1 |
710 |
jeremybenn |
/* Language-dependent node constructors for parse phase of GNU compiler.
|
2 |
|
|
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
Hacked by Michael Tiemann (tiemann@cygnus.com)
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
12 |
|
|
any later version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "tree.h"
|
28 |
|
|
#include "cp-tree.h"
|
29 |
|
|
#include "flags.h"
|
30 |
|
|
#include "tree-inline.h"
|
31 |
|
|
#include "debug.h"
|
32 |
|
|
#include "convert.h"
|
33 |
|
|
#include "cgraph.h"
|
34 |
|
|
#include "splay-tree.h"
|
35 |
|
|
#include "gimple.h" /* gimple_has_body_p */
|
36 |
|
|
|
37 |
|
|
static tree bot_manip (tree *, int *, void *);
|
38 |
|
|
static tree bot_replace (tree *, int *, void *);
|
39 |
|
|
static int list_hash_eq (const void *, const void *);
|
40 |
|
|
static hashval_t list_hash_pieces (tree, tree, tree);
|
41 |
|
|
static hashval_t list_hash (const void *);
|
42 |
|
|
static tree build_target_expr (tree, tree, tsubst_flags_t);
|
43 |
|
|
static tree count_trees_r (tree *, int *, void *);
|
44 |
|
|
static tree verify_stmt_tree_r (tree *, int *, void *);
|
45 |
|
|
static tree build_local_temp (tree);
|
46 |
|
|
|
47 |
|
|
static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
|
48 |
|
|
static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *);
|
49 |
|
|
static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
|
50 |
|
|
|
51 |
|
|
/* If REF is an lvalue, returns the kind of lvalue that REF is.
|
52 |
|
|
Otherwise, returns clk_none. */
|
53 |
|
|
|
54 |
|
|
cp_lvalue_kind
|
55 |
|
|
lvalue_kind (const_tree ref)
|
56 |
|
|
{
|
57 |
|
|
cp_lvalue_kind op1_lvalue_kind = clk_none;
|
58 |
|
|
cp_lvalue_kind op2_lvalue_kind = clk_none;
|
59 |
|
|
|
60 |
|
|
/* Expressions of reference type are sometimes wrapped in
|
61 |
|
|
INDIRECT_REFs. INDIRECT_REFs are just internal compiler
|
62 |
|
|
representation, not part of the language, so we have to look
|
63 |
|
|
through them. */
|
64 |
|
|
if (REFERENCE_REF_P (ref))
|
65 |
|
|
return lvalue_kind (TREE_OPERAND (ref, 0));
|
66 |
|
|
|
67 |
|
|
if (TREE_TYPE (ref)
|
68 |
|
|
&& TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
|
69 |
|
|
{
|
70 |
|
|
/* unnamed rvalue references are rvalues */
|
71 |
|
|
if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref))
|
72 |
|
|
&& TREE_CODE (ref) != PARM_DECL
|
73 |
|
|
&& TREE_CODE (ref) != VAR_DECL
|
74 |
|
|
&& TREE_CODE (ref) != COMPONENT_REF
|
75 |
|
|
/* Functions are always lvalues. */
|
76 |
|
|
&& TREE_CODE (TREE_TYPE (TREE_TYPE (ref))) != FUNCTION_TYPE)
|
77 |
|
|
return clk_rvalueref;
|
78 |
|
|
|
79 |
|
|
/* lvalue references and named rvalue references are lvalues. */
|
80 |
|
|
return clk_ordinary;
|
81 |
|
|
}
|
82 |
|
|
|
83 |
|
|
if (ref == current_class_ptr)
|
84 |
|
|
return clk_none;
|
85 |
|
|
|
86 |
|
|
switch (TREE_CODE (ref))
|
87 |
|
|
{
|
88 |
|
|
case SAVE_EXPR:
|
89 |
|
|
return clk_none;
|
90 |
|
|
/* preincrements and predecrements are valid lvals, provided
|
91 |
|
|
what they refer to are valid lvals. */
|
92 |
|
|
case PREINCREMENT_EXPR:
|
93 |
|
|
case PREDECREMENT_EXPR:
|
94 |
|
|
case TRY_CATCH_EXPR:
|
95 |
|
|
case WITH_CLEANUP_EXPR:
|
96 |
|
|
case REALPART_EXPR:
|
97 |
|
|
case IMAGPART_EXPR:
|
98 |
|
|
return lvalue_kind (TREE_OPERAND (ref, 0));
|
99 |
|
|
|
100 |
|
|
case COMPONENT_REF:
|
101 |
|
|
op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
|
102 |
|
|
/* Look at the member designator. */
|
103 |
|
|
if (!op1_lvalue_kind)
|
104 |
|
|
;
|
105 |
|
|
else if (is_overloaded_fn (TREE_OPERAND (ref, 1)))
|
106 |
|
|
/* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
|
107 |
|
|
situations. If we're seeing a COMPONENT_REF, it's a non-static
|
108 |
|
|
member, so it isn't an lvalue. */
|
109 |
|
|
op1_lvalue_kind = clk_none;
|
110 |
|
|
else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
|
111 |
|
|
/* This can be IDENTIFIER_NODE in a template. */;
|
112 |
|
|
else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
|
113 |
|
|
{
|
114 |
|
|
/* Clear the ordinary bit. If this object was a class
|
115 |
|
|
rvalue we want to preserve that information. */
|
116 |
|
|
op1_lvalue_kind &= ~clk_ordinary;
|
117 |
|
|
/* The lvalue is for a bitfield. */
|
118 |
|
|
op1_lvalue_kind |= clk_bitfield;
|
119 |
|
|
}
|
120 |
|
|
else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
|
121 |
|
|
op1_lvalue_kind |= clk_packed;
|
122 |
|
|
|
123 |
|
|
return op1_lvalue_kind;
|
124 |
|
|
|
125 |
|
|
case STRING_CST:
|
126 |
|
|
case COMPOUND_LITERAL_EXPR:
|
127 |
|
|
return clk_ordinary;
|
128 |
|
|
|
129 |
|
|
case CONST_DECL:
|
130 |
|
|
/* CONST_DECL without TREE_STATIC are enumeration values and
|
131 |
|
|
thus not lvalues. With TREE_STATIC they are used by ObjC++
|
132 |
|
|
in objc_build_string_object and need to be considered as
|
133 |
|
|
lvalues. */
|
134 |
|
|
if (! TREE_STATIC (ref))
|
135 |
|
|
return clk_none;
|
136 |
|
|
case VAR_DECL:
|
137 |
|
|
if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
|
138 |
|
|
&& DECL_LANG_SPECIFIC (ref)
|
139 |
|
|
&& DECL_IN_AGGR_P (ref))
|
140 |
|
|
return clk_none;
|
141 |
|
|
case INDIRECT_REF:
|
142 |
|
|
case ARROW_EXPR:
|
143 |
|
|
case ARRAY_REF:
|
144 |
|
|
case PARM_DECL:
|
145 |
|
|
case RESULT_DECL:
|
146 |
|
|
if (TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE)
|
147 |
|
|
return clk_ordinary;
|
148 |
|
|
break;
|
149 |
|
|
|
150 |
|
|
/* A scope ref in a template, left as SCOPE_REF to support later
|
151 |
|
|
access checking. */
|
152 |
|
|
case SCOPE_REF:
|
153 |
|
|
gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE(ref)));
|
154 |
|
|
return lvalue_kind (TREE_OPERAND (ref, 1));
|
155 |
|
|
|
156 |
|
|
case MAX_EXPR:
|
157 |
|
|
case MIN_EXPR:
|
158 |
|
|
/* Disallow <? and >? as lvalues if either argument side-effects. */
|
159 |
|
|
if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
|
160 |
|
|
|| TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
|
161 |
|
|
return clk_none;
|
162 |
|
|
op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
|
163 |
|
|
op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1));
|
164 |
|
|
break;
|
165 |
|
|
|
166 |
|
|
case COND_EXPR:
|
167 |
|
|
op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1)
|
168 |
|
|
? TREE_OPERAND (ref, 1)
|
169 |
|
|
: TREE_OPERAND (ref, 0));
|
170 |
|
|
op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 2));
|
171 |
|
|
break;
|
172 |
|
|
|
173 |
|
|
case MODIFY_EXPR:
|
174 |
|
|
case TYPEID_EXPR:
|
175 |
|
|
return clk_ordinary;
|
176 |
|
|
|
177 |
|
|
case COMPOUND_EXPR:
|
178 |
|
|
return lvalue_kind (TREE_OPERAND (ref, 1));
|
179 |
|
|
|
180 |
|
|
case TARGET_EXPR:
|
181 |
|
|
return clk_class;
|
182 |
|
|
|
183 |
|
|
case VA_ARG_EXPR:
|
184 |
|
|
return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none);
|
185 |
|
|
|
186 |
|
|
case CALL_EXPR:
|
187 |
|
|
/* We can see calls outside of TARGET_EXPR in templates. */
|
188 |
|
|
if (CLASS_TYPE_P (TREE_TYPE (ref)))
|
189 |
|
|
return clk_class;
|
190 |
|
|
return clk_none;
|
191 |
|
|
|
192 |
|
|
case FUNCTION_DECL:
|
193 |
|
|
/* All functions (except non-static-member functions) are
|
194 |
|
|
lvalues. */
|
195 |
|
|
return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
|
196 |
|
|
? clk_none : clk_ordinary);
|
197 |
|
|
|
198 |
|
|
case BASELINK:
|
199 |
|
|
/* We now represent a reference to a single static member function
|
200 |
|
|
with a BASELINK. */
|
201 |
|
|
/* This CONST_CAST is okay because BASELINK_FUNCTIONS returns
|
202 |
|
|
its argument unmodified and we assign it to a const_tree. */
|
203 |
|
|
return lvalue_kind (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref)));
|
204 |
|
|
|
205 |
|
|
case NON_DEPENDENT_EXPR:
|
206 |
|
|
/* We just return clk_ordinary for NON_DEPENDENT_EXPR in C++98, but
|
207 |
|
|
in C++11 lvalues don't bind to rvalue references, so we need to
|
208 |
|
|
work harder to avoid bogus errors (c++/44870). */
|
209 |
|
|
if (cxx_dialect < cxx0x)
|
210 |
|
|
return clk_ordinary;
|
211 |
|
|
else
|
212 |
|
|
return lvalue_kind (TREE_OPERAND (ref, 0));
|
213 |
|
|
|
214 |
|
|
default:
|
215 |
|
|
if (!TREE_TYPE (ref))
|
216 |
|
|
return clk_none;
|
217 |
|
|
if (CLASS_TYPE_P (TREE_TYPE (ref)))
|
218 |
|
|
return clk_class;
|
219 |
|
|
break;
|
220 |
|
|
}
|
221 |
|
|
|
222 |
|
|
/* If one operand is not an lvalue at all, then this expression is
|
223 |
|
|
not an lvalue. */
|
224 |
|
|
if (!op1_lvalue_kind || !op2_lvalue_kind)
|
225 |
|
|
return clk_none;
|
226 |
|
|
|
227 |
|
|
/* Otherwise, it's an lvalue, and it has all the odd properties
|
228 |
|
|
contributed by either operand. */
|
229 |
|
|
op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
|
230 |
|
|
/* It's not an ordinary lvalue if it involves any other kind. */
|
231 |
|
|
if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
|
232 |
|
|
op1_lvalue_kind &= ~clk_ordinary;
|
233 |
|
|
/* It can't be both a pseudo-lvalue and a non-addressable lvalue.
|
234 |
|
|
A COND_EXPR of those should be wrapped in a TARGET_EXPR. */
|
235 |
|
|
if ((op1_lvalue_kind & (clk_rvalueref|clk_class))
|
236 |
|
|
&& (op1_lvalue_kind & (clk_bitfield|clk_packed)))
|
237 |
|
|
op1_lvalue_kind = clk_none;
|
238 |
|
|
return op1_lvalue_kind;
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
/* Returns the kind of lvalue that REF is, in the sense of
|
242 |
|
|
[basic.lval]. This function should really be named lvalue_p; it
|
243 |
|
|
computes the C++ definition of lvalue. */
|
244 |
|
|
|
245 |
|
|
cp_lvalue_kind
|
246 |
|
|
real_lvalue_p (const_tree ref)
|
247 |
|
|
{
|
248 |
|
|
cp_lvalue_kind kind = lvalue_kind (ref);
|
249 |
|
|
if (kind & (clk_rvalueref|clk_class))
|
250 |
|
|
return clk_none;
|
251 |
|
|
else
|
252 |
|
|
return kind;
|
253 |
|
|
}
|
254 |
|
|
|
255 |
|
|
/* This differs from real_lvalue_p in that class rvalues are considered
|
256 |
|
|
lvalues. */
|
257 |
|
|
|
258 |
|
|
bool
|
259 |
|
|
lvalue_p (const_tree ref)
|
260 |
|
|
{
|
261 |
|
|
return (lvalue_kind (ref) != clk_none);
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
/* This differs from real_lvalue_p in that rvalues formed by dereferencing
|
265 |
|
|
rvalue references are considered rvalues. */
|
266 |
|
|
|
267 |
|
|
bool
|
268 |
|
|
lvalue_or_rvalue_with_address_p (const_tree ref)
|
269 |
|
|
{
|
270 |
|
|
cp_lvalue_kind kind = lvalue_kind (ref);
|
271 |
|
|
if (kind & clk_class)
|
272 |
|
|
return false;
|
273 |
|
|
else
|
274 |
|
|
return (kind != clk_none);
|
275 |
|
|
}
|
276 |
|
|
|
277 |
|
|
/* Test whether DECL is a builtin that may appear in a
|
278 |
|
|
constant-expression. */
|
279 |
|
|
|
280 |
|
|
bool
|
281 |
|
|
builtin_valid_in_constant_expr_p (const_tree decl)
|
282 |
|
|
{
|
283 |
|
|
/* At present BUILT_IN_CONSTANT_P is the only builtin we're allowing
|
284 |
|
|
in constant-expressions. We may want to add other builtins later. */
|
285 |
|
|
return DECL_IS_BUILTIN_CONSTANT_P (decl);
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
/* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
|
289 |
|
|
|
290 |
|
|
static tree
|
291 |
|
|
build_target_expr (tree decl, tree value, tsubst_flags_t complain)
|
292 |
|
|
{
|
293 |
|
|
tree t;
|
294 |
|
|
tree type = TREE_TYPE (decl);
|
295 |
|
|
|
296 |
|
|
#ifdef ENABLE_CHECKING
|
297 |
|
|
gcc_assert (VOID_TYPE_P (TREE_TYPE (value))
|
298 |
|
|
|| TREE_TYPE (decl) == TREE_TYPE (value)
|
299 |
|
|
/* On ARM ctors return 'this'. */
|
300 |
|
|
|| (TREE_CODE (TREE_TYPE (value)) == POINTER_TYPE
|
301 |
|
|
&& TREE_CODE (value) == CALL_EXPR)
|
302 |
|
|
|| useless_type_conversion_p (TREE_TYPE (decl),
|
303 |
|
|
TREE_TYPE (value)));
|
304 |
|
|
#endif
|
305 |
|
|
|
306 |
|
|
t = cxx_maybe_build_cleanup (decl, complain);
|
307 |
|
|
if (t == error_mark_node)
|
308 |
|
|
return error_mark_node;
|
309 |
|
|
t = build4 (TARGET_EXPR, type, decl, value, t, NULL_TREE);
|
310 |
|
|
/* We always set TREE_SIDE_EFFECTS so that expand_expr does not
|
311 |
|
|
ignore the TARGET_EXPR. If there really turn out to be no
|
312 |
|
|
side-effects, then the optimizer should be able to get rid of
|
313 |
|
|
whatever code is generated anyhow. */
|
314 |
|
|
TREE_SIDE_EFFECTS (t) = 1;
|
315 |
|
|
if (literal_type_p (type))
|
316 |
|
|
TREE_CONSTANT (t) = TREE_CONSTANT (value);
|
317 |
|
|
|
318 |
|
|
return t;
|
319 |
|
|
}
|
320 |
|
|
|
321 |
|
|
/* Return an undeclared local temporary of type TYPE for use in building a
|
322 |
|
|
TARGET_EXPR. */
|
323 |
|
|
|
324 |
|
|
static tree
|
325 |
|
|
build_local_temp (tree type)
|
326 |
|
|
{
|
327 |
|
|
tree slot = build_decl (input_location,
|
328 |
|
|
VAR_DECL, NULL_TREE, type);
|
329 |
|
|
DECL_ARTIFICIAL (slot) = 1;
|
330 |
|
|
DECL_IGNORED_P (slot) = 1;
|
331 |
|
|
DECL_CONTEXT (slot) = current_function_decl;
|
332 |
|
|
layout_decl (slot, 0);
|
333 |
|
|
return slot;
|
334 |
|
|
}
|
335 |
|
|
|
336 |
|
|
/* Set various status flags when building an AGGR_INIT_EXPR object T. */
|
337 |
|
|
|
338 |
|
|
static void
|
339 |
|
|
process_aggr_init_operands (tree t)
|
340 |
|
|
{
|
341 |
|
|
bool side_effects;
|
342 |
|
|
|
343 |
|
|
side_effects = TREE_SIDE_EFFECTS (t);
|
344 |
|
|
if (!side_effects)
|
345 |
|
|
{
|
346 |
|
|
int i, n;
|
347 |
|
|
n = TREE_OPERAND_LENGTH (t);
|
348 |
|
|
for (i = 1; i < n; i++)
|
349 |
|
|
{
|
350 |
|
|
tree op = TREE_OPERAND (t, i);
|
351 |
|
|
if (op && TREE_SIDE_EFFECTS (op))
|
352 |
|
|
{
|
353 |
|
|
side_effects = 1;
|
354 |
|
|
break;
|
355 |
|
|
}
|
356 |
|
|
}
|
357 |
|
|
}
|
358 |
|
|
TREE_SIDE_EFFECTS (t) = side_effects;
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
/* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE,
|
362 |
|
|
FN, and SLOT. NARGS is the number of call arguments which are specified
|
363 |
|
|
as a tree array ARGS. */
|
364 |
|
|
|
365 |
|
|
static tree
|
366 |
|
|
build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs,
|
367 |
|
|
tree *args)
|
368 |
|
|
{
|
369 |
|
|
tree t;
|
370 |
|
|
int i;
|
371 |
|
|
|
372 |
|
|
t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3);
|
373 |
|
|
TREE_TYPE (t) = return_type;
|
374 |
|
|
AGGR_INIT_EXPR_FN (t) = fn;
|
375 |
|
|
AGGR_INIT_EXPR_SLOT (t) = slot;
|
376 |
|
|
for (i = 0; i < nargs; i++)
|
377 |
|
|
AGGR_INIT_EXPR_ARG (t, i) = args[i];
|
378 |
|
|
process_aggr_init_operands (t);
|
379 |
|
|
return t;
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
/* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
|
383 |
|
|
target. TYPE is the type to be initialized.
|
384 |
|
|
|
385 |
|
|
Build an AGGR_INIT_EXPR to represent the initialization. This function
|
386 |
|
|
differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used
|
387 |
|
|
to initialize another object, whereas a TARGET_EXPR can either
|
388 |
|
|
initialize another object or create its own temporary object, and as a
|
389 |
|
|
result building up a TARGET_EXPR requires that the type's destructor be
|
390 |
|
|
callable. */
|
391 |
|
|
|
392 |
|
|
tree
|
393 |
|
|
build_aggr_init_expr (tree type, tree init, tsubst_flags_t complain)
|
394 |
|
|
{
|
395 |
|
|
tree fn;
|
396 |
|
|
tree slot;
|
397 |
|
|
tree rval;
|
398 |
|
|
int is_ctor;
|
399 |
|
|
|
400 |
|
|
/* Make sure that we're not trying to create an instance of an
|
401 |
|
|
abstract class. */
|
402 |
|
|
if (abstract_virtuals_error_sfinae (NULL_TREE, type, complain))
|
403 |
|
|
return error_mark_node;
|
404 |
|
|
|
405 |
|
|
if (TREE_CODE (init) == CALL_EXPR)
|
406 |
|
|
fn = CALL_EXPR_FN (init);
|
407 |
|
|
else if (TREE_CODE (init) == AGGR_INIT_EXPR)
|
408 |
|
|
fn = AGGR_INIT_EXPR_FN (init);
|
409 |
|
|
else
|
410 |
|
|
return convert (type, init);
|
411 |
|
|
|
412 |
|
|
is_ctor = (TREE_CODE (fn) == ADDR_EXPR
|
413 |
|
|
&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
|
414 |
|
|
&& DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
|
415 |
|
|
|
416 |
|
|
/* We split the CALL_EXPR into its function and its arguments here.
|
417 |
|
|
Then, in expand_expr, we put them back together. The reason for
|
418 |
|
|
this is that this expression might be a default argument
|
419 |
|
|
expression. In that case, we need a new temporary every time the
|
420 |
|
|
expression is used. That's what break_out_target_exprs does; it
|
421 |
|
|
replaces every AGGR_INIT_EXPR with a copy that uses a fresh
|
422 |
|
|
temporary slot. Then, expand_expr builds up a call-expression
|
423 |
|
|
using the new slot. */
|
424 |
|
|
|
425 |
|
|
/* If we don't need to use a constructor to create an object of this
|
426 |
|
|
type, don't mess with AGGR_INIT_EXPR. */
|
427 |
|
|
if (is_ctor || TREE_ADDRESSABLE (type))
|
428 |
|
|
{
|
429 |
|
|
slot = build_local_temp (type);
|
430 |
|
|
|
431 |
|
|
if (TREE_CODE(init) == CALL_EXPR)
|
432 |
|
|
rval = build_aggr_init_array (void_type_node, fn, slot,
|
433 |
|
|
call_expr_nargs (init),
|
434 |
|
|
CALL_EXPR_ARGP (init));
|
435 |
|
|
else
|
436 |
|
|
rval = build_aggr_init_array (void_type_node, fn, slot,
|
437 |
|
|
aggr_init_expr_nargs (init),
|
438 |
|
|
AGGR_INIT_EXPR_ARGP (init));
|
439 |
|
|
TREE_SIDE_EFFECTS (rval) = 1;
|
440 |
|
|
AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
|
441 |
|
|
TREE_NOTHROW (rval) = TREE_NOTHROW (init);
|
442 |
|
|
}
|
443 |
|
|
else
|
444 |
|
|
rval = init;
|
445 |
|
|
|
446 |
|
|
return rval;
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
/* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
|
450 |
|
|
target. TYPE is the type that this initialization should appear to
|
451 |
|
|
have.
|
452 |
|
|
|
453 |
|
|
Build an encapsulation of the initialization to perform
|
454 |
|
|
and return it so that it can be processed by language-independent
|
455 |
|
|
and language-specific expression expanders. */
|
456 |
|
|
|
457 |
|
|
tree
|
458 |
|
|
build_cplus_new (tree type, tree init, tsubst_flags_t complain)
|
459 |
|
|
{
|
460 |
|
|
tree rval = build_aggr_init_expr (type, init, complain);
|
461 |
|
|
tree slot;
|
462 |
|
|
|
463 |
|
|
if (TREE_CODE (rval) == AGGR_INIT_EXPR)
|
464 |
|
|
slot = AGGR_INIT_EXPR_SLOT (rval);
|
465 |
|
|
else if (TREE_CODE (rval) == CALL_EXPR
|
466 |
|
|
|| TREE_CODE (rval) == CONSTRUCTOR)
|
467 |
|
|
slot = build_local_temp (type);
|
468 |
|
|
else
|
469 |
|
|
return rval;
|
470 |
|
|
|
471 |
|
|
rval = build_target_expr (slot, rval, complain);
|
472 |
|
|
|
473 |
|
|
if (rval != error_mark_node)
|
474 |
|
|
TARGET_EXPR_IMPLICIT_P (rval) = 1;
|
475 |
|
|
|
476 |
|
|
return rval;
|
477 |
|
|
}
|
478 |
|
|
|
479 |
|
|
/* Subroutine of build_vec_init_expr: Build up a single element
|
480 |
|
|
intialization as a proxy for the full array initialization to get things
|
481 |
|
|
marked as used and any appropriate diagnostics.
|
482 |
|
|
|
483 |
|
|
Since we're deferring building the actual constructor calls until
|
484 |
|
|
gimplification time, we need to build one now and throw it away so
|
485 |
|
|
that the relevant constructor gets mark_used before cgraph decides
|
486 |
|
|
what functions are needed. Here we assume that init is either
|
487 |
|
|
NULL_TREE, void_type_node (indicating value-initialization), or
|
488 |
|
|
another array to copy. */
|
489 |
|
|
|
490 |
|
|
static tree
|
491 |
|
|
build_vec_init_elt (tree type, tree init, tsubst_flags_t complain)
|
492 |
|
|
{
|
493 |
|
|
tree inner_type = strip_array_types (type);
|
494 |
|
|
VEC(tree,gc) *argvec;
|
495 |
|
|
|
496 |
|
|
if (integer_zerop (array_type_nelts_total (type))
|
497 |
|
|
|| !CLASS_TYPE_P (inner_type))
|
498 |
|
|
/* No interesting initialization to do. */
|
499 |
|
|
return integer_zero_node;
|
500 |
|
|
else if (init == void_type_node)
|
501 |
|
|
return build_value_init (inner_type, complain);
|
502 |
|
|
|
503 |
|
|
gcc_assert (init == NULL_TREE
|
504 |
|
|
|| (same_type_ignoring_top_level_qualifiers_p
|
505 |
|
|
(type, TREE_TYPE (init))));
|
506 |
|
|
|
507 |
|
|
argvec = make_tree_vector ();
|
508 |
|
|
if (init)
|
509 |
|
|
{
|
510 |
|
|
tree dummy = build_dummy_object (inner_type);
|
511 |
|
|
if (!real_lvalue_p (init))
|
512 |
|
|
dummy = move (dummy);
|
513 |
|
|
VEC_quick_push (tree, argvec, dummy);
|
514 |
|
|
}
|
515 |
|
|
init = build_special_member_call (NULL_TREE, complete_ctor_identifier,
|
516 |
|
|
&argvec, inner_type, LOOKUP_NORMAL,
|
517 |
|
|
complain);
|
518 |
|
|
release_tree_vector (argvec);
|
519 |
|
|
|
520 |
|
|
/* For a trivial constructor, build_over_call creates a TARGET_EXPR. But
|
521 |
|
|
we don't want one here because we aren't creating a temporary. */
|
522 |
|
|
if (TREE_CODE (init) == TARGET_EXPR)
|
523 |
|
|
init = TARGET_EXPR_INITIAL (init);
|
524 |
|
|
|
525 |
|
|
return init;
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
/* Return a TARGET_EXPR which expresses the initialization of an array to
|
529 |
|
|
be named later, either default-initialization or copy-initialization
|
530 |
|
|
from another array of the same type. */
|
531 |
|
|
|
532 |
|
|
tree
|
533 |
|
|
build_vec_init_expr (tree type, tree init, tsubst_flags_t complain)
|
534 |
|
|
{
|
535 |
|
|
tree slot;
|
536 |
|
|
bool value_init = false;
|
537 |
|
|
tree elt_init = build_vec_init_elt (type, init, complain);
|
538 |
|
|
|
539 |
|
|
if (init == void_type_node)
|
540 |
|
|
{
|
541 |
|
|
value_init = true;
|
542 |
|
|
init = NULL_TREE;
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
slot = build_local_temp (type);
|
546 |
|
|
init = build2 (VEC_INIT_EXPR, type, slot, init);
|
547 |
|
|
TREE_SIDE_EFFECTS (init) = true;
|
548 |
|
|
SET_EXPR_LOCATION (init, input_location);
|
549 |
|
|
|
550 |
|
|
if (cxx_dialect >= cxx0x
|
551 |
|
|
&& potential_constant_expression (elt_init))
|
552 |
|
|
VEC_INIT_EXPR_IS_CONSTEXPR (init) = true;
|
553 |
|
|
VEC_INIT_EXPR_VALUE_INIT (init) = value_init;
|
554 |
|
|
|
555 |
|
|
return init;
|
556 |
|
|
}
|
557 |
|
|
|
558 |
|
|
/* Give a helpful diagnostic for a non-constexpr VEC_INIT_EXPR in a context
|
559 |
|
|
that requires a constant expression. */
|
560 |
|
|
|
561 |
|
|
void
|
562 |
|
|
diagnose_non_constexpr_vec_init (tree expr)
|
563 |
|
|
{
|
564 |
|
|
tree type = TREE_TYPE (VEC_INIT_EXPR_SLOT (expr));
|
565 |
|
|
tree init, elt_init;
|
566 |
|
|
if (VEC_INIT_EXPR_VALUE_INIT (expr))
|
567 |
|
|
init = void_type_node;
|
568 |
|
|
else
|
569 |
|
|
init = VEC_INIT_EXPR_INIT (expr);
|
570 |
|
|
|
571 |
|
|
elt_init = build_vec_init_elt (type, init, tf_warning_or_error);
|
572 |
|
|
require_potential_constant_expression (elt_init);
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
tree
|
576 |
|
|
build_array_copy (tree init)
|
577 |
|
|
{
|
578 |
|
|
return build_vec_init_expr (TREE_TYPE (init), init, tf_warning_or_error);
|
579 |
|
|
}
|
580 |
|
|
|
581 |
|
|
/* Build a TARGET_EXPR using INIT to initialize a new temporary of the
|
582 |
|
|
indicated TYPE. */
|
583 |
|
|
|
584 |
|
|
tree
|
585 |
|
|
build_target_expr_with_type (tree init, tree type, tsubst_flags_t complain)
|
586 |
|
|
{
|
587 |
|
|
gcc_assert (!VOID_TYPE_P (type));
|
588 |
|
|
|
589 |
|
|
if (TREE_CODE (init) == TARGET_EXPR
|
590 |
|
|
|| init == error_mark_node)
|
591 |
|
|
return init;
|
592 |
|
|
else if (CLASS_TYPE_P (type) && type_has_nontrivial_copy_init (type)
|
593 |
|
|
&& !VOID_TYPE_P (TREE_TYPE (init))
|
594 |
|
|
&& TREE_CODE (init) != COND_EXPR
|
595 |
|
|
&& TREE_CODE (init) != CONSTRUCTOR
|
596 |
|
|
&& TREE_CODE (init) != VA_ARG_EXPR)
|
597 |
|
|
/* We need to build up a copy constructor call. A void initializer
|
598 |
|
|
means we're being called from bot_manip. COND_EXPR is a special
|
599 |
|
|
case because we already have copies on the arms and we don't want
|
600 |
|
|
another one here. A CONSTRUCTOR is aggregate initialization, which
|
601 |
|
|
is handled separately. A VA_ARG_EXPR is magic creation of an
|
602 |
|
|
aggregate; there's no additional work to be done. */
|
603 |
|
|
return force_rvalue (init, complain);
|
604 |
|
|
|
605 |
|
|
return force_target_expr (type, init, complain);
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* Like the above function, but without the checking. This function should
|
609 |
|
|
only be used by code which is deliberately trying to subvert the type
|
610 |
|
|
system, such as call_builtin_trap. Or build_over_call, to avoid
|
611 |
|
|
infinite recursion. */
|
612 |
|
|
|
613 |
|
|
tree
|
614 |
|
|
force_target_expr (tree type, tree init, tsubst_flags_t complain)
|
615 |
|
|
{
|
616 |
|
|
tree slot;
|
617 |
|
|
|
618 |
|
|
gcc_assert (!VOID_TYPE_P (type));
|
619 |
|
|
|
620 |
|
|
slot = build_local_temp (type);
|
621 |
|
|
return build_target_expr (slot, init, complain);
|
622 |
|
|
}
|
623 |
|
|
|
624 |
|
|
/* Like build_target_expr_with_type, but use the type of INIT. */
|
625 |
|
|
|
626 |
|
|
tree
|
627 |
|
|
get_target_expr_sfinae (tree init, tsubst_flags_t complain)
|
628 |
|
|
{
|
629 |
|
|
if (TREE_CODE (init) == AGGR_INIT_EXPR)
|
630 |
|
|
return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init, complain);
|
631 |
|
|
else if (TREE_CODE (init) == VEC_INIT_EXPR)
|
632 |
|
|
return build_target_expr (VEC_INIT_EXPR_SLOT (init), init, complain);
|
633 |
|
|
else
|
634 |
|
|
return build_target_expr_with_type (init, TREE_TYPE (init), complain);
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
tree
|
638 |
|
|
get_target_expr (tree init)
|
639 |
|
|
{
|
640 |
|
|
return get_target_expr_sfinae (init, tf_warning_or_error);
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
/* If EXPR is a bitfield reference, convert it to the declared type of
|
644 |
|
|
the bitfield, and return the resulting expression. Otherwise,
|
645 |
|
|
return EXPR itself. */
|
646 |
|
|
|
647 |
|
|
tree
|
648 |
|
|
convert_bitfield_to_declared_type (tree expr)
|
649 |
|
|
{
|
650 |
|
|
tree bitfield_type;
|
651 |
|
|
|
652 |
|
|
bitfield_type = is_bitfield_expr_with_lowered_type (expr);
|
653 |
|
|
if (bitfield_type)
|
654 |
|
|
expr = convert_to_integer (TYPE_MAIN_VARIANT (bitfield_type),
|
655 |
|
|
expr);
|
656 |
|
|
return expr;
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
/* EXPR is being used in an rvalue context. Return a version of EXPR
|
660 |
|
|
that is marked as an rvalue. */
|
661 |
|
|
|
662 |
|
|
tree
|
663 |
|
|
rvalue (tree expr)
|
664 |
|
|
{
|
665 |
|
|
tree type;
|
666 |
|
|
|
667 |
|
|
if (error_operand_p (expr))
|
668 |
|
|
return expr;
|
669 |
|
|
|
670 |
|
|
expr = mark_rvalue_use (expr);
|
671 |
|
|
|
672 |
|
|
/* [basic.lval]
|
673 |
|
|
|
674 |
|
|
Non-class rvalues always have cv-unqualified types. */
|
675 |
|
|
type = TREE_TYPE (expr);
|
676 |
|
|
if (!CLASS_TYPE_P (type) && cv_qualified_p (type))
|
677 |
|
|
type = cv_unqualified (type);
|
678 |
|
|
|
679 |
|
|
/* We need to do this for rvalue refs as well to get the right answer
|
680 |
|
|
from decltype; see c++/36628. */
|
681 |
|
|
if (!processing_template_decl && lvalue_or_rvalue_with_address_p (expr))
|
682 |
|
|
expr = build1 (NON_LVALUE_EXPR, type, expr);
|
683 |
|
|
else if (type != TREE_TYPE (expr))
|
684 |
|
|
expr = build_nop (type, expr);
|
685 |
|
|
|
686 |
|
|
return expr;
|
687 |
|
|
}
|
688 |
|
|
|
689 |
|
|
|
690 |
|
|
/* Hash an ARRAY_TYPE. K is really of type `tree'. */
|
691 |
|
|
|
692 |
|
|
static hashval_t
|
693 |
|
|
cplus_array_hash (const void* k)
|
694 |
|
|
{
|
695 |
|
|
hashval_t hash;
|
696 |
|
|
const_tree const t = (const_tree) k;
|
697 |
|
|
|
698 |
|
|
hash = TYPE_UID (TREE_TYPE (t));
|
699 |
|
|
if (TYPE_DOMAIN (t))
|
700 |
|
|
hash ^= TYPE_UID (TYPE_DOMAIN (t));
|
701 |
|
|
return hash;
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
typedef struct cplus_array_info {
|
705 |
|
|
tree type;
|
706 |
|
|
tree domain;
|
707 |
|
|
} cplus_array_info;
|
708 |
|
|
|
709 |
|
|
/* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really
|
710 |
|
|
of type `cplus_array_info*'. */
|
711 |
|
|
|
712 |
|
|
static int
|
713 |
|
|
cplus_array_compare (const void * k1, const void * k2)
|
714 |
|
|
{
|
715 |
|
|
const_tree const t1 = (const_tree) k1;
|
716 |
|
|
const cplus_array_info *const t2 = (const cplus_array_info*) k2;
|
717 |
|
|
|
718 |
|
|
return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain);
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
/* Hash table containing dependent array types, which are unsuitable for
|
722 |
|
|
the language-independent type hash table. */
|
723 |
|
|
static GTY ((param_is (union tree_node))) htab_t cplus_array_htab;
|
724 |
|
|
|
725 |
|
|
/* Like build_array_type, but handle special C++ semantics. */
|
726 |
|
|
|
727 |
|
|
tree
|
728 |
|
|
build_cplus_array_type (tree elt_type, tree index_type)
|
729 |
|
|
{
|
730 |
|
|
tree t;
|
731 |
|
|
|
732 |
|
|
if (elt_type == error_mark_node || index_type == error_mark_node)
|
733 |
|
|
return error_mark_node;
|
734 |
|
|
|
735 |
|
|
if (processing_template_decl
|
736 |
|
|
&& (dependent_type_p (elt_type)
|
737 |
|
|
|| (index_type && !TREE_CONSTANT (TYPE_MAX_VALUE (index_type)))))
|
738 |
|
|
{
|
739 |
|
|
void **e;
|
740 |
|
|
cplus_array_info cai;
|
741 |
|
|
hashval_t hash;
|
742 |
|
|
|
743 |
|
|
if (cplus_array_htab == NULL)
|
744 |
|
|
cplus_array_htab = htab_create_ggc (61, &cplus_array_hash,
|
745 |
|
|
&cplus_array_compare, NULL);
|
746 |
|
|
|
747 |
|
|
hash = TYPE_UID (elt_type);
|
748 |
|
|
if (index_type)
|
749 |
|
|
hash ^= TYPE_UID (index_type);
|
750 |
|
|
cai.type = elt_type;
|
751 |
|
|
cai.domain = index_type;
|
752 |
|
|
|
753 |
|
|
e = htab_find_slot_with_hash (cplus_array_htab, &cai, hash, INSERT);
|
754 |
|
|
if (*e)
|
755 |
|
|
/* We have found the type: we're done. */
|
756 |
|
|
return (tree) *e;
|
757 |
|
|
else
|
758 |
|
|
{
|
759 |
|
|
/* Build a new array type. */
|
760 |
|
|
t = cxx_make_type (ARRAY_TYPE);
|
761 |
|
|
TREE_TYPE (t) = elt_type;
|
762 |
|
|
TYPE_DOMAIN (t) = index_type;
|
763 |
|
|
|
764 |
|
|
/* Store it in the hash table. */
|
765 |
|
|
*e = t;
|
766 |
|
|
|
767 |
|
|
/* Set the canonical type for this new node. */
|
768 |
|
|
if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
|
769 |
|
|
|| (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
|
770 |
|
|
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
771 |
|
|
else if (TYPE_CANONICAL (elt_type) != elt_type
|
772 |
|
|
|| (index_type
|
773 |
|
|
&& TYPE_CANONICAL (index_type) != index_type))
|
774 |
|
|
TYPE_CANONICAL (t)
|
775 |
|
|
= build_cplus_array_type
|
776 |
|
|
(TYPE_CANONICAL (elt_type),
|
777 |
|
|
index_type ? TYPE_CANONICAL (index_type) : index_type);
|
778 |
|
|
else
|
779 |
|
|
TYPE_CANONICAL (t) = t;
|
780 |
|
|
}
|
781 |
|
|
}
|
782 |
|
|
else
|
783 |
|
|
t = build_array_type (elt_type, index_type);
|
784 |
|
|
|
785 |
|
|
/* We want TYPE_MAIN_VARIANT of an array to strip cv-quals from the
|
786 |
|
|
element type as well, so fix it up if needed. */
|
787 |
|
|
if (elt_type != TYPE_MAIN_VARIANT (elt_type))
|
788 |
|
|
{
|
789 |
|
|
tree m = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type),
|
790 |
|
|
index_type);
|
791 |
|
|
if (TYPE_MAIN_VARIANT (t) != m)
|
792 |
|
|
{
|
793 |
|
|
TYPE_MAIN_VARIANT (t) = m;
|
794 |
|
|
TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
|
795 |
|
|
TYPE_NEXT_VARIANT (m) = t;
|
796 |
|
|
}
|
797 |
|
|
}
|
798 |
|
|
|
799 |
|
|
/* Push these needs up so that initialization takes place
|
800 |
|
|
more easily. */
|
801 |
|
|
TYPE_NEEDS_CONSTRUCTING (t)
|
802 |
|
|
= TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type));
|
803 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
804 |
|
|
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type));
|
805 |
|
|
return t;
|
806 |
|
|
}
|
807 |
|
|
|
808 |
|
|
/* Return an ARRAY_TYPE with element type ELT and length N. */
|
809 |
|
|
|
810 |
|
|
tree
|
811 |
|
|
build_array_of_n_type (tree elt, int n)
|
812 |
|
|
{
|
813 |
|
|
return build_cplus_array_type (elt, build_index_type (size_int (n - 1)));
|
814 |
|
|
}
|
815 |
|
|
|
816 |
|
|
/* Return a reference type node referring to TO_TYPE. If RVAL is
|
817 |
|
|
true, return an rvalue reference type, otherwise return an lvalue
|
818 |
|
|
reference type. If a type node exists, reuse it, otherwise create
|
819 |
|
|
a new one. */
|
820 |
|
|
tree
|
821 |
|
|
cp_build_reference_type (tree to_type, bool rval)
|
822 |
|
|
{
|
823 |
|
|
tree lvalue_ref, t;
|
824 |
|
|
lvalue_ref = build_reference_type (to_type);
|
825 |
|
|
if (!rval)
|
826 |
|
|
return lvalue_ref;
|
827 |
|
|
|
828 |
|
|
/* This code to create rvalue reference types is based on and tied
|
829 |
|
|
to the code creating lvalue reference types in the middle-end
|
830 |
|
|
functions build_reference_type_for_mode and build_reference_type.
|
831 |
|
|
|
832 |
|
|
It works by putting the rvalue reference type nodes after the
|
833 |
|
|
lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so
|
834 |
|
|
they will effectively be ignored by the middle end. */
|
835 |
|
|
|
836 |
|
|
for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); )
|
837 |
|
|
if (TYPE_REF_IS_RVALUE (t))
|
838 |
|
|
return t;
|
839 |
|
|
|
840 |
|
|
t = build_distinct_type_copy (lvalue_ref);
|
841 |
|
|
|
842 |
|
|
TYPE_REF_IS_RVALUE (t) = true;
|
843 |
|
|
TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref);
|
844 |
|
|
TYPE_NEXT_REF_TO (lvalue_ref) = t;
|
845 |
|
|
|
846 |
|
|
if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
|
847 |
|
|
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
848 |
|
|
else if (TYPE_CANONICAL (to_type) != to_type)
|
849 |
|
|
TYPE_CANONICAL (t)
|
850 |
|
|
= cp_build_reference_type (TYPE_CANONICAL (to_type), rval);
|
851 |
|
|
else
|
852 |
|
|
TYPE_CANONICAL (t) = t;
|
853 |
|
|
|
854 |
|
|
layout_type (t);
|
855 |
|
|
|
856 |
|
|
return t;
|
857 |
|
|
|
858 |
|
|
}
|
859 |
|
|
|
860 |
|
|
/* Returns EXPR cast to rvalue reference type, like std::move. */
|
861 |
|
|
|
862 |
|
|
tree
|
863 |
|
|
move (tree expr)
|
864 |
|
|
{
|
865 |
|
|
tree type = TREE_TYPE (expr);
|
866 |
|
|
gcc_assert (TREE_CODE (type) != REFERENCE_TYPE);
|
867 |
|
|
type = cp_build_reference_type (type, /*rval*/true);
|
868 |
|
|
return build_static_cast (type, expr, tf_warning_or_error);
|
869 |
|
|
}
|
870 |
|
|
|
871 |
|
|
/* Used by the C++ front end to build qualified array types. However,
|
872 |
|
|
the C version of this function does not properly maintain canonical
|
873 |
|
|
types (which are not used in C). */
|
874 |
|
|
tree
|
875 |
|
|
c_build_qualified_type (tree type, int type_quals)
|
876 |
|
|
{
|
877 |
|
|
return cp_build_qualified_type (type, type_quals);
|
878 |
|
|
}
|
879 |
|
|
|
880 |
|
|
|
881 |
|
|
/* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
|
882 |
|
|
arrays correctly. In particular, if TYPE is an array of T's, and
|
883 |
|
|
TYPE_QUALS is non-empty, returns an array of qualified T's.
|
884 |
|
|
|
885 |
|
|
FLAGS determines how to deal with ill-formed qualifications. If
|
886 |
|
|
tf_ignore_bad_quals is set, then bad qualifications are dropped
|
887 |
|
|
(this is permitted if TYPE was introduced via a typedef or template
|
888 |
|
|
type parameter). If bad qualifications are dropped and tf_warning
|
889 |
|
|
is set, then a warning is issued for non-const qualifications. If
|
890 |
|
|
tf_ignore_bad_quals is not set and tf_error is not set, we
|
891 |
|
|
return error_mark_node. Otherwise, we issue an error, and ignore
|
892 |
|
|
the qualifications.
|
893 |
|
|
|
894 |
|
|
Qualification of a reference type is valid when the reference came
|
895 |
|
|
via a typedef or template type argument. [dcl.ref] No such
|
896 |
|
|
dispensation is provided for qualifying a function type. [dcl.fct]
|
897 |
|
|
DR 295 queries this and the proposed resolution brings it into line
|
898 |
|
|
with qualifying a reference. We implement the DR. We also behave
|
899 |
|
|
in a similar manner for restricting non-pointer types. */
|
900 |
|
|
|
901 |
|
|
tree
|
902 |
|
|
cp_build_qualified_type_real (tree type,
|
903 |
|
|
int type_quals,
|
904 |
|
|
tsubst_flags_t complain)
|
905 |
|
|
{
|
906 |
|
|
tree result;
|
907 |
|
|
int bad_quals = TYPE_UNQUALIFIED;
|
908 |
|
|
|
909 |
|
|
if (type == error_mark_node)
|
910 |
|
|
return type;
|
911 |
|
|
|
912 |
|
|
if (type_quals == cp_type_quals (type))
|
913 |
|
|
return type;
|
914 |
|
|
|
915 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
916 |
|
|
{
|
917 |
|
|
/* In C++, the qualification really applies to the array element
|
918 |
|
|
type. Obtain the appropriately qualified element type. */
|
919 |
|
|
tree t;
|
920 |
|
|
tree element_type
|
921 |
|
|
= cp_build_qualified_type_real (TREE_TYPE (type),
|
922 |
|
|
type_quals,
|
923 |
|
|
complain);
|
924 |
|
|
|
925 |
|
|
if (element_type == error_mark_node)
|
926 |
|
|
return error_mark_node;
|
927 |
|
|
|
928 |
|
|
/* See if we already have an identically qualified type. Tests
|
929 |
|
|
should be equivalent to those in check_qualified_type. */
|
930 |
|
|
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
931 |
|
|
if (TREE_TYPE (t) == element_type
|
932 |
|
|
&& TYPE_NAME (t) == TYPE_NAME (type)
|
933 |
|
|
&& TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
|
934 |
|
|
&& attribute_list_equal (TYPE_ATTRIBUTES (t),
|
935 |
|
|
TYPE_ATTRIBUTES (type)))
|
936 |
|
|
break;
|
937 |
|
|
|
938 |
|
|
if (!t)
|
939 |
|
|
{
|
940 |
|
|
t = build_cplus_array_type (element_type, TYPE_DOMAIN (type));
|
941 |
|
|
|
942 |
|
|
/* Keep the typedef name. */
|
943 |
|
|
if (TYPE_NAME (t) != TYPE_NAME (type))
|
944 |
|
|
{
|
945 |
|
|
t = build_variant_type_copy (t);
|
946 |
|
|
TYPE_NAME (t) = TYPE_NAME (type);
|
947 |
|
|
}
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
/* Even if we already had this variant, we update
|
951 |
|
|
TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
|
952 |
|
|
they changed since the variant was originally created.
|
953 |
|
|
|
954 |
|
|
This seems hokey; if there is some way to use a previous
|
955 |
|
|
variant *without* coming through here,
|
956 |
|
|
TYPE_NEEDS_CONSTRUCTING will never be updated. */
|
957 |
|
|
TYPE_NEEDS_CONSTRUCTING (t)
|
958 |
|
|
= TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
|
959 |
|
|
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
960 |
|
|
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
|
961 |
|
|
return t;
|
962 |
|
|
}
|
963 |
|
|
else if (TYPE_PTRMEMFUNC_P (type))
|
964 |
|
|
{
|
965 |
|
|
/* For a pointer-to-member type, we can't just return a
|
966 |
|
|
cv-qualified version of the RECORD_TYPE. If we do, we
|
967 |
|
|
haven't changed the field that contains the actual pointer to
|
968 |
|
|
a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */
|
969 |
|
|
tree t;
|
970 |
|
|
|
971 |
|
|
t = TYPE_PTRMEMFUNC_FN_TYPE (type);
|
972 |
|
|
t = cp_build_qualified_type_real (t, type_quals, complain);
|
973 |
|
|
return build_ptrmemfunc_type (t);
|
974 |
|
|
}
|
975 |
|
|
else if (TREE_CODE (type) == TYPE_PACK_EXPANSION)
|
976 |
|
|
{
|
977 |
|
|
tree t = PACK_EXPANSION_PATTERN (type);
|
978 |
|
|
|
979 |
|
|
t = cp_build_qualified_type_real (t, type_quals, complain);
|
980 |
|
|
return make_pack_expansion (t);
|
981 |
|
|
}
|
982 |
|
|
|
983 |
|
|
/* A reference or method type shall not be cv-qualified.
|
984 |
|
|
[dcl.ref], [dcl.fct]. This used to be an error, but as of DR 295
|
985 |
|
|
(in CD1) we always ignore extra cv-quals on functions. */
|
986 |
|
|
if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
|
987 |
|
|
&& (TREE_CODE (type) == REFERENCE_TYPE
|
988 |
|
|
|| TREE_CODE (type) == FUNCTION_TYPE
|
989 |
|
|
|| TREE_CODE (type) == METHOD_TYPE))
|
990 |
|
|
{
|
991 |
|
|
if (TREE_CODE (type) == REFERENCE_TYPE)
|
992 |
|
|
bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
|
993 |
|
|
type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
|
994 |
|
|
}
|
995 |
|
|
|
996 |
|
|
/* But preserve any function-cv-quals on a FUNCTION_TYPE. */
|
997 |
|
|
if (TREE_CODE (type) == FUNCTION_TYPE)
|
998 |
|
|
type_quals |= type_memfn_quals (type);
|
999 |
|
|
|
1000 |
|
|
/* A restrict-qualified type must be a pointer (or reference)
|
1001 |
|
|
to object or incomplete type. */
|
1002 |
|
|
if ((type_quals & TYPE_QUAL_RESTRICT)
|
1003 |
|
|
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM
|
1004 |
|
|
&& TREE_CODE (type) != TYPENAME_TYPE
|
1005 |
|
|
&& !POINTER_TYPE_P (type))
|
1006 |
|
|
{
|
1007 |
|
|
bad_quals |= TYPE_QUAL_RESTRICT;
|
1008 |
|
|
type_quals &= ~TYPE_QUAL_RESTRICT;
|
1009 |
|
|
}
|
1010 |
|
|
|
1011 |
|
|
if (bad_quals == TYPE_UNQUALIFIED
|
1012 |
|
|
|| (complain & tf_ignore_bad_quals))
|
1013 |
|
|
/*OK*/;
|
1014 |
|
|
else if (!(complain & tf_error))
|
1015 |
|
|
return error_mark_node;
|
1016 |
|
|
else
|
1017 |
|
|
{
|
1018 |
|
|
tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
|
1019 |
|
|
error ("%qV qualifiers cannot be applied to %qT",
|
1020 |
|
|
bad_type, type);
|
1021 |
|
|
}
|
1022 |
|
|
|
1023 |
|
|
/* Retrieve (or create) the appropriately qualified variant. */
|
1024 |
|
|
result = build_qualified_type (type, type_quals);
|
1025 |
|
|
|
1026 |
|
|
/* If this was a pointer-to-method type, and we just made a copy,
|
1027 |
|
|
then we need to unshare the record that holds the cached
|
1028 |
|
|
pointer-to-member-function type, because these will be distinct
|
1029 |
|
|
between the unqualified and qualified types. */
|
1030 |
|
|
if (result != type
|
1031 |
|
|
&& TREE_CODE (type) == POINTER_TYPE
|
1032 |
|
|
&& TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE
|
1033 |
|
|
&& TYPE_LANG_SPECIFIC (result) == TYPE_LANG_SPECIFIC (type))
|
1034 |
|
|
TYPE_LANG_SPECIFIC (result) = NULL;
|
1035 |
|
|
|
1036 |
|
|
/* We may also have ended up building a new copy of the canonical
|
1037 |
|
|
type of a pointer-to-method type, which could have the same
|
1038 |
|
|
sharing problem described above. */
|
1039 |
|
|
if (TYPE_CANONICAL (result) != TYPE_CANONICAL (type)
|
1040 |
|
|
&& TREE_CODE (type) == POINTER_TYPE
|
1041 |
|
|
&& TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE
|
1042 |
|
|
&& (TYPE_LANG_SPECIFIC (TYPE_CANONICAL (result))
|
1043 |
|
|
== TYPE_LANG_SPECIFIC (TYPE_CANONICAL (type))))
|
1044 |
|
|
TYPE_LANG_SPECIFIC (TYPE_CANONICAL (result)) = NULL;
|
1045 |
|
|
|
1046 |
|
|
return result;
|
1047 |
|
|
}
|
1048 |
|
|
|
1049 |
|
|
/* Return TYPE with const and volatile removed. */
|
1050 |
|
|
|
1051 |
|
|
tree
|
1052 |
|
|
cv_unqualified (tree type)
|
1053 |
|
|
{
|
1054 |
|
|
int quals;
|
1055 |
|
|
|
1056 |
|
|
if (type == error_mark_node)
|
1057 |
|
|
return type;
|
1058 |
|
|
|
1059 |
|
|
quals = cp_type_quals (type);
|
1060 |
|
|
quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE);
|
1061 |
|
|
return cp_build_qualified_type (type, quals);
|
1062 |
|
|
}
|
1063 |
|
|
|
1064 |
|
|
/* Builds a qualified variant of T that is not a typedef variant.
|
1065 |
|
|
E.g. consider the following declarations:
|
1066 |
|
|
typedef const int ConstInt;
|
1067 |
|
|
typedef ConstInt* PtrConstInt;
|
1068 |
|
|
If T is PtrConstInt, this function returns a type representing
|
1069 |
|
|
const int*.
|
1070 |
|
|
In other words, if T is a typedef, the function returns the underlying type.
|
1071 |
|
|
The cv-qualification and attributes of the type returned match the
|
1072 |
|
|
input type.
|
1073 |
|
|
They will always be compatible types.
|
1074 |
|
|
The returned type is built so that all of its subtypes
|
1075 |
|
|
recursively have their typedefs stripped as well.
|
1076 |
|
|
|
1077 |
|
|
This is different from just returning TYPE_CANONICAL (T)
|
1078 |
|
|
Because of several reasons:
|
1079 |
|
|
* If T is a type that needs structural equality
|
1080 |
|
|
its TYPE_CANONICAL (T) will be NULL.
|
1081 |
|
|
* TYPE_CANONICAL (T) desn't carry type attributes
|
1082 |
|
|
and looses template parameter names. */
|
1083 |
|
|
|
1084 |
|
|
tree
|
1085 |
|
|
strip_typedefs (tree t)
|
1086 |
|
|
{
|
1087 |
|
|
tree result = NULL, type = NULL, t0 = NULL;
|
1088 |
|
|
|
1089 |
|
|
if (!t || t == error_mark_node || t == TYPE_CANONICAL (t))
|
1090 |
|
|
return t;
|
1091 |
|
|
|
1092 |
|
|
gcc_assert (TYPE_P (t));
|
1093 |
|
|
|
1094 |
|
|
switch (TREE_CODE (t))
|
1095 |
|
|
{
|
1096 |
|
|
case POINTER_TYPE:
|
1097 |
|
|
type = strip_typedefs (TREE_TYPE (t));
|
1098 |
|
|
result = build_pointer_type (type);
|
1099 |
|
|
break;
|
1100 |
|
|
case REFERENCE_TYPE:
|
1101 |
|
|
type = strip_typedefs (TREE_TYPE (t));
|
1102 |
|
|
result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t));
|
1103 |
|
|
break;
|
1104 |
|
|
case OFFSET_TYPE:
|
1105 |
|
|
t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t));
|
1106 |
|
|
type = strip_typedefs (TREE_TYPE (t));
|
1107 |
|
|
result = build_offset_type (t0, type);
|
1108 |
|
|
break;
|
1109 |
|
|
case RECORD_TYPE:
|
1110 |
|
|
if (TYPE_PTRMEMFUNC_P (t))
|
1111 |
|
|
{
|
1112 |
|
|
t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t));
|
1113 |
|
|
result = build_ptrmemfunc_type (t0);
|
1114 |
|
|
}
|
1115 |
|
|
break;
|
1116 |
|
|
case ARRAY_TYPE:
|
1117 |
|
|
type = strip_typedefs (TREE_TYPE (t));
|
1118 |
|
|
t0 = strip_typedefs (TYPE_DOMAIN (t));;
|
1119 |
|
|
result = build_cplus_array_type (type, t0);
|
1120 |
|
|
break;
|
1121 |
|
|
case FUNCTION_TYPE:
|
1122 |
|
|
case METHOD_TYPE:
|
1123 |
|
|
{
|
1124 |
|
|
tree arg_types = NULL, arg_node, arg_type;
|
1125 |
|
|
for (arg_node = TYPE_ARG_TYPES (t);
|
1126 |
|
|
arg_node;
|
1127 |
|
|
arg_node = TREE_CHAIN (arg_node))
|
1128 |
|
|
{
|
1129 |
|
|
if (arg_node == void_list_node)
|
1130 |
|
|
break;
|
1131 |
|
|
arg_type = strip_typedefs (TREE_VALUE (arg_node));
|
1132 |
|
|
gcc_assert (arg_type);
|
1133 |
|
|
|
1134 |
|
|
arg_types =
|
1135 |
|
|
tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types);
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
if (arg_types)
|
1139 |
|
|
arg_types = nreverse (arg_types);
|
1140 |
|
|
|
1141 |
|
|
/* A list of parameters not ending with an ellipsis
|
1142 |
|
|
must end with void_list_node. */
|
1143 |
|
|
if (arg_node)
|
1144 |
|
|
arg_types = chainon (arg_types, void_list_node);
|
1145 |
|
|
|
1146 |
|
|
type = strip_typedefs (TREE_TYPE (t));
|
1147 |
|
|
if (TREE_CODE (t) == METHOD_TYPE)
|
1148 |
|
|
{
|
1149 |
|
|
tree class_type = TREE_TYPE (TREE_VALUE (arg_types));
|
1150 |
|
|
gcc_assert (class_type);
|
1151 |
|
|
result =
|
1152 |
|
|
build_method_type_directly (class_type, type,
|
1153 |
|
|
TREE_CHAIN (arg_types));
|
1154 |
|
|
}
|
1155 |
|
|
else
|
1156 |
|
|
{
|
1157 |
|
|
result = build_function_type (type,
|
1158 |
|
|
arg_types);
|
1159 |
|
|
result = apply_memfn_quals (result, type_memfn_quals (t));
|
1160 |
|
|
}
|
1161 |
|
|
|
1162 |
|
|
if (TYPE_RAISES_EXCEPTIONS (t))
|
1163 |
|
|
result = build_exception_variant (result,
|
1164 |
|
|
TYPE_RAISES_EXCEPTIONS (t));
|
1165 |
|
|
}
|
1166 |
|
|
break;
|
1167 |
|
|
case TYPENAME_TYPE:
|
1168 |
|
|
result = make_typename_type (strip_typedefs (TYPE_CONTEXT (t)),
|
1169 |
|
|
TYPENAME_TYPE_FULLNAME (t),
|
1170 |
|
|
typename_type, tf_none);
|
1171 |
|
|
break;
|
1172 |
|
|
default:
|
1173 |
|
|
break;
|
1174 |
|
|
}
|
1175 |
|
|
|
1176 |
|
|
if (!result)
|
1177 |
|
|
result = TYPE_MAIN_VARIANT (t);
|
1178 |
|
|
if (TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (result)
|
1179 |
|
|
|| TYPE_ALIGN (t) != TYPE_ALIGN (result))
|
1180 |
|
|
{
|
1181 |
|
|
gcc_assert (TYPE_USER_ALIGN (t));
|
1182 |
|
|
if (TYPE_ALIGN (t) == TYPE_ALIGN (result))
|
1183 |
|
|
result = build_variant_type_copy (result);
|
1184 |
|
|
else
|
1185 |
|
|
result = build_aligned_type (result, TYPE_ALIGN (t));
|
1186 |
|
|
TYPE_USER_ALIGN (result) = true;
|
1187 |
|
|
}
|
1188 |
|
|
if (TYPE_ATTRIBUTES (t))
|
1189 |
|
|
result = cp_build_type_attribute_variant (result, TYPE_ATTRIBUTES (t));
|
1190 |
|
|
return cp_build_qualified_type (result, cp_type_quals (t));
|
1191 |
|
|
}
|
1192 |
|
|
|
1193 |
|
|
/* Makes a copy of BINFO and TYPE, which is to be inherited into a
|
1194 |
|
|
graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
|
1195 |
|
|
and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
|
1196 |
|
|
VIRT indicates whether TYPE is inherited virtually or not.
|
1197 |
|
|
IGO_PREV points at the previous binfo of the inheritance graph
|
1198 |
|
|
order chain. The newly copied binfo's TREE_CHAIN forms this
|
1199 |
|
|
ordering.
|
1200 |
|
|
|
1201 |
|
|
The CLASSTYPE_VBASECLASSES vector of T is constructed in the
|
1202 |
|
|
correct order. That is in the order the bases themselves should be
|
1203 |
|
|
constructed in.
|
1204 |
|
|
|
1205 |
|
|
The BINFO_INHERITANCE of a virtual base class points to the binfo
|
1206 |
|
|
of the most derived type. ??? We could probably change this so that
|
1207 |
|
|
BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
|
1208 |
|
|
remove a field. They currently can only differ for primary virtual
|
1209 |
|
|
virtual bases. */
|
1210 |
|
|
|
1211 |
|
|
tree
|
1212 |
|
|
copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
|
1213 |
|
|
{
|
1214 |
|
|
tree new_binfo;
|
1215 |
|
|
|
1216 |
|
|
if (virt)
|
1217 |
|
|
{
|
1218 |
|
|
/* See if we've already made this virtual base. */
|
1219 |
|
|
new_binfo = binfo_for_vbase (type, t);
|
1220 |
|
|
if (new_binfo)
|
1221 |
|
|
return new_binfo;
|
1222 |
|
|
}
|
1223 |
|
|
|
1224 |
|
|
new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
|
1225 |
|
|
BINFO_TYPE (new_binfo) = type;
|
1226 |
|
|
|
1227 |
|
|
/* Chain it into the inheritance graph. */
|
1228 |
|
|
TREE_CHAIN (*igo_prev) = new_binfo;
|
1229 |
|
|
*igo_prev = new_binfo;
|
1230 |
|
|
|
1231 |
|
|
if (binfo)
|
1232 |
|
|
{
|
1233 |
|
|
int ix;
|
1234 |
|
|
tree base_binfo;
|
1235 |
|
|
|
1236 |
|
|
gcc_assert (!BINFO_DEPENDENT_BASE_P (binfo));
|
1237 |
|
|
gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
|
1238 |
|
|
|
1239 |
|
|
BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
|
1240 |
|
|
BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
|
1241 |
|
|
|
1242 |
|
|
/* We do not need to copy the accesses, as they are read only. */
|
1243 |
|
|
BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
|
1244 |
|
|
|
1245 |
|
|
/* Recursively copy base binfos of BINFO. */
|
1246 |
|
|
for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
|
1247 |
|
|
{
|
1248 |
|
|
tree new_base_binfo;
|
1249 |
|
|
|
1250 |
|
|
gcc_assert (!BINFO_DEPENDENT_BASE_P (base_binfo));
|
1251 |
|
|
new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
|
1252 |
|
|
t, igo_prev,
|
1253 |
|
|
BINFO_VIRTUAL_P (base_binfo));
|
1254 |
|
|
|
1255 |
|
|
if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
|
1256 |
|
|
BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
|
1257 |
|
|
BINFO_BASE_APPEND (new_binfo, new_base_binfo);
|
1258 |
|
|
}
|
1259 |
|
|
}
|
1260 |
|
|
else
|
1261 |
|
|
BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
|
1262 |
|
|
|
1263 |
|
|
if (virt)
|
1264 |
|
|
{
|
1265 |
|
|
/* Push it onto the list after any virtual bases it contains
|
1266 |
|
|
will have been pushed. */
|
1267 |
|
|
VEC_quick_push (tree, CLASSTYPE_VBASECLASSES (t), new_binfo);
|
1268 |
|
|
BINFO_VIRTUAL_P (new_binfo) = 1;
|
1269 |
|
|
BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
|
1270 |
|
|
}
|
1271 |
|
|
|
1272 |
|
|
return new_binfo;
|
1273 |
|
|
}
|
1274 |
|
|
|
1275 |
|
|
/* Hashing of lists so that we don't make duplicates.
|
1276 |
|
|
The entry point is `list_hash_canon'. */
|
1277 |
|
|
|
1278 |
|
|
/* Now here is the hash table. When recording a list, it is added
|
1279 |
|
|
to the slot whose index is the hash code mod the table size.
|
1280 |
|
|
Note that the hash table is used for several kinds of lists.
|
1281 |
|
|
While all these live in the same table, they are completely independent,
|
1282 |
|
|
and the hash code is computed differently for each of these. */
|
1283 |
|
|
|
1284 |
|
|
static GTY ((param_is (union tree_node))) htab_t list_hash_table;
|
1285 |
|
|
|
1286 |
|
|
struct list_proxy
|
1287 |
|
|
{
|
1288 |
|
|
tree purpose;
|
1289 |
|
|
tree value;
|
1290 |
|
|
tree chain;
|
1291 |
|
|
};
|
1292 |
|
|
|
1293 |
|
|
/* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
|
1294 |
|
|
for a node we are thinking about adding). */
|
1295 |
|
|
|
1296 |
|
|
static int
|
1297 |
|
|
list_hash_eq (const void* entry, const void* data)
|
1298 |
|
|
{
|
1299 |
|
|
const_tree const t = (const_tree) entry;
|
1300 |
|
|
const struct list_proxy *const proxy = (const struct list_proxy *) data;
|
1301 |
|
|
|
1302 |
|
|
return (TREE_VALUE (t) == proxy->value
|
1303 |
|
|
&& TREE_PURPOSE (t) == proxy->purpose
|
1304 |
|
|
&& TREE_CHAIN (t) == proxy->chain);
|
1305 |
|
|
}
|
1306 |
|
|
|
1307 |
|
|
/* Compute a hash code for a list (chain of TREE_LIST nodes
|
1308 |
|
|
with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
|
1309 |
|
|
TREE_COMMON slots), by adding the hash codes of the individual entries. */
|
1310 |
|
|
|
1311 |
|
|
static hashval_t
|
1312 |
|
|
list_hash_pieces (tree purpose, tree value, tree chain)
|
1313 |
|
|
{
|
1314 |
|
|
hashval_t hashcode = 0;
|
1315 |
|
|
|
1316 |
|
|
if (chain)
|
1317 |
|
|
hashcode += TREE_HASH (chain);
|
1318 |
|
|
|
1319 |
|
|
if (value)
|
1320 |
|
|
hashcode += TREE_HASH (value);
|
1321 |
|
|
else
|
1322 |
|
|
hashcode += 1007;
|
1323 |
|
|
if (purpose)
|
1324 |
|
|
hashcode += TREE_HASH (purpose);
|
1325 |
|
|
else
|
1326 |
|
|
hashcode += 1009;
|
1327 |
|
|
return hashcode;
|
1328 |
|
|
}
|
1329 |
|
|
|
1330 |
|
|
/* Hash an already existing TREE_LIST. */
|
1331 |
|
|
|
1332 |
|
|
static hashval_t
|
1333 |
|
|
list_hash (const void* p)
|
1334 |
|
|
{
|
1335 |
|
|
const_tree const t = (const_tree) p;
|
1336 |
|
|
return list_hash_pieces (TREE_PURPOSE (t),
|
1337 |
|
|
TREE_VALUE (t),
|
1338 |
|
|
TREE_CHAIN (t));
|
1339 |
|
|
}
|
1340 |
|
|
|
1341 |
|
|
/* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
|
1342 |
|
|
object for an identical list if one already exists. Otherwise, build a
|
1343 |
|
|
new one, and record it as the canonical object. */
|
1344 |
|
|
|
1345 |
|
|
tree
|
1346 |
|
|
hash_tree_cons (tree purpose, tree value, tree chain)
|
1347 |
|
|
{
|
1348 |
|
|
int hashcode = 0;
|
1349 |
|
|
void **slot;
|
1350 |
|
|
struct list_proxy proxy;
|
1351 |
|
|
|
1352 |
|
|
/* Hash the list node. */
|
1353 |
|
|
hashcode = list_hash_pieces (purpose, value, chain);
|
1354 |
|
|
/* Create a proxy for the TREE_LIST we would like to create. We
|
1355 |
|
|
don't actually create it so as to avoid creating garbage. */
|
1356 |
|
|
proxy.purpose = purpose;
|
1357 |
|
|
proxy.value = value;
|
1358 |
|
|
proxy.chain = chain;
|
1359 |
|
|
/* See if it is already in the table. */
|
1360 |
|
|
slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode,
|
1361 |
|
|
INSERT);
|
1362 |
|
|
/* If not, create a new node. */
|
1363 |
|
|
if (!*slot)
|
1364 |
|
|
*slot = tree_cons (purpose, value, chain);
|
1365 |
|
|
return (tree) *slot;
|
1366 |
|
|
}
|
1367 |
|
|
|
1368 |
|
|
/* Constructor for hashed lists. */
|
1369 |
|
|
|
1370 |
|
|
tree
|
1371 |
|
|
hash_tree_chain (tree value, tree chain)
|
1372 |
|
|
{
|
1373 |
|
|
return hash_tree_cons (NULL_TREE, value, chain);
|
1374 |
|
|
}
|
1375 |
|
|
|
1376 |
|
|
void
|
1377 |
|
|
debug_binfo (tree elem)
|
1378 |
|
|
{
|
1379 |
|
|
HOST_WIDE_INT n;
|
1380 |
|
|
tree virtuals;
|
1381 |
|
|
|
1382 |
|
|
fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
|
1383 |
|
|
"\nvtable type:\n",
|
1384 |
|
|
TYPE_NAME_STRING (BINFO_TYPE (elem)),
|
1385 |
|
|
TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
|
1386 |
|
|
debug_tree (BINFO_TYPE (elem));
|
1387 |
|
|
if (BINFO_VTABLE (elem))
|
1388 |
|
|
fprintf (stderr, "vtable decl \"%s\"\n",
|
1389 |
|
|
IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
|
1390 |
|
|
else
|
1391 |
|
|
fprintf (stderr, "no vtable decl yet\n");
|
1392 |
|
|
fprintf (stderr, "virtuals:\n");
|
1393 |
|
|
virtuals = BINFO_VIRTUALS (elem);
|
1394 |
|
|
n = 0;
|
1395 |
|
|
|
1396 |
|
|
while (virtuals)
|
1397 |
|
|
{
|
1398 |
|
|
tree fndecl = TREE_VALUE (virtuals);
|
1399 |
|
|
fprintf (stderr, "%s [%ld =? %ld]\n",
|
1400 |
|
|
IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
|
1401 |
|
|
(long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
|
1402 |
|
|
++n;
|
1403 |
|
|
virtuals = TREE_CHAIN (virtuals);
|
1404 |
|
|
}
|
1405 |
|
|
}
|
1406 |
|
|
|
1407 |
|
|
/* Build a representation for the qualified name SCOPE::NAME. TYPE is
|
1408 |
|
|
the type of the result expression, if known, or NULL_TREE if the
|
1409 |
|
|
resulting expression is type-dependent. If TEMPLATE_P is true,
|
1410 |
|
|
NAME is known to be a template because the user explicitly used the
|
1411 |
|
|
"template" keyword after the "::".
|
1412 |
|
|
|
1413 |
|
|
All SCOPE_REFs should be built by use of this function. */
|
1414 |
|
|
|
1415 |
|
|
tree
|
1416 |
|
|
build_qualified_name (tree type, tree scope, tree name, bool template_p)
|
1417 |
|
|
{
|
1418 |
|
|
tree t;
|
1419 |
|
|
if (type == error_mark_node
|
1420 |
|
|
|| scope == error_mark_node
|
1421 |
|
|
|| name == error_mark_node)
|
1422 |
|
|
return error_mark_node;
|
1423 |
|
|
t = build2 (SCOPE_REF, type, scope, name);
|
1424 |
|
|
QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
|
1425 |
|
|
PTRMEM_OK_P (t) = true;
|
1426 |
|
|
if (type)
|
1427 |
|
|
t = convert_from_reference (t);
|
1428 |
|
|
return t;
|
1429 |
|
|
}
|
1430 |
|
|
|
1431 |
|
|
/* Returns nonzero if X is an expression for a (possibly overloaded)
|
1432 |
|
|
function. If "f" is a function or function template, "f", "c->f",
|
1433 |
|
|
"c.f", "C::f", and "f<int>" will all be considered possibly
|
1434 |
|
|
overloaded functions. Returns 2 if the function is actually
|
1435 |
|
|
overloaded, i.e., if it is impossible to know the type of the
|
1436 |
|
|
function without performing overload resolution. */
|
1437 |
|
|
|
1438 |
|
|
int
|
1439 |
|
|
is_overloaded_fn (tree x)
|
1440 |
|
|
{
|
1441 |
|
|
/* A baselink is also considered an overloaded function. */
|
1442 |
|
|
if (TREE_CODE (x) == OFFSET_REF
|
1443 |
|
|
|| TREE_CODE (x) == COMPONENT_REF)
|
1444 |
|
|
x = TREE_OPERAND (x, 1);
|
1445 |
|
|
if (BASELINK_P (x))
|
1446 |
|
|
x = BASELINK_FUNCTIONS (x);
|
1447 |
|
|
if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
|
1448 |
|
|
x = TREE_OPERAND (x, 0);
|
1449 |
|
|
if (DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
|
1450 |
|
|
|| (TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x)))
|
1451 |
|
|
return 2;
|
1452 |
|
|
return (TREE_CODE (x) == FUNCTION_DECL
|
1453 |
|
|
|| TREE_CODE (x) == OVERLOAD);
|
1454 |
|
|
}
|
1455 |
|
|
|
1456 |
|
|
/* X is the CALL_EXPR_FN of a CALL_EXPR. If X represents a dependent name
|
1457 |
|
|
(14.6.2), return the IDENTIFIER_NODE for that name. Otherwise, return
|
1458 |
|
|
NULL_TREE. */
|
1459 |
|
|
|
1460 |
|
|
tree
|
1461 |
|
|
dependent_name (tree x)
|
1462 |
|
|
{
|
1463 |
|
|
if (TREE_CODE (x) == IDENTIFIER_NODE)
|
1464 |
|
|
return x;
|
1465 |
|
|
if (TREE_CODE (x) != COMPONENT_REF
|
1466 |
|
|
&& TREE_CODE (x) != OFFSET_REF
|
1467 |
|
|
&& TREE_CODE (x) != BASELINK
|
1468 |
|
|
&& is_overloaded_fn (x))
|
1469 |
|
|
return DECL_NAME (get_first_fn (x));
|
1470 |
|
|
return NULL_TREE;
|
1471 |
|
|
}
|
1472 |
|
|
|
1473 |
|
|
/* Returns true iff X is an expression for an overloaded function
|
1474 |
|
|
whose type cannot be known without performing overload
|
1475 |
|
|
resolution. */
|
1476 |
|
|
|
1477 |
|
|
bool
|
1478 |
|
|
really_overloaded_fn (tree x)
|
1479 |
|
|
{
|
1480 |
|
|
return is_overloaded_fn (x) == 2;
|
1481 |
|
|
}
|
1482 |
|
|
|
1483 |
|
|
tree
|
1484 |
|
|
get_fns (tree from)
|
1485 |
|
|
{
|
1486 |
|
|
gcc_assert (is_overloaded_fn (from));
|
1487 |
|
|
/* A baselink is also considered an overloaded function. */
|
1488 |
|
|
if (TREE_CODE (from) == OFFSET_REF
|
1489 |
|
|
|| TREE_CODE (from) == COMPONENT_REF)
|
1490 |
|
|
from = TREE_OPERAND (from, 1);
|
1491 |
|
|
if (BASELINK_P (from))
|
1492 |
|
|
from = BASELINK_FUNCTIONS (from);
|
1493 |
|
|
if (TREE_CODE (from) == TEMPLATE_ID_EXPR)
|
1494 |
|
|
from = TREE_OPERAND (from, 0);
|
1495 |
|
|
return from;
|
1496 |
|
|
}
|
1497 |
|
|
|
1498 |
|
|
tree
|
1499 |
|
|
get_first_fn (tree from)
|
1500 |
|
|
{
|
1501 |
|
|
return OVL_CURRENT (get_fns (from));
|
1502 |
|
|
}
|
1503 |
|
|
|
1504 |
|
|
/* Return a new OVL node, concatenating it with the old one. */
|
1505 |
|
|
|
1506 |
|
|
tree
|
1507 |
|
|
ovl_cons (tree decl, tree chain)
|
1508 |
|
|
{
|
1509 |
|
|
tree result = make_node (OVERLOAD);
|
1510 |
|
|
TREE_TYPE (result) = unknown_type_node;
|
1511 |
|
|
OVL_FUNCTION (result) = decl;
|
1512 |
|
|
TREE_CHAIN (result) = chain;
|
1513 |
|
|
|
1514 |
|
|
return result;
|
1515 |
|
|
}
|
1516 |
|
|
|
1517 |
|
|
/* Build a new overloaded function. If this is the first one,
|
1518 |
|
|
just return it; otherwise, ovl_cons the _DECLs */
|
1519 |
|
|
|
1520 |
|
|
tree
|
1521 |
|
|
build_overload (tree decl, tree chain)
|
1522 |
|
|
{
|
1523 |
|
|
if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
|
1524 |
|
|
return decl;
|
1525 |
|
|
return ovl_cons (decl, chain);
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
/* Return the scope where the overloaded functions OVL were found. */
|
1529 |
|
|
|
1530 |
|
|
tree
|
1531 |
|
|
ovl_scope (tree ovl)
|
1532 |
|
|
{
|
1533 |
|
|
if (TREE_CODE (ovl) == OFFSET_REF
|
1534 |
|
|
|| TREE_CODE (ovl) == COMPONENT_REF)
|
1535 |
|
|
ovl = TREE_OPERAND (ovl, 1);
|
1536 |
|
|
if (TREE_CODE (ovl) == BASELINK)
|
1537 |
|
|
return BINFO_TYPE (BASELINK_BINFO (ovl));
|
1538 |
|
|
if (TREE_CODE (ovl) == TEMPLATE_ID_EXPR)
|
1539 |
|
|
ovl = TREE_OPERAND (ovl, 0);
|
1540 |
|
|
/* Skip using-declarations. */
|
1541 |
|
|
while (TREE_CODE (ovl) == OVERLOAD && OVL_USED (ovl) && OVL_CHAIN (ovl))
|
1542 |
|
|
ovl = OVL_CHAIN (ovl);
|
1543 |
|
|
return CP_DECL_CONTEXT (OVL_CURRENT (ovl));
|
1544 |
|
|
}
|
1545 |
|
|
|
1546 |
|
|
/* Return TRUE if FN is a non-static member function, FALSE otherwise.
|
1547 |
|
|
This function looks into BASELINK and OVERLOAD nodes. */
|
1548 |
|
|
|
1549 |
|
|
bool
|
1550 |
|
|
non_static_member_function_p (tree fn)
|
1551 |
|
|
{
|
1552 |
|
|
if (fn == NULL_TREE)
|
1553 |
|
|
return false;
|
1554 |
|
|
|
1555 |
|
|
if (is_overloaded_fn (fn))
|
1556 |
|
|
fn = get_first_fn (fn);
|
1557 |
|
|
|
1558 |
|
|
return (DECL_P (fn)
|
1559 |
|
|
&& DECL_NONSTATIC_MEMBER_FUNCTION_P (fn));
|
1560 |
|
|
}
|
1561 |
|
|
|
1562 |
|
|
|
1563 |
|
|
#define PRINT_RING_SIZE 4
|
1564 |
|
|
|
1565 |
|
|
static const char *
|
1566 |
|
|
cxx_printable_name_internal (tree decl, int v, bool translate)
|
1567 |
|
|
{
|
1568 |
|
|
static unsigned int uid_ring[PRINT_RING_SIZE];
|
1569 |
|
|
static char *print_ring[PRINT_RING_SIZE];
|
1570 |
|
|
static bool trans_ring[PRINT_RING_SIZE];
|
1571 |
|
|
static int ring_counter;
|
1572 |
|
|
int i;
|
1573 |
|
|
|
1574 |
|
|
/* Only cache functions. */
|
1575 |
|
|
if (v < 2
|
1576 |
|
|
|| TREE_CODE (decl) != FUNCTION_DECL
|
1577 |
|
|
|| DECL_LANG_SPECIFIC (decl) == 0)
|
1578 |
|
|
return lang_decl_name (decl, v, translate);
|
1579 |
|
|
|
1580 |
|
|
/* See if this print name is lying around. */
|
1581 |
|
|
for (i = 0; i < PRINT_RING_SIZE; i++)
|
1582 |
|
|
if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i])
|
1583 |
|
|
/* yes, so return it. */
|
1584 |
|
|
return print_ring[i];
|
1585 |
|
|
|
1586 |
|
|
if (++ring_counter == PRINT_RING_SIZE)
|
1587 |
|
|
ring_counter = 0;
|
1588 |
|
|
|
1589 |
|
|
if (current_function_decl != NULL_TREE)
|
1590 |
|
|
{
|
1591 |
|
|
/* There may be both translated and untranslated versions of the
|
1592 |
|
|
name cached. */
|
1593 |
|
|
for (i = 0; i < 2; i++)
|
1594 |
|
|
{
|
1595 |
|
|
if (uid_ring[ring_counter] == DECL_UID (current_function_decl))
|
1596 |
|
|
ring_counter += 1;
|
1597 |
|
|
if (ring_counter == PRINT_RING_SIZE)
|
1598 |
|
|
ring_counter = 0;
|
1599 |
|
|
}
|
1600 |
|
|
gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl));
|
1601 |
|
|
}
|
1602 |
|
|
|
1603 |
|
|
free (print_ring[ring_counter]);
|
1604 |
|
|
|
1605 |
|
|
print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate));
|
1606 |
|
|
uid_ring[ring_counter] = DECL_UID (decl);
|
1607 |
|
|
trans_ring[ring_counter] = translate;
|
1608 |
|
|
return print_ring[ring_counter];
|
1609 |
|
|
}
|
1610 |
|
|
|
1611 |
|
|
const char *
|
1612 |
|
|
cxx_printable_name (tree decl, int v)
|
1613 |
|
|
{
|
1614 |
|
|
return cxx_printable_name_internal (decl, v, false);
|
1615 |
|
|
}
|
1616 |
|
|
|
1617 |
|
|
const char *
|
1618 |
|
|
cxx_printable_name_translate (tree decl, int v)
|
1619 |
|
|
{
|
1620 |
|
|
return cxx_printable_name_internal (decl, v, true);
|
1621 |
|
|
}
|
1622 |
|
|
|
1623 |
|
|
/* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
|
1624 |
|
|
listed in RAISES. */
|
1625 |
|
|
|
1626 |
|
|
tree
|
1627 |
|
|
build_exception_variant (tree type, tree raises)
|
1628 |
|
|
{
|
1629 |
|
|
tree v;
|
1630 |
|
|
int type_quals;
|
1631 |
|
|
|
1632 |
|
|
if (comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (type), ce_exact))
|
1633 |
|
|
return type;
|
1634 |
|
|
|
1635 |
|
|
type_quals = TYPE_QUALS (type);
|
1636 |
|
|
for (v = TYPE_MAIN_VARIANT (type); v; v = TYPE_NEXT_VARIANT (v))
|
1637 |
|
|
if (check_qualified_type (v, type, type_quals)
|
1638 |
|
|
&& comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (v), ce_exact))
|
1639 |
|
|
return v;
|
1640 |
|
|
|
1641 |
|
|
/* Need to build a new variant. */
|
1642 |
|
|
v = build_variant_type_copy (type);
|
1643 |
|
|
TYPE_RAISES_EXCEPTIONS (v) = raises;
|
1644 |
|
|
return v;
|
1645 |
|
|
}
|
1646 |
|
|
|
1647 |
|
|
/* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
|
1648 |
|
|
BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
|
1649 |
|
|
arguments. */
|
1650 |
|
|
|
1651 |
|
|
tree
|
1652 |
|
|
bind_template_template_parm (tree t, tree newargs)
|
1653 |
|
|
{
|
1654 |
|
|
tree decl = TYPE_NAME (t);
|
1655 |
|
|
tree t2;
|
1656 |
|
|
|
1657 |
|
|
t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM);
|
1658 |
|
|
decl = build_decl (input_location,
|
1659 |
|
|
TYPE_DECL, DECL_NAME (decl), NULL_TREE);
|
1660 |
|
|
|
1661 |
|
|
/* These nodes have to be created to reflect new TYPE_DECL and template
|
1662 |
|
|
arguments. */
|
1663 |
|
|
TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
|
1664 |
|
|
TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
|
1665 |
|
|
TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
|
1666 |
|
|
= build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs);
|
1667 |
|
|
|
1668 |
|
|
TREE_TYPE (decl) = t2;
|
1669 |
|
|
TYPE_NAME (t2) = decl;
|
1670 |
|
|
TYPE_STUB_DECL (t2) = decl;
|
1671 |
|
|
TYPE_SIZE (t2) = 0;
|
1672 |
|
|
SET_TYPE_STRUCTURAL_EQUALITY (t2);
|
1673 |
|
|
|
1674 |
|
|
return t2;
|
1675 |
|
|
}
|
1676 |
|
|
|
1677 |
|
|
/* Called from count_trees via walk_tree. */
|
1678 |
|
|
|
1679 |
|
|
static tree
|
1680 |
|
|
count_trees_r (tree *tp, int *walk_subtrees, void *data)
|
1681 |
|
|
{
|
1682 |
|
|
++*((int *) data);
|
1683 |
|
|
|
1684 |
|
|
if (TYPE_P (*tp))
|
1685 |
|
|
*walk_subtrees = 0;
|
1686 |
|
|
|
1687 |
|
|
return NULL_TREE;
|
1688 |
|
|
}
|
1689 |
|
|
|
1690 |
|
|
/* Debugging function for measuring the rough complexity of a tree
|
1691 |
|
|
representation. */
|
1692 |
|
|
|
1693 |
|
|
int
|
1694 |
|
|
count_trees (tree t)
|
1695 |
|
|
{
|
1696 |
|
|
int n_trees = 0;
|
1697 |
|
|
cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
|
1698 |
|
|
return n_trees;
|
1699 |
|
|
}
|
1700 |
|
|
|
1701 |
|
|
/* Called from verify_stmt_tree via walk_tree. */
|
1702 |
|
|
|
1703 |
|
|
static tree
|
1704 |
|
|
verify_stmt_tree_r (tree* tp,
|
1705 |
|
|
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
1706 |
|
|
void* data)
|
1707 |
|
|
{
|
1708 |
|
|
tree t = *tp;
|
1709 |
|
|
htab_t *statements = (htab_t *) data;
|
1710 |
|
|
void **slot;
|
1711 |
|
|
|
1712 |
|
|
if (!STATEMENT_CODE_P (TREE_CODE (t)))
|
1713 |
|
|
return NULL_TREE;
|
1714 |
|
|
|
1715 |
|
|
/* If this statement is already present in the hash table, then
|
1716 |
|
|
there is a circularity in the statement tree. */
|
1717 |
|
|
gcc_assert (!htab_find (*statements, t));
|
1718 |
|
|
|
1719 |
|
|
slot = htab_find_slot (*statements, t, INSERT);
|
1720 |
|
|
*slot = t;
|
1721 |
|
|
|
1722 |
|
|
return NULL_TREE;
|
1723 |
|
|
}
|
1724 |
|
|
|
1725 |
|
|
/* Debugging function to check that the statement T has not been
|
1726 |
|
|
corrupted. For now, this function simply checks that T contains no
|
1727 |
|
|
circularities. */
|
1728 |
|
|
|
1729 |
|
|
void
|
1730 |
|
|
verify_stmt_tree (tree t)
|
1731 |
|
|
{
|
1732 |
|
|
htab_t statements;
|
1733 |
|
|
statements = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
|
1734 |
|
|
cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
|
1735 |
|
|
htab_delete (statements);
|
1736 |
|
|
}
|
1737 |
|
|
|
1738 |
|
|
/* Check if the type T depends on a type with no linkage and if so, return
|
1739 |
|
|
it. If RELAXED_P then do not consider a class type declared within
|
1740 |
|
|
a vague-linkage function to have no linkage. */
|
1741 |
|
|
|
1742 |
|
|
tree
|
1743 |
|
|
no_linkage_check (tree t, bool relaxed_p)
|
1744 |
|
|
{
|
1745 |
|
|
tree r;
|
1746 |
|
|
|
1747 |
|
|
/* There's no point in checking linkage on template functions; we
|
1748 |
|
|
can't know their complete types. */
|
1749 |
|
|
if (processing_template_decl)
|
1750 |
|
|
return NULL_TREE;
|
1751 |
|
|
|
1752 |
|
|
switch (TREE_CODE (t))
|
1753 |
|
|
{
|
1754 |
|
|
case RECORD_TYPE:
|
1755 |
|
|
if (TYPE_PTRMEMFUNC_P (t))
|
1756 |
|
|
goto ptrmem;
|
1757 |
|
|
/* Lambda types that don't have mangling scope have no linkage. We
|
1758 |
|
|
check CLASSTYPE_LAMBDA_EXPR here rather than LAMBDA_TYPE_P because
|
1759 |
|
|
when we get here from pushtag none of the lambda information is
|
1760 |
|
|
set up yet, so we want to assume that the lambda has linkage and
|
1761 |
|
|
fix it up later if not. */
|
1762 |
|
|
if (CLASSTYPE_LAMBDA_EXPR (t)
|
1763 |
|
|
&& LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE)
|
1764 |
|
|
return t;
|
1765 |
|
|
/* Fall through. */
|
1766 |
|
|
case UNION_TYPE:
|
1767 |
|
|
if (!CLASS_TYPE_P (t))
|
1768 |
|
|
return NULL_TREE;
|
1769 |
|
|
/* Fall through. */
|
1770 |
|
|
case ENUMERAL_TYPE:
|
1771 |
|
|
/* Only treat anonymous types as having no linkage if they're at
|
1772 |
|
|
namespace scope. This is core issue 966. */
|
1773 |
|
|
if (TYPE_ANONYMOUS_P (t) && TYPE_NAMESPACE_SCOPE_P (t))
|
1774 |
|
|
return t;
|
1775 |
|
|
|
1776 |
|
|
for (r = CP_TYPE_CONTEXT (t); ; )
|
1777 |
|
|
{
|
1778 |
|
|
/* If we're a nested type of a !TREE_PUBLIC class, we might not
|
1779 |
|
|
have linkage, or we might just be in an anonymous namespace.
|
1780 |
|
|
If we're in a TREE_PUBLIC class, we have linkage. */
|
1781 |
|
|
if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r)))
|
1782 |
|
|
return no_linkage_check (TYPE_CONTEXT (t), relaxed_p);
|
1783 |
|
|
else if (TREE_CODE (r) == FUNCTION_DECL)
|
1784 |
|
|
{
|
1785 |
|
|
if (!relaxed_p || !vague_linkage_p (r))
|
1786 |
|
|
return t;
|
1787 |
|
|
else
|
1788 |
|
|
r = CP_DECL_CONTEXT (r);
|
1789 |
|
|
}
|
1790 |
|
|
else
|
1791 |
|
|
break;
|
1792 |
|
|
}
|
1793 |
|
|
|
1794 |
|
|
return NULL_TREE;
|
1795 |
|
|
|
1796 |
|
|
case ARRAY_TYPE:
|
1797 |
|
|
case POINTER_TYPE:
|
1798 |
|
|
case REFERENCE_TYPE:
|
1799 |
|
|
return no_linkage_check (TREE_TYPE (t), relaxed_p);
|
1800 |
|
|
|
1801 |
|
|
case OFFSET_TYPE:
|
1802 |
|
|
ptrmem:
|
1803 |
|
|
r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
|
1804 |
|
|
relaxed_p);
|
1805 |
|
|
if (r)
|
1806 |
|
|
return r;
|
1807 |
|
|
return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
|
1808 |
|
|
|
1809 |
|
|
case METHOD_TYPE:
|
1810 |
|
|
r = no_linkage_check (TYPE_METHOD_BASETYPE (t), relaxed_p);
|
1811 |
|
|
if (r)
|
1812 |
|
|
return r;
|
1813 |
|
|
/* Fall through. */
|
1814 |
|
|
case FUNCTION_TYPE:
|
1815 |
|
|
{
|
1816 |
|
|
tree parm;
|
1817 |
|
|
for (parm = TYPE_ARG_TYPES (t);
|
1818 |
|
|
parm && parm != void_list_node;
|
1819 |
|
|
parm = TREE_CHAIN (parm))
|
1820 |
|
|
{
|
1821 |
|
|
r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
|
1822 |
|
|
if (r)
|
1823 |
|
|
return r;
|
1824 |
|
|
}
|
1825 |
|
|
return no_linkage_check (TREE_TYPE (t), relaxed_p);
|
1826 |
|
|
}
|
1827 |
|
|
|
1828 |
|
|
default:
|
1829 |
|
|
return NULL_TREE;
|
1830 |
|
|
}
|
1831 |
|
|
}
|
1832 |
|
|
|
1833 |
|
|
#ifdef GATHER_STATISTICS
|
1834 |
|
|
extern int depth_reached;
|
1835 |
|
|
#endif
|
1836 |
|
|
|
1837 |
|
|
void
|
1838 |
|
|
cxx_print_statistics (void)
|
1839 |
|
|
{
|
1840 |
|
|
print_search_statistics ();
|
1841 |
|
|
print_class_statistics ();
|
1842 |
|
|
print_template_statistics ();
|
1843 |
|
|
#ifdef GATHER_STATISTICS
|
1844 |
|
|
fprintf (stderr, "maximum template instantiation depth reached: %d\n",
|
1845 |
|
|
depth_reached);
|
1846 |
|
|
#endif
|
1847 |
|
|
}
|
1848 |
|
|
|
1849 |
|
|
/* Return, as an INTEGER_CST node, the number of elements for TYPE
|
1850 |
|
|
(which is an ARRAY_TYPE). This counts only elements of the top
|
1851 |
|
|
array. */
|
1852 |
|
|
|
1853 |
|
|
tree
|
1854 |
|
|
array_type_nelts_top (tree type)
|
1855 |
|
|
{
|
1856 |
|
|
return fold_build2_loc (input_location,
|
1857 |
|
|
PLUS_EXPR, sizetype,
|
1858 |
|
|
array_type_nelts (type),
|
1859 |
|
|
size_one_node);
|
1860 |
|
|
}
|
1861 |
|
|
|
1862 |
|
|
/* Return, as an INTEGER_CST node, the number of elements for TYPE
|
1863 |
|
|
(which is an ARRAY_TYPE). This one is a recursive count of all
|
1864 |
|
|
ARRAY_TYPEs that are clumped together. */
|
1865 |
|
|
|
1866 |
|
|
tree
|
1867 |
|
|
array_type_nelts_total (tree type)
|
1868 |
|
|
{
|
1869 |
|
|
tree sz = array_type_nelts_top (type);
|
1870 |
|
|
type = TREE_TYPE (type);
|
1871 |
|
|
while (TREE_CODE (type) == ARRAY_TYPE)
|
1872 |
|
|
{
|
1873 |
|
|
tree n = array_type_nelts_top (type);
|
1874 |
|
|
sz = fold_build2_loc (input_location,
|
1875 |
|
|
MULT_EXPR, sizetype, sz, n);
|
1876 |
|
|
type = TREE_TYPE (type);
|
1877 |
|
|
}
|
1878 |
|
|
return sz;
|
1879 |
|
|
}
|
1880 |
|
|
|
1881 |
|
|
/* Called from break_out_target_exprs via mapcar. */
|
1882 |
|
|
|
1883 |
|
|
static tree
|
1884 |
|
|
bot_manip (tree* tp, int* walk_subtrees, void* data)
|
1885 |
|
|
{
|
1886 |
|
|
splay_tree target_remap = ((splay_tree) data);
|
1887 |
|
|
tree t = *tp;
|
1888 |
|
|
|
1889 |
|
|
if (!TYPE_P (t) && TREE_CONSTANT (t) && !TREE_SIDE_EFFECTS (t))
|
1890 |
|
|
{
|
1891 |
|
|
/* There can't be any TARGET_EXPRs or their slot variables below this
|
1892 |
|
|
point. But we must make a copy, in case subsequent processing
|
1893 |
|
|
alters any part of it. For example, during gimplification a cast
|
1894 |
|
|
of the form (T) &X::f (where "f" is a member function) will lead
|
1895 |
|
|
to replacing the PTRMEM_CST for &X::f with a VAR_DECL. */
|
1896 |
|
|
*walk_subtrees = 0;
|
1897 |
|
|
*tp = unshare_expr (t);
|
1898 |
|
|
return NULL_TREE;
|
1899 |
|
|
}
|
1900 |
|
|
if (TREE_CODE (t) == TARGET_EXPR)
|
1901 |
|
|
{
|
1902 |
|
|
tree u;
|
1903 |
|
|
|
1904 |
|
|
if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
|
1905 |
|
|
{
|
1906 |
|
|
u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1),
|
1907 |
|
|
tf_warning_or_error);
|
1908 |
|
|
if (AGGR_INIT_ZERO_FIRST (TREE_OPERAND (t, 1)))
|
1909 |
|
|
AGGR_INIT_ZERO_FIRST (TREE_OPERAND (u, 1)) = true;
|
1910 |
|
|
}
|
1911 |
|
|
else
|
1912 |
|
|
u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t),
|
1913 |
|
|
tf_warning_or_error);
|
1914 |
|
|
|
1915 |
|
|
TARGET_EXPR_IMPLICIT_P (u) = TARGET_EXPR_IMPLICIT_P (t);
|
1916 |
|
|
TARGET_EXPR_LIST_INIT_P (u) = TARGET_EXPR_LIST_INIT_P (t);
|
1917 |
|
|
TARGET_EXPR_DIRECT_INIT_P (u) = TARGET_EXPR_DIRECT_INIT_P (t);
|
1918 |
|
|
|
1919 |
|
|
/* Map the old variable to the new one. */
|
1920 |
|
|
splay_tree_insert (target_remap,
|
1921 |
|
|
(splay_tree_key) TREE_OPERAND (t, 0),
|
1922 |
|
|
(splay_tree_value) TREE_OPERAND (u, 0));
|
1923 |
|
|
|
1924 |
|
|
TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1));
|
1925 |
|
|
|
1926 |
|
|
/* Replace the old expression with the new version. */
|
1927 |
|
|
*tp = u;
|
1928 |
|
|
/* We don't have to go below this point; the recursive call to
|
1929 |
|
|
break_out_target_exprs will have handled anything below this
|
1930 |
|
|
point. */
|
1931 |
|
|
*walk_subtrees = 0;
|
1932 |
|
|
return NULL_TREE;
|
1933 |
|
|
}
|
1934 |
|
|
|
1935 |
|
|
/* Make a copy of this node. */
|
1936 |
|
|
t = copy_tree_r (tp, walk_subtrees, NULL);
|
1937 |
|
|
if (TREE_CODE (*tp) == CALL_EXPR)
|
1938 |
|
|
set_flags_from_callee (*tp);
|
1939 |
|
|
return t;
|
1940 |
|
|
}
|
1941 |
|
|
|
1942 |
|
|
/* Replace all remapped VAR_DECLs in T with their new equivalents.
|
1943 |
|
|
DATA is really a splay-tree mapping old variables to new
|
1944 |
|
|
variables. */
|
1945 |
|
|
|
1946 |
|
|
static tree
|
1947 |
|
|
bot_replace (tree* t,
|
1948 |
|
|
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
1949 |
|
|
void* data)
|
1950 |
|
|
{
|
1951 |
|
|
splay_tree target_remap = ((splay_tree) data);
|
1952 |
|
|
|
1953 |
|
|
if (TREE_CODE (*t) == VAR_DECL)
|
1954 |
|
|
{
|
1955 |
|
|
splay_tree_node n = splay_tree_lookup (target_remap,
|
1956 |
|
|
(splay_tree_key) *t);
|
1957 |
|
|
if (n)
|
1958 |
|
|
*t = (tree) n->value;
|
1959 |
|
|
}
|
1960 |
|
|
else if (TREE_CODE (*t) == PARM_DECL
|
1961 |
|
|
&& DECL_NAME (*t) == this_identifier)
|
1962 |
|
|
{
|
1963 |
|
|
/* In an NSDMI we need to replace the 'this' parameter we used for
|
1964 |
|
|
parsing with the real one for this function. */
|
1965 |
|
|
*t = current_class_ptr;
|
1966 |
|
|
}
|
1967 |
|
|
else if (TREE_CODE (*t) == CONVERT_EXPR
|
1968 |
|
|
&& CONVERT_EXPR_VBASE_PATH (*t))
|
1969 |
|
|
{
|
1970 |
|
|
/* In an NSDMI build_base_path defers building conversions to virtual
|
1971 |
|
|
bases, and we handle it here. */
|
1972 |
|
|
tree basetype = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (*t)));
|
1973 |
|
|
VEC(tree,gc) *vbases = CLASSTYPE_VBASECLASSES (current_class_type);
|
1974 |
|
|
int i; tree binfo;
|
1975 |
|
|
FOR_EACH_VEC_ELT (tree, vbases, i, binfo)
|
1976 |
|
|
if (BINFO_TYPE (binfo) == basetype)
|
1977 |
|
|
break;
|
1978 |
|
|
*t = build_base_path (PLUS_EXPR, TREE_OPERAND (*t, 0), binfo, true,
|
1979 |
|
|
tf_warning_or_error);
|
1980 |
|
|
}
|
1981 |
|
|
|
1982 |
|
|
return NULL_TREE;
|
1983 |
|
|
}
|
1984 |
|
|
|
1985 |
|
|
/* When we parse a default argument expression, we may create
|
1986 |
|
|
temporary variables via TARGET_EXPRs. When we actually use the
|
1987 |
|
|
default-argument expression, we make a copy of the expression
|
1988 |
|
|
and replace the temporaries with appropriate local versions. */
|
1989 |
|
|
|
1990 |
|
|
tree
|
1991 |
|
|
break_out_target_exprs (tree t)
|
1992 |
|
|
{
|
1993 |
|
|
static int target_remap_count;
|
1994 |
|
|
static splay_tree target_remap;
|
1995 |
|
|
|
1996 |
|
|
if (!target_remap_count++)
|
1997 |
|
|
target_remap = splay_tree_new (splay_tree_compare_pointers,
|
1998 |
|
|
/*splay_tree_delete_key_fn=*/NULL,
|
1999 |
|
|
/*splay_tree_delete_value_fn=*/NULL);
|
2000 |
|
|
cp_walk_tree (&t, bot_manip, target_remap, NULL);
|
2001 |
|
|
cp_walk_tree (&t, bot_replace, target_remap, NULL);
|
2002 |
|
|
|
2003 |
|
|
if (!--target_remap_count)
|
2004 |
|
|
{
|
2005 |
|
|
splay_tree_delete (target_remap);
|
2006 |
|
|
target_remap = NULL;
|
2007 |
|
|
}
|
2008 |
|
|
|
2009 |
|
|
return t;
|
2010 |
|
|
}
|
2011 |
|
|
|
2012 |
|
|
/* Similar to `build_nt', but for template definitions of dependent
|
2013 |
|
|
expressions */
|
2014 |
|
|
|
2015 |
|
|
tree
|
2016 |
|
|
build_min_nt (enum tree_code code, ...)
|
2017 |
|
|
{
|
2018 |
|
|
tree t;
|
2019 |
|
|
int length;
|
2020 |
|
|
int i;
|
2021 |
|
|
va_list p;
|
2022 |
|
|
|
2023 |
|
|
gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
|
2024 |
|
|
|
2025 |
|
|
va_start (p, code);
|
2026 |
|
|
|
2027 |
|
|
t = make_node (code);
|
2028 |
|
|
length = TREE_CODE_LENGTH (code);
|
2029 |
|
|
|
2030 |
|
|
for (i = 0; i < length; i++)
|
2031 |
|
|
{
|
2032 |
|
|
tree x = va_arg (p, tree);
|
2033 |
|
|
TREE_OPERAND (t, i) = x;
|
2034 |
|
|
}
|
2035 |
|
|
|
2036 |
|
|
va_end (p);
|
2037 |
|
|
return t;
|
2038 |
|
|
}
|
2039 |
|
|
|
2040 |
|
|
|
2041 |
|
|
/* Similar to `build', but for template definitions. */
|
2042 |
|
|
|
2043 |
|
|
tree
|
2044 |
|
|
build_min (enum tree_code code, tree tt, ...)
|
2045 |
|
|
{
|
2046 |
|
|
tree t;
|
2047 |
|
|
int length;
|
2048 |
|
|
int i;
|
2049 |
|
|
va_list p;
|
2050 |
|
|
|
2051 |
|
|
gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
|
2052 |
|
|
|
2053 |
|
|
va_start (p, tt);
|
2054 |
|
|
|
2055 |
|
|
t = make_node (code);
|
2056 |
|
|
length = TREE_CODE_LENGTH (code);
|
2057 |
|
|
TREE_TYPE (t) = tt;
|
2058 |
|
|
|
2059 |
|
|
for (i = 0; i < length; i++)
|
2060 |
|
|
{
|
2061 |
|
|
tree x = va_arg (p, tree);
|
2062 |
|
|
TREE_OPERAND (t, i) = x;
|
2063 |
|
|
if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
|
2064 |
|
|
TREE_SIDE_EFFECTS (t) = 1;
|
2065 |
|
|
}
|
2066 |
|
|
|
2067 |
|
|
va_end (p);
|
2068 |
|
|
return t;
|
2069 |
|
|
}
|
2070 |
|
|
|
2071 |
|
|
/* Similar to `build', but for template definitions of non-dependent
|
2072 |
|
|
expressions. NON_DEP is the non-dependent expression that has been
|
2073 |
|
|
built. */
|
2074 |
|
|
|
2075 |
|
|
tree
|
2076 |
|
|
build_min_non_dep (enum tree_code code, tree non_dep, ...)
|
2077 |
|
|
{
|
2078 |
|
|
tree t;
|
2079 |
|
|
int length;
|
2080 |
|
|
int i;
|
2081 |
|
|
va_list p;
|
2082 |
|
|
|
2083 |
|
|
gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
|
2084 |
|
|
|
2085 |
|
|
va_start (p, non_dep);
|
2086 |
|
|
|
2087 |
|
|
if (REFERENCE_REF_P (non_dep))
|
2088 |
|
|
non_dep = TREE_OPERAND (non_dep, 0);
|
2089 |
|
|
|
2090 |
|
|
t = make_node (code);
|
2091 |
|
|
length = TREE_CODE_LENGTH (code);
|
2092 |
|
|
TREE_TYPE (t) = TREE_TYPE (non_dep);
|
2093 |
|
|
TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
|
2094 |
|
|
|
2095 |
|
|
for (i = 0; i < length; i++)
|
2096 |
|
|
{
|
2097 |
|
|
tree x = va_arg (p, tree);
|
2098 |
|
|
TREE_OPERAND (t, i) = x;
|
2099 |
|
|
}
|
2100 |
|
|
|
2101 |
|
|
if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
|
2102 |
|
|
/* This should not be considered a COMPOUND_EXPR, because it
|
2103 |
|
|
resolves to an overload. */
|
2104 |
|
|
COMPOUND_EXPR_OVERLOADED (t) = 1;
|
2105 |
|
|
|
2106 |
|
|
va_end (p);
|
2107 |
|
|
return convert_from_reference (t);
|
2108 |
|
|
}
|
2109 |
|
|
|
2110 |
|
|
/* Similar to `build_nt_call_vec', but for template definitions of
|
2111 |
|
|
non-dependent expressions. NON_DEP is the non-dependent expression
|
2112 |
|
|
that has been built. */
|
2113 |
|
|
|
2114 |
|
|
tree
|
2115 |
|
|
build_min_non_dep_call_vec (tree non_dep, tree fn, VEC(tree,gc) *argvec)
|
2116 |
|
|
{
|
2117 |
|
|
tree t = build_nt_call_vec (fn, argvec);
|
2118 |
|
|
if (REFERENCE_REF_P (non_dep))
|
2119 |
|
|
non_dep = TREE_OPERAND (non_dep, 0);
|
2120 |
|
|
TREE_TYPE (t) = TREE_TYPE (non_dep);
|
2121 |
|
|
TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
|
2122 |
|
|
return convert_from_reference (t);
|
2123 |
|
|
}
|
2124 |
|
|
|
2125 |
|
|
tree
|
2126 |
|
|
get_type_decl (tree t)
|
2127 |
|
|
{
|
2128 |
|
|
if (TREE_CODE (t) == TYPE_DECL)
|
2129 |
|
|
return t;
|
2130 |
|
|
if (TYPE_P (t))
|
2131 |
|
|
return TYPE_STUB_DECL (t);
|
2132 |
|
|
gcc_assert (t == error_mark_node);
|
2133 |
|
|
return t;
|
2134 |
|
|
}
|
2135 |
|
|
|
2136 |
|
|
/* Returns the namespace that contains DECL, whether directly or
|
2137 |
|
|
indirectly. */
|
2138 |
|
|
|
2139 |
|
|
tree
|
2140 |
|
|
decl_namespace_context (tree decl)
|
2141 |
|
|
{
|
2142 |
|
|
while (1)
|
2143 |
|
|
{
|
2144 |
|
|
if (TREE_CODE (decl) == NAMESPACE_DECL)
|
2145 |
|
|
return decl;
|
2146 |
|
|
else if (TYPE_P (decl))
|
2147 |
|
|
decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
|
2148 |
|
|
else
|
2149 |
|
|
decl = CP_DECL_CONTEXT (decl);
|
2150 |
|
|
}
|
2151 |
|
|
}
|
2152 |
|
|
|
2153 |
|
|
/* Returns true if decl is within an anonymous namespace, however deeply
|
2154 |
|
|
nested, or false otherwise. */
|
2155 |
|
|
|
2156 |
|
|
bool
|
2157 |
|
|
decl_anon_ns_mem_p (const_tree decl)
|
2158 |
|
|
{
|
2159 |
|
|
while (1)
|
2160 |
|
|
{
|
2161 |
|
|
if (decl == NULL_TREE || decl == error_mark_node)
|
2162 |
|
|
return false;
|
2163 |
|
|
if (TREE_CODE (decl) == NAMESPACE_DECL
|
2164 |
|
|
&& DECL_NAME (decl) == NULL_TREE)
|
2165 |
|
|
return true;
|
2166 |
|
|
/* Classes and namespaces inside anonymous namespaces have
|
2167 |
|
|
TREE_PUBLIC == 0, so we can shortcut the search. */
|
2168 |
|
|
else if (TYPE_P (decl))
|
2169 |
|
|
return (TREE_PUBLIC (TYPE_NAME (decl)) == 0);
|
2170 |
|
|
else if (TREE_CODE (decl) == NAMESPACE_DECL)
|
2171 |
|
|
return (TREE_PUBLIC (decl) == 0);
|
2172 |
|
|
else
|
2173 |
|
|
decl = DECL_CONTEXT (decl);
|
2174 |
|
|
}
|
2175 |
|
|
}
|
2176 |
|
|
|
2177 |
|
|
/* Subroutine of cp_tree_equal: t1 and t2 are the CALL_EXPR_FNs of two
|
2178 |
|
|
CALL_EXPRS. Return whether they are equivalent. */
|
2179 |
|
|
|
2180 |
|
|
static bool
|
2181 |
|
|
called_fns_equal (tree t1, tree t2)
|
2182 |
|
|
{
|
2183 |
|
|
/* Core 1321: dependent names are equivalent even if the overload sets
|
2184 |
|
|
are different. But do compare explicit template arguments. */
|
2185 |
|
|
tree name1 = dependent_name (t1);
|
2186 |
|
|
tree name2 = dependent_name (t2);
|
2187 |
|
|
if (name1 || name2)
|
2188 |
|
|
{
|
2189 |
|
|
tree targs1 = NULL_TREE, targs2 = NULL_TREE;
|
2190 |
|
|
|
2191 |
|
|
if (name1 != name2)
|
2192 |
|
|
return false;
|
2193 |
|
|
|
2194 |
|
|
if (TREE_CODE (t1) == TEMPLATE_ID_EXPR)
|
2195 |
|
|
targs1 = TREE_OPERAND (t1, 1);
|
2196 |
|
|
if (TREE_CODE (t2) == TEMPLATE_ID_EXPR)
|
2197 |
|
|
targs2 = TREE_OPERAND (t2, 1);
|
2198 |
|
|
return cp_tree_equal (targs1, targs2);
|
2199 |
|
|
}
|
2200 |
|
|
else
|
2201 |
|
|
return cp_tree_equal (t1, t2);
|
2202 |
|
|
}
|
2203 |
|
|
|
2204 |
|
|
/* Return truthvalue of whether T1 is the same tree structure as T2.
|
2205 |
|
|
Return 1 if they are the same. Return 0 if they are different. */
|
2206 |
|
|
|
2207 |
|
|
bool
|
2208 |
|
|
cp_tree_equal (tree t1, tree t2)
|
2209 |
|
|
{
|
2210 |
|
|
enum tree_code code1, code2;
|
2211 |
|
|
|
2212 |
|
|
if (t1 == t2)
|
2213 |
|
|
return true;
|
2214 |
|
|
if (!t1 || !t2)
|
2215 |
|
|
return false;
|
2216 |
|
|
|
2217 |
|
|
for (code1 = TREE_CODE (t1);
|
2218 |
|
|
CONVERT_EXPR_CODE_P (code1)
|
2219 |
|
|
|| code1 == NON_LVALUE_EXPR;
|
2220 |
|
|
code1 = TREE_CODE (t1))
|
2221 |
|
|
t1 = TREE_OPERAND (t1, 0);
|
2222 |
|
|
for (code2 = TREE_CODE (t2);
|
2223 |
|
|
CONVERT_EXPR_CODE_P (code2)
|
2224 |
|
|
|| code1 == NON_LVALUE_EXPR;
|
2225 |
|
|
code2 = TREE_CODE (t2))
|
2226 |
|
|
t2 = TREE_OPERAND (t2, 0);
|
2227 |
|
|
|
2228 |
|
|
/* They might have become equal now. */
|
2229 |
|
|
if (t1 == t2)
|
2230 |
|
|
return true;
|
2231 |
|
|
|
2232 |
|
|
if (code1 != code2)
|
2233 |
|
|
return false;
|
2234 |
|
|
|
2235 |
|
|
switch (code1)
|
2236 |
|
|
{
|
2237 |
|
|
case INTEGER_CST:
|
2238 |
|
|
return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
|
2239 |
|
|
&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
|
2240 |
|
|
|
2241 |
|
|
case REAL_CST:
|
2242 |
|
|
return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
|
2243 |
|
|
|
2244 |
|
|
case STRING_CST:
|
2245 |
|
|
return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
|
2246 |
|
|
&& !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
|
2247 |
|
|
TREE_STRING_LENGTH (t1));
|
2248 |
|
|
|
2249 |
|
|
case FIXED_CST:
|
2250 |
|
|
return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
|
2251 |
|
|
TREE_FIXED_CST (t2));
|
2252 |
|
|
|
2253 |
|
|
case COMPLEX_CST:
|
2254 |
|
|
return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2))
|
2255 |
|
|
&& cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2));
|
2256 |
|
|
|
2257 |
|
|
case CONSTRUCTOR:
|
2258 |
|
|
/* We need to do this when determining whether or not two
|
2259 |
|
|
non-type pointer to member function template arguments
|
2260 |
|
|
are the same. */
|
2261 |
|
|
if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
|
2262 |
|
|
|| CONSTRUCTOR_NELTS (t1) != CONSTRUCTOR_NELTS (t2))
|
2263 |
|
|
return false;
|
2264 |
|
|
{
|
2265 |
|
|
tree field, value;
|
2266 |
|
|
unsigned int i;
|
2267 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t1), i, field, value)
|
2268 |
|
|
{
|
2269 |
|
|
constructor_elt *elt2 = CONSTRUCTOR_ELT (t2, i);
|
2270 |
|
|
if (!cp_tree_equal (field, elt2->index)
|
2271 |
|
|
|| !cp_tree_equal (value, elt2->value))
|
2272 |
|
|
return false;
|
2273 |
|
|
}
|
2274 |
|
|
}
|
2275 |
|
|
return true;
|
2276 |
|
|
|
2277 |
|
|
case TREE_LIST:
|
2278 |
|
|
if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
|
2279 |
|
|
return false;
|
2280 |
|
|
if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
|
2281 |
|
|
return false;
|
2282 |
|
|
return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
|
2283 |
|
|
|
2284 |
|
|
case SAVE_EXPR:
|
2285 |
|
|
return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
2286 |
|
|
|
2287 |
|
|
case CALL_EXPR:
|
2288 |
|
|
{
|
2289 |
|
|
tree arg1, arg2;
|
2290 |
|
|
call_expr_arg_iterator iter1, iter2;
|
2291 |
|
|
if (!called_fns_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)))
|
2292 |
|
|
return false;
|
2293 |
|
|
for (arg1 = first_call_expr_arg (t1, &iter1),
|
2294 |
|
|
arg2 = first_call_expr_arg (t2, &iter2);
|
2295 |
|
|
arg1 && arg2;
|
2296 |
|
|
arg1 = next_call_expr_arg (&iter1),
|
2297 |
|
|
arg2 = next_call_expr_arg (&iter2))
|
2298 |
|
|
if (!cp_tree_equal (arg1, arg2))
|
2299 |
|
|
return false;
|
2300 |
|
|
if (arg1 || arg2)
|
2301 |
|
|
return false;
|
2302 |
|
|
return true;
|
2303 |
|
|
}
|
2304 |
|
|
|
2305 |
|
|
case TARGET_EXPR:
|
2306 |
|
|
{
|
2307 |
|
|
tree o1 = TREE_OPERAND (t1, 0);
|
2308 |
|
|
tree o2 = TREE_OPERAND (t2, 0);
|
2309 |
|
|
|
2310 |
|
|
/* Special case: if either target is an unallocated VAR_DECL,
|
2311 |
|
|
it means that it's going to be unified with whatever the
|
2312 |
|
|
TARGET_EXPR is really supposed to initialize, so treat it
|
2313 |
|
|
as being equivalent to anything. */
|
2314 |
|
|
if (TREE_CODE (o1) == VAR_DECL && DECL_NAME (o1) == NULL_TREE
|
2315 |
|
|
&& !DECL_RTL_SET_P (o1))
|
2316 |
|
|
/*Nop*/;
|
2317 |
|
|
else if (TREE_CODE (o2) == VAR_DECL && DECL_NAME (o2) == NULL_TREE
|
2318 |
|
|
&& !DECL_RTL_SET_P (o2))
|
2319 |
|
|
/*Nop*/;
|
2320 |
|
|
else if (!cp_tree_equal (o1, o2))
|
2321 |
|
|
return false;
|
2322 |
|
|
|
2323 |
|
|
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
2324 |
|
|
}
|
2325 |
|
|
|
2326 |
|
|
case WITH_CLEANUP_EXPR:
|
2327 |
|
|
if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
|
2328 |
|
|
return false;
|
2329 |
|
|
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
|
2330 |
|
|
|
2331 |
|
|
case COMPONENT_REF:
|
2332 |
|
|
if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
|
2333 |
|
|
return false;
|
2334 |
|
|
return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
2335 |
|
|
|
2336 |
|
|
case PARM_DECL:
|
2337 |
|
|
/* For comparing uses of parameters in late-specified return types
|
2338 |
|
|
with an out-of-class definition of the function, but can also come
|
2339 |
|
|
up for expressions that involve 'this' in a member function
|
2340 |
|
|
template. */
|
2341 |
|
|
if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
|
2342 |
|
|
{
|
2343 |
|
|
if (DECL_ARTIFICIAL (t1) ^ DECL_ARTIFICIAL (t2))
|
2344 |
|
|
return false;
|
2345 |
|
|
if (DECL_ARTIFICIAL (t1)
|
2346 |
|
|
|| (DECL_PARM_LEVEL (t1) == DECL_PARM_LEVEL (t2)
|
2347 |
|
|
&& DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2)))
|
2348 |
|
|
return true;
|
2349 |
|
|
}
|
2350 |
|
|
return false;
|
2351 |
|
|
|
2352 |
|
|
case VAR_DECL:
|
2353 |
|
|
case CONST_DECL:
|
2354 |
|
|
case FUNCTION_DECL:
|
2355 |
|
|
case TEMPLATE_DECL:
|
2356 |
|
|
case IDENTIFIER_NODE:
|
2357 |
|
|
case SSA_NAME:
|
2358 |
|
|
return false;
|
2359 |
|
|
|
2360 |
|
|
case BASELINK:
|
2361 |
|
|
return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
|
2362 |
|
|
&& BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
|
2363 |
|
|
&& BASELINK_QUALIFIED_P (t1) == BASELINK_QUALIFIED_P (t2)
|
2364 |
|
|
&& cp_tree_equal (BASELINK_FUNCTIONS (t1),
|
2365 |
|
|
BASELINK_FUNCTIONS (t2)));
|
2366 |
|
|
|
2367 |
|
|
case TEMPLATE_PARM_INDEX:
|
2368 |
|
|
if (TEMPLATE_PARM_NUM_SIBLINGS (t1)
|
2369 |
|
|
!= TEMPLATE_PARM_NUM_SIBLINGS (t2))
|
2370 |
|
|
return false;
|
2371 |
|
|
return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
|
2372 |
|
|
&& TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
|
2373 |
|
|
&& (TEMPLATE_PARM_PARAMETER_PACK (t1)
|
2374 |
|
|
== TEMPLATE_PARM_PARAMETER_PACK (t2))
|
2375 |
|
|
&& same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
|
2376 |
|
|
TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
|
2377 |
|
|
|
2378 |
|
|
case TEMPLATE_ID_EXPR:
|
2379 |
|
|
return (cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
|
2380 |
|
|
&& cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)));
|
2381 |
|
|
|
2382 |
|
|
case TREE_VEC:
|
2383 |
|
|
{
|
2384 |
|
|
unsigned ix;
|
2385 |
|
|
if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
|
2386 |
|
|
return false;
|
2387 |
|
|
for (ix = TREE_VEC_LENGTH (t1); ix--;)
|
2388 |
|
|
if (!cp_tree_equal (TREE_VEC_ELT (t1, ix),
|
2389 |
|
|
TREE_VEC_ELT (t2, ix)))
|
2390 |
|
|
return false;
|
2391 |
|
|
return true;
|
2392 |
|
|
}
|
2393 |
|
|
|
2394 |
|
|
case SIZEOF_EXPR:
|
2395 |
|
|
case ALIGNOF_EXPR:
|
2396 |
|
|
{
|
2397 |
|
|
tree o1 = TREE_OPERAND (t1, 0);
|
2398 |
|
|
tree o2 = TREE_OPERAND (t2, 0);
|
2399 |
|
|
|
2400 |
|
|
if (TREE_CODE (o1) != TREE_CODE (o2))
|
2401 |
|
|
return false;
|
2402 |
|
|
if (TYPE_P (o1))
|
2403 |
|
|
return same_type_p (o1, o2);
|
2404 |
|
|
else
|
2405 |
|
|
return cp_tree_equal (o1, o2);
|
2406 |
|
|
}
|
2407 |
|
|
|
2408 |
|
|
case MODOP_EXPR:
|
2409 |
|
|
{
|
2410 |
|
|
tree t1_op1, t2_op1;
|
2411 |
|
|
|
2412 |
|
|
if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
|
2413 |
|
|
return false;
|
2414 |
|
|
|
2415 |
|
|
t1_op1 = TREE_OPERAND (t1, 1);
|
2416 |
|
|
t2_op1 = TREE_OPERAND (t2, 1);
|
2417 |
|
|
if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1))
|
2418 |
|
|
return false;
|
2419 |
|
|
|
2420 |
|
|
return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2));
|
2421 |
|
|
}
|
2422 |
|
|
|
2423 |
|
|
case PTRMEM_CST:
|
2424 |
|
|
/* Two pointer-to-members are the same if they point to the same
|
2425 |
|
|
field or function in the same class. */
|
2426 |
|
|
if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
|
2427 |
|
|
return false;
|
2428 |
|
|
|
2429 |
|
|
return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
|
2430 |
|
|
|
2431 |
|
|
case OVERLOAD:
|
2432 |
|
|
if (OVL_FUNCTION (t1) != OVL_FUNCTION (t2))
|
2433 |
|
|
return false;
|
2434 |
|
|
return cp_tree_equal (OVL_CHAIN (t1), OVL_CHAIN (t2));
|
2435 |
|
|
|
2436 |
|
|
case TRAIT_EXPR:
|
2437 |
|
|
if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2))
|
2438 |
|
|
return false;
|
2439 |
|
|
return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2))
|
2440 |
|
|
&& same_type_p (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2));
|
2441 |
|
|
|
2442 |
|
|
case CAST_EXPR:
|
2443 |
|
|
case STATIC_CAST_EXPR:
|
2444 |
|
|
case REINTERPRET_CAST_EXPR:
|
2445 |
|
|
case CONST_CAST_EXPR:
|
2446 |
|
|
case DYNAMIC_CAST_EXPR:
|
2447 |
|
|
case IMPLICIT_CONV_EXPR:
|
2448 |
|
|
case NEW_EXPR:
|
2449 |
|
|
if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
|
2450 |
|
|
return false;
|
2451 |
|
|
/* Now compare operands as usual. */
|
2452 |
|
|
break;
|
2453 |
|
|
|
2454 |
|
|
case DEFERRED_NOEXCEPT:
|
2455 |
|
|
return (cp_tree_equal (DEFERRED_NOEXCEPT_PATTERN (t1),
|
2456 |
|
|
DEFERRED_NOEXCEPT_PATTERN (t2))
|
2457 |
|
|
&& comp_template_args (DEFERRED_NOEXCEPT_ARGS (t1),
|
2458 |
|
|
DEFERRED_NOEXCEPT_ARGS (t2)));
|
2459 |
|
|
break;
|
2460 |
|
|
|
2461 |
|
|
default:
|
2462 |
|
|
break;
|
2463 |
|
|
}
|
2464 |
|
|
|
2465 |
|
|
switch (TREE_CODE_CLASS (code1))
|
2466 |
|
|
{
|
2467 |
|
|
case tcc_unary:
|
2468 |
|
|
case tcc_binary:
|
2469 |
|
|
case tcc_comparison:
|
2470 |
|
|
case tcc_expression:
|
2471 |
|
|
case tcc_vl_exp:
|
2472 |
|
|
case tcc_reference:
|
2473 |
|
|
case tcc_statement:
|
2474 |
|
|
{
|
2475 |
|
|
int i, n;
|
2476 |
|
|
|
2477 |
|
|
n = cp_tree_operand_length (t1);
|
2478 |
|
|
if (TREE_CODE_CLASS (code1) == tcc_vl_exp
|
2479 |
|
|
&& n != TREE_OPERAND_LENGTH (t2))
|
2480 |
|
|
return false;
|
2481 |
|
|
|
2482 |
|
|
for (i = 0; i < n; ++i)
|
2483 |
|
|
if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
|
2484 |
|
|
return false;
|
2485 |
|
|
|
2486 |
|
|
return true;
|
2487 |
|
|
}
|
2488 |
|
|
|
2489 |
|
|
case tcc_type:
|
2490 |
|
|
return same_type_p (t1, t2);
|
2491 |
|
|
default:
|
2492 |
|
|
gcc_unreachable ();
|
2493 |
|
|
}
|
2494 |
|
|
/* We can get here with --disable-checking. */
|
2495 |
|
|
return false;
|
2496 |
|
|
}
|
2497 |
|
|
|
2498 |
|
|
/* The type of ARG when used as an lvalue. */
|
2499 |
|
|
|
2500 |
|
|
tree
|
2501 |
|
|
lvalue_type (tree arg)
|
2502 |
|
|
{
|
2503 |
|
|
tree type = TREE_TYPE (arg);
|
2504 |
|
|
return type;
|
2505 |
|
|
}
|
2506 |
|
|
|
2507 |
|
|
/* The type of ARG for printing error messages; denote lvalues with
|
2508 |
|
|
reference types. */
|
2509 |
|
|
|
2510 |
|
|
tree
|
2511 |
|
|
error_type (tree arg)
|
2512 |
|
|
{
|
2513 |
|
|
tree type = TREE_TYPE (arg);
|
2514 |
|
|
|
2515 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
2516 |
|
|
;
|
2517 |
|
|
else if (TREE_CODE (type) == ERROR_MARK)
|
2518 |
|
|
;
|
2519 |
|
|
else if (real_lvalue_p (arg))
|
2520 |
|
|
type = build_reference_type (lvalue_type (arg));
|
2521 |
|
|
else if (MAYBE_CLASS_TYPE_P (type))
|
2522 |
|
|
type = lvalue_type (arg);
|
2523 |
|
|
|
2524 |
|
|
return type;
|
2525 |
|
|
}
|
2526 |
|
|
|
2527 |
|
|
/* Does FUNCTION use a variable-length argument list? */
|
2528 |
|
|
|
2529 |
|
|
int
|
2530 |
|
|
varargs_function_p (const_tree function)
|
2531 |
|
|
{
|
2532 |
|
|
return stdarg_p (TREE_TYPE (function));
|
2533 |
|
|
}
|
2534 |
|
|
|
2535 |
|
|
/* Returns 1 if decl is a member of a class. */
|
2536 |
|
|
|
2537 |
|
|
int
|
2538 |
|
|
member_p (const_tree decl)
|
2539 |
|
|
{
|
2540 |
|
|
const_tree const ctx = DECL_CONTEXT (decl);
|
2541 |
|
|
return (ctx && TYPE_P (ctx));
|
2542 |
|
|
}
|
2543 |
|
|
|
2544 |
|
|
/* Create a placeholder for member access where we don't actually have an
|
2545 |
|
|
object that the access is against. */
|
2546 |
|
|
|
2547 |
|
|
tree
|
2548 |
|
|
build_dummy_object (tree type)
|
2549 |
|
|
{
|
2550 |
|
|
tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node);
|
2551 |
|
|
return cp_build_indirect_ref (decl, RO_NULL, tf_warning_or_error);
|
2552 |
|
|
}
|
2553 |
|
|
|
2554 |
|
|
/* We've gotten a reference to a member of TYPE. Return *this if appropriate,
|
2555 |
|
|
or a dummy object otherwise. If BINFOP is non-0, it is filled with the
|
2556 |
|
|
binfo path from current_class_type to TYPE, or 0. */
|
2557 |
|
|
|
2558 |
|
|
tree
|
2559 |
|
|
maybe_dummy_object (tree type, tree* binfop)
|
2560 |
|
|
{
|
2561 |
|
|
tree decl, context;
|
2562 |
|
|
tree binfo;
|
2563 |
|
|
tree current = current_nonlambda_class_type ();
|
2564 |
|
|
|
2565 |
|
|
if (current
|
2566 |
|
|
&& (binfo = lookup_base (current, type, ba_any, NULL)))
|
2567 |
|
|
context = current;
|
2568 |
|
|
else
|
2569 |
|
|
{
|
2570 |
|
|
/* Reference from a nested class member function. */
|
2571 |
|
|
context = type;
|
2572 |
|
|
binfo = TYPE_BINFO (type);
|
2573 |
|
|
}
|
2574 |
|
|
|
2575 |
|
|
if (binfop)
|
2576 |
|
|
*binfop = binfo;
|
2577 |
|
|
|
2578 |
|
|
if (current_class_ref
|
2579 |
|
|
/* current_class_ref might not correspond to current_class_type if
|
2580 |
|
|
we're in tsubst_default_argument or a lambda-declarator; in either
|
2581 |
|
|
case, we want to use current_class_ref if it matches CONTEXT. */
|
2582 |
|
|
&& (same_type_ignoring_top_level_qualifiers_p
|
2583 |
|
|
(TREE_TYPE (current_class_ref), context)))
|
2584 |
|
|
decl = current_class_ref;
|
2585 |
|
|
else if (current != current_class_type
|
2586 |
|
|
&& context == nonlambda_method_basetype ())
|
2587 |
|
|
/* In a lambda, need to go through 'this' capture. */
|
2588 |
|
|
decl = (build_x_indirect_ref
|
2589 |
|
|
((lambda_expr_this_capture
|
2590 |
|
|
(CLASSTYPE_LAMBDA_EXPR (current_class_type))),
|
2591 |
|
|
RO_NULL, tf_warning_or_error));
|
2592 |
|
|
else
|
2593 |
|
|
decl = build_dummy_object (context);
|
2594 |
|
|
|
2595 |
|
|
return decl;
|
2596 |
|
|
}
|
2597 |
|
|
|
2598 |
|
|
/* Returns 1 if OB is a placeholder object, or a pointer to one. */
|
2599 |
|
|
|
2600 |
|
|
int
|
2601 |
|
|
is_dummy_object (const_tree ob)
|
2602 |
|
|
{
|
2603 |
|
|
if (TREE_CODE (ob) == INDIRECT_REF)
|
2604 |
|
|
ob = TREE_OPERAND (ob, 0);
|
2605 |
|
|
return (TREE_CODE (ob) == NOP_EXPR
|
2606 |
|
|
&& TREE_OPERAND (ob, 0) == void_zero_node);
|
2607 |
|
|
}
|
2608 |
|
|
|
2609 |
|
|
/* Returns 1 iff type T is something we want to treat as a scalar type for
|
2610 |
|
|
the purpose of deciding whether it is trivial/POD/standard-layout. */
|
2611 |
|
|
|
2612 |
|
|
static bool
|
2613 |
|
|
scalarish_type_p (const_tree t)
|
2614 |
|
|
{
|
2615 |
|
|
if (t == error_mark_node)
|
2616 |
|
|
return 1;
|
2617 |
|
|
|
2618 |
|
|
return (SCALAR_TYPE_P (t)
|
2619 |
|
|
|| TREE_CODE (t) == VECTOR_TYPE);
|
2620 |
|
|
}
|
2621 |
|
|
|
2622 |
|
|
/* Returns true iff T requires non-trivial default initialization. */
|
2623 |
|
|
|
2624 |
|
|
bool
|
2625 |
|
|
type_has_nontrivial_default_init (const_tree t)
|
2626 |
|
|
{
|
2627 |
|
|
t = strip_array_types (CONST_CAST_TREE (t));
|
2628 |
|
|
|
2629 |
|
|
if (CLASS_TYPE_P (t))
|
2630 |
|
|
return TYPE_HAS_COMPLEX_DFLT (t);
|
2631 |
|
|
else
|
2632 |
|
|
return 0;
|
2633 |
|
|
}
|
2634 |
|
|
|
2635 |
|
|
/* Returns true iff copying an object of type T (including via move
|
2636 |
|
|
constructor) is non-trivial. That is, T has no non-trivial copy
|
2637 |
|
|
constructors and no non-trivial move constructors. */
|
2638 |
|
|
|
2639 |
|
|
bool
|
2640 |
|
|
type_has_nontrivial_copy_init (const_tree t)
|
2641 |
|
|
{
|
2642 |
|
|
t = strip_array_types (CONST_CAST_TREE (t));
|
2643 |
|
|
|
2644 |
|
|
if (CLASS_TYPE_P (t))
|
2645 |
|
|
{
|
2646 |
|
|
gcc_assert (COMPLETE_TYPE_P (t));
|
2647 |
|
|
return ((TYPE_HAS_COPY_CTOR (t)
|
2648 |
|
|
&& TYPE_HAS_COMPLEX_COPY_CTOR (t))
|
2649 |
|
|
|| TYPE_HAS_COMPLEX_MOVE_CTOR (t));
|
2650 |
|
|
}
|
2651 |
|
|
else
|
2652 |
|
|
return 0;
|
2653 |
|
|
}
|
2654 |
|
|
|
2655 |
|
|
/* Returns 1 iff type T is a trivially copyable type, as defined in
|
2656 |
|
|
[basic.types] and [class]. */
|
2657 |
|
|
|
2658 |
|
|
bool
|
2659 |
|
|
trivially_copyable_p (const_tree t)
|
2660 |
|
|
{
|
2661 |
|
|
t = strip_array_types (CONST_CAST_TREE (t));
|
2662 |
|
|
|
2663 |
|
|
if (CLASS_TYPE_P (t))
|
2664 |
|
|
return ((!TYPE_HAS_COPY_CTOR (t)
|
2665 |
|
|
|| !TYPE_HAS_COMPLEX_COPY_CTOR (t))
|
2666 |
|
|
&& !TYPE_HAS_COMPLEX_MOVE_CTOR (t)
|
2667 |
|
|
&& (!TYPE_HAS_COPY_ASSIGN (t)
|
2668 |
|
|
|| !TYPE_HAS_COMPLEX_COPY_ASSIGN (t))
|
2669 |
|
|
&& !TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
|
2670 |
|
|
&& TYPE_HAS_TRIVIAL_DESTRUCTOR (t));
|
2671 |
|
|
else
|
2672 |
|
|
return scalarish_type_p (t);
|
2673 |
|
|
}
|
2674 |
|
|
|
2675 |
|
|
/* Returns 1 iff type T is a trivial type, as defined in [basic.types] and
|
2676 |
|
|
[class]. */
|
2677 |
|
|
|
2678 |
|
|
bool
|
2679 |
|
|
trivial_type_p (const_tree t)
|
2680 |
|
|
{
|
2681 |
|
|
t = strip_array_types (CONST_CAST_TREE (t));
|
2682 |
|
|
|
2683 |
|
|
if (CLASS_TYPE_P (t))
|
2684 |
|
|
return (TYPE_HAS_TRIVIAL_DFLT (t)
|
2685 |
|
|
&& trivially_copyable_p (t));
|
2686 |
|
|
else
|
2687 |
|
|
return scalarish_type_p (t);
|
2688 |
|
|
}
|
2689 |
|
|
|
2690 |
|
|
/* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
|
2691 |
|
|
|
2692 |
|
|
bool
|
2693 |
|
|
pod_type_p (const_tree t)
|
2694 |
|
|
{
|
2695 |
|
|
/* This CONST_CAST is okay because strip_array_types returns its
|
2696 |
|
|
argument unmodified and we assign it to a const_tree. */
|
2697 |
|
|
t = strip_array_types (CONST_CAST_TREE(t));
|
2698 |
|
|
|
2699 |
|
|
if (!CLASS_TYPE_P (t))
|
2700 |
|
|
return scalarish_type_p (t);
|
2701 |
|
|
else if (cxx_dialect > cxx98)
|
2702 |
|
|
/* [class]/10: A POD struct is a class that is both a trivial class and a
|
2703 |
|
|
standard-layout class, and has no non-static data members of type
|
2704 |
|
|
non-POD struct, non-POD union (or array of such types).
|
2705 |
|
|
|
2706 |
|
|
We don't need to check individual members because if a member is
|
2707 |
|
|
non-std-layout or non-trivial, the class will be too. */
|
2708 |
|
|
return (std_layout_type_p (t) && trivial_type_p (t));
|
2709 |
|
|
else
|
2710 |
|
|
/* The C++98 definition of POD is different. */
|
2711 |
|
|
return !CLASSTYPE_NON_LAYOUT_POD_P (t);
|
2712 |
|
|
}
|
2713 |
|
|
|
2714 |
|
|
/* Returns true iff T is POD for the purpose of layout, as defined in the
|
2715 |
|
|
C++ ABI. */
|
2716 |
|
|
|
2717 |
|
|
bool
|
2718 |
|
|
layout_pod_type_p (const_tree t)
|
2719 |
|
|
{
|
2720 |
|
|
t = strip_array_types (CONST_CAST_TREE (t));
|
2721 |
|
|
|
2722 |
|
|
if (CLASS_TYPE_P (t))
|
2723 |
|
|
return !CLASSTYPE_NON_LAYOUT_POD_P (t);
|
2724 |
|
|
else
|
2725 |
|
|
return scalarish_type_p (t);
|
2726 |
|
|
}
|
2727 |
|
|
|
2728 |
|
|
/* Returns true iff T is a standard-layout type, as defined in
|
2729 |
|
|
[basic.types]. */
|
2730 |
|
|
|
2731 |
|
|
bool
|
2732 |
|
|
std_layout_type_p (const_tree t)
|
2733 |
|
|
{
|
2734 |
|
|
t = strip_array_types (CONST_CAST_TREE (t));
|
2735 |
|
|
|
2736 |
|
|
if (CLASS_TYPE_P (t))
|
2737 |
|
|
return !CLASSTYPE_NON_STD_LAYOUT (t);
|
2738 |
|
|
else
|
2739 |
|
|
return scalarish_type_p (t);
|
2740 |
|
|
}
|
2741 |
|
|
|
2742 |
|
|
/* Nonzero iff type T is a class template implicit specialization. */
|
2743 |
|
|
|
2744 |
|
|
bool
|
2745 |
|
|
class_tmpl_impl_spec_p (const_tree t)
|
2746 |
|
|
{
|
2747 |
|
|
return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t);
|
2748 |
|
|
}
|
2749 |
|
|
|
2750 |
|
|
/* Returns 1 iff zero initialization of type T means actually storing
|
2751 |
|
|
zeros in it. */
|
2752 |
|
|
|
2753 |
|
|
int
|
2754 |
|
|
zero_init_p (const_tree t)
|
2755 |
|
|
{
|
2756 |
|
|
/* This CONST_CAST is okay because strip_array_types returns its
|
2757 |
|
|
argument unmodified and we assign it to a const_tree. */
|
2758 |
|
|
t = strip_array_types (CONST_CAST_TREE(t));
|
2759 |
|
|
|
2760 |
|
|
if (t == error_mark_node)
|
2761 |
|
|
return 1;
|
2762 |
|
|
|
2763 |
|
|
/* NULL pointers to data members are initialized with -1. */
|
2764 |
|
|
if (TYPE_PTRMEM_P (t))
|
2765 |
|
|
return 0;
|
2766 |
|
|
|
2767 |
|
|
/* Classes that contain types that can't be zero-initialized, cannot
|
2768 |
|
|
be zero-initialized themselves. */
|
2769 |
|
|
if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
|
2770 |
|
|
return 0;
|
2771 |
|
|
|
2772 |
|
|
return 1;
|
2773 |
|
|
}
|
2774 |
|
|
|
2775 |
|
|
/* Table of valid C++ attributes. */
|
2776 |
|
|
const struct attribute_spec cxx_attribute_table[] =
|
2777 |
|
|
{
|
2778 |
|
|
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
|
2779 |
|
|
affects_type_identity } */
|
2780 |
|
|
{ "java_interface", 0, 0, false, false, false,
|
2781 |
|
|
handle_java_interface_attribute, false },
|
2782 |
|
|
{ "com_interface", 0, 0, false, false, false,
|
2783 |
|
|
handle_com_interface_attribute, false },
|
2784 |
|
|
{ "init_priority", 1, 1, true, false, false,
|
2785 |
|
|
handle_init_priority_attribute, false },
|
2786 |
|
|
{ NULL, 0, 0, false, false, false, NULL, false }
|
2787 |
|
|
};
|
2788 |
|
|
|
2789 |
|
|
/* Handle a "java_interface" attribute; arguments as in
|
2790 |
|
|
struct attribute_spec.handler. */
|
2791 |
|
|
static tree
|
2792 |
|
|
handle_java_interface_attribute (tree* node,
|
2793 |
|
|
tree name,
|
2794 |
|
|
tree args ATTRIBUTE_UNUSED ,
|
2795 |
|
|
int flags,
|
2796 |
|
|
bool* no_add_attrs)
|
2797 |
|
|
{
|
2798 |
|
|
if (DECL_P (*node)
|
2799 |
|
|
|| !CLASS_TYPE_P (*node)
|
2800 |
|
|
|| !TYPE_FOR_JAVA (*node))
|
2801 |
|
|
{
|
2802 |
|
|
error ("%qE attribute can only be applied to Java class definitions",
|
2803 |
|
|
name);
|
2804 |
|
|
*no_add_attrs = true;
|
2805 |
|
|
return NULL_TREE;
|
2806 |
|
|
}
|
2807 |
|
|
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
2808 |
|
|
*node = build_variant_type_copy (*node);
|
2809 |
|
|
TYPE_JAVA_INTERFACE (*node) = 1;
|
2810 |
|
|
|
2811 |
|
|
return NULL_TREE;
|
2812 |
|
|
}
|
2813 |
|
|
|
2814 |
|
|
/* Handle a "com_interface" attribute; arguments as in
|
2815 |
|
|
struct attribute_spec.handler. */
|
2816 |
|
|
static tree
|
2817 |
|
|
handle_com_interface_attribute (tree* node,
|
2818 |
|
|
tree name,
|
2819 |
|
|
tree args ATTRIBUTE_UNUSED ,
|
2820 |
|
|
int flags ATTRIBUTE_UNUSED ,
|
2821 |
|
|
bool* no_add_attrs)
|
2822 |
|
|
{
|
2823 |
|
|
static int warned;
|
2824 |
|
|
|
2825 |
|
|
*no_add_attrs = true;
|
2826 |
|
|
|
2827 |
|
|
if (DECL_P (*node)
|
2828 |
|
|
|| !CLASS_TYPE_P (*node)
|
2829 |
|
|
|| *node != TYPE_MAIN_VARIANT (*node))
|
2830 |
|
|
{
|
2831 |
|
|
warning (OPT_Wattributes, "%qE attribute can only be applied "
|
2832 |
|
|
"to class definitions", name);
|
2833 |
|
|
return NULL_TREE;
|
2834 |
|
|
}
|
2835 |
|
|
|
2836 |
|
|
if (!warned++)
|
2837 |
|
|
warning (0, "%qE is obsolete; g++ vtables are now COM-compatible by default",
|
2838 |
|
|
name);
|
2839 |
|
|
|
2840 |
|
|
return NULL_TREE;
|
2841 |
|
|
}
|
2842 |
|
|
|
2843 |
|
|
/* Handle an "init_priority" attribute; arguments as in
|
2844 |
|
|
struct attribute_spec.handler. */
|
2845 |
|
|
static tree
|
2846 |
|
|
handle_init_priority_attribute (tree* node,
|
2847 |
|
|
tree name,
|
2848 |
|
|
tree args,
|
2849 |
|
|
int flags ATTRIBUTE_UNUSED ,
|
2850 |
|
|
bool* no_add_attrs)
|
2851 |
|
|
{
|
2852 |
|
|
tree initp_expr = TREE_VALUE (args);
|
2853 |
|
|
tree decl = *node;
|
2854 |
|
|
tree type = TREE_TYPE (decl);
|
2855 |
|
|
int pri;
|
2856 |
|
|
|
2857 |
|
|
STRIP_NOPS (initp_expr);
|
2858 |
|
|
|
2859 |
|
|
if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
|
2860 |
|
|
{
|
2861 |
|
|
error ("requested init_priority is not an integer constant");
|
2862 |
|
|
*no_add_attrs = true;
|
2863 |
|
|
return NULL_TREE;
|
2864 |
|
|
}
|
2865 |
|
|
|
2866 |
|
|
pri = TREE_INT_CST_LOW (initp_expr);
|
2867 |
|
|
|
2868 |
|
|
type = strip_array_types (type);
|
2869 |
|
|
|
2870 |
|
|
if (decl == NULL_TREE
|
2871 |
|
|
|| TREE_CODE (decl) != VAR_DECL
|
2872 |
|
|
|| !TREE_STATIC (decl)
|
2873 |
|
|
|| DECL_EXTERNAL (decl)
|
2874 |
|
|
|| (TREE_CODE (type) != RECORD_TYPE
|
2875 |
|
|
&& TREE_CODE (type) != UNION_TYPE)
|
2876 |
|
|
/* Static objects in functions are initialized the
|
2877 |
|
|
first time control passes through that
|
2878 |
|
|
function. This is not precise enough to pin down an
|
2879 |
|
|
init_priority value, so don't allow it. */
|
2880 |
|
|
|| current_function_decl)
|
2881 |
|
|
{
|
2882 |
|
|
error ("can only use %qE attribute on file-scope definitions "
|
2883 |
|
|
"of objects of class type", name);
|
2884 |
|
|
*no_add_attrs = true;
|
2885 |
|
|
return NULL_TREE;
|
2886 |
|
|
}
|
2887 |
|
|
|
2888 |
|
|
if (pri > MAX_INIT_PRIORITY || pri <= 0)
|
2889 |
|
|
{
|
2890 |
|
|
error ("requested init_priority is out of range");
|
2891 |
|
|
*no_add_attrs = true;
|
2892 |
|
|
return NULL_TREE;
|
2893 |
|
|
}
|
2894 |
|
|
|
2895 |
|
|
/* Check for init_priorities that are reserved for
|
2896 |
|
|
language and runtime support implementations.*/
|
2897 |
|
|
if (pri <= MAX_RESERVED_INIT_PRIORITY)
|
2898 |
|
|
{
|
2899 |
|
|
warning
|
2900 |
|
|
(0, "requested init_priority is reserved for internal use");
|
2901 |
|
|
}
|
2902 |
|
|
|
2903 |
|
|
if (SUPPORTS_INIT_PRIORITY)
|
2904 |
|
|
{
|
2905 |
|
|
SET_DECL_INIT_PRIORITY (decl, pri);
|
2906 |
|
|
DECL_HAS_INIT_PRIORITY_P (decl) = 1;
|
2907 |
|
|
return NULL_TREE;
|
2908 |
|
|
}
|
2909 |
|
|
else
|
2910 |
|
|
{
|
2911 |
|
|
error ("%qE attribute is not supported on this platform", name);
|
2912 |
|
|
*no_add_attrs = true;
|
2913 |
|
|
return NULL_TREE;
|
2914 |
|
|
}
|
2915 |
|
|
}
|
2916 |
|
|
|
2917 |
|
|
/* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
|
2918 |
|
|
thing pointed to by the constant. */
|
2919 |
|
|
|
2920 |
|
|
tree
|
2921 |
|
|
make_ptrmem_cst (tree type, tree member)
|
2922 |
|
|
{
|
2923 |
|
|
tree ptrmem_cst = make_node (PTRMEM_CST);
|
2924 |
|
|
TREE_TYPE (ptrmem_cst) = type;
|
2925 |
|
|
PTRMEM_CST_MEMBER (ptrmem_cst) = member;
|
2926 |
|
|
return ptrmem_cst;
|
2927 |
|
|
}
|
2928 |
|
|
|
2929 |
|
|
/* Build a variant of TYPE that has the indicated ATTRIBUTES. May
|
2930 |
|
|
return an existing type if an appropriate type already exists. */
|
2931 |
|
|
|
2932 |
|
|
tree
|
2933 |
|
|
cp_build_type_attribute_variant (tree type, tree attributes)
|
2934 |
|
|
{
|
2935 |
|
|
tree new_type;
|
2936 |
|
|
|
2937 |
|
|
new_type = build_type_attribute_variant (type, attributes);
|
2938 |
|
|
if (TREE_CODE (new_type) == FUNCTION_TYPE
|
2939 |
|
|
|| TREE_CODE (new_type) == METHOD_TYPE)
|
2940 |
|
|
new_type = build_exception_variant (new_type,
|
2941 |
|
|
TYPE_RAISES_EXCEPTIONS (type));
|
2942 |
|
|
|
2943 |
|
|
/* Making a new main variant of a class type is broken. */
|
2944 |
|
|
gcc_assert (!CLASS_TYPE_P (type) || new_type == type);
|
2945 |
|
|
|
2946 |
|
|
return new_type;
|
2947 |
|
|
}
|
2948 |
|
|
|
2949 |
|
|
/* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes.
|
2950 |
|
|
Called only after doing all language independent checks. Only
|
2951 |
|
|
to check TYPE_RAISES_EXCEPTIONS for FUNCTION_TYPE, the rest is already
|
2952 |
|
|
compared in type_hash_eq. */
|
2953 |
|
|
|
2954 |
|
|
bool
|
2955 |
|
|
cxx_type_hash_eq (const_tree typea, const_tree typeb)
|
2956 |
|
|
{
|
2957 |
|
|
gcc_assert (TREE_CODE (typea) == FUNCTION_TYPE
|
2958 |
|
|
|| TREE_CODE (typea) == METHOD_TYPE);
|
2959 |
|
|
|
2960 |
|
|
return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea),
|
2961 |
|
|
TYPE_RAISES_EXCEPTIONS (typeb), ce_exact);
|
2962 |
|
|
}
|
2963 |
|
|
|
2964 |
|
|
/* Apply FUNC to all language-specific sub-trees of TP in a pre-order
|
2965 |
|
|
traversal. Called from walk_tree. */
|
2966 |
|
|
|
2967 |
|
|
tree
|
2968 |
|
|
cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
|
2969 |
|
|
void *data, struct pointer_set_t *pset)
|
2970 |
|
|
{
|
2971 |
|
|
enum tree_code code = TREE_CODE (*tp);
|
2972 |
|
|
tree result;
|
2973 |
|
|
|
2974 |
|
|
#define WALK_SUBTREE(NODE) \
|
2975 |
|
|
do \
|
2976 |
|
|
{ \
|
2977 |
|
|
result = cp_walk_tree (&(NODE), func, data, pset); \
|
2978 |
|
|
if (result) goto out; \
|
2979 |
|
|
} \
|
2980 |
|
|
while (0)
|
2981 |
|
|
|
2982 |
|
|
/* Not one of the easy cases. We must explicitly go through the
|
2983 |
|
|
children. */
|
2984 |
|
|
result = NULL_TREE;
|
2985 |
|
|
switch (code)
|
2986 |
|
|
{
|
2987 |
|
|
case DEFAULT_ARG:
|
2988 |
|
|
case TEMPLATE_TEMPLATE_PARM:
|
2989 |
|
|
case BOUND_TEMPLATE_TEMPLATE_PARM:
|
2990 |
|
|
case UNBOUND_CLASS_TEMPLATE:
|
2991 |
|
|
case TEMPLATE_PARM_INDEX:
|
2992 |
|
|
case TEMPLATE_TYPE_PARM:
|
2993 |
|
|
case TYPENAME_TYPE:
|
2994 |
|
|
case TYPEOF_TYPE:
|
2995 |
|
|
case UNDERLYING_TYPE:
|
2996 |
|
|
/* None of these have subtrees other than those already walked
|
2997 |
|
|
above. */
|
2998 |
|
|
*walk_subtrees_p = 0;
|
2999 |
|
|
break;
|
3000 |
|
|
|
3001 |
|
|
case BASELINK:
|
3002 |
|
|
WALK_SUBTREE (BASELINK_FUNCTIONS (*tp));
|
3003 |
|
|
*walk_subtrees_p = 0;
|
3004 |
|
|
break;
|
3005 |
|
|
|
3006 |
|
|
case PTRMEM_CST:
|
3007 |
|
|
WALK_SUBTREE (TREE_TYPE (*tp));
|
3008 |
|
|
*walk_subtrees_p = 0;
|
3009 |
|
|
break;
|
3010 |
|
|
|
3011 |
|
|
case TREE_LIST:
|
3012 |
|
|
WALK_SUBTREE (TREE_PURPOSE (*tp));
|
3013 |
|
|
break;
|
3014 |
|
|
|
3015 |
|
|
case OVERLOAD:
|
3016 |
|
|
WALK_SUBTREE (OVL_FUNCTION (*tp));
|
3017 |
|
|
WALK_SUBTREE (OVL_CHAIN (*tp));
|
3018 |
|
|
*walk_subtrees_p = 0;
|
3019 |
|
|
break;
|
3020 |
|
|
|
3021 |
|
|
case USING_DECL:
|
3022 |
|
|
WALK_SUBTREE (DECL_NAME (*tp));
|
3023 |
|
|
WALK_SUBTREE (USING_DECL_SCOPE (*tp));
|
3024 |
|
|
WALK_SUBTREE (USING_DECL_DECLS (*tp));
|
3025 |
|
|
*walk_subtrees_p = 0;
|
3026 |
|
|
break;
|
3027 |
|
|
|
3028 |
|
|
case RECORD_TYPE:
|
3029 |
|
|
if (TYPE_PTRMEMFUNC_P (*tp))
|
3030 |
|
|
WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp));
|
3031 |
|
|
break;
|
3032 |
|
|
|
3033 |
|
|
case TYPE_ARGUMENT_PACK:
|
3034 |
|
|
case NONTYPE_ARGUMENT_PACK:
|
3035 |
|
|
{
|
3036 |
|
|
tree args = ARGUMENT_PACK_ARGS (*tp);
|
3037 |
|
|
int i, len = TREE_VEC_LENGTH (args);
|
3038 |
|
|
for (i = 0; i < len; i++)
|
3039 |
|
|
WALK_SUBTREE (TREE_VEC_ELT (args, i));
|
3040 |
|
|
}
|
3041 |
|
|
break;
|
3042 |
|
|
|
3043 |
|
|
case TYPE_PACK_EXPANSION:
|
3044 |
|
|
WALK_SUBTREE (TREE_TYPE (*tp));
|
3045 |
|
|
WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
|
3046 |
|
|
*walk_subtrees_p = 0;
|
3047 |
|
|
break;
|
3048 |
|
|
|
3049 |
|
|
case EXPR_PACK_EXPANSION:
|
3050 |
|
|
WALK_SUBTREE (TREE_OPERAND (*tp, 0));
|
3051 |
|
|
WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
|
3052 |
|
|
*walk_subtrees_p = 0;
|
3053 |
|
|
break;
|
3054 |
|
|
|
3055 |
|
|
case CAST_EXPR:
|
3056 |
|
|
case REINTERPRET_CAST_EXPR:
|
3057 |
|
|
case STATIC_CAST_EXPR:
|
3058 |
|
|
case CONST_CAST_EXPR:
|
3059 |
|
|
case DYNAMIC_CAST_EXPR:
|
3060 |
|
|
case IMPLICIT_CONV_EXPR:
|
3061 |
|
|
if (TREE_TYPE (*tp))
|
3062 |
|
|
WALK_SUBTREE (TREE_TYPE (*tp));
|
3063 |
|
|
|
3064 |
|
|
{
|
3065 |
|
|
int i;
|
3066 |
|
|
for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i)
|
3067 |
|
|
WALK_SUBTREE (TREE_OPERAND (*tp, i));
|
3068 |
|
|
}
|
3069 |
|
|
*walk_subtrees_p = 0;
|
3070 |
|
|
break;
|
3071 |
|
|
|
3072 |
|
|
case TRAIT_EXPR:
|
3073 |
|
|
WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp));
|
3074 |
|
|
WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp));
|
3075 |
|
|
*walk_subtrees_p = 0;
|
3076 |
|
|
break;
|
3077 |
|
|
|
3078 |
|
|
case DECLTYPE_TYPE:
|
3079 |
|
|
WALK_SUBTREE (DECLTYPE_TYPE_EXPR (*tp));
|
3080 |
|
|
*walk_subtrees_p = 0;
|
3081 |
|
|
break;
|
3082 |
|
|
|
3083 |
|
|
|
3084 |
|
|
default:
|
3085 |
|
|
return NULL_TREE;
|
3086 |
|
|
}
|
3087 |
|
|
|
3088 |
|
|
/* We didn't find what we were looking for. */
|
3089 |
|
|
out:
|
3090 |
|
|
return result;
|
3091 |
|
|
|
3092 |
|
|
#undef WALK_SUBTREE
|
3093 |
|
|
}
|
3094 |
|
|
|
3095 |
|
|
/* Like save_expr, but for C++. */
|
3096 |
|
|
|
3097 |
|
|
tree
|
3098 |
|
|
cp_save_expr (tree expr)
|
3099 |
|
|
{
|
3100 |
|
|
/* There is no reason to create a SAVE_EXPR within a template; if
|
3101 |
|
|
needed, we can create the SAVE_EXPR when instantiating the
|
3102 |
|
|
template. Furthermore, the middle-end cannot handle C++-specific
|
3103 |
|
|
tree codes. */
|
3104 |
|
|
if (processing_template_decl)
|
3105 |
|
|
return expr;
|
3106 |
|
|
return save_expr (expr);
|
3107 |
|
|
}
|
3108 |
|
|
|
3109 |
|
|
/* Initialize tree.c. */
|
3110 |
|
|
|
3111 |
|
|
void
|
3112 |
|
|
init_tree (void)
|
3113 |
|
|
{
|
3114 |
|
|
list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL);
|
3115 |
|
|
}
|
3116 |
|
|
|
3117 |
|
|
/* Returns the kind of special function that DECL (a FUNCTION_DECL)
|
3118 |
|
|
is. Note that sfk_none is zero, so this function can be used as a
|
3119 |
|
|
predicate to test whether or not DECL is a special function. */
|
3120 |
|
|
|
3121 |
|
|
special_function_kind
|
3122 |
|
|
special_function_p (const_tree decl)
|
3123 |
|
|
{
|
3124 |
|
|
/* Rather than doing all this stuff with magic names, we should
|
3125 |
|
|
probably have a field of type `special_function_kind' in
|
3126 |
|
|
DECL_LANG_SPECIFIC. */
|
3127 |
|
|
if (DECL_COPY_CONSTRUCTOR_P (decl))
|
3128 |
|
|
return sfk_copy_constructor;
|
3129 |
|
|
if (DECL_MOVE_CONSTRUCTOR_P (decl))
|
3130 |
|
|
return sfk_move_constructor;
|
3131 |
|
|
if (DECL_CONSTRUCTOR_P (decl))
|
3132 |
|
|
return sfk_constructor;
|
3133 |
|
|
if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
|
3134 |
|
|
{
|
3135 |
|
|
if (copy_fn_p (decl))
|
3136 |
|
|
return sfk_copy_assignment;
|
3137 |
|
|
if (move_fn_p (decl))
|
3138 |
|
|
return sfk_move_assignment;
|
3139 |
|
|
}
|
3140 |
|
|
if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
|
3141 |
|
|
return sfk_destructor;
|
3142 |
|
|
if (DECL_COMPLETE_DESTRUCTOR_P (decl))
|
3143 |
|
|
return sfk_complete_destructor;
|
3144 |
|
|
if (DECL_BASE_DESTRUCTOR_P (decl))
|
3145 |
|
|
return sfk_base_destructor;
|
3146 |
|
|
if (DECL_DELETING_DESTRUCTOR_P (decl))
|
3147 |
|
|
return sfk_deleting_destructor;
|
3148 |
|
|
if (DECL_CONV_FN_P (decl))
|
3149 |
|
|
return sfk_conversion;
|
3150 |
|
|
|
3151 |
|
|
return sfk_none;
|
3152 |
|
|
}
|
3153 |
|
|
|
3154 |
|
|
/* Returns nonzero if TYPE is a character type, including wchar_t. */
|
3155 |
|
|
|
3156 |
|
|
int
|
3157 |
|
|
char_type_p (tree type)
|
3158 |
|
|
{
|
3159 |
|
|
return (same_type_p (type, char_type_node)
|
3160 |
|
|
|| same_type_p (type, unsigned_char_type_node)
|
3161 |
|
|
|| same_type_p (type, signed_char_type_node)
|
3162 |
|
|
|| same_type_p (type, char16_type_node)
|
3163 |
|
|
|| same_type_p (type, char32_type_node)
|
3164 |
|
|
|| same_type_p (type, wchar_type_node));
|
3165 |
|
|
}
|
3166 |
|
|
|
3167 |
|
|
/* Returns the kind of linkage associated with the indicated DECL. Th
|
3168 |
|
|
value returned is as specified by the language standard; it is
|
3169 |
|
|
independent of implementation details regarding template
|
3170 |
|
|
instantiation, etc. For example, it is possible that a declaration
|
3171 |
|
|
to which this function assigns external linkage would not show up
|
3172 |
|
|
as a global symbol when you run `nm' on the resulting object file. */
|
3173 |
|
|
|
3174 |
|
|
linkage_kind
|
3175 |
|
|
decl_linkage (tree decl)
|
3176 |
|
|
{
|
3177 |
|
|
/* This function doesn't attempt to calculate the linkage from first
|
3178 |
|
|
principles as given in [basic.link]. Instead, it makes use of
|
3179 |
|
|
the fact that we have already set TREE_PUBLIC appropriately, and
|
3180 |
|
|
then handles a few special cases. Ideally, we would calculate
|
3181 |
|
|
linkage first, and then transform that into a concrete
|
3182 |
|
|
implementation. */
|
3183 |
|
|
|
3184 |
|
|
/* Things that don't have names have no linkage. */
|
3185 |
|
|
if (!DECL_NAME (decl))
|
3186 |
|
|
return lk_none;
|
3187 |
|
|
|
3188 |
|
|
/* Fields have no linkage. */
|
3189 |
|
|
if (TREE_CODE (decl) == FIELD_DECL)
|
3190 |
|
|
return lk_none;
|
3191 |
|
|
|
3192 |
|
|
/* Things that are TREE_PUBLIC have external linkage. */
|
3193 |
|
|
if (TREE_PUBLIC (decl))
|
3194 |
|
|
return lk_external;
|
3195 |
|
|
|
3196 |
|
|
if (TREE_CODE (decl) == NAMESPACE_DECL)
|
3197 |
|
|
return lk_external;
|
3198 |
|
|
|
3199 |
|
|
/* Linkage of a CONST_DECL depends on the linkage of the enumeration
|
3200 |
|
|
type. */
|
3201 |
|
|
if (TREE_CODE (decl) == CONST_DECL)
|
3202 |
|
|
return decl_linkage (TYPE_NAME (TREE_TYPE (decl)));
|
3203 |
|
|
|
3204 |
|
|
/* Some things that are not TREE_PUBLIC have external linkage, too.
|
3205 |
|
|
For example, on targets that don't have weak symbols, we make all
|
3206 |
|
|
template instantiations have internal linkage (in the object
|
3207 |
|
|
file), but the symbols should still be treated as having external
|
3208 |
|
|
linkage from the point of view of the language. */
|
3209 |
|
|
if ((TREE_CODE (decl) == FUNCTION_DECL
|
3210 |
|
|
|| TREE_CODE (decl) == VAR_DECL)
|
3211 |
|
|
&& DECL_COMDAT (decl))
|
3212 |
|
|
return lk_external;
|
3213 |
|
|
|
3214 |
|
|
/* Things in local scope do not have linkage, if they don't have
|
3215 |
|
|
TREE_PUBLIC set. */
|
3216 |
|
|
if (decl_function_context (decl))
|
3217 |
|
|
return lk_none;
|
3218 |
|
|
|
3219 |
|
|
/* Members of the anonymous namespace also have TREE_PUBLIC unset, but
|
3220 |
|
|
are considered to have external linkage for language purposes. DECLs
|
3221 |
|
|
really meant to have internal linkage have DECL_THIS_STATIC set. */
|
3222 |
|
|
if (TREE_CODE (decl) == TYPE_DECL)
|
3223 |
|
|
return lk_external;
|
3224 |
|
|
if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL)
|
3225 |
|
|
{
|
3226 |
|
|
if (!DECL_THIS_STATIC (decl))
|
3227 |
|
|
return lk_external;
|
3228 |
|
|
|
3229 |
|
|
/* Static data members and static member functions from classes
|
3230 |
|
|
in anonymous namespace also don't have TREE_PUBLIC set. */
|
3231 |
|
|
if (DECL_CLASS_CONTEXT (decl))
|
3232 |
|
|
return lk_external;
|
3233 |
|
|
}
|
3234 |
|
|
|
3235 |
|
|
/* Everything else has internal linkage. */
|
3236 |
|
|
return lk_internal;
|
3237 |
|
|
}
|
3238 |
|
|
|
3239 |
|
|
/* Returns the storage duration of the object or reference associated with
|
3240 |
|
|
the indicated DECL, which should be a VAR_DECL or PARM_DECL. */
|
3241 |
|
|
|
3242 |
|
|
duration_kind
|
3243 |
|
|
decl_storage_duration (tree decl)
|
3244 |
|
|
{
|
3245 |
|
|
if (TREE_CODE (decl) == PARM_DECL)
|
3246 |
|
|
return dk_auto;
|
3247 |
|
|
if (TREE_CODE (decl) == FUNCTION_DECL)
|
3248 |
|
|
return dk_static;
|
3249 |
|
|
gcc_assert (TREE_CODE (decl) == VAR_DECL);
|
3250 |
|
|
if (!TREE_STATIC (decl)
|
3251 |
|
|
&& !DECL_EXTERNAL (decl))
|
3252 |
|
|
return dk_auto;
|
3253 |
|
|
if (DECL_THREAD_LOCAL_P (decl))
|
3254 |
|
|
return dk_thread;
|
3255 |
|
|
return dk_static;
|
3256 |
|
|
}
|
3257 |
|
|
|
3258 |
|
|
/* EXP is an expression that we want to pre-evaluate. Returns (in
|
3259 |
|
|
*INITP) an expression that will perform the pre-evaluation. The
|
3260 |
|
|
value returned by this function is a side-effect free expression
|
3261 |
|
|
equivalent to the pre-evaluated expression. Callers must ensure
|
3262 |
|
|
that *INITP is evaluated before EXP. */
|
3263 |
|
|
|
3264 |
|
|
tree
|
3265 |
|
|
stabilize_expr (tree exp, tree* initp)
|
3266 |
|
|
{
|
3267 |
|
|
tree init_expr;
|
3268 |
|
|
|
3269 |
|
|
if (!TREE_SIDE_EFFECTS (exp))
|
3270 |
|
|
init_expr = NULL_TREE;
|
3271 |
|
|
/* There are no expressions with REFERENCE_TYPE, but there can be call
|
3272 |
|
|
arguments with such a type; just treat it as a pointer. */
|
3273 |
|
|
else if (TREE_CODE (TREE_TYPE (exp)) == REFERENCE_TYPE
|
3274 |
|
|
|| SCALAR_TYPE_P (TREE_TYPE (exp))
|
3275 |
|
|
|| !lvalue_or_rvalue_with_address_p (exp))
|
3276 |
|
|
{
|
3277 |
|
|
init_expr = get_target_expr (exp);
|
3278 |
|
|
exp = TARGET_EXPR_SLOT (init_expr);
|
3279 |
|
|
}
|
3280 |
|
|
else
|
3281 |
|
|
{
|
3282 |
|
|
bool xval = !real_lvalue_p (exp);
|
3283 |
|
|
exp = cp_build_addr_expr (exp, tf_warning_or_error);
|
3284 |
|
|
init_expr = get_target_expr (exp);
|
3285 |
|
|
exp = TARGET_EXPR_SLOT (init_expr);
|
3286 |
|
|
exp = cp_build_indirect_ref (exp, RO_NULL, tf_warning_or_error);
|
3287 |
|
|
if (xval)
|
3288 |
|
|
exp = move (exp);
|
3289 |
|
|
}
|
3290 |
|
|
*initp = init_expr;
|
3291 |
|
|
|
3292 |
|
|
gcc_assert (!TREE_SIDE_EFFECTS (exp));
|
3293 |
|
|
return exp;
|
3294 |
|
|
}
|
3295 |
|
|
|
3296 |
|
|
/* Add NEW_EXPR, an expression whose value we don't care about, after the
|
3297 |
|
|
similar expression ORIG. */
|
3298 |
|
|
|
3299 |
|
|
tree
|
3300 |
|
|
add_stmt_to_compound (tree orig, tree new_expr)
|
3301 |
|
|
{
|
3302 |
|
|
if (!new_expr || !TREE_SIDE_EFFECTS (new_expr))
|
3303 |
|
|
return orig;
|
3304 |
|
|
if (!orig || !TREE_SIDE_EFFECTS (orig))
|
3305 |
|
|
return new_expr;
|
3306 |
|
|
return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr);
|
3307 |
|
|
}
|
3308 |
|
|
|
3309 |
|
|
/* Like stabilize_expr, but for a call whose arguments we want to
|
3310 |
|
|
pre-evaluate. CALL is modified in place to use the pre-evaluated
|
3311 |
|
|
arguments, while, upon return, *INITP contains an expression to
|
3312 |
|
|
compute the arguments. */
|
3313 |
|
|
|
3314 |
|
|
void
|
3315 |
|
|
stabilize_call (tree call, tree *initp)
|
3316 |
|
|
{
|
3317 |
|
|
tree inits = NULL_TREE;
|
3318 |
|
|
int i;
|
3319 |
|
|
int nargs = call_expr_nargs (call);
|
3320 |
|
|
|
3321 |
|
|
if (call == error_mark_node || processing_template_decl)
|
3322 |
|
|
{
|
3323 |
|
|
*initp = NULL_TREE;
|
3324 |
|
|
return;
|
3325 |
|
|
}
|
3326 |
|
|
|
3327 |
|
|
gcc_assert (TREE_CODE (call) == CALL_EXPR);
|
3328 |
|
|
|
3329 |
|
|
for (i = 0; i < nargs; i++)
|
3330 |
|
|
{
|
3331 |
|
|
tree init;
|
3332 |
|
|
CALL_EXPR_ARG (call, i) =
|
3333 |
|
|
stabilize_expr (CALL_EXPR_ARG (call, i), &init);
|
3334 |
|
|
inits = add_stmt_to_compound (inits, init);
|
3335 |
|
|
}
|
3336 |
|
|
|
3337 |
|
|
*initp = inits;
|
3338 |
|
|
}
|
3339 |
|
|
|
3340 |
|
|
/* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want
|
3341 |
|
|
to pre-evaluate. CALL is modified in place to use the pre-evaluated
|
3342 |
|
|
arguments, while, upon return, *INITP contains an expression to
|
3343 |
|
|
compute the arguments. */
|
3344 |
|
|
|
3345 |
|
|
void
|
3346 |
|
|
stabilize_aggr_init (tree call, tree *initp)
|
3347 |
|
|
{
|
3348 |
|
|
tree inits = NULL_TREE;
|
3349 |
|
|
int i;
|
3350 |
|
|
int nargs = aggr_init_expr_nargs (call);
|
3351 |
|
|
|
3352 |
|
|
if (call == error_mark_node)
|
3353 |
|
|
return;
|
3354 |
|
|
|
3355 |
|
|
gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR);
|
3356 |
|
|
|
3357 |
|
|
for (i = 0; i < nargs; i++)
|
3358 |
|
|
{
|
3359 |
|
|
tree init;
|
3360 |
|
|
AGGR_INIT_EXPR_ARG (call, i) =
|
3361 |
|
|
stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init);
|
3362 |
|
|
inits = add_stmt_to_compound (inits, init);
|
3363 |
|
|
}
|
3364 |
|
|
|
3365 |
|
|
*initp = inits;
|
3366 |
|
|
}
|
3367 |
|
|
|
3368 |
|
|
/* Like stabilize_expr, but for an initialization.
|
3369 |
|
|
|
3370 |
|
|
If the initialization is for an object of class type, this function
|
3371 |
|
|
takes care not to introduce additional temporaries.
|
3372 |
|
|
|
3373 |
|
|
Returns TRUE iff the expression was successfully pre-evaluated,
|
3374 |
|
|
i.e., if INIT is now side-effect free, except for, possible, a
|
3375 |
|
|
single call to a constructor. */
|
3376 |
|
|
|
3377 |
|
|
bool
|
3378 |
|
|
stabilize_init (tree init, tree *initp)
|
3379 |
|
|
{
|
3380 |
|
|
tree t = init;
|
3381 |
|
|
|
3382 |
|
|
*initp = NULL_TREE;
|
3383 |
|
|
|
3384 |
|
|
if (t == error_mark_node || processing_template_decl)
|
3385 |
|
|
return true;
|
3386 |
|
|
|
3387 |
|
|
if (TREE_CODE (t) == INIT_EXPR
|
3388 |
|
|
&& TREE_CODE (TREE_OPERAND (t, 1)) != TARGET_EXPR
|
3389 |
|
|
&& TREE_CODE (TREE_OPERAND (t, 1)) != CONSTRUCTOR
|
3390 |
|
|
&& TREE_CODE (TREE_OPERAND (t, 1)) != AGGR_INIT_EXPR)
|
3391 |
|
|
{
|
3392 |
|
|
TREE_OPERAND (t, 1) = stabilize_expr (TREE_OPERAND (t, 1), initp);
|
3393 |
|
|
return true;
|
3394 |
|
|
}
|
3395 |
|
|
|
3396 |
|
|
if (TREE_CODE (t) == INIT_EXPR)
|
3397 |
|
|
t = TREE_OPERAND (t, 1);
|
3398 |
|
|
if (TREE_CODE (t) == TARGET_EXPR)
|
3399 |
|
|
t = TARGET_EXPR_INITIAL (t);
|
3400 |
|
|
if (TREE_CODE (t) == COMPOUND_EXPR)
|
3401 |
|
|
t = expr_last (t);
|
3402 |
|
|
if (TREE_CODE (t) == CONSTRUCTOR)
|
3403 |
|
|
{
|
3404 |
|
|
/* Aggregate initialization: stabilize each of the field
|
3405 |
|
|
initializers. */
|
3406 |
|
|
unsigned i;
|
3407 |
|
|
constructor_elt *ce;
|
3408 |
|
|
bool good = true;
|
3409 |
|
|
VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (t);
|
3410 |
|
|
for (i = 0; VEC_iterate (constructor_elt, v, i, ce); ++i)
|
3411 |
|
|
{
|
3412 |
|
|
tree type = TREE_TYPE (ce->value);
|
3413 |
|
|
tree subinit;
|
3414 |
|
|
if (TREE_CODE (type) == REFERENCE_TYPE
|
3415 |
|
|
|| SCALAR_TYPE_P (type))
|
3416 |
|
|
ce->value = stabilize_expr (ce->value, &subinit);
|
3417 |
|
|
else if (!stabilize_init (ce->value, &subinit))
|
3418 |
|
|
good = false;
|
3419 |
|
|
*initp = add_stmt_to_compound (*initp, subinit);
|
3420 |
|
|
}
|
3421 |
|
|
return good;
|
3422 |
|
|
}
|
3423 |
|
|
|
3424 |
|
|
/* If the initializer is a COND_EXPR, we can't preevaluate
|
3425 |
|
|
anything. */
|
3426 |
|
|
if (TREE_CODE (t) == COND_EXPR)
|
3427 |
|
|
return false;
|
3428 |
|
|
|
3429 |
|
|
if (TREE_CODE (t) == CALL_EXPR)
|
3430 |
|
|
{
|
3431 |
|
|
stabilize_call (t, initp);
|
3432 |
|
|
return true;
|
3433 |
|
|
}
|
3434 |
|
|
|
3435 |
|
|
if (TREE_CODE (t) == AGGR_INIT_EXPR)
|
3436 |
|
|
{
|
3437 |
|
|
stabilize_aggr_init (t, initp);
|
3438 |
|
|
return true;
|
3439 |
|
|
}
|
3440 |
|
|
|
3441 |
|
|
/* The initialization is being performed via a bitwise copy -- and
|
3442 |
|
|
the item copied may have side effects. */
|
3443 |
|
|
return TREE_SIDE_EFFECTS (init);
|
3444 |
|
|
}
|
3445 |
|
|
|
3446 |
|
|
/* Like "fold", but should be used whenever we might be processing the
|
3447 |
|
|
body of a template. */
|
3448 |
|
|
|
3449 |
|
|
tree
|
3450 |
|
|
fold_if_not_in_template (tree expr)
|
3451 |
|
|
{
|
3452 |
|
|
/* In the body of a template, there is never any need to call
|
3453 |
|
|
"fold". We will call fold later when actually instantiating the
|
3454 |
|
|
template. Integral constant expressions in templates will be
|
3455 |
|
|
evaluated via fold_non_dependent_expr, as necessary. */
|
3456 |
|
|
if (processing_template_decl)
|
3457 |
|
|
return expr;
|
3458 |
|
|
|
3459 |
|
|
/* Fold C++ front-end specific tree codes. */
|
3460 |
|
|
if (TREE_CODE (expr) == UNARY_PLUS_EXPR)
|
3461 |
|
|
return fold_convert (TREE_TYPE (expr), TREE_OPERAND (expr, 0));
|
3462 |
|
|
|
3463 |
|
|
return fold (expr);
|
3464 |
|
|
}
|
3465 |
|
|
|
3466 |
|
|
/* Returns true if a cast to TYPE may appear in an integral constant
|
3467 |
|
|
expression. */
|
3468 |
|
|
|
3469 |
|
|
bool
|
3470 |
|
|
cast_valid_in_integral_constant_expression_p (tree type)
|
3471 |
|
|
{
|
3472 |
|
|
return (INTEGRAL_OR_ENUMERATION_TYPE_P (type)
|
3473 |
|
|
|| cxx_dialect >= cxx0x
|
3474 |
|
|
|| dependent_type_p (type)
|
3475 |
|
|
|| type == error_mark_node);
|
3476 |
|
|
}
|
3477 |
|
|
|
3478 |
|
|
/* Return true if we need to fix linkage information of DECL. */
|
3479 |
|
|
|
3480 |
|
|
static bool
|
3481 |
|
|
cp_fix_function_decl_p (tree decl)
|
3482 |
|
|
{
|
3483 |
|
|
/* Skip if DECL is not externally visible. */
|
3484 |
|
|
if (!TREE_PUBLIC (decl))
|
3485 |
|
|
return false;
|
3486 |
|
|
|
3487 |
|
|
/* We need to fix DECL if it a appears to be exported but with no
|
3488 |
|
|
function body. Thunks do not have CFGs and we may need to
|
3489 |
|
|
handle them specially later. */
|
3490 |
|
|
if (!gimple_has_body_p (decl)
|
3491 |
|
|
&& !DECL_THUNK_P (decl)
|
3492 |
|
|
&& !DECL_EXTERNAL (decl))
|
3493 |
|
|
{
|
3494 |
|
|
struct cgraph_node *node = cgraph_get_node (decl);
|
3495 |
|
|
|
3496 |
|
|
/* Don't fix same_body aliases. Although they don't have their own
|
3497 |
|
|
CFG, they share it with what they alias to. */
|
3498 |
|
|
if (!node || !node->alias
|
3499 |
|
|
|| !VEC_length (ipa_ref_t, node->ref_list.references))
|
3500 |
|
|
return true;
|
3501 |
|
|
}
|
3502 |
|
|
|
3503 |
|
|
return false;
|
3504 |
|
|
}
|
3505 |
|
|
|
3506 |
|
|
/* Clean the C++ specific parts of the tree T. */
|
3507 |
|
|
|
3508 |
|
|
void
|
3509 |
|
|
cp_free_lang_data (tree t)
|
3510 |
|
|
{
|
3511 |
|
|
if (TREE_CODE (t) == METHOD_TYPE
|
3512 |
|
|
|| TREE_CODE (t) == FUNCTION_TYPE)
|
3513 |
|
|
{
|
3514 |
|
|
/* Default args are not interesting anymore. */
|
3515 |
|
|
tree argtypes = TYPE_ARG_TYPES (t);
|
3516 |
|
|
while (argtypes)
|
3517 |
|
|
{
|
3518 |
|
|
TREE_PURPOSE (argtypes) = 0;
|
3519 |
|
|
argtypes = TREE_CHAIN (argtypes);
|
3520 |
|
|
}
|
3521 |
|
|
}
|
3522 |
|
|
else if (TREE_CODE (t) == FUNCTION_DECL
|
3523 |
|
|
&& cp_fix_function_decl_p (t))
|
3524 |
|
|
{
|
3525 |
|
|
/* If T is used in this translation unit at all, the definition
|
3526 |
|
|
must exist somewhere else since we have decided to not emit it
|
3527 |
|
|
in this TU. So make it an external reference. */
|
3528 |
|
|
DECL_EXTERNAL (t) = 1;
|
3529 |
|
|
TREE_STATIC (t) = 0;
|
3530 |
|
|
}
|
3531 |
|
|
if (TREE_CODE (t) == NAMESPACE_DECL)
|
3532 |
|
|
{
|
3533 |
|
|
/* The list of users of a namespace isn't useful for the middle-end
|
3534 |
|
|
or debug generators. */
|
3535 |
|
|
DECL_NAMESPACE_USERS (t) = NULL_TREE;
|
3536 |
|
|
/* Neither do we need the leftover chaining of namespaces
|
3537 |
|
|
from the binding level. */
|
3538 |
|
|
DECL_CHAIN (t) = NULL_TREE;
|
3539 |
|
|
}
|
3540 |
|
|
}
|
3541 |
|
|
|
3542 |
|
|
/* Stub for c-common. Please keep in sync with c-decl.c.
|
3543 |
|
|
FIXME: If address space support is target specific, then this
|
3544 |
|
|
should be a C target hook. But currently this is not possible,
|
3545 |
|
|
because this function is called via REGISTER_TARGET_PRAGMAS. */
|
3546 |
|
|
void
|
3547 |
|
|
c_register_addr_space (const char *word ATTRIBUTE_UNUSED,
|
3548 |
|
|
addr_space_t as ATTRIBUTE_UNUSED)
|
3549 |
|
|
{
|
3550 |
|
|
}
|
3551 |
|
|
|
3552 |
|
|
/* Return the number of operands in T that we care about for things like
|
3553 |
|
|
mangling. */
|
3554 |
|
|
|
3555 |
|
|
int
|
3556 |
|
|
cp_tree_operand_length (const_tree t)
|
3557 |
|
|
{
|
3558 |
|
|
enum tree_code code = TREE_CODE (t);
|
3559 |
|
|
|
3560 |
|
|
switch (code)
|
3561 |
|
|
{
|
3562 |
|
|
case PREINCREMENT_EXPR:
|
3563 |
|
|
case PREDECREMENT_EXPR:
|
3564 |
|
|
case POSTINCREMENT_EXPR:
|
3565 |
|
|
case POSTDECREMENT_EXPR:
|
3566 |
|
|
return 1;
|
3567 |
|
|
|
3568 |
|
|
case ARRAY_REF:
|
3569 |
|
|
return 2;
|
3570 |
|
|
|
3571 |
|
|
case EXPR_PACK_EXPANSION:
|
3572 |
|
|
return 1;
|
3573 |
|
|
|
3574 |
|
|
default:
|
3575 |
|
|
return TREE_OPERAND_LENGTH (t);
|
3576 |
|
|
}
|
3577 |
|
|
}
|
3578 |
|
|
|
3579 |
|
|
#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
|
3580 |
|
|
/* Complain that some language-specific thing hanging off a tree
|
3581 |
|
|
node has been accessed improperly. */
|
3582 |
|
|
|
3583 |
|
|
void
|
3584 |
|
|
lang_check_failed (const char* file, int line, const char* function)
|
3585 |
|
|
{
|
3586 |
|
|
internal_error ("lang_* check: failed in %s, at %s:%d",
|
3587 |
|
|
function, trim_filename (file), line);
|
3588 |
|
|
}
|
3589 |
|
|
#endif /* ENABLE_TREE_CHECKING */
|
3590 |
|
|
|
3591 |
|
|
#include "gt-cp-tree.h"
|