1 |
684 |
jeremybenn |
/* Allocation for dataflow support routines.
|
2 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
|
3 |
|
|
2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
4 |
|
|
Originally contributed by Michael P. Hayes
|
5 |
|
|
(m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
|
6 |
|
|
Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
|
7 |
|
|
and Kenneth Zadeck (zadeck@naturalbridge.com).
|
8 |
|
|
|
9 |
|
|
This file is part of GCC.
|
10 |
|
|
|
11 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
12 |
|
|
the terms of the GNU General Public License as published by the Free
|
13 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
14 |
|
|
version.
|
15 |
|
|
|
16 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
17 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
18 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
19 |
|
|
for more details.
|
20 |
|
|
|
21 |
|
|
You should have received a copy of the GNU General Public License
|
22 |
|
|
along with GCC; see the file COPYING3. If not see
|
23 |
|
|
<http://www.gnu.org/licenses/>. */
|
24 |
|
|
|
25 |
|
|
/*
|
26 |
|
|
OVERVIEW:
|
27 |
|
|
|
28 |
|
|
The files in this collection (df*.c,df.h) provide a general framework
|
29 |
|
|
for solving dataflow problems. The global dataflow is performed using
|
30 |
|
|
a good implementation of iterative dataflow analysis.
|
31 |
|
|
|
32 |
|
|
The file df-problems.c provides problem instance for the most common
|
33 |
|
|
dataflow problems: reaching defs, upward exposed uses, live variables,
|
34 |
|
|
uninitialized variables, def-use chains, and use-def chains. However,
|
35 |
|
|
the interface allows other dataflow problems to be defined as well.
|
36 |
|
|
|
37 |
|
|
Dataflow analysis is available in most of the rtl backend (the parts
|
38 |
|
|
between pass_df_initialize and pass_df_finish). It is quite likely
|
39 |
|
|
that these boundaries will be expanded in the future. The only
|
40 |
|
|
requirement is that there be a correct control flow graph.
|
41 |
|
|
|
42 |
|
|
There are three variations of the live variable problem that are
|
43 |
|
|
available whenever dataflow is available. The LR problem finds the
|
44 |
|
|
areas that can reach a use of a variable, the UR problems finds the
|
45 |
|
|
areas that can be reached from a definition of a variable. The LIVE
|
46 |
|
|
problem finds the intersection of these two areas.
|
47 |
|
|
|
48 |
|
|
There are several optional problems. These can be enabled when they
|
49 |
|
|
are needed and disabled when they are not needed.
|
50 |
|
|
|
51 |
|
|
Dataflow problems are generally solved in three layers. The bottom
|
52 |
|
|
layer is called scanning where a data structure is built for each rtl
|
53 |
|
|
insn that describes the set of defs and uses of that insn. Scanning
|
54 |
|
|
is generally kept up to date, i.e. as the insns changes, the scanned
|
55 |
|
|
version of that insn changes also. There are various mechanisms for
|
56 |
|
|
making this happen and are described in the INCREMENTAL SCANNING
|
57 |
|
|
section.
|
58 |
|
|
|
59 |
|
|
In the middle layer, basic blocks are scanned to produce transfer
|
60 |
|
|
functions which describe the effects of that block on the global
|
61 |
|
|
dataflow solution. The transfer functions are only rebuilt if the
|
62 |
|
|
some instruction within the block has changed.
|
63 |
|
|
|
64 |
|
|
The top layer is the dataflow solution itself. The dataflow solution
|
65 |
|
|
is computed by using an efficient iterative solver and the transfer
|
66 |
|
|
functions. The dataflow solution must be recomputed whenever the
|
67 |
|
|
control changes or if one of the transfer function changes.
|
68 |
|
|
|
69 |
|
|
|
70 |
|
|
USAGE:
|
71 |
|
|
|
72 |
|
|
Here is an example of using the dataflow routines.
|
73 |
|
|
|
74 |
|
|
df_[chain,live,note,rd]_add_problem (flags);
|
75 |
|
|
|
76 |
|
|
df_set_blocks (blocks);
|
77 |
|
|
|
78 |
|
|
df_analyze ();
|
79 |
|
|
|
80 |
|
|
df_dump (stderr);
|
81 |
|
|
|
82 |
|
|
df_finish_pass (false);
|
83 |
|
|
|
84 |
|
|
DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
|
85 |
|
|
instance to struct df_problem, to the set of problems solved in this
|
86 |
|
|
instance of df. All calls to add a problem for a given instance of df
|
87 |
|
|
must occur before the first call to DF_ANALYZE.
|
88 |
|
|
|
89 |
|
|
Problems can be dependent on other problems. For instance, solving
|
90 |
|
|
def-use or use-def chains is dependent on solving reaching
|
91 |
|
|
definitions. As long as these dependencies are listed in the problem
|
92 |
|
|
definition, the order of adding the problems is not material.
|
93 |
|
|
Otherwise, the problems will be solved in the order of calls to
|
94 |
|
|
df_add_problem. Note that it is not necessary to have a problem. In
|
95 |
|
|
that case, df will just be used to do the scanning.
|
96 |
|
|
|
97 |
|
|
|
98 |
|
|
|
99 |
|
|
DF_SET_BLOCKS is an optional call used to define a region of the
|
100 |
|
|
function on which the analysis will be performed. The normal case is
|
101 |
|
|
to analyze the entire function and no call to df_set_blocks is made.
|
102 |
|
|
DF_SET_BLOCKS only effects the blocks that are effected when computing
|
103 |
|
|
the transfer functions and final solution. The insn level information
|
104 |
|
|
is always kept up to date.
|
105 |
|
|
|
106 |
|
|
When a subset is given, the analysis behaves as if the function only
|
107 |
|
|
contains those blocks and any edges that occur directly between the
|
108 |
|
|
blocks in the set. Care should be taken to call df_set_blocks right
|
109 |
|
|
before the call to analyze in order to eliminate the possibility that
|
110 |
|
|
optimizations that reorder blocks invalidate the bitvector.
|
111 |
|
|
|
112 |
|
|
DF_ANALYZE causes all of the defined problems to be (re)solved. When
|
113 |
|
|
DF_ANALYZE is completes, the IN and OUT sets for each basic block
|
114 |
|
|
contain the computer information. The DF_*_BB_INFO macros can be used
|
115 |
|
|
to access these bitvectors. All deferred rescannings are down before
|
116 |
|
|
the transfer functions are recomputed.
|
117 |
|
|
|
118 |
|
|
DF_DUMP can then be called to dump the information produce to some
|
119 |
|
|
file. This calls DF_DUMP_START, to print the information that is not
|
120 |
|
|
basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
|
121 |
|
|
for each block to print the basic specific information. These parts
|
122 |
|
|
can all be called separately as part of a larger dump function.
|
123 |
|
|
|
124 |
|
|
|
125 |
|
|
DF_FINISH_PASS causes df_remove_problem to be called on all of the
|
126 |
|
|
optional problems. It also causes any insns whose scanning has been
|
127 |
|
|
deferred to be rescanned as well as clears all of the changeable flags.
|
128 |
|
|
Setting the pass manager TODO_df_finish flag causes this function to
|
129 |
|
|
be run. However, the pass manager will call df_finish_pass AFTER the
|
130 |
|
|
pass dumping has been done, so if you want to see the results of the
|
131 |
|
|
optional problems in the pass dumps, use the TODO flag rather than
|
132 |
|
|
calling the function yourself.
|
133 |
|
|
|
134 |
|
|
INCREMENTAL SCANNING
|
135 |
|
|
|
136 |
|
|
There are four ways of doing the incremental scanning:
|
137 |
|
|
|
138 |
|
|
1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
|
139 |
|
|
df_bb_delete, df_insn_change_bb have been added to most of
|
140 |
|
|
the low level service functions that maintain the cfg and change
|
141 |
|
|
rtl. Calling and of these routines many cause some number of insns
|
142 |
|
|
to be rescanned.
|
143 |
|
|
|
144 |
|
|
For most modern rtl passes, this is certainly the easiest way to
|
145 |
|
|
manage rescanning the insns. This technique also has the advantage
|
146 |
|
|
that the scanning information is always correct and can be relied
|
147 |
|
|
upon even after changes have been made to the instructions. This
|
148 |
|
|
technique is contra indicated in several cases:
|
149 |
|
|
|
150 |
|
|
a) If def-use chains OR use-def chains (but not both) are built,
|
151 |
|
|
using this is SIMPLY WRONG. The problem is that when a ref is
|
152 |
|
|
deleted that is the target of an edge, there is not enough
|
153 |
|
|
information to efficiently find the source of the edge and
|
154 |
|
|
delete the edge. This leaves a dangling reference that may
|
155 |
|
|
cause problems.
|
156 |
|
|
|
157 |
|
|
b) If def-use chains AND use-def chains are built, this may
|
158 |
|
|
produce unexpected results. The problem is that the incremental
|
159 |
|
|
scanning of an insn does not know how to repair the chains that
|
160 |
|
|
point into an insn when the insn changes. So the incremental
|
161 |
|
|
scanning just deletes the chains that enter and exit the insn
|
162 |
|
|
being changed. The dangling reference issue in (a) is not a
|
163 |
|
|
problem here, but if the pass is depending on the chains being
|
164 |
|
|
maintained after insns have been modified, this technique will
|
165 |
|
|
not do the correct thing.
|
166 |
|
|
|
167 |
|
|
c) If the pass modifies insns several times, this incremental
|
168 |
|
|
updating may be expensive.
|
169 |
|
|
|
170 |
|
|
d) If the pass modifies all of the insns, as does register
|
171 |
|
|
allocation, it is simply better to rescan the entire function.
|
172 |
|
|
|
173 |
|
|
2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
|
174 |
|
|
df_insn_delete do not immediately change the insn but instead make
|
175 |
|
|
a note that the insn needs to be rescanned. The next call to
|
176 |
|
|
df_analyze, df_finish_pass, or df_process_deferred_rescans will
|
177 |
|
|
cause all of the pending rescans to be processed.
|
178 |
|
|
|
179 |
|
|
This is the technique of choice if either 1a, 1b, or 1c are issues
|
180 |
|
|
in the pass. In the case of 1a or 1b, a call to df_finish_pass
|
181 |
|
|
(either manually or via TODO_df_finish) should be made before the
|
182 |
|
|
next call to df_analyze or df_process_deferred_rescans.
|
183 |
|
|
|
184 |
|
|
This mode is also used by a few passes that still rely on note_uses,
|
185 |
|
|
note_stores and for_each_rtx instead of using the DF data. This
|
186 |
|
|
can be said to fall under case 1c.
|
187 |
|
|
|
188 |
|
|
To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
|
189 |
|
|
(This mode can be cleared by calling df_clear_flags
|
190 |
|
|
(DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
|
191 |
|
|
be rescanned.
|
192 |
|
|
|
193 |
|
|
3) Total rescanning - In this mode the rescanning is disabled.
|
194 |
|
|
Only when insns are deleted is the df information associated with
|
195 |
|
|
it also deleted. At the end of the pass, a call must be made to
|
196 |
|
|
df_insn_rescan_all. This method is used by the register allocator
|
197 |
|
|
since it generally changes each insn multiple times (once for each ref)
|
198 |
|
|
and does not need to make use of the updated scanning information.
|
199 |
|
|
|
200 |
|
|
4) Do it yourself - In this mechanism, the pass updates the insns
|
201 |
|
|
itself using the low level df primitives. Currently no pass does
|
202 |
|
|
this, but it has the advantage that it is quite efficient given
|
203 |
|
|
that the pass generally has exact knowledge of what it is changing.
|
204 |
|
|
|
205 |
|
|
DATA STRUCTURES
|
206 |
|
|
|
207 |
|
|
Scanning produces a `struct df_ref' data structure (ref) is allocated
|
208 |
|
|
for every register reference (def or use) and this records the insn
|
209 |
|
|
and bb the ref is found within. The refs are linked together in
|
210 |
|
|
chains of uses and defs for each insn and for each register. Each ref
|
211 |
|
|
also has a chain field that links all the use refs for a def or all
|
212 |
|
|
the def refs for a use. This is used to create use-def or def-use
|
213 |
|
|
chains.
|
214 |
|
|
|
215 |
|
|
Different optimizations have different needs. Ultimately, only
|
216 |
|
|
register allocation and schedulers should be using the bitmaps
|
217 |
|
|
produced for the live register and uninitialized register problems.
|
218 |
|
|
The rest of the backend should be upgraded to using and maintaining
|
219 |
|
|
the linked information such as def use or use def chains.
|
220 |
|
|
|
221 |
|
|
|
222 |
|
|
PHILOSOPHY:
|
223 |
|
|
|
224 |
|
|
While incremental bitmaps are not worthwhile to maintain, incremental
|
225 |
|
|
chains may be perfectly reasonable. The fastest way to build chains
|
226 |
|
|
from scratch or after significant modifications is to build reaching
|
227 |
|
|
definitions (RD) and build the chains from this.
|
228 |
|
|
|
229 |
|
|
However, general algorithms for maintaining use-def or def-use chains
|
230 |
|
|
are not practical. The amount of work to recompute the chain any
|
231 |
|
|
chain after an arbitrary change is large. However, with a modest
|
232 |
|
|
amount of work it is generally possible to have the application that
|
233 |
|
|
uses the chains keep them up to date. The high level knowledge of
|
234 |
|
|
what is really happening is essential to crafting efficient
|
235 |
|
|
incremental algorithms.
|
236 |
|
|
|
237 |
|
|
As for the bit vector problems, there is no interface to give a set of
|
238 |
|
|
blocks over with to resolve the iteration. In general, restarting a
|
239 |
|
|
dataflow iteration is difficult and expensive. Again, the best way to
|
240 |
|
|
keep the dataflow information up to data (if this is really what is
|
241 |
|
|
needed) it to formulate a problem specific solution.
|
242 |
|
|
|
243 |
|
|
There are fine grained calls for creating and deleting references from
|
244 |
|
|
instructions in df-scan.c. However, these are not currently connected
|
245 |
|
|
to the engine that resolves the dataflow equations.
|
246 |
|
|
|
247 |
|
|
|
248 |
|
|
DATA STRUCTURES:
|
249 |
|
|
|
250 |
|
|
The basic object is a DF_REF (reference) and this may either be a
|
251 |
|
|
DEF (definition) or a USE of a register.
|
252 |
|
|
|
253 |
|
|
These are linked into a variety of lists; namely reg-def, reg-use,
|
254 |
|
|
insn-def, insn-use, def-use, and use-def lists. For example, the
|
255 |
|
|
reg-def lists contain all the locations that define a given register
|
256 |
|
|
while the insn-use lists contain all the locations that use a
|
257 |
|
|
register.
|
258 |
|
|
|
259 |
|
|
Note that the reg-def and reg-use chains are generally short for
|
260 |
|
|
pseudos and long for the hard registers.
|
261 |
|
|
|
262 |
|
|
ACCESSING INSNS:
|
263 |
|
|
|
264 |
|
|
1) The df insn information is kept in an array of DF_INSN_INFO objects.
|
265 |
|
|
The array is indexed by insn uid, and every DF_REF points to the
|
266 |
|
|
DF_INSN_INFO object of the insn that contains the reference.
|
267 |
|
|
|
268 |
|
|
2) Each insn has three sets of refs, which are linked into one of three
|
269 |
|
|
lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
|
270 |
|
|
DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
|
271 |
|
|
(accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
|
272 |
|
|
DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
|
273 |
|
|
DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
|
274 |
|
|
The latter list are the list of references in REG_EQUAL or REG_EQUIV
|
275 |
|
|
notes. These macros produce a ref (or NULL), the rest of the list
|
276 |
|
|
can be obtained by traversal of the NEXT_REF field (accessed by the
|
277 |
|
|
DF_REF_NEXT_REF macro.) There is no significance to the ordering of
|
278 |
|
|
the uses or refs in an instruction.
|
279 |
|
|
|
280 |
|
|
3) Each insn has a logical uid field (LUID) which is stored in the
|
281 |
|
|
DF_INSN_INFO object for the insn. The LUID field is accessed by
|
282 |
|
|
the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
|
283 |
|
|
When properly set, the LUID is an integer that numbers each insn in
|
284 |
|
|
the basic block, in order from the start of the block.
|
285 |
|
|
The numbers are only correct after a call to df_analyze. They will
|
286 |
|
|
rot after insns are added deleted or moved round.
|
287 |
|
|
|
288 |
|
|
ACCESSING REFS:
|
289 |
|
|
|
290 |
|
|
There are 4 ways to obtain access to refs:
|
291 |
|
|
|
292 |
|
|
1) References are divided into two categories, REAL and ARTIFICIAL.
|
293 |
|
|
|
294 |
|
|
REAL refs are associated with instructions.
|
295 |
|
|
|
296 |
|
|
ARTIFICIAL refs are associated with basic blocks. The heads of
|
297 |
|
|
these lists can be accessed by calling df_get_artificial_defs or
|
298 |
|
|
df_get_artificial_uses for the particular basic block.
|
299 |
|
|
|
300 |
|
|
Artificial defs and uses occur both at the beginning and ends of blocks.
|
301 |
|
|
|
302 |
|
|
For blocks that area at the destination of eh edges, the
|
303 |
|
|
artificial uses and defs occur at the beginning. The defs relate
|
304 |
|
|
to the registers specified in EH_RETURN_DATA_REGNO and the uses
|
305 |
|
|
relate to the registers specified in ED_USES. Logically these
|
306 |
|
|
defs and uses should really occur along the eh edge, but there is
|
307 |
|
|
no convenient way to do this. Artificial edges that occur at the
|
308 |
|
|
beginning of the block have the DF_REF_AT_TOP flag set.
|
309 |
|
|
|
310 |
|
|
Artificial uses occur at the end of all blocks. These arise from
|
311 |
|
|
the hard registers that are always live, such as the stack
|
312 |
|
|
register and are put there to keep the code from forgetting about
|
313 |
|
|
them.
|
314 |
|
|
|
315 |
|
|
Artificial defs occur at the end of the entry block. These arise
|
316 |
|
|
from registers that are live at entry to the function.
|
317 |
|
|
|
318 |
|
|
2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
|
319 |
|
|
uses that appear inside a REG_EQUAL or REG_EQUIV note.)
|
320 |
|
|
|
321 |
|
|
All of the eq_uses, uses and defs associated with each pseudo or
|
322 |
|
|
hard register may be linked in a bidirectional chain. These are
|
323 |
|
|
called reg-use or reg_def chains. If the changeable flag
|
324 |
|
|
DF_EQ_NOTES is set when the chains are built, the eq_uses will be
|
325 |
|
|
treated like uses. If it is not set they are ignored.
|
326 |
|
|
|
327 |
|
|
The first use, eq_use or def for a register can be obtained using
|
328 |
|
|
the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
|
329 |
|
|
macros. Subsequent uses for the same regno can be obtained by
|
330 |
|
|
following the next_reg field of the ref. The number of elements in
|
331 |
|
|
each of the chains can be found by using the DF_REG_USE_COUNT,
|
332 |
|
|
DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
|
333 |
|
|
|
334 |
|
|
In previous versions of this code, these chains were ordered. It
|
335 |
|
|
has not been practical to continue this practice.
|
336 |
|
|
|
337 |
|
|
3) If def-use or use-def chains are built, these can be traversed to
|
338 |
|
|
get to other refs. If the flag DF_EQ_NOTES has been set, the chains
|
339 |
|
|
include the eq_uses. Otherwise these are ignored when building the
|
340 |
|
|
chains.
|
341 |
|
|
|
342 |
|
|
4) An array of all of the uses (and an array of all of the defs) can
|
343 |
|
|
be built. These arrays are indexed by the value in the id
|
344 |
|
|
structure. These arrays are only lazily kept up to date, and that
|
345 |
|
|
process can be expensive. To have these arrays built, call
|
346 |
|
|
df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
|
347 |
|
|
has been set the array will contain the eq_uses. Otherwise these
|
348 |
|
|
are ignored when building the array and assigning the ids. Note
|
349 |
|
|
that the values in the id field of a ref may change across calls to
|
350 |
|
|
df_analyze or df_reorganize_defs or df_reorganize_uses.
|
351 |
|
|
|
352 |
|
|
If the only use of this array is to find all of the refs, it is
|
353 |
|
|
better to traverse all of the registers and then traverse all of
|
354 |
|
|
reg-use or reg-def chains.
|
355 |
|
|
|
356 |
|
|
NOTES:
|
357 |
|
|
|
358 |
|
|
Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
|
359 |
|
|
both a use and a def. These are both marked read/write to show that they
|
360 |
|
|
are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
|
361 |
|
|
will generate a use of reg 42 followed by a def of reg 42 (both marked
|
362 |
|
|
read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
|
363 |
|
|
generates a use of reg 41 then a def of reg 41 (both marked read/write),
|
364 |
|
|
even though reg 41 is decremented before it is used for the memory
|
365 |
|
|
address in this second example.
|
366 |
|
|
|
367 |
|
|
A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
|
368 |
|
|
for which the number of word_mode units covered by the outer mode is
|
369 |
|
|
smaller than that covered by the inner mode, invokes a read-modify-write
|
370 |
|
|
operation. We generate both a use and a def and again mark them
|
371 |
|
|
read/write.
|
372 |
|
|
|
373 |
|
|
Paradoxical subreg writes do not leave a trace of the old content, so they
|
374 |
|
|
are write-only operations.
|
375 |
|
|
*/
|
376 |
|
|
|
377 |
|
|
|
378 |
|
|
#include "config.h"
|
379 |
|
|
#include "system.h"
|
380 |
|
|
#include "coretypes.h"
|
381 |
|
|
#include "tm.h"
|
382 |
|
|
#include "rtl.h"
|
383 |
|
|
#include "tm_p.h"
|
384 |
|
|
#include "insn-config.h"
|
385 |
|
|
#include "recog.h"
|
386 |
|
|
#include "function.h"
|
387 |
|
|
#include "regs.h"
|
388 |
|
|
#include "output.h"
|
389 |
|
|
#include "alloc-pool.h"
|
390 |
|
|
#include "flags.h"
|
391 |
|
|
#include "hard-reg-set.h"
|
392 |
|
|
#include "basic-block.h"
|
393 |
|
|
#include "sbitmap.h"
|
394 |
|
|
#include "bitmap.h"
|
395 |
|
|
#include "timevar.h"
|
396 |
|
|
#include "df.h"
|
397 |
|
|
#include "tree-pass.h"
|
398 |
|
|
#include "params.h"
|
399 |
|
|
|
400 |
|
|
static void *df_get_bb_info (struct dataflow *, unsigned int);
|
401 |
|
|
static void df_set_bb_info (struct dataflow *, unsigned int, void *);
|
402 |
|
|
static void df_clear_bb_info (struct dataflow *, unsigned int);
|
403 |
|
|
#ifdef DF_DEBUG_CFG
|
404 |
|
|
static void df_set_clean_cfg (void);
|
405 |
|
|
#endif
|
406 |
|
|
|
407 |
|
|
/* An obstack for bitmap not related to specific dataflow problems.
|
408 |
|
|
This obstack should e.g. be used for bitmaps with a short life time
|
409 |
|
|
such as temporary bitmaps. */
|
410 |
|
|
|
411 |
|
|
bitmap_obstack df_bitmap_obstack;
|
412 |
|
|
|
413 |
|
|
|
414 |
|
|
/*----------------------------------------------------------------------------
|
415 |
|
|
Functions to create, destroy and manipulate an instance of df.
|
416 |
|
|
----------------------------------------------------------------------------*/
|
417 |
|
|
|
418 |
|
|
struct df_d *df;
|
419 |
|
|
|
420 |
|
|
/* Add PROBLEM (and any dependent problems) to the DF instance. */
|
421 |
|
|
|
422 |
|
|
void
|
423 |
|
|
df_add_problem (struct df_problem *problem)
|
424 |
|
|
{
|
425 |
|
|
struct dataflow *dflow;
|
426 |
|
|
int i;
|
427 |
|
|
|
428 |
|
|
/* First try to add the dependent problem. */
|
429 |
|
|
if (problem->dependent_problem)
|
430 |
|
|
df_add_problem (problem->dependent_problem);
|
431 |
|
|
|
432 |
|
|
/* Check to see if this problem has already been defined. If it
|
433 |
|
|
has, just return that instance, if not, add it to the end of the
|
434 |
|
|
vector. */
|
435 |
|
|
dflow = df->problems_by_index[problem->id];
|
436 |
|
|
if (dflow)
|
437 |
|
|
return;
|
438 |
|
|
|
439 |
|
|
/* Make a new one and add it to the end. */
|
440 |
|
|
dflow = XCNEW (struct dataflow);
|
441 |
|
|
dflow->problem = problem;
|
442 |
|
|
dflow->computed = false;
|
443 |
|
|
dflow->solutions_dirty = true;
|
444 |
|
|
df->problems_by_index[dflow->problem->id] = dflow;
|
445 |
|
|
|
446 |
|
|
/* Keep the defined problems ordered by index. This solves the
|
447 |
|
|
problem that RI will use the information from UREC if UREC has
|
448 |
|
|
been defined, or from LIVE if LIVE is defined and otherwise LR.
|
449 |
|
|
However for this to work, the computation of RI must be pushed
|
450 |
|
|
after which ever of those problems is defined, but we do not
|
451 |
|
|
require any of those except for LR to have actually been
|
452 |
|
|
defined. */
|
453 |
|
|
df->num_problems_defined++;
|
454 |
|
|
for (i = df->num_problems_defined - 2; i >= 0; i--)
|
455 |
|
|
{
|
456 |
|
|
if (problem->id < df->problems_in_order[i]->problem->id)
|
457 |
|
|
df->problems_in_order[i+1] = df->problems_in_order[i];
|
458 |
|
|
else
|
459 |
|
|
{
|
460 |
|
|
df->problems_in_order[i+1] = dflow;
|
461 |
|
|
return;
|
462 |
|
|
}
|
463 |
|
|
}
|
464 |
|
|
df->problems_in_order[0] = dflow;
|
465 |
|
|
}
|
466 |
|
|
|
467 |
|
|
|
468 |
|
|
/* Set the MASK flags in the DFLOW problem. The old flags are
|
469 |
|
|
returned. If a flag is not allowed to be changed this will fail if
|
470 |
|
|
checking is enabled. */
|
471 |
|
|
int
|
472 |
|
|
df_set_flags (int changeable_flags)
|
473 |
|
|
{
|
474 |
|
|
int old_flags = df->changeable_flags;
|
475 |
|
|
df->changeable_flags |= changeable_flags;
|
476 |
|
|
return old_flags;
|
477 |
|
|
}
|
478 |
|
|
|
479 |
|
|
|
480 |
|
|
/* Clear the MASK flags in the DFLOW problem. The old flags are
|
481 |
|
|
returned. If a flag is not allowed to be changed this will fail if
|
482 |
|
|
checking is enabled. */
|
483 |
|
|
int
|
484 |
|
|
df_clear_flags (int changeable_flags)
|
485 |
|
|
{
|
486 |
|
|
int old_flags = df->changeable_flags;
|
487 |
|
|
df->changeable_flags &= ~changeable_flags;
|
488 |
|
|
return old_flags;
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
|
492 |
|
|
/* Set the blocks that are to be considered for analysis. If this is
|
493 |
|
|
not called or is called with null, the entire function in
|
494 |
|
|
analyzed. */
|
495 |
|
|
|
496 |
|
|
void
|
497 |
|
|
df_set_blocks (bitmap blocks)
|
498 |
|
|
{
|
499 |
|
|
if (blocks)
|
500 |
|
|
{
|
501 |
|
|
if (dump_file)
|
502 |
|
|
bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
|
503 |
|
|
if (df->blocks_to_analyze)
|
504 |
|
|
{
|
505 |
|
|
/* This block is called to change the focus from one subset
|
506 |
|
|
to another. */
|
507 |
|
|
int p;
|
508 |
|
|
bitmap_head diff;
|
509 |
|
|
bitmap_initialize (&diff, &df_bitmap_obstack);
|
510 |
|
|
bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
|
511 |
|
|
for (p = 0; p < df->num_problems_defined; p++)
|
512 |
|
|
{
|
513 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
514 |
|
|
if (dflow->optional_p && dflow->problem->reset_fun)
|
515 |
|
|
dflow->problem->reset_fun (df->blocks_to_analyze);
|
516 |
|
|
else if (dflow->problem->free_blocks_on_set_blocks)
|
517 |
|
|
{
|
518 |
|
|
bitmap_iterator bi;
|
519 |
|
|
unsigned int bb_index;
|
520 |
|
|
|
521 |
|
|
EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
|
522 |
|
|
{
|
523 |
|
|
basic_block bb = BASIC_BLOCK (bb_index);
|
524 |
|
|
if (bb)
|
525 |
|
|
{
|
526 |
|
|
void *bb_info = df_get_bb_info (dflow, bb_index);
|
527 |
|
|
dflow->problem->free_bb_fun (bb, bb_info);
|
528 |
|
|
df_clear_bb_info (dflow, bb_index);
|
529 |
|
|
}
|
530 |
|
|
}
|
531 |
|
|
}
|
532 |
|
|
}
|
533 |
|
|
|
534 |
|
|
bitmap_clear (&diff);
|
535 |
|
|
}
|
536 |
|
|
else
|
537 |
|
|
{
|
538 |
|
|
/* This block of code is executed to change the focus from
|
539 |
|
|
the entire function to a subset. */
|
540 |
|
|
bitmap_head blocks_to_reset;
|
541 |
|
|
bool initialized = false;
|
542 |
|
|
int p;
|
543 |
|
|
for (p = 0; p < df->num_problems_defined; p++)
|
544 |
|
|
{
|
545 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
546 |
|
|
if (dflow->optional_p && dflow->problem->reset_fun)
|
547 |
|
|
{
|
548 |
|
|
if (!initialized)
|
549 |
|
|
{
|
550 |
|
|
basic_block bb;
|
551 |
|
|
bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
|
552 |
|
|
FOR_ALL_BB(bb)
|
553 |
|
|
{
|
554 |
|
|
bitmap_set_bit (&blocks_to_reset, bb->index);
|
555 |
|
|
}
|
556 |
|
|
}
|
557 |
|
|
dflow->problem->reset_fun (&blocks_to_reset);
|
558 |
|
|
}
|
559 |
|
|
}
|
560 |
|
|
if (initialized)
|
561 |
|
|
bitmap_clear (&blocks_to_reset);
|
562 |
|
|
|
563 |
|
|
df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
|
564 |
|
|
}
|
565 |
|
|
bitmap_copy (df->blocks_to_analyze, blocks);
|
566 |
|
|
df->analyze_subset = true;
|
567 |
|
|
}
|
568 |
|
|
else
|
569 |
|
|
{
|
570 |
|
|
/* This block is executed to reset the focus to the entire
|
571 |
|
|
function. */
|
572 |
|
|
if (dump_file)
|
573 |
|
|
fprintf (dump_file, "clearing blocks_to_analyze\n");
|
574 |
|
|
if (df->blocks_to_analyze)
|
575 |
|
|
{
|
576 |
|
|
BITMAP_FREE (df->blocks_to_analyze);
|
577 |
|
|
df->blocks_to_analyze = NULL;
|
578 |
|
|
}
|
579 |
|
|
df->analyze_subset = false;
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
/* Setting the blocks causes the refs to be unorganized since only
|
583 |
|
|
the refs in the blocks are seen. */
|
584 |
|
|
df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
|
585 |
|
|
df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
|
586 |
|
|
df_mark_solutions_dirty ();
|
587 |
|
|
}
|
588 |
|
|
|
589 |
|
|
|
590 |
|
|
/* Delete a DFLOW problem (and any problems that depend on this
|
591 |
|
|
problem). */
|
592 |
|
|
|
593 |
|
|
void
|
594 |
|
|
df_remove_problem (struct dataflow *dflow)
|
595 |
|
|
{
|
596 |
|
|
struct df_problem *problem;
|
597 |
|
|
int i;
|
598 |
|
|
|
599 |
|
|
if (!dflow)
|
600 |
|
|
return;
|
601 |
|
|
|
602 |
|
|
problem = dflow->problem;
|
603 |
|
|
gcc_assert (problem->remove_problem_fun);
|
604 |
|
|
|
605 |
|
|
/* Delete any problems that depended on this problem first. */
|
606 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
607 |
|
|
if (df->problems_in_order[i]->problem->dependent_problem == problem)
|
608 |
|
|
df_remove_problem (df->problems_in_order[i]);
|
609 |
|
|
|
610 |
|
|
/* Now remove this problem. */
|
611 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
612 |
|
|
if (df->problems_in_order[i] == dflow)
|
613 |
|
|
{
|
614 |
|
|
int j;
|
615 |
|
|
for (j = i + 1; j < df->num_problems_defined; j++)
|
616 |
|
|
df->problems_in_order[j-1] = df->problems_in_order[j];
|
617 |
|
|
df->problems_in_order[j-1] = NULL;
|
618 |
|
|
df->num_problems_defined--;
|
619 |
|
|
break;
|
620 |
|
|
}
|
621 |
|
|
|
622 |
|
|
(problem->remove_problem_fun) ();
|
623 |
|
|
df->problems_by_index[problem->id] = NULL;
|
624 |
|
|
}
|
625 |
|
|
|
626 |
|
|
|
627 |
|
|
/* Remove all of the problems that are not permanent. Scanning, LR
|
628 |
|
|
and (at -O2 or higher) LIVE are permanent, the rest are removable.
|
629 |
|
|
Also clear all of the changeable_flags. */
|
630 |
|
|
|
631 |
|
|
void
|
632 |
|
|
df_finish_pass (bool verify ATTRIBUTE_UNUSED)
|
633 |
|
|
{
|
634 |
|
|
int i;
|
635 |
|
|
int removed = 0;
|
636 |
|
|
|
637 |
|
|
#ifdef ENABLE_DF_CHECKING
|
638 |
|
|
int saved_flags;
|
639 |
|
|
#endif
|
640 |
|
|
|
641 |
|
|
if (!df)
|
642 |
|
|
return;
|
643 |
|
|
|
644 |
|
|
df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
|
645 |
|
|
df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
|
646 |
|
|
|
647 |
|
|
#ifdef ENABLE_DF_CHECKING
|
648 |
|
|
saved_flags = df->changeable_flags;
|
649 |
|
|
#endif
|
650 |
|
|
|
651 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
652 |
|
|
{
|
653 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
654 |
|
|
struct df_problem *problem = dflow->problem;
|
655 |
|
|
|
656 |
|
|
if (dflow->optional_p)
|
657 |
|
|
{
|
658 |
|
|
gcc_assert (problem->remove_problem_fun);
|
659 |
|
|
(problem->remove_problem_fun) ();
|
660 |
|
|
df->problems_in_order[i] = NULL;
|
661 |
|
|
df->problems_by_index[problem->id] = NULL;
|
662 |
|
|
removed++;
|
663 |
|
|
}
|
664 |
|
|
}
|
665 |
|
|
df->num_problems_defined -= removed;
|
666 |
|
|
|
667 |
|
|
/* Clear all of the flags. */
|
668 |
|
|
df->changeable_flags = 0;
|
669 |
|
|
df_process_deferred_rescans ();
|
670 |
|
|
|
671 |
|
|
/* Set the focus back to the whole function. */
|
672 |
|
|
if (df->blocks_to_analyze)
|
673 |
|
|
{
|
674 |
|
|
BITMAP_FREE (df->blocks_to_analyze);
|
675 |
|
|
df->blocks_to_analyze = NULL;
|
676 |
|
|
df_mark_solutions_dirty ();
|
677 |
|
|
df->analyze_subset = false;
|
678 |
|
|
}
|
679 |
|
|
|
680 |
|
|
#ifdef ENABLE_DF_CHECKING
|
681 |
|
|
/* Verification will fail in DF_NO_INSN_RESCAN. */
|
682 |
|
|
if (!(saved_flags & DF_NO_INSN_RESCAN))
|
683 |
|
|
{
|
684 |
|
|
df_lr_verify_transfer_functions ();
|
685 |
|
|
if (df_live)
|
686 |
|
|
df_live_verify_transfer_functions ();
|
687 |
|
|
}
|
688 |
|
|
|
689 |
|
|
#ifdef DF_DEBUG_CFG
|
690 |
|
|
df_set_clean_cfg ();
|
691 |
|
|
#endif
|
692 |
|
|
#endif
|
693 |
|
|
|
694 |
|
|
#ifdef ENABLE_CHECKING
|
695 |
|
|
if (verify)
|
696 |
|
|
df->changeable_flags |= DF_VERIFY_SCHEDULED;
|
697 |
|
|
#endif
|
698 |
|
|
}
|
699 |
|
|
|
700 |
|
|
|
701 |
|
|
/* Set up the dataflow instance for the entire back end. */
|
702 |
|
|
|
703 |
|
|
static unsigned int
|
704 |
|
|
rest_of_handle_df_initialize (void)
|
705 |
|
|
{
|
706 |
|
|
gcc_assert (!df);
|
707 |
|
|
df = XCNEW (struct df_d);
|
708 |
|
|
df->changeable_flags = 0;
|
709 |
|
|
|
710 |
|
|
bitmap_obstack_initialize (&df_bitmap_obstack);
|
711 |
|
|
|
712 |
|
|
/* Set this to a conservative value. Stack_ptr_mod will compute it
|
713 |
|
|
correctly later. */
|
714 |
|
|
current_function_sp_is_unchanging = 0;
|
715 |
|
|
|
716 |
|
|
df_scan_add_problem ();
|
717 |
|
|
df_scan_alloc (NULL);
|
718 |
|
|
|
719 |
|
|
/* These three problems are permanent. */
|
720 |
|
|
df_lr_add_problem ();
|
721 |
|
|
if (optimize > 1)
|
722 |
|
|
df_live_add_problem ();
|
723 |
|
|
|
724 |
|
|
df->postorder = XNEWVEC (int, last_basic_block);
|
725 |
|
|
df->postorder_inverted = XNEWVEC (int, last_basic_block);
|
726 |
|
|
df->n_blocks = post_order_compute (df->postorder, true, true);
|
727 |
|
|
df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
|
728 |
|
|
gcc_assert (df->n_blocks == df->n_blocks_inverted);
|
729 |
|
|
|
730 |
|
|
df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
|
731 |
|
|
memset (df->hard_regs_live_count, 0,
|
732 |
|
|
sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
|
733 |
|
|
|
734 |
|
|
df_hard_reg_init ();
|
735 |
|
|
/* After reload, some ports add certain bits to regs_ever_live so
|
736 |
|
|
this cannot be reset. */
|
737 |
|
|
df_compute_regs_ever_live (true);
|
738 |
|
|
df_scan_blocks ();
|
739 |
|
|
df_compute_regs_ever_live (false);
|
740 |
|
|
return 0;
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
|
744 |
|
|
static bool
|
745 |
|
|
gate_opt (void)
|
746 |
|
|
{
|
747 |
|
|
return optimize > 0;
|
748 |
|
|
}
|
749 |
|
|
|
750 |
|
|
|
751 |
|
|
struct rtl_opt_pass pass_df_initialize_opt =
|
752 |
|
|
{
|
753 |
|
|
{
|
754 |
|
|
RTL_PASS,
|
755 |
|
|
"dfinit", /* name */
|
756 |
|
|
gate_opt, /* gate */
|
757 |
|
|
rest_of_handle_df_initialize, /* execute */
|
758 |
|
|
NULL, /* sub */
|
759 |
|
|
NULL, /* next */
|
760 |
|
|
0, /* static_pass_number */
|
761 |
|
|
TV_DF_SCAN, /* tv_id */
|
762 |
|
|
0, /* properties_required */
|
763 |
|
|
0, /* properties_provided */
|
764 |
|
|
0, /* properties_destroyed */
|
765 |
|
|
0, /* todo_flags_start */
|
766 |
|
|
|
767 |
|
|
}
|
768 |
|
|
};
|
769 |
|
|
|
770 |
|
|
|
771 |
|
|
static bool
|
772 |
|
|
gate_no_opt (void)
|
773 |
|
|
{
|
774 |
|
|
return optimize == 0;
|
775 |
|
|
}
|
776 |
|
|
|
777 |
|
|
|
778 |
|
|
struct rtl_opt_pass pass_df_initialize_no_opt =
|
779 |
|
|
{
|
780 |
|
|
{
|
781 |
|
|
RTL_PASS,
|
782 |
|
|
"no-opt dfinit", /* name */
|
783 |
|
|
gate_no_opt, /* gate */
|
784 |
|
|
rest_of_handle_df_initialize, /* execute */
|
785 |
|
|
NULL, /* sub */
|
786 |
|
|
NULL, /* next */
|
787 |
|
|
0, /* static_pass_number */
|
788 |
|
|
TV_DF_SCAN, /* tv_id */
|
789 |
|
|
0, /* properties_required */
|
790 |
|
|
0, /* properties_provided */
|
791 |
|
|
0, /* properties_destroyed */
|
792 |
|
|
0, /* todo_flags_start */
|
793 |
|
|
|
794 |
|
|
}
|
795 |
|
|
};
|
796 |
|
|
|
797 |
|
|
|
798 |
|
|
/* Free all the dataflow info and the DF structure. This should be
|
799 |
|
|
called from the df_finish macro which also NULLs the parm. */
|
800 |
|
|
|
801 |
|
|
static unsigned int
|
802 |
|
|
rest_of_handle_df_finish (void)
|
803 |
|
|
{
|
804 |
|
|
int i;
|
805 |
|
|
|
806 |
|
|
gcc_assert (df);
|
807 |
|
|
|
808 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
809 |
|
|
{
|
810 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
811 |
|
|
dflow->problem->free_fun ();
|
812 |
|
|
}
|
813 |
|
|
|
814 |
|
|
free (df->postorder);
|
815 |
|
|
free (df->postorder_inverted);
|
816 |
|
|
free (df->hard_regs_live_count);
|
817 |
|
|
free (df);
|
818 |
|
|
df = NULL;
|
819 |
|
|
|
820 |
|
|
bitmap_obstack_release (&df_bitmap_obstack);
|
821 |
|
|
return 0;
|
822 |
|
|
}
|
823 |
|
|
|
824 |
|
|
|
825 |
|
|
struct rtl_opt_pass pass_df_finish =
|
826 |
|
|
{
|
827 |
|
|
{
|
828 |
|
|
RTL_PASS,
|
829 |
|
|
"dfinish", /* name */
|
830 |
|
|
NULL, /* gate */
|
831 |
|
|
rest_of_handle_df_finish, /* execute */
|
832 |
|
|
NULL, /* sub */
|
833 |
|
|
NULL, /* next */
|
834 |
|
|
0, /* static_pass_number */
|
835 |
|
|
TV_NONE, /* tv_id */
|
836 |
|
|
0, /* properties_required */
|
837 |
|
|
0, /* properties_provided */
|
838 |
|
|
0, /* properties_destroyed */
|
839 |
|
|
0, /* todo_flags_start */
|
840 |
|
|
|
841 |
|
|
}
|
842 |
|
|
};
|
843 |
|
|
|
844 |
|
|
|
845 |
|
|
|
846 |
|
|
|
847 |
|
|
|
848 |
|
|
/*----------------------------------------------------------------------------
|
849 |
|
|
The general data flow analysis engine.
|
850 |
|
|
----------------------------------------------------------------------------*/
|
851 |
|
|
|
852 |
|
|
/* Return time BB when it was visited for last time. */
|
853 |
|
|
#define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
|
854 |
|
|
|
855 |
|
|
/* Helper function for df_worklist_dataflow.
|
856 |
|
|
Propagate the dataflow forward.
|
857 |
|
|
Given a BB_INDEX, do the dataflow propagation
|
858 |
|
|
and set bits on for successors in PENDING
|
859 |
|
|
if the out set of the dataflow has changed.
|
860 |
|
|
|
861 |
|
|
AGE specify time when BB was visited last time.
|
862 |
|
|
AGE of 0 means we are visiting for first time and need to
|
863 |
|
|
compute transfer function to initialize datastructures.
|
864 |
|
|
Otherwise we re-do transfer function only if something change
|
865 |
|
|
while computing confluence functions.
|
866 |
|
|
We need to compute confluence only of basic block that are younger
|
867 |
|
|
then last visit of the BB.
|
868 |
|
|
|
869 |
|
|
Return true if BB info has changed. This is always the case
|
870 |
|
|
in the first visit. */
|
871 |
|
|
|
872 |
|
|
static bool
|
873 |
|
|
df_worklist_propagate_forward (struct dataflow *dataflow,
|
874 |
|
|
unsigned bb_index,
|
875 |
|
|
unsigned *bbindex_to_postorder,
|
876 |
|
|
bitmap pending,
|
877 |
|
|
sbitmap considered,
|
878 |
|
|
ptrdiff_t age)
|
879 |
|
|
{
|
880 |
|
|
edge e;
|
881 |
|
|
edge_iterator ei;
|
882 |
|
|
basic_block bb = BASIC_BLOCK (bb_index);
|
883 |
|
|
bool changed = !age;
|
884 |
|
|
|
885 |
|
|
/* Calculate <conf_op> of incoming edges. */
|
886 |
|
|
if (EDGE_COUNT (bb->preds) > 0)
|
887 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
888 |
|
|
{
|
889 |
|
|
if (age <= BB_LAST_CHANGE_AGE (e->src)
|
890 |
|
|
&& TEST_BIT (considered, e->src->index))
|
891 |
|
|
changed |= dataflow->problem->con_fun_n (e);
|
892 |
|
|
}
|
893 |
|
|
else if (dataflow->problem->con_fun_0)
|
894 |
|
|
dataflow->problem->con_fun_0 (bb);
|
895 |
|
|
|
896 |
|
|
if (changed
|
897 |
|
|
&& dataflow->problem->trans_fun (bb_index))
|
898 |
|
|
{
|
899 |
|
|
/* The out set of this block has changed.
|
900 |
|
|
Propagate to the outgoing blocks. */
|
901 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
902 |
|
|
{
|
903 |
|
|
unsigned ob_index = e->dest->index;
|
904 |
|
|
|
905 |
|
|
if (TEST_BIT (considered, ob_index))
|
906 |
|
|
bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
|
907 |
|
|
}
|
908 |
|
|
return true;
|
909 |
|
|
}
|
910 |
|
|
return false;
|
911 |
|
|
}
|
912 |
|
|
|
913 |
|
|
|
914 |
|
|
/* Helper function for df_worklist_dataflow.
|
915 |
|
|
Propagate the dataflow backward. */
|
916 |
|
|
|
917 |
|
|
static bool
|
918 |
|
|
df_worklist_propagate_backward (struct dataflow *dataflow,
|
919 |
|
|
unsigned bb_index,
|
920 |
|
|
unsigned *bbindex_to_postorder,
|
921 |
|
|
bitmap pending,
|
922 |
|
|
sbitmap considered,
|
923 |
|
|
ptrdiff_t age)
|
924 |
|
|
{
|
925 |
|
|
edge e;
|
926 |
|
|
edge_iterator ei;
|
927 |
|
|
basic_block bb = BASIC_BLOCK (bb_index);
|
928 |
|
|
bool changed = !age;
|
929 |
|
|
|
930 |
|
|
/* Calculate <conf_op> of incoming edges. */
|
931 |
|
|
if (EDGE_COUNT (bb->succs) > 0)
|
932 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
933 |
|
|
{
|
934 |
|
|
if (age <= BB_LAST_CHANGE_AGE (e->dest)
|
935 |
|
|
&& TEST_BIT (considered, e->dest->index))
|
936 |
|
|
changed |= dataflow->problem->con_fun_n (e);
|
937 |
|
|
}
|
938 |
|
|
else if (dataflow->problem->con_fun_0)
|
939 |
|
|
dataflow->problem->con_fun_0 (bb);
|
940 |
|
|
|
941 |
|
|
if (changed
|
942 |
|
|
&& dataflow->problem->trans_fun (bb_index))
|
943 |
|
|
{
|
944 |
|
|
/* The out set of this block has changed.
|
945 |
|
|
Propagate to the outgoing blocks. */
|
946 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
947 |
|
|
{
|
948 |
|
|
unsigned ob_index = e->src->index;
|
949 |
|
|
|
950 |
|
|
if (TEST_BIT (considered, ob_index))
|
951 |
|
|
bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
|
952 |
|
|
}
|
953 |
|
|
return true;
|
954 |
|
|
}
|
955 |
|
|
return false;
|
956 |
|
|
}
|
957 |
|
|
|
958 |
|
|
/* Main dataflow solver loop.
|
959 |
|
|
|
960 |
|
|
DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
|
961 |
|
|
need to visit.
|
962 |
|
|
BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
|
963 |
|
|
BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder possition.
|
964 |
|
|
PENDING will be freed.
|
965 |
|
|
|
966 |
|
|
The worklists are bitmaps indexed by postorder positions.
|
967 |
|
|
|
968 |
|
|
The function implements standard algorithm for dataflow solving with two
|
969 |
|
|
worklists (we are processing WORKLIST and storing new BBs to visit in
|
970 |
|
|
PENDING).
|
971 |
|
|
|
972 |
|
|
As an optimization we maintain ages when BB was changed (stored in bb->aux)
|
973 |
|
|
and when it was last visited (stored in last_visit_age). This avoids need
|
974 |
|
|
to re-do confluence function for edges to basic blocks whose source
|
975 |
|
|
did not change since destination was visited last time. */
|
976 |
|
|
|
977 |
|
|
static void
|
978 |
|
|
df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
|
979 |
|
|
bitmap pending,
|
980 |
|
|
sbitmap considered,
|
981 |
|
|
int *blocks_in_postorder,
|
982 |
|
|
unsigned *bbindex_to_postorder,
|
983 |
|
|
int n_blocks)
|
984 |
|
|
{
|
985 |
|
|
enum df_flow_dir dir = dataflow->problem->dir;
|
986 |
|
|
int dcount = 0;
|
987 |
|
|
bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
|
988 |
|
|
int age = 0;
|
989 |
|
|
bool changed;
|
990 |
|
|
VEC(int, heap) *last_visit_age = NULL;
|
991 |
|
|
int prev_age;
|
992 |
|
|
basic_block bb;
|
993 |
|
|
int i;
|
994 |
|
|
|
995 |
|
|
VEC_safe_grow_cleared (int, heap, last_visit_age, n_blocks);
|
996 |
|
|
|
997 |
|
|
/* Double-queueing. Worklist is for the current iteration,
|
998 |
|
|
and pending is for the next. */
|
999 |
|
|
while (!bitmap_empty_p (pending))
|
1000 |
|
|
{
|
1001 |
|
|
bitmap_iterator bi;
|
1002 |
|
|
unsigned int index;
|
1003 |
|
|
|
1004 |
|
|
/* Swap pending and worklist. */
|
1005 |
|
|
bitmap temp = worklist;
|
1006 |
|
|
worklist = pending;
|
1007 |
|
|
pending = temp;
|
1008 |
|
|
|
1009 |
|
|
EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
|
1010 |
|
|
{
|
1011 |
|
|
unsigned bb_index;
|
1012 |
|
|
dcount++;
|
1013 |
|
|
|
1014 |
|
|
bitmap_clear_bit (pending, index);
|
1015 |
|
|
bb_index = blocks_in_postorder[index];
|
1016 |
|
|
bb = BASIC_BLOCK (bb_index);
|
1017 |
|
|
prev_age = VEC_index (int, last_visit_age, index);
|
1018 |
|
|
if (dir == DF_FORWARD)
|
1019 |
|
|
changed = df_worklist_propagate_forward (dataflow, bb_index,
|
1020 |
|
|
bbindex_to_postorder,
|
1021 |
|
|
pending, considered,
|
1022 |
|
|
prev_age);
|
1023 |
|
|
else
|
1024 |
|
|
changed = df_worklist_propagate_backward (dataflow, bb_index,
|
1025 |
|
|
bbindex_to_postorder,
|
1026 |
|
|
pending, considered,
|
1027 |
|
|
prev_age);
|
1028 |
|
|
VEC_replace (int, last_visit_age, index, ++age);
|
1029 |
|
|
if (changed)
|
1030 |
|
|
bb->aux = (void *)(ptrdiff_t)age;
|
1031 |
|
|
}
|
1032 |
|
|
bitmap_clear (worklist);
|
1033 |
|
|
}
|
1034 |
|
|
for (i = 0; i < n_blocks; i++)
|
1035 |
|
|
BASIC_BLOCK (blocks_in_postorder[i])->aux = NULL;
|
1036 |
|
|
|
1037 |
|
|
BITMAP_FREE (worklist);
|
1038 |
|
|
BITMAP_FREE (pending);
|
1039 |
|
|
VEC_free (int, heap, last_visit_age);
|
1040 |
|
|
|
1041 |
|
|
/* Dump statistics. */
|
1042 |
|
|
if (dump_file)
|
1043 |
|
|
fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
|
1044 |
|
|
"n_basic_blocks %d n_edges %d"
|
1045 |
|
|
" count %d (%5.2g)\n",
|
1046 |
|
|
n_basic_blocks, n_edges,
|
1047 |
|
|
dcount, dcount / (float)n_basic_blocks);
|
1048 |
|
|
}
|
1049 |
|
|
|
1050 |
|
|
/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
|
1051 |
|
|
with "n"-th bit representing the n-th block in the reverse-postorder order.
|
1052 |
|
|
The solver is a double-queue algorithm similar to the "double stack" solver
|
1053 |
|
|
from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
|
1054 |
|
|
The only significant difference is that the worklist in this implementation
|
1055 |
|
|
is always sorted in RPO of the CFG visiting direction. */
|
1056 |
|
|
|
1057 |
|
|
void
|
1058 |
|
|
df_worklist_dataflow (struct dataflow *dataflow,
|
1059 |
|
|
bitmap blocks_to_consider,
|
1060 |
|
|
int *blocks_in_postorder,
|
1061 |
|
|
int n_blocks)
|
1062 |
|
|
{
|
1063 |
|
|
bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
|
1064 |
|
|
sbitmap considered = sbitmap_alloc (last_basic_block);
|
1065 |
|
|
bitmap_iterator bi;
|
1066 |
|
|
unsigned int *bbindex_to_postorder;
|
1067 |
|
|
int i;
|
1068 |
|
|
unsigned int index;
|
1069 |
|
|
enum df_flow_dir dir = dataflow->problem->dir;
|
1070 |
|
|
|
1071 |
|
|
gcc_assert (dir != DF_NONE);
|
1072 |
|
|
|
1073 |
|
|
/* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
|
1074 |
|
|
bbindex_to_postorder =
|
1075 |
|
|
(unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
|
1076 |
|
|
|
1077 |
|
|
/* Initialize the array to an out-of-bound value. */
|
1078 |
|
|
for (i = 0; i < last_basic_block; i++)
|
1079 |
|
|
bbindex_to_postorder[i] = last_basic_block;
|
1080 |
|
|
|
1081 |
|
|
/* Initialize the considered map. */
|
1082 |
|
|
sbitmap_zero (considered);
|
1083 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
|
1084 |
|
|
{
|
1085 |
|
|
SET_BIT (considered, index);
|
1086 |
|
|
}
|
1087 |
|
|
|
1088 |
|
|
/* Initialize the mapping of block index to postorder. */
|
1089 |
|
|
for (i = 0; i < n_blocks; i++)
|
1090 |
|
|
{
|
1091 |
|
|
bbindex_to_postorder[blocks_in_postorder[i]] = i;
|
1092 |
|
|
/* Add all blocks to the worklist. */
|
1093 |
|
|
bitmap_set_bit (pending, i);
|
1094 |
|
|
}
|
1095 |
|
|
|
1096 |
|
|
/* Initialize the problem. */
|
1097 |
|
|
if (dataflow->problem->init_fun)
|
1098 |
|
|
dataflow->problem->init_fun (blocks_to_consider);
|
1099 |
|
|
|
1100 |
|
|
/* Solve it. */
|
1101 |
|
|
df_worklist_dataflow_doublequeue (dataflow, pending, considered,
|
1102 |
|
|
blocks_in_postorder,
|
1103 |
|
|
bbindex_to_postorder,
|
1104 |
|
|
n_blocks);
|
1105 |
|
|
sbitmap_free (considered);
|
1106 |
|
|
free (bbindex_to_postorder);
|
1107 |
|
|
}
|
1108 |
|
|
|
1109 |
|
|
|
1110 |
|
|
/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
|
1111 |
|
|
the order of the remaining entries. Returns the length of the resulting
|
1112 |
|
|
list. */
|
1113 |
|
|
|
1114 |
|
|
static unsigned
|
1115 |
|
|
df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
|
1116 |
|
|
{
|
1117 |
|
|
unsigned act, last;
|
1118 |
|
|
|
1119 |
|
|
for (act = 0, last = 0; act < len; act++)
|
1120 |
|
|
if (bitmap_bit_p (blocks, list[act]))
|
1121 |
|
|
list[last++] = list[act];
|
1122 |
|
|
|
1123 |
|
|
return last;
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
|
1127 |
|
|
/* Execute dataflow analysis on a single dataflow problem.
|
1128 |
|
|
|
1129 |
|
|
BLOCKS_TO_CONSIDER are the blocks whose solution can either be
|
1130 |
|
|
examined or will be computed. For calls from DF_ANALYZE, this is
|
1131 |
|
|
the set of blocks that has been passed to DF_SET_BLOCKS.
|
1132 |
|
|
*/
|
1133 |
|
|
|
1134 |
|
|
void
|
1135 |
|
|
df_analyze_problem (struct dataflow *dflow,
|
1136 |
|
|
bitmap blocks_to_consider,
|
1137 |
|
|
int *postorder, int n_blocks)
|
1138 |
|
|
{
|
1139 |
|
|
timevar_push (dflow->problem->tv_id);
|
1140 |
|
|
|
1141 |
|
|
/* (Re)Allocate the datastructures necessary to solve the problem. */
|
1142 |
|
|
if (dflow->problem->alloc_fun)
|
1143 |
|
|
dflow->problem->alloc_fun (blocks_to_consider);
|
1144 |
|
|
|
1145 |
|
|
#ifdef ENABLE_DF_CHECKING
|
1146 |
|
|
if (dflow->problem->verify_start_fun)
|
1147 |
|
|
dflow->problem->verify_start_fun ();
|
1148 |
|
|
#endif
|
1149 |
|
|
|
1150 |
|
|
/* Set up the problem and compute the local information. */
|
1151 |
|
|
if (dflow->problem->local_compute_fun)
|
1152 |
|
|
dflow->problem->local_compute_fun (blocks_to_consider);
|
1153 |
|
|
|
1154 |
|
|
/* Solve the equations. */
|
1155 |
|
|
if (dflow->problem->dataflow_fun)
|
1156 |
|
|
dflow->problem->dataflow_fun (dflow, blocks_to_consider,
|
1157 |
|
|
postorder, n_blocks);
|
1158 |
|
|
|
1159 |
|
|
/* Massage the solution. */
|
1160 |
|
|
if (dflow->problem->finalize_fun)
|
1161 |
|
|
dflow->problem->finalize_fun (blocks_to_consider);
|
1162 |
|
|
|
1163 |
|
|
#ifdef ENABLE_DF_CHECKING
|
1164 |
|
|
if (dflow->problem->verify_end_fun)
|
1165 |
|
|
dflow->problem->verify_end_fun ();
|
1166 |
|
|
#endif
|
1167 |
|
|
|
1168 |
|
|
timevar_pop (dflow->problem->tv_id);
|
1169 |
|
|
|
1170 |
|
|
dflow->computed = true;
|
1171 |
|
|
}
|
1172 |
|
|
|
1173 |
|
|
|
1174 |
|
|
/* Analyze dataflow info for the basic blocks specified by the bitmap
|
1175 |
|
|
BLOCKS, or for the whole CFG if BLOCKS is zero. */
|
1176 |
|
|
|
1177 |
|
|
void
|
1178 |
|
|
df_analyze (void)
|
1179 |
|
|
{
|
1180 |
|
|
bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
|
1181 |
|
|
bool everything;
|
1182 |
|
|
int i;
|
1183 |
|
|
|
1184 |
|
|
free (df->postorder);
|
1185 |
|
|
free (df->postorder_inverted);
|
1186 |
|
|
df->postorder = XNEWVEC (int, last_basic_block);
|
1187 |
|
|
df->postorder_inverted = XNEWVEC (int, last_basic_block);
|
1188 |
|
|
df->n_blocks = post_order_compute (df->postorder, true, true);
|
1189 |
|
|
df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
|
1190 |
|
|
|
1191 |
|
|
/* These should be the same. */
|
1192 |
|
|
gcc_assert (df->n_blocks == df->n_blocks_inverted);
|
1193 |
|
|
|
1194 |
|
|
/* We need to do this before the df_verify_all because this is
|
1195 |
|
|
not kept incrementally up to date. */
|
1196 |
|
|
df_compute_regs_ever_live (false);
|
1197 |
|
|
df_process_deferred_rescans ();
|
1198 |
|
|
|
1199 |
|
|
if (dump_file)
|
1200 |
|
|
fprintf (dump_file, "df_analyze called\n");
|
1201 |
|
|
|
1202 |
|
|
#ifndef ENABLE_DF_CHECKING
|
1203 |
|
|
if (df->changeable_flags & DF_VERIFY_SCHEDULED)
|
1204 |
|
|
#endif
|
1205 |
|
|
df_verify ();
|
1206 |
|
|
|
1207 |
|
|
for (i = 0; i < df->n_blocks; i++)
|
1208 |
|
|
bitmap_set_bit (current_all_blocks, df->postorder[i]);
|
1209 |
|
|
|
1210 |
|
|
#ifdef ENABLE_CHECKING
|
1211 |
|
|
/* Verify that POSTORDER_INVERTED only contains blocks reachable from
|
1212 |
|
|
the ENTRY block. */
|
1213 |
|
|
for (i = 0; i < df->n_blocks_inverted; i++)
|
1214 |
|
|
gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
|
1215 |
|
|
#endif
|
1216 |
|
|
|
1217 |
|
|
/* Make sure that we have pruned any unreachable blocks from these
|
1218 |
|
|
sets. */
|
1219 |
|
|
if (df->analyze_subset)
|
1220 |
|
|
{
|
1221 |
|
|
everything = false;
|
1222 |
|
|
bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
|
1223 |
|
|
df->n_blocks = df_prune_to_subcfg (df->postorder,
|
1224 |
|
|
df->n_blocks, df->blocks_to_analyze);
|
1225 |
|
|
df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
|
1226 |
|
|
df->n_blocks_inverted,
|
1227 |
|
|
df->blocks_to_analyze);
|
1228 |
|
|
BITMAP_FREE (current_all_blocks);
|
1229 |
|
|
}
|
1230 |
|
|
else
|
1231 |
|
|
{
|
1232 |
|
|
everything = true;
|
1233 |
|
|
df->blocks_to_analyze = current_all_blocks;
|
1234 |
|
|
current_all_blocks = NULL;
|
1235 |
|
|
}
|
1236 |
|
|
|
1237 |
|
|
/* Skip over the DF_SCAN problem. */
|
1238 |
|
|
for (i = 1; i < df->num_problems_defined; i++)
|
1239 |
|
|
{
|
1240 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
1241 |
|
|
if (dflow->solutions_dirty)
|
1242 |
|
|
{
|
1243 |
|
|
if (dflow->problem->dir == DF_FORWARD)
|
1244 |
|
|
df_analyze_problem (dflow,
|
1245 |
|
|
df->blocks_to_analyze,
|
1246 |
|
|
df->postorder_inverted,
|
1247 |
|
|
df->n_blocks_inverted);
|
1248 |
|
|
else
|
1249 |
|
|
df_analyze_problem (dflow,
|
1250 |
|
|
df->blocks_to_analyze,
|
1251 |
|
|
df->postorder,
|
1252 |
|
|
df->n_blocks);
|
1253 |
|
|
}
|
1254 |
|
|
}
|
1255 |
|
|
|
1256 |
|
|
if (everything)
|
1257 |
|
|
{
|
1258 |
|
|
BITMAP_FREE (df->blocks_to_analyze);
|
1259 |
|
|
df->blocks_to_analyze = NULL;
|
1260 |
|
|
}
|
1261 |
|
|
|
1262 |
|
|
#ifdef DF_DEBUG_CFG
|
1263 |
|
|
df_set_clean_cfg ();
|
1264 |
|
|
#endif
|
1265 |
|
|
}
|
1266 |
|
|
|
1267 |
|
|
|
1268 |
|
|
/* Return the number of basic blocks from the last call to df_analyze. */
|
1269 |
|
|
|
1270 |
|
|
int
|
1271 |
|
|
df_get_n_blocks (enum df_flow_dir dir)
|
1272 |
|
|
{
|
1273 |
|
|
gcc_assert (dir != DF_NONE);
|
1274 |
|
|
|
1275 |
|
|
if (dir == DF_FORWARD)
|
1276 |
|
|
{
|
1277 |
|
|
gcc_assert (df->postorder_inverted);
|
1278 |
|
|
return df->n_blocks_inverted;
|
1279 |
|
|
}
|
1280 |
|
|
|
1281 |
|
|
gcc_assert (df->postorder);
|
1282 |
|
|
return df->n_blocks;
|
1283 |
|
|
}
|
1284 |
|
|
|
1285 |
|
|
|
1286 |
|
|
/* Return a pointer to the array of basic blocks in the reverse postorder.
|
1287 |
|
|
Depending on the direction of the dataflow problem,
|
1288 |
|
|
it returns either the usual reverse postorder array
|
1289 |
|
|
or the reverse postorder of inverted traversal. */
|
1290 |
|
|
int *
|
1291 |
|
|
df_get_postorder (enum df_flow_dir dir)
|
1292 |
|
|
{
|
1293 |
|
|
gcc_assert (dir != DF_NONE);
|
1294 |
|
|
|
1295 |
|
|
if (dir == DF_FORWARD)
|
1296 |
|
|
{
|
1297 |
|
|
gcc_assert (df->postorder_inverted);
|
1298 |
|
|
return df->postorder_inverted;
|
1299 |
|
|
}
|
1300 |
|
|
gcc_assert (df->postorder);
|
1301 |
|
|
return df->postorder;
|
1302 |
|
|
}
|
1303 |
|
|
|
1304 |
|
|
static struct df_problem user_problem;
|
1305 |
|
|
static struct dataflow user_dflow;
|
1306 |
|
|
|
1307 |
|
|
/* Interface for calling iterative dataflow with user defined
|
1308 |
|
|
confluence and transfer functions. All that is necessary is to
|
1309 |
|
|
supply DIR, a direction, CONF_FUN_0, a confluence function for
|
1310 |
|
|
blocks with no logical preds (or NULL), CONF_FUN_N, the normal
|
1311 |
|
|
confluence function, TRANS_FUN, the basic block transfer function,
|
1312 |
|
|
and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
|
1313 |
|
|
postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
|
1314 |
|
|
|
1315 |
|
|
void
|
1316 |
|
|
df_simple_dataflow (enum df_flow_dir dir,
|
1317 |
|
|
df_init_function init_fun,
|
1318 |
|
|
df_confluence_function_0 con_fun_0,
|
1319 |
|
|
df_confluence_function_n con_fun_n,
|
1320 |
|
|
df_transfer_function trans_fun,
|
1321 |
|
|
bitmap blocks, int * postorder, int n_blocks)
|
1322 |
|
|
{
|
1323 |
|
|
memset (&user_problem, 0, sizeof (struct df_problem));
|
1324 |
|
|
user_problem.dir = dir;
|
1325 |
|
|
user_problem.init_fun = init_fun;
|
1326 |
|
|
user_problem.con_fun_0 = con_fun_0;
|
1327 |
|
|
user_problem.con_fun_n = con_fun_n;
|
1328 |
|
|
user_problem.trans_fun = trans_fun;
|
1329 |
|
|
user_dflow.problem = &user_problem;
|
1330 |
|
|
df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
|
1331 |
|
|
}
|
1332 |
|
|
|
1333 |
|
|
|
1334 |
|
|
|
1335 |
|
|
/*----------------------------------------------------------------------------
|
1336 |
|
|
Functions to support limited incremental change.
|
1337 |
|
|
----------------------------------------------------------------------------*/
|
1338 |
|
|
|
1339 |
|
|
|
1340 |
|
|
/* Get basic block info. */
|
1341 |
|
|
|
1342 |
|
|
static void *
|
1343 |
|
|
df_get_bb_info (struct dataflow *dflow, unsigned int index)
|
1344 |
|
|
{
|
1345 |
|
|
if (dflow->block_info == NULL)
|
1346 |
|
|
return NULL;
|
1347 |
|
|
if (index >= dflow->block_info_size)
|
1348 |
|
|
return NULL;
|
1349 |
|
|
return (void *)((char *)dflow->block_info
|
1350 |
|
|
+ index * dflow->problem->block_info_elt_size);
|
1351 |
|
|
}
|
1352 |
|
|
|
1353 |
|
|
|
1354 |
|
|
/* Set basic block info. */
|
1355 |
|
|
|
1356 |
|
|
static void
|
1357 |
|
|
df_set_bb_info (struct dataflow *dflow, unsigned int index,
|
1358 |
|
|
void *bb_info)
|
1359 |
|
|
{
|
1360 |
|
|
gcc_assert (dflow->block_info);
|
1361 |
|
|
memcpy ((char *)dflow->block_info
|
1362 |
|
|
+ index * dflow->problem->block_info_elt_size,
|
1363 |
|
|
bb_info, dflow->problem->block_info_elt_size);
|
1364 |
|
|
}
|
1365 |
|
|
|
1366 |
|
|
|
1367 |
|
|
/* Clear basic block info. */
|
1368 |
|
|
|
1369 |
|
|
static void
|
1370 |
|
|
df_clear_bb_info (struct dataflow *dflow, unsigned int index)
|
1371 |
|
|
{
|
1372 |
|
|
gcc_assert (dflow->block_info);
|
1373 |
|
|
gcc_assert (dflow->block_info_size > index);
|
1374 |
|
|
memset ((char *)dflow->block_info
|
1375 |
|
|
+ index * dflow->problem->block_info_elt_size,
|
1376 |
|
|
0, dflow->problem->block_info_elt_size);
|
1377 |
|
|
}
|
1378 |
|
|
|
1379 |
|
|
|
1380 |
|
|
/* Mark the solutions as being out of date. */
|
1381 |
|
|
|
1382 |
|
|
void
|
1383 |
|
|
df_mark_solutions_dirty (void)
|
1384 |
|
|
{
|
1385 |
|
|
if (df)
|
1386 |
|
|
{
|
1387 |
|
|
int p;
|
1388 |
|
|
for (p = 1; p < df->num_problems_defined; p++)
|
1389 |
|
|
df->problems_in_order[p]->solutions_dirty = true;
|
1390 |
|
|
}
|
1391 |
|
|
}
|
1392 |
|
|
|
1393 |
|
|
|
1394 |
|
|
/* Return true if BB needs it's transfer functions recomputed. */
|
1395 |
|
|
|
1396 |
|
|
bool
|
1397 |
|
|
df_get_bb_dirty (basic_block bb)
|
1398 |
|
|
{
|
1399 |
|
|
return bitmap_bit_p ((df_live
|
1400 |
|
|
? df_live : df_lr)->out_of_date_transfer_functions,
|
1401 |
|
|
bb->index);
|
1402 |
|
|
}
|
1403 |
|
|
|
1404 |
|
|
|
1405 |
|
|
/* Mark BB as needing it's transfer functions as being out of
|
1406 |
|
|
date. */
|
1407 |
|
|
|
1408 |
|
|
void
|
1409 |
|
|
df_set_bb_dirty (basic_block bb)
|
1410 |
|
|
{
|
1411 |
|
|
bb->flags |= BB_MODIFIED;
|
1412 |
|
|
if (df)
|
1413 |
|
|
{
|
1414 |
|
|
int p;
|
1415 |
|
|
for (p = 1; p < df->num_problems_defined; p++)
|
1416 |
|
|
{
|
1417 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
1418 |
|
|
if (dflow->out_of_date_transfer_functions)
|
1419 |
|
|
bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
|
1420 |
|
|
}
|
1421 |
|
|
df_mark_solutions_dirty ();
|
1422 |
|
|
}
|
1423 |
|
|
}
|
1424 |
|
|
|
1425 |
|
|
|
1426 |
|
|
/* Grow the bb_info array. */
|
1427 |
|
|
|
1428 |
|
|
void
|
1429 |
|
|
df_grow_bb_info (struct dataflow *dflow)
|
1430 |
|
|
{
|
1431 |
|
|
unsigned int new_size = last_basic_block + 1;
|
1432 |
|
|
if (dflow->block_info_size < new_size)
|
1433 |
|
|
{
|
1434 |
|
|
new_size += new_size / 4;
|
1435 |
|
|
dflow->block_info
|
1436 |
|
|
= (void *)XRESIZEVEC (char, (char *)dflow->block_info,
|
1437 |
|
|
new_size
|
1438 |
|
|
* dflow->problem->block_info_elt_size);
|
1439 |
|
|
memset ((char *)dflow->block_info
|
1440 |
|
|
+ dflow->block_info_size
|
1441 |
|
|
* dflow->problem->block_info_elt_size,
|
1442 |
|
|
0,
|
1443 |
|
|
(new_size - dflow->block_info_size)
|
1444 |
|
|
* dflow->problem->block_info_elt_size);
|
1445 |
|
|
dflow->block_info_size = new_size;
|
1446 |
|
|
}
|
1447 |
|
|
}
|
1448 |
|
|
|
1449 |
|
|
|
1450 |
|
|
/* Clear the dirty bits. This is called from places that delete
|
1451 |
|
|
blocks. */
|
1452 |
|
|
static void
|
1453 |
|
|
df_clear_bb_dirty (basic_block bb)
|
1454 |
|
|
{
|
1455 |
|
|
int p;
|
1456 |
|
|
for (p = 1; p < df->num_problems_defined; p++)
|
1457 |
|
|
{
|
1458 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
1459 |
|
|
if (dflow->out_of_date_transfer_functions)
|
1460 |
|
|
bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
|
1461 |
|
|
}
|
1462 |
|
|
}
|
1463 |
|
|
|
1464 |
|
|
/* Called from the rtl_compact_blocks to reorganize the problems basic
|
1465 |
|
|
block info. */
|
1466 |
|
|
|
1467 |
|
|
void
|
1468 |
|
|
df_compact_blocks (void)
|
1469 |
|
|
{
|
1470 |
|
|
int i, p;
|
1471 |
|
|
basic_block bb;
|
1472 |
|
|
void *problem_temps;
|
1473 |
|
|
bitmap_head tmp;
|
1474 |
|
|
|
1475 |
|
|
bitmap_initialize (&tmp, &df_bitmap_obstack);
|
1476 |
|
|
for (p = 0; p < df->num_problems_defined; p++)
|
1477 |
|
|
{
|
1478 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
1479 |
|
|
|
1480 |
|
|
/* Need to reorganize the out_of_date_transfer_functions for the
|
1481 |
|
|
dflow problem. */
|
1482 |
|
|
if (dflow->out_of_date_transfer_functions)
|
1483 |
|
|
{
|
1484 |
|
|
bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
|
1485 |
|
|
bitmap_clear (dflow->out_of_date_transfer_functions);
|
1486 |
|
|
if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
|
1487 |
|
|
bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
|
1488 |
|
|
if (bitmap_bit_p (&tmp, EXIT_BLOCK))
|
1489 |
|
|
bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
|
1490 |
|
|
|
1491 |
|
|
i = NUM_FIXED_BLOCKS;
|
1492 |
|
|
FOR_EACH_BB (bb)
|
1493 |
|
|
{
|
1494 |
|
|
if (bitmap_bit_p (&tmp, bb->index))
|
1495 |
|
|
bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
|
1496 |
|
|
i++;
|
1497 |
|
|
}
|
1498 |
|
|
}
|
1499 |
|
|
|
1500 |
|
|
/* Now shuffle the block info for the problem. */
|
1501 |
|
|
if (dflow->problem->free_bb_fun)
|
1502 |
|
|
{
|
1503 |
|
|
int size = last_basic_block * dflow->problem->block_info_elt_size;
|
1504 |
|
|
problem_temps = XNEWVAR (char, size);
|
1505 |
|
|
df_grow_bb_info (dflow);
|
1506 |
|
|
memcpy (problem_temps, dflow->block_info, size);
|
1507 |
|
|
|
1508 |
|
|
/* Copy the bb info from the problem tmps to the proper
|
1509 |
|
|
place in the block_info vector. Null out the copied
|
1510 |
|
|
item. The entry and exit blocks never move. */
|
1511 |
|
|
i = NUM_FIXED_BLOCKS;
|
1512 |
|
|
FOR_EACH_BB (bb)
|
1513 |
|
|
{
|
1514 |
|
|
df_set_bb_info (dflow, i,
|
1515 |
|
|
(char *)problem_temps
|
1516 |
|
|
+ bb->index * dflow->problem->block_info_elt_size);
|
1517 |
|
|
i++;
|
1518 |
|
|
}
|
1519 |
|
|
memset ((char *)dflow->block_info
|
1520 |
|
|
+ i * dflow->problem->block_info_elt_size, 0,
|
1521 |
|
|
(last_basic_block - i)
|
1522 |
|
|
* dflow->problem->block_info_elt_size);
|
1523 |
|
|
free (problem_temps);
|
1524 |
|
|
}
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
/* Shuffle the bits in the basic_block indexed arrays. */
|
1528 |
|
|
|
1529 |
|
|
if (df->blocks_to_analyze)
|
1530 |
|
|
{
|
1531 |
|
|
if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
|
1532 |
|
|
bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
|
1533 |
|
|
if (bitmap_bit_p (&tmp, EXIT_BLOCK))
|
1534 |
|
|
bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
|
1535 |
|
|
bitmap_copy (&tmp, df->blocks_to_analyze);
|
1536 |
|
|
bitmap_clear (df->blocks_to_analyze);
|
1537 |
|
|
i = NUM_FIXED_BLOCKS;
|
1538 |
|
|
FOR_EACH_BB (bb)
|
1539 |
|
|
{
|
1540 |
|
|
if (bitmap_bit_p (&tmp, bb->index))
|
1541 |
|
|
bitmap_set_bit (df->blocks_to_analyze, i);
|
1542 |
|
|
i++;
|
1543 |
|
|
}
|
1544 |
|
|
}
|
1545 |
|
|
|
1546 |
|
|
bitmap_clear (&tmp);
|
1547 |
|
|
|
1548 |
|
|
i = NUM_FIXED_BLOCKS;
|
1549 |
|
|
FOR_EACH_BB (bb)
|
1550 |
|
|
{
|
1551 |
|
|
SET_BASIC_BLOCK (i, bb);
|
1552 |
|
|
bb->index = i;
|
1553 |
|
|
i++;
|
1554 |
|
|
}
|
1555 |
|
|
|
1556 |
|
|
gcc_assert (i == n_basic_blocks);
|
1557 |
|
|
|
1558 |
|
|
for (; i < last_basic_block; i++)
|
1559 |
|
|
SET_BASIC_BLOCK (i, NULL);
|
1560 |
|
|
|
1561 |
|
|
#ifdef DF_DEBUG_CFG
|
1562 |
|
|
if (!df_lr->solutions_dirty)
|
1563 |
|
|
df_set_clean_cfg ();
|
1564 |
|
|
#endif
|
1565 |
|
|
}
|
1566 |
|
|
|
1567 |
|
|
|
1568 |
|
|
/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
|
1569 |
|
|
block. There is no excuse for people to do this kind of thing. */
|
1570 |
|
|
|
1571 |
|
|
void
|
1572 |
|
|
df_bb_replace (int old_index, basic_block new_block)
|
1573 |
|
|
{
|
1574 |
|
|
int new_block_index = new_block->index;
|
1575 |
|
|
int p;
|
1576 |
|
|
|
1577 |
|
|
if (dump_file)
|
1578 |
|
|
fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
|
1579 |
|
|
|
1580 |
|
|
gcc_assert (df);
|
1581 |
|
|
gcc_assert (BASIC_BLOCK (old_index) == NULL);
|
1582 |
|
|
|
1583 |
|
|
for (p = 0; p < df->num_problems_defined; p++)
|
1584 |
|
|
{
|
1585 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
1586 |
|
|
if (dflow->block_info)
|
1587 |
|
|
{
|
1588 |
|
|
df_grow_bb_info (dflow);
|
1589 |
|
|
df_set_bb_info (dflow, old_index,
|
1590 |
|
|
df_get_bb_info (dflow, new_block_index));
|
1591 |
|
|
}
|
1592 |
|
|
}
|
1593 |
|
|
|
1594 |
|
|
df_clear_bb_dirty (new_block);
|
1595 |
|
|
SET_BASIC_BLOCK (old_index, new_block);
|
1596 |
|
|
new_block->index = old_index;
|
1597 |
|
|
df_set_bb_dirty (BASIC_BLOCK (old_index));
|
1598 |
|
|
SET_BASIC_BLOCK (new_block_index, NULL);
|
1599 |
|
|
}
|
1600 |
|
|
|
1601 |
|
|
|
1602 |
|
|
/* Free all of the per basic block dataflow from all of the problems.
|
1603 |
|
|
This is typically called before a basic block is deleted and the
|
1604 |
|
|
problem will be reanalyzed. */
|
1605 |
|
|
|
1606 |
|
|
void
|
1607 |
|
|
df_bb_delete (int bb_index)
|
1608 |
|
|
{
|
1609 |
|
|
basic_block bb = BASIC_BLOCK (bb_index);
|
1610 |
|
|
int i;
|
1611 |
|
|
|
1612 |
|
|
if (!df)
|
1613 |
|
|
return;
|
1614 |
|
|
|
1615 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
1616 |
|
|
{
|
1617 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
1618 |
|
|
if (dflow->problem->free_bb_fun)
|
1619 |
|
|
{
|
1620 |
|
|
void *bb_info = df_get_bb_info (dflow, bb_index);
|
1621 |
|
|
if (bb_info)
|
1622 |
|
|
{
|
1623 |
|
|
dflow->problem->free_bb_fun (bb, bb_info);
|
1624 |
|
|
df_clear_bb_info (dflow, bb_index);
|
1625 |
|
|
}
|
1626 |
|
|
}
|
1627 |
|
|
}
|
1628 |
|
|
df_clear_bb_dirty (bb);
|
1629 |
|
|
df_mark_solutions_dirty ();
|
1630 |
|
|
}
|
1631 |
|
|
|
1632 |
|
|
|
1633 |
|
|
/* Verify that there is a place for everything and everything is in
|
1634 |
|
|
its place. This is too expensive to run after every pass in the
|
1635 |
|
|
mainline. However this is an excellent debugging tool if the
|
1636 |
|
|
dataflow information is not being updated properly. You can just
|
1637 |
|
|
sprinkle calls in until you find the place that is changing an
|
1638 |
|
|
underlying structure without calling the proper updating
|
1639 |
|
|
routine. */
|
1640 |
|
|
|
1641 |
|
|
void
|
1642 |
|
|
df_verify (void)
|
1643 |
|
|
{
|
1644 |
|
|
df_scan_verify ();
|
1645 |
|
|
#ifdef ENABLE_DF_CHECKING
|
1646 |
|
|
df_lr_verify_transfer_functions ();
|
1647 |
|
|
if (df_live)
|
1648 |
|
|
df_live_verify_transfer_functions ();
|
1649 |
|
|
#endif
|
1650 |
|
|
}
|
1651 |
|
|
|
1652 |
|
|
#ifdef DF_DEBUG_CFG
|
1653 |
|
|
|
1654 |
|
|
/* Compute an array of ints that describes the cfg. This can be used
|
1655 |
|
|
to discover places where the cfg is modified by the appropriate
|
1656 |
|
|
calls have not been made to the keep df informed. The internals of
|
1657 |
|
|
this are unexciting, the key is that two instances of this can be
|
1658 |
|
|
compared to see if any changes have been made to the cfg. */
|
1659 |
|
|
|
1660 |
|
|
static int *
|
1661 |
|
|
df_compute_cfg_image (void)
|
1662 |
|
|
{
|
1663 |
|
|
basic_block bb;
|
1664 |
|
|
int size = 2 + (2 * n_basic_blocks);
|
1665 |
|
|
int i;
|
1666 |
|
|
int * map;
|
1667 |
|
|
|
1668 |
|
|
FOR_ALL_BB (bb)
|
1669 |
|
|
{
|
1670 |
|
|
size += EDGE_COUNT (bb->succs);
|
1671 |
|
|
}
|
1672 |
|
|
|
1673 |
|
|
map = XNEWVEC (int, size);
|
1674 |
|
|
map[0] = size;
|
1675 |
|
|
i = 1;
|
1676 |
|
|
FOR_ALL_BB (bb)
|
1677 |
|
|
{
|
1678 |
|
|
edge_iterator ei;
|
1679 |
|
|
edge e;
|
1680 |
|
|
|
1681 |
|
|
map[i++] = bb->index;
|
1682 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1683 |
|
|
map[i++] = e->dest->index;
|
1684 |
|
|
map[i++] = -1;
|
1685 |
|
|
}
|
1686 |
|
|
map[i] = -1;
|
1687 |
|
|
return map;
|
1688 |
|
|
}
|
1689 |
|
|
|
1690 |
|
|
static int *saved_cfg = NULL;
|
1691 |
|
|
|
1692 |
|
|
|
1693 |
|
|
/* This function compares the saved version of the cfg with the
|
1694 |
|
|
current cfg and aborts if the two are identical. The function
|
1695 |
|
|
silently returns if the cfg has been marked as dirty or the two are
|
1696 |
|
|
the same. */
|
1697 |
|
|
|
1698 |
|
|
void
|
1699 |
|
|
df_check_cfg_clean (void)
|
1700 |
|
|
{
|
1701 |
|
|
int *new_map;
|
1702 |
|
|
|
1703 |
|
|
if (!df)
|
1704 |
|
|
return;
|
1705 |
|
|
|
1706 |
|
|
if (df_lr->solutions_dirty)
|
1707 |
|
|
return;
|
1708 |
|
|
|
1709 |
|
|
if (saved_cfg == NULL)
|
1710 |
|
|
return;
|
1711 |
|
|
|
1712 |
|
|
new_map = df_compute_cfg_image ();
|
1713 |
|
|
gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
|
1714 |
|
|
free (new_map);
|
1715 |
|
|
}
|
1716 |
|
|
|
1717 |
|
|
|
1718 |
|
|
/* This function builds a cfg fingerprint and squirrels it away in
|
1719 |
|
|
saved_cfg. */
|
1720 |
|
|
|
1721 |
|
|
static void
|
1722 |
|
|
df_set_clean_cfg (void)
|
1723 |
|
|
{
|
1724 |
|
|
free (saved_cfg);
|
1725 |
|
|
saved_cfg = df_compute_cfg_image ();
|
1726 |
|
|
}
|
1727 |
|
|
|
1728 |
|
|
#endif /* DF_DEBUG_CFG */
|
1729 |
|
|
/*----------------------------------------------------------------------------
|
1730 |
|
|
PUBLIC INTERFACES TO QUERY INFORMATION.
|
1731 |
|
|
----------------------------------------------------------------------------*/
|
1732 |
|
|
|
1733 |
|
|
|
1734 |
|
|
/* Return first def of REGNO within BB. */
|
1735 |
|
|
|
1736 |
|
|
df_ref
|
1737 |
|
|
df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
|
1738 |
|
|
{
|
1739 |
|
|
rtx insn;
|
1740 |
|
|
df_ref *def_rec;
|
1741 |
|
|
unsigned int uid;
|
1742 |
|
|
|
1743 |
|
|
FOR_BB_INSNS (bb, insn)
|
1744 |
|
|
{
|
1745 |
|
|
if (!INSN_P (insn))
|
1746 |
|
|
continue;
|
1747 |
|
|
|
1748 |
|
|
uid = INSN_UID (insn);
|
1749 |
|
|
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
|
1750 |
|
|
{
|
1751 |
|
|
df_ref def = *def_rec;
|
1752 |
|
|
if (DF_REF_REGNO (def) == regno)
|
1753 |
|
|
return def;
|
1754 |
|
|
}
|
1755 |
|
|
}
|
1756 |
|
|
return NULL;
|
1757 |
|
|
}
|
1758 |
|
|
|
1759 |
|
|
|
1760 |
|
|
/* Return last def of REGNO within BB. */
|
1761 |
|
|
|
1762 |
|
|
df_ref
|
1763 |
|
|
df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
|
1764 |
|
|
{
|
1765 |
|
|
rtx insn;
|
1766 |
|
|
df_ref *def_rec;
|
1767 |
|
|
unsigned int uid;
|
1768 |
|
|
|
1769 |
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
1770 |
|
|
{
|
1771 |
|
|
if (!INSN_P (insn))
|
1772 |
|
|
continue;
|
1773 |
|
|
|
1774 |
|
|
uid = INSN_UID (insn);
|
1775 |
|
|
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
|
1776 |
|
|
{
|
1777 |
|
|
df_ref def = *def_rec;
|
1778 |
|
|
if (DF_REF_REGNO (def) == regno)
|
1779 |
|
|
return def;
|
1780 |
|
|
}
|
1781 |
|
|
}
|
1782 |
|
|
|
1783 |
|
|
return NULL;
|
1784 |
|
|
}
|
1785 |
|
|
|
1786 |
|
|
/* Finds the reference corresponding to the definition of REG in INSN.
|
1787 |
|
|
DF is the dataflow object. */
|
1788 |
|
|
|
1789 |
|
|
df_ref
|
1790 |
|
|
df_find_def (rtx insn, rtx reg)
|
1791 |
|
|
{
|
1792 |
|
|
unsigned int uid;
|
1793 |
|
|
df_ref *def_rec;
|
1794 |
|
|
|
1795 |
|
|
if (GET_CODE (reg) == SUBREG)
|
1796 |
|
|
reg = SUBREG_REG (reg);
|
1797 |
|
|
gcc_assert (REG_P (reg));
|
1798 |
|
|
|
1799 |
|
|
uid = INSN_UID (insn);
|
1800 |
|
|
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
|
1801 |
|
|
{
|
1802 |
|
|
df_ref def = *def_rec;
|
1803 |
|
|
if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
|
1804 |
|
|
return def;
|
1805 |
|
|
}
|
1806 |
|
|
|
1807 |
|
|
return NULL;
|
1808 |
|
|
}
|
1809 |
|
|
|
1810 |
|
|
|
1811 |
|
|
/* Return true if REG is defined in INSN, zero otherwise. */
|
1812 |
|
|
|
1813 |
|
|
bool
|
1814 |
|
|
df_reg_defined (rtx insn, rtx reg)
|
1815 |
|
|
{
|
1816 |
|
|
return df_find_def (insn, reg) != NULL;
|
1817 |
|
|
}
|
1818 |
|
|
|
1819 |
|
|
|
1820 |
|
|
/* Finds the reference corresponding to the use of REG in INSN.
|
1821 |
|
|
DF is the dataflow object. */
|
1822 |
|
|
|
1823 |
|
|
df_ref
|
1824 |
|
|
df_find_use (rtx insn, rtx reg)
|
1825 |
|
|
{
|
1826 |
|
|
unsigned int uid;
|
1827 |
|
|
df_ref *use_rec;
|
1828 |
|
|
|
1829 |
|
|
if (GET_CODE (reg) == SUBREG)
|
1830 |
|
|
reg = SUBREG_REG (reg);
|
1831 |
|
|
gcc_assert (REG_P (reg));
|
1832 |
|
|
|
1833 |
|
|
uid = INSN_UID (insn);
|
1834 |
|
|
for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
|
1835 |
|
|
{
|
1836 |
|
|
df_ref use = *use_rec;
|
1837 |
|
|
if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
|
1838 |
|
|
return use;
|
1839 |
|
|
}
|
1840 |
|
|
if (df->changeable_flags & DF_EQ_NOTES)
|
1841 |
|
|
for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
|
1842 |
|
|
{
|
1843 |
|
|
df_ref use = *use_rec;
|
1844 |
|
|
if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
|
1845 |
|
|
return use;
|
1846 |
|
|
}
|
1847 |
|
|
return NULL;
|
1848 |
|
|
}
|
1849 |
|
|
|
1850 |
|
|
|
1851 |
|
|
/* Return true if REG is referenced in INSN, zero otherwise. */
|
1852 |
|
|
|
1853 |
|
|
bool
|
1854 |
|
|
df_reg_used (rtx insn, rtx reg)
|
1855 |
|
|
{
|
1856 |
|
|
return df_find_use (insn, reg) != NULL;
|
1857 |
|
|
}
|
1858 |
|
|
|
1859 |
|
|
|
1860 |
|
|
/*----------------------------------------------------------------------------
|
1861 |
|
|
Debugging and printing functions.
|
1862 |
|
|
----------------------------------------------------------------------------*/
|
1863 |
|
|
|
1864 |
|
|
|
1865 |
|
|
/* Write information about registers and basic blocks into FILE.
|
1866 |
|
|
This is part of making a debugging dump. */
|
1867 |
|
|
|
1868 |
|
|
void
|
1869 |
|
|
df_print_regset (FILE *file, bitmap r)
|
1870 |
|
|
{
|
1871 |
|
|
unsigned int i;
|
1872 |
|
|
bitmap_iterator bi;
|
1873 |
|
|
|
1874 |
|
|
if (r == NULL)
|
1875 |
|
|
fputs (" (nil)", file);
|
1876 |
|
|
else
|
1877 |
|
|
{
|
1878 |
|
|
EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
|
1879 |
|
|
{
|
1880 |
|
|
fprintf (file, " %d", i);
|
1881 |
|
|
if (i < FIRST_PSEUDO_REGISTER)
|
1882 |
|
|
fprintf (file, " [%s]", reg_names[i]);
|
1883 |
|
|
}
|
1884 |
|
|
}
|
1885 |
|
|
fprintf (file, "\n");
|
1886 |
|
|
}
|
1887 |
|
|
|
1888 |
|
|
|
1889 |
|
|
/* Write information about registers and basic blocks into FILE. The
|
1890 |
|
|
bitmap is in the form used by df_byte_lr. This is part of making a
|
1891 |
|
|
debugging dump. */
|
1892 |
|
|
|
1893 |
|
|
void
|
1894 |
|
|
df_print_word_regset (FILE *file, bitmap r)
|
1895 |
|
|
{
|
1896 |
|
|
unsigned int max_reg = max_reg_num ();
|
1897 |
|
|
|
1898 |
|
|
if (r == NULL)
|
1899 |
|
|
fputs (" (nil)", file);
|
1900 |
|
|
else
|
1901 |
|
|
{
|
1902 |
|
|
unsigned int i;
|
1903 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
|
1904 |
|
|
{
|
1905 |
|
|
bool found = (bitmap_bit_p (r, 2 * i)
|
1906 |
|
|
|| bitmap_bit_p (r, 2 * i + 1));
|
1907 |
|
|
if (found)
|
1908 |
|
|
{
|
1909 |
|
|
int word;
|
1910 |
|
|
const char * sep = "";
|
1911 |
|
|
fprintf (file, " %d", i);
|
1912 |
|
|
fprintf (file, "(");
|
1913 |
|
|
for (word = 0; word < 2; word++)
|
1914 |
|
|
if (bitmap_bit_p (r, 2 * i + word))
|
1915 |
|
|
{
|
1916 |
|
|
fprintf (file, "%s%d", sep, word);
|
1917 |
|
|
sep = ", ";
|
1918 |
|
|
}
|
1919 |
|
|
fprintf (file, ")");
|
1920 |
|
|
}
|
1921 |
|
|
}
|
1922 |
|
|
}
|
1923 |
|
|
fprintf (file, "\n");
|
1924 |
|
|
}
|
1925 |
|
|
|
1926 |
|
|
|
1927 |
|
|
/* Dump dataflow info. */
|
1928 |
|
|
|
1929 |
|
|
void
|
1930 |
|
|
df_dump (FILE *file)
|
1931 |
|
|
{
|
1932 |
|
|
basic_block bb;
|
1933 |
|
|
df_dump_start (file);
|
1934 |
|
|
|
1935 |
|
|
FOR_ALL_BB (bb)
|
1936 |
|
|
{
|
1937 |
|
|
df_print_bb_index (bb, file);
|
1938 |
|
|
df_dump_top (bb, file);
|
1939 |
|
|
df_dump_bottom (bb, file);
|
1940 |
|
|
}
|
1941 |
|
|
|
1942 |
|
|
fprintf (file, "\n");
|
1943 |
|
|
}
|
1944 |
|
|
|
1945 |
|
|
|
1946 |
|
|
/* Dump dataflow info for df->blocks_to_analyze. */
|
1947 |
|
|
|
1948 |
|
|
void
|
1949 |
|
|
df_dump_region (FILE *file)
|
1950 |
|
|
{
|
1951 |
|
|
if (df->blocks_to_analyze)
|
1952 |
|
|
{
|
1953 |
|
|
bitmap_iterator bi;
|
1954 |
|
|
unsigned int bb_index;
|
1955 |
|
|
|
1956 |
|
|
fprintf (file, "\n\nstarting region dump\n");
|
1957 |
|
|
df_dump_start (file);
|
1958 |
|
|
|
1959 |
|
|
EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
|
1960 |
|
|
{
|
1961 |
|
|
basic_block bb = BASIC_BLOCK (bb_index);
|
1962 |
|
|
|
1963 |
|
|
df_print_bb_index (bb, file);
|
1964 |
|
|
df_dump_top (bb, file);
|
1965 |
|
|
df_dump_bottom (bb, file);
|
1966 |
|
|
}
|
1967 |
|
|
fprintf (file, "\n");
|
1968 |
|
|
}
|
1969 |
|
|
else
|
1970 |
|
|
df_dump (file);
|
1971 |
|
|
}
|
1972 |
|
|
|
1973 |
|
|
|
1974 |
|
|
/* Dump the introductory information for each problem defined. */
|
1975 |
|
|
|
1976 |
|
|
void
|
1977 |
|
|
df_dump_start (FILE *file)
|
1978 |
|
|
{
|
1979 |
|
|
int i;
|
1980 |
|
|
|
1981 |
|
|
if (!df || !file)
|
1982 |
|
|
return;
|
1983 |
|
|
|
1984 |
|
|
fprintf (file, "\n\n%s\n", current_function_name ());
|
1985 |
|
|
fprintf (file, "\nDataflow summary:\n");
|
1986 |
|
|
if (df->blocks_to_analyze)
|
1987 |
|
|
fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
|
1988 |
|
|
DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
|
1989 |
|
|
|
1990 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
1991 |
|
|
{
|
1992 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
1993 |
|
|
if (dflow->computed)
|
1994 |
|
|
{
|
1995 |
|
|
df_dump_problem_function fun = dflow->problem->dump_start_fun;
|
1996 |
|
|
if (fun)
|
1997 |
|
|
fun(file);
|
1998 |
|
|
}
|
1999 |
|
|
}
|
2000 |
|
|
}
|
2001 |
|
|
|
2002 |
|
|
|
2003 |
|
|
/* Dump the top of the block information for BB. */
|
2004 |
|
|
|
2005 |
|
|
void
|
2006 |
|
|
df_dump_top (basic_block bb, FILE *file)
|
2007 |
|
|
{
|
2008 |
|
|
int i;
|
2009 |
|
|
|
2010 |
|
|
if (!df || !file)
|
2011 |
|
|
return;
|
2012 |
|
|
|
2013 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
2014 |
|
|
{
|
2015 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
2016 |
|
|
if (dflow->computed)
|
2017 |
|
|
{
|
2018 |
|
|
df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
|
2019 |
|
|
if (bbfun)
|
2020 |
|
|
bbfun (bb, file);
|
2021 |
|
|
}
|
2022 |
|
|
}
|
2023 |
|
|
}
|
2024 |
|
|
|
2025 |
|
|
|
2026 |
|
|
/* Dump the bottom of the block information for BB. */
|
2027 |
|
|
|
2028 |
|
|
void
|
2029 |
|
|
df_dump_bottom (basic_block bb, FILE *file)
|
2030 |
|
|
{
|
2031 |
|
|
int i;
|
2032 |
|
|
|
2033 |
|
|
if (!df || !file)
|
2034 |
|
|
return;
|
2035 |
|
|
|
2036 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
2037 |
|
|
{
|
2038 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
2039 |
|
|
if (dflow->computed)
|
2040 |
|
|
{
|
2041 |
|
|
df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
|
2042 |
|
|
if (bbfun)
|
2043 |
|
|
bbfun (bb, file);
|
2044 |
|
|
}
|
2045 |
|
|
}
|
2046 |
|
|
}
|
2047 |
|
|
|
2048 |
|
|
|
2049 |
|
|
static void
|
2050 |
|
|
df_ref_dump (df_ref ref, FILE *file)
|
2051 |
|
|
{
|
2052 |
|
|
fprintf (file, "%c%d(%d)",
|
2053 |
|
|
DF_REF_REG_DEF_P (ref)
|
2054 |
|
|
? 'd'
|
2055 |
|
|
: (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
|
2056 |
|
|
DF_REF_ID (ref),
|
2057 |
|
|
DF_REF_REGNO (ref));
|
2058 |
|
|
}
|
2059 |
|
|
|
2060 |
|
|
void
|
2061 |
|
|
df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
|
2062 |
|
|
{
|
2063 |
|
|
fprintf (file, "{ ");
|
2064 |
|
|
while (*ref_rec)
|
2065 |
|
|
{
|
2066 |
|
|
df_ref ref = *ref_rec;
|
2067 |
|
|
df_ref_dump (ref, file);
|
2068 |
|
|
if (follow_chain)
|
2069 |
|
|
df_chain_dump (DF_REF_CHAIN (ref), file);
|
2070 |
|
|
ref_rec++;
|
2071 |
|
|
}
|
2072 |
|
|
fprintf (file, "}");
|
2073 |
|
|
}
|
2074 |
|
|
|
2075 |
|
|
|
2076 |
|
|
/* Dump either a ref-def or reg-use chain. */
|
2077 |
|
|
|
2078 |
|
|
void
|
2079 |
|
|
df_regs_chain_dump (df_ref ref, FILE *file)
|
2080 |
|
|
{
|
2081 |
|
|
fprintf (file, "{ ");
|
2082 |
|
|
while (ref)
|
2083 |
|
|
{
|
2084 |
|
|
df_ref_dump (ref, file);
|
2085 |
|
|
ref = DF_REF_NEXT_REG (ref);
|
2086 |
|
|
}
|
2087 |
|
|
fprintf (file, "}");
|
2088 |
|
|
}
|
2089 |
|
|
|
2090 |
|
|
|
2091 |
|
|
static void
|
2092 |
|
|
df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
|
2093 |
|
|
{
|
2094 |
|
|
while (*mws)
|
2095 |
|
|
{
|
2096 |
|
|
fprintf (file, "mw %c r[%d..%d]\n",
|
2097 |
|
|
(DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
|
2098 |
|
|
(*mws)->start_regno, (*mws)->end_regno);
|
2099 |
|
|
mws++;
|
2100 |
|
|
}
|
2101 |
|
|
}
|
2102 |
|
|
|
2103 |
|
|
|
2104 |
|
|
static void
|
2105 |
|
|
df_insn_uid_debug (unsigned int uid,
|
2106 |
|
|
bool follow_chain, FILE *file)
|
2107 |
|
|
{
|
2108 |
|
|
fprintf (file, "insn %d luid %d",
|
2109 |
|
|
uid, DF_INSN_UID_LUID (uid));
|
2110 |
|
|
|
2111 |
|
|
if (DF_INSN_UID_DEFS (uid))
|
2112 |
|
|
{
|
2113 |
|
|
fprintf (file, " defs ");
|
2114 |
|
|
df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
|
2115 |
|
|
}
|
2116 |
|
|
|
2117 |
|
|
if (DF_INSN_UID_USES (uid))
|
2118 |
|
|
{
|
2119 |
|
|
fprintf (file, " uses ");
|
2120 |
|
|
df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
|
2121 |
|
|
}
|
2122 |
|
|
|
2123 |
|
|
if (DF_INSN_UID_EQ_USES (uid))
|
2124 |
|
|
{
|
2125 |
|
|
fprintf (file, " eq uses ");
|
2126 |
|
|
df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
|
2127 |
|
|
}
|
2128 |
|
|
|
2129 |
|
|
if (DF_INSN_UID_MWS (uid))
|
2130 |
|
|
{
|
2131 |
|
|
fprintf (file, " mws ");
|
2132 |
|
|
df_mws_dump (DF_INSN_UID_MWS (uid), file);
|
2133 |
|
|
}
|
2134 |
|
|
fprintf (file, "\n");
|
2135 |
|
|
}
|
2136 |
|
|
|
2137 |
|
|
|
2138 |
|
|
DEBUG_FUNCTION void
|
2139 |
|
|
df_insn_debug (rtx insn, bool follow_chain, FILE *file)
|
2140 |
|
|
{
|
2141 |
|
|
df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
|
2142 |
|
|
}
|
2143 |
|
|
|
2144 |
|
|
DEBUG_FUNCTION void
|
2145 |
|
|
df_insn_debug_regno (rtx insn, FILE *file)
|
2146 |
|
|
{
|
2147 |
|
|
struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
|
2148 |
|
|
|
2149 |
|
|
fprintf (file, "insn %d bb %d luid %d defs ",
|
2150 |
|
|
INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
|
2151 |
|
|
DF_INSN_INFO_LUID (insn_info));
|
2152 |
|
|
df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
|
2153 |
|
|
|
2154 |
|
|
fprintf (file, " uses ");
|
2155 |
|
|
df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
|
2156 |
|
|
|
2157 |
|
|
fprintf (file, " eq_uses ");
|
2158 |
|
|
df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
|
2159 |
|
|
fprintf (file, "\n");
|
2160 |
|
|
}
|
2161 |
|
|
|
2162 |
|
|
DEBUG_FUNCTION void
|
2163 |
|
|
df_regno_debug (unsigned int regno, FILE *file)
|
2164 |
|
|
{
|
2165 |
|
|
fprintf (file, "reg %d defs ", regno);
|
2166 |
|
|
df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
|
2167 |
|
|
fprintf (file, " uses ");
|
2168 |
|
|
df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
|
2169 |
|
|
fprintf (file, " eq_uses ");
|
2170 |
|
|
df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
|
2171 |
|
|
fprintf (file, "\n");
|
2172 |
|
|
}
|
2173 |
|
|
|
2174 |
|
|
|
2175 |
|
|
DEBUG_FUNCTION void
|
2176 |
|
|
df_ref_debug (df_ref ref, FILE *file)
|
2177 |
|
|
{
|
2178 |
|
|
fprintf (file, "%c%d ",
|
2179 |
|
|
DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
|
2180 |
|
|
DF_REF_ID (ref));
|
2181 |
|
|
fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
|
2182 |
|
|
DF_REF_REGNO (ref),
|
2183 |
|
|
DF_REF_BBNO (ref),
|
2184 |
|
|
DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
|
2185 |
|
|
DF_REF_FLAGS (ref),
|
2186 |
|
|
DF_REF_TYPE (ref));
|
2187 |
|
|
if (DF_REF_LOC (ref))
|
2188 |
|
|
{
|
2189 |
|
|
if (flag_dump_noaddr)
|
2190 |
|
|
fprintf (file, "loc #(#) chain ");
|
2191 |
|
|
else
|
2192 |
|
|
fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
|
2193 |
|
|
(void *)*DF_REF_LOC (ref));
|
2194 |
|
|
}
|
2195 |
|
|
else
|
2196 |
|
|
fprintf (file, "chain ");
|
2197 |
|
|
df_chain_dump (DF_REF_CHAIN (ref), file);
|
2198 |
|
|
fprintf (file, "\n");
|
2199 |
|
|
}
|
2200 |
|
|
|
2201 |
|
|
/* Functions for debugging from GDB. */
|
2202 |
|
|
|
2203 |
|
|
DEBUG_FUNCTION void
|
2204 |
|
|
debug_df_insn (rtx insn)
|
2205 |
|
|
{
|
2206 |
|
|
df_insn_debug (insn, true, stderr);
|
2207 |
|
|
debug_rtx (insn);
|
2208 |
|
|
}
|
2209 |
|
|
|
2210 |
|
|
|
2211 |
|
|
DEBUG_FUNCTION void
|
2212 |
|
|
debug_df_reg (rtx reg)
|
2213 |
|
|
{
|
2214 |
|
|
df_regno_debug (REGNO (reg), stderr);
|
2215 |
|
|
}
|
2216 |
|
|
|
2217 |
|
|
|
2218 |
|
|
DEBUG_FUNCTION void
|
2219 |
|
|
debug_df_regno (unsigned int regno)
|
2220 |
|
|
{
|
2221 |
|
|
df_regno_debug (regno, stderr);
|
2222 |
|
|
}
|
2223 |
|
|
|
2224 |
|
|
|
2225 |
|
|
DEBUG_FUNCTION void
|
2226 |
|
|
debug_df_ref (df_ref ref)
|
2227 |
|
|
{
|
2228 |
|
|
df_ref_debug (ref, stderr);
|
2229 |
|
|
}
|
2230 |
|
|
|
2231 |
|
|
|
2232 |
|
|
DEBUG_FUNCTION void
|
2233 |
|
|
debug_df_defno (unsigned int defno)
|
2234 |
|
|
{
|
2235 |
|
|
df_ref_debug (DF_DEFS_GET (defno), stderr);
|
2236 |
|
|
}
|
2237 |
|
|
|
2238 |
|
|
|
2239 |
|
|
DEBUG_FUNCTION void
|
2240 |
|
|
debug_df_useno (unsigned int defno)
|
2241 |
|
|
{
|
2242 |
|
|
df_ref_debug (DF_USES_GET (defno), stderr);
|
2243 |
|
|
}
|
2244 |
|
|
|
2245 |
|
|
|
2246 |
|
|
DEBUG_FUNCTION void
|
2247 |
|
|
debug_df_chain (struct df_link *link)
|
2248 |
|
|
{
|
2249 |
|
|
df_chain_dump (link, stderr);
|
2250 |
|
|
fputc ('\n', stderr);
|
2251 |
|
|
}
|