OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [doc/] [extend.texi] - Blame information for rev 747

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 711 jeremybenn
@c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
2
@c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3
@c Free Software Foundation, Inc.
4
 
5
@c This is part of the GCC manual.
6
@c For copying conditions, see the file gcc.texi.
7
 
8
@node C Extensions
9
@chapter Extensions to the C Language Family
10
@cindex extensions, C language
11
@cindex C language extensions
12
 
13
@opindex pedantic
14
GNU C provides several language features not found in ISO standard C@.
15
(The @option{-pedantic} option directs GCC to print a warning message if
16
any of these features is used.)  To test for the availability of these
17
features in conditional compilation, check for a predefined macro
18
@code{__GNUC__}, which is always defined under GCC@.
19
 
20
These extensions are available in C and Objective-C@.  Most of them are
21
also available in C++.  @xref{C++ Extensions,,Extensions to the
22
C++ Language}, for extensions that apply @emph{only} to C++.
23
 
24
Some features that are in ISO C99 but not C90 or C++ are also, as
25
extensions, accepted by GCC in C90 mode and in C++.
26
 
27
@menu
28
* Statement Exprs::     Putting statements and declarations inside expressions.
29
* Local Labels::        Labels local to a block.
30
* Labels as Values::    Getting pointers to labels, and computed gotos.
31
* Nested Functions::    As in Algol and Pascal, lexical scoping of functions.
32
* Constructing Calls::  Dispatching a call to another function.
33
* Typeof::              @code{typeof}: referring to the type of an expression.
34
* Conditionals::        Omitting the middle operand of a @samp{?:} expression.
35
* Long Long::           Double-word integers---@code{long long int}.
36
* __int128::                    128-bit integers---@code{__int128}.
37
* Complex::             Data types for complex numbers.
38
* Floating Types::      Additional Floating Types.
39
* Half-Precision::      Half-Precision Floating Point.
40
* Decimal Float::       Decimal Floating Types.
41
* Hex Floats::          Hexadecimal floating-point constants.
42
* Fixed-Point::         Fixed-Point Types.
43
* Named Address Spaces::Named address spaces.
44
* Zero Length::         Zero-length arrays.
45
* Variable Length::     Arrays whose length is computed at run time.
46
* Empty Structures::    Structures with no members.
47
* Variadic Macros::     Macros with a variable number of arguments.
48
* Escaped Newlines::    Slightly looser rules for escaped newlines.
49
* Subscripting::        Any array can be subscripted, even if not an lvalue.
50
* Pointer Arith::       Arithmetic on @code{void}-pointers and function pointers.
51
* Initializers::        Non-constant initializers.
52
* Compound Literals::   Compound literals give structures, unions
53
                        or arrays as values.
54
* Designated Inits::    Labeling elements of initializers.
55
* Cast to Union::       Casting to union type from any member of the union.
56
* Case Ranges::         `case 1 ... 9' and such.
57
* Mixed Declarations::  Mixing declarations and code.
58
* Function Attributes:: Declaring that functions have no side effects,
59
                        or that they can never return.
60
* Attribute Syntax::    Formal syntax for attributes.
61
* Function Prototypes:: Prototype declarations and old-style definitions.
62
* C++ Comments::        C++ comments are recognized.
63
* Dollar Signs::        Dollar sign is allowed in identifiers.
64
* Character Escapes::   @samp{\e} stands for the character @key{ESC}.
65
* Variable Attributes:: Specifying attributes of variables.
66
* Type Attributes::     Specifying attributes of types.
67
* Alignment::           Inquiring about the alignment of a type or variable.
68
* Inline::              Defining inline functions (as fast as macros).
69
* Volatiles::           What constitutes an access to a volatile object.
70
* Extended Asm::        Assembler instructions with C expressions as operands.
71
                        (With them you can define ``built-in'' functions.)
72
* Constraints::         Constraints for asm operands
73
* Asm Labels::          Specifying the assembler name to use for a C symbol.
74
* Explicit Reg Vars::   Defining variables residing in specified registers.
75
* Alternate Keywords::  @code{__const__}, @code{__asm__}, etc., for header files.
76
* Incomplete Enums::    @code{enum foo;}, with details to follow.
77
* Function Names::      Printable strings which are the name of the current
78
                        function.
79
* Return Address::      Getting the return or frame address of a function.
80
* Vector Extensions::   Using vector instructions through built-in functions.
81
* Offsetof::            Special syntax for implementing @code{offsetof}.
82
* __sync Builtins::     Legacy built-in functions for atomic memory access.
83
* __atomic Builtins::   Atomic built-in functions with memory model.
84
* Object Size Checking:: Built-in functions for limited buffer overflow
85
                        checking.
86
* Other Builtins::      Other built-in functions.
87
* Target Builtins::     Built-in functions specific to particular targets.
88
* Target Format Checks:: Format checks specific to particular targets.
89
* Pragmas::             Pragmas accepted by GCC.
90
* Unnamed Fields::      Unnamed struct/union fields within structs/unions.
91
* Thread-Local::        Per-thread variables.
92
* Binary constants::    Binary constants using the @samp{0b} prefix.
93
@end menu
94
 
95
@node Statement Exprs
96
@section Statements and Declarations in Expressions
97
@cindex statements inside expressions
98
@cindex declarations inside expressions
99
@cindex expressions containing statements
100
@cindex macros, statements in expressions
101
 
102
@c the above section title wrapped and causes an underfull hbox.. i
103
@c changed it from "within" to "in". --mew 4feb93
104
A compound statement enclosed in parentheses may appear as an expression
105
in GNU C@.  This allows you to use loops, switches, and local variables
106
within an expression.
107
 
108
Recall that a compound statement is a sequence of statements surrounded
109
by braces; in this construct, parentheses go around the braces.  For
110
example:
111
 
112
@smallexample
113
(@{ int y = foo (); int z;
114
   if (y > 0) z = y;
115
   else z = - y;
116
   z; @})
117
@end smallexample
118
 
119
@noindent
120
is a valid (though slightly more complex than necessary) expression
121
for the absolute value of @code{foo ()}.
122
 
123
The last thing in the compound statement should be an expression
124
followed by a semicolon; the value of this subexpression serves as the
125
value of the entire construct.  (If you use some other kind of statement
126
last within the braces, the construct has type @code{void}, and thus
127
effectively no value.)
128
 
129
This feature is especially useful in making macro definitions ``safe'' (so
130
that they evaluate each operand exactly once).  For example, the
131
``maximum'' function is commonly defined as a macro in standard C as
132
follows:
133
 
134
@smallexample
135
#define max(a,b) ((a) > (b) ? (a) : (b))
136
@end smallexample
137
 
138
@noindent
139
@cindex side effects, macro argument
140
But this definition computes either @var{a} or @var{b} twice, with bad
141
results if the operand has side effects.  In GNU C, if you know the
142
type of the operands (here taken as @code{int}), you can define
143
the macro safely as follows:
144
 
145
@smallexample
146
#define maxint(a,b) \
147
  (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
148
@end smallexample
149
 
150
Embedded statements are not allowed in constant expressions, such as
151
the value of an enumeration constant, the width of a bit-field, or
152
the initial value of a static variable.
153
 
154
If you don't know the type of the operand, you can still do this, but you
155
must use @code{typeof} (@pxref{Typeof}).
156
 
157
In G++, the result value of a statement expression undergoes array and
158
function pointer decay, and is returned by value to the enclosing
159
expression.  For instance, if @code{A} is a class, then
160
 
161
@smallexample
162
        A a;
163
 
164
        (@{a;@}).Foo ()
165
@end smallexample
166
 
167
@noindent
168
will construct a temporary @code{A} object to hold the result of the
169
statement expression, and that will be used to invoke @code{Foo}.
170
Therefore the @code{this} pointer observed by @code{Foo} will not be the
171
address of @code{a}.
172
 
173
Any temporaries created within a statement within a statement expression
174
will be destroyed at the statement's end.  This makes statement
175
expressions inside macros slightly different from function calls.  In
176
the latter case temporaries introduced during argument evaluation will
177
be destroyed at the end of the statement that includes the function
178
call.  In the statement expression case they will be destroyed during
179
the statement expression.  For instance,
180
 
181
@smallexample
182
#define macro(a)  (@{__typeof__(a) b = (a); b + 3; @})
183
template<typename T> T function(T a) @{ T b = a; return b + 3; @}
184
 
185
void foo ()
186
@{
187
  macro (X ());
188
  function (X ());
189
@}
190
@end smallexample
191
 
192
@noindent
193
will have different places where temporaries are destroyed.  For the
194
@code{macro} case, the temporary @code{X} will be destroyed just after
195
the initialization of @code{b}.  In the @code{function} case that
196
temporary will be destroyed when the function returns.
197
 
198
These considerations mean that it is probably a bad idea to use
199
statement-expressions of this form in header files that are designed to
200
work with C++.  (Note that some versions of the GNU C Library contained
201
header files using statement-expression that lead to precisely this
202
bug.)
203
 
204
Jumping into a statement expression with @code{goto} or using a
205
@code{switch} statement outside the statement expression with a
206
@code{case} or @code{default} label inside the statement expression is
207
not permitted.  Jumping into a statement expression with a computed
208
@code{goto} (@pxref{Labels as Values}) yields undefined behavior.
209
Jumping out of a statement expression is permitted, but if the
210
statement expression is part of a larger expression then it is
211
unspecified which other subexpressions of that expression have been
212
evaluated except where the language definition requires certain
213
subexpressions to be evaluated before or after the statement
214
expression.  In any case, as with a function call the evaluation of a
215
statement expression is not interleaved with the evaluation of other
216
parts of the containing expression.  For example,
217
 
218
@smallexample
219
  foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
220
@end smallexample
221
 
222
@noindent
223
will call @code{foo} and @code{bar1} and will not call @code{baz} but
224
may or may not call @code{bar2}.  If @code{bar2} is called, it will be
225
called after @code{foo} and before @code{bar1}
226
 
227
@node Local Labels
228
@section Locally Declared Labels
229
@cindex local labels
230
@cindex macros, local labels
231
 
232
GCC allows you to declare @dfn{local labels} in any nested block
233
scope.  A local label is just like an ordinary label, but you can
234
only reference it (with a @code{goto} statement, or by taking its
235
address) within the block in which it was declared.
236
 
237
A local label declaration looks like this:
238
 
239
@smallexample
240
__label__ @var{label};
241
@end smallexample
242
 
243
@noindent
244
or
245
 
246
@smallexample
247
__label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
248
@end smallexample
249
 
250
Local label declarations must come at the beginning of the block,
251
before any ordinary declarations or statements.
252
 
253
The label declaration defines the label @emph{name}, but does not define
254
the label itself.  You must do this in the usual way, with
255
@code{@var{label}:}, within the statements of the statement expression.
256
 
257
The local label feature is useful for complex macros.  If a macro
258
contains nested loops, a @code{goto} can be useful for breaking out of
259
them.  However, an ordinary label whose scope is the whole function
260
cannot be used: if the macro can be expanded several times in one
261
function, the label will be multiply defined in that function.  A
262
local label avoids this problem.  For example:
263
 
264
@smallexample
265
#define SEARCH(value, array, target)              \
266
do @{                                              \
267
  __label__ found;                                \
268
  typeof (target) _SEARCH_target = (target);      \
269
  typeof (*(array)) *_SEARCH_array = (array);     \
270
  int i, j;                                       \
271
  int value;                                      \
272
  for (i = 0; i < max; i++)                       \
273
    for (j = 0; j < max; j++)                     \
274
      if (_SEARCH_array[i][j] == _SEARCH_target)  \
275
        @{ (value) = i; goto found; @}              \
276
  (value) = -1;                                   \
277
 found:;                                          \
278
@} while (0)
279
@end smallexample
280
 
281
This could also be written using a statement-expression:
282
 
283
@smallexample
284
#define SEARCH(array, target)                     \
285
(@{                                                \
286
  __label__ found;                                \
287
  typeof (target) _SEARCH_target = (target);      \
288
  typeof (*(array)) *_SEARCH_array = (array);     \
289
  int i, j;                                       \
290
  int value;                                      \
291
  for (i = 0; i < max; i++)                       \
292
    for (j = 0; j < max; j++)                     \
293
      if (_SEARCH_array[i][j] == _SEARCH_target)  \
294
        @{ value = i; goto found; @}                \
295
  value = -1;                                     \
296
 found:                                           \
297
  value;                                          \
298
@})
299
@end smallexample
300
 
301
Local label declarations also make the labels they declare visible to
302
nested functions, if there are any.  @xref{Nested Functions}, for details.
303
 
304
@node Labels as Values
305
@section Labels as Values
306
@cindex labels as values
307
@cindex computed gotos
308
@cindex goto with computed label
309
@cindex address of a label
310
 
311
You can get the address of a label defined in the current function
312
(or a containing function) with the unary operator @samp{&&}.  The
313
value has type @code{void *}.  This value is a constant and can be used
314
wherever a constant of that type is valid.  For example:
315
 
316
@smallexample
317
void *ptr;
318
/* @r{@dots{}} */
319
ptr = &&foo;
320
@end smallexample
321
 
322
To use these values, you need to be able to jump to one.  This is done
323
with the computed goto statement@footnote{The analogous feature in
324
Fortran is called an assigned goto, but that name seems inappropriate in
325
C, where one can do more than simply store label addresses in label
326
variables.}, @code{goto *@var{exp};}.  For example,
327
 
328
@smallexample
329
goto *ptr;
330
@end smallexample
331
 
332
@noindent
333
Any expression of type @code{void *} is allowed.
334
 
335
One way of using these constants is in initializing a static array that
336
will serve as a jump table:
337
 
338
@smallexample
339
static void *array[] = @{ &&foo, &&bar, &&hack @};
340
@end smallexample
341
 
342
Then you can select a label with indexing, like this:
343
 
344
@smallexample
345
goto *array[i];
346
@end smallexample
347
 
348
@noindent
349
Note that this does not check whether the subscript is in bounds---array
350
indexing in C never does that.
351
 
352
Such an array of label values serves a purpose much like that of the
353
@code{switch} statement.  The @code{switch} statement is cleaner, so
354
use that rather than an array unless the problem does not fit a
355
@code{switch} statement very well.
356
 
357
Another use of label values is in an interpreter for threaded code.
358
The labels within the interpreter function can be stored in the
359
threaded code for super-fast dispatching.
360
 
361
You may not use this mechanism to jump to code in a different function.
362
If you do that, totally unpredictable things will happen.  The best way to
363
avoid this is to store the label address only in automatic variables and
364
never pass it as an argument.
365
 
366
An alternate way to write the above example is
367
 
368
@smallexample
369
static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
370
                             &&hack - &&foo @};
371
goto *(&&foo + array[i]);
372
@end smallexample
373
 
374
@noindent
375
This is more friendly to code living in shared libraries, as it reduces
376
the number of dynamic relocations that are needed, and by consequence,
377
allows the data to be read-only.
378
 
379
The @code{&&foo} expressions for the same label might have different
380
values if the containing function is inlined or cloned.  If a program
381
relies on them being always the same,
382
@code{__attribute__((__noinline__,__noclone__))} should be used to
383
prevent inlining and cloning.  If @code{&&foo} is used in a static
384
variable initializer, inlining and cloning is forbidden.
385
 
386
@node Nested Functions
387
@section Nested Functions
388
@cindex nested functions
389
@cindex downward funargs
390
@cindex thunks
391
 
392
A @dfn{nested function} is a function defined inside another function.
393
(Nested functions are not supported for GNU C++.)  The nested function's
394
name is local to the block where it is defined.  For example, here we
395
define a nested function named @code{square}, and call it twice:
396
 
397
@smallexample
398
@group
399
foo (double a, double b)
400
@{
401
  double square (double z) @{ return z * z; @}
402
 
403
  return square (a) + square (b);
404
@}
405
@end group
406
@end smallexample
407
 
408
The nested function can access all the variables of the containing
409
function that are visible at the point of its definition.  This is
410
called @dfn{lexical scoping}.  For example, here we show a nested
411
function which uses an inherited variable named @code{offset}:
412
 
413
@smallexample
414
@group
415
bar (int *array, int offset, int size)
416
@{
417
  int access (int *array, int index)
418
    @{ return array[index + offset]; @}
419
  int i;
420
  /* @r{@dots{}} */
421
  for (i = 0; i < size; i++)
422
    /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
423
@}
424
@end group
425
@end smallexample
426
 
427
Nested function definitions are permitted within functions in the places
428
where variable definitions are allowed; that is, in any block, mixed
429
with the other declarations and statements in the block.
430
 
431
It is possible to call the nested function from outside the scope of its
432
name by storing its address or passing the address to another function:
433
 
434
@smallexample
435
hack (int *array, int size)
436
@{
437
  void store (int index, int value)
438
    @{ array[index] = value; @}
439
 
440
  intermediate (store, size);
441
@}
442
@end smallexample
443
 
444
Here, the function @code{intermediate} receives the address of
445
@code{store} as an argument.  If @code{intermediate} calls @code{store},
446
the arguments given to @code{store} are used to store into @code{array}.
447
But this technique works only so long as the containing function
448
(@code{hack}, in this example) does not exit.
449
 
450
If you try to call the nested function through its address after the
451
containing function has exited, all hell will break loose.  If you try
452
to call it after a containing scope level has exited, and if it refers
453
to some of the variables that are no longer in scope, you may be lucky,
454
but it's not wise to take the risk.  If, however, the nested function
455
does not refer to anything that has gone out of scope, you should be
456
safe.
457
 
458
GCC implements taking the address of a nested function using a technique
459
called @dfn{trampolines}.  This technique was described in
460
@cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
461
C++ Conference Proceedings, October 17-21, 1988).
462
 
463
A nested function can jump to a label inherited from a containing
464
function, provided the label was explicitly declared in the containing
465
function (@pxref{Local Labels}).  Such a jump returns instantly to the
466
containing function, exiting the nested function which did the
467
@code{goto} and any intermediate functions as well.  Here is an example:
468
 
469
@smallexample
470
@group
471
bar (int *array, int offset, int size)
472
@{
473
  __label__ failure;
474
  int access (int *array, int index)
475
    @{
476
      if (index > size)
477
        goto failure;
478
      return array[index + offset];
479
    @}
480
  int i;
481
  /* @r{@dots{}} */
482
  for (i = 0; i < size; i++)
483
    /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
484
  /* @r{@dots{}} */
485
  return 0;
486
 
487
 /* @r{Control comes here from @code{access}
488
    if it detects an error.}  */
489
 failure:
490
  return -1;
491
@}
492
@end group
493
@end smallexample
494
 
495
A nested function always has no linkage.  Declaring one with
496
@code{extern} or @code{static} is erroneous.  If you need to declare the nested function
497
before its definition, use @code{auto} (which is otherwise meaningless
498
for function declarations).
499
 
500
@smallexample
501
bar (int *array, int offset, int size)
502
@{
503
  __label__ failure;
504
  auto int access (int *, int);
505
  /* @r{@dots{}} */
506
  int access (int *array, int index)
507
    @{
508
      if (index > size)
509
        goto failure;
510
      return array[index + offset];
511
    @}
512
  /* @r{@dots{}} */
513
@}
514
@end smallexample
515
 
516
@node Constructing Calls
517
@section Constructing Function Calls
518
@cindex constructing calls
519
@cindex forwarding calls
520
 
521
Using the built-in functions described below, you can record
522
the arguments a function received, and call another function
523
with the same arguments, without knowing the number or types
524
of the arguments.
525
 
526
You can also record the return value of that function call,
527
and later return that value, without knowing what data type
528
the function tried to return (as long as your caller expects
529
that data type).
530
 
531
However, these built-in functions may interact badly with some
532
sophisticated features or other extensions of the language.  It
533
is, therefore, not recommended to use them outside very simple
534
functions acting as mere forwarders for their arguments.
535
 
536
@deftypefn {Built-in Function} {void *} __builtin_apply_args ()
537
This built-in function returns a pointer to data
538
describing how to perform a call with the same arguments as were passed
539
to the current function.
540
 
541
The function saves the arg pointer register, structure value address,
542
and all registers that might be used to pass arguments to a function
543
into a block of memory allocated on the stack.  Then it returns the
544
address of that block.
545
@end deftypefn
546
 
547
@deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
548
This built-in function invokes @var{function}
549
with a copy of the parameters described by @var{arguments}
550
and @var{size}.
551
 
552
The value of @var{arguments} should be the value returned by
553
@code{__builtin_apply_args}.  The argument @var{size} specifies the size
554
of the stack argument data, in bytes.
555
 
556
This function returns a pointer to data describing
557
how to return whatever value was returned by @var{function}.  The data
558
is saved in a block of memory allocated on the stack.
559
 
560
It is not always simple to compute the proper value for @var{size}.  The
561
value is used by @code{__builtin_apply} to compute the amount of data
562
that should be pushed on the stack and copied from the incoming argument
563
area.
564
@end deftypefn
565
 
566
@deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
567
This built-in function returns the value described by @var{result} from
568
the containing function.  You should specify, for @var{result}, a value
569
returned by @code{__builtin_apply}.
570
@end deftypefn
571
 
572
@deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
573
This built-in function represents all anonymous arguments of an inline
574
function.  It can be used only in inline functions which will be always
575
inlined, never compiled as a separate function, such as those using
576
@code{__attribute__ ((__always_inline__))} or
577
@code{__attribute__ ((__gnu_inline__))} extern inline functions.
578
It must be only passed as last argument to some other function
579
with variable arguments.  This is useful for writing small wrapper
580
inlines for variable argument functions, when using preprocessor
581
macros is undesirable.  For example:
582
@smallexample
583
extern int myprintf (FILE *f, const char *format, ...);
584
extern inline __attribute__ ((__gnu_inline__)) int
585
myprintf (FILE *f, const char *format, ...)
586
@{
587
  int r = fprintf (f, "myprintf: ");
588
  if (r < 0)
589
    return r;
590
  int s = fprintf (f, format, __builtin_va_arg_pack ());
591
  if (s < 0)
592
    return s;
593
  return r + s;
594
@}
595
@end smallexample
596
@end deftypefn
597
 
598
@deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
599
This built-in function returns the number of anonymous arguments of
600
an inline function.  It can be used only in inline functions which
601
will be always inlined, never compiled as a separate function, such
602
as those using @code{__attribute__ ((__always_inline__))} or
603
@code{__attribute__ ((__gnu_inline__))} extern inline functions.
604
For example following will do link or runtime checking of open
605
arguments for optimized code:
606
@smallexample
607
#ifdef __OPTIMIZE__
608
extern inline __attribute__((__gnu_inline__)) int
609
myopen (const char *path, int oflag, ...)
610
@{
611
  if (__builtin_va_arg_pack_len () > 1)
612
    warn_open_too_many_arguments ();
613
 
614
  if (__builtin_constant_p (oflag))
615
    @{
616
      if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
617
        @{
618
          warn_open_missing_mode ();
619
          return __open_2 (path, oflag);
620
        @}
621
      return open (path, oflag, __builtin_va_arg_pack ());
622
    @}
623
 
624
  if (__builtin_va_arg_pack_len () < 1)
625
    return __open_2 (path, oflag);
626
 
627
  return open (path, oflag, __builtin_va_arg_pack ());
628
@}
629
#endif
630
@end smallexample
631
@end deftypefn
632
 
633
@node Typeof
634
@section Referring to a Type with @code{typeof}
635
@findex typeof
636
@findex sizeof
637
@cindex macros, types of arguments
638
 
639
Another way to refer to the type of an expression is with @code{typeof}.
640
The syntax of using of this keyword looks like @code{sizeof}, but the
641
construct acts semantically like a type name defined with @code{typedef}.
642
 
643
There are two ways of writing the argument to @code{typeof}: with an
644
expression or with a type.  Here is an example with an expression:
645
 
646
@smallexample
647
typeof (x[0](1))
648
@end smallexample
649
 
650
@noindent
651
This assumes that @code{x} is an array of pointers to functions;
652
the type described is that of the values of the functions.
653
 
654
Here is an example with a typename as the argument:
655
 
656
@smallexample
657
typeof (int *)
658
@end smallexample
659
 
660
@noindent
661
Here the type described is that of pointers to @code{int}.
662
 
663
If you are writing a header file that must work when included in ISO C
664
programs, write @code{__typeof__} instead of @code{typeof}.
665
@xref{Alternate Keywords}.
666
 
667
A @code{typeof}-construct can be used anywhere a typedef name could be
668
used.  For example, you can use it in a declaration, in a cast, or inside
669
of @code{sizeof} or @code{typeof}.
670
 
671
The operand of @code{typeof} is evaluated for its side effects if and
672
only if it is an expression of variably modified type or the name of
673
such a type.
674
 
675
@code{typeof} is often useful in conjunction with the
676
statements-within-expressions feature.  Here is how the two together can
677
be used to define a safe ``maximum'' macro that operates on any
678
arithmetic type and evaluates each of its arguments exactly once:
679
 
680
@smallexample
681
#define max(a,b) \
682
  (@{ typeof (a) _a = (a); \
683
      typeof (b) _b = (b); \
684
    _a > _b ? _a : _b; @})
685
@end smallexample
686
 
687
@cindex underscores in variables in macros
688
@cindex @samp{_} in variables in macros
689
@cindex local variables in macros
690
@cindex variables, local, in macros
691
@cindex macros, local variables in
692
 
693
The reason for using names that start with underscores for the local
694
variables is to avoid conflicts with variable names that occur within the
695
expressions that are substituted for @code{a} and @code{b}.  Eventually we
696
hope to design a new form of declaration syntax that allows you to declare
697
variables whose scopes start only after their initializers; this will be a
698
more reliable way to prevent such conflicts.
699
 
700
@noindent
701
Some more examples of the use of @code{typeof}:
702
 
703
@itemize @bullet
704
@item
705
This declares @code{y} with the type of what @code{x} points to.
706
 
707
@smallexample
708
typeof (*x) y;
709
@end smallexample
710
 
711
@item
712
This declares @code{y} as an array of such values.
713
 
714
@smallexample
715
typeof (*x) y[4];
716
@end smallexample
717
 
718
@item
719
This declares @code{y} as an array of pointers to characters:
720
 
721
@smallexample
722
typeof (typeof (char *)[4]) y;
723
@end smallexample
724
 
725
@noindent
726
It is equivalent to the following traditional C declaration:
727
 
728
@smallexample
729
char *y[4];
730
@end smallexample
731
 
732
To see the meaning of the declaration using @code{typeof}, and why it
733
might be a useful way to write, rewrite it with these macros:
734
 
735
@smallexample
736
#define pointer(T)  typeof(T *)
737
#define array(T, N) typeof(T [N])
738
@end smallexample
739
 
740
@noindent
741
Now the declaration can be rewritten this way:
742
 
743
@smallexample
744
array (pointer (char), 4) y;
745
@end smallexample
746
 
747
@noindent
748
Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
749
pointers to @code{char}.
750
@end itemize
751
 
752
@emph{Compatibility Note:} In addition to @code{typeof}, GCC 2 supported
753
a more limited extension which permitted one to write
754
 
755
@smallexample
756
typedef @var{T} = @var{expr};
757
@end smallexample
758
 
759
@noindent
760
with the effect of declaring @var{T} to have the type of the expression
761
@var{expr}.  This extension does not work with GCC 3 (versions between
762
3.0 and 3.2 will crash; 3.2.1 and later give an error).  Code which
763
relies on it should be rewritten to use @code{typeof}:
764
 
765
@smallexample
766
typedef typeof(@var{expr}) @var{T};
767
@end smallexample
768
 
769
@noindent
770
This will work with all versions of GCC@.
771
 
772
@node Conditionals
773
@section Conditionals with Omitted Operands
774
@cindex conditional expressions, extensions
775
@cindex omitted middle-operands
776
@cindex middle-operands, omitted
777
@cindex extensions, @code{?:}
778
@cindex @code{?:} extensions
779
 
780
The middle operand in a conditional expression may be omitted.  Then
781
if the first operand is nonzero, its value is the value of the conditional
782
expression.
783
 
784
Therefore, the expression
785
 
786
@smallexample
787
x ? : y
788
@end smallexample
789
 
790
@noindent
791
has the value of @code{x} if that is nonzero; otherwise, the value of
792
@code{y}.
793
 
794
This example is perfectly equivalent to
795
 
796
@smallexample
797
x ? x : y
798
@end smallexample
799
 
800
@cindex side effect in @code{?:}
801
@cindex @code{?:} side effect
802
@noindent
803
In this simple case, the ability to omit the middle operand is not
804
especially useful.  When it becomes useful is when the first operand does,
805
or may (if it is a macro argument), contain a side effect.  Then repeating
806
the operand in the middle would perform the side effect twice.  Omitting
807
the middle operand uses the value already computed without the undesirable
808
effects of recomputing it.
809
 
810
@node __int128
811
@section 128-bits integers
812
@cindex @code{__int128} data types
813
 
814
As an extension the integer scalar type @code{__int128} is supported for
815
targets having an integer mode wide enough to hold 128-bit.
816
Simply write @code{__int128} for a signed 128-bit integer, or
817
@code{unsigned __int128} for an unsigned 128-bit integer.  There is no
818
support in GCC to express an integer constant of type @code{__int128}
819
for targets having @code{long long} integer with less then 128 bit width.
820
 
821
@node Long Long
822
@section Double-Word Integers
823
@cindex @code{long long} data types
824
@cindex double-word arithmetic
825
@cindex multiprecision arithmetic
826
@cindex @code{LL} integer suffix
827
@cindex @code{ULL} integer suffix
828
 
829
ISO C99 supports data types for integers that are at least 64 bits wide,
830
and as an extension GCC supports them in C90 mode and in C++.
831
Simply write @code{long long int} for a signed integer, or
832
@code{unsigned long long int} for an unsigned integer.  To make an
833
integer constant of type @code{long long int}, add the suffix @samp{LL}
834
to the integer.  To make an integer constant of type @code{unsigned long
835
long int}, add the suffix @samp{ULL} to the integer.
836
 
837
You can use these types in arithmetic like any other integer types.
838
Addition, subtraction, and bitwise boolean operations on these types
839
are open-coded on all types of machines.  Multiplication is open-coded
840
if the machine supports fullword-to-doubleword a widening multiply
841
instruction.  Division and shifts are open-coded only on machines that
842
provide special support.  The operations that are not open-coded use
843
special library routines that come with GCC@.
844
 
845
There may be pitfalls when you use @code{long long} types for function
846
arguments, unless you declare function prototypes.  If a function
847
expects type @code{int} for its argument, and you pass a value of type
848
@code{long long int}, confusion will result because the caller and the
849
subroutine will disagree about the number of bytes for the argument.
850
Likewise, if the function expects @code{long long int} and you pass
851
@code{int}.  The best way to avoid such problems is to use prototypes.
852
 
853
@node Complex
854
@section Complex Numbers
855
@cindex complex numbers
856
@cindex @code{_Complex} keyword
857
@cindex @code{__complex__} keyword
858
 
859
ISO C99 supports complex floating data types, and as an extension GCC
860
supports them in C90 mode and in C++, and supports complex integer data
861
types which are not part of ISO C99.  You can declare complex types
862
using the keyword @code{_Complex}.  As an extension, the older GNU
863
keyword @code{__complex__} is also supported.
864
 
865
For example, @samp{_Complex double x;} declares @code{x} as a
866
variable whose real part and imaginary part are both of type
867
@code{double}.  @samp{_Complex short int y;} declares @code{y} to
868
have real and imaginary parts of type @code{short int}; this is not
869
likely to be useful, but it shows that the set of complex types is
870
complete.
871
 
872
To write a constant with a complex data type, use the suffix @samp{i} or
873
@samp{j} (either one; they are equivalent).  For example, @code{2.5fi}
874
has type @code{_Complex float} and @code{3i} has type
875
@code{_Complex int}.  Such a constant always has a pure imaginary
876
value, but you can form any complex value you like by adding one to a
877
real constant.  This is a GNU extension; if you have an ISO C99
878
conforming C library (such as GNU libc), and want to construct complex
879
constants of floating type, you should include @code{<complex.h>} and
880
use the macros @code{I} or @code{_Complex_I} instead.
881
 
882
@cindex @code{__real__} keyword
883
@cindex @code{__imag__} keyword
884
To extract the real part of a complex-valued expression @var{exp}, write
885
@code{__real__ @var{exp}}.  Likewise, use @code{__imag__} to
886
extract the imaginary part.  This is a GNU extension; for values of
887
floating type, you should use the ISO C99 functions @code{crealf},
888
@code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
889
@code{cimagl}, declared in @code{<complex.h>} and also provided as
890
built-in functions by GCC@.
891
 
892
@cindex complex conjugation
893
The operator @samp{~} performs complex conjugation when used on a value
894
with a complex type.  This is a GNU extension; for values of
895
floating type, you should use the ISO C99 functions @code{conjf},
896
@code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
897
provided as built-in functions by GCC@.
898
 
899
GCC can allocate complex automatic variables in a noncontiguous
900
fashion; it's even possible for the real part to be in a register while
901
the imaginary part is on the stack (or vice-versa).  Only the DWARF2
902
debug info format can represent this, so use of DWARF2 is recommended.
903
If you are using the stabs debug info format, GCC describes a noncontiguous
904
complex variable as if it were two separate variables of noncomplex type.
905
If the variable's actual name is @code{foo}, the two fictitious
906
variables are named @code{foo$real} and @code{foo$imag}.  You can
907
examine and set these two fictitious variables with your debugger.
908
 
909
@node Floating Types
910
@section Additional Floating Types
911
@cindex additional floating types
912
@cindex @code{__float80} data type
913
@cindex @code{__float128} data type
914
@cindex @code{w} floating point suffix
915
@cindex @code{q} floating point suffix
916
@cindex @code{W} floating point suffix
917
@cindex @code{Q} floating point suffix
918
 
919
As an extension, the GNU C compiler supports additional floating
920
types, @code{__float80} and @code{__float128} to support 80bit
921
(@code{XFmode}) and 128 bit (@code{TFmode}) floating types.
922
Support for additional types includes the arithmetic operators:
923
add, subtract, multiply, divide; unary arithmetic operators;
924
relational operators; equality operators; and conversions to and from
925
integer and other floating types.  Use a suffix @samp{w} or @samp{W}
926
in a literal constant of type @code{__float80} and @samp{q} or @samp{Q}
927
for @code{_float128}.  You can declare complex types using the
928
corresponding internal complex type, @code{XCmode} for @code{__float80}
929
type and @code{TCmode} for @code{__float128} type:
930
 
931
@smallexample
932
typedef _Complex float __attribute__((mode(TC))) _Complex128;
933
typedef _Complex float __attribute__((mode(XC))) _Complex80;
934
@end smallexample
935
 
936
Not all targets support additional floating point types.  @code{__float80}
937
and @code{__float128} types are supported on i386, x86_64 and ia64 targets.
938
The @code{__float128} type is supported on hppa HP-UX targets.
939
 
940
@node Half-Precision
941
@section Half-Precision Floating Point
942
@cindex half-precision floating point
943
@cindex @code{__fp16} data type
944
 
945
On ARM targets, GCC supports half-precision (16-bit) floating point via
946
the @code{__fp16} type.  You must enable this type explicitly
947
with the @option{-mfp16-format} command-line option in order to use it.
948
 
949
ARM supports two incompatible representations for half-precision
950
floating-point values.  You must choose one of the representations and
951
use it consistently in your program.
952
 
953
Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
954
This format can represent normalized values in the range of @math{2^{-14}} to 65504.
955
There are 11 bits of significand precision, approximately 3
956
decimal digits.
957
 
958
Specifying @option{-mfp16-format=alternative} selects the ARM
959
alternative format.  This representation is similar to the IEEE
960
format, but does not support infinities or NaNs.  Instead, the range
961
of exponents is extended, so that this format can represent normalized
962
values in the range of @math{2^{-14}} to 131008.
963
 
964
The @code{__fp16} type is a storage format only.  For purposes
965
of arithmetic and other operations, @code{__fp16} values in C or C++
966
expressions are automatically promoted to @code{float}.  In addition,
967
you cannot declare a function with a return value or parameters
968
of type @code{__fp16}.
969
 
970
Note that conversions from @code{double} to @code{__fp16}
971
involve an intermediate conversion to @code{float}.  Because
972
of rounding, this can sometimes produce a different result than a
973
direct conversion.
974
 
975
ARM provides hardware support for conversions between
976
@code{__fp16} and @code{float} values
977
as an extension to VFP and NEON (Advanced SIMD).  GCC generates
978
code using these hardware instructions if you compile with
979
options to select an FPU that provides them;
980
for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
981
in addition to the @option{-mfp16-format} option to select
982
a half-precision format.
983
 
984
Language-level support for the @code{__fp16} data type is
985
independent of whether GCC generates code using hardware floating-point
986
instructions.  In cases where hardware support is not specified, GCC
987
implements conversions between @code{__fp16} and @code{float} values
988
as library calls.
989
 
990
@node Decimal Float
991
@section Decimal Floating Types
992
@cindex decimal floating types
993
@cindex @code{_Decimal32} data type
994
@cindex @code{_Decimal64} data type
995
@cindex @code{_Decimal128} data type
996
@cindex @code{df} integer suffix
997
@cindex @code{dd} integer suffix
998
@cindex @code{dl} integer suffix
999
@cindex @code{DF} integer suffix
1000
@cindex @code{DD} integer suffix
1001
@cindex @code{DL} integer suffix
1002
 
1003
As an extension, the GNU C compiler supports decimal floating types as
1004
defined in the N1312 draft of ISO/IEC WDTR24732.  Support for decimal
1005
floating types in GCC will evolve as the draft technical report changes.
1006
Calling conventions for any target might also change.  Not all targets
1007
support decimal floating types.
1008
 
1009
The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1010
@code{_Decimal128}.  They use a radix of ten, unlike the floating types
1011
@code{float}, @code{double}, and @code{long double} whose radix is not
1012
specified by the C standard but is usually two.
1013
 
1014
Support for decimal floating types includes the arithmetic operators
1015
add, subtract, multiply, divide; unary arithmetic operators;
1016
relational operators; equality operators; and conversions to and from
1017
integer and other floating types.  Use a suffix @samp{df} or
1018
@samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1019
or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1020
@code{_Decimal128}.
1021
 
1022
GCC support of decimal float as specified by the draft technical report
1023
is incomplete:
1024
 
1025
@itemize @bullet
1026
@item
1027
When the value of a decimal floating type cannot be represented in the
1028
integer type to which it is being converted, the result is undefined
1029
rather than the result value specified by the draft technical report.
1030
 
1031
@item
1032
GCC does not provide the C library functionality associated with
1033
@file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1034
@file{wchar.h}, which must come from a separate C library implementation.
1035
Because of this the GNU C compiler does not define macro
1036
@code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1037
the technical report.
1038
@end itemize
1039
 
1040
Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1041
are supported by the DWARF2 debug information format.
1042
 
1043
@node Hex Floats
1044
@section Hex Floats
1045
@cindex hex floats
1046
 
1047
ISO C99 supports floating-point numbers written not only in the usual
1048
decimal notation, such as @code{1.55e1}, but also numbers such as
1049
@code{0x1.fp3} written in hexadecimal format.  As a GNU extension, GCC
1050
supports this in C90 mode (except in some cases when strictly
1051
conforming) and in C++.  In that format the
1052
@samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1053
mandatory.  The exponent is a decimal number that indicates the power of
1054
2 by which the significant part will be multiplied.  Thus @samp{0x1.f} is
1055
@tex
1056
$1 {15\over16}$,
1057
@end tex
1058
@ifnottex
1059
1 15/16,
1060
@end ifnottex
1061
@samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1062
is the same as @code{1.55e1}.
1063
 
1064
Unlike for floating-point numbers in the decimal notation the exponent
1065
is always required in the hexadecimal notation.  Otherwise the compiler
1066
would not be able to resolve the ambiguity of, e.g., @code{0x1.f}.  This
1067
could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1068
extension for floating-point constants of type @code{float}.
1069
 
1070
@node Fixed-Point
1071
@section Fixed-Point Types
1072
@cindex fixed-point types
1073
@cindex @code{_Fract} data type
1074
@cindex @code{_Accum} data type
1075
@cindex @code{_Sat} data type
1076
@cindex @code{hr} fixed-suffix
1077
@cindex @code{r} fixed-suffix
1078
@cindex @code{lr} fixed-suffix
1079
@cindex @code{llr} fixed-suffix
1080
@cindex @code{uhr} fixed-suffix
1081
@cindex @code{ur} fixed-suffix
1082
@cindex @code{ulr} fixed-suffix
1083
@cindex @code{ullr} fixed-suffix
1084
@cindex @code{hk} fixed-suffix
1085
@cindex @code{k} fixed-suffix
1086
@cindex @code{lk} fixed-suffix
1087
@cindex @code{llk} fixed-suffix
1088
@cindex @code{uhk} fixed-suffix
1089
@cindex @code{uk} fixed-suffix
1090
@cindex @code{ulk} fixed-suffix
1091
@cindex @code{ullk} fixed-suffix
1092
@cindex @code{HR} fixed-suffix
1093
@cindex @code{R} fixed-suffix
1094
@cindex @code{LR} fixed-suffix
1095
@cindex @code{LLR} fixed-suffix
1096
@cindex @code{UHR} fixed-suffix
1097
@cindex @code{UR} fixed-suffix
1098
@cindex @code{ULR} fixed-suffix
1099
@cindex @code{ULLR} fixed-suffix
1100
@cindex @code{HK} fixed-suffix
1101
@cindex @code{K} fixed-suffix
1102
@cindex @code{LK} fixed-suffix
1103
@cindex @code{LLK} fixed-suffix
1104
@cindex @code{UHK} fixed-suffix
1105
@cindex @code{UK} fixed-suffix
1106
@cindex @code{ULK} fixed-suffix
1107
@cindex @code{ULLK} fixed-suffix
1108
 
1109
As an extension, the GNU C compiler supports fixed-point types as
1110
defined in the N1169 draft of ISO/IEC DTR 18037.  Support for fixed-point
1111
types in GCC will evolve as the draft technical report changes.
1112
Calling conventions for any target might also change.  Not all targets
1113
support fixed-point types.
1114
 
1115
The fixed-point types are
1116
@code{short _Fract},
1117
@code{_Fract},
1118
@code{long _Fract},
1119
@code{long long _Fract},
1120
@code{unsigned short _Fract},
1121
@code{unsigned _Fract},
1122
@code{unsigned long _Fract},
1123
@code{unsigned long long _Fract},
1124
@code{_Sat short _Fract},
1125
@code{_Sat _Fract},
1126
@code{_Sat long _Fract},
1127
@code{_Sat long long _Fract},
1128
@code{_Sat unsigned short _Fract},
1129
@code{_Sat unsigned _Fract},
1130
@code{_Sat unsigned long _Fract},
1131
@code{_Sat unsigned long long _Fract},
1132
@code{short _Accum},
1133
@code{_Accum},
1134
@code{long _Accum},
1135
@code{long long _Accum},
1136
@code{unsigned short _Accum},
1137
@code{unsigned _Accum},
1138
@code{unsigned long _Accum},
1139
@code{unsigned long long _Accum},
1140
@code{_Sat short _Accum},
1141
@code{_Sat _Accum},
1142
@code{_Sat long _Accum},
1143
@code{_Sat long long _Accum},
1144
@code{_Sat unsigned short _Accum},
1145
@code{_Sat unsigned _Accum},
1146
@code{_Sat unsigned long _Accum},
1147
@code{_Sat unsigned long long _Accum}.
1148
 
1149
Fixed-point data values contain fractional and optional integral parts.
1150
The format of fixed-point data varies and depends on the target machine.
1151
 
1152
Support for fixed-point types includes:
1153
@itemize @bullet
1154
@item
1155
prefix and postfix increment and decrement operators (@code{++}, @code{--})
1156
@item
1157
unary arithmetic operators (@code{+}, @code{-}, @code{!})
1158
@item
1159
binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1160
@item
1161
binary shift operators (@code{<<}, @code{>>})
1162
@item
1163
relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1164
@item
1165
equality operators (@code{==}, @code{!=})
1166
@item
1167
assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1168
@code{<<=}, @code{>>=})
1169
@item
1170
conversions to and from integer, floating-point, or fixed-point types
1171
@end itemize
1172
 
1173
Use a suffix in a fixed-point literal constant:
1174
@itemize
1175
@item @samp{hr} or @samp{HR} for @code{short _Fract} and
1176
@code{_Sat short _Fract}
1177
@item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1178
@item @samp{lr} or @samp{LR} for @code{long _Fract} and
1179
@code{_Sat long _Fract}
1180
@item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1181
@code{_Sat long long _Fract}
1182
@item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1183
@code{_Sat unsigned short _Fract}
1184
@item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1185
@code{_Sat unsigned _Fract}
1186
@item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1187
@code{_Sat unsigned long _Fract}
1188
@item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1189
and @code{_Sat unsigned long long _Fract}
1190
@item @samp{hk} or @samp{HK} for @code{short _Accum} and
1191
@code{_Sat short _Accum}
1192
@item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1193
@item @samp{lk} or @samp{LK} for @code{long _Accum} and
1194
@code{_Sat long _Accum}
1195
@item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1196
@code{_Sat long long _Accum}
1197
@item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1198
@code{_Sat unsigned short _Accum}
1199
@item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1200
@code{_Sat unsigned _Accum}
1201
@item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1202
@code{_Sat unsigned long _Accum}
1203
@item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1204
and @code{_Sat unsigned long long _Accum}
1205
@end itemize
1206
 
1207
GCC support of fixed-point types as specified by the draft technical report
1208
is incomplete:
1209
 
1210
@itemize @bullet
1211
@item
1212
Pragmas to control overflow and rounding behaviors are not implemented.
1213
@end itemize
1214
 
1215
Fixed-point types are supported by the DWARF2 debug information format.
1216
 
1217
@node Named Address Spaces
1218
@section Named Address Spaces
1219
@cindex Named Address Spaces
1220
 
1221
As an extension, the GNU C compiler supports named address spaces as
1222
defined in the N1275 draft of ISO/IEC DTR 18037.  Support for named
1223
address spaces in GCC will evolve as the draft technical report
1224
changes.  Calling conventions for any target might also change.  At
1225
present, only the AVR, SPU, M32C, and RL78 targets support address
1226
spaces other than the generic address space.
1227
 
1228
Address space identifiers may be used exactly like any other C type
1229
qualifier (e.g., @code{const} or @code{volatile}).  See the N1275
1230
document for more details.
1231
 
1232
@anchor{AVR Named Address Spaces}
1233
@subsection AVR Named Address Spaces
1234
 
1235
On the AVR target, there are several address spaces that can be used
1236
in order to put read-only data into the flash memory and access that
1237
data by means of the special instructions @code{LPM} or @code{ELPM}
1238
needed to read from flash.
1239
 
1240
Per default, any data including read-only data is located in RAM
1241
(the generic address space) so that non-generic address spaces are
1242
needed to locate read-only data in flash memory
1243
@emph{and} to generate the right instructions to access this data
1244
without using (inline) assembler code.
1245
 
1246
@table @code
1247
@item __flash
1248
@cindex @code{__flash} AVR Named Address Spaces
1249
The @code{__flash} qualifier will locate data in the
1250
@code{.progmem.data} section. Data will be read using the @code{LPM}
1251
instruction. Pointers to this address space are 16 bits wide.
1252
 
1253
@item __flash1
1254
@item __flash2
1255
@item __flash3
1256
@item __flash4
1257
@item __flash5
1258
@cindex @code{__flash1} AVR Named Address Spaces
1259
@cindex @code{__flash2} AVR Named Address Spaces
1260
@cindex @code{__flash3} AVR Named Address Spaces
1261
@cindex @code{__flash4} AVR Named Address Spaces
1262
@cindex @code{__flash5} AVR Named Address Spaces
1263
These are 16-bit address spaces locating data in section
1264
@code{.progmem@var{N}.data} where @var{N} refers to
1265
address space @code{__flash@var{N}}.
1266
The compiler will set the @code{RAMPZ} segment register approptiately
1267
before reading data by means of the @code{ELPM} instruction.
1268
 
1269
@item __memx
1270
@cindex @code{__memx} AVR Named Address Spaces
1271
This is a 24-bit address space that linearizes flash and RAM:
1272
If the high bit of the address is set, data is read from
1273
RAM using the lower two bytes as RAM address.
1274
If the high bit of the address is clear, data is read from flash
1275
with @code{RAMPZ} set according to the high byte of the address.
1276
 
1277
Objects in this address space will be located in @code{.progmem.data}.
1278
@end table
1279
 
1280
@b{Example}
1281
 
1282
@example
1283
char my_read (const __flash char ** p)
1284
@{
1285
    /* p is a pointer to RAM that points to a pointer to flash.
1286
       The first indirection of p will read that flash pointer
1287
       from RAM and the second indirection reads a char from this
1288
       flash address.  */
1289
 
1290
    return **p;
1291
@}
1292
 
1293
/* Locate array[] in flash memory */
1294
const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1295
 
1296
int i = 1;
1297
 
1298
int main (void)
1299
@{
1300
   /* Return 17 by reading from flash memory */
1301
   return array[array[i]];
1302
@}
1303
@end example
1304
 
1305
For each named address space supported by avr-gcc there is an equally
1306
named but uppercase built-in macro defined.
1307
The purpose is to facilitate testing if respective address space
1308
support is available or not:
1309
 
1310
@example
1311
#ifdef __FLASH
1312
const __flash int var = 1;
1313
 
1314
int read_i (void)
1315
@{
1316
    return i;
1317
@}
1318
#else
1319
#include <avr/pgmspace.h> /* From avr-libc */
1320
 
1321
const int var PROGMEM = 1;
1322
 
1323
int read_i (void)
1324
@{
1325
    return (int) pgm_read_word (&i);
1326
@}
1327
#endif /* __FLASH */
1328
@end example
1329
 
1330
Notice that attribute @ref{AVR Variable Attributes,@code{progmem}}
1331
locates data in flash but
1332
accesses to these data will read from generic address space, i.e.@:
1333
from RAM,
1334
so that you need special accessors like @code{pgm_read_byte}
1335
from @w{@uref{http://nongnu.org/avr-libc/user-manual,avr-libc}}.
1336
 
1337
@b{Limitations and caveats}
1338
 
1339
@itemize
1340
@item
1341
Reading across the 64@tie{}KiB section boundary of
1342
the @code{__flash} or @code{__flash@var{N}} address spaces
1343
will show undefined behaviour. The only address space that
1344
supports reading across the 64@tie{}KiB flash segment boundaries is
1345
@code{__memx}.
1346
 
1347
@item
1348
If you use one if the @code{__flash@var{N}} address spaces
1349
you will have to arrange your linker skript to locate the
1350
@code{.progmem@var{N}.data} sections according to your needs.
1351
 
1352
@item
1353
Any data or pointers to the non-generic address spaces must
1354
be qualified as @code{const}, i.e.@: as read-only data.
1355
This still applies if the data in one of these address
1356
spaces like software version number or calibration lookup table are intended to
1357
be changed after load time by, say, a boot loader. In this case
1358
the right qualification is @code{const} @code{volatile} so that the compiler
1359
must not optimize away known values or insert them
1360
as immediates into operands of instructions.
1361
 
1362
@item
1363
Code like the following is not yet supported because of missing
1364
support in avr-binutils,
1365
see @w{@uref{http://sourceware.org/PR13503,PR13503}}.
1366
@example
1367
extern const __memx char foo;
1368
const __memx void *pfoo = &foo;
1369
@end example
1370
The code will throw an assembler warning and the high byte of
1371
@code{pfoo} will be initialized with@tie{}@code{0}, i.e.@: the
1372
initialization will be as if @code{foo} was located in the first
1373
64@tie{}KiB chunk of flash.
1374
 
1375
@end itemize
1376
 
1377
@subsection M32C Named Address Spaces
1378
@cindex @code{__far} M32C Named Address Spaces
1379
 
1380
On the M32C target, with the R8C and M16C cpu variants, variables
1381
qualified with @code{__far} are accessed using 32-bit addresses in
1382
order to access memory beyond the first 64@tie{}Ki bytes.  If
1383
@code{__far} is used with the M32CM or M32C cpu variants, it has no
1384
effect.
1385
 
1386
@subsection RL78 Named Address Spaces
1387
@cindex @code{__far} RL78 Named Address Spaces
1388
 
1389
On the RL78 target, variables qualified with @code{__far} are accessed
1390
with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1391
addresses.  Non-far variables are assumed to appear in the topmost
1392
64@tie{}KiB of the address space.
1393
 
1394
@subsection SPU Named Address Spaces
1395
@cindex @code{__ea} SPU Named Address Spaces
1396
 
1397
On the SPU target variables may be declared as
1398
belonging to another address space by qualifying the type with the
1399
@code{__ea} address space identifier:
1400
 
1401
@smallexample
1402
extern int __ea i;
1403
@end smallexample
1404
 
1405
When the variable @code{i} is accessed, the compiler will generate
1406
special code to access this variable.  It may use runtime library
1407
support, or generate special machine instructions to access that address
1408
space.
1409
 
1410
@node Zero Length
1411
@section Arrays of Length Zero
1412
@cindex arrays of length zero
1413
@cindex zero-length arrays
1414
@cindex length-zero arrays
1415
@cindex flexible array members
1416
 
1417
Zero-length arrays are allowed in GNU C@.  They are very useful as the
1418
last element of a structure which is really a header for a variable-length
1419
object:
1420
 
1421
@smallexample
1422
struct line @{
1423
  int length;
1424
  char contents[0];
1425
@};
1426
 
1427
struct line *thisline = (struct line *)
1428
  malloc (sizeof (struct line) + this_length);
1429
thisline->length = this_length;
1430
@end smallexample
1431
 
1432
In ISO C90, you would have to give @code{contents} a length of 1, which
1433
means either you waste space or complicate the argument to @code{malloc}.
1434
 
1435
In ISO C99, you would use a @dfn{flexible array member}, which is
1436
slightly different in syntax and semantics:
1437
 
1438
@itemize @bullet
1439
@item
1440
Flexible array members are written as @code{contents[]} without
1441
the @code{0}.
1442
 
1443
@item
1444
Flexible array members have incomplete type, and so the @code{sizeof}
1445
operator may not be applied.  As a quirk of the original implementation
1446
of zero-length arrays, @code{sizeof} evaluates to zero.
1447
 
1448
@item
1449
Flexible array members may only appear as the last member of a
1450
@code{struct} that is otherwise non-empty.
1451
 
1452
@item
1453
A structure containing a flexible array member, or a union containing
1454
such a structure (possibly recursively), may not be a member of a
1455
structure or an element of an array.  (However, these uses are
1456
permitted by GCC as extensions.)
1457
@end itemize
1458
 
1459
GCC versions before 3.0 allowed zero-length arrays to be statically
1460
initialized, as if they were flexible arrays.  In addition to those
1461
cases that were useful, it also allowed initializations in situations
1462
that would corrupt later data.  Non-empty initialization of zero-length
1463
arrays is now treated like any case where there are more initializer
1464
elements than the array holds, in that a suitable warning about "excess
1465
elements in array" is given, and the excess elements (all of them, in
1466
this case) are ignored.
1467
 
1468
Instead GCC allows static initialization of flexible array members.
1469
This is equivalent to defining a new structure containing the original
1470
structure followed by an array of sufficient size to contain the data.
1471
I.e.@: in the following, @code{f1} is constructed as if it were declared
1472
like @code{f2}.
1473
 
1474
@smallexample
1475
struct f1 @{
1476
  int x; int y[];
1477
@} f1 = @{ 1, @{ 2, 3, 4 @} @};
1478
 
1479
struct f2 @{
1480
  struct f1 f1; int data[3];
1481
@} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1482
@end smallexample
1483
 
1484
@noindent
1485
The convenience of this extension is that @code{f1} has the desired
1486
type, eliminating the need to consistently refer to @code{f2.f1}.
1487
 
1488
This has symmetry with normal static arrays, in that an array of
1489
unknown size is also written with @code{[]}.
1490
 
1491
Of course, this extension only makes sense if the extra data comes at
1492
the end of a top-level object, as otherwise we would be overwriting
1493
data at subsequent offsets.  To avoid undue complication and confusion
1494
with initialization of deeply nested arrays, we simply disallow any
1495
non-empty initialization except when the structure is the top-level
1496
object.  For example:
1497
 
1498
@smallexample
1499
struct foo @{ int x; int y[]; @};
1500
struct bar @{ struct foo z; @};
1501
 
1502
struct foo a = @{ 1, @{ 2, 3, 4 @} @};        // @r{Valid.}
1503
struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @};    // @r{Invalid.}
1504
struct bar c = @{ @{ 1, @{ @} @} @};            // @r{Valid.}
1505
struct foo d[1] = @{ @{ 1 @{ 2, 3, 4 @} @} @};  // @r{Invalid.}
1506
@end smallexample
1507
 
1508
@node Empty Structures
1509
@section Structures With No Members
1510
@cindex empty structures
1511
@cindex zero-size structures
1512
 
1513
GCC permits a C structure to have no members:
1514
 
1515
@smallexample
1516
struct empty @{
1517
@};
1518
@end smallexample
1519
 
1520
The structure will have size zero.  In C++, empty structures are part
1521
of the language.  G++ treats empty structures as if they had a single
1522
member of type @code{char}.
1523
 
1524
@node Variable Length
1525
@section Arrays of Variable Length
1526
@cindex variable-length arrays
1527
@cindex arrays of variable length
1528
@cindex VLAs
1529
 
1530
Variable-length automatic arrays are allowed in ISO C99, and as an
1531
extension GCC accepts them in C90 mode and in C++.  These arrays are
1532
declared like any other automatic arrays, but with a length that is not
1533
a constant expression.  The storage is allocated at the point of
1534
declaration and deallocated when the brace-level is exited.  For
1535
example:
1536
 
1537
@smallexample
1538
FILE *
1539
concat_fopen (char *s1, char *s2, char *mode)
1540
@{
1541
  char str[strlen (s1) + strlen (s2) + 1];
1542
  strcpy (str, s1);
1543
  strcat (str, s2);
1544
  return fopen (str, mode);
1545
@}
1546
@end smallexample
1547
 
1548
@cindex scope of a variable length array
1549
@cindex variable-length array scope
1550
@cindex deallocating variable length arrays
1551
Jumping or breaking out of the scope of the array name deallocates the
1552
storage.  Jumping into the scope is not allowed; you get an error
1553
message for it.
1554
 
1555
@cindex @code{alloca} vs variable-length arrays
1556
You can use the function @code{alloca} to get an effect much like
1557
variable-length arrays.  The function @code{alloca} is available in
1558
many other C implementations (but not in all).  On the other hand,
1559
variable-length arrays are more elegant.
1560
 
1561
There are other differences between these two methods.  Space allocated
1562
with @code{alloca} exists until the containing @emph{function} returns.
1563
The space for a variable-length array is deallocated as soon as the array
1564
name's scope ends.  (If you use both variable-length arrays and
1565
@code{alloca} in the same function, deallocation of a variable-length array
1566
will also deallocate anything more recently allocated with @code{alloca}.)
1567
 
1568
You can also use variable-length arrays as arguments to functions:
1569
 
1570
@smallexample
1571
struct entry
1572
tester (int len, char data[len][len])
1573
@{
1574
  /* @r{@dots{}} */
1575
@}
1576
@end smallexample
1577
 
1578
The length of an array is computed once when the storage is allocated
1579
and is remembered for the scope of the array in case you access it with
1580
@code{sizeof}.
1581
 
1582
If you want to pass the array first and the length afterward, you can
1583
use a forward declaration in the parameter list---another GNU extension.
1584
 
1585
@smallexample
1586
struct entry
1587
tester (int len; char data[len][len], int len)
1588
@{
1589
  /* @r{@dots{}} */
1590
@}
1591
@end smallexample
1592
 
1593
@cindex parameter forward declaration
1594
The @samp{int len} before the semicolon is a @dfn{parameter forward
1595
declaration}, and it serves the purpose of making the name @code{len}
1596
known when the declaration of @code{data} is parsed.
1597
 
1598
You can write any number of such parameter forward declarations in the
1599
parameter list.  They can be separated by commas or semicolons, but the
1600
last one must end with a semicolon, which is followed by the ``real''
1601
parameter declarations.  Each forward declaration must match a ``real''
1602
declaration in parameter name and data type.  ISO C99 does not support
1603
parameter forward declarations.
1604
 
1605
@node Variadic Macros
1606
@section Macros with a Variable Number of Arguments.
1607
@cindex variable number of arguments
1608
@cindex macro with variable arguments
1609
@cindex rest argument (in macro)
1610
@cindex variadic macros
1611
 
1612
In the ISO C standard of 1999, a macro can be declared to accept a
1613
variable number of arguments much as a function can.  The syntax for
1614
defining the macro is similar to that of a function.  Here is an
1615
example:
1616
 
1617
@smallexample
1618
#define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1619
@end smallexample
1620
 
1621
Here @samp{@dots{}} is a @dfn{variable argument}.  In the invocation of
1622
such a macro, it represents the zero or more tokens until the closing
1623
parenthesis that ends the invocation, including any commas.  This set of
1624
tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1625
wherever it appears.  See the CPP manual for more information.
1626
 
1627
GCC has long supported variadic macros, and used a different syntax that
1628
allowed you to give a name to the variable arguments just like any other
1629
argument.  Here is an example:
1630
 
1631
@smallexample
1632
#define debug(format, args...) fprintf (stderr, format, args)
1633
@end smallexample
1634
 
1635
This is in all ways equivalent to the ISO C example above, but arguably
1636
more readable and descriptive.
1637
 
1638
GNU CPP has two further variadic macro extensions, and permits them to
1639
be used with either of the above forms of macro definition.
1640
 
1641
In standard C, you are not allowed to leave the variable argument out
1642
entirely; but you are allowed to pass an empty argument.  For example,
1643
this invocation is invalid in ISO C, because there is no comma after
1644
the string:
1645
 
1646
@smallexample
1647
debug ("A message")
1648
@end smallexample
1649
 
1650
GNU CPP permits you to completely omit the variable arguments in this
1651
way.  In the above examples, the compiler would complain, though since
1652
the expansion of the macro still has the extra comma after the format
1653
string.
1654
 
1655
To help solve this problem, CPP behaves specially for variable arguments
1656
used with the token paste operator, @samp{##}.  If instead you write
1657
 
1658
@smallexample
1659
#define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1660
@end smallexample
1661
 
1662
and if the variable arguments are omitted or empty, the @samp{##}
1663
operator causes the preprocessor to remove the comma before it.  If you
1664
do provide some variable arguments in your macro invocation, GNU CPP
1665
does not complain about the paste operation and instead places the
1666
variable arguments after the comma.  Just like any other pasted macro
1667
argument, these arguments are not macro expanded.
1668
 
1669
@node Escaped Newlines
1670
@section Slightly Looser Rules for Escaped Newlines
1671
@cindex escaped newlines
1672
@cindex newlines (escaped)
1673
 
1674
Recently, the preprocessor has relaxed its treatment of escaped
1675
newlines.  Previously, the newline had to immediately follow a
1676
backslash.  The current implementation allows whitespace in the form
1677
of spaces, horizontal and vertical tabs, and form feeds between the
1678
backslash and the subsequent newline.  The preprocessor issues a
1679
warning, but treats it as a valid escaped newline and combines the two
1680
lines to form a single logical line.  This works within comments and
1681
tokens, as well as between tokens.  Comments are @emph{not} treated as
1682
whitespace for the purposes of this relaxation, since they have not
1683
yet been replaced with spaces.
1684
 
1685
@node Subscripting
1686
@section Non-Lvalue Arrays May Have Subscripts
1687
@cindex subscripting
1688
@cindex arrays, non-lvalue
1689
 
1690
@cindex subscripting and function values
1691
In ISO C99, arrays that are not lvalues still decay to pointers, and
1692
may be subscripted, although they may not be modified or used after
1693
the next sequence point and the unary @samp{&} operator may not be
1694
applied to them.  As an extension, GCC allows such arrays to be
1695
subscripted in C90 mode, though otherwise they do not decay to
1696
pointers outside C99 mode.  For example,
1697
this is valid in GNU C though not valid in C90:
1698
 
1699
@smallexample
1700
@group
1701
struct foo @{int a[4];@};
1702
 
1703
struct foo f();
1704
 
1705
bar (int index)
1706
@{
1707
  return f().a[index];
1708
@}
1709
@end group
1710
@end smallexample
1711
 
1712
@node Pointer Arith
1713
@section Arithmetic on @code{void}- and Function-Pointers
1714
@cindex void pointers, arithmetic
1715
@cindex void, size of pointer to
1716
@cindex function pointers, arithmetic
1717
@cindex function, size of pointer to
1718
 
1719
In GNU C, addition and subtraction operations are supported on pointers to
1720
@code{void} and on pointers to functions.  This is done by treating the
1721
size of a @code{void} or of a function as 1.
1722
 
1723
A consequence of this is that @code{sizeof} is also allowed on @code{void}
1724
and on function types, and returns 1.
1725
 
1726
@opindex Wpointer-arith
1727
The option @option{-Wpointer-arith} requests a warning if these extensions
1728
are used.
1729
 
1730
@node Initializers
1731
@section Non-Constant Initializers
1732
@cindex initializers, non-constant
1733
@cindex non-constant initializers
1734
 
1735
As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1736
automatic variable are not required to be constant expressions in GNU C@.
1737
Here is an example of an initializer with run-time varying elements:
1738
 
1739
@smallexample
1740
foo (float f, float g)
1741
@{
1742
  float beat_freqs[2] = @{ f-g, f+g @};
1743
  /* @r{@dots{}} */
1744
@}
1745
@end smallexample
1746
 
1747
@node Compound Literals
1748
@section Compound Literals
1749
@cindex constructor expressions
1750
@cindex initializations in expressions
1751
@cindex structures, constructor expression
1752
@cindex expressions, constructor
1753
@cindex compound literals
1754
@c The GNU C name for what C99 calls compound literals was "constructor expressions".
1755
 
1756
ISO C99 supports compound literals.  A compound literal looks like
1757
a cast containing an initializer.  Its value is an object of the
1758
type specified in the cast, containing the elements specified in
1759
the initializer; it is an lvalue.  As an extension, GCC supports
1760
compound literals in C90 mode and in C++.
1761
 
1762
Usually, the specified type is a structure.  Assume that
1763
@code{struct foo} and @code{structure} are declared as shown:
1764
 
1765
@smallexample
1766
struct foo @{int a; char b[2];@} structure;
1767
@end smallexample
1768
 
1769
@noindent
1770
Here is an example of constructing a @code{struct foo} with a compound literal:
1771
 
1772
@smallexample
1773
structure = ((struct foo) @{x + y, 'a', 0@});
1774
@end smallexample
1775
 
1776
@noindent
1777
This is equivalent to writing the following:
1778
 
1779
@smallexample
1780
@{
1781
  struct foo temp = @{x + y, 'a', 0@};
1782
  structure = temp;
1783
@}
1784
@end smallexample
1785
 
1786
You can also construct an array.  If all the elements of the compound literal
1787
are (made up of) simple constant expressions, suitable for use in
1788
initializers of objects of static storage duration, then the compound
1789
literal can be coerced to a pointer to its first element and used in
1790
such an initializer, as shown here:
1791
 
1792
@smallexample
1793
char **foo = (char *[]) @{ "x", "y", "z" @};
1794
@end smallexample
1795
 
1796
Compound literals for scalar types and union types are
1797
also allowed, but then the compound literal is equivalent
1798
to a cast.
1799
 
1800
As a GNU extension, GCC allows initialization of objects with static storage
1801
duration by compound literals (which is not possible in ISO C99, because
1802
the initializer is not a constant).
1803
It is handled as if the object was initialized only with the bracket
1804
enclosed list if the types of the compound literal and the object match.
1805
The initializer list of the compound literal must be constant.
1806
If the object being initialized has array type of unknown size, the size is
1807
determined by compound literal size.
1808
 
1809
@smallexample
1810
static struct foo x = (struct foo) @{1, 'a', 'b'@};
1811
static int y[] = (int []) @{1, 2, 3@};
1812
static int z[] = (int [3]) @{1@};
1813
@end smallexample
1814
 
1815
@noindent
1816
The above lines are equivalent to the following:
1817
@smallexample
1818
static struct foo x = @{1, 'a', 'b'@};
1819
static int y[] = @{1, 2, 3@};
1820
static int z[] = @{1, 0, 0@};
1821
@end smallexample
1822
 
1823
@node Designated Inits
1824
@section Designated Initializers
1825
@cindex initializers with labeled elements
1826
@cindex labeled elements in initializers
1827
@cindex case labels in initializers
1828
@cindex designated initializers
1829
 
1830
Standard C90 requires the elements of an initializer to appear in a fixed
1831
order, the same as the order of the elements in the array or structure
1832
being initialized.
1833
 
1834
In ISO C99 you can give the elements in any order, specifying the array
1835
indices or structure field names they apply to, and GNU C allows this as
1836
an extension in C90 mode as well.  This extension is not
1837
implemented in GNU C++.
1838
 
1839
To specify an array index, write
1840
@samp{[@var{index}] =} before the element value.  For example,
1841
 
1842
@smallexample
1843
int a[6] = @{ [4] = 29, [2] = 15 @};
1844
@end smallexample
1845
 
1846
@noindent
1847
is equivalent to
1848
 
1849
@smallexample
1850
int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
1851
@end smallexample
1852
 
1853
@noindent
1854
The index values must be constant expressions, even if the array being
1855
initialized is automatic.
1856
 
1857
An alternative syntax for this which has been obsolete since GCC 2.5 but
1858
GCC still accepts is to write @samp{[@var{index}]} before the element
1859
value, with no @samp{=}.
1860
 
1861
To initialize a range of elements to the same value, write
1862
@samp{[@var{first} ... @var{last}] = @var{value}}.  This is a GNU
1863
extension.  For example,
1864
 
1865
@smallexample
1866
int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
1867
@end smallexample
1868
 
1869
@noindent
1870
If the value in it has side-effects, the side-effects will happen only once,
1871
not for each initialized field by the range initializer.
1872
 
1873
@noindent
1874
Note that the length of the array is the highest value specified
1875
plus one.
1876
 
1877
In a structure initializer, specify the name of a field to initialize
1878
with @samp{.@var{fieldname} =} before the element value.  For example,
1879
given the following structure,
1880
 
1881
@smallexample
1882
struct point @{ int x, y; @};
1883
@end smallexample
1884
 
1885
@noindent
1886
the following initialization
1887
 
1888
@smallexample
1889
struct point p = @{ .y = yvalue, .x = xvalue @};
1890
@end smallexample
1891
 
1892
@noindent
1893
is equivalent to
1894
 
1895
@smallexample
1896
struct point p = @{ xvalue, yvalue @};
1897
@end smallexample
1898
 
1899
Another syntax which has the same meaning, obsolete since GCC 2.5, is
1900
@samp{@var{fieldname}:}, as shown here:
1901
 
1902
@smallexample
1903
struct point p = @{ y: yvalue, x: xvalue @};
1904
@end smallexample
1905
 
1906
@cindex designators
1907
The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
1908
@dfn{designator}.  You can also use a designator (or the obsolete colon
1909
syntax) when initializing a union, to specify which element of the union
1910
should be used.  For example,
1911
 
1912
@smallexample
1913
union foo @{ int i; double d; @};
1914
 
1915
union foo f = @{ .d = 4 @};
1916
@end smallexample
1917
 
1918
@noindent
1919
will convert 4 to a @code{double} to store it in the union using
1920
the second element.  By contrast, casting 4 to type @code{union foo}
1921
would store it into the union as the integer @code{i}, since it is
1922
an integer.  (@xref{Cast to Union}.)
1923
 
1924
You can combine this technique of naming elements with ordinary C
1925
initialization of successive elements.  Each initializer element that
1926
does not have a designator applies to the next consecutive element of the
1927
array or structure.  For example,
1928
 
1929
@smallexample
1930
int a[6] = @{ [1] = v1, v2, [4] = v4 @};
1931
@end smallexample
1932
 
1933
@noindent
1934
is equivalent to
1935
 
1936
@smallexample
1937
int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
1938
@end smallexample
1939
 
1940
Labeling the elements of an array initializer is especially useful
1941
when the indices are characters or belong to an @code{enum} type.
1942
For example:
1943
 
1944
@smallexample
1945
int whitespace[256]
1946
  = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
1947
      ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
1948
@end smallexample
1949
 
1950
@cindex designator lists
1951
You can also write a series of @samp{.@var{fieldname}} and
1952
@samp{[@var{index}]} designators before an @samp{=} to specify a
1953
nested subobject to initialize; the list is taken relative to the
1954
subobject corresponding to the closest surrounding brace pair.  For
1955
example, with the @samp{struct point} declaration above:
1956
 
1957
@smallexample
1958
struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
1959
@end smallexample
1960
 
1961
@noindent
1962
If the same field is initialized multiple times, it will have value from
1963
the last initialization.  If any such overridden initialization has
1964
side-effect, it is unspecified whether the side-effect happens or not.
1965
Currently, GCC will discard them and issue a warning.
1966
 
1967
@node Case Ranges
1968
@section Case Ranges
1969
@cindex case ranges
1970
@cindex ranges in case statements
1971
 
1972
You can specify a range of consecutive values in a single @code{case} label,
1973
like this:
1974
 
1975
@smallexample
1976
case @var{low} ... @var{high}:
1977
@end smallexample
1978
 
1979
@noindent
1980
This has the same effect as the proper number of individual @code{case}
1981
labels, one for each integer value from @var{low} to @var{high}, inclusive.
1982
 
1983
This feature is especially useful for ranges of ASCII character codes:
1984
 
1985
@smallexample
1986
case 'A' ... 'Z':
1987
@end smallexample
1988
 
1989
@strong{Be careful:} Write spaces around the @code{...}, for otherwise
1990
it may be parsed wrong when you use it with integer values.  For example,
1991
write this:
1992
 
1993
@smallexample
1994
case 1 ... 5:
1995
@end smallexample
1996
 
1997
@noindent
1998
rather than this:
1999
 
2000
@smallexample
2001
case 1...5:
2002
@end smallexample
2003
 
2004
@node Cast to Union
2005
@section Cast to a Union Type
2006
@cindex cast to a union
2007
@cindex union, casting to a
2008
 
2009
A cast to union type is similar to other casts, except that the type
2010
specified is a union type.  You can specify the type either with
2011
@code{union @var{tag}} or with a typedef name.  A cast to union is actually
2012
a constructor though, not a cast, and hence does not yield an lvalue like
2013
normal casts.  (@xref{Compound Literals}.)
2014
 
2015
The types that may be cast to the union type are those of the members
2016
of the union.  Thus, given the following union and variables:
2017
 
2018
@smallexample
2019
union foo @{ int i; double d; @};
2020
int x;
2021
double y;
2022
@end smallexample
2023
 
2024
@noindent
2025
both @code{x} and @code{y} can be cast to type @code{union foo}.
2026
 
2027
Using the cast as the right-hand side of an assignment to a variable of
2028
union type is equivalent to storing in a member of the union:
2029
 
2030
@smallexample
2031
union foo u;
2032
/* @r{@dots{}} */
2033
u = (union foo) x  @equiv{}  u.i = x
2034
u = (union foo) y  @equiv{}  u.d = y
2035
@end smallexample
2036
 
2037
You can also use the union cast as a function argument:
2038
 
2039
@smallexample
2040
void hack (union foo);
2041
/* @r{@dots{}} */
2042
hack ((union foo) x);
2043
@end smallexample
2044
 
2045
@node Mixed Declarations
2046
@section Mixed Declarations and Code
2047
@cindex mixed declarations and code
2048
@cindex declarations, mixed with code
2049
@cindex code, mixed with declarations
2050
 
2051
ISO C99 and ISO C++ allow declarations and code to be freely mixed
2052
within compound statements.  As an extension, GCC also allows this in
2053
C90 mode.  For example, you could do:
2054
 
2055
@smallexample
2056
int i;
2057
/* @r{@dots{}} */
2058
i++;
2059
int j = i + 2;
2060
@end smallexample
2061
 
2062
Each identifier is visible from where it is declared until the end of
2063
the enclosing block.
2064
 
2065
@node Function Attributes
2066
@section Declaring Attributes of Functions
2067
@cindex function attributes
2068
@cindex declaring attributes of functions
2069
@cindex functions that never return
2070
@cindex functions that return more than once
2071
@cindex functions that have no side effects
2072
@cindex functions in arbitrary sections
2073
@cindex functions that behave like malloc
2074
@cindex @code{volatile} applied to function
2075
@cindex @code{const} applied to function
2076
@cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2077
@cindex functions with non-null pointer arguments
2078
@cindex functions that are passed arguments in registers on the 386
2079
@cindex functions that pop the argument stack on the 386
2080
@cindex functions that do not pop the argument stack on the 386
2081
@cindex functions that have different compilation options on the 386
2082
@cindex functions that have different optimization options
2083
@cindex functions that are dynamically resolved
2084
 
2085
In GNU C, you declare certain things about functions called in your program
2086
which help the compiler optimize function calls and check your code more
2087
carefully.
2088
 
2089
The keyword @code{__attribute__} allows you to specify special
2090
attributes when making a declaration.  This keyword is followed by an
2091
attribute specification inside double parentheses.  The following
2092
attributes are currently defined for functions on all targets:
2093
@code{aligned}, @code{alloc_size}, @code{noreturn},
2094
@code{returns_twice}, @code{noinline}, @code{noclone},
2095
@code{always_inline}, @code{flatten}, @code{pure}, @code{const},
2096
@code{nothrow}, @code{sentinel}, @code{format}, @code{format_arg},
2097
@code{no_instrument_function}, @code{no_split_stack},
2098
@code{section}, @code{constructor},
2099
@code{destructor}, @code{used}, @code{unused}, @code{deprecated},
2100
@code{weak}, @code{malloc}, @code{alias}, @code{ifunc},
2101
@code{warn_unused_result}, @code{nonnull}, @code{gnu_inline},
2102
@code{externally_visible}, @code{hot}, @code{cold}, @code{artificial},
2103
@code{error} and @code{warning}.  Several other attributes are defined
2104
for functions on particular target systems.  Other attributes,
2105
including @code{section} are supported for variables declarations
2106
(@pxref{Variable Attributes}) and for types (@pxref{Type Attributes}).
2107
 
2108
GCC plugins may provide their own attributes.
2109
 
2110
You may also specify attributes with @samp{__} preceding and following
2111
each keyword.  This allows you to use them in header files without
2112
being concerned about a possible macro of the same name.  For example,
2113
you may use @code{__noreturn__} instead of @code{noreturn}.
2114
 
2115
@xref{Attribute Syntax}, for details of the exact syntax for using
2116
attributes.
2117
 
2118
@table @code
2119
@c Keep this table alphabetized by attribute name.  Treat _ as space.
2120
 
2121
@item alias ("@var{target}")
2122
@cindex @code{alias} attribute
2123
The @code{alias} attribute causes the declaration to be emitted as an
2124
alias for another symbol, which must be specified.  For instance,
2125
 
2126
@smallexample
2127
void __f () @{ /* @r{Do something.} */; @}
2128
void f () __attribute__ ((weak, alias ("__f")));
2129
@end smallexample
2130
 
2131
defines @samp{f} to be a weak alias for @samp{__f}.  In C++, the
2132
mangled name for the target must be used.  It is an error if @samp{__f}
2133
is not defined in the same translation unit.
2134
 
2135
Not all target machines support this attribute.
2136
 
2137
@item aligned (@var{alignment})
2138
@cindex @code{aligned} attribute
2139
This attribute specifies a minimum alignment for the function,
2140
measured in bytes.
2141
 
2142
You cannot use this attribute to decrease the alignment of a function,
2143
only to increase it.  However, when you explicitly specify a function
2144
alignment this will override the effect of the
2145
@option{-falign-functions} (@pxref{Optimize Options}) option for this
2146
function.
2147
 
2148
Note that the effectiveness of @code{aligned} attributes may be
2149
limited by inherent limitations in your linker.  On many systems, the
2150
linker is only able to arrange for functions to be aligned up to a
2151
certain maximum alignment.  (For some linkers, the maximum supported
2152
alignment may be very very small.)  See your linker documentation for
2153
further information.
2154
 
2155
The @code{aligned} attribute can also be used for variables and fields
2156
(@pxref{Variable Attributes}.)
2157
 
2158
@item alloc_size
2159
@cindex @code{alloc_size} attribute
2160
The @code{alloc_size} attribute is used to tell the compiler that the
2161
function return value points to memory, where the size is given by
2162
one or two of the functions parameters.  GCC uses this
2163
information to improve the correctness of @code{__builtin_object_size}.
2164
 
2165
The function parameter(s) denoting the allocated size are specified by
2166
one or two integer arguments supplied to the attribute.  The allocated size
2167
is either the value of the single function argument specified or the product
2168
of the two function arguments specified.  Argument numbering starts at
2169
one.
2170
 
2171
For instance,
2172
 
2173
@smallexample
2174
void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2175
void my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2176
@end smallexample
2177
 
2178
declares that my_calloc will return memory of the size given by
2179
the product of parameter 1 and 2 and that my_realloc will return memory
2180
of the size given by parameter 2.
2181
 
2182
@item always_inline
2183
@cindex @code{always_inline} function attribute
2184
Generally, functions are not inlined unless optimization is specified.
2185
For functions declared inline, this attribute inlines the function even
2186
if no optimization level was specified.
2187
 
2188
@item gnu_inline
2189
@cindex @code{gnu_inline} function attribute
2190
This attribute should be used with a function which is also declared
2191
with the @code{inline} keyword.  It directs GCC to treat the function
2192
as if it were defined in gnu90 mode even when compiling in C99 or
2193
gnu99 mode.
2194
 
2195
If the function is declared @code{extern}, then this definition of the
2196
function is used only for inlining.  In no case is the function
2197
compiled as a standalone function, not even if you take its address
2198
explicitly.  Such an address becomes an external reference, as if you
2199
had only declared the function, and had not defined it.  This has
2200
almost the effect of a macro.  The way to use this is to put a
2201
function definition in a header file with this attribute, and put
2202
another copy of the function, without @code{extern}, in a library
2203
file.  The definition in the header file will cause most calls to the
2204
function to be inlined.  If any uses of the function remain, they will
2205
refer to the single copy in the library.  Note that the two
2206
definitions of the functions need not be precisely the same, although
2207
if they do not have the same effect your program may behave oddly.
2208
 
2209
In C, if the function is neither @code{extern} nor @code{static}, then
2210
the function is compiled as a standalone function, as well as being
2211
inlined where possible.
2212
 
2213
This is how GCC traditionally handled functions declared
2214
@code{inline}.  Since ISO C99 specifies a different semantics for
2215
@code{inline}, this function attribute is provided as a transition
2216
measure and as a useful feature in its own right.  This attribute is
2217
available in GCC 4.1.3 and later.  It is available if either of the
2218
preprocessor macros @code{__GNUC_GNU_INLINE__} or
2219
@code{__GNUC_STDC_INLINE__} are defined.  @xref{Inline,,An Inline
2220
Function is As Fast As a Macro}.
2221
 
2222
In C++, this attribute does not depend on @code{extern} in any way,
2223
but it still requires the @code{inline} keyword to enable its special
2224
behavior.
2225
 
2226
@item artificial
2227
@cindex @code{artificial} function attribute
2228
This attribute is useful for small inline wrappers which if possible
2229
should appear during debugging as a unit, depending on the debug
2230
info format it will either mean marking the function as artificial
2231
or using the caller location for all instructions within the inlined
2232
body.
2233
 
2234
@item bank_switch
2235
@cindex interrupt handler functions
2236
When added to an interrupt handler with the M32C port, causes the
2237
prologue and epilogue to use bank switching to preserve the registers
2238
rather than saving them on the stack.
2239
 
2240
@item flatten
2241
@cindex @code{flatten} function attribute
2242
Generally, inlining into a function is limited.  For a function marked with
2243
this attribute, every call inside this function will be inlined, if possible.
2244
Whether the function itself is considered for inlining depends on its size and
2245
the current inlining parameters.
2246
 
2247
@item error ("@var{message}")
2248
@cindex @code{error} function attribute
2249
If this attribute is used on a function declaration and a call to such a function
2250
is not eliminated through dead code elimination or other optimizations, an error
2251
which will include @var{message} will be diagnosed.  This is useful
2252
for compile time checking, especially together with @code{__builtin_constant_p}
2253
and inline functions where checking the inline function arguments is not
2254
possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2255
While it is possible to leave the function undefined and thus invoke
2256
a link failure, when using this attribute the problem will be diagnosed
2257
earlier and with exact location of the call even in presence of inline
2258
functions or when not emitting debugging information.
2259
 
2260
@item warning ("@var{message}")
2261
@cindex @code{warning} function attribute
2262
If this attribute is used on a function declaration and a call to such a function
2263
is not eliminated through dead code elimination or other optimizations, a warning
2264
which will include @var{message} will be diagnosed.  This is useful
2265
for compile time checking, especially together with @code{__builtin_constant_p}
2266
and inline functions.  While it is possible to define the function with
2267
a message in @code{.gnu.warning*} section, when using this attribute the problem
2268
will be diagnosed earlier and with exact location of the call even in presence
2269
of inline functions or when not emitting debugging information.
2270
 
2271
@item cdecl
2272
@cindex functions that do pop the argument stack on the 386
2273
@opindex mrtd
2274
On the Intel 386, the @code{cdecl} attribute causes the compiler to
2275
assume that the calling function will pop off the stack space used to
2276
pass arguments.  This is
2277
useful to override the effects of the @option{-mrtd} switch.
2278
 
2279
@item const
2280
@cindex @code{const} function attribute
2281
Many functions do not examine any values except their arguments, and
2282
have no effects except the return value.  Basically this is just slightly
2283
more strict class than the @code{pure} attribute below, since function is not
2284
allowed to read global memory.
2285
 
2286
@cindex pointer arguments
2287
Note that a function that has pointer arguments and examines the data
2288
pointed to must @emph{not} be declared @code{const}.  Likewise, a
2289
function that calls a non-@code{const} function usually must not be
2290
@code{const}.  It does not make sense for a @code{const} function to
2291
return @code{void}.
2292
 
2293
The attribute @code{const} is not implemented in GCC versions earlier
2294
than 2.5.  An alternative way to declare that a function has no side
2295
effects, which works in the current version and in some older versions,
2296
is as follows:
2297
 
2298
@smallexample
2299
typedef int intfn ();
2300
 
2301
extern const intfn square;
2302
@end smallexample
2303
 
2304
This approach does not work in GNU C++ from 2.6.0 on, since the language
2305
specifies that the @samp{const} must be attached to the return value.
2306
 
2307
@item constructor
2308
@itemx destructor
2309
@itemx constructor (@var{priority})
2310
@itemx destructor (@var{priority})
2311
@cindex @code{constructor} function attribute
2312
@cindex @code{destructor} function attribute
2313
The @code{constructor} attribute causes the function to be called
2314
automatically before execution enters @code{main ()}.  Similarly, the
2315
@code{destructor} attribute causes the function to be called
2316
automatically after @code{main ()} has completed or @code{exit ()} has
2317
been called.  Functions with these attributes are useful for
2318
initializing data that will be used implicitly during the execution of
2319
the program.
2320
 
2321
You may provide an optional integer priority to control the order in
2322
which constructor and destructor functions are run.  A constructor
2323
with a smaller priority number runs before a constructor with a larger
2324
priority number; the opposite relationship holds for destructors.  So,
2325
if you have a constructor that allocates a resource and a destructor
2326
that deallocates the same resource, both functions typically have the
2327
same priority.  The priorities for constructor and destructor
2328
functions are the same as those specified for namespace-scope C++
2329
objects (@pxref{C++ Attributes}).
2330
 
2331
These attributes are not currently implemented for Objective-C@.
2332
 
2333
@item deprecated
2334
@itemx deprecated (@var{msg})
2335
@cindex @code{deprecated} attribute.
2336
The @code{deprecated} attribute results in a warning if the function
2337
is used anywhere in the source file.  This is useful when identifying
2338
functions that are expected to be removed in a future version of a
2339
program.  The warning also includes the location of the declaration
2340
of the deprecated function, to enable users to easily find further
2341
information about why the function is deprecated, or what they should
2342
do instead.  Note that the warnings only occurs for uses:
2343
 
2344
@smallexample
2345
int old_fn () __attribute__ ((deprecated));
2346
int old_fn ();
2347
int (*fn_ptr)() = old_fn;
2348
@end smallexample
2349
 
2350
results in a warning on line 3 but not line 2.  The optional msg
2351
argument, which must be a string, will be printed in the warning if
2352
present.
2353
 
2354
The @code{deprecated} attribute can also be used for variables and
2355
types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2356
 
2357
@item disinterrupt
2358
@cindex @code{disinterrupt} attribute
2359
On Epiphany and MeP targets, this attribute causes the compiler to emit
2360
instructions to disable interrupts for the duration of the given
2361
function.
2362
 
2363
@item dllexport
2364
@cindex @code{__declspec(dllexport)}
2365
On Microsoft Windows targets and Symbian OS targets the
2366
@code{dllexport} attribute causes the compiler to provide a global
2367
pointer to a pointer in a DLL, so that it can be referenced with the
2368
@code{dllimport} attribute.  On Microsoft Windows targets, the pointer
2369
name is formed by combining @code{_imp__} and the function or variable
2370
name.
2371
 
2372
You can use @code{__declspec(dllexport)} as a synonym for
2373
@code{__attribute__ ((dllexport))} for compatibility with other
2374
compilers.
2375
 
2376
On systems that support the @code{visibility} attribute, this
2377
attribute also implies ``default'' visibility.  It is an error to
2378
explicitly specify any other visibility.
2379
 
2380
In previous versions of GCC, the @code{dllexport} attribute was ignored
2381
for inlined functions, unless the @option{-fkeep-inline-functions} flag
2382
had been used.  The default behaviour now is to emit all dllexported
2383
inline functions; however, this can cause object file-size bloat, in
2384
which case the old behaviour can be restored by using
2385
@option{-fno-keep-inline-dllexport}.
2386
 
2387
The attribute is also ignored for undefined symbols.
2388
 
2389
When applied to C++ classes, the attribute marks defined non-inlined
2390
member functions and static data members as exports.  Static consts
2391
initialized in-class are not marked unless they are also defined
2392
out-of-class.
2393
 
2394
For Microsoft Windows targets there are alternative methods for
2395
including the symbol in the DLL's export table such as using a
2396
@file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
2397
the @option{--export-all} linker flag.
2398
 
2399
@item dllimport
2400
@cindex @code{__declspec(dllimport)}
2401
On Microsoft Windows and Symbian OS targets, the @code{dllimport}
2402
attribute causes the compiler to reference a function or variable via
2403
a global pointer to a pointer that is set up by the DLL exporting the
2404
symbol.  The attribute implies @code{extern}.  On Microsoft Windows
2405
targets, the pointer name is formed by combining @code{_imp__} and the
2406
function or variable name.
2407
 
2408
You can use @code{__declspec(dllimport)} as a synonym for
2409
@code{__attribute__ ((dllimport))} for compatibility with other
2410
compilers.
2411
 
2412
On systems that support the @code{visibility} attribute, this
2413
attribute also implies ``default'' visibility.  It is an error to
2414
explicitly specify any other visibility.
2415
 
2416
Currently, the attribute is ignored for inlined functions.  If the
2417
attribute is applied to a symbol @emph{definition}, an error is reported.
2418
If a symbol previously declared @code{dllimport} is later defined, the
2419
attribute is ignored in subsequent references, and a warning is emitted.
2420
The attribute is also overridden by a subsequent declaration as
2421
@code{dllexport}.
2422
 
2423
When applied to C++ classes, the attribute marks non-inlined
2424
member functions and static data members as imports.  However, the
2425
attribute is ignored for virtual methods to allow creation of vtables
2426
using thunks.
2427
 
2428
On the SH Symbian OS target the @code{dllimport} attribute also has
2429
another affect---it can cause the vtable and run-time type information
2430
for a class to be exported.  This happens when the class has a
2431
dllimport'ed constructor or a non-inline, non-pure virtual function
2432
and, for either of those two conditions, the class also has an inline
2433
constructor or destructor and has a key function that is defined in
2434
the current translation unit.
2435
 
2436
For Microsoft Windows based targets the use of the @code{dllimport}
2437
attribute on functions is not necessary, but provides a small
2438
performance benefit by eliminating a thunk in the DLL@.  The use of the
2439
@code{dllimport} attribute on imported variables was required on older
2440
versions of the GNU linker, but can now be avoided by passing the
2441
@option{--enable-auto-import} switch to the GNU linker.  As with
2442
functions, using the attribute for a variable eliminates a thunk in
2443
the DLL@.
2444
 
2445
One drawback to using this attribute is that a pointer to a
2446
@emph{variable} marked as @code{dllimport} cannot be used as a constant
2447
address. However, a pointer to a @emph{function} with the
2448
@code{dllimport} attribute can be used as a constant initializer; in
2449
this case, the address of a stub function in the import lib is
2450
referenced.  On Microsoft Windows targets, the attribute can be disabled
2451
for functions by setting the @option{-mnop-fun-dllimport} flag.
2452
 
2453
@item eightbit_data
2454
@cindex eight bit data on the H8/300, H8/300H, and H8S
2455
Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2456
variable should be placed into the eight bit data section.
2457
The compiler will generate more efficient code for certain operations
2458
on data in the eight bit data area.  Note the eight bit data area is limited to
2459
256 bytes of data.
2460
 
2461
You must use GAS and GLD from GNU binutils version 2.7 or later for
2462
this attribute to work correctly.
2463
 
2464
@item exception_handler
2465
@cindex exception handler functions on the Blackfin processor
2466
Use this attribute on the Blackfin to indicate that the specified function
2467
is an exception handler.  The compiler will generate function entry and
2468
exit sequences suitable for use in an exception handler when this
2469
attribute is present.
2470
 
2471
@item externally_visible
2472
@cindex @code{externally_visible} attribute.
2473
This attribute, attached to a global variable or function, nullifies
2474
the effect of the @option{-fwhole-program} command-line option, so the
2475
object remains visible outside the current compilation unit. If @option{-fwhole-program} is used together with @option{-flto} and @command{gold} is used as the linker plugin, @code{externally_visible} attributes are automatically added to functions (not variable yet due to a current @command{gold} issue) that are accessed outside of LTO objects according to resolution file produced by @command{gold}.  For other linkers that cannot generate resolution file, explicit @code{externally_visible} attributes are still necessary.
2476
 
2477
@item far
2478
@cindex functions which handle memory bank switching
2479
On 68HC11 and 68HC12 the @code{far} attribute causes the compiler to
2480
use a calling convention that takes care of switching memory banks when
2481
entering and leaving a function.  This calling convention is also the
2482
default when using the @option{-mlong-calls} option.
2483
 
2484
On 68HC12 the compiler will use the @code{call} and @code{rtc} instructions
2485
to call and return from a function.
2486
 
2487
On 68HC11 the compiler will generate a sequence of instructions
2488
to invoke a board-specific routine to switch the memory bank and call the
2489
real function.  The board-specific routine simulates a @code{call}.
2490
At the end of a function, it will jump to a board-specific routine
2491
instead of using @code{rts}.  The board-specific return routine simulates
2492
the @code{rtc}.
2493
 
2494
On MeP targets this causes the compiler to use a calling convention
2495
which assumes the called function is too far away for the built-in
2496
addressing modes.
2497
 
2498
@item fast_interrupt
2499
@cindex interrupt handler functions
2500
Use this attribute on the M32C and RX ports to indicate that the specified
2501
function is a fast interrupt handler.  This is just like the
2502
@code{interrupt} attribute, except that @code{freit} is used to return
2503
instead of @code{reit}.
2504
 
2505
@item fastcall
2506
@cindex functions that pop the argument stack on the 386
2507
On the Intel 386, the @code{fastcall} attribute causes the compiler to
2508
pass the first argument (if of integral type) in the register ECX and
2509
the second argument (if of integral type) in the register EDX@.  Subsequent
2510
and other typed arguments are passed on the stack.  The called function will
2511
pop the arguments off the stack.  If the number of arguments is variable all
2512
arguments are pushed on the stack.
2513
 
2514
@item thiscall
2515
@cindex functions that pop the argument stack on the 386
2516
On the Intel 386, the @code{thiscall} attribute causes the compiler to
2517
pass the first argument (if of integral type) in the register ECX.
2518
Subsequent and other typed arguments are passed on the stack. The called
2519
function will pop the arguments off the stack.
2520
If the number of arguments is variable all arguments are pushed on the
2521
stack.
2522
The @code{thiscall} attribute is intended for C++ non-static member functions.
2523
As gcc extension this calling convention can be used for C-functions
2524
and for static member methods.
2525
 
2526
@item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2527
@cindex @code{format} function attribute
2528
@opindex Wformat
2529
The @code{format} attribute specifies that a function takes @code{printf},
2530
@code{scanf}, @code{strftime} or @code{strfmon} style arguments which
2531
should be type-checked against a format string.  For example, the
2532
declaration:
2533
 
2534
@smallexample
2535
extern int
2536
my_printf (void *my_object, const char *my_format, ...)
2537
      __attribute__ ((format (printf, 2, 3)));
2538
@end smallexample
2539
 
2540
@noindent
2541
causes the compiler to check the arguments in calls to @code{my_printf}
2542
for consistency with the @code{printf} style format string argument
2543
@code{my_format}.
2544
 
2545
The parameter @var{archetype} determines how the format string is
2546
interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2547
@code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2548
@code{strfmon}.  (You can also use @code{__printf__},
2549
@code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.)  On
2550
MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2551
@code{ms_strftime} are also present.
2552
@var{archtype} values such as @code{printf} refer to the formats accepted
2553
by the system's C run-time library, while @code{gnu_} values always refer
2554
to the formats accepted by the GNU C Library.  On Microsoft Windows
2555
targets, @code{ms_} values refer to the formats accepted by the
2556
@file{msvcrt.dll} library.
2557
The parameter @var{string-index}
2558
specifies which argument is the format string argument (starting
2559
from 1), while @var{first-to-check} is the number of the first
2560
argument to check against the format string.  For functions
2561
where the arguments are not available to be checked (such as
2562
@code{vprintf}), specify the third parameter as zero.  In this case the
2563
compiler only checks the format string for consistency.  For
2564
@code{strftime} formats, the third parameter is required to be zero.
2565
Since non-static C++ methods have an implicit @code{this} argument, the
2566
arguments of such methods should be counted from two, not one, when
2567
giving values for @var{string-index} and @var{first-to-check}.
2568
 
2569
In the example above, the format string (@code{my_format}) is the second
2570
argument of the function @code{my_print}, and the arguments to check
2571
start with the third argument, so the correct parameters for the format
2572
attribute are 2 and 3.
2573
 
2574
@opindex ffreestanding
2575
@opindex fno-builtin
2576
The @code{format} attribute allows you to identify your own functions
2577
which take format strings as arguments, so that GCC can check the
2578
calls to these functions for errors.  The compiler always (unless
2579
@option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2580
for the standard library functions @code{printf}, @code{fprintf},
2581
@code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2582
@code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2583
warnings are requested (using @option{-Wformat}), so there is no need to
2584
modify the header file @file{stdio.h}.  In C99 mode, the functions
2585
@code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2586
@code{vsscanf} are also checked.  Except in strictly conforming C
2587
standard modes, the X/Open function @code{strfmon} is also checked as
2588
are @code{printf_unlocked} and @code{fprintf_unlocked}.
2589
@xref{C Dialect Options,,Options Controlling C Dialect}.
2590
 
2591
For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2592
recognized in the same context.  Declarations including these format attributes
2593
will be parsed for correct syntax, however the result of checking of such format
2594
strings is not yet defined, and will not be carried out by this version of the
2595
compiler.
2596
 
2597
The target may also provide additional types of format checks.
2598
@xref{Target Format Checks,,Format Checks Specific to Particular
2599
Target Machines}.
2600
 
2601
@item format_arg (@var{string-index})
2602
@cindex @code{format_arg} function attribute
2603
@opindex Wformat-nonliteral
2604
The @code{format_arg} attribute specifies that a function takes a format
2605
string for a @code{printf}, @code{scanf}, @code{strftime} or
2606
@code{strfmon} style function and modifies it (for example, to translate
2607
it into another language), so the result can be passed to a
2608
@code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2609
function (with the remaining arguments to the format function the same
2610
as they would have been for the unmodified string).  For example, the
2611
declaration:
2612
 
2613
@smallexample
2614
extern char *
2615
my_dgettext (char *my_domain, const char *my_format)
2616
      __attribute__ ((format_arg (2)));
2617
@end smallexample
2618
 
2619
@noindent
2620
causes the compiler to check the arguments in calls to a @code{printf},
2621
@code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2622
format string argument is a call to the @code{my_dgettext} function, for
2623
consistency with the format string argument @code{my_format}.  If the
2624
@code{format_arg} attribute had not been specified, all the compiler
2625
could tell in such calls to format functions would be that the format
2626
string argument is not constant; this would generate a warning when
2627
@option{-Wformat-nonliteral} is used, but the calls could not be checked
2628
without the attribute.
2629
 
2630
The parameter @var{string-index} specifies which argument is the format
2631
string argument (starting from one).  Since non-static C++ methods have
2632
an implicit @code{this} argument, the arguments of such methods should
2633
be counted from two.
2634
 
2635
The @code{format-arg} attribute allows you to identify your own
2636
functions which modify format strings, so that GCC can check the
2637
calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2638
type function whose operands are a call to one of your own function.
2639
The compiler always treats @code{gettext}, @code{dgettext}, and
2640
@code{dcgettext} in this manner except when strict ISO C support is
2641
requested by @option{-ansi} or an appropriate @option{-std} option, or
2642
@option{-ffreestanding} or @option{-fno-builtin}
2643
is used.  @xref{C Dialect Options,,Options
2644
Controlling C Dialect}.
2645
 
2646
For Objective-C dialects, the @code{format-arg} attribute may refer to an
2647
@code{NSString} reference for compatibility with the @code{format} attribute
2648
above.
2649
 
2650
The target may also allow additional types in @code{format-arg} attributes.
2651
@xref{Target Format Checks,,Format Checks Specific to Particular
2652
Target Machines}.
2653
 
2654
@item function_vector
2655
@cindex calling functions through the function vector on H8/300, M16C, M32C and SH2A processors
2656
Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2657
function should be called through the function vector.  Calling a
2658
function through the function vector will reduce code size, however;
2659
the function vector has a limited size (maximum 128 entries on the H8/300
2660
and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.
2661
 
2662
In SH2A target, this attribute declares a function to be called using the
2663
TBR relative addressing mode.  The argument to this attribute is the entry
2664
number of the same function in a vector table containing all the TBR
2665
relative addressable functions.  For the successful jump, register TBR
2666
should contain the start address of this TBR relative vector table.
2667
In the startup routine of the user application, user needs to care of this
2668
TBR register initialization.  The TBR relative vector table can have at
2669
max 256 function entries.  The jumps to these functions will be generated
2670
using a SH2A specific, non delayed branch instruction JSR/N @@(disp8,TBR).
2671
You must use GAS and GLD from GNU binutils version 2.7 or later for
2672
this attribute to work correctly.
2673
 
2674
Please refer the example of M16C target, to see the use of this
2675
attribute while declaring a function,
2676
 
2677
In an application, for a function being called once, this attribute will
2678
save at least 8 bytes of code; and if other successive calls are being
2679
made to the same function, it will save 2 bytes of code per each of these
2680
calls.
2681
 
2682
On M16C/M32C targets, the @code{function_vector} attribute declares a
2683
special page subroutine call function. Use of this attribute reduces
2684
the code size by 2 bytes for each call generated to the
2685
subroutine. The argument to the attribute is the vector number entry
2686
from the special page vector table which contains the 16 low-order
2687
bits of the subroutine's entry address. Each vector table has special
2688
page number (18 to 255) which are used in @code{jsrs} instruction.
2689
Jump addresses of the routines are generated by adding 0x0F0000 (in
2690
case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2
2691
byte addresses set in the vector table. Therefore you need to ensure
2692
that all the special page vector routines should get mapped within the
2693
address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
2694
(for M32C).
2695
 
2696
In the following example 2 bytes will be saved for each call to
2697
function @code{foo}.
2698
 
2699
@smallexample
2700
void foo (void) __attribute__((function_vector(0x18)));
2701
void foo (void)
2702
@{
2703
@}
2704
 
2705
void bar (void)
2706
@{
2707
    foo();
2708
@}
2709
@end smallexample
2710
 
2711
If functions are defined in one file and are called in another file,
2712
then be sure to write this declaration in both files.
2713
 
2714
This attribute is ignored for R8C target.
2715
 
2716
@item interrupt
2717
@cindex interrupt handler functions
2718
Use this attribute on the ARM, AVR, CR16, Epiphany, M32C, M32R/D, m68k, MeP, MIPS,
2719
RL78, RX and Xstormy16 ports to indicate that the specified function is an
2720
interrupt handler.  The compiler will generate function entry and exit
2721
sequences suitable for use in an interrupt handler when this attribute
2722
is present.
2723
 
2724
Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze,
2725
and SH processors can be specified via the @code{interrupt_handler} attribute.
2726
 
2727
Note, on the AVR, interrupts will be enabled inside the function.
2728
 
2729
Note, for the ARM, you can specify the kind of interrupt to be handled by
2730
adding an optional parameter to the interrupt attribute like this:
2731
 
2732
@smallexample
2733
void f () __attribute__ ((interrupt ("IRQ")));
2734
@end smallexample
2735
 
2736
Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@.
2737
 
2738
On ARMv7-M the interrupt type is ignored, and the attribute means the function
2739
may be called with a word aligned stack pointer.
2740
 
2741
On MIPS targets, you can use the following attributes to modify the behavior
2742
of an interrupt handler:
2743
@table @code
2744
@item use_shadow_register_set
2745
@cindex @code{use_shadow_register_set} attribute
2746
Assume that the handler uses a shadow register set, instead of
2747
the main general-purpose registers.
2748
 
2749
@item keep_interrupts_masked
2750
@cindex @code{keep_interrupts_masked} attribute
2751
Keep interrupts masked for the whole function.  Without this attribute,
2752
GCC tries to reenable interrupts for as much of the function as it can.
2753
 
2754
@item use_debug_exception_return
2755
@cindex @code{use_debug_exception_return} attribute
2756
Return using the @code{deret} instruction.  Interrupt handlers that don't
2757
have this attribute return using @code{eret} instead.
2758
@end table
2759
 
2760
You can use any combination of these attributes, as shown below:
2761
@smallexample
2762
void __attribute__ ((interrupt)) v0 ();
2763
void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
2764
void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
2765
void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
2766
void __attribute__ ((interrupt, use_shadow_register_set,
2767
                     keep_interrupts_masked)) v4 ();
2768
void __attribute__ ((interrupt, use_shadow_register_set,
2769
                     use_debug_exception_return)) v5 ();
2770
void __attribute__ ((interrupt, keep_interrupts_masked,
2771
                     use_debug_exception_return)) v6 ();
2772
void __attribute__ ((interrupt, use_shadow_register_set,
2773
                     keep_interrupts_masked,
2774
                     use_debug_exception_return)) v7 ();
2775
@end smallexample
2776
 
2777
On RL78, use @code{brk_interrupt} instead of @code{interrupt} for
2778
handlers intended to be used with the @code{BRK} opcode (i.e.  those
2779
that must end with @code{RETB} instead of @code{RETI}).
2780
 
2781
@item ifunc ("@var{resolver}")
2782
@cindex @code{ifunc} attribute
2783
The @code{ifunc} attribute is used to mark a function as an indirect
2784
function using the STT_GNU_IFUNC symbol type extension to the ELF
2785
standard.  This allows the resolution of the symbol value to be
2786
determined dynamically at load time, and an optimized version of the
2787
routine can be selected for the particular processor or other system
2788
characteristics determined then.  To use this attribute, first define
2789
the implementation functions available, and a resolver function that
2790
returns a pointer to the selected implementation function.  The
2791
implementation functions' declarations must match the API of the
2792
function being implemented, the resolver's declaration is be a
2793
function returning pointer to void function returning void:
2794
 
2795
@smallexample
2796
void *my_memcpy (void *dst, const void *src, size_t len)
2797
@{
2798
  @dots{}
2799
@}
2800
 
2801
static void (*resolve_memcpy (void)) (void)
2802
@{
2803
  return my_memcpy; // we'll just always select this routine
2804
@}
2805
@end smallexample
2806
 
2807
The exported header file declaring the function the user calls would
2808
contain:
2809
 
2810
@smallexample
2811
extern void *memcpy (void *, const void *, size_t);
2812
@end smallexample
2813
 
2814
allowing the user to call this as a regular function, unaware of the
2815
implementation.  Finally, the indirect function needs to be defined in
2816
the same translation unit as the resolver function:
2817
 
2818
@smallexample
2819
void *memcpy (void *, const void *, size_t)
2820
     __attribute__ ((ifunc ("resolve_memcpy")));
2821
@end smallexample
2822
 
2823
Indirect functions cannot be weak, and require a recent binutils (at
2824
least version 2.20.1), and GNU C library (at least version 2.11.1).
2825
 
2826
@item interrupt_handler
2827
@cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
2828
Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
2829
indicate that the specified function is an interrupt handler.  The compiler
2830
will generate function entry and exit sequences suitable for use in an
2831
interrupt handler when this attribute is present.
2832
 
2833
@item interrupt_thread
2834
@cindex interrupt thread functions on fido
2835
Use this attribute on fido, a subarchitecture of the m68k, to indicate
2836
that the specified function is an interrupt handler that is designed
2837
to run as a thread.  The compiler omits generate prologue/epilogue
2838
sequences and replaces the return instruction with a @code{sleep}
2839
instruction.  This attribute is available only on fido.
2840
 
2841
@item isr
2842
@cindex interrupt service routines on ARM
2843
Use this attribute on ARM to write Interrupt Service Routines. This is an
2844
alias to the @code{interrupt} attribute above.
2845
 
2846
@item kspisusp
2847
@cindex User stack pointer in interrupts on the Blackfin
2848
When used together with @code{interrupt_handler}, @code{exception_handler}
2849
or @code{nmi_handler}, code will be generated to load the stack pointer
2850
from the USP register in the function prologue.
2851
 
2852
@item l1_text
2853
@cindex @code{l1_text} function attribute
2854
This attribute specifies a function to be placed into L1 Instruction
2855
SRAM@. The function will be put into a specific section named @code{.l1.text}.
2856
With @option{-mfdpic}, function calls with a such function as the callee
2857
or caller will use inlined PLT.
2858
 
2859
@item l2
2860
@cindex @code{l2} function attribute
2861
On the Blackfin, this attribute specifies a function to be placed into L2
2862
SRAM. The function will be put into a specific section named
2863
@code{.l1.text}. With @option{-mfdpic}, callers of such functions will use
2864
an inlined PLT.
2865
 
2866
@item leaf
2867
@cindex @code{leaf} function attribute
2868
Calls to external functions with this attribute must return to the current
2869
compilation unit only by return or by exception handling.  In particular, leaf
2870
functions are not allowed to call callback function passed to it from the current
2871
compilation unit or directly call functions exported by the unit or longjmp
2872
into the unit.  Leaf function might still call functions from other compilation
2873
units and thus they are not necessarily leaf in the sense that they contain no
2874
function calls at all.
2875
 
2876
The attribute is intended for library functions to improve dataflow analysis.
2877
The compiler takes the hint that any data not escaping the current compilation unit can
2878
not be used or modified by the leaf function.  For example, the @code{sin} function
2879
is a leaf function, but @code{qsort} is not.
2880
 
2881
Note that leaf functions might invoke signals and signal handlers might be
2882
defined in the current compilation unit and use static variables.  The only
2883
compliant way to write such a signal handler is to declare such variables
2884
@code{volatile}.
2885
 
2886
The attribute has no effect on functions defined within the current compilation
2887
unit.  This is to allow easy merging of multiple compilation units into one,
2888
for example, by using the link time optimization.  For this reason the
2889
attribute is not allowed on types to annotate indirect calls.
2890
 
2891
@item long_call/short_call
2892
@cindex indirect calls on ARM
2893
This attribute specifies how a particular function is called on
2894
ARM and Epiphany.  Both attributes override the
2895
@option{-mlong-calls} (@pxref{ARM Options})
2896
command-line switch and @code{#pragma long_calls} settings.  The
2897
@code{long_call} attribute indicates that the function might be far
2898
away from the call site and require a different (more expensive)
2899
calling sequence.   The @code{short_call} attribute always places
2900
the offset to the function from the call site into the @samp{BL}
2901
instruction directly.
2902
 
2903
@item longcall/shortcall
2904
@cindex functions called via pointer on the RS/6000 and PowerPC
2905
On the Blackfin, RS/6000 and PowerPC, the @code{longcall} attribute
2906
indicates that the function might be far away from the call site and
2907
require a different (more expensive) calling sequence.  The
2908
@code{shortcall} attribute indicates that the function is always close
2909
enough for the shorter calling sequence to be used.  These attributes
2910
override both the @option{-mlongcall} switch and, on the RS/6000 and
2911
PowerPC, the @code{#pragma longcall} setting.
2912
 
2913
@xref{RS/6000 and PowerPC Options}, for more information on whether long
2914
calls are necessary.
2915
 
2916
@item long_call/near/far
2917
@cindex indirect calls on MIPS
2918
These attributes specify how a particular function is called on MIPS@.
2919
The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
2920
command-line switch.  The @code{long_call} and @code{far} attributes are
2921
synonyms, and cause the compiler to always call
2922
the function by first loading its address into a register, and then using
2923
the contents of that register.  The @code{near} attribute has the opposite
2924
effect; it specifies that non-PIC calls should be made using the more
2925
efficient @code{jal} instruction.
2926
 
2927
@item malloc
2928
@cindex @code{malloc} attribute
2929
The @code{malloc} attribute is used to tell the compiler that a function
2930
may be treated as if any non-@code{NULL} pointer it returns cannot
2931
alias any other pointer valid when the function returns and that the memory
2932
has undefined content.
2933
This will often improve optimization.
2934
Standard functions with this property include @code{malloc} and
2935
@code{calloc}.  @code{realloc}-like functions do not have this
2936
property as the memory pointed to does not have undefined content.
2937
 
2938
@item mips16/nomips16
2939
@cindex @code{mips16} attribute
2940
@cindex @code{nomips16} attribute
2941
 
2942
On MIPS targets, you can use the @code{mips16} and @code{nomips16}
2943
function attributes to locally select or turn off MIPS16 code generation.
2944
A function with the @code{mips16} attribute is emitted as MIPS16 code,
2945
while MIPS16 code generation is disabled for functions with the
2946
@code{nomips16} attribute.  These attributes override the
2947
@option{-mips16} and @option{-mno-mips16} options on the command line
2948
(@pxref{MIPS Options}).
2949
 
2950
When compiling files containing mixed MIPS16 and non-MIPS16 code, the
2951
preprocessor symbol @code{__mips16} reflects the setting on the command line,
2952
not that within individual functions.  Mixed MIPS16 and non-MIPS16 code
2953
may interact badly with some GCC extensions such as @code{__builtin_apply}
2954
(@pxref{Constructing Calls}).
2955
 
2956
@item model (@var{model-name})
2957
@cindex function addressability on the M32R/D
2958
@cindex variable addressability on the IA-64
2959
 
2960
On the M32R/D, use this attribute to set the addressability of an
2961
object, and of the code generated for a function.  The identifier
2962
@var{model-name} is one of @code{small}, @code{medium}, or
2963
@code{large}, representing each of the code models.
2964
 
2965
Small model objects live in the lower 16MB of memory (so that their
2966
addresses can be loaded with the @code{ld24} instruction), and are
2967
callable with the @code{bl} instruction.
2968
 
2969
Medium model objects may live anywhere in the 32-bit address space (the
2970
compiler will generate @code{seth/add3} instructions to load their addresses),
2971
and are callable with the @code{bl} instruction.
2972
 
2973
Large model objects may live anywhere in the 32-bit address space (the
2974
compiler will generate @code{seth/add3} instructions to load their addresses),
2975
and may not be reachable with the @code{bl} instruction (the compiler will
2976
generate the much slower @code{seth/add3/jl} instruction sequence).
2977
 
2978
On IA-64, use this attribute to set the addressability of an object.
2979
At present, the only supported identifier for @var{model-name} is
2980
@code{small}, indicating addressability via ``small'' (22-bit)
2981
addresses (so that their addresses can be loaded with the @code{addl}
2982
instruction).  Caveat: such addressing is by definition not position
2983
independent and hence this attribute must not be used for objects
2984
defined by shared libraries.
2985
 
2986
@item ms_abi/sysv_abi
2987
@cindex @code{ms_abi} attribute
2988
@cindex @code{sysv_abi} attribute
2989
 
2990
On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI attribute
2991
to indicate which calling convention should be used for a function.  The
2992
@code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
2993
while the @code{sysv_abi} attribute tells the compiler to use the ABI
2994
used on GNU/Linux and other systems.  The default is to use the Microsoft ABI
2995
when targeting Windows.  On all other systems, the default is the x86/AMD ABI.
2996
 
2997
Note, the @code{ms_abi} attribute for Windows 64-bit targets currently
2998
requires the @option{-maccumulate-outgoing-args} option.
2999
 
3000
@item callee_pop_aggregate_return (@var{number})
3001
@cindex @code{callee_pop_aggregate_return} attribute
3002
 
3003
On 32-bit i?86-*-* targets, you can control by those attribute for
3004
aggregate return in memory, if the caller is responsible to pop the hidden
3005
pointer together with the rest of the arguments - @var{number} equal to
3006
zero -, or if the callee is responsible to pop hidden pointer - @var{number}
3007
equal to one.  The default i386 ABI assumes that the callee pops the
3008
stack for hidden pointer.
3009
 
3010
Note, that on 32-bit i386 Windows targets the compiler assumes that the
3011
caller pops the stack for hidden pointer.
3012
 
3013
@item ms_hook_prologue
3014
@cindex @code{ms_hook_prologue} attribute
3015
 
3016
On 32 bit i[34567]86-*-* targets and 64 bit x86_64-*-* targets, you can use
3017
this function attribute to make gcc generate the "hot-patching" function
3018
prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
3019
and newer.
3020
 
3021
@item naked
3022
@cindex function without a prologue/epilogue code
3023
Use this attribute on the ARM, AVR, MCORE, RX and SPU ports to indicate that
3024
the specified function does not need prologue/epilogue sequences generated by
3025
the compiler.  It is up to the programmer to provide these sequences. The
3026
only statements that can be safely included in naked functions are
3027
@code{asm} statements that do not have operands.  All other statements,
3028
including declarations of local variables, @code{if} statements, and so
3029
forth, should be avoided.  Naked functions should be used to implement the
3030
body of an assembly function, while allowing the compiler to construct
3031
the requisite function declaration for the assembler.
3032
 
3033
@item near
3034
@cindex functions which do not handle memory bank switching on 68HC11/68HC12
3035
On 68HC11 and 68HC12 the @code{near} attribute causes the compiler to
3036
use the normal calling convention based on @code{jsr} and @code{rts}.
3037
This attribute can be used to cancel the effect of the @option{-mlong-calls}
3038
option.
3039
 
3040
On MeP targets this attribute causes the compiler to assume the called
3041
function is close enough to use the normal calling convention,
3042
overriding the @code{-mtf} command line option.
3043
 
3044
@item nesting
3045
@cindex Allow nesting in an interrupt handler on the Blackfin processor.
3046
Use this attribute together with @code{interrupt_handler},
3047
@code{exception_handler} or @code{nmi_handler} to indicate that the function
3048
entry code should enable nested interrupts or exceptions.
3049
 
3050
@item nmi_handler
3051
@cindex NMI handler functions on the Blackfin processor
3052
Use this attribute on the Blackfin to indicate that the specified function
3053
is an NMI handler.  The compiler will generate function entry and
3054
exit sequences suitable for use in an NMI handler when this
3055
attribute is present.
3056
 
3057
@item no_instrument_function
3058
@cindex @code{no_instrument_function} function attribute
3059
@opindex finstrument-functions
3060
If @option{-finstrument-functions} is given, profiling function calls will
3061
be generated at entry and exit of most user-compiled functions.
3062
Functions with this attribute will not be so instrumented.
3063
 
3064
@item no_split_stack
3065
@cindex @code{no_split_stack} function attribute
3066
@opindex fsplit-stack
3067
If @option{-fsplit-stack} is given, functions will have a small
3068
prologue which decides whether to split the stack.  Functions with the
3069
@code{no_split_stack} attribute will not have that prologue, and thus
3070
may run with only a small amount of stack space available.
3071
 
3072
@item noinline
3073
@cindex @code{noinline} function attribute
3074
This function attribute prevents a function from being considered for
3075
inlining.
3076
@c Don't enumerate the optimizations by name here; we try to be
3077
@c future-compatible with this mechanism.
3078
If the function does not have side-effects, there are optimizations
3079
other than inlining that causes function calls to be optimized away,
3080
although the function call is live.  To keep such calls from being
3081
optimized away, put
3082
@smallexample
3083
asm ("");
3084
@end smallexample
3085
(@pxref{Extended Asm}) in the called function, to serve as a special
3086
side-effect.
3087
 
3088
@item noclone
3089
@cindex @code{noclone} function attribute
3090
This function attribute prevents a function from being considered for
3091
cloning - a mechanism which produces specialized copies of functions
3092
and which is (currently) performed by interprocedural constant
3093
propagation.
3094
 
3095
@item nonnull (@var{arg-index}, @dots{})
3096
@cindex @code{nonnull} function attribute
3097
The @code{nonnull} attribute specifies that some function parameters should
3098
be non-null pointers.  For instance, the declaration:
3099
 
3100
@smallexample
3101
extern void *
3102
my_memcpy (void *dest, const void *src, size_t len)
3103
        __attribute__((nonnull (1, 2)));
3104
@end smallexample
3105
 
3106
@noindent
3107
causes the compiler to check that, in calls to @code{my_memcpy},
3108
arguments @var{dest} and @var{src} are non-null.  If the compiler
3109
determines that a null pointer is passed in an argument slot marked
3110
as non-null, and the @option{-Wnonnull} option is enabled, a warning
3111
is issued.  The compiler may also choose to make optimizations based
3112
on the knowledge that certain function arguments will not be null.
3113
 
3114
If no argument index list is given to the @code{nonnull} attribute,
3115
all pointer arguments are marked as non-null.  To illustrate, the
3116
following declaration is equivalent to the previous example:
3117
 
3118
@smallexample
3119
extern void *
3120
my_memcpy (void *dest, const void *src, size_t len)
3121
        __attribute__((nonnull));
3122
@end smallexample
3123
 
3124
@item noreturn
3125
@cindex @code{noreturn} function attribute
3126
A few standard library functions, such as @code{abort} and @code{exit},
3127
cannot return.  GCC knows this automatically.  Some programs define
3128
their own functions that never return.  You can declare them
3129
@code{noreturn} to tell the compiler this fact.  For example,
3130
 
3131
@smallexample
3132
@group
3133
void fatal () __attribute__ ((noreturn));
3134
 
3135
void
3136
fatal (/* @r{@dots{}} */)
3137
@{
3138
  /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3139
  exit (1);
3140
@}
3141
@end group
3142
@end smallexample
3143
 
3144
The @code{noreturn} keyword tells the compiler to assume that
3145
@code{fatal} cannot return.  It can then optimize without regard to what
3146
would happen if @code{fatal} ever did return.  This makes slightly
3147
better code.  More importantly, it helps avoid spurious warnings of
3148
uninitialized variables.
3149
 
3150
The @code{noreturn} keyword does not affect the exceptional path when that
3151
applies: a @code{noreturn}-marked function may still return to the caller
3152
by throwing an exception or calling @code{longjmp}.
3153
 
3154
Do not assume that registers saved by the calling function are
3155
restored before calling the @code{noreturn} function.
3156
 
3157
It does not make sense for a @code{noreturn} function to have a return
3158
type other than @code{void}.
3159
 
3160
The attribute @code{noreturn} is not implemented in GCC versions
3161
earlier than 2.5.  An alternative way to declare that a function does
3162
not return, which works in the current version and in some older
3163
versions, is as follows:
3164
 
3165
@smallexample
3166
typedef void voidfn ();
3167
 
3168
volatile voidfn fatal;
3169
@end smallexample
3170
 
3171
This approach does not work in GNU C++.
3172
 
3173
@item nothrow
3174
@cindex @code{nothrow} function attribute
3175
The @code{nothrow} attribute is used to inform the compiler that a
3176
function cannot throw an exception.  For example, most functions in
3177
the standard C library can be guaranteed not to throw an exception
3178
with the notable exceptions of @code{qsort} and @code{bsearch} that
3179
take function pointer arguments.  The @code{nothrow} attribute is not
3180
implemented in GCC versions earlier than 3.3.
3181
 
3182
@item optimize
3183
@cindex @code{optimize} function attribute
3184
The @code{optimize} attribute is used to specify that a function is to
3185
be compiled with different optimization options than specified on the
3186
command line.  Arguments can either be numbers or strings.  Numbers
3187
are assumed to be an optimization level.  Strings that begin with
3188
@code{O} are assumed to be an optimization option, while other options
3189
are assumed to be used with a @code{-f} prefix.  You can also use the
3190
@samp{#pragma GCC optimize} pragma to set the optimization options
3191
that affect more than one function.
3192
@xref{Function Specific Option Pragmas}, for details about the
3193
@samp{#pragma GCC optimize} pragma.
3194
 
3195
This can be used for instance to have frequently executed functions
3196
compiled with more aggressive optimization options that produce faster
3197
and larger code, while other functions can be called with less
3198
aggressive options.
3199
 
3200
@item OS_main/OS_task
3201
@cindex @code{OS_main} AVR function attribute
3202
@cindex @code{OS_task} AVR function attribute
3203
On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3204
do not save/restore any call-saved register in their prologue/epilogue.
3205
 
3206
The @code{OS_main} attribute can be used when there @emph{is
3207
guarantee} that interrupts are disabled at the time when the function
3208
is entered.  This will save resources when the stack pointer has to be
3209
changed to set up a frame for local variables.
3210
 
3211
The @code{OS_task} attribute can be used when there is @emph{no
3212
guarantee} that interrupts are disabled at that time when the function
3213
is entered like for, e@.g@. task functions in a multi-threading operating
3214
system. In that case, changing the stack pointer register will be
3215
guarded by save/clear/restore of the global interrupt enable flag.
3216
 
3217
The differences to the @code{naked} function attribute are:
3218
@itemize @bullet
3219
@item @code{naked} functions do not have a return instruction whereas
3220
@code{OS_main} and @code{OS_task} functions will have a @code{RET} or
3221
@code{RETI} return instruction.
3222
@item @code{naked} functions do not set up a frame for local variables
3223
or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3224
as needed.
3225
@end itemize
3226
 
3227
@item pcs
3228
@cindex @code{pcs} function attribute
3229
 
3230
The @code{pcs} attribute can be used to control the calling convention
3231
used for a function on ARM.  The attribute takes an argument that specifies
3232
the calling convention to use.
3233
 
3234
When compiling using the AAPCS ABI (or a variant of that) then valid
3235
values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}.  In
3236
order to use a variant other than @code{"aapcs"} then the compiler must
3237
be permitted to use the appropriate co-processor registers (i.e., the
3238
VFP registers must be available in order to use @code{"aapcs-vfp"}).
3239
For example,
3240
 
3241
@smallexample
3242
/* Argument passed in r0, and result returned in r0+r1.  */
3243
double f2d (float) __attribute__((pcs("aapcs")));
3244
@end smallexample
3245
 
3246
Variadic functions always use the @code{"aapcs"} calling convention and
3247
the compiler will reject attempts to specify an alternative.
3248
 
3249
@item pure
3250
@cindex @code{pure} function attribute
3251
Many functions have no effects except the return value and their
3252
return value depends only on the parameters and/or global variables.
3253
Such a function can be subject
3254
to common subexpression elimination and loop optimization just as an
3255
arithmetic operator would be.  These functions should be declared
3256
with the attribute @code{pure}.  For example,
3257
 
3258
@smallexample
3259
int square (int) __attribute__ ((pure));
3260
@end smallexample
3261
 
3262
@noindent
3263
says that the hypothetical function @code{square} is safe to call
3264
fewer times than the program says.
3265
 
3266
Some of common examples of pure functions are @code{strlen} or @code{memcmp}.
3267
Interesting non-pure functions are functions with infinite loops or those
3268
depending on volatile memory or other system resource, that may change between
3269
two consecutive calls (such as @code{feof} in a multithreading environment).
3270
 
3271
The attribute @code{pure} is not implemented in GCC versions earlier
3272
than 2.96.
3273
 
3274
@item hot
3275
@cindex @code{hot} function attribute
3276
The @code{hot} attribute is used to inform the compiler that a function is a
3277
hot spot of the compiled program.  The function is optimized more aggressively
3278
and on many target it is placed into special subsection of the text section so
3279
all hot functions appears close together improving locality.
3280
 
3281
When profile feedback is available, via @option{-fprofile-use}, hot functions
3282
are automatically detected and this attribute is ignored.
3283
 
3284
The @code{hot} attribute is not implemented in GCC versions earlier
3285
than 4.3.
3286
 
3287
@item cold
3288
@cindex @code{cold} function attribute
3289
The @code{cold} attribute is used to inform the compiler that a function is
3290
unlikely executed.  The function is optimized for size rather than speed and on
3291
many targets it is placed into special subsection of the text section so all
3292
cold functions appears close together improving code locality of non-cold parts
3293
of program.  The paths leading to call of cold functions within code are marked
3294
as unlikely by the branch prediction mechanism. It is thus useful to mark
3295
functions used to handle unlikely conditions, such as @code{perror}, as cold to
3296
improve optimization of hot functions that do call marked functions in rare
3297
occasions.
3298
 
3299
When profile feedback is available, via @option{-fprofile-use}, hot functions
3300
are automatically detected and this attribute is ignored.
3301
 
3302
The @code{cold} attribute is not implemented in GCC versions earlier than 4.3.
3303
 
3304
@item regparm (@var{number})
3305
@cindex @code{regparm} attribute
3306
@cindex functions that are passed arguments in registers on the 386
3307
On the Intel 386, the @code{regparm} attribute causes the compiler to
3308
pass arguments number one to @var{number} if they are of integral type
3309
in registers EAX, EDX, and ECX instead of on the stack.  Functions that
3310
take a variable number of arguments will continue to be passed all of their
3311
arguments on the stack.
3312
 
3313
Beware that on some ELF systems this attribute is unsuitable for
3314
global functions in shared libraries with lazy binding (which is the
3315
default).  Lazy binding will send the first call via resolving code in
3316
the loader, which might assume EAX, EDX and ECX can be clobbered, as
3317
per the standard calling conventions.  Solaris 8 is affected by this.
3318
GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
3319
safe since the loaders there save EAX, EDX and ECX.  (Lazy binding can be
3320
disabled with the linker or the loader if desired, to avoid the
3321
problem.)
3322
 
3323
@item sseregparm
3324
@cindex @code{sseregparm} attribute
3325
On the Intel 386 with SSE support, the @code{sseregparm} attribute
3326
causes the compiler to pass up to 3 floating point arguments in
3327
SSE registers instead of on the stack.  Functions that take a
3328
variable number of arguments will continue to pass all of their
3329
floating point arguments on the stack.
3330
 
3331
@item force_align_arg_pointer
3332
@cindex @code{force_align_arg_pointer} attribute
3333
On the Intel x86, the @code{force_align_arg_pointer} attribute may be
3334
applied to individual function definitions, generating an alternate
3335
prologue and epilogue that realigns the runtime stack if necessary.
3336
This supports mixing legacy codes that run with a 4-byte aligned stack
3337
with modern codes that keep a 16-byte stack for SSE compatibility.
3338
 
3339
@item resbank
3340
@cindex @code{resbank} attribute
3341
On the SH2A target, this attribute enables the high-speed register
3342
saving and restoration using a register bank for @code{interrupt_handler}
3343
routines.  Saving to the bank is performed automatically after the CPU
3344
accepts an interrupt that uses a register bank.
3345
 
3346
The nineteen 32-bit registers comprising general register R0 to R14,
3347
control register GBR, and system registers MACH, MACL, and PR and the
3348
vector table address offset are saved into a register bank.  Register
3349
banks are stacked in first-in last-out (FILO) sequence.  Restoration
3350
from the bank is executed by issuing a RESBANK instruction.
3351
 
3352
@item returns_twice
3353
@cindex @code{returns_twice} attribute
3354
The @code{returns_twice} attribute tells the compiler that a function may
3355
return more than one time.  The compiler will ensure that all registers
3356
are dead before calling such a function and will emit a warning about
3357
the variables that may be clobbered after the second return from the
3358
function.  Examples of such functions are @code{setjmp} and @code{vfork}.
3359
The @code{longjmp}-like counterpart of such function, if any, might need
3360
to be marked with the @code{noreturn} attribute.
3361
 
3362
@item saveall
3363
@cindex save all registers on the Blackfin, H8/300, H8/300H, and H8S
3364
Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
3365
all registers except the stack pointer should be saved in the prologue
3366
regardless of whether they are used or not.
3367
 
3368
@item save_volatiles
3369
@cindex save volatile registers on the MicroBlaze
3370
Use this attribute on the MicroBlaze to indicate that the function is
3371
an interrupt handler.  All volatile registers (in addition to non-volatile
3372
registers) will be saved in the function prologue.  If the function is a leaf
3373
function, only volatiles used by the function are saved.  A normal function
3374
return is generated instead of a return from interrupt.
3375
 
3376
@item section ("@var{section-name}")
3377
@cindex @code{section} function attribute
3378
Normally, the compiler places the code it generates in the @code{text} section.
3379
Sometimes, however, you need additional sections, or you need certain
3380
particular functions to appear in special sections.  The @code{section}
3381
attribute specifies that a function lives in a particular section.
3382
For example, the declaration:
3383
 
3384
@smallexample
3385
extern void foobar (void) __attribute__ ((section ("bar")));
3386
@end smallexample
3387
 
3388
@noindent
3389
puts the function @code{foobar} in the @code{bar} section.
3390
 
3391
Some file formats do not support arbitrary sections so the @code{section}
3392
attribute is not available on all platforms.
3393
If you need to map the entire contents of a module to a particular
3394
section, consider using the facilities of the linker instead.
3395
 
3396
@item sentinel
3397
@cindex @code{sentinel} function attribute
3398
This function attribute ensures that a parameter in a function call is
3399
an explicit @code{NULL}.  The attribute is only valid on variadic
3400
functions.  By default, the sentinel is located at position zero, the
3401
last parameter of the function call.  If an optional integer position
3402
argument P is supplied to the attribute, the sentinel must be located at
3403
position P counting backwards from the end of the argument list.
3404
 
3405
@smallexample
3406
__attribute__ ((sentinel))
3407
is equivalent to
3408
__attribute__ ((sentinel(0)))
3409
@end smallexample
3410
 
3411
The attribute is automatically set with a position of 0 for the built-in
3412
functions @code{execl} and @code{execlp}.  The built-in function
3413
@code{execle} has the attribute set with a position of 1.
3414
 
3415
A valid @code{NULL} in this context is defined as zero with any pointer
3416
type.  If your system defines the @code{NULL} macro with an integer type
3417
then you need to add an explicit cast.  GCC replaces @code{stddef.h}
3418
with a copy that redefines NULL appropriately.
3419
 
3420
The warnings for missing or incorrect sentinels are enabled with
3421
@option{-Wformat}.
3422
 
3423
@item short_call
3424
See long_call/short_call.
3425
 
3426
@item shortcall
3427
See longcall/shortcall.
3428
 
3429
@item signal
3430
@cindex signal handler functions on the AVR processors
3431
Use this attribute on the AVR to indicate that the specified
3432
function is a signal handler.  The compiler will generate function
3433
entry and exit sequences suitable for use in a signal handler when this
3434
attribute is present.  Interrupts will be disabled inside the function.
3435
 
3436
@item sp_switch
3437
Use this attribute on the SH to indicate an @code{interrupt_handler}
3438
function should switch to an alternate stack.  It expects a string
3439
argument that names a global variable holding the address of the
3440
alternate stack.
3441
 
3442
@smallexample
3443
void *alt_stack;
3444
void f () __attribute__ ((interrupt_handler,
3445
                          sp_switch ("alt_stack")));
3446
@end smallexample
3447
 
3448
@item stdcall
3449
@cindex functions that pop the argument stack on the 386
3450
On the Intel 386, the @code{stdcall} attribute causes the compiler to
3451
assume that the called function will pop off the stack space used to
3452
pass arguments, unless it takes a variable number of arguments.
3453
 
3454
@item syscall_linkage
3455
@cindex @code{syscall_linkage} attribute
3456
This attribute is used to modify the IA64 calling convention by marking
3457
all input registers as live at all function exits.  This makes it possible
3458
to restart a system call after an interrupt without having to save/restore
3459
the input registers.  This also prevents kernel data from leaking into
3460
application code.
3461
 
3462
@item target
3463
@cindex @code{target} function attribute
3464
The @code{target} attribute is used to specify that a function is to
3465
be compiled with different target options than specified on the
3466
command line.  This can be used for instance to have functions
3467
compiled with a different ISA (instruction set architecture) than the
3468
default.  You can also use the @samp{#pragma GCC target} pragma to set
3469
more than one function to be compiled with specific target options.
3470
@xref{Function Specific Option Pragmas}, for details about the
3471
@samp{#pragma GCC target} pragma.
3472
 
3473
For instance on a 386, you could compile one function with
3474
@code{target("sse4.1,arch=core2")} and another with
3475
@code{target("sse4a,arch=amdfam10")} that would be equivalent to
3476
compiling the first function with @option{-msse4.1} and
3477
@option{-march=core2} options, and the second function with
3478
@option{-msse4a} and @option{-march=amdfam10} options.  It is up to the
3479
user to make sure that a function is only invoked on a machine that
3480
supports the particular ISA it was compiled for (for example by using
3481
@code{cpuid} on 386 to determine what feature bits and architecture
3482
family are used).
3483
 
3484
@smallexample
3485
int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3486
int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3487
@end smallexample
3488
 
3489
On the 386, the following options are allowed:
3490
 
3491
@table @samp
3492
@item abm
3493
@itemx no-abm
3494
@cindex @code{target("abm")} attribute
3495
Enable/disable the generation of the advanced bit instructions.
3496
 
3497
@item aes
3498
@itemx no-aes
3499
@cindex @code{target("aes")} attribute
3500
Enable/disable the generation of the AES instructions.
3501
 
3502
@item mmx
3503
@itemx no-mmx
3504
@cindex @code{target("mmx")} attribute
3505
Enable/disable the generation of the MMX instructions.
3506
 
3507
@item pclmul
3508
@itemx no-pclmul
3509
@cindex @code{target("pclmul")} attribute
3510
Enable/disable the generation of the PCLMUL instructions.
3511
 
3512
@item popcnt
3513
@itemx no-popcnt
3514
@cindex @code{target("popcnt")} attribute
3515
Enable/disable the generation of the POPCNT instruction.
3516
 
3517
@item sse
3518
@itemx no-sse
3519
@cindex @code{target("sse")} attribute
3520
Enable/disable the generation of the SSE instructions.
3521
 
3522
@item sse2
3523
@itemx no-sse2
3524
@cindex @code{target("sse2")} attribute
3525
Enable/disable the generation of the SSE2 instructions.
3526
 
3527
@item sse3
3528
@itemx no-sse3
3529
@cindex @code{target("sse3")} attribute
3530
Enable/disable the generation of the SSE3 instructions.
3531
 
3532
@item sse4
3533
@itemx no-sse4
3534
@cindex @code{target("sse4")} attribute
3535
Enable/disable the generation of the SSE4 instructions (both SSE4.1
3536
and SSE4.2).
3537
 
3538
@item sse4.1
3539
@itemx no-sse4.1
3540
@cindex @code{target("sse4.1")} attribute
3541
Enable/disable the generation of the sse4.1 instructions.
3542
 
3543
@item sse4.2
3544
@itemx no-sse4.2
3545
@cindex @code{target("sse4.2")} attribute
3546
Enable/disable the generation of the sse4.2 instructions.
3547
 
3548
@item sse4a
3549
@itemx no-sse4a
3550
@cindex @code{target("sse4a")} attribute
3551
Enable/disable the generation of the SSE4A instructions.
3552
 
3553
@item fma4
3554
@itemx no-fma4
3555
@cindex @code{target("fma4")} attribute
3556
Enable/disable the generation of the FMA4 instructions.
3557
 
3558
@item xop
3559
@itemx no-xop
3560
@cindex @code{target("xop")} attribute
3561
Enable/disable the generation of the XOP instructions.
3562
 
3563
@item lwp
3564
@itemx no-lwp
3565
@cindex @code{target("lwp")} attribute
3566
Enable/disable the generation of the LWP instructions.
3567
 
3568
@item ssse3
3569
@itemx no-ssse3
3570
@cindex @code{target("ssse3")} attribute
3571
Enable/disable the generation of the SSSE3 instructions.
3572
 
3573
@item cld
3574
@itemx no-cld
3575
@cindex @code{target("cld")} attribute
3576
Enable/disable the generation of the CLD before string moves.
3577
 
3578
@item fancy-math-387
3579
@itemx no-fancy-math-387
3580
@cindex @code{target("fancy-math-387")} attribute
3581
Enable/disable the generation of the @code{sin}, @code{cos}, and
3582
@code{sqrt} instructions on the 387 floating point unit.
3583
 
3584
@item fused-madd
3585
@itemx no-fused-madd
3586
@cindex @code{target("fused-madd")} attribute
3587
Enable/disable the generation of the fused multiply/add instructions.
3588
 
3589
@item ieee-fp
3590
@itemx no-ieee-fp
3591
@cindex @code{target("ieee-fp")} attribute
3592
Enable/disable the generation of floating point that depends on IEEE arithmetic.
3593
 
3594
@item inline-all-stringops
3595
@itemx no-inline-all-stringops
3596
@cindex @code{target("inline-all-stringops")} attribute
3597
Enable/disable inlining of string operations.
3598
 
3599
@item inline-stringops-dynamically
3600
@itemx no-inline-stringops-dynamically
3601
@cindex @code{target("inline-stringops-dynamically")} attribute
3602
Enable/disable the generation of the inline code to do small string
3603
operations and calling the library routines for large operations.
3604
 
3605
@item align-stringops
3606
@itemx no-align-stringops
3607
@cindex @code{target("align-stringops")} attribute
3608
Do/do not align destination of inlined string operations.
3609
 
3610
@item recip
3611
@itemx no-recip
3612
@cindex @code{target("recip")} attribute
3613
Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
3614
instructions followed an additional Newton-Raphson step instead of
3615
doing a floating point division.
3616
 
3617
@item arch=@var{ARCH}
3618
@cindex @code{target("arch=@var{ARCH}")} attribute
3619
Specify the architecture to generate code for in compiling the function.
3620
 
3621
@item tune=@var{TUNE}
3622
@cindex @code{target("tune=@var{TUNE}")} attribute
3623
Specify the architecture to tune for in compiling the function.
3624
 
3625
@item fpmath=@var{FPMATH}
3626
@cindex @code{target("fpmath=@var{FPMATH}")} attribute
3627
Specify which floating point unit to use.  The
3628
@code{target("fpmath=sse,387")} option must be specified as
3629
@code{target("fpmath=sse+387")} because the comma would separate
3630
different options.
3631
@end table
3632
 
3633
On the PowerPC, the following options are allowed:
3634
 
3635
@table @samp
3636
@item altivec
3637
@itemx no-altivec
3638
@cindex @code{target("altivec")} attribute
3639
Generate code that uses (does not use) AltiVec instructions.  In
3640
32-bit code, you cannot enable Altivec instructions unless
3641
@option{-mabi=altivec} was used on the command line.
3642
 
3643
@item cmpb
3644
@itemx no-cmpb
3645
@cindex @code{target("cmpb")} attribute
3646
Generate code that uses (does not use) the compare bytes instruction
3647
implemented on the POWER6 processor and other processors that support
3648
the PowerPC V2.05 architecture.
3649
 
3650
@item dlmzb
3651
@itemx no-dlmzb
3652
@cindex @code{target("dlmzb")} attribute
3653
Generate code that uses (does not use) the string-search @samp{dlmzb}
3654
instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
3655
generated by default when targetting those processors.
3656
 
3657
@item fprnd
3658
@itemx no-fprnd
3659
@cindex @code{target("fprnd")} attribute
3660
Generate code that uses (does not use) the FP round to integer
3661
instructions implemented on the POWER5+ processor and other processors
3662
that support the PowerPC V2.03 architecture.
3663
 
3664
@item hard-dfp
3665
@itemx no-hard-dfp
3666
@cindex @code{target("hard-dfp")} attribute
3667
Generate code that uses (does not use) the decimal floating point
3668
instructions implemented on some POWER processors.
3669
 
3670
@item isel
3671
@itemx no-isel
3672
@cindex @code{target("isel")} attribute
3673
Generate code that uses (does not use) ISEL instruction.
3674
 
3675
@item mfcrf
3676
@itemx no-mfcrf
3677
@cindex @code{target("mfcrf")} attribute
3678
Generate code that uses (does not use) the move from condition
3679
register field instruction implemented on the POWER4 processor and
3680
other processors that support the PowerPC V2.01 architecture.
3681
 
3682
@item mfpgpr
3683
@itemx no-mfpgpr
3684
@cindex @code{target("mfpgpr")} attribute
3685
Generate code that uses (does not use) the FP move to/from general
3686
purpose register instructions implemented on the POWER6X processor and
3687
other processors that support the extended PowerPC V2.05 architecture.
3688
 
3689
@item mulhw
3690
@itemx no-mulhw
3691
@cindex @code{target("mulhw")} attribute
3692
Generate code that uses (does not use) the half-word multiply and
3693
multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
3694
These instructions are generated by default when targetting those
3695
processors.
3696
 
3697
@item multiple
3698
@itemx no-multiple
3699
@cindex @code{target("multiple")} attribute
3700
Generate code that uses (does not use) the load multiple word
3701
instructions and the store multiple word instructions.
3702
 
3703
@item update
3704
@itemx no-update
3705
@cindex @code{target("update")} attribute
3706
Generate code that uses (does not use) the load or store instructions
3707
that update the base register to the address of the calculated memory
3708
location.
3709
 
3710
@item popcntb
3711
@itemx no-popcntb
3712
@cindex @code{target("popcntb")} attribute
3713
Generate code that uses (does not use) the popcount and double
3714
precision FP reciprocal estimate instruction implemented on the POWER5
3715
processor and other processors that support the PowerPC V2.02
3716
architecture.
3717
 
3718
@item popcntd
3719
@itemx no-popcntd
3720
@cindex @code{target("popcntd")} attribute
3721
Generate code that uses (does not use) the popcount instruction
3722
implemented on the POWER7 processor and other processors that support
3723
the PowerPC V2.06 architecture.
3724
 
3725
@item powerpc-gfxopt
3726
@itemx no-powerpc-gfxopt
3727
@cindex @code{target("powerpc-gfxopt")} attribute
3728
Generate code that uses (does not use) the optional PowerPC
3729
architecture instructions in the Graphics group, including
3730
floating-point select.
3731
 
3732
@item powerpc-gpopt
3733
@itemx no-powerpc-gpopt
3734
@cindex @code{target("powerpc-gpopt")} attribute
3735
Generate code that uses (does not use) the optional PowerPC
3736
architecture instructions in the General Purpose group, including
3737
floating-point square root.
3738
 
3739
@item recip-precision
3740
@itemx no-recip-precision
3741
@cindex @code{target("recip-precision")} attribute
3742
Assume (do not assume) that the reciprocal estimate instructions
3743
provide higher precision estimates than is mandated by the powerpc
3744
ABI.
3745
 
3746
@item string
3747
@itemx no-string
3748
@cindex @code{target("string")} attribute
3749
Generate code that uses (does not use) the load string instructions
3750
and the store string word instructions to save multiple registers and
3751
do small block moves.
3752
 
3753
@item vsx
3754
@itemx no-vsx
3755
@cindex @code{target("vsx")} attribute
3756
Generate code that uses (does not use) vector/scalar (VSX)
3757
instructions, and also enable the use of built-in functions that allow
3758
more direct access to the VSX instruction set.  In 32-bit code, you
3759
cannot enable VSX or Altivec instructions unless
3760
@option{-mabi=altivec} was used on the command line.
3761
 
3762
@item friz
3763
@itemx no-friz
3764
@cindex @code{target("friz")} attribute
3765
Generate (do not generate) the @code{friz} instruction when the
3766
@option{-funsafe-math-optimizations} option is used to optimize
3767
rounding a floating point value to 64-bit integer and back to floating
3768
point.  The @code{friz} instruction does not return the same value if
3769
the floating point number is too large to fit in an integer.
3770
 
3771
@item avoid-indexed-addresses
3772
@itemx no-avoid-indexed-addresses
3773
@cindex @code{target("avoid-indexed-addresses")} attribute
3774
Generate code that tries to avoid (not avoid) the use of indexed load
3775
or store instructions.
3776
 
3777
@item paired
3778
@itemx no-paired
3779
@cindex @code{target("paired")} attribute
3780
Generate code that uses (does not use) the generation of PAIRED simd
3781
instructions.
3782
 
3783
@item longcall
3784
@itemx no-longcall
3785
@cindex @code{target("longcall")} attribute
3786
Generate code that assumes (does not assume) that all calls are far
3787
away so that a longer more expensive calling sequence is required.
3788
 
3789
@item cpu=@var{CPU}
3790
@cindex @code{target("cpu=@var{CPU}")} attribute
3791
Specify the architecture to generate code for when compiling the
3792
function.  If you select the @code{target("cpu=power7")} attribute when
3793
generating 32-bit code, VSX and Altivec instructions are not generated
3794
unless you use the @option{-mabi=altivec} option on the command line.
3795
 
3796
@item tune=@var{TUNE}
3797
@cindex @code{target("tune=@var{TUNE}")} attribute
3798
Specify the architecture to tune for when compiling the function.  If
3799
you do not specify the @code{target("tune=@var{TUNE}")} attribute and
3800
you do specify the @code{target("cpu=@var{CPU}")} attribute,
3801
compilation will tune for the @var{CPU} architecture, and not the
3802
default tuning specified on the command line.
3803
@end table
3804
 
3805
On the 386/x86_64 and PowerPC backends, you can use either multiple
3806
strings to specify multiple options, or you can separate the option
3807
with a comma (@code{,}).
3808
 
3809
On the 386/x86_64 and PowerPC backends, the inliner will not inline a
3810
function that has different target options than the caller, unless the
3811
callee has a subset of the target options of the caller.  For example
3812
a function declared with @code{target("sse3")} can inline a function
3813
with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
3814
 
3815
The @code{target} attribute is not implemented in GCC versions earlier
3816
than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends.  It is
3817
not currently implemented for other backends.
3818
 
3819
@item tiny_data
3820
@cindex tiny data section on the H8/300H and H8S
3821
Use this attribute on the H8/300H and H8S to indicate that the specified
3822
variable should be placed into the tiny data section.
3823
The compiler will generate more efficient code for loads and stores
3824
on data in the tiny data section.  Note the tiny data area is limited to
3825
slightly under 32kbytes of data.
3826
 
3827
@item trap_exit
3828
Use this attribute on the SH for an @code{interrupt_handler} to return using
3829
@code{trapa} instead of @code{rte}.  This attribute expects an integer
3830
argument specifying the trap number to be used.
3831
 
3832
@item unused
3833
@cindex @code{unused} attribute.
3834
This attribute, attached to a function, means that the function is meant
3835
to be possibly unused.  GCC will not produce a warning for this
3836
function.
3837
 
3838
@item used
3839
@cindex @code{used} attribute.
3840
This attribute, attached to a function, means that code must be emitted
3841
for the function even if it appears that the function is not referenced.
3842
This is useful, for example, when the function is referenced only in
3843
inline assembly.
3844
 
3845
When applied to a member function of a C++ class template, the
3846
attribute also means that the function will be instantiated if the
3847
class itself is instantiated.
3848
 
3849
@item version_id
3850
@cindex @code{version_id} attribute
3851
This IA64 HP-UX attribute, attached to a global variable or function, renames a
3852
symbol to contain a version string, thus allowing for function level
3853
versioning.  HP-UX system header files may use version level functioning
3854
for some system calls.
3855
 
3856
@smallexample
3857
extern int foo () __attribute__((version_id ("20040821")));
3858
@end smallexample
3859
 
3860
Calls to @var{foo} will be mapped to calls to @var{foo@{20040821@}}.
3861
 
3862
@item visibility ("@var{visibility_type}")
3863
@cindex @code{visibility} attribute
3864
This attribute affects the linkage of the declaration to which it is attached.
3865
There are four supported @var{visibility_type} values: default,
3866
hidden, protected or internal visibility.
3867
 
3868
@smallexample
3869
void __attribute__ ((visibility ("protected")))
3870
f () @{ /* @r{Do something.} */; @}
3871
int i __attribute__ ((visibility ("hidden")));
3872
@end smallexample
3873
 
3874
The possible values of @var{visibility_type} correspond to the
3875
visibility settings in the ELF gABI.
3876
 
3877
@table @dfn
3878
@c keep this list of visibilities in alphabetical order.
3879
 
3880
@item default
3881
Default visibility is the normal case for the object file format.
3882
This value is available for the visibility attribute to override other
3883
options that may change the assumed visibility of entities.
3884
 
3885
On ELF, default visibility means that the declaration is visible to other
3886
modules and, in shared libraries, means that the declared entity may be
3887
overridden.
3888
 
3889
On Darwin, default visibility means that the declaration is visible to
3890
other modules.
3891
 
3892
Default visibility corresponds to ``external linkage'' in the language.
3893
 
3894
@item hidden
3895
Hidden visibility indicates that the entity declared will have a new
3896
form of linkage, which we'll call ``hidden linkage''.  Two
3897
declarations of an object with hidden linkage refer to the same object
3898
if they are in the same shared object.
3899
 
3900
@item internal
3901
Internal visibility is like hidden visibility, but with additional
3902
processor specific semantics.  Unless otherwise specified by the
3903
psABI, GCC defines internal visibility to mean that a function is
3904
@emph{never} called from another module.  Compare this with hidden
3905
functions which, while they cannot be referenced directly by other
3906
modules, can be referenced indirectly via function pointers.  By
3907
indicating that a function cannot be called from outside the module,
3908
GCC may for instance omit the load of a PIC register since it is known
3909
that the calling function loaded the correct value.
3910
 
3911
@item protected
3912
Protected visibility is like default visibility except that it
3913
indicates that references within the defining module will bind to the
3914
definition in that module.  That is, the declared entity cannot be
3915
overridden by another module.
3916
 
3917
@end table
3918
 
3919
All visibilities are supported on many, but not all, ELF targets
3920
(supported when the assembler supports the @samp{.visibility}
3921
pseudo-op).  Default visibility is supported everywhere.  Hidden
3922
visibility is supported on Darwin targets.
3923
 
3924
The visibility attribute should be applied only to declarations which
3925
would otherwise have external linkage.  The attribute should be applied
3926
consistently, so that the same entity should not be declared with
3927
different settings of the attribute.
3928
 
3929
In C++, the visibility attribute applies to types as well as functions
3930
and objects, because in C++ types have linkage.  A class must not have
3931
greater visibility than its non-static data member types and bases,
3932
and class members default to the visibility of their class.  Also, a
3933
declaration without explicit visibility is limited to the visibility
3934
of its type.
3935
 
3936
In C++, you can mark member functions and static member variables of a
3937
class with the visibility attribute.  This is useful if you know a
3938
particular method or static member variable should only be used from
3939
one shared object; then you can mark it hidden while the rest of the
3940
class has default visibility.  Care must be taken to avoid breaking
3941
the One Definition Rule; for example, it is usually not useful to mark
3942
an inline method as hidden without marking the whole class as hidden.
3943
 
3944
A C++ namespace declaration can also have the visibility attribute.
3945
This attribute applies only to the particular namespace body, not to
3946
other definitions of the same namespace; it is equivalent to using
3947
@samp{#pragma GCC visibility} before and after the namespace
3948
definition (@pxref{Visibility Pragmas}).
3949
 
3950
In C++, if a template argument has limited visibility, this
3951
restriction is implicitly propagated to the template instantiation.
3952
Otherwise, template instantiations and specializations default to the
3953
visibility of their template.
3954
 
3955
If both the template and enclosing class have explicit visibility, the
3956
visibility from the template is used.
3957
 
3958
@item vliw
3959
@cindex @code{vliw} attribute
3960
On MeP, the @code{vliw} attribute tells the compiler to emit
3961
instructions in VLIW mode instead of core mode.  Note that this
3962
attribute is not allowed unless a VLIW coprocessor has been configured
3963
and enabled through command line options.
3964
 
3965
@item warn_unused_result
3966
@cindex @code{warn_unused_result} attribute
3967
The @code{warn_unused_result} attribute causes a warning to be emitted
3968
if a caller of the function with this attribute does not use its
3969
return value.  This is useful for functions where not checking
3970
the result is either a security problem or always a bug, such as
3971
@code{realloc}.
3972
 
3973
@smallexample
3974
int fn () __attribute__ ((warn_unused_result));
3975
int foo ()
3976
@{
3977
  if (fn () < 0) return -1;
3978
  fn ();
3979
  return 0;
3980
@}
3981
@end smallexample
3982
 
3983
results in warning on line 5.
3984
 
3985
@item weak
3986
@cindex @code{weak} attribute
3987
The @code{weak} attribute causes the declaration to be emitted as a weak
3988
symbol rather than a global.  This is primarily useful in defining
3989
library functions which can be overridden in user code, though it can
3990
also be used with non-function declarations.  Weak symbols are supported
3991
for ELF targets, and also for a.out targets when using the GNU assembler
3992
and linker.
3993
 
3994
@item weakref
3995
@itemx weakref ("@var{target}")
3996
@cindex @code{weakref} attribute
3997
The @code{weakref} attribute marks a declaration as a weak reference.
3998
Without arguments, it should be accompanied by an @code{alias} attribute
3999
naming the target symbol.  Optionally, the @var{target} may be given as
4000
an argument to @code{weakref} itself.  In either case, @code{weakref}
4001
implicitly marks the declaration as @code{weak}.  Without a
4002
@var{target}, given as an argument to @code{weakref} or to @code{alias},
4003
@code{weakref} is equivalent to @code{weak}.
4004
 
4005
@smallexample
4006
static int x() __attribute__ ((weakref ("y")));
4007
/* is equivalent to... */
4008
static int x() __attribute__ ((weak, weakref, alias ("y")));
4009
/* and to... */
4010
static int x() __attribute__ ((weakref));
4011
static int x() __attribute__ ((alias ("y")));
4012
@end smallexample
4013
 
4014
A weak reference is an alias that does not by itself require a
4015
definition to be given for the target symbol.  If the target symbol is
4016
only referenced through weak references, then it becomes a @code{weak}
4017
undefined symbol.  If it is directly referenced, however, then such
4018
strong references prevail, and a definition will be required for the
4019
symbol, not necessarily in the same translation unit.
4020
 
4021
The effect is equivalent to moving all references to the alias to a
4022
separate translation unit, renaming the alias to the aliased symbol,
4023
declaring it as weak, compiling the two separate translation units and
4024
performing a reloadable link on them.
4025
 
4026
At present, a declaration to which @code{weakref} is attached can
4027
only be @code{static}.
4028
 
4029
@end table
4030
 
4031
You can specify multiple attributes in a declaration by separating them
4032
by commas within the double parentheses or by immediately following an
4033
attribute declaration with another attribute declaration.
4034
 
4035
@cindex @code{#pragma}, reason for not using
4036
@cindex pragma, reason for not using
4037
Some people object to the @code{__attribute__} feature, suggesting that
4038
ISO C's @code{#pragma} should be used instead.  At the time
4039
@code{__attribute__} was designed, there were two reasons for not doing
4040
this.
4041
 
4042
@enumerate
4043
@item
4044
It is impossible to generate @code{#pragma} commands from a macro.
4045
 
4046
@item
4047
There is no telling what the same @code{#pragma} might mean in another
4048
compiler.
4049
@end enumerate
4050
 
4051
These two reasons applied to almost any application that might have been
4052
proposed for @code{#pragma}.  It was basically a mistake to use
4053
@code{#pragma} for @emph{anything}.
4054
 
4055
The ISO C99 standard includes @code{_Pragma}, which now allows pragmas
4056
to be generated from macros.  In addition, a @code{#pragma GCC}
4057
namespace is now in use for GCC-specific pragmas.  However, it has been
4058
found convenient to use @code{__attribute__} to achieve a natural
4059
attachment of attributes to their corresponding declarations, whereas
4060
@code{#pragma GCC} is of use for constructs that do not naturally form
4061
part of the grammar.  @xref{Other Directives,,Miscellaneous
4062
Preprocessing Directives, cpp, The GNU C Preprocessor}.
4063
 
4064
@node Attribute Syntax
4065
@section Attribute Syntax
4066
@cindex attribute syntax
4067
 
4068
This section describes the syntax with which @code{__attribute__} may be
4069
used, and the constructs to which attribute specifiers bind, for the C
4070
language.  Some details may vary for C++ and Objective-C@.  Because of
4071
infelicities in the grammar for attributes, some forms described here
4072
may not be successfully parsed in all cases.
4073
 
4074
There are some problems with the semantics of attributes in C++.  For
4075
example, there are no manglings for attributes, although they may affect
4076
code generation, so problems may arise when attributed types are used in
4077
conjunction with templates or overloading.  Similarly, @code{typeid}
4078
does not distinguish between types with different attributes.  Support
4079
for attributes in C++ may be restricted in future to attributes on
4080
declarations only, but not on nested declarators.
4081
 
4082
@xref{Function Attributes}, for details of the semantics of attributes
4083
applying to functions.  @xref{Variable Attributes}, for details of the
4084
semantics of attributes applying to variables.  @xref{Type Attributes},
4085
for details of the semantics of attributes applying to structure, union
4086
and enumerated types.
4087
 
4088
An @dfn{attribute specifier} is of the form
4089
@code{__attribute__ ((@var{attribute-list}))}.  An @dfn{attribute list}
4090
is a possibly empty comma-separated sequence of @dfn{attributes}, where
4091
each attribute is one of the following:
4092
 
4093
@itemize @bullet
4094
@item
4095
Empty.  Empty attributes are ignored.
4096
 
4097
@item
4098
A word (which may be an identifier such as @code{unused}, or a reserved
4099
word such as @code{const}).
4100
 
4101
@item
4102
A word, followed by, in parentheses, parameters for the attribute.
4103
These parameters take one of the following forms:
4104
 
4105
@itemize @bullet
4106
@item
4107
An identifier.  For example, @code{mode} attributes use this form.
4108
 
4109
@item
4110
An identifier followed by a comma and a non-empty comma-separated list
4111
of expressions.  For example, @code{format} attributes use this form.
4112
 
4113
@item
4114
A possibly empty comma-separated list of expressions.  For example,
4115
@code{format_arg} attributes use this form with the list being a single
4116
integer constant expression, and @code{alias} attributes use this form
4117
with the list being a single string constant.
4118
@end itemize
4119
@end itemize
4120
 
4121
An @dfn{attribute specifier list} is a sequence of one or more attribute
4122
specifiers, not separated by any other tokens.
4123
 
4124
In GNU C, an attribute specifier list may appear after the colon following a
4125
label, other than a @code{case} or @code{default} label.  The only
4126
attribute it makes sense to use after a label is @code{unused}.  This
4127
feature is intended for code generated by programs which contains labels
4128
that may be unused but which is compiled with @option{-Wall}.  It would
4129
not normally be appropriate to use in it human-written code, though it
4130
could be useful in cases where the code that jumps to the label is
4131
contained within an @code{#ifdef} conditional.  GNU C++ only permits
4132
attributes on labels if the attribute specifier is immediately
4133
followed by a semicolon (i.e., the label applies to an empty
4134
statement).  If the semicolon is missing, C++ label attributes are
4135
ambiguous, as it is permissible for a declaration, which could begin
4136
with an attribute list, to be labelled in C++.  Declarations cannot be
4137
labelled in C90 or C99, so the ambiguity does not arise there.
4138
 
4139
An attribute specifier list may appear as part of a @code{struct},
4140
@code{union} or @code{enum} specifier.  It may go either immediately
4141
after the @code{struct}, @code{union} or @code{enum} keyword, or after
4142
the closing brace.  The former syntax is preferred.
4143
Where attribute specifiers follow the closing brace, they are considered
4144
to relate to the structure, union or enumerated type defined, not to any
4145
enclosing declaration the type specifier appears in, and the type
4146
defined is not complete until after the attribute specifiers.
4147
@c Otherwise, there would be the following problems: a shift/reduce
4148
@c conflict between attributes binding the struct/union/enum and
4149
@c binding to the list of specifiers/qualifiers; and "aligned"
4150
@c attributes could use sizeof for the structure, but the size could be
4151
@c changed later by "packed" attributes.
4152
 
4153
Otherwise, an attribute specifier appears as part of a declaration,
4154
counting declarations of unnamed parameters and type names, and relates
4155
to that declaration (which may be nested in another declaration, for
4156
example in the case of a parameter declaration), or to a particular declarator
4157
within a declaration.  Where an
4158
attribute specifier is applied to a parameter declared as a function or
4159
an array, it should apply to the function or array rather than the
4160
pointer to which the parameter is implicitly converted, but this is not
4161
yet correctly implemented.
4162
 
4163
Any list of specifiers and qualifiers at the start of a declaration may
4164
contain attribute specifiers, whether or not such a list may in that
4165
context contain storage class specifiers.  (Some attributes, however,
4166
are essentially in the nature of storage class specifiers, and only make
4167
sense where storage class specifiers may be used; for example,
4168
@code{section}.)  There is one necessary limitation to this syntax: the
4169
first old-style parameter declaration in a function definition cannot
4170
begin with an attribute specifier, because such an attribute applies to
4171
the function instead by syntax described below (which, however, is not
4172
yet implemented in this case).  In some other cases, attribute
4173
specifiers are permitted by this grammar but not yet supported by the
4174
compiler.  All attribute specifiers in this place relate to the
4175
declaration as a whole.  In the obsolescent usage where a type of
4176
@code{int} is implied by the absence of type specifiers, such a list of
4177
specifiers and qualifiers may be an attribute specifier list with no
4178
other specifiers or qualifiers.
4179
 
4180
At present, the first parameter in a function prototype must have some
4181
type specifier which is not an attribute specifier; this resolves an
4182
ambiguity in the interpretation of @code{void f(int
4183
(__attribute__((foo)) x))}, but is subject to change.  At present, if
4184
the parentheses of a function declarator contain only attributes then
4185
those attributes are ignored, rather than yielding an error or warning
4186
or implying a single parameter of type int, but this is subject to
4187
change.
4188
 
4189
An attribute specifier list may appear immediately before a declarator
4190
(other than the first) in a comma-separated list of declarators in a
4191
declaration of more than one identifier using a single list of
4192
specifiers and qualifiers.  Such attribute specifiers apply
4193
only to the identifier before whose declarator they appear.  For
4194
example, in
4195
 
4196
@smallexample
4197
__attribute__((noreturn)) void d0 (void),
4198
    __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
4199
     d2 (void)
4200
@end smallexample
4201
 
4202
@noindent
4203
the @code{noreturn} attribute applies to all the functions
4204
declared; the @code{format} attribute only applies to @code{d1}.
4205
 
4206
An attribute specifier list may appear immediately before the comma,
4207
@code{=} or semicolon terminating the declaration of an identifier other
4208
than a function definition.  Such attribute specifiers apply
4209
to the declared object or function.  Where an
4210
assembler name for an object or function is specified (@pxref{Asm
4211
Labels}), the attribute must follow the @code{asm}
4212
specification.
4213
 
4214
An attribute specifier list may, in future, be permitted to appear after
4215
the declarator in a function definition (before any old-style parameter
4216
declarations or the function body).
4217
 
4218
Attribute specifiers may be mixed with type qualifiers appearing inside
4219
the @code{[]} of a parameter array declarator, in the C99 construct by
4220
which such qualifiers are applied to the pointer to which the array is
4221
implicitly converted.  Such attribute specifiers apply to the pointer,
4222
not to the array, but at present this is not implemented and they are
4223
ignored.
4224
 
4225
An attribute specifier list may appear at the start of a nested
4226
declarator.  At present, there are some limitations in this usage: the
4227
attributes correctly apply to the declarator, but for most individual
4228
attributes the semantics this implies are not implemented.
4229
When attribute specifiers follow the @code{*} of a pointer
4230
declarator, they may be mixed with any type qualifiers present.
4231
The following describes the formal semantics of this syntax.  It will make the
4232
most sense if you are familiar with the formal specification of
4233
declarators in the ISO C standard.
4234
 
4235
Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
4236
D1}, where @code{T} contains declaration specifiers that specify a type
4237
@var{Type} (such as @code{int}) and @code{D1} is a declarator that
4238
contains an identifier @var{ident}.  The type specified for @var{ident}
4239
for derived declarators whose type does not include an attribute
4240
specifier is as in the ISO C standard.
4241
 
4242
If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
4243
and the declaration @code{T D} specifies the type
4244
``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4245
@code{T D1} specifies the type ``@var{derived-declarator-type-list}
4246
@var{attribute-specifier-list} @var{Type}'' for @var{ident}.
4247
 
4248
If @code{D1} has the form @code{*
4249
@var{type-qualifier-and-attribute-specifier-list} D}, and the
4250
declaration @code{T D} specifies the type
4251
``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4252
@code{T D1} specifies the type ``@var{derived-declarator-type-list}
4253
@var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
4254
@var{ident}.
4255
 
4256
For example,
4257
 
4258
@smallexample
4259
void (__attribute__((noreturn)) ****f) (void);
4260
@end smallexample
4261
 
4262
@noindent
4263
specifies the type ``pointer to pointer to pointer to pointer to
4264
non-returning function returning @code{void}''.  As another example,
4265
 
4266
@smallexample
4267
char *__attribute__((aligned(8))) *f;
4268
@end smallexample
4269
 
4270
@noindent
4271
specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
4272
Note again that this does not work with most attributes; for example,
4273
the usage of @samp{aligned} and @samp{noreturn} attributes given above
4274
is not yet supported.
4275
 
4276
For compatibility with existing code written for compiler versions that
4277
did not implement attributes on nested declarators, some laxity is
4278
allowed in the placing of attributes.  If an attribute that only applies
4279
to types is applied to a declaration, it will be treated as applying to
4280
the type of that declaration.  If an attribute that only applies to
4281
declarations is applied to the type of a declaration, it will be treated
4282
as applying to that declaration; and, for compatibility with code
4283
placing the attributes immediately before the identifier declared, such
4284
an attribute applied to a function return type will be treated as
4285
applying to the function type, and such an attribute applied to an array
4286
element type will be treated as applying to the array type.  If an
4287
attribute that only applies to function types is applied to a
4288
pointer-to-function type, it will be treated as applying to the pointer
4289
target type; if such an attribute is applied to a function return type
4290
that is not a pointer-to-function type, it will be treated as applying
4291
to the function type.
4292
 
4293
@node Function Prototypes
4294
@section Prototypes and Old-Style Function Definitions
4295
@cindex function prototype declarations
4296
@cindex old-style function definitions
4297
@cindex promotion of formal parameters
4298
 
4299
GNU C extends ISO C to allow a function prototype to override a later
4300
old-style non-prototype definition.  Consider the following example:
4301
 
4302
@smallexample
4303
/* @r{Use prototypes unless the compiler is old-fashioned.}  */
4304
#ifdef __STDC__
4305
#define P(x) x
4306
#else
4307
#define P(x) ()
4308
#endif
4309
 
4310
/* @r{Prototype function declaration.}  */
4311
int isroot P((uid_t));
4312
 
4313
/* @r{Old-style function definition.}  */
4314
int
4315
isroot (x)   /* @r{??? lossage here ???} */
4316
     uid_t x;
4317
@{
4318
  return x == 0;
4319
@}
4320
@end smallexample
4321
 
4322
Suppose the type @code{uid_t} happens to be @code{short}.  ISO C does
4323
not allow this example, because subword arguments in old-style
4324
non-prototype definitions are promoted.  Therefore in this example the
4325
function definition's argument is really an @code{int}, which does not
4326
match the prototype argument type of @code{short}.
4327
 
4328
This restriction of ISO C makes it hard to write code that is portable
4329
to traditional C compilers, because the programmer does not know
4330
whether the @code{uid_t} type is @code{short}, @code{int}, or
4331
@code{long}.  Therefore, in cases like these GNU C allows a prototype
4332
to override a later old-style definition.  More precisely, in GNU C, a
4333
function prototype argument type overrides the argument type specified
4334
by a later old-style definition if the former type is the same as the
4335
latter type before promotion.  Thus in GNU C the above example is
4336
equivalent to the following:
4337
 
4338
@smallexample
4339
int isroot (uid_t);
4340
 
4341
int
4342
isroot (uid_t x)
4343
@{
4344
  return x == 0;
4345
@}
4346
@end smallexample
4347
 
4348
@noindent
4349
GNU C++ does not support old-style function definitions, so this
4350
extension is irrelevant.
4351
 
4352
@node C++ Comments
4353
@section C++ Style Comments
4354
@cindex @code{//}
4355
@cindex C++ comments
4356
@cindex comments, C++ style
4357
 
4358
In GNU C, you may use C++ style comments, which start with @samp{//} and
4359
continue until the end of the line.  Many other C implementations allow
4360
such comments, and they are included in the 1999 C standard.  However,
4361
C++ style comments are not recognized if you specify an @option{-std}
4362
option specifying a version of ISO C before C99, or @option{-ansi}
4363
(equivalent to @option{-std=c90}).
4364
 
4365
@node Dollar Signs
4366
@section Dollar Signs in Identifier Names
4367
@cindex $
4368
@cindex dollar signs in identifier names
4369
@cindex identifier names, dollar signs in
4370
 
4371
In GNU C, you may normally use dollar signs in identifier names.
4372
This is because many traditional C implementations allow such identifiers.
4373
However, dollar signs in identifiers are not supported on a few target
4374
machines, typically because the target assembler does not allow them.
4375
 
4376
@node Character Escapes
4377
@section The Character @key{ESC} in Constants
4378
 
4379
You can use the sequence @samp{\e} in a string or character constant to
4380
stand for the ASCII character @key{ESC}.
4381
 
4382
@node Variable Attributes
4383
@section Specifying Attributes of Variables
4384
@cindex attribute of variables
4385
@cindex variable attributes
4386
 
4387
The keyword @code{__attribute__} allows you to specify special
4388
attributes of variables or structure fields.  This keyword is followed
4389
by an attribute specification inside double parentheses.  Some
4390
attributes are currently defined generically for variables.
4391
Other attributes are defined for variables on particular target
4392
systems.  Other attributes are available for functions
4393
(@pxref{Function Attributes}) and for types (@pxref{Type Attributes}).
4394
Other front ends might define more attributes
4395
(@pxref{C++ Extensions,,Extensions to the C++ Language}).
4396
 
4397
You may also specify attributes with @samp{__} preceding and following
4398
each keyword.  This allows you to use them in header files without
4399
being concerned about a possible macro of the same name.  For example,
4400
you may use @code{__aligned__} instead of @code{aligned}.
4401
 
4402
@xref{Attribute Syntax}, for details of the exact syntax for using
4403
attributes.
4404
 
4405
@table @code
4406
@cindex @code{aligned} attribute
4407
@item aligned (@var{alignment})
4408
This attribute specifies a minimum alignment for the variable or
4409
structure field, measured in bytes.  For example, the declaration:
4410
 
4411
@smallexample
4412
int x __attribute__ ((aligned (16))) = 0;
4413
@end smallexample
4414
 
4415
@noindent
4416
causes the compiler to allocate the global variable @code{x} on a
4417
16-byte boundary.  On a 68040, this could be used in conjunction with
4418
an @code{asm} expression to access the @code{move16} instruction which
4419
requires 16-byte aligned operands.
4420
 
4421
You can also specify the alignment of structure fields.  For example, to
4422
create a double-word aligned @code{int} pair, you could write:
4423
 
4424
@smallexample
4425
struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
4426
@end smallexample
4427
 
4428
@noindent
4429
This is an alternative to creating a union with a @code{double} member
4430
that forces the union to be double-word aligned.
4431
 
4432
As in the preceding examples, you can explicitly specify the alignment
4433
(in bytes) that you wish the compiler to use for a given variable or
4434
structure field.  Alternatively, you can leave out the alignment factor
4435
and just ask the compiler to align a variable or field to the
4436
default alignment for the target architecture you are compiling for.
4437
The default alignment is sufficient for all scalar types, but may not be
4438
enough for all vector types on a target which supports vector operations.
4439
The default alignment is fixed for a particular target ABI.
4440
 
4441
Gcc also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
4442
which is the largest alignment ever used for any data type on the
4443
target machine you are compiling for.  For example, you could write:
4444
 
4445
@smallexample
4446
short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
4447
@end smallexample
4448
 
4449
The compiler automatically sets the alignment for the declared
4450
variable or field to @code{__BIGGEST_ALIGNMENT__}.  Doing this can
4451
often make copy operations more efficient, because the compiler can
4452
use whatever instructions copy the biggest chunks of memory when
4453
performing copies to or from the variables or fields that you have
4454
aligned this way.  Note that the value of @code{__BIGGEST_ALIGNMENT__}
4455
may change depending on command line options.
4456
 
4457
When used on a struct, or struct member, the @code{aligned} attribute can
4458
only increase the alignment; in order to decrease it, the @code{packed}
4459
attribute must be specified as well.  When used as part of a typedef, the
4460
@code{aligned} attribute can both increase and decrease alignment, and
4461
specifying the @code{packed} attribute will generate a warning.
4462
 
4463
Note that the effectiveness of @code{aligned} attributes may be limited
4464
by inherent limitations in your linker.  On many systems, the linker is
4465
only able to arrange for variables to be aligned up to a certain maximum
4466
alignment.  (For some linkers, the maximum supported alignment may
4467
be very very small.)  If your linker is only able to align variables
4468
up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
4469
in an @code{__attribute__} will still only provide you with 8 byte
4470
alignment.  See your linker documentation for further information.
4471
 
4472
The @code{aligned} attribute can also be used for functions
4473
(@pxref{Function Attributes}.)
4474
 
4475
@item cleanup (@var{cleanup_function})
4476
@cindex @code{cleanup} attribute
4477
The @code{cleanup} attribute runs a function when the variable goes
4478
out of scope.  This attribute can only be applied to auto function
4479
scope variables; it may not be applied to parameters or variables
4480
with static storage duration.  The function must take one parameter,
4481
a pointer to a type compatible with the variable.  The return value
4482
of the function (if any) is ignored.
4483
 
4484
If @option{-fexceptions} is enabled, then @var{cleanup_function}
4485
will be run during the stack unwinding that happens during the
4486
processing of the exception.  Note that the @code{cleanup} attribute
4487
does not allow the exception to be caught, only to perform an action.
4488
It is undefined what happens if @var{cleanup_function} does not
4489
return normally.
4490
 
4491
@item common
4492
@itemx nocommon
4493
@cindex @code{common} attribute
4494
@cindex @code{nocommon} attribute
4495
@opindex fcommon
4496
@opindex fno-common
4497
The @code{common} attribute requests GCC to place a variable in
4498
``common'' storage.  The @code{nocommon} attribute requests the
4499
opposite---to allocate space for it directly.
4500
 
4501
These attributes override the default chosen by the
4502
@option{-fno-common} and @option{-fcommon} flags respectively.
4503
 
4504
@item deprecated
4505
@itemx deprecated (@var{msg})
4506
@cindex @code{deprecated} attribute
4507
The @code{deprecated} attribute results in a warning if the variable
4508
is used anywhere in the source file.  This is useful when identifying
4509
variables that are expected to be removed in a future version of a
4510
program.  The warning also includes the location of the declaration
4511
of the deprecated variable, to enable users to easily find further
4512
information about why the variable is deprecated, or what they should
4513
do instead.  Note that the warning only occurs for uses:
4514
 
4515
@smallexample
4516
extern int old_var __attribute__ ((deprecated));
4517
extern int old_var;
4518
int new_fn () @{ return old_var; @}
4519
@end smallexample
4520
 
4521
results in a warning on line 3 but not line 2.  The optional msg
4522
argument, which must be a string, will be printed in the warning if
4523
present.
4524
 
4525
The @code{deprecated} attribute can also be used for functions and
4526
types (@pxref{Function Attributes}, @pxref{Type Attributes}.)
4527
 
4528
@item mode (@var{mode})
4529
@cindex @code{mode} attribute
4530
This attribute specifies the data type for the declaration---whichever
4531
type corresponds to the mode @var{mode}.  This in effect lets you
4532
request an integer or floating point type according to its width.
4533
 
4534
You may also specify a mode of @samp{byte} or @samp{__byte__} to
4535
indicate the mode corresponding to a one-byte integer, @samp{word} or
4536
@samp{__word__} for the mode of a one-word integer, and @samp{pointer}
4537
or @samp{__pointer__} for the mode used to represent pointers.
4538
 
4539
@item packed
4540
@cindex @code{packed} attribute
4541
The @code{packed} attribute specifies that a variable or structure field
4542
should have the smallest possible alignment---one byte for a variable,
4543
and one bit for a field, unless you specify a larger value with the
4544
@code{aligned} attribute.
4545
 
4546
Here is a structure in which the field @code{x} is packed, so that it
4547
immediately follows @code{a}:
4548
 
4549
@smallexample
4550
struct foo
4551
@{
4552
  char a;
4553
  int x[2] __attribute__ ((packed));
4554
@};
4555
@end smallexample
4556
 
4557
@emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
4558
@code{packed} attribute on bit-fields of type @code{char}.  This has
4559
been fixed in GCC 4.4 but the change can lead to differences in the
4560
structure layout.  See the documentation of
4561
@option{-Wpacked-bitfield-compat} for more information.
4562
 
4563
@item section ("@var{section-name}")
4564
@cindex @code{section} variable attribute
4565
Normally, the compiler places the objects it generates in sections like
4566
@code{data} and @code{bss}.  Sometimes, however, you need additional sections,
4567
or you need certain particular variables to appear in special sections,
4568
for example to map to special hardware.  The @code{section}
4569
attribute specifies that a variable (or function) lives in a particular
4570
section.  For example, this small program uses several specific section names:
4571
 
4572
@smallexample
4573
struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
4574
struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
4575
char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
4576
int init_data __attribute__ ((section ("INITDATA")));
4577
 
4578
main()
4579
@{
4580
  /* @r{Initialize stack pointer} */
4581
  init_sp (stack + sizeof (stack));
4582
 
4583
  /* @r{Initialize initialized data} */
4584
  memcpy (&init_data, &data, &edata - &data);
4585
 
4586
  /* @r{Turn on the serial ports} */
4587
  init_duart (&a);
4588
  init_duart (&b);
4589
@}
4590
@end smallexample
4591
 
4592
@noindent
4593
Use the @code{section} attribute with
4594
@emph{global} variables and not @emph{local} variables,
4595
as shown in the example.
4596
 
4597
You may use the @code{section} attribute with initialized or
4598
uninitialized global variables but the linker requires
4599
each object be defined once, with the exception that uninitialized
4600
variables tentatively go in the @code{common} (or @code{bss}) section
4601
and can be multiply ``defined''.  Using the @code{section} attribute
4602
will change what section the variable goes into and may cause the
4603
linker to issue an error if an uninitialized variable has multiple
4604
definitions.  You can force a variable to be initialized with the
4605
@option{-fno-common} flag or the @code{nocommon} attribute.
4606
 
4607
Some file formats do not support arbitrary sections so the @code{section}
4608
attribute is not available on all platforms.
4609
If you need to map the entire contents of a module to a particular
4610
section, consider using the facilities of the linker instead.
4611
 
4612
@item shared
4613
@cindex @code{shared} variable attribute
4614
On Microsoft Windows, in addition to putting variable definitions in a named
4615
section, the section can also be shared among all running copies of an
4616
executable or DLL@.  For example, this small program defines shared data
4617
by putting it in a named section @code{shared} and marking the section
4618
shareable:
4619
 
4620
@smallexample
4621
int foo __attribute__((section ("shared"), shared)) = 0;
4622
 
4623
int
4624
main()
4625
@{
4626
  /* @r{Read and write foo.  All running
4627
     copies see the same value.}  */
4628
  return 0;
4629
@}
4630
@end smallexample
4631
 
4632
@noindent
4633
You may only use the @code{shared} attribute along with @code{section}
4634
attribute with a fully initialized global definition because of the way
4635
linkers work.  See @code{section} attribute for more information.
4636
 
4637
The @code{shared} attribute is only available on Microsoft Windows@.
4638
 
4639
@item tls_model ("@var{tls_model}")
4640
@cindex @code{tls_model} attribute
4641
The @code{tls_model} attribute sets thread-local storage model
4642
(@pxref{Thread-Local}) of a particular @code{__thread} variable,
4643
overriding @option{-ftls-model=} command-line switch on a per-variable
4644
basis.
4645
The @var{tls_model} argument should be one of @code{global-dynamic},
4646
@code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
4647
 
4648
Not all targets support this attribute.
4649
 
4650
@item unused
4651
This attribute, attached to a variable, means that the variable is meant
4652
to be possibly unused.  GCC will not produce a warning for this
4653
variable.
4654
 
4655
@item used
4656
This attribute, attached to a variable, means that the variable must be
4657
emitted even if it appears that the variable is not referenced.
4658
 
4659
When applied to a static data member of a C++ class template, the
4660
attribute also means that the member will be instantiated if the
4661
class itself is instantiated.
4662
 
4663
@item vector_size (@var{bytes})
4664
This attribute specifies the vector size for the variable, measured in
4665
bytes.  For example, the declaration:
4666
 
4667
@smallexample
4668
int foo __attribute__ ((vector_size (16)));
4669
@end smallexample
4670
 
4671
@noindent
4672
causes the compiler to set the mode for @code{foo}, to be 16 bytes,
4673
divided into @code{int} sized units.  Assuming a 32-bit int (a vector of
4674
4 units of 4 bytes), the corresponding mode of @code{foo} will be V4SI@.
4675
 
4676
This attribute is only applicable to integral and float scalars,
4677
although arrays, pointers, and function return values are allowed in
4678
conjunction with this construct.
4679
 
4680
Aggregates with this attribute are invalid, even if they are of the same
4681
size as a corresponding scalar.  For example, the declaration:
4682
 
4683
@smallexample
4684
struct S @{ int a; @};
4685
struct S  __attribute__ ((vector_size (16))) foo;
4686
@end smallexample
4687
 
4688
@noindent
4689
is invalid even if the size of the structure is the same as the size of
4690
the @code{int}.
4691
 
4692
@item selectany
4693
The @code{selectany} attribute causes an initialized global variable to
4694
have link-once semantics.  When multiple definitions of the variable are
4695
encountered by the linker, the first is selected and the remainder are
4696
discarded.  Following usage by the Microsoft compiler, the linker is told
4697
@emph{not} to warn about size or content differences of the multiple
4698
definitions.
4699
 
4700
Although the primary usage of this attribute is for POD types, the
4701
attribute can also be applied to global C++ objects that are initialized
4702
by a constructor.  In this case, the static initialization and destruction
4703
code for the object is emitted in each translation defining the object,
4704
but the calls to the constructor and destructor are protected by a
4705
link-once guard variable.
4706
 
4707
The @code{selectany} attribute is only available on Microsoft Windows
4708
targets.  You can use @code{__declspec (selectany)} as a synonym for
4709
@code{__attribute__ ((selectany))} for compatibility with other
4710
compilers.
4711
 
4712
@item weak
4713
The @code{weak} attribute is described in @ref{Function Attributes}.
4714
 
4715
@item dllimport
4716
The @code{dllimport} attribute is described in @ref{Function Attributes}.
4717
 
4718
@item dllexport
4719
The @code{dllexport} attribute is described in @ref{Function Attributes}.
4720
 
4721
@end table
4722
 
4723
@anchor{AVR Variable Attributes}
4724
@subsection AVR Variable Attributes
4725
 
4726
@table @code
4727
@item progmem
4728
@cindex @code{progmem} AVR variable attribute
4729
The @code{progmem} attribute is used on the AVR to place read-only
4730
data in the non-volatile program memory (flash). The @code{progmem}
4731
attribute accomplishes this by putting respective variables into a
4732
section whose name starts with @code{.progmem}.
4733
 
4734
This attribute works similar to the @code{section} attribute
4735
but adds additional checking. Notice that just like the
4736
@code{section} attribute, @code{progmem} affects the location
4737
of the data but not how this data is accessed.
4738
 
4739
In order to read data located with the @code{progmem} attribute
4740
(inline) assembler must be used.
4741
@example
4742
/* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual,avr-libc}} */
4743
#include <avr/pgmspace.h>
4744
 
4745
/* Locate var in flash memory */
4746
const int var[2] PROGMEM = @{ 1, 2 @};
4747
 
4748
int read_var (int i)
4749
@{
4750
    /* Access var[] by accessor macro from avr/pgmspace.h */
4751
    return (int) pgm_read_word (& var[i]);
4752
@}
4753
@end example
4754
 
4755
AVR is a Harvard architecture processor and data and read-only data
4756
normally resides in the data memory (RAM).
4757
 
4758
See also the @ref{AVR Named Address Spaces} section for
4759
an alternate way to locate and access data in flash memory.
4760
@end table
4761
 
4762
@subsection Blackfin Variable Attributes
4763
 
4764
Three attributes are currently defined for the Blackfin.
4765
 
4766
@table @code
4767
@item l1_data
4768
@itemx l1_data_A
4769
@itemx l1_data_B
4770
@cindex @code{l1_data} variable attribute
4771
@cindex @code{l1_data_A} variable attribute
4772
@cindex @code{l1_data_B} variable attribute
4773
Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
4774
Variables with @code{l1_data} attribute will be put into the specific section
4775
named @code{.l1.data}. Those with @code{l1_data_A} attribute will be put into
4776
the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
4777
attribute will be put into the specific section named @code{.l1.data.B}.
4778
 
4779
@item l2
4780
@cindex @code{l2} variable attribute
4781
Use this attribute on the Blackfin to place the variable into L2 SRAM.
4782
Variables with @code{l2} attribute will be put into the specific section
4783
named @code{.l2.data}.
4784
@end table
4785
 
4786
@subsection M32R/D Variable Attributes
4787
 
4788
One attribute is currently defined for the M32R/D@.
4789
 
4790
@table @code
4791
@item model (@var{model-name})
4792
@cindex variable addressability on the M32R/D
4793
Use this attribute on the M32R/D to set the addressability of an object.
4794
The identifier @var{model-name} is one of @code{small}, @code{medium},
4795
or @code{large}, representing each of the code models.
4796
 
4797
Small model objects live in the lower 16MB of memory (so that their
4798
addresses can be loaded with the @code{ld24} instruction).
4799
 
4800
Medium and large model objects may live anywhere in the 32-bit address space
4801
(the compiler will generate @code{seth/add3} instructions to load their
4802
addresses).
4803
@end table
4804
 
4805
@anchor{MeP Variable Attributes}
4806
@subsection MeP Variable Attributes
4807
 
4808
The MeP target has a number of addressing modes and busses.  The
4809
@code{near} space spans the standard memory space's first 16 megabytes
4810
(24 bits).  The @code{far} space spans the entire 32-bit memory space.
4811
The @code{based} space is a 128 byte region in the memory space which
4812
is addressed relative to the @code{$tp} register.  The @code{tiny}
4813
space is a 65536 byte region relative to the @code{$gp} register.  In
4814
addition to these memory regions, the MeP target has a separate 16-bit
4815
control bus which is specified with @code{cb} attributes.
4816
 
4817
@table @code
4818
 
4819
@item based
4820
Any variable with the @code{based} attribute will be assigned to the
4821
@code{.based} section, and will be accessed with relative to the
4822
@code{$tp} register.
4823
 
4824
@item tiny
4825
Likewise, the @code{tiny} attribute assigned variables to the
4826
@code{.tiny} section, relative to the @code{$gp} register.
4827
 
4828
@item near
4829
Variables with the @code{near} attribute are assumed to have addresses
4830
that fit in a 24-bit addressing mode.  This is the default for large
4831
variables (@code{-mtiny=4} is the default) but this attribute can
4832
override @code{-mtiny=} for small variables, or override @code{-ml}.
4833
 
4834
@item far
4835
Variables with the @code{far} attribute are addressed using a full
4836
32-bit address.  Since this covers the entire memory space, this
4837
allows modules to make no assumptions about where variables might be
4838
stored.
4839
 
4840
@item io
4841
@itemx io (@var{addr})
4842
Variables with the @code{io} attribute are used to address
4843
memory-mapped peripherals.  If an address is specified, the variable
4844
is assigned that address, else it is not assigned an address (it is
4845
assumed some other module will assign an address).  Example:
4846
 
4847
@example
4848
int timer_count __attribute__((io(0x123)));
4849
@end example
4850
 
4851
@item cb
4852
@itemx cb (@var{addr})
4853
Variables with the @code{cb} attribute are used to access the control
4854
bus, using special instructions.  @code{addr} indicates the control bus
4855
address.  Example:
4856
 
4857
@example
4858
int cpu_clock __attribute__((cb(0x123)));
4859
@end example
4860
 
4861
@end table
4862
 
4863
@anchor{i386 Variable Attributes}
4864
@subsection i386 Variable Attributes
4865
 
4866
Two attributes are currently defined for i386 configurations:
4867
@code{ms_struct} and @code{gcc_struct}
4868
 
4869
@table @code
4870
@item ms_struct
4871
@itemx gcc_struct
4872
@cindex @code{ms_struct} attribute
4873
@cindex @code{gcc_struct} attribute
4874
 
4875
If @code{packed} is used on a structure, or if bit-fields are used
4876
it may be that the Microsoft ABI packs them differently
4877
than GCC would normally pack them.  Particularly when moving packed
4878
data between functions compiled with GCC and the native Microsoft compiler
4879
(either via function call or as data in a file), it may be necessary to access
4880
either format.
4881
 
4882
Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
4883
compilers to match the native Microsoft compiler.
4884
 
4885
The Microsoft structure layout algorithm is fairly simple with the exception
4886
of the bitfield packing:
4887
 
4888
The padding and alignment of members of structures and whether a bit field
4889
can straddle a storage-unit boundary
4890
 
4891
@enumerate
4892
@item Structure members are stored sequentially in the order in which they are
4893
declared: the first member has the lowest memory address and the last member
4894
the highest.
4895
 
4896
@item Every data object has an alignment-requirement. The alignment-requirement
4897
for all data except structures, unions, and arrays is either the size of the
4898
object or the current packing size (specified with either the aligned attribute
4899
or the pack pragma), whichever is less. For structures,  unions, and arrays,
4900
the alignment-requirement is the largest alignment-requirement of its members.
4901
Every object is allocated an offset so that:
4902
 
4903
offset %  alignment-requirement == 0
4904
 
4905
@item Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation
4906
unit if the integral types are the same size and if the next bit field fits
4907
into the current allocation unit without crossing the boundary imposed by the
4908
common alignment requirements of the bit fields.
4909
@end enumerate
4910
 
4911
Handling of zero-length bitfields:
4912
 
4913
MSVC interprets zero-length bitfields in the following ways:
4914
 
4915
@enumerate
4916
@item If a zero-length bitfield is inserted between two bitfields that would
4917
normally be coalesced, the bitfields will not be coalesced.
4918
 
4919
For example:
4920
 
4921
@smallexample
4922
struct
4923
 @{
4924
   unsigned long bf_1 : 12;
4925
   unsigned long : 0;
4926
   unsigned long bf_2 : 12;
4927
 @} t1;
4928
@end smallexample
4929
 
4930
The size of @code{t1} would be 8 bytes with the zero-length bitfield.  If the
4931
zero-length bitfield were removed, @code{t1}'s size would be 4 bytes.
4932
 
4933
@item If a zero-length bitfield is inserted after a bitfield, @code{foo}, and the
4934
alignment of the zero-length bitfield is greater than the member that follows it,
4935
@code{bar}, @code{bar} will be aligned as the type of the zero-length bitfield.
4936
 
4937
For example:
4938
 
4939
@smallexample
4940
struct
4941
 @{
4942
   char foo : 4;
4943
   short : 0;
4944
   char bar;
4945
 @} t2;
4946
 
4947
struct
4948
 @{
4949
   char foo : 4;
4950
   short : 0;
4951
   double bar;
4952
 @} t3;
4953
@end smallexample
4954
 
4955
For @code{t2}, @code{bar} will be placed at offset 2, rather than offset 1.
4956
Accordingly, the size of @code{t2} will be 4.  For @code{t3}, the zero-length
4957
bitfield will not affect the alignment of @code{bar} or, as a result, the size
4958
of the structure.
4959
 
4960
Taking this into account, it is important to note the following:
4961
 
4962
@enumerate
4963
@item If a zero-length bitfield follows a normal bitfield, the type of the
4964
zero-length bitfield may affect the alignment of the structure as whole. For
4965
example, @code{t2} has a size of 4 bytes, since the zero-length bitfield follows a
4966
normal bitfield, and is of type short.
4967
 
4968
@item Even if a zero-length bitfield is not followed by a normal bitfield, it may
4969
still affect the alignment of the structure:
4970
 
4971
@smallexample
4972
struct
4973
 @{
4974
   char foo : 6;
4975
   long : 0;
4976
 @} t4;
4977
@end smallexample
4978
 
4979
Here, @code{t4} will take up 4 bytes.
4980
@end enumerate
4981
 
4982
@item Zero-length bitfields following non-bitfield members are ignored:
4983
 
4984
@smallexample
4985
struct
4986
 @{
4987
   char foo;
4988
   long : 0;
4989
   char bar;
4990
 @} t5;
4991
@end smallexample
4992
 
4993
Here, @code{t5} will take up 2 bytes.
4994
@end enumerate
4995
@end table
4996
 
4997
@subsection PowerPC Variable Attributes
4998
 
4999
Three attributes currently are defined for PowerPC configurations:
5000
@code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5001
 
5002
For full documentation of the struct attributes please see the
5003
documentation in @ref{i386 Variable Attributes}.
5004
 
5005
For documentation of @code{altivec} attribute please see the
5006
documentation in @ref{PowerPC Type Attributes}.
5007
 
5008
@subsection SPU Variable Attributes
5009
 
5010
The SPU supports the @code{spu_vector} attribute for variables.  For
5011
documentation of this attribute please see the documentation in
5012
@ref{SPU Type Attributes}.
5013
 
5014
@subsection Xstormy16 Variable Attributes
5015
 
5016
One attribute is currently defined for xstormy16 configurations:
5017
@code{below100}.
5018
 
5019
@table @code
5020
@item below100
5021
@cindex @code{below100} attribute
5022
 
5023
If a variable has the @code{below100} attribute (@code{BELOW100} is
5024
allowed also), GCC will place the variable in the first 0x100 bytes of
5025
memory and use special opcodes to access it.  Such variables will be
5026
placed in either the @code{.bss_below100} section or the
5027
@code{.data_below100} section.
5028
 
5029
@end table
5030
 
5031
@node Type Attributes
5032
@section Specifying Attributes of Types
5033
@cindex attribute of types
5034
@cindex type attributes
5035
 
5036
The keyword @code{__attribute__} allows you to specify special
5037
attributes of @code{struct} and @code{union} types when you define
5038
such types.  This keyword is followed by an attribute specification
5039
inside double parentheses.  Seven attributes are currently defined for
5040
types: @code{aligned}, @code{packed}, @code{transparent_union},
5041
@code{unused}, @code{deprecated}, @code{visibility}, and
5042
@code{may_alias}.  Other attributes are defined for functions
5043
(@pxref{Function Attributes}) and for variables (@pxref{Variable
5044
Attributes}).
5045
 
5046
You may also specify any one of these attributes with @samp{__}
5047
preceding and following its keyword.  This allows you to use these
5048
attributes in header files without being concerned about a possible
5049
macro of the same name.  For example, you may use @code{__aligned__}
5050
instead of @code{aligned}.
5051
 
5052
You may specify type attributes in an enum, struct or union type
5053
declaration or definition, or for other types in a @code{typedef}
5054
declaration.
5055
 
5056
For an enum, struct or union type, you may specify attributes either
5057
between the enum, struct or union tag and the name of the type, or
5058
just past the closing curly brace of the @emph{definition}.  The
5059
former syntax is preferred.
5060
 
5061
@xref{Attribute Syntax}, for details of the exact syntax for using
5062
attributes.
5063
 
5064
@table @code
5065
@cindex @code{aligned} attribute
5066
@item aligned (@var{alignment})
5067
This attribute specifies a minimum alignment (in bytes) for variables
5068
of the specified type.  For example, the declarations:
5069
 
5070
@smallexample
5071
struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
5072
typedef int more_aligned_int __attribute__ ((aligned (8)));
5073
@end smallexample
5074
 
5075
@noindent
5076
force the compiler to insure (as far as it can) that each variable whose
5077
type is @code{struct S} or @code{more_aligned_int} will be allocated and
5078
aligned @emph{at least} on a 8-byte boundary.  On a SPARC, having all
5079
variables of type @code{struct S} aligned to 8-byte boundaries allows
5080
the compiler to use the @code{ldd} and @code{std} (doubleword load and
5081
store) instructions when copying one variable of type @code{struct S} to
5082
another, thus improving run-time efficiency.
5083
 
5084
Note that the alignment of any given @code{struct} or @code{union} type
5085
is required by the ISO C standard to be at least a perfect multiple of
5086
the lowest common multiple of the alignments of all of the members of
5087
the @code{struct} or @code{union} in question.  This means that you @emph{can}
5088
effectively adjust the alignment of a @code{struct} or @code{union}
5089
type by attaching an @code{aligned} attribute to any one of the members
5090
of such a type, but the notation illustrated in the example above is a
5091
more obvious, intuitive, and readable way to request the compiler to
5092
adjust the alignment of an entire @code{struct} or @code{union} type.
5093
 
5094
As in the preceding example, you can explicitly specify the alignment
5095
(in bytes) that you wish the compiler to use for a given @code{struct}
5096
or @code{union} type.  Alternatively, you can leave out the alignment factor
5097
and just ask the compiler to align a type to the maximum
5098
useful alignment for the target machine you are compiling for.  For
5099
example, you could write:
5100
 
5101
@smallexample
5102
struct S @{ short f[3]; @} __attribute__ ((aligned));
5103
@end smallexample
5104
 
5105
Whenever you leave out the alignment factor in an @code{aligned}
5106
attribute specification, the compiler automatically sets the alignment
5107
for the type to the largest alignment which is ever used for any data
5108
type on the target machine you are compiling for.  Doing this can often
5109
make copy operations more efficient, because the compiler can use
5110
whatever instructions copy the biggest chunks of memory when performing
5111
copies to or from the variables which have types that you have aligned
5112
this way.
5113
 
5114
In the example above, if the size of each @code{short} is 2 bytes, then
5115
the size of the entire @code{struct S} type is 6 bytes.  The smallest
5116
power of two which is greater than or equal to that is 8, so the
5117
compiler sets the alignment for the entire @code{struct S} type to 8
5118
bytes.
5119
 
5120
Note that although you can ask the compiler to select a time-efficient
5121
alignment for a given type and then declare only individual stand-alone
5122
objects of that type, the compiler's ability to select a time-efficient
5123
alignment is primarily useful only when you plan to create arrays of
5124
variables having the relevant (efficiently aligned) type.  If you
5125
declare or use arrays of variables of an efficiently-aligned type, then
5126
it is likely that your program will also be doing pointer arithmetic (or
5127
subscripting, which amounts to the same thing) on pointers to the
5128
relevant type, and the code that the compiler generates for these
5129
pointer arithmetic operations will often be more efficient for
5130
efficiently-aligned types than for other types.
5131
 
5132
The @code{aligned} attribute can only increase the alignment; but you
5133
can decrease it by specifying @code{packed} as well.  See below.
5134
 
5135
Note that the effectiveness of @code{aligned} attributes may be limited
5136
by inherent limitations in your linker.  On many systems, the linker is
5137
only able to arrange for variables to be aligned up to a certain maximum
5138
alignment.  (For some linkers, the maximum supported alignment may
5139
be very very small.)  If your linker is only able to align variables
5140
up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
5141
in an @code{__attribute__} will still only provide you with 8 byte
5142
alignment.  See your linker documentation for further information.
5143
 
5144
@item packed
5145
This attribute, attached to @code{struct} or @code{union} type
5146
definition, specifies that each member (other than zero-width bitfields)
5147
of the structure or union is placed to minimize the memory required.  When
5148
attached to an @code{enum} definition, it indicates that the smallest
5149
integral type should be used.
5150
 
5151
@opindex fshort-enums
5152
Specifying this attribute for @code{struct} and @code{union} types is
5153
equivalent to specifying the @code{packed} attribute on each of the
5154
structure or union members.  Specifying the @option{-fshort-enums}
5155
flag on the line is equivalent to specifying the @code{packed}
5156
attribute on all @code{enum} definitions.
5157
 
5158
In the following example @code{struct my_packed_struct}'s members are
5159
packed closely together, but the internal layout of its @code{s} member
5160
is not packed---to do that, @code{struct my_unpacked_struct} would need to
5161
be packed too.
5162
 
5163
@smallexample
5164
struct my_unpacked_struct
5165
 @{
5166
    char c;
5167
    int i;
5168
 @};
5169
 
5170
struct __attribute__ ((__packed__)) my_packed_struct
5171
  @{
5172
     char c;
5173
     int  i;
5174
     struct my_unpacked_struct s;
5175
  @};
5176
@end smallexample
5177
 
5178
You may only specify this attribute on the definition of an @code{enum},
5179
@code{struct} or @code{union}, not on a @code{typedef} which does not
5180
also define the enumerated type, structure or union.
5181
 
5182
@item transparent_union
5183
This attribute, attached to a @code{union} type definition, indicates
5184
that any function parameter having that union type causes calls to that
5185
function to be treated in a special way.
5186
 
5187
First, the argument corresponding to a transparent union type can be of
5188
any type in the union; no cast is required.  Also, if the union contains
5189
a pointer type, the corresponding argument can be a null pointer
5190
constant or a void pointer expression; and if the union contains a void
5191
pointer type, the corresponding argument can be any pointer expression.
5192
If the union member type is a pointer, qualifiers like @code{const} on
5193
the referenced type must be respected, just as with normal pointer
5194
conversions.
5195
 
5196
Second, the argument is passed to the function using the calling
5197
conventions of the first member of the transparent union, not the calling
5198
conventions of the union itself.  All members of the union must have the
5199
same machine representation; this is necessary for this argument passing
5200
to work properly.
5201
 
5202
Transparent unions are designed for library functions that have multiple
5203
interfaces for compatibility reasons.  For example, suppose the
5204
@code{wait} function must accept either a value of type @code{int *} to
5205
comply with Posix, or a value of type @code{union wait *} to comply with
5206
the 4.1BSD interface.  If @code{wait}'s parameter were @code{void *},
5207
@code{wait} would accept both kinds of arguments, but it would also
5208
accept any other pointer type and this would make argument type checking
5209
less useful.  Instead, @code{<sys/wait.h>} might define the interface
5210
as follows:
5211
 
5212
@smallexample
5213
typedef union __attribute__ ((__transparent_union__))
5214
  @{
5215
    int *__ip;
5216
    union wait *__up;
5217
  @} wait_status_ptr_t;
5218
 
5219
pid_t wait (wait_status_ptr_t);
5220
@end smallexample
5221
 
5222
This interface allows either @code{int *} or @code{union wait *}
5223
arguments to be passed, using the @code{int *} calling convention.
5224
The program can call @code{wait} with arguments of either type:
5225
 
5226
@smallexample
5227
int w1 () @{ int w; return wait (&w); @}
5228
int w2 () @{ union wait w; return wait (&w); @}
5229
@end smallexample
5230
 
5231
With this interface, @code{wait}'s implementation might look like this:
5232
 
5233
@smallexample
5234
pid_t wait (wait_status_ptr_t p)
5235
@{
5236
  return waitpid (-1, p.__ip, 0);
5237
@}
5238
@end smallexample
5239
 
5240
@item unused
5241
When attached to a type (including a @code{union} or a @code{struct}),
5242
this attribute means that variables of that type are meant to appear
5243
possibly unused.  GCC will not produce a warning for any variables of
5244
that type, even if the variable appears to do nothing.  This is often
5245
the case with lock or thread classes, which are usually defined and then
5246
not referenced, but contain constructors and destructors that have
5247
nontrivial bookkeeping functions.
5248
 
5249
@item deprecated
5250
@itemx deprecated (@var{msg})
5251
The @code{deprecated} attribute results in a warning if the type
5252
is used anywhere in the source file.  This is useful when identifying
5253
types that are expected to be removed in a future version of a program.
5254
If possible, the warning also includes the location of the declaration
5255
of the deprecated type, to enable users to easily find further
5256
information about why the type is deprecated, or what they should do
5257
instead.  Note that the warnings only occur for uses and then only
5258
if the type is being applied to an identifier that itself is not being
5259
declared as deprecated.
5260
 
5261
@smallexample
5262
typedef int T1 __attribute__ ((deprecated));
5263
T1 x;
5264
typedef T1 T2;
5265
T2 y;
5266
typedef T1 T3 __attribute__ ((deprecated));
5267
T3 z __attribute__ ((deprecated));
5268
@end smallexample
5269
 
5270
results in a warning on line 2 and 3 but not lines 4, 5, or 6.  No
5271
warning is issued for line 4 because T2 is not explicitly
5272
deprecated.  Line 5 has no warning because T3 is explicitly
5273
deprecated.  Similarly for line 6.  The optional msg
5274
argument, which must be a string, will be printed in the warning if
5275
present.
5276
 
5277
The @code{deprecated} attribute can also be used for functions and
5278
variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
5279
 
5280
@item may_alias
5281
Accesses through pointers to types with this attribute are not subject
5282
to type-based alias analysis, but are instead assumed to be able to alias
5283
any other type of objects.  In the context of 6.5/7 an lvalue expression
5284
dereferencing such a pointer is treated like having a character type.
5285
See @option{-fstrict-aliasing} for more information on aliasing issues.
5286
This extension exists to support some vector APIs, in which pointers to
5287
one vector type are permitted to alias pointers to a different vector type.
5288
 
5289
Note that an object of a type with this attribute does not have any
5290
special semantics.
5291
 
5292
Example of use:
5293
 
5294
@smallexample
5295
typedef short __attribute__((__may_alias__)) short_a;
5296
 
5297
int
5298
main (void)
5299
@{
5300
  int a = 0x12345678;
5301
  short_a *b = (short_a *) &a;
5302
 
5303
  b[1] = 0;
5304
 
5305
  if (a == 0x12345678)
5306
    abort();
5307
 
5308
  exit(0);
5309
@}
5310
@end smallexample
5311
 
5312
If you replaced @code{short_a} with @code{short} in the variable
5313
declaration, the above program would abort when compiled with
5314
@option{-fstrict-aliasing}, which is on by default at @option{-O2} or
5315
above in recent GCC versions.
5316
 
5317
@item visibility
5318
In C++, attribute visibility (@pxref{Function Attributes}) can also be
5319
applied to class, struct, union and enum types.  Unlike other type
5320
attributes, the attribute must appear between the initial keyword and
5321
the name of the type; it cannot appear after the body of the type.
5322
 
5323
Note that the type visibility is applied to vague linkage entities
5324
associated with the class (vtable, typeinfo node, etc.).  In
5325
particular, if a class is thrown as an exception in one shared object
5326
and caught in another, the class must have default visibility.
5327
Otherwise the two shared objects will be unable to use the same
5328
typeinfo node and exception handling will break.
5329
 
5330
@end table
5331
 
5332
@subsection ARM Type Attributes
5333
 
5334
On those ARM targets that support @code{dllimport} (such as Symbian
5335
OS), you can use the @code{notshared} attribute to indicate that the
5336
virtual table and other similar data for a class should not be
5337
exported from a DLL@.  For example:
5338
 
5339
@smallexample
5340
class __declspec(notshared) C @{
5341
public:
5342
  __declspec(dllimport) C();
5343
  virtual void f();
5344
@}
5345
 
5346
__declspec(dllexport)
5347
C::C() @{@}
5348
@end smallexample
5349
 
5350
In this code, @code{C::C} is exported from the current DLL, but the
5351
virtual table for @code{C} is not exported.  (You can use
5352
@code{__attribute__} instead of @code{__declspec} if you prefer, but
5353
most Symbian OS code uses @code{__declspec}.)
5354
 
5355
@anchor{MeP Type Attributes}
5356
@subsection MeP Type Attributes
5357
 
5358
Many of the MeP variable attributes may be applied to types as well.
5359
Specifically, the @code{based}, @code{tiny}, @code{near}, and
5360
@code{far} attributes may be applied to either.  The @code{io} and
5361
@code{cb} attributes may not be applied to types.
5362
 
5363
@anchor{i386 Type Attributes}
5364
@subsection i386 Type Attributes
5365
 
5366
Two attributes are currently defined for i386 configurations:
5367
@code{ms_struct} and @code{gcc_struct}.
5368
 
5369
@table @code
5370
 
5371
@item ms_struct
5372
@itemx gcc_struct
5373
@cindex @code{ms_struct}
5374
@cindex @code{gcc_struct}
5375
 
5376
If @code{packed} is used on a structure, or if bit-fields are used
5377
it may be that the Microsoft ABI packs them differently
5378
than GCC would normally pack them.  Particularly when moving packed
5379
data between functions compiled with GCC and the native Microsoft compiler
5380
(either via function call or as data in a file), it may be necessary to access
5381
either format.
5382
 
5383
Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
5384
compilers to match the native Microsoft compiler.
5385
@end table
5386
 
5387
To specify multiple attributes, separate them by commas within the
5388
double parentheses: for example, @samp{__attribute__ ((aligned (16),
5389
packed))}.
5390
 
5391
@anchor{PowerPC Type Attributes}
5392
@subsection PowerPC Type Attributes
5393
 
5394
Three attributes currently are defined for PowerPC configurations:
5395
@code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5396
 
5397
For full documentation of the @code{ms_struct} and @code{gcc_struct}
5398
attributes please see the documentation in @ref{i386 Type Attributes}.
5399
 
5400
The @code{altivec} attribute allows one to declare AltiVec vector data
5401
types supported by the AltiVec Programming Interface Manual.  The
5402
attribute requires an argument to specify one of three vector types:
5403
@code{vector__}, @code{pixel__} (always followed by unsigned short),
5404
and @code{bool__} (always followed by unsigned).
5405
 
5406
@smallexample
5407
__attribute__((altivec(vector__)))
5408
__attribute__((altivec(pixel__))) unsigned short
5409
__attribute__((altivec(bool__))) unsigned
5410
@end smallexample
5411
 
5412
These attributes mainly are intended to support the @code{__vector},
5413
@code{__pixel}, and @code{__bool} AltiVec keywords.
5414
 
5415
@anchor{SPU Type Attributes}
5416
@subsection SPU Type Attributes
5417
 
5418
The SPU supports the @code{spu_vector} attribute for types.  This attribute
5419
allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
5420
Language Extensions Specification.  It is intended to support the
5421
@code{__vector} keyword.
5422
 
5423
@node Alignment
5424
@section Inquiring on Alignment of Types or Variables
5425
@cindex alignment
5426
@cindex type alignment
5427
@cindex variable alignment
5428
 
5429
The keyword @code{__alignof__} allows you to inquire about how an object
5430
is aligned, or the minimum alignment usually required by a type.  Its
5431
syntax is just like @code{sizeof}.
5432
 
5433
For example, if the target machine requires a @code{double} value to be
5434
aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
5435
This is true on many RISC machines.  On more traditional machine
5436
designs, @code{__alignof__ (double)} is 4 or even 2.
5437
 
5438
Some machines never actually require alignment; they allow reference to any
5439
data type even at an odd address.  For these machines, @code{__alignof__}
5440
reports the smallest alignment that GCC will give the data type, usually as
5441
mandated by the target ABI.
5442
 
5443
If the operand of @code{__alignof__} is an lvalue rather than a type,
5444
its value is the required alignment for its type, taking into account
5445
any minimum alignment specified with GCC's @code{__attribute__}
5446
extension (@pxref{Variable Attributes}).  For example, after this
5447
declaration:
5448
 
5449
@smallexample
5450
struct foo @{ int x; char y; @} foo1;
5451
@end smallexample
5452
 
5453
@noindent
5454
the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
5455
alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
5456
 
5457
It is an error to ask for the alignment of an incomplete type.
5458
 
5459
 
5460
@node Inline
5461
@section An Inline Function is As Fast As a Macro
5462
@cindex inline functions
5463
@cindex integrating function code
5464
@cindex open coding
5465
@cindex macros, inline alternative
5466
 
5467
By declaring a function inline, you can direct GCC to make
5468
calls to that function faster.  One way GCC can achieve this is to
5469
integrate that function's code into the code for its callers.  This
5470
makes execution faster by eliminating the function-call overhead; in
5471
addition, if any of the actual argument values are constant, their
5472
known values may permit simplifications at compile time so that not
5473
all of the inline function's code needs to be included.  The effect on
5474
code size is less predictable; object code may be larger or smaller
5475
with function inlining, depending on the particular case.  You can
5476
also direct GCC to try to integrate all ``simple enough'' functions
5477
into their callers with the option @option{-finline-functions}.
5478
 
5479
GCC implements three different semantics of declaring a function
5480
inline.  One is available with @option{-std=gnu89} or
5481
@option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
5482
on all inline declarations, another when
5483
@option{-std=c99}, @option{-std=c11},
5484
@option{-std=gnu99} or @option{-std=gnu11}
5485
(without @option{-fgnu89-inline}), and the third
5486
is used when compiling C++.
5487
 
5488
To declare a function inline, use the @code{inline} keyword in its
5489
declaration, like this:
5490
 
5491
@smallexample
5492
static inline int
5493
inc (int *a)
5494
@{
5495
  return (*a)++;
5496
@}
5497
@end smallexample
5498
 
5499
If you are writing a header file to be included in ISO C90 programs, write
5500
@code{__inline__} instead of @code{inline}.  @xref{Alternate Keywords}.
5501
 
5502
The three types of inlining behave similarly in two important cases:
5503
when the @code{inline} keyword is used on a @code{static} function,
5504
like the example above, and when a function is first declared without
5505
using the @code{inline} keyword and then is defined with
5506
@code{inline}, like this:
5507
 
5508
@smallexample
5509
extern int inc (int *a);
5510
inline int
5511
inc (int *a)
5512
@{
5513
  return (*a)++;
5514
@}
5515
@end smallexample
5516
 
5517
In both of these common cases, the program behaves the same as if you
5518
had not used the @code{inline} keyword, except for its speed.
5519
 
5520
@cindex inline functions, omission of
5521
@opindex fkeep-inline-functions
5522
When a function is both inline and @code{static}, if all calls to the
5523
function are integrated into the caller, and the function's address is
5524
never used, then the function's own assembler code is never referenced.
5525
In this case, GCC does not actually output assembler code for the
5526
function, unless you specify the option @option{-fkeep-inline-functions}.
5527
Some calls cannot be integrated for various reasons (in particular,
5528
calls that precede the function's definition cannot be integrated, and
5529
neither can recursive calls within the definition).  If there is a
5530
nonintegrated call, then the function is compiled to assembler code as
5531
usual.  The function must also be compiled as usual if the program
5532
refers to its address, because that can't be inlined.
5533
 
5534
@opindex Winline
5535
Note that certain usages in a function definition can make it unsuitable
5536
for inline substitution.  Among these usages are: use of varargs, use of
5537
alloca, use of variable sized data types (@pxref{Variable Length}),
5538
use of computed goto (@pxref{Labels as Values}), use of nonlocal goto,
5539
and nested functions (@pxref{Nested Functions}).  Using @option{-Winline}
5540
will warn when a function marked @code{inline} could not be substituted,
5541
and will give the reason for the failure.
5542
 
5543
@cindex automatic @code{inline} for C++ member fns
5544
@cindex @code{inline} automatic for C++ member fns
5545
@cindex member fns, automatically @code{inline}
5546
@cindex C++ member fns, automatically @code{inline}
5547
@opindex fno-default-inline
5548
As required by ISO C++, GCC considers member functions defined within
5549
the body of a class to be marked inline even if they are
5550
not explicitly declared with the @code{inline} keyword.  You can
5551
override this with @option{-fno-default-inline}; @pxref{C++ Dialect
5552
Options,,Options Controlling C++ Dialect}.
5553
 
5554
GCC does not inline any functions when not optimizing unless you specify
5555
the @samp{always_inline} attribute for the function, like this:
5556
 
5557
@smallexample
5558
/* @r{Prototype.}  */
5559
inline void foo (const char) __attribute__((always_inline));
5560
@end smallexample
5561
 
5562
The remainder of this section is specific to GNU C90 inlining.
5563
 
5564
@cindex non-static inline function
5565
When an inline function is not @code{static}, then the compiler must assume
5566
that there may be calls from other source files; since a global symbol can
5567
be defined only once in any program, the function must not be defined in
5568
the other source files, so the calls therein cannot be integrated.
5569
Therefore, a non-@code{static} inline function is always compiled on its
5570
own in the usual fashion.
5571
 
5572
If you specify both @code{inline} and @code{extern} in the function
5573
definition, then the definition is used only for inlining.  In no case
5574
is the function compiled on its own, not even if you refer to its
5575
address explicitly.  Such an address becomes an external reference, as
5576
if you had only declared the function, and had not defined it.
5577
 
5578
This combination of @code{inline} and @code{extern} has almost the
5579
effect of a macro.  The way to use it is to put a function definition in
5580
a header file with these keywords, and put another copy of the
5581
definition (lacking @code{inline} and @code{extern}) in a library file.
5582
The definition in the header file will cause most calls to the function
5583
to be inlined.  If any uses of the function remain, they will refer to
5584
the single copy in the library.
5585
 
5586
@node Volatiles
5587
@section When is a Volatile Object Accessed?
5588
@cindex accessing volatiles
5589
@cindex volatile read
5590
@cindex volatile write
5591
@cindex volatile access
5592
 
5593
C has the concept of volatile objects.  These are normally accessed by
5594
pointers and used for accessing hardware or inter-thread
5595
communication.  The standard encourages compilers to refrain from
5596
optimizations concerning accesses to volatile objects, but leaves it
5597
implementation defined as to what constitutes a volatile access.  The
5598
minimum requirement is that at a sequence point all previous accesses
5599
to volatile objects have stabilized and no subsequent accesses have
5600
occurred.  Thus an implementation is free to reorder and combine
5601
volatile accesses which occur between sequence points, but cannot do
5602
so for accesses across a sequence point.  The use of volatile does
5603
not allow you to violate the restriction on updating objects multiple
5604
times between two sequence points.
5605
 
5606
Accesses to non-volatile objects are not ordered with respect to
5607
volatile accesses.  You cannot use a volatile object as a memory
5608
barrier to order a sequence of writes to non-volatile memory.  For
5609
instance:
5610
 
5611
@smallexample
5612
int *ptr = @var{something};
5613
volatile int vobj;
5614
*ptr = @var{something};
5615
vobj = 1;
5616
@end smallexample
5617
 
5618
Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
5619
that the write to @var{*ptr} will have occurred by the time the update
5620
of @var{vobj} has happened.  If you need this guarantee, you must use
5621
a stronger memory barrier such as:
5622
 
5623
@smallexample
5624
int *ptr = @var{something};
5625
volatile int vobj;
5626
*ptr = @var{something};
5627
asm volatile ("" : : : "memory");
5628
vobj = 1;
5629
@end smallexample
5630
 
5631
A scalar volatile object is read when it is accessed in a void context:
5632
 
5633
@smallexample
5634
volatile int *src = @var{somevalue};
5635
*src;
5636
@end smallexample
5637
 
5638
Such expressions are rvalues, and GCC implements this as a
5639
read of the volatile object being pointed to.
5640
 
5641
Assignments are also expressions and have an rvalue.  However when
5642
assigning to a scalar volatile, the volatile object is not reread,
5643
regardless of whether the assignment expression's rvalue is used or
5644
not.  If the assignment's rvalue is used, the value is that assigned
5645
to the volatile object.  For instance, there is no read of @var{vobj}
5646
in all the following cases:
5647
 
5648
@smallexample
5649
int obj;
5650
volatile int vobj;
5651
vobj = @var{something};
5652
obj = vobj = @var{something};
5653
obj ? vobj = @var{onething} : vobj = @var{anotherthing};
5654
obj = (@var{something}, vobj = @var{anotherthing});
5655
@end smallexample
5656
 
5657
If you need to read the volatile object after an assignment has
5658
occurred, you must use a separate expression with an intervening
5659
sequence point.
5660
 
5661
As bitfields are not individually addressable, volatile bitfields may
5662
be implicitly read when written to, or when adjacent bitfields are
5663
accessed.  Bitfield operations may be optimized such that adjacent
5664
bitfields are only partially accessed, if they straddle a storage unit
5665
boundary.  For these reasons it is unwise to use volatile bitfields to
5666
access hardware.
5667
 
5668
@node Extended Asm
5669
@section Assembler Instructions with C Expression Operands
5670
@cindex extended @code{asm}
5671
@cindex @code{asm} expressions
5672
@cindex assembler instructions
5673
@cindex registers
5674
 
5675
In an assembler instruction using @code{asm}, you can specify the
5676
operands of the instruction using C expressions.  This means you need not
5677
guess which registers or memory locations will contain the data you want
5678
to use.
5679
 
5680
You must specify an assembler instruction template much like what
5681
appears in a machine description, plus an operand constraint string for
5682
each operand.
5683
 
5684
For example, here is how to use the 68881's @code{fsinx} instruction:
5685
 
5686
@smallexample
5687
asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
5688
@end smallexample
5689
 
5690
@noindent
5691
Here @code{angle} is the C expression for the input operand while
5692
@code{result} is that of the output operand.  Each has @samp{"f"} as its
5693
operand constraint, saying that a floating point register is required.
5694
The @samp{=} in @samp{=f} indicates that the operand is an output; all
5695
output operands' constraints must use @samp{=}.  The constraints use the
5696
same language used in the machine description (@pxref{Constraints}).
5697
 
5698
Each operand is described by an operand-constraint string followed by
5699
the C expression in parentheses.  A colon separates the assembler
5700
template from the first output operand and another separates the last
5701
output operand from the first input, if any.  Commas separate the
5702
operands within each group.  The total number of operands is currently
5703
limited to 30; this limitation may be lifted in some future version of
5704
GCC@.
5705
 
5706
If there are no output operands but there are input operands, you must
5707
place two consecutive colons surrounding the place where the output
5708
operands would go.
5709
 
5710
As of GCC version 3.1, it is also possible to specify input and output
5711
operands using symbolic names which can be referenced within the
5712
assembler code.  These names are specified inside square brackets
5713
preceding the constraint string, and can be referenced inside the
5714
assembler code using @code{%[@var{name}]} instead of a percentage sign
5715
followed by the operand number.  Using named operands the above example
5716
could look like:
5717
 
5718
@smallexample
5719
asm ("fsinx %[angle],%[output]"
5720
     : [output] "=f" (result)
5721
     : [angle] "f" (angle));
5722
@end smallexample
5723
 
5724
@noindent
5725
Note that the symbolic operand names have no relation whatsoever to
5726
other C identifiers.  You may use any name you like, even those of
5727
existing C symbols, but you must ensure that no two operands within the same
5728
assembler construct use the same symbolic name.
5729
 
5730
Output operand expressions must be lvalues; the compiler can check this.
5731
The input operands need not be lvalues.  The compiler cannot check
5732
whether the operands have data types that are reasonable for the
5733
instruction being executed.  It does not parse the assembler instruction
5734
template and does not know what it means or even whether it is valid
5735
assembler input.  The extended @code{asm} feature is most often used for
5736
machine instructions the compiler itself does not know exist.  If
5737
the output expression cannot be directly addressed (for example, it is a
5738
bit-field), your constraint must allow a register.  In that case, GCC
5739
will use the register as the output of the @code{asm}, and then store
5740
that register into the output.
5741
 
5742
The ordinary output operands must be write-only; GCC will assume that
5743
the values in these operands before the instruction are dead and need
5744
not be generated.  Extended asm supports input-output or read-write
5745
operands.  Use the constraint character @samp{+} to indicate such an
5746
operand and list it with the output operands.  You should only use
5747
read-write operands when the constraints for the operand (or the
5748
operand in which only some of the bits are to be changed) allow a
5749
register.
5750
 
5751
You may, as an alternative, logically split its function into two
5752
separate operands, one input operand and one write-only output
5753
operand.  The connection between them is expressed by constraints
5754
which say they need to be in the same location when the instruction
5755
executes.  You can use the same C expression for both operands, or
5756
different expressions.  For example, here we write the (fictitious)
5757
@samp{combine} instruction with @code{bar} as its read-only source
5758
operand and @code{foo} as its read-write destination:
5759
 
5760
@smallexample
5761
asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
5762
@end smallexample
5763
 
5764
@noindent
5765
The constraint @samp{"0"} for operand 1 says that it must occupy the
5766
same location as operand 0.  A number in constraint is allowed only in
5767
an input operand and it must refer to an output operand.
5768
 
5769
Only a number in the constraint can guarantee that one operand will be in
5770
the same place as another.  The mere fact that @code{foo} is the value
5771
of both operands is not enough to guarantee that they will be in the
5772
same place in the generated assembler code.  The following would not
5773
work reliably:
5774
 
5775
@smallexample
5776
asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
5777
@end smallexample
5778
 
5779
Various optimizations or reloading could cause operands 0 and 1 to be in
5780
different registers; GCC knows no reason not to do so.  For example, the
5781
compiler might find a copy of the value of @code{foo} in one register and
5782
use it for operand 1, but generate the output operand 0 in a different
5783
register (copying it afterward to @code{foo}'s own address).  Of course,
5784
since the register for operand 1 is not even mentioned in the assembler
5785
code, the result will not work, but GCC can't tell that.
5786
 
5787
As of GCC version 3.1, one may write @code{[@var{name}]} instead of
5788
the operand number for a matching constraint.  For example:
5789
 
5790
@smallexample
5791
asm ("cmoveq %1,%2,%[result]"
5792
     : [result] "=r"(result)
5793
     : "r" (test), "r"(new), "[result]"(old));
5794
@end smallexample
5795
 
5796
Sometimes you need to make an @code{asm} operand be a specific register,
5797
but there's no matching constraint letter for that register @emph{by
5798
itself}.  To force the operand into that register, use a local variable
5799
for the operand and specify the register in the variable declaration.
5800
@xref{Explicit Reg Vars}.  Then for the @code{asm} operand, use any
5801
register constraint letter that matches the register:
5802
 
5803
@smallexample
5804
register int *p1 asm ("r0") = @dots{};
5805
register int *p2 asm ("r1") = @dots{};
5806
register int *result asm ("r0");
5807
asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
5808
@end smallexample
5809
 
5810
@anchor{Example of asm with clobbered asm reg}
5811
In the above example, beware that a register that is call-clobbered by
5812
the target ABI will be overwritten by any function call in the
5813
assignment, including library calls for arithmetic operators.
5814
Also a register may be clobbered when generating some operations,
5815
like variable shift, memory copy or memory move on x86.
5816
Assuming it is a call-clobbered register, this may happen to @code{r0}
5817
above by the assignment to @code{p2}.  If you have to use such a
5818
register, use temporary variables for expressions between the register
5819
assignment and use:
5820
 
5821
@smallexample
5822
int t1 = @dots{};
5823
register int *p1 asm ("r0") = @dots{};
5824
register int *p2 asm ("r1") = t1;
5825
register int *result asm ("r0");
5826
asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
5827
@end smallexample
5828
 
5829
Some instructions clobber specific hard registers.  To describe this,
5830
write a third colon after the input operands, followed by the names of
5831
the clobbered hard registers (given as strings).  Here is a realistic
5832
example for the VAX:
5833
 
5834
@smallexample
5835
asm volatile ("movc3 %0,%1,%2"
5836
              : /* @r{no outputs} */
5837
              : "g" (from), "g" (to), "g" (count)
5838
              : "r0", "r1", "r2", "r3", "r4", "r5");
5839
@end smallexample
5840
 
5841
You may not write a clobber description in a way that overlaps with an
5842
input or output operand.  For example, you may not have an operand
5843
describing a register class with one member if you mention that register
5844
in the clobber list.  Variables declared to live in specific registers
5845
(@pxref{Explicit Reg Vars}), and used as asm input or output operands must
5846
have no part mentioned in the clobber description.
5847
There is no way for you to specify that an input
5848
operand is modified without also specifying it as an output
5849
operand.  Note that if all the output operands you specify are for this
5850
purpose (and hence unused), you will then also need to specify
5851
@code{volatile} for the @code{asm} construct, as described below, to
5852
prevent GCC from deleting the @code{asm} statement as unused.
5853
 
5854
If you refer to a particular hardware register from the assembler code,
5855
you will probably have to list the register after the third colon to
5856
tell the compiler the register's value is modified.  In some assemblers,
5857
the register names begin with @samp{%}; to produce one @samp{%} in the
5858
assembler code, you must write @samp{%%} in the input.
5859
 
5860
If your assembler instruction can alter the condition code register, add
5861
@samp{cc} to the list of clobbered registers.  GCC on some machines
5862
represents the condition codes as a specific hardware register;
5863
@samp{cc} serves to name this register.  On other machines, the
5864
condition code is handled differently, and specifying @samp{cc} has no
5865
effect.  But it is valid no matter what the machine.
5866
 
5867
If your assembler instructions access memory in an unpredictable
5868
fashion, add @samp{memory} to the list of clobbered registers.  This
5869
will cause GCC to not keep memory values cached in registers across the
5870
assembler instruction and not optimize stores or loads to that memory.
5871
You will also want to add the @code{volatile} keyword if the memory
5872
affected is not listed in the inputs or outputs of the @code{asm}, as
5873
the @samp{memory} clobber does not count as a side-effect of the
5874
@code{asm}.  If you know how large the accessed memory is, you can add
5875
it as input or output but if this is not known, you should add
5876
@samp{memory}.  As an example, if you access ten bytes of a string, you
5877
can use a memory input like:
5878
 
5879
@smallexample
5880
@{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}.
5881
@end smallexample
5882
 
5883
Note that in the following example the memory input is necessary,
5884
otherwise GCC might optimize the store to @code{x} away:
5885
@smallexample
5886
int foo ()
5887
@{
5888
  int x = 42;
5889
  int *y = &x;
5890
  int result;
5891
  asm ("magic stuff accessing an 'int' pointed to by '%1'"
5892
        "=&d" (r) : "a" (y), "m" (*y));
5893
  return result;
5894
@}
5895
@end smallexample
5896
 
5897
You can put multiple assembler instructions together in a single
5898
@code{asm} template, separated by the characters normally used in assembly
5899
code for the system.  A combination that works in most places is a newline
5900
to break the line, plus a tab character to move to the instruction field
5901
(written as @samp{\n\t}).  Sometimes semicolons can be used, if the
5902
assembler allows semicolons as a line-breaking character.  Note that some
5903
assembler dialects use semicolons to start a comment.
5904
The input operands are guaranteed not to use any of the clobbered
5905
registers, and neither will the output operands' addresses, so you can
5906
read and write the clobbered registers as many times as you like.  Here
5907
is an example of multiple instructions in a template; it assumes the
5908
subroutine @code{_foo} accepts arguments in registers 9 and 10:
5909
 
5910
@smallexample
5911
asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
5912
     : /* no outputs */
5913
     : "g" (from), "g" (to)
5914
     : "r9", "r10");
5915
@end smallexample
5916
 
5917
Unless an output operand has the @samp{&} constraint modifier, GCC
5918
may allocate it in the same register as an unrelated input operand, on
5919
the assumption the inputs are consumed before the outputs are produced.
5920
This assumption may be false if the assembler code actually consists of
5921
more than one instruction.  In such a case, use @samp{&} for each output
5922
operand that may not overlap an input.  @xref{Modifiers}.
5923
 
5924
If you want to test the condition code produced by an assembler
5925
instruction, you must include a branch and a label in the @code{asm}
5926
construct, as follows:
5927
 
5928
@smallexample
5929
asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
5930
     : "g" (result)
5931
     : "g" (input));
5932
@end smallexample
5933
 
5934
@noindent
5935
This assumes your assembler supports local labels, as the GNU assembler
5936
and most Unix assemblers do.
5937
 
5938
Speaking of labels, jumps from one @code{asm} to another are not
5939
supported.  The compiler's optimizers do not know about these jumps, and
5940
therefore they cannot take account of them when deciding how to
5941
optimize.  @xref{Extended asm with goto}.
5942
 
5943
@cindex macros containing @code{asm}
5944
Usually the most convenient way to use these @code{asm} instructions is to
5945
encapsulate them in macros that look like functions.  For example,
5946
 
5947
@smallexample
5948
#define sin(x)       \
5949
(@{ double __value, __arg = (x);   \
5950
   asm ("fsinx %1,%0": "=f" (__value): "f" (__arg));  \
5951
   __value; @})
5952
@end smallexample
5953
 
5954
@noindent
5955
Here the variable @code{__arg} is used to make sure that the instruction
5956
operates on a proper @code{double} value, and to accept only those
5957
arguments @code{x} which can convert automatically to a @code{double}.
5958
 
5959
Another way to make sure the instruction operates on the correct data
5960
type is to use a cast in the @code{asm}.  This is different from using a
5961
variable @code{__arg} in that it converts more different types.  For
5962
example, if the desired type were @code{int}, casting the argument to
5963
@code{int} would accept a pointer with no complaint, while assigning the
5964
argument to an @code{int} variable named @code{__arg} would warn about
5965
using a pointer unless the caller explicitly casts it.
5966
 
5967
If an @code{asm} has output operands, GCC assumes for optimization
5968
purposes the instruction has no side effects except to change the output
5969
operands.  This does not mean instructions with a side effect cannot be
5970
used, but you must be careful, because the compiler may eliminate them
5971
if the output operands aren't used, or move them out of loops, or
5972
replace two with one if they constitute a common subexpression.  Also,
5973
if your instruction does have a side effect on a variable that otherwise
5974
appears not to change, the old value of the variable may be reused later
5975
if it happens to be found in a register.
5976
 
5977
You can prevent an @code{asm} instruction from being deleted
5978
by writing the keyword @code{volatile} after
5979
the @code{asm}.  For example:
5980
 
5981
@smallexample
5982
#define get_and_set_priority(new)              \
5983
(@{ int __old;                                  \
5984
   asm volatile ("get_and_set_priority %0, %1" \
5985
                 : "=g" (__old) : "g" (new));  \
5986
   __old; @})
5987
@end smallexample
5988
 
5989
@noindent
5990
The @code{volatile} keyword indicates that the instruction has
5991
important side-effects.  GCC will not delete a volatile @code{asm} if
5992
it is reachable.  (The instruction can still be deleted if GCC can
5993
prove that control-flow will never reach the location of the
5994
instruction.)  Note that even a volatile @code{asm} instruction
5995
can be moved relative to other code, including across jump
5996
instructions.  For example, on many targets there is a system
5997
register which can be set to control the rounding mode of
5998
floating point operations.  You might try
5999
setting it with a volatile @code{asm}, like this PowerPC example:
6000
 
6001
@smallexample
6002
       asm volatile("mtfsf 255,%0" : : "f" (fpenv));
6003
       sum = x + y;
6004
@end smallexample
6005
 
6006
@noindent
6007
This will not work reliably, as the compiler may move the addition back
6008
before the volatile @code{asm}.  To make it work you need to add an
6009
artificial dependency to the @code{asm} referencing a variable in the code
6010
you don't want moved, for example:
6011
 
6012
@smallexample
6013
    asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
6014
    sum = x + y;
6015
@end smallexample
6016
 
6017
Similarly, you can't expect a
6018
sequence of volatile @code{asm} instructions to remain perfectly
6019
consecutive.  If you want consecutive output, use a single @code{asm}.
6020
Also, GCC will perform some optimizations across a volatile @code{asm}
6021
instruction; GCC does not ``forget everything'' when it encounters
6022
a volatile @code{asm} instruction the way some other compilers do.
6023
 
6024
An @code{asm} instruction without any output operands will be treated
6025
identically to a volatile @code{asm} instruction.
6026
 
6027
It is a natural idea to look for a way to give access to the condition
6028
code left by the assembler instruction.  However, when we attempted to
6029
implement this, we found no way to make it work reliably.  The problem
6030
is that output operands might need reloading, which would result in
6031
additional following ``store'' instructions.  On most machines, these
6032
instructions would alter the condition code before there was time to
6033
test it.  This problem doesn't arise for ordinary ``test'' and
6034
``compare'' instructions because they don't have any output operands.
6035
 
6036
For reasons similar to those described above, it is not possible to give
6037
an assembler instruction access to the condition code left by previous
6038
instructions.
6039
 
6040
@anchor{Extended asm with goto}
6041
As of GCC version 4.5, @code{asm goto} may be used to have the assembly
6042
jump to one or more C labels.  In this form, a fifth section after the
6043
clobber list contains a list of all C labels to which the assembly may jump.
6044
Each label operand is implicitly self-named.  The @code{asm} is also assumed
6045
to fall through to the next statement.
6046
 
6047
This form of @code{asm} is restricted to not have outputs.  This is due
6048
to a internal restriction in the compiler that control transfer instructions
6049
cannot have outputs.  This restriction on @code{asm goto} may be lifted
6050
in some future version of the compiler.  In the mean time, @code{asm goto}
6051
may include a memory clobber, and so leave outputs in memory.
6052
 
6053
@smallexample
6054
int frob(int x)
6055
@{
6056
  int y;
6057
  asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
6058
            : : "r"(x), "r"(&y) : "r5", "memory" : error);
6059
  return y;
6060
 error:
6061
  return -1;
6062
@}
6063
@end smallexample
6064
 
6065
In this (inefficient) example, the @code{frob} instruction sets the
6066
carry bit to indicate an error.  The @code{jc} instruction detects
6067
this and branches to the @code{error} label.  Finally, the output
6068
of the @code{frob} instruction (@code{%r5}) is stored into the memory
6069
for variable @code{y}, which is later read by the @code{return} statement.
6070
 
6071
@smallexample
6072
void doit(void)
6073
@{
6074
  int i = 0;
6075
  asm goto ("mfsr %%r1, 123; jmp %%r1;"
6076
            ".pushsection doit_table;"
6077
            ".long %l0, %l1, %l2, %l3;"
6078
            ".popsection"
6079
            : : : "r1" : label1, label2, label3, label4);
6080
  __builtin_unreachable ();
6081
 
6082
 label1:
6083
  f1();
6084
  return;
6085
 label2:
6086
  f2();
6087
  return;
6088
 label3:
6089
  i = 1;
6090
 label4:
6091
  f3(i);
6092
@}
6093
@end smallexample
6094
 
6095
In this (also inefficient) example, the @code{mfsr} instruction reads
6096
an address from some out-of-band machine register, and the following
6097
@code{jmp} instruction branches to that address.  The address read by
6098
the @code{mfsr} instruction is assumed to have been previously set via
6099
some application-specific mechanism to be one of the four values stored
6100
in the @code{doit_table} section.  Finally, the @code{asm} is followed
6101
by a call to @code{__builtin_unreachable} to indicate that the @code{asm}
6102
does not in fact fall through.
6103
 
6104
@smallexample
6105
#define TRACE1(NUM)                         \
6106
  do @{                                      \
6107
    asm goto ("0: nop;"                     \
6108
              ".pushsection trace_table;"   \
6109
              ".long 0b, %l0;"              \
6110
              ".popsection"                 \
6111
              : : : : trace#NUM);           \
6112
    if (0) @{ trace#NUM: trace(); @}          \
6113
  @} while (0)
6114
#define TRACE  TRACE1(__COUNTER__)
6115
@end smallexample
6116
 
6117
In this example (which in fact inspired the @code{asm goto} feature)
6118
we want on rare occasions to call the @code{trace} function; on other
6119
occasions we'd like to keep the overhead to the absolute minimum.
6120
The normal code path consists of a single @code{nop} instruction.
6121
However, we record the address of this @code{nop} together with the
6122
address of a label that calls the @code{trace} function.  This allows
6123
the @code{nop} instruction to be patched at runtime to be an
6124
unconditional branch to the stored label.  It is assumed that an
6125
optimizing compiler will move the labeled block out of line, to
6126
optimize the fall through path from the @code{asm}.
6127
 
6128
If you are writing a header file that should be includable in ISO C
6129
programs, write @code{__asm__} instead of @code{asm}.  @xref{Alternate
6130
Keywords}.
6131
 
6132
@subsection Size of an @code{asm}
6133
 
6134
Some targets require that GCC track the size of each instruction used in
6135
order to generate correct code.  Because the final length of an
6136
@code{asm} is only known by the assembler, GCC must make an estimate as
6137
to how big it will be.  The estimate is formed by counting the number of
6138
statements in the pattern of the @code{asm} and multiplying that by the
6139
length of the longest instruction on that processor.  Statements in the
6140
@code{asm} are identified by newline characters and whatever statement
6141
separator characters are supported by the assembler; on most processors
6142
this is the `@code{;}' character.
6143
 
6144
Normally, GCC's estimate is perfectly adequate to ensure that correct
6145
code is generated, but it is possible to confuse the compiler if you use
6146
pseudo instructions or assembler macros that expand into multiple real
6147
instructions or if you use assembler directives that expand to more
6148
space in the object file than would be needed for a single instruction.
6149
If this happens then the assembler will produce a diagnostic saying that
6150
a label is unreachable.
6151
 
6152
@subsection i386 floating point asm operands
6153
 
6154
There are several rules on the usage of stack-like regs in
6155
asm_operands insns.  These rules apply only to the operands that are
6156
stack-like regs:
6157
 
6158
@enumerate
6159
@item
6160
Given a set of input regs that die in an asm_operands, it is
6161
necessary to know which are implicitly popped by the asm, and
6162
which must be explicitly popped by gcc.
6163
 
6164
An input reg that is implicitly popped by the asm must be
6165
explicitly clobbered, unless it is constrained to match an
6166
output operand.
6167
 
6168
@item
6169
For any input reg that is implicitly popped by an asm, it is
6170
necessary to know how to adjust the stack to compensate for the pop.
6171
If any non-popped input is closer to the top of the reg-stack than
6172
the implicitly popped reg, it would not be possible to know what the
6173
stack looked like---it's not clear how the rest of the stack ``slides
6174
up''.
6175
 
6176
All implicitly popped input regs must be closer to the top of
6177
the reg-stack than any input that is not implicitly popped.
6178
 
6179
It is possible that if an input dies in an insn, reload might
6180
use the input reg for an output reload.  Consider this example:
6181
 
6182
@smallexample
6183
asm ("foo" : "=t" (a) : "f" (b));
6184
@end smallexample
6185
 
6186
This asm says that input B is not popped by the asm, and that
6187
the asm pushes a result onto the reg-stack, i.e., the stack is one
6188
deeper after the asm than it was before.  But, it is possible that
6189
reload will think that it can use the same reg for both the input and
6190
the output, if input B dies in this insn.
6191
 
6192
If any input operand uses the @code{f} constraint, all output reg
6193
constraints must use the @code{&} earlyclobber.
6194
 
6195
The asm above would be written as
6196
 
6197
@smallexample
6198
asm ("foo" : "=&t" (a) : "f" (b));
6199
@end smallexample
6200
 
6201
@item
6202
Some operands need to be in particular places on the stack.  All
6203
output operands fall in this category---there is no other way to
6204
know which regs the outputs appear in unless the user indicates
6205
this in the constraints.
6206
 
6207
Output operands must specifically indicate which reg an output
6208
appears in after an asm.  @code{=f} is not allowed: the operand
6209
constraints must select a class with a single reg.
6210
 
6211
@item
6212
Output operands may not be ``inserted'' between existing stack regs.
6213
Since no 387 opcode uses a read/write operand, all output operands
6214
are dead before the asm_operands, and are pushed by the asm_operands.
6215
It makes no sense to push anywhere but the top of the reg-stack.
6216
 
6217
Output operands must start at the top of the reg-stack: output
6218
operands may not ``skip'' a reg.
6219
 
6220
@item
6221
Some asm statements may need extra stack space for internal
6222
calculations.  This can be guaranteed by clobbering stack registers
6223
unrelated to the inputs and outputs.
6224
 
6225
@end enumerate
6226
 
6227
Here are a couple of reasonable asms to want to write.  This asm
6228
takes one input, which is internally popped, and produces two outputs.
6229
 
6230
@smallexample
6231
asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
6232
@end smallexample
6233
 
6234
This asm takes two inputs, which are popped by the @code{fyl2xp1} opcode,
6235
and replaces them with one output.  The user must code the @code{st(1)}
6236
clobber for reg-stack.c to know that @code{fyl2xp1} pops both inputs.
6237
 
6238
@smallexample
6239
asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
6240
@end smallexample
6241
 
6242
@include md.texi
6243
 
6244
@node Asm Labels
6245
@section Controlling Names Used in Assembler Code
6246
@cindex assembler names for identifiers
6247
@cindex names used in assembler code
6248
@cindex identifiers, names in assembler code
6249
 
6250
You can specify the name to be used in the assembler code for a C
6251
function or variable by writing the @code{asm} (or @code{__asm__})
6252
keyword after the declarator as follows:
6253
 
6254
@smallexample
6255
int foo asm ("myfoo") = 2;
6256
@end smallexample
6257
 
6258
@noindent
6259
This specifies that the name to be used for the variable @code{foo} in
6260
the assembler code should be @samp{myfoo} rather than the usual
6261
@samp{_foo}.
6262
 
6263
On systems where an underscore is normally prepended to the name of a C
6264
function or variable, this feature allows you to define names for the
6265
linker that do not start with an underscore.
6266
 
6267
It does not make sense to use this feature with a non-static local
6268
variable since such variables do not have assembler names.  If you are
6269
trying to put the variable in a particular register, see @ref{Explicit
6270
Reg Vars}.  GCC presently accepts such code with a warning, but will
6271
probably be changed to issue an error, rather than a warning, in the
6272
future.
6273
 
6274
You cannot use @code{asm} in this way in a function @emph{definition}; but
6275
you can get the same effect by writing a declaration for the function
6276
before its definition and putting @code{asm} there, like this:
6277
 
6278
@smallexample
6279
extern func () asm ("FUNC");
6280
 
6281
func (x, y)
6282
     int x, y;
6283
/* @r{@dots{}} */
6284
@end smallexample
6285
 
6286
It is up to you to make sure that the assembler names you choose do not
6287
conflict with any other assembler symbols.  Also, you must not use a
6288
register name; that would produce completely invalid assembler code.  GCC
6289
does not as yet have the ability to store static variables in registers.
6290
Perhaps that will be added.
6291
 
6292
@node Explicit Reg Vars
6293
@section Variables in Specified Registers
6294
@cindex explicit register variables
6295
@cindex variables in specified registers
6296
@cindex specified registers
6297
@cindex registers, global allocation
6298
 
6299
GNU C allows you to put a few global variables into specified hardware
6300
registers.  You can also specify the register in which an ordinary
6301
register variable should be allocated.
6302
 
6303
@itemize @bullet
6304
@item
6305
Global register variables reserve registers throughout the program.
6306
This may be useful in programs such as programming language
6307
interpreters which have a couple of global variables that are accessed
6308
very often.
6309
 
6310
@item
6311
Local register variables in specific registers do not reserve the
6312
registers, except at the point where they are used as input or output
6313
operands in an @code{asm} statement and the @code{asm} statement itself is
6314
not deleted.  The compiler's data flow analysis is capable of determining
6315
where the specified registers contain live values, and where they are
6316
available for other uses.  Stores into local register variables may be deleted
6317
when they appear to be dead according to dataflow analysis.  References
6318
to local register variables may be deleted or moved or simplified.
6319
 
6320
These local variables are sometimes convenient for use with the extended
6321
@code{asm} feature (@pxref{Extended Asm}), if you want to write one
6322
output of the assembler instruction directly into a particular register.
6323
(This will work provided the register you specify fits the constraints
6324
specified for that operand in the @code{asm}.)
6325
@end itemize
6326
 
6327
@menu
6328
* Global Reg Vars::
6329
* Local Reg Vars::
6330
@end menu
6331
 
6332
@node Global Reg Vars
6333
@subsection Defining Global Register Variables
6334
@cindex global register variables
6335
@cindex registers, global variables in
6336
 
6337
You can define a global register variable in GNU C like this:
6338
 
6339
@smallexample
6340
register int *foo asm ("a5");
6341
@end smallexample
6342
 
6343
@noindent
6344
Here @code{a5} is the name of the register which should be used.  Choose a
6345
register which is normally saved and restored by function calls on your
6346
machine, so that library routines will not clobber it.
6347
 
6348
Naturally the register name is cpu-dependent, so you would need to
6349
conditionalize your program according to cpu type.  The register
6350
@code{a5} would be a good choice on a 68000 for a variable of pointer
6351
type.  On machines with register windows, be sure to choose a ``global''
6352
register that is not affected magically by the function call mechanism.
6353
 
6354
In addition, operating systems on one type of cpu may differ in how they
6355
name the registers; then you would need additional conditionals.  For
6356
example, some 68000 operating systems call this register @code{%a5}.
6357
 
6358
Eventually there may be a way of asking the compiler to choose a register
6359
automatically, but first we need to figure out how it should choose and
6360
how to enable you to guide the choice.  No solution is evident.
6361
 
6362
Defining a global register variable in a certain register reserves that
6363
register entirely for this use, at least within the current compilation.
6364
The register will not be allocated for any other purpose in the functions
6365
in the current compilation.  The register will not be saved and restored by
6366
these functions.  Stores into this register are never deleted even if they
6367
would appear to be dead, but references may be deleted or moved or
6368
simplified.
6369
 
6370
It is not safe to access the global register variables from signal
6371
handlers, or from more than one thread of control, because the system
6372
library routines may temporarily use the register for other things (unless
6373
you recompile them specially for the task at hand).
6374
 
6375
@cindex @code{qsort}, and global register variables
6376
It is not safe for one function that uses a global register variable to
6377
call another such function @code{foo} by way of a third function
6378
@code{lose} that was compiled without knowledge of this variable (i.e.@: in a
6379
different source file in which the variable wasn't declared).  This is
6380
because @code{lose} might save the register and put some other value there.
6381
For example, you can't expect a global register variable to be available in
6382
the comparison-function that you pass to @code{qsort}, since @code{qsort}
6383
might have put something else in that register.  (If you are prepared to
6384
recompile @code{qsort} with the same global register variable, you can
6385
solve this problem.)
6386
 
6387
If you want to recompile @code{qsort} or other source files which do not
6388
actually use your global register variable, so that they will not use that
6389
register for any other purpose, then it suffices to specify the compiler
6390
option @option{-ffixed-@var{reg}}.  You need not actually add a global
6391
register declaration to their source code.
6392
 
6393
A function which can alter the value of a global register variable cannot
6394
safely be called from a function compiled without this variable, because it
6395
could clobber the value the caller expects to find there on return.
6396
Therefore, the function which is the entry point into the part of the
6397
program that uses the global register variable must explicitly save and
6398
restore the value which belongs to its caller.
6399
 
6400
@cindex register variable after @code{longjmp}
6401
@cindex global register after @code{longjmp}
6402
@cindex value after @code{longjmp}
6403
@findex longjmp
6404
@findex setjmp
6405
On most machines, @code{longjmp} will restore to each global register
6406
variable the value it had at the time of the @code{setjmp}.  On some
6407
machines, however, @code{longjmp} will not change the value of global
6408
register variables.  To be portable, the function that called @code{setjmp}
6409
should make other arrangements to save the values of the global register
6410
variables, and to restore them in a @code{longjmp}.  This way, the same
6411
thing will happen regardless of what @code{longjmp} does.
6412
 
6413
All global register variable declarations must precede all function
6414
definitions.  If such a declaration could appear after function
6415
definitions, the declaration would be too late to prevent the register from
6416
being used for other purposes in the preceding functions.
6417
 
6418
Global register variables may not have initial values, because an
6419
executable file has no means to supply initial contents for a register.
6420
 
6421
On the SPARC, there are reports that g3 @dots{} g7 are suitable
6422
registers, but certain library functions, such as @code{getwd}, as well
6423
as the subroutines for division and remainder, modify g3 and g4.  g1 and
6424
g2 are local temporaries.
6425
 
6426
On the 68000, a2 @dots{} a5 should be suitable, as should d2 @dots{} d7.
6427
Of course, it will not do to use more than a few of those.
6428
 
6429
@node Local Reg Vars
6430
@subsection Specifying Registers for Local Variables
6431
@cindex local variables, specifying registers
6432
@cindex specifying registers for local variables
6433
@cindex registers for local variables
6434
 
6435
You can define a local register variable with a specified register
6436
like this:
6437
 
6438
@smallexample
6439
register int *foo asm ("a5");
6440
@end smallexample
6441
 
6442
@noindent
6443
Here @code{a5} is the name of the register which should be used.  Note
6444
that this is the same syntax used for defining global register
6445
variables, but for a local variable it would appear within a function.
6446
 
6447
Naturally the register name is cpu-dependent, but this is not a
6448
problem, since specific registers are most often useful with explicit
6449
assembler instructions (@pxref{Extended Asm}).  Both of these things
6450
generally require that you conditionalize your program according to
6451
cpu type.
6452
 
6453
In addition, operating systems on one type of cpu may differ in how they
6454
name the registers; then you would need additional conditionals.  For
6455
example, some 68000 operating systems call this register @code{%a5}.
6456
 
6457
Defining such a register variable does not reserve the register; it
6458
remains available for other uses in places where flow control determines
6459
the variable's value is not live.
6460
 
6461
This option does not guarantee that GCC will generate code that has
6462
this variable in the register you specify at all times.  You may not
6463
code an explicit reference to this register in the @emph{assembler
6464
instruction template} part of an @code{asm} statement and assume it will
6465
always refer to this variable.  However, using the variable as an
6466
@code{asm} @emph{operand} guarantees that the specified register is used
6467
for the operand.
6468
 
6469
Stores into local register variables may be deleted when they appear to be dead
6470
according to dataflow analysis.  References to local register variables may
6471
be deleted or moved or simplified.
6472
 
6473
As for global register variables, it's recommended that you choose a
6474
register which is normally saved and restored by function calls on
6475
your machine, so that library routines will not clobber it.  A common
6476
pitfall is to initialize multiple call-clobbered registers with
6477
arbitrary expressions, where a function call or library call for an
6478
arithmetic operator will overwrite a register value from a previous
6479
assignment, for example @code{r0} below:
6480
@smallexample
6481
register int *p1 asm ("r0") = @dots{};
6482
register int *p2 asm ("r1") = @dots{};
6483
@end smallexample
6484
In those cases, a solution is to use a temporary variable for
6485
each arbitrary expression.   @xref{Example of asm with clobbered asm reg}.
6486
 
6487
@node Alternate Keywords
6488
@section Alternate Keywords
6489
@cindex alternate keywords
6490
@cindex keywords, alternate
6491
 
6492
@option{-ansi} and the various @option{-std} options disable certain
6493
keywords.  This causes trouble when you want to use GNU C extensions, or
6494
a general-purpose header file that should be usable by all programs,
6495
including ISO C programs.  The keywords @code{asm}, @code{typeof} and
6496
@code{inline} are not available in programs compiled with
6497
@option{-ansi} or @option{-std} (although @code{inline} can be used in a
6498
program compiled with @option{-std=c99} or @option{-std=c11}).  The
6499
ISO C99 keyword
6500
@code{restrict} is only available when @option{-std=gnu99} (which will
6501
eventually be the default) or @option{-std=c99} (or the equivalent
6502
@option{-std=iso9899:1999}), or an option for a later standard
6503
version, is used.
6504
 
6505
The way to solve these problems is to put @samp{__} at the beginning and
6506
end of each problematical keyword.  For example, use @code{__asm__}
6507
instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
6508
 
6509
Other C compilers won't accept these alternative keywords; if you want to
6510
compile with another compiler, you can define the alternate keywords as
6511
macros to replace them with the customary keywords.  It looks like this:
6512
 
6513
@smallexample
6514
#ifndef __GNUC__
6515
#define __asm__ asm
6516
#endif
6517
@end smallexample
6518
 
6519
@findex __extension__
6520
@opindex pedantic
6521
@option{-pedantic} and other options cause warnings for many GNU C extensions.
6522
You can
6523
prevent such warnings within one expression by writing
6524
@code{__extension__} before the expression.  @code{__extension__} has no
6525
effect aside from this.
6526
 
6527
@node Incomplete Enums
6528
@section Incomplete @code{enum} Types
6529
 
6530
You can define an @code{enum} tag without specifying its possible values.
6531
This results in an incomplete type, much like what you get if you write
6532
@code{struct foo} without describing the elements.  A later declaration
6533
which does specify the possible values completes the type.
6534
 
6535
You can't allocate variables or storage using the type while it is
6536
incomplete.  However, you can work with pointers to that type.
6537
 
6538
This extension may not be very useful, but it makes the handling of
6539
@code{enum} more consistent with the way @code{struct} and @code{union}
6540
are handled.
6541
 
6542
This extension is not supported by GNU C++.
6543
 
6544
@node Function Names
6545
@section Function Names as Strings
6546
@cindex @code{__func__} identifier
6547
@cindex @code{__FUNCTION__} identifier
6548
@cindex @code{__PRETTY_FUNCTION__} identifier
6549
 
6550
GCC provides three magic variables which hold the name of the current
6551
function, as a string.  The first of these is @code{__func__}, which
6552
is part of the C99 standard:
6553
 
6554
The identifier @code{__func__} is implicitly declared by the translator
6555
as if, immediately following the opening brace of each function
6556
definition, the declaration
6557
 
6558
@smallexample
6559
static const char __func__[] = "function-name";
6560
@end smallexample
6561
 
6562
@noindent
6563
appeared, where function-name is the name of the lexically-enclosing
6564
function.  This name is the unadorned name of the function.
6565
 
6566
@code{__FUNCTION__} is another name for @code{__func__}.  Older
6567
versions of GCC recognize only this name.  However, it is not
6568
standardized.  For maximum portability, we recommend you use
6569
@code{__func__}, but provide a fallback definition with the
6570
preprocessor:
6571
 
6572
@smallexample
6573
#if __STDC_VERSION__ < 199901L
6574
# if __GNUC__ >= 2
6575
#  define __func__ __FUNCTION__
6576
# else
6577
#  define __func__ "<unknown>"
6578
# endif
6579
#endif
6580
@end smallexample
6581
 
6582
In C, @code{__PRETTY_FUNCTION__} is yet another name for
6583
@code{__func__}.  However, in C++, @code{__PRETTY_FUNCTION__} contains
6584
the type signature of the function as well as its bare name.  For
6585
example, this program:
6586
 
6587
@smallexample
6588
extern "C" @{
6589
extern int printf (char *, ...);
6590
@}
6591
 
6592
class a @{
6593
 public:
6594
  void sub (int i)
6595
    @{
6596
      printf ("__FUNCTION__ = %s\n", __FUNCTION__);
6597
      printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
6598
    @}
6599
@};
6600
 
6601
int
6602
main (void)
6603
@{
6604
  a ax;
6605
  ax.sub (0);
6606
  return 0;
6607
@}
6608
@end smallexample
6609
 
6610
@noindent
6611
gives this output:
6612
 
6613
@smallexample
6614
__FUNCTION__ = sub
6615
__PRETTY_FUNCTION__ = void a::sub(int)
6616
@end smallexample
6617
 
6618
These identifiers are not preprocessor macros.  In GCC 3.3 and
6619
earlier, in C only, @code{__FUNCTION__} and @code{__PRETTY_FUNCTION__}
6620
were treated as string literals; they could be used to initialize
6621
@code{char} arrays, and they could be concatenated with other string
6622
literals.  GCC 3.4 and later treat them as variables, like
6623
@code{__func__}.  In C++, @code{__FUNCTION__} and
6624
@code{__PRETTY_FUNCTION__} have always been variables.
6625
 
6626
@node Return Address
6627
@section Getting the Return or Frame Address of a Function
6628
 
6629
These functions may be used to get information about the callers of a
6630
function.
6631
 
6632
@deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
6633
This function returns the return address of the current function, or of
6634
one of its callers.  The @var{level} argument is number of frames to
6635
scan up the call stack.  A value of @code{0} yields the return address
6636
of the current function, a value of @code{1} yields the return address
6637
of the caller of the current function, and so forth.  When inlining
6638
the expected behavior is that the function will return the address of
6639
the function that will be returned to.  To work around this behavior use
6640
the @code{noinline} function attribute.
6641
 
6642
The @var{level} argument must be a constant integer.
6643
 
6644
On some machines it may be impossible to determine the return address of
6645
any function other than the current one; in such cases, or when the top
6646
of the stack has been reached, this function will return @code{0} or a
6647
random value.  In addition, @code{__builtin_frame_address} may be used
6648
to determine if the top of the stack has been reached.
6649
 
6650
Additional post-processing of the returned value may be needed, see
6651
@code{__builtin_extract_return_address}.
6652
 
6653
This function should only be used with a nonzero argument for debugging
6654
purposes.
6655
@end deftypefn
6656
 
6657
@deftypefn {Built-in Function} {void *} __builtin_extract_return_address (void *@var{addr})
6658
The address as returned by @code{__builtin_return_address} may have to be fed
6659
through this function to get the actual encoded address.  For example, on the
6660
31-bit S/390 platform the highest bit has to be masked out, or on SPARC
6661
platforms an offset has to be added for the true next instruction to be
6662
executed.
6663
 
6664
If no fixup is needed, this function simply passes through @var{addr}.
6665
@end deftypefn
6666
 
6667
@deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
6668
This function does the reverse of @code{__builtin_extract_return_address}.
6669
@end deftypefn
6670
 
6671
@deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
6672
This function is similar to @code{__builtin_return_address}, but it
6673
returns the address of the function frame rather than the return address
6674
of the function.  Calling @code{__builtin_frame_address} with a value of
6675
@code{0} yields the frame address of the current function, a value of
6676
@code{1} yields the frame address of the caller of the current function,
6677
and so forth.
6678
 
6679
The frame is the area on the stack which holds local variables and saved
6680
registers.  The frame address is normally the address of the first word
6681
pushed on to the stack by the function.  However, the exact definition
6682
depends upon the processor and the calling convention.  If the processor
6683
has a dedicated frame pointer register, and the function has a frame,
6684
then @code{__builtin_frame_address} will return the value of the frame
6685
pointer register.
6686
 
6687
On some machines it may be impossible to determine the frame address of
6688
any function other than the current one; in such cases, or when the top
6689
of the stack has been reached, this function will return @code{0} if
6690
the first frame pointer is properly initialized by the startup code.
6691
 
6692
This function should only be used with a nonzero argument for debugging
6693
purposes.
6694
@end deftypefn
6695
 
6696
@node Vector Extensions
6697
@section Using vector instructions through built-in functions
6698
 
6699
On some targets, the instruction set contains SIMD vector instructions that
6700
operate on multiple values contained in one large register at the same time.
6701
For example, on the i386 the MMX, 3DNow!@: and SSE extensions can be used
6702
this way.
6703
 
6704
The first step in using these extensions is to provide the necessary data
6705
types.  This should be done using an appropriate @code{typedef}:
6706
 
6707
@smallexample
6708
typedef int v4si __attribute__ ((vector_size (16)));
6709
@end smallexample
6710
 
6711
The @code{int} type specifies the base type, while the attribute specifies
6712
the vector size for the variable, measured in bytes.  For example, the
6713
declaration above causes the compiler to set the mode for the @code{v4si}
6714
type to be 16 bytes wide and divided into @code{int} sized units.  For
6715
a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
6716
corresponding mode of @code{foo} will be @acronym{V4SI}.
6717
 
6718
The @code{vector_size} attribute is only applicable to integral and
6719
float scalars, although arrays, pointers, and function return values
6720
are allowed in conjunction with this construct.
6721
 
6722
All the basic integer types can be used as base types, both as signed
6723
and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
6724
@code{long long}.  In addition, @code{float} and @code{double} can be
6725
used to build floating-point vector types.
6726
 
6727
Specifying a combination that is not valid for the current architecture
6728
will cause GCC to synthesize the instructions using a narrower mode.
6729
For example, if you specify a variable of type @code{V4SI} and your
6730
architecture does not allow for this specific SIMD type, GCC will
6731
produce code that uses 4 @code{SIs}.
6732
 
6733
The types defined in this manner can be used with a subset of normal C
6734
operations.  Currently, GCC will allow using the following operators
6735
on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
6736
 
6737
The operations behave like C++ @code{valarrays}.  Addition is defined as
6738
the addition of the corresponding elements of the operands.  For
6739
example, in the code below, each of the 4 elements in @var{a} will be
6740
added to the corresponding 4 elements in @var{b} and the resulting
6741
vector will be stored in @var{c}.
6742
 
6743
@smallexample
6744
typedef int v4si __attribute__ ((vector_size (16)));
6745
 
6746
v4si a, b, c;
6747
 
6748
c = a + b;
6749
@end smallexample
6750
 
6751
Subtraction, multiplication, division, and the logical operations
6752
operate in a similar manner.  Likewise, the result of using the unary
6753
minus or complement operators on a vector type is a vector whose
6754
elements are the negative or complemented values of the corresponding
6755
elements in the operand.
6756
 
6757
In C it is possible to use shifting operators @code{<<}, @code{>>} on
6758
integer-type vectors. The operation is defined as following: @code{@{a0,
6759
a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
6760
@dots{}, an >> bn@}}@. Vector operands must have the same number of
6761
elements.
6762
 
6763
For the convenience in C it is allowed to use a binary vector operation
6764
where one operand is a scalar. In that case the compiler will transform
6765
the scalar operand into a vector where each element is the scalar from
6766
the operation. The transformation will happen only if the scalar could be
6767
safely converted to the vector-element type.
6768
Consider the following code.
6769
 
6770
@smallexample
6771
typedef int v4si __attribute__ ((vector_size (16)));
6772
 
6773
v4si a, b, c;
6774
long l;
6775
 
6776
a = b + 1;    /* a = b + @{1,1,1,1@}; */
6777
a = 2 * b;    /* a = @{2,2,2,2@} * b; */
6778
 
6779
a = l + a;    /* Error, cannot convert long to int. */
6780
@end smallexample
6781
 
6782
In C vectors can be subscripted as if the vector were an array with
6783
the same number of elements and base type.  Out of bound accesses
6784
invoke undefined behavior at runtime.  Warnings for out of bound
6785
accesses for vector subscription can be enabled with
6786
@option{-Warray-bounds}.
6787
 
6788
In GNU C vector comparison is supported within standard comparison
6789
operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
6790
vector expressions of integer-type or real-type. Comparison between
6791
integer-type vectors and real-type vectors are not supported.  The
6792
result of the comparison is a vector of the same width and number of
6793
elements as the comparison operands with a signed integral element
6794
type.
6795
 
6796
Vectors are compared element-wise producing 0 when comparison is false
6797
and -1 (constant of the appropriate type where all bits are set)
6798
otherwise. Consider the following example.
6799
 
6800
@smallexample
6801
typedef int v4si __attribute__ ((vector_size (16)));
6802
 
6803
v4si a = @{1,2,3,4@};
6804
v4si b = @{3,2,1,4@};
6805
v4si c;
6806
 
6807
c = a >  b;     /* The result would be @{0, 0,-1, 0@}  */
6808
c = a == b;     /* The result would be @{0,-1, 0,-1@}  */
6809
@end smallexample
6810
 
6811
Vector shuffling is available using functions
6812
@code{__builtin_shuffle (vec, mask)} and
6813
@code{__builtin_shuffle (vec0, vec1, mask)}.
6814
Both functions construct a permutation of elements from one or two
6815
vectors and return a vector of the same type as the input vector(s).
6816
The @var{mask} is an integral vector with the same width (@var{W})
6817
and element count (@var{N}) as the output vector.
6818
 
6819
The elements of the input vectors are numbered in memory ordering of
6820
@var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}.  The
6821
elements of @var{mask} are considered modulo @var{N} in the single-operand
6822
case and modulo @math{2*@var{N}} in the two-operand case.
6823
 
6824
Consider the following example,
6825
 
6826
@smallexample
6827
typedef int v4si __attribute__ ((vector_size (16)));
6828
 
6829
v4si a = @{1,2,3,4@};
6830
v4si b = @{5,6,7,8@};
6831
v4si mask1 = @{0,1,1,3@};
6832
v4si mask2 = @{0,4,2,5@};
6833
v4si res;
6834
 
6835
res = __builtin_shuffle (a, mask1);       /* res is @{1,2,2,4@}  */
6836
res = __builtin_shuffle (a, b, mask2);    /* res is @{1,5,3,6@}  */
6837
@end smallexample
6838
 
6839
Note that @code{__builtin_shuffle} is intentionally semantically
6840
compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
6841
 
6842
You can declare variables and use them in function calls and returns, as
6843
well as in assignments and some casts.  You can specify a vector type as
6844
a return type for a function.  Vector types can also be used as function
6845
arguments.  It is possible to cast from one vector type to another,
6846
provided they are of the same size (in fact, you can also cast vectors
6847
to and from other datatypes of the same size).
6848
 
6849
You cannot operate between vectors of different lengths or different
6850
signedness without a cast.
6851
 
6852
@node Offsetof
6853
@section Offsetof
6854
@findex __builtin_offsetof
6855
 
6856
GCC implements for both C and C++ a syntactic extension to implement
6857
the @code{offsetof} macro.
6858
 
6859
@smallexample
6860
primary:
6861
        "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
6862
 
6863
offsetof_member_designator:
6864
          @code{identifier}
6865
        | offsetof_member_designator "." @code{identifier}
6866
        | offsetof_member_designator "[" @code{expr} "]"
6867
@end smallexample
6868
 
6869
This extension is sufficient such that
6870
 
6871
@smallexample
6872
#define offsetof(@var{type}, @var{member})  __builtin_offsetof (@var{type}, @var{member})
6873
@end smallexample
6874
 
6875
is a suitable definition of the @code{offsetof} macro.  In C++, @var{type}
6876
may be dependent.  In either case, @var{member} may consist of a single
6877
identifier, or a sequence of member accesses and array references.
6878
 
6879
@node __sync Builtins
6880
@section Legacy __sync built-in functions for atomic memory access
6881
 
6882
The following builtins are intended to be compatible with those described
6883
in the @cite{Intel Itanium Processor-specific Application Binary Interface},
6884
section 7.4.  As such, they depart from the normal GCC practice of using
6885
the ``__builtin_'' prefix, and further that they are overloaded such that
6886
they work on multiple types.
6887
 
6888
The definition given in the Intel documentation allows only for the use of
6889
the types @code{int}, @code{long}, @code{long long} as well as their unsigned
6890
counterparts.  GCC will allow any integral scalar or pointer type that is
6891
1, 2, 4 or 8 bytes in length.
6892
 
6893
Not all operations are supported by all target processors.  If a particular
6894
operation cannot be implemented on the target processor, a warning will be
6895
generated and a call an external function will be generated.  The external
6896
function will carry the same name as the builtin, with an additional suffix
6897
@samp{_@var{n}} where @var{n} is the size of the data type.
6898
 
6899
@c ??? Should we have a mechanism to suppress this warning?  This is almost
6900
@c useful for implementing the operation under the control of an external
6901
@c mutex.
6902
 
6903
In most cases, these builtins are considered a @dfn{full barrier}.  That is,
6904
no memory operand will be moved across the operation, either forward or
6905
backward.  Further, instructions will be issued as necessary to prevent the
6906
processor from speculating loads across the operation and from queuing stores
6907
after the operation.
6908
 
6909
All of the routines are described in the Intel documentation to take
6910
``an optional list of variables protected by the memory barrier''.  It's
6911
not clear what is meant by that; it could mean that @emph{only} the
6912
following variables are protected, or it could mean that these variables
6913
should in addition be protected.  At present GCC ignores this list and
6914
protects all variables which are globally accessible.  If in the future
6915
we make some use of this list, an empty list will continue to mean all
6916
globally accessible variables.
6917
 
6918
@table @code
6919
@item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
6920
@itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
6921
@itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
6922
@itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
6923
@itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
6924
@itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
6925
@findex __sync_fetch_and_add
6926
@findex __sync_fetch_and_sub
6927
@findex __sync_fetch_and_or
6928
@findex __sync_fetch_and_and
6929
@findex __sync_fetch_and_xor
6930
@findex __sync_fetch_and_nand
6931
These builtins perform the operation suggested by the name, and
6932
returns the value that had previously been in memory.  That is,
6933
 
6934
@smallexample
6935
@{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
6936
@{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @}   // nand
6937
@end smallexample
6938
 
6939
@emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
6940
builtin as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
6941
 
6942
@item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
6943
@itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
6944
@itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
6945
@itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
6946
@itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
6947
@itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
6948
@findex __sync_add_and_fetch
6949
@findex __sync_sub_and_fetch
6950
@findex __sync_or_and_fetch
6951
@findex __sync_and_and_fetch
6952
@findex __sync_xor_and_fetch
6953
@findex __sync_nand_and_fetch
6954
These builtins perform the operation suggested by the name, and
6955
return the new value.  That is,
6956
 
6957
@smallexample
6958
@{ *ptr @var{op}= value; return *ptr; @}
6959
@{ *ptr = ~(*ptr & value); return *ptr; @}   // nand
6960
@end smallexample
6961
 
6962
@emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
6963
builtin as @code{*ptr = ~(*ptr & value)} instead of
6964
@code{*ptr = ~*ptr & value}.
6965
 
6966
@item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
6967
@itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
6968
@findex __sync_bool_compare_and_swap
6969
@findex __sync_val_compare_and_swap
6970
These builtins perform an atomic compare and swap.  That is, if the current
6971
value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
6972
@code{*@var{ptr}}.
6973
 
6974
The ``bool'' version returns true if the comparison is successful and
6975
@var{newval} was written.  The ``val'' version returns the contents
6976
of @code{*@var{ptr}} before the operation.
6977
 
6978
@item __sync_synchronize (...)
6979
@findex __sync_synchronize
6980
This builtin issues a full memory barrier.
6981
 
6982
@item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
6983
@findex __sync_lock_test_and_set
6984
This builtin, as described by Intel, is not a traditional test-and-set
6985
operation, but rather an atomic exchange operation.  It writes @var{value}
6986
into @code{*@var{ptr}}, and returns the previous contents of
6987
@code{*@var{ptr}}.
6988
 
6989
Many targets have only minimal support for such locks, and do not support
6990
a full exchange operation.  In this case, a target may support reduced
6991
functionality here by which the @emph{only} valid value to store is the
6992
immediate constant 1.  The exact value actually stored in @code{*@var{ptr}}
6993
is implementation defined.
6994
 
6995
This builtin is not a full barrier, but rather an @dfn{acquire barrier}.
6996
This means that references after the builtin cannot move to (or be
6997
speculated to) before the builtin, but previous memory stores may not
6998
be globally visible yet, and previous memory loads may not yet be
6999
satisfied.
7000
 
7001
@item void __sync_lock_release (@var{type} *ptr, ...)
7002
@findex __sync_lock_release
7003
This builtin releases the lock acquired by @code{__sync_lock_test_and_set}.
7004
Normally this means writing the constant 0 to @code{*@var{ptr}}.
7005
 
7006
This builtin is not a full barrier, but rather a @dfn{release barrier}.
7007
This means that all previous memory stores are globally visible, and all
7008
previous memory loads have been satisfied, but following memory reads
7009
are not prevented from being speculated to before the barrier.
7010
@end table
7011
 
7012
@node __atomic Builtins
7013
@section Built-in functions for memory model aware atomic operations
7014
 
7015
The following built-in functions approximately match the requirements for
7016
C++11 memory model. Many are similar to the @samp{__sync} prefixed built-in
7017
functions, but all also have a memory model parameter.  These are all
7018
identified by being prefixed with @samp{__atomic}, and most are overloaded
7019
such that they work with multiple types.
7020
 
7021
GCC will allow any integral scalar or pointer type that is 1, 2, 4, or 8
7022
bytes in length. 16-byte integral types are also allowed if
7023
@samp{__int128} (@pxref{__int128}) is supported by the architecture.
7024
 
7025
Target architectures are encouraged to provide their own patterns for
7026
each of these built-in functions.  If no target is provided, the original
7027
non-memory model set of @samp{__sync} atomic built-in functions will be
7028
utilized, along with any required synchronization fences surrounding it in
7029
order to achieve the proper behaviour.  Execution in this case is subject
7030
to the same restrictions as those built-in functions.
7031
 
7032
If there is no pattern or mechanism to provide a lock free instruction
7033
sequence, a call is made to an external routine with the same parameters
7034
to be resolved at runtime.
7035
 
7036
The four non-arithmetic functions (load, store, exchange, and
7037
compare_exchange) all have a generic version as well.  This generic
7038
version will work on any data type.  If the data type size maps to one
7039
of the integral sizes which may have lock free support, the generic
7040
version will utilize the lock free built-in function.  Otherwise an
7041
external call is left to be resolved at runtime.  This external call will
7042
be the same format with the addition of a @samp{size_t} parameter inserted
7043
as the first parameter indicating the size of the object being pointed to.
7044
All objects must be the same size.
7045
 
7046
There are 6 different memory models which can be specified.  These map
7047
to the same names in the C++11 standard.  Refer there or to the
7048
@uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki on
7049
atomic synchronization} for more detailed definitions.  These memory
7050
models integrate both barriers to code motion as well as synchronization
7051
requirements with other threads. These are listed in approximately
7052
ascending order of strength.
7053
 
7054
@table  @code
7055
@item __ATOMIC_RELAXED
7056
No barriers or synchronization.
7057
@item __ATOMIC_CONSUME
7058
Data dependency only for both barrier and synchronization with another
7059
thread.
7060
@item __ATOMIC_ACQUIRE
7061
Barrier to hoisting of code and synchronizes with release (or stronger)
7062
semantic stores from another thread.
7063
@item __ATOMIC_RELEASE
7064
Barrier to sinking of code and synchronizes with acquire (or stronger)
7065
semantic loads from another thread.
7066
@item __ATOMIC_ACQ_REL
7067
Full barrier in both directions and synchronizes with acquire loads and
7068
release stores in another thread.
7069
@item __ATOMIC_SEQ_CST
7070
Full barrier in both directions and synchronizes with acquire loads and
7071
release stores in all threads.
7072
@end table
7073
 
7074
When implementing patterns for these built-in functions , the memory model
7075
parameter can be ignored as long as the pattern implements the most
7076
restrictive @code{__ATOMIC_SEQ_CST} model.  Any of the other memory models
7077
will execute correctly with this memory model but they may not execute as
7078
efficiently as they could with a more appropriate implemention of the
7079
relaxed requirements.
7080
 
7081
Note that the C++11 standard allows for the memory model parameter to be
7082
determined at runtime rather than at compile time.  These built-in
7083
functions will map any runtime value to @code{__ATOMIC_SEQ_CST} rather
7084
than invoke a runtime library call or inline a switch statement.  This is
7085
standard compliant, safe, and the simplest approach for now.
7086
 
7087
The memory model parameter is a signed int, but only the lower 8 bits are
7088
reserved for the memory model.  The remainder of the signed int is reserved
7089
for future use and should be 0.  Use of the predefined atomic values will
7090
ensure proper usage.
7091
 
7092
@deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memmodel)
7093
This built-in function implements an atomic load operation.  It returns the
7094
contents of @code{*@var{ptr}}.
7095
 
7096
The valid memory model variants are
7097
@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
7098
and @code{__ATOMIC_CONSUME}.
7099
 
7100
@end deftypefn
7101
 
7102
@deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memmodel)
7103
This is the generic version of an atomic load.  It will return the
7104
contents of @code{*@var{ptr}} in @code{*@var{ret}}.
7105
 
7106
@end deftypefn
7107
 
7108
@deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memmodel)
7109
This built-in function implements an atomic store operation.  It writes
7110
@code{@var{val}} into @code{*@var{ptr}}.
7111
 
7112
The valid memory model variants are
7113
@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
7114
 
7115
@end deftypefn
7116
 
7117
@deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memmodel)
7118
This is the generic version of an atomic store.  It will store the value
7119
of @code{*@var{val}} into @code{*@var{ptr}}.
7120
 
7121
@end deftypefn
7122
 
7123
@deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memmodel)
7124
This built-in function implements an atomic exchange operation.  It writes
7125
@var{val} into @code{*@var{ptr}}, and returns the previous contents of
7126
@code{*@var{ptr}}.
7127
 
7128
The valid memory model variants are
7129
@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
7130
@code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
7131
 
7132
@end deftypefn
7133
 
7134
@deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memmodel)
7135
This is the generic version of an atomic exchange.  It will store the
7136
contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
7137
of @code{*@var{ptr}} will be copied into @code{*@var{ret}}.
7138
 
7139
@end deftypefn
7140
 
7141
@deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memmodel, int failure_memmodel)
7142
This built-in function implements an atomic compare and exchange operation.
7143
This compares the contents of @code{*@var{ptr}} with the contents of
7144
@code{*@var{expected}} and if equal, writes @var{desired} into
7145
@code{*@var{ptr}}.  If they are not equal, the current contents of
7146
@code{*@var{ptr}} is written into @code{*@var{expected}}.  @var{weak} is true
7147
for weak compare_exchange, and false for the strong variation.  Many targets
7148
only offer the strong variation and ignore the parameter.  When in doubt, use
7149
the strong variation.
7150
 
7151
True is returned if @var{desired} is written into
7152
@code{*@var{ptr}} and the execution is considered to conform to the
7153
memory model specified by @var{success_memmodel}.  There are no
7154
restrictions on what memory model can be used here.
7155
 
7156
False is returned otherwise, and the execution is considered to conform
7157
to @var{failure_memmodel}. This memory model cannot be
7158
@code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}.  It also cannot be a
7159
stronger model than that specified by @var{success_memmodel}.
7160
 
7161
@end deftypefn
7162
 
7163
@deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memmodel, int failure_memmodel)
7164
This built-in function implements the generic version of
7165
@code{__atomic_compare_exchange}.  The function is virtually identical to
7166
@code{__atomic_compare_exchange_n}, except the desired value is also a
7167
pointer.
7168
 
7169
@end deftypefn
7170
 
7171
@deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7172
@deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7173
@deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7174
@deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7175
@deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7176
@deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7177
These built-in functions perform the operation suggested by the name, and
7178
return the result of the operation. That is,
7179
 
7180
@smallexample
7181
@{ *ptr @var{op}= val; return *ptr; @}
7182
@end smallexample
7183
 
7184
All memory models are valid.
7185
 
7186
@end deftypefn
7187
 
7188
@deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memmodel)
7189
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memmodel)
7190
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memmodel)
7191
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memmodel)
7192
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memmodel)
7193
@deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memmodel)
7194
These built-in functions perform the operation suggested by the name, and
7195
return the value that had previously been in @code{*@var{ptr}}.  That is,
7196
 
7197
@smallexample
7198
@{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
7199
@end smallexample
7200
 
7201
All memory models are valid.
7202
 
7203
@end deftypefn
7204
 
7205
@deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memmodel)
7206
 
7207
This built-in function performs an atomic test-and-set operation on
7208
the byte at @code{*@var{ptr}}.  The byte is set to some implementation
7209
defined non-zero "set" value and the return value is @code{true} if and only
7210
if the previous contents were "set".
7211
 
7212
All memory models are valid.
7213
 
7214
@end deftypefn
7215
 
7216
@deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memmodel)
7217
 
7218
This built-in function performs an atomic clear operation on
7219
@code{*@var{ptr}}.  After the operation, @code{*@var{ptr}} will contain 0.
7220
 
7221
The valid memory model variants are
7222
@code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
7223
@code{__ATOMIC_RELEASE}.
7224
 
7225
@end deftypefn
7226
 
7227
@deftypefn {Built-in Function} void __atomic_thread_fence (int memmodel)
7228
 
7229
This built-in function acts as a synchronization fence between threads
7230
based on the specified memory model.
7231
 
7232
All memory orders are valid.
7233
 
7234
@end deftypefn
7235
 
7236
@deftypefn {Built-in Function} void __atomic_signal_fence (int memmodel)
7237
 
7238
This built-in function acts as a synchronization fence between a thread
7239
and signal handlers based in the same thread.
7240
 
7241
All memory orders are valid.
7242
 
7243
@end deftypefn
7244
 
7245
@deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size,  void *ptr)
7246
 
7247
This built-in function returns true if objects of @var{size} bytes will always
7248
generate lock free atomic instructions for the target architecture.
7249
@var{size} must resolve to a compile time constant and the result also resolves to compile time constant.
7250
 
7251
@var{ptr} is an optional pointer to the object which may be used to determine
7252
alignment.  A value of 0 indicates typical alignment should be used.  The
7253
compiler may also ignore this parameter.
7254
 
7255
@smallexample
7256
if (_atomic_always_lock_free (sizeof (long long), 0))
7257
@end smallexample
7258
 
7259
@end deftypefn
7260
 
7261
@deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
7262
 
7263
This built-in function returns true if objects of @var{size} bytes will always
7264
generate lock free atomic instructions for the target architecture.  If
7265
it is not known to be lock free a call is made to a runtime routine named
7266
@code{__atomic_is_lock_free}.
7267
 
7268
@var{ptr} is an optional pointer to the object which may be used to determine
7269
alignment.  A value of 0 indicates typical alignment should be used.  The
7270
compiler may also ignore this parameter.
7271
@end deftypefn
7272
 
7273
@node Object Size Checking
7274
@section Object Size Checking Builtins
7275
@findex __builtin_object_size
7276
@findex __builtin___memcpy_chk
7277
@findex __builtin___mempcpy_chk
7278
@findex __builtin___memmove_chk
7279
@findex __builtin___memset_chk
7280
@findex __builtin___strcpy_chk
7281
@findex __builtin___stpcpy_chk
7282
@findex __builtin___strncpy_chk
7283
@findex __builtin___strcat_chk
7284
@findex __builtin___strncat_chk
7285
@findex __builtin___sprintf_chk
7286
@findex __builtin___snprintf_chk
7287
@findex __builtin___vsprintf_chk
7288
@findex __builtin___vsnprintf_chk
7289
@findex __builtin___printf_chk
7290
@findex __builtin___vprintf_chk
7291
@findex __builtin___fprintf_chk
7292
@findex __builtin___vfprintf_chk
7293
 
7294
GCC implements a limited buffer overflow protection mechanism
7295
that can prevent some buffer overflow attacks.
7296
 
7297
@deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
7298
is a built-in construct that returns a constant number of bytes from
7299
@var{ptr} to the end of the object @var{ptr} pointer points to
7300
(if known at compile time).  @code{__builtin_object_size} never evaluates
7301
its arguments for side-effects.  If there are any side-effects in them, it
7302
returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
7303
for @var{type} 2 or 3.  If there are multiple objects @var{ptr} can
7304
point to and all of them are known at compile time, the returned number
7305
is the maximum of remaining byte counts in those objects if @var{type} & 2 is
7306
 
7307
@var{ptr} points to at compile time, @code{__builtin_object_size} should
7308
return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
7309
for @var{type} 2 or 3.
7310
 
7311
@var{type} is an integer constant from 0 to 3.  If the least significant
7312
bit is clear, objects are whole variables, if it is set, a closest
7313
surrounding subobject is considered the object a pointer points to.
7314
The second bit determines if maximum or minimum of remaining bytes
7315
is computed.
7316
 
7317
@smallexample
7318
struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
7319
char *p = &var.buf1[1], *q = &var.b;
7320
 
7321
/* Here the object p points to is var.  */
7322
assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
7323
/* The subobject p points to is var.buf1.  */
7324
assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
7325
/* The object q points to is var.  */
7326
assert (__builtin_object_size (q, 0)
7327
        == (char *) (&var + 1) - (char *) &var.b);
7328
/* The subobject q points to is var.b.  */
7329
assert (__builtin_object_size (q, 1) == sizeof (var.b));
7330
@end smallexample
7331
@end deftypefn
7332
 
7333
There are built-in functions added for many common string operation
7334
functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
7335
built-in is provided.  This built-in has an additional last argument,
7336
which is the number of bytes remaining in object the @var{dest}
7337
argument points to or @code{(size_t) -1} if the size is not known.
7338
 
7339
The built-in functions are optimized into the normal string functions
7340
like @code{memcpy} if the last argument is @code{(size_t) -1} or if
7341
it is known at compile time that the destination object will not
7342
be overflown.  If the compiler can determine at compile time the
7343
object will be always overflown, it issues a warning.
7344
 
7345
The intended use can be e.g.
7346
 
7347
@smallexample
7348
#undef memcpy
7349
#define bos0(dest) __builtin_object_size (dest, 0)
7350
#define memcpy(dest, src, n) \
7351
  __builtin___memcpy_chk (dest, src, n, bos0 (dest))
7352
 
7353
char *volatile p;
7354
char buf[10];
7355
/* It is unknown what object p points to, so this is optimized
7356
   into plain memcpy - no checking is possible.  */
7357
memcpy (p, "abcde", n);
7358
/* Destination is known and length too.  It is known at compile
7359
   time there will be no overflow.  */
7360
memcpy (&buf[5], "abcde", 5);
7361
/* Destination is known, but the length is not known at compile time.
7362
   This will result in __memcpy_chk call that can check for overflow
7363
   at runtime.  */
7364
memcpy (&buf[5], "abcde", n);
7365
/* Destination is known and it is known at compile time there will
7366
   be overflow.  There will be a warning and __memcpy_chk call that
7367
   will abort the program at runtime.  */
7368
memcpy (&buf[6], "abcde", 5);
7369
@end smallexample
7370
 
7371
Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
7372
@code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
7373
@code{strcat} and @code{strncat}.
7374
 
7375
There are also checking built-in functions for formatted output functions.
7376
@smallexample
7377
int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
7378
int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
7379
                              const char *fmt, ...);
7380
int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
7381
                              va_list ap);
7382
int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
7383
                               const char *fmt, va_list ap);
7384
@end smallexample
7385
 
7386
The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
7387
etc.@: functions and can contain implementation specific flags on what
7388
additional security measures the checking function might take, such as
7389
handling @code{%n} differently.
7390
 
7391
The @var{os} argument is the object size @var{s} points to, like in the
7392
other built-in functions.  There is a small difference in the behavior
7393
though, if @var{os} is @code{(size_t) -1}, the built-in functions are
7394
optimized into the non-checking functions only if @var{flag} is 0, otherwise
7395
the checking function is called with @var{os} argument set to
7396
@code{(size_t) -1}.
7397
 
7398
In addition to this, there are checking built-in functions
7399
@code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
7400
@code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
7401
These have just one additional argument, @var{flag}, right before
7402
format string @var{fmt}.  If the compiler is able to optimize them to
7403
@code{fputc} etc.@: functions, it will, otherwise the checking function
7404
should be called and the @var{flag} argument passed to it.
7405
 
7406
@node Other Builtins
7407
@section Other built-in functions provided by GCC
7408
@cindex built-in functions
7409
@findex __builtin_fpclassify
7410
@findex __builtin_isfinite
7411
@findex __builtin_isnormal
7412
@findex __builtin_isgreater
7413
@findex __builtin_isgreaterequal
7414
@findex __builtin_isinf_sign
7415
@findex __builtin_isless
7416
@findex __builtin_islessequal
7417
@findex __builtin_islessgreater
7418
@findex __builtin_isunordered
7419
@findex __builtin_powi
7420
@findex __builtin_powif
7421
@findex __builtin_powil
7422
@findex _Exit
7423
@findex _exit
7424
@findex abort
7425
@findex abs
7426
@findex acos
7427
@findex acosf
7428
@findex acosh
7429
@findex acoshf
7430
@findex acoshl
7431
@findex acosl
7432
@findex alloca
7433
@findex asin
7434
@findex asinf
7435
@findex asinh
7436
@findex asinhf
7437
@findex asinhl
7438
@findex asinl
7439
@findex atan
7440
@findex atan2
7441
@findex atan2f
7442
@findex atan2l
7443
@findex atanf
7444
@findex atanh
7445
@findex atanhf
7446
@findex atanhl
7447
@findex atanl
7448
@findex bcmp
7449
@findex bzero
7450
@findex cabs
7451
@findex cabsf
7452
@findex cabsl
7453
@findex cacos
7454
@findex cacosf
7455
@findex cacosh
7456
@findex cacoshf
7457
@findex cacoshl
7458
@findex cacosl
7459
@findex calloc
7460
@findex carg
7461
@findex cargf
7462
@findex cargl
7463
@findex casin
7464
@findex casinf
7465
@findex casinh
7466
@findex casinhf
7467
@findex casinhl
7468
@findex casinl
7469
@findex catan
7470
@findex catanf
7471
@findex catanh
7472
@findex catanhf
7473
@findex catanhl
7474
@findex catanl
7475
@findex cbrt
7476
@findex cbrtf
7477
@findex cbrtl
7478
@findex ccos
7479
@findex ccosf
7480
@findex ccosh
7481
@findex ccoshf
7482
@findex ccoshl
7483
@findex ccosl
7484
@findex ceil
7485
@findex ceilf
7486
@findex ceill
7487
@findex cexp
7488
@findex cexpf
7489
@findex cexpl
7490
@findex cimag
7491
@findex cimagf
7492
@findex cimagl
7493
@findex clog
7494
@findex clogf
7495
@findex clogl
7496
@findex conj
7497
@findex conjf
7498
@findex conjl
7499
@findex copysign
7500
@findex copysignf
7501
@findex copysignl
7502
@findex cos
7503
@findex cosf
7504
@findex cosh
7505
@findex coshf
7506
@findex coshl
7507
@findex cosl
7508
@findex cpow
7509
@findex cpowf
7510
@findex cpowl
7511
@findex cproj
7512
@findex cprojf
7513
@findex cprojl
7514
@findex creal
7515
@findex crealf
7516
@findex creall
7517
@findex csin
7518
@findex csinf
7519
@findex csinh
7520
@findex csinhf
7521
@findex csinhl
7522
@findex csinl
7523
@findex csqrt
7524
@findex csqrtf
7525
@findex csqrtl
7526
@findex ctan
7527
@findex ctanf
7528
@findex ctanh
7529
@findex ctanhf
7530
@findex ctanhl
7531
@findex ctanl
7532
@findex dcgettext
7533
@findex dgettext
7534
@findex drem
7535
@findex dremf
7536
@findex dreml
7537
@findex erf
7538
@findex erfc
7539
@findex erfcf
7540
@findex erfcl
7541
@findex erff
7542
@findex erfl
7543
@findex exit
7544
@findex exp
7545
@findex exp10
7546
@findex exp10f
7547
@findex exp10l
7548
@findex exp2
7549
@findex exp2f
7550
@findex exp2l
7551
@findex expf
7552
@findex expl
7553
@findex expm1
7554
@findex expm1f
7555
@findex expm1l
7556
@findex fabs
7557
@findex fabsf
7558
@findex fabsl
7559
@findex fdim
7560
@findex fdimf
7561
@findex fdiml
7562
@findex ffs
7563
@findex floor
7564
@findex floorf
7565
@findex floorl
7566
@findex fma
7567
@findex fmaf
7568
@findex fmal
7569
@findex fmax
7570
@findex fmaxf
7571
@findex fmaxl
7572
@findex fmin
7573
@findex fminf
7574
@findex fminl
7575
@findex fmod
7576
@findex fmodf
7577
@findex fmodl
7578
@findex fprintf
7579
@findex fprintf_unlocked
7580
@findex fputs
7581
@findex fputs_unlocked
7582
@findex frexp
7583
@findex frexpf
7584
@findex frexpl
7585
@findex fscanf
7586
@findex gamma
7587
@findex gammaf
7588
@findex gammal
7589
@findex gamma_r
7590
@findex gammaf_r
7591
@findex gammal_r
7592
@findex gettext
7593
@findex hypot
7594
@findex hypotf
7595
@findex hypotl
7596
@findex ilogb
7597
@findex ilogbf
7598
@findex ilogbl
7599
@findex imaxabs
7600
@findex index
7601
@findex isalnum
7602
@findex isalpha
7603
@findex isascii
7604
@findex isblank
7605
@findex iscntrl
7606
@findex isdigit
7607
@findex isgraph
7608
@findex islower
7609
@findex isprint
7610
@findex ispunct
7611
@findex isspace
7612
@findex isupper
7613
@findex iswalnum
7614
@findex iswalpha
7615
@findex iswblank
7616
@findex iswcntrl
7617
@findex iswdigit
7618
@findex iswgraph
7619
@findex iswlower
7620
@findex iswprint
7621
@findex iswpunct
7622
@findex iswspace
7623
@findex iswupper
7624
@findex iswxdigit
7625
@findex isxdigit
7626
@findex j0
7627
@findex j0f
7628
@findex j0l
7629
@findex j1
7630
@findex j1f
7631
@findex j1l
7632
@findex jn
7633
@findex jnf
7634
@findex jnl
7635
@findex labs
7636
@findex ldexp
7637
@findex ldexpf
7638
@findex ldexpl
7639
@findex lgamma
7640
@findex lgammaf
7641
@findex lgammal
7642
@findex lgamma_r
7643
@findex lgammaf_r
7644
@findex lgammal_r
7645
@findex llabs
7646
@findex llrint
7647
@findex llrintf
7648
@findex llrintl
7649
@findex llround
7650
@findex llroundf
7651
@findex llroundl
7652
@findex log
7653
@findex log10
7654
@findex log10f
7655
@findex log10l
7656
@findex log1p
7657
@findex log1pf
7658
@findex log1pl
7659
@findex log2
7660
@findex log2f
7661
@findex log2l
7662
@findex logb
7663
@findex logbf
7664
@findex logbl
7665
@findex logf
7666
@findex logl
7667
@findex lrint
7668
@findex lrintf
7669
@findex lrintl
7670
@findex lround
7671
@findex lroundf
7672
@findex lroundl
7673
@findex malloc
7674
@findex memchr
7675
@findex memcmp
7676
@findex memcpy
7677
@findex mempcpy
7678
@findex memset
7679
@findex modf
7680
@findex modff
7681
@findex modfl
7682
@findex nearbyint
7683
@findex nearbyintf
7684
@findex nearbyintl
7685
@findex nextafter
7686
@findex nextafterf
7687
@findex nextafterl
7688
@findex nexttoward
7689
@findex nexttowardf
7690
@findex nexttowardl
7691
@findex pow
7692
@findex pow10
7693
@findex pow10f
7694
@findex pow10l
7695
@findex powf
7696
@findex powl
7697
@findex printf
7698
@findex printf_unlocked
7699
@findex putchar
7700
@findex puts
7701
@findex remainder
7702
@findex remainderf
7703
@findex remainderl
7704
@findex remquo
7705
@findex remquof
7706
@findex remquol
7707
@findex rindex
7708
@findex rint
7709
@findex rintf
7710
@findex rintl
7711
@findex round
7712
@findex roundf
7713
@findex roundl
7714
@findex scalb
7715
@findex scalbf
7716
@findex scalbl
7717
@findex scalbln
7718
@findex scalblnf
7719
@findex scalblnf
7720
@findex scalbn
7721
@findex scalbnf
7722
@findex scanfnl
7723
@findex signbit
7724
@findex signbitf
7725
@findex signbitl
7726
@findex signbitd32
7727
@findex signbitd64
7728
@findex signbitd128
7729
@findex significand
7730
@findex significandf
7731
@findex significandl
7732
@findex sin
7733
@findex sincos
7734
@findex sincosf
7735
@findex sincosl
7736
@findex sinf
7737
@findex sinh
7738
@findex sinhf
7739
@findex sinhl
7740
@findex sinl
7741
@findex snprintf
7742
@findex sprintf
7743
@findex sqrt
7744
@findex sqrtf
7745
@findex sqrtl
7746
@findex sscanf
7747
@findex stpcpy
7748
@findex stpncpy
7749
@findex strcasecmp
7750
@findex strcat
7751
@findex strchr
7752
@findex strcmp
7753
@findex strcpy
7754
@findex strcspn
7755
@findex strdup
7756
@findex strfmon
7757
@findex strftime
7758
@findex strlen
7759
@findex strncasecmp
7760
@findex strncat
7761
@findex strncmp
7762
@findex strncpy
7763
@findex strndup
7764
@findex strpbrk
7765
@findex strrchr
7766
@findex strspn
7767
@findex strstr
7768
@findex tan
7769
@findex tanf
7770
@findex tanh
7771
@findex tanhf
7772
@findex tanhl
7773
@findex tanl
7774
@findex tgamma
7775
@findex tgammaf
7776
@findex tgammal
7777
@findex toascii
7778
@findex tolower
7779
@findex toupper
7780
@findex towlower
7781
@findex towupper
7782
@findex trunc
7783
@findex truncf
7784
@findex truncl
7785
@findex vfprintf
7786
@findex vfscanf
7787
@findex vprintf
7788
@findex vscanf
7789
@findex vsnprintf
7790
@findex vsprintf
7791
@findex vsscanf
7792
@findex y0
7793
@findex y0f
7794
@findex y0l
7795
@findex y1
7796
@findex y1f
7797
@findex y1l
7798
@findex yn
7799
@findex ynf
7800
@findex ynl
7801
 
7802
GCC provides a large number of built-in functions other than the ones
7803
mentioned above.  Some of these are for internal use in the processing
7804
of exceptions or variable-length argument lists and will not be
7805
documented here because they may change from time to time; we do not
7806
recommend general use of these functions.
7807
 
7808
The remaining functions are provided for optimization purposes.
7809
 
7810
@opindex fno-builtin
7811
GCC includes built-in versions of many of the functions in the standard
7812
C library.  The versions prefixed with @code{__builtin_} will always be
7813
treated as having the same meaning as the C library function even if you
7814
specify the @option{-fno-builtin} option.  (@pxref{C Dialect Options})
7815
Many of these functions are only optimized in certain cases; if they are
7816
not optimized in a particular case, a call to the library function will
7817
be emitted.
7818
 
7819
@opindex ansi
7820
@opindex std
7821
Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
7822
@option{-std=c99} or @option{-std=c11}), the functions
7823
@code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
7824
@code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
7825
@code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
7826
@code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
7827
@code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
7828
@code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
7829
@code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
7830
@code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
7831
@code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
7832
@code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
7833
@code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
7834
@code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
7835
@code{signbitd64}, @code{signbitd128}, @code{significandf},
7836
@code{significandl}, @code{significand}, @code{sincosf},
7837
@code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
7838
@code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
7839
@code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
7840
@code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
7841
@code{yn}
7842
may be handled as built-in functions.
7843
All these functions have corresponding versions
7844
prefixed with @code{__builtin_}, which may be used even in strict C90
7845
mode.
7846
 
7847
The ISO C99 functions
7848
@code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
7849
@code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
7850
@code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
7851
@code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
7852
@code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
7853
@code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
7854
@code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
7855
@code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
7856
@code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
7857
@code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
7858
@code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
7859
@code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
7860
@code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
7861
@code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
7862
@code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
7863
@code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
7864
@code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
7865
@code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
7866
@code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
7867
@code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
7868
@code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
7869
@code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
7870
@code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
7871
@code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
7872
@code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
7873
@code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
7874
@code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
7875
@code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
7876
@code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
7877
@code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
7878
@code{nextafterf}, @code{nextafterl}, @code{nextafter},
7879
@code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
7880
@code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
7881
@code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
7882
@code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
7883
@code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
7884
@code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
7885
@code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
7886
@code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
7887
are handled as built-in functions
7888
except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
7889
 
7890
There are also built-in versions of the ISO C99 functions
7891
@code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
7892
@code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
7893
@code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
7894
@code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
7895
@code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
7896
@code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
7897
@code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
7898
@code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
7899
@code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
7900
that are recognized in any mode since ISO C90 reserves these names for
7901
the purpose to which ISO C99 puts them.  All these functions have
7902
corresponding versions prefixed with @code{__builtin_}.
7903
 
7904
The ISO C94 functions
7905
@code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
7906
@code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
7907
@code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
7908
@code{towupper}
7909
are handled as built-in functions
7910
except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
7911
 
7912
The ISO C90 functions
7913
@code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
7914
@code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
7915
@code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
7916
@code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
7917
@code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
7918
@code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
7919
@code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
7920
@code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
7921
@code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
7922
@code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
7923
@code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
7924
@code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
7925
@code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
7926
@code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
7927
@code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
7928
@code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
7929
are all recognized as built-in functions unless
7930
@option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
7931
is specified for an individual function).  All of these functions have
7932
corresponding versions prefixed with @code{__builtin_}.
7933
 
7934
GCC provides built-in versions of the ISO C99 floating point comparison
7935
macros that avoid raising exceptions for unordered operands.  They have
7936
the same names as the standard macros ( @code{isgreater},
7937
@code{isgreaterequal}, @code{isless}, @code{islessequal},
7938
@code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
7939
prefixed.  We intend for a library implementor to be able to simply
7940
@code{#define} each standard macro to its built-in equivalent.
7941
In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
7942
@code{isinf_sign} and @code{isnormal} built-ins used with
7943
@code{__builtin_} prefixed.  The @code{isinf} and @code{isnan}
7944
builtins appear both with and without the @code{__builtin_} prefix.
7945
 
7946
@deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
7947
 
7948
You can use the built-in function @code{__builtin_types_compatible_p} to
7949
determine whether two types are the same.
7950
 
7951
This built-in function returns 1 if the unqualified versions of the
7952
types @var{type1} and @var{type2} (which are types, not expressions) are
7953
compatible, 0 otherwise.  The result of this built-in function can be
7954
used in integer constant expressions.
7955
 
7956
This built-in function ignores top level qualifiers (e.g., @code{const},
7957
@code{volatile}).  For example, @code{int} is equivalent to @code{const
7958
int}.
7959
 
7960
The type @code{int[]} and @code{int[5]} are compatible.  On the other
7961
hand, @code{int} and @code{char *} are not compatible, even if the size
7962
of their types, on the particular architecture are the same.  Also, the
7963
amount of pointer indirection is taken into account when determining
7964
similarity.  Consequently, @code{short *} is not similar to
7965
@code{short **}.  Furthermore, two types that are typedefed are
7966
considered compatible if their underlying types are compatible.
7967
 
7968
An @code{enum} type is not considered to be compatible with another
7969
@code{enum} type even if both are compatible with the same integer
7970
type; this is what the C standard specifies.
7971
For example, @code{enum @{foo, bar@}} is not similar to
7972
@code{enum @{hot, dog@}}.
7973
 
7974
You would typically use this function in code whose execution varies
7975
depending on the arguments' types.  For example:
7976
 
7977
@smallexample
7978
#define foo(x)                                                  \
7979
  (@{                                                           \
7980
    typeof (x) tmp = (x);                                       \
7981
    if (__builtin_types_compatible_p (typeof (x), long double)) \
7982
      tmp = foo_long_double (tmp);                              \
7983
    else if (__builtin_types_compatible_p (typeof (x), double)) \
7984
      tmp = foo_double (tmp);                                   \
7985
    else if (__builtin_types_compatible_p (typeof (x), float))  \
7986
      tmp = foo_float (tmp);                                    \
7987
    else                                                        \
7988
      abort ();                                                 \
7989
    tmp;                                                        \
7990
  @})
7991
@end smallexample
7992
 
7993
@emph{Note:} This construct is only available for C@.
7994
 
7995
@end deftypefn
7996
 
7997
@deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
7998
 
7999
You can use the built-in function @code{__builtin_choose_expr} to
8000
evaluate code depending on the value of a constant expression.  This
8001
built-in function returns @var{exp1} if @var{const_exp}, which is an
8002
integer constant expression, is nonzero.  Otherwise it returns @var{exp2}.
8003
 
8004
This built-in function is analogous to the @samp{? :} operator in C,
8005
except that the expression returned has its type unaltered by promotion
8006
rules.  Also, the built-in function does not evaluate the expression
8007
that was not chosen.  For example, if @var{const_exp} evaluates to true,
8008
@var{exp2} is not evaluated even if it has side-effects.
8009
 
8010
This built-in function can return an lvalue if the chosen argument is an
8011
lvalue.
8012
 
8013
If @var{exp1} is returned, the return type is the same as @var{exp1}'s
8014
type.  Similarly, if @var{exp2} is returned, its return type is the same
8015
as @var{exp2}.
8016
 
8017
Example:
8018
 
8019
@smallexample
8020
#define foo(x)                                                    \
8021
  __builtin_choose_expr (                                         \
8022
    __builtin_types_compatible_p (typeof (x), double),            \
8023
    foo_double (x),                                               \
8024
    __builtin_choose_expr (                                       \
8025
      __builtin_types_compatible_p (typeof (x), float),           \
8026
      foo_float (x),                                              \
8027
      /* @r{The void expression results in a compile-time error}  \
8028
         @r{when assigning the result to something.}  */          \
8029
      (void)0))
8030
@end smallexample
8031
 
8032
@emph{Note:} This construct is only available for C@.  Furthermore, the
8033
unused expression (@var{exp1} or @var{exp2} depending on the value of
8034
@var{const_exp}) may still generate syntax errors.  This may change in
8035
future revisions.
8036
 
8037
@end deftypefn
8038
 
8039
@deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
8040
 
8041
The built-in function @code{__builtin_complex} is provided for use in
8042
implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
8043
@code{CMPLXL}.  @var{real} and @var{imag} must have the same type, a
8044
real binary floating-point type, and the result has the corresponding
8045
complex type with real and imaginary parts @var{real} and @var{imag}.
8046
Unlike @samp{@var{real} + I * @var{imag}}, this works even when
8047
infinities, NaNs and negative zeros are involved.
8048
 
8049
@end deftypefn
8050
 
8051
@deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
8052
You can use the built-in function @code{__builtin_constant_p} to
8053
determine if a value is known to be constant at compile-time and hence
8054
that GCC can perform constant-folding on expressions involving that
8055
value.  The argument of the function is the value to test.  The function
8056
returns the integer 1 if the argument is known to be a compile-time
8057
constant and 0 if it is not known to be a compile-time constant.  A
8058
return of 0 does not indicate that the value is @emph{not} a constant,
8059
but merely that GCC cannot prove it is a constant with the specified
8060
value of the @option{-O} option.
8061
 
8062
You would typically use this function in an embedded application where
8063
memory was a critical resource.  If you have some complex calculation,
8064
you may want it to be folded if it involves constants, but need to call
8065
a function if it does not.  For example:
8066
 
8067
@smallexample
8068
#define Scale_Value(X)      \
8069
  (__builtin_constant_p (X) \
8070
  ? ((X) * SCALE + OFFSET) : Scale (X))
8071
@end smallexample
8072
 
8073
You may use this built-in function in either a macro or an inline
8074
function.  However, if you use it in an inlined function and pass an
8075
argument of the function as the argument to the built-in, GCC will
8076
never return 1 when you call the inline function with a string constant
8077
or compound literal (@pxref{Compound Literals}) and will not return 1
8078
when you pass a constant numeric value to the inline function unless you
8079
specify the @option{-O} option.
8080
 
8081
You may also use @code{__builtin_constant_p} in initializers for static
8082
data.  For instance, you can write
8083
 
8084
@smallexample
8085
static const int table[] = @{
8086
   __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
8087
   /* @r{@dots{}} */
8088
@};
8089
@end smallexample
8090
 
8091
@noindent
8092
This is an acceptable initializer even if @var{EXPRESSION} is not a
8093
constant expression, including the case where
8094
@code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
8095
folded to a constant but @var{EXPRESSION} contains operands that would
8096
not otherwise be permitted in a static initializer (for example,
8097
@code{0 && foo ()}).  GCC must be more conservative about evaluating the
8098
built-in in this case, because it has no opportunity to perform
8099
optimization.
8100
 
8101
Previous versions of GCC did not accept this built-in in data
8102
initializers.  The earliest version where it is completely safe is
8103
3.0.1.
8104
@end deftypefn
8105
 
8106
@deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
8107
@opindex fprofile-arcs
8108
You may use @code{__builtin_expect} to provide the compiler with
8109
branch prediction information.  In general, you should prefer to
8110
use actual profile feedback for this (@option{-fprofile-arcs}), as
8111
programmers are notoriously bad at predicting how their programs
8112
actually perform.  However, there are applications in which this
8113
data is hard to collect.
8114
 
8115
The return value is the value of @var{exp}, which should be an integral
8116
expression.  The semantics of the built-in are that it is expected that
8117
@var{exp} == @var{c}.  For example:
8118
 
8119
@smallexample
8120
if (__builtin_expect (x, 0))
8121
  foo ();
8122
@end smallexample
8123
 
8124
@noindent
8125
would indicate that we do not expect to call @code{foo}, since
8126
we expect @code{x} to be zero.  Since you are limited to integral
8127
expressions for @var{exp}, you should use constructions such as
8128
 
8129
@smallexample
8130
if (__builtin_expect (ptr != NULL, 1))
8131
  foo (*ptr);
8132
@end smallexample
8133
 
8134
@noindent
8135
when testing pointer or floating-point values.
8136
@end deftypefn
8137
 
8138
@deftypefn {Built-in Function} void __builtin_trap (void)
8139
This function causes the program to exit abnormally.  GCC implements
8140
this function by using a target-dependent mechanism (such as
8141
intentionally executing an illegal instruction) or by calling
8142
@code{abort}.  The mechanism used may vary from release to release so
8143
you should not rely on any particular implementation.
8144
@end deftypefn
8145
 
8146
@deftypefn {Built-in Function} void __builtin_unreachable (void)
8147
If control flow reaches the point of the @code{__builtin_unreachable},
8148
the program is undefined.  It is useful in situations where the
8149
compiler cannot deduce the unreachability of the code.
8150
 
8151
One such case is immediately following an @code{asm} statement that
8152
will either never terminate, or one that transfers control elsewhere
8153
and never returns.  In this example, without the
8154
@code{__builtin_unreachable}, GCC would issue a warning that control
8155
reaches the end of a non-void function.  It would also generate code
8156
to return after the @code{asm}.
8157
 
8158
@smallexample
8159
int f (int c, int v)
8160
@{
8161
  if (c)
8162
    @{
8163
      return v;
8164
    @}
8165
  else
8166
    @{
8167
      asm("jmp error_handler");
8168
      __builtin_unreachable ();
8169
    @}
8170
@}
8171
@end smallexample
8172
 
8173
Because the @code{asm} statement unconditionally transfers control out
8174
of the function, control will never reach the end of the function
8175
body.  The @code{__builtin_unreachable} is in fact unreachable and
8176
communicates this fact to the compiler.
8177
 
8178
Another use for @code{__builtin_unreachable} is following a call a
8179
function that never returns but that is not declared
8180
@code{__attribute__((noreturn))}, as in this example:
8181
 
8182
@smallexample
8183
void function_that_never_returns (void);
8184
 
8185
int g (int c)
8186
@{
8187
  if (c)
8188
    @{
8189
      return 1;
8190
    @}
8191
  else
8192
    @{
8193
      function_that_never_returns ();
8194
      __builtin_unreachable ();
8195
    @}
8196
@}
8197
@end smallexample
8198
 
8199
@end deftypefn
8200
 
8201
@deftypefn {Built-in Function} void *__builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
8202
This function returns its first argument, and allows the compiler
8203
to assume that the returned pointer is at least @var{align} bytes
8204
aligned.  This built-in can have either two or three arguments,
8205
if it has three, the third argument should have integer type, and
8206
if it is non-zero means misalignment offset.  For example:
8207
 
8208
@smallexample
8209
void *x = __builtin_assume_aligned (arg, 16);
8210
@end smallexample
8211
 
8212
means that the compiler can assume x, set to arg, is at least
8213
16 byte aligned, while:
8214
 
8215
@smallexample
8216
void *x = __builtin_assume_aligned (arg, 32, 8);
8217
@end smallexample
8218
 
8219
means that the compiler can assume for x, set to arg, that
8220
(char *) x - 8 is 32 byte aligned.
8221
@end deftypefn
8222
 
8223
@deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
8224
This function is used to flush the processor's instruction cache for
8225
the region of memory between @var{begin} inclusive and @var{end}
8226
exclusive.  Some targets require that the instruction cache be
8227
flushed, after modifying memory containing code, in order to obtain
8228
deterministic behavior.
8229
 
8230
If the target does not require instruction cache flushes,
8231
@code{__builtin___clear_cache} has no effect.  Otherwise either
8232
instructions are emitted in-line to clear the instruction cache or a
8233
call to the @code{__clear_cache} function in libgcc is made.
8234
@end deftypefn
8235
 
8236
@deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
8237
This function is used to minimize cache-miss latency by moving data into
8238
a cache before it is accessed.
8239
You can insert calls to @code{__builtin_prefetch} into code for which
8240
you know addresses of data in memory that is likely to be accessed soon.
8241
If the target supports them, data prefetch instructions will be generated.
8242
If the prefetch is done early enough before the access then the data will
8243
be in the cache by the time it is accessed.
8244
 
8245
The value of @var{addr} is the address of the memory to prefetch.
8246
There are two optional arguments, @var{rw} and @var{locality}.
8247
The value of @var{rw} is a compile-time constant one or zero; one
8248
means that the prefetch is preparing for a write to the memory address
8249
and zero, the default, means that the prefetch is preparing for a read.
8250
The value @var{locality} must be a compile-time constant integer between
8251
zero and three.  A value of zero means that the data has no temporal
8252
locality, so it need not be left in the cache after the access.  A value
8253
of three means that the data has a high degree of temporal locality and
8254
should be left in all levels of cache possible.  Values of one and two
8255
mean, respectively, a low or moderate degree of temporal locality.  The
8256
default is three.
8257
 
8258
@smallexample
8259
for (i = 0; i < n; i++)
8260
  @{
8261
    a[i] = a[i] + b[i];
8262
    __builtin_prefetch (&a[i+j], 1, 1);
8263
    __builtin_prefetch (&b[i+j], 0, 1);
8264
    /* @r{@dots{}} */
8265
  @}
8266
@end smallexample
8267
 
8268
Data prefetch does not generate faults if @var{addr} is invalid, but
8269
the address expression itself must be valid.  For example, a prefetch
8270
of @code{p->next} will not fault if @code{p->next} is not a valid
8271
address, but evaluation will fault if @code{p} is not a valid address.
8272
 
8273
If the target does not support data prefetch, the address expression
8274
is evaluated if it includes side effects but no other code is generated
8275
and GCC does not issue a warning.
8276
@end deftypefn
8277
 
8278
@deftypefn {Built-in Function} double __builtin_huge_val (void)
8279
Returns a positive infinity, if supported by the floating-point format,
8280
else @code{DBL_MAX}.  This function is suitable for implementing the
8281
ISO C macro @code{HUGE_VAL}.
8282
@end deftypefn
8283
 
8284
@deftypefn {Built-in Function} float __builtin_huge_valf (void)
8285
Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
8286
@end deftypefn
8287
 
8288
@deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
8289
Similar to @code{__builtin_huge_val}, except the return
8290
type is @code{long double}.
8291
@end deftypefn
8292
 
8293
@deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
8294
This built-in implements the C99 fpclassify functionality.  The first
8295
five int arguments should be the target library's notion of the
8296
possible FP classes and are used for return values.  They must be
8297
constant values and they must appear in this order: @code{FP_NAN},
8298
@code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
8299
@code{FP_ZERO}.  The ellipsis is for exactly one floating point value
8300
to classify.  GCC treats the last argument as type-generic, which
8301
means it does not do default promotion from float to double.
8302
@end deftypefn
8303
 
8304
@deftypefn {Built-in Function} double __builtin_inf (void)
8305
Similar to @code{__builtin_huge_val}, except a warning is generated
8306
if the target floating-point format does not support infinities.
8307
@end deftypefn
8308
 
8309
@deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
8310
Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
8311
@end deftypefn
8312
 
8313
@deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
8314
Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
8315
@end deftypefn
8316
 
8317
@deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
8318
Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
8319
@end deftypefn
8320
 
8321
@deftypefn {Built-in Function} float __builtin_inff (void)
8322
Similar to @code{__builtin_inf}, except the return type is @code{float}.
8323
This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
8324
@end deftypefn
8325
 
8326
@deftypefn {Built-in Function} {long double} __builtin_infl (void)
8327
Similar to @code{__builtin_inf}, except the return
8328
type is @code{long double}.
8329
@end deftypefn
8330
 
8331
@deftypefn {Built-in Function} int __builtin_isinf_sign (...)
8332
Similar to @code{isinf}, except the return value will be negative for
8333
an argument of @code{-Inf}.  Note while the parameter list is an
8334
ellipsis, this function only accepts exactly one floating point
8335
argument.  GCC treats this parameter as type-generic, which means it
8336
does not do default promotion from float to double.
8337
@end deftypefn
8338
 
8339
@deftypefn {Built-in Function} double __builtin_nan (const char *str)
8340
This is an implementation of the ISO C99 function @code{nan}.
8341
 
8342
Since ISO C99 defines this function in terms of @code{strtod}, which we
8343
do not implement, a description of the parsing is in order.  The string
8344
is parsed as by @code{strtol}; that is, the base is recognized by
8345
leading @samp{0} or @samp{0x} prefixes.  The number parsed is placed
8346
in the significand such that the least significant bit of the number
8347
is at the least significant bit of the significand.  The number is
8348
truncated to fit the significand field provided.  The significand is
8349
forced to be a quiet NaN@.
8350
 
8351
This function, if given a string literal all of which would have been
8352
consumed by strtol, is evaluated early enough that it is considered a
8353
compile-time constant.
8354
@end deftypefn
8355
 
8356
@deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
8357
Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
8358
@end deftypefn
8359
 
8360
@deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
8361
Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
8362
@end deftypefn
8363
 
8364
@deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
8365
Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
8366
@end deftypefn
8367
 
8368
@deftypefn {Built-in Function} float __builtin_nanf (const char *str)
8369
Similar to @code{__builtin_nan}, except the return type is @code{float}.
8370
@end deftypefn
8371
 
8372
@deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
8373
Similar to @code{__builtin_nan}, except the return type is @code{long double}.
8374
@end deftypefn
8375
 
8376
@deftypefn {Built-in Function} double __builtin_nans (const char *str)
8377
Similar to @code{__builtin_nan}, except the significand is forced
8378
to be a signaling NaN@.  The @code{nans} function is proposed by
8379
@uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
8380
@end deftypefn
8381
 
8382
@deftypefn {Built-in Function} float __builtin_nansf (const char *str)
8383
Similar to @code{__builtin_nans}, except the return type is @code{float}.
8384
@end deftypefn
8385
 
8386
@deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
8387
Similar to @code{__builtin_nans}, except the return type is @code{long double}.
8388
@end deftypefn
8389
 
8390
@deftypefn {Built-in Function} int __builtin_ffs (unsigned int x)
8391
Returns one plus the index of the least significant 1-bit of @var{x}, or
8392
if @var{x} is zero, returns zero.
8393
@end deftypefn
8394
 
8395
@deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
8396
Returns the number of leading 0-bits in @var{x}, starting at the most
8397
significant bit position.  If @var{x} is 0, the result is undefined.
8398
@end deftypefn
8399
 
8400
@deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
8401
Returns the number of trailing 0-bits in @var{x}, starting at the least
8402
significant bit position.  If @var{x} is 0, the result is undefined.
8403
@end deftypefn
8404
 
8405
@deftypefn {Built-in Function} int __builtin_clrsb (int x)
8406
Returns the number of leading redundant sign bits in @var{x}, i.e. the
8407
number of bits following the most significant bit which are identical
8408
to it.  There are no special cases for 0 or other values.
8409
@end deftypefn
8410
 
8411
@deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
8412
Returns the number of 1-bits in @var{x}.
8413
@end deftypefn
8414
 
8415
@deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
8416
Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
8417
modulo 2.
8418
@end deftypefn
8419
 
8420
@deftypefn {Built-in Function} int __builtin_ffsl (unsigned long)
8421
Similar to @code{__builtin_ffs}, except the argument type is
8422
@code{unsigned long}.
8423
@end deftypefn
8424
 
8425
@deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
8426
Similar to @code{__builtin_clz}, except the argument type is
8427
@code{unsigned long}.
8428
@end deftypefn
8429
 
8430
@deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
8431
Similar to @code{__builtin_ctz}, except the argument type is
8432
@code{unsigned long}.
8433
@end deftypefn
8434
 
8435
@deftypefn {Built-in Function} int __builtin_clrsbl (long)
8436
Similar to @code{__builtin_clrsb}, except the argument type is
8437
@code{long}.
8438
@end deftypefn
8439
 
8440
@deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
8441
Similar to @code{__builtin_popcount}, except the argument type is
8442
@code{unsigned long}.
8443
@end deftypefn
8444
 
8445
@deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
8446
Similar to @code{__builtin_parity}, except the argument type is
8447
@code{unsigned long}.
8448
@end deftypefn
8449
 
8450
@deftypefn {Built-in Function} int __builtin_ffsll (unsigned long long)
8451
Similar to @code{__builtin_ffs}, except the argument type is
8452
@code{unsigned long long}.
8453
@end deftypefn
8454
 
8455
@deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
8456
Similar to @code{__builtin_clz}, except the argument type is
8457
@code{unsigned long long}.
8458
@end deftypefn
8459
 
8460
@deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
8461
Similar to @code{__builtin_ctz}, except the argument type is
8462
@code{unsigned long long}.
8463
@end deftypefn
8464
 
8465
@deftypefn {Built-in Function} int __builtin_clrsbll (long long)
8466
Similar to @code{__builtin_clrsb}, except the argument type is
8467
@code{long long}.
8468
@end deftypefn
8469
 
8470
@deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
8471
Similar to @code{__builtin_popcount}, except the argument type is
8472
@code{unsigned long long}.
8473
@end deftypefn
8474
 
8475
@deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
8476
Similar to @code{__builtin_parity}, except the argument type is
8477
@code{unsigned long long}.
8478
@end deftypefn
8479
 
8480
@deftypefn {Built-in Function} double __builtin_powi (double, int)
8481
Returns the first argument raised to the power of the second.  Unlike the
8482
@code{pow} function no guarantees about precision and rounding are made.
8483
@end deftypefn
8484
 
8485
@deftypefn {Built-in Function} float __builtin_powif (float, int)
8486
Similar to @code{__builtin_powi}, except the argument and return types
8487
are @code{float}.
8488
@end deftypefn
8489
 
8490
@deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
8491
Similar to @code{__builtin_powi}, except the argument and return types
8492
are @code{long double}.
8493
@end deftypefn
8494
 
8495
@deftypefn {Built-in Function} int32_t __builtin_bswap32 (int32_t x)
8496
Returns @var{x} with the order of the bytes reversed; for example,
8497
@code{0xaabbccdd} becomes @code{0xddccbbaa}.  Byte here always means
8498
exactly 8 bits.
8499
@end deftypefn
8500
 
8501
@deftypefn {Built-in Function} int64_t __builtin_bswap64 (int64_t x)
8502
Similar to @code{__builtin_bswap32}, except the argument and return types
8503
are 64-bit.
8504
@end deftypefn
8505
 
8506
@node Target Builtins
8507
@section Built-in Functions Specific to Particular Target Machines
8508
 
8509
On some target machines, GCC supports many built-in functions specific
8510
to those machines.  Generally these generate calls to specific machine
8511
instructions, but allow the compiler to schedule those calls.
8512
 
8513
@menu
8514
* Alpha Built-in Functions::
8515
* ARM iWMMXt Built-in Functions::
8516
* ARM NEON Intrinsics::
8517
* AVR Built-in Functions::
8518
* Blackfin Built-in Functions::
8519
* FR-V Built-in Functions::
8520
* X86 Built-in Functions::
8521
* MIPS DSP Built-in Functions::
8522
* MIPS Paired-Single Support::
8523
* MIPS Loongson Built-in Functions::
8524
* Other MIPS Built-in Functions::
8525
* picoChip Built-in Functions::
8526
* PowerPC AltiVec/VSX Built-in Functions::
8527
* RX Built-in Functions::
8528
* SPARC VIS Built-in Functions::
8529
* SPU Built-in Functions::
8530
* TI C6X Built-in Functions::
8531
* TILE-Gx Built-in Functions::
8532
* TILEPro Built-in Functions::
8533
@end menu
8534
 
8535
@node Alpha Built-in Functions
8536
@subsection Alpha Built-in Functions
8537
 
8538
These built-in functions are available for the Alpha family of
8539
processors, depending on the command-line switches used.
8540
 
8541
The following built-in functions are always available.  They
8542
all generate the machine instruction that is part of the name.
8543
 
8544
@smallexample
8545
long __builtin_alpha_implver (void)
8546
long __builtin_alpha_rpcc (void)
8547
long __builtin_alpha_amask (long)
8548
long __builtin_alpha_cmpbge (long, long)
8549
long __builtin_alpha_extbl (long, long)
8550
long __builtin_alpha_extwl (long, long)
8551
long __builtin_alpha_extll (long, long)
8552
long __builtin_alpha_extql (long, long)
8553
long __builtin_alpha_extwh (long, long)
8554
long __builtin_alpha_extlh (long, long)
8555
long __builtin_alpha_extqh (long, long)
8556
long __builtin_alpha_insbl (long, long)
8557
long __builtin_alpha_inswl (long, long)
8558
long __builtin_alpha_insll (long, long)
8559
long __builtin_alpha_insql (long, long)
8560
long __builtin_alpha_inswh (long, long)
8561
long __builtin_alpha_inslh (long, long)
8562
long __builtin_alpha_insqh (long, long)
8563
long __builtin_alpha_mskbl (long, long)
8564
long __builtin_alpha_mskwl (long, long)
8565
long __builtin_alpha_mskll (long, long)
8566
long __builtin_alpha_mskql (long, long)
8567
long __builtin_alpha_mskwh (long, long)
8568
long __builtin_alpha_msklh (long, long)
8569
long __builtin_alpha_mskqh (long, long)
8570
long __builtin_alpha_umulh (long, long)
8571
long __builtin_alpha_zap (long, long)
8572
long __builtin_alpha_zapnot (long, long)
8573
@end smallexample
8574
 
8575
The following built-in functions are always with @option{-mmax}
8576
or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
8577
later.  They all generate the machine instruction that is part
8578
of the name.
8579
 
8580
@smallexample
8581
long __builtin_alpha_pklb (long)
8582
long __builtin_alpha_pkwb (long)
8583
long __builtin_alpha_unpkbl (long)
8584
long __builtin_alpha_unpkbw (long)
8585
long __builtin_alpha_minub8 (long, long)
8586
long __builtin_alpha_minsb8 (long, long)
8587
long __builtin_alpha_minuw4 (long, long)
8588
long __builtin_alpha_minsw4 (long, long)
8589
long __builtin_alpha_maxub8 (long, long)
8590
long __builtin_alpha_maxsb8 (long, long)
8591
long __builtin_alpha_maxuw4 (long, long)
8592
long __builtin_alpha_maxsw4 (long, long)
8593
long __builtin_alpha_perr (long, long)
8594
@end smallexample
8595
 
8596
The following built-in functions are always with @option{-mcix}
8597
or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
8598
later.  They all generate the machine instruction that is part
8599
of the name.
8600
 
8601
@smallexample
8602
long __builtin_alpha_cttz (long)
8603
long __builtin_alpha_ctlz (long)
8604
long __builtin_alpha_ctpop (long)
8605
@end smallexample
8606
 
8607
The following builtins are available on systems that use the OSF/1
8608
PALcode.  Normally they invoke the @code{rduniq} and @code{wruniq}
8609
PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
8610
@code{rdval} and @code{wrval}.
8611
 
8612
@smallexample
8613
void *__builtin_thread_pointer (void)
8614
void __builtin_set_thread_pointer (void *)
8615
@end smallexample
8616
 
8617
@node ARM iWMMXt Built-in Functions
8618
@subsection ARM iWMMXt Built-in Functions
8619
 
8620
These built-in functions are available for the ARM family of
8621
processors when the @option{-mcpu=iwmmxt} switch is used:
8622
 
8623
@smallexample
8624
typedef int v2si __attribute__ ((vector_size (8)));
8625
typedef short v4hi __attribute__ ((vector_size (8)));
8626
typedef char v8qi __attribute__ ((vector_size (8)));
8627
 
8628
int __builtin_arm_getwcx (int)
8629
void __builtin_arm_setwcx (int, int)
8630
int __builtin_arm_textrmsb (v8qi, int)
8631
int __builtin_arm_textrmsh (v4hi, int)
8632
int __builtin_arm_textrmsw (v2si, int)
8633
int __builtin_arm_textrmub (v8qi, int)
8634
int __builtin_arm_textrmuh (v4hi, int)
8635
int __builtin_arm_textrmuw (v2si, int)
8636
v8qi __builtin_arm_tinsrb (v8qi, int)
8637
v4hi __builtin_arm_tinsrh (v4hi, int)
8638
v2si __builtin_arm_tinsrw (v2si, int)
8639
long long __builtin_arm_tmia (long long, int, int)
8640
long long __builtin_arm_tmiabb (long long, int, int)
8641
long long __builtin_arm_tmiabt (long long, int, int)
8642
long long __builtin_arm_tmiaph (long long, int, int)
8643
long long __builtin_arm_tmiatb (long long, int, int)
8644
long long __builtin_arm_tmiatt (long long, int, int)
8645
int __builtin_arm_tmovmskb (v8qi)
8646
int __builtin_arm_tmovmskh (v4hi)
8647
int __builtin_arm_tmovmskw (v2si)
8648
long long __builtin_arm_waccb (v8qi)
8649
long long __builtin_arm_wacch (v4hi)
8650
long long __builtin_arm_waccw (v2si)
8651
v8qi __builtin_arm_waddb (v8qi, v8qi)
8652
v8qi __builtin_arm_waddbss (v8qi, v8qi)
8653
v8qi __builtin_arm_waddbus (v8qi, v8qi)
8654
v4hi __builtin_arm_waddh (v4hi, v4hi)
8655
v4hi __builtin_arm_waddhss (v4hi, v4hi)
8656
v4hi __builtin_arm_waddhus (v4hi, v4hi)
8657
v2si __builtin_arm_waddw (v2si, v2si)
8658
v2si __builtin_arm_waddwss (v2si, v2si)
8659
v2si __builtin_arm_waddwus (v2si, v2si)
8660
v8qi __builtin_arm_walign (v8qi, v8qi, int)
8661
long long __builtin_arm_wand(long long, long long)
8662
long long __builtin_arm_wandn (long long, long long)
8663
v8qi __builtin_arm_wavg2b (v8qi, v8qi)
8664
v8qi __builtin_arm_wavg2br (v8qi, v8qi)
8665
v4hi __builtin_arm_wavg2h (v4hi, v4hi)
8666
v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
8667
v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
8668
v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
8669
v2si __builtin_arm_wcmpeqw (v2si, v2si)
8670
v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
8671
v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
8672
v2si __builtin_arm_wcmpgtsw (v2si, v2si)
8673
v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
8674
v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
8675
v2si __builtin_arm_wcmpgtuw (v2si, v2si)
8676
long long __builtin_arm_wmacs (long long, v4hi, v4hi)
8677
long long __builtin_arm_wmacsz (v4hi, v4hi)
8678
long long __builtin_arm_wmacu (long long, v4hi, v4hi)
8679
long long __builtin_arm_wmacuz (v4hi, v4hi)
8680
v4hi __builtin_arm_wmadds (v4hi, v4hi)
8681
v4hi __builtin_arm_wmaddu (v4hi, v4hi)
8682
v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
8683
v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
8684
v2si __builtin_arm_wmaxsw (v2si, v2si)
8685
v8qi __builtin_arm_wmaxub (v8qi, v8qi)
8686
v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
8687
v2si __builtin_arm_wmaxuw (v2si, v2si)
8688
v8qi __builtin_arm_wminsb (v8qi, v8qi)
8689
v4hi __builtin_arm_wminsh (v4hi, v4hi)
8690
v2si __builtin_arm_wminsw (v2si, v2si)
8691
v8qi __builtin_arm_wminub (v8qi, v8qi)
8692
v4hi __builtin_arm_wminuh (v4hi, v4hi)
8693
v2si __builtin_arm_wminuw (v2si, v2si)
8694
v4hi __builtin_arm_wmulsm (v4hi, v4hi)
8695
v4hi __builtin_arm_wmulul (v4hi, v4hi)
8696
v4hi __builtin_arm_wmulum (v4hi, v4hi)
8697
long long __builtin_arm_wor (long long, long long)
8698
v2si __builtin_arm_wpackdss (long long, long long)
8699
v2si __builtin_arm_wpackdus (long long, long long)
8700
v8qi __builtin_arm_wpackhss (v4hi, v4hi)
8701
v8qi __builtin_arm_wpackhus (v4hi, v4hi)
8702
v4hi __builtin_arm_wpackwss (v2si, v2si)
8703
v4hi __builtin_arm_wpackwus (v2si, v2si)
8704
long long __builtin_arm_wrord (long long, long long)
8705
long long __builtin_arm_wrordi (long long, int)
8706
v4hi __builtin_arm_wrorh (v4hi, long long)
8707
v4hi __builtin_arm_wrorhi (v4hi, int)
8708
v2si __builtin_arm_wrorw (v2si, long long)
8709
v2si __builtin_arm_wrorwi (v2si, int)
8710
v2si __builtin_arm_wsadb (v8qi, v8qi)
8711
v2si __builtin_arm_wsadbz (v8qi, v8qi)
8712
v2si __builtin_arm_wsadh (v4hi, v4hi)
8713
v2si __builtin_arm_wsadhz (v4hi, v4hi)
8714
v4hi __builtin_arm_wshufh (v4hi, int)
8715
long long __builtin_arm_wslld (long long, long long)
8716
long long __builtin_arm_wslldi (long long, int)
8717
v4hi __builtin_arm_wsllh (v4hi, long long)
8718
v4hi __builtin_arm_wsllhi (v4hi, int)
8719
v2si __builtin_arm_wsllw (v2si, long long)
8720
v2si __builtin_arm_wsllwi (v2si, int)
8721
long long __builtin_arm_wsrad (long long, long long)
8722
long long __builtin_arm_wsradi (long long, int)
8723
v4hi __builtin_arm_wsrah (v4hi, long long)
8724
v4hi __builtin_arm_wsrahi (v4hi, int)
8725
v2si __builtin_arm_wsraw (v2si, long long)
8726
v2si __builtin_arm_wsrawi (v2si, int)
8727
long long __builtin_arm_wsrld (long long, long long)
8728
long long __builtin_arm_wsrldi (long long, int)
8729
v4hi __builtin_arm_wsrlh (v4hi, long long)
8730
v4hi __builtin_arm_wsrlhi (v4hi, int)
8731
v2si __builtin_arm_wsrlw (v2si, long long)
8732
v2si __builtin_arm_wsrlwi (v2si, int)
8733
v8qi __builtin_arm_wsubb (v8qi, v8qi)
8734
v8qi __builtin_arm_wsubbss (v8qi, v8qi)
8735
v8qi __builtin_arm_wsubbus (v8qi, v8qi)
8736
v4hi __builtin_arm_wsubh (v4hi, v4hi)
8737
v4hi __builtin_arm_wsubhss (v4hi, v4hi)
8738
v4hi __builtin_arm_wsubhus (v4hi, v4hi)
8739
v2si __builtin_arm_wsubw (v2si, v2si)
8740
v2si __builtin_arm_wsubwss (v2si, v2si)
8741
v2si __builtin_arm_wsubwus (v2si, v2si)
8742
v4hi __builtin_arm_wunpckehsb (v8qi)
8743
v2si __builtin_arm_wunpckehsh (v4hi)
8744
long long __builtin_arm_wunpckehsw (v2si)
8745
v4hi __builtin_arm_wunpckehub (v8qi)
8746
v2si __builtin_arm_wunpckehuh (v4hi)
8747
long long __builtin_arm_wunpckehuw (v2si)
8748
v4hi __builtin_arm_wunpckelsb (v8qi)
8749
v2si __builtin_arm_wunpckelsh (v4hi)
8750
long long __builtin_arm_wunpckelsw (v2si)
8751
v4hi __builtin_arm_wunpckelub (v8qi)
8752
v2si __builtin_arm_wunpckeluh (v4hi)
8753
long long __builtin_arm_wunpckeluw (v2si)
8754
v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
8755
v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
8756
v2si __builtin_arm_wunpckihw (v2si, v2si)
8757
v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
8758
v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
8759
v2si __builtin_arm_wunpckilw (v2si, v2si)
8760
long long __builtin_arm_wxor (long long, long long)
8761
long long __builtin_arm_wzero ()
8762
@end smallexample
8763
 
8764
@node ARM NEON Intrinsics
8765
@subsection ARM NEON Intrinsics
8766
 
8767
These built-in intrinsics for the ARM Advanced SIMD extension are available
8768
when the @option{-mfpu=neon} switch is used:
8769
 
8770
@include arm-neon-intrinsics.texi
8771
 
8772
@node AVR Built-in Functions
8773
@subsection AVR Built-in Functions
8774
 
8775
For each built-in function for AVR, there is an equally named,
8776
uppercase built-in macro defined. That way users can easily query if
8777
or if not a specific built-in is implemented or not. For example, if
8778
@code{__builtin_avr_nop} is available the macro
8779
@code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
8780
 
8781
The following built-in functions map to the respective machine
8782
instruction, i.e. @code{nop}, @code{sei}, @code{cli}, @code{sleep},
8783
@code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
8784
resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
8785
as library call if no hardware multiplier is available.
8786
 
8787
@smallexample
8788
void __builtin_avr_nop (void)
8789
void __builtin_avr_sei (void)
8790
void __builtin_avr_cli (void)
8791
void __builtin_avr_sleep (void)
8792
void __builtin_avr_wdr (void)
8793
unsigned char __builtin_avr_swap (unsigned char)
8794
unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
8795
int __builtin_avr_fmuls (char, char)
8796
int __builtin_avr_fmulsu (char, unsigned char)
8797
@end smallexample
8798
 
8799
In order to delay execution for a specific number of cycles, GCC
8800
implements
8801
@smallexample
8802
void __builtin_avr_delay_cycles (unsigned long ticks)
8803
@end smallexample
8804
 
8805
@noindent
8806
@code{ticks} is the number of ticks to delay execution. Note that this
8807
built-in does not take into account the effect of interrupts which
8808
might increase delay time. @code{ticks} must be a compile time
8809
integer constant; delays with a variable number of cycles are not supported.
8810
 
8811
@smallexample
8812
     unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)
8813
@end smallexample
8814
 
8815
@noindent
8816
Insert bits from @var{bits} into @var{val} and return the resulting
8817
value. The nibbles of @var{map} determine how the insertion is
8818
performed: Let @var{X} be the @var{n}-th nibble of @var{map}
8819
@enumerate
8820
@item If @var{X} is @code{0xf},
8821
then the @var{n}-th bit of @var{val} is returned unaltered.
8822
 
8823
@item If X is in the range 0@dots{}7,
8824
then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
8825
 
8826
@item If X is in the range 8@dots{}@code{0xe},
8827
then the @var{n}-th result bit is undefined.
8828
@end enumerate
8829
 
8830
@noindent
8831
One typical use case for this built-in is adjusting input and
8832
output values to non-contiguous port layouts. Some examples:
8833
 
8834
@smallexample
8835
// same as val, bits is unused
8836
__builtin_avr_insert_bits (0xffffffff, bits, val)
8837
@end smallexample
8838
 
8839
@smallexample
8840
// same as bits, val is unused
8841
__builtin_avr_insert_bits (0x76543210, bits, val)
8842
@end smallexample
8843
 
8844
@smallexample
8845
// same as rotating bits by 4
8846
__builtin_avr_insert_bits (0x32107654, bits, 0)
8847
@end smallexample
8848
 
8849
@smallexample
8850
// high-nibble of result is the high-nibble of val
8851
// low-nibble of result is the low-nibble of bits
8852
__builtin_avr_insert_bits (0xffff3210, bits, val)
8853
@end smallexample
8854
 
8855
@smallexample
8856
// reverse the bit order of bits
8857
__builtin_avr_insert_bits (0x01234567, bits, 0)
8858
@end smallexample
8859
 
8860
@node Blackfin Built-in Functions
8861
@subsection Blackfin Built-in Functions
8862
 
8863
Currently, there are two Blackfin-specific built-in functions.  These are
8864
used for generating @code{CSYNC} and @code{SSYNC} machine insns without
8865
using inline assembly; by using these built-in functions the compiler can
8866
automatically add workarounds for hardware errata involving these
8867
instructions.  These functions are named as follows:
8868
 
8869
@smallexample
8870
void __builtin_bfin_csync (void)
8871
void __builtin_bfin_ssync (void)
8872
@end smallexample
8873
 
8874
@node FR-V Built-in Functions
8875
@subsection FR-V Built-in Functions
8876
 
8877
GCC provides many FR-V-specific built-in functions.  In general,
8878
these functions are intended to be compatible with those described
8879
by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
8880
Semiconductor}.  The two exceptions are @code{__MDUNPACKH} and
8881
@code{__MBTOHE}, the gcc forms of which pass 128-bit values by
8882
pointer rather than by value.
8883
 
8884
Most of the functions are named after specific FR-V instructions.
8885
Such functions are said to be ``directly mapped'' and are summarized
8886
here in tabular form.
8887
 
8888
@menu
8889
* Argument Types::
8890
* Directly-mapped Integer Functions::
8891
* Directly-mapped Media Functions::
8892
* Raw read/write Functions::
8893
* Other Built-in Functions::
8894
@end menu
8895
 
8896
@node Argument Types
8897
@subsubsection Argument Types
8898
 
8899
The arguments to the built-in functions can be divided into three groups:
8900
register numbers, compile-time constants and run-time values.  In order
8901
to make this classification clear at a glance, the arguments and return
8902
values are given the following pseudo types:
8903
 
8904
@multitable @columnfractions .20 .30 .15 .35
8905
@item Pseudo type @tab Real C type @tab Constant? @tab Description
8906
@item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
8907
@item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
8908
@item @code{sw1} @tab @code{int} @tab No @tab a signed word
8909
@item @code{uw2} @tab @code{unsigned long long} @tab No
8910
@tab an unsigned doubleword
8911
@item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
8912
@item @code{const} @tab @code{int} @tab Yes @tab an integer constant
8913
@item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
8914
@item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
8915
@end multitable
8916
 
8917
These pseudo types are not defined by GCC, they are simply a notational
8918
convenience used in this manual.
8919
 
8920
Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
8921
and @code{sw2} are evaluated at run time.  They correspond to
8922
register operands in the underlying FR-V instructions.
8923
 
8924
@code{const} arguments represent immediate operands in the underlying
8925
FR-V instructions.  They must be compile-time constants.
8926
 
8927
@code{acc} arguments are evaluated at compile time and specify the number
8928
of an accumulator register.  For example, an @code{acc} argument of 2
8929
will select the ACC2 register.
8930
 
8931
@code{iacc} arguments are similar to @code{acc} arguments but specify the
8932
number of an IACC register.  See @pxref{Other Built-in Functions}
8933
for more details.
8934
 
8935
@node Directly-mapped Integer Functions
8936
@subsubsection Directly-mapped Integer Functions
8937
 
8938
The functions listed below map directly to FR-V I-type instructions.
8939
 
8940
@multitable @columnfractions .45 .32 .23
8941
@item Function prototype @tab Example usage @tab Assembly output
8942
@item @code{sw1 __ADDSS (sw1, sw1)}
8943
@tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
8944
@tab @code{ADDSS @var{a},@var{b},@var{c}}
8945
@item @code{sw1 __SCAN (sw1, sw1)}
8946
@tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
8947
@tab @code{SCAN @var{a},@var{b},@var{c}}
8948
@item @code{sw1 __SCUTSS (sw1)}
8949
@tab @code{@var{b} = __SCUTSS (@var{a})}
8950
@tab @code{SCUTSS @var{a},@var{b}}
8951
@item @code{sw1 __SLASS (sw1, sw1)}
8952
@tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
8953
@tab @code{SLASS @var{a},@var{b},@var{c}}
8954
@item @code{void __SMASS (sw1, sw1)}
8955
@tab @code{__SMASS (@var{a}, @var{b})}
8956
@tab @code{SMASS @var{a},@var{b}}
8957
@item @code{void __SMSSS (sw1, sw1)}
8958
@tab @code{__SMSSS (@var{a}, @var{b})}
8959
@tab @code{SMSSS @var{a},@var{b}}
8960
@item @code{void __SMU (sw1, sw1)}
8961
@tab @code{__SMU (@var{a}, @var{b})}
8962
@tab @code{SMU @var{a},@var{b}}
8963
@item @code{sw2 __SMUL (sw1, sw1)}
8964
@tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
8965
@tab @code{SMUL @var{a},@var{b},@var{c}}
8966
@item @code{sw1 __SUBSS (sw1, sw1)}
8967
@tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
8968
@tab @code{SUBSS @var{a},@var{b},@var{c}}
8969
@item @code{uw2 __UMUL (uw1, uw1)}
8970
@tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
8971
@tab @code{UMUL @var{a},@var{b},@var{c}}
8972
@end multitable
8973
 
8974
@node Directly-mapped Media Functions
8975
@subsubsection Directly-mapped Media Functions
8976
 
8977
The functions listed below map directly to FR-V M-type instructions.
8978
 
8979
@multitable @columnfractions .45 .32 .23
8980
@item Function prototype @tab Example usage @tab Assembly output
8981
@item @code{uw1 __MABSHS (sw1)}
8982
@tab @code{@var{b} = __MABSHS (@var{a})}
8983
@tab @code{MABSHS @var{a},@var{b}}
8984
@item @code{void __MADDACCS (acc, acc)}
8985
@tab @code{__MADDACCS (@var{b}, @var{a})}
8986
@tab @code{MADDACCS @var{a},@var{b}}
8987
@item @code{sw1 __MADDHSS (sw1, sw1)}
8988
@tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
8989
@tab @code{MADDHSS @var{a},@var{b},@var{c}}
8990
@item @code{uw1 __MADDHUS (uw1, uw1)}
8991
@tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
8992
@tab @code{MADDHUS @var{a},@var{b},@var{c}}
8993
@item @code{uw1 __MAND (uw1, uw1)}
8994
@tab @code{@var{c} = __MAND (@var{a}, @var{b})}
8995
@tab @code{MAND @var{a},@var{b},@var{c}}
8996
@item @code{void __MASACCS (acc, acc)}
8997
@tab @code{__MASACCS (@var{b}, @var{a})}
8998
@tab @code{MASACCS @var{a},@var{b}}
8999
@item @code{uw1 __MAVEH (uw1, uw1)}
9000
@tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
9001
@tab @code{MAVEH @var{a},@var{b},@var{c}}
9002
@item @code{uw2 __MBTOH (uw1)}
9003
@tab @code{@var{b} = __MBTOH (@var{a})}
9004
@tab @code{MBTOH @var{a},@var{b}}
9005
@item @code{void __MBTOHE (uw1 *, uw1)}
9006
@tab @code{__MBTOHE (&@var{b}, @var{a})}
9007
@tab @code{MBTOHE @var{a},@var{b}}
9008
@item @code{void __MCLRACC (acc)}
9009
@tab @code{__MCLRACC (@var{a})}
9010
@tab @code{MCLRACC @var{a}}
9011
@item @code{void __MCLRACCA (void)}
9012
@tab @code{__MCLRACCA ()}
9013
@tab @code{MCLRACCA}
9014
@item @code{uw1 __Mcop1 (uw1, uw1)}
9015
@tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
9016
@tab @code{Mcop1 @var{a},@var{b},@var{c}}
9017
@item @code{uw1 __Mcop2 (uw1, uw1)}
9018
@tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
9019
@tab @code{Mcop2 @var{a},@var{b},@var{c}}
9020
@item @code{uw1 __MCPLHI (uw2, const)}
9021
@tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
9022
@tab @code{MCPLHI @var{a},#@var{b},@var{c}}
9023
@item @code{uw1 __MCPLI (uw2, const)}
9024
@tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
9025
@tab @code{MCPLI @var{a},#@var{b},@var{c}}
9026
@item @code{void __MCPXIS (acc, sw1, sw1)}
9027
@tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
9028
@tab @code{MCPXIS @var{a},@var{b},@var{c}}
9029
@item @code{void __MCPXIU (acc, uw1, uw1)}
9030
@tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
9031
@tab @code{MCPXIU @var{a},@var{b},@var{c}}
9032
@item @code{void __MCPXRS (acc, sw1, sw1)}
9033
@tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
9034
@tab @code{MCPXRS @var{a},@var{b},@var{c}}
9035
@item @code{void __MCPXRU (acc, uw1, uw1)}
9036
@tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
9037
@tab @code{MCPXRU @var{a},@var{b},@var{c}}
9038
@item @code{uw1 __MCUT (acc, uw1)}
9039
@tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
9040
@tab @code{MCUT @var{a},@var{b},@var{c}}
9041
@item @code{uw1 __MCUTSS (acc, sw1)}
9042
@tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
9043
@tab @code{MCUTSS @var{a},@var{b},@var{c}}
9044
@item @code{void __MDADDACCS (acc, acc)}
9045
@tab @code{__MDADDACCS (@var{b}, @var{a})}
9046
@tab @code{MDADDACCS @var{a},@var{b}}
9047
@item @code{void __MDASACCS (acc, acc)}
9048
@tab @code{__MDASACCS (@var{b}, @var{a})}
9049
@tab @code{MDASACCS @var{a},@var{b}}
9050
@item @code{uw2 __MDCUTSSI (acc, const)}
9051
@tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
9052
@tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
9053
@item @code{uw2 __MDPACKH (uw2, uw2)}
9054
@tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
9055
@tab @code{MDPACKH @var{a},@var{b},@var{c}}
9056
@item @code{uw2 __MDROTLI (uw2, const)}
9057
@tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
9058
@tab @code{MDROTLI @var{a},#@var{b},@var{c}}
9059
@item @code{void __MDSUBACCS (acc, acc)}
9060
@tab @code{__MDSUBACCS (@var{b}, @var{a})}
9061
@tab @code{MDSUBACCS @var{a},@var{b}}
9062
@item @code{void __MDUNPACKH (uw1 *, uw2)}
9063
@tab @code{__MDUNPACKH (&@var{b}, @var{a})}
9064
@tab @code{MDUNPACKH @var{a},@var{b}}
9065
@item @code{uw2 __MEXPDHD (uw1, const)}
9066
@tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
9067
@tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
9068
@item @code{uw1 __MEXPDHW (uw1, const)}
9069
@tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
9070
@tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
9071
@item @code{uw1 __MHDSETH (uw1, const)}
9072
@tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
9073
@tab @code{MHDSETH @var{a},#@var{b},@var{c}}
9074
@item @code{sw1 __MHDSETS (const)}
9075
@tab @code{@var{b} = __MHDSETS (@var{a})}
9076
@tab @code{MHDSETS #@var{a},@var{b}}
9077
@item @code{uw1 __MHSETHIH (uw1, const)}
9078
@tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
9079
@tab @code{MHSETHIH #@var{a},@var{b}}
9080
@item @code{sw1 __MHSETHIS (sw1, const)}
9081
@tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
9082
@tab @code{MHSETHIS #@var{a},@var{b}}
9083
@item @code{uw1 __MHSETLOH (uw1, const)}
9084
@tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
9085
@tab @code{MHSETLOH #@var{a},@var{b}}
9086
@item @code{sw1 __MHSETLOS (sw1, const)}
9087
@tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
9088
@tab @code{MHSETLOS #@var{a},@var{b}}
9089
@item @code{uw1 __MHTOB (uw2)}
9090
@tab @code{@var{b} = __MHTOB (@var{a})}
9091
@tab @code{MHTOB @var{a},@var{b}}
9092
@item @code{void __MMACHS (acc, sw1, sw1)}
9093
@tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
9094
@tab @code{MMACHS @var{a},@var{b},@var{c}}
9095
@item @code{void __MMACHU (acc, uw1, uw1)}
9096
@tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
9097
@tab @code{MMACHU @var{a},@var{b},@var{c}}
9098
@item @code{void __MMRDHS (acc, sw1, sw1)}
9099
@tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
9100
@tab @code{MMRDHS @var{a},@var{b},@var{c}}
9101
@item @code{void __MMRDHU (acc, uw1, uw1)}
9102
@tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
9103
@tab @code{MMRDHU @var{a},@var{b},@var{c}}
9104
@item @code{void __MMULHS (acc, sw1, sw1)}
9105
@tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
9106
@tab @code{MMULHS @var{a},@var{b},@var{c}}
9107
@item @code{void __MMULHU (acc, uw1, uw1)}
9108
@tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
9109
@tab @code{MMULHU @var{a},@var{b},@var{c}}
9110
@item @code{void __MMULXHS (acc, sw1, sw1)}
9111
@tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
9112
@tab @code{MMULXHS @var{a},@var{b},@var{c}}
9113
@item @code{void __MMULXHU (acc, uw1, uw1)}
9114
@tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
9115
@tab @code{MMULXHU @var{a},@var{b},@var{c}}
9116
@item @code{uw1 __MNOT (uw1)}
9117
@tab @code{@var{b} = __MNOT (@var{a})}
9118
@tab @code{MNOT @var{a},@var{b}}
9119
@item @code{uw1 __MOR (uw1, uw1)}
9120
@tab @code{@var{c} = __MOR (@var{a}, @var{b})}
9121
@tab @code{MOR @var{a},@var{b},@var{c}}
9122
@item @code{uw1 __MPACKH (uh, uh)}
9123
@tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
9124
@tab @code{MPACKH @var{a},@var{b},@var{c}}
9125
@item @code{sw2 __MQADDHSS (sw2, sw2)}
9126
@tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
9127
@tab @code{MQADDHSS @var{a},@var{b},@var{c}}
9128
@item @code{uw2 __MQADDHUS (uw2, uw2)}
9129
@tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
9130
@tab @code{MQADDHUS @var{a},@var{b},@var{c}}
9131
@item @code{void __MQCPXIS (acc, sw2, sw2)}
9132
@tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
9133
@tab @code{MQCPXIS @var{a},@var{b},@var{c}}
9134
@item @code{void __MQCPXIU (acc, uw2, uw2)}
9135
@tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
9136
@tab @code{MQCPXIU @var{a},@var{b},@var{c}}
9137
@item @code{void __MQCPXRS (acc, sw2, sw2)}
9138
@tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
9139
@tab @code{MQCPXRS @var{a},@var{b},@var{c}}
9140
@item @code{void __MQCPXRU (acc, uw2, uw2)}
9141
@tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
9142
@tab @code{MQCPXRU @var{a},@var{b},@var{c}}
9143
@item @code{sw2 __MQLCLRHS (sw2, sw2)}
9144
@tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
9145
@tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
9146
@item @code{sw2 __MQLMTHS (sw2, sw2)}
9147
@tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
9148
@tab @code{MQLMTHS @var{a},@var{b},@var{c}}
9149
@item @code{void __MQMACHS (acc, sw2, sw2)}
9150
@tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
9151
@tab @code{MQMACHS @var{a},@var{b},@var{c}}
9152
@item @code{void __MQMACHU (acc, uw2, uw2)}
9153
@tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
9154
@tab @code{MQMACHU @var{a},@var{b},@var{c}}
9155
@item @code{void __MQMACXHS (acc, sw2, sw2)}
9156
@tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
9157
@tab @code{MQMACXHS @var{a},@var{b},@var{c}}
9158
@item @code{void __MQMULHS (acc, sw2, sw2)}
9159
@tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
9160
@tab @code{MQMULHS @var{a},@var{b},@var{c}}
9161
@item @code{void __MQMULHU (acc, uw2, uw2)}
9162
@tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
9163
@tab @code{MQMULHU @var{a},@var{b},@var{c}}
9164
@item @code{void __MQMULXHS (acc, sw2, sw2)}
9165
@tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
9166
@tab @code{MQMULXHS @var{a},@var{b},@var{c}}
9167
@item @code{void __MQMULXHU (acc, uw2, uw2)}
9168
@tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
9169
@tab @code{MQMULXHU @var{a},@var{b},@var{c}}
9170
@item @code{sw2 __MQSATHS (sw2, sw2)}
9171
@tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
9172
@tab @code{MQSATHS @var{a},@var{b},@var{c}}
9173
@item @code{uw2 __MQSLLHI (uw2, int)}
9174
@tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
9175
@tab @code{MQSLLHI @var{a},@var{b},@var{c}}
9176
@item @code{sw2 __MQSRAHI (sw2, int)}
9177
@tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
9178
@tab @code{MQSRAHI @var{a},@var{b},@var{c}}
9179
@item @code{sw2 __MQSUBHSS (sw2, sw2)}
9180
@tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
9181
@tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
9182
@item @code{uw2 __MQSUBHUS (uw2, uw2)}
9183
@tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
9184
@tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
9185
@item @code{void __MQXMACHS (acc, sw2, sw2)}
9186
@tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
9187
@tab @code{MQXMACHS @var{a},@var{b},@var{c}}
9188
@item @code{void __MQXMACXHS (acc, sw2, sw2)}
9189
@tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
9190
@tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
9191
@item @code{uw1 __MRDACC (acc)}
9192
@tab @code{@var{b} = __MRDACC (@var{a})}
9193
@tab @code{MRDACC @var{a},@var{b}}
9194
@item @code{uw1 __MRDACCG (acc)}
9195
@tab @code{@var{b} = __MRDACCG (@var{a})}
9196
@tab @code{MRDACCG @var{a},@var{b}}
9197
@item @code{uw1 __MROTLI (uw1, const)}
9198
@tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
9199
@tab @code{MROTLI @var{a},#@var{b},@var{c}}
9200
@item @code{uw1 __MROTRI (uw1, const)}
9201
@tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
9202
@tab @code{MROTRI @var{a},#@var{b},@var{c}}
9203
@item @code{sw1 __MSATHS (sw1, sw1)}
9204
@tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
9205
@tab @code{MSATHS @var{a},@var{b},@var{c}}
9206
@item @code{uw1 __MSATHU (uw1, uw1)}
9207
@tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
9208
@tab @code{MSATHU @var{a},@var{b},@var{c}}
9209
@item @code{uw1 __MSLLHI (uw1, const)}
9210
@tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
9211
@tab @code{MSLLHI @var{a},#@var{b},@var{c}}
9212
@item @code{sw1 __MSRAHI (sw1, const)}
9213
@tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
9214
@tab @code{MSRAHI @var{a},#@var{b},@var{c}}
9215
@item @code{uw1 __MSRLHI (uw1, const)}
9216
@tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
9217
@tab @code{MSRLHI @var{a},#@var{b},@var{c}}
9218
@item @code{void __MSUBACCS (acc, acc)}
9219
@tab @code{__MSUBACCS (@var{b}, @var{a})}
9220
@tab @code{MSUBACCS @var{a},@var{b}}
9221
@item @code{sw1 __MSUBHSS (sw1, sw1)}
9222
@tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
9223
@tab @code{MSUBHSS @var{a},@var{b},@var{c}}
9224
@item @code{uw1 __MSUBHUS (uw1, uw1)}
9225
@tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
9226
@tab @code{MSUBHUS @var{a},@var{b},@var{c}}
9227
@item @code{void __MTRAP (void)}
9228
@tab @code{__MTRAP ()}
9229
@tab @code{MTRAP}
9230
@item @code{uw2 __MUNPACKH (uw1)}
9231
@tab @code{@var{b} = __MUNPACKH (@var{a})}
9232
@tab @code{MUNPACKH @var{a},@var{b}}
9233
@item @code{uw1 __MWCUT (uw2, uw1)}
9234
@tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
9235
@tab @code{MWCUT @var{a},@var{b},@var{c}}
9236
@item @code{void __MWTACC (acc, uw1)}
9237
@tab @code{__MWTACC (@var{b}, @var{a})}
9238
@tab @code{MWTACC @var{a},@var{b}}
9239
@item @code{void __MWTACCG (acc, uw1)}
9240
@tab @code{__MWTACCG (@var{b}, @var{a})}
9241
@tab @code{MWTACCG @var{a},@var{b}}
9242
@item @code{uw1 __MXOR (uw1, uw1)}
9243
@tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
9244
@tab @code{MXOR @var{a},@var{b},@var{c}}
9245
@end multitable
9246
 
9247
@node Raw read/write Functions
9248
@subsubsection Raw read/write Functions
9249
 
9250
This sections describes built-in functions related to read and write
9251
instructions to access memory.  These functions generate
9252
@code{membar} instructions to flush the I/O load and stores where
9253
appropriate, as described in Fujitsu's manual described above.
9254
 
9255
@table @code
9256
 
9257
@item unsigned char __builtin_read8 (void *@var{data})
9258
@item unsigned short __builtin_read16 (void *@var{data})
9259
@item unsigned long __builtin_read32 (void *@var{data})
9260
@item unsigned long long __builtin_read64 (void *@var{data})
9261
 
9262
@item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
9263
@item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
9264
@item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
9265
@item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
9266
@end table
9267
 
9268
@node Other Built-in Functions
9269
@subsubsection Other Built-in Functions
9270
 
9271
This section describes built-in functions that are not named after
9272
a specific FR-V instruction.
9273
 
9274
@table @code
9275
@item sw2 __IACCreadll (iacc @var{reg})
9276
Return the full 64-bit value of IACC0@.  The @var{reg} argument is reserved
9277
for future expansion and must be 0.
9278
 
9279
@item sw1 __IACCreadl (iacc @var{reg})
9280
Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
9281
Other values of @var{reg} are rejected as invalid.
9282
 
9283
@item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
9284
Set the full 64-bit value of IACC0 to @var{x}.  The @var{reg} argument
9285
is reserved for future expansion and must be 0.
9286
 
9287
@item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
9288
Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
9289
is 1.  Other values of @var{reg} are rejected as invalid.
9290
 
9291
@item void __data_prefetch0 (const void *@var{x})
9292
Use the @code{dcpl} instruction to load the contents of address @var{x}
9293
into the data cache.
9294
 
9295
@item void __data_prefetch (const void *@var{x})
9296
Use the @code{nldub} instruction to load the contents of address @var{x}
9297
into the data cache.  The instruction will be issued in slot I1@.
9298
@end table
9299
 
9300
@node X86 Built-in Functions
9301
@subsection X86 Built-in Functions
9302
 
9303
These built-in functions are available for the i386 and x86-64 family
9304
of computers, depending on the command-line switches used.
9305
 
9306
Note that, if you specify command-line switches such as @option{-msse},
9307
the compiler could use the extended instruction sets even if the built-ins
9308
are not used explicitly in the program.  For this reason, applications
9309
which perform runtime CPU detection must compile separate files for each
9310
supported architecture, using the appropriate flags.  In particular,
9311
the file containing the CPU detection code should be compiled without
9312
these options.
9313
 
9314
The following machine modes are available for use with MMX built-in functions
9315
(@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
9316
@code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
9317
vector of eight 8-bit integers.  Some of the built-in functions operate on
9318
MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
9319
 
9320
If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
9321
of two 32-bit floating point values.
9322
 
9323
If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
9324
floating point values.  Some instructions use a vector of four 32-bit
9325
integers, these use @code{V4SI}.  Finally, some instructions operate on an
9326
entire vector register, interpreting it as a 128-bit integer, these use mode
9327
@code{TI}.
9328
 
9329
In 64-bit mode, the x86-64 family of processors uses additional built-in
9330
functions for efficient use of @code{TF} (@code{__float128}) 128-bit
9331
floating point and @code{TC} 128-bit complex floating point values.
9332
 
9333
The following floating point built-in functions are available in 64-bit
9334
mode.  All of them implement the function that is part of the name.
9335
 
9336
@smallexample
9337
__float128 __builtin_fabsq (__float128)
9338
__float128 __builtin_copysignq (__float128, __float128)
9339
@end smallexample
9340
 
9341
The following built-in function is always available.
9342
 
9343
@table @code
9344
@item void __builtin_ia32_pause (void)
9345
Generates the @code{pause} machine instruction with a compiler memory
9346
barrier.
9347
@end table
9348
 
9349
The following floating point built-in functions are made available in the
9350
64-bit mode.
9351
 
9352
@table @code
9353
@item __float128 __builtin_infq (void)
9354
Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
9355
@findex __builtin_infq
9356
 
9357
@item __float128 __builtin_huge_valq (void)
9358
Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
9359
@findex __builtin_huge_valq
9360
@end table
9361
 
9362
The following built-in functions are made available by @option{-mmmx}.
9363
All of them generate the machine instruction that is part of the name.
9364
 
9365
@smallexample
9366
v8qi __builtin_ia32_paddb (v8qi, v8qi)
9367
v4hi __builtin_ia32_paddw (v4hi, v4hi)
9368
v2si __builtin_ia32_paddd (v2si, v2si)
9369
v8qi __builtin_ia32_psubb (v8qi, v8qi)
9370
v4hi __builtin_ia32_psubw (v4hi, v4hi)
9371
v2si __builtin_ia32_psubd (v2si, v2si)
9372
v8qi __builtin_ia32_paddsb (v8qi, v8qi)
9373
v4hi __builtin_ia32_paddsw (v4hi, v4hi)
9374
v8qi __builtin_ia32_psubsb (v8qi, v8qi)
9375
v4hi __builtin_ia32_psubsw (v4hi, v4hi)
9376
v8qi __builtin_ia32_paddusb (v8qi, v8qi)
9377
v4hi __builtin_ia32_paddusw (v4hi, v4hi)
9378
v8qi __builtin_ia32_psubusb (v8qi, v8qi)
9379
v4hi __builtin_ia32_psubusw (v4hi, v4hi)
9380
v4hi __builtin_ia32_pmullw (v4hi, v4hi)
9381
v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
9382
di __builtin_ia32_pand (di, di)
9383
di __builtin_ia32_pandn (di,di)
9384
di __builtin_ia32_por (di, di)
9385
di __builtin_ia32_pxor (di, di)
9386
v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
9387
v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
9388
v2si __builtin_ia32_pcmpeqd (v2si, v2si)
9389
v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
9390
v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
9391
v2si __builtin_ia32_pcmpgtd (v2si, v2si)
9392
v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
9393
v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
9394
v2si __builtin_ia32_punpckhdq (v2si, v2si)
9395
v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
9396
v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
9397
v2si __builtin_ia32_punpckldq (v2si, v2si)
9398
v8qi __builtin_ia32_packsswb (v4hi, v4hi)
9399
v4hi __builtin_ia32_packssdw (v2si, v2si)
9400
v8qi __builtin_ia32_packuswb (v4hi, v4hi)
9401
 
9402
v4hi __builtin_ia32_psllw (v4hi, v4hi)
9403
v2si __builtin_ia32_pslld (v2si, v2si)
9404
v1di __builtin_ia32_psllq (v1di, v1di)
9405
v4hi __builtin_ia32_psrlw (v4hi, v4hi)
9406
v2si __builtin_ia32_psrld (v2si, v2si)
9407
v1di __builtin_ia32_psrlq (v1di, v1di)
9408
v4hi __builtin_ia32_psraw (v4hi, v4hi)
9409
v2si __builtin_ia32_psrad (v2si, v2si)
9410
v4hi __builtin_ia32_psllwi (v4hi, int)
9411
v2si __builtin_ia32_pslldi (v2si, int)
9412
v1di __builtin_ia32_psllqi (v1di, int)
9413
v4hi __builtin_ia32_psrlwi (v4hi, int)
9414
v2si __builtin_ia32_psrldi (v2si, int)
9415
v1di __builtin_ia32_psrlqi (v1di, int)
9416
v4hi __builtin_ia32_psrawi (v4hi, int)
9417
v2si __builtin_ia32_psradi (v2si, int)
9418
 
9419
@end smallexample
9420
 
9421
The following built-in functions are made available either with
9422
@option{-msse}, or with a combination of @option{-m3dnow} and
9423
@option{-march=athlon}.  All of them generate the machine
9424
instruction that is part of the name.
9425
 
9426
@smallexample
9427
v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
9428
v8qi __builtin_ia32_pavgb (v8qi, v8qi)
9429
v4hi __builtin_ia32_pavgw (v4hi, v4hi)
9430
v1di __builtin_ia32_psadbw (v8qi, v8qi)
9431
v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
9432
v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
9433
v8qi __builtin_ia32_pminub (v8qi, v8qi)
9434
v4hi __builtin_ia32_pminsw (v4hi, v4hi)
9435
int __builtin_ia32_pextrw (v4hi, int)
9436
v4hi __builtin_ia32_pinsrw (v4hi, int, int)
9437
int __builtin_ia32_pmovmskb (v8qi)
9438
void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
9439
void __builtin_ia32_movntq (di *, di)
9440
void __builtin_ia32_sfence (void)
9441
@end smallexample
9442
 
9443
The following built-in functions are available when @option{-msse} is used.
9444
All of them generate the machine instruction that is part of the name.
9445
 
9446
@smallexample
9447
int __builtin_ia32_comieq (v4sf, v4sf)
9448
int __builtin_ia32_comineq (v4sf, v4sf)
9449
int __builtin_ia32_comilt (v4sf, v4sf)
9450
int __builtin_ia32_comile (v4sf, v4sf)
9451
int __builtin_ia32_comigt (v4sf, v4sf)
9452
int __builtin_ia32_comige (v4sf, v4sf)
9453
int __builtin_ia32_ucomieq (v4sf, v4sf)
9454
int __builtin_ia32_ucomineq (v4sf, v4sf)
9455
int __builtin_ia32_ucomilt (v4sf, v4sf)
9456
int __builtin_ia32_ucomile (v4sf, v4sf)
9457
int __builtin_ia32_ucomigt (v4sf, v4sf)
9458
int __builtin_ia32_ucomige (v4sf, v4sf)
9459
v4sf __builtin_ia32_addps (v4sf, v4sf)
9460
v4sf __builtin_ia32_subps (v4sf, v4sf)
9461
v4sf __builtin_ia32_mulps (v4sf, v4sf)
9462
v4sf __builtin_ia32_divps (v4sf, v4sf)
9463
v4sf __builtin_ia32_addss (v4sf, v4sf)
9464
v4sf __builtin_ia32_subss (v4sf, v4sf)
9465
v4sf __builtin_ia32_mulss (v4sf, v4sf)
9466
v4sf __builtin_ia32_divss (v4sf, v4sf)
9467
v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
9468
v4si __builtin_ia32_cmpltps (v4sf, v4sf)
9469
v4si __builtin_ia32_cmpleps (v4sf, v4sf)
9470
v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
9471
v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
9472
v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
9473
v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
9474
v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
9475
v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
9476
v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
9477
v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
9478
v4si __builtin_ia32_cmpordps (v4sf, v4sf)
9479
v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
9480
v4si __builtin_ia32_cmpltss (v4sf, v4sf)
9481
v4si __builtin_ia32_cmpless (v4sf, v4sf)
9482
v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
9483
v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
9484
v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
9485
v4si __builtin_ia32_cmpnless (v4sf, v4sf)
9486
v4si __builtin_ia32_cmpordss (v4sf, v4sf)
9487
v4sf __builtin_ia32_maxps (v4sf, v4sf)
9488
v4sf __builtin_ia32_maxss (v4sf, v4sf)
9489
v4sf __builtin_ia32_minps (v4sf, v4sf)
9490
v4sf __builtin_ia32_minss (v4sf, v4sf)
9491
v4sf __builtin_ia32_andps (v4sf, v4sf)
9492
v4sf __builtin_ia32_andnps (v4sf, v4sf)
9493
v4sf __builtin_ia32_orps (v4sf, v4sf)
9494
v4sf __builtin_ia32_xorps (v4sf, v4sf)
9495
v4sf __builtin_ia32_movss (v4sf, v4sf)
9496
v4sf __builtin_ia32_movhlps (v4sf, v4sf)
9497
v4sf __builtin_ia32_movlhps (v4sf, v4sf)
9498
v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
9499
v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
9500
v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
9501
v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
9502
v2si __builtin_ia32_cvtps2pi (v4sf)
9503
int __builtin_ia32_cvtss2si (v4sf)
9504
v2si __builtin_ia32_cvttps2pi (v4sf)
9505
int __builtin_ia32_cvttss2si (v4sf)
9506
v4sf __builtin_ia32_rcpps (v4sf)
9507
v4sf __builtin_ia32_rsqrtps (v4sf)
9508
v4sf __builtin_ia32_sqrtps (v4sf)
9509
v4sf __builtin_ia32_rcpss (v4sf)
9510
v4sf __builtin_ia32_rsqrtss (v4sf)
9511
v4sf __builtin_ia32_sqrtss (v4sf)
9512
v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
9513
void __builtin_ia32_movntps (float *, v4sf)
9514
int __builtin_ia32_movmskps (v4sf)
9515
@end smallexample
9516
 
9517
The following built-in functions are available when @option{-msse} is used.
9518
 
9519
@table @code
9520
@item v4sf __builtin_ia32_loadaps (float *)
9521
Generates the @code{movaps} machine instruction as a load from memory.
9522
@item void __builtin_ia32_storeaps (float *, v4sf)
9523
Generates the @code{movaps} machine instruction as a store to memory.
9524
@item v4sf __builtin_ia32_loadups (float *)
9525
Generates the @code{movups} machine instruction as a load from memory.
9526
@item void __builtin_ia32_storeups (float *, v4sf)
9527
Generates the @code{movups} machine instruction as a store to memory.
9528
@item v4sf __builtin_ia32_loadsss (float *)
9529
Generates the @code{movss} machine instruction as a load from memory.
9530
@item void __builtin_ia32_storess (float *, v4sf)
9531
Generates the @code{movss} machine instruction as a store to memory.
9532
@item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
9533
Generates the @code{movhps} machine instruction as a load from memory.
9534
@item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
9535
Generates the @code{movlps} machine instruction as a load from memory
9536
@item void __builtin_ia32_storehps (v2sf *, v4sf)
9537
Generates the @code{movhps} machine instruction as a store to memory.
9538
@item void __builtin_ia32_storelps (v2sf *, v4sf)
9539
Generates the @code{movlps} machine instruction as a store to memory.
9540
@end table
9541
 
9542
The following built-in functions are available when @option{-msse2} is used.
9543
All of them generate the machine instruction that is part of the name.
9544
 
9545
@smallexample
9546
int __builtin_ia32_comisdeq (v2df, v2df)
9547
int __builtin_ia32_comisdlt (v2df, v2df)
9548
int __builtin_ia32_comisdle (v2df, v2df)
9549
int __builtin_ia32_comisdgt (v2df, v2df)
9550
int __builtin_ia32_comisdge (v2df, v2df)
9551
int __builtin_ia32_comisdneq (v2df, v2df)
9552
int __builtin_ia32_ucomisdeq (v2df, v2df)
9553
int __builtin_ia32_ucomisdlt (v2df, v2df)
9554
int __builtin_ia32_ucomisdle (v2df, v2df)
9555
int __builtin_ia32_ucomisdgt (v2df, v2df)
9556
int __builtin_ia32_ucomisdge (v2df, v2df)
9557
int __builtin_ia32_ucomisdneq (v2df, v2df)
9558
v2df __builtin_ia32_cmpeqpd (v2df, v2df)
9559
v2df __builtin_ia32_cmpltpd (v2df, v2df)
9560
v2df __builtin_ia32_cmplepd (v2df, v2df)
9561
v2df __builtin_ia32_cmpgtpd (v2df, v2df)
9562
v2df __builtin_ia32_cmpgepd (v2df, v2df)
9563
v2df __builtin_ia32_cmpunordpd (v2df, v2df)
9564
v2df __builtin_ia32_cmpneqpd (v2df, v2df)
9565
v2df __builtin_ia32_cmpnltpd (v2df, v2df)
9566
v2df __builtin_ia32_cmpnlepd (v2df, v2df)
9567
v2df __builtin_ia32_cmpngtpd (v2df, v2df)
9568
v2df __builtin_ia32_cmpngepd (v2df, v2df)
9569
v2df __builtin_ia32_cmpordpd (v2df, v2df)
9570
v2df __builtin_ia32_cmpeqsd (v2df, v2df)
9571
v2df __builtin_ia32_cmpltsd (v2df, v2df)
9572
v2df __builtin_ia32_cmplesd (v2df, v2df)
9573
v2df __builtin_ia32_cmpunordsd (v2df, v2df)
9574
v2df __builtin_ia32_cmpneqsd (v2df, v2df)
9575
v2df __builtin_ia32_cmpnltsd (v2df, v2df)
9576
v2df __builtin_ia32_cmpnlesd (v2df, v2df)
9577
v2df __builtin_ia32_cmpordsd (v2df, v2df)
9578
v2di __builtin_ia32_paddq (v2di, v2di)
9579
v2di __builtin_ia32_psubq (v2di, v2di)
9580
v2df __builtin_ia32_addpd (v2df, v2df)
9581
v2df __builtin_ia32_subpd (v2df, v2df)
9582
v2df __builtin_ia32_mulpd (v2df, v2df)
9583
v2df __builtin_ia32_divpd (v2df, v2df)
9584
v2df __builtin_ia32_addsd (v2df, v2df)
9585
v2df __builtin_ia32_subsd (v2df, v2df)
9586
v2df __builtin_ia32_mulsd (v2df, v2df)
9587
v2df __builtin_ia32_divsd (v2df, v2df)
9588
v2df __builtin_ia32_minpd (v2df, v2df)
9589
v2df __builtin_ia32_maxpd (v2df, v2df)
9590
v2df __builtin_ia32_minsd (v2df, v2df)
9591
v2df __builtin_ia32_maxsd (v2df, v2df)
9592
v2df __builtin_ia32_andpd (v2df, v2df)
9593
v2df __builtin_ia32_andnpd (v2df, v2df)
9594
v2df __builtin_ia32_orpd (v2df, v2df)
9595
v2df __builtin_ia32_xorpd (v2df, v2df)
9596
v2df __builtin_ia32_movsd (v2df, v2df)
9597
v2df __builtin_ia32_unpckhpd (v2df, v2df)
9598
v2df __builtin_ia32_unpcklpd (v2df, v2df)
9599
v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
9600
v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
9601
v4si __builtin_ia32_paddd128 (v4si, v4si)
9602
v2di __builtin_ia32_paddq128 (v2di, v2di)
9603
v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
9604
v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
9605
v4si __builtin_ia32_psubd128 (v4si, v4si)
9606
v2di __builtin_ia32_psubq128 (v2di, v2di)
9607
v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
9608
v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
9609
v2di __builtin_ia32_pand128 (v2di, v2di)
9610
v2di __builtin_ia32_pandn128 (v2di, v2di)
9611
v2di __builtin_ia32_por128 (v2di, v2di)
9612
v2di __builtin_ia32_pxor128 (v2di, v2di)
9613
v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
9614
v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
9615
v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
9616
v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
9617
v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
9618
v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
9619
v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
9620
v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
9621
v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
9622
v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
9623
v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
9624
v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
9625
v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
9626
v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
9627
v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
9628
v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
9629
v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
9630
v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
9631
v4si __builtin_ia32_punpckldq128 (v4si, v4si)
9632
v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
9633
v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
9634
v8hi __builtin_ia32_packssdw128 (v4si, v4si)
9635
v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
9636
v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
9637
void __builtin_ia32_maskmovdqu (v16qi, v16qi)
9638
v2df __builtin_ia32_loadupd (double *)
9639
void __builtin_ia32_storeupd (double *, v2df)
9640
v2df __builtin_ia32_loadhpd (v2df, double const *)
9641
v2df __builtin_ia32_loadlpd (v2df, double const *)
9642
int __builtin_ia32_movmskpd (v2df)
9643
int __builtin_ia32_pmovmskb128 (v16qi)
9644
void __builtin_ia32_movnti (int *, int)
9645
void __builtin_ia32_movnti64 (long long int *, long long int)
9646
void __builtin_ia32_movntpd (double *, v2df)
9647
void __builtin_ia32_movntdq (v2df *, v2df)
9648
v4si __builtin_ia32_pshufd (v4si, int)
9649
v8hi __builtin_ia32_pshuflw (v8hi, int)
9650
v8hi __builtin_ia32_pshufhw (v8hi, int)
9651
v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
9652
v2df __builtin_ia32_sqrtpd (v2df)
9653
v2df __builtin_ia32_sqrtsd (v2df)
9654
v2df __builtin_ia32_shufpd (v2df, v2df, int)
9655
v2df __builtin_ia32_cvtdq2pd (v4si)
9656
v4sf __builtin_ia32_cvtdq2ps (v4si)
9657
v4si __builtin_ia32_cvtpd2dq (v2df)
9658
v2si __builtin_ia32_cvtpd2pi (v2df)
9659
v4sf __builtin_ia32_cvtpd2ps (v2df)
9660
v4si __builtin_ia32_cvttpd2dq (v2df)
9661
v2si __builtin_ia32_cvttpd2pi (v2df)
9662
v2df __builtin_ia32_cvtpi2pd (v2si)
9663
int __builtin_ia32_cvtsd2si (v2df)
9664
int __builtin_ia32_cvttsd2si (v2df)
9665
long long __builtin_ia32_cvtsd2si64 (v2df)
9666
long long __builtin_ia32_cvttsd2si64 (v2df)
9667
v4si __builtin_ia32_cvtps2dq (v4sf)
9668
v2df __builtin_ia32_cvtps2pd (v4sf)
9669
v4si __builtin_ia32_cvttps2dq (v4sf)
9670
v2df __builtin_ia32_cvtsi2sd (v2df, int)
9671
v2df __builtin_ia32_cvtsi642sd (v2df, long long)
9672
v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
9673
v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
9674
void __builtin_ia32_clflush (const void *)
9675
void __builtin_ia32_lfence (void)
9676
void __builtin_ia32_mfence (void)
9677
v16qi __builtin_ia32_loaddqu (const char *)
9678
void __builtin_ia32_storedqu (char *, v16qi)
9679
v1di __builtin_ia32_pmuludq (v2si, v2si)
9680
v2di __builtin_ia32_pmuludq128 (v4si, v4si)
9681
v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
9682
v4si __builtin_ia32_pslld128 (v4si, v4si)
9683
v2di __builtin_ia32_psllq128 (v2di, v2di)
9684
v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
9685
v4si __builtin_ia32_psrld128 (v4si, v4si)
9686
v2di __builtin_ia32_psrlq128 (v2di, v2di)
9687
v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
9688
v4si __builtin_ia32_psrad128 (v4si, v4si)
9689
v2di __builtin_ia32_pslldqi128 (v2di, int)
9690
v8hi __builtin_ia32_psllwi128 (v8hi, int)
9691
v4si __builtin_ia32_pslldi128 (v4si, int)
9692
v2di __builtin_ia32_psllqi128 (v2di, int)
9693
v2di __builtin_ia32_psrldqi128 (v2di, int)
9694
v8hi __builtin_ia32_psrlwi128 (v8hi, int)
9695
v4si __builtin_ia32_psrldi128 (v4si, int)
9696
v2di __builtin_ia32_psrlqi128 (v2di, int)
9697
v8hi __builtin_ia32_psrawi128 (v8hi, int)
9698
v4si __builtin_ia32_psradi128 (v4si, int)
9699
v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
9700
v2di __builtin_ia32_movq128 (v2di)
9701
@end smallexample
9702
 
9703
The following built-in functions are available when @option{-msse3} is used.
9704
All of them generate the machine instruction that is part of the name.
9705
 
9706
@smallexample
9707
v2df __builtin_ia32_addsubpd (v2df, v2df)
9708
v4sf __builtin_ia32_addsubps (v4sf, v4sf)
9709
v2df __builtin_ia32_haddpd (v2df, v2df)
9710
v4sf __builtin_ia32_haddps (v4sf, v4sf)
9711
v2df __builtin_ia32_hsubpd (v2df, v2df)
9712
v4sf __builtin_ia32_hsubps (v4sf, v4sf)
9713
v16qi __builtin_ia32_lddqu (char const *)
9714
void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
9715
v2df __builtin_ia32_movddup (v2df)
9716
v4sf __builtin_ia32_movshdup (v4sf)
9717
v4sf __builtin_ia32_movsldup (v4sf)
9718
void __builtin_ia32_mwait (unsigned int, unsigned int)
9719
@end smallexample
9720
 
9721
The following built-in functions are available when @option{-msse3} is used.
9722
 
9723
@table @code
9724
@item v2df __builtin_ia32_loadddup (double const *)
9725
Generates the @code{movddup} machine instruction as a load from memory.
9726
@end table
9727
 
9728
The following built-in functions are available when @option{-mssse3} is used.
9729
All of them generate the machine instruction that is part of the name
9730
with MMX registers.
9731
 
9732
@smallexample
9733
v2si __builtin_ia32_phaddd (v2si, v2si)
9734
v4hi __builtin_ia32_phaddw (v4hi, v4hi)
9735
v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
9736
v2si __builtin_ia32_phsubd (v2si, v2si)
9737
v4hi __builtin_ia32_phsubw (v4hi, v4hi)
9738
v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
9739
v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
9740
v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
9741
v8qi __builtin_ia32_pshufb (v8qi, v8qi)
9742
v8qi __builtin_ia32_psignb (v8qi, v8qi)
9743
v2si __builtin_ia32_psignd (v2si, v2si)
9744
v4hi __builtin_ia32_psignw (v4hi, v4hi)
9745
v1di __builtin_ia32_palignr (v1di, v1di, int)
9746
v8qi __builtin_ia32_pabsb (v8qi)
9747
v2si __builtin_ia32_pabsd (v2si)
9748
v4hi __builtin_ia32_pabsw (v4hi)
9749
@end smallexample
9750
 
9751
The following built-in functions are available when @option{-mssse3} is used.
9752
All of them generate the machine instruction that is part of the name
9753
with SSE registers.
9754
 
9755
@smallexample
9756
v4si __builtin_ia32_phaddd128 (v4si, v4si)
9757
v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
9758
v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
9759
v4si __builtin_ia32_phsubd128 (v4si, v4si)
9760
v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
9761
v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
9762
v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
9763
v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
9764
v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
9765
v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
9766
v4si __builtin_ia32_psignd128 (v4si, v4si)
9767
v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
9768
v2di __builtin_ia32_palignr128 (v2di, v2di, int)
9769
v16qi __builtin_ia32_pabsb128 (v16qi)
9770
v4si __builtin_ia32_pabsd128 (v4si)
9771
v8hi __builtin_ia32_pabsw128 (v8hi)
9772
@end smallexample
9773
 
9774
The following built-in functions are available when @option{-msse4.1} is
9775
used.  All of them generate the machine instruction that is part of the
9776
name.
9777
 
9778
@smallexample
9779
v2df __builtin_ia32_blendpd (v2df, v2df, const int)
9780
v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
9781
v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
9782
v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
9783
v2df __builtin_ia32_dppd (v2df, v2df, const int)
9784
v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
9785
v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
9786
v2di __builtin_ia32_movntdqa (v2di *);
9787
v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
9788
v8hi __builtin_ia32_packusdw128 (v4si, v4si)
9789
v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
9790
v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
9791
v2di __builtin_ia32_pcmpeqq (v2di, v2di)
9792
v8hi __builtin_ia32_phminposuw128 (v8hi)
9793
v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
9794
v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
9795
v4si __builtin_ia32_pmaxud128 (v4si, v4si)
9796
v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
9797
v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
9798
v4si __builtin_ia32_pminsd128 (v4si, v4si)
9799
v4si __builtin_ia32_pminud128 (v4si, v4si)
9800
v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
9801
v4si __builtin_ia32_pmovsxbd128 (v16qi)
9802
v2di __builtin_ia32_pmovsxbq128 (v16qi)
9803
v8hi __builtin_ia32_pmovsxbw128 (v16qi)
9804
v2di __builtin_ia32_pmovsxdq128 (v4si)
9805
v4si __builtin_ia32_pmovsxwd128 (v8hi)
9806
v2di __builtin_ia32_pmovsxwq128 (v8hi)
9807
v4si __builtin_ia32_pmovzxbd128 (v16qi)
9808
v2di __builtin_ia32_pmovzxbq128 (v16qi)
9809
v8hi __builtin_ia32_pmovzxbw128 (v16qi)
9810
v2di __builtin_ia32_pmovzxdq128 (v4si)
9811
v4si __builtin_ia32_pmovzxwd128 (v8hi)
9812
v2di __builtin_ia32_pmovzxwq128 (v8hi)
9813
v2di __builtin_ia32_pmuldq128 (v4si, v4si)
9814
v4si __builtin_ia32_pmulld128 (v4si, v4si)
9815
int __builtin_ia32_ptestc128 (v2di, v2di)
9816
int __builtin_ia32_ptestnzc128 (v2di, v2di)
9817
int __builtin_ia32_ptestz128 (v2di, v2di)
9818
v2df __builtin_ia32_roundpd (v2df, const int)
9819
v4sf __builtin_ia32_roundps (v4sf, const int)
9820
v2df __builtin_ia32_roundsd (v2df, v2df, const int)
9821
v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
9822
@end smallexample
9823
 
9824
The following built-in functions are available when @option{-msse4.1} is
9825
used.
9826
 
9827
@table @code
9828
@item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
9829
Generates the @code{insertps} machine instruction.
9830
@item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
9831
Generates the @code{pextrb} machine instruction.
9832
@item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
9833
Generates the @code{pinsrb} machine instruction.
9834
@item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
9835
Generates the @code{pinsrd} machine instruction.
9836
@item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
9837
Generates the @code{pinsrq} machine instruction in 64bit mode.
9838
@end table
9839
 
9840
The following built-in functions are changed to generate new SSE4.1
9841
instructions when @option{-msse4.1} is used.
9842
 
9843
@table @code
9844
@item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
9845
Generates the @code{extractps} machine instruction.
9846
@item int __builtin_ia32_vec_ext_v4si (v4si, const int)
9847
Generates the @code{pextrd} machine instruction.
9848
@item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
9849
Generates the @code{pextrq} machine instruction in 64bit mode.
9850
@end table
9851
 
9852
The following built-in functions are available when @option{-msse4.2} is
9853
used.  All of them generate the machine instruction that is part of the
9854
name.
9855
 
9856
@smallexample
9857
v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
9858
int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
9859
int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
9860
int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
9861
int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
9862
int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
9863
int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
9864
v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
9865
int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
9866
int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
9867
int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
9868
int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
9869
int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
9870
int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
9871
v2di __builtin_ia32_pcmpgtq (v2di, v2di)
9872
@end smallexample
9873
 
9874
The following built-in functions are available when @option{-msse4.2} is
9875
used.
9876
 
9877
@table @code
9878
@item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
9879
Generates the @code{crc32b} machine instruction.
9880
@item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
9881
Generates the @code{crc32w} machine instruction.
9882
@item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
9883
Generates the @code{crc32l} machine instruction.
9884
@item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
9885
Generates the @code{crc32q} machine instruction.
9886
@end table
9887
 
9888
The following built-in functions are changed to generate new SSE4.2
9889
instructions when @option{-msse4.2} is used.
9890
 
9891
@table @code
9892
@item int __builtin_popcount (unsigned int)
9893
Generates the @code{popcntl} machine instruction.
9894
@item int __builtin_popcountl (unsigned long)
9895
Generates the @code{popcntl} or @code{popcntq} machine instruction,
9896
depending on the size of @code{unsigned long}.
9897
@item int __builtin_popcountll (unsigned long long)
9898
Generates the @code{popcntq} machine instruction.
9899
@end table
9900
 
9901
The following built-in functions are available when @option{-mavx} is
9902
used. All of them generate the machine instruction that is part of the
9903
name.
9904
 
9905
@smallexample
9906
v4df __builtin_ia32_addpd256 (v4df,v4df)
9907
v8sf __builtin_ia32_addps256 (v8sf,v8sf)
9908
v4df __builtin_ia32_addsubpd256 (v4df,v4df)
9909
v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
9910
v4df __builtin_ia32_andnpd256 (v4df,v4df)
9911
v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
9912
v4df __builtin_ia32_andpd256 (v4df,v4df)
9913
v8sf __builtin_ia32_andps256 (v8sf,v8sf)
9914
v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
9915
v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
9916
v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
9917
v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
9918
v2df __builtin_ia32_cmppd (v2df,v2df,int)
9919
v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
9920
v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
9921
v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
9922
v2df __builtin_ia32_cmpsd (v2df,v2df,int)
9923
v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
9924
v4df __builtin_ia32_cvtdq2pd256 (v4si)
9925
v8sf __builtin_ia32_cvtdq2ps256 (v8si)
9926
v4si __builtin_ia32_cvtpd2dq256 (v4df)
9927
v4sf __builtin_ia32_cvtpd2ps256 (v4df)
9928
v8si __builtin_ia32_cvtps2dq256 (v8sf)
9929
v4df __builtin_ia32_cvtps2pd256 (v4sf)
9930
v4si __builtin_ia32_cvttpd2dq256 (v4df)
9931
v8si __builtin_ia32_cvttps2dq256 (v8sf)
9932
v4df __builtin_ia32_divpd256 (v4df,v4df)
9933
v8sf __builtin_ia32_divps256 (v8sf,v8sf)
9934
v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
9935
v4df __builtin_ia32_haddpd256 (v4df,v4df)
9936
v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
9937
v4df __builtin_ia32_hsubpd256 (v4df,v4df)
9938
v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
9939
v32qi __builtin_ia32_lddqu256 (pcchar)
9940
v32qi __builtin_ia32_loaddqu256 (pcchar)
9941
v4df __builtin_ia32_loadupd256 (pcdouble)
9942
v8sf __builtin_ia32_loadups256 (pcfloat)
9943
v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
9944
v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
9945
v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
9946
v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
9947
void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
9948
void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
9949
void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
9950
void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
9951
v4df __builtin_ia32_maxpd256 (v4df,v4df)
9952
v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
9953
v4df __builtin_ia32_minpd256 (v4df,v4df)
9954
v8sf __builtin_ia32_minps256 (v8sf,v8sf)
9955
v4df __builtin_ia32_movddup256 (v4df)
9956
int __builtin_ia32_movmskpd256 (v4df)
9957
int __builtin_ia32_movmskps256 (v8sf)
9958
v8sf __builtin_ia32_movshdup256 (v8sf)
9959
v8sf __builtin_ia32_movsldup256 (v8sf)
9960
v4df __builtin_ia32_mulpd256 (v4df,v4df)
9961
v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
9962
v4df __builtin_ia32_orpd256 (v4df,v4df)
9963
v8sf __builtin_ia32_orps256 (v8sf,v8sf)
9964
v2df __builtin_ia32_pd_pd256 (v4df)
9965
v4df __builtin_ia32_pd256_pd (v2df)
9966
v4sf __builtin_ia32_ps_ps256 (v8sf)
9967
v8sf __builtin_ia32_ps256_ps (v4sf)
9968
int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
9969
int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
9970
int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
9971
v8sf __builtin_ia32_rcpps256 (v8sf)
9972
v4df __builtin_ia32_roundpd256 (v4df,int)
9973
v8sf __builtin_ia32_roundps256 (v8sf,int)
9974
v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
9975
v8sf __builtin_ia32_rsqrtps256 (v8sf)
9976
v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
9977
v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
9978
v4si __builtin_ia32_si_si256 (v8si)
9979
v8si __builtin_ia32_si256_si (v4si)
9980
v4df __builtin_ia32_sqrtpd256 (v4df)
9981
v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
9982
v8sf __builtin_ia32_sqrtps256 (v8sf)
9983
void __builtin_ia32_storedqu256 (pchar,v32qi)
9984
void __builtin_ia32_storeupd256 (pdouble,v4df)
9985
void __builtin_ia32_storeups256 (pfloat,v8sf)
9986
v4df __builtin_ia32_subpd256 (v4df,v4df)
9987
v8sf __builtin_ia32_subps256 (v8sf,v8sf)
9988
v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
9989
v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
9990
v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
9991
v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
9992
v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
9993
v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
9994
v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
9995
v4sf __builtin_ia32_vbroadcastss (pcfloat)
9996
v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
9997
v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
9998
v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
9999
v4si __builtin_ia32_vextractf128_si256 (v8si,int)
10000
v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
10001
v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
10002
v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
10003
v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
10004
v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
10005
v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
10006
v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
10007
v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
10008
v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
10009
v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
10010
v2df __builtin_ia32_vpermilpd (v2df,int)
10011
v4df __builtin_ia32_vpermilpd256 (v4df,int)
10012
v4sf __builtin_ia32_vpermilps (v4sf,int)
10013
v8sf __builtin_ia32_vpermilps256 (v8sf,int)
10014
v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
10015
v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
10016
v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
10017
v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
10018
int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
10019
int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
10020
int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
10021
int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
10022
int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
10023
int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
10024
int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
10025
int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
10026
int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
10027
int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
10028
int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
10029
int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
10030
void __builtin_ia32_vzeroall (void)
10031
void __builtin_ia32_vzeroupper (void)
10032
v4df __builtin_ia32_xorpd256 (v4df,v4df)
10033
v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
10034
@end smallexample
10035
 
10036
The following built-in functions are available when @option{-mavx2} is
10037
used. All of them generate the machine instruction that is part of the
10038
name.
10039
 
10040
@smallexample
10041
v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,v32qi,int)
10042
v32qi __builtin_ia32_pabsb256 (v32qi)
10043
v16hi __builtin_ia32_pabsw256 (v16hi)
10044
v8si __builtin_ia32_pabsd256 (v8si)
10045
v16hi builtin_ia32_packssdw256 (v8si,v8si)
10046
v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
10047
v16hi __builtin_ia32_packusdw256 (v8si,v8si)
10048
v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
10049
v32qi__builtin_ia32_paddb256 (v32qi,v32qi)
10050
v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
10051
v8si __builtin_ia32_paddd256 (v8si,v8si)
10052
v4di __builtin_ia32_paddq256 (v4di,v4di)
10053
v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
10054
v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
10055
v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
10056
v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
10057
v4di __builtin_ia32_palignr256 (v4di,v4di,int)
10058
v4di __builtin_ia32_andsi256 (v4di,v4di)
10059
v4di __builtin_ia32_andnotsi256 (v4di,v4di)
10060
v32qi__builtin_ia32_pavgb256 (v32qi,v32qi)
10061
v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
10062
v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
10063
v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
10064
v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
10065
v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
10066
v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
10067
v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
10068
v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
10069
v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
10070
v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
10071
v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
10072
v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
10073
v8si __builtin_ia32_phaddd256 (v8si,v8si)
10074
v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
10075
v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
10076
v8si __builtin_ia32_phsubd256 (v8si,v8si)
10077
v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
10078
v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
10079
v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
10080
v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
10081
v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
10082
v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
10083
v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
10084
v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
10085
v8si __builtin_ia32_pmaxud256 (v8si,v8si)
10086
v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
10087
v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
10088
v8si __builtin_ia32_pminsd256 (v8si,v8si)
10089
v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
10090
v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
10091
v8si __builtin_ia32_pminud256 (v8si,v8si)
10092
int __builtin_ia32_pmovmskb256 (v32qi)
10093
v16hi __builtin_ia32_pmovsxbw256 (v16qi)
10094
v8si __builtin_ia32_pmovsxbd256 (v16qi)
10095
v4di __builtin_ia32_pmovsxbq256 (v16qi)
10096
v8si __builtin_ia32_pmovsxwd256 (v8hi)
10097
v4di __builtin_ia32_pmovsxwq256 (v8hi)
10098
v4di __builtin_ia32_pmovsxdq256 (v4si)
10099
v16hi __builtin_ia32_pmovzxbw256 (v16qi)
10100
v8si __builtin_ia32_pmovzxbd256 (v16qi)
10101
v4di __builtin_ia32_pmovzxbq256 (v16qi)
10102
v8si __builtin_ia32_pmovzxwd256 (v8hi)
10103
v4di __builtin_ia32_pmovzxwq256 (v8hi)
10104
v4di __builtin_ia32_pmovzxdq256 (v4si)
10105
v4di __builtin_ia32_pmuldq256 (v8si,v8si)
10106
v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
10107
v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
10108
v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
10109
v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
10110
v8si __builtin_ia32_pmulld256 (v8si,v8si)
10111
v4di __builtin_ia32_pmuludq256 (v8si,v8si)
10112
v4di __builtin_ia32_por256 (v4di,v4di)
10113
v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
10114
v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
10115
v8si __builtin_ia32_pshufd256 (v8si,int)
10116
v16hi __builtin_ia32_pshufhw256 (v16hi,int)
10117
v16hi __builtin_ia32_pshuflw256 (v16hi,int)
10118
v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
10119
v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
10120
v8si __builtin_ia32_psignd256 (v8si,v8si)
10121
v4di __builtin_ia32_pslldqi256 (v4di,int)
10122
v16hi __builtin_ia32_psllwi256 (16hi,int)
10123
v16hi __builtin_ia32_psllw256(v16hi,v8hi)
10124
v8si __builtin_ia32_pslldi256 (v8si,int)
10125
v8si __builtin_ia32_pslld256(v8si,v4si)
10126
v4di __builtin_ia32_psllqi256 (v4di,int)
10127
v4di __builtin_ia32_psllq256(v4di,v2di)
10128
v16hi __builtin_ia32_psrawi256 (v16hi,int)
10129
v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
10130
v8si __builtin_ia32_psradi256 (v8si,int)
10131
v8si __builtin_ia32_psrad256 (v8si,v4si)
10132
v4di __builtin_ia32_psrldqi256 (v4di, int)
10133
v16hi __builtin_ia32_psrlwi256 (v16hi,int)
10134
v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
10135
v8si __builtin_ia32_psrldi256 (v8si,int)
10136
v8si __builtin_ia32_psrld256 (v8si,v4si)
10137
v4di __builtin_ia32_psrlqi256 (v4di,int)
10138
v4di __builtin_ia32_psrlq256(v4di,v2di)
10139
v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
10140
v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
10141
v8si __builtin_ia32_psubd256 (v8si,v8si)
10142
v4di __builtin_ia32_psubq256 (v4di,v4di)
10143
v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
10144
v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
10145
v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
10146
v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
10147
v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
10148
v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
10149
v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
10150
v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
10151
v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
10152
v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
10153
v8si __builtin_ia32_punpckldq256 (v8si,v8si)
10154
v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
10155
v4di __builtin_ia32_pxor256 (v4di,v4di)
10156
v4di __builtin_ia32_movntdqa256 (pv4di)
10157
v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
10158
v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
10159
v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
10160
v4di __builtin_ia32_vbroadcastsi256 (v2di)
10161
v4si __builtin_ia32_pblendd128 (v4si,v4si)
10162
v8si __builtin_ia32_pblendd256 (v8si,v8si)
10163
v32qi __builtin_ia32_pbroadcastb256 (v16qi)
10164
v16hi __builtin_ia32_pbroadcastw256 (v8hi)
10165
v8si __builtin_ia32_pbroadcastd256 (v4si)
10166
v4di __builtin_ia32_pbroadcastq256 (v2di)
10167
v16qi __builtin_ia32_pbroadcastb128 (v16qi)
10168
v8hi __builtin_ia32_pbroadcastw128 (v8hi)
10169
v4si __builtin_ia32_pbroadcastd128 (v4si)
10170
v2di __builtin_ia32_pbroadcastq128 (v2di)
10171
v8si __builtin_ia32_permvarsi256 (v8si,v8si)
10172
v4df __builtin_ia32_permdf256 (v4df,int)
10173
v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
10174
v4di __builtin_ia32_permdi256 (v4di,int)
10175
v4di __builtin_ia32_permti256 (v4di,v4di,int)
10176
v4di __builtin_ia32_extract128i256 (v4di,int)
10177
v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
10178
v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
10179
v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
10180
v4si __builtin_ia32_maskloadd (pcv4si,v4si)
10181
v2di __builtin_ia32_maskloadq (pcv2di,v2di)
10182
void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
10183
void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
10184
void __builtin_ia32_maskstored (pv4si,v4si,v4si)
10185
void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
10186
v8si __builtin_ia32_psllv8si (v8si,v8si)
10187
v4si __builtin_ia32_psllv4si (v4si,v4si)
10188
v4di __builtin_ia32_psllv4di (v4di,v4di)
10189
v2di __builtin_ia32_psllv2di (v2di,v2di)
10190
v8si __builtin_ia32_psrav8si (v8si,v8si)
10191
v4si __builtin_ia32_psrav4si (v4si,v4si)
10192
v8si __builtin_ia32_psrlv8si (v8si,v8si)
10193
v4si __builtin_ia32_psrlv4si (v4si,v4si)
10194
v4di __builtin_ia32_psrlv4di (v4di,v4di)
10195
v2di __builtin_ia32_psrlv2di (v2di,v2di)
10196
v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
10197
v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
10198
v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
10199
v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
10200
v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
10201
v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
10202
v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
10203
v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
10204
v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
10205
v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
10206
v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
10207
v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
10208
v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
10209
v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
10210
v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
10211
v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
10212
@end smallexample
10213
 
10214
The following built-in functions are available when @option{-maes} is
10215
used.  All of them generate the machine instruction that is part of the
10216
name.
10217
 
10218
@smallexample
10219
v2di __builtin_ia32_aesenc128 (v2di, v2di)
10220
v2di __builtin_ia32_aesenclast128 (v2di, v2di)
10221
v2di __builtin_ia32_aesdec128 (v2di, v2di)
10222
v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
10223
v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
10224
v2di __builtin_ia32_aesimc128 (v2di)
10225
@end smallexample
10226
 
10227
The following built-in function is available when @option{-mpclmul} is
10228
used.
10229
 
10230
@table @code
10231
@item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
10232
Generates the @code{pclmulqdq} machine instruction.
10233
@end table
10234
 
10235
The following built-in function is available when @option{-mfsgsbase} is
10236
used.  All of them generate the machine instruction that is part of the
10237
name.
10238
 
10239
@smallexample
10240
unsigned int __builtin_ia32_rdfsbase32 (void)
10241
unsigned long long __builtin_ia32_rdfsbase64 (void)
10242
unsigned int __builtin_ia32_rdgsbase32 (void)
10243
unsigned long long __builtin_ia32_rdgsbase64 (void)
10244
void _writefsbase_u32 (unsigned int)
10245
void _writefsbase_u64 (unsigned long long)
10246
void _writegsbase_u32 (unsigned int)
10247
void _writegsbase_u64 (unsigned long long)
10248
@end smallexample
10249
 
10250
The following built-in function is available when @option{-mrdrnd} is
10251
used.  All of them generate the machine instruction that is part of the
10252
name.
10253
 
10254
@smallexample
10255
unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
10256
unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
10257
unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
10258
@end smallexample
10259
 
10260
The following built-in functions are available when @option{-msse4a} is used.
10261
All of them generate the machine instruction that is part of the name.
10262
 
10263
@smallexample
10264
void __builtin_ia32_movntsd (double *, v2df)
10265
void __builtin_ia32_movntss (float *, v4sf)
10266
v2di __builtin_ia32_extrq  (v2di, v16qi)
10267
v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
10268
v2di __builtin_ia32_insertq (v2di, v2di)
10269
v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
10270
@end smallexample
10271
 
10272
The following built-in functions are available when @option{-mxop} is used.
10273
@smallexample
10274
v2df __builtin_ia32_vfrczpd (v2df)
10275
v4sf __builtin_ia32_vfrczps (v4sf)
10276
v2df __builtin_ia32_vfrczsd (v2df, v2df)
10277
v4sf __builtin_ia32_vfrczss (v4sf, v4sf)
10278
v4df __builtin_ia32_vfrczpd256 (v4df)
10279
v8sf __builtin_ia32_vfrczps256 (v8sf)
10280
v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
10281
v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
10282
v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
10283
v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
10284
v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
10285
v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
10286
v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
10287
v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
10288
v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
10289
v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
10290
v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
10291
v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
10292
v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
10293
v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
10294
v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
10295
v4si __builtin_ia32_vpcomeqd (v4si, v4si)
10296
v2di __builtin_ia32_vpcomeqq (v2di, v2di)
10297
v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
10298
v4si __builtin_ia32_vpcomequd (v4si, v4si)
10299
v2di __builtin_ia32_vpcomequq (v2di, v2di)
10300
v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
10301
v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
10302
v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
10303
v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
10304
v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
10305
v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
10306
v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
10307
v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
10308
v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
10309
v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
10310
v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
10311
v4si __builtin_ia32_vpcomged (v4si, v4si)
10312
v2di __builtin_ia32_vpcomgeq (v2di, v2di)
10313
v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
10314
v4si __builtin_ia32_vpcomgeud (v4si, v4si)
10315
v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
10316
v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
10317
v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
10318
v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
10319
v4si __builtin_ia32_vpcomgtd (v4si, v4si)
10320
v2di __builtin_ia32_vpcomgtq (v2di, v2di)
10321
v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
10322
v4si __builtin_ia32_vpcomgtud (v4si, v4si)
10323
v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
10324
v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
10325
v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
10326
v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
10327
v4si __builtin_ia32_vpcomled (v4si, v4si)
10328
v2di __builtin_ia32_vpcomleq (v2di, v2di)
10329
v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
10330
v4si __builtin_ia32_vpcomleud (v4si, v4si)
10331
v2di __builtin_ia32_vpcomleuq (v2di, v2di)
10332
v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
10333
v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
10334
v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
10335
v4si __builtin_ia32_vpcomltd (v4si, v4si)
10336
v2di __builtin_ia32_vpcomltq (v2di, v2di)
10337
v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
10338
v4si __builtin_ia32_vpcomltud (v4si, v4si)
10339
v2di __builtin_ia32_vpcomltuq (v2di, v2di)
10340
v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
10341
v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
10342
v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
10343
v4si __builtin_ia32_vpcomned (v4si, v4si)
10344
v2di __builtin_ia32_vpcomneq (v2di, v2di)
10345
v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
10346
v4si __builtin_ia32_vpcomneud (v4si, v4si)
10347
v2di __builtin_ia32_vpcomneuq (v2di, v2di)
10348
v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
10349
v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
10350
v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
10351
v4si __builtin_ia32_vpcomtrued (v4si, v4si)
10352
v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
10353
v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
10354
v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
10355
v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
10356
v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
10357
v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
10358
v4si __builtin_ia32_vphaddbd (v16qi)
10359
v2di __builtin_ia32_vphaddbq (v16qi)
10360
v8hi __builtin_ia32_vphaddbw (v16qi)
10361
v2di __builtin_ia32_vphadddq (v4si)
10362
v4si __builtin_ia32_vphaddubd (v16qi)
10363
v2di __builtin_ia32_vphaddubq (v16qi)
10364
v8hi __builtin_ia32_vphaddubw (v16qi)
10365
v2di __builtin_ia32_vphaddudq (v4si)
10366
v4si __builtin_ia32_vphadduwd (v8hi)
10367
v2di __builtin_ia32_vphadduwq (v8hi)
10368
v4si __builtin_ia32_vphaddwd (v8hi)
10369
v2di __builtin_ia32_vphaddwq (v8hi)
10370
v8hi __builtin_ia32_vphsubbw (v16qi)
10371
v2di __builtin_ia32_vphsubdq (v4si)
10372
v4si __builtin_ia32_vphsubwd (v8hi)
10373
v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
10374
v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
10375
v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
10376
v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
10377
v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
10378
v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
10379
v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
10380
v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
10381
v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
10382
v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
10383
v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
10384
v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
10385
v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
10386
v16qi __builtin_ia32_vprotb (v16qi, v16qi)
10387
v4si __builtin_ia32_vprotd (v4si, v4si)
10388
v2di __builtin_ia32_vprotq (v2di, v2di)
10389
v8hi __builtin_ia32_vprotw (v8hi, v8hi)
10390
v16qi __builtin_ia32_vpshab (v16qi, v16qi)
10391
v4si __builtin_ia32_vpshad (v4si, v4si)
10392
v2di __builtin_ia32_vpshaq (v2di, v2di)
10393
v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
10394
v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
10395
v4si __builtin_ia32_vpshld (v4si, v4si)
10396
v2di __builtin_ia32_vpshlq (v2di, v2di)
10397
v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
10398
@end smallexample
10399
 
10400
The following built-in functions are available when @option{-mfma4} is used.
10401
All of them generate the machine instruction that is part of the name
10402
with MMX registers.
10403
 
10404
@smallexample
10405
v2df __builtin_ia32_fmaddpd (v2df, v2df, v2df)
10406
v4sf __builtin_ia32_fmaddps (v4sf, v4sf, v4sf)
10407
v2df __builtin_ia32_fmaddsd (v2df, v2df, v2df)
10408
v4sf __builtin_ia32_fmaddss (v4sf, v4sf, v4sf)
10409
v2df __builtin_ia32_fmsubpd (v2df, v2df, v2df)
10410
v4sf __builtin_ia32_fmsubps (v4sf, v4sf, v4sf)
10411
v2df __builtin_ia32_fmsubsd (v2df, v2df, v2df)
10412
v4sf __builtin_ia32_fmsubss (v4sf, v4sf, v4sf)
10413
v2df __builtin_ia32_fnmaddpd (v2df, v2df, v2df)
10414
v4sf __builtin_ia32_fnmaddps (v4sf, v4sf, v4sf)
10415
v2df __builtin_ia32_fnmaddsd (v2df, v2df, v2df)
10416
v4sf __builtin_ia32_fnmaddss (v4sf, v4sf, v4sf)
10417
v2df __builtin_ia32_fnmsubpd (v2df, v2df, v2df)
10418
v4sf __builtin_ia32_fnmsubps (v4sf, v4sf, v4sf)
10419
v2df __builtin_ia32_fnmsubsd (v2df, v2df, v2df)
10420
v4sf __builtin_ia32_fnmsubss (v4sf, v4sf, v4sf)
10421
v2df __builtin_ia32_fmaddsubpd  (v2df, v2df, v2df)
10422
v4sf __builtin_ia32_fmaddsubps  (v4sf, v4sf, v4sf)
10423
v2df __builtin_ia32_fmsubaddpd  (v2df, v2df, v2df)
10424
v4sf __builtin_ia32_fmsubaddps  (v4sf, v4sf, v4sf)
10425
v4df __builtin_ia32_fmaddpd256 (v4df, v4df, v4df)
10426
v8sf __builtin_ia32_fmaddps256 (v8sf, v8sf, v8sf)
10427
v4df __builtin_ia32_fmsubpd256 (v4df, v4df, v4df)
10428
v8sf __builtin_ia32_fmsubps256 (v8sf, v8sf, v8sf)
10429
v4df __builtin_ia32_fnmaddpd256 (v4df, v4df, v4df)
10430
v8sf __builtin_ia32_fnmaddps256 (v8sf, v8sf, v8sf)
10431
v4df __builtin_ia32_fnmsubpd256 (v4df, v4df, v4df)
10432
v8sf __builtin_ia32_fnmsubps256 (v8sf, v8sf, v8sf)
10433
v4df __builtin_ia32_fmaddsubpd256 (v4df, v4df, v4df)
10434
v8sf __builtin_ia32_fmaddsubps256 (v8sf, v8sf, v8sf)
10435
v4df __builtin_ia32_fmsubaddpd256 (v4df, v4df, v4df)
10436
v8sf __builtin_ia32_fmsubaddps256 (v8sf, v8sf, v8sf)
10437
 
10438
@end smallexample
10439
 
10440
The following built-in functions are available when @option{-mlwp} is used.
10441
 
10442
@smallexample
10443
void __builtin_ia32_llwpcb16 (void *);
10444
void __builtin_ia32_llwpcb32 (void *);
10445
void __builtin_ia32_llwpcb64 (void *);
10446
void * __builtin_ia32_llwpcb16 (void);
10447
void * __builtin_ia32_llwpcb32 (void);
10448
void * __builtin_ia32_llwpcb64 (void);
10449
void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
10450
void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
10451
void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
10452
unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
10453
unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
10454
unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
10455
@end smallexample
10456
 
10457
The following built-in functions are available when @option{-mbmi} is used.
10458
All of them generate the machine instruction that is part of the name.
10459
@smallexample
10460
unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
10461
unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
10462
@end smallexample
10463
 
10464
The following built-in functions are available when @option{-mbmi2} is used.
10465
All of them generate the machine instruction that is part of the name.
10466
@smallexample
10467
unsigned int _bzhi_u32 (unsigned int, unsigned int)
10468
unsigned int _pdep_u32 (unsigned int, unsigned int)
10469
unsigned int _pext_u32 (unsigned int, unsigned int)
10470
unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
10471
unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
10472
unsigned long long _pext_u64 (unsigned long long, unsigned long long)
10473
@end smallexample
10474
 
10475
The following built-in functions are available when @option{-mlzcnt} is used.
10476
All of them generate the machine instruction that is part of the name.
10477
@smallexample
10478
unsigned short __builtin_ia32_lzcnt_16(unsigned short);
10479
unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
10480
unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
10481
@end smallexample
10482
 
10483
The following built-in functions are available when @option{-mtbm} is used.
10484
Both of them generate the immediate form of the bextr machine instruction.
10485
@smallexample
10486
unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
10487
unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
10488
@end smallexample
10489
 
10490
 
10491
The following built-in functions are available when @option{-m3dnow} is used.
10492
All of them generate the machine instruction that is part of the name.
10493
 
10494
@smallexample
10495
void __builtin_ia32_femms (void)
10496
v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
10497
v2si __builtin_ia32_pf2id (v2sf)
10498
v2sf __builtin_ia32_pfacc (v2sf, v2sf)
10499
v2sf __builtin_ia32_pfadd (v2sf, v2sf)
10500
v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
10501
v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
10502
v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
10503
v2sf __builtin_ia32_pfmax (v2sf, v2sf)
10504
v2sf __builtin_ia32_pfmin (v2sf, v2sf)
10505
v2sf __builtin_ia32_pfmul (v2sf, v2sf)
10506
v2sf __builtin_ia32_pfrcp (v2sf)
10507
v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
10508
v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
10509
v2sf __builtin_ia32_pfrsqrt (v2sf)
10510
v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
10511
v2sf __builtin_ia32_pfsub (v2sf, v2sf)
10512
v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
10513
v2sf __builtin_ia32_pi2fd (v2si)
10514
v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
10515
@end smallexample
10516
 
10517
The following built-in functions are available when both @option{-m3dnow}
10518
and @option{-march=athlon} are used.  All of them generate the machine
10519
instruction that is part of the name.
10520
 
10521
@smallexample
10522
v2si __builtin_ia32_pf2iw (v2sf)
10523
v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
10524
v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
10525
v2sf __builtin_ia32_pi2fw (v2si)
10526
v2sf __builtin_ia32_pswapdsf (v2sf)
10527
v2si __builtin_ia32_pswapdsi (v2si)
10528
@end smallexample
10529
 
10530
@node MIPS DSP Built-in Functions
10531
@subsection MIPS DSP Built-in Functions
10532
 
10533
The MIPS DSP Application-Specific Extension (ASE) includes new
10534
instructions that are designed to improve the performance of DSP and
10535
media applications.  It provides instructions that operate on packed
10536
8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
10537
 
10538
GCC supports MIPS DSP operations using both the generic
10539
vector extensions (@pxref{Vector Extensions}) and a collection of
10540
MIPS-specific built-in functions.  Both kinds of support are
10541
enabled by the @option{-mdsp} command-line option.
10542
 
10543
Revision 2 of the ASE was introduced in the second half of 2006.
10544
This revision adds extra instructions to the original ASE, but is
10545
otherwise backwards-compatible with it.  You can select revision 2
10546
using the command-line option @option{-mdspr2}; this option implies
10547
@option{-mdsp}.
10548
 
10549
The SCOUNT and POS bits of the DSP control register are global.  The
10550
WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
10551
POS bits.  During optimization, the compiler will not delete these
10552
instructions and it will not delete calls to functions containing
10553
these instructions.
10554
 
10555
At present, GCC only provides support for operations on 32-bit
10556
vectors.  The vector type associated with 8-bit integer data is
10557
usually called @code{v4i8}, the vector type associated with Q7
10558
is usually called @code{v4q7}, the vector type associated with 16-bit
10559
integer data is usually called @code{v2i16}, and the vector type
10560
associated with Q15 is usually called @code{v2q15}.  They can be
10561
defined in C as follows:
10562
 
10563
@smallexample
10564
typedef signed char v4i8 __attribute__ ((vector_size(4)));
10565
typedef signed char v4q7 __attribute__ ((vector_size(4)));
10566
typedef short v2i16 __attribute__ ((vector_size(4)));
10567
typedef short v2q15 __attribute__ ((vector_size(4)));
10568
@end smallexample
10569
 
10570
@code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
10571
initialized in the same way as aggregates.  For example:
10572
 
10573
@smallexample
10574
v4i8 a = @{1, 2, 3, 4@};
10575
v4i8 b;
10576
b = (v4i8) @{5, 6, 7, 8@};
10577
 
10578
v2q15 c = @{0x0fcb, 0x3a75@};
10579
v2q15 d;
10580
d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
10581
@end smallexample
10582
 
10583
@emph{Note:} The CPU's endianness determines the order in which values
10584
are packed.  On little-endian targets, the first value is the least
10585
significant and the last value is the most significant.  The opposite
10586
order applies to big-endian targets.  For example, the code above will
10587
set the lowest byte of @code{a} to @code{1} on little-endian targets
10588
and @code{4} on big-endian targets.
10589
 
10590
@emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
10591
representation.  As shown in this example, the integer representation
10592
of a Q7 value can be obtained by multiplying the fractional value by
10593
@code{0x1.0p7}.  The equivalent for Q15 values is to multiply by
10594
@code{0x1.0p15}.  The equivalent for Q31 values is to multiply by
10595
@code{0x1.0p31}.
10596
 
10597
The table below lists the @code{v4i8} and @code{v2q15} operations for which
10598
hardware support exists.  @code{a} and @code{b} are @code{v4i8} values,
10599
and @code{c} and @code{d} are @code{v2q15} values.
10600
 
10601
@multitable @columnfractions .50 .50
10602
@item C code @tab MIPS instruction
10603
@item @code{a + b} @tab @code{addu.qb}
10604
@item @code{c + d} @tab @code{addq.ph}
10605
@item @code{a - b} @tab @code{subu.qb}
10606
@item @code{c - d} @tab @code{subq.ph}
10607
@end multitable
10608
 
10609
The table below lists the @code{v2i16} operation for which
10610
hardware support exists for the DSP ASE REV 2.  @code{e} and @code{f} are
10611
@code{v2i16} values.
10612
 
10613
@multitable @columnfractions .50 .50
10614
@item C code @tab MIPS instruction
10615
@item @code{e * f} @tab @code{mul.ph}
10616
@end multitable
10617
 
10618
It is easier to describe the DSP built-in functions if we first define
10619
the following types:
10620
 
10621
@smallexample
10622
typedef int q31;
10623
typedef int i32;
10624
typedef unsigned int ui32;
10625
typedef long long a64;
10626
@end smallexample
10627
 
10628
@code{q31} and @code{i32} are actually the same as @code{int}, but we
10629
use @code{q31} to indicate a Q31 fractional value and @code{i32} to
10630
indicate a 32-bit integer value.  Similarly, @code{a64} is the same as
10631
@code{long long}, but we use @code{a64} to indicate values that will
10632
be placed in one of the four DSP accumulators (@code{$ac0},
10633
@code{$ac1}, @code{$ac2} or @code{$ac3}).
10634
 
10635
Also, some built-in functions prefer or require immediate numbers as
10636
parameters, because the corresponding DSP instructions accept both immediate
10637
numbers and register operands, or accept immediate numbers only.  The
10638
immediate parameters are listed as follows.
10639
 
10640
@smallexample
10641
imm0_3: 0 to 3.
10642
imm0_7: 0 to 7.
10643
imm0_15: 0 to 15.
10644
imm0_31: 0 to 31.
10645
imm0_63: 0 to 63.
10646
imm0_255: 0 to 255.
10647
imm_n32_31: -32 to 31.
10648
imm_n512_511: -512 to 511.
10649
@end smallexample
10650
 
10651
The following built-in functions map directly to a particular MIPS DSP
10652
instruction.  Please refer to the architecture specification
10653
for details on what each instruction does.
10654
 
10655
@smallexample
10656
v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
10657
v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
10658
q31 __builtin_mips_addq_s_w (q31, q31)
10659
v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
10660
v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
10661
v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
10662
v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
10663
q31 __builtin_mips_subq_s_w (q31, q31)
10664
v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
10665
v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
10666
i32 __builtin_mips_addsc (i32, i32)
10667
i32 __builtin_mips_addwc (i32, i32)
10668
i32 __builtin_mips_modsub (i32, i32)
10669
i32 __builtin_mips_raddu_w_qb (v4i8)
10670
v2q15 __builtin_mips_absq_s_ph (v2q15)
10671
q31 __builtin_mips_absq_s_w (q31)
10672
v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
10673
v2q15 __builtin_mips_precrq_ph_w (q31, q31)
10674
v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
10675
v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
10676
q31 __builtin_mips_preceq_w_phl (v2q15)
10677
q31 __builtin_mips_preceq_w_phr (v2q15)
10678
v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
10679
v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
10680
v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
10681
v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
10682
v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
10683
v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
10684
v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
10685
v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
10686
v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
10687
v4i8 __builtin_mips_shll_qb (v4i8, i32)
10688
v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
10689
v2q15 __builtin_mips_shll_ph (v2q15, i32)
10690
v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
10691
v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
10692
q31 __builtin_mips_shll_s_w (q31, imm0_31)
10693
q31 __builtin_mips_shll_s_w (q31, i32)
10694
v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
10695
v4i8 __builtin_mips_shrl_qb (v4i8, i32)
10696
v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
10697
v2q15 __builtin_mips_shra_ph (v2q15, i32)
10698
v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
10699
v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
10700
q31 __builtin_mips_shra_r_w (q31, imm0_31)
10701
q31 __builtin_mips_shra_r_w (q31, i32)
10702
v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
10703
v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
10704
v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
10705
q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
10706
q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
10707
a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
10708
a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
10709
a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
10710
a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
10711
a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
10712
a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
10713
a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
10714
a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
10715
a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
10716
a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
10717
a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
10718
a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
10719
a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
10720
i32 __builtin_mips_bitrev (i32)
10721
i32 __builtin_mips_insv (i32, i32)
10722
v4i8 __builtin_mips_repl_qb (imm0_255)
10723
v4i8 __builtin_mips_repl_qb (i32)
10724
v2q15 __builtin_mips_repl_ph (imm_n512_511)
10725
v2q15 __builtin_mips_repl_ph (i32)
10726
void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
10727
void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
10728
void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
10729
i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
10730
i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
10731
i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
10732
void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
10733
void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
10734
void __builtin_mips_cmp_le_ph (v2q15, v2q15)
10735
v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
10736
v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
10737
v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
10738
i32 __builtin_mips_extr_w (a64, imm0_31)
10739
i32 __builtin_mips_extr_w (a64, i32)
10740
i32 __builtin_mips_extr_r_w (a64, imm0_31)
10741
i32 __builtin_mips_extr_s_h (a64, i32)
10742
i32 __builtin_mips_extr_rs_w (a64, imm0_31)
10743
i32 __builtin_mips_extr_rs_w (a64, i32)
10744
i32 __builtin_mips_extr_s_h (a64, imm0_31)
10745
i32 __builtin_mips_extr_r_w (a64, i32)
10746
i32 __builtin_mips_extp (a64, imm0_31)
10747
i32 __builtin_mips_extp (a64, i32)
10748
i32 __builtin_mips_extpdp (a64, imm0_31)
10749
i32 __builtin_mips_extpdp (a64, i32)
10750
a64 __builtin_mips_shilo (a64, imm_n32_31)
10751
a64 __builtin_mips_shilo (a64, i32)
10752
a64 __builtin_mips_mthlip (a64, i32)
10753
void __builtin_mips_wrdsp (i32, imm0_63)
10754
i32 __builtin_mips_rddsp (imm0_63)
10755
i32 __builtin_mips_lbux (void *, i32)
10756
i32 __builtin_mips_lhx (void *, i32)
10757
i32 __builtin_mips_lwx (void *, i32)
10758
a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
10759
i32 __builtin_mips_bposge32 (void)
10760
a64 __builtin_mips_madd (a64, i32, i32);
10761
a64 __builtin_mips_maddu (a64, ui32, ui32);
10762
a64 __builtin_mips_msub (a64, i32, i32);
10763
a64 __builtin_mips_msubu (a64, ui32, ui32);
10764
a64 __builtin_mips_mult (i32, i32);
10765
a64 __builtin_mips_multu (ui32, ui32);
10766
@end smallexample
10767
 
10768
The following built-in functions map directly to a particular MIPS DSP REV 2
10769
instruction.  Please refer to the architecture specification
10770
for details on what each instruction does.
10771
 
10772
@smallexample
10773
v4q7 __builtin_mips_absq_s_qb (v4q7);
10774
v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
10775
v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
10776
v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
10777
v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
10778
i32 __builtin_mips_append (i32, i32, imm0_31);
10779
i32 __builtin_mips_balign (i32, i32, imm0_3);
10780
i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
10781
i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
10782
i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
10783
a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
10784
a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
10785
v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
10786
v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
10787
q31 __builtin_mips_mulq_rs_w (q31, q31);
10788
v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
10789
q31 __builtin_mips_mulq_s_w (q31, q31);
10790
a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
10791
v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
10792
v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
10793
v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
10794
i32 __builtin_mips_prepend (i32, i32, imm0_31);
10795
v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
10796
v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
10797
v4i8 __builtin_mips_shra_qb (v4i8, i32);
10798
v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
10799
v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
10800
v2i16 __builtin_mips_shrl_ph (v2i16, i32);
10801
v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
10802
v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
10803
v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
10804
v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
10805
v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
10806
v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
10807
q31 __builtin_mips_addqh_w (q31, q31);
10808
q31 __builtin_mips_addqh_r_w (q31, q31);
10809
v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
10810
v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
10811
q31 __builtin_mips_subqh_w (q31, q31);
10812
q31 __builtin_mips_subqh_r_w (q31, q31);
10813
a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
10814
a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
10815
a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
10816
a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
10817
a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
10818
a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
10819
@end smallexample
10820
 
10821
 
10822
@node MIPS Paired-Single Support
10823
@subsection MIPS Paired-Single Support
10824
 
10825
The MIPS64 architecture includes a number of instructions that
10826
operate on pairs of single-precision floating-point values.
10827
Each pair is packed into a 64-bit floating-point register,
10828
with one element being designated the ``upper half'' and
10829
the other being designated the ``lower half''.
10830
 
10831
GCC supports paired-single operations using both the generic
10832
vector extensions (@pxref{Vector Extensions}) and a collection of
10833
MIPS-specific built-in functions.  Both kinds of support are
10834
enabled by the @option{-mpaired-single} command-line option.
10835
 
10836
The vector type associated with paired-single values is usually
10837
called @code{v2sf}.  It can be defined in C as follows:
10838
 
10839
@smallexample
10840
typedef float v2sf __attribute__ ((vector_size (8)));
10841
@end smallexample
10842
 
10843
@code{v2sf} values are initialized in the same way as aggregates.
10844
For example:
10845
 
10846
@smallexample
10847
v2sf a = @{1.5, 9.1@};
10848
v2sf b;
10849
float e, f;
10850
b = (v2sf) @{e, f@};
10851
@end smallexample
10852
 
10853
@emph{Note:} The CPU's endianness determines which value is stored in
10854
the upper half of a register and which value is stored in the lower half.
10855
On little-endian targets, the first value is the lower one and the second
10856
value is the upper one.  The opposite order applies to big-endian targets.
10857
For example, the code above will set the lower half of @code{a} to
10858
@code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
10859
 
10860
@node MIPS Loongson Built-in Functions
10861
@subsection MIPS Loongson Built-in Functions
10862
 
10863
GCC provides intrinsics to access the SIMD instructions provided by the
10864
ST Microelectronics Loongson-2E and -2F processors.  These intrinsics,
10865
available after inclusion of the @code{loongson.h} header file,
10866
operate on the following 64-bit vector types:
10867
 
10868
@itemize
10869
@item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
10870
@item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
10871
@item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
10872
@item @code{int8x8_t}, a vector of eight signed 8-bit integers;
10873
@item @code{int16x4_t}, a vector of four signed 16-bit integers;
10874
@item @code{int32x2_t}, a vector of two signed 32-bit integers.
10875
@end itemize
10876
 
10877
The intrinsics provided are listed below; each is named after the
10878
machine instruction to which it corresponds, with suffixes added as
10879
appropriate to distinguish intrinsics that expand to the same machine
10880
instruction yet have different argument types.  Refer to the architecture
10881
documentation for a description of the functionality of each
10882
instruction.
10883
 
10884
@smallexample
10885
int16x4_t packsswh (int32x2_t s, int32x2_t t);
10886
int8x8_t packsshb (int16x4_t s, int16x4_t t);
10887
uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
10888
uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
10889
uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
10890
uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
10891
int32x2_t paddw_s (int32x2_t s, int32x2_t t);
10892
int16x4_t paddh_s (int16x4_t s, int16x4_t t);
10893
int8x8_t paddb_s (int8x8_t s, int8x8_t t);
10894
uint64_t paddd_u (uint64_t s, uint64_t t);
10895
int64_t paddd_s (int64_t s, int64_t t);
10896
int16x4_t paddsh (int16x4_t s, int16x4_t t);
10897
int8x8_t paddsb (int8x8_t s, int8x8_t t);
10898
uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
10899
uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
10900
uint64_t pandn_ud (uint64_t s, uint64_t t);
10901
uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
10902
uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
10903
uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
10904
int64_t pandn_sd (int64_t s, int64_t t);
10905
int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
10906
int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
10907
int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
10908
uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
10909
uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
10910
uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
10911
uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
10912
uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
10913
int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
10914
int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
10915
int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
10916
uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
10917
uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
10918
uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
10919
int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
10920
int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
10921
int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
10922
uint16x4_t pextrh_u (uint16x4_t s, int field);
10923
int16x4_t pextrh_s (int16x4_t s, int field);
10924
uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
10925
uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
10926
uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
10927
uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
10928
int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
10929
int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
10930
int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
10931
int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
10932
int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
10933
int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
10934
uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
10935
int16x4_t pminsh (int16x4_t s, int16x4_t t);
10936
uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
10937
uint8x8_t pmovmskb_u (uint8x8_t s);
10938
int8x8_t pmovmskb_s (int8x8_t s);
10939
uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
10940
int16x4_t pmulhh (int16x4_t s, int16x4_t t);
10941
int16x4_t pmullh (int16x4_t s, int16x4_t t);
10942
int64_t pmuluw (uint32x2_t s, uint32x2_t t);
10943
uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
10944
uint16x4_t biadd (uint8x8_t s);
10945
uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
10946
uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
10947
int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
10948
uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
10949
int16x4_t psllh_s (int16x4_t s, uint8_t amount);
10950
uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
10951
int32x2_t psllw_s (int32x2_t s, uint8_t amount);
10952
uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
10953
int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
10954
uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
10955
int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
10956
uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
10957
int16x4_t psrah_s (int16x4_t s, uint8_t amount);
10958
uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
10959
int32x2_t psraw_s (int32x2_t s, uint8_t amount);
10960
uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
10961
uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
10962
uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
10963
int32x2_t psubw_s (int32x2_t s, int32x2_t t);
10964
int16x4_t psubh_s (int16x4_t s, int16x4_t t);
10965
int8x8_t psubb_s (int8x8_t s, int8x8_t t);
10966
uint64_t psubd_u (uint64_t s, uint64_t t);
10967
int64_t psubd_s (int64_t s, int64_t t);
10968
int16x4_t psubsh (int16x4_t s, int16x4_t t);
10969
int8x8_t psubsb (int8x8_t s, int8x8_t t);
10970
uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
10971
uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
10972
uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
10973
uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
10974
uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
10975
int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
10976
int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
10977
int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
10978
uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
10979
uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
10980
uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
10981
int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
10982
int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
10983
int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
10984
@end smallexample
10985
 
10986
@menu
10987
* Paired-Single Arithmetic::
10988
* Paired-Single Built-in Functions::
10989
* MIPS-3D Built-in Functions::
10990
@end menu
10991
 
10992
@node Paired-Single Arithmetic
10993
@subsubsection Paired-Single Arithmetic
10994
 
10995
The table below lists the @code{v2sf} operations for which hardware
10996
support exists.  @code{a}, @code{b} and @code{c} are @code{v2sf}
10997
values and @code{x} is an integral value.
10998
 
10999
@multitable @columnfractions .50 .50
11000
@item C code @tab MIPS instruction
11001
@item @code{a + b} @tab @code{add.ps}
11002
@item @code{a - b} @tab @code{sub.ps}
11003
@item @code{-a} @tab @code{neg.ps}
11004
@item @code{a * b} @tab @code{mul.ps}
11005
@item @code{a * b + c} @tab @code{madd.ps}
11006
@item @code{a * b - c} @tab @code{msub.ps}
11007
@item @code{-(a * b + c)} @tab @code{nmadd.ps}
11008
@item @code{-(a * b - c)} @tab @code{nmsub.ps}
11009
@item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
11010
@end multitable
11011
 
11012
Note that the multiply-accumulate instructions can be disabled
11013
using the command-line option @code{-mno-fused-madd}.
11014
 
11015
@node Paired-Single Built-in Functions
11016
@subsubsection Paired-Single Built-in Functions
11017
 
11018
The following paired-single functions map directly to a particular
11019
MIPS instruction.  Please refer to the architecture specification
11020
for details on what each instruction does.
11021
 
11022
@table @code
11023
@item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
11024
Pair lower lower (@code{pll.ps}).
11025
 
11026
@item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
11027
Pair upper lower (@code{pul.ps}).
11028
 
11029
@item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
11030
Pair lower upper (@code{plu.ps}).
11031
 
11032
@item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
11033
Pair upper upper (@code{puu.ps}).
11034
 
11035
@item v2sf __builtin_mips_cvt_ps_s (float, float)
11036
Convert pair to paired single (@code{cvt.ps.s}).
11037
 
11038
@item float __builtin_mips_cvt_s_pl (v2sf)
11039
Convert pair lower to single (@code{cvt.s.pl}).
11040
 
11041
@item float __builtin_mips_cvt_s_pu (v2sf)
11042
Convert pair upper to single (@code{cvt.s.pu}).
11043
 
11044
@item v2sf __builtin_mips_abs_ps (v2sf)
11045
Absolute value (@code{abs.ps}).
11046
 
11047
@item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
11048
Align variable (@code{alnv.ps}).
11049
 
11050
@emph{Note:} The value of the third parameter must be 0 or 4
11051
modulo 8, otherwise the result will be unpredictable.  Please read the
11052
instruction description for details.
11053
@end table
11054
 
11055
The following multi-instruction functions are also available.
11056
In each case, @var{cond} can be any of the 16 floating-point conditions:
11057
@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
11058
@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
11059
@code{lt}, @code{nge}, @code{le} or @code{ngt}.
11060
 
11061
@table @code
11062
@item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11063
@itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11064
Conditional move based on floating point comparison (@code{c.@var{cond}.ps},
11065
@code{movt.ps}/@code{movf.ps}).
11066
 
11067
The @code{movt} functions return the value @var{x} computed by:
11068
 
11069
@smallexample
11070
c.@var{cond}.ps @var{cc},@var{a},@var{b}
11071
mov.ps @var{x},@var{c}
11072
movt.ps @var{x},@var{d},@var{cc}
11073
@end smallexample
11074
 
11075
The @code{movf} functions are similar but use @code{movf.ps} instead
11076
of @code{movt.ps}.
11077
 
11078
@item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11079
@itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11080
Comparison of two paired-single values (@code{c.@var{cond}.ps},
11081
@code{bc1t}/@code{bc1f}).
11082
 
11083
These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
11084
and return either the upper or lower half of the result.  For example:
11085
 
11086
@smallexample
11087
v2sf a, b;
11088
if (__builtin_mips_upper_c_eq_ps (a, b))
11089
  upper_halves_are_equal ();
11090
else
11091
  upper_halves_are_unequal ();
11092
 
11093
if (__builtin_mips_lower_c_eq_ps (a, b))
11094
  lower_halves_are_equal ();
11095
else
11096
  lower_halves_are_unequal ();
11097
@end smallexample
11098
@end table
11099
 
11100
@node MIPS-3D Built-in Functions
11101
@subsubsection MIPS-3D Built-in Functions
11102
 
11103
The MIPS-3D Application-Specific Extension (ASE) includes additional
11104
paired-single instructions that are designed to improve the performance
11105
of 3D graphics operations.  Support for these instructions is controlled
11106
by the @option{-mips3d} command-line option.
11107
 
11108
The functions listed below map directly to a particular MIPS-3D
11109
instruction.  Please refer to the architecture specification for
11110
more details on what each instruction does.
11111
 
11112
@table @code
11113
@item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
11114
Reduction add (@code{addr.ps}).
11115
 
11116
@item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
11117
Reduction multiply (@code{mulr.ps}).
11118
 
11119
@item v2sf __builtin_mips_cvt_pw_ps (v2sf)
11120
Convert paired single to paired word (@code{cvt.pw.ps}).
11121
 
11122
@item v2sf __builtin_mips_cvt_ps_pw (v2sf)
11123
Convert paired word to paired single (@code{cvt.ps.pw}).
11124
 
11125
@item float __builtin_mips_recip1_s (float)
11126
@itemx double __builtin_mips_recip1_d (double)
11127
@itemx v2sf __builtin_mips_recip1_ps (v2sf)
11128
Reduced precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
11129
 
11130
@item float __builtin_mips_recip2_s (float, float)
11131
@itemx double __builtin_mips_recip2_d (double, double)
11132
@itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
11133
Reduced precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
11134
 
11135
@item float __builtin_mips_rsqrt1_s (float)
11136
@itemx double __builtin_mips_rsqrt1_d (double)
11137
@itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
11138
Reduced precision reciprocal square root (sequence step 1)
11139
(@code{rsqrt1.@var{fmt}}).
11140
 
11141
@item float __builtin_mips_rsqrt2_s (float, float)
11142
@itemx double __builtin_mips_rsqrt2_d (double, double)
11143
@itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
11144
Reduced precision reciprocal square root (sequence step 2)
11145
(@code{rsqrt2.@var{fmt}}).
11146
@end table
11147
 
11148
The following multi-instruction functions are also available.
11149
In each case, @var{cond} can be any of the 16 floating-point conditions:
11150
@code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
11151
@code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
11152
@code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
11153
 
11154
@table @code
11155
@item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
11156
@itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
11157
Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
11158
@code{bc1t}/@code{bc1f}).
11159
 
11160
These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
11161
or @code{cabs.@var{cond}.d} and return the result as a boolean value.
11162
For example:
11163
 
11164
@smallexample
11165
float a, b;
11166
if (__builtin_mips_cabs_eq_s (a, b))
11167
  true ();
11168
else
11169
  false ();
11170
@end smallexample
11171
 
11172
@item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11173
@itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11174
Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
11175
@code{bc1t}/@code{bc1f}).
11176
 
11177
These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
11178
and return either the upper or lower half of the result.  For example:
11179
 
11180
@smallexample
11181
v2sf a, b;
11182
if (__builtin_mips_upper_cabs_eq_ps (a, b))
11183
  upper_halves_are_equal ();
11184
else
11185
  upper_halves_are_unequal ();
11186
 
11187
if (__builtin_mips_lower_cabs_eq_ps (a, b))
11188
  lower_halves_are_equal ();
11189
else
11190
  lower_halves_are_unequal ();
11191
@end smallexample
11192
 
11193
@item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11194
@itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11195
Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
11196
@code{movt.ps}/@code{movf.ps}).
11197
 
11198
The @code{movt} functions return the value @var{x} computed by:
11199
 
11200
@smallexample
11201
cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
11202
mov.ps @var{x},@var{c}
11203
movt.ps @var{x},@var{d},@var{cc}
11204
@end smallexample
11205
 
11206
The @code{movf} functions are similar but use @code{movf.ps} instead
11207
of @code{movt.ps}.
11208
 
11209
@item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11210
@itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11211
@itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11212
@itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11213
Comparison of two paired-single values
11214
(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
11215
@code{bc1any2t}/@code{bc1any2f}).
11216
 
11217
These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
11218
or @code{cabs.@var{cond}.ps}.  The @code{any} forms return true if either
11219
result is true and the @code{all} forms return true if both results are true.
11220
For example:
11221
 
11222
@smallexample
11223
v2sf a, b;
11224
if (__builtin_mips_any_c_eq_ps (a, b))
11225
  one_is_true ();
11226
else
11227
  both_are_false ();
11228
 
11229
if (__builtin_mips_all_c_eq_ps (a, b))
11230
  both_are_true ();
11231
else
11232
  one_is_false ();
11233
@end smallexample
11234
 
11235
@item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11236
@itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11237
@itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11238
@itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11239
Comparison of four paired-single values
11240
(@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
11241
@code{bc1any4t}/@code{bc1any4f}).
11242
 
11243
These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
11244
to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
11245
The @code{any} forms return true if any of the four results are true
11246
and the @code{all} forms return true if all four results are true.
11247
For example:
11248
 
11249
@smallexample
11250
v2sf a, b, c, d;
11251
if (__builtin_mips_any_c_eq_4s (a, b, c, d))
11252
  some_are_true ();
11253
else
11254
  all_are_false ();
11255
 
11256
if (__builtin_mips_all_c_eq_4s (a, b, c, d))
11257
  all_are_true ();
11258
else
11259
  some_are_false ();
11260
@end smallexample
11261
@end table
11262
 
11263
@node picoChip Built-in Functions
11264
@subsection picoChip Built-in Functions
11265
 
11266
GCC provides an interface to selected machine instructions from the
11267
picoChip instruction set.
11268
 
11269
@table @code
11270
@item int __builtin_sbc (int @var{value})
11271
Sign bit count.  Return the number of consecutive bits in @var{value}
11272
which have the same value as the sign-bit.  The result is the number of
11273
leading sign bits minus one, giving the number of redundant sign bits in
11274
@var{value}.
11275
 
11276
@item int __builtin_byteswap (int @var{value})
11277
Byte swap.  Return the result of swapping the upper and lower bytes of
11278
@var{value}.
11279
 
11280
@item int __builtin_brev (int @var{value})
11281
Bit reversal.  Return the result of reversing the bits in
11282
@var{value}.  Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
11283
and so on.
11284
 
11285
@item int __builtin_adds (int @var{x}, int @var{y})
11286
Saturating addition.  Return the result of adding @var{x} and @var{y},
11287
storing the value 32767 if the result overflows.
11288
 
11289
@item int __builtin_subs (int @var{x}, int @var{y})
11290
Saturating subtraction.  Return the result of subtracting @var{y} from
11291
@var{x}, storing the value @minus{}32768 if the result overflows.
11292
 
11293
@item void __builtin_halt (void)
11294
Halt.  The processor will stop execution.  This built-in is useful for
11295
implementing assertions.
11296
 
11297
@end table
11298
 
11299
@node Other MIPS Built-in Functions
11300
@subsection Other MIPS Built-in Functions
11301
 
11302
GCC provides other MIPS-specific built-in functions:
11303
 
11304
@table @code
11305
@item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
11306
Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
11307
GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
11308
when this function is available.
11309
@end table
11310
 
11311
@node PowerPC AltiVec/VSX Built-in Functions
11312
@subsection PowerPC AltiVec Built-in Functions
11313
 
11314
GCC provides an interface for the PowerPC family of processors to access
11315
the AltiVec operations described in Motorola's AltiVec Programming
11316
Interface Manual.  The interface is made available by including
11317
@code{<altivec.h>} and using @option{-maltivec} and
11318
@option{-mabi=altivec}.  The interface supports the following vector
11319
types.
11320
 
11321
@smallexample
11322
vector unsigned char
11323
vector signed char
11324
vector bool char
11325
 
11326
vector unsigned short
11327
vector signed short
11328
vector bool short
11329
vector pixel
11330
 
11331
vector unsigned int
11332
vector signed int
11333
vector bool int
11334
vector float
11335
@end smallexample
11336
 
11337
If @option{-mvsx} is used the following additional vector types are
11338
implemented.
11339
 
11340
@smallexample
11341
vector unsigned long
11342
vector signed long
11343
vector double
11344
@end smallexample
11345
 
11346
The long types are only implemented for 64-bit code generation, and
11347
the long type is only used in the floating point/integer conversion
11348
instructions.
11349
 
11350
GCC's implementation of the high-level language interface available from
11351
C and C++ code differs from Motorola's documentation in several ways.
11352
 
11353
@itemize @bullet
11354
 
11355
@item
11356
A vector constant is a list of constant expressions within curly braces.
11357
 
11358
@item
11359
A vector initializer requires no cast if the vector constant is of the
11360
same type as the variable it is initializing.
11361
 
11362
@item
11363
If @code{signed} or @code{unsigned} is omitted, the signedness of the
11364
vector type is the default signedness of the base type.  The default
11365
varies depending on the operating system, so a portable program should
11366
always specify the signedness.
11367
 
11368
@item
11369
Compiling with @option{-maltivec} adds keywords @code{__vector},
11370
@code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
11371
@code{bool}.  When compiling ISO C, the context-sensitive substitution
11372
of the keywords @code{vector}, @code{pixel} and @code{bool} is
11373
disabled.  To use them, you must include @code{<altivec.h>} instead.
11374
 
11375
@item
11376
GCC allows using a @code{typedef} name as the type specifier for a
11377
vector type.
11378
 
11379
@item
11380
For C, overloaded functions are implemented with macros so the following
11381
does not work:
11382
 
11383
@smallexample
11384
  vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
11385
@end smallexample
11386
 
11387
Since @code{vec_add} is a macro, the vector constant in the example
11388
is treated as four separate arguments.  Wrap the entire argument in
11389
parentheses for this to work.
11390
@end itemize
11391
 
11392
@emph{Note:} Only the @code{<altivec.h>} interface is supported.
11393
Internally, GCC uses built-in functions to achieve the functionality in
11394
the aforementioned header file, but they are not supported and are
11395
subject to change without notice.
11396
 
11397
The following interfaces are supported for the generic and specific
11398
AltiVec operations and the AltiVec predicates.  In cases where there
11399
is a direct mapping between generic and specific operations, only the
11400
generic names are shown here, although the specific operations can also
11401
be used.
11402
 
11403
Arguments that are documented as @code{const int} require literal
11404
integral values within the range required for that operation.
11405
 
11406
@smallexample
11407
vector signed char vec_abs (vector signed char);
11408
vector signed short vec_abs (vector signed short);
11409
vector signed int vec_abs (vector signed int);
11410
vector float vec_abs (vector float);
11411
 
11412
vector signed char vec_abss (vector signed char);
11413
vector signed short vec_abss (vector signed short);
11414
vector signed int vec_abss (vector signed int);
11415
 
11416
vector signed char vec_add (vector bool char, vector signed char);
11417
vector signed char vec_add (vector signed char, vector bool char);
11418
vector signed char vec_add (vector signed char, vector signed char);
11419
vector unsigned char vec_add (vector bool char, vector unsigned char);
11420
vector unsigned char vec_add (vector unsigned char, vector bool char);
11421
vector unsigned char vec_add (vector unsigned char,
11422
                              vector unsigned char);
11423
vector signed short vec_add (vector bool short, vector signed short);
11424
vector signed short vec_add (vector signed short, vector bool short);
11425
vector signed short vec_add (vector signed short, vector signed short);
11426
vector unsigned short vec_add (vector bool short,
11427
                               vector unsigned short);
11428
vector unsigned short vec_add (vector unsigned short,
11429
                               vector bool short);
11430
vector unsigned short vec_add (vector unsigned short,
11431
                               vector unsigned short);
11432
vector signed int vec_add (vector bool int, vector signed int);
11433
vector signed int vec_add (vector signed int, vector bool int);
11434
vector signed int vec_add (vector signed int, vector signed int);
11435
vector unsigned int vec_add (vector bool int, vector unsigned int);
11436
vector unsigned int vec_add (vector unsigned int, vector bool int);
11437
vector unsigned int vec_add (vector unsigned int, vector unsigned int);
11438
vector float vec_add (vector float, vector float);
11439
 
11440
vector float vec_vaddfp (vector float, vector float);
11441
 
11442
vector signed int vec_vadduwm (vector bool int, vector signed int);
11443
vector signed int vec_vadduwm (vector signed int, vector bool int);
11444
vector signed int vec_vadduwm (vector signed int, vector signed int);
11445
vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
11446
vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
11447
vector unsigned int vec_vadduwm (vector unsigned int,
11448
                                 vector unsigned int);
11449
 
11450
vector signed short vec_vadduhm (vector bool short,
11451
                                 vector signed short);
11452
vector signed short vec_vadduhm (vector signed short,
11453
                                 vector bool short);
11454
vector signed short vec_vadduhm (vector signed short,
11455
                                 vector signed short);
11456
vector unsigned short vec_vadduhm (vector bool short,
11457
                                   vector unsigned short);
11458
vector unsigned short vec_vadduhm (vector unsigned short,
11459
                                   vector bool short);
11460
vector unsigned short vec_vadduhm (vector unsigned short,
11461
                                   vector unsigned short);
11462
 
11463
vector signed char vec_vaddubm (vector bool char, vector signed char);
11464
vector signed char vec_vaddubm (vector signed char, vector bool char);
11465
vector signed char vec_vaddubm (vector signed char, vector signed char);
11466
vector unsigned char vec_vaddubm (vector bool char,
11467
                                  vector unsigned char);
11468
vector unsigned char vec_vaddubm (vector unsigned char,
11469
                                  vector bool char);
11470
vector unsigned char vec_vaddubm (vector unsigned char,
11471
                                  vector unsigned char);
11472
 
11473
vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
11474
 
11475
vector unsigned char vec_adds (vector bool char, vector unsigned char);
11476
vector unsigned char vec_adds (vector unsigned char, vector bool char);
11477
vector unsigned char vec_adds (vector unsigned char,
11478
                               vector unsigned char);
11479
vector signed char vec_adds (vector bool char, vector signed char);
11480
vector signed char vec_adds (vector signed char, vector bool char);
11481
vector signed char vec_adds (vector signed char, vector signed char);
11482
vector unsigned short vec_adds (vector bool short,
11483
                                vector unsigned short);
11484
vector unsigned short vec_adds (vector unsigned short,
11485
                                vector bool short);
11486
vector unsigned short vec_adds (vector unsigned short,
11487
                                vector unsigned short);
11488
vector signed short vec_adds (vector bool short, vector signed short);
11489
vector signed short vec_adds (vector signed short, vector bool short);
11490
vector signed short vec_adds (vector signed short, vector signed short);
11491
vector unsigned int vec_adds (vector bool int, vector unsigned int);
11492
vector unsigned int vec_adds (vector unsigned int, vector bool int);
11493
vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
11494
vector signed int vec_adds (vector bool int, vector signed int);
11495
vector signed int vec_adds (vector signed int, vector bool int);
11496
vector signed int vec_adds (vector signed int, vector signed int);
11497
 
11498
vector signed int vec_vaddsws (vector bool int, vector signed int);
11499
vector signed int vec_vaddsws (vector signed int, vector bool int);
11500
vector signed int vec_vaddsws (vector signed int, vector signed int);
11501
 
11502
vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
11503
vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
11504
vector unsigned int vec_vadduws (vector unsigned int,
11505
                                 vector unsigned int);
11506
 
11507
vector signed short vec_vaddshs (vector bool short,
11508
                                 vector signed short);
11509
vector signed short vec_vaddshs (vector signed short,
11510
                                 vector bool short);
11511
vector signed short vec_vaddshs (vector signed short,
11512
                                 vector signed short);
11513
 
11514
vector unsigned short vec_vadduhs (vector bool short,
11515
                                   vector unsigned short);
11516
vector unsigned short vec_vadduhs (vector unsigned short,
11517
                                   vector bool short);
11518
vector unsigned short vec_vadduhs (vector unsigned short,
11519
                                   vector unsigned short);
11520
 
11521
vector signed char vec_vaddsbs (vector bool char, vector signed char);
11522
vector signed char vec_vaddsbs (vector signed char, vector bool char);
11523
vector signed char vec_vaddsbs (vector signed char, vector signed char);
11524
 
11525
vector unsigned char vec_vaddubs (vector bool char,
11526
                                  vector unsigned char);
11527
vector unsigned char vec_vaddubs (vector unsigned char,
11528
                                  vector bool char);
11529
vector unsigned char vec_vaddubs (vector unsigned char,
11530
                                  vector unsigned char);
11531
 
11532
vector float vec_and (vector float, vector float);
11533
vector float vec_and (vector float, vector bool int);
11534
vector float vec_and (vector bool int, vector float);
11535
vector bool int vec_and (vector bool int, vector bool int);
11536
vector signed int vec_and (vector bool int, vector signed int);
11537
vector signed int vec_and (vector signed int, vector bool int);
11538
vector signed int vec_and (vector signed int, vector signed int);
11539
vector unsigned int vec_and (vector bool int, vector unsigned int);
11540
vector unsigned int vec_and (vector unsigned int, vector bool int);
11541
vector unsigned int vec_and (vector unsigned int, vector unsigned int);
11542
vector bool short vec_and (vector bool short, vector bool short);
11543
vector signed short vec_and (vector bool short, vector signed short);
11544
vector signed short vec_and (vector signed short, vector bool short);
11545
vector signed short vec_and (vector signed short, vector signed short);
11546
vector unsigned short vec_and (vector bool short,
11547
                               vector unsigned short);
11548
vector unsigned short vec_and (vector unsigned short,
11549
                               vector bool short);
11550
vector unsigned short vec_and (vector unsigned short,
11551
                               vector unsigned short);
11552
vector signed char vec_and (vector bool char, vector signed char);
11553
vector bool char vec_and (vector bool char, vector bool char);
11554
vector signed char vec_and (vector signed char, vector bool char);
11555
vector signed char vec_and (vector signed char, vector signed char);
11556
vector unsigned char vec_and (vector bool char, vector unsigned char);
11557
vector unsigned char vec_and (vector unsigned char, vector bool char);
11558
vector unsigned char vec_and (vector unsigned char,
11559
                              vector unsigned char);
11560
 
11561
vector float vec_andc (vector float, vector float);
11562
vector float vec_andc (vector float, vector bool int);
11563
vector float vec_andc (vector bool int, vector float);
11564
vector bool int vec_andc (vector bool int, vector bool int);
11565
vector signed int vec_andc (vector bool int, vector signed int);
11566
vector signed int vec_andc (vector signed int, vector bool int);
11567
vector signed int vec_andc (vector signed int, vector signed int);
11568
vector unsigned int vec_andc (vector bool int, vector unsigned int);
11569
vector unsigned int vec_andc (vector unsigned int, vector bool int);
11570
vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
11571
vector bool short vec_andc (vector bool short, vector bool short);
11572
vector signed short vec_andc (vector bool short, vector signed short);
11573
vector signed short vec_andc (vector signed short, vector bool short);
11574
vector signed short vec_andc (vector signed short, vector signed short);
11575
vector unsigned short vec_andc (vector bool short,
11576
                                vector unsigned short);
11577
vector unsigned short vec_andc (vector unsigned short,
11578
                                vector bool short);
11579
vector unsigned short vec_andc (vector unsigned short,
11580
                                vector unsigned short);
11581
vector signed char vec_andc (vector bool char, vector signed char);
11582
vector bool char vec_andc (vector bool char, vector bool char);
11583
vector signed char vec_andc (vector signed char, vector bool char);
11584
vector signed char vec_andc (vector signed char, vector signed char);
11585
vector unsigned char vec_andc (vector bool char, vector unsigned char);
11586
vector unsigned char vec_andc (vector unsigned char, vector bool char);
11587
vector unsigned char vec_andc (vector unsigned char,
11588
                               vector unsigned char);
11589
 
11590
vector unsigned char vec_avg (vector unsigned char,
11591
                              vector unsigned char);
11592
vector signed char vec_avg (vector signed char, vector signed char);
11593
vector unsigned short vec_avg (vector unsigned short,
11594
                               vector unsigned short);
11595
vector signed short vec_avg (vector signed short, vector signed short);
11596
vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
11597
vector signed int vec_avg (vector signed int, vector signed int);
11598
 
11599
vector signed int vec_vavgsw (vector signed int, vector signed int);
11600
 
11601
vector unsigned int vec_vavguw (vector unsigned int,
11602
                                vector unsigned int);
11603
 
11604
vector signed short vec_vavgsh (vector signed short,
11605
                                vector signed short);
11606
 
11607
vector unsigned short vec_vavguh (vector unsigned short,
11608
                                  vector unsigned short);
11609
 
11610
vector signed char vec_vavgsb (vector signed char, vector signed char);
11611
 
11612
vector unsigned char vec_vavgub (vector unsigned char,
11613
                                 vector unsigned char);
11614
 
11615
vector float vec_copysign (vector float);
11616
 
11617
vector float vec_ceil (vector float);
11618
 
11619
vector signed int vec_cmpb (vector float, vector float);
11620
 
11621
vector bool char vec_cmpeq (vector signed char, vector signed char);
11622
vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
11623
vector bool short vec_cmpeq (vector signed short, vector signed short);
11624
vector bool short vec_cmpeq (vector unsigned short,
11625
                             vector unsigned short);
11626
vector bool int vec_cmpeq (vector signed int, vector signed int);
11627
vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
11628
vector bool int vec_cmpeq (vector float, vector float);
11629
 
11630
vector bool int vec_vcmpeqfp (vector float, vector float);
11631
 
11632
vector bool int vec_vcmpequw (vector signed int, vector signed int);
11633
vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
11634
 
11635
vector bool short vec_vcmpequh (vector signed short,
11636
                                vector signed short);
11637
vector bool short vec_vcmpequh (vector unsigned short,
11638
                                vector unsigned short);
11639
 
11640
vector bool char vec_vcmpequb (vector signed char, vector signed char);
11641
vector bool char vec_vcmpequb (vector unsigned char,
11642
                               vector unsigned char);
11643
 
11644
vector bool int vec_cmpge (vector float, vector float);
11645
 
11646
vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
11647
vector bool char vec_cmpgt (vector signed char, vector signed char);
11648
vector bool short vec_cmpgt (vector unsigned short,
11649
                             vector unsigned short);
11650
vector bool short vec_cmpgt (vector signed short, vector signed short);
11651
vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
11652
vector bool int vec_cmpgt (vector signed int, vector signed int);
11653
vector bool int vec_cmpgt (vector float, vector float);
11654
 
11655
vector bool int vec_vcmpgtfp (vector float, vector float);
11656
 
11657
vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
11658
 
11659
vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
11660
 
11661
vector bool short vec_vcmpgtsh (vector signed short,
11662
                                vector signed short);
11663
 
11664
vector bool short vec_vcmpgtuh (vector unsigned short,
11665
                                vector unsigned short);
11666
 
11667
vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
11668
 
11669
vector bool char vec_vcmpgtub (vector unsigned char,
11670
                               vector unsigned char);
11671
 
11672
vector bool int vec_cmple (vector float, vector float);
11673
 
11674
vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
11675
vector bool char vec_cmplt (vector signed char, vector signed char);
11676
vector bool short vec_cmplt (vector unsigned short,
11677
                             vector unsigned short);
11678
vector bool short vec_cmplt (vector signed short, vector signed short);
11679
vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
11680
vector bool int vec_cmplt (vector signed int, vector signed int);
11681
vector bool int vec_cmplt (vector float, vector float);
11682
 
11683
vector float vec_ctf (vector unsigned int, const int);
11684
vector float vec_ctf (vector signed int, const int);
11685
 
11686
vector float vec_vcfsx (vector signed int, const int);
11687
 
11688
vector float vec_vcfux (vector unsigned int, const int);
11689
 
11690
vector signed int vec_cts (vector float, const int);
11691
 
11692
vector unsigned int vec_ctu (vector float, const int);
11693
 
11694
void vec_dss (const int);
11695
 
11696
void vec_dssall (void);
11697
 
11698
void vec_dst (const vector unsigned char *, int, const int);
11699
void vec_dst (const vector signed char *, int, const int);
11700
void vec_dst (const vector bool char *, int, const int);
11701
void vec_dst (const vector unsigned short *, int, const int);
11702
void vec_dst (const vector signed short *, int, const int);
11703
void vec_dst (const vector bool short *, int, const int);
11704
void vec_dst (const vector pixel *, int, const int);
11705
void vec_dst (const vector unsigned int *, int, const int);
11706
void vec_dst (const vector signed int *, int, const int);
11707
void vec_dst (const vector bool int *, int, const int);
11708
void vec_dst (const vector float *, int, const int);
11709
void vec_dst (const unsigned char *, int, const int);
11710
void vec_dst (const signed char *, int, const int);
11711
void vec_dst (const unsigned short *, int, const int);
11712
void vec_dst (const short *, int, const int);
11713
void vec_dst (const unsigned int *, int, const int);
11714
void vec_dst (const int *, int, const int);
11715
void vec_dst (const unsigned long *, int, const int);
11716
void vec_dst (const long *, int, const int);
11717
void vec_dst (const float *, int, const int);
11718
 
11719
void vec_dstst (const vector unsigned char *, int, const int);
11720
void vec_dstst (const vector signed char *, int, const int);
11721
void vec_dstst (const vector bool char *, int, const int);
11722
void vec_dstst (const vector unsigned short *, int, const int);
11723
void vec_dstst (const vector signed short *, int, const int);
11724
void vec_dstst (const vector bool short *, int, const int);
11725
void vec_dstst (const vector pixel *, int, const int);
11726
void vec_dstst (const vector unsigned int *, int, const int);
11727
void vec_dstst (const vector signed int *, int, const int);
11728
void vec_dstst (const vector bool int *, int, const int);
11729
void vec_dstst (const vector float *, int, const int);
11730
void vec_dstst (const unsigned char *, int, const int);
11731
void vec_dstst (const signed char *, int, const int);
11732
void vec_dstst (const unsigned short *, int, const int);
11733
void vec_dstst (const short *, int, const int);
11734
void vec_dstst (const unsigned int *, int, const int);
11735
void vec_dstst (const int *, int, const int);
11736
void vec_dstst (const unsigned long *, int, const int);
11737
void vec_dstst (const long *, int, const int);
11738
void vec_dstst (const float *, int, const int);
11739
 
11740
void vec_dststt (const vector unsigned char *, int, const int);
11741
void vec_dststt (const vector signed char *, int, const int);
11742
void vec_dststt (const vector bool char *, int, const int);
11743
void vec_dststt (const vector unsigned short *, int, const int);
11744
void vec_dststt (const vector signed short *, int, const int);
11745
void vec_dststt (const vector bool short *, int, const int);
11746
void vec_dststt (const vector pixel *, int, const int);
11747
void vec_dststt (const vector unsigned int *, int, const int);
11748
void vec_dststt (const vector signed int *, int, const int);
11749
void vec_dststt (const vector bool int *, int, const int);
11750
void vec_dststt (const vector float *, int, const int);
11751
void vec_dststt (const unsigned char *, int, const int);
11752
void vec_dststt (const signed char *, int, const int);
11753
void vec_dststt (const unsigned short *, int, const int);
11754
void vec_dststt (const short *, int, const int);
11755
void vec_dststt (const unsigned int *, int, const int);
11756
void vec_dststt (const int *, int, const int);
11757
void vec_dststt (const unsigned long *, int, const int);
11758
void vec_dststt (const long *, int, const int);
11759
void vec_dststt (const float *, int, const int);
11760
 
11761
void vec_dstt (const vector unsigned char *, int, const int);
11762
void vec_dstt (const vector signed char *, int, const int);
11763
void vec_dstt (const vector bool char *, int, const int);
11764
void vec_dstt (const vector unsigned short *, int, const int);
11765
void vec_dstt (const vector signed short *, int, const int);
11766
void vec_dstt (const vector bool short *, int, const int);
11767
void vec_dstt (const vector pixel *, int, const int);
11768
void vec_dstt (const vector unsigned int *, int, const int);
11769
void vec_dstt (const vector signed int *, int, const int);
11770
void vec_dstt (const vector bool int *, int, const int);
11771
void vec_dstt (const vector float *, int, const int);
11772
void vec_dstt (const unsigned char *, int, const int);
11773
void vec_dstt (const signed char *, int, const int);
11774
void vec_dstt (const unsigned short *, int, const int);
11775
void vec_dstt (const short *, int, const int);
11776
void vec_dstt (const unsigned int *, int, const int);
11777
void vec_dstt (const int *, int, const int);
11778
void vec_dstt (const unsigned long *, int, const int);
11779
void vec_dstt (const long *, int, const int);
11780
void vec_dstt (const float *, int, const int);
11781
 
11782
vector float vec_expte (vector float);
11783
 
11784
vector float vec_floor (vector float);
11785
 
11786
vector float vec_ld (int, const vector float *);
11787
vector float vec_ld (int, const float *);
11788
vector bool int vec_ld (int, const vector bool int *);
11789
vector signed int vec_ld (int, const vector signed int *);
11790
vector signed int vec_ld (int, const int *);
11791
vector signed int vec_ld (int, const long *);
11792
vector unsigned int vec_ld (int, const vector unsigned int *);
11793
vector unsigned int vec_ld (int, const unsigned int *);
11794
vector unsigned int vec_ld (int, const unsigned long *);
11795
vector bool short vec_ld (int, const vector bool short *);
11796
vector pixel vec_ld (int, const vector pixel *);
11797
vector signed short vec_ld (int, const vector signed short *);
11798
vector signed short vec_ld (int, const short *);
11799
vector unsigned short vec_ld (int, const vector unsigned short *);
11800
vector unsigned short vec_ld (int, const unsigned short *);
11801
vector bool char vec_ld (int, const vector bool char *);
11802
vector signed char vec_ld (int, const vector signed char *);
11803
vector signed char vec_ld (int, const signed char *);
11804
vector unsigned char vec_ld (int, const vector unsigned char *);
11805
vector unsigned char vec_ld (int, const unsigned char *);
11806
 
11807
vector signed char vec_lde (int, const signed char *);
11808
vector unsigned char vec_lde (int, const unsigned char *);
11809
vector signed short vec_lde (int, const short *);
11810
vector unsigned short vec_lde (int, const unsigned short *);
11811
vector float vec_lde (int, const float *);
11812
vector signed int vec_lde (int, const int *);
11813
vector unsigned int vec_lde (int, const unsigned int *);
11814
vector signed int vec_lde (int, const long *);
11815
vector unsigned int vec_lde (int, const unsigned long *);
11816
 
11817
vector float vec_lvewx (int, float *);
11818
vector signed int vec_lvewx (int, int *);
11819
vector unsigned int vec_lvewx (int, unsigned int *);
11820
vector signed int vec_lvewx (int, long *);
11821
vector unsigned int vec_lvewx (int, unsigned long *);
11822
 
11823
vector signed short vec_lvehx (int, short *);
11824
vector unsigned short vec_lvehx (int, unsigned short *);
11825
 
11826
vector signed char vec_lvebx (int, char *);
11827
vector unsigned char vec_lvebx (int, unsigned char *);
11828
 
11829
vector float vec_ldl (int, const vector float *);
11830
vector float vec_ldl (int, const float *);
11831
vector bool int vec_ldl (int, const vector bool int *);
11832
vector signed int vec_ldl (int, const vector signed int *);
11833
vector signed int vec_ldl (int, const int *);
11834
vector signed int vec_ldl (int, const long *);
11835
vector unsigned int vec_ldl (int, const vector unsigned int *);
11836
vector unsigned int vec_ldl (int, const unsigned int *);
11837
vector unsigned int vec_ldl (int, const unsigned long *);
11838
vector bool short vec_ldl (int, const vector bool short *);
11839
vector pixel vec_ldl (int, const vector pixel *);
11840
vector signed short vec_ldl (int, const vector signed short *);
11841
vector signed short vec_ldl (int, const short *);
11842
vector unsigned short vec_ldl (int, const vector unsigned short *);
11843
vector unsigned short vec_ldl (int, const unsigned short *);
11844
vector bool char vec_ldl (int, const vector bool char *);
11845
vector signed char vec_ldl (int, const vector signed char *);
11846
vector signed char vec_ldl (int, const signed char *);
11847
vector unsigned char vec_ldl (int, const vector unsigned char *);
11848
vector unsigned char vec_ldl (int, const unsigned char *);
11849
 
11850
vector float vec_loge (vector float);
11851
 
11852
vector unsigned char vec_lvsl (int, const volatile unsigned char *);
11853
vector unsigned char vec_lvsl (int, const volatile signed char *);
11854
vector unsigned char vec_lvsl (int, const volatile unsigned short *);
11855
vector unsigned char vec_lvsl (int, const volatile short *);
11856
vector unsigned char vec_lvsl (int, const volatile unsigned int *);
11857
vector unsigned char vec_lvsl (int, const volatile int *);
11858
vector unsigned char vec_lvsl (int, const volatile unsigned long *);
11859
vector unsigned char vec_lvsl (int, const volatile long *);
11860
vector unsigned char vec_lvsl (int, const volatile float *);
11861
 
11862
vector unsigned char vec_lvsr (int, const volatile unsigned char *);
11863
vector unsigned char vec_lvsr (int, const volatile signed char *);
11864
vector unsigned char vec_lvsr (int, const volatile unsigned short *);
11865
vector unsigned char vec_lvsr (int, const volatile short *);
11866
vector unsigned char vec_lvsr (int, const volatile unsigned int *);
11867
vector unsigned char vec_lvsr (int, const volatile int *);
11868
vector unsigned char vec_lvsr (int, const volatile unsigned long *);
11869
vector unsigned char vec_lvsr (int, const volatile long *);
11870
vector unsigned char vec_lvsr (int, const volatile float *);
11871
 
11872
vector float vec_madd (vector float, vector float, vector float);
11873
 
11874
vector signed short vec_madds (vector signed short,
11875
                               vector signed short,
11876
                               vector signed short);
11877
 
11878
vector unsigned char vec_max (vector bool char, vector unsigned char);
11879
vector unsigned char vec_max (vector unsigned char, vector bool char);
11880
vector unsigned char vec_max (vector unsigned char,
11881
                              vector unsigned char);
11882
vector signed char vec_max (vector bool char, vector signed char);
11883
vector signed char vec_max (vector signed char, vector bool char);
11884
vector signed char vec_max (vector signed char, vector signed char);
11885
vector unsigned short vec_max (vector bool short,
11886
                               vector unsigned short);
11887
vector unsigned short vec_max (vector unsigned short,
11888
                               vector bool short);
11889
vector unsigned short vec_max (vector unsigned short,
11890
                               vector unsigned short);
11891
vector signed short vec_max (vector bool short, vector signed short);
11892
vector signed short vec_max (vector signed short, vector bool short);
11893
vector signed short vec_max (vector signed short, vector signed short);
11894
vector unsigned int vec_max (vector bool int, vector unsigned int);
11895
vector unsigned int vec_max (vector unsigned int, vector bool int);
11896
vector unsigned int vec_max (vector unsigned int, vector unsigned int);
11897
vector signed int vec_max (vector bool int, vector signed int);
11898
vector signed int vec_max (vector signed int, vector bool int);
11899
vector signed int vec_max (vector signed int, vector signed int);
11900
vector float vec_max (vector float, vector float);
11901
 
11902
vector float vec_vmaxfp (vector float, vector float);
11903
 
11904
vector signed int vec_vmaxsw (vector bool int, vector signed int);
11905
vector signed int vec_vmaxsw (vector signed int, vector bool int);
11906
vector signed int vec_vmaxsw (vector signed int, vector signed int);
11907
 
11908
vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
11909
vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
11910
vector unsigned int vec_vmaxuw (vector unsigned int,
11911
                                vector unsigned int);
11912
 
11913
vector signed short vec_vmaxsh (vector bool short, vector signed short);
11914
vector signed short vec_vmaxsh (vector signed short, vector bool short);
11915
vector signed short vec_vmaxsh (vector signed short,
11916
                                vector signed short);
11917
 
11918
vector unsigned short vec_vmaxuh (vector bool short,
11919
                                  vector unsigned short);
11920
vector unsigned short vec_vmaxuh (vector unsigned short,
11921
                                  vector bool short);
11922
vector unsigned short vec_vmaxuh (vector unsigned short,
11923
                                  vector unsigned short);
11924
 
11925
vector signed char vec_vmaxsb (vector bool char, vector signed char);
11926
vector signed char vec_vmaxsb (vector signed char, vector bool char);
11927
vector signed char vec_vmaxsb (vector signed char, vector signed char);
11928
 
11929
vector unsigned char vec_vmaxub (vector bool char,
11930
                                 vector unsigned char);
11931
vector unsigned char vec_vmaxub (vector unsigned char,
11932
                                 vector bool char);
11933
vector unsigned char vec_vmaxub (vector unsigned char,
11934
                                 vector unsigned char);
11935
 
11936
vector bool char vec_mergeh (vector bool char, vector bool char);
11937
vector signed char vec_mergeh (vector signed char, vector signed char);
11938
vector unsigned char vec_mergeh (vector unsigned char,
11939
                                 vector unsigned char);
11940
vector bool short vec_mergeh (vector bool short, vector bool short);
11941
vector pixel vec_mergeh (vector pixel, vector pixel);
11942
vector signed short vec_mergeh (vector signed short,
11943
                                vector signed short);
11944
vector unsigned short vec_mergeh (vector unsigned short,
11945
                                  vector unsigned short);
11946
vector float vec_mergeh (vector float, vector float);
11947
vector bool int vec_mergeh (vector bool int, vector bool int);
11948
vector signed int vec_mergeh (vector signed int, vector signed int);
11949
vector unsigned int vec_mergeh (vector unsigned int,
11950
                                vector unsigned int);
11951
 
11952
vector float vec_vmrghw (vector float, vector float);
11953
vector bool int vec_vmrghw (vector bool int, vector bool int);
11954
vector signed int vec_vmrghw (vector signed int, vector signed int);
11955
vector unsigned int vec_vmrghw (vector unsigned int,
11956
                                vector unsigned int);
11957
 
11958
vector bool short vec_vmrghh (vector bool short, vector bool short);
11959
vector signed short vec_vmrghh (vector signed short,
11960
                                vector signed short);
11961
vector unsigned short vec_vmrghh (vector unsigned short,
11962
                                  vector unsigned short);
11963
vector pixel vec_vmrghh (vector pixel, vector pixel);
11964
 
11965
vector bool char vec_vmrghb (vector bool char, vector bool char);
11966
vector signed char vec_vmrghb (vector signed char, vector signed char);
11967
vector unsigned char vec_vmrghb (vector unsigned char,
11968
                                 vector unsigned char);
11969
 
11970
vector bool char vec_mergel (vector bool char, vector bool char);
11971
vector signed char vec_mergel (vector signed char, vector signed char);
11972
vector unsigned char vec_mergel (vector unsigned char,
11973
                                 vector unsigned char);
11974
vector bool short vec_mergel (vector bool short, vector bool short);
11975
vector pixel vec_mergel (vector pixel, vector pixel);
11976
vector signed short vec_mergel (vector signed short,
11977
                                vector signed short);
11978
vector unsigned short vec_mergel (vector unsigned short,
11979
                                  vector unsigned short);
11980
vector float vec_mergel (vector float, vector float);
11981
vector bool int vec_mergel (vector bool int, vector bool int);
11982
vector signed int vec_mergel (vector signed int, vector signed int);
11983
vector unsigned int vec_mergel (vector unsigned int,
11984
                                vector unsigned int);
11985
 
11986
vector float vec_vmrglw (vector float, vector float);
11987
vector signed int vec_vmrglw (vector signed int, vector signed int);
11988
vector unsigned int vec_vmrglw (vector unsigned int,
11989
                                vector unsigned int);
11990
vector bool int vec_vmrglw (vector bool int, vector bool int);
11991
 
11992
vector bool short vec_vmrglh (vector bool short, vector bool short);
11993
vector signed short vec_vmrglh (vector signed short,
11994
                                vector signed short);
11995
vector unsigned short vec_vmrglh (vector unsigned short,
11996
                                  vector unsigned short);
11997
vector pixel vec_vmrglh (vector pixel, vector pixel);
11998
 
11999
vector bool char vec_vmrglb (vector bool char, vector bool char);
12000
vector signed char vec_vmrglb (vector signed char, vector signed char);
12001
vector unsigned char vec_vmrglb (vector unsigned char,
12002
                                 vector unsigned char);
12003
 
12004
vector unsigned short vec_mfvscr (void);
12005
 
12006
vector unsigned char vec_min (vector bool char, vector unsigned char);
12007
vector unsigned char vec_min (vector unsigned char, vector bool char);
12008
vector unsigned char vec_min (vector unsigned char,
12009
                              vector unsigned char);
12010
vector signed char vec_min (vector bool char, vector signed char);
12011
vector signed char vec_min (vector signed char, vector bool char);
12012
vector signed char vec_min (vector signed char, vector signed char);
12013
vector unsigned short vec_min (vector bool short,
12014
                               vector unsigned short);
12015
vector unsigned short vec_min (vector unsigned short,
12016
                               vector bool short);
12017
vector unsigned short vec_min (vector unsigned short,
12018
                               vector unsigned short);
12019
vector signed short vec_min (vector bool short, vector signed short);
12020
vector signed short vec_min (vector signed short, vector bool short);
12021
vector signed short vec_min (vector signed short, vector signed short);
12022
vector unsigned int vec_min (vector bool int, vector unsigned int);
12023
vector unsigned int vec_min (vector unsigned int, vector bool int);
12024
vector unsigned int vec_min (vector unsigned int, vector unsigned int);
12025
vector signed int vec_min (vector bool int, vector signed int);
12026
vector signed int vec_min (vector signed int, vector bool int);
12027
vector signed int vec_min (vector signed int, vector signed int);
12028
vector float vec_min (vector float, vector float);
12029
 
12030
vector float vec_vminfp (vector float, vector float);
12031
 
12032
vector signed int vec_vminsw (vector bool int, vector signed int);
12033
vector signed int vec_vminsw (vector signed int, vector bool int);
12034
vector signed int vec_vminsw (vector signed int, vector signed int);
12035
 
12036
vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
12037
vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
12038
vector unsigned int vec_vminuw (vector unsigned int,
12039
                                vector unsigned int);
12040
 
12041
vector signed short vec_vminsh (vector bool short, vector signed short);
12042
vector signed short vec_vminsh (vector signed short, vector bool short);
12043
vector signed short vec_vminsh (vector signed short,
12044
                                vector signed short);
12045
 
12046
vector unsigned short vec_vminuh (vector bool short,
12047
                                  vector unsigned short);
12048
vector unsigned short vec_vminuh (vector unsigned short,
12049
                                  vector bool short);
12050
vector unsigned short vec_vminuh (vector unsigned short,
12051
                                  vector unsigned short);
12052
 
12053
vector signed char vec_vminsb (vector bool char, vector signed char);
12054
vector signed char vec_vminsb (vector signed char, vector bool char);
12055
vector signed char vec_vminsb (vector signed char, vector signed char);
12056
 
12057
vector unsigned char vec_vminub (vector bool char,
12058
                                 vector unsigned char);
12059
vector unsigned char vec_vminub (vector unsigned char,
12060
                                 vector bool char);
12061
vector unsigned char vec_vminub (vector unsigned char,
12062
                                 vector unsigned char);
12063
 
12064
vector signed short vec_mladd (vector signed short,
12065
                               vector signed short,
12066
                               vector signed short);
12067
vector signed short vec_mladd (vector signed short,
12068
                               vector unsigned short,
12069
                               vector unsigned short);
12070
vector signed short vec_mladd (vector unsigned short,
12071
                               vector signed short,
12072
                               vector signed short);
12073
vector unsigned short vec_mladd (vector unsigned short,
12074
                                 vector unsigned short,
12075
                                 vector unsigned short);
12076
 
12077
vector signed short vec_mradds (vector signed short,
12078
                                vector signed short,
12079
                                vector signed short);
12080
 
12081
vector unsigned int vec_msum (vector unsigned char,
12082
                              vector unsigned char,
12083
                              vector unsigned int);
12084
vector signed int vec_msum (vector signed char,
12085
                            vector unsigned char,
12086
                            vector signed int);
12087
vector unsigned int vec_msum (vector unsigned short,
12088
                              vector unsigned short,
12089
                              vector unsigned int);
12090
vector signed int vec_msum (vector signed short,
12091
                            vector signed short,
12092
                            vector signed int);
12093
 
12094
vector signed int vec_vmsumshm (vector signed short,
12095
                                vector signed short,
12096
                                vector signed int);
12097
 
12098
vector unsigned int vec_vmsumuhm (vector unsigned short,
12099
                                  vector unsigned short,
12100
                                  vector unsigned int);
12101
 
12102
vector signed int vec_vmsummbm (vector signed char,
12103
                                vector unsigned char,
12104
                                vector signed int);
12105
 
12106
vector unsigned int vec_vmsumubm (vector unsigned char,
12107
                                  vector unsigned char,
12108
                                  vector unsigned int);
12109
 
12110
vector unsigned int vec_msums (vector unsigned short,
12111
                               vector unsigned short,
12112
                               vector unsigned int);
12113
vector signed int vec_msums (vector signed short,
12114
                             vector signed short,
12115
                             vector signed int);
12116
 
12117
vector signed int vec_vmsumshs (vector signed short,
12118
                                vector signed short,
12119
                                vector signed int);
12120
 
12121
vector unsigned int vec_vmsumuhs (vector unsigned short,
12122
                                  vector unsigned short,
12123
                                  vector unsigned int);
12124
 
12125
void vec_mtvscr (vector signed int);
12126
void vec_mtvscr (vector unsigned int);
12127
void vec_mtvscr (vector bool int);
12128
void vec_mtvscr (vector signed short);
12129
void vec_mtvscr (vector unsigned short);
12130
void vec_mtvscr (vector bool short);
12131
void vec_mtvscr (vector pixel);
12132
void vec_mtvscr (vector signed char);
12133
void vec_mtvscr (vector unsigned char);
12134
void vec_mtvscr (vector bool char);
12135
 
12136
vector unsigned short vec_mule (vector unsigned char,
12137
                                vector unsigned char);
12138
vector signed short vec_mule (vector signed char,
12139
                              vector signed char);
12140
vector unsigned int vec_mule (vector unsigned short,
12141
                              vector unsigned short);
12142
vector signed int vec_mule (vector signed short, vector signed short);
12143
 
12144
vector signed int vec_vmulesh (vector signed short,
12145
                               vector signed short);
12146
 
12147
vector unsigned int vec_vmuleuh (vector unsigned short,
12148
                                 vector unsigned short);
12149
 
12150
vector signed short vec_vmulesb (vector signed char,
12151
                                 vector signed char);
12152
 
12153
vector unsigned short vec_vmuleub (vector unsigned char,
12154
                                  vector unsigned char);
12155
 
12156
vector unsigned short vec_mulo (vector unsigned char,
12157
                                vector unsigned char);
12158
vector signed short vec_mulo (vector signed char, vector signed char);
12159
vector unsigned int vec_mulo (vector unsigned short,
12160
                              vector unsigned short);
12161
vector signed int vec_mulo (vector signed short, vector signed short);
12162
 
12163
vector signed int vec_vmulosh (vector signed short,
12164
                               vector signed short);
12165
 
12166
vector unsigned int vec_vmulouh (vector unsigned short,
12167
                                 vector unsigned short);
12168
 
12169
vector signed short vec_vmulosb (vector signed char,
12170
                                 vector signed char);
12171
 
12172
vector unsigned short vec_vmuloub (vector unsigned char,
12173
                                   vector unsigned char);
12174
 
12175
vector float vec_nmsub (vector float, vector float, vector float);
12176
 
12177
vector float vec_nor (vector float, vector float);
12178
vector signed int vec_nor (vector signed int, vector signed int);
12179
vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
12180
vector bool int vec_nor (vector bool int, vector bool int);
12181
vector signed short vec_nor (vector signed short, vector signed short);
12182
vector unsigned short vec_nor (vector unsigned short,
12183
                               vector unsigned short);
12184
vector bool short vec_nor (vector bool short, vector bool short);
12185
vector signed char vec_nor (vector signed char, vector signed char);
12186
vector unsigned char vec_nor (vector unsigned char,
12187
                              vector unsigned char);
12188
vector bool char vec_nor (vector bool char, vector bool char);
12189
 
12190
vector float vec_or (vector float, vector float);
12191
vector float vec_or (vector float, vector bool int);
12192
vector float vec_or (vector bool int, vector float);
12193
vector bool int vec_or (vector bool int, vector bool int);
12194
vector signed int vec_or (vector bool int, vector signed int);
12195
vector signed int vec_or (vector signed int, vector bool int);
12196
vector signed int vec_or (vector signed int, vector signed int);
12197
vector unsigned int vec_or (vector bool int, vector unsigned int);
12198
vector unsigned int vec_or (vector unsigned int, vector bool int);
12199
vector unsigned int vec_or (vector unsigned int, vector unsigned int);
12200
vector bool short vec_or (vector bool short, vector bool short);
12201
vector signed short vec_or (vector bool short, vector signed short);
12202
vector signed short vec_or (vector signed short, vector bool short);
12203
vector signed short vec_or (vector signed short, vector signed short);
12204
vector unsigned short vec_or (vector bool short, vector unsigned short);
12205
vector unsigned short vec_or (vector unsigned short, vector bool short);
12206
vector unsigned short vec_or (vector unsigned short,
12207
                              vector unsigned short);
12208
vector signed char vec_or (vector bool char, vector signed char);
12209
vector bool char vec_or (vector bool char, vector bool char);
12210
vector signed char vec_or (vector signed char, vector bool char);
12211
vector signed char vec_or (vector signed char, vector signed char);
12212
vector unsigned char vec_or (vector bool char, vector unsigned char);
12213
vector unsigned char vec_or (vector unsigned char, vector bool char);
12214
vector unsigned char vec_or (vector unsigned char,
12215
                             vector unsigned char);
12216
 
12217
vector signed char vec_pack (vector signed short, vector signed short);
12218
vector unsigned char vec_pack (vector unsigned short,
12219
                               vector unsigned short);
12220
vector bool char vec_pack (vector bool short, vector bool short);
12221
vector signed short vec_pack (vector signed int, vector signed int);
12222
vector unsigned short vec_pack (vector unsigned int,
12223
                                vector unsigned int);
12224
vector bool short vec_pack (vector bool int, vector bool int);
12225
 
12226
vector bool short vec_vpkuwum (vector bool int, vector bool int);
12227
vector signed short vec_vpkuwum (vector signed int, vector signed int);
12228
vector unsigned short vec_vpkuwum (vector unsigned int,
12229
                                   vector unsigned int);
12230
 
12231
vector bool char vec_vpkuhum (vector bool short, vector bool short);
12232
vector signed char vec_vpkuhum (vector signed short,
12233
                                vector signed short);
12234
vector unsigned char vec_vpkuhum (vector unsigned short,
12235
                                  vector unsigned short);
12236
 
12237
vector pixel vec_packpx (vector unsigned int, vector unsigned int);
12238
 
12239
vector unsigned char vec_packs (vector unsigned short,
12240
                                vector unsigned short);
12241
vector signed char vec_packs (vector signed short, vector signed short);
12242
vector unsigned short vec_packs (vector unsigned int,
12243
                                 vector unsigned int);
12244
vector signed short vec_packs (vector signed int, vector signed int);
12245
 
12246
vector signed short vec_vpkswss (vector signed int, vector signed int);
12247
 
12248
vector unsigned short vec_vpkuwus (vector unsigned int,
12249
                                   vector unsigned int);
12250
 
12251
vector signed char vec_vpkshss (vector signed short,
12252
                                vector signed short);
12253
 
12254
vector unsigned char vec_vpkuhus (vector unsigned short,
12255
                                  vector unsigned short);
12256
 
12257
vector unsigned char vec_packsu (vector unsigned short,
12258
                                 vector unsigned short);
12259
vector unsigned char vec_packsu (vector signed short,
12260
                                 vector signed short);
12261
vector unsigned short vec_packsu (vector unsigned int,
12262
                                  vector unsigned int);
12263
vector unsigned short vec_packsu (vector signed int, vector signed int);
12264
 
12265
vector unsigned short vec_vpkswus (vector signed int,
12266
                                   vector signed int);
12267
 
12268
vector unsigned char vec_vpkshus (vector signed short,
12269
                                  vector signed short);
12270
 
12271
vector float vec_perm (vector float,
12272
                       vector float,
12273
                       vector unsigned char);
12274
vector signed int vec_perm (vector signed int,
12275
                            vector signed int,
12276
                            vector unsigned char);
12277
vector unsigned int vec_perm (vector unsigned int,
12278
                              vector unsigned int,
12279
                              vector unsigned char);
12280
vector bool int vec_perm (vector bool int,
12281
                          vector bool int,
12282
                          vector unsigned char);
12283
vector signed short vec_perm (vector signed short,
12284
                              vector signed short,
12285
                              vector unsigned char);
12286
vector unsigned short vec_perm (vector unsigned short,
12287
                                vector unsigned short,
12288
                                vector unsigned char);
12289
vector bool short vec_perm (vector bool short,
12290
                            vector bool short,
12291
                            vector unsigned char);
12292
vector pixel vec_perm (vector pixel,
12293
                       vector pixel,
12294
                       vector unsigned char);
12295
vector signed char vec_perm (vector signed char,
12296
                             vector signed char,
12297
                             vector unsigned char);
12298
vector unsigned char vec_perm (vector unsigned char,
12299
                               vector unsigned char,
12300
                               vector unsigned char);
12301
vector bool char vec_perm (vector bool char,
12302
                           vector bool char,
12303
                           vector unsigned char);
12304
 
12305
vector float vec_re (vector float);
12306
 
12307
vector signed char vec_rl (vector signed char,
12308
                           vector unsigned char);
12309
vector unsigned char vec_rl (vector unsigned char,
12310
                             vector unsigned char);
12311
vector signed short vec_rl (vector signed short, vector unsigned short);
12312
vector unsigned short vec_rl (vector unsigned short,
12313
                              vector unsigned short);
12314
vector signed int vec_rl (vector signed int, vector unsigned int);
12315
vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
12316
 
12317
vector signed int vec_vrlw (vector signed int, vector unsigned int);
12318
vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
12319
 
12320
vector signed short vec_vrlh (vector signed short,
12321
                              vector unsigned short);
12322
vector unsigned short vec_vrlh (vector unsigned short,
12323
                                vector unsigned short);
12324
 
12325
vector signed char vec_vrlb (vector signed char, vector unsigned char);
12326
vector unsigned char vec_vrlb (vector unsigned char,
12327
                               vector unsigned char);
12328
 
12329
vector float vec_round (vector float);
12330
 
12331
vector float vec_recip (vector float, vector float);
12332
 
12333
vector float vec_rsqrt (vector float);
12334
 
12335
vector float vec_rsqrte (vector float);
12336
 
12337
vector float vec_sel (vector float, vector float, vector bool int);
12338
vector float vec_sel (vector float, vector float, vector unsigned int);
12339
vector signed int vec_sel (vector signed int,
12340
                           vector signed int,
12341
                           vector bool int);
12342
vector signed int vec_sel (vector signed int,
12343
                           vector signed int,
12344
                           vector unsigned int);
12345
vector unsigned int vec_sel (vector unsigned int,
12346
                             vector unsigned int,
12347
                             vector bool int);
12348
vector unsigned int vec_sel (vector unsigned int,
12349
                             vector unsigned int,
12350
                             vector unsigned int);
12351
vector bool int vec_sel (vector bool int,
12352
                         vector bool int,
12353
                         vector bool int);
12354
vector bool int vec_sel (vector bool int,
12355
                         vector bool int,
12356
                         vector unsigned int);
12357
vector signed short vec_sel (vector signed short,
12358
                             vector signed short,
12359
                             vector bool short);
12360
vector signed short vec_sel (vector signed short,
12361
                             vector signed short,
12362
                             vector unsigned short);
12363
vector unsigned short vec_sel (vector unsigned short,
12364
                               vector unsigned short,
12365
                               vector bool short);
12366
vector unsigned short vec_sel (vector unsigned short,
12367
                               vector unsigned short,
12368
                               vector unsigned short);
12369
vector bool short vec_sel (vector bool short,
12370
                           vector bool short,
12371
                           vector bool short);
12372
vector bool short vec_sel (vector bool short,
12373
                           vector bool short,
12374
                           vector unsigned short);
12375
vector signed char vec_sel (vector signed char,
12376
                            vector signed char,
12377
                            vector bool char);
12378
vector signed char vec_sel (vector signed char,
12379
                            vector signed char,
12380
                            vector unsigned char);
12381
vector unsigned char vec_sel (vector unsigned char,
12382
                              vector unsigned char,
12383
                              vector bool char);
12384
vector unsigned char vec_sel (vector unsigned char,
12385
                              vector unsigned char,
12386
                              vector unsigned char);
12387
vector bool char vec_sel (vector bool char,
12388
                          vector bool char,
12389
                          vector bool char);
12390
vector bool char vec_sel (vector bool char,
12391
                          vector bool char,
12392
                          vector unsigned char);
12393
 
12394
vector signed char vec_sl (vector signed char,
12395
                           vector unsigned char);
12396
vector unsigned char vec_sl (vector unsigned char,
12397
                             vector unsigned char);
12398
vector signed short vec_sl (vector signed short, vector unsigned short);
12399
vector unsigned short vec_sl (vector unsigned short,
12400
                              vector unsigned short);
12401
vector signed int vec_sl (vector signed int, vector unsigned int);
12402
vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
12403
 
12404
vector signed int vec_vslw (vector signed int, vector unsigned int);
12405
vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
12406
 
12407
vector signed short vec_vslh (vector signed short,
12408
                              vector unsigned short);
12409
vector unsigned short vec_vslh (vector unsigned short,
12410
                                vector unsigned short);
12411
 
12412
vector signed char vec_vslb (vector signed char, vector unsigned char);
12413
vector unsigned char vec_vslb (vector unsigned char,
12414
                               vector unsigned char);
12415
 
12416
vector float vec_sld (vector float, vector float, const int);
12417
vector signed int vec_sld (vector signed int,
12418
                           vector signed int,
12419
                           const int);
12420
vector unsigned int vec_sld (vector unsigned int,
12421
                             vector unsigned int,
12422
                             const int);
12423
vector bool int vec_sld (vector bool int,
12424
                         vector bool int,
12425
                         const int);
12426
vector signed short vec_sld (vector signed short,
12427
                             vector signed short,
12428
                             const int);
12429
vector unsigned short vec_sld (vector unsigned short,
12430
                               vector unsigned short,
12431
                               const int);
12432
vector bool short vec_sld (vector bool short,
12433
                           vector bool short,
12434
                           const int);
12435
vector pixel vec_sld (vector pixel,
12436
                      vector pixel,
12437
                      const int);
12438
vector signed char vec_sld (vector signed char,
12439
                            vector signed char,
12440
                            const int);
12441
vector unsigned char vec_sld (vector unsigned char,
12442
                              vector unsigned char,
12443
                              const int);
12444
vector bool char vec_sld (vector bool char,
12445
                          vector bool char,
12446
                          const int);
12447
 
12448
vector signed int vec_sll (vector signed int,
12449
                           vector unsigned int);
12450
vector signed int vec_sll (vector signed int,
12451
                           vector unsigned short);
12452
vector signed int vec_sll (vector signed int,
12453
                           vector unsigned char);
12454
vector unsigned int vec_sll (vector unsigned int,
12455
                             vector unsigned int);
12456
vector unsigned int vec_sll (vector unsigned int,
12457
                             vector unsigned short);
12458
vector unsigned int vec_sll (vector unsigned int,
12459
                             vector unsigned char);
12460
vector bool int vec_sll (vector bool int,
12461
                         vector unsigned int);
12462
vector bool int vec_sll (vector bool int,
12463
                         vector unsigned short);
12464
vector bool int vec_sll (vector bool int,
12465
                         vector unsigned char);
12466
vector signed short vec_sll (vector signed short,
12467
                             vector unsigned int);
12468
vector signed short vec_sll (vector signed short,
12469
                             vector unsigned short);
12470
vector signed short vec_sll (vector signed short,
12471
                             vector unsigned char);
12472
vector unsigned short vec_sll (vector unsigned short,
12473
                               vector unsigned int);
12474
vector unsigned short vec_sll (vector unsigned short,
12475
                               vector unsigned short);
12476
vector unsigned short vec_sll (vector unsigned short,
12477
                               vector unsigned char);
12478
vector bool short vec_sll (vector bool short, vector unsigned int);
12479
vector bool short vec_sll (vector bool short, vector unsigned short);
12480
vector bool short vec_sll (vector bool short, vector unsigned char);
12481
vector pixel vec_sll (vector pixel, vector unsigned int);
12482
vector pixel vec_sll (vector pixel, vector unsigned short);
12483
vector pixel vec_sll (vector pixel, vector unsigned char);
12484
vector signed char vec_sll (vector signed char, vector unsigned int);
12485
vector signed char vec_sll (vector signed char, vector unsigned short);
12486
vector signed char vec_sll (vector signed char, vector unsigned char);
12487
vector unsigned char vec_sll (vector unsigned char,
12488
                              vector unsigned int);
12489
vector unsigned char vec_sll (vector unsigned char,
12490
                              vector unsigned short);
12491
vector unsigned char vec_sll (vector unsigned char,
12492
                              vector unsigned char);
12493
vector bool char vec_sll (vector bool char, vector unsigned int);
12494
vector bool char vec_sll (vector bool char, vector unsigned short);
12495
vector bool char vec_sll (vector bool char, vector unsigned char);
12496
 
12497
vector float vec_slo (vector float, vector signed char);
12498
vector float vec_slo (vector float, vector unsigned char);
12499
vector signed int vec_slo (vector signed int, vector signed char);
12500
vector signed int vec_slo (vector signed int, vector unsigned char);
12501
vector unsigned int vec_slo (vector unsigned int, vector signed char);
12502
vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
12503
vector signed short vec_slo (vector signed short, vector signed char);
12504
vector signed short vec_slo (vector signed short, vector unsigned char);
12505
vector unsigned short vec_slo (vector unsigned short,
12506
                               vector signed char);
12507
vector unsigned short vec_slo (vector unsigned short,
12508
                               vector unsigned char);
12509
vector pixel vec_slo (vector pixel, vector signed char);
12510
vector pixel vec_slo (vector pixel, vector unsigned char);
12511
vector signed char vec_slo (vector signed char, vector signed char);
12512
vector signed char vec_slo (vector signed char, vector unsigned char);
12513
vector unsigned char vec_slo (vector unsigned char, vector signed char);
12514
vector unsigned char vec_slo (vector unsigned char,
12515
                              vector unsigned char);
12516
 
12517
vector signed char vec_splat (vector signed char, const int);
12518
vector unsigned char vec_splat (vector unsigned char, const int);
12519
vector bool char vec_splat (vector bool char, const int);
12520
vector signed short vec_splat (vector signed short, const int);
12521
vector unsigned short vec_splat (vector unsigned short, const int);
12522
vector bool short vec_splat (vector bool short, const int);
12523
vector pixel vec_splat (vector pixel, const int);
12524
vector float vec_splat (vector float, const int);
12525
vector signed int vec_splat (vector signed int, const int);
12526
vector unsigned int vec_splat (vector unsigned int, const int);
12527
vector bool int vec_splat (vector bool int, const int);
12528
 
12529
vector float vec_vspltw (vector float, const int);
12530
vector signed int vec_vspltw (vector signed int, const int);
12531
vector unsigned int vec_vspltw (vector unsigned int, const int);
12532
vector bool int vec_vspltw (vector bool int, const int);
12533
 
12534
vector bool short vec_vsplth (vector bool short, const int);
12535
vector signed short vec_vsplth (vector signed short, const int);
12536
vector unsigned short vec_vsplth (vector unsigned short, const int);
12537
vector pixel vec_vsplth (vector pixel, const int);
12538
 
12539
vector signed char vec_vspltb (vector signed char, const int);
12540
vector unsigned char vec_vspltb (vector unsigned char, const int);
12541
vector bool char vec_vspltb (vector bool char, const int);
12542
 
12543
vector signed char vec_splat_s8 (const int);
12544
 
12545
vector signed short vec_splat_s16 (const int);
12546
 
12547
vector signed int vec_splat_s32 (const int);
12548
 
12549
vector unsigned char vec_splat_u8 (const int);
12550
 
12551
vector unsigned short vec_splat_u16 (const int);
12552
 
12553
vector unsigned int vec_splat_u32 (const int);
12554
 
12555
vector signed char vec_sr (vector signed char, vector unsigned char);
12556
vector unsigned char vec_sr (vector unsigned char,
12557
                             vector unsigned char);
12558
vector signed short vec_sr (vector signed short,
12559
                            vector unsigned short);
12560
vector unsigned short vec_sr (vector unsigned short,
12561
                              vector unsigned short);
12562
vector signed int vec_sr (vector signed int, vector unsigned int);
12563
vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
12564
 
12565
vector signed int vec_vsrw (vector signed int, vector unsigned int);
12566
vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
12567
 
12568
vector signed short vec_vsrh (vector signed short,
12569
                              vector unsigned short);
12570
vector unsigned short vec_vsrh (vector unsigned short,
12571
                                vector unsigned short);
12572
 
12573
vector signed char vec_vsrb (vector signed char, vector unsigned char);
12574
vector unsigned char vec_vsrb (vector unsigned char,
12575
                               vector unsigned char);
12576
 
12577
vector signed char vec_sra (vector signed char, vector unsigned char);
12578
vector unsigned char vec_sra (vector unsigned char,
12579
                              vector unsigned char);
12580
vector signed short vec_sra (vector signed short,
12581
                             vector unsigned short);
12582
vector unsigned short vec_sra (vector unsigned short,
12583
                               vector unsigned short);
12584
vector signed int vec_sra (vector signed int, vector unsigned int);
12585
vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
12586
 
12587
vector signed int vec_vsraw (vector signed int, vector unsigned int);
12588
vector unsigned int vec_vsraw (vector unsigned int,
12589
                               vector unsigned int);
12590
 
12591
vector signed short vec_vsrah (vector signed short,
12592
                               vector unsigned short);
12593
vector unsigned short vec_vsrah (vector unsigned short,
12594
                                 vector unsigned short);
12595
 
12596
vector signed char vec_vsrab (vector signed char, vector unsigned char);
12597
vector unsigned char vec_vsrab (vector unsigned char,
12598
                                vector unsigned char);
12599
 
12600
vector signed int vec_srl (vector signed int, vector unsigned int);
12601
vector signed int vec_srl (vector signed int, vector unsigned short);
12602
vector signed int vec_srl (vector signed int, vector unsigned char);
12603
vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
12604
vector unsigned int vec_srl (vector unsigned int,
12605
                             vector unsigned short);
12606
vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
12607
vector bool int vec_srl (vector bool int, vector unsigned int);
12608
vector bool int vec_srl (vector bool int, vector unsigned short);
12609
vector bool int vec_srl (vector bool int, vector unsigned char);
12610
vector signed short vec_srl (vector signed short, vector unsigned int);
12611
vector signed short vec_srl (vector signed short,
12612
                             vector unsigned short);
12613
vector signed short vec_srl (vector signed short, vector unsigned char);
12614
vector unsigned short vec_srl (vector unsigned short,
12615
                               vector unsigned int);
12616
vector unsigned short vec_srl (vector unsigned short,
12617
                               vector unsigned short);
12618
vector unsigned short vec_srl (vector unsigned short,
12619
                               vector unsigned char);
12620
vector bool short vec_srl (vector bool short, vector unsigned int);
12621
vector bool short vec_srl (vector bool short, vector unsigned short);
12622
vector bool short vec_srl (vector bool short, vector unsigned char);
12623
vector pixel vec_srl (vector pixel, vector unsigned int);
12624
vector pixel vec_srl (vector pixel, vector unsigned short);
12625
vector pixel vec_srl (vector pixel, vector unsigned char);
12626
vector signed char vec_srl (vector signed char, vector unsigned int);
12627
vector signed char vec_srl (vector signed char, vector unsigned short);
12628
vector signed char vec_srl (vector signed char, vector unsigned char);
12629
vector unsigned char vec_srl (vector unsigned char,
12630
                              vector unsigned int);
12631
vector unsigned char vec_srl (vector unsigned char,
12632
                              vector unsigned short);
12633
vector unsigned char vec_srl (vector unsigned char,
12634
                              vector unsigned char);
12635
vector bool char vec_srl (vector bool char, vector unsigned int);
12636
vector bool char vec_srl (vector bool char, vector unsigned short);
12637
vector bool char vec_srl (vector bool char, vector unsigned char);
12638
 
12639
vector float vec_sro (vector float, vector signed char);
12640
vector float vec_sro (vector float, vector unsigned char);
12641
vector signed int vec_sro (vector signed int, vector signed char);
12642
vector signed int vec_sro (vector signed int, vector unsigned char);
12643
vector unsigned int vec_sro (vector unsigned int, vector signed char);
12644
vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
12645
vector signed short vec_sro (vector signed short, vector signed char);
12646
vector signed short vec_sro (vector signed short, vector unsigned char);
12647
vector unsigned short vec_sro (vector unsigned short,
12648
                               vector signed char);
12649
vector unsigned short vec_sro (vector unsigned short,
12650
                               vector unsigned char);
12651
vector pixel vec_sro (vector pixel, vector signed char);
12652
vector pixel vec_sro (vector pixel, vector unsigned char);
12653
vector signed char vec_sro (vector signed char, vector signed char);
12654
vector signed char vec_sro (vector signed char, vector unsigned char);
12655
vector unsigned char vec_sro (vector unsigned char, vector signed char);
12656
vector unsigned char vec_sro (vector unsigned char,
12657
                              vector unsigned char);
12658
 
12659
void vec_st (vector float, int, vector float *);
12660
void vec_st (vector float, int, float *);
12661
void vec_st (vector signed int, int, vector signed int *);
12662
void vec_st (vector signed int, int, int *);
12663
void vec_st (vector unsigned int, int, vector unsigned int *);
12664
void vec_st (vector unsigned int, int, unsigned int *);
12665
void vec_st (vector bool int, int, vector bool int *);
12666
void vec_st (vector bool int, int, unsigned int *);
12667
void vec_st (vector bool int, int, int *);
12668
void vec_st (vector signed short, int, vector signed short *);
12669
void vec_st (vector signed short, int, short *);
12670
void vec_st (vector unsigned short, int, vector unsigned short *);
12671
void vec_st (vector unsigned short, int, unsigned short *);
12672
void vec_st (vector bool short, int, vector bool short *);
12673
void vec_st (vector bool short, int, unsigned short *);
12674
void vec_st (vector pixel, int, vector pixel *);
12675
void vec_st (vector pixel, int, unsigned short *);
12676
void vec_st (vector pixel, int, short *);
12677
void vec_st (vector bool short, int, short *);
12678
void vec_st (vector signed char, int, vector signed char *);
12679
void vec_st (vector signed char, int, signed char *);
12680
void vec_st (vector unsigned char, int, vector unsigned char *);
12681
void vec_st (vector unsigned char, int, unsigned char *);
12682
void vec_st (vector bool char, int, vector bool char *);
12683
void vec_st (vector bool char, int, unsigned char *);
12684
void vec_st (vector bool char, int, signed char *);
12685
 
12686
void vec_ste (vector signed char, int, signed char *);
12687
void vec_ste (vector unsigned char, int, unsigned char *);
12688
void vec_ste (vector bool char, int, signed char *);
12689
void vec_ste (vector bool char, int, unsigned char *);
12690
void vec_ste (vector signed short, int, short *);
12691
void vec_ste (vector unsigned short, int, unsigned short *);
12692
void vec_ste (vector bool short, int, short *);
12693
void vec_ste (vector bool short, int, unsigned short *);
12694
void vec_ste (vector pixel, int, short *);
12695
void vec_ste (vector pixel, int, unsigned short *);
12696
void vec_ste (vector float, int, float *);
12697
void vec_ste (vector signed int, int, int *);
12698
void vec_ste (vector unsigned int, int, unsigned int *);
12699
void vec_ste (vector bool int, int, int *);
12700
void vec_ste (vector bool int, int, unsigned int *);
12701
 
12702
void vec_stvewx (vector float, int, float *);
12703
void vec_stvewx (vector signed int, int, int *);
12704
void vec_stvewx (vector unsigned int, int, unsigned int *);
12705
void vec_stvewx (vector bool int, int, int *);
12706
void vec_stvewx (vector bool int, int, unsigned int *);
12707
 
12708
void vec_stvehx (vector signed short, int, short *);
12709
void vec_stvehx (vector unsigned short, int, unsigned short *);
12710
void vec_stvehx (vector bool short, int, short *);
12711
void vec_stvehx (vector bool short, int, unsigned short *);
12712
void vec_stvehx (vector pixel, int, short *);
12713
void vec_stvehx (vector pixel, int, unsigned short *);
12714
 
12715
void vec_stvebx (vector signed char, int, signed char *);
12716
void vec_stvebx (vector unsigned char, int, unsigned char *);
12717
void vec_stvebx (vector bool char, int, signed char *);
12718
void vec_stvebx (vector bool char, int, unsigned char *);
12719
 
12720
void vec_stl (vector float, int, vector float *);
12721
void vec_stl (vector float, int, float *);
12722
void vec_stl (vector signed int, int, vector signed int *);
12723
void vec_stl (vector signed int, int, int *);
12724
void vec_stl (vector unsigned int, int, vector unsigned int *);
12725
void vec_stl (vector unsigned int, int, unsigned int *);
12726
void vec_stl (vector bool int, int, vector bool int *);
12727
void vec_stl (vector bool int, int, unsigned int *);
12728
void vec_stl (vector bool int, int, int *);
12729
void vec_stl (vector signed short, int, vector signed short *);
12730
void vec_stl (vector signed short, int, short *);
12731
void vec_stl (vector unsigned short, int, vector unsigned short *);
12732
void vec_stl (vector unsigned short, int, unsigned short *);
12733
void vec_stl (vector bool short, int, vector bool short *);
12734
void vec_stl (vector bool short, int, unsigned short *);
12735
void vec_stl (vector bool short, int, short *);
12736
void vec_stl (vector pixel, int, vector pixel *);
12737
void vec_stl (vector pixel, int, unsigned short *);
12738
void vec_stl (vector pixel, int, short *);
12739
void vec_stl (vector signed char, int, vector signed char *);
12740
void vec_stl (vector signed char, int, signed char *);
12741
void vec_stl (vector unsigned char, int, vector unsigned char *);
12742
void vec_stl (vector unsigned char, int, unsigned char *);
12743
void vec_stl (vector bool char, int, vector bool char *);
12744
void vec_stl (vector bool char, int, unsigned char *);
12745
void vec_stl (vector bool char, int, signed char *);
12746
 
12747
vector signed char vec_sub (vector bool char, vector signed char);
12748
vector signed char vec_sub (vector signed char, vector bool char);
12749
vector signed char vec_sub (vector signed char, vector signed char);
12750
vector unsigned char vec_sub (vector bool char, vector unsigned char);
12751
vector unsigned char vec_sub (vector unsigned char, vector bool char);
12752
vector unsigned char vec_sub (vector unsigned char,
12753
                              vector unsigned char);
12754
vector signed short vec_sub (vector bool short, vector signed short);
12755
vector signed short vec_sub (vector signed short, vector bool short);
12756
vector signed short vec_sub (vector signed short, vector signed short);
12757
vector unsigned short vec_sub (vector bool short,
12758
                               vector unsigned short);
12759
vector unsigned short vec_sub (vector unsigned short,
12760
                               vector bool short);
12761
vector unsigned short vec_sub (vector unsigned short,
12762
                               vector unsigned short);
12763
vector signed int vec_sub (vector bool int, vector signed int);
12764
vector signed int vec_sub (vector signed int, vector bool int);
12765
vector signed int vec_sub (vector signed int, vector signed int);
12766
vector unsigned int vec_sub (vector bool int, vector unsigned int);
12767
vector unsigned int vec_sub (vector unsigned int, vector bool int);
12768
vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
12769
vector float vec_sub (vector float, vector float);
12770
 
12771
vector float vec_vsubfp (vector float, vector float);
12772
 
12773
vector signed int vec_vsubuwm (vector bool int, vector signed int);
12774
vector signed int vec_vsubuwm (vector signed int, vector bool int);
12775
vector signed int vec_vsubuwm (vector signed int, vector signed int);
12776
vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
12777
vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
12778
vector unsigned int vec_vsubuwm (vector unsigned int,
12779
                                 vector unsigned int);
12780
 
12781
vector signed short vec_vsubuhm (vector bool short,
12782
                                 vector signed short);
12783
vector signed short vec_vsubuhm (vector signed short,
12784
                                 vector bool short);
12785
vector signed short vec_vsubuhm (vector signed short,
12786
                                 vector signed short);
12787
vector unsigned short vec_vsubuhm (vector bool short,
12788
                                   vector unsigned short);
12789
vector unsigned short vec_vsubuhm (vector unsigned short,
12790
                                   vector bool short);
12791
vector unsigned short vec_vsubuhm (vector unsigned short,
12792
                                   vector unsigned short);
12793
 
12794
vector signed char vec_vsububm (vector bool char, vector signed char);
12795
vector signed char vec_vsububm (vector signed char, vector bool char);
12796
vector signed char vec_vsububm (vector signed char, vector signed char);
12797
vector unsigned char vec_vsububm (vector bool char,
12798
                                  vector unsigned char);
12799
vector unsigned char vec_vsububm (vector unsigned char,
12800
                                  vector bool char);
12801
vector unsigned char vec_vsububm (vector unsigned char,
12802
                                  vector unsigned char);
12803
 
12804
vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
12805
 
12806
vector unsigned char vec_subs (vector bool char, vector unsigned char);
12807
vector unsigned char vec_subs (vector unsigned char, vector bool char);
12808
vector unsigned char vec_subs (vector unsigned char,
12809
                               vector unsigned char);
12810
vector signed char vec_subs (vector bool char, vector signed char);
12811
vector signed char vec_subs (vector signed char, vector bool char);
12812
vector signed char vec_subs (vector signed char, vector signed char);
12813
vector unsigned short vec_subs (vector bool short,
12814
                                vector unsigned short);
12815
vector unsigned short vec_subs (vector unsigned short,
12816
                                vector bool short);
12817
vector unsigned short vec_subs (vector unsigned short,
12818
                                vector unsigned short);
12819
vector signed short vec_subs (vector bool short, vector signed short);
12820
vector signed short vec_subs (vector signed short, vector bool short);
12821
vector signed short vec_subs (vector signed short, vector signed short);
12822
vector unsigned int vec_subs (vector bool int, vector unsigned int);
12823
vector unsigned int vec_subs (vector unsigned int, vector bool int);
12824
vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
12825
vector signed int vec_subs (vector bool int, vector signed int);
12826
vector signed int vec_subs (vector signed int, vector bool int);
12827
vector signed int vec_subs (vector signed int, vector signed int);
12828
 
12829
vector signed int vec_vsubsws (vector bool int, vector signed int);
12830
vector signed int vec_vsubsws (vector signed int, vector bool int);
12831
vector signed int vec_vsubsws (vector signed int, vector signed int);
12832
 
12833
vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
12834
vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
12835
vector unsigned int vec_vsubuws (vector unsigned int,
12836
                                 vector unsigned int);
12837
 
12838
vector signed short vec_vsubshs (vector bool short,
12839
                                 vector signed short);
12840
vector signed short vec_vsubshs (vector signed short,
12841
                                 vector bool short);
12842
vector signed short vec_vsubshs (vector signed short,
12843
                                 vector signed short);
12844
 
12845
vector unsigned short vec_vsubuhs (vector bool short,
12846
                                   vector unsigned short);
12847
vector unsigned short vec_vsubuhs (vector unsigned short,
12848
                                   vector bool short);
12849
vector unsigned short vec_vsubuhs (vector unsigned short,
12850
                                   vector unsigned short);
12851
 
12852
vector signed char vec_vsubsbs (vector bool char, vector signed char);
12853
vector signed char vec_vsubsbs (vector signed char, vector bool char);
12854
vector signed char vec_vsubsbs (vector signed char, vector signed char);
12855
 
12856
vector unsigned char vec_vsububs (vector bool char,
12857
                                  vector unsigned char);
12858
vector unsigned char vec_vsububs (vector unsigned char,
12859
                                  vector bool char);
12860
vector unsigned char vec_vsububs (vector unsigned char,
12861
                                  vector unsigned char);
12862
 
12863
vector unsigned int vec_sum4s (vector unsigned char,
12864
                               vector unsigned int);
12865
vector signed int vec_sum4s (vector signed char, vector signed int);
12866
vector signed int vec_sum4s (vector signed short, vector signed int);
12867
 
12868
vector signed int vec_vsum4shs (vector signed short, vector signed int);
12869
 
12870
vector signed int vec_vsum4sbs (vector signed char, vector signed int);
12871
 
12872
vector unsigned int vec_vsum4ubs (vector unsigned char,
12873
                                  vector unsigned int);
12874
 
12875
vector signed int vec_sum2s (vector signed int, vector signed int);
12876
 
12877
vector signed int vec_sums (vector signed int, vector signed int);
12878
 
12879
vector float vec_trunc (vector float);
12880
 
12881
vector signed short vec_unpackh (vector signed char);
12882
vector bool short vec_unpackh (vector bool char);
12883
vector signed int vec_unpackh (vector signed short);
12884
vector bool int vec_unpackh (vector bool short);
12885
vector unsigned int vec_unpackh (vector pixel);
12886
 
12887
vector bool int vec_vupkhsh (vector bool short);
12888
vector signed int vec_vupkhsh (vector signed short);
12889
 
12890
vector unsigned int vec_vupkhpx (vector pixel);
12891
 
12892
vector bool short vec_vupkhsb (vector bool char);
12893
vector signed short vec_vupkhsb (vector signed char);
12894
 
12895
vector signed short vec_unpackl (vector signed char);
12896
vector bool short vec_unpackl (vector bool char);
12897
vector unsigned int vec_unpackl (vector pixel);
12898
vector signed int vec_unpackl (vector signed short);
12899
vector bool int vec_unpackl (vector bool short);
12900
 
12901
vector unsigned int vec_vupklpx (vector pixel);
12902
 
12903
vector bool int vec_vupklsh (vector bool short);
12904
vector signed int vec_vupklsh (vector signed short);
12905
 
12906
vector bool short vec_vupklsb (vector bool char);
12907
vector signed short vec_vupklsb (vector signed char);
12908
 
12909
vector float vec_xor (vector float, vector float);
12910
vector float vec_xor (vector float, vector bool int);
12911
vector float vec_xor (vector bool int, vector float);
12912
vector bool int vec_xor (vector bool int, vector bool int);
12913
vector signed int vec_xor (vector bool int, vector signed int);
12914
vector signed int vec_xor (vector signed int, vector bool int);
12915
vector signed int vec_xor (vector signed int, vector signed int);
12916
vector unsigned int vec_xor (vector bool int, vector unsigned int);
12917
vector unsigned int vec_xor (vector unsigned int, vector bool int);
12918
vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
12919
vector bool short vec_xor (vector bool short, vector bool short);
12920
vector signed short vec_xor (vector bool short, vector signed short);
12921
vector signed short vec_xor (vector signed short, vector bool short);
12922
vector signed short vec_xor (vector signed short, vector signed short);
12923
vector unsigned short vec_xor (vector bool short,
12924
                               vector unsigned short);
12925
vector unsigned short vec_xor (vector unsigned short,
12926
                               vector bool short);
12927
vector unsigned short vec_xor (vector unsigned short,
12928
                               vector unsigned short);
12929
vector signed char vec_xor (vector bool char, vector signed char);
12930
vector bool char vec_xor (vector bool char, vector bool char);
12931
vector signed char vec_xor (vector signed char, vector bool char);
12932
vector signed char vec_xor (vector signed char, vector signed char);
12933
vector unsigned char vec_xor (vector bool char, vector unsigned char);
12934
vector unsigned char vec_xor (vector unsigned char, vector bool char);
12935
vector unsigned char vec_xor (vector unsigned char,
12936
                              vector unsigned char);
12937
 
12938
int vec_all_eq (vector signed char, vector bool char);
12939
int vec_all_eq (vector signed char, vector signed char);
12940
int vec_all_eq (vector unsigned char, vector bool char);
12941
int vec_all_eq (vector unsigned char, vector unsigned char);
12942
int vec_all_eq (vector bool char, vector bool char);
12943
int vec_all_eq (vector bool char, vector unsigned char);
12944
int vec_all_eq (vector bool char, vector signed char);
12945
int vec_all_eq (vector signed short, vector bool short);
12946
int vec_all_eq (vector signed short, vector signed short);
12947
int vec_all_eq (vector unsigned short, vector bool short);
12948
int vec_all_eq (vector unsigned short, vector unsigned short);
12949
int vec_all_eq (vector bool short, vector bool short);
12950
int vec_all_eq (vector bool short, vector unsigned short);
12951
int vec_all_eq (vector bool short, vector signed short);
12952
int vec_all_eq (vector pixel, vector pixel);
12953
int vec_all_eq (vector signed int, vector bool int);
12954
int vec_all_eq (vector signed int, vector signed int);
12955
int vec_all_eq (vector unsigned int, vector bool int);
12956
int vec_all_eq (vector unsigned int, vector unsigned int);
12957
int vec_all_eq (vector bool int, vector bool int);
12958
int vec_all_eq (vector bool int, vector unsigned int);
12959
int vec_all_eq (vector bool int, vector signed int);
12960
int vec_all_eq (vector float, vector float);
12961
 
12962
int vec_all_ge (vector bool char, vector unsigned char);
12963
int vec_all_ge (vector unsigned char, vector bool char);
12964
int vec_all_ge (vector unsigned char, vector unsigned char);
12965
int vec_all_ge (vector bool char, vector signed char);
12966
int vec_all_ge (vector signed char, vector bool char);
12967
int vec_all_ge (vector signed char, vector signed char);
12968
int vec_all_ge (vector bool short, vector unsigned short);
12969
int vec_all_ge (vector unsigned short, vector bool short);
12970
int vec_all_ge (vector unsigned short, vector unsigned short);
12971
int vec_all_ge (vector signed short, vector signed short);
12972
int vec_all_ge (vector bool short, vector signed short);
12973
int vec_all_ge (vector signed short, vector bool short);
12974
int vec_all_ge (vector bool int, vector unsigned int);
12975
int vec_all_ge (vector unsigned int, vector bool int);
12976
int vec_all_ge (vector unsigned int, vector unsigned int);
12977
int vec_all_ge (vector bool int, vector signed int);
12978
int vec_all_ge (vector signed int, vector bool int);
12979
int vec_all_ge (vector signed int, vector signed int);
12980
int vec_all_ge (vector float, vector float);
12981
 
12982
int vec_all_gt (vector bool char, vector unsigned char);
12983
int vec_all_gt (vector unsigned char, vector bool char);
12984
int vec_all_gt (vector unsigned char, vector unsigned char);
12985
int vec_all_gt (vector bool char, vector signed char);
12986
int vec_all_gt (vector signed char, vector bool char);
12987
int vec_all_gt (vector signed char, vector signed char);
12988
int vec_all_gt (vector bool short, vector unsigned short);
12989
int vec_all_gt (vector unsigned short, vector bool short);
12990
int vec_all_gt (vector unsigned short, vector unsigned short);
12991
int vec_all_gt (vector bool short, vector signed short);
12992
int vec_all_gt (vector signed short, vector bool short);
12993
int vec_all_gt (vector signed short, vector signed short);
12994
int vec_all_gt (vector bool int, vector unsigned int);
12995
int vec_all_gt (vector unsigned int, vector bool int);
12996
int vec_all_gt (vector unsigned int, vector unsigned int);
12997
int vec_all_gt (vector bool int, vector signed int);
12998
int vec_all_gt (vector signed int, vector bool int);
12999
int vec_all_gt (vector signed int, vector signed int);
13000
int vec_all_gt (vector float, vector float);
13001
 
13002
int vec_all_in (vector float, vector float);
13003
 
13004
int vec_all_le (vector bool char, vector unsigned char);
13005
int vec_all_le (vector unsigned char, vector bool char);
13006
int vec_all_le (vector unsigned char, vector unsigned char);
13007
int vec_all_le (vector bool char, vector signed char);
13008
int vec_all_le (vector signed char, vector bool char);
13009
int vec_all_le (vector signed char, vector signed char);
13010
int vec_all_le (vector bool short, vector unsigned short);
13011
int vec_all_le (vector unsigned short, vector bool short);
13012
int vec_all_le (vector unsigned short, vector unsigned short);
13013
int vec_all_le (vector bool short, vector signed short);
13014
int vec_all_le (vector signed short, vector bool short);
13015
int vec_all_le (vector signed short, vector signed short);
13016
int vec_all_le (vector bool int, vector unsigned int);
13017
int vec_all_le (vector unsigned int, vector bool int);
13018
int vec_all_le (vector unsigned int, vector unsigned int);
13019
int vec_all_le (vector bool int, vector signed int);
13020
int vec_all_le (vector signed int, vector bool int);
13021
int vec_all_le (vector signed int, vector signed int);
13022
int vec_all_le (vector float, vector float);
13023
 
13024
int vec_all_lt (vector bool char, vector unsigned char);
13025
int vec_all_lt (vector unsigned char, vector bool char);
13026
int vec_all_lt (vector unsigned char, vector unsigned char);
13027
int vec_all_lt (vector bool char, vector signed char);
13028
int vec_all_lt (vector signed char, vector bool char);
13029
int vec_all_lt (vector signed char, vector signed char);
13030
int vec_all_lt (vector bool short, vector unsigned short);
13031
int vec_all_lt (vector unsigned short, vector bool short);
13032
int vec_all_lt (vector unsigned short, vector unsigned short);
13033
int vec_all_lt (vector bool short, vector signed short);
13034
int vec_all_lt (vector signed short, vector bool short);
13035
int vec_all_lt (vector signed short, vector signed short);
13036
int vec_all_lt (vector bool int, vector unsigned int);
13037
int vec_all_lt (vector unsigned int, vector bool int);
13038
int vec_all_lt (vector unsigned int, vector unsigned int);
13039
int vec_all_lt (vector bool int, vector signed int);
13040
int vec_all_lt (vector signed int, vector bool int);
13041
int vec_all_lt (vector signed int, vector signed int);
13042
int vec_all_lt (vector float, vector float);
13043
 
13044
int vec_all_nan (vector float);
13045
 
13046
int vec_all_ne (vector signed char, vector bool char);
13047
int vec_all_ne (vector signed char, vector signed char);
13048
int vec_all_ne (vector unsigned char, vector bool char);
13049
int vec_all_ne (vector unsigned char, vector unsigned char);
13050
int vec_all_ne (vector bool char, vector bool char);
13051
int vec_all_ne (vector bool char, vector unsigned char);
13052
int vec_all_ne (vector bool char, vector signed char);
13053
int vec_all_ne (vector signed short, vector bool short);
13054
int vec_all_ne (vector signed short, vector signed short);
13055
int vec_all_ne (vector unsigned short, vector bool short);
13056
int vec_all_ne (vector unsigned short, vector unsigned short);
13057
int vec_all_ne (vector bool short, vector bool short);
13058
int vec_all_ne (vector bool short, vector unsigned short);
13059
int vec_all_ne (vector bool short, vector signed short);
13060
int vec_all_ne (vector pixel, vector pixel);
13061
int vec_all_ne (vector signed int, vector bool int);
13062
int vec_all_ne (vector signed int, vector signed int);
13063
int vec_all_ne (vector unsigned int, vector bool int);
13064
int vec_all_ne (vector unsigned int, vector unsigned int);
13065
int vec_all_ne (vector bool int, vector bool int);
13066
int vec_all_ne (vector bool int, vector unsigned int);
13067
int vec_all_ne (vector bool int, vector signed int);
13068
int vec_all_ne (vector float, vector float);
13069
 
13070
int vec_all_nge (vector float, vector float);
13071
 
13072
int vec_all_ngt (vector float, vector float);
13073
 
13074
int vec_all_nle (vector float, vector float);
13075
 
13076
int vec_all_nlt (vector float, vector float);
13077
 
13078
int vec_all_numeric (vector float);
13079
 
13080
int vec_any_eq (vector signed char, vector bool char);
13081
int vec_any_eq (vector signed char, vector signed char);
13082
int vec_any_eq (vector unsigned char, vector bool char);
13083
int vec_any_eq (vector unsigned char, vector unsigned char);
13084
int vec_any_eq (vector bool char, vector bool char);
13085
int vec_any_eq (vector bool char, vector unsigned char);
13086
int vec_any_eq (vector bool char, vector signed char);
13087
int vec_any_eq (vector signed short, vector bool short);
13088
int vec_any_eq (vector signed short, vector signed short);
13089
int vec_any_eq (vector unsigned short, vector bool short);
13090
int vec_any_eq (vector unsigned short, vector unsigned short);
13091
int vec_any_eq (vector bool short, vector bool short);
13092
int vec_any_eq (vector bool short, vector unsigned short);
13093
int vec_any_eq (vector bool short, vector signed short);
13094
int vec_any_eq (vector pixel, vector pixel);
13095
int vec_any_eq (vector signed int, vector bool int);
13096
int vec_any_eq (vector signed int, vector signed int);
13097
int vec_any_eq (vector unsigned int, vector bool int);
13098
int vec_any_eq (vector unsigned int, vector unsigned int);
13099
int vec_any_eq (vector bool int, vector bool int);
13100
int vec_any_eq (vector bool int, vector unsigned int);
13101
int vec_any_eq (vector bool int, vector signed int);
13102
int vec_any_eq (vector float, vector float);
13103
 
13104
int vec_any_ge (vector signed char, vector bool char);
13105
int vec_any_ge (vector unsigned char, vector bool char);
13106
int vec_any_ge (vector unsigned char, vector unsigned char);
13107
int vec_any_ge (vector signed char, vector signed char);
13108
int vec_any_ge (vector bool char, vector unsigned char);
13109
int vec_any_ge (vector bool char, vector signed char);
13110
int vec_any_ge (vector unsigned short, vector bool short);
13111
int vec_any_ge (vector unsigned short, vector unsigned short);
13112
int vec_any_ge (vector signed short, vector signed short);
13113
int vec_any_ge (vector signed short, vector bool short);
13114
int vec_any_ge (vector bool short, vector unsigned short);
13115
int vec_any_ge (vector bool short, vector signed short);
13116
int vec_any_ge (vector signed int, vector bool int);
13117
int vec_any_ge (vector unsigned int, vector bool int);
13118
int vec_any_ge (vector unsigned int, vector unsigned int);
13119
int vec_any_ge (vector signed int, vector signed int);
13120
int vec_any_ge (vector bool int, vector unsigned int);
13121
int vec_any_ge (vector bool int, vector signed int);
13122
int vec_any_ge (vector float, vector float);
13123
 
13124
int vec_any_gt (vector bool char, vector unsigned char);
13125
int vec_any_gt (vector unsigned char, vector bool char);
13126
int vec_any_gt (vector unsigned char, vector unsigned char);
13127
int vec_any_gt (vector bool char, vector signed char);
13128
int vec_any_gt (vector signed char, vector bool char);
13129
int vec_any_gt (vector signed char, vector signed char);
13130
int vec_any_gt (vector bool short, vector unsigned short);
13131
int vec_any_gt (vector unsigned short, vector bool short);
13132
int vec_any_gt (vector unsigned short, vector unsigned short);
13133
int vec_any_gt (vector bool short, vector signed short);
13134
int vec_any_gt (vector signed short, vector bool short);
13135
int vec_any_gt (vector signed short, vector signed short);
13136
int vec_any_gt (vector bool int, vector unsigned int);
13137
int vec_any_gt (vector unsigned int, vector bool int);
13138
int vec_any_gt (vector unsigned int, vector unsigned int);
13139
int vec_any_gt (vector bool int, vector signed int);
13140
int vec_any_gt (vector signed int, vector bool int);
13141
int vec_any_gt (vector signed int, vector signed int);
13142
int vec_any_gt (vector float, vector float);
13143
 
13144
int vec_any_le (vector bool char, vector unsigned char);
13145
int vec_any_le (vector unsigned char, vector bool char);
13146
int vec_any_le (vector unsigned char, vector unsigned char);
13147
int vec_any_le (vector bool char, vector signed char);
13148
int vec_any_le (vector signed char, vector bool char);
13149
int vec_any_le (vector signed char, vector signed char);
13150
int vec_any_le (vector bool short, vector unsigned short);
13151
int vec_any_le (vector unsigned short, vector bool short);
13152
int vec_any_le (vector unsigned short, vector unsigned short);
13153
int vec_any_le (vector bool short, vector signed short);
13154
int vec_any_le (vector signed short, vector bool short);
13155
int vec_any_le (vector signed short, vector signed short);
13156
int vec_any_le (vector bool int, vector unsigned int);
13157
int vec_any_le (vector unsigned int, vector bool int);
13158
int vec_any_le (vector unsigned int, vector unsigned int);
13159
int vec_any_le (vector bool int, vector signed int);
13160
int vec_any_le (vector signed int, vector bool int);
13161
int vec_any_le (vector signed int, vector signed int);
13162
int vec_any_le (vector float, vector float);
13163
 
13164
int vec_any_lt (vector bool char, vector unsigned char);
13165
int vec_any_lt (vector unsigned char, vector bool char);
13166
int vec_any_lt (vector unsigned char, vector unsigned char);
13167
int vec_any_lt (vector bool char, vector signed char);
13168
int vec_any_lt (vector signed char, vector bool char);
13169
int vec_any_lt (vector signed char, vector signed char);
13170
int vec_any_lt (vector bool short, vector unsigned short);
13171
int vec_any_lt (vector unsigned short, vector bool short);
13172
int vec_any_lt (vector unsigned short, vector unsigned short);
13173
int vec_any_lt (vector bool short, vector signed short);
13174
int vec_any_lt (vector signed short, vector bool short);
13175
int vec_any_lt (vector signed short, vector signed short);
13176
int vec_any_lt (vector bool int, vector unsigned int);
13177
int vec_any_lt (vector unsigned int, vector bool int);
13178
int vec_any_lt (vector unsigned int, vector unsigned int);
13179
int vec_any_lt (vector bool int, vector signed int);
13180
int vec_any_lt (vector signed int, vector bool int);
13181
int vec_any_lt (vector signed int, vector signed int);
13182
int vec_any_lt (vector float, vector float);
13183
 
13184
int vec_any_nan (vector float);
13185
 
13186
int vec_any_ne (vector signed char, vector bool char);
13187
int vec_any_ne (vector signed char, vector signed char);
13188
int vec_any_ne (vector unsigned char, vector bool char);
13189
int vec_any_ne (vector unsigned char, vector unsigned char);
13190
int vec_any_ne (vector bool char, vector bool char);
13191
int vec_any_ne (vector bool char, vector unsigned char);
13192
int vec_any_ne (vector bool char, vector signed char);
13193
int vec_any_ne (vector signed short, vector bool short);
13194
int vec_any_ne (vector signed short, vector signed short);
13195
int vec_any_ne (vector unsigned short, vector bool short);
13196
int vec_any_ne (vector unsigned short, vector unsigned short);
13197
int vec_any_ne (vector bool short, vector bool short);
13198
int vec_any_ne (vector bool short, vector unsigned short);
13199
int vec_any_ne (vector bool short, vector signed short);
13200
int vec_any_ne (vector pixel, vector pixel);
13201
int vec_any_ne (vector signed int, vector bool int);
13202
int vec_any_ne (vector signed int, vector signed int);
13203
int vec_any_ne (vector unsigned int, vector bool int);
13204
int vec_any_ne (vector unsigned int, vector unsigned int);
13205
int vec_any_ne (vector bool int, vector bool int);
13206
int vec_any_ne (vector bool int, vector unsigned int);
13207
int vec_any_ne (vector bool int, vector signed int);
13208
int vec_any_ne (vector float, vector float);
13209
 
13210
int vec_any_nge (vector float, vector float);
13211
 
13212
int vec_any_ngt (vector float, vector float);
13213
 
13214
int vec_any_nle (vector float, vector float);
13215
 
13216
int vec_any_nlt (vector float, vector float);
13217
 
13218
int vec_any_numeric (vector float);
13219
 
13220
int vec_any_out (vector float, vector float);
13221
@end smallexample
13222
 
13223
If the vector/scalar (VSX) instruction set is available, the following
13224
additional functions are available:
13225
 
13226
@smallexample
13227
vector double vec_abs (vector double);
13228
vector double vec_add (vector double, vector double);
13229
vector double vec_and (vector double, vector double);
13230
vector double vec_and (vector double, vector bool long);
13231
vector double vec_and (vector bool long, vector double);
13232
vector double vec_andc (vector double, vector double);
13233
vector double vec_andc (vector double, vector bool long);
13234
vector double vec_andc (vector bool long, vector double);
13235
vector double vec_ceil (vector double);
13236
vector bool long vec_cmpeq (vector double, vector double);
13237
vector bool long vec_cmpge (vector double, vector double);
13238
vector bool long vec_cmpgt (vector double, vector double);
13239
vector bool long vec_cmple (vector double, vector double);
13240
vector bool long vec_cmplt (vector double, vector double);
13241
vector float vec_div (vector float, vector float);
13242
vector double vec_div (vector double, vector double);
13243
vector double vec_floor (vector double);
13244
vector double vec_ld (int, const vector double *);
13245
vector double vec_ld (int, const double *);
13246
vector double vec_ldl (int, const vector double *);
13247
vector double vec_ldl (int, const double *);
13248
vector unsigned char vec_lvsl (int, const volatile double *);
13249
vector unsigned char vec_lvsr (int, const volatile double *);
13250
vector double vec_madd (vector double, vector double, vector double);
13251
vector double vec_max (vector double, vector double);
13252
vector double vec_min (vector double, vector double);
13253
vector float vec_msub (vector float, vector float, vector float);
13254
vector double vec_msub (vector double, vector double, vector double);
13255
vector float vec_mul (vector float, vector float);
13256
vector double vec_mul (vector double, vector double);
13257
vector float vec_nearbyint (vector float);
13258
vector double vec_nearbyint (vector double);
13259
vector float vec_nmadd (vector float, vector float, vector float);
13260
vector double vec_nmadd (vector double, vector double, vector double);
13261
vector double vec_nmsub (vector double, vector double, vector double);
13262
vector double vec_nor (vector double, vector double);
13263
vector double vec_or (vector double, vector double);
13264
vector double vec_or (vector double, vector bool long);
13265
vector double vec_or (vector bool long, vector double);
13266
vector double vec_perm (vector double,
13267
                        vector double,
13268
                        vector unsigned char);
13269
vector double vec_rint (vector double);
13270
vector double vec_recip (vector double, vector double);
13271
vector double vec_rsqrt (vector double);
13272
vector double vec_rsqrte (vector double);
13273
vector double vec_sel (vector double, vector double, vector bool long);
13274
vector double vec_sel (vector double, vector double, vector unsigned long);
13275
vector double vec_sub (vector double, vector double);
13276
vector float vec_sqrt (vector float);
13277
vector double vec_sqrt (vector double);
13278
void vec_st (vector double, int, vector double *);
13279
void vec_st (vector double, int, double *);
13280
vector double vec_trunc (vector double);
13281
vector double vec_xor (vector double, vector double);
13282
vector double vec_xor (vector double, vector bool long);
13283
vector double vec_xor (vector bool long, vector double);
13284
int vec_all_eq (vector double, vector double);
13285
int vec_all_ge (vector double, vector double);
13286
int vec_all_gt (vector double, vector double);
13287
int vec_all_le (vector double, vector double);
13288
int vec_all_lt (vector double, vector double);
13289
int vec_all_nan (vector double);
13290
int vec_all_ne (vector double, vector double);
13291
int vec_all_nge (vector double, vector double);
13292
int vec_all_ngt (vector double, vector double);
13293
int vec_all_nle (vector double, vector double);
13294
int vec_all_nlt (vector double, vector double);
13295
int vec_all_numeric (vector double);
13296
int vec_any_eq (vector double, vector double);
13297
int vec_any_ge (vector double, vector double);
13298
int vec_any_gt (vector double, vector double);
13299
int vec_any_le (vector double, vector double);
13300
int vec_any_lt (vector double, vector double);
13301
int vec_any_nan (vector double);
13302
int vec_any_ne (vector double, vector double);
13303
int vec_any_nge (vector double, vector double);
13304
int vec_any_ngt (vector double, vector double);
13305
int vec_any_nle (vector double, vector double);
13306
int vec_any_nlt (vector double, vector double);
13307
int vec_any_numeric (vector double);
13308
 
13309
vector double vec_vsx_ld (int, const vector double *);
13310
vector double vec_vsx_ld (int, const double *);
13311
vector float vec_vsx_ld (int, const vector float *);
13312
vector float vec_vsx_ld (int, const float *);
13313
vector bool int vec_vsx_ld (int, const vector bool int *);
13314
vector signed int vec_vsx_ld (int, const vector signed int *);
13315
vector signed int vec_vsx_ld (int, const int *);
13316
vector signed int vec_vsx_ld (int, const long *);
13317
vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
13318
vector unsigned int vec_vsx_ld (int, const unsigned int *);
13319
vector unsigned int vec_vsx_ld (int, const unsigned long *);
13320
vector bool short vec_vsx_ld (int, const vector bool short *);
13321
vector pixel vec_vsx_ld (int, const vector pixel *);
13322
vector signed short vec_vsx_ld (int, const vector signed short *);
13323
vector signed short vec_vsx_ld (int, const short *);
13324
vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
13325
vector unsigned short vec_vsx_ld (int, const unsigned short *);
13326
vector bool char vec_vsx_ld (int, const vector bool char *);
13327
vector signed char vec_vsx_ld (int, const vector signed char *);
13328
vector signed char vec_vsx_ld (int, const signed char *);
13329
vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
13330
vector unsigned char vec_vsx_ld (int, const unsigned char *);
13331
 
13332
void vec_vsx_st (vector double, int, vector double *);
13333
void vec_vsx_st (vector double, int, double *);
13334
void vec_vsx_st (vector float, int, vector float *);
13335
void vec_vsx_st (vector float, int, float *);
13336
void vec_vsx_st (vector signed int, int, vector signed int *);
13337
void vec_vsx_st (vector signed int, int, int *);
13338
void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
13339
void vec_vsx_st (vector unsigned int, int, unsigned int *);
13340
void vec_vsx_st (vector bool int, int, vector bool int *);
13341
void vec_vsx_st (vector bool int, int, unsigned int *);
13342
void vec_vsx_st (vector bool int, int, int *);
13343
void vec_vsx_st (vector signed short, int, vector signed short *);
13344
void vec_vsx_st (vector signed short, int, short *);
13345
void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
13346
void vec_vsx_st (vector unsigned short, int, unsigned short *);
13347
void vec_vsx_st (vector bool short, int, vector bool short *);
13348
void vec_vsx_st (vector bool short, int, unsigned short *);
13349
void vec_vsx_st (vector pixel, int, vector pixel *);
13350
void vec_vsx_st (vector pixel, int, unsigned short *);
13351
void vec_vsx_st (vector pixel, int, short *);
13352
void vec_vsx_st (vector bool short, int, short *);
13353
void vec_vsx_st (vector signed char, int, vector signed char *);
13354
void vec_vsx_st (vector signed char, int, signed char *);
13355
void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
13356
void vec_vsx_st (vector unsigned char, int, unsigned char *);
13357
void vec_vsx_st (vector bool char, int, vector bool char *);
13358
void vec_vsx_st (vector bool char, int, unsigned char *);
13359
void vec_vsx_st (vector bool char, int, signed char *);
13360
@end smallexample
13361
 
13362
Note that the @samp{vec_ld} and @samp{vec_st} builtins will always
13363
generate the Altivec @samp{LVX} and @samp{STVX} instructions even
13364
if the VSX instruction set is available.  The @samp{vec_vsx_ld} and
13365
@samp{vec_vsx_st} builtins will always generate the VSX @samp{LXVD2X},
13366
@samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
13367
 
13368
GCC provides a few other builtins on Powerpc to access certain instructions:
13369
@smallexample
13370
float __builtin_recipdivf (float, float);
13371
float __builtin_rsqrtf (float);
13372
double __builtin_recipdiv (double, double);
13373
double __builtin_rsqrt (double);
13374
long __builtin_bpermd (long, long);
13375
int __builtin_bswap16 (int);
13376
@end smallexample
13377
 
13378
The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
13379
@code{__builtin_rsqrtf} functions generate multiple instructions to
13380
implement the reciprocal sqrt functionality using reciprocal sqrt
13381
estimate instructions.
13382
 
13383
The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
13384
functions generate multiple instructions to implement division using
13385
the reciprocal estimate instructions.
13386
 
13387
@node RX Built-in Functions
13388
@subsection RX Built-in Functions
13389
GCC supports some of the RX instructions which cannot be expressed in
13390
the C programming language via the use of built-in functions.  The
13391
following functions are supported:
13392
 
13393
@deftypefn {Built-in Function}  void __builtin_rx_brk (void)
13394
Generates the @code{brk} machine instruction.
13395
@end deftypefn
13396
 
13397
@deftypefn {Built-in Function}  void __builtin_rx_clrpsw (int)
13398
Generates the @code{clrpsw} machine instruction to clear the specified
13399
bit in the processor status word.
13400
@end deftypefn
13401
 
13402
@deftypefn {Built-in Function}  void __builtin_rx_int (int)
13403
Generates the @code{int} machine instruction to generate an interrupt
13404
with the specified value.
13405
@end deftypefn
13406
 
13407
@deftypefn {Built-in Function}  void __builtin_rx_machi (int, int)
13408
Generates the @code{machi} machine instruction to add the result of
13409
multiplying the top 16-bits of the two arguments into the
13410
accumulator.
13411
@end deftypefn
13412
 
13413
@deftypefn {Built-in Function}  void __builtin_rx_maclo (int, int)
13414
Generates the @code{maclo} machine instruction to add the result of
13415
multiplying the bottom 16-bits of the two arguments into the
13416
accumulator.
13417
@end deftypefn
13418
 
13419
@deftypefn {Built-in Function}  void __builtin_rx_mulhi (int, int)
13420
Generates the @code{mulhi} machine instruction to place the result of
13421
multiplying the top 16-bits of the two arguments into the
13422
accumulator.
13423
@end deftypefn
13424
 
13425
@deftypefn {Built-in Function}  void __builtin_rx_mullo (int, int)
13426
Generates the @code{mullo} machine instruction to place the result of
13427
multiplying the bottom 16-bits of the two arguments into the
13428
accumulator.
13429
@end deftypefn
13430
 
13431
@deftypefn {Built-in Function}  int  __builtin_rx_mvfachi (void)
13432
Generates the @code{mvfachi} machine instruction to read the top
13433
32-bits of the accumulator.
13434
@end deftypefn
13435
 
13436
@deftypefn {Built-in Function}  int  __builtin_rx_mvfacmi (void)
13437
Generates the @code{mvfacmi} machine instruction to read the middle
13438
32-bits of the accumulator.
13439
@end deftypefn
13440
 
13441
@deftypefn {Built-in Function}  int __builtin_rx_mvfc (int)
13442
Generates the @code{mvfc} machine instruction which reads the control
13443
register specified in its argument and returns its value.
13444
@end deftypefn
13445
 
13446
@deftypefn {Built-in Function}  void __builtin_rx_mvtachi (int)
13447
Generates the @code{mvtachi} machine instruction to set the top
13448
32-bits of the accumulator.
13449
@end deftypefn
13450
 
13451
@deftypefn {Built-in Function}  void __builtin_rx_mvtaclo (int)
13452
Generates the @code{mvtaclo} machine instruction to set the bottom
13453
32-bits of the accumulator.
13454
@end deftypefn
13455
 
13456
@deftypefn {Built-in Function}  void __builtin_rx_mvtc (int reg, int val)
13457
Generates the @code{mvtc} machine instruction which sets control
13458
register number @code{reg} to @code{val}.
13459
@end deftypefn
13460
 
13461
@deftypefn {Built-in Function}  void __builtin_rx_mvtipl (int)
13462
Generates the @code{mvtipl} machine instruction set the interrupt
13463
priority level.
13464
@end deftypefn
13465
 
13466
@deftypefn {Built-in Function}  void __builtin_rx_racw (int)
13467
Generates the @code{racw} machine instruction to round the accumulator
13468
according to the specified mode.
13469
@end deftypefn
13470
 
13471
@deftypefn {Built-in Function}  int __builtin_rx_revw (int)
13472
Generates the @code{revw} machine instruction which swaps the bytes in
13473
the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
13474
and also bits 16--23 occupy bits 24--31 and vice versa.
13475
@end deftypefn
13476
 
13477
@deftypefn {Built-in Function}  void __builtin_rx_rmpa (void)
13478
Generates the @code{rmpa} machine instruction which initiates a
13479
repeated multiply and accumulate sequence.
13480
@end deftypefn
13481
 
13482
@deftypefn {Built-in Function}  void __builtin_rx_round (float)
13483
Generates the @code{round} machine instruction which returns the
13484
floating point argument rounded according to the current rounding mode
13485
set in the floating point status word register.
13486
@end deftypefn
13487
 
13488
@deftypefn {Built-in Function}  int __builtin_rx_sat (int)
13489
Generates the @code{sat} machine instruction which returns the
13490
saturated value of the argument.
13491
@end deftypefn
13492
 
13493
@deftypefn {Built-in Function}  void __builtin_rx_setpsw (int)
13494
Generates the @code{setpsw} machine instruction to set the specified
13495
bit in the processor status word.
13496
@end deftypefn
13497
 
13498
@deftypefn {Built-in Function}  void __builtin_rx_wait (void)
13499
Generates the @code{wait} machine instruction.
13500
@end deftypefn
13501
 
13502
@node SPARC VIS Built-in Functions
13503
@subsection SPARC VIS Built-in Functions
13504
 
13505
GCC supports SIMD operations on the SPARC using both the generic vector
13506
extensions (@pxref{Vector Extensions}) as well as built-in functions for
13507
the SPARC Visual Instruction Set (VIS).  When you use the @option{-mvis}
13508
switch, the VIS extension is exposed as the following built-in functions:
13509
 
13510
@smallexample
13511
typedef int v1si __attribute__ ((vector_size (4)));
13512
typedef int v2si __attribute__ ((vector_size (8)));
13513
typedef short v4hi __attribute__ ((vector_size (8)));
13514
typedef short v2hi __attribute__ ((vector_size (4)));
13515
typedef unsigned char v8qi __attribute__ ((vector_size (8)));
13516
typedef unsigned char v4qi __attribute__ ((vector_size (4)));
13517
 
13518
void __builtin_vis_write_gsr (int64_t);
13519
int64_t __builtin_vis_read_gsr (void);
13520
 
13521
void * __builtin_vis_alignaddr (void *, long);
13522
void * __builtin_vis_alignaddrl (void *, long);
13523
int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
13524
v2si __builtin_vis_faligndatav2si (v2si, v2si);
13525
v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
13526
v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
13527
 
13528
v4hi __builtin_vis_fexpand (v4qi);
13529
 
13530
v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
13531
v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
13532
v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
13533
v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
13534
v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
13535
v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
13536
v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
13537
 
13538
v4qi __builtin_vis_fpack16 (v4hi);
13539
v8qi __builtin_vis_fpack32 (v2si, v8qi);
13540
v2hi __builtin_vis_fpackfix (v2si);
13541
v8qi __builtin_vis_fpmerge (v4qi, v4qi);
13542
 
13543
int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
13544
 
13545
long __builtin_vis_edge8 (void *, void *);
13546
long __builtin_vis_edge8l (void *, void *);
13547
long __builtin_vis_edge16 (void *, void *);
13548
long __builtin_vis_edge16l (void *, void *);
13549
long __builtin_vis_edge32 (void *, void *);
13550
long __builtin_vis_edge32l (void *, void *);
13551
 
13552
long __builtin_vis_fcmple16 (v4hi, v4hi);
13553
long __builtin_vis_fcmple32 (v2si, v2si);
13554
long __builtin_vis_fcmpne16 (v4hi, v4hi);
13555
long __builtin_vis_fcmpne32 (v2si, v2si);
13556
long __builtin_vis_fcmpgt16 (v4hi, v4hi);
13557
long __builtin_vis_fcmpgt32 (v2si, v2si);
13558
long __builtin_vis_fcmpeq16 (v4hi, v4hi);
13559
long __builtin_vis_fcmpeq32 (v2si, v2si);
13560
 
13561
v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
13562
v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
13563
v2si __builtin_vis_fpadd32 (v2si, v2si);
13564
v1si __builtin_vis_fpadd32s (v1si, v1si);
13565
v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
13566
v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
13567
v2si __builtin_vis_fpsub32 (v2si, v2si);
13568
v1si __builtin_vis_fpsub32s (v1si, v1si);
13569
 
13570
long __builtin_vis_array8 (long, long);
13571
long __builtin_vis_array16 (long, long);
13572
long __builtin_vis_array32 (long, long);
13573
@end smallexample
13574
 
13575
When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
13576
functions also become available:
13577
 
13578
@smallexample
13579
long __builtin_vis_bmask (long, long);
13580
int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
13581
v2si __builtin_vis_bshufflev2si (v2si, v2si);
13582
v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
13583
v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
13584
 
13585
long __builtin_vis_edge8n (void *, void *);
13586
long __builtin_vis_edge8ln (void *, void *);
13587
long __builtin_vis_edge16n (void *, void *);
13588
long __builtin_vis_edge16ln (void *, void *);
13589
long __builtin_vis_edge32n (void *, void *);
13590
long __builtin_vis_edge32ln (void *, void *);
13591
@end smallexample
13592
 
13593
When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
13594
functions also become available:
13595
 
13596
@smallexample
13597
void __builtin_vis_cmask8 (long);
13598
void __builtin_vis_cmask16 (long);
13599
void __builtin_vis_cmask32 (long);
13600
 
13601
v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
13602
 
13603
v4hi __builtin_vis_fsll16 (v4hi, v4hi);
13604
v4hi __builtin_vis_fslas16 (v4hi, v4hi);
13605
v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
13606
v4hi __builtin_vis_fsra16 (v4hi, v4hi);
13607
v2si __builtin_vis_fsll16 (v2si, v2si);
13608
v2si __builtin_vis_fslas16 (v2si, v2si);
13609
v2si __builtin_vis_fsrl16 (v2si, v2si);
13610
v2si __builtin_vis_fsra16 (v2si, v2si);
13611
 
13612
long __builtin_vis_pdistn (v8qi, v8qi);
13613
 
13614
v4hi __builtin_vis_fmean16 (v4hi, v4hi);
13615
 
13616
int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
13617
int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
13618
 
13619
v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
13620
v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
13621
v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
13622
v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
13623
v2si __builtin_vis_fpadds32 (v2si, v2si);
13624
v1si __builtin_vis_fpadds32s (v1si, v1si);
13625
v2si __builtin_vis_fpsubs32 (v2si, v2si);
13626
v1si __builtin_vis_fpsubs32s (v1si, v1si);
13627
 
13628
long __builtin_vis_fucmple8 (v8qi, v8qi);
13629
long __builtin_vis_fucmpne8 (v8qi, v8qi);
13630
long __builtin_vis_fucmpgt8 (v8qi, v8qi);
13631
long __builtin_vis_fucmpeq8 (v8qi, v8qi);
13632
 
13633
float __builtin_vis_fhadds (float, float);
13634
double __builtin_vis_fhaddd (double, double);
13635
float __builtin_vis_fhsubs (float, float);
13636
double __builtin_vis_fhsubd (double, double);
13637
float __builtin_vis_fnhadds (float, float);
13638
double __builtin_vis_fnhaddd (double, double);
13639
 
13640
int64_t __builtin_vis_umulxhi (int64_t, int64_t);
13641
int64_t __builtin_vis_xmulx (int64_t, int64_t);
13642
int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
13643
@end smallexample
13644
 
13645
@node SPU Built-in Functions
13646
@subsection SPU Built-in Functions
13647
 
13648
GCC provides extensions for the SPU processor as described in the
13649
Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
13650
found at @uref{http://cell.scei.co.jp/} or
13651
@uref{http://www.ibm.com/developerworks/power/cell/}.  GCC's
13652
implementation differs in several ways.
13653
 
13654
@itemize @bullet
13655
 
13656
@item
13657
The optional extension of specifying vector constants in parentheses is
13658
not supported.
13659
 
13660
@item
13661
A vector initializer requires no cast if the vector constant is of the
13662
same type as the variable it is initializing.
13663
 
13664
@item
13665
If @code{signed} or @code{unsigned} is omitted, the signedness of the
13666
vector type is the default signedness of the base type.  The default
13667
varies depending on the operating system, so a portable program should
13668
always specify the signedness.
13669
 
13670
@item
13671
By default, the keyword @code{__vector} is added. The macro
13672
@code{vector} is defined in @code{<spu_intrinsics.h>} and can be
13673
undefined.
13674
 
13675
@item
13676
GCC allows using a @code{typedef} name as the type specifier for a
13677
vector type.
13678
 
13679
@item
13680
For C, overloaded functions are implemented with macros so the following
13681
does not work:
13682
 
13683
@smallexample
13684
  spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
13685
@end smallexample
13686
 
13687
Since @code{spu_add} is a macro, the vector constant in the example
13688
is treated as four separate arguments.  Wrap the entire argument in
13689
parentheses for this to work.
13690
 
13691
@item
13692
The extended version of @code{__builtin_expect} is not supported.
13693
 
13694
@end itemize
13695
 
13696
@emph{Note:} Only the interface described in the aforementioned
13697
specification is supported. Internally, GCC uses built-in functions to
13698
implement the required functionality, but these are not supported and
13699
are subject to change without notice.
13700
 
13701
@node TI C6X Built-in Functions
13702
@subsection TI C6X Built-in Functions
13703
 
13704
GCC provides intrinsics to access certain instructions of the TI C6X
13705
processors.  These intrinsics, listed below, are available after
13706
inclusion of the @code{c6x_intrinsics.h} header file.  They map directly
13707
to C6X instructions.
13708
 
13709
@smallexample
13710
 
13711
int _sadd (int, int)
13712
int _ssub (int, int)
13713
int _sadd2 (int, int)
13714
int _ssub2 (int, int)
13715
long long _mpy2 (int, int)
13716
long long _smpy2 (int, int)
13717
int _add4 (int, int)
13718
int _sub4 (int, int)
13719
int _saddu4 (int, int)
13720
 
13721
int _smpy (int, int)
13722
int _smpyh (int, int)
13723
int _smpyhl (int, int)
13724
int _smpylh (int, int)
13725
 
13726
int _sshl (int, int)
13727
int _subc (int, int)
13728
 
13729
int _avg2 (int, int)
13730
int _avgu4 (int, int)
13731
 
13732
int _clrr (int, int)
13733
int _extr (int, int)
13734
int _extru (int, int)
13735
int _abs (int)
13736
int _abs2 (int)
13737
 
13738
@end smallexample
13739
 
13740
@node TILE-Gx Built-in Functions
13741
@subsection TILE-Gx Built-in Functions
13742
 
13743
GCC provides intrinsics to access every instruction of the TILE-Gx
13744
processor.  The intrinsics are of the form:
13745
 
13746
@smallexample
13747
 
13748
unsigned long long __insn_@var{op} (...)
13749
 
13750
@end smallexample
13751
 
13752
Where @var{op} is the name of the instruction.  Refer to the ISA manual
13753
for the complete list of instructions.
13754
 
13755
GCC also provides intrinsics to directly access the network registers.
13756
The intrinsics are:
13757
 
13758
@smallexample
13759
 
13760
unsigned long long __tile_idn0_receive (void)
13761
unsigned long long __tile_idn1_receive (void)
13762
unsigned long long __tile_udn0_receive (void)
13763
unsigned long long __tile_udn1_receive (void)
13764
unsigned long long __tile_udn2_receive (void)
13765
unsigned long long __tile_udn3_receive (void)
13766
void __tile_idn_send (unsigned long long)
13767
void __tile_udn_send (unsigned long long)
13768
 
13769
@end smallexample
13770
 
13771
The intrinsic @code{void __tile_network_barrier (void)} is used to
13772
guarantee that no network operatons before it will be reordered with
13773
those after it.
13774
 
13775
@node TILEPro Built-in Functions
13776
@subsection TILEPro Built-in Functions
13777
 
13778
GCC provides intrinsics to access every instruction of the TILEPro
13779
processor.  The intrinsics are of the form:
13780
 
13781
@smallexample
13782
 
13783
unsigned __insn_@var{op} (...)
13784
 
13785
@end smallexample
13786
 
13787
Where @var{op} is the name of the instruction.  Refer to the ISA manual
13788
for the complete list of instructions.
13789
 
13790
GCC also provides intrinsics to directly access the network registers.
13791
The intrinsics are:
13792
 
13793
@smallexample
13794
 
13795
unsigned __tile_idn0_receive (void)
13796
unsigned __tile_idn1_receive (void)
13797
unsigned __tile_sn_receive (void)
13798
unsigned __tile_udn0_receive (void)
13799
unsigned __tile_udn1_receive (void)
13800
unsigned __tile_udn2_receive (void)
13801
unsigned __tile_udn3_receive (void)
13802
void __tile_idn_send (unsigned)
13803
void __tile_sn_send (unsigned)
13804
void __tile_udn_send (unsigned)
13805
 
13806
@end smallexample
13807
 
13808
The intrinsic @code{void __tile_network_barrier (void)} is used to
13809
guarantee that no network operatons before it will be reordered with
13810
those after it.
13811
 
13812
@node Target Format Checks
13813
@section Format Checks Specific to Particular Target Machines
13814
 
13815
For some target machines, GCC supports additional options to the
13816
format attribute
13817
(@pxref{Function Attributes,,Declaring Attributes of Functions}).
13818
 
13819
@menu
13820
* Solaris Format Checks::
13821
* Darwin Format Checks::
13822
@end menu
13823
 
13824
@node Solaris Format Checks
13825
@subsection Solaris Format Checks
13826
 
13827
Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
13828
check.  @code{cmn_err} accepts a subset of the standard @code{printf}
13829
conversions, and the two-argument @code{%b} conversion for displaying
13830
bit-fields.  See the Solaris man page for @code{cmn_err} for more information.
13831
 
13832
@node Darwin Format Checks
13833
@subsection Darwin Format Checks
13834
 
13835
Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
13836
attribute context.  Declarations made with such attribution will be parsed for correct syntax
13837
and format argument types.  However, parsing of the format string itself is currently undefined
13838
and will not be carried out by this version of the compiler.
13839
 
13840
Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
13841
also be used as format arguments.  Note that the relevant headers are only likely to be
13842
available on Darwin (OSX) installations.  On such installations, the XCode and system
13843
documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
13844
associated functions.
13845
 
13846
@node Pragmas
13847
@section Pragmas Accepted by GCC
13848
@cindex pragmas
13849
@cindex @code{#pragma}
13850
 
13851
GCC supports several types of pragmas, primarily in order to compile
13852
code originally written for other compilers.  Note that in general
13853
we do not recommend the use of pragmas; @xref{Function Attributes},
13854
for further explanation.
13855
 
13856
@menu
13857
* ARM Pragmas::
13858
* M32C Pragmas::
13859
* MeP Pragmas::
13860
* RS/6000 and PowerPC Pragmas::
13861
* Darwin Pragmas::
13862
* Solaris Pragmas::
13863
* Symbol-Renaming Pragmas::
13864
* Structure-Packing Pragmas::
13865
* Weak Pragmas::
13866
* Diagnostic Pragmas::
13867
* Visibility Pragmas::
13868
* Push/Pop Macro Pragmas::
13869
* Function Specific Option Pragmas::
13870
@end menu
13871
 
13872
@node ARM Pragmas
13873
@subsection ARM Pragmas
13874
 
13875
The ARM target defines pragmas for controlling the default addition of
13876
@code{long_call} and @code{short_call} attributes to functions.
13877
@xref{Function Attributes}, for information about the effects of these
13878
attributes.
13879
 
13880
@table @code
13881
@item long_calls
13882
@cindex pragma, long_calls
13883
Set all subsequent functions to have the @code{long_call} attribute.
13884
 
13885
@item no_long_calls
13886
@cindex pragma, no_long_calls
13887
Set all subsequent functions to have the @code{short_call} attribute.
13888
 
13889
@item long_calls_off
13890
@cindex pragma, long_calls_off
13891
Do not affect the @code{long_call} or @code{short_call} attributes of
13892
subsequent functions.
13893
@end table
13894
 
13895
@node M32C Pragmas
13896
@subsection M32C Pragmas
13897
 
13898
@table @code
13899
@item GCC memregs @var{number}
13900
@cindex pragma, memregs
13901
Overrides the command-line option @code{-memregs=} for the current
13902
file.  Use with care!  This pragma must be before any function in the
13903
file, and mixing different memregs values in different objects may
13904
make them incompatible.  This pragma is useful when a
13905
performance-critical function uses a memreg for temporary values,
13906
as it may allow you to reduce the number of memregs used.
13907
 
13908
@item ADDRESS @var{name} @var{address}
13909
@cindex pragma, address
13910
For any declared symbols matching @var{name}, this does three things
13911
to that symbol: it forces the symbol to be located at the given
13912
address (a number), it forces the symbol to be volatile, and it
13913
changes the symbol's scope to be static.  This pragma exists for
13914
compatibility with other compilers, but note that the common
13915
@code{1234H} numeric syntax is not supported (use @code{0x1234}
13916
instead).  Example:
13917
 
13918
@example
13919
#pragma ADDRESS port3 0x103
13920
char port3;
13921
@end example
13922
 
13923
@end table
13924
 
13925
@node MeP Pragmas
13926
@subsection MeP Pragmas
13927
 
13928
@table @code
13929
 
13930
@item custom io_volatile (on|off)
13931
@cindex pragma, custom io_volatile
13932
Overrides the command line option @code{-mio-volatile} for the current
13933
file.  Note that for compatibility with future GCC releases, this
13934
option should only be used once before any @code{io} variables in each
13935
file.
13936
 
13937
@item GCC coprocessor available @var{registers}
13938
@cindex pragma, coprocessor available
13939
Specifies which coprocessor registers are available to the register
13940
allocator.  @var{registers} may be a single register, register range
13941
separated by ellipses, or comma-separated list of those.  Example:
13942
 
13943
@example
13944
#pragma GCC coprocessor available $c0...$c10, $c28
13945
@end example
13946
 
13947
@item GCC coprocessor call_saved @var{registers}
13948
@cindex pragma, coprocessor call_saved
13949
Specifies which coprocessor registers are to be saved and restored by
13950
any function using them.  @var{registers} may be a single register,
13951
register range separated by ellipses, or comma-separated list of
13952
those.  Example:
13953
 
13954
@example
13955
#pragma GCC coprocessor call_saved $c4...$c6, $c31
13956
@end example
13957
 
13958
@item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
13959
@cindex pragma, coprocessor subclass
13960
Creates and defines a register class.  These register classes can be
13961
used by inline @code{asm} constructs.  @var{registers} may be a single
13962
register, register range separated by ellipses, or comma-separated
13963
list of those.  Example:
13964
 
13965
@example
13966
#pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
13967
 
13968
asm ("cpfoo %0" : "=B" (x));
13969
@end example
13970
 
13971
@item GCC disinterrupt @var{name} , @var{name} @dots{}
13972
@cindex pragma, disinterrupt
13973
For the named functions, the compiler adds code to disable interrupts
13974
for the duration of those functions.  Any functions so named, which
13975
are not encountered in the source, cause a warning that the pragma was
13976
not used.  Examples:
13977
 
13978
@example
13979
#pragma disinterrupt foo
13980
#pragma disinterrupt bar, grill
13981
int foo () @{ @dots{} @}
13982
@end example
13983
 
13984
@item GCC call @var{name} , @var{name} @dots{}
13985
@cindex pragma, call
13986
For the named functions, the compiler always uses a register-indirect
13987
call model when calling the named functions.  Examples:
13988
 
13989
@example
13990
extern int foo ();
13991
#pragma call foo
13992
@end example
13993
 
13994
@end table
13995
 
13996
@node RS/6000 and PowerPC Pragmas
13997
@subsection RS/6000 and PowerPC Pragmas
13998
 
13999
The RS/6000 and PowerPC targets define one pragma for controlling
14000
whether or not the @code{longcall} attribute is added to function
14001
declarations by default.  This pragma overrides the @option{-mlongcall}
14002
option, but not the @code{longcall} and @code{shortcall} attributes.
14003
@xref{RS/6000 and PowerPC Options}, for more information about when long
14004
calls are and are not necessary.
14005
 
14006
@table @code
14007
@item longcall (1)
14008
@cindex pragma, longcall
14009
Apply the @code{longcall} attribute to all subsequent function
14010
declarations.
14011
 
14012
@item longcall (0)
14013
Do not apply the @code{longcall} attribute to subsequent function
14014
declarations.
14015
@end table
14016
 
14017
@c Describe h8300 pragmas here.
14018
@c Describe sh pragmas here.
14019
@c Describe v850 pragmas here.
14020
 
14021
@node Darwin Pragmas
14022
@subsection Darwin Pragmas
14023
 
14024
The following pragmas are available for all architectures running the
14025
Darwin operating system.  These are useful for compatibility with other
14026
Mac OS compilers.
14027
 
14028
@table @code
14029
@item mark @var{tokens}@dots{}
14030
@cindex pragma, mark
14031
This pragma is accepted, but has no effect.
14032
 
14033
@item options align=@var{alignment}
14034
@cindex pragma, options align
14035
This pragma sets the alignment of fields in structures.  The values of
14036
@var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
14037
@code{power}, to emulate PowerPC alignment.  Uses of this pragma nest
14038
properly; to restore the previous setting, use @code{reset} for the
14039
@var{alignment}.
14040
 
14041
@item segment @var{tokens}@dots{}
14042
@cindex pragma, segment
14043
This pragma is accepted, but has no effect.
14044
 
14045
@item unused (@var{var} [, @var{var}]@dots{})
14046
@cindex pragma, unused
14047
This pragma declares variables to be possibly unused.  GCC will not
14048
produce warnings for the listed variables.  The effect is similar to
14049
that of the @code{unused} attribute, except that this pragma may appear
14050
anywhere within the variables' scopes.
14051
@end table
14052
 
14053
@node Solaris Pragmas
14054
@subsection Solaris Pragmas
14055
 
14056
The Solaris target supports @code{#pragma redefine_extname}
14057
(@pxref{Symbol-Renaming Pragmas}).  It also supports additional
14058
@code{#pragma} directives for compatibility with the system compiler.
14059
 
14060
@table @code
14061
@item align @var{alignment} (@var{variable} [, @var{variable}]...)
14062
@cindex pragma, align
14063
 
14064
Increase the minimum alignment of each @var{variable} to @var{alignment}.
14065
This is the same as GCC's @code{aligned} attribute @pxref{Variable
14066
Attributes}).  Macro expansion occurs on the arguments to this pragma
14067
when compiling C and Objective-C@.  It does not currently occur when
14068
compiling C++, but this is a bug which may be fixed in a future
14069
release.
14070
 
14071
@item fini (@var{function} [, @var{function}]...)
14072
@cindex pragma, fini
14073
 
14074
This pragma causes each listed @var{function} to be called after
14075
main, or during shared module unloading, by adding a call to the
14076
@code{.fini} section.
14077
 
14078
@item init (@var{function} [, @var{function}]...)
14079
@cindex pragma, init
14080
 
14081
This pragma causes each listed @var{function} to be called during
14082
initialization (before @code{main}) or during shared module loading, by
14083
adding a call to the @code{.init} section.
14084
 
14085
@end table
14086
 
14087
@node Symbol-Renaming Pragmas
14088
@subsection Symbol-Renaming Pragmas
14089
 
14090
For compatibility with the Solaris and Tru64 UNIX system headers, GCC
14091
supports two @code{#pragma} directives which change the name used in
14092
assembly for a given declaration.  @code{#pragma extern_prefix} is only
14093
available on platforms whose system headers need it. To get this effect
14094
on all platforms supported by GCC, use the asm labels extension (@pxref{Asm
14095
Labels}).
14096
 
14097
@table @code
14098
@item redefine_extname @var{oldname} @var{newname}
14099
@cindex pragma, redefine_extname
14100
 
14101
This pragma gives the C function @var{oldname} the assembly symbol
14102
@var{newname}.  The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
14103
will be defined if this pragma is available (currently on all platforms).
14104
 
14105
@item extern_prefix @var{string}
14106
@cindex pragma, extern_prefix
14107
 
14108
This pragma causes all subsequent external function and variable
14109
declarations to have @var{string} prepended to their assembly symbols.
14110
This effect may be terminated with another @code{extern_prefix} pragma
14111
whose argument is an empty string.  The preprocessor macro
14112
@code{__PRAGMA_EXTERN_PREFIX} will be defined if this pragma is
14113
available (currently only on Tru64 UNIX)@.
14114
@end table
14115
 
14116
These pragmas and the asm labels extension interact in a complicated
14117
manner.  Here are some corner cases you may want to be aware of.
14118
 
14119
@enumerate
14120
@item Both pragmas silently apply only to declarations with external
14121
linkage.  Asm labels do not have this restriction.
14122
 
14123
@item In C++, both pragmas silently apply only to declarations with
14124
``C'' linkage.  Again, asm labels do not have this restriction.
14125
 
14126
@item If any of the three ways of changing the assembly name of a
14127
declaration is applied to a declaration whose assembly name has
14128
already been determined (either by a previous use of one of these
14129
features, or because the compiler needed the assembly name in order to
14130
generate code), and the new name is different, a warning issues and
14131
the name does not change.
14132
 
14133
@item The @var{oldname} used by @code{#pragma redefine_extname} is
14134
always the C-language name.
14135
 
14136
@item If @code{#pragma extern_prefix} is in effect, and a declaration
14137
occurs with an asm label attached, the prefix is silently ignored for
14138
that declaration.
14139
 
14140
@item If @code{#pragma extern_prefix} and @code{#pragma redefine_extname}
14141
apply to the same declaration, whichever triggered first wins, and a
14142
warning issues if they contradict each other.  (We would like to have
14143
@code{#pragma redefine_extname} always win, for consistency with asm
14144
labels, but if @code{#pragma extern_prefix} triggers first we have no
14145
way of knowing that that happened.)
14146
@end enumerate
14147
 
14148
@node Structure-Packing Pragmas
14149
@subsection Structure-Packing Pragmas
14150
 
14151
For compatibility with Microsoft Windows compilers, GCC supports a
14152
set of @code{#pragma} directives which change the maximum alignment of
14153
members of structures (other than zero-width bitfields), unions, and
14154
classes subsequently defined. The @var{n} value below always is required
14155
to be a small power of two and specifies the new alignment in bytes.
14156
 
14157
@enumerate
14158
@item @code{#pragma pack(@var{n})} simply sets the new alignment.
14159
@item @code{#pragma pack()} sets the alignment to the one that was in
14160
effect when compilation started (see also command-line option
14161
@option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
14162
@item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
14163
setting on an internal stack and then optionally sets the new alignment.
14164
@item @code{#pragma pack(pop)} restores the alignment setting to the one
14165
saved at the top of the internal stack (and removes that stack entry).
14166
Note that @code{#pragma pack([@var{n}])} does not influence this internal
14167
stack; thus it is possible to have @code{#pragma pack(push)} followed by
14168
multiple @code{#pragma pack(@var{n})} instances and finalized by a single
14169
@code{#pragma pack(pop)}.
14170
@end enumerate
14171
 
14172
Some targets, e.g.@: i386 and powerpc, support the @code{ms_struct}
14173
@code{#pragma} which lays out a structure as the documented
14174
@code{__attribute__ ((ms_struct))}.
14175
@enumerate
14176
@item @code{#pragma ms_struct on} turns on the layout for structures
14177
declared.
14178
@item @code{#pragma ms_struct off} turns off the layout for structures
14179
declared.
14180
@item @code{#pragma ms_struct reset} goes back to the default layout.
14181
@end enumerate
14182
 
14183
@node Weak Pragmas
14184
@subsection Weak Pragmas
14185
 
14186
For compatibility with SVR4, GCC supports a set of @code{#pragma}
14187
directives for declaring symbols to be weak, and defining weak
14188
aliases.
14189
 
14190
@table @code
14191
@item #pragma weak @var{symbol}
14192
@cindex pragma, weak
14193
This pragma declares @var{symbol} to be weak, as if the declaration
14194
had the attribute of the same name.  The pragma may appear before
14195
or after the declaration of @var{symbol}.  It is not an error for
14196
@var{symbol} to never be defined at all.
14197
 
14198
@item #pragma weak @var{symbol1} = @var{symbol2}
14199
This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
14200
It is an error if @var{symbol2} is not defined in the current
14201
translation unit.
14202
@end table
14203
 
14204
@node Diagnostic Pragmas
14205
@subsection Diagnostic Pragmas
14206
 
14207
GCC allows the user to selectively enable or disable certain types of
14208
diagnostics, and change the kind of the diagnostic.  For example, a
14209
project's policy might require that all sources compile with
14210
@option{-Werror} but certain files might have exceptions allowing
14211
specific types of warnings.  Or, a project might selectively enable
14212
diagnostics and treat them as errors depending on which preprocessor
14213
macros are defined.
14214
 
14215
@table @code
14216
@item #pragma GCC diagnostic @var{kind} @var{option}
14217
@cindex pragma, diagnostic
14218
 
14219
Modifies the disposition of a diagnostic.  Note that not all
14220
diagnostics are modifiable; at the moment only warnings (normally
14221
controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
14222
Use @option{-fdiagnostics-show-option} to determine which diagnostics
14223
are controllable and which option controls them.
14224
 
14225
@var{kind} is @samp{error} to treat this diagnostic as an error,
14226
@samp{warning} to treat it like a warning (even if @option{-Werror} is
14227
in effect), or @samp{ignored} if the diagnostic is to be ignored.
14228
@var{option} is a double quoted string which matches the command-line
14229
option.
14230
 
14231
@example
14232
#pragma GCC diagnostic warning "-Wformat"
14233
#pragma GCC diagnostic error "-Wformat"
14234
#pragma GCC diagnostic ignored "-Wformat"
14235
@end example
14236
 
14237
Note that these pragmas override any command-line options.  GCC keeps
14238
track of the location of each pragma, and issues diagnostics according
14239
to the state as of that point in the source file.  Thus, pragmas occurring
14240
after a line do not affect diagnostics caused by that line.
14241
 
14242
@item #pragma GCC diagnostic push
14243
@itemx #pragma GCC diagnostic pop
14244
 
14245
Causes GCC to remember the state of the diagnostics as of each
14246
@code{push}, and restore to that point at each @code{pop}.  If a
14247
@code{pop} has no matching @code{push}, the command line options are
14248
restored.
14249
 
14250
@example
14251
#pragma GCC diagnostic error "-Wuninitialized"
14252
  foo(a);                       /* error is given for this one */
14253
#pragma GCC diagnostic push
14254
#pragma GCC diagnostic ignored "-Wuninitialized"
14255
  foo(b);                       /* no diagnostic for this one */
14256
#pragma GCC diagnostic pop
14257
  foo(c);                       /* error is given for this one */
14258
#pragma GCC diagnostic pop
14259
  foo(d);                       /* depends on command line options */
14260
@end example
14261
 
14262
@end table
14263
 
14264
GCC also offers a simple mechanism for printing messages during
14265
compilation.
14266
 
14267
@table @code
14268
@item #pragma message @var{string}
14269
@cindex pragma, diagnostic
14270
 
14271
Prints @var{string} as a compiler message on compilation.  The message
14272
is informational only, and is neither a compilation warning nor an error.
14273
 
14274
@smallexample
14275
#pragma message "Compiling " __FILE__ "..."
14276
@end smallexample
14277
 
14278
@var{string} may be parenthesized, and is printed with location
14279
information.  For example,
14280
 
14281
@smallexample
14282
#define DO_PRAGMA(x) _Pragma (#x)
14283
#define TODO(x) DO_PRAGMA(message ("TODO - " #x))
14284
 
14285
TODO(Remember to fix this)
14286
@end smallexample
14287
 
14288
prints @samp{/tmp/file.c:4: note: #pragma message:
14289
TODO - Remember to fix this}.
14290
 
14291
@end table
14292
 
14293
@node Visibility Pragmas
14294
@subsection Visibility Pragmas
14295
 
14296
@table @code
14297
@item #pragma GCC visibility push(@var{visibility})
14298
@itemx #pragma GCC visibility pop
14299
@cindex pragma, visibility
14300
 
14301
This pragma allows the user to set the visibility for multiple
14302
declarations without having to give each a visibility attribute
14303
@xref{Function Attributes}, for more information about visibility and
14304
the attribute syntax.
14305
 
14306
In C++, @samp{#pragma GCC visibility} affects only namespace-scope
14307
declarations.  Class members and template specializations are not
14308
affected; if you want to override the visibility for a particular
14309
member or instantiation, you must use an attribute.
14310
 
14311
@end table
14312
 
14313
 
14314
@node Push/Pop Macro Pragmas
14315
@subsection Push/Pop Macro Pragmas
14316
 
14317
For compatibility with Microsoft Windows compilers, GCC supports
14318
@samp{#pragma push_macro(@var{"macro_name"})}
14319
and @samp{#pragma pop_macro(@var{"macro_name"})}.
14320
 
14321
@table @code
14322
@item #pragma push_macro(@var{"macro_name"})
14323
@cindex pragma, push_macro
14324
This pragma saves the value of the macro named as @var{macro_name} to
14325
the top of the stack for this macro.
14326
 
14327
@item #pragma pop_macro(@var{"macro_name"})
14328
@cindex pragma, pop_macro
14329
This pragma sets the value of the macro named as @var{macro_name} to
14330
the value on top of the stack for this macro. If the stack for
14331
@var{macro_name} is empty, the value of the macro remains unchanged.
14332
@end table
14333
 
14334
For example:
14335
 
14336
@smallexample
14337
#define X  1
14338
#pragma push_macro("X")
14339
#undef X
14340
#define X -1
14341
#pragma pop_macro("X")
14342
int x [X];
14343
@end smallexample
14344
 
14345
In this example, the definition of X as 1 is saved by @code{#pragma
14346
push_macro} and restored by @code{#pragma pop_macro}.
14347
 
14348
@node Function Specific Option Pragmas
14349
@subsection Function Specific Option Pragmas
14350
 
14351
@table @code
14352
@item #pragma GCC target (@var{"string"}...)
14353
@cindex pragma GCC target
14354
 
14355
This pragma allows you to set target specific options for functions
14356
defined later in the source file.  One or more strings can be
14357
specified.  Each function that is defined after this point will be as
14358
if @code{attribute((target("STRING")))} was specified for that
14359
function.  The parenthesis around the options is optional.
14360
@xref{Function Attributes}, for more information about the
14361
@code{target} attribute and the attribute syntax.
14362
 
14363
The @code{#pragma GCC target} attribute is not implemented in GCC versions earlier
14364
than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends.  At
14365
present, it is not implemented for other backends.
14366
@end table
14367
 
14368
@table @code
14369
@item #pragma GCC optimize (@var{"string"}...)
14370
@cindex pragma GCC optimize
14371
 
14372
This pragma allows you to set global optimization options for functions
14373
defined later in the source file.  One or more strings can be
14374
specified.  Each function that is defined after this point will be as
14375
if @code{attribute((optimize("STRING")))} was specified for that
14376
function.  The parenthesis around the options is optional.
14377
@xref{Function Attributes}, for more information about the
14378
@code{optimize} attribute and the attribute syntax.
14379
 
14380
The @samp{#pragma GCC optimize} pragma is not implemented in GCC
14381
versions earlier than 4.4.
14382
@end table
14383
 
14384
@table @code
14385
@item #pragma GCC push_options
14386
@itemx #pragma GCC pop_options
14387
@cindex pragma GCC push_options
14388
@cindex pragma GCC pop_options
14389
 
14390
These pragmas maintain a stack of the current target and optimization
14391
options.  It is intended for include files where you temporarily want
14392
to switch to using a different @samp{#pragma GCC target} or
14393
@samp{#pragma GCC optimize} and then to pop back to the previous
14394
options.
14395
 
14396
The @samp{#pragma GCC push_options} and @samp{#pragma GCC pop_options}
14397
pragmas are not implemented in GCC versions earlier than 4.4.
14398
@end table
14399
 
14400
@table @code
14401
@item #pragma GCC reset_options
14402
@cindex pragma GCC reset_options
14403
 
14404
This pragma clears the current @code{#pragma GCC target} and
14405
@code{#pragma GCC optimize} to use the default switches as specified
14406
on the command line.
14407
 
14408
The @samp{#pragma GCC reset_options} pragma is not implemented in GCC
14409
versions earlier than 4.4.
14410
@end table
14411
 
14412
@node Unnamed Fields
14413
@section Unnamed struct/union fields within structs/unions
14414
@cindex @code{struct}
14415
@cindex @code{union}
14416
 
14417
As permitted by ISO C11 and for compatibility with other compilers,
14418
GCC allows you to define
14419
a structure or union that contains, as fields, structures and unions
14420
without names.  For example:
14421
 
14422
@smallexample
14423
struct @{
14424
  int a;
14425
  union @{
14426
    int b;
14427
    float c;
14428
  @};
14429
  int d;
14430
@} foo;
14431
@end smallexample
14432
 
14433
In this example, the user would be able to access members of the unnamed
14434
union with code like @samp{foo.b}.  Note that only unnamed structs and
14435
unions are allowed, you may not have, for example, an unnamed
14436
@code{int}.
14437
 
14438
You must never create such structures that cause ambiguous field definitions.
14439
For example, this structure:
14440
 
14441
@smallexample
14442
struct @{
14443
  int a;
14444
  struct @{
14445
    int a;
14446
  @};
14447
@} foo;
14448
@end smallexample
14449
 
14450
It is ambiguous which @code{a} is being referred to with @samp{foo.a}.
14451
The compiler gives errors for such constructs.
14452
 
14453
@opindex fms-extensions
14454
Unless @option{-fms-extensions} is used, the unnamed field must be a
14455
structure or union definition without a tag (for example, @samp{struct
14456
@{ int a; @};}).  If @option{-fms-extensions} is used, the field may
14457
also be a definition with a tag such as @samp{struct foo @{ int a;
14458
@};}, a reference to a previously defined structure or union such as
14459
@samp{struct foo;}, or a reference to a @code{typedef} name for a
14460
previously defined structure or union type.
14461
 
14462
@opindex fplan9-extensions
14463
The option @option{-fplan9-extensions} enables
14464
@option{-fms-extensions} as well as two other extensions.  First, a
14465
pointer to a structure is automatically converted to a pointer to an
14466
anonymous field for assignments and function calls.  For example:
14467
 
14468
@smallexample
14469
struct s1 @{ int a; @};
14470
struct s2 @{ struct s1; @};
14471
extern void f1 (struct s1 *);
14472
void f2 (struct s2 *p) @{ f1 (p); @}
14473
@end smallexample
14474
 
14475
In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
14476
converted into a pointer to the anonymous field.
14477
 
14478
Second, when the type of an anonymous field is a @code{typedef} for a
14479
@code{struct} or @code{union}, code may refer to the field using the
14480
name of the @code{typedef}.
14481
 
14482
@smallexample
14483
typedef struct @{ int a; @} s1;
14484
struct s2 @{ s1; @};
14485
s1 f1 (struct s2 *p) @{ return p->s1; @}
14486
@end smallexample
14487
 
14488
These usages are only permitted when they are not ambiguous.
14489
 
14490
@node Thread-Local
14491
@section Thread-Local Storage
14492
@cindex Thread-Local Storage
14493
@cindex @acronym{TLS}
14494
@cindex @code{__thread}
14495
 
14496
Thread-local storage (@acronym{TLS}) is a mechanism by which variables
14497
are allocated such that there is one instance of the variable per extant
14498
thread.  The run-time model GCC uses to implement this originates
14499
in the IA-64 processor-specific ABI, but has since been migrated
14500
to other processors as well.  It requires significant support from
14501
the linker (@command{ld}), dynamic linker (@command{ld.so}), and
14502
system libraries (@file{libc.so} and @file{libpthread.so}), so it
14503
is not available everywhere.
14504
 
14505
At the user level, the extension is visible with a new storage
14506
class keyword: @code{__thread}.  For example:
14507
 
14508
@smallexample
14509
__thread int i;
14510
extern __thread struct state s;
14511
static __thread char *p;
14512
@end smallexample
14513
 
14514
The @code{__thread} specifier may be used alone, with the @code{extern}
14515
or @code{static} specifiers, but with no other storage class specifier.
14516
When used with @code{extern} or @code{static}, @code{__thread} must appear
14517
immediately after the other storage class specifier.
14518
 
14519
The @code{__thread} specifier may be applied to any global, file-scoped
14520
static, function-scoped static, or static data member of a class.  It may
14521
not be applied to block-scoped automatic or non-static data member.
14522
 
14523
When the address-of operator is applied to a thread-local variable, it is
14524
evaluated at run-time and returns the address of the current thread's
14525
instance of that variable.  An address so obtained may be used by any
14526
thread.  When a thread terminates, any pointers to thread-local variables
14527
in that thread become invalid.
14528
 
14529
No static initialization may refer to the address of a thread-local variable.
14530
 
14531
In C++, if an initializer is present for a thread-local variable, it must
14532
be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
14533
standard.
14534
 
14535
See @uref{http://www.akkadia.org/drepper/tls.pdf,
14536
ELF Handling For Thread-Local Storage} for a detailed explanation of
14537
the four thread-local storage addressing models, and how the run-time
14538
is expected to function.
14539
 
14540
@menu
14541
* C99 Thread-Local Edits::
14542
* C++98 Thread-Local Edits::
14543
@end menu
14544
 
14545
@node C99 Thread-Local Edits
14546
@subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
14547
 
14548
The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
14549
that document the exact semantics of the language extension.
14550
 
14551
@itemize @bullet
14552
@item
14553
@cite{5.1.2  Execution environments}
14554
 
14555
Add new text after paragraph 1
14556
 
14557
@quotation
14558
Within either execution environment, a @dfn{thread} is a flow of
14559
control within a program.  It is implementation defined whether
14560
or not there may be more than one thread associated with a program.
14561
It is implementation defined how threads beyond the first are
14562
created, the name and type of the function called at thread
14563
startup, and how threads may be terminated.  However, objects
14564
with thread storage duration shall be initialized before thread
14565
startup.
14566
@end quotation
14567
 
14568
@item
14569
@cite{6.2.4  Storage durations of objects}
14570
 
14571
Add new text before paragraph 3
14572
 
14573
@quotation
14574
An object whose identifier is declared with the storage-class
14575
specifier @w{@code{__thread}} has @dfn{thread storage duration}.
14576
Its lifetime is the entire execution of the thread, and its
14577
stored value is initialized only once, prior to thread startup.
14578
@end quotation
14579
 
14580
@item
14581
@cite{6.4.1  Keywords}
14582
 
14583
Add @code{__thread}.
14584
 
14585
@item
14586
@cite{6.7.1  Storage-class specifiers}
14587
 
14588
Add @code{__thread} to the list of storage class specifiers in
14589
paragraph 1.
14590
 
14591
Change paragraph 2 to
14592
 
14593
@quotation
14594
With the exception of @code{__thread}, at most one storage-class
14595
specifier may be given [@dots{}].  The @code{__thread} specifier may
14596
be used alone, or immediately following @code{extern} or
14597
@code{static}.
14598
@end quotation
14599
 
14600
Add new text after paragraph 6
14601
 
14602
@quotation
14603
The declaration of an identifier for a variable that has
14604
block scope that specifies @code{__thread} shall also
14605
specify either @code{extern} or @code{static}.
14606
 
14607
The @code{__thread} specifier shall be used only with
14608
variables.
14609
@end quotation
14610
@end itemize
14611
 
14612
@node C++98 Thread-Local Edits
14613
@subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
14614
 
14615
The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
14616
that document the exact semantics of the language extension.
14617
 
14618
@itemize @bullet
14619
@item
14620
@b{[intro.execution]}
14621
 
14622
New text after paragraph 4
14623
 
14624
@quotation
14625
A @dfn{thread} is a flow of control within the abstract machine.
14626
It is implementation defined whether or not there may be more than
14627
one thread.
14628
@end quotation
14629
 
14630
New text after paragraph 7
14631
 
14632
@quotation
14633
It is unspecified whether additional action must be taken to
14634
ensure when and whether side effects are visible to other threads.
14635
@end quotation
14636
 
14637
@item
14638
@b{[lex.key]}
14639
 
14640
Add @code{__thread}.
14641
 
14642
@item
14643
@b{[basic.start.main]}
14644
 
14645
Add after paragraph 5
14646
 
14647
@quotation
14648
The thread that begins execution at the @code{main} function is called
14649
the @dfn{main thread}.  It is implementation defined how functions
14650
beginning threads other than the main thread are designated or typed.
14651
A function so designated, as well as the @code{main} function, is called
14652
a @dfn{thread startup function}.  It is implementation defined what
14653
happens if a thread startup function returns.  It is implementation
14654
defined what happens to other threads when any thread calls @code{exit}.
14655
@end quotation
14656
 
14657
@item
14658
@b{[basic.start.init]}
14659
 
14660
Add after paragraph 4
14661
 
14662
@quotation
14663
The storage for an object of thread storage duration shall be
14664
statically initialized before the first statement of the thread startup
14665
function.  An object of thread storage duration shall not require
14666
dynamic initialization.
14667
@end quotation
14668
 
14669
@item
14670
@b{[basic.start.term]}
14671
 
14672
Add after paragraph 3
14673
 
14674
@quotation
14675
The type of an object with thread storage duration shall not have a
14676
non-trivial destructor, nor shall it be an array type whose elements
14677
(directly or indirectly) have non-trivial destructors.
14678
@end quotation
14679
 
14680
@item
14681
@b{[basic.stc]}
14682
 
14683
Add ``thread storage duration'' to the list in paragraph 1.
14684
 
14685
Change paragraph 2
14686
 
14687
@quotation
14688
Thread, static, and automatic storage durations are associated with
14689
objects introduced by declarations [@dots{}].
14690
@end quotation
14691
 
14692
Add @code{__thread} to the list of specifiers in paragraph 3.
14693
 
14694
@item
14695
@b{[basic.stc.thread]}
14696
 
14697
New section before @b{[basic.stc.static]}
14698
 
14699
@quotation
14700
The keyword @code{__thread} applied to a non-local object gives the
14701
object thread storage duration.
14702
 
14703
A local variable or class data member declared both @code{static}
14704
and @code{__thread} gives the variable or member thread storage
14705
duration.
14706
@end quotation
14707
 
14708
@item
14709
@b{[basic.stc.static]}
14710
 
14711
Change paragraph 1
14712
 
14713
@quotation
14714
All objects which have neither thread storage duration, dynamic
14715
storage duration nor are local [@dots{}].
14716
@end quotation
14717
 
14718
@item
14719
@b{[dcl.stc]}
14720
 
14721
Add @code{__thread} to the list in paragraph 1.
14722
 
14723
Change paragraph 1
14724
 
14725
@quotation
14726
With the exception of @code{__thread}, at most one
14727
@var{storage-class-specifier} shall appear in a given
14728
@var{decl-specifier-seq}.  The @code{__thread} specifier may
14729
be used alone, or immediately following the @code{extern} or
14730
@code{static} specifiers.  [@dots{}]
14731
@end quotation
14732
 
14733
Add after paragraph 5
14734
 
14735
@quotation
14736
The @code{__thread} specifier can be applied only to the names of objects
14737
and to anonymous unions.
14738
@end quotation
14739
 
14740
@item
14741
@b{[class.mem]}
14742
 
14743
Add after paragraph 6
14744
 
14745
@quotation
14746
Non-@code{static} members shall not be @code{__thread}.
14747
@end quotation
14748
@end itemize
14749
 
14750
@node Binary constants
14751
@section Binary constants using the @samp{0b} prefix
14752
@cindex Binary constants using the @samp{0b} prefix
14753
 
14754
Integer constants can be written as binary constants, consisting of a
14755
sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
14756
@samp{0B}.  This is particularly useful in environments that operate a
14757
lot on the bit-level (like microcontrollers).
14758
 
14759
The following statements are identical:
14760
 
14761
@smallexample
14762
i =       42;
14763
i =     0x2a;
14764
i =      052;
14765
i = 0b101010;
14766
@end smallexample
14767
 
14768
The type of these constants follows the same rules as for octal or
14769
hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
14770
can be applied.
14771
 
14772
@node C++ Extensions
14773
@chapter Extensions to the C++ Language
14774
@cindex extensions, C++ language
14775
@cindex C++ language extensions
14776
 
14777
The GNU compiler provides these extensions to the C++ language (and you
14778
can also use most of the C language extensions in your C++ programs).  If you
14779
want to write code that checks whether these features are available, you can
14780
test for the GNU compiler the same way as for C programs: check for a
14781
predefined macro @code{__GNUC__}.  You can also use @code{__GNUG__} to
14782
test specifically for GNU C++ (@pxref{Common Predefined Macros,,
14783
Predefined Macros,cpp,The GNU C Preprocessor}).
14784
 
14785
@menu
14786
* C++ Volatiles::       What constitutes an access to a volatile object.
14787
* Restricted Pointers:: C99 restricted pointers and references.
14788
* Vague Linkage::       Where G++ puts inlines, vtables and such.
14789
* C++ Interface::       You can use a single C++ header file for both
14790
                        declarations and definitions.
14791
* Template Instantiation:: Methods for ensuring that exactly one copy of
14792
                        each needed template instantiation is emitted.
14793
* Bound member functions:: You can extract a function pointer to the
14794
                        method denoted by a @samp{->*} or @samp{.*} expression.
14795
* C++ Attributes::      Variable, function, and type attributes for C++ only.
14796
* Namespace Association:: Strong using-directives for namespace association.
14797
* Type Traits::         Compiler support for type traits
14798
* Java Exceptions::     Tweaking exception handling to work with Java.
14799
* Deprecated Features:: Things will disappear from g++.
14800
* Backwards Compatibility:: Compatibilities with earlier definitions of C++.
14801
@end menu
14802
 
14803
@node C++ Volatiles
14804
@section When is a Volatile C++ Object Accessed?
14805
@cindex accessing volatiles
14806
@cindex volatile read
14807
@cindex volatile write
14808
@cindex volatile access
14809
 
14810
The C++ standard differs from the C standard in its treatment of
14811
volatile objects.  It fails to specify what constitutes a volatile
14812
access, except to say that C++ should behave in a similar manner to C
14813
with respect to volatiles, where possible.  However, the different
14814
lvalueness of expressions between C and C++ complicate the behavior.
14815
G++ behaves the same as GCC for volatile access, @xref{C
14816
Extensions,,Volatiles}, for a description of GCC's behavior.
14817
 
14818
The C and C++ language specifications differ when an object is
14819
accessed in a void context:
14820
 
14821
@smallexample
14822
volatile int *src = @var{somevalue};
14823
*src;
14824
@end smallexample
14825
 
14826
The C++ standard specifies that such expressions do not undergo lvalue
14827
to rvalue conversion, and that the type of the dereferenced object may
14828
be incomplete.  The C++ standard does not specify explicitly that it
14829
is lvalue to rvalue conversion which is responsible for causing an
14830
access.  There is reason to believe that it is, because otherwise
14831
certain simple expressions become undefined.  However, because it
14832
would surprise most programmers, G++ treats dereferencing a pointer to
14833
volatile object of complete type as GCC would do for an equivalent
14834
type in C@.  When the object has incomplete type, G++ issues a
14835
warning; if you wish to force an error, you must force a conversion to
14836
rvalue with, for instance, a static cast.
14837
 
14838
When using a reference to volatile, G++ does not treat equivalent
14839
expressions as accesses to volatiles, but instead issues a warning that
14840
no volatile is accessed.  The rationale for this is that otherwise it
14841
becomes difficult to determine where volatile access occur, and not
14842
possible to ignore the return value from functions returning volatile
14843
references.  Again, if you wish to force a read, cast the reference to
14844
an rvalue.
14845
 
14846
G++ implements the same behavior as GCC does when assigning to a
14847
volatile object -- there is no reread of the assigned-to object, the
14848
assigned rvalue is reused.  Note that in C++ assignment expressions
14849
are lvalues, and if used as an lvalue, the volatile object will be
14850
referred to.  For instance, @var{vref} will refer to @var{vobj}, as
14851
expected, in the following example:
14852
 
14853
@smallexample
14854
volatile int vobj;
14855
volatile int &vref = vobj = @var{something};
14856
@end smallexample
14857
 
14858
@node Restricted Pointers
14859
@section Restricting Pointer Aliasing
14860
@cindex restricted pointers
14861
@cindex restricted references
14862
@cindex restricted this pointer
14863
 
14864
As with the C front end, G++ understands the C99 feature of restricted pointers,
14865
specified with the @code{__restrict__}, or @code{__restrict} type
14866
qualifier.  Because you cannot compile C++ by specifying the @option{-std=c99}
14867
language flag, @code{restrict} is not a keyword in C++.
14868
 
14869
In addition to allowing restricted pointers, you can specify restricted
14870
references, which indicate that the reference is not aliased in the local
14871
context.
14872
 
14873
@smallexample
14874
void fn (int *__restrict__ rptr, int &__restrict__ rref)
14875
@{
14876
  /* @r{@dots{}} */
14877
@}
14878
@end smallexample
14879
 
14880
@noindent
14881
In the body of @code{fn}, @var{rptr} points to an unaliased integer and
14882
@var{rref} refers to a (different) unaliased integer.
14883
 
14884
You may also specify whether a member function's @var{this} pointer is
14885
unaliased by using @code{__restrict__} as a member function qualifier.
14886
 
14887
@smallexample
14888
void T::fn () __restrict__
14889
@{
14890
  /* @r{@dots{}} */
14891
@}
14892
@end smallexample
14893
 
14894
@noindent
14895
Within the body of @code{T::fn}, @var{this} will have the effective
14896
definition @code{T *__restrict__ const this}.  Notice that the
14897
interpretation of a @code{__restrict__} member function qualifier is
14898
different to that of @code{const} or @code{volatile} qualifier, in that it
14899
is applied to the pointer rather than the object.  This is consistent with
14900
other compilers which implement restricted pointers.
14901
 
14902
As with all outermost parameter qualifiers, @code{__restrict__} is
14903
ignored in function definition matching.  This means you only need to
14904
specify @code{__restrict__} in a function definition, rather than
14905
in a function prototype as well.
14906
 
14907
@node Vague Linkage
14908
@section Vague Linkage
14909
@cindex vague linkage
14910
 
14911
There are several constructs in C++ which require space in the object
14912
file but are not clearly tied to a single translation unit.  We say that
14913
these constructs have ``vague linkage''.  Typically such constructs are
14914
emitted wherever they are needed, though sometimes we can be more
14915
clever.
14916
 
14917
@table @asis
14918
@item Inline Functions
14919
Inline functions are typically defined in a header file which can be
14920
included in many different compilations.  Hopefully they can usually be
14921
inlined, but sometimes an out-of-line copy is necessary, if the address
14922
of the function is taken or if inlining fails.  In general, we emit an
14923
out-of-line copy in all translation units where one is needed.  As an
14924
exception, we only emit inline virtual functions with the vtable, since
14925
it will always require a copy.
14926
 
14927
Local static variables and string constants used in an inline function
14928
are also considered to have vague linkage, since they must be shared
14929
between all inlined and out-of-line instances of the function.
14930
 
14931
@item VTables
14932
@cindex vtable
14933
C++ virtual functions are implemented in most compilers using a lookup
14934
table, known as a vtable.  The vtable contains pointers to the virtual
14935
functions provided by a class, and each object of the class contains a
14936
pointer to its vtable (or vtables, in some multiple-inheritance
14937
situations).  If the class declares any non-inline, non-pure virtual
14938
functions, the first one is chosen as the ``key method'' for the class,
14939
and the vtable is only emitted in the translation unit where the key
14940
method is defined.
14941
 
14942
@emph{Note:} If the chosen key method is later defined as inline, the
14943
vtable will still be emitted in every translation unit which defines it.
14944
Make sure that any inline virtuals are declared inline in the class
14945
body, even if they are not defined there.
14946
 
14947
@item @code{type_info} objects
14948
@cindex @code{type_info}
14949
@cindex RTTI
14950
C++ requires information about types to be written out in order to
14951
implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
14952
For polymorphic classes (classes with virtual functions), the @samp{type_info}
14953
object is written out along with the vtable so that @samp{dynamic_cast}
14954
can determine the dynamic type of a class object at runtime.  For all
14955
other types, we write out the @samp{type_info} object when it is used: when
14956
applying @samp{typeid} to an expression, throwing an object, or
14957
referring to a type in a catch clause or exception specification.
14958
 
14959
@item Template Instantiations
14960
Most everything in this section also applies to template instantiations,
14961
but there are other options as well.
14962
@xref{Template Instantiation,,Where's the Template?}.
14963
 
14964
@end table
14965
 
14966
When used with GNU ld version 2.8 or later on an ELF system such as
14967
GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
14968
these constructs will be discarded at link time.  This is known as
14969
COMDAT support.
14970
 
14971
On targets that don't support COMDAT, but do support weak symbols, GCC
14972
will use them.  This way one copy will override all the others, but
14973
the unused copies will still take up space in the executable.
14974
 
14975
For targets which do not support either COMDAT or weak symbols,
14976
most entities with vague linkage will be emitted as local symbols to
14977
avoid duplicate definition errors from the linker.  This will not happen
14978
for local statics in inlines, however, as having multiple copies will
14979
almost certainly break things.
14980
 
14981
@xref{C++ Interface,,Declarations and Definitions in One Header}, for
14982
another way to control placement of these constructs.
14983
 
14984
@node C++ Interface
14985
@section #pragma interface and implementation
14986
 
14987
@cindex interface and implementation headers, C++
14988
@cindex C++ interface and implementation headers
14989
@cindex pragmas, interface and implementation
14990
 
14991
@code{#pragma interface} and @code{#pragma implementation} provide the
14992
user with a way of explicitly directing the compiler to emit entities
14993
with vague linkage (and debugging information) in a particular
14994
translation unit.
14995
 
14996
@emph{Note:} As of GCC 2.7.2, these @code{#pragma}s are not useful in
14997
most cases, because of COMDAT support and the ``key method'' heuristic
14998
mentioned in @ref{Vague Linkage}.  Using them can actually cause your
14999
program to grow due to unnecessary out-of-line copies of inline
15000
functions.  Currently (3.4) the only benefit of these
15001
@code{#pragma}s is reduced duplication of debugging information, and
15002
that should be addressed soon on DWARF 2 targets with the use of
15003
COMDAT groups.
15004
 
15005
@table @code
15006
@item #pragma interface
15007
@itemx #pragma interface "@var{subdir}/@var{objects}.h"
15008
@kindex #pragma interface
15009
Use this directive in @emph{header files} that define object classes, to save
15010
space in most of the object files that use those classes.  Normally,
15011
local copies of certain information (backup copies of inline member
15012
functions, debugging information, and the internal tables that implement
15013
virtual functions) must be kept in each object file that includes class
15014
definitions.  You can use this pragma to avoid such duplication.  When a
15015
header file containing @samp{#pragma interface} is included in a
15016
compilation, this auxiliary information will not be generated (unless
15017
the main input source file itself uses @samp{#pragma implementation}).
15018
Instead, the object files will contain references to be resolved at link
15019
time.
15020
 
15021
The second form of this directive is useful for the case where you have
15022
multiple headers with the same name in different directories.  If you
15023
use this form, you must specify the same string to @samp{#pragma
15024
implementation}.
15025
 
15026
@item #pragma implementation
15027
@itemx #pragma implementation "@var{objects}.h"
15028
@kindex #pragma implementation
15029
Use this pragma in a @emph{main input file}, when you want full output from
15030
included header files to be generated (and made globally visible).  The
15031
included header file, in turn, should use @samp{#pragma interface}.
15032
Backup copies of inline member functions, debugging information, and the
15033
internal tables used to implement virtual functions are all generated in
15034
implementation files.
15035
 
15036
@cindex implied @code{#pragma implementation}
15037
@cindex @code{#pragma implementation}, implied
15038
@cindex naming convention, implementation headers
15039
If you use @samp{#pragma implementation} with no argument, it applies to
15040
an include file with the same basename@footnote{A file's @dfn{basename}
15041
was the name stripped of all leading path information and of trailing
15042
suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
15043
file.  For example, in @file{allclass.cc}, giving just
15044
@samp{#pragma implementation}
15045
by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
15046
 
15047
In versions of GNU C++ prior to 2.6.0 @file{allclass.h} was treated as
15048
an implementation file whenever you would include it from
15049
@file{allclass.cc} even if you never specified @samp{#pragma
15050
implementation}.  This was deemed to be more trouble than it was worth,
15051
however, and disabled.
15052
 
15053
Use the string argument if you want a single implementation file to
15054
include code from multiple header files.  (You must also use
15055
@samp{#include} to include the header file; @samp{#pragma
15056
implementation} only specifies how to use the file---it doesn't actually
15057
include it.)
15058
 
15059
There is no way to split up the contents of a single header file into
15060
multiple implementation files.
15061
@end table
15062
 
15063
@cindex inlining and C++ pragmas
15064
@cindex C++ pragmas, effect on inlining
15065
@cindex pragmas in C++, effect on inlining
15066
@samp{#pragma implementation} and @samp{#pragma interface} also have an
15067
effect on function inlining.
15068
 
15069
If you define a class in a header file marked with @samp{#pragma
15070
interface}, the effect on an inline function defined in that class is
15071
similar to an explicit @code{extern} declaration---the compiler emits
15072
no code at all to define an independent version of the function.  Its
15073
definition is used only for inlining with its callers.
15074
 
15075
@opindex fno-implement-inlines
15076
Conversely, when you include the same header file in a main source file
15077
that declares it as @samp{#pragma implementation}, the compiler emits
15078
code for the function itself; this defines a version of the function
15079
that can be found via pointers (or by callers compiled without
15080
inlining).  If all calls to the function can be inlined, you can avoid
15081
emitting the function by compiling with @option{-fno-implement-inlines}.
15082
If any calls were not inlined, you will get linker errors.
15083
 
15084
@node Template Instantiation
15085
@section Where's the Template?
15086
@cindex template instantiation
15087
 
15088
C++ templates are the first language feature to require more
15089
intelligence from the environment than one usually finds on a UNIX
15090
system.  Somehow the compiler and linker have to make sure that each
15091
template instance occurs exactly once in the executable if it is needed,
15092
and not at all otherwise.  There are two basic approaches to this
15093
problem, which are referred to as the Borland model and the Cfront model.
15094
 
15095
@table @asis
15096
@item Borland model
15097
Borland C++ solved the template instantiation problem by adding the code
15098
equivalent of common blocks to their linker; the compiler emits template
15099
instances in each translation unit that uses them, and the linker
15100
collapses them together.  The advantage of this model is that the linker
15101
only has to consider the object files themselves; there is no external
15102
complexity to worry about.  This disadvantage is that compilation time
15103
is increased because the template code is being compiled repeatedly.
15104
Code written for this model tends to include definitions of all
15105
templates in the header file, since they must be seen to be
15106
instantiated.
15107
 
15108
@item Cfront model
15109
The AT&T C++ translator, Cfront, solved the template instantiation
15110
problem by creating the notion of a template repository, an
15111
automatically maintained place where template instances are stored.  A
15112
more modern version of the repository works as follows: As individual
15113
object files are built, the compiler places any template definitions and
15114
instantiations encountered in the repository.  At link time, the link
15115
wrapper adds in the objects in the repository and compiles any needed
15116
instances that were not previously emitted.  The advantages of this
15117
model are more optimal compilation speed and the ability to use the
15118
system linker; to implement the Borland model a compiler vendor also
15119
needs to replace the linker.  The disadvantages are vastly increased
15120
complexity, and thus potential for error; for some code this can be
15121
just as transparent, but in practice it can been very difficult to build
15122
multiple programs in one directory and one program in multiple
15123
directories.  Code written for this model tends to separate definitions
15124
of non-inline member templates into a separate file, which should be
15125
compiled separately.
15126
@end table
15127
 
15128
When used with GNU ld version 2.8 or later on an ELF system such as
15129
GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
15130
Borland model.  On other systems, G++ implements neither automatic
15131
model.
15132
 
15133
A future version of G++ will support a hybrid model whereby the compiler
15134
will emit any instantiations for which the template definition is
15135
included in the compile, and store template definitions and
15136
instantiation context information into the object file for the rest.
15137
The link wrapper will extract that information as necessary and invoke
15138
the compiler to produce the remaining instantiations.  The linker will
15139
then combine duplicate instantiations.
15140
 
15141
In the mean time, you have the following options for dealing with
15142
template instantiations:
15143
 
15144
@enumerate
15145
@item
15146
@opindex frepo
15147
Compile your template-using code with @option{-frepo}.  The compiler will
15148
generate files with the extension @samp{.rpo} listing all of the
15149
template instantiations used in the corresponding object files which
15150
could be instantiated there; the link wrapper, @samp{collect2}, will
15151
then update the @samp{.rpo} files to tell the compiler where to place
15152
those instantiations and rebuild any affected object files.  The
15153
link-time overhead is negligible after the first pass, as the compiler
15154
will continue to place the instantiations in the same files.
15155
 
15156
This is your best option for application code written for the Borland
15157
model, as it will just work.  Code written for the Cfront model will
15158
need to be modified so that the template definitions are available at
15159
one or more points of instantiation; usually this is as simple as adding
15160
@code{#include <tmethods.cc>} to the end of each template header.
15161
 
15162
For library code, if you want the library to provide all of the template
15163
instantiations it needs, just try to link all of its object files
15164
together; the link will fail, but cause the instantiations to be
15165
generated as a side effect.  Be warned, however, that this may cause
15166
conflicts if multiple libraries try to provide the same instantiations.
15167
For greater control, use explicit instantiation as described in the next
15168
option.
15169
 
15170
@item
15171
@opindex fno-implicit-templates
15172
Compile your code with @option{-fno-implicit-templates} to disable the
15173
implicit generation of template instances, and explicitly instantiate
15174
all the ones you use.  This approach requires more knowledge of exactly
15175
which instances you need than do the others, but it's less
15176
mysterious and allows greater control.  You can scatter the explicit
15177
instantiations throughout your program, perhaps putting them in the
15178
translation units where the instances are used or the translation units
15179
that define the templates themselves; you can put all of the explicit
15180
instantiations you need into one big file; or you can create small files
15181
like
15182
 
15183
@smallexample
15184
#include "Foo.h"
15185
#include "Foo.cc"
15186
 
15187
template class Foo<int>;
15188
template ostream& operator <<
15189
                (ostream&, const Foo<int>&);
15190
@end smallexample
15191
 
15192
for each of the instances you need, and create a template instantiation
15193
library from those.
15194
 
15195
If you are using Cfront-model code, you can probably get away with not
15196
using @option{-fno-implicit-templates} when compiling files that don't
15197
@samp{#include} the member template definitions.
15198
 
15199
If you use one big file to do the instantiations, you may want to
15200
compile it without @option{-fno-implicit-templates} so you get all of the
15201
instances required by your explicit instantiations (but not by any
15202
other files) without having to specify them as well.
15203
 
15204
G++ has extended the template instantiation syntax given in the ISO
15205
standard to allow forward declaration of explicit instantiations
15206
(with @code{extern}), instantiation of the compiler support data for a
15207
template class (i.e.@: the vtable) without instantiating any of its
15208
members (with @code{inline}), and instantiation of only the static data
15209
members of a template class, without the support data or member
15210
functions (with (@code{static}):
15211
 
15212
@smallexample
15213
extern template int max (int, int);
15214
inline template class Foo<int>;
15215
static template class Foo<int>;
15216
@end smallexample
15217
 
15218
@item
15219
Do nothing.  Pretend G++ does implement automatic instantiation
15220
management.  Code written for the Borland model will work fine, but
15221
each translation unit will contain instances of each of the templates it
15222
uses.  In a large program, this can lead to an unacceptable amount of code
15223
duplication.
15224
@end enumerate
15225
 
15226
@node Bound member functions
15227
@section Extracting the function pointer from a bound pointer to member function
15228
@cindex pmf
15229
@cindex pointer to member function
15230
@cindex bound pointer to member function
15231
 
15232
In C++, pointer to member functions (PMFs) are implemented using a wide
15233
pointer of sorts to handle all the possible call mechanisms; the PMF
15234
needs to store information about how to adjust the @samp{this} pointer,
15235
and if the function pointed to is virtual, where to find the vtable, and
15236
where in the vtable to look for the member function.  If you are using
15237
PMFs in an inner loop, you should really reconsider that decision.  If
15238
that is not an option, you can extract the pointer to the function that
15239
would be called for a given object/PMF pair and call it directly inside
15240
the inner loop, to save a bit of time.
15241
 
15242
Note that you will still be paying the penalty for the call through a
15243
function pointer; on most modern architectures, such a call defeats the
15244
branch prediction features of the CPU@.  This is also true of normal
15245
virtual function calls.
15246
 
15247
The syntax for this extension is
15248
 
15249
@smallexample
15250
extern A a;
15251
extern int (A::*fp)();
15252
typedef int (*fptr)(A *);
15253
 
15254
fptr p = (fptr)(a.*fp);
15255
@end smallexample
15256
 
15257
For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
15258
no object is needed to obtain the address of the function.  They can be
15259
converted to function pointers directly:
15260
 
15261
@smallexample
15262
fptr p1 = (fptr)(&A::foo);
15263
@end smallexample
15264
 
15265
@opindex Wno-pmf-conversions
15266
You must specify @option{-Wno-pmf-conversions} to use this extension.
15267
 
15268
@node C++ Attributes
15269
@section C++-Specific Variable, Function, and Type Attributes
15270
 
15271
Some attributes only make sense for C++ programs.
15272
 
15273
@table @code
15274
@item init_priority (@var{priority})
15275
@cindex @code{init_priority} attribute
15276
 
15277
 
15278
In Standard C++, objects defined at namespace scope are guaranteed to be
15279
initialized in an order in strict accordance with that of their definitions
15280
@emph{in a given translation unit}.  No guarantee is made for initializations
15281
across translation units.  However, GNU C++ allows users to control the
15282
order of initialization of objects defined at namespace scope with the
15283
@code{init_priority} attribute by specifying a relative @var{priority},
15284
a constant integral expression currently bounded between 101 and 65535
15285
inclusive.  Lower numbers indicate a higher priority.
15286
 
15287
In the following example, @code{A} would normally be created before
15288
@code{B}, but the @code{init_priority} attribute has reversed that order:
15289
 
15290
@smallexample
15291
Some_Class  A  __attribute__ ((init_priority (2000)));
15292
Some_Class  B  __attribute__ ((init_priority (543)));
15293
@end smallexample
15294
 
15295
@noindent
15296
Note that the particular values of @var{priority} do not matter; only their
15297
relative ordering.
15298
 
15299
@item java_interface
15300
@cindex @code{java_interface} attribute
15301
 
15302
This type attribute informs C++ that the class is a Java interface.  It may
15303
only be applied to classes declared within an @code{extern "Java"} block.
15304
Calls to methods declared in this interface will be dispatched using GCJ's
15305
interface table mechanism, instead of regular virtual table dispatch.
15306
 
15307
@end table
15308
 
15309
See also @ref{Namespace Association}.
15310
 
15311
@node Namespace Association
15312
@section Namespace Association
15313
 
15314
@strong{Caution:} The semantics of this extension are not fully
15315
defined.  Users should refrain from using this extension as its
15316
semantics may change subtly over time.  It is possible that this
15317
extension will be removed in future versions of G++.
15318
 
15319
A using-directive with @code{__attribute ((strong))} is stronger
15320
than a normal using-directive in two ways:
15321
 
15322
@itemize @bullet
15323
@item
15324
Templates from the used namespace can be specialized and explicitly
15325
instantiated as though they were members of the using namespace.
15326
 
15327
@item
15328
The using namespace is considered an associated namespace of all
15329
templates in the used namespace for purposes of argument-dependent
15330
name lookup.
15331
@end itemize
15332
 
15333
The used namespace must be nested within the using namespace so that
15334
normal unqualified lookup works properly.
15335
 
15336
This is useful for composing a namespace transparently from
15337
implementation namespaces.  For example:
15338
 
15339
@smallexample
15340
namespace std @{
15341
  namespace debug @{
15342
    template <class T> struct A @{ @};
15343
  @}
15344
  using namespace debug __attribute ((__strong__));
15345
  template <> struct A<int> @{ @};   // @r{ok to specialize}
15346
 
15347
  template <class T> void f (A<T>);
15348
@}
15349
 
15350
int main()
15351
@{
15352
  f (std::A<float>());             // @r{lookup finds} std::f
15353
  f (std::A<int>());
15354
@}
15355
@end smallexample
15356
 
15357
@node Type Traits
15358
@section Type Traits
15359
 
15360
The C++ front-end implements syntactic extensions that allow to
15361
determine at compile time various characteristics of a type (or of a
15362
pair of types).
15363
 
15364
@table @code
15365
@item __has_nothrow_assign (type)
15366
If @code{type} is const qualified or is a reference type then the trait is
15367
false.  Otherwise if @code{__has_trivial_assign (type)} is true then the trait
15368
is true, else if @code{type} is a cv class or union type with copy assignment
15369
operators that are known not to throw an exception then the trait is true,
15370
else it is false.  Requires: @code{type} shall be a complete type,
15371
(possibly cv-qualified) @code{void}, or an array of unknown bound.
15372
 
15373
@item __has_nothrow_copy (type)
15374
If @code{__has_trivial_copy (type)} is true then the trait is true, else if
15375
@code{type} is a cv class or union type with copy constructors that
15376
are known not to throw an exception then the trait is true, else it is false.
15377
Requires: @code{type} shall be a complete type, (possibly cv-qualified)
15378
@code{void}, or an array of unknown bound.
15379
 
15380
@item __has_nothrow_constructor (type)
15381
If @code{__has_trivial_constructor (type)} is true then the trait is
15382
true, else if @code{type} is a cv class or union type (or array
15383
thereof) with a default constructor that is known not to throw an
15384
exception then the trait is true, else it is false.  Requires:
15385
@code{type} shall be a complete type, (possibly cv-qualified)
15386
@code{void}, or an array of unknown bound.
15387
 
15388
@item __has_trivial_assign (type)
15389
If @code{type} is const qualified or is a reference type then the trait is
15390
false.  Otherwise if @code{__is_pod (type)} is true then the trait is
15391
true, else if @code{type} is a cv class or union type with a trivial
15392
copy assignment ([class.copy]) then the trait is true, else it is
15393
false.  Requires: @code{type} shall be a complete type, (possibly
15394
cv-qualified) @code{void}, or an array of unknown bound.
15395
 
15396
@item __has_trivial_copy (type)
15397
If @code{__is_pod (type)} is true or @code{type} is a reference type
15398
then the trait is true, else if @code{type} is a cv class or union type
15399
with a trivial copy constructor ([class.copy]) then the trait
15400
is true, else it is false.  Requires: @code{type} shall be a complete
15401
type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15402
 
15403
@item __has_trivial_constructor (type)
15404
If @code{__is_pod (type)} is true then the trait is true, else if
15405
@code{type} is a cv class or union type (or array thereof) with a
15406
trivial default constructor ([class.ctor]) then the trait is true,
15407
else it is false.  Requires: @code{type} shall be a complete
15408
type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15409
 
15410
@item __has_trivial_destructor (type)
15411
If @code{__is_pod (type)} is true or @code{type} is a reference type then
15412
the trait is true, else if @code{type} is a cv class or union type (or
15413
array thereof) with a trivial destructor ([class.dtor]) then the trait
15414
is true, else it is false.  Requires: @code{type} shall be a complete
15415
type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15416
 
15417
@item __has_virtual_destructor (type)
15418
If @code{type} is a class type with a virtual destructor
15419
([class.dtor]) then the trait is true, else it is false.  Requires:
15420
@code{type} shall be a complete type, (possibly cv-qualified)
15421
@code{void}, or an array of unknown bound.
15422
 
15423
@item __is_abstract (type)
15424
If @code{type} is an abstract class ([class.abstract]) then the trait
15425
is true, else it is false.  Requires: @code{type} shall be a complete
15426
type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15427
 
15428
@item __is_base_of (base_type, derived_type)
15429
If @code{base_type} is a base class of @code{derived_type}
15430
([class.derived]) then the trait is true, otherwise it is false.
15431
Top-level cv qualifications of @code{base_type} and
15432
@code{derived_type} are ignored.  For the purposes of this trait, a
15433
class type is considered is own base.  Requires: if @code{__is_class
15434
(base_type)} and @code{__is_class (derived_type)} are true and
15435
@code{base_type} and @code{derived_type} are not the same type
15436
(disregarding cv-qualifiers), @code{derived_type} shall be a complete
15437
type.  Diagnostic is produced if this requirement is not met.
15438
 
15439
@item __is_class (type)
15440
If @code{type} is a cv class type, and not a union type
15441
([basic.compound]) the trait is true, else it is false.
15442
 
15443
@item __is_empty (type)
15444
If @code{__is_class (type)} is false then the trait is false.
15445
Otherwise @code{type} is considered empty if and only if: @code{type}
15446
has no non-static data members, or all non-static data members, if
15447
any, are bit-fields of length 0, and @code{type} has no virtual
15448
members, and @code{type} has no virtual base classes, and @code{type}
15449
has no base classes @code{base_type} for which
15450
@code{__is_empty (base_type)} is false.  Requires: @code{type} shall
15451
be a complete type, (possibly cv-qualified) @code{void}, or an array
15452
of unknown bound.
15453
 
15454
@item __is_enum (type)
15455
If @code{type} is a cv enumeration type ([basic.compound]) the trait is
15456
true, else it is false.
15457
 
15458
@item __is_literal_type (type)
15459
If @code{type} is a literal type ([basic.types]) the trait is
15460
true, else it is false.  Requires: @code{type} shall be a complete type,
15461
(possibly cv-qualified) @code{void}, or an array of unknown bound.
15462
 
15463
@item __is_pod (type)
15464
If @code{type} is a cv POD type ([basic.types]) then the trait is true,
15465
else it is false.  Requires: @code{type} shall be a complete type,
15466
(possibly cv-qualified) @code{void}, or an array of unknown bound.
15467
 
15468
@item __is_polymorphic (type)
15469
If @code{type} is a polymorphic class ([class.virtual]) then the trait
15470
is true, else it is false.  Requires: @code{type} shall be a complete
15471
type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15472
 
15473
@item __is_standard_layout (type)
15474
If @code{type} is a standard-layout type ([basic.types]) the trait is
15475
true, else it is false.  Requires: @code{type} shall be a complete
15476
type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15477
 
15478
@item __is_trivial (type)
15479
If @code{type} is a trivial type ([basic.types]) the trait is
15480
true, else it is false.  Requires: @code{type} shall be a complete
15481
type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15482
 
15483
@item __is_union (type)
15484
If @code{type} is a cv union type ([basic.compound]) the trait is
15485
true, else it is false.
15486
 
15487
@item __underlying_type (type)
15488
The underlying type of @code{type}.  Requires: @code{type} shall be
15489
an enumeration type ([dcl.enum]).
15490
 
15491
@end table
15492
 
15493
@node Java Exceptions
15494
@section Java Exceptions
15495
 
15496
The Java language uses a slightly different exception handling model
15497
from C++.  Normally, GNU C++ will automatically detect when you are
15498
writing C++ code that uses Java exceptions, and handle them
15499
appropriately.  However, if C++ code only needs to execute destructors
15500
when Java exceptions are thrown through it, GCC will guess incorrectly.
15501
Sample problematic code is:
15502
 
15503
@smallexample
15504
  struct S @{ ~S(); @};
15505
  extern void bar();    // @r{is written in Java, and may throw exceptions}
15506
  void foo()
15507
  @{
15508
    S s;
15509
    bar();
15510
  @}
15511
@end smallexample
15512
 
15513
@noindent
15514
The usual effect of an incorrect guess is a link failure, complaining of
15515
a missing routine called @samp{__gxx_personality_v0}.
15516
 
15517
You can inform the compiler that Java exceptions are to be used in a
15518
translation unit, irrespective of what it might think, by writing
15519
@samp{@w{#pragma GCC java_exceptions}} at the head of the file.  This
15520
@samp{#pragma} must appear before any functions that throw or catch
15521
exceptions, or run destructors when exceptions are thrown through them.
15522
 
15523
You cannot mix Java and C++ exceptions in the same translation unit.  It
15524
is believed to be safe to throw a C++ exception from one file through
15525
another file compiled for the Java exception model, or vice versa, but
15526
there may be bugs in this area.
15527
 
15528
@node Deprecated Features
15529
@section Deprecated Features
15530
 
15531
In the past, the GNU C++ compiler was extended to experiment with new
15532
features, at a time when the C++ language was still evolving.  Now that
15533
the C++ standard is complete, some of those features are superseded by
15534
superior alternatives.  Using the old features might cause a warning in
15535
some cases that the feature will be dropped in the future.  In other
15536
cases, the feature might be gone already.
15537
 
15538
While the list below is not exhaustive, it documents some of the options
15539
that are now deprecated:
15540
 
15541
@table @code
15542
@item -fexternal-templates
15543
@itemx -falt-external-templates
15544
These are two of the many ways for G++ to implement template
15545
instantiation.  @xref{Template Instantiation}.  The C++ standard clearly
15546
defines how template definitions have to be organized across
15547
implementation units.  G++ has an implicit instantiation mechanism that
15548
should work just fine for standard-conforming code.
15549
 
15550
@item -fstrict-prototype
15551
@itemx -fno-strict-prototype
15552
Previously it was possible to use an empty prototype parameter list to
15553
indicate an unspecified number of parameters (like C), rather than no
15554
parameters, as C++ demands.  This feature has been removed, except where
15555
it is required for backwards compatibility.   @xref{Backwards Compatibility}.
15556
@end table
15557
 
15558
G++ allows a virtual function returning @samp{void *} to be overridden
15559
by one returning a different pointer type.  This extension to the
15560
covariant return type rules is now deprecated and will be removed from a
15561
future version.
15562
 
15563
The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
15564
their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
15565
and are now removed from G++.  Code using these operators should be
15566
modified to use @code{std::min} and @code{std::max} instead.
15567
 
15568
The named return value extension has been deprecated, and is now
15569
removed from G++.
15570
 
15571
The use of initializer lists with new expressions has been deprecated,
15572
and is now removed from G++.
15573
 
15574
Floating and complex non-type template parameters have been deprecated,
15575
and are now removed from G++.
15576
 
15577
The implicit typename extension has been deprecated and is now
15578
removed from G++.
15579
 
15580
The use of default arguments in function pointers, function typedefs
15581
and other places where they are not permitted by the standard is
15582
deprecated and will be removed from a future version of G++.
15583
 
15584
G++ allows floating-point literals to appear in integral constant expressions,
15585
e.g. @samp{ enum E @{ e = int(2.2 * 3.7) @} }
15586
This extension is deprecated and will be removed from a future version.
15587
 
15588
G++ allows static data members of const floating-point type to be declared
15589
with an initializer in a class definition. The standard only allows
15590
initializers for static members of const integral types and const
15591
enumeration types so this extension has been deprecated and will be removed
15592
from a future version.
15593
 
15594
@node Backwards Compatibility
15595
@section Backwards Compatibility
15596
@cindex Backwards Compatibility
15597
@cindex ARM [Annotated C++ Reference Manual]
15598
 
15599
Now that there is a definitive ISO standard C++, G++ has a specification
15600
to adhere to.  The C++ language evolved over time, and features that
15601
used to be acceptable in previous drafts of the standard, such as the ARM
15602
[Annotated C++ Reference Manual], are no longer accepted.  In order to allow
15603
compilation of C++ written to such drafts, G++ contains some backwards
15604
compatibilities.  @emph{All such backwards compatibility features are
15605
liable to disappear in future versions of G++.} They should be considered
15606
deprecated.   @xref{Deprecated Features}.
15607
 
15608
@table @code
15609
@item For scope
15610
If a variable is declared at for scope, it used to remain in scope until
15611
the end of the scope which contained the for statement (rather than just
15612
within the for scope).  G++ retains this, but issues a warning, if such a
15613
variable is accessed outside the for scope.
15614
 
15615
@item Implicit C language
15616
Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
15617
scope to set the language.  On such systems, all header files are
15618
implicitly scoped inside a C language scope.  Also, an empty prototype
15619
@code{()} will be treated as an unspecified number of arguments, rather
15620
than no arguments, as C++ demands.
15621
@end table

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.