| 1 |
684 |
jeremybenn |
/* Operations with long integers.
|
| 2 |
|
|
Copyright (C) 2006, 2007, 2009, 2010 Free Software Foundation, Inc.
|
| 3 |
|
|
|
| 4 |
|
|
This file is part of GCC.
|
| 5 |
|
|
|
| 6 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 7 |
|
|
under the terms of the GNU General Public License as published by the
|
| 8 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
| 9 |
|
|
later version.
|
| 10 |
|
|
|
| 11 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 12 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 13 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 14 |
|
|
for more details.
|
| 15 |
|
|
|
| 16 |
|
|
You should have received a copy of the GNU General Public License
|
| 17 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 18 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 19 |
|
|
|
| 20 |
|
|
#include "config.h"
|
| 21 |
|
|
#include "system.h"
|
| 22 |
|
|
#include "coretypes.h"
|
| 23 |
|
|
#include "tm.h" /* For SHIFT_COUNT_TRUNCATED. */
|
| 24 |
|
|
#include "tree.h"
|
| 25 |
|
|
|
| 26 |
|
|
/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
|
| 27 |
|
|
overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
|
| 28 |
|
|
and SUM1. Then this yields nonzero if overflow occurred during the
|
| 29 |
|
|
addition.
|
| 30 |
|
|
|
| 31 |
|
|
Overflow occurs if A and B have the same sign, but A and SUM differ in
|
| 32 |
|
|
sign. Use `^' to test whether signs differ, and `< 0' to isolate the
|
| 33 |
|
|
sign. */
|
| 34 |
|
|
#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
|
| 35 |
|
|
|
| 36 |
|
|
/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
|
| 37 |
|
|
We do that by representing the two-word integer in 4 words, with only
|
| 38 |
|
|
HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
|
| 39 |
|
|
number. The value of the word is LOWPART + HIGHPART * BASE. */
|
| 40 |
|
|
|
| 41 |
|
|
#define LOWPART(x) \
|
| 42 |
|
|
((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
|
| 43 |
|
|
#define HIGHPART(x) \
|
| 44 |
|
|
((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
|
| 45 |
|
|
#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
|
| 46 |
|
|
|
| 47 |
|
|
/* Unpack a two-word integer into 4 words.
|
| 48 |
|
|
LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
|
| 49 |
|
|
WORDS points to the array of HOST_WIDE_INTs. */
|
| 50 |
|
|
|
| 51 |
|
|
static void
|
| 52 |
|
|
encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
|
| 53 |
|
|
{
|
| 54 |
|
|
words[0] = LOWPART (low);
|
| 55 |
|
|
words[1] = HIGHPART (low);
|
| 56 |
|
|
words[2] = LOWPART (hi);
|
| 57 |
|
|
words[3] = HIGHPART (hi);
|
| 58 |
|
|
}
|
| 59 |
|
|
|
| 60 |
|
|
/* Pack an array of 4 words into a two-word integer.
|
| 61 |
|
|
WORDS points to the array of words.
|
| 62 |
|
|
The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
|
| 63 |
|
|
|
| 64 |
|
|
static void
|
| 65 |
|
|
decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
|
| 66 |
|
|
HOST_WIDE_INT *hi)
|
| 67 |
|
|
{
|
| 68 |
|
|
*low = words[0] + words[1] * BASE;
|
| 69 |
|
|
*hi = words[2] + words[3] * BASE;
|
| 70 |
|
|
}
|
| 71 |
|
|
|
| 72 |
|
|
/* Add two doubleword integers with doubleword result.
|
| 73 |
|
|
Return nonzero if the operation overflows according to UNSIGNED_P.
|
| 74 |
|
|
Each argument is given as two `HOST_WIDE_INT' pieces.
|
| 75 |
|
|
One argument is L1 and H1; the other, L2 and H2.
|
| 76 |
|
|
The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
| 77 |
|
|
|
| 78 |
|
|
int
|
| 79 |
|
|
add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
| 80 |
|
|
unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
|
| 81 |
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
|
| 82 |
|
|
bool unsigned_p)
|
| 83 |
|
|
{
|
| 84 |
|
|
unsigned HOST_WIDE_INT l;
|
| 85 |
|
|
HOST_WIDE_INT h;
|
| 86 |
|
|
|
| 87 |
|
|
l = l1 + l2;
|
| 88 |
|
|
h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
|
| 89 |
|
|
+ (unsigned HOST_WIDE_INT) h2
|
| 90 |
|
|
+ (l < l1));
|
| 91 |
|
|
|
| 92 |
|
|
*lv = l;
|
| 93 |
|
|
*hv = h;
|
| 94 |
|
|
|
| 95 |
|
|
if (unsigned_p)
|
| 96 |
|
|
return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
|
| 97 |
|
|
|| (h == h1
|
| 98 |
|
|
&& l < l1));
|
| 99 |
|
|
else
|
| 100 |
|
|
return OVERFLOW_SUM_SIGN (h1, h2, h);
|
| 101 |
|
|
}
|
| 102 |
|
|
|
| 103 |
|
|
/* Negate a doubleword integer with doubleword result.
|
| 104 |
|
|
Return nonzero if the operation overflows, assuming it's signed.
|
| 105 |
|
|
The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
|
| 106 |
|
|
The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
| 107 |
|
|
|
| 108 |
|
|
int
|
| 109 |
|
|
neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
| 110 |
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
|
| 111 |
|
|
{
|
| 112 |
|
|
if (l1 == 0)
|
| 113 |
|
|
{
|
| 114 |
|
|
*lv = 0;
|
| 115 |
|
|
*hv = - h1;
|
| 116 |
|
|
return (*hv & h1) < 0;
|
| 117 |
|
|
}
|
| 118 |
|
|
else
|
| 119 |
|
|
{
|
| 120 |
|
|
*lv = -l1;
|
| 121 |
|
|
*hv = ~h1;
|
| 122 |
|
|
return 0;
|
| 123 |
|
|
}
|
| 124 |
|
|
}
|
| 125 |
|
|
|
| 126 |
|
|
/* Multiply two doubleword integers with doubleword result.
|
| 127 |
|
|
Return nonzero if the operation overflows according to UNSIGNED_P.
|
| 128 |
|
|
Each argument is given as two `HOST_WIDE_INT' pieces.
|
| 129 |
|
|
One argument is L1 and H1; the other, L2 and H2.
|
| 130 |
|
|
The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
| 131 |
|
|
|
| 132 |
|
|
int
|
| 133 |
|
|
mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
| 134 |
|
|
unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
|
| 135 |
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
|
| 136 |
|
|
bool unsigned_p)
|
| 137 |
|
|
{
|
| 138 |
|
|
HOST_WIDE_INT arg1[4];
|
| 139 |
|
|
HOST_WIDE_INT arg2[4];
|
| 140 |
|
|
HOST_WIDE_INT prod[4 * 2];
|
| 141 |
|
|
unsigned HOST_WIDE_INT carry;
|
| 142 |
|
|
int i, j, k;
|
| 143 |
|
|
unsigned HOST_WIDE_INT toplow, neglow;
|
| 144 |
|
|
HOST_WIDE_INT tophigh, neghigh;
|
| 145 |
|
|
|
| 146 |
|
|
encode (arg1, l1, h1);
|
| 147 |
|
|
encode (arg2, l2, h2);
|
| 148 |
|
|
|
| 149 |
|
|
memset (prod, 0, sizeof prod);
|
| 150 |
|
|
|
| 151 |
|
|
for (i = 0; i < 4; i++)
|
| 152 |
|
|
{
|
| 153 |
|
|
carry = 0;
|
| 154 |
|
|
for (j = 0; j < 4; j++)
|
| 155 |
|
|
{
|
| 156 |
|
|
k = i + j;
|
| 157 |
|
|
/* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
|
| 158 |
|
|
carry += arg1[i] * arg2[j];
|
| 159 |
|
|
/* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
|
| 160 |
|
|
carry += prod[k];
|
| 161 |
|
|
prod[k] = LOWPART (carry);
|
| 162 |
|
|
carry = HIGHPART (carry);
|
| 163 |
|
|
}
|
| 164 |
|
|
prod[i + 4] = carry;
|
| 165 |
|
|
}
|
| 166 |
|
|
|
| 167 |
|
|
decode (prod, lv, hv);
|
| 168 |
|
|
decode (prod + 4, &toplow, &tophigh);
|
| 169 |
|
|
|
| 170 |
|
|
/* Unsigned overflow is immediate. */
|
| 171 |
|
|
if (unsigned_p)
|
| 172 |
|
|
return (toplow | tophigh) != 0;
|
| 173 |
|
|
|
| 174 |
|
|
/* Check for signed overflow by calculating the signed representation of the
|
| 175 |
|
|
top half of the result; it should agree with the low half's sign bit. */
|
| 176 |
|
|
if (h1 < 0)
|
| 177 |
|
|
{
|
| 178 |
|
|
neg_double (l2, h2, &neglow, &neghigh);
|
| 179 |
|
|
add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
|
| 180 |
|
|
}
|
| 181 |
|
|
if (h2 < 0)
|
| 182 |
|
|
{
|
| 183 |
|
|
neg_double (l1, h1, &neglow, &neghigh);
|
| 184 |
|
|
add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
|
| 185 |
|
|
}
|
| 186 |
|
|
return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
|
| 187 |
|
|
}
|
| 188 |
|
|
|
| 189 |
|
|
/* Shift the doubleword integer in L1, H1 left by COUNT places
|
| 190 |
|
|
keeping only PREC bits of result.
|
| 191 |
|
|
Shift right if COUNT is negative.
|
| 192 |
|
|
ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
|
| 193 |
|
|
Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
| 194 |
|
|
|
| 195 |
|
|
void
|
| 196 |
|
|
lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
| 197 |
|
|
HOST_WIDE_INT count, unsigned int prec,
|
| 198 |
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, bool arith)
|
| 199 |
|
|
{
|
| 200 |
|
|
unsigned HOST_WIDE_INT signmask;
|
| 201 |
|
|
|
| 202 |
|
|
if (count < 0)
|
| 203 |
|
|
{
|
| 204 |
|
|
rshift_double (l1, h1, -count, prec, lv, hv, arith);
|
| 205 |
|
|
return;
|
| 206 |
|
|
}
|
| 207 |
|
|
|
| 208 |
|
|
if (SHIFT_COUNT_TRUNCATED)
|
| 209 |
|
|
count %= prec;
|
| 210 |
|
|
|
| 211 |
|
|
if (count >= 2 * HOST_BITS_PER_WIDE_INT)
|
| 212 |
|
|
{
|
| 213 |
|
|
/* Shifting by the host word size is undefined according to the
|
| 214 |
|
|
ANSI standard, so we must handle this as a special case. */
|
| 215 |
|
|
*hv = 0;
|
| 216 |
|
|
*lv = 0;
|
| 217 |
|
|
}
|
| 218 |
|
|
else if (count >= HOST_BITS_PER_WIDE_INT)
|
| 219 |
|
|
{
|
| 220 |
|
|
*hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
|
| 221 |
|
|
*lv = 0;
|
| 222 |
|
|
}
|
| 223 |
|
|
else
|
| 224 |
|
|
{
|
| 225 |
|
|
*hv = (((unsigned HOST_WIDE_INT) h1 << count)
|
| 226 |
|
|
| (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
|
| 227 |
|
|
*lv = l1 << count;
|
| 228 |
|
|
}
|
| 229 |
|
|
|
| 230 |
|
|
/* Sign extend all bits that are beyond the precision. */
|
| 231 |
|
|
|
| 232 |
|
|
signmask = -((prec > HOST_BITS_PER_WIDE_INT
|
| 233 |
|
|
? ((unsigned HOST_WIDE_INT) *hv
|
| 234 |
|
|
>> (prec - HOST_BITS_PER_WIDE_INT - 1))
|
| 235 |
|
|
: (*lv >> (prec - 1))) & 1);
|
| 236 |
|
|
|
| 237 |
|
|
if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
|
| 238 |
|
|
;
|
| 239 |
|
|
else if (prec >= HOST_BITS_PER_WIDE_INT)
|
| 240 |
|
|
{
|
| 241 |
|
|
*hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
|
| 242 |
|
|
*hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
|
| 243 |
|
|
}
|
| 244 |
|
|
else
|
| 245 |
|
|
{
|
| 246 |
|
|
*hv = signmask;
|
| 247 |
|
|
*lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
|
| 248 |
|
|
*lv |= signmask << prec;
|
| 249 |
|
|
}
|
| 250 |
|
|
}
|
| 251 |
|
|
|
| 252 |
|
|
/* Shift the doubleword integer in L1, H1 right by COUNT places
|
| 253 |
|
|
keeping only PREC bits of result. Shift left if COUNT is negative.
|
| 254 |
|
|
ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
|
| 255 |
|
|
Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
|
| 256 |
|
|
|
| 257 |
|
|
void
|
| 258 |
|
|
rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
|
| 259 |
|
|
HOST_WIDE_INT count, unsigned int prec,
|
| 260 |
|
|
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
|
| 261 |
|
|
bool arith)
|
| 262 |
|
|
{
|
| 263 |
|
|
unsigned HOST_WIDE_INT signmask;
|
| 264 |
|
|
|
| 265 |
|
|
if (count < 0)
|
| 266 |
|
|
{
|
| 267 |
|
|
lshift_double (l1, h1, -count, prec, lv, hv, arith);
|
| 268 |
|
|
return;
|
| 269 |
|
|
}
|
| 270 |
|
|
|
| 271 |
|
|
signmask = (arith
|
| 272 |
|
|
? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
|
| 273 |
|
|
: 0);
|
| 274 |
|
|
|
| 275 |
|
|
if (SHIFT_COUNT_TRUNCATED)
|
| 276 |
|
|
count %= prec;
|
| 277 |
|
|
|
| 278 |
|
|
if (count >= 2 * HOST_BITS_PER_WIDE_INT)
|
| 279 |
|
|
{
|
| 280 |
|
|
/* Shifting by the host word size is undefined according to the
|
| 281 |
|
|
ANSI standard, so we must handle this as a special case. */
|
| 282 |
|
|
*hv = 0;
|
| 283 |
|
|
*lv = 0;
|
| 284 |
|
|
}
|
| 285 |
|
|
else if (count >= HOST_BITS_PER_WIDE_INT)
|
| 286 |
|
|
{
|
| 287 |
|
|
*hv = 0;
|
| 288 |
|
|
*lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
|
| 289 |
|
|
}
|
| 290 |
|
|
else
|
| 291 |
|
|
{
|
| 292 |
|
|
*hv = (unsigned HOST_WIDE_INT) h1 >> count;
|
| 293 |
|
|
*lv = ((l1 >> count)
|
| 294 |
|
|
| ((unsigned HOST_WIDE_INT) h1
|
| 295 |
|
|
<< (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
|
| 296 |
|
|
}
|
| 297 |
|
|
|
| 298 |
|
|
/* Zero / sign extend all bits that are beyond the precision. */
|
| 299 |
|
|
|
| 300 |
|
|
if (count >= (HOST_WIDE_INT)prec)
|
| 301 |
|
|
{
|
| 302 |
|
|
*hv = signmask;
|
| 303 |
|
|
*lv = signmask;
|
| 304 |
|
|
}
|
| 305 |
|
|
else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
|
| 306 |
|
|
;
|
| 307 |
|
|
else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
|
| 308 |
|
|
{
|
| 309 |
|
|
*hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
|
| 310 |
|
|
*hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
|
| 311 |
|
|
}
|
| 312 |
|
|
else
|
| 313 |
|
|
{
|
| 314 |
|
|
*hv = signmask;
|
| 315 |
|
|
*lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
|
| 316 |
|
|
*lv |= signmask << (prec - count);
|
| 317 |
|
|
}
|
| 318 |
|
|
}
|
| 319 |
|
|
|
| 320 |
|
|
/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
|
| 321 |
|
|
for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
|
| 322 |
|
|
CODE is a tree code for a kind of division, one of
|
| 323 |
|
|
TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
|
| 324 |
|
|
or EXACT_DIV_EXPR
|
| 325 |
|
|
It controls how the quotient is rounded to an integer.
|
| 326 |
|
|
Return nonzero if the operation overflows.
|
| 327 |
|
|
UNS nonzero says do unsigned division. */
|
| 328 |
|
|
|
| 329 |
|
|
int
|
| 330 |
|
|
div_and_round_double (unsigned code, int uns,
|
| 331 |
|
|
/* num == numerator == dividend */
|
| 332 |
|
|
unsigned HOST_WIDE_INT lnum_orig,
|
| 333 |
|
|
HOST_WIDE_INT hnum_orig,
|
| 334 |
|
|
/* den == denominator == divisor */
|
| 335 |
|
|
unsigned HOST_WIDE_INT lden_orig,
|
| 336 |
|
|
HOST_WIDE_INT hden_orig,
|
| 337 |
|
|
unsigned HOST_WIDE_INT *lquo,
|
| 338 |
|
|
HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
|
| 339 |
|
|
HOST_WIDE_INT *hrem)
|
| 340 |
|
|
{
|
| 341 |
|
|
int quo_neg = 0;
|
| 342 |
|
|
HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
|
| 343 |
|
|
HOST_WIDE_INT den[4], quo[4];
|
| 344 |
|
|
int i, j;
|
| 345 |
|
|
unsigned HOST_WIDE_INT work;
|
| 346 |
|
|
unsigned HOST_WIDE_INT carry = 0;
|
| 347 |
|
|
unsigned HOST_WIDE_INT lnum = lnum_orig;
|
| 348 |
|
|
HOST_WIDE_INT hnum = hnum_orig;
|
| 349 |
|
|
unsigned HOST_WIDE_INT lden = lden_orig;
|
| 350 |
|
|
HOST_WIDE_INT hden = hden_orig;
|
| 351 |
|
|
int overflow = 0;
|
| 352 |
|
|
|
| 353 |
|
|
if (hden == 0 && lden == 0)
|
| 354 |
|
|
overflow = 1, lden = 1;
|
| 355 |
|
|
|
| 356 |
|
|
/* Calculate quotient sign and convert operands to unsigned. */
|
| 357 |
|
|
if (!uns)
|
| 358 |
|
|
{
|
| 359 |
|
|
if (hnum < 0)
|
| 360 |
|
|
{
|
| 361 |
|
|
quo_neg = ~ quo_neg;
|
| 362 |
|
|
/* (minimum integer) / (-1) is the only overflow case. */
|
| 363 |
|
|
if (neg_double (lnum, hnum, &lnum, &hnum)
|
| 364 |
|
|
&& ((HOST_WIDE_INT) lden & hden) == -1)
|
| 365 |
|
|
overflow = 1;
|
| 366 |
|
|
}
|
| 367 |
|
|
if (hden < 0)
|
| 368 |
|
|
{
|
| 369 |
|
|
quo_neg = ~ quo_neg;
|
| 370 |
|
|
neg_double (lden, hden, &lden, &hden);
|
| 371 |
|
|
}
|
| 372 |
|
|
}
|
| 373 |
|
|
|
| 374 |
|
|
if (hnum == 0 && hden == 0)
|
| 375 |
|
|
{ /* single precision */
|
| 376 |
|
|
*hquo = *hrem = 0;
|
| 377 |
|
|
/* This unsigned division rounds toward zero. */
|
| 378 |
|
|
*lquo = lnum / lden;
|
| 379 |
|
|
goto finish_up;
|
| 380 |
|
|
}
|
| 381 |
|
|
|
| 382 |
|
|
if (hnum == 0)
|
| 383 |
|
|
{ /* trivial case: dividend < divisor */
|
| 384 |
|
|
/* hden != 0 already checked. */
|
| 385 |
|
|
*hquo = *lquo = 0;
|
| 386 |
|
|
*hrem = hnum;
|
| 387 |
|
|
*lrem = lnum;
|
| 388 |
|
|
goto finish_up;
|
| 389 |
|
|
}
|
| 390 |
|
|
|
| 391 |
|
|
memset (quo, 0, sizeof quo);
|
| 392 |
|
|
|
| 393 |
|
|
memset (num, 0, sizeof num); /* to zero 9th element */
|
| 394 |
|
|
memset (den, 0, sizeof den);
|
| 395 |
|
|
|
| 396 |
|
|
encode (num, lnum, hnum);
|
| 397 |
|
|
encode (den, lden, hden);
|
| 398 |
|
|
|
| 399 |
|
|
/* Special code for when the divisor < BASE. */
|
| 400 |
|
|
if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
|
| 401 |
|
|
{
|
| 402 |
|
|
/* hnum != 0 already checked. */
|
| 403 |
|
|
for (i = 4 - 1; i >= 0; i--)
|
| 404 |
|
|
{
|
| 405 |
|
|
work = num[i] + carry * BASE;
|
| 406 |
|
|
quo[i] = work / lden;
|
| 407 |
|
|
carry = work % lden;
|
| 408 |
|
|
}
|
| 409 |
|
|
}
|
| 410 |
|
|
else
|
| 411 |
|
|
{
|
| 412 |
|
|
/* Full double precision division,
|
| 413 |
|
|
with thanks to Don Knuth's "Seminumerical Algorithms". */
|
| 414 |
|
|
int num_hi_sig, den_hi_sig;
|
| 415 |
|
|
unsigned HOST_WIDE_INT quo_est, scale;
|
| 416 |
|
|
|
| 417 |
|
|
/* Find the highest nonzero divisor digit. */
|
| 418 |
|
|
for (i = 4 - 1;; i--)
|
| 419 |
|
|
if (den[i] != 0)
|
| 420 |
|
|
{
|
| 421 |
|
|
den_hi_sig = i;
|
| 422 |
|
|
break;
|
| 423 |
|
|
}
|
| 424 |
|
|
|
| 425 |
|
|
/* Insure that the first digit of the divisor is at least BASE/2.
|
| 426 |
|
|
This is required by the quotient digit estimation algorithm. */
|
| 427 |
|
|
|
| 428 |
|
|
scale = BASE / (den[den_hi_sig] + 1);
|
| 429 |
|
|
if (scale > 1)
|
| 430 |
|
|
{ /* scale divisor and dividend */
|
| 431 |
|
|
carry = 0;
|
| 432 |
|
|
for (i = 0; i <= 4 - 1; i++)
|
| 433 |
|
|
{
|
| 434 |
|
|
work = (num[i] * scale) + carry;
|
| 435 |
|
|
num[i] = LOWPART (work);
|
| 436 |
|
|
carry = HIGHPART (work);
|
| 437 |
|
|
}
|
| 438 |
|
|
|
| 439 |
|
|
num[4] = carry;
|
| 440 |
|
|
carry = 0;
|
| 441 |
|
|
for (i = 0; i <= 4 - 1; i++)
|
| 442 |
|
|
{
|
| 443 |
|
|
work = (den[i] * scale) + carry;
|
| 444 |
|
|
den[i] = LOWPART (work);
|
| 445 |
|
|
carry = HIGHPART (work);
|
| 446 |
|
|
if (den[i] != 0) den_hi_sig = i;
|
| 447 |
|
|
}
|
| 448 |
|
|
}
|
| 449 |
|
|
|
| 450 |
|
|
num_hi_sig = 4;
|
| 451 |
|
|
|
| 452 |
|
|
/* Main loop */
|
| 453 |
|
|
for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
|
| 454 |
|
|
{
|
| 455 |
|
|
/* Guess the next quotient digit, quo_est, by dividing the first
|
| 456 |
|
|
two remaining dividend digits by the high order quotient digit.
|
| 457 |
|
|
quo_est is never low and is at most 2 high. */
|
| 458 |
|
|
unsigned HOST_WIDE_INT tmp;
|
| 459 |
|
|
|
| 460 |
|
|
num_hi_sig = i + den_hi_sig + 1;
|
| 461 |
|
|
work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
|
| 462 |
|
|
if (num[num_hi_sig] != den[den_hi_sig])
|
| 463 |
|
|
quo_est = work / den[den_hi_sig];
|
| 464 |
|
|
else
|
| 465 |
|
|
quo_est = BASE - 1;
|
| 466 |
|
|
|
| 467 |
|
|
/* Refine quo_est so it's usually correct, and at most one high. */
|
| 468 |
|
|
tmp = work - quo_est * den[den_hi_sig];
|
| 469 |
|
|
if (tmp < BASE
|
| 470 |
|
|
&& (den[den_hi_sig - 1] * quo_est
|
| 471 |
|
|
> (tmp * BASE + num[num_hi_sig - 2])))
|
| 472 |
|
|
quo_est--;
|
| 473 |
|
|
|
| 474 |
|
|
/* Try QUO_EST as the quotient digit, by multiplying the
|
| 475 |
|
|
divisor by QUO_EST and subtracting from the remaining dividend.
|
| 476 |
|
|
Keep in mind that QUO_EST is the I - 1st digit. */
|
| 477 |
|
|
|
| 478 |
|
|
carry = 0;
|
| 479 |
|
|
for (j = 0; j <= den_hi_sig; j++)
|
| 480 |
|
|
{
|
| 481 |
|
|
work = quo_est * den[j] + carry;
|
| 482 |
|
|
carry = HIGHPART (work);
|
| 483 |
|
|
work = num[i + j] - LOWPART (work);
|
| 484 |
|
|
num[i + j] = LOWPART (work);
|
| 485 |
|
|
carry += HIGHPART (work) != 0;
|
| 486 |
|
|
}
|
| 487 |
|
|
|
| 488 |
|
|
/* If quo_est was high by one, then num[i] went negative and
|
| 489 |
|
|
we need to correct things. */
|
| 490 |
|
|
if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
|
| 491 |
|
|
{
|
| 492 |
|
|
quo_est--;
|
| 493 |
|
|
carry = 0; /* add divisor back in */
|
| 494 |
|
|
for (j = 0; j <= den_hi_sig; j++)
|
| 495 |
|
|
{
|
| 496 |
|
|
work = num[i + j] + den[j] + carry;
|
| 497 |
|
|
carry = HIGHPART (work);
|
| 498 |
|
|
num[i + j] = LOWPART (work);
|
| 499 |
|
|
}
|
| 500 |
|
|
|
| 501 |
|
|
num [num_hi_sig] += carry;
|
| 502 |
|
|
}
|
| 503 |
|
|
|
| 504 |
|
|
/* Store the quotient digit. */
|
| 505 |
|
|
quo[i] = quo_est;
|
| 506 |
|
|
}
|
| 507 |
|
|
}
|
| 508 |
|
|
|
| 509 |
|
|
decode (quo, lquo, hquo);
|
| 510 |
|
|
|
| 511 |
|
|
finish_up:
|
| 512 |
|
|
/* If result is negative, make it so. */
|
| 513 |
|
|
if (quo_neg)
|
| 514 |
|
|
neg_double (*lquo, *hquo, lquo, hquo);
|
| 515 |
|
|
|
| 516 |
|
|
/* Compute trial remainder: rem = num - (quo * den) */
|
| 517 |
|
|
mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
|
| 518 |
|
|
neg_double (*lrem, *hrem, lrem, hrem);
|
| 519 |
|
|
add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
|
| 520 |
|
|
|
| 521 |
|
|
switch (code)
|
| 522 |
|
|
{
|
| 523 |
|
|
case TRUNC_DIV_EXPR:
|
| 524 |
|
|
case TRUNC_MOD_EXPR: /* round toward zero */
|
| 525 |
|
|
case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
|
| 526 |
|
|
return overflow;
|
| 527 |
|
|
|
| 528 |
|
|
case FLOOR_DIV_EXPR:
|
| 529 |
|
|
case FLOOR_MOD_EXPR: /* round toward negative infinity */
|
| 530 |
|
|
if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
|
| 531 |
|
|
{
|
| 532 |
|
|
/* quo = quo - 1; */
|
| 533 |
|
|
add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
|
| 534 |
|
|
lquo, hquo);
|
| 535 |
|
|
}
|
| 536 |
|
|
else
|
| 537 |
|
|
return overflow;
|
| 538 |
|
|
break;
|
| 539 |
|
|
|
| 540 |
|
|
case CEIL_DIV_EXPR:
|
| 541 |
|
|
case CEIL_MOD_EXPR: /* round toward positive infinity */
|
| 542 |
|
|
if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
|
| 543 |
|
|
{
|
| 544 |
|
|
add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
|
| 545 |
|
|
lquo, hquo);
|
| 546 |
|
|
}
|
| 547 |
|
|
else
|
| 548 |
|
|
return overflow;
|
| 549 |
|
|
break;
|
| 550 |
|
|
|
| 551 |
|
|
case ROUND_DIV_EXPR:
|
| 552 |
|
|
case ROUND_MOD_EXPR: /* round to closest integer */
|
| 553 |
|
|
{
|
| 554 |
|
|
unsigned HOST_WIDE_INT labs_rem = *lrem;
|
| 555 |
|
|
HOST_WIDE_INT habs_rem = *hrem;
|
| 556 |
|
|
unsigned HOST_WIDE_INT labs_den = lden, ltwice;
|
| 557 |
|
|
HOST_WIDE_INT habs_den = hden, htwice;
|
| 558 |
|
|
|
| 559 |
|
|
/* Get absolute values. */
|
| 560 |
|
|
if (*hrem < 0)
|
| 561 |
|
|
neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
|
| 562 |
|
|
if (hden < 0)
|
| 563 |
|
|
neg_double (lden, hden, &labs_den, &habs_den);
|
| 564 |
|
|
|
| 565 |
|
|
/* If (2 * abs (lrem) >= abs (lden)), adjust the quotient. */
|
| 566 |
|
|
mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
|
| 567 |
|
|
labs_rem, habs_rem, <wice, &htwice);
|
| 568 |
|
|
|
| 569 |
|
|
if (((unsigned HOST_WIDE_INT) habs_den
|
| 570 |
|
|
< (unsigned HOST_WIDE_INT) htwice)
|
| 571 |
|
|
|| (((unsigned HOST_WIDE_INT) habs_den
|
| 572 |
|
|
== (unsigned HOST_WIDE_INT) htwice)
|
| 573 |
|
|
&& (labs_den <= ltwice)))
|
| 574 |
|
|
{
|
| 575 |
|
|
if (*hquo < 0)
|
| 576 |
|
|
/* quo = quo - 1; */
|
| 577 |
|
|
add_double (*lquo, *hquo,
|
| 578 |
|
|
(HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
|
| 579 |
|
|
else
|
| 580 |
|
|
/* quo = quo + 1; */
|
| 581 |
|
|
add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
|
| 582 |
|
|
lquo, hquo);
|
| 583 |
|
|
}
|
| 584 |
|
|
else
|
| 585 |
|
|
return overflow;
|
| 586 |
|
|
}
|
| 587 |
|
|
break;
|
| 588 |
|
|
|
| 589 |
|
|
default:
|
| 590 |
|
|
gcc_unreachable ();
|
| 591 |
|
|
}
|
| 592 |
|
|
|
| 593 |
|
|
/* Compute true remainder: rem = num - (quo * den) */
|
| 594 |
|
|
mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
|
| 595 |
|
|
neg_double (*lrem, *hrem, lrem, hrem);
|
| 596 |
|
|
add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
|
| 597 |
|
|
return overflow;
|
| 598 |
|
|
}
|
| 599 |
|
|
|
| 600 |
|
|
|
| 601 |
|
|
/* Returns mask for PREC bits. */
|
| 602 |
|
|
|
| 603 |
|
|
double_int
|
| 604 |
|
|
double_int_mask (unsigned prec)
|
| 605 |
|
|
{
|
| 606 |
|
|
unsigned HOST_WIDE_INT m;
|
| 607 |
|
|
double_int mask;
|
| 608 |
|
|
|
| 609 |
|
|
if (prec > HOST_BITS_PER_WIDE_INT)
|
| 610 |
|
|
{
|
| 611 |
|
|
prec -= HOST_BITS_PER_WIDE_INT;
|
| 612 |
|
|
m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
|
| 613 |
|
|
mask.high = (HOST_WIDE_INT) m;
|
| 614 |
|
|
mask.low = ALL_ONES;
|
| 615 |
|
|
}
|
| 616 |
|
|
else
|
| 617 |
|
|
{
|
| 618 |
|
|
mask.high = 0;
|
| 619 |
|
|
mask.low = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
|
| 620 |
|
|
}
|
| 621 |
|
|
|
| 622 |
|
|
return mask;
|
| 623 |
|
|
}
|
| 624 |
|
|
|
| 625 |
|
|
/* Clears the bits of CST over the precision PREC. If UNS is false, the bits
|
| 626 |
|
|
outside of the precision are set to the sign bit (i.e., the PREC-th one),
|
| 627 |
|
|
otherwise they are set to zero.
|
| 628 |
|
|
|
| 629 |
|
|
This corresponds to returning the value represented by PREC lowermost bits
|
| 630 |
|
|
of CST, with the given signedness. */
|
| 631 |
|
|
|
| 632 |
|
|
double_int
|
| 633 |
|
|
double_int_ext (double_int cst, unsigned prec, bool uns)
|
| 634 |
|
|
{
|
| 635 |
|
|
if (uns)
|
| 636 |
|
|
return double_int_zext (cst, prec);
|
| 637 |
|
|
else
|
| 638 |
|
|
return double_int_sext (cst, prec);
|
| 639 |
|
|
}
|
| 640 |
|
|
|
| 641 |
|
|
/* The same as double_int_ext with UNS = true. */
|
| 642 |
|
|
|
| 643 |
|
|
double_int
|
| 644 |
|
|
double_int_zext (double_int cst, unsigned prec)
|
| 645 |
|
|
{
|
| 646 |
|
|
double_int mask = double_int_mask (prec);
|
| 647 |
|
|
double_int r;
|
| 648 |
|
|
|
| 649 |
|
|
r.low = cst.low & mask.low;
|
| 650 |
|
|
r.high = cst.high & mask.high;
|
| 651 |
|
|
|
| 652 |
|
|
return r;
|
| 653 |
|
|
}
|
| 654 |
|
|
|
| 655 |
|
|
/* The same as double_int_ext with UNS = false. */
|
| 656 |
|
|
|
| 657 |
|
|
double_int
|
| 658 |
|
|
double_int_sext (double_int cst, unsigned prec)
|
| 659 |
|
|
{
|
| 660 |
|
|
double_int mask = double_int_mask (prec);
|
| 661 |
|
|
double_int r;
|
| 662 |
|
|
unsigned HOST_WIDE_INT snum;
|
| 663 |
|
|
|
| 664 |
|
|
if (prec <= HOST_BITS_PER_WIDE_INT)
|
| 665 |
|
|
snum = cst.low;
|
| 666 |
|
|
else
|
| 667 |
|
|
{
|
| 668 |
|
|
prec -= HOST_BITS_PER_WIDE_INT;
|
| 669 |
|
|
snum = (unsigned HOST_WIDE_INT) cst.high;
|
| 670 |
|
|
}
|
| 671 |
|
|
if (((snum >> (prec - 1)) & 1) == 1)
|
| 672 |
|
|
{
|
| 673 |
|
|
r.low = cst.low | ~mask.low;
|
| 674 |
|
|
r.high = cst.high | ~mask.high;
|
| 675 |
|
|
}
|
| 676 |
|
|
else
|
| 677 |
|
|
{
|
| 678 |
|
|
r.low = cst.low & mask.low;
|
| 679 |
|
|
r.high = cst.high & mask.high;
|
| 680 |
|
|
}
|
| 681 |
|
|
|
| 682 |
|
|
return r;
|
| 683 |
|
|
}
|
| 684 |
|
|
|
| 685 |
|
|
/* Returns true if CST fits in signed HOST_WIDE_INT. */
|
| 686 |
|
|
|
| 687 |
|
|
bool
|
| 688 |
|
|
double_int_fits_in_shwi_p (double_int cst)
|
| 689 |
|
|
{
|
| 690 |
|
|
if (cst.high == 0)
|
| 691 |
|
|
return (HOST_WIDE_INT) cst.low >= 0;
|
| 692 |
|
|
else if (cst.high == -1)
|
| 693 |
|
|
return (HOST_WIDE_INT) cst.low < 0;
|
| 694 |
|
|
else
|
| 695 |
|
|
return false;
|
| 696 |
|
|
}
|
| 697 |
|
|
|
| 698 |
|
|
/* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
|
| 699 |
|
|
unsigned HOST_WIDE_INT if UNS is true. */
|
| 700 |
|
|
|
| 701 |
|
|
bool
|
| 702 |
|
|
double_int_fits_in_hwi_p (double_int cst, bool uns)
|
| 703 |
|
|
{
|
| 704 |
|
|
if (uns)
|
| 705 |
|
|
return double_int_fits_in_uhwi_p (cst);
|
| 706 |
|
|
else
|
| 707 |
|
|
return double_int_fits_in_shwi_p (cst);
|
| 708 |
|
|
}
|
| 709 |
|
|
|
| 710 |
|
|
/* Returns A * B. */
|
| 711 |
|
|
|
| 712 |
|
|
double_int
|
| 713 |
|
|
double_int_mul (double_int a, double_int b)
|
| 714 |
|
|
{
|
| 715 |
|
|
double_int ret;
|
| 716 |
|
|
mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
|
| 717 |
|
|
return ret;
|
| 718 |
|
|
}
|
| 719 |
|
|
|
| 720 |
|
|
/* Returns A * B. If the operation overflows according to UNSIGNED_P,
|
| 721 |
|
|
*OVERFLOW is set to nonzero. */
|
| 722 |
|
|
|
| 723 |
|
|
double_int
|
| 724 |
|
|
double_int_mul_with_sign (double_int a, double_int b,
|
| 725 |
|
|
bool unsigned_p, int *overflow)
|
| 726 |
|
|
{
|
| 727 |
|
|
double_int ret;
|
| 728 |
|
|
*overflow = mul_double_with_sign (a.low, a.high, b.low, b.high,
|
| 729 |
|
|
&ret.low, &ret.high, unsigned_p);
|
| 730 |
|
|
return ret;
|
| 731 |
|
|
}
|
| 732 |
|
|
|
| 733 |
|
|
/* Returns A + B. */
|
| 734 |
|
|
|
| 735 |
|
|
double_int
|
| 736 |
|
|
double_int_add (double_int a, double_int b)
|
| 737 |
|
|
{
|
| 738 |
|
|
double_int ret;
|
| 739 |
|
|
add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
|
| 740 |
|
|
return ret;
|
| 741 |
|
|
}
|
| 742 |
|
|
|
| 743 |
|
|
/* Returns A - B. */
|
| 744 |
|
|
|
| 745 |
|
|
double_int
|
| 746 |
|
|
double_int_sub (double_int a, double_int b)
|
| 747 |
|
|
{
|
| 748 |
|
|
double_int ret;
|
| 749 |
|
|
neg_double (b.low, b.high, &b.low, &b.high);
|
| 750 |
|
|
add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
|
| 751 |
|
|
return ret;
|
| 752 |
|
|
}
|
| 753 |
|
|
|
| 754 |
|
|
/* Returns -A. */
|
| 755 |
|
|
|
| 756 |
|
|
double_int
|
| 757 |
|
|
double_int_neg (double_int a)
|
| 758 |
|
|
{
|
| 759 |
|
|
double_int ret;
|
| 760 |
|
|
neg_double (a.low, a.high, &ret.low, &ret.high);
|
| 761 |
|
|
return ret;
|
| 762 |
|
|
}
|
| 763 |
|
|
|
| 764 |
|
|
/* Returns A / B (computed as unsigned depending on UNS, and rounded as
|
| 765 |
|
|
specified by CODE). CODE is enum tree_code in fact, but double_int.h
|
| 766 |
|
|
must be included before tree.h. The remainder after the division is
|
| 767 |
|
|
stored to MOD. */
|
| 768 |
|
|
|
| 769 |
|
|
double_int
|
| 770 |
|
|
double_int_divmod (double_int a, double_int b, bool uns, unsigned code,
|
| 771 |
|
|
double_int *mod)
|
| 772 |
|
|
{
|
| 773 |
|
|
double_int ret;
|
| 774 |
|
|
|
| 775 |
|
|
div_and_round_double (code, uns, a.low, a.high,
|
| 776 |
|
|
b.low, b.high, &ret.low, &ret.high,
|
| 777 |
|
|
&mod->low, &mod->high);
|
| 778 |
|
|
return ret;
|
| 779 |
|
|
}
|
| 780 |
|
|
|
| 781 |
|
|
/* The same as double_int_divmod with UNS = false. */
|
| 782 |
|
|
|
| 783 |
|
|
double_int
|
| 784 |
|
|
double_int_sdivmod (double_int a, double_int b, unsigned code, double_int *mod)
|
| 785 |
|
|
{
|
| 786 |
|
|
return double_int_divmod (a, b, false, code, mod);
|
| 787 |
|
|
}
|
| 788 |
|
|
|
| 789 |
|
|
/* The same as double_int_divmod with UNS = true. */
|
| 790 |
|
|
|
| 791 |
|
|
double_int
|
| 792 |
|
|
double_int_udivmod (double_int a, double_int b, unsigned code, double_int *mod)
|
| 793 |
|
|
{
|
| 794 |
|
|
return double_int_divmod (a, b, true, code, mod);
|
| 795 |
|
|
}
|
| 796 |
|
|
|
| 797 |
|
|
/* Returns A / B (computed as unsigned depending on UNS, and rounded as
|
| 798 |
|
|
specified by CODE). CODE is enum tree_code in fact, but double_int.h
|
| 799 |
|
|
must be included before tree.h. */
|
| 800 |
|
|
|
| 801 |
|
|
double_int
|
| 802 |
|
|
double_int_div (double_int a, double_int b, bool uns, unsigned code)
|
| 803 |
|
|
{
|
| 804 |
|
|
double_int mod;
|
| 805 |
|
|
|
| 806 |
|
|
return double_int_divmod (a, b, uns, code, &mod);
|
| 807 |
|
|
}
|
| 808 |
|
|
|
| 809 |
|
|
/* The same as double_int_div with UNS = false. */
|
| 810 |
|
|
|
| 811 |
|
|
double_int
|
| 812 |
|
|
double_int_sdiv (double_int a, double_int b, unsigned code)
|
| 813 |
|
|
{
|
| 814 |
|
|
return double_int_div (a, b, false, code);
|
| 815 |
|
|
}
|
| 816 |
|
|
|
| 817 |
|
|
/* The same as double_int_div with UNS = true. */
|
| 818 |
|
|
|
| 819 |
|
|
double_int
|
| 820 |
|
|
double_int_udiv (double_int a, double_int b, unsigned code)
|
| 821 |
|
|
{
|
| 822 |
|
|
return double_int_div (a, b, true, code);
|
| 823 |
|
|
}
|
| 824 |
|
|
|
| 825 |
|
|
/* Returns A % B (computed as unsigned depending on UNS, and rounded as
|
| 826 |
|
|
specified by CODE). CODE is enum tree_code in fact, but double_int.h
|
| 827 |
|
|
must be included before tree.h. */
|
| 828 |
|
|
|
| 829 |
|
|
double_int
|
| 830 |
|
|
double_int_mod (double_int a, double_int b, bool uns, unsigned code)
|
| 831 |
|
|
{
|
| 832 |
|
|
double_int mod;
|
| 833 |
|
|
|
| 834 |
|
|
double_int_divmod (a, b, uns, code, &mod);
|
| 835 |
|
|
return mod;
|
| 836 |
|
|
}
|
| 837 |
|
|
|
| 838 |
|
|
/* The same as double_int_mod with UNS = false. */
|
| 839 |
|
|
|
| 840 |
|
|
double_int
|
| 841 |
|
|
double_int_smod (double_int a, double_int b, unsigned code)
|
| 842 |
|
|
{
|
| 843 |
|
|
return double_int_mod (a, b, false, code);
|
| 844 |
|
|
}
|
| 845 |
|
|
|
| 846 |
|
|
/* The same as double_int_mod with UNS = true. */
|
| 847 |
|
|
|
| 848 |
|
|
double_int
|
| 849 |
|
|
double_int_umod (double_int a, double_int b, unsigned code)
|
| 850 |
|
|
{
|
| 851 |
|
|
return double_int_mod (a, b, true, code);
|
| 852 |
|
|
}
|
| 853 |
|
|
|
| 854 |
|
|
/* Set BITPOS bit in A. */
|
| 855 |
|
|
double_int
|
| 856 |
|
|
double_int_setbit (double_int a, unsigned bitpos)
|
| 857 |
|
|
{
|
| 858 |
|
|
if (bitpos < HOST_BITS_PER_WIDE_INT)
|
| 859 |
|
|
a.low |= (unsigned HOST_WIDE_INT) 1 << bitpos;
|
| 860 |
|
|
else
|
| 861 |
|
|
a.high |= (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
|
| 862 |
|
|
|
| 863 |
|
|
return a;
|
| 864 |
|
|
}
|
| 865 |
|
|
|
| 866 |
|
|
/* Count trailing zeros in A. */
|
| 867 |
|
|
int
|
| 868 |
|
|
double_int_ctz (double_int a)
|
| 869 |
|
|
{
|
| 870 |
|
|
unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
|
| 871 |
|
|
unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
|
| 872 |
|
|
if (!w)
|
| 873 |
|
|
return HOST_BITS_PER_DOUBLE_INT;
|
| 874 |
|
|
bits += ctz_hwi (w);
|
| 875 |
|
|
return bits;
|
| 876 |
|
|
}
|
| 877 |
|
|
|
| 878 |
|
|
/* Shift A left by COUNT places keeping only PREC bits of result. Shift
|
| 879 |
|
|
right if COUNT is negative. ARITH true specifies arithmetic shifting;
|
| 880 |
|
|
otherwise use logical shift. */
|
| 881 |
|
|
|
| 882 |
|
|
double_int
|
| 883 |
|
|
double_int_lshift (double_int a, HOST_WIDE_INT count, unsigned int prec, bool arith)
|
| 884 |
|
|
{
|
| 885 |
|
|
double_int ret;
|
| 886 |
|
|
lshift_double (a.low, a.high, count, prec, &ret.low, &ret.high, arith);
|
| 887 |
|
|
return ret;
|
| 888 |
|
|
}
|
| 889 |
|
|
|
| 890 |
|
|
/* Shift A rigth by COUNT places keeping only PREC bits of result. Shift
|
| 891 |
|
|
left if COUNT is negative. ARITH true specifies arithmetic shifting;
|
| 892 |
|
|
otherwise use logical shift. */
|
| 893 |
|
|
|
| 894 |
|
|
double_int
|
| 895 |
|
|
double_int_rshift (double_int a, HOST_WIDE_INT count, unsigned int prec, bool arith)
|
| 896 |
|
|
{
|
| 897 |
|
|
double_int ret;
|
| 898 |
|
|
rshift_double (a.low, a.high, count, prec, &ret.low, &ret.high, arith);
|
| 899 |
|
|
return ret;
|
| 900 |
|
|
}
|
| 901 |
|
|
|
| 902 |
|
|
/* Rotate A left by COUNT places keeping only PREC bits of result.
|
| 903 |
|
|
Rotate right if COUNT is negative. */
|
| 904 |
|
|
|
| 905 |
|
|
double_int
|
| 906 |
|
|
double_int_lrotate (double_int a, HOST_WIDE_INT count, unsigned int prec)
|
| 907 |
|
|
{
|
| 908 |
|
|
double_int t1, t2;
|
| 909 |
|
|
|
| 910 |
|
|
count %= prec;
|
| 911 |
|
|
if (count < 0)
|
| 912 |
|
|
count += prec;
|
| 913 |
|
|
|
| 914 |
|
|
t1 = double_int_lshift (a, count, prec, false);
|
| 915 |
|
|
t2 = double_int_rshift (a, prec - count, prec, false);
|
| 916 |
|
|
|
| 917 |
|
|
return double_int_ior (t1, t2);
|
| 918 |
|
|
}
|
| 919 |
|
|
|
| 920 |
|
|
/* Rotate A rigth by COUNT places keeping only PREC bits of result.
|
| 921 |
|
|
Rotate right if COUNT is negative. */
|
| 922 |
|
|
|
| 923 |
|
|
double_int
|
| 924 |
|
|
double_int_rrotate (double_int a, HOST_WIDE_INT count, unsigned int prec)
|
| 925 |
|
|
{
|
| 926 |
|
|
double_int t1, t2;
|
| 927 |
|
|
|
| 928 |
|
|
count %= prec;
|
| 929 |
|
|
if (count < 0)
|
| 930 |
|
|
count += prec;
|
| 931 |
|
|
|
| 932 |
|
|
t1 = double_int_rshift (a, count, prec, false);
|
| 933 |
|
|
t2 = double_int_lshift (a, prec - count, prec, false);
|
| 934 |
|
|
|
| 935 |
|
|
return double_int_ior (t1, t2);
|
| 936 |
|
|
}
|
| 937 |
|
|
|
| 938 |
|
|
/* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the
|
| 939 |
|
|
comparison is given by UNS. */
|
| 940 |
|
|
|
| 941 |
|
|
int
|
| 942 |
|
|
double_int_cmp (double_int a, double_int b, bool uns)
|
| 943 |
|
|
{
|
| 944 |
|
|
if (uns)
|
| 945 |
|
|
return double_int_ucmp (a, b);
|
| 946 |
|
|
else
|
| 947 |
|
|
return double_int_scmp (a, b);
|
| 948 |
|
|
}
|
| 949 |
|
|
|
| 950 |
|
|
/* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B,
|
| 951 |
|
|
and 1 if A > B. */
|
| 952 |
|
|
|
| 953 |
|
|
int
|
| 954 |
|
|
double_int_ucmp (double_int a, double_int b)
|
| 955 |
|
|
{
|
| 956 |
|
|
if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
|
| 957 |
|
|
return -1;
|
| 958 |
|
|
if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
|
| 959 |
|
|
return 1;
|
| 960 |
|
|
if (a.low < b.low)
|
| 961 |
|
|
return -1;
|
| 962 |
|
|
if (a.low > b.low)
|
| 963 |
|
|
return 1;
|
| 964 |
|
|
|
| 965 |
|
|
return 0;
|
| 966 |
|
|
}
|
| 967 |
|
|
|
| 968 |
|
|
/* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B,
|
| 969 |
|
|
and 1 if A > B. */
|
| 970 |
|
|
|
| 971 |
|
|
int
|
| 972 |
|
|
double_int_scmp (double_int a, double_int b)
|
| 973 |
|
|
{
|
| 974 |
|
|
if (a.high < b.high)
|
| 975 |
|
|
return -1;
|
| 976 |
|
|
if (a.high > b.high)
|
| 977 |
|
|
return 1;
|
| 978 |
|
|
if (a.low < b.low)
|
| 979 |
|
|
return -1;
|
| 980 |
|
|
if (a.low > b.low)
|
| 981 |
|
|
return 1;
|
| 982 |
|
|
|
| 983 |
|
|
return 0;
|
| 984 |
|
|
}
|
| 985 |
|
|
|
| 986 |
|
|
/* Compares two values A and B. Returns max value. Signedness of the
|
| 987 |
|
|
comparison is given by UNS. */
|
| 988 |
|
|
|
| 989 |
|
|
double_int
|
| 990 |
|
|
double_int_max (double_int a, double_int b, bool uns)
|
| 991 |
|
|
{
|
| 992 |
|
|
return (double_int_cmp (a, b, uns) == 1) ? a : b;
|
| 993 |
|
|
}
|
| 994 |
|
|
|
| 995 |
|
|
/* Compares two signed values A and B. Returns max value. */
|
| 996 |
|
|
|
| 997 |
|
|
double_int double_int_smax (double_int a, double_int b)
|
| 998 |
|
|
{
|
| 999 |
|
|
return (double_int_scmp (a, b) == 1) ? a : b;
|
| 1000 |
|
|
}
|
| 1001 |
|
|
|
| 1002 |
|
|
/* Compares two unsigned values A and B. Returns max value. */
|
| 1003 |
|
|
|
| 1004 |
|
|
double_int double_int_umax (double_int a, double_int b)
|
| 1005 |
|
|
{
|
| 1006 |
|
|
return (double_int_ucmp (a, b) == 1) ? a : b;
|
| 1007 |
|
|
}
|
| 1008 |
|
|
|
| 1009 |
|
|
/* Compares two values A and B. Returns mix value. Signedness of the
|
| 1010 |
|
|
comparison is given by UNS. */
|
| 1011 |
|
|
|
| 1012 |
|
|
double_int double_int_min (double_int a, double_int b, bool uns)
|
| 1013 |
|
|
{
|
| 1014 |
|
|
return (double_int_cmp (a, b, uns) == -1) ? a : b;
|
| 1015 |
|
|
}
|
| 1016 |
|
|
|
| 1017 |
|
|
/* Compares two signed values A and B. Returns min value. */
|
| 1018 |
|
|
|
| 1019 |
|
|
double_int double_int_smin (double_int a, double_int b)
|
| 1020 |
|
|
{
|
| 1021 |
|
|
return (double_int_scmp (a, b) == -1) ? a : b;
|
| 1022 |
|
|
}
|
| 1023 |
|
|
|
| 1024 |
|
|
/* Compares two unsigned values A and B. Returns min value. */
|
| 1025 |
|
|
|
| 1026 |
|
|
double_int double_int_umin (double_int a, double_int b)
|
| 1027 |
|
|
{
|
| 1028 |
|
|
return (double_int_ucmp (a, b) == -1) ? a : b;
|
| 1029 |
|
|
}
|
| 1030 |
|
|
|
| 1031 |
|
|
/* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */
|
| 1032 |
|
|
|
| 1033 |
|
|
static unsigned
|
| 1034 |
|
|
double_int_split_digit (double_int *cst, unsigned base)
|
| 1035 |
|
|
{
|
| 1036 |
|
|
unsigned HOST_WIDE_INT resl, reml;
|
| 1037 |
|
|
HOST_WIDE_INT resh, remh;
|
| 1038 |
|
|
|
| 1039 |
|
|
div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0,
|
| 1040 |
|
|
&resl, &resh, &reml, &remh);
|
| 1041 |
|
|
cst->high = resh;
|
| 1042 |
|
|
cst->low = resl;
|
| 1043 |
|
|
|
| 1044 |
|
|
return reml;
|
| 1045 |
|
|
}
|
| 1046 |
|
|
|
| 1047 |
|
|
/* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned,
|
| 1048 |
|
|
otherwise it is signed. */
|
| 1049 |
|
|
|
| 1050 |
|
|
void
|
| 1051 |
|
|
dump_double_int (FILE *file, double_int cst, bool uns)
|
| 1052 |
|
|
{
|
| 1053 |
|
|
unsigned digits[100], n;
|
| 1054 |
|
|
int i;
|
| 1055 |
|
|
|
| 1056 |
|
|
if (double_int_zero_p (cst))
|
| 1057 |
|
|
{
|
| 1058 |
|
|
fprintf (file, "0");
|
| 1059 |
|
|
return;
|
| 1060 |
|
|
}
|
| 1061 |
|
|
|
| 1062 |
|
|
if (!uns && double_int_negative_p (cst))
|
| 1063 |
|
|
{
|
| 1064 |
|
|
fprintf (file, "-");
|
| 1065 |
|
|
cst = double_int_neg (cst);
|
| 1066 |
|
|
}
|
| 1067 |
|
|
|
| 1068 |
|
|
for (n = 0; !double_int_zero_p (cst); n++)
|
| 1069 |
|
|
digits[n] = double_int_split_digit (&cst, 10);
|
| 1070 |
|
|
for (i = n - 1; i >= 0; i--)
|
| 1071 |
|
|
fprintf (file, "%u", digits[i]);
|
| 1072 |
|
|
}
|
| 1073 |
|
|
|
| 1074 |
|
|
|
| 1075 |
|
|
/* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
|
| 1076 |
|
|
otherwise. */
|
| 1077 |
|
|
|
| 1078 |
|
|
void
|
| 1079 |
|
|
mpz_set_double_int (mpz_t result, double_int val, bool uns)
|
| 1080 |
|
|
{
|
| 1081 |
|
|
bool negate = false;
|
| 1082 |
|
|
unsigned HOST_WIDE_INT vp[2];
|
| 1083 |
|
|
|
| 1084 |
|
|
if (!uns && double_int_negative_p (val))
|
| 1085 |
|
|
{
|
| 1086 |
|
|
negate = true;
|
| 1087 |
|
|
val = double_int_neg (val);
|
| 1088 |
|
|
}
|
| 1089 |
|
|
|
| 1090 |
|
|
vp[0] = val.low;
|
| 1091 |
|
|
vp[1] = (unsigned HOST_WIDE_INT) val.high;
|
| 1092 |
|
|
mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
|
| 1093 |
|
|
|
| 1094 |
|
|
if (negate)
|
| 1095 |
|
|
mpz_neg (result, result);
|
| 1096 |
|
|
}
|
| 1097 |
|
|
|
| 1098 |
|
|
/* Returns VAL converted to TYPE. If WRAP is true, then out-of-range
|
| 1099 |
|
|
values of VAL will be wrapped; otherwise, they will be set to the
|
| 1100 |
|
|
appropriate minimum or maximum TYPE bound. */
|
| 1101 |
|
|
|
| 1102 |
|
|
double_int
|
| 1103 |
|
|
mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
|
| 1104 |
|
|
{
|
| 1105 |
|
|
unsigned HOST_WIDE_INT *vp;
|
| 1106 |
|
|
size_t count, numb;
|
| 1107 |
|
|
double_int res;
|
| 1108 |
|
|
|
| 1109 |
|
|
if (!wrap)
|
| 1110 |
|
|
{
|
| 1111 |
|
|
mpz_t min, max;
|
| 1112 |
|
|
|
| 1113 |
|
|
mpz_init (min);
|
| 1114 |
|
|
mpz_init (max);
|
| 1115 |
|
|
get_type_static_bounds (type, min, max);
|
| 1116 |
|
|
|
| 1117 |
|
|
if (mpz_cmp (val, min) < 0)
|
| 1118 |
|
|
mpz_set (val, min);
|
| 1119 |
|
|
else if (mpz_cmp (val, max) > 0)
|
| 1120 |
|
|
mpz_set (val, max);
|
| 1121 |
|
|
|
| 1122 |
|
|
mpz_clear (min);
|
| 1123 |
|
|
mpz_clear (max);
|
| 1124 |
|
|
}
|
| 1125 |
|
|
|
| 1126 |
|
|
/* Determine the number of unsigned HOST_WIDE_INT that are required
|
| 1127 |
|
|
for representing the value. The code to calculate count is
|
| 1128 |
|
|
extracted from the GMP manual, section "Integer Import and Export":
|
| 1129 |
|
|
http://gmplib.org/manual/Integer-Import-and-Export.html */
|
| 1130 |
|
|
numb = 8*sizeof(HOST_WIDE_INT);
|
| 1131 |
|
|
count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
|
| 1132 |
|
|
if (count < 2)
|
| 1133 |
|
|
count = 2;
|
| 1134 |
|
|
vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof(HOST_WIDE_INT));
|
| 1135 |
|
|
|
| 1136 |
|
|
vp[0] = 0;
|
| 1137 |
|
|
vp[1] = 0;
|
| 1138 |
|
|
mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
|
| 1139 |
|
|
|
| 1140 |
|
|
gcc_assert (wrap || count <= 2);
|
| 1141 |
|
|
|
| 1142 |
|
|
res.low = vp[0];
|
| 1143 |
|
|
res.high = (HOST_WIDE_INT) vp[1];
|
| 1144 |
|
|
|
| 1145 |
|
|
res = double_int_ext (res, TYPE_PRECISION (type), TYPE_UNSIGNED (type));
|
| 1146 |
|
|
if (mpz_sgn (val) < 0)
|
| 1147 |
|
|
res = double_int_neg (res);
|
| 1148 |
|
|
|
| 1149 |
|
|
return res;
|
| 1150 |
|
|
}
|