| 1 |
684 |
jeremybenn |
/* Common subexpression elimination library for GNU compiler.
|
| 2 |
|
|
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
| 3 |
|
|
1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
|
| 4 |
|
|
2012 Free Software Foundation, Inc.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "config.h"
|
| 23 |
|
|
#include "system.h"
|
| 24 |
|
|
#include "coretypes.h"
|
| 25 |
|
|
#include "tm.h"
|
| 26 |
|
|
|
| 27 |
|
|
#include "rtl.h"
|
| 28 |
|
|
#include "tm_p.h"
|
| 29 |
|
|
#include "regs.h"
|
| 30 |
|
|
#include "hard-reg-set.h"
|
| 31 |
|
|
#include "flags.h"
|
| 32 |
|
|
#include "insn-config.h"
|
| 33 |
|
|
#include "recog.h"
|
| 34 |
|
|
#include "function.h"
|
| 35 |
|
|
#include "emit-rtl.h"
|
| 36 |
|
|
#include "diagnostic-core.h"
|
| 37 |
|
|
#include "output.h"
|
| 38 |
|
|
#include "ggc.h"
|
| 39 |
|
|
#include "hashtab.h"
|
| 40 |
|
|
#include "tree-pass.h"
|
| 41 |
|
|
#include "cselib.h"
|
| 42 |
|
|
#include "params.h"
|
| 43 |
|
|
#include "alloc-pool.h"
|
| 44 |
|
|
#include "target.h"
|
| 45 |
|
|
#include "bitmap.h"
|
| 46 |
|
|
|
| 47 |
|
|
/* A list of cselib_val structures. */
|
| 48 |
|
|
struct elt_list {
|
| 49 |
|
|
struct elt_list *next;
|
| 50 |
|
|
cselib_val *elt;
|
| 51 |
|
|
};
|
| 52 |
|
|
|
| 53 |
|
|
static bool cselib_record_memory;
|
| 54 |
|
|
static bool cselib_preserve_constants;
|
| 55 |
|
|
static int entry_and_rtx_equal_p (const void *, const void *);
|
| 56 |
|
|
static hashval_t get_value_hash (const void *);
|
| 57 |
|
|
static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
|
| 58 |
|
|
static void new_elt_loc_list (cselib_val *, rtx);
|
| 59 |
|
|
static void unchain_one_value (cselib_val *);
|
| 60 |
|
|
static void unchain_one_elt_list (struct elt_list **);
|
| 61 |
|
|
static void unchain_one_elt_loc_list (struct elt_loc_list **);
|
| 62 |
|
|
static int discard_useless_locs (void **, void *);
|
| 63 |
|
|
static int discard_useless_values (void **, void *);
|
| 64 |
|
|
static void remove_useless_values (void);
|
| 65 |
|
|
static int rtx_equal_for_cselib_1 (rtx, rtx, enum machine_mode);
|
| 66 |
|
|
static unsigned int cselib_hash_rtx (rtx, int, enum machine_mode);
|
| 67 |
|
|
static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx);
|
| 68 |
|
|
static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
|
| 69 |
|
|
static cselib_val *cselib_lookup_mem (rtx, int);
|
| 70 |
|
|
static void cselib_invalidate_regno (unsigned int, enum machine_mode);
|
| 71 |
|
|
static void cselib_invalidate_mem (rtx);
|
| 72 |
|
|
static void cselib_record_set (rtx, cselib_val *, cselib_val *);
|
| 73 |
|
|
static void cselib_record_sets (rtx);
|
| 74 |
|
|
|
| 75 |
|
|
struct expand_value_data
|
| 76 |
|
|
{
|
| 77 |
|
|
bitmap regs_active;
|
| 78 |
|
|
cselib_expand_callback callback;
|
| 79 |
|
|
void *callback_arg;
|
| 80 |
|
|
bool dummy;
|
| 81 |
|
|
};
|
| 82 |
|
|
|
| 83 |
|
|
static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
|
| 84 |
|
|
|
| 85 |
|
|
/* There are three ways in which cselib can look up an rtx:
|
| 86 |
|
|
- for a REG, the reg_values table (which is indexed by regno) is used
|
| 87 |
|
|
- for a MEM, we recursively look up its address and then follow the
|
| 88 |
|
|
addr_list of that value
|
| 89 |
|
|
- for everything else, we compute a hash value and go through the hash
|
| 90 |
|
|
table. Since different rtx's can still have the same hash value,
|
| 91 |
|
|
this involves walking the table entries for a given value and comparing
|
| 92 |
|
|
the locations of the entries with the rtx we are looking up. */
|
| 93 |
|
|
|
| 94 |
|
|
/* A table that enables us to look up elts by their value. */
|
| 95 |
|
|
static htab_t cselib_hash_table;
|
| 96 |
|
|
|
| 97 |
|
|
/* This is a global so we don't have to pass this through every function.
|
| 98 |
|
|
It is used in new_elt_loc_list to set SETTING_INSN. */
|
| 99 |
|
|
static rtx cselib_current_insn;
|
| 100 |
|
|
|
| 101 |
|
|
/* The unique id that the next create value will take. */
|
| 102 |
|
|
static unsigned int next_uid;
|
| 103 |
|
|
|
| 104 |
|
|
/* The number of registers we had when the varrays were last resized. */
|
| 105 |
|
|
static unsigned int cselib_nregs;
|
| 106 |
|
|
|
| 107 |
|
|
/* Count values without known locations, or with only locations that
|
| 108 |
|
|
wouldn't have been known except for debug insns. Whenever this
|
| 109 |
|
|
grows too big, we remove these useless values from the table.
|
| 110 |
|
|
|
| 111 |
|
|
Counting values with only debug values is a bit tricky. We don't
|
| 112 |
|
|
want to increment n_useless_values when we create a value for a
|
| 113 |
|
|
debug insn, for this would get n_useless_values out of sync, but we
|
| 114 |
|
|
want increment it if all locs in the list that were ever referenced
|
| 115 |
|
|
in nondebug insns are removed from the list.
|
| 116 |
|
|
|
| 117 |
|
|
In the general case, once we do that, we'd have to stop accepting
|
| 118 |
|
|
nondebug expressions in the loc list, to avoid having two values
|
| 119 |
|
|
equivalent that, without debug insns, would have been made into
|
| 120 |
|
|
separate values. However, because debug insns never introduce
|
| 121 |
|
|
equivalences themselves (no assignments), the only means for
|
| 122 |
|
|
growing loc lists is through nondebug assignments. If the locs
|
| 123 |
|
|
also happen to be referenced in debug insns, it will work just fine.
|
| 124 |
|
|
|
| 125 |
|
|
A consequence of this is that there's at most one debug-only loc in
|
| 126 |
|
|
each loc list. If we keep it in the first entry, testing whether
|
| 127 |
|
|
we have a debug-only loc list takes O(1).
|
| 128 |
|
|
|
| 129 |
|
|
Furthermore, since any additional entry in a loc list containing a
|
| 130 |
|
|
debug loc would have to come from an assignment (nondebug) that
|
| 131 |
|
|
references both the initial debug loc and the newly-equivalent loc,
|
| 132 |
|
|
the initial debug loc would be promoted to a nondebug loc, and the
|
| 133 |
|
|
loc list would not contain debug locs any more.
|
| 134 |
|
|
|
| 135 |
|
|
So the only case we have to be careful with in order to keep
|
| 136 |
|
|
n_useless_values in sync between debug and nondebug compilations is
|
| 137 |
|
|
to avoid incrementing n_useless_values when removing the single loc
|
| 138 |
|
|
from a value that turns out to not appear outside debug values. We
|
| 139 |
|
|
increment n_useless_debug_values instead, and leave such values
|
| 140 |
|
|
alone until, for other reasons, we garbage-collect useless
|
| 141 |
|
|
values. */
|
| 142 |
|
|
static int n_useless_values;
|
| 143 |
|
|
static int n_useless_debug_values;
|
| 144 |
|
|
|
| 145 |
|
|
/* Count values whose locs have been taken exclusively from debug
|
| 146 |
|
|
insns for the entire life of the value. */
|
| 147 |
|
|
static int n_debug_values;
|
| 148 |
|
|
|
| 149 |
|
|
/* Number of useless values before we remove them from the hash table. */
|
| 150 |
|
|
#define MAX_USELESS_VALUES 32
|
| 151 |
|
|
|
| 152 |
|
|
/* This table maps from register number to values. It does not
|
| 153 |
|
|
contain pointers to cselib_val structures, but rather elt_lists.
|
| 154 |
|
|
The purpose is to be able to refer to the same register in
|
| 155 |
|
|
different modes. The first element of the list defines the mode in
|
| 156 |
|
|
which the register was set; if the mode is unknown or the value is
|
| 157 |
|
|
no longer valid in that mode, ELT will be NULL for the first
|
| 158 |
|
|
element. */
|
| 159 |
|
|
static struct elt_list **reg_values;
|
| 160 |
|
|
static unsigned int reg_values_size;
|
| 161 |
|
|
#define REG_VALUES(i) reg_values[i]
|
| 162 |
|
|
|
| 163 |
|
|
/* The largest number of hard regs used by any entry added to the
|
| 164 |
|
|
REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
|
| 165 |
|
|
static unsigned int max_value_regs;
|
| 166 |
|
|
|
| 167 |
|
|
/* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
|
| 168 |
|
|
in cselib_clear_table() for fast emptying. */
|
| 169 |
|
|
static unsigned int *used_regs;
|
| 170 |
|
|
static unsigned int n_used_regs;
|
| 171 |
|
|
|
| 172 |
|
|
/* We pass this to cselib_invalidate_mem to invalidate all of
|
| 173 |
|
|
memory for a non-const call instruction. */
|
| 174 |
|
|
static GTY(()) rtx callmem;
|
| 175 |
|
|
|
| 176 |
|
|
/* Set by discard_useless_locs if it deleted the last location of any
|
| 177 |
|
|
value. */
|
| 178 |
|
|
static int values_became_useless;
|
| 179 |
|
|
|
| 180 |
|
|
/* Used as stop element of the containing_mem list so we can check
|
| 181 |
|
|
presence in the list by checking the next pointer. */
|
| 182 |
|
|
static cselib_val dummy_val;
|
| 183 |
|
|
|
| 184 |
|
|
/* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
|
| 185 |
|
|
that is constant through the whole function and should never be
|
| 186 |
|
|
eliminated. */
|
| 187 |
|
|
static cselib_val *cfa_base_preserved_val;
|
| 188 |
|
|
static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
|
| 189 |
|
|
|
| 190 |
|
|
/* Used to list all values that contain memory reference.
|
| 191 |
|
|
May or may not contain the useless values - the list is compacted
|
| 192 |
|
|
each time memory is invalidated. */
|
| 193 |
|
|
static cselib_val *first_containing_mem = &dummy_val;
|
| 194 |
|
|
static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
|
| 195 |
|
|
|
| 196 |
|
|
/* If nonnull, cselib will call this function before freeing useless
|
| 197 |
|
|
VALUEs. A VALUE is deemed useless if its "locs" field is null. */
|
| 198 |
|
|
void (*cselib_discard_hook) (cselib_val *);
|
| 199 |
|
|
|
| 200 |
|
|
/* If nonnull, cselib will call this function before recording sets or
|
| 201 |
|
|
even clobbering outputs of INSN. All the recorded sets will be
|
| 202 |
|
|
represented in the array sets[n_sets]. new_val_min can be used to
|
| 203 |
|
|
tell whether values present in sets are introduced by this
|
| 204 |
|
|
instruction. */
|
| 205 |
|
|
void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets,
|
| 206 |
|
|
int n_sets);
|
| 207 |
|
|
|
| 208 |
|
|
#define PRESERVED_VALUE_P(RTX) \
|
| 209 |
|
|
(RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
|
| 210 |
|
|
|
| 211 |
|
|
|
| 212 |
|
|
|
| 213 |
|
|
/* Allocate a struct elt_list and fill in its two elements with the
|
| 214 |
|
|
arguments. */
|
| 215 |
|
|
|
| 216 |
|
|
static inline struct elt_list *
|
| 217 |
|
|
new_elt_list (struct elt_list *next, cselib_val *elt)
|
| 218 |
|
|
{
|
| 219 |
|
|
struct elt_list *el;
|
| 220 |
|
|
el = (struct elt_list *) pool_alloc (elt_list_pool);
|
| 221 |
|
|
el->next = next;
|
| 222 |
|
|
el->elt = elt;
|
| 223 |
|
|
return el;
|
| 224 |
|
|
}
|
| 225 |
|
|
|
| 226 |
|
|
/* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
|
| 227 |
|
|
list. */
|
| 228 |
|
|
|
| 229 |
|
|
static inline void
|
| 230 |
|
|
new_elt_loc_list (cselib_val *val, rtx loc)
|
| 231 |
|
|
{
|
| 232 |
|
|
struct elt_loc_list *el, *next = val->locs;
|
| 233 |
|
|
|
| 234 |
|
|
gcc_checking_assert (!next || !next->setting_insn
|
| 235 |
|
|
|| !DEBUG_INSN_P (next->setting_insn)
|
| 236 |
|
|
|| cselib_current_insn == next->setting_insn);
|
| 237 |
|
|
|
| 238 |
|
|
/* If we're creating the first loc in a debug insn context, we've
|
| 239 |
|
|
just created a debug value. Count it. */
|
| 240 |
|
|
if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
|
| 241 |
|
|
n_debug_values++;
|
| 242 |
|
|
|
| 243 |
|
|
val = canonical_cselib_val (val);
|
| 244 |
|
|
next = val->locs;
|
| 245 |
|
|
|
| 246 |
|
|
if (GET_CODE (loc) == VALUE)
|
| 247 |
|
|
{
|
| 248 |
|
|
loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
|
| 249 |
|
|
|
| 250 |
|
|
gcc_checking_assert (PRESERVED_VALUE_P (loc)
|
| 251 |
|
|
== PRESERVED_VALUE_P (val->val_rtx));
|
| 252 |
|
|
|
| 253 |
|
|
if (val->val_rtx == loc)
|
| 254 |
|
|
return;
|
| 255 |
|
|
else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
|
| 256 |
|
|
{
|
| 257 |
|
|
/* Reverse the insertion. */
|
| 258 |
|
|
new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
|
| 259 |
|
|
return;
|
| 260 |
|
|
}
|
| 261 |
|
|
|
| 262 |
|
|
gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
|
| 263 |
|
|
|
| 264 |
|
|
if (CSELIB_VAL_PTR (loc)->locs)
|
| 265 |
|
|
{
|
| 266 |
|
|
/* Bring all locs from LOC to VAL. */
|
| 267 |
|
|
for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
|
| 268 |
|
|
{
|
| 269 |
|
|
/* Adjust values that have LOC as canonical so that VAL
|
| 270 |
|
|
becomes their canonical. */
|
| 271 |
|
|
if (el->loc && GET_CODE (el->loc) == VALUE)
|
| 272 |
|
|
{
|
| 273 |
|
|
gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
|
| 274 |
|
|
== loc);
|
| 275 |
|
|
CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
|
| 276 |
|
|
}
|
| 277 |
|
|
}
|
| 278 |
|
|
el->next = val->locs;
|
| 279 |
|
|
next = val->locs = CSELIB_VAL_PTR (loc)->locs;
|
| 280 |
|
|
}
|
| 281 |
|
|
|
| 282 |
|
|
if (CSELIB_VAL_PTR (loc)->addr_list)
|
| 283 |
|
|
{
|
| 284 |
|
|
/* Bring in addr_list into canonical node. */
|
| 285 |
|
|
struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
|
| 286 |
|
|
while (last->next)
|
| 287 |
|
|
last = last->next;
|
| 288 |
|
|
last->next = val->addr_list;
|
| 289 |
|
|
val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
|
| 290 |
|
|
CSELIB_VAL_PTR (loc)->addr_list = NULL;
|
| 291 |
|
|
}
|
| 292 |
|
|
|
| 293 |
|
|
if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
|
| 294 |
|
|
&& val->next_containing_mem == NULL)
|
| 295 |
|
|
{
|
| 296 |
|
|
/* Add VAL to the containing_mem list after LOC. LOC will
|
| 297 |
|
|
be removed when we notice it doesn't contain any
|
| 298 |
|
|
MEMs. */
|
| 299 |
|
|
val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
|
| 300 |
|
|
CSELIB_VAL_PTR (loc)->next_containing_mem = val;
|
| 301 |
|
|
}
|
| 302 |
|
|
|
| 303 |
|
|
/* Chain LOC back to VAL. */
|
| 304 |
|
|
el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
|
| 305 |
|
|
el->loc = val->val_rtx;
|
| 306 |
|
|
el->setting_insn = cselib_current_insn;
|
| 307 |
|
|
el->next = NULL;
|
| 308 |
|
|
CSELIB_VAL_PTR (loc)->locs = el;
|
| 309 |
|
|
}
|
| 310 |
|
|
|
| 311 |
|
|
el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
|
| 312 |
|
|
el->loc = loc;
|
| 313 |
|
|
el->setting_insn = cselib_current_insn;
|
| 314 |
|
|
el->next = next;
|
| 315 |
|
|
val->locs = el;
|
| 316 |
|
|
}
|
| 317 |
|
|
|
| 318 |
|
|
/* Promote loc L to a nondebug cselib_current_insn if L is marked as
|
| 319 |
|
|
originating from a debug insn, maintaining the debug values
|
| 320 |
|
|
count. */
|
| 321 |
|
|
|
| 322 |
|
|
static inline void
|
| 323 |
|
|
promote_debug_loc (struct elt_loc_list *l)
|
| 324 |
|
|
{
|
| 325 |
|
|
if (l->setting_insn && DEBUG_INSN_P (l->setting_insn)
|
| 326 |
|
|
&& (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
|
| 327 |
|
|
{
|
| 328 |
|
|
n_debug_values--;
|
| 329 |
|
|
l->setting_insn = cselib_current_insn;
|
| 330 |
|
|
if (cselib_preserve_constants && l->next)
|
| 331 |
|
|
{
|
| 332 |
|
|
gcc_assert (l->next->setting_insn
|
| 333 |
|
|
&& DEBUG_INSN_P (l->next->setting_insn)
|
| 334 |
|
|
&& !l->next->next);
|
| 335 |
|
|
l->next->setting_insn = cselib_current_insn;
|
| 336 |
|
|
}
|
| 337 |
|
|
else
|
| 338 |
|
|
gcc_assert (!l->next);
|
| 339 |
|
|
}
|
| 340 |
|
|
}
|
| 341 |
|
|
|
| 342 |
|
|
/* The elt_list at *PL is no longer needed. Unchain it and free its
|
| 343 |
|
|
storage. */
|
| 344 |
|
|
|
| 345 |
|
|
static inline void
|
| 346 |
|
|
unchain_one_elt_list (struct elt_list **pl)
|
| 347 |
|
|
{
|
| 348 |
|
|
struct elt_list *l = *pl;
|
| 349 |
|
|
|
| 350 |
|
|
*pl = l->next;
|
| 351 |
|
|
pool_free (elt_list_pool, l);
|
| 352 |
|
|
}
|
| 353 |
|
|
|
| 354 |
|
|
/* Likewise for elt_loc_lists. */
|
| 355 |
|
|
|
| 356 |
|
|
static void
|
| 357 |
|
|
unchain_one_elt_loc_list (struct elt_loc_list **pl)
|
| 358 |
|
|
{
|
| 359 |
|
|
struct elt_loc_list *l = *pl;
|
| 360 |
|
|
|
| 361 |
|
|
*pl = l->next;
|
| 362 |
|
|
pool_free (elt_loc_list_pool, l);
|
| 363 |
|
|
}
|
| 364 |
|
|
|
| 365 |
|
|
/* Likewise for cselib_vals. This also frees the addr_list associated with
|
| 366 |
|
|
V. */
|
| 367 |
|
|
|
| 368 |
|
|
static void
|
| 369 |
|
|
unchain_one_value (cselib_val *v)
|
| 370 |
|
|
{
|
| 371 |
|
|
while (v->addr_list)
|
| 372 |
|
|
unchain_one_elt_list (&v->addr_list);
|
| 373 |
|
|
|
| 374 |
|
|
pool_free (cselib_val_pool, v);
|
| 375 |
|
|
}
|
| 376 |
|
|
|
| 377 |
|
|
/* Remove all entries from the hash table. Also used during
|
| 378 |
|
|
initialization. */
|
| 379 |
|
|
|
| 380 |
|
|
void
|
| 381 |
|
|
cselib_clear_table (void)
|
| 382 |
|
|
{
|
| 383 |
|
|
cselib_reset_table (1);
|
| 384 |
|
|
}
|
| 385 |
|
|
|
| 386 |
|
|
/* Return TRUE if V is a constant, a function invariant or a VALUE
|
| 387 |
|
|
equivalence; FALSE otherwise. */
|
| 388 |
|
|
|
| 389 |
|
|
static bool
|
| 390 |
|
|
invariant_or_equiv_p (cselib_val *v)
|
| 391 |
|
|
{
|
| 392 |
|
|
struct elt_loc_list *l;
|
| 393 |
|
|
|
| 394 |
|
|
if (v == cfa_base_preserved_val)
|
| 395 |
|
|
return true;
|
| 396 |
|
|
|
| 397 |
|
|
/* Keep VALUE equivalences around. */
|
| 398 |
|
|
for (l = v->locs; l; l = l->next)
|
| 399 |
|
|
if (GET_CODE (l->loc) == VALUE)
|
| 400 |
|
|
return true;
|
| 401 |
|
|
|
| 402 |
|
|
if (v->locs != NULL
|
| 403 |
|
|
&& v->locs->next == NULL)
|
| 404 |
|
|
{
|
| 405 |
|
|
if (CONSTANT_P (v->locs->loc)
|
| 406 |
|
|
&& (GET_CODE (v->locs->loc) != CONST
|
| 407 |
|
|
|| !references_value_p (v->locs->loc, 0)))
|
| 408 |
|
|
return true;
|
| 409 |
|
|
/* Although a debug expr may be bound to different expressions,
|
| 410 |
|
|
we can preserve it as if it was constant, to get unification
|
| 411 |
|
|
and proper merging within var-tracking. */
|
| 412 |
|
|
if (GET_CODE (v->locs->loc) == DEBUG_EXPR
|
| 413 |
|
|
|| GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
|
| 414 |
|
|
|| GET_CODE (v->locs->loc) == ENTRY_VALUE
|
| 415 |
|
|
|| GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
|
| 416 |
|
|
return true;
|
| 417 |
|
|
|
| 418 |
|
|
/* (plus (value V) (const_int C)) is invariant iff V is invariant. */
|
| 419 |
|
|
if (GET_CODE (v->locs->loc) == PLUS
|
| 420 |
|
|
&& CONST_INT_P (XEXP (v->locs->loc, 1))
|
| 421 |
|
|
&& GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
|
| 422 |
|
|
&& invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
|
| 423 |
|
|
return true;
|
| 424 |
|
|
}
|
| 425 |
|
|
|
| 426 |
|
|
return false;
|
| 427 |
|
|
}
|
| 428 |
|
|
|
| 429 |
|
|
/* Remove from hash table all VALUEs except constants, function
|
| 430 |
|
|
invariants and VALUE equivalences. */
|
| 431 |
|
|
|
| 432 |
|
|
static int
|
| 433 |
|
|
preserve_constants_and_equivs (void **x, void *info ATTRIBUTE_UNUSED)
|
| 434 |
|
|
{
|
| 435 |
|
|
cselib_val *v = (cselib_val *)*x;
|
| 436 |
|
|
|
| 437 |
|
|
if (!invariant_or_equiv_p (v))
|
| 438 |
|
|
htab_clear_slot (cselib_hash_table, x);
|
| 439 |
|
|
return 1;
|
| 440 |
|
|
}
|
| 441 |
|
|
|
| 442 |
|
|
/* Remove all entries from the hash table, arranging for the next
|
| 443 |
|
|
value to be numbered NUM. */
|
| 444 |
|
|
|
| 445 |
|
|
void
|
| 446 |
|
|
cselib_reset_table (unsigned int num)
|
| 447 |
|
|
{
|
| 448 |
|
|
unsigned int i;
|
| 449 |
|
|
|
| 450 |
|
|
max_value_regs = 0;
|
| 451 |
|
|
|
| 452 |
|
|
if (cfa_base_preserved_val)
|
| 453 |
|
|
{
|
| 454 |
|
|
unsigned int regno = cfa_base_preserved_regno;
|
| 455 |
|
|
unsigned int new_used_regs = 0;
|
| 456 |
|
|
for (i = 0; i < n_used_regs; i++)
|
| 457 |
|
|
if (used_regs[i] == regno)
|
| 458 |
|
|
{
|
| 459 |
|
|
new_used_regs = 1;
|
| 460 |
|
|
continue;
|
| 461 |
|
|
}
|
| 462 |
|
|
else
|
| 463 |
|
|
REG_VALUES (used_regs[i]) = 0;
|
| 464 |
|
|
gcc_assert (new_used_regs == 1);
|
| 465 |
|
|
n_used_regs = new_used_regs;
|
| 466 |
|
|
used_regs[0] = regno;
|
| 467 |
|
|
max_value_regs
|
| 468 |
|
|
= hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
|
| 469 |
|
|
}
|
| 470 |
|
|
else
|
| 471 |
|
|
{
|
| 472 |
|
|
for (i = 0; i < n_used_regs; i++)
|
| 473 |
|
|
REG_VALUES (used_regs[i]) = 0;
|
| 474 |
|
|
n_used_regs = 0;
|
| 475 |
|
|
}
|
| 476 |
|
|
|
| 477 |
|
|
if (cselib_preserve_constants)
|
| 478 |
|
|
htab_traverse (cselib_hash_table, preserve_constants_and_equivs, NULL);
|
| 479 |
|
|
else
|
| 480 |
|
|
htab_empty (cselib_hash_table);
|
| 481 |
|
|
|
| 482 |
|
|
n_useless_values = 0;
|
| 483 |
|
|
n_useless_debug_values = 0;
|
| 484 |
|
|
n_debug_values = 0;
|
| 485 |
|
|
|
| 486 |
|
|
next_uid = num;
|
| 487 |
|
|
|
| 488 |
|
|
first_containing_mem = &dummy_val;
|
| 489 |
|
|
}
|
| 490 |
|
|
|
| 491 |
|
|
/* Return the number of the next value that will be generated. */
|
| 492 |
|
|
|
| 493 |
|
|
unsigned int
|
| 494 |
|
|
cselib_get_next_uid (void)
|
| 495 |
|
|
{
|
| 496 |
|
|
return next_uid;
|
| 497 |
|
|
}
|
| 498 |
|
|
|
| 499 |
|
|
/* See the documentation of cselib_find_slot below. */
|
| 500 |
|
|
static enum machine_mode find_slot_memmode;
|
| 501 |
|
|
|
| 502 |
|
|
/* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
|
| 503 |
|
|
INSERTing if requested. When X is part of the address of a MEM,
|
| 504 |
|
|
MEMMODE should specify the mode of the MEM. While searching the
|
| 505 |
|
|
table, MEMMODE is held in FIND_SLOT_MEMMODE, so that autoinc RTXs
|
| 506 |
|
|
in X can be resolved. */
|
| 507 |
|
|
|
| 508 |
|
|
static void **
|
| 509 |
|
|
cselib_find_slot (rtx x, hashval_t hash, enum insert_option insert,
|
| 510 |
|
|
enum machine_mode memmode)
|
| 511 |
|
|
{
|
| 512 |
|
|
void **slot;
|
| 513 |
|
|
find_slot_memmode = memmode;
|
| 514 |
|
|
slot = htab_find_slot_with_hash (cselib_hash_table, x, hash, insert);
|
| 515 |
|
|
find_slot_memmode = VOIDmode;
|
| 516 |
|
|
return slot;
|
| 517 |
|
|
}
|
| 518 |
|
|
|
| 519 |
|
|
/* The equality test for our hash table. The first argument ENTRY is a table
|
| 520 |
|
|
element (i.e. a cselib_val), while the second arg X is an rtx. We know
|
| 521 |
|
|
that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
|
| 522 |
|
|
CONST of an appropriate mode. */
|
| 523 |
|
|
|
| 524 |
|
|
static int
|
| 525 |
|
|
entry_and_rtx_equal_p (const void *entry, const void *x_arg)
|
| 526 |
|
|
{
|
| 527 |
|
|
struct elt_loc_list *l;
|
| 528 |
|
|
const cselib_val *const v = (const cselib_val *) entry;
|
| 529 |
|
|
rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
|
| 530 |
|
|
enum machine_mode mode = GET_MODE (x);
|
| 531 |
|
|
|
| 532 |
|
|
gcc_assert (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
|
| 533 |
|
|
&& (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
|
| 534 |
|
|
|
| 535 |
|
|
if (mode != GET_MODE (v->val_rtx))
|
| 536 |
|
|
return 0;
|
| 537 |
|
|
|
| 538 |
|
|
/* Unwrap X if necessary. */
|
| 539 |
|
|
if (GET_CODE (x) == CONST
|
| 540 |
|
|
&& (CONST_INT_P (XEXP (x, 0))
|
| 541 |
|
|
|| GET_CODE (XEXP (x, 0)) == CONST_FIXED
|
| 542 |
|
|
|| GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
|
| 543 |
|
|
x = XEXP (x, 0);
|
| 544 |
|
|
|
| 545 |
|
|
/* We don't guarantee that distinct rtx's have different hash values,
|
| 546 |
|
|
so we need to do a comparison. */
|
| 547 |
|
|
for (l = v->locs; l; l = l->next)
|
| 548 |
|
|
if (rtx_equal_for_cselib_1 (l->loc, x, find_slot_memmode))
|
| 549 |
|
|
{
|
| 550 |
|
|
promote_debug_loc (l);
|
| 551 |
|
|
return 1;
|
| 552 |
|
|
}
|
| 553 |
|
|
|
| 554 |
|
|
return 0;
|
| 555 |
|
|
}
|
| 556 |
|
|
|
| 557 |
|
|
/* The hash function for our hash table. The value is always computed with
|
| 558 |
|
|
cselib_hash_rtx when adding an element; this function just extracts the
|
| 559 |
|
|
hash value from a cselib_val structure. */
|
| 560 |
|
|
|
| 561 |
|
|
static hashval_t
|
| 562 |
|
|
get_value_hash (const void *entry)
|
| 563 |
|
|
{
|
| 564 |
|
|
const cselib_val *const v = (const cselib_val *) entry;
|
| 565 |
|
|
return v->hash;
|
| 566 |
|
|
}
|
| 567 |
|
|
|
| 568 |
|
|
/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
|
| 569 |
|
|
only return true for values which point to a cselib_val whose value
|
| 570 |
|
|
element has been set to zero, which implies the cselib_val will be
|
| 571 |
|
|
removed. */
|
| 572 |
|
|
|
| 573 |
|
|
int
|
| 574 |
|
|
references_value_p (const_rtx x, int only_useless)
|
| 575 |
|
|
{
|
| 576 |
|
|
const enum rtx_code code = GET_CODE (x);
|
| 577 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
| 578 |
|
|
int i, j;
|
| 579 |
|
|
|
| 580 |
|
|
if (GET_CODE (x) == VALUE
|
| 581 |
|
|
&& (! only_useless ||
|
| 582 |
|
|
(CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
|
| 583 |
|
|
return 1;
|
| 584 |
|
|
|
| 585 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 586 |
|
|
{
|
| 587 |
|
|
if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
|
| 588 |
|
|
return 1;
|
| 589 |
|
|
else if (fmt[i] == 'E')
|
| 590 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 591 |
|
|
if (references_value_p (XVECEXP (x, i, j), only_useless))
|
| 592 |
|
|
return 1;
|
| 593 |
|
|
}
|
| 594 |
|
|
|
| 595 |
|
|
return 0;
|
| 596 |
|
|
}
|
| 597 |
|
|
|
| 598 |
|
|
/* For all locations found in X, delete locations that reference useless
|
| 599 |
|
|
values (i.e. values without any location). Called through
|
| 600 |
|
|
htab_traverse. */
|
| 601 |
|
|
|
| 602 |
|
|
static int
|
| 603 |
|
|
discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
|
| 604 |
|
|
{
|
| 605 |
|
|
cselib_val *v = (cselib_val *)*x;
|
| 606 |
|
|
struct elt_loc_list **p = &v->locs;
|
| 607 |
|
|
bool had_locs = v->locs != NULL;
|
| 608 |
|
|
rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
|
| 609 |
|
|
|
| 610 |
|
|
while (*p)
|
| 611 |
|
|
{
|
| 612 |
|
|
if (references_value_p ((*p)->loc, 1))
|
| 613 |
|
|
unchain_one_elt_loc_list (p);
|
| 614 |
|
|
else
|
| 615 |
|
|
p = &(*p)->next;
|
| 616 |
|
|
}
|
| 617 |
|
|
|
| 618 |
|
|
if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
|
| 619 |
|
|
{
|
| 620 |
|
|
if (setting_insn && DEBUG_INSN_P (setting_insn))
|
| 621 |
|
|
n_useless_debug_values++;
|
| 622 |
|
|
else
|
| 623 |
|
|
n_useless_values++;
|
| 624 |
|
|
values_became_useless = 1;
|
| 625 |
|
|
}
|
| 626 |
|
|
return 1;
|
| 627 |
|
|
}
|
| 628 |
|
|
|
| 629 |
|
|
/* If X is a value with no locations, remove it from the hashtable. */
|
| 630 |
|
|
|
| 631 |
|
|
static int
|
| 632 |
|
|
discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
|
| 633 |
|
|
{
|
| 634 |
|
|
cselib_val *v = (cselib_val *)*x;
|
| 635 |
|
|
|
| 636 |
|
|
if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
|
| 637 |
|
|
{
|
| 638 |
|
|
if (cselib_discard_hook)
|
| 639 |
|
|
cselib_discard_hook (v);
|
| 640 |
|
|
|
| 641 |
|
|
CSELIB_VAL_PTR (v->val_rtx) = NULL;
|
| 642 |
|
|
htab_clear_slot (cselib_hash_table, x);
|
| 643 |
|
|
unchain_one_value (v);
|
| 644 |
|
|
n_useless_values--;
|
| 645 |
|
|
}
|
| 646 |
|
|
|
| 647 |
|
|
return 1;
|
| 648 |
|
|
}
|
| 649 |
|
|
|
| 650 |
|
|
/* Clean out useless values (i.e. those which no longer have locations
|
| 651 |
|
|
associated with them) from the hash table. */
|
| 652 |
|
|
|
| 653 |
|
|
static void
|
| 654 |
|
|
remove_useless_values (void)
|
| 655 |
|
|
{
|
| 656 |
|
|
cselib_val **p, *v;
|
| 657 |
|
|
|
| 658 |
|
|
/* First pass: eliminate locations that reference the value. That in
|
| 659 |
|
|
turn can make more values useless. */
|
| 660 |
|
|
do
|
| 661 |
|
|
{
|
| 662 |
|
|
values_became_useless = 0;
|
| 663 |
|
|
htab_traverse (cselib_hash_table, discard_useless_locs, 0);
|
| 664 |
|
|
}
|
| 665 |
|
|
while (values_became_useless);
|
| 666 |
|
|
|
| 667 |
|
|
/* Second pass: actually remove the values. */
|
| 668 |
|
|
|
| 669 |
|
|
p = &first_containing_mem;
|
| 670 |
|
|
for (v = *p; v != &dummy_val; v = v->next_containing_mem)
|
| 671 |
|
|
if (v->locs && v == canonical_cselib_val (v))
|
| 672 |
|
|
{
|
| 673 |
|
|
*p = v;
|
| 674 |
|
|
p = &(*p)->next_containing_mem;
|
| 675 |
|
|
}
|
| 676 |
|
|
*p = &dummy_val;
|
| 677 |
|
|
|
| 678 |
|
|
n_useless_values += n_useless_debug_values;
|
| 679 |
|
|
n_debug_values -= n_useless_debug_values;
|
| 680 |
|
|
n_useless_debug_values = 0;
|
| 681 |
|
|
|
| 682 |
|
|
htab_traverse (cselib_hash_table, discard_useless_values, 0);
|
| 683 |
|
|
|
| 684 |
|
|
gcc_assert (!n_useless_values);
|
| 685 |
|
|
}
|
| 686 |
|
|
|
| 687 |
|
|
/* Arrange for a value to not be removed from the hash table even if
|
| 688 |
|
|
it becomes useless. */
|
| 689 |
|
|
|
| 690 |
|
|
void
|
| 691 |
|
|
cselib_preserve_value (cselib_val *v)
|
| 692 |
|
|
{
|
| 693 |
|
|
PRESERVED_VALUE_P (v->val_rtx) = 1;
|
| 694 |
|
|
}
|
| 695 |
|
|
|
| 696 |
|
|
/* Test whether a value is preserved. */
|
| 697 |
|
|
|
| 698 |
|
|
bool
|
| 699 |
|
|
cselib_preserved_value_p (cselib_val *v)
|
| 700 |
|
|
{
|
| 701 |
|
|
return PRESERVED_VALUE_P (v->val_rtx);
|
| 702 |
|
|
}
|
| 703 |
|
|
|
| 704 |
|
|
/* Arrange for a REG value to be assumed constant through the whole function,
|
| 705 |
|
|
never invalidated and preserved across cselib_reset_table calls. */
|
| 706 |
|
|
|
| 707 |
|
|
void
|
| 708 |
|
|
cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
|
| 709 |
|
|
{
|
| 710 |
|
|
if (cselib_preserve_constants
|
| 711 |
|
|
&& v->locs
|
| 712 |
|
|
&& REG_P (v->locs->loc))
|
| 713 |
|
|
{
|
| 714 |
|
|
cfa_base_preserved_val = v;
|
| 715 |
|
|
cfa_base_preserved_regno = regno;
|
| 716 |
|
|
}
|
| 717 |
|
|
}
|
| 718 |
|
|
|
| 719 |
|
|
/* Clean all non-constant expressions in the hash table, but retain
|
| 720 |
|
|
their values. */
|
| 721 |
|
|
|
| 722 |
|
|
void
|
| 723 |
|
|
cselib_preserve_only_values (void)
|
| 724 |
|
|
{
|
| 725 |
|
|
int i;
|
| 726 |
|
|
|
| 727 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
| 728 |
|
|
cselib_invalidate_regno (i, reg_raw_mode[i]);
|
| 729 |
|
|
|
| 730 |
|
|
cselib_invalidate_mem (callmem);
|
| 731 |
|
|
|
| 732 |
|
|
remove_useless_values ();
|
| 733 |
|
|
|
| 734 |
|
|
gcc_assert (first_containing_mem == &dummy_val);
|
| 735 |
|
|
}
|
| 736 |
|
|
|
| 737 |
|
|
/* Return the mode in which a register was last set. If X is not a
|
| 738 |
|
|
register, return its mode. If the mode in which the register was
|
| 739 |
|
|
set is not known, or the value was already clobbered, return
|
| 740 |
|
|
VOIDmode. */
|
| 741 |
|
|
|
| 742 |
|
|
enum machine_mode
|
| 743 |
|
|
cselib_reg_set_mode (const_rtx x)
|
| 744 |
|
|
{
|
| 745 |
|
|
if (!REG_P (x))
|
| 746 |
|
|
return GET_MODE (x);
|
| 747 |
|
|
|
| 748 |
|
|
if (REG_VALUES (REGNO (x)) == NULL
|
| 749 |
|
|
|| REG_VALUES (REGNO (x))->elt == NULL)
|
| 750 |
|
|
return VOIDmode;
|
| 751 |
|
|
|
| 752 |
|
|
return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
|
| 753 |
|
|
}
|
| 754 |
|
|
|
| 755 |
|
|
/* Return nonzero if we can prove that X and Y contain the same value, taking
|
| 756 |
|
|
our gathered information into account. */
|
| 757 |
|
|
|
| 758 |
|
|
int
|
| 759 |
|
|
rtx_equal_for_cselib_p (rtx x, rtx y)
|
| 760 |
|
|
{
|
| 761 |
|
|
return rtx_equal_for_cselib_1 (x, y, VOIDmode);
|
| 762 |
|
|
}
|
| 763 |
|
|
|
| 764 |
|
|
/* If x is a PLUS or an autoinc operation, expand the operation,
|
| 765 |
|
|
storing the offset, if any, in *OFF. */
|
| 766 |
|
|
|
| 767 |
|
|
static rtx
|
| 768 |
|
|
autoinc_split (rtx x, rtx *off, enum machine_mode memmode)
|
| 769 |
|
|
{
|
| 770 |
|
|
switch (GET_CODE (x))
|
| 771 |
|
|
{
|
| 772 |
|
|
case PLUS:
|
| 773 |
|
|
*off = XEXP (x, 1);
|
| 774 |
|
|
return XEXP (x, 0);
|
| 775 |
|
|
|
| 776 |
|
|
case PRE_DEC:
|
| 777 |
|
|
if (memmode == VOIDmode)
|
| 778 |
|
|
return x;
|
| 779 |
|
|
|
| 780 |
|
|
*off = GEN_INT (-GET_MODE_SIZE (memmode));
|
| 781 |
|
|
return XEXP (x, 0);
|
| 782 |
|
|
break;
|
| 783 |
|
|
|
| 784 |
|
|
case PRE_INC:
|
| 785 |
|
|
if (memmode == VOIDmode)
|
| 786 |
|
|
return x;
|
| 787 |
|
|
|
| 788 |
|
|
*off = GEN_INT (GET_MODE_SIZE (memmode));
|
| 789 |
|
|
return XEXP (x, 0);
|
| 790 |
|
|
|
| 791 |
|
|
case PRE_MODIFY:
|
| 792 |
|
|
return XEXP (x, 1);
|
| 793 |
|
|
|
| 794 |
|
|
case POST_DEC:
|
| 795 |
|
|
case POST_INC:
|
| 796 |
|
|
case POST_MODIFY:
|
| 797 |
|
|
return XEXP (x, 0);
|
| 798 |
|
|
|
| 799 |
|
|
default:
|
| 800 |
|
|
return x;
|
| 801 |
|
|
}
|
| 802 |
|
|
}
|
| 803 |
|
|
|
| 804 |
|
|
/* Return nonzero if we can prove that X and Y contain the same value,
|
| 805 |
|
|
taking our gathered information into account. MEMMODE holds the
|
| 806 |
|
|
mode of the enclosing MEM, if any, as required to deal with autoinc
|
| 807 |
|
|
addressing modes. If X and Y are not (known to be) part of
|
| 808 |
|
|
addresses, MEMMODE should be VOIDmode. */
|
| 809 |
|
|
|
| 810 |
|
|
static int
|
| 811 |
|
|
rtx_equal_for_cselib_1 (rtx x, rtx y, enum machine_mode memmode)
|
| 812 |
|
|
{
|
| 813 |
|
|
enum rtx_code code;
|
| 814 |
|
|
const char *fmt;
|
| 815 |
|
|
int i;
|
| 816 |
|
|
|
| 817 |
|
|
if (REG_P (x) || MEM_P (x))
|
| 818 |
|
|
{
|
| 819 |
|
|
cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
|
| 820 |
|
|
|
| 821 |
|
|
if (e)
|
| 822 |
|
|
x = e->val_rtx;
|
| 823 |
|
|
}
|
| 824 |
|
|
|
| 825 |
|
|
if (REG_P (y) || MEM_P (y))
|
| 826 |
|
|
{
|
| 827 |
|
|
cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
|
| 828 |
|
|
|
| 829 |
|
|
if (e)
|
| 830 |
|
|
y = e->val_rtx;
|
| 831 |
|
|
}
|
| 832 |
|
|
|
| 833 |
|
|
if (x == y)
|
| 834 |
|
|
return 1;
|
| 835 |
|
|
|
| 836 |
|
|
if (GET_CODE (x) == VALUE)
|
| 837 |
|
|
{
|
| 838 |
|
|
cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
|
| 839 |
|
|
struct elt_loc_list *l;
|
| 840 |
|
|
|
| 841 |
|
|
if (GET_CODE (y) == VALUE)
|
| 842 |
|
|
return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
|
| 843 |
|
|
|
| 844 |
|
|
for (l = e->locs; l; l = l->next)
|
| 845 |
|
|
{
|
| 846 |
|
|
rtx t = l->loc;
|
| 847 |
|
|
|
| 848 |
|
|
/* Avoid infinite recursion. We know we have the canonical
|
| 849 |
|
|
value, so we can just skip any values in the equivalence
|
| 850 |
|
|
list. */
|
| 851 |
|
|
if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
|
| 852 |
|
|
continue;
|
| 853 |
|
|
else if (rtx_equal_for_cselib_1 (t, y, memmode))
|
| 854 |
|
|
return 1;
|
| 855 |
|
|
}
|
| 856 |
|
|
|
| 857 |
|
|
return 0;
|
| 858 |
|
|
}
|
| 859 |
|
|
else if (GET_CODE (y) == VALUE)
|
| 860 |
|
|
{
|
| 861 |
|
|
cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
|
| 862 |
|
|
struct elt_loc_list *l;
|
| 863 |
|
|
|
| 864 |
|
|
for (l = e->locs; l; l = l->next)
|
| 865 |
|
|
{
|
| 866 |
|
|
rtx t = l->loc;
|
| 867 |
|
|
|
| 868 |
|
|
if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
|
| 869 |
|
|
continue;
|
| 870 |
|
|
else if (rtx_equal_for_cselib_1 (x, t, memmode))
|
| 871 |
|
|
return 1;
|
| 872 |
|
|
}
|
| 873 |
|
|
|
| 874 |
|
|
return 0;
|
| 875 |
|
|
}
|
| 876 |
|
|
|
| 877 |
|
|
if (GET_MODE (x) != GET_MODE (y))
|
| 878 |
|
|
return 0;
|
| 879 |
|
|
|
| 880 |
|
|
if (GET_CODE (x) != GET_CODE (y))
|
| 881 |
|
|
{
|
| 882 |
|
|
rtx xorig = x, yorig = y;
|
| 883 |
|
|
rtx xoff = NULL, yoff = NULL;
|
| 884 |
|
|
|
| 885 |
|
|
x = autoinc_split (x, &xoff, memmode);
|
| 886 |
|
|
y = autoinc_split (y, &yoff, memmode);
|
| 887 |
|
|
|
| 888 |
|
|
if (!xoff != !yoff)
|
| 889 |
|
|
return 0;
|
| 890 |
|
|
|
| 891 |
|
|
if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode))
|
| 892 |
|
|
return 0;
|
| 893 |
|
|
|
| 894 |
|
|
/* Don't recurse if nothing changed. */
|
| 895 |
|
|
if (x != xorig || y != yorig)
|
| 896 |
|
|
return rtx_equal_for_cselib_1 (x, y, memmode);
|
| 897 |
|
|
|
| 898 |
|
|
return 0;
|
| 899 |
|
|
}
|
| 900 |
|
|
|
| 901 |
|
|
/* These won't be handled correctly by the code below. */
|
| 902 |
|
|
switch (GET_CODE (x))
|
| 903 |
|
|
{
|
| 904 |
|
|
case CONST_DOUBLE:
|
| 905 |
|
|
case CONST_FIXED:
|
| 906 |
|
|
case DEBUG_EXPR:
|
| 907 |
|
|
return 0;
|
| 908 |
|
|
|
| 909 |
|
|
case DEBUG_IMPLICIT_PTR:
|
| 910 |
|
|
return DEBUG_IMPLICIT_PTR_DECL (x)
|
| 911 |
|
|
== DEBUG_IMPLICIT_PTR_DECL (y);
|
| 912 |
|
|
|
| 913 |
|
|
case DEBUG_PARAMETER_REF:
|
| 914 |
|
|
return DEBUG_PARAMETER_REF_DECL (x)
|
| 915 |
|
|
== DEBUG_PARAMETER_REF_DECL (y);
|
| 916 |
|
|
|
| 917 |
|
|
case ENTRY_VALUE:
|
| 918 |
|
|
/* ENTRY_VALUEs are function invariant, it is thus undesirable to
|
| 919 |
|
|
use rtx_equal_for_cselib_1 to compare the operands. */
|
| 920 |
|
|
return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
|
| 921 |
|
|
|
| 922 |
|
|
case LABEL_REF:
|
| 923 |
|
|
return XEXP (x, 0) == XEXP (y, 0);
|
| 924 |
|
|
|
| 925 |
|
|
case MEM:
|
| 926 |
|
|
/* We have to compare any autoinc operations in the addresses
|
| 927 |
|
|
using this MEM's mode. */
|
| 928 |
|
|
return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x));
|
| 929 |
|
|
|
| 930 |
|
|
default:
|
| 931 |
|
|
break;
|
| 932 |
|
|
}
|
| 933 |
|
|
|
| 934 |
|
|
code = GET_CODE (x);
|
| 935 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 936 |
|
|
|
| 937 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 938 |
|
|
{
|
| 939 |
|
|
int j;
|
| 940 |
|
|
|
| 941 |
|
|
switch (fmt[i])
|
| 942 |
|
|
{
|
| 943 |
|
|
case 'w':
|
| 944 |
|
|
if (XWINT (x, i) != XWINT (y, i))
|
| 945 |
|
|
return 0;
|
| 946 |
|
|
break;
|
| 947 |
|
|
|
| 948 |
|
|
case 'n':
|
| 949 |
|
|
case 'i':
|
| 950 |
|
|
if (XINT (x, i) != XINT (y, i))
|
| 951 |
|
|
return 0;
|
| 952 |
|
|
break;
|
| 953 |
|
|
|
| 954 |
|
|
case 'V':
|
| 955 |
|
|
case 'E':
|
| 956 |
|
|
/* Two vectors must have the same length. */
|
| 957 |
|
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
| 958 |
|
|
return 0;
|
| 959 |
|
|
|
| 960 |
|
|
/* And the corresponding elements must match. */
|
| 961 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 962 |
|
|
if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
|
| 963 |
|
|
XVECEXP (y, i, j), memmode))
|
| 964 |
|
|
return 0;
|
| 965 |
|
|
break;
|
| 966 |
|
|
|
| 967 |
|
|
case 'e':
|
| 968 |
|
|
if (i == 1
|
| 969 |
|
|
&& targetm.commutative_p (x, UNKNOWN)
|
| 970 |
|
|
&& rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode)
|
| 971 |
|
|
&& rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode))
|
| 972 |
|
|
return 1;
|
| 973 |
|
|
if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode))
|
| 974 |
|
|
return 0;
|
| 975 |
|
|
break;
|
| 976 |
|
|
|
| 977 |
|
|
case 'S':
|
| 978 |
|
|
case 's':
|
| 979 |
|
|
if (strcmp (XSTR (x, i), XSTR (y, i)))
|
| 980 |
|
|
return 0;
|
| 981 |
|
|
break;
|
| 982 |
|
|
|
| 983 |
|
|
case 'u':
|
| 984 |
|
|
/* These are just backpointers, so they don't matter. */
|
| 985 |
|
|
break;
|
| 986 |
|
|
|
| 987 |
|
|
case '0':
|
| 988 |
|
|
case 't':
|
| 989 |
|
|
break;
|
| 990 |
|
|
|
| 991 |
|
|
/* It is believed that rtx's at this level will never
|
| 992 |
|
|
contain anything but integers and other rtx's,
|
| 993 |
|
|
except for within LABEL_REFs and SYMBOL_REFs. */
|
| 994 |
|
|
default:
|
| 995 |
|
|
gcc_unreachable ();
|
| 996 |
|
|
}
|
| 997 |
|
|
}
|
| 998 |
|
|
return 1;
|
| 999 |
|
|
}
|
| 1000 |
|
|
|
| 1001 |
|
|
/* We need to pass down the mode of constants through the hash table
|
| 1002 |
|
|
functions. For that purpose, wrap them in a CONST of the appropriate
|
| 1003 |
|
|
mode. */
|
| 1004 |
|
|
static rtx
|
| 1005 |
|
|
wrap_constant (enum machine_mode mode, rtx x)
|
| 1006 |
|
|
{
|
| 1007 |
|
|
if (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
|
| 1008 |
|
|
&& (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
|
| 1009 |
|
|
return x;
|
| 1010 |
|
|
gcc_assert (mode != VOIDmode);
|
| 1011 |
|
|
return gen_rtx_CONST (mode, x);
|
| 1012 |
|
|
}
|
| 1013 |
|
|
|
| 1014 |
|
|
/* Hash an rtx. Return 0 if we couldn't hash the rtx.
|
| 1015 |
|
|
For registers and memory locations, we look up their cselib_val structure
|
| 1016 |
|
|
and return its VALUE element.
|
| 1017 |
|
|
Possible reasons for return 0 are: the object is volatile, or we couldn't
|
| 1018 |
|
|
find a register or memory location in the table and CREATE is zero. If
|
| 1019 |
|
|
CREATE is nonzero, table elts are created for regs and mem.
|
| 1020 |
|
|
N.B. this hash function returns the same hash value for RTXes that
|
| 1021 |
|
|
differ only in the order of operands, thus it is suitable for comparisons
|
| 1022 |
|
|
that take commutativity into account.
|
| 1023 |
|
|
If we wanted to also support associative rules, we'd have to use a different
|
| 1024 |
|
|
strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
|
| 1025 |
|
|
MEMMODE indicates the mode of an enclosing MEM, and it's only
|
| 1026 |
|
|
used to compute autoinc values.
|
| 1027 |
|
|
We used to have a MODE argument for hashing for CONST_INTs, but that
|
| 1028 |
|
|
didn't make sense, since it caused spurious hash differences between
|
| 1029 |
|
|
(set (reg:SI 1) (const_int))
|
| 1030 |
|
|
(plus:SI (reg:SI 2) (reg:SI 1))
|
| 1031 |
|
|
and
|
| 1032 |
|
|
(plus:SI (reg:SI 2) (const_int))
|
| 1033 |
|
|
If the mode is important in any context, it must be checked specifically
|
| 1034 |
|
|
in a comparison anyway, since relying on hash differences is unsafe. */
|
| 1035 |
|
|
|
| 1036 |
|
|
static unsigned int
|
| 1037 |
|
|
cselib_hash_rtx (rtx x, int create, enum machine_mode memmode)
|
| 1038 |
|
|
{
|
| 1039 |
|
|
cselib_val *e;
|
| 1040 |
|
|
int i, j;
|
| 1041 |
|
|
enum rtx_code code;
|
| 1042 |
|
|
const char *fmt;
|
| 1043 |
|
|
unsigned int hash = 0;
|
| 1044 |
|
|
|
| 1045 |
|
|
code = GET_CODE (x);
|
| 1046 |
|
|
hash += (unsigned) code + (unsigned) GET_MODE (x);
|
| 1047 |
|
|
|
| 1048 |
|
|
switch (code)
|
| 1049 |
|
|
{
|
| 1050 |
|
|
case VALUE:
|
| 1051 |
|
|
e = CSELIB_VAL_PTR (x);
|
| 1052 |
|
|
return e->hash;
|
| 1053 |
|
|
|
| 1054 |
|
|
case MEM:
|
| 1055 |
|
|
case REG:
|
| 1056 |
|
|
e = cselib_lookup (x, GET_MODE (x), create, memmode);
|
| 1057 |
|
|
if (! e)
|
| 1058 |
|
|
return 0;
|
| 1059 |
|
|
|
| 1060 |
|
|
return e->hash;
|
| 1061 |
|
|
|
| 1062 |
|
|
case DEBUG_EXPR:
|
| 1063 |
|
|
hash += ((unsigned) DEBUG_EXPR << 7)
|
| 1064 |
|
|
+ DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
|
| 1065 |
|
|
return hash ? hash : (unsigned int) DEBUG_EXPR;
|
| 1066 |
|
|
|
| 1067 |
|
|
case DEBUG_IMPLICIT_PTR:
|
| 1068 |
|
|
hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
|
| 1069 |
|
|
+ DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
|
| 1070 |
|
|
return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
|
| 1071 |
|
|
|
| 1072 |
|
|
case DEBUG_PARAMETER_REF:
|
| 1073 |
|
|
hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
|
| 1074 |
|
|
+ DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
|
| 1075 |
|
|
return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
|
| 1076 |
|
|
|
| 1077 |
|
|
case ENTRY_VALUE:
|
| 1078 |
|
|
/* ENTRY_VALUEs are function invariant, thus try to avoid
|
| 1079 |
|
|
recursing on argument if ENTRY_VALUE is one of the
|
| 1080 |
|
|
forms emitted by expand_debug_expr, otherwise
|
| 1081 |
|
|
ENTRY_VALUE hash would depend on the current value
|
| 1082 |
|
|
in some register or memory. */
|
| 1083 |
|
|
if (REG_P (ENTRY_VALUE_EXP (x)))
|
| 1084 |
|
|
hash += (unsigned int) REG
|
| 1085 |
|
|
+ (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
|
| 1086 |
|
|
+ (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
|
| 1087 |
|
|
else if (MEM_P (ENTRY_VALUE_EXP (x))
|
| 1088 |
|
|
&& REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
|
| 1089 |
|
|
hash += (unsigned int) MEM
|
| 1090 |
|
|
+ (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
|
| 1091 |
|
|
+ (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
|
| 1092 |
|
|
else
|
| 1093 |
|
|
hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
|
| 1094 |
|
|
return hash ? hash : (unsigned int) ENTRY_VALUE;
|
| 1095 |
|
|
|
| 1096 |
|
|
case CONST_INT:
|
| 1097 |
|
|
hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
|
| 1098 |
|
|
return hash ? hash : (unsigned int) CONST_INT;
|
| 1099 |
|
|
|
| 1100 |
|
|
case CONST_DOUBLE:
|
| 1101 |
|
|
/* This is like the general case, except that it only counts
|
| 1102 |
|
|
the integers representing the constant. */
|
| 1103 |
|
|
hash += (unsigned) code + (unsigned) GET_MODE (x);
|
| 1104 |
|
|
if (GET_MODE (x) != VOIDmode)
|
| 1105 |
|
|
hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
|
| 1106 |
|
|
else
|
| 1107 |
|
|
hash += ((unsigned) CONST_DOUBLE_LOW (x)
|
| 1108 |
|
|
+ (unsigned) CONST_DOUBLE_HIGH (x));
|
| 1109 |
|
|
return hash ? hash : (unsigned int) CONST_DOUBLE;
|
| 1110 |
|
|
|
| 1111 |
|
|
case CONST_FIXED:
|
| 1112 |
|
|
hash += (unsigned int) code + (unsigned int) GET_MODE (x);
|
| 1113 |
|
|
hash += fixed_hash (CONST_FIXED_VALUE (x));
|
| 1114 |
|
|
return hash ? hash : (unsigned int) CONST_FIXED;
|
| 1115 |
|
|
|
| 1116 |
|
|
case CONST_VECTOR:
|
| 1117 |
|
|
{
|
| 1118 |
|
|
int units;
|
| 1119 |
|
|
rtx elt;
|
| 1120 |
|
|
|
| 1121 |
|
|
units = CONST_VECTOR_NUNITS (x);
|
| 1122 |
|
|
|
| 1123 |
|
|
for (i = 0; i < units; ++i)
|
| 1124 |
|
|
{
|
| 1125 |
|
|
elt = CONST_VECTOR_ELT (x, i);
|
| 1126 |
|
|
hash += cselib_hash_rtx (elt, 0, memmode);
|
| 1127 |
|
|
}
|
| 1128 |
|
|
|
| 1129 |
|
|
return hash;
|
| 1130 |
|
|
}
|
| 1131 |
|
|
|
| 1132 |
|
|
/* Assume there is only one rtx object for any given label. */
|
| 1133 |
|
|
case LABEL_REF:
|
| 1134 |
|
|
/* We don't hash on the address of the CODE_LABEL to avoid bootstrap
|
| 1135 |
|
|
differences and differences between each stage's debugging dumps. */
|
| 1136 |
|
|
hash += (((unsigned int) LABEL_REF << 7)
|
| 1137 |
|
|
+ CODE_LABEL_NUMBER (XEXP (x, 0)));
|
| 1138 |
|
|
return hash ? hash : (unsigned int) LABEL_REF;
|
| 1139 |
|
|
|
| 1140 |
|
|
case SYMBOL_REF:
|
| 1141 |
|
|
{
|
| 1142 |
|
|
/* Don't hash on the symbol's address to avoid bootstrap differences.
|
| 1143 |
|
|
Different hash values may cause expressions to be recorded in
|
| 1144 |
|
|
different orders and thus different registers to be used in the
|
| 1145 |
|
|
final assembler. This also avoids differences in the dump files
|
| 1146 |
|
|
between various stages. */
|
| 1147 |
|
|
unsigned int h = 0;
|
| 1148 |
|
|
const unsigned char *p = (const unsigned char *) XSTR (x, 0);
|
| 1149 |
|
|
|
| 1150 |
|
|
while (*p)
|
| 1151 |
|
|
h += (h << 7) + *p++; /* ??? revisit */
|
| 1152 |
|
|
|
| 1153 |
|
|
hash += ((unsigned int) SYMBOL_REF << 7) + h;
|
| 1154 |
|
|
return hash ? hash : (unsigned int) SYMBOL_REF;
|
| 1155 |
|
|
}
|
| 1156 |
|
|
|
| 1157 |
|
|
case PRE_DEC:
|
| 1158 |
|
|
case PRE_INC:
|
| 1159 |
|
|
/* We can't compute these without knowing the MEM mode. */
|
| 1160 |
|
|
gcc_assert (memmode != VOIDmode);
|
| 1161 |
|
|
i = GET_MODE_SIZE (memmode);
|
| 1162 |
|
|
if (code == PRE_DEC)
|
| 1163 |
|
|
i = -i;
|
| 1164 |
|
|
/* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
|
| 1165 |
|
|
like (mem:MEMMODE (plus (reg) (const_int I))). */
|
| 1166 |
|
|
hash += (unsigned) PLUS - (unsigned)code
|
| 1167 |
|
|
+ cselib_hash_rtx (XEXP (x, 0), create, memmode)
|
| 1168 |
|
|
+ cselib_hash_rtx (GEN_INT (i), create, memmode);
|
| 1169 |
|
|
return hash ? hash : 1 + (unsigned) PLUS;
|
| 1170 |
|
|
|
| 1171 |
|
|
case PRE_MODIFY:
|
| 1172 |
|
|
gcc_assert (memmode != VOIDmode);
|
| 1173 |
|
|
return cselib_hash_rtx (XEXP (x, 1), create, memmode);
|
| 1174 |
|
|
|
| 1175 |
|
|
case POST_DEC:
|
| 1176 |
|
|
case POST_INC:
|
| 1177 |
|
|
case POST_MODIFY:
|
| 1178 |
|
|
gcc_assert (memmode != VOIDmode);
|
| 1179 |
|
|
return cselib_hash_rtx (XEXP (x, 0), create, memmode);
|
| 1180 |
|
|
|
| 1181 |
|
|
case PC:
|
| 1182 |
|
|
case CC0:
|
| 1183 |
|
|
case CALL:
|
| 1184 |
|
|
case UNSPEC_VOLATILE:
|
| 1185 |
|
|
return 0;
|
| 1186 |
|
|
|
| 1187 |
|
|
case ASM_OPERANDS:
|
| 1188 |
|
|
if (MEM_VOLATILE_P (x))
|
| 1189 |
|
|
return 0;
|
| 1190 |
|
|
|
| 1191 |
|
|
break;
|
| 1192 |
|
|
|
| 1193 |
|
|
default:
|
| 1194 |
|
|
break;
|
| 1195 |
|
|
}
|
| 1196 |
|
|
|
| 1197 |
|
|
i = GET_RTX_LENGTH (code) - 1;
|
| 1198 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 1199 |
|
|
for (; i >= 0; i--)
|
| 1200 |
|
|
{
|
| 1201 |
|
|
switch (fmt[i])
|
| 1202 |
|
|
{
|
| 1203 |
|
|
case 'e':
|
| 1204 |
|
|
{
|
| 1205 |
|
|
rtx tem = XEXP (x, i);
|
| 1206 |
|
|
unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
|
| 1207 |
|
|
|
| 1208 |
|
|
if (tem_hash == 0)
|
| 1209 |
|
|
return 0;
|
| 1210 |
|
|
|
| 1211 |
|
|
hash += tem_hash;
|
| 1212 |
|
|
}
|
| 1213 |
|
|
break;
|
| 1214 |
|
|
case 'E':
|
| 1215 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 1216 |
|
|
{
|
| 1217 |
|
|
unsigned int tem_hash
|
| 1218 |
|
|
= cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
|
| 1219 |
|
|
|
| 1220 |
|
|
if (tem_hash == 0)
|
| 1221 |
|
|
return 0;
|
| 1222 |
|
|
|
| 1223 |
|
|
hash += tem_hash;
|
| 1224 |
|
|
}
|
| 1225 |
|
|
break;
|
| 1226 |
|
|
|
| 1227 |
|
|
case 's':
|
| 1228 |
|
|
{
|
| 1229 |
|
|
const unsigned char *p = (const unsigned char *) XSTR (x, i);
|
| 1230 |
|
|
|
| 1231 |
|
|
if (p)
|
| 1232 |
|
|
while (*p)
|
| 1233 |
|
|
hash += *p++;
|
| 1234 |
|
|
break;
|
| 1235 |
|
|
}
|
| 1236 |
|
|
|
| 1237 |
|
|
case 'i':
|
| 1238 |
|
|
hash += XINT (x, i);
|
| 1239 |
|
|
break;
|
| 1240 |
|
|
|
| 1241 |
|
|
case '0':
|
| 1242 |
|
|
case 't':
|
| 1243 |
|
|
/* unused */
|
| 1244 |
|
|
break;
|
| 1245 |
|
|
|
| 1246 |
|
|
default:
|
| 1247 |
|
|
gcc_unreachable ();
|
| 1248 |
|
|
}
|
| 1249 |
|
|
}
|
| 1250 |
|
|
|
| 1251 |
|
|
return hash ? hash : 1 + (unsigned int) GET_CODE (x);
|
| 1252 |
|
|
}
|
| 1253 |
|
|
|
| 1254 |
|
|
/* Create a new value structure for VALUE and initialize it. The mode of the
|
| 1255 |
|
|
value is MODE. */
|
| 1256 |
|
|
|
| 1257 |
|
|
static inline cselib_val *
|
| 1258 |
|
|
new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x)
|
| 1259 |
|
|
{
|
| 1260 |
|
|
cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
|
| 1261 |
|
|
|
| 1262 |
|
|
gcc_assert (hash);
|
| 1263 |
|
|
gcc_assert (next_uid);
|
| 1264 |
|
|
|
| 1265 |
|
|
e->hash = hash;
|
| 1266 |
|
|
e->uid = next_uid++;
|
| 1267 |
|
|
/* We use an alloc pool to allocate this RTL construct because it
|
| 1268 |
|
|
accounts for about 8% of the overall memory usage. We know
|
| 1269 |
|
|
precisely when we can have VALUE RTXen (when cselib is active)
|
| 1270 |
|
|
so we don't need to put them in garbage collected memory.
|
| 1271 |
|
|
??? Why should a VALUE be an RTX in the first place? */
|
| 1272 |
|
|
e->val_rtx = (rtx) pool_alloc (value_pool);
|
| 1273 |
|
|
memset (e->val_rtx, 0, RTX_HDR_SIZE);
|
| 1274 |
|
|
PUT_CODE (e->val_rtx, VALUE);
|
| 1275 |
|
|
PUT_MODE (e->val_rtx, mode);
|
| 1276 |
|
|
CSELIB_VAL_PTR (e->val_rtx) = e;
|
| 1277 |
|
|
e->addr_list = 0;
|
| 1278 |
|
|
e->locs = 0;
|
| 1279 |
|
|
e->next_containing_mem = 0;
|
| 1280 |
|
|
|
| 1281 |
|
|
if (dump_file && (dump_flags & TDF_CSELIB))
|
| 1282 |
|
|
{
|
| 1283 |
|
|
fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
|
| 1284 |
|
|
if (flag_dump_noaddr || flag_dump_unnumbered)
|
| 1285 |
|
|
fputs ("# ", dump_file);
|
| 1286 |
|
|
else
|
| 1287 |
|
|
fprintf (dump_file, "%p ", (void*)e);
|
| 1288 |
|
|
print_rtl_single (dump_file, x);
|
| 1289 |
|
|
fputc ('\n', dump_file);
|
| 1290 |
|
|
}
|
| 1291 |
|
|
|
| 1292 |
|
|
return e;
|
| 1293 |
|
|
}
|
| 1294 |
|
|
|
| 1295 |
|
|
/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
|
| 1296 |
|
|
contains the data at this address. X is a MEM that represents the
|
| 1297 |
|
|
value. Update the two value structures to represent this situation. */
|
| 1298 |
|
|
|
| 1299 |
|
|
static void
|
| 1300 |
|
|
add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
|
| 1301 |
|
|
{
|
| 1302 |
|
|
struct elt_loc_list *l;
|
| 1303 |
|
|
|
| 1304 |
|
|
addr_elt = canonical_cselib_val (addr_elt);
|
| 1305 |
|
|
mem_elt = canonical_cselib_val (mem_elt);
|
| 1306 |
|
|
|
| 1307 |
|
|
/* Avoid duplicates. */
|
| 1308 |
|
|
for (l = mem_elt->locs; l; l = l->next)
|
| 1309 |
|
|
if (MEM_P (l->loc)
|
| 1310 |
|
|
&& CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
|
| 1311 |
|
|
{
|
| 1312 |
|
|
promote_debug_loc (l);
|
| 1313 |
|
|
return;
|
| 1314 |
|
|
}
|
| 1315 |
|
|
|
| 1316 |
|
|
addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
|
| 1317 |
|
|
new_elt_loc_list (mem_elt,
|
| 1318 |
|
|
replace_equiv_address_nv (x, addr_elt->val_rtx));
|
| 1319 |
|
|
if (mem_elt->next_containing_mem == NULL)
|
| 1320 |
|
|
{
|
| 1321 |
|
|
mem_elt->next_containing_mem = first_containing_mem;
|
| 1322 |
|
|
first_containing_mem = mem_elt;
|
| 1323 |
|
|
}
|
| 1324 |
|
|
}
|
| 1325 |
|
|
|
| 1326 |
|
|
/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
|
| 1327 |
|
|
If CREATE, make a new one if we haven't seen it before. */
|
| 1328 |
|
|
|
| 1329 |
|
|
static cselib_val *
|
| 1330 |
|
|
cselib_lookup_mem (rtx x, int create)
|
| 1331 |
|
|
{
|
| 1332 |
|
|
enum machine_mode mode = GET_MODE (x);
|
| 1333 |
|
|
enum machine_mode addr_mode;
|
| 1334 |
|
|
void **slot;
|
| 1335 |
|
|
cselib_val *addr;
|
| 1336 |
|
|
cselib_val *mem_elt;
|
| 1337 |
|
|
struct elt_list *l;
|
| 1338 |
|
|
|
| 1339 |
|
|
if (MEM_VOLATILE_P (x) || mode == BLKmode
|
| 1340 |
|
|
|| !cselib_record_memory
|
| 1341 |
|
|
|| (FLOAT_MODE_P (mode) && flag_float_store))
|
| 1342 |
|
|
return 0;
|
| 1343 |
|
|
|
| 1344 |
|
|
addr_mode = GET_MODE (XEXP (x, 0));
|
| 1345 |
|
|
if (addr_mode == VOIDmode)
|
| 1346 |
|
|
addr_mode = Pmode;
|
| 1347 |
|
|
|
| 1348 |
|
|
/* Look up the value for the address. */
|
| 1349 |
|
|
addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
|
| 1350 |
|
|
if (! addr)
|
| 1351 |
|
|
return 0;
|
| 1352 |
|
|
|
| 1353 |
|
|
addr = canonical_cselib_val (addr);
|
| 1354 |
|
|
/* Find a value that describes a value of our mode at that address. */
|
| 1355 |
|
|
for (l = addr->addr_list; l; l = l->next)
|
| 1356 |
|
|
if (GET_MODE (l->elt->val_rtx) == mode)
|
| 1357 |
|
|
{
|
| 1358 |
|
|
promote_debug_loc (l->elt->locs);
|
| 1359 |
|
|
return l->elt;
|
| 1360 |
|
|
}
|
| 1361 |
|
|
|
| 1362 |
|
|
if (! create)
|
| 1363 |
|
|
return 0;
|
| 1364 |
|
|
|
| 1365 |
|
|
mem_elt = new_cselib_val (next_uid, mode, x);
|
| 1366 |
|
|
add_mem_for_addr (addr, mem_elt, x);
|
| 1367 |
|
|
slot = cselib_find_slot (wrap_constant (mode, x), mem_elt->hash,
|
| 1368 |
|
|
INSERT, mode);
|
| 1369 |
|
|
*slot = mem_elt;
|
| 1370 |
|
|
return mem_elt;
|
| 1371 |
|
|
}
|
| 1372 |
|
|
|
| 1373 |
|
|
/* Search thru the possible substitutions in P. We prefer a non reg
|
| 1374 |
|
|
substitution because this allows us to expand the tree further. If
|
| 1375 |
|
|
we find, just a reg, take the lowest regno. There may be several
|
| 1376 |
|
|
non-reg results, we just take the first one because they will all
|
| 1377 |
|
|
expand to the same place. */
|
| 1378 |
|
|
|
| 1379 |
|
|
static rtx
|
| 1380 |
|
|
expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
|
| 1381 |
|
|
int max_depth)
|
| 1382 |
|
|
{
|
| 1383 |
|
|
rtx reg_result = NULL;
|
| 1384 |
|
|
unsigned int regno = UINT_MAX;
|
| 1385 |
|
|
struct elt_loc_list *p_in = p;
|
| 1386 |
|
|
|
| 1387 |
|
|
for (; p; p = p->next)
|
| 1388 |
|
|
{
|
| 1389 |
|
|
/* Return these right away to avoid returning stack pointer based
|
| 1390 |
|
|
expressions for frame pointer and vice versa, which is something
|
| 1391 |
|
|
that would confuse DSE. See the comment in cselib_expand_value_rtx_1
|
| 1392 |
|
|
for more details. */
|
| 1393 |
|
|
if (REG_P (p->loc)
|
| 1394 |
|
|
&& (REGNO (p->loc) == STACK_POINTER_REGNUM
|
| 1395 |
|
|
|| REGNO (p->loc) == FRAME_POINTER_REGNUM
|
| 1396 |
|
|
|| REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
|
| 1397 |
|
|
|| REGNO (p->loc) == cfa_base_preserved_regno))
|
| 1398 |
|
|
return p->loc;
|
| 1399 |
|
|
/* Avoid infinite recursion trying to expand a reg into a
|
| 1400 |
|
|
the same reg. */
|
| 1401 |
|
|
if ((REG_P (p->loc))
|
| 1402 |
|
|
&& (REGNO (p->loc) < regno)
|
| 1403 |
|
|
&& !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
|
| 1404 |
|
|
{
|
| 1405 |
|
|
reg_result = p->loc;
|
| 1406 |
|
|
regno = REGNO (p->loc);
|
| 1407 |
|
|
}
|
| 1408 |
|
|
/* Avoid infinite recursion and do not try to expand the
|
| 1409 |
|
|
value. */
|
| 1410 |
|
|
else if (GET_CODE (p->loc) == VALUE
|
| 1411 |
|
|
&& CSELIB_VAL_PTR (p->loc)->locs == p_in)
|
| 1412 |
|
|
continue;
|
| 1413 |
|
|
else if (!REG_P (p->loc))
|
| 1414 |
|
|
{
|
| 1415 |
|
|
rtx result, note;
|
| 1416 |
|
|
if (dump_file && (dump_flags & TDF_CSELIB))
|
| 1417 |
|
|
{
|
| 1418 |
|
|
print_inline_rtx (dump_file, p->loc, 0);
|
| 1419 |
|
|
fprintf (dump_file, "\n");
|
| 1420 |
|
|
}
|
| 1421 |
|
|
if (GET_CODE (p->loc) == LO_SUM
|
| 1422 |
|
|
&& GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
|
| 1423 |
|
|
&& p->setting_insn
|
| 1424 |
|
|
&& (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
|
| 1425 |
|
|
&& XEXP (note, 0) == XEXP (p->loc, 1))
|
| 1426 |
|
|
return XEXP (p->loc, 1);
|
| 1427 |
|
|
result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
|
| 1428 |
|
|
if (result)
|
| 1429 |
|
|
return result;
|
| 1430 |
|
|
}
|
| 1431 |
|
|
|
| 1432 |
|
|
}
|
| 1433 |
|
|
|
| 1434 |
|
|
if (regno != UINT_MAX)
|
| 1435 |
|
|
{
|
| 1436 |
|
|
rtx result;
|
| 1437 |
|
|
if (dump_file && (dump_flags & TDF_CSELIB))
|
| 1438 |
|
|
fprintf (dump_file, "r%d\n", regno);
|
| 1439 |
|
|
|
| 1440 |
|
|
result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
|
| 1441 |
|
|
if (result)
|
| 1442 |
|
|
return result;
|
| 1443 |
|
|
}
|
| 1444 |
|
|
|
| 1445 |
|
|
if (dump_file && (dump_flags & TDF_CSELIB))
|
| 1446 |
|
|
{
|
| 1447 |
|
|
if (reg_result)
|
| 1448 |
|
|
{
|
| 1449 |
|
|
print_inline_rtx (dump_file, reg_result, 0);
|
| 1450 |
|
|
fprintf (dump_file, "\n");
|
| 1451 |
|
|
}
|
| 1452 |
|
|
else
|
| 1453 |
|
|
fprintf (dump_file, "NULL\n");
|
| 1454 |
|
|
}
|
| 1455 |
|
|
return reg_result;
|
| 1456 |
|
|
}
|
| 1457 |
|
|
|
| 1458 |
|
|
|
| 1459 |
|
|
/* Forward substitute and expand an expression out to its roots.
|
| 1460 |
|
|
This is the opposite of common subexpression. Because local value
|
| 1461 |
|
|
numbering is such a weak optimization, the expanded expression is
|
| 1462 |
|
|
pretty much unique (not from a pointer equals point of view but
|
| 1463 |
|
|
from a tree shape point of view.
|
| 1464 |
|
|
|
| 1465 |
|
|
This function returns NULL if the expansion fails. The expansion
|
| 1466 |
|
|
will fail if there is no value number for one of the operands or if
|
| 1467 |
|
|
one of the operands has been overwritten between the current insn
|
| 1468 |
|
|
and the beginning of the basic block. For instance x has no
|
| 1469 |
|
|
expansion in:
|
| 1470 |
|
|
|
| 1471 |
|
|
r1 <- r1 + 3
|
| 1472 |
|
|
x <- r1 + 8
|
| 1473 |
|
|
|
| 1474 |
|
|
REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
|
| 1475 |
|
|
It is clear on return. */
|
| 1476 |
|
|
|
| 1477 |
|
|
rtx
|
| 1478 |
|
|
cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
|
| 1479 |
|
|
{
|
| 1480 |
|
|
struct expand_value_data evd;
|
| 1481 |
|
|
|
| 1482 |
|
|
evd.regs_active = regs_active;
|
| 1483 |
|
|
evd.callback = NULL;
|
| 1484 |
|
|
evd.callback_arg = NULL;
|
| 1485 |
|
|
evd.dummy = false;
|
| 1486 |
|
|
|
| 1487 |
|
|
return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
|
| 1488 |
|
|
}
|
| 1489 |
|
|
|
| 1490 |
|
|
/* Same as cselib_expand_value_rtx, but using a callback to try to
|
| 1491 |
|
|
resolve some expressions. The CB function should return ORIG if it
|
| 1492 |
|
|
can't or does not want to deal with a certain RTX. Any other
|
| 1493 |
|
|
return value, including NULL, will be used as the expansion for
|
| 1494 |
|
|
VALUE, without any further changes. */
|
| 1495 |
|
|
|
| 1496 |
|
|
rtx
|
| 1497 |
|
|
cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
|
| 1498 |
|
|
cselib_expand_callback cb, void *data)
|
| 1499 |
|
|
{
|
| 1500 |
|
|
struct expand_value_data evd;
|
| 1501 |
|
|
|
| 1502 |
|
|
evd.regs_active = regs_active;
|
| 1503 |
|
|
evd.callback = cb;
|
| 1504 |
|
|
evd.callback_arg = data;
|
| 1505 |
|
|
evd.dummy = false;
|
| 1506 |
|
|
|
| 1507 |
|
|
return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
|
| 1508 |
|
|
}
|
| 1509 |
|
|
|
| 1510 |
|
|
/* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
|
| 1511 |
|
|
or simplified. Useful to find out whether cselib_expand_value_rtx_cb
|
| 1512 |
|
|
would return NULL or non-NULL, without allocating new rtx. */
|
| 1513 |
|
|
|
| 1514 |
|
|
bool
|
| 1515 |
|
|
cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
|
| 1516 |
|
|
cselib_expand_callback cb, void *data)
|
| 1517 |
|
|
{
|
| 1518 |
|
|
struct expand_value_data evd;
|
| 1519 |
|
|
|
| 1520 |
|
|
evd.regs_active = regs_active;
|
| 1521 |
|
|
evd.callback = cb;
|
| 1522 |
|
|
evd.callback_arg = data;
|
| 1523 |
|
|
evd.dummy = true;
|
| 1524 |
|
|
|
| 1525 |
|
|
return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
|
| 1526 |
|
|
}
|
| 1527 |
|
|
|
| 1528 |
|
|
/* Internal implementation of cselib_expand_value_rtx and
|
| 1529 |
|
|
cselib_expand_value_rtx_cb. */
|
| 1530 |
|
|
|
| 1531 |
|
|
static rtx
|
| 1532 |
|
|
cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
|
| 1533 |
|
|
int max_depth)
|
| 1534 |
|
|
{
|
| 1535 |
|
|
rtx copy, scopy;
|
| 1536 |
|
|
int i, j;
|
| 1537 |
|
|
RTX_CODE code;
|
| 1538 |
|
|
const char *format_ptr;
|
| 1539 |
|
|
enum machine_mode mode;
|
| 1540 |
|
|
|
| 1541 |
|
|
code = GET_CODE (orig);
|
| 1542 |
|
|
|
| 1543 |
|
|
/* For the context of dse, if we end up expand into a huge tree, we
|
| 1544 |
|
|
will not have a useful address, so we might as well just give up
|
| 1545 |
|
|
quickly. */
|
| 1546 |
|
|
if (max_depth <= 0)
|
| 1547 |
|
|
return NULL;
|
| 1548 |
|
|
|
| 1549 |
|
|
switch (code)
|
| 1550 |
|
|
{
|
| 1551 |
|
|
case REG:
|
| 1552 |
|
|
{
|
| 1553 |
|
|
struct elt_list *l = REG_VALUES (REGNO (orig));
|
| 1554 |
|
|
|
| 1555 |
|
|
if (l && l->elt == NULL)
|
| 1556 |
|
|
l = l->next;
|
| 1557 |
|
|
for (; l; l = l->next)
|
| 1558 |
|
|
if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
|
| 1559 |
|
|
{
|
| 1560 |
|
|
rtx result;
|
| 1561 |
|
|
unsigned regno = REGNO (orig);
|
| 1562 |
|
|
|
| 1563 |
|
|
/* The only thing that we are not willing to do (this
|
| 1564 |
|
|
is requirement of dse and if others potential uses
|
| 1565 |
|
|
need this function we should add a parm to control
|
| 1566 |
|
|
it) is that we will not substitute the
|
| 1567 |
|
|
STACK_POINTER_REGNUM, FRAME_POINTER or the
|
| 1568 |
|
|
HARD_FRAME_POINTER.
|
| 1569 |
|
|
|
| 1570 |
|
|
These expansions confuses the code that notices that
|
| 1571 |
|
|
stores into the frame go dead at the end of the
|
| 1572 |
|
|
function and that the frame is not effected by calls
|
| 1573 |
|
|
to subroutines. If you allow the
|
| 1574 |
|
|
STACK_POINTER_REGNUM substitution, then dse will
|
| 1575 |
|
|
think that parameter pushing also goes dead which is
|
| 1576 |
|
|
wrong. If you allow the FRAME_POINTER or the
|
| 1577 |
|
|
HARD_FRAME_POINTER then you lose the opportunity to
|
| 1578 |
|
|
make the frame assumptions. */
|
| 1579 |
|
|
if (regno == STACK_POINTER_REGNUM
|
| 1580 |
|
|
|| regno == FRAME_POINTER_REGNUM
|
| 1581 |
|
|
|| regno == HARD_FRAME_POINTER_REGNUM
|
| 1582 |
|
|
|| regno == cfa_base_preserved_regno)
|
| 1583 |
|
|
return orig;
|
| 1584 |
|
|
|
| 1585 |
|
|
bitmap_set_bit (evd->regs_active, regno);
|
| 1586 |
|
|
|
| 1587 |
|
|
if (dump_file && (dump_flags & TDF_CSELIB))
|
| 1588 |
|
|
fprintf (dump_file, "expanding: r%d into: ", regno);
|
| 1589 |
|
|
|
| 1590 |
|
|
result = expand_loc (l->elt->locs, evd, max_depth);
|
| 1591 |
|
|
bitmap_clear_bit (evd->regs_active, regno);
|
| 1592 |
|
|
|
| 1593 |
|
|
if (result)
|
| 1594 |
|
|
return result;
|
| 1595 |
|
|
else
|
| 1596 |
|
|
return orig;
|
| 1597 |
|
|
}
|
| 1598 |
|
|
}
|
| 1599 |
|
|
|
| 1600 |
|
|
case CONST_INT:
|
| 1601 |
|
|
case CONST_DOUBLE:
|
| 1602 |
|
|
case CONST_VECTOR:
|
| 1603 |
|
|
case SYMBOL_REF:
|
| 1604 |
|
|
case CODE_LABEL:
|
| 1605 |
|
|
case PC:
|
| 1606 |
|
|
case CC0:
|
| 1607 |
|
|
case SCRATCH:
|
| 1608 |
|
|
/* SCRATCH must be shared because they represent distinct values. */
|
| 1609 |
|
|
return orig;
|
| 1610 |
|
|
case CLOBBER:
|
| 1611 |
|
|
if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
|
| 1612 |
|
|
return orig;
|
| 1613 |
|
|
break;
|
| 1614 |
|
|
|
| 1615 |
|
|
case CONST:
|
| 1616 |
|
|
if (shared_const_p (orig))
|
| 1617 |
|
|
return orig;
|
| 1618 |
|
|
break;
|
| 1619 |
|
|
|
| 1620 |
|
|
case SUBREG:
|
| 1621 |
|
|
{
|
| 1622 |
|
|
rtx subreg;
|
| 1623 |
|
|
|
| 1624 |
|
|
if (evd->callback)
|
| 1625 |
|
|
{
|
| 1626 |
|
|
subreg = evd->callback (orig, evd->regs_active, max_depth,
|
| 1627 |
|
|
evd->callback_arg);
|
| 1628 |
|
|
if (subreg != orig)
|
| 1629 |
|
|
return subreg;
|
| 1630 |
|
|
}
|
| 1631 |
|
|
|
| 1632 |
|
|
subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
|
| 1633 |
|
|
max_depth - 1);
|
| 1634 |
|
|
if (!subreg)
|
| 1635 |
|
|
return NULL;
|
| 1636 |
|
|
scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
|
| 1637 |
|
|
GET_MODE (SUBREG_REG (orig)),
|
| 1638 |
|
|
SUBREG_BYTE (orig));
|
| 1639 |
|
|
if (scopy == NULL
|
| 1640 |
|
|
|| (GET_CODE (scopy) == SUBREG
|
| 1641 |
|
|
&& !REG_P (SUBREG_REG (scopy))
|
| 1642 |
|
|
&& !MEM_P (SUBREG_REG (scopy))))
|
| 1643 |
|
|
return NULL;
|
| 1644 |
|
|
|
| 1645 |
|
|
return scopy;
|
| 1646 |
|
|
}
|
| 1647 |
|
|
|
| 1648 |
|
|
case VALUE:
|
| 1649 |
|
|
{
|
| 1650 |
|
|
rtx result;
|
| 1651 |
|
|
|
| 1652 |
|
|
if (dump_file && (dump_flags & TDF_CSELIB))
|
| 1653 |
|
|
{
|
| 1654 |
|
|
fputs ("\nexpanding ", dump_file);
|
| 1655 |
|
|
print_rtl_single (dump_file, orig);
|
| 1656 |
|
|
fputs (" into...", dump_file);
|
| 1657 |
|
|
}
|
| 1658 |
|
|
|
| 1659 |
|
|
if (evd->callback)
|
| 1660 |
|
|
{
|
| 1661 |
|
|
result = evd->callback (orig, evd->regs_active, max_depth,
|
| 1662 |
|
|
evd->callback_arg);
|
| 1663 |
|
|
|
| 1664 |
|
|
if (result != orig)
|
| 1665 |
|
|
return result;
|
| 1666 |
|
|
}
|
| 1667 |
|
|
|
| 1668 |
|
|
result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
|
| 1669 |
|
|
return result;
|
| 1670 |
|
|
}
|
| 1671 |
|
|
|
| 1672 |
|
|
case DEBUG_EXPR:
|
| 1673 |
|
|
if (evd->callback)
|
| 1674 |
|
|
return evd->callback (orig, evd->regs_active, max_depth,
|
| 1675 |
|
|
evd->callback_arg);
|
| 1676 |
|
|
return orig;
|
| 1677 |
|
|
|
| 1678 |
|
|
default:
|
| 1679 |
|
|
break;
|
| 1680 |
|
|
}
|
| 1681 |
|
|
|
| 1682 |
|
|
/* Copy the various flags, fields, and other information. We assume
|
| 1683 |
|
|
that all fields need copying, and then clear the fields that should
|
| 1684 |
|
|
not be copied. That is the sensible default behavior, and forces
|
| 1685 |
|
|
us to explicitly document why we are *not* copying a flag. */
|
| 1686 |
|
|
if (evd->dummy)
|
| 1687 |
|
|
copy = NULL;
|
| 1688 |
|
|
else
|
| 1689 |
|
|
copy = shallow_copy_rtx (orig);
|
| 1690 |
|
|
|
| 1691 |
|
|
format_ptr = GET_RTX_FORMAT (code);
|
| 1692 |
|
|
|
| 1693 |
|
|
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
| 1694 |
|
|
switch (*format_ptr++)
|
| 1695 |
|
|
{
|
| 1696 |
|
|
case 'e':
|
| 1697 |
|
|
if (XEXP (orig, i) != NULL)
|
| 1698 |
|
|
{
|
| 1699 |
|
|
rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
|
| 1700 |
|
|
max_depth - 1);
|
| 1701 |
|
|
if (!result)
|
| 1702 |
|
|
return NULL;
|
| 1703 |
|
|
if (copy)
|
| 1704 |
|
|
XEXP (copy, i) = result;
|
| 1705 |
|
|
}
|
| 1706 |
|
|
break;
|
| 1707 |
|
|
|
| 1708 |
|
|
case 'E':
|
| 1709 |
|
|
case 'V':
|
| 1710 |
|
|
if (XVEC (orig, i) != NULL)
|
| 1711 |
|
|
{
|
| 1712 |
|
|
if (copy)
|
| 1713 |
|
|
XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
|
| 1714 |
|
|
for (j = 0; j < XVECLEN (orig, i); j++)
|
| 1715 |
|
|
{
|
| 1716 |
|
|
rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
|
| 1717 |
|
|
evd, max_depth - 1);
|
| 1718 |
|
|
if (!result)
|
| 1719 |
|
|
return NULL;
|
| 1720 |
|
|
if (copy)
|
| 1721 |
|
|
XVECEXP (copy, i, j) = result;
|
| 1722 |
|
|
}
|
| 1723 |
|
|
}
|
| 1724 |
|
|
break;
|
| 1725 |
|
|
|
| 1726 |
|
|
case 't':
|
| 1727 |
|
|
case 'w':
|
| 1728 |
|
|
case 'i':
|
| 1729 |
|
|
case 's':
|
| 1730 |
|
|
case 'S':
|
| 1731 |
|
|
case 'T':
|
| 1732 |
|
|
case 'u':
|
| 1733 |
|
|
case 'B':
|
| 1734 |
|
|
case '0':
|
| 1735 |
|
|
/* These are left unchanged. */
|
| 1736 |
|
|
break;
|
| 1737 |
|
|
|
| 1738 |
|
|
default:
|
| 1739 |
|
|
gcc_unreachable ();
|
| 1740 |
|
|
}
|
| 1741 |
|
|
|
| 1742 |
|
|
if (evd->dummy)
|
| 1743 |
|
|
return orig;
|
| 1744 |
|
|
|
| 1745 |
|
|
mode = GET_MODE (copy);
|
| 1746 |
|
|
/* If an operand has been simplified into CONST_INT, which doesn't
|
| 1747 |
|
|
have a mode and the mode isn't derivable from whole rtx's mode,
|
| 1748 |
|
|
try simplify_*_operation first with mode from original's operand
|
| 1749 |
|
|
and as a fallback wrap CONST_INT into gen_rtx_CONST. */
|
| 1750 |
|
|
scopy = copy;
|
| 1751 |
|
|
switch (GET_RTX_CLASS (code))
|
| 1752 |
|
|
{
|
| 1753 |
|
|
case RTX_UNARY:
|
| 1754 |
|
|
if (CONST_INT_P (XEXP (copy, 0))
|
| 1755 |
|
|
&& GET_MODE (XEXP (orig, 0)) != VOIDmode)
|
| 1756 |
|
|
{
|
| 1757 |
|
|
scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
|
| 1758 |
|
|
GET_MODE (XEXP (orig, 0)));
|
| 1759 |
|
|
if (scopy)
|
| 1760 |
|
|
return scopy;
|
| 1761 |
|
|
}
|
| 1762 |
|
|
break;
|
| 1763 |
|
|
case RTX_COMM_ARITH:
|
| 1764 |
|
|
case RTX_BIN_ARITH:
|
| 1765 |
|
|
/* These expressions can derive operand modes from the whole rtx's mode. */
|
| 1766 |
|
|
break;
|
| 1767 |
|
|
case RTX_TERNARY:
|
| 1768 |
|
|
case RTX_BITFIELD_OPS:
|
| 1769 |
|
|
if (CONST_INT_P (XEXP (copy, 0))
|
| 1770 |
|
|
&& GET_MODE (XEXP (orig, 0)) != VOIDmode)
|
| 1771 |
|
|
{
|
| 1772 |
|
|
scopy = simplify_ternary_operation (code, mode,
|
| 1773 |
|
|
GET_MODE (XEXP (orig, 0)),
|
| 1774 |
|
|
XEXP (copy, 0), XEXP (copy, 1),
|
| 1775 |
|
|
XEXP (copy, 2));
|
| 1776 |
|
|
if (scopy)
|
| 1777 |
|
|
return scopy;
|
| 1778 |
|
|
}
|
| 1779 |
|
|
break;
|
| 1780 |
|
|
case RTX_COMPARE:
|
| 1781 |
|
|
case RTX_COMM_COMPARE:
|
| 1782 |
|
|
if (CONST_INT_P (XEXP (copy, 0))
|
| 1783 |
|
|
&& GET_MODE (XEXP (copy, 1)) == VOIDmode
|
| 1784 |
|
|
&& (GET_MODE (XEXP (orig, 0)) != VOIDmode
|
| 1785 |
|
|
|| GET_MODE (XEXP (orig, 1)) != VOIDmode))
|
| 1786 |
|
|
{
|
| 1787 |
|
|
scopy = simplify_relational_operation (code, mode,
|
| 1788 |
|
|
(GET_MODE (XEXP (orig, 0))
|
| 1789 |
|
|
!= VOIDmode)
|
| 1790 |
|
|
? GET_MODE (XEXP (orig, 0))
|
| 1791 |
|
|
: GET_MODE (XEXP (orig, 1)),
|
| 1792 |
|
|
XEXP (copy, 0),
|
| 1793 |
|
|
XEXP (copy, 1));
|
| 1794 |
|
|
if (scopy)
|
| 1795 |
|
|
return scopy;
|
| 1796 |
|
|
}
|
| 1797 |
|
|
break;
|
| 1798 |
|
|
default:
|
| 1799 |
|
|
break;
|
| 1800 |
|
|
}
|
| 1801 |
|
|
scopy = simplify_rtx (copy);
|
| 1802 |
|
|
if (scopy)
|
| 1803 |
|
|
return scopy;
|
| 1804 |
|
|
return copy;
|
| 1805 |
|
|
}
|
| 1806 |
|
|
|
| 1807 |
|
|
/* Walk rtx X and replace all occurrences of REG and MEM subexpressions
|
| 1808 |
|
|
with VALUE expressions. This way, it becomes independent of changes
|
| 1809 |
|
|
to registers and memory.
|
| 1810 |
|
|
X isn't actually modified; if modifications are needed, new rtl is
|
| 1811 |
|
|
allocated. However, the return value can share rtl with X.
|
| 1812 |
|
|
If X is within a MEM, MEMMODE must be the mode of the MEM. */
|
| 1813 |
|
|
|
| 1814 |
|
|
rtx
|
| 1815 |
|
|
cselib_subst_to_values (rtx x, enum machine_mode memmode)
|
| 1816 |
|
|
{
|
| 1817 |
|
|
enum rtx_code code = GET_CODE (x);
|
| 1818 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
| 1819 |
|
|
cselib_val *e;
|
| 1820 |
|
|
struct elt_list *l;
|
| 1821 |
|
|
rtx copy = x;
|
| 1822 |
|
|
int i;
|
| 1823 |
|
|
|
| 1824 |
|
|
switch (code)
|
| 1825 |
|
|
{
|
| 1826 |
|
|
case REG:
|
| 1827 |
|
|
l = REG_VALUES (REGNO (x));
|
| 1828 |
|
|
if (l && l->elt == NULL)
|
| 1829 |
|
|
l = l->next;
|
| 1830 |
|
|
for (; l; l = l->next)
|
| 1831 |
|
|
if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
|
| 1832 |
|
|
return l->elt->val_rtx;
|
| 1833 |
|
|
|
| 1834 |
|
|
gcc_unreachable ();
|
| 1835 |
|
|
|
| 1836 |
|
|
case MEM:
|
| 1837 |
|
|
e = cselib_lookup_mem (x, 0);
|
| 1838 |
|
|
/* This used to happen for autoincrements, but we deal with them
|
| 1839 |
|
|
properly now. Remove the if stmt for the next release. */
|
| 1840 |
|
|
if (! e)
|
| 1841 |
|
|
{
|
| 1842 |
|
|
/* Assign a value that doesn't match any other. */
|
| 1843 |
|
|
e = new_cselib_val (next_uid, GET_MODE (x), x);
|
| 1844 |
|
|
}
|
| 1845 |
|
|
return e->val_rtx;
|
| 1846 |
|
|
|
| 1847 |
|
|
case ENTRY_VALUE:
|
| 1848 |
|
|
e = cselib_lookup (x, GET_MODE (x), 0, memmode);
|
| 1849 |
|
|
if (! e)
|
| 1850 |
|
|
break;
|
| 1851 |
|
|
return e->val_rtx;
|
| 1852 |
|
|
|
| 1853 |
|
|
case CONST_DOUBLE:
|
| 1854 |
|
|
case CONST_VECTOR:
|
| 1855 |
|
|
case CONST_INT:
|
| 1856 |
|
|
case CONST_FIXED:
|
| 1857 |
|
|
return x;
|
| 1858 |
|
|
|
| 1859 |
|
|
case PRE_DEC:
|
| 1860 |
|
|
case PRE_INC:
|
| 1861 |
|
|
gcc_assert (memmode != VOIDmode);
|
| 1862 |
|
|
i = GET_MODE_SIZE (memmode);
|
| 1863 |
|
|
if (code == PRE_DEC)
|
| 1864 |
|
|
i = -i;
|
| 1865 |
|
|
return cselib_subst_to_values (plus_constant (XEXP (x, 0), i),
|
| 1866 |
|
|
memmode);
|
| 1867 |
|
|
|
| 1868 |
|
|
case PRE_MODIFY:
|
| 1869 |
|
|
gcc_assert (memmode != VOIDmode);
|
| 1870 |
|
|
return cselib_subst_to_values (XEXP (x, 1), memmode);
|
| 1871 |
|
|
|
| 1872 |
|
|
case POST_DEC:
|
| 1873 |
|
|
case POST_INC:
|
| 1874 |
|
|
case POST_MODIFY:
|
| 1875 |
|
|
gcc_assert (memmode != VOIDmode);
|
| 1876 |
|
|
return cselib_subst_to_values (XEXP (x, 0), memmode);
|
| 1877 |
|
|
|
| 1878 |
|
|
default:
|
| 1879 |
|
|
break;
|
| 1880 |
|
|
}
|
| 1881 |
|
|
|
| 1882 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 1883 |
|
|
{
|
| 1884 |
|
|
if (fmt[i] == 'e')
|
| 1885 |
|
|
{
|
| 1886 |
|
|
rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
|
| 1887 |
|
|
|
| 1888 |
|
|
if (t != XEXP (x, i))
|
| 1889 |
|
|
{
|
| 1890 |
|
|
if (x == copy)
|
| 1891 |
|
|
copy = shallow_copy_rtx (x);
|
| 1892 |
|
|
XEXP (copy, i) = t;
|
| 1893 |
|
|
}
|
| 1894 |
|
|
}
|
| 1895 |
|
|
else if (fmt[i] == 'E')
|
| 1896 |
|
|
{
|
| 1897 |
|
|
int j;
|
| 1898 |
|
|
|
| 1899 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 1900 |
|
|
{
|
| 1901 |
|
|
rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
|
| 1902 |
|
|
|
| 1903 |
|
|
if (t != XVECEXP (x, i, j))
|
| 1904 |
|
|
{
|
| 1905 |
|
|
if (XVEC (x, i) == XVEC (copy, i))
|
| 1906 |
|
|
{
|
| 1907 |
|
|
if (x == copy)
|
| 1908 |
|
|
copy = shallow_copy_rtx (x);
|
| 1909 |
|
|
XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
|
| 1910 |
|
|
}
|
| 1911 |
|
|
XVECEXP (copy, i, j) = t;
|
| 1912 |
|
|
}
|
| 1913 |
|
|
}
|
| 1914 |
|
|
}
|
| 1915 |
|
|
}
|
| 1916 |
|
|
|
| 1917 |
|
|
return copy;
|
| 1918 |
|
|
}
|
| 1919 |
|
|
|
| 1920 |
|
|
/* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
|
| 1921 |
|
|
|
| 1922 |
|
|
rtx
|
| 1923 |
|
|
cselib_subst_to_values_from_insn (rtx x, enum machine_mode memmode, rtx insn)
|
| 1924 |
|
|
{
|
| 1925 |
|
|
rtx ret;
|
| 1926 |
|
|
gcc_assert (!cselib_current_insn);
|
| 1927 |
|
|
cselib_current_insn = insn;
|
| 1928 |
|
|
ret = cselib_subst_to_values (x, memmode);
|
| 1929 |
|
|
cselib_current_insn = NULL;
|
| 1930 |
|
|
return ret;
|
| 1931 |
|
|
}
|
| 1932 |
|
|
|
| 1933 |
|
|
/* Look up the rtl expression X in our tables and return the value it
|
| 1934 |
|
|
has. If CREATE is zero, we return NULL if we don't know the value.
|
| 1935 |
|
|
Otherwise, we create a new one if possible, using mode MODE if X
|
| 1936 |
|
|
doesn't have a mode (i.e. because it's a constant). When X is part
|
| 1937 |
|
|
of an address, MEMMODE should be the mode of the enclosing MEM if
|
| 1938 |
|
|
we're tracking autoinc expressions. */
|
| 1939 |
|
|
|
| 1940 |
|
|
static cselib_val *
|
| 1941 |
|
|
cselib_lookup_1 (rtx x, enum machine_mode mode,
|
| 1942 |
|
|
int create, enum machine_mode memmode)
|
| 1943 |
|
|
{
|
| 1944 |
|
|
void **slot;
|
| 1945 |
|
|
cselib_val *e;
|
| 1946 |
|
|
unsigned int hashval;
|
| 1947 |
|
|
|
| 1948 |
|
|
if (GET_MODE (x) != VOIDmode)
|
| 1949 |
|
|
mode = GET_MODE (x);
|
| 1950 |
|
|
|
| 1951 |
|
|
if (GET_CODE (x) == VALUE)
|
| 1952 |
|
|
return CSELIB_VAL_PTR (x);
|
| 1953 |
|
|
|
| 1954 |
|
|
if (REG_P (x))
|
| 1955 |
|
|
{
|
| 1956 |
|
|
struct elt_list *l;
|
| 1957 |
|
|
unsigned int i = REGNO (x);
|
| 1958 |
|
|
|
| 1959 |
|
|
l = REG_VALUES (i);
|
| 1960 |
|
|
if (l && l->elt == NULL)
|
| 1961 |
|
|
l = l->next;
|
| 1962 |
|
|
for (; l; l = l->next)
|
| 1963 |
|
|
if (mode == GET_MODE (l->elt->val_rtx))
|
| 1964 |
|
|
{
|
| 1965 |
|
|
promote_debug_loc (l->elt->locs);
|
| 1966 |
|
|
return l->elt;
|
| 1967 |
|
|
}
|
| 1968 |
|
|
|
| 1969 |
|
|
if (! create)
|
| 1970 |
|
|
return 0;
|
| 1971 |
|
|
|
| 1972 |
|
|
if (i < FIRST_PSEUDO_REGISTER)
|
| 1973 |
|
|
{
|
| 1974 |
|
|
unsigned int n = hard_regno_nregs[i][mode];
|
| 1975 |
|
|
|
| 1976 |
|
|
if (n > max_value_regs)
|
| 1977 |
|
|
max_value_regs = n;
|
| 1978 |
|
|
}
|
| 1979 |
|
|
|
| 1980 |
|
|
e = new_cselib_val (next_uid, GET_MODE (x), x);
|
| 1981 |
|
|
new_elt_loc_list (e, x);
|
| 1982 |
|
|
if (REG_VALUES (i) == 0)
|
| 1983 |
|
|
{
|
| 1984 |
|
|
/* Maintain the invariant that the first entry of
|
| 1985 |
|
|
REG_VALUES, if present, must be the value used to set the
|
| 1986 |
|
|
register, or NULL. */
|
| 1987 |
|
|
used_regs[n_used_regs++] = i;
|
| 1988 |
|
|
REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
|
| 1989 |
|
|
}
|
| 1990 |
|
|
else if (cselib_preserve_constants
|
| 1991 |
|
|
&& GET_MODE_CLASS (mode) == MODE_INT)
|
| 1992 |
|
|
{
|
| 1993 |
|
|
/* During var-tracking, try harder to find equivalences
|
| 1994 |
|
|
for SUBREGs. If a setter sets say a DImode register
|
| 1995 |
|
|
and user uses that register only in SImode, add a lowpart
|
| 1996 |
|
|
subreg location. */
|
| 1997 |
|
|
struct elt_list *lwider = NULL;
|
| 1998 |
|
|
l = REG_VALUES (i);
|
| 1999 |
|
|
if (l && l->elt == NULL)
|
| 2000 |
|
|
l = l->next;
|
| 2001 |
|
|
for (; l; l = l->next)
|
| 2002 |
|
|
if (GET_MODE_CLASS (GET_MODE (l->elt->val_rtx)) == MODE_INT
|
| 2003 |
|
|
&& GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
|
| 2004 |
|
|
> GET_MODE_SIZE (mode)
|
| 2005 |
|
|
&& (lwider == NULL
|
| 2006 |
|
|
|| GET_MODE_SIZE (GET_MODE (l->elt->val_rtx))
|
| 2007 |
|
|
< GET_MODE_SIZE (GET_MODE (lwider->elt->val_rtx))))
|
| 2008 |
|
|
{
|
| 2009 |
|
|
struct elt_loc_list *el;
|
| 2010 |
|
|
if (i < FIRST_PSEUDO_REGISTER
|
| 2011 |
|
|
&& hard_regno_nregs[i][GET_MODE (l->elt->val_rtx)] != 1)
|
| 2012 |
|
|
continue;
|
| 2013 |
|
|
for (el = l->elt->locs; el; el = el->next)
|
| 2014 |
|
|
if (!REG_P (el->loc))
|
| 2015 |
|
|
break;
|
| 2016 |
|
|
if (el)
|
| 2017 |
|
|
lwider = l;
|
| 2018 |
|
|
}
|
| 2019 |
|
|
if (lwider)
|
| 2020 |
|
|
{
|
| 2021 |
|
|
rtx sub = lowpart_subreg (mode, lwider->elt->val_rtx,
|
| 2022 |
|
|
GET_MODE (lwider->elt->val_rtx));
|
| 2023 |
|
|
if (sub)
|
| 2024 |
|
|
new_elt_loc_list (e, sub);
|
| 2025 |
|
|
}
|
| 2026 |
|
|
}
|
| 2027 |
|
|
REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
|
| 2028 |
|
|
slot = cselib_find_slot (x, e->hash, INSERT, memmode);
|
| 2029 |
|
|
*slot = e;
|
| 2030 |
|
|
return e;
|
| 2031 |
|
|
}
|
| 2032 |
|
|
|
| 2033 |
|
|
if (MEM_P (x))
|
| 2034 |
|
|
return cselib_lookup_mem (x, create);
|
| 2035 |
|
|
|
| 2036 |
|
|
hashval = cselib_hash_rtx (x, create, memmode);
|
| 2037 |
|
|
/* Can't even create if hashing is not possible. */
|
| 2038 |
|
|
if (! hashval)
|
| 2039 |
|
|
return 0;
|
| 2040 |
|
|
|
| 2041 |
|
|
slot = cselib_find_slot (wrap_constant (mode, x), hashval,
|
| 2042 |
|
|
create ? INSERT : NO_INSERT, memmode);
|
| 2043 |
|
|
if (slot == 0)
|
| 2044 |
|
|
return 0;
|
| 2045 |
|
|
|
| 2046 |
|
|
e = (cselib_val *) *slot;
|
| 2047 |
|
|
if (e)
|
| 2048 |
|
|
return e;
|
| 2049 |
|
|
|
| 2050 |
|
|
e = new_cselib_val (hashval, mode, x);
|
| 2051 |
|
|
|
| 2052 |
|
|
/* We have to fill the slot before calling cselib_subst_to_values:
|
| 2053 |
|
|
the hash table is inconsistent until we do so, and
|
| 2054 |
|
|
cselib_subst_to_values will need to do lookups. */
|
| 2055 |
|
|
*slot = (void *) e;
|
| 2056 |
|
|
new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
|
| 2057 |
|
|
return e;
|
| 2058 |
|
|
}
|
| 2059 |
|
|
|
| 2060 |
|
|
/* Wrapper for cselib_lookup, that indicates X is in INSN. */
|
| 2061 |
|
|
|
| 2062 |
|
|
cselib_val *
|
| 2063 |
|
|
cselib_lookup_from_insn (rtx x, enum machine_mode mode,
|
| 2064 |
|
|
int create, enum machine_mode memmode, rtx insn)
|
| 2065 |
|
|
{
|
| 2066 |
|
|
cselib_val *ret;
|
| 2067 |
|
|
|
| 2068 |
|
|
gcc_assert (!cselib_current_insn);
|
| 2069 |
|
|
cselib_current_insn = insn;
|
| 2070 |
|
|
|
| 2071 |
|
|
ret = cselib_lookup (x, mode, create, memmode);
|
| 2072 |
|
|
|
| 2073 |
|
|
cselib_current_insn = NULL;
|
| 2074 |
|
|
|
| 2075 |
|
|
return ret;
|
| 2076 |
|
|
}
|
| 2077 |
|
|
|
| 2078 |
|
|
/* Wrapper for cselib_lookup_1, that logs the lookup result and
|
| 2079 |
|
|
maintains invariants related with debug insns. */
|
| 2080 |
|
|
|
| 2081 |
|
|
cselib_val *
|
| 2082 |
|
|
cselib_lookup (rtx x, enum machine_mode mode,
|
| 2083 |
|
|
int create, enum machine_mode memmode)
|
| 2084 |
|
|
{
|
| 2085 |
|
|
cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
|
| 2086 |
|
|
|
| 2087 |
|
|
/* ??? Should we return NULL if we're not to create an entry, the
|
| 2088 |
|
|
found loc is a debug loc and cselib_current_insn is not DEBUG?
|
| 2089 |
|
|
If so, we should also avoid converting val to non-DEBUG; probably
|
| 2090 |
|
|
easiest setting cselib_current_insn to NULL before the call
|
| 2091 |
|
|
above. */
|
| 2092 |
|
|
|
| 2093 |
|
|
if (dump_file && (dump_flags & TDF_CSELIB))
|
| 2094 |
|
|
{
|
| 2095 |
|
|
fputs ("cselib lookup ", dump_file);
|
| 2096 |
|
|
print_inline_rtx (dump_file, x, 2);
|
| 2097 |
|
|
fprintf (dump_file, " => %u:%u\n",
|
| 2098 |
|
|
ret ? ret->uid : 0,
|
| 2099 |
|
|
ret ? ret->hash : 0);
|
| 2100 |
|
|
}
|
| 2101 |
|
|
|
| 2102 |
|
|
return ret;
|
| 2103 |
|
|
}
|
| 2104 |
|
|
|
| 2105 |
|
|
/* Invalidate any entries in reg_values that overlap REGNO. This is called
|
| 2106 |
|
|
if REGNO is changing. MODE is the mode of the assignment to REGNO, which
|
| 2107 |
|
|
is used to determine how many hard registers are being changed. If MODE
|
| 2108 |
|
|
is VOIDmode, then only REGNO is being changed; this is used when
|
| 2109 |
|
|
invalidating call clobbered registers across a call. */
|
| 2110 |
|
|
|
| 2111 |
|
|
static void
|
| 2112 |
|
|
cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
|
| 2113 |
|
|
{
|
| 2114 |
|
|
unsigned int endregno;
|
| 2115 |
|
|
unsigned int i;
|
| 2116 |
|
|
|
| 2117 |
|
|
/* If we see pseudos after reload, something is _wrong_. */
|
| 2118 |
|
|
gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
|
| 2119 |
|
|
|| reg_renumber[regno] < 0);
|
| 2120 |
|
|
|
| 2121 |
|
|
/* Determine the range of registers that must be invalidated. For
|
| 2122 |
|
|
pseudos, only REGNO is affected. For hard regs, we must take MODE
|
| 2123 |
|
|
into account, and we must also invalidate lower register numbers
|
| 2124 |
|
|
if they contain values that overlap REGNO. */
|
| 2125 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
| 2126 |
|
|
{
|
| 2127 |
|
|
gcc_assert (mode != VOIDmode);
|
| 2128 |
|
|
|
| 2129 |
|
|
if (regno < max_value_regs)
|
| 2130 |
|
|
i = 0;
|
| 2131 |
|
|
else
|
| 2132 |
|
|
i = regno - max_value_regs;
|
| 2133 |
|
|
|
| 2134 |
|
|
endregno = end_hard_regno (mode, regno);
|
| 2135 |
|
|
}
|
| 2136 |
|
|
else
|
| 2137 |
|
|
{
|
| 2138 |
|
|
i = regno;
|
| 2139 |
|
|
endregno = regno + 1;
|
| 2140 |
|
|
}
|
| 2141 |
|
|
|
| 2142 |
|
|
for (; i < endregno; i++)
|
| 2143 |
|
|
{
|
| 2144 |
|
|
struct elt_list **l = ®_VALUES (i);
|
| 2145 |
|
|
|
| 2146 |
|
|
/* Go through all known values for this reg; if it overlaps the range
|
| 2147 |
|
|
we're invalidating, remove the value. */
|
| 2148 |
|
|
while (*l)
|
| 2149 |
|
|
{
|
| 2150 |
|
|
cselib_val *v = (*l)->elt;
|
| 2151 |
|
|
bool had_locs;
|
| 2152 |
|
|
rtx setting_insn;
|
| 2153 |
|
|
struct elt_loc_list **p;
|
| 2154 |
|
|
unsigned int this_last = i;
|
| 2155 |
|
|
|
| 2156 |
|
|
if (i < FIRST_PSEUDO_REGISTER && v != NULL)
|
| 2157 |
|
|
this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
|
| 2158 |
|
|
|
| 2159 |
|
|
if (this_last < regno || v == NULL
|
| 2160 |
|
|
|| (v == cfa_base_preserved_val
|
| 2161 |
|
|
&& i == cfa_base_preserved_regno))
|
| 2162 |
|
|
{
|
| 2163 |
|
|
l = &(*l)->next;
|
| 2164 |
|
|
continue;
|
| 2165 |
|
|
}
|
| 2166 |
|
|
|
| 2167 |
|
|
/* We have an overlap. */
|
| 2168 |
|
|
if (*l == REG_VALUES (i))
|
| 2169 |
|
|
{
|
| 2170 |
|
|
/* Maintain the invariant that the first entry of
|
| 2171 |
|
|
REG_VALUES, if present, must be the value used to set
|
| 2172 |
|
|
the register, or NULL. This is also nice because
|
| 2173 |
|
|
then we won't push the same regno onto user_regs
|
| 2174 |
|
|
multiple times. */
|
| 2175 |
|
|
(*l)->elt = NULL;
|
| 2176 |
|
|
l = &(*l)->next;
|
| 2177 |
|
|
}
|
| 2178 |
|
|
else
|
| 2179 |
|
|
unchain_one_elt_list (l);
|
| 2180 |
|
|
|
| 2181 |
|
|
v = canonical_cselib_val (v);
|
| 2182 |
|
|
|
| 2183 |
|
|
had_locs = v->locs != NULL;
|
| 2184 |
|
|
setting_insn = v->locs ? v->locs->setting_insn : NULL;
|
| 2185 |
|
|
|
| 2186 |
|
|
/* Now, we clear the mapping from value to reg. It must exist, so
|
| 2187 |
|
|
this code will crash intentionally if it doesn't. */
|
| 2188 |
|
|
for (p = &v->locs; ; p = &(*p)->next)
|
| 2189 |
|
|
{
|
| 2190 |
|
|
rtx x = (*p)->loc;
|
| 2191 |
|
|
|
| 2192 |
|
|
if (REG_P (x) && REGNO (x) == i)
|
| 2193 |
|
|
{
|
| 2194 |
|
|
unchain_one_elt_loc_list (p);
|
| 2195 |
|
|
break;
|
| 2196 |
|
|
}
|
| 2197 |
|
|
}
|
| 2198 |
|
|
|
| 2199 |
|
|
if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
|
| 2200 |
|
|
{
|
| 2201 |
|
|
if (setting_insn && DEBUG_INSN_P (setting_insn))
|
| 2202 |
|
|
n_useless_debug_values++;
|
| 2203 |
|
|
else
|
| 2204 |
|
|
n_useless_values++;
|
| 2205 |
|
|
}
|
| 2206 |
|
|
}
|
| 2207 |
|
|
}
|
| 2208 |
|
|
}
|
| 2209 |
|
|
|
| 2210 |
|
|
/* Invalidate any locations in the table which are changed because of a
|
| 2211 |
|
|
store to MEM_RTX. If this is called because of a non-const call
|
| 2212 |
|
|
instruction, MEM_RTX is (mem:BLK const0_rtx). */
|
| 2213 |
|
|
|
| 2214 |
|
|
static void
|
| 2215 |
|
|
cselib_invalidate_mem (rtx mem_rtx)
|
| 2216 |
|
|
{
|
| 2217 |
|
|
cselib_val **vp, *v, *next;
|
| 2218 |
|
|
int num_mems = 0;
|
| 2219 |
|
|
rtx mem_addr;
|
| 2220 |
|
|
|
| 2221 |
|
|
mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
|
| 2222 |
|
|
mem_rtx = canon_rtx (mem_rtx);
|
| 2223 |
|
|
|
| 2224 |
|
|
vp = &first_containing_mem;
|
| 2225 |
|
|
for (v = *vp; v != &dummy_val; v = next)
|
| 2226 |
|
|
{
|
| 2227 |
|
|
bool has_mem = false;
|
| 2228 |
|
|
struct elt_loc_list **p = &v->locs;
|
| 2229 |
|
|
bool had_locs = v->locs != NULL;
|
| 2230 |
|
|
rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
|
| 2231 |
|
|
|
| 2232 |
|
|
while (*p)
|
| 2233 |
|
|
{
|
| 2234 |
|
|
rtx x = (*p)->loc;
|
| 2235 |
|
|
cselib_val *addr;
|
| 2236 |
|
|
struct elt_list **mem_chain;
|
| 2237 |
|
|
|
| 2238 |
|
|
/* MEMs may occur in locations only at the top level; below
|
| 2239 |
|
|
that every MEM or REG is substituted by its VALUE. */
|
| 2240 |
|
|
if (!MEM_P (x))
|
| 2241 |
|
|
{
|
| 2242 |
|
|
p = &(*p)->next;
|
| 2243 |
|
|
continue;
|
| 2244 |
|
|
}
|
| 2245 |
|
|
if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
|
| 2246 |
|
|
&& ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx),
|
| 2247 |
|
|
mem_addr, x, NULL_RTX))
|
| 2248 |
|
|
{
|
| 2249 |
|
|
has_mem = true;
|
| 2250 |
|
|
num_mems++;
|
| 2251 |
|
|
p = &(*p)->next;
|
| 2252 |
|
|
continue;
|
| 2253 |
|
|
}
|
| 2254 |
|
|
|
| 2255 |
|
|
/* This one overlaps. */
|
| 2256 |
|
|
/* We must have a mapping from this MEM's address to the
|
| 2257 |
|
|
value (E). Remove that, too. */
|
| 2258 |
|
|
addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
|
| 2259 |
|
|
addr = canonical_cselib_val (addr);
|
| 2260 |
|
|
gcc_checking_assert (v == canonical_cselib_val (v));
|
| 2261 |
|
|
mem_chain = &addr->addr_list;
|
| 2262 |
|
|
for (;;)
|
| 2263 |
|
|
{
|
| 2264 |
|
|
cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
|
| 2265 |
|
|
|
| 2266 |
|
|
if (canon == v)
|
| 2267 |
|
|
{
|
| 2268 |
|
|
unchain_one_elt_list (mem_chain);
|
| 2269 |
|
|
break;
|
| 2270 |
|
|
}
|
| 2271 |
|
|
|
| 2272 |
|
|
/* Record canonicalized elt. */
|
| 2273 |
|
|
(*mem_chain)->elt = canon;
|
| 2274 |
|
|
|
| 2275 |
|
|
mem_chain = &(*mem_chain)->next;
|
| 2276 |
|
|
}
|
| 2277 |
|
|
|
| 2278 |
|
|
unchain_one_elt_loc_list (p);
|
| 2279 |
|
|
}
|
| 2280 |
|
|
|
| 2281 |
|
|
if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
|
| 2282 |
|
|
{
|
| 2283 |
|
|
if (setting_insn && DEBUG_INSN_P (setting_insn))
|
| 2284 |
|
|
n_useless_debug_values++;
|
| 2285 |
|
|
else
|
| 2286 |
|
|
n_useless_values++;
|
| 2287 |
|
|
}
|
| 2288 |
|
|
|
| 2289 |
|
|
next = v->next_containing_mem;
|
| 2290 |
|
|
if (has_mem)
|
| 2291 |
|
|
{
|
| 2292 |
|
|
*vp = v;
|
| 2293 |
|
|
vp = &(*vp)->next_containing_mem;
|
| 2294 |
|
|
}
|
| 2295 |
|
|
else
|
| 2296 |
|
|
v->next_containing_mem = NULL;
|
| 2297 |
|
|
}
|
| 2298 |
|
|
*vp = &dummy_val;
|
| 2299 |
|
|
}
|
| 2300 |
|
|
|
| 2301 |
|
|
/* Invalidate DEST, which is being assigned to or clobbered. */
|
| 2302 |
|
|
|
| 2303 |
|
|
void
|
| 2304 |
|
|
cselib_invalidate_rtx (rtx dest)
|
| 2305 |
|
|
{
|
| 2306 |
|
|
while (GET_CODE (dest) == SUBREG
|
| 2307 |
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
| 2308 |
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
| 2309 |
|
|
dest = XEXP (dest, 0);
|
| 2310 |
|
|
|
| 2311 |
|
|
if (REG_P (dest))
|
| 2312 |
|
|
cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
|
| 2313 |
|
|
else if (MEM_P (dest))
|
| 2314 |
|
|
cselib_invalidate_mem (dest);
|
| 2315 |
|
|
}
|
| 2316 |
|
|
|
| 2317 |
|
|
/* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
|
| 2318 |
|
|
|
| 2319 |
|
|
static void
|
| 2320 |
|
|
cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
|
| 2321 |
|
|
void *data ATTRIBUTE_UNUSED)
|
| 2322 |
|
|
{
|
| 2323 |
|
|
cselib_invalidate_rtx (dest);
|
| 2324 |
|
|
}
|
| 2325 |
|
|
|
| 2326 |
|
|
/* Record the result of a SET instruction. DEST is being set; the source
|
| 2327 |
|
|
contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
|
| 2328 |
|
|
describes its address. */
|
| 2329 |
|
|
|
| 2330 |
|
|
static void
|
| 2331 |
|
|
cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
|
| 2332 |
|
|
{
|
| 2333 |
|
|
int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
|
| 2334 |
|
|
|
| 2335 |
|
|
if (src_elt == 0 || side_effects_p (dest))
|
| 2336 |
|
|
return;
|
| 2337 |
|
|
|
| 2338 |
|
|
if (dreg >= 0)
|
| 2339 |
|
|
{
|
| 2340 |
|
|
if (dreg < FIRST_PSEUDO_REGISTER)
|
| 2341 |
|
|
{
|
| 2342 |
|
|
unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
|
| 2343 |
|
|
|
| 2344 |
|
|
if (n > max_value_regs)
|
| 2345 |
|
|
max_value_regs = n;
|
| 2346 |
|
|
}
|
| 2347 |
|
|
|
| 2348 |
|
|
if (REG_VALUES (dreg) == 0)
|
| 2349 |
|
|
{
|
| 2350 |
|
|
used_regs[n_used_regs++] = dreg;
|
| 2351 |
|
|
REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
|
| 2352 |
|
|
}
|
| 2353 |
|
|
else
|
| 2354 |
|
|
{
|
| 2355 |
|
|
/* The register should have been invalidated. */
|
| 2356 |
|
|
gcc_assert (REG_VALUES (dreg)->elt == 0);
|
| 2357 |
|
|
REG_VALUES (dreg)->elt = src_elt;
|
| 2358 |
|
|
}
|
| 2359 |
|
|
|
| 2360 |
|
|
if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
|
| 2361 |
|
|
n_useless_values--;
|
| 2362 |
|
|
new_elt_loc_list (src_elt, dest);
|
| 2363 |
|
|
}
|
| 2364 |
|
|
else if (MEM_P (dest) && dest_addr_elt != 0
|
| 2365 |
|
|
&& cselib_record_memory)
|
| 2366 |
|
|
{
|
| 2367 |
|
|
if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
|
| 2368 |
|
|
n_useless_values--;
|
| 2369 |
|
|
add_mem_for_addr (dest_addr_elt, src_elt, dest);
|
| 2370 |
|
|
}
|
| 2371 |
|
|
}
|
| 2372 |
|
|
|
| 2373 |
|
|
/* Make ELT and X's VALUE equivalent to each other at INSN. */
|
| 2374 |
|
|
|
| 2375 |
|
|
void
|
| 2376 |
|
|
cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx insn)
|
| 2377 |
|
|
{
|
| 2378 |
|
|
cselib_val *nelt;
|
| 2379 |
|
|
rtx save_cselib_current_insn = cselib_current_insn;
|
| 2380 |
|
|
|
| 2381 |
|
|
gcc_checking_assert (elt);
|
| 2382 |
|
|
gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
|
| 2383 |
|
|
gcc_checking_assert (!side_effects_p (x));
|
| 2384 |
|
|
|
| 2385 |
|
|
cselib_current_insn = insn;
|
| 2386 |
|
|
|
| 2387 |
|
|
nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
|
| 2388 |
|
|
|
| 2389 |
|
|
if (nelt != elt)
|
| 2390 |
|
|
{
|
| 2391 |
|
|
if (!PRESERVED_VALUE_P (nelt->val_rtx))
|
| 2392 |
|
|
cselib_preserve_value (nelt);
|
| 2393 |
|
|
|
| 2394 |
|
|
new_elt_loc_list (nelt, elt->val_rtx);
|
| 2395 |
|
|
}
|
| 2396 |
|
|
|
| 2397 |
|
|
cselib_current_insn = save_cselib_current_insn;
|
| 2398 |
|
|
}
|
| 2399 |
|
|
|
| 2400 |
|
|
/* There is no good way to determine how many elements there can be
|
| 2401 |
|
|
in a PARALLEL. Since it's fairly cheap, use a really large number. */
|
| 2402 |
|
|
#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
|
| 2403 |
|
|
|
| 2404 |
|
|
struct cselib_record_autoinc_data
|
| 2405 |
|
|
{
|
| 2406 |
|
|
struct cselib_set *sets;
|
| 2407 |
|
|
int n_sets;
|
| 2408 |
|
|
};
|
| 2409 |
|
|
|
| 2410 |
|
|
/* Callback for for_each_inc_dec. Records in ARG the SETs implied by
|
| 2411 |
|
|
autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
|
| 2412 |
|
|
|
| 2413 |
|
|
static int
|
| 2414 |
|
|
cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
|
| 2415 |
|
|
rtx dest, rtx src, rtx srcoff, void *arg)
|
| 2416 |
|
|
{
|
| 2417 |
|
|
struct cselib_record_autoinc_data *data;
|
| 2418 |
|
|
data = (struct cselib_record_autoinc_data *)arg;
|
| 2419 |
|
|
|
| 2420 |
|
|
data->sets[data->n_sets].dest = dest;
|
| 2421 |
|
|
|
| 2422 |
|
|
if (srcoff)
|
| 2423 |
|
|
data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
|
| 2424 |
|
|
else
|
| 2425 |
|
|
data->sets[data->n_sets].src = src;
|
| 2426 |
|
|
|
| 2427 |
|
|
data->n_sets++;
|
| 2428 |
|
|
|
| 2429 |
|
|
return -1;
|
| 2430 |
|
|
}
|
| 2431 |
|
|
|
| 2432 |
|
|
/* Record the effects of any sets and autoincs in INSN. */
|
| 2433 |
|
|
static void
|
| 2434 |
|
|
cselib_record_sets (rtx insn)
|
| 2435 |
|
|
{
|
| 2436 |
|
|
int n_sets = 0;
|
| 2437 |
|
|
int i;
|
| 2438 |
|
|
struct cselib_set sets[MAX_SETS];
|
| 2439 |
|
|
rtx body = PATTERN (insn);
|
| 2440 |
|
|
rtx cond = 0;
|
| 2441 |
|
|
int n_sets_before_autoinc;
|
| 2442 |
|
|
struct cselib_record_autoinc_data data;
|
| 2443 |
|
|
|
| 2444 |
|
|
body = PATTERN (insn);
|
| 2445 |
|
|
if (GET_CODE (body) == COND_EXEC)
|
| 2446 |
|
|
{
|
| 2447 |
|
|
cond = COND_EXEC_TEST (body);
|
| 2448 |
|
|
body = COND_EXEC_CODE (body);
|
| 2449 |
|
|
}
|
| 2450 |
|
|
|
| 2451 |
|
|
/* Find all sets. */
|
| 2452 |
|
|
if (GET_CODE (body) == SET)
|
| 2453 |
|
|
{
|
| 2454 |
|
|
sets[0].src = SET_SRC (body);
|
| 2455 |
|
|
sets[0].dest = SET_DEST (body);
|
| 2456 |
|
|
n_sets = 1;
|
| 2457 |
|
|
}
|
| 2458 |
|
|
else if (GET_CODE (body) == PARALLEL)
|
| 2459 |
|
|
{
|
| 2460 |
|
|
/* Look through the PARALLEL and record the values being
|
| 2461 |
|
|
set, if possible. Also handle any CLOBBERs. */
|
| 2462 |
|
|
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
| 2463 |
|
|
{
|
| 2464 |
|
|
rtx x = XVECEXP (body, 0, i);
|
| 2465 |
|
|
|
| 2466 |
|
|
if (GET_CODE (x) == SET)
|
| 2467 |
|
|
{
|
| 2468 |
|
|
sets[n_sets].src = SET_SRC (x);
|
| 2469 |
|
|
sets[n_sets].dest = SET_DEST (x);
|
| 2470 |
|
|
n_sets++;
|
| 2471 |
|
|
}
|
| 2472 |
|
|
}
|
| 2473 |
|
|
}
|
| 2474 |
|
|
|
| 2475 |
|
|
if (n_sets == 1
|
| 2476 |
|
|
&& MEM_P (sets[0].src)
|
| 2477 |
|
|
&& !cselib_record_memory
|
| 2478 |
|
|
&& MEM_READONLY_P (sets[0].src))
|
| 2479 |
|
|
{
|
| 2480 |
|
|
rtx note = find_reg_equal_equiv_note (insn);
|
| 2481 |
|
|
|
| 2482 |
|
|
if (note && CONSTANT_P (XEXP (note, 0)))
|
| 2483 |
|
|
sets[0].src = XEXP (note, 0);
|
| 2484 |
|
|
}
|
| 2485 |
|
|
|
| 2486 |
|
|
data.sets = sets;
|
| 2487 |
|
|
data.n_sets = n_sets_before_autoinc = n_sets;
|
| 2488 |
|
|
for_each_inc_dec (&insn, cselib_record_autoinc_cb, &data);
|
| 2489 |
|
|
n_sets = data.n_sets;
|
| 2490 |
|
|
|
| 2491 |
|
|
/* Look up the values that are read. Do this before invalidating the
|
| 2492 |
|
|
locations that are written. */
|
| 2493 |
|
|
for (i = 0; i < n_sets; i++)
|
| 2494 |
|
|
{
|
| 2495 |
|
|
rtx dest = sets[i].dest;
|
| 2496 |
|
|
|
| 2497 |
|
|
/* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
|
| 2498 |
|
|
the low part after invalidating any knowledge about larger modes. */
|
| 2499 |
|
|
if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
|
| 2500 |
|
|
sets[i].dest = dest = XEXP (dest, 0);
|
| 2501 |
|
|
|
| 2502 |
|
|
/* We don't know how to record anything but REG or MEM. */
|
| 2503 |
|
|
if (REG_P (dest)
|
| 2504 |
|
|
|| (MEM_P (dest) && cselib_record_memory))
|
| 2505 |
|
|
{
|
| 2506 |
|
|
rtx src = sets[i].src;
|
| 2507 |
|
|
if (cond)
|
| 2508 |
|
|
src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
|
| 2509 |
|
|
sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
|
| 2510 |
|
|
if (MEM_P (dest))
|
| 2511 |
|
|
{
|
| 2512 |
|
|
enum machine_mode address_mode
|
| 2513 |
|
|
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
|
| 2514 |
|
|
|
| 2515 |
|
|
sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
|
| 2516 |
|
|
address_mode, 1,
|
| 2517 |
|
|
GET_MODE (dest));
|
| 2518 |
|
|
}
|
| 2519 |
|
|
else
|
| 2520 |
|
|
sets[i].dest_addr_elt = 0;
|
| 2521 |
|
|
}
|
| 2522 |
|
|
}
|
| 2523 |
|
|
|
| 2524 |
|
|
if (cselib_record_sets_hook)
|
| 2525 |
|
|
cselib_record_sets_hook (insn, sets, n_sets);
|
| 2526 |
|
|
|
| 2527 |
|
|
/* Invalidate all locations written by this insn. Note that the elts we
|
| 2528 |
|
|
looked up in the previous loop aren't affected, just some of their
|
| 2529 |
|
|
locations may go away. */
|
| 2530 |
|
|
note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
|
| 2531 |
|
|
|
| 2532 |
|
|
for (i = n_sets_before_autoinc; i < n_sets; i++)
|
| 2533 |
|
|
cselib_invalidate_rtx (sets[i].dest);
|
| 2534 |
|
|
|
| 2535 |
|
|
/* If this is an asm, look for duplicate sets. This can happen when the
|
| 2536 |
|
|
user uses the same value as an output multiple times. This is valid
|
| 2537 |
|
|
if the outputs are not actually used thereafter. Treat this case as
|
| 2538 |
|
|
if the value isn't actually set. We do this by smashing the destination
|
| 2539 |
|
|
to pc_rtx, so that we won't record the value later. */
|
| 2540 |
|
|
if (n_sets >= 2 && asm_noperands (body) >= 0)
|
| 2541 |
|
|
{
|
| 2542 |
|
|
for (i = 0; i < n_sets; i++)
|
| 2543 |
|
|
{
|
| 2544 |
|
|
rtx dest = sets[i].dest;
|
| 2545 |
|
|
if (REG_P (dest) || MEM_P (dest))
|
| 2546 |
|
|
{
|
| 2547 |
|
|
int j;
|
| 2548 |
|
|
for (j = i + 1; j < n_sets; j++)
|
| 2549 |
|
|
if (rtx_equal_p (dest, sets[j].dest))
|
| 2550 |
|
|
{
|
| 2551 |
|
|
sets[i].dest = pc_rtx;
|
| 2552 |
|
|
sets[j].dest = pc_rtx;
|
| 2553 |
|
|
}
|
| 2554 |
|
|
}
|
| 2555 |
|
|
}
|
| 2556 |
|
|
}
|
| 2557 |
|
|
|
| 2558 |
|
|
/* Now enter the equivalences in our tables. */
|
| 2559 |
|
|
for (i = 0; i < n_sets; i++)
|
| 2560 |
|
|
{
|
| 2561 |
|
|
rtx dest = sets[i].dest;
|
| 2562 |
|
|
if (REG_P (dest)
|
| 2563 |
|
|
|| (MEM_P (dest) && cselib_record_memory))
|
| 2564 |
|
|
cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
|
| 2565 |
|
|
}
|
| 2566 |
|
|
}
|
| 2567 |
|
|
|
| 2568 |
|
|
/* Record the effects of INSN. */
|
| 2569 |
|
|
|
| 2570 |
|
|
void
|
| 2571 |
|
|
cselib_process_insn (rtx insn)
|
| 2572 |
|
|
{
|
| 2573 |
|
|
int i;
|
| 2574 |
|
|
rtx x;
|
| 2575 |
|
|
|
| 2576 |
|
|
cselib_current_insn = insn;
|
| 2577 |
|
|
|
| 2578 |
|
|
/* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
|
| 2579 |
|
|
if (LABEL_P (insn)
|
| 2580 |
|
|
|| (CALL_P (insn)
|
| 2581 |
|
|
&& find_reg_note (insn, REG_SETJMP, NULL))
|
| 2582 |
|
|
|| (NONJUMP_INSN_P (insn)
|
| 2583 |
|
|
&& GET_CODE (PATTERN (insn)) == ASM_OPERANDS
|
| 2584 |
|
|
&& MEM_VOLATILE_P (PATTERN (insn))))
|
| 2585 |
|
|
{
|
| 2586 |
|
|
cselib_reset_table (next_uid);
|
| 2587 |
|
|
cselib_current_insn = NULL_RTX;
|
| 2588 |
|
|
return;
|
| 2589 |
|
|
}
|
| 2590 |
|
|
|
| 2591 |
|
|
if (! INSN_P (insn))
|
| 2592 |
|
|
{
|
| 2593 |
|
|
cselib_current_insn = NULL_RTX;
|
| 2594 |
|
|
return;
|
| 2595 |
|
|
}
|
| 2596 |
|
|
|
| 2597 |
|
|
/* If this is a call instruction, forget anything stored in a
|
| 2598 |
|
|
call clobbered register, or, if this is not a const call, in
|
| 2599 |
|
|
memory. */
|
| 2600 |
|
|
if (CALL_P (insn))
|
| 2601 |
|
|
{
|
| 2602 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
| 2603 |
|
|
if (call_used_regs[i]
|
| 2604 |
|
|
|| (REG_VALUES (i) && REG_VALUES (i)->elt
|
| 2605 |
|
|
&& HARD_REGNO_CALL_PART_CLOBBERED (i,
|
| 2606 |
|
|
GET_MODE (REG_VALUES (i)->elt->val_rtx))))
|
| 2607 |
|
|
cselib_invalidate_regno (i, reg_raw_mode[i]);
|
| 2608 |
|
|
|
| 2609 |
|
|
/* Since it is not clear how cselib is going to be used, be
|
| 2610 |
|
|
conservative here and treat looping pure or const functions
|
| 2611 |
|
|
as if they were regular functions. */
|
| 2612 |
|
|
if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
|
| 2613 |
|
|
|| !(RTL_CONST_OR_PURE_CALL_P (insn)))
|
| 2614 |
|
|
cselib_invalidate_mem (callmem);
|
| 2615 |
|
|
}
|
| 2616 |
|
|
|
| 2617 |
|
|
cselib_record_sets (insn);
|
| 2618 |
|
|
|
| 2619 |
|
|
/* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
|
| 2620 |
|
|
after we have processed the insn. */
|
| 2621 |
|
|
if (CALL_P (insn))
|
| 2622 |
|
|
for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
|
| 2623 |
|
|
if (GET_CODE (XEXP (x, 0)) == CLOBBER)
|
| 2624 |
|
|
cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
|
| 2625 |
|
|
|
| 2626 |
|
|
cselib_current_insn = NULL_RTX;
|
| 2627 |
|
|
|
| 2628 |
|
|
if (n_useless_values > MAX_USELESS_VALUES
|
| 2629 |
|
|
/* remove_useless_values is linear in the hash table size. Avoid
|
| 2630 |
|
|
quadratic behavior for very large hashtables with very few
|
| 2631 |
|
|
useless elements. */
|
| 2632 |
|
|
&& ((unsigned int)n_useless_values
|
| 2633 |
|
|
> (cselib_hash_table->n_elements
|
| 2634 |
|
|
- cselib_hash_table->n_deleted
|
| 2635 |
|
|
- n_debug_values) / 4))
|
| 2636 |
|
|
remove_useless_values ();
|
| 2637 |
|
|
}
|
| 2638 |
|
|
|
| 2639 |
|
|
/* Initialize cselib for one pass. The caller must also call
|
| 2640 |
|
|
init_alias_analysis. */
|
| 2641 |
|
|
|
| 2642 |
|
|
void
|
| 2643 |
|
|
cselib_init (int record_what)
|
| 2644 |
|
|
{
|
| 2645 |
|
|
elt_list_pool = create_alloc_pool ("elt_list",
|
| 2646 |
|
|
sizeof (struct elt_list), 10);
|
| 2647 |
|
|
elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
|
| 2648 |
|
|
sizeof (struct elt_loc_list), 10);
|
| 2649 |
|
|
cselib_val_pool = create_alloc_pool ("cselib_val_list",
|
| 2650 |
|
|
sizeof (cselib_val), 10);
|
| 2651 |
|
|
value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
|
| 2652 |
|
|
cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
|
| 2653 |
|
|
cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
|
| 2654 |
|
|
|
| 2655 |
|
|
/* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
|
| 2656 |
|
|
see canon_true_dependence. This is only created once. */
|
| 2657 |
|
|
if (! callmem)
|
| 2658 |
|
|
callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
|
| 2659 |
|
|
|
| 2660 |
|
|
cselib_nregs = max_reg_num ();
|
| 2661 |
|
|
|
| 2662 |
|
|
/* We preserve reg_values to allow expensive clearing of the whole thing.
|
| 2663 |
|
|
Reallocate it however if it happens to be too large. */
|
| 2664 |
|
|
if (!reg_values || reg_values_size < cselib_nregs
|
| 2665 |
|
|
|| (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
|
| 2666 |
|
|
{
|
| 2667 |
|
|
free (reg_values);
|
| 2668 |
|
|
/* Some space for newly emit instructions so we don't end up
|
| 2669 |
|
|
reallocating in between passes. */
|
| 2670 |
|
|
reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
|
| 2671 |
|
|
reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
|
| 2672 |
|
|
}
|
| 2673 |
|
|
used_regs = XNEWVEC (unsigned int, cselib_nregs);
|
| 2674 |
|
|
n_used_regs = 0;
|
| 2675 |
|
|
cselib_hash_table = htab_create (31, get_value_hash,
|
| 2676 |
|
|
entry_and_rtx_equal_p, NULL);
|
| 2677 |
|
|
next_uid = 1;
|
| 2678 |
|
|
}
|
| 2679 |
|
|
|
| 2680 |
|
|
/* Called when the current user is done with cselib. */
|
| 2681 |
|
|
|
| 2682 |
|
|
void
|
| 2683 |
|
|
cselib_finish (void)
|
| 2684 |
|
|
{
|
| 2685 |
|
|
cselib_discard_hook = NULL;
|
| 2686 |
|
|
cselib_preserve_constants = false;
|
| 2687 |
|
|
cfa_base_preserved_val = NULL;
|
| 2688 |
|
|
cfa_base_preserved_regno = INVALID_REGNUM;
|
| 2689 |
|
|
free_alloc_pool (elt_list_pool);
|
| 2690 |
|
|
free_alloc_pool (elt_loc_list_pool);
|
| 2691 |
|
|
free_alloc_pool (cselib_val_pool);
|
| 2692 |
|
|
free_alloc_pool (value_pool);
|
| 2693 |
|
|
cselib_clear_table ();
|
| 2694 |
|
|
htab_delete (cselib_hash_table);
|
| 2695 |
|
|
free (used_regs);
|
| 2696 |
|
|
used_regs = 0;
|
| 2697 |
|
|
cselib_hash_table = 0;
|
| 2698 |
|
|
n_useless_values = 0;
|
| 2699 |
|
|
n_useless_debug_values = 0;
|
| 2700 |
|
|
n_debug_values = 0;
|
| 2701 |
|
|
next_uid = 0;
|
| 2702 |
|
|
}
|
| 2703 |
|
|
|
| 2704 |
|
|
/* Dump the cselib_val *X to FILE *info. */
|
| 2705 |
|
|
|
| 2706 |
|
|
static int
|
| 2707 |
|
|
dump_cselib_val (void **x, void *info)
|
| 2708 |
|
|
{
|
| 2709 |
|
|
cselib_val *v = (cselib_val *)*x;
|
| 2710 |
|
|
FILE *out = (FILE *)info;
|
| 2711 |
|
|
bool need_lf = true;
|
| 2712 |
|
|
|
| 2713 |
|
|
print_inline_rtx (out, v->val_rtx, 0);
|
| 2714 |
|
|
|
| 2715 |
|
|
if (v->locs)
|
| 2716 |
|
|
{
|
| 2717 |
|
|
struct elt_loc_list *l = v->locs;
|
| 2718 |
|
|
if (need_lf)
|
| 2719 |
|
|
{
|
| 2720 |
|
|
fputc ('\n', out);
|
| 2721 |
|
|
need_lf = false;
|
| 2722 |
|
|
}
|
| 2723 |
|
|
fputs (" locs:", out);
|
| 2724 |
|
|
do
|
| 2725 |
|
|
{
|
| 2726 |
|
|
if (l->setting_insn)
|
| 2727 |
|
|
fprintf (out, "\n from insn %i ",
|
| 2728 |
|
|
INSN_UID (l->setting_insn));
|
| 2729 |
|
|
else
|
| 2730 |
|
|
fprintf (out, "\n ");
|
| 2731 |
|
|
print_inline_rtx (out, l->loc, 4);
|
| 2732 |
|
|
}
|
| 2733 |
|
|
while ((l = l->next));
|
| 2734 |
|
|
fputc ('\n', out);
|
| 2735 |
|
|
}
|
| 2736 |
|
|
else
|
| 2737 |
|
|
{
|
| 2738 |
|
|
fputs (" no locs", out);
|
| 2739 |
|
|
need_lf = true;
|
| 2740 |
|
|
}
|
| 2741 |
|
|
|
| 2742 |
|
|
if (v->addr_list)
|
| 2743 |
|
|
{
|
| 2744 |
|
|
struct elt_list *e = v->addr_list;
|
| 2745 |
|
|
if (need_lf)
|
| 2746 |
|
|
{
|
| 2747 |
|
|
fputc ('\n', out);
|
| 2748 |
|
|
need_lf = false;
|
| 2749 |
|
|
}
|
| 2750 |
|
|
fputs (" addr list:", out);
|
| 2751 |
|
|
do
|
| 2752 |
|
|
{
|
| 2753 |
|
|
fputs ("\n ", out);
|
| 2754 |
|
|
print_inline_rtx (out, e->elt->val_rtx, 2);
|
| 2755 |
|
|
}
|
| 2756 |
|
|
while ((e = e->next));
|
| 2757 |
|
|
fputc ('\n', out);
|
| 2758 |
|
|
}
|
| 2759 |
|
|
else
|
| 2760 |
|
|
{
|
| 2761 |
|
|
fputs (" no addrs", out);
|
| 2762 |
|
|
need_lf = true;
|
| 2763 |
|
|
}
|
| 2764 |
|
|
|
| 2765 |
|
|
if (v->next_containing_mem == &dummy_val)
|
| 2766 |
|
|
fputs (" last mem\n", out);
|
| 2767 |
|
|
else if (v->next_containing_mem)
|
| 2768 |
|
|
{
|
| 2769 |
|
|
fputs (" next mem ", out);
|
| 2770 |
|
|
print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
|
| 2771 |
|
|
fputc ('\n', out);
|
| 2772 |
|
|
}
|
| 2773 |
|
|
else if (need_lf)
|
| 2774 |
|
|
fputc ('\n', out);
|
| 2775 |
|
|
|
| 2776 |
|
|
return 1;
|
| 2777 |
|
|
}
|
| 2778 |
|
|
|
| 2779 |
|
|
/* Dump to OUT everything in the CSELIB table. */
|
| 2780 |
|
|
|
| 2781 |
|
|
void
|
| 2782 |
|
|
dump_cselib_table (FILE *out)
|
| 2783 |
|
|
{
|
| 2784 |
|
|
fprintf (out, "cselib hash table:\n");
|
| 2785 |
|
|
htab_traverse (cselib_hash_table, dump_cselib_val, out);
|
| 2786 |
|
|
if (first_containing_mem != &dummy_val)
|
| 2787 |
|
|
{
|
| 2788 |
|
|
fputs ("first mem ", out);
|
| 2789 |
|
|
print_inline_rtx (out, first_containing_mem->val_rtx, 2);
|
| 2790 |
|
|
fputc ('\n', out);
|
| 2791 |
|
|
}
|
| 2792 |
|
|
fprintf (out, "next uid %i\n", next_uid);
|
| 2793 |
|
|
}
|
| 2794 |
|
|
|
| 2795 |
|
|
#include "gt-cselib.h"
|