo);
|
1218 |
|
|
errstr = lfi.errstr;
|
1219 |
|
|
|
1220 |
|
|
/* If we are not interested in ambiguities, don't report them;
|
1221 |
|
|
just return NULL_TREE. */
|
1222 |
|
|
if (!protect && lfi.ambiguous)
|
1223 |
|
|
return NULL_TREE;
|
1224 |
|
|
|
1225 |
|
|
if (protect == 2)
|
1226 |
|
|
{
|
1227 |
|
|
if (lfi.ambiguous)
|
1228 |
|
|
return lfi.ambiguous;
|
1229 |
|
|
else
|
1230 |
|
|
protect = 0;
|
1231 |
|
|
}
|
1232 |
|
|
|
1233 |
|
|
/* [class.access]
|
1234 |
|
|
|
1235 |
|
|
In the case of overloaded function names, access control is
|
1236 |
|
|
applied to the function selected by overloaded resolution.
|
1237 |
|
|
|
1238 |
|
|
We cannot check here, even if RVAL is only a single non-static
|
1239 |
|
|
member function, since we do not know what the "this" pointer
|
1240 |
|
|
will be. For:
|
1241 |
|
|
|
1242 |
|
|
class A { protected: void f(); };
|
1243 |
|
|
class B : public A {
|
1244 |
|
|
void g(A *p) {
|
1245 |
|
|
f(); // OK
|
1246 |
|
|
p->f(); // Not OK.
|
1247 |
|
|
}
|
1248 |
|
|
};
|
1249 |
|
|
|
1250 |
|
|
only the first call to "f" is valid. However, if the function is
|
1251 |
|
|
static, we can check. */
|
1252 |
|
|
if (rval && protect
|
1253 |
|
|
&& !really_overloaded_fn (rval)
|
1254 |
|
|
&& !(TREE_CODE (rval) == FUNCTION_DECL
|
1255 |
|
|
&& DECL_NONSTATIC_MEMBER_FUNCTION_P (rval)))
|
1256 |
|
|
perform_or_defer_access_check (basetype_path, rval, rval);
|
1257 |
|
|
|
1258 |
|
|
if (errstr && protect)
|
1259 |
|
|
{
|
1260 |
|
|
if (complain & tf_error)
|
1261 |
|
|
{
|
1262 |
|
|
error (errstr, name, type);
|
1263 |
|
|
if (lfi.ambiguous)
|
1264 |
|
|
print_candidates (lfi.ambiguous);
|
1265 |
|
|
}
|
1266 |
|
|
rval = error_mark_node;
|
1267 |
|
|
}
|
1268 |
|
|
|
1269 |
|
|
if (rval && is_overloaded_fn (rval))
|
1270 |
|
|
rval = build_baselink (rval_binfo, basetype_path, rval,
|
1271 |
|
|
(IDENTIFIER_TYPENAME_P (name)
|
1272 |
|
|
? TREE_TYPE (name): NULL_TREE));
|
1273 |
|
|
return rval;
|
1274 |
|
|
}
|
1275 |
|
|
|
1276 |
|
|
/* Like lookup_member, except that if we find a function member we
|
1277 |
|
|
return NULL_TREE. */
|
1278 |
|
|
|
1279 |
|
|
tree
|
1280 |
|
|
lookup_field (tree xbasetype, tree name, int protect, bool want_type)
|
1281 |
|
|
{
|
1282 |
|
|
tree rval = lookup_member (xbasetype, name, protect, want_type,
|
1283 |
|
|
tf_warning_or_error);
|
1284 |
|
|
|
1285 |
|
|
/* Ignore functions, but propagate the ambiguity list. */
|
1286 |
|
|
if (!error_operand_p (rval)
|
1287 |
|
|
&& (rval && BASELINK_P (rval)))
|
1288 |
|
|
return NULL_TREE;
|
1289 |
|
|
|
1290 |
|
|
return rval;
|
1291 |
|
|
}
|
1292 |
|
|
|
1293 |
|
|
/* Like lookup_member, except that if we find a non-function member we
|
1294 |
|
|
return NULL_TREE. */
|
1295 |
|
|
|
1296 |
|
|
tree
|
1297 |
|
|
lookup_fnfields (tree xbasetype, tree name, int protect)
|
1298 |
|
|
{
|
1299 |
|
|
tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false,
|
1300 |
|
|
tf_warning_or_error);
|
1301 |
|
|
|
1302 |
|
|
/* Ignore non-functions, but propagate the ambiguity list. */
|
1303 |
|
|
if (!error_operand_p (rval)
|
1304 |
|
|
&& (rval && !BASELINK_P (rval)))
|
1305 |
|
|
return NULL_TREE;
|
1306 |
|
|
|
1307 |
|
|
return rval;
|
1308 |
|
|
}
|
1309 |
|
|
|
1310 |
|
|
/* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
|
1311 |
|
|
corresponding to "operator TYPE ()", or -1 if there is no such
|
1312 |
|
|
operator. Only CLASS_TYPE itself is searched; this routine does
|
1313 |
|
|
not scan the base classes of CLASS_TYPE. */
|
1314 |
|
|
|
1315 |
|
|
static int
|
1316 |
|
|
lookup_conversion_operator (tree class_type, tree type)
|
1317 |
|
|
{
|
1318 |
|
|
int tpl_slot = -1;
|
1319 |
|
|
|
1320 |
|
|
if (TYPE_HAS_CONVERSION (class_type))
|
1321 |
|
|
{
|
1322 |
|
|
int i;
|
1323 |
|
|
tree fn;
|
1324 |
|
|
VEC(tree,gc) *methods = CLASSTYPE_METHOD_VEC (class_type);
|
1325 |
|
|
|
1326 |
|
|
for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
|
1327 |
|
|
VEC_iterate (tree, methods, i, fn); ++i)
|
1328 |
|
|
{
|
1329 |
|
|
/* All the conversion operators come near the beginning of
|
1330 |
|
|
the class. Therefore, if FN is not a conversion
|
1331 |
|
|
operator, there is no matching conversion operator in
|
1332 |
|
|
CLASS_TYPE. */
|
1333 |
|
|
fn = OVL_CURRENT (fn);
|
1334 |
|
|
if (!DECL_CONV_FN_P (fn))
|
1335 |
|
|
break;
|
1336 |
|
|
|
1337 |
|
|
if (TREE_CODE (fn) == TEMPLATE_DECL)
|
1338 |
|
|
/* All the templated conversion functions are on the same
|
1339 |
|
|
slot, so remember it. */
|
1340 |
|
|
tpl_slot = i;
|
1341 |
|
|
else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
|
1342 |
|
|
return i;
|
1343 |
|
|
}
|
1344 |
|
|
}
|
1345 |
|
|
|
1346 |
|
|
return tpl_slot;
|
1347 |
|
|
}
|
1348 |
|
|
|
1349 |
|
|
/* TYPE is a class type. Return the index of the fields within
|
1350 |
|
|
the method vector with name NAME, or -1 if no such field exists.
|
1351 |
|
|
Does not lazily declare implicitly-declared member functions. */
|
1352 |
|
|
|
1353 |
|
|
static int
|
1354 |
|
|
lookup_fnfields_idx_nolazy (tree type, tree name)
|
1355 |
|
|
{
|
1356 |
|
|
VEC(tree,gc) *method_vec;
|
1357 |
|
|
tree fn;
|
1358 |
|
|
tree tmp;
|
1359 |
|
|
size_t i;
|
1360 |
|
|
|
1361 |
|
|
if (!CLASS_TYPE_P (type))
|
1362 |
|
|
return -1;
|
1363 |
|
|
|
1364 |
|
|
method_vec = CLASSTYPE_METHOD_VEC (type);
|
1365 |
|
|
if (!method_vec)
|
1366 |
|
|
return -1;
|
1367 |
|
|
|
1368 |
|
|
#ifdef GATHER_STATISTICS
|
1369 |
|
|
n_calls_lookup_fnfields_1++;
|
1370 |
|
|
#endif /* GATHER_STATISTICS */
|
1371 |
|
|
|
1372 |
|
|
/* Constructors are first... */
|
1373 |
|
|
if (name == ctor_identifier)
|
1374 |
|
|
{
|
1375 |
|
|
fn = CLASSTYPE_CONSTRUCTORS (type);
|
1376 |
|
|
return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
|
1377 |
|
|
}
|
1378 |
|
|
/* and destructors are second. */
|
1379 |
|
|
if (name == dtor_identifier)
|
1380 |
|
|
{
|
1381 |
|
|
fn = CLASSTYPE_DESTRUCTORS (type);
|
1382 |
|
|
return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
|
1383 |
|
|
}
|
1384 |
|
|
if (IDENTIFIER_TYPENAME_P (name))
|
1385 |
|
|
return lookup_conversion_operator (type, TREE_TYPE (name));
|
1386 |
|
|
|
1387 |
|
|
/* Skip the conversion operators. */
|
1388 |
|
|
for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
|
1389 |
|
|
VEC_iterate (tree, method_vec, i, fn);
|
1390 |
|
|
++i)
|
1391 |
|
|
if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
|
1392 |
|
|
break;
|
1393 |
|
|
|
1394 |
|
|
/* If the type is complete, use binary search. */
|
1395 |
|
|
if (COMPLETE_TYPE_P (type))
|
1396 |
|
|
{
|
1397 |
|
|
int lo;
|
1398 |
|
|
int hi;
|
1399 |
|
|
|
1400 |
|
|
lo = i;
|
1401 |
|
|
hi = VEC_length (tree, method_vec);
|
1402 |
|
|
while (lo < hi)
|
1403 |
|
|
{
|
1404 |
|
|
i = (lo + hi) / 2;
|
1405 |
|
|
|
1406 |
|
|
#ifdef GATHER_STATISTICS
|
1407 |
|
|
n_outer_fields_searched++;
|
1408 |
|
|
#endif /* GATHER_STATISTICS */
|
1409 |
|
|
|
1410 |
|
|
tmp = VEC_index (tree, method_vec, i);
|
1411 |
|
|
tmp = DECL_NAME (OVL_CURRENT (tmp));
|
1412 |
|
|
if (tmp > name)
|
1413 |
|
|
hi = i;
|
1414 |
|
|
else if (tmp < name)
|
1415 |
|
|
lo = i + 1;
|
1416 |
|
|
else
|
1417 |
|
|
return i;
|
1418 |
|
|
}
|
1419 |
|
|
}
|
1420 |
|
|
else
|
1421 |
|
|
for (; VEC_iterate (tree, method_vec, i, fn); ++i)
|
1422 |
|
|
{
|
1423 |
|
|
#ifdef GATHER_STATISTICS
|
1424 |
|
|
n_outer_fields_searched++;
|
1425 |
|
|
#endif /* GATHER_STATISTICS */
|
1426 |
|
|
if (DECL_NAME (OVL_CURRENT (fn)) == name)
|
1427 |
|
|
return i;
|
1428 |
|
|
}
|
1429 |
|
|
|
1430 |
|
|
return -1;
|
1431 |
|
|
}
|
1432 |
|
|
|
1433 |
|
|
/* TYPE is a class type. Return the index of the fields within
|
1434 |
|
|
the method vector with name NAME, or -1 if no such field exists. */
|
1435 |
|
|
|
1436 |
|
|
int
|
1437 |
|
|
lookup_fnfields_1 (tree type, tree name)
|
1438 |
|
|
{
|
1439 |
|
|
if (!CLASS_TYPE_P (type))
|
1440 |
|
|
return -1;
|
1441 |
|
|
|
1442 |
|
|
if (COMPLETE_TYPE_P (type))
|
1443 |
|
|
{
|
1444 |
|
|
if ((name == ctor_identifier
|
1445 |
|
|
|| name == base_ctor_identifier
|
1446 |
|
|
|| name == complete_ctor_identifier))
|
1447 |
|
|
{
|
1448 |
|
|
if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
|
1449 |
|
|
lazily_declare_fn (sfk_constructor, type);
|
1450 |
|
|
if (CLASSTYPE_LAZY_COPY_CTOR (type))
|
1451 |
|
|
lazily_declare_fn (sfk_copy_constructor, type);
|
1452 |
|
|
if (CLASSTYPE_LAZY_MOVE_CTOR (type))
|
1453 |
|
|
lazily_declare_fn (sfk_move_constructor, type);
|
1454 |
|
|
}
|
1455 |
|
|
else if (name == ansi_assopname (NOP_EXPR))
|
1456 |
|
|
{
|
1457 |
|
|
if (CLASSTYPE_LAZY_COPY_ASSIGN (type))
|
1458 |
|
|
lazily_declare_fn (sfk_copy_assignment, type);
|
1459 |
|
|
if (CLASSTYPE_LAZY_MOVE_ASSIGN (type))
|
1460 |
|
|
lazily_declare_fn (sfk_move_assignment, type);
|
1461 |
|
|
}
|
1462 |
|
|
else if ((name == dtor_identifier
|
1463 |
|
|
|| name == base_dtor_identifier
|
1464 |
|
|
|| name == complete_dtor_identifier
|
1465 |
|
|
|| name == deleting_dtor_identifier)
|
1466 |
|
|
&& CLASSTYPE_LAZY_DESTRUCTOR (type))
|
1467 |
|
|
lazily_declare_fn (sfk_destructor, type);
|
1468 |
|
|
}
|
1469 |
|
|
|
1470 |
|
|
return lookup_fnfields_idx_nolazy (type, name);
|
1471 |
|
|
}
|
1472 |
|
|
|
1473 |
|
|
/* TYPE is a class type. Return the field within the method vector with
|
1474 |
|
|
name NAME, or NULL_TREE if no such field exists. */
|
1475 |
|
|
|
1476 |
|
|
tree
|
1477 |
|
|
lookup_fnfields_slot (tree type, tree name)
|
1478 |
|
|
{
|
1479 |
|
|
int ix = lookup_fnfields_1 (complete_type (type), name);
|
1480 |
|
|
if (ix < 0)
|
1481 |
|
|
return NULL_TREE;
|
1482 |
|
|
return VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
|
1483 |
|
|
}
|
1484 |
|
|
|
1485 |
|
|
/* As above, but avoid lazily declaring functions. */
|
1486 |
|
|
|
1487 |
|
|
tree
|
1488 |
|
|
lookup_fnfields_slot_nolazy (tree type, tree name)
|
1489 |
|
|
{
|
1490 |
|
|
int ix = lookup_fnfields_idx_nolazy (complete_type (type), name);
|
1491 |
|
|
if (ix < 0)
|
1492 |
|
|
return NULL_TREE;
|
1493 |
|
|
return VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
|
1494 |
|
|
}
|
1495 |
|
|
|
1496 |
|
|
/* Like lookup_fnfields_1, except that the name is extracted from
|
1497 |
|
|
FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
|
1498 |
|
|
|
1499 |
|
|
int
|
1500 |
|
|
class_method_index_for_fn (tree class_type, tree function)
|
1501 |
|
|
{
|
1502 |
|
|
gcc_assert (TREE_CODE (function) == FUNCTION_DECL
|
1503 |
|
|
|| DECL_FUNCTION_TEMPLATE_P (function));
|
1504 |
|
|
|
1505 |
|
|
return lookup_fnfields_1 (class_type,
|
1506 |
|
|
DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
|
1507 |
|
|
DECL_DESTRUCTOR_P (function) ? dtor_identifier :
|
1508 |
|
|
DECL_NAME (function));
|
1509 |
|
|
}
|
1510 |
|
|
|
1511 |
|
|
|
1512 |
|
|
/* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
|
1513 |
|
|
the class or namespace used to qualify the name. CONTEXT_CLASS is
|
1514 |
|
|
the class corresponding to the object in which DECL will be used.
|
1515 |
|
|
Return a possibly modified version of DECL that takes into account
|
1516 |
|
|
the CONTEXT_CLASS.
|
1517 |
|
|
|
1518 |
|
|
In particular, consider an expression like `B::m' in the context of
|
1519 |
|
|
a derived class `D'. If `B::m' has been resolved to a BASELINK,
|
1520 |
|
|
then the most derived class indicated by the BASELINK_BINFO will be
|
1521 |
|
|
`B', not `D'. This function makes that adjustment. */
|
1522 |
|
|
|
1523 |
|
|
tree
|
1524 |
|
|
adjust_result_of_qualified_name_lookup (tree decl,
|
1525 |
|
|
tree qualifying_scope,
|
1526 |
|
|
tree context_class)
|
1527 |
|
|
{
|
1528 |
|
|
if (context_class && context_class != error_mark_node
|
1529 |
|
|
&& CLASS_TYPE_P (context_class)
|
1530 |
|
|
&& CLASS_TYPE_P (qualifying_scope)
|
1531 |
|
|
&& DERIVED_FROM_P (qualifying_scope, context_class)
|
1532 |
|
|
&& BASELINK_P (decl))
|
1533 |
|
|
{
|
1534 |
|
|
tree base;
|
1535 |
|
|
|
1536 |
|
|
/* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
|
1537 |
|
|
Because we do not yet know which function will be chosen by
|
1538 |
|
|
overload resolution, we cannot yet check either accessibility
|
1539 |
|
|
or ambiguity -- in either case, the choice of a static member
|
1540 |
|
|
function might make the usage valid. */
|
1541 |
|
|
base = lookup_base (context_class, qualifying_scope,
|
1542 |
|
|
ba_unique | ba_quiet, NULL);
|
1543 |
|
|
if (base)
|
1544 |
|
|
{
|
1545 |
|
|
BASELINK_ACCESS_BINFO (decl) = base;
|
1546 |
|
|
BASELINK_BINFO (decl)
|
1547 |
|
|
= lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
|
1548 |
|
|
ba_unique | ba_quiet,
|
1549 |
|
|
NULL);
|
1550 |
|
|
}
|
1551 |
|
|
}
|
1552 |
|
|
|
1553 |
|
|
if (BASELINK_P (decl))
|
1554 |
|
|
BASELINK_QUALIFIED_P (decl) = true;
|
1555 |
|
|
|
1556 |
|
|
return decl;
|
1557 |
|
|
}
|
1558 |
|
|
|
1559 |
|
|
|
1560 |
|
|
/* Walk the class hierarchy within BINFO, in a depth-first traversal.
|
1561 |
|
|
PRE_FN is called in preorder, while POST_FN is called in postorder.
|
1562 |
|
|
If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
|
1563 |
|
|
walked. If PRE_FN or POST_FN returns a different non-NULL value,
|
1564 |
|
|
that value is immediately returned and the walk is terminated. One
|
1565 |
|
|
of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
|
1566 |
|
|
POST_FN are passed the binfo to examine and the caller's DATA
|
1567 |
|
|
value. All paths are walked, thus virtual and morally virtual
|
1568 |
|
|
binfos can be multiply walked. */
|
1569 |
|
|
|
1570 |
|
|
tree
|
1571 |
|
|
dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
|
1572 |
|
|
tree (*post_fn) (tree, void *), void *data)
|
1573 |
|
|
{
|
1574 |
|
|
tree rval;
|
1575 |
|
|
unsigned ix;
|
1576 |
|
|
tree base_binfo;
|
1577 |
|
|
|
1578 |
|
|
/* Call the pre-order walking function. */
|
1579 |
|
|
if (pre_fn)
|
1580 |
|
|
{
|
1581 |
|
|
rval = pre_fn (binfo, data);
|
1582 |
|
|
if (rval)
|
1583 |
|
|
{
|
1584 |
|
|
if (rval == dfs_skip_bases)
|
1585 |
|
|
goto skip_bases;
|
1586 |
|
|
return rval;
|
1587 |
|
|
}
|
1588 |
|
|
}
|
1589 |
|
|
|
1590 |
|
|
/* Find the next child binfo to walk. */
|
1591 |
|
|
for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
|
1592 |
|
|
{
|
1593 |
|
|
rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
|
1594 |
|
|
if (rval)
|
1595 |
|
|
return rval;
|
1596 |
|
|
}
|
1597 |
|
|
|
1598 |
|
|
skip_bases:
|
1599 |
|
|
/* Call the post-order walking function. */
|
1600 |
|
|
if (post_fn)
|
1601 |
|
|
{
|
1602 |
|
|
rval = post_fn (binfo, data);
|
1603 |
|
|
gcc_assert (rval != dfs_skip_bases);
|
1604 |
|
|
return rval;
|
1605 |
|
|
}
|
1606 |
|
|
|
1607 |
|
|
return NULL_TREE;
|
1608 |
|
|
}
|
1609 |
|
|
|
1610 |
|
|
/* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
|
1611 |
|
|
that binfos are walked at most once. */
|
1612 |
|
|
|
1613 |
|
|
static tree
|
1614 |
|
|
dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
|
1615 |
|
|
tree (*post_fn) (tree, void *), void *data)
|
1616 |
|
|
{
|
1617 |
|
|
tree rval;
|
1618 |
|
|
unsigned ix;
|
1619 |
|
|
tree base_binfo;
|
1620 |
|
|
|
1621 |
|
|
/* Call the pre-order walking function. */
|
1622 |
|
|
if (pre_fn)
|
1623 |
|
|
{
|
1624 |
|
|
rval = pre_fn (binfo, data);
|
1625 |
|
|
if (rval)
|
1626 |
|
|
{
|
1627 |
|
|
if (rval == dfs_skip_bases)
|
1628 |
|
|
goto skip_bases;
|
1629 |
|
|
|
1630 |
|
|
return rval;
|
1631 |
|
|
}
|
1632 |
|
|
}
|
1633 |
|
|
|
1634 |
|
|
/* Find the next child binfo to walk. */
|
1635 |
|
|
for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
|
1636 |
|
|
{
|
1637 |
|
|
if (BINFO_VIRTUAL_P (base_binfo))
|
1638 |
|
|
{
|
1639 |
|
|
if (BINFO_MARKED (base_binfo))
|
1640 |
|
|
continue;
|
1641 |
|
|
BINFO_MARKED (base_binfo) = 1;
|
1642 |
|
|
}
|
1643 |
|
|
|
1644 |
|
|
rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
|
1645 |
|
|
if (rval)
|
1646 |
|
|
return rval;
|
1647 |
|
|
}
|
1648 |
|
|
|
1649 |
|
|
skip_bases:
|
1650 |
|
|
/* Call the post-order walking function. */
|
1651 |
|
|
if (post_fn)
|
1652 |
|
|
{
|
1653 |
|
|
rval = post_fn (binfo, data);
|
1654 |
|
|
gcc_assert (rval != dfs_skip_bases);
|
1655 |
|
|
return rval;
|
1656 |
|
|
}
|
1657 |
|
|
|
1658 |
|
|
return NULL_TREE;
|
1659 |
|
|
}
|
1660 |
|
|
|
1661 |
|
|
/* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
|
1662 |
|
|
BINFO. */
|
1663 |
|
|
|
1664 |
|
|
static void
|
1665 |
|
|
dfs_unmark_r (tree binfo)
|
1666 |
|
|
{
|
1667 |
|
|
unsigned ix;
|
1668 |
|
|
tree base_binfo;
|
1669 |
|
|
|
1670 |
|
|
/* Process the basetypes. */
|
1671 |
|
|
for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
|
1672 |
|
|
{
|
1673 |
|
|
if (BINFO_VIRTUAL_P (base_binfo))
|
1674 |
|
|
{
|
1675 |
|
|
if (!BINFO_MARKED (base_binfo))
|
1676 |
|
|
continue;
|
1677 |
|
|
BINFO_MARKED (base_binfo) = 0;
|
1678 |
|
|
}
|
1679 |
|
|
/* Only walk, if it can contain more virtual bases. */
|
1680 |
|
|
if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
|
1681 |
|
|
dfs_unmark_r (base_binfo);
|
1682 |
|
|
}
|
1683 |
|
|
}
|
1684 |
|
|
|
1685 |
|
|
/* Like dfs_walk_all, except that binfos are not multiply walked. For
|
1686 |
|
|
non-diamond shaped hierarchies this is the same as dfs_walk_all.
|
1687 |
|
|
For diamond shaped hierarchies we must mark the virtual bases, to
|
1688 |
|
|
avoid multiple walks. */
|
1689 |
|
|
|
1690 |
|
|
tree
|
1691 |
|
|
dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
|
1692 |
|
|
tree (*post_fn) (tree, void *), void *data)
|
1693 |
|
|
{
|
1694 |
|
|
static int active = 0; /* We must not be called recursively. */
|
1695 |
|
|
tree rval;
|
1696 |
|
|
|
1697 |
|
|
gcc_assert (pre_fn || post_fn);
|
1698 |
|
|
gcc_assert (!active);
|
1699 |
|
|
active++;
|
1700 |
|
|
|
1701 |
|
|
if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
|
1702 |
|
|
/* We are not diamond shaped, and therefore cannot encounter the
|
1703 |
|
|
same binfo twice. */
|
1704 |
|
|
rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
|
1705 |
|
|
else
|
1706 |
|
|
{
|
1707 |
|
|
rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
|
1708 |
|
|
if (!BINFO_INHERITANCE_CHAIN (binfo))
|
1709 |
|
|
{
|
1710 |
|
|
/* We are at the top of the hierarchy, and can use the
|
1711 |
|
|
CLASSTYPE_VBASECLASSES list for unmarking the virtual
|
1712 |
|
|
bases. */
|
1713 |
|
|
VEC(tree,gc) *vbases;
|
1714 |
|
|
unsigned ix;
|
1715 |
|
|
tree base_binfo;
|
1716 |
|
|
|
1717 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
|
1718 |
|
|
VEC_iterate (tree, vbases, ix, base_binfo); ix++)
|
1719 |
|
|
BINFO_MARKED (base_binfo) = 0;
|
1720 |
|
|
}
|
1721 |
|
|
else
|
1722 |
|
|
dfs_unmark_r (binfo);
|
1723 |
|
|
}
|
1724 |
|
|
|
1725 |
|
|
active--;
|
1726 |
|
|
|
1727 |
|
|
return rval;
|
1728 |
|
|
}
|
1729 |
|
|
|
1730 |
|
|
/* Worker function for dfs_walk_once_accessible. Behaves like
|
1731 |
|
|
dfs_walk_once_r, except (a) FRIENDS_P is true if special
|
1732 |
|
|
access given by the current context should be considered, (b) ONCE
|
1733 |
|
|
indicates whether bases should be marked during traversal. */
|
1734 |
|
|
|
1735 |
|
|
static tree
|
1736 |
|
|
dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
|
1737 |
|
|
tree (*pre_fn) (tree, void *),
|
1738 |
|
|
tree (*post_fn) (tree, void *), void *data)
|
1739 |
|
|
{
|
1740 |
|
|
tree rval = NULL_TREE;
|
1741 |
|
|
unsigned ix;
|
1742 |
|
|
tree base_binfo;
|
1743 |
|
|
|
1744 |
|
|
/* Call the pre-order walking function. */
|
1745 |
|
|
if (pre_fn)
|
1746 |
|
|
{
|
1747 |
|
|
rval = pre_fn (binfo, data);
|
1748 |
|
|
if (rval)
|
1749 |
|
|
{
|
1750 |
|
|
if (rval == dfs_skip_bases)
|
1751 |
|
|
goto skip_bases;
|
1752 |
|
|
|
1753 |
|
|
return rval;
|
1754 |
|
|
}
|
1755 |
|
|
}
|
1756 |
|
|
|
1757 |
|
|
/* Find the next child binfo to walk. */
|
1758 |
|
|
for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
|
1759 |
|
|
{
|
1760 |
|
|
bool mark = once && BINFO_VIRTUAL_P (base_binfo);
|
1761 |
|
|
|
1762 |
|
|
if (mark && BINFO_MARKED (base_binfo))
|
1763 |
|
|
continue;
|
1764 |
|
|
|
1765 |
|
|
/* If the base is inherited via private or protected
|
1766 |
|
|
inheritance, then we can't see it, unless we are a friend of
|
1767 |
|
|
the current binfo. */
|
1768 |
|
|
if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
|
1769 |
|
|
{
|
1770 |
|
|
tree scope;
|
1771 |
|
|
if (!friends_p)
|
1772 |
|
|
continue;
|
1773 |
|
|
scope = current_scope ();
|
1774 |
|
|
if (!scope
|
1775 |
|
|
|| TREE_CODE (scope) == NAMESPACE_DECL
|
1776 |
|
|
|| !is_friend (BINFO_TYPE (binfo), scope))
|
1777 |
|
|
continue;
|
1778 |
|
|
}
|
1779 |
|
|
|
1780 |
|
|
if (mark)
|
1781 |
|
|
BINFO_MARKED (base_binfo) = 1;
|
1782 |
|
|
|
1783 |
|
|
rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
|
1784 |
|
|
pre_fn, post_fn, data);
|
1785 |
|
|
if (rval)
|
1786 |
|
|
return rval;
|
1787 |
|
|
}
|
1788 |
|
|
|
1789 |
|
|
skip_bases:
|
1790 |
|
|
/* Call the post-order walking function. */
|
1791 |
|
|
if (post_fn)
|
1792 |
|
|
{
|
1793 |
|
|
rval = post_fn (binfo, data);
|
1794 |
|
|
gcc_assert (rval != dfs_skip_bases);
|
1795 |
|
|
return rval;
|
1796 |
|
|
}
|
1797 |
|
|
|
1798 |
|
|
return NULL_TREE;
|
1799 |
|
|
}
|
1800 |
|
|
|
1801 |
|
|
/* Like dfs_walk_once except that only accessible bases are walked.
|
1802 |
|
|
FRIENDS_P indicates whether friendship of the local context
|
1803 |
|
|
should be considered when determining accessibility. */
|
1804 |
|
|
|
1805 |
|
|
static tree
|
1806 |
|
|
dfs_walk_once_accessible (tree binfo, bool friends_p,
|
1807 |
|
|
tree (*pre_fn) (tree, void *),
|
1808 |
|
|
tree (*post_fn) (tree, void *), void *data)
|
1809 |
|
|
{
|
1810 |
|
|
bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
|
1811 |
|
|
tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
|
1812 |
|
|
pre_fn, post_fn, data);
|
1813 |
|
|
|
1814 |
|
|
if (diamond_shaped)
|
1815 |
|
|
{
|
1816 |
|
|
if (!BINFO_INHERITANCE_CHAIN (binfo))
|
1817 |
|
|
{
|
1818 |
|
|
/* We are at the top of the hierarchy, and can use the
|
1819 |
|
|
CLASSTYPE_VBASECLASSES list for unmarking the virtual
|
1820 |
|
|
bases. */
|
1821 |
|
|
VEC(tree,gc) *vbases;
|
1822 |
|
|
unsigned ix;
|
1823 |
|
|
tree base_binfo;
|
1824 |
|
|
|
1825 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
|
1826 |
|
|
VEC_iterate (tree, vbases, ix, base_binfo); ix++)
|
1827 |
|
|
BINFO_MARKED (base_binfo) = 0;
|
1828 |
|
|
}
|
1829 |
|
|
else
|
1830 |
|
|
dfs_unmark_r (binfo);
|
1831 |
|
|
}
|
1832 |
|
|
return rval;
|
1833 |
|
|
}
|
1834 |
|
|
|
1835 |
|
|
/* Check that virtual overrider OVERRIDER is acceptable for base function
|
1836 |
|
|
BASEFN. Issue diagnostic, and return zero, if unacceptable. */
|
1837 |
|
|
|
1838 |
|
|
static int
|
1839 |
|
|
check_final_overrider (tree overrider, tree basefn)
|
1840 |
|
|
{
|
1841 |
|
|
tree over_type = TREE_TYPE (overrider);
|
1842 |
|
|
tree base_type = TREE_TYPE (basefn);
|
1843 |
|
|
tree over_return = TREE_TYPE (over_type);
|
1844 |
|
|
tree base_return = TREE_TYPE (base_type);
|
1845 |
|
|
tree over_throw, base_throw;
|
1846 |
|
|
|
1847 |
|
|
int fail = 0;
|
1848 |
|
|
|
1849 |
|
|
if (DECL_INVALID_OVERRIDER_P (overrider))
|
1850 |
|
|
return 0;
|
1851 |
|
|
|
1852 |
|
|
if (same_type_p (base_return, over_return))
|
1853 |
|
|
/* OK */;
|
1854 |
|
|
else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
|
1855 |
|
|
|| (TREE_CODE (base_return) == TREE_CODE (over_return)
|
1856 |
|
|
&& POINTER_TYPE_P (base_return)))
|
1857 |
|
|
{
|
1858 |
|
|
/* Potentially covariant. */
|
1859 |
|
|
unsigned base_quals, over_quals;
|
1860 |
|
|
|
1861 |
|
|
fail = !POINTER_TYPE_P (base_return);
|
1862 |
|
|
if (!fail)
|
1863 |
|
|
{
|
1864 |
|
|
fail = cp_type_quals (base_return) != cp_type_quals (over_return);
|
1865 |
|
|
|
1866 |
|
|
base_return = TREE_TYPE (base_return);
|
1867 |
|
|
over_return = TREE_TYPE (over_return);
|
1868 |
|
|
}
|
1869 |
|
|
base_quals = cp_type_quals (base_return);
|
1870 |
|
|
over_quals = cp_type_quals (over_return);
|
1871 |
|
|
|
1872 |
|
|
if ((base_quals & over_quals) != over_quals)
|
1873 |
|
|
fail = 1;
|
1874 |
|
|
|
1875 |
|
|
if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
|
1876 |
|
|
{
|
1877 |
|
|
/* Strictly speaking, the standard requires the return type to be
|
1878 |
|
|
complete even if it only differs in cv-quals, but that seems
|
1879 |
|
|
like a bug in the wording. */
|
1880 |
|
|
if (!same_type_ignoring_top_level_qualifiers_p (base_return, over_return))
|
1881 |
|
|
{
|
1882 |
|
|
tree binfo = lookup_base (over_return, base_return,
|
1883 |
|
|
ba_check | ba_quiet, NULL);
|
1884 |
|
|
|
1885 |
|
|
if (!binfo)
|
1886 |
|
|
fail = 1;
|
1887 |
|
|
}
|
1888 |
|
|
}
|
1889 |
|
|
else if (!pedantic
|
1890 |
|
|
&& can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
|
1891 |
|
|
/* GNU extension, allow trivial pointer conversions such as
|
1892 |
|
|
converting to void *, or qualification conversion. */
|
1893 |
|
|
{
|
1894 |
|
|
/* can_convert will permit user defined conversion from a
|
1895 |
|
|
(reference to) class type. We must reject them. */
|
1896 |
|
|
over_return = non_reference (TREE_TYPE (over_type));
|
1897 |
|
|
if (CLASS_TYPE_P (over_return))
|
1898 |
|
|
fail = 2;
|
1899 |
|
|
else
|
1900 |
|
|
{
|
1901 |
|
|
warning (0, "deprecated covariant return type for %q+#D",
|
1902 |
|
|
overrider);
|
1903 |
|
|
warning (0, " overriding %q+#D", basefn);
|
1904 |
|
|
}
|
1905 |
|
|
}
|
1906 |
|
|
else
|
1907 |
|
|
fail = 2;
|
1908 |
|
|
}
|
1909 |
|
|
else
|
1910 |
|
|
fail = 2;
|
1911 |
|
|
if (!fail)
|
1912 |
|
|
/* OK */;
|
1913 |
|
|
else
|
1914 |
|
|
{
|
1915 |
|
|
if (fail == 1)
|
1916 |
|
|
{
|
1917 |
|
|
error ("invalid covariant return type for %q+#D", overrider);
|
1918 |
|
|
error (" overriding %q+#D", basefn);
|
1919 |
|
|
}
|
1920 |
|
|
else
|
1921 |
|
|
{
|
1922 |
|
|
error ("conflicting return type specified for %q+#D", overrider);
|
1923 |
|
|
error (" overriding %q+#D", basefn);
|
1924 |
|
|
}
|
1925 |
|
|
DECL_INVALID_OVERRIDER_P (overrider) = 1;
|
1926 |
|
|
return 0;
|
1927 |
|
|
}
|
1928 |
|
|
|
1929 |
|
|
/* Check throw specifier is at least as strict. */
|
1930 |
|
|
maybe_instantiate_noexcept (basefn);
|
1931 |
|
|
maybe_instantiate_noexcept (overrider);
|
1932 |
|
|
base_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (basefn));
|
1933 |
|
|
over_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (overrider));
|
1934 |
|
|
|
1935 |
|
|
if (!comp_except_specs (base_throw, over_throw, ce_derived))
|
1936 |
|
|
{
|
1937 |
|
|
error ("looser throw specifier for %q+#F", overrider);
|
1938 |
|
|
error (" overriding %q+#F", basefn);
|
1939 |
|
|
DECL_INVALID_OVERRIDER_P (overrider) = 1;
|
1940 |
|
|
return 0;
|
1941 |
|
|
}
|
1942 |
|
|
|
1943 |
|
|
/* Check for conflicting type attributes. */
|
1944 |
|
|
if (!comp_type_attributes (over_type, base_type))
|
1945 |
|
|
{
|
1946 |
|
|
error ("conflicting type attributes specified for %q+#D", overrider);
|
1947 |
|
|
error (" overriding %q+#D", basefn);
|
1948 |
|
|
DECL_INVALID_OVERRIDER_P (overrider) = 1;
|
1949 |
|
|
return 0;
|
1950 |
|
|
}
|
1951 |
|
|
|
1952 |
|
|
if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider))
|
1953 |
|
|
{
|
1954 |
|
|
if (DECL_DELETED_FN (overrider))
|
1955 |
|
|
{
|
1956 |
|
|
error ("deleted function %q+D", overrider);
|
1957 |
|
|
error ("overriding non-deleted function %q+D", basefn);
|
1958 |
|
|
maybe_explain_implicit_delete (overrider);
|
1959 |
|
|
}
|
1960 |
|
|
else
|
1961 |
|
|
{
|
1962 |
|
|
error ("non-deleted function %q+D", overrider);
|
1963 |
|
|
error ("overriding deleted function %q+D", basefn);
|
1964 |
|
|
}
|
1965 |
|
|
return 0;
|
1966 |
|
|
}
|
1967 |
|
|
if (DECL_FINAL_P (basefn))
|
1968 |
|
|
{
|
1969 |
|
|
error ("virtual function %q+D", overrider);
|
1970 |
|
|
error ("overriding final function %q+D", basefn);
|
1971 |
|
|
return 0;
|
1972 |
|
|
}
|
1973 |
|
|
return 1;
|
1974 |
|
|
}
|
1975 |
|
|
|
1976 |
|
|
/* Given a class TYPE, and a function decl FNDECL, look for
|
1977 |
|
|
virtual functions in TYPE's hierarchy which FNDECL overrides.
|
1978 |
|
|
We do not look in TYPE itself, only its bases.
|
1979 |
|
|
|
1980 |
|
|
Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
|
1981 |
|
|
find that it overrides anything.
|
1982 |
|
|
|
1983 |
|
|
We check that every function which is overridden, is correctly
|
1984 |
|
|
overridden. */
|
1985 |
|
|
|
1986 |
|
|
int
|
1987 |
|
|
look_for_overrides (tree type, tree fndecl)
|
1988 |
|
|
{
|
1989 |
|
|
tree binfo = TYPE_BINFO (type);
|
1990 |
|
|
tree base_binfo;
|
1991 |
|
|
int ix;
|
1992 |
|
|
int found = 0;
|
1993 |
|
|
|
1994 |
|
|
/* A constructor for a class T does not override a function T
|
1995 |
|
|
in a base class. */
|
1996 |
|
|
if (DECL_CONSTRUCTOR_P (fndecl))
|
1997 |
|
|
return 0;
|
1998 |
|
|
|
1999 |
|
|
for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
|
2000 |
|
|
{
|
2001 |
|
|
tree basetype = BINFO_TYPE (base_binfo);
|
2002 |
|
|
|
2003 |
|
|
if (TYPE_POLYMORPHIC_P (basetype))
|
2004 |
|
|
found += look_for_overrides_r (basetype, fndecl);
|
2005 |
|
|
}
|
2006 |
|
|
return found;
|
2007 |
|
|
}
|
2008 |
|
|
|
2009 |
|
|
/* Look in TYPE for virtual functions with the same signature as
|
2010 |
|
|
FNDECL. */
|
2011 |
|
|
|
2012 |
|
|
tree
|
2013 |
|
|
look_for_overrides_here (tree type, tree fndecl)
|
2014 |
|
|
{
|
2015 |
|
|
int ix;
|
2016 |
|
|
|
2017 |
|
|
/* If there are no methods in TYPE (meaning that only implicitly
|
2018 |
|
|
declared methods will ever be provided for TYPE), then there are
|
2019 |
|
|
no virtual functions. */
|
2020 |
|
|
if (!CLASSTYPE_METHOD_VEC (type))
|
2021 |
|
|
return NULL_TREE;
|
2022 |
|
|
|
2023 |
|
|
if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
|
2024 |
|
|
ix = CLASSTYPE_DESTRUCTOR_SLOT;
|
2025 |
|
|
else
|
2026 |
|
|
ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
|
2027 |
|
|
if (ix >= 0)
|
2028 |
|
|
{
|
2029 |
|
|
tree fns = VEC_index (tree, CLASSTYPE_METHOD_VEC (type), ix);
|
2030 |
|
|
|
2031 |
|
|
for (; fns; fns = OVL_NEXT (fns))
|
2032 |
|
|
{
|
2033 |
|
|
tree fn = OVL_CURRENT (fns);
|
2034 |
|
|
|
2035 |
|
|
if (!DECL_VIRTUAL_P (fn))
|
2036 |
|
|
/* Not a virtual. */;
|
2037 |
|
|
else if (DECL_CONTEXT (fn) != type)
|
2038 |
|
|
/* Introduced with a using declaration. */;
|
2039 |
|
|
else if (DECL_STATIC_FUNCTION_P (fndecl))
|
2040 |
|
|
{
|
2041 |
|
|
tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
|
2042 |
|
|
tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
|
2043 |
|
|
if (compparms (TREE_CHAIN (btypes), dtypes))
|
2044 |
|
|
return fn;
|
2045 |
|
|
}
|
2046 |
|
|
else if (same_signature_p (fndecl, fn))
|
2047 |
|
|
return fn;
|
2048 |
|
|
}
|
2049 |
|
|
}
|
2050 |
|
|
return NULL_TREE;
|
2051 |
|
|
}
|
2052 |
|
|
|
2053 |
|
|
/* Look in TYPE for virtual functions overridden by FNDECL. Check both
|
2054 |
|
|
TYPE itself and its bases. */
|
2055 |
|
|
|
2056 |
|
|
static int
|
2057 |
|
|
look_for_overrides_r (tree type, tree fndecl)
|
2058 |
|
|
{
|
2059 |
|
|
tree fn = look_for_overrides_here (type, fndecl);
|
2060 |
|
|
if (fn)
|
2061 |
|
|
{
|
2062 |
|
|
if (DECL_STATIC_FUNCTION_P (fndecl))
|
2063 |
|
|
{
|
2064 |
|
|
/* A static member function cannot match an inherited
|
2065 |
|
|
virtual member function. */
|
2066 |
|
|
error ("%q+#D cannot be declared", fndecl);
|
2067 |
|
|
error (" since %q+#D declared in base class", fn);
|
2068 |
|
|
}
|
2069 |
|
|
else
|
2070 |
|
|
{
|
2071 |
|
|
/* It's definitely virtual, even if not explicitly set. */
|
2072 |
|
|
DECL_VIRTUAL_P (fndecl) = 1;
|
2073 |
|
|
check_final_overrider (fndecl, fn);
|
2074 |
|
|
}
|
2075 |
|
|
return 1;
|
2076 |
|
|
}
|
2077 |
|
|
|
2078 |
|
|
/* We failed to find one declared in this class. Look in its bases. */
|
2079 |
|
|
return look_for_overrides (type, fndecl);
|
2080 |
|
|
}
|
2081 |
|
|
|
2082 |
|
|
/* Called via dfs_walk from dfs_get_pure_virtuals. */
|
2083 |
|
|
|
2084 |
|
|
static tree
|
2085 |
|
|
dfs_get_pure_virtuals (tree binfo, void *data)
|
2086 |
|
|
{
|
2087 |
|
|
tree type = (tree) data;
|
2088 |
|
|
|
2089 |
|
|
/* We're not interested in primary base classes; the derived class
|
2090 |
|
|
of which they are a primary base will contain the information we
|
2091 |
|
|
need. */
|
2092 |
|
|
if (!BINFO_PRIMARY_P (binfo))
|
2093 |
|
|
{
|
2094 |
|
|
tree virtuals;
|
2095 |
|
|
|
2096 |
|
|
for (virtuals = BINFO_VIRTUALS (binfo);
|
2097 |
|
|
virtuals;
|
2098 |
|
|
virtuals = TREE_CHAIN (virtuals))
|
2099 |
|
|
if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
|
2100 |
|
|
VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (type),
|
2101 |
|
|
BV_FN (virtuals));
|
2102 |
|
|
}
|
2103 |
|
|
|
2104 |
|
|
return NULL_TREE;
|
2105 |
|
|
}
|
2106 |
|
|
|
2107 |
|
|
/* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
|
2108 |
|
|
|
2109 |
|
|
void
|
2110 |
|
|
get_pure_virtuals (tree type)
|
2111 |
|
|
{
|
2112 |
|
|
/* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
|
2113 |
|
|
is going to be overridden. */
|
2114 |
|
|
CLASSTYPE_PURE_VIRTUALS (type) = NULL;
|
2115 |
|
|
/* Now, run through all the bases which are not primary bases, and
|
2116 |
|
|
collect the pure virtual functions. We look at the vtable in
|
2117 |
|
|
each class to determine what pure virtual functions are present.
|
2118 |
|
|
(A primary base is not interesting because the derived class of
|
2119 |
|
|
which it is a primary base will contain vtable entries for the
|
2120 |
|
|
pure virtuals in the base class. */
|
2121 |
|
|
dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
|
2122 |
|
|
}
|
2123 |
|
|
|
2124 |
|
|
/* Debug info for C++ classes can get very large; try to avoid
|
2125 |
|
|
emitting it everywhere.
|
2126 |
|
|
|
2127 |
|
|
Note that this optimization wins even when the target supports
|
2128 |
|
|
BINCL (if only slightly), and reduces the amount of work for the
|
2129 |
|
|
linker. */
|
2130 |
|
|
|
2131 |
|
|
void
|
2132 |
|
|
maybe_suppress_debug_info (tree t)
|
2133 |
|
|
{
|
2134 |
|
|
if (write_symbols == NO_DEBUG)
|
2135 |
|
|
return;
|
2136 |
|
|
|
2137 |
|
|
/* We might have set this earlier in cp_finish_decl. */
|
2138 |
|
|
TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
|
2139 |
|
|
|
2140 |
|
|
/* Always emit the information for each class every time. */
|
2141 |
|
|
if (flag_emit_class_debug_always)
|
2142 |
|
|
return;
|
2143 |
|
|
|
2144 |
|
|
/* If we already know how we're handling this class, handle debug info
|
2145 |
|
|
the same way. */
|
2146 |
|
|
if (CLASSTYPE_INTERFACE_KNOWN (t))
|
2147 |
|
|
{
|
2148 |
|
|
if (CLASSTYPE_INTERFACE_ONLY (t))
|
2149 |
|
|
TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
|
2150 |
|
|
/* else don't set it. */
|
2151 |
|
|
}
|
2152 |
|
|
/* If the class has a vtable, write out the debug info along with
|
2153 |
|
|
the vtable. */
|
2154 |
|
|
else if (TYPE_CONTAINS_VPTR_P (t))
|
2155 |
|
|
TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
|
2156 |
|
|
|
2157 |
|
|
/* Otherwise, just emit the debug info normally. */
|
2158 |
|
|
}
|
2159 |
|
|
|
2160 |
|
|
/* Note that we want debugging information for a base class of a class
|
2161 |
|
|
whose vtable is being emitted. Normally, this would happen because
|
2162 |
|
|
calling the constructor for a derived class implies calling the
|
2163 |
|
|
constructors for all bases, which involve initializing the
|
2164 |
|
|
appropriate vptr with the vtable for the base class; but in the
|
2165 |
|
|
presence of optimization, this initialization may be optimized
|
2166 |
|
|
away, so we tell finish_vtable_vardecl that we want the debugging
|
2167 |
|
|
information anyway. */
|
2168 |
|
|
|
2169 |
|
|
static tree
|
2170 |
|
|
dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
|
2171 |
|
|
{
|
2172 |
|
|
tree t = BINFO_TYPE (binfo);
|
2173 |
|
|
|
2174 |
|
|
if (CLASSTYPE_DEBUG_REQUESTED (t))
|
2175 |
|
|
return dfs_skip_bases;
|
2176 |
|
|
|
2177 |
|
|
CLASSTYPE_DEBUG_REQUESTED (t) = 1;
|
2178 |
|
|
|
2179 |
|
|
return NULL_TREE;
|
2180 |
|
|
}
|
2181 |
|
|
|
2182 |
|
|
/* Write out the debugging information for TYPE, whose vtable is being
|
2183 |
|
|
emitted. Also walk through our bases and note that we want to
|
2184 |
|
|
write out information for them. This avoids the problem of not
|
2185 |
|
|
writing any debug info for intermediate basetypes whose
|
2186 |
|
|
constructors, and thus the references to their vtables, and thus
|
2187 |
|
|
the vtables themselves, were optimized away. */
|
2188 |
|
|
|
2189 |
|
|
void
|
2190 |
|
|
note_debug_info_needed (tree type)
|
2191 |
|
|
{
|
2192 |
|
|
if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
|
2193 |
|
|
{
|
2194 |
|
|
TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
|
2195 |
|
|
rest_of_type_compilation (type, toplevel_bindings_p ());
|
2196 |
|
|
}
|
2197 |
|
|
|
2198 |
|
|
dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
|
2199 |
|
|
}
|
2200 |
|
|
|
2201 |
|
|
void
|
2202 |
|
|
print_search_statistics (void)
|
2203 |
|
|
{
|
2204 |
|
|
#ifdef GATHER_STATISTICS
|
2205 |
|
|
fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
|
2206 |
|
|
n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
|
2207 |
|
|
fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
|
2208 |
|
|
n_outer_fields_searched, n_calls_lookup_fnfields);
|
2209 |
|
|
fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
|
2210 |
|
|
#else /* GATHER_STATISTICS */
|
2211 |
|
|
fprintf (stderr, "no search statistics\n");
|
2212 |
|
|
#endif /* GATHER_STATISTICS */
|
2213 |
|
|
}
|
2214 |
|
|
|
2215 |
|
|
void
|
2216 |
|
|
reinit_search_statistics (void)
|
2217 |
|
|
{
|
2218 |
|
|
#ifdef GATHER_STATISTICS
|
2219 |
|
|
n_fields_searched = 0;
|
2220 |
|
|
n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
|
2221 |
|
|
n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
|
2222 |
|
|
n_calls_get_base_type = 0;
|
2223 |
|
|
n_outer_fields_searched = 0;
|
2224 |
|
|
n_contexts_saved = 0;
|
2225 |
|
|
#endif /* GATHER_STATISTICS */
|
2226 |
|
|
}
|
2227 |
|
|
|
2228 |
|
|
/* Helper for lookup_conversions_r. TO_TYPE is the type converted to
|
2229 |
|
|
by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
|
2230 |
|
|
BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
|
2231 |
|
|
bases have been encountered already in the tree walk. PARENT_CONVS
|
2232 |
|
|
is the list of lists of conversion functions that could hide CONV
|
2233 |
|
|
and OTHER_CONVS is the list of lists of conversion functions that
|
2234 |
|
|
could hide or be hidden by CONV, should virtualness be involved in
|
2235 |
|
|
the hierarchy. Merely checking the conversion op's name is not
|
2236 |
|
|
enough because two conversion operators to the same type can have
|
2237 |
|
|
different names. Return nonzero if we are visible. */
|
2238 |
|
|
|
2239 |
|
|
static int
|
2240 |
|
|
check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
|
2241 |
|
|
tree to_type, tree parent_convs, tree other_convs)
|
2242 |
|
|
{
|
2243 |
|
|
tree level, probe;
|
2244 |
|
|
|
2245 |
|
|
/* See if we are hidden by a parent conversion. */
|
2246 |
|
|
for (level = parent_convs; level; level = TREE_CHAIN (level))
|
2247 |
|
|
for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
|
2248 |
|
|
if (same_type_p (to_type, TREE_TYPE (probe)))
|
2249 |
|
|
return 0;
|
2250 |
|
|
|
2251 |
|
|
if (virtual_depth || virtualness)
|
2252 |
|
|
{
|
2253 |
|
|
/* In a virtual hierarchy, we could be hidden, or could hide a
|
2254 |
|
|
conversion function on the other_convs list. */
|
2255 |
|
|
for (level = other_convs; level; level = TREE_CHAIN (level))
|
2256 |
|
|
{
|
2257 |
|
|
int we_hide_them;
|
2258 |
|
|
int they_hide_us;
|
2259 |
|
|
tree *prev, other;
|
2260 |
|
|
|
2261 |
|
|
if (!(virtual_depth || TREE_STATIC (level)))
|
2262 |
|
|
/* Neither is morally virtual, so cannot hide each other. */
|
2263 |
|
|
continue;
|
2264 |
|
|
|
2265 |
|
|
if (!TREE_VALUE (level))
|
2266 |
|
|
/* They evaporated away already. */
|
2267 |
|
|
continue;
|
2268 |
|
|
|
2269 |
|
|
they_hide_us = (virtual_depth
|
2270 |
|
|
&& original_binfo (binfo, TREE_PURPOSE (level)));
|
2271 |
|
|
we_hide_them = (!they_hide_us && TREE_STATIC (level)
|
2272 |
|
|
&& original_binfo (TREE_PURPOSE (level), binfo));
|
2273 |
|
|
|
2274 |
|
|
if (!(we_hide_them || they_hide_us))
|
2275 |
|
|
/* Neither is within the other, so no hiding can occur. */
|
2276 |
|
|
continue;
|
2277 |
|
|
|
2278 |
|
|
for (prev = &TREE_VALUE (level), other = *prev; other;)
|
2279 |
|
|
{
|
2280 |
|
|
if (same_type_p (to_type, TREE_TYPE (other)))
|
2281 |
|
|
{
|
2282 |
|
|
if (they_hide_us)
|
2283 |
|
|
/* We are hidden. */
|
2284 |
|
|
return 0;
|
2285 |
|
|
|
2286 |
|
|
if (we_hide_them)
|
2287 |
|
|
{
|
2288 |
|
|
/* We hide the other one. */
|
2289 |
|
|
other = TREE_CHAIN (other);
|
2290 |
|
|
*prev = other;
|
2291 |
|
|
continue;
|
2292 |
|
|
}
|
2293 |
|
|
}
|
2294 |
|
|
prev = &TREE_CHAIN (other);
|
2295 |
|
|
other = *prev;
|
2296 |
|
|
}
|
2297 |
|
|
}
|
2298 |
|
|
}
|
2299 |
|
|
return 1;
|
2300 |
|
|
}
|
2301 |
|
|
|
2302 |
|
|
/* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
|
2303 |
|
|
of conversion functions, the first slot will be for the current
|
2304 |
|
|
binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
|
2305 |
|
|
of conversion functions from children of the current binfo,
|
2306 |
|
|
concatenated with conversions from elsewhere in the hierarchy --
|
2307 |
|
|
that list begins with OTHER_CONVS. Return a single list of lists
|
2308 |
|
|
containing only conversions from the current binfo and its
|
2309 |
|
|
children. */
|
2310 |
|
|
|
2311 |
|
|
static tree
|
2312 |
|
|
split_conversions (tree my_convs, tree parent_convs,
|
2313 |
|
|
tree child_convs, tree other_convs)
|
2314 |
|
|
{
|
2315 |
|
|
tree t;
|
2316 |
|
|
tree prev;
|
2317 |
|
|
|
2318 |
|
|
/* Remove the original other_convs portion from child_convs. */
|
2319 |
|
|
for (prev = NULL, t = child_convs;
|
2320 |
|
|
t != other_convs; prev = t, t = TREE_CHAIN (t))
|
2321 |
|
|
continue;
|
2322 |
|
|
|
2323 |
|
|
if (prev)
|
2324 |
|
|
TREE_CHAIN (prev) = NULL_TREE;
|
2325 |
|
|
else
|
2326 |
|
|
child_convs = NULL_TREE;
|
2327 |
|
|
|
2328 |
|
|
/* Attach the child convs to any we had at this level. */
|
2329 |
|
|
if (my_convs)
|
2330 |
|
|
{
|
2331 |
|
|
my_convs = parent_convs;
|
2332 |
|
|
TREE_CHAIN (my_convs) = child_convs;
|
2333 |
|
|
}
|
2334 |
|
|
else
|
2335 |
|
|
my_convs = child_convs;
|
2336 |
|
|
|
2337 |
|
|
return my_convs;
|
2338 |
|
|
}
|
2339 |
|
|
|
2340 |
|
|
/* Worker for lookup_conversions. Lookup conversion functions in
|
2341 |
|
|
BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
|
2342 |
|
|
a morally virtual base, and VIRTUALNESS is nonzero, if we've
|
2343 |
|
|
encountered virtual bases already in the tree walk. PARENT_CONVS &
|
2344 |
|
|
PARENT_TPL_CONVS are lists of list of conversions within parent
|
2345 |
|
|
binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
|
2346 |
|
|
elsewhere in the tree. Return the conversions found within this
|
2347 |
|
|
portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
|
2348 |
|
|
encountered virtualness. We keep template and non-template
|
2349 |
|
|
conversions separate, to avoid unnecessary type comparisons.
|
2350 |
|
|
|
2351 |
|
|
The located conversion functions are held in lists of lists. The
|
2352 |
|
|
TREE_VALUE of the outer list is the list of conversion functions
|
2353 |
|
|
found in a particular binfo. The TREE_PURPOSE of both the outer
|
2354 |
|
|
and inner lists is the binfo at which those conversions were
|
2355 |
|
|
found. TREE_STATIC is set for those lists within of morally
|
2356 |
|
|
virtual binfos. The TREE_VALUE of the inner list is the conversion
|
2357 |
|
|
function or overload itself. The TREE_TYPE of each inner list node
|
2358 |
|
|
is the converted-to type. */
|
2359 |
|
|
|
2360 |
|
|
static int
|
2361 |
|
|
lookup_conversions_r (tree binfo,
|
2362 |
|
|
int virtual_depth, int virtualness,
|
2363 |
|
|
tree parent_convs, tree parent_tpl_convs,
|
2364 |
|
|
tree other_convs, tree other_tpl_convs,
|
2365 |
|
|
tree *convs, tree *tpl_convs)
|
2366 |
|
|
{
|
2367 |
|
|
int my_virtualness = 0;
|
2368 |
|
|
tree my_convs = NULL_TREE;
|
2369 |
|
|
tree my_tpl_convs = NULL_TREE;
|
2370 |
|
|
tree child_convs = NULL_TREE;
|
2371 |
|
|
tree child_tpl_convs = NULL_TREE;
|
2372 |
|
|
unsigned i;
|
2373 |
|
|
tree base_binfo;
|
2374 |
|
|
VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
|
2375 |
|
|
tree conv;
|
2376 |
|
|
|
2377 |
|
|
/* If we have no conversion operators, then don't look. */
|
2378 |
|
|
if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
|
2379 |
|
|
{
|
2380 |
|
|
*convs = *tpl_convs = NULL_TREE;
|
2381 |
|
|
|
2382 |
|
|
return 0;
|
2383 |
|
|
}
|
2384 |
|
|
|
2385 |
|
|
if (BINFO_VIRTUAL_P (binfo))
|
2386 |
|
|
virtual_depth++;
|
2387 |
|
|
|
2388 |
|
|
/* First, locate the unhidden ones at this level. */
|
2389 |
|
|
for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
|
2390 |
|
|
VEC_iterate (tree, method_vec, i, conv);
|
2391 |
|
|
++i)
|
2392 |
|
|
{
|
2393 |
|
|
tree cur = OVL_CURRENT (conv);
|
2394 |
|
|
|
2395 |
|
|
if (!DECL_CONV_FN_P (cur))
|
2396 |
|
|
break;
|
2397 |
|
|
|
2398 |
|
|
if (TREE_CODE (cur) == TEMPLATE_DECL)
|
2399 |
|
|
{
|
2400 |
|
|
/* Only template conversions can be overloaded, and we must
|
2401 |
|
|
flatten them out and check each one individually. */
|
2402 |
|
|
tree tpls;
|
2403 |
|
|
|
2404 |
|
|
for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
|
2405 |
|
|
{
|
2406 |
|
|
tree tpl = OVL_CURRENT (tpls);
|
2407 |
|
|
tree type = DECL_CONV_FN_TYPE (tpl);
|
2408 |
|
|
|
2409 |
|
|
if (check_hidden_convs (binfo, virtual_depth, virtualness,
|
2410 |
|
|
type, parent_tpl_convs, other_tpl_convs))
|
2411 |
|
|
{
|
2412 |
|
|
my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
|
2413 |
|
|
TREE_TYPE (my_tpl_convs) = type;
|
2414 |
|
|
if (virtual_depth)
|
2415 |
|
|
{
|
2416 |
|
|
TREE_STATIC (my_tpl_convs) = 1;
|
2417 |
|
|
my_virtualness = 1;
|
2418 |
|
|
}
|
2419 |
|
|
}
|
2420 |
|
|
}
|
2421 |
|
|
}
|
2422 |
|
|
else
|
2423 |
|
|
{
|
2424 |
|
|
tree name = DECL_NAME (cur);
|
2425 |
|
|
|
2426 |
|
|
if (!IDENTIFIER_MARKED (name))
|
2427 |
|
|
{
|
2428 |
|
|
tree type = DECL_CONV_FN_TYPE (cur);
|
2429 |
|
|
|
2430 |
|
|
if (check_hidden_convs (binfo, virtual_depth, virtualness,
|
2431 |
|
|
type, parent_convs, other_convs))
|
2432 |
|
|
{
|
2433 |
|
|
my_convs = tree_cons (binfo, conv, my_convs);
|
2434 |
|
|
TREE_TYPE (my_convs) = type;
|
2435 |
|
|
if (virtual_depth)
|
2436 |
|
|
{
|
2437 |
|
|
TREE_STATIC (my_convs) = 1;
|
2438 |
|
|
my_virtualness = 1;
|
2439 |
|
|
}
|
2440 |
|
|
IDENTIFIER_MARKED (name) = 1;
|
2441 |
|
|
}
|
2442 |
|
|
}
|
2443 |
|
|
}
|
2444 |
|
|
}
|
2445 |
|
|
|
2446 |
|
|
if (my_convs)
|
2447 |
|
|
{
|
2448 |
|
|
parent_convs = tree_cons (binfo, my_convs, parent_convs);
|
2449 |
|
|
if (virtual_depth)
|
2450 |
|
|
TREE_STATIC (parent_convs) = 1;
|
2451 |
|
|
}
|
2452 |
|
|
|
2453 |
|
|
if (my_tpl_convs)
|
2454 |
|
|
{
|
2455 |
|
|
parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
|
2456 |
|
|
if (virtual_depth)
|
2457 |
|
|
TREE_STATIC (parent_tpl_convs) = 1;
|
2458 |
|
|
}
|
2459 |
|
|
|
2460 |
|
|
child_convs = other_convs;
|
2461 |
|
|
child_tpl_convs = other_tpl_convs;
|
2462 |
|
|
|
2463 |
|
|
/* Now iterate over each base, looking for more conversions. */
|
2464 |
|
|
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
2465 |
|
|
{
|
2466 |
|
|
tree base_convs, base_tpl_convs;
|
2467 |
|
|
unsigned base_virtualness;
|
2468 |
|
|
|
2469 |
|
|
base_virtualness = lookup_conversions_r (base_binfo,
|
2470 |
|
|
virtual_depth, virtualness,
|
2471 |
|
|
parent_convs, parent_tpl_convs,
|
2472 |
|
|
child_convs, child_tpl_convs,
|
2473 |
|
|
&base_convs, &base_tpl_convs);
|
2474 |
|
|
if (base_virtualness)
|
2475 |
|
|
my_virtualness = virtualness = 1;
|
2476 |
|
|
child_convs = chainon (base_convs, child_convs);
|
2477 |
|
|
child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
|
2478 |
|
|
}
|
2479 |
|
|
|
2480 |
|
|
/* Unmark the conversions found at this level */
|
2481 |
|
|
for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
|
2482 |
|
|
IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
|
2483 |
|
|
|
2484 |
|
|
*convs = split_conversions (my_convs, parent_convs,
|
2485 |
|
|
child_convs, other_convs);
|
2486 |
|
|
*tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
|
2487 |
|
|
child_tpl_convs, other_tpl_convs);
|
2488 |
|
|
|
2489 |
|
|
return my_virtualness;
|
2490 |
|
|
}
|
2491 |
|
|
|
2492 |
|
|
/* Return a TREE_LIST containing all the non-hidden user-defined
|
2493 |
|
|
conversion functions for TYPE (and its base-classes). The
|
2494 |
|
|
TREE_VALUE of each node is the FUNCTION_DECL of the conversion
|
2495 |
|
|
function. The TREE_PURPOSE is the BINFO from which the conversion
|
2496 |
|
|
functions in this node were selected. This function is effectively
|
2497 |
|
|
performing a set of member lookups as lookup_fnfield does, but
|
2498 |
|
|
using the type being converted to as the unique key, rather than the
|
2499 |
|
|
field name. */
|
2500 |
|
|
|
2501 |
|
|
tree
|
2502 |
|
|
lookup_conversions (tree type)
|
2503 |
|
|
{
|
2504 |
|
|
tree convs, tpl_convs;
|
2505 |
|
|
tree list = NULL_TREE;
|
2506 |
|
|
|
2507 |
|
|
complete_type (type);
|
2508 |
|
|
if (!TYPE_BINFO (type))
|
2509 |
|
|
return NULL_TREE;
|
2510 |
|
|
|
2511 |
|
|
lookup_conversions_r (TYPE_BINFO (type), 0, 0,
|
2512 |
|
|
NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
|
2513 |
|
|
&convs, &tpl_convs);
|
2514 |
|
|
|
2515 |
|
|
/* Flatten the list-of-lists */
|
2516 |
|
|
for (; convs; convs = TREE_CHAIN (convs))
|
2517 |
|
|
{
|
2518 |
|
|
tree probe, next;
|
2519 |
|
|
|
2520 |
|
|
for (probe = TREE_VALUE (convs); probe; probe = next)
|
2521 |
|
|
{
|
2522 |
|
|
next = TREE_CHAIN (probe);
|
2523 |
|
|
|
2524 |
|
|
TREE_CHAIN (probe) = list;
|
2525 |
|
|
list = probe;
|
2526 |
|
|
}
|
2527 |
|
|
}
|
2528 |
|
|
|
2529 |
|
|
for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
|
2530 |
|
|
{
|
2531 |
|
|
tree probe, next;
|
2532 |
|
|
|
2533 |
|
|
for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
|
2534 |
|
|
{
|
2535 |
|
|
next = TREE_CHAIN (probe);
|
2536 |
|
|
|
2537 |
|
|
TREE_CHAIN (probe) = list;
|
2538 |
|
|
list = probe;
|
2539 |
|
|
}
|
2540 |
|
|
}
|
2541 |
|
|
|
2542 |
|
|
return list;
|
2543 |
|
|
}
|
2544 |
|
|
|
2545 |
|
|
/* Returns the binfo of the first direct or indirect virtual base derived
|
2546 |
|
|
from BINFO, or NULL if binfo is not via virtual. */
|
2547 |
|
|
|
2548 |
|
|
tree
|
2549 |
|
|
binfo_from_vbase (tree binfo)
|
2550 |
|
|
{
|
2551 |
|
|
for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
|
2552 |
|
|
{
|
2553 |
|
|
if (BINFO_VIRTUAL_P (binfo))
|
2554 |
|
|
return binfo;
|
2555 |
|
|
}
|
2556 |
|
|
return NULL_TREE;
|
2557 |
|
|
}
|
2558 |
|
|
|
2559 |
|
|
/* Returns the binfo of the first direct or indirect virtual base derived
|
2560 |
|
|
from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
|
2561 |
|
|
via virtual. */
|
2562 |
|
|
|
2563 |
|
|
tree
|
2564 |
|
|
binfo_via_virtual (tree binfo, tree limit)
|
2565 |
|
|
{
|
2566 |
|
|
if (limit && !CLASSTYPE_VBASECLASSES (limit))
|
2567 |
|
|
/* LIMIT has no virtual bases, so BINFO cannot be via one. */
|
2568 |
|
|
return NULL_TREE;
|
2569 |
|
|
|
2570 |
|
|
for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
|
2571 |
|
|
binfo = BINFO_INHERITANCE_CHAIN (binfo))
|
2572 |
|
|
{
|
2573 |
|
|
if (BINFO_VIRTUAL_P (binfo))
|
2574 |
|
|
return binfo;
|
2575 |
|
|
}
|
2576 |
|
|
return NULL_TREE;
|
2577 |
|
|
}
|
2578 |
|
|
|
2579 |
|
|
/* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
|
2580 |
|
|
Find the equivalent binfo within whatever graph HERE is located.
|
2581 |
|
|
This is the inverse of original_binfo. */
|
2582 |
|
|
|
2583 |
|
|
tree
|
2584 |
|
|
copied_binfo (tree binfo, tree here)
|
2585 |
|
|
{
|
2586 |
|
|
tree result = NULL_TREE;
|
2587 |
|
|
|
2588 |
|
|
if (BINFO_VIRTUAL_P (binfo))
|
2589 |
|
|
{
|
2590 |
|
|
tree t;
|
2591 |
|
|
|
2592 |
|
|
for (t = here; BINFO_INHERITANCE_CHAIN (t);
|
2593 |
|
|
t = BINFO_INHERITANCE_CHAIN (t))
|
2594 |
|
|
continue;
|
2595 |
|
|
|
2596 |
|
|
result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
|
2597 |
|
|
}
|
2598 |
|
|
else if (BINFO_INHERITANCE_CHAIN (binfo))
|
2599 |
|
|
{
|
2600 |
|
|
tree cbinfo;
|
2601 |
|
|
tree base_binfo;
|
2602 |
|
|
int ix;
|
2603 |
|
|
|
2604 |
|
|
cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
|
2605 |
|
|
for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
|
2606 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
|
2607 |
|
|
{
|
2608 |
|
|
result = base_binfo;
|
2609 |
|
|
break;
|
2610 |
|
|
}
|
2611 |
|
|
}
|
2612 |
|
|
else
|
2613 |
|
|
{
|
2614 |
|
|
gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
|
2615 |
|
|
result = here;
|
2616 |
|
|
}
|
2617 |
|
|
|
2618 |
|
|
gcc_assert (result);
|
2619 |
|
|
return result;
|
2620 |
|
|
}
|
2621 |
|
|
|
2622 |
|
|
tree
|
2623 |
|
|
binfo_for_vbase (tree base, tree t)
|
2624 |
|
|
{
|
2625 |
|
|
unsigned ix;
|
2626 |
|
|
tree binfo;
|
2627 |
|
|
VEC(tree,gc) *vbases;
|
2628 |
|
|
|
2629 |
|
|
for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
|
2630 |
|
|
VEC_iterate (tree, vbases, ix, binfo); ix++)
|
2631 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
|
2632 |
|
|
return binfo;
|
2633 |
|
|
return NULL;
|
2634 |
|
|
}
|
2635 |
|
|
|
2636 |
|
|
/* BINFO is some base binfo of HERE, within some other
|
2637 |
|
|
hierarchy. Return the equivalent binfo, but in the hierarchy
|
2638 |
|
|
dominated by HERE. This is the inverse of copied_binfo. If BINFO
|
2639 |
|
|
is not a base binfo of HERE, returns NULL_TREE. */
|
2640 |
|
|
|
2641 |
|
|
tree
|
2642 |
|
|
original_binfo (tree binfo, tree here)
|
2643 |
|
|
{
|
2644 |
|
|
tree result = NULL;
|
2645 |
|
|
|
2646 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
|
2647 |
|
|
result = here;
|
2648 |
|
|
else if (BINFO_VIRTUAL_P (binfo))
|
2649 |
|
|
result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
|
2650 |
|
|
? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
|
2651 |
|
|
: NULL_TREE);
|
2652 |
|
|
else if (BINFO_INHERITANCE_CHAIN (binfo))
|
2653 |
|
|
{
|
2654 |
|
|
tree base_binfos;
|
2655 |
|
|
|
2656 |
|
|
base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
|
2657 |
|
|
if (base_binfos)
|
2658 |
|
|
{
|
2659 |
|
|
int ix;
|
2660 |
|
|
tree base_binfo;
|
2661 |
|
|
|
2662 |
|
|
for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
|
2663 |
|
|
if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
|
2664 |
|
|
BINFO_TYPE (binfo)))
|
2665 |
|
|
{
|
2666 |
|
|
result = base_binfo;
|
2667 |
|
|
break;
|
2668 |
|
|
}
|
2669 |
|
|
}
|
2670 |
|
|
}
|
2671 |
|
|
|
2672 |
|
|
return result;
|
2673 |
|
|
}
|
2674 |
|
|
|