OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [explow.c] - Blame information for rev 749

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* Subroutines for manipulating rtx's in semantically interesting ways.
2
   Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3
   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4
   Free Software Foundation, Inc.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
 
23
#include "config.h"
24
#include "system.h"
25
#include "coretypes.h"
26
#include "tm.h"
27
#include "diagnostic-core.h"
28
#include "rtl.h"
29
#include "tree.h"
30
#include "tm_p.h"
31
#include "flags.h"
32
#include "except.h"
33
#include "function.h"
34
#include "expr.h"
35
#include "optabs.h"
36
#include "libfuncs.h"
37
#include "hard-reg-set.h"
38
#include "insn-config.h"
39
#include "ggc.h"
40
#include "recog.h"
41
#include "langhooks.h"
42
#include "target.h"
43
#include "common/common-target.h"
44
#include "output.h"
45
 
46
static rtx break_out_memory_refs (rtx);
47
 
48
 
49
/* Truncate and perhaps sign-extend C as appropriate for MODE.  */
50
 
51
HOST_WIDE_INT
52
trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
53
{
54
  int width = GET_MODE_PRECISION (mode);
55
 
56
  /* You want to truncate to a _what_?  */
57
  gcc_assert (SCALAR_INT_MODE_P (mode));
58
 
59
  /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
60
  if (mode == BImode)
61
    return c & 1 ? STORE_FLAG_VALUE : 0;
62
 
63
  /* Sign-extend for the requested mode.  */
64
 
65
  if (width < HOST_BITS_PER_WIDE_INT)
66
    {
67
      HOST_WIDE_INT sign = 1;
68
      sign <<= width - 1;
69
      c &= (sign << 1) - 1;
70
      c ^= sign;
71
      c -= sign;
72
    }
73
 
74
  return c;
75
}
76
 
77
/* Return an rtx for the sum of X and the integer C.  */
78
 
79
rtx
80
plus_constant (rtx x, HOST_WIDE_INT c)
81
{
82
  RTX_CODE code;
83
  rtx y;
84
  enum machine_mode mode;
85
  rtx tem;
86
  int all_constant = 0;
87
 
88
  if (c == 0)
89
    return x;
90
 
91
 restart:
92
 
93
  code = GET_CODE (x);
94
  mode = GET_MODE (x);
95
  y = x;
96
 
97
  switch (code)
98
    {
99
    case CONST_INT:
100
      return GEN_INT (INTVAL (x) + c);
101
 
102
    case CONST_DOUBLE:
103
      {
104
        unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
105
        HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
106
        unsigned HOST_WIDE_INT l2 = c;
107
        HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
108
        unsigned HOST_WIDE_INT lv;
109
        HOST_WIDE_INT hv;
110
 
111
        add_double (l1, h1, l2, h2, &lv, &hv);
112
 
113
        return immed_double_const (lv, hv, VOIDmode);
114
      }
115
 
116
    case MEM:
117
      /* If this is a reference to the constant pool, try replacing it with
118
         a reference to a new constant.  If the resulting address isn't
119
         valid, don't return it because we have no way to validize it.  */
120
      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
121
          && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
122
        {
123
          tem
124
            = force_const_mem (GET_MODE (x),
125
                               plus_constant (get_pool_constant (XEXP (x, 0)),
126
                                              c));
127
          if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
128
            return tem;
129
        }
130
      break;
131
 
132
    case CONST:
133
      /* If adding to something entirely constant, set a flag
134
         so that we can add a CONST around the result.  */
135
      x = XEXP (x, 0);
136
      all_constant = 1;
137
      goto restart;
138
 
139
    case SYMBOL_REF:
140
    case LABEL_REF:
141
      all_constant = 1;
142
      break;
143
 
144
    case PLUS:
145
      /* The interesting case is adding the integer to a sum.
146
         Look for constant term in the sum and combine
147
         with C.  For an integer constant term, we make a combined
148
         integer.  For a constant term that is not an explicit integer,
149
         we cannot really combine, but group them together anyway.
150
 
151
         Restart or use a recursive call in case the remaining operand is
152
         something that we handle specially, such as a SYMBOL_REF.
153
 
154
         We may not immediately return from the recursive call here, lest
155
         all_constant gets lost.  */
156
 
157
      if (CONST_INT_P (XEXP (x, 1)))
158
        {
159
          c += INTVAL (XEXP (x, 1));
160
 
161
          if (GET_MODE (x) != VOIDmode)
162
            c = trunc_int_for_mode (c, GET_MODE (x));
163
 
164
          x = XEXP (x, 0);
165
          goto restart;
166
        }
167
      else if (CONSTANT_P (XEXP (x, 1)))
168
        {
169
          x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
170
          c = 0;
171
        }
172
      else if (find_constant_term_loc (&y))
173
        {
174
          /* We need to be careful since X may be shared and we can't
175
             modify it in place.  */
176
          rtx copy = copy_rtx (x);
177
          rtx *const_loc = find_constant_term_loc (&copy);
178
 
179
          *const_loc = plus_constant (*const_loc, c);
180
          x = copy;
181
          c = 0;
182
        }
183
      break;
184
 
185
    default:
186
      break;
187
    }
188
 
189
  if (c != 0)
190
    x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191
 
192
  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
193
    return x;
194
  else if (all_constant)
195
    return gen_rtx_CONST (mode, x);
196
  else
197
    return x;
198
}
199
 
200
/* If X is a sum, return a new sum like X but lacking any constant terms.
201
   Add all the removed constant terms into *CONSTPTR.
202
   X itself is not altered.  The result != X if and only if
203
   it is not isomorphic to X.  */
204
 
205
rtx
206
eliminate_constant_term (rtx x, rtx *constptr)
207
{
208
  rtx x0, x1;
209
  rtx tem;
210
 
211
  if (GET_CODE (x) != PLUS)
212
    return x;
213
 
214
  /* First handle constants appearing at this level explicitly.  */
215
  if (CONST_INT_P (XEXP (x, 1))
216
      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
217
                                                XEXP (x, 1)))
218
      && CONST_INT_P (tem))
219
    {
220
      *constptr = tem;
221
      return eliminate_constant_term (XEXP (x, 0), constptr);
222
    }
223
 
224
  tem = const0_rtx;
225
  x0 = eliminate_constant_term (XEXP (x, 0), &tem);
226
  x1 = eliminate_constant_term (XEXP (x, 1), &tem);
227
  if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
228
      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
229
                                                *constptr, tem))
230
      && CONST_INT_P (tem))
231
    {
232
      *constptr = tem;
233
      return gen_rtx_PLUS (GET_MODE (x), x0, x1);
234
    }
235
 
236
  return x;
237
}
238
 
239
/* Return an rtx for the size in bytes of the value of EXP.  */
240
 
241
rtx
242
expr_size (tree exp)
243
{
244
  tree size;
245
 
246
  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
247
    size = TREE_OPERAND (exp, 1);
248
  else
249
    {
250
      size = tree_expr_size (exp);
251
      gcc_assert (size);
252
      gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
253
    }
254
 
255
  return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
256
}
257
 
258
/* Return a wide integer for the size in bytes of the value of EXP, or -1
259
   if the size can vary or is larger than an integer.  */
260
 
261
HOST_WIDE_INT
262
int_expr_size (tree exp)
263
{
264
  tree size;
265
 
266
  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
267
    size = TREE_OPERAND (exp, 1);
268
  else
269
    {
270
      size = tree_expr_size (exp);
271
      gcc_assert (size);
272
    }
273
 
274
  if (size == 0 || !host_integerp (size, 0))
275
    return -1;
276
 
277
  return tree_low_cst (size, 0);
278
}
279
 
280
/* Return a copy of X in which all memory references
281
   and all constants that involve symbol refs
282
   have been replaced with new temporary registers.
283
   Also emit code to load the memory locations and constants
284
   into those registers.
285
 
286
   If X contains no such constants or memory references,
287
   X itself (not a copy) is returned.
288
 
289
   If a constant is found in the address that is not a legitimate constant
290
   in an insn, it is left alone in the hope that it might be valid in the
291
   address.
292
 
293
   X may contain no arithmetic except addition, subtraction and multiplication.
294
   Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
295
 
296
static rtx
297
break_out_memory_refs (rtx x)
298
{
299
  if (MEM_P (x)
300
      || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
301
          && GET_MODE (x) != VOIDmode))
302
    x = force_reg (GET_MODE (x), x);
303
  else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
304
           || GET_CODE (x) == MULT)
305
    {
306
      rtx op0 = break_out_memory_refs (XEXP (x, 0));
307
      rtx op1 = break_out_memory_refs (XEXP (x, 1));
308
 
309
      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
310
        x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
311
    }
312
 
313
  return x;
314
}
315
 
316
/* Given X, a memory address in address space AS' pointer mode, convert it to
317
   an address in the address space's address mode, or vice versa (TO_MODE says
318
   which way).  We take advantage of the fact that pointers are not allowed to
319
   overflow by commuting arithmetic operations over conversions so that address
320
   arithmetic insns can be used.  */
321
 
322
rtx
323
convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
324
                                   rtx x, addr_space_t as ATTRIBUTE_UNUSED)
325
{
326
#ifndef POINTERS_EXTEND_UNSIGNED
327
  gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
328
  return x;
329
#else /* defined(POINTERS_EXTEND_UNSIGNED) */
330
  enum machine_mode pointer_mode, address_mode, from_mode;
331
  rtx temp;
332
  enum rtx_code code;
333
 
334
  /* If X already has the right mode, just return it.  */
335
  if (GET_MODE (x) == to_mode)
336
    return x;
337
 
338
  pointer_mode = targetm.addr_space.pointer_mode (as);
339
  address_mode = targetm.addr_space.address_mode (as);
340
  from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
341
 
342
  /* Here we handle some special cases.  If none of them apply, fall through
343
     to the default case.  */
344
  switch (GET_CODE (x))
345
    {
346
    case CONST_INT:
347
    case CONST_DOUBLE:
348
      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
349
        code = TRUNCATE;
350
      else if (POINTERS_EXTEND_UNSIGNED < 0)
351
        break;
352
      else if (POINTERS_EXTEND_UNSIGNED > 0)
353
        code = ZERO_EXTEND;
354
      else
355
        code = SIGN_EXTEND;
356
      temp = simplify_unary_operation (code, to_mode, x, from_mode);
357
      if (temp)
358
        return temp;
359
      break;
360
 
361
    case SUBREG:
362
      if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
363
          && GET_MODE (SUBREG_REG (x)) == to_mode)
364
        return SUBREG_REG (x);
365
      break;
366
 
367
    case LABEL_REF:
368
      temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
369
      LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
370
      return temp;
371
      break;
372
 
373
    case SYMBOL_REF:
374
      temp = shallow_copy_rtx (x);
375
      PUT_MODE (temp, to_mode);
376
      return temp;
377
      break;
378
 
379
    case CONST:
380
      return gen_rtx_CONST (to_mode,
381
                            convert_memory_address_addr_space
382
                              (to_mode, XEXP (x, 0), as));
383
      break;
384
 
385
    case PLUS:
386
    case MULT:
387
      /* FIXME: For addition, we used to permute the conversion and
388
         addition operation only if one operand is a constant and
389
         converting the constant does not change it or if one operand
390
         is a constant and we are using a ptr_extend instruction
391
         (POINTERS_EXTEND_UNSIGNED < 0) even if the resulting address
392
         may overflow/underflow.  We relax the condition to include
393
         zero-extend (POINTERS_EXTEND_UNSIGNED > 0) since the other
394
         parts of the compiler depend on it.  See PR 49721.
395
 
396
         We can always safely permute them if we are making the address
397
         narrower.  */
398
      if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
399
          || (GET_CODE (x) == PLUS
400
              && CONST_INT_P (XEXP (x, 1))
401
              && (POINTERS_EXTEND_UNSIGNED != 0
402
                  || XEXP (x, 1) == convert_memory_address_addr_space
403
                                        (to_mode, XEXP (x, 1), as))))
404
        return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
405
                               convert_memory_address_addr_space
406
                                 (to_mode, XEXP (x, 0), as),
407
                               XEXP (x, 1));
408
      break;
409
 
410
    default:
411
      break;
412
    }
413
 
414
  return convert_modes (to_mode, from_mode,
415
                        x, POINTERS_EXTEND_UNSIGNED);
416
#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
417
}
418
 
419
/* Return something equivalent to X but valid as a memory address for something
420
   of mode MODE in the named address space AS.  When X is not itself valid,
421
   this works by copying X or subexpressions of it into registers.  */
422
 
423
rtx
424
memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
425
{
426
  rtx oldx = x;
427
  enum machine_mode address_mode = targetm.addr_space.address_mode (as);
428
 
429
  x = convert_memory_address_addr_space (address_mode, x, as);
430
 
431
  /* By passing constant addresses through registers
432
     we get a chance to cse them.  */
433
  if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
434
    x = force_reg (address_mode, x);
435
 
436
  /* We get better cse by rejecting indirect addressing at this stage.
437
     Let the combiner create indirect addresses where appropriate.
438
     For now, generate the code so that the subexpressions useful to share
439
     are visible.  But not if cse won't be done!  */
440
  else
441
    {
442
      if (! cse_not_expected && !REG_P (x))
443
        x = break_out_memory_refs (x);
444
 
445
      /* At this point, any valid address is accepted.  */
446
      if (memory_address_addr_space_p (mode, x, as))
447
        goto done;
448
 
449
      /* If it was valid before but breaking out memory refs invalidated it,
450
         use it the old way.  */
451
      if (memory_address_addr_space_p (mode, oldx, as))
452
        {
453
          x = oldx;
454
          goto done;
455
        }
456
 
457
      /* Perform machine-dependent transformations on X
458
         in certain cases.  This is not necessary since the code
459
         below can handle all possible cases, but machine-dependent
460
         transformations can make better code.  */
461
      {
462
        rtx orig_x = x;
463
        x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
464
        if (orig_x != x && memory_address_addr_space_p (mode, x, as))
465
          goto done;
466
      }
467
 
468
      /* PLUS and MULT can appear in special ways
469
         as the result of attempts to make an address usable for indexing.
470
         Usually they are dealt with by calling force_operand, below.
471
         But a sum containing constant terms is special
472
         if removing them makes the sum a valid address:
473
         then we generate that address in a register
474
         and index off of it.  We do this because it often makes
475
         shorter code, and because the addresses thus generated
476
         in registers often become common subexpressions.  */
477
      if (GET_CODE (x) == PLUS)
478
        {
479
          rtx constant_term = const0_rtx;
480
          rtx y = eliminate_constant_term (x, &constant_term);
481
          if (constant_term == const0_rtx
482
              || ! memory_address_addr_space_p (mode, y, as))
483
            x = force_operand (x, NULL_RTX);
484
          else
485
            {
486
              y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
487
              if (! memory_address_addr_space_p (mode, y, as))
488
                x = force_operand (x, NULL_RTX);
489
              else
490
                x = y;
491
            }
492
        }
493
 
494
      else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
495
        x = force_operand (x, NULL_RTX);
496
 
497
      /* If we have a register that's an invalid address,
498
         it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
499
      else if (REG_P (x))
500
        x = copy_to_reg (x);
501
 
502
      /* Last resort: copy the value to a register, since
503
         the register is a valid address.  */
504
      else
505
        x = force_reg (address_mode, x);
506
    }
507
 
508
 done:
509
 
510
  gcc_assert (memory_address_addr_space_p (mode, x, as));
511
  /* If we didn't change the address, we are done.  Otherwise, mark
512
     a reg as a pointer if we have REG or REG + CONST_INT.  */
513
  if (oldx == x)
514
    return x;
515
  else if (REG_P (x))
516
    mark_reg_pointer (x, BITS_PER_UNIT);
517
  else if (GET_CODE (x) == PLUS
518
           && REG_P (XEXP (x, 0))
519
           && CONST_INT_P (XEXP (x, 1)))
520
    mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
521
 
522
  /* OLDX may have been the address on a temporary.  Update the address
523
     to indicate that X is now used.  */
524
  update_temp_slot_address (oldx, x);
525
 
526
  return x;
527
}
528
 
529
/* Convert a mem ref into one with a valid memory address.
530
   Pass through anything else unchanged.  */
531
 
532
rtx
533
validize_mem (rtx ref)
534
{
535
  if (!MEM_P (ref))
536
    return ref;
537
  ref = use_anchored_address (ref);
538
  if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
539
                                   MEM_ADDR_SPACE (ref)))
540
    return ref;
541
 
542
  /* Don't alter REF itself, since that is probably a stack slot.  */
543
  return replace_equiv_address (ref, XEXP (ref, 0));
544
}
545
 
546
/* If X is a memory reference to a member of an object block, try rewriting
547
   it to use an anchor instead.  Return the new memory reference on success
548
   and the old one on failure.  */
549
 
550
rtx
551
use_anchored_address (rtx x)
552
{
553
  rtx base;
554
  HOST_WIDE_INT offset;
555
 
556
  if (!flag_section_anchors)
557
    return x;
558
 
559
  if (!MEM_P (x))
560
    return x;
561
 
562
  /* Split the address into a base and offset.  */
563
  base = XEXP (x, 0);
564
  offset = 0;
565
  if (GET_CODE (base) == CONST
566
      && GET_CODE (XEXP (base, 0)) == PLUS
567
      && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
568
    {
569
      offset += INTVAL (XEXP (XEXP (base, 0), 1));
570
      base = XEXP (XEXP (base, 0), 0);
571
    }
572
 
573
  /* Check whether BASE is suitable for anchors.  */
574
  if (GET_CODE (base) != SYMBOL_REF
575
      || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
576
      || SYMBOL_REF_ANCHOR_P (base)
577
      || SYMBOL_REF_BLOCK (base) == NULL
578
      || !targetm.use_anchors_for_symbol_p (base))
579
    return x;
580
 
581
  /* Decide where BASE is going to be.  */
582
  place_block_symbol (base);
583
 
584
  /* Get the anchor we need to use.  */
585
  offset += SYMBOL_REF_BLOCK_OFFSET (base);
586
  base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
587
                             SYMBOL_REF_TLS_MODEL (base));
588
 
589
  /* Work out the offset from the anchor.  */
590
  offset -= SYMBOL_REF_BLOCK_OFFSET (base);
591
 
592
  /* If we're going to run a CSE pass, force the anchor into a register.
593
     We will then be able to reuse registers for several accesses, if the
594
     target costs say that that's worthwhile.  */
595
  if (!cse_not_expected)
596
    base = force_reg (GET_MODE (base), base);
597
 
598
  return replace_equiv_address (x, plus_constant (base, offset));
599
}
600
 
601
/* Copy the value or contents of X to a new temp reg and return that reg.  */
602
 
603
rtx
604
copy_to_reg (rtx x)
605
{
606
  rtx temp = gen_reg_rtx (GET_MODE (x));
607
 
608
  /* If not an operand, must be an address with PLUS and MULT so
609
     do the computation.  */
610
  if (! general_operand (x, VOIDmode))
611
    x = force_operand (x, temp);
612
 
613
  if (x != temp)
614
    emit_move_insn (temp, x);
615
 
616
  return temp;
617
}
618
 
619
/* Like copy_to_reg but always give the new register mode Pmode
620
   in case X is a constant.  */
621
 
622
rtx
623
copy_addr_to_reg (rtx x)
624
{
625
  return copy_to_mode_reg (Pmode, x);
626
}
627
 
628
/* Like copy_to_reg but always give the new register mode MODE
629
   in case X is a constant.  */
630
 
631
rtx
632
copy_to_mode_reg (enum machine_mode mode, rtx x)
633
{
634
  rtx temp = gen_reg_rtx (mode);
635
 
636
  /* If not an operand, must be an address with PLUS and MULT so
637
     do the computation.  */
638
  if (! general_operand (x, VOIDmode))
639
    x = force_operand (x, temp);
640
 
641
  gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
642
  if (x != temp)
643
    emit_move_insn (temp, x);
644
  return temp;
645
}
646
 
647
/* Load X into a register if it is not already one.
648
   Use mode MODE for the register.
649
   X should be valid for mode MODE, but it may be a constant which
650
   is valid for all integer modes; that's why caller must specify MODE.
651
 
652
   The caller must not alter the value in the register we return,
653
   since we mark it as a "constant" register.  */
654
 
655
rtx
656
force_reg (enum machine_mode mode, rtx x)
657
{
658
  rtx temp, insn, set;
659
 
660
  if (REG_P (x))
661
    return x;
662
 
663
  if (general_operand (x, mode))
664
    {
665
      temp = gen_reg_rtx (mode);
666
      insn = emit_move_insn (temp, x);
667
    }
668
  else
669
    {
670
      temp = force_operand (x, NULL_RTX);
671
      if (REG_P (temp))
672
        insn = get_last_insn ();
673
      else
674
        {
675
          rtx temp2 = gen_reg_rtx (mode);
676
          insn = emit_move_insn (temp2, temp);
677
          temp = temp2;
678
        }
679
    }
680
 
681
  /* Let optimizers know that TEMP's value never changes
682
     and that X can be substituted for it.  Don't get confused
683
     if INSN set something else (such as a SUBREG of TEMP).  */
684
  if (CONSTANT_P (x)
685
      && (set = single_set (insn)) != 0
686
      && SET_DEST (set) == temp
687
      && ! rtx_equal_p (x, SET_SRC (set)))
688
    set_unique_reg_note (insn, REG_EQUAL, x);
689
 
690
  /* Let optimizers know that TEMP is a pointer, and if so, the
691
     known alignment of that pointer.  */
692
  {
693
    unsigned align = 0;
694
    if (GET_CODE (x) == SYMBOL_REF)
695
      {
696
        align = BITS_PER_UNIT;
697
        if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
698
          align = DECL_ALIGN (SYMBOL_REF_DECL (x));
699
      }
700
    else if (GET_CODE (x) == LABEL_REF)
701
      align = BITS_PER_UNIT;
702
    else if (GET_CODE (x) == CONST
703
             && GET_CODE (XEXP (x, 0)) == PLUS
704
             && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
705
             && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
706
      {
707
        rtx s = XEXP (XEXP (x, 0), 0);
708
        rtx c = XEXP (XEXP (x, 0), 1);
709
        unsigned sa, ca;
710
 
711
        sa = BITS_PER_UNIT;
712
        if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
713
          sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
714
 
715
        if (INTVAL (c) == 0)
716
          align = sa;
717
        else
718
          {
719
            ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
720
            align = MIN (sa, ca);
721
          }
722
      }
723
 
724
    if (align || (MEM_P (x) && MEM_POINTER (x)))
725
      mark_reg_pointer (temp, align);
726
  }
727
 
728
  return temp;
729
}
730
 
731
/* If X is a memory ref, copy its contents to a new temp reg and return
732
   that reg.  Otherwise, return X.  */
733
 
734
rtx
735
force_not_mem (rtx x)
736
{
737
  rtx temp;
738
 
739
  if (!MEM_P (x) || GET_MODE (x) == BLKmode)
740
    return x;
741
 
742
  temp = gen_reg_rtx (GET_MODE (x));
743
 
744
  if (MEM_POINTER (x))
745
    REG_POINTER (temp) = 1;
746
 
747
  emit_move_insn (temp, x);
748
  return temp;
749
}
750
 
751
/* Copy X to TARGET (if it's nonzero and a reg)
752
   or to a new temp reg and return that reg.
753
   MODE is the mode to use for X in case it is a constant.  */
754
 
755
rtx
756
copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
757
{
758
  rtx temp;
759
 
760
  if (target && REG_P (target))
761
    temp = target;
762
  else
763
    temp = gen_reg_rtx (mode);
764
 
765
  emit_move_insn (temp, x);
766
  return temp;
767
}
768
 
769
/* Return the mode to use to pass or return a scalar of TYPE and MODE.
770
   PUNSIGNEDP points to the signedness of the type and may be adjusted
771
   to show what signedness to use on extension operations.
772
 
773
   FOR_RETURN is nonzero if the caller is promoting the return value
774
   of FNDECL, else it is for promoting args.  */
775
 
776
enum machine_mode
777
promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
778
                       const_tree funtype, int for_return)
779
{
780
  /* Called without a type node for a libcall.  */
781
  if (type == NULL_TREE)
782
    {
783
      if (INTEGRAL_MODE_P (mode))
784
        return targetm.calls.promote_function_mode (NULL_TREE, mode,
785
                                                    punsignedp, funtype,
786
                                                    for_return);
787
      else
788
        return mode;
789
    }
790
 
791
  switch (TREE_CODE (type))
792
    {
793
    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
794
    case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
795
    case POINTER_TYPE:   case REFERENCE_TYPE:
796
      return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
797
                                                  for_return);
798
 
799
    default:
800
      return mode;
801
    }
802
}
803
/* Return the mode to use to store a scalar of TYPE and MODE.
804
   PUNSIGNEDP points to the signedness of the type and may be adjusted
805
   to show what signedness to use on extension operations.  */
806
 
807
enum machine_mode
808
promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
809
              int *punsignedp ATTRIBUTE_UNUSED)
810
{
811
#ifdef PROMOTE_MODE
812
  enum tree_code code;
813
  int unsignedp;
814
#endif
815
 
816
  /* For libcalls this is invoked without TYPE from the backends
817
     TARGET_PROMOTE_FUNCTION_MODE hooks.  Don't do anything in that
818
     case.  */
819
  if (type == NULL_TREE)
820
    return mode;
821
 
822
  /* FIXME: this is the same logic that was there until GCC 4.4, but we
823
     probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
824
     is not defined.  The affected targets are M32C, S390, SPARC.  */
825
#ifdef PROMOTE_MODE
826
  code = TREE_CODE (type);
827
  unsignedp = *punsignedp;
828
 
829
  switch (code)
830
    {
831
    case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
832
    case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
833
      PROMOTE_MODE (mode, unsignedp, type);
834
      *punsignedp = unsignedp;
835
      return mode;
836
      break;
837
 
838
#ifdef POINTERS_EXTEND_UNSIGNED
839
    case REFERENCE_TYPE:
840
    case POINTER_TYPE:
841
      *punsignedp = POINTERS_EXTEND_UNSIGNED;
842
      return targetm.addr_space.address_mode
843
               (TYPE_ADDR_SPACE (TREE_TYPE (type)));
844
      break;
845
#endif
846
 
847
    default:
848
      return mode;
849
    }
850
#else
851
  return mode;
852
#endif
853
}
854
 
855
 
856
/* Use one of promote_mode or promote_function_mode to find the promoted
857
   mode of DECL.  If PUNSIGNEDP is not NULL, store there the unsignedness
858
   of DECL after promotion.  */
859
 
860
enum machine_mode
861
promote_decl_mode (const_tree decl, int *punsignedp)
862
{
863
  tree type = TREE_TYPE (decl);
864
  int unsignedp = TYPE_UNSIGNED (type);
865
  enum machine_mode mode = DECL_MODE (decl);
866
  enum machine_mode pmode;
867
 
868
  if (TREE_CODE (decl) == RESULT_DECL
869
      || TREE_CODE (decl) == PARM_DECL)
870
    pmode = promote_function_mode (type, mode, &unsignedp,
871
                                   TREE_TYPE (current_function_decl), 2);
872
  else
873
    pmode = promote_mode (type, mode, &unsignedp);
874
 
875
  if (punsignedp)
876
    *punsignedp = unsignedp;
877
  return pmode;
878
}
879
 
880
 
881
/* Controls the behaviour of {anti_,}adjust_stack.  */
882
static bool suppress_reg_args_size;
883
 
884
/* A helper for adjust_stack and anti_adjust_stack.  */
885
 
886
static void
887
adjust_stack_1 (rtx adjust, bool anti_p)
888
{
889
  rtx temp, insn;
890
 
891
#ifndef STACK_GROWS_DOWNWARD
892
  /* Hereafter anti_p means subtract_p.  */
893
  anti_p = !anti_p;
894
#endif
895
 
896
  temp = expand_binop (Pmode,
897
                       anti_p ? sub_optab : add_optab,
898
                       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
899
                       OPTAB_LIB_WIDEN);
900
 
901
  if (temp != stack_pointer_rtx)
902
    insn = emit_move_insn (stack_pointer_rtx, temp);
903
  else
904
    {
905
      insn = get_last_insn ();
906
      temp = single_set (insn);
907
      gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
908
    }
909
 
910
  if (!suppress_reg_args_size)
911
    add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
912
}
913
 
914
/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
915
   This pops when ADJUST is positive.  ADJUST need not be constant.  */
916
 
917
void
918
adjust_stack (rtx adjust)
919
{
920
  if (adjust == const0_rtx)
921
    return;
922
 
923
  /* We expect all variable sized adjustments to be multiple of
924
     PREFERRED_STACK_BOUNDARY.  */
925
  if (CONST_INT_P (adjust))
926
    stack_pointer_delta -= INTVAL (adjust);
927
 
928
  adjust_stack_1 (adjust, false);
929
}
930
 
931
/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
932
   This pushes when ADJUST is positive.  ADJUST need not be constant.  */
933
 
934
void
935
anti_adjust_stack (rtx adjust)
936
{
937
  if (adjust == const0_rtx)
938
    return;
939
 
940
  /* We expect all variable sized adjustments to be multiple of
941
     PREFERRED_STACK_BOUNDARY.  */
942
  if (CONST_INT_P (adjust))
943
    stack_pointer_delta += INTVAL (adjust);
944
 
945
  adjust_stack_1 (adjust, true);
946
}
947
 
948
/* Round the size of a block to be pushed up to the boundary required
949
   by this machine.  SIZE is the desired size, which need not be constant.  */
950
 
951
static rtx
952
round_push (rtx size)
953
{
954
  rtx align_rtx, alignm1_rtx;
955
 
956
  if (!SUPPORTS_STACK_ALIGNMENT
957
      || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
958
    {
959
      int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
960
 
961
      if (align == 1)
962
        return size;
963
 
964
      if (CONST_INT_P (size))
965
        {
966
          HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
967
 
968
          if (INTVAL (size) != new_size)
969
            size = GEN_INT (new_size);
970
          return size;
971
        }
972
 
973
      align_rtx = GEN_INT (align);
974
      alignm1_rtx = GEN_INT (align - 1);
975
    }
976
  else
977
    {
978
      /* If crtl->preferred_stack_boundary might still grow, use
979
         virtual_preferred_stack_boundary_rtx instead.  This will be
980
         substituted by the right value in vregs pass and optimized
981
         during combine.  */
982
      align_rtx = virtual_preferred_stack_boundary_rtx;
983
      alignm1_rtx = force_operand (plus_constant (align_rtx, -1), NULL_RTX);
984
    }
985
 
986
  /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
987
     but we know it can't.  So add ourselves and then do
988
     TRUNC_DIV_EXPR.  */
989
  size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
990
                       NULL_RTX, 1, OPTAB_LIB_WIDEN);
991
  size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
992
                        NULL_RTX, 1);
993
  size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
994
 
995
  return size;
996
}
997
 
998
/* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
999
   to a previously-created save area.  If no save area has been allocated,
1000
   this function will allocate one.  If a save area is specified, it
1001
   must be of the proper mode.  */
1002
 
1003
void
1004
emit_stack_save (enum save_level save_level, rtx *psave)
1005
{
1006
  rtx sa = *psave;
1007
  /* The default is that we use a move insn and save in a Pmode object.  */
1008
  rtx (*fcn) (rtx, rtx) = gen_move_insn;
1009
  enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1010
 
1011
  /* See if this machine has anything special to do for this kind of save.  */
1012
  switch (save_level)
1013
    {
1014
#ifdef HAVE_save_stack_block
1015
    case SAVE_BLOCK:
1016
      if (HAVE_save_stack_block)
1017
        fcn = gen_save_stack_block;
1018
      break;
1019
#endif
1020
#ifdef HAVE_save_stack_function
1021
    case SAVE_FUNCTION:
1022
      if (HAVE_save_stack_function)
1023
        fcn = gen_save_stack_function;
1024
      break;
1025
#endif
1026
#ifdef HAVE_save_stack_nonlocal
1027
    case SAVE_NONLOCAL:
1028
      if (HAVE_save_stack_nonlocal)
1029
        fcn = gen_save_stack_nonlocal;
1030
      break;
1031
#endif
1032
    default:
1033
      break;
1034
    }
1035
 
1036
  /* If there is no save area and we have to allocate one, do so.  Otherwise
1037
     verify the save area is the proper mode.  */
1038
 
1039
  if (sa == 0)
1040
    {
1041
      if (mode != VOIDmode)
1042
        {
1043
          if (save_level == SAVE_NONLOCAL)
1044
            *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1045
          else
1046
            *psave = sa = gen_reg_rtx (mode);
1047
        }
1048
    }
1049
 
1050
  do_pending_stack_adjust ();
1051
  if (sa != 0)
1052
    sa = validize_mem (sa);
1053
  emit_insn (fcn (sa, stack_pointer_rtx));
1054
}
1055
 
1056
/* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
1057
   area made by emit_stack_save.  If it is zero, we have nothing to do.  */
1058
 
1059
void
1060
emit_stack_restore (enum save_level save_level, rtx sa)
1061
{
1062
  /* The default is that we use a move insn.  */
1063
  rtx (*fcn) (rtx, rtx) = gen_move_insn;
1064
 
1065
  /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1066
     STACK_POINTER and HARD_FRAME_POINTER.
1067
     If stack_realign_fp, the x86 backend emits a prologue that aligns only
1068
     STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1069
     aligned variables, which is reflected in ix86_can_eliminate.
1070
     We normally still have the realigned STACK_POINTER that we can use.
1071
     But if there is a stack restore still present at reload, it can trigger
1072
     mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1073
     FRAME_POINTER into a hard reg.
1074
     To prevent this situation, we force need_drap if we emit a stack
1075
     restore.  */
1076
  if (SUPPORTS_STACK_ALIGNMENT)
1077
    crtl->need_drap = true;
1078
 
1079
  /* See if this machine has anything special to do for this kind of save.  */
1080
  switch (save_level)
1081
    {
1082
#ifdef HAVE_restore_stack_block
1083
    case SAVE_BLOCK:
1084
      if (HAVE_restore_stack_block)
1085
        fcn = gen_restore_stack_block;
1086
      break;
1087
#endif
1088
#ifdef HAVE_restore_stack_function
1089
    case SAVE_FUNCTION:
1090
      if (HAVE_restore_stack_function)
1091
        fcn = gen_restore_stack_function;
1092
      break;
1093
#endif
1094
#ifdef HAVE_restore_stack_nonlocal
1095
    case SAVE_NONLOCAL:
1096
      if (HAVE_restore_stack_nonlocal)
1097
        fcn = gen_restore_stack_nonlocal;
1098
      break;
1099
#endif
1100
    default:
1101
      break;
1102
    }
1103
 
1104
  if (sa != 0)
1105
    {
1106
      sa = validize_mem (sa);
1107
      /* These clobbers prevent the scheduler from moving
1108
         references to variable arrays below the code
1109
         that deletes (pops) the arrays.  */
1110
      emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1111
      emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1112
    }
1113
 
1114
  discard_pending_stack_adjust ();
1115
 
1116
  emit_insn (fcn (stack_pointer_rtx, sa));
1117
}
1118
 
1119
/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1120
   function.  This function should be called whenever we allocate or
1121
   deallocate dynamic stack space.  */
1122
 
1123
void
1124
update_nonlocal_goto_save_area (void)
1125
{
1126
  tree t_save;
1127
  rtx r_save;
1128
 
1129
  /* The nonlocal_goto_save_area object is an array of N pointers.  The
1130
     first one is used for the frame pointer save; the rest are sized by
1131
     STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
1132
     of the stack save area slots.  */
1133
  t_save = build4 (ARRAY_REF,
1134
                   TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1135
                   cfun->nonlocal_goto_save_area,
1136
                   integer_one_node, NULL_TREE, NULL_TREE);
1137
  r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1138
 
1139
  emit_stack_save (SAVE_NONLOCAL, &r_save);
1140
}
1141
 
1142
/* Return an rtx representing the address of an area of memory dynamically
1143
   pushed on the stack.
1144
 
1145
   Any required stack pointer alignment is preserved.
1146
 
1147
   SIZE is an rtx representing the size of the area.
1148
 
1149
   SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
1150
   parameter may be zero.  If so, a proper value will be extracted
1151
   from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1152
 
1153
   REQUIRED_ALIGN is the alignment (in bits) required for the region
1154
   of memory.
1155
 
1156
   If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1157
   stack space allocated by the generated code cannot be added with itself
1158
   in the course of the execution of the function.  It is always safe to
1159
   pass FALSE here and the following criterion is sufficient in order to
1160
   pass TRUE: every path in the CFG that starts at the allocation point and
1161
   loops to it executes the associated deallocation code.  */
1162
 
1163
rtx
1164
allocate_dynamic_stack_space (rtx size, unsigned size_align,
1165
                              unsigned required_align, bool cannot_accumulate)
1166
{
1167
  HOST_WIDE_INT stack_usage_size = -1;
1168
  rtx final_label, final_target, target;
1169
  unsigned extra_align = 0;
1170
  bool must_align;
1171
 
1172
  /* If we're asking for zero bytes, it doesn't matter what we point
1173
     to since we can't dereference it.  But return a reasonable
1174
     address anyway.  */
1175
  if (size == const0_rtx)
1176
    return virtual_stack_dynamic_rtx;
1177
 
1178
  /* Otherwise, show we're calling alloca or equivalent.  */
1179
  cfun->calls_alloca = 1;
1180
 
1181
  /* If stack usage info is requested, look into the size we are passed.
1182
     We need to do so this early to avoid the obfuscation that may be
1183
     introduced later by the various alignment operations.  */
1184
  if (flag_stack_usage_info)
1185
    {
1186
      if (CONST_INT_P (size))
1187
        stack_usage_size = INTVAL (size);
1188
      else if (REG_P (size))
1189
        {
1190
          /* Look into the last emitted insn and see if we can deduce
1191
             something for the register.  */
1192
          rtx insn, set, note;
1193
          insn = get_last_insn ();
1194
          if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1195
            {
1196
              if (CONST_INT_P (SET_SRC (set)))
1197
                stack_usage_size = INTVAL (SET_SRC (set));
1198
              else if ((note = find_reg_equal_equiv_note (insn))
1199
                       && CONST_INT_P (XEXP (note, 0)))
1200
                stack_usage_size = INTVAL (XEXP (note, 0));
1201
            }
1202
        }
1203
 
1204
      /* If the size is not constant, we can't say anything.  */
1205
      if (stack_usage_size == -1)
1206
        {
1207
          current_function_has_unbounded_dynamic_stack_size = 1;
1208
          stack_usage_size = 0;
1209
        }
1210
    }
1211
 
1212
  /* Ensure the size is in the proper mode.  */
1213
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1214
    size = convert_to_mode (Pmode, size, 1);
1215
 
1216
  /* Adjust SIZE_ALIGN, if needed.  */
1217
  if (CONST_INT_P (size))
1218
    {
1219
      unsigned HOST_WIDE_INT lsb;
1220
 
1221
      lsb = INTVAL (size);
1222
      lsb &= -lsb;
1223
 
1224
      /* Watch out for overflow truncating to "unsigned".  */
1225
      if (lsb > UINT_MAX / BITS_PER_UNIT)
1226
        size_align = 1u << (HOST_BITS_PER_INT - 1);
1227
      else
1228
        size_align = (unsigned)lsb * BITS_PER_UNIT;
1229
    }
1230
  else if (size_align < BITS_PER_UNIT)
1231
    size_align = BITS_PER_UNIT;
1232
 
1233
  /* We can't attempt to minimize alignment necessary, because we don't
1234
     know the final value of preferred_stack_boundary yet while executing
1235
     this code.  */
1236
  if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1237
    crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1238
 
1239
  /* We will need to ensure that the address we return is aligned to
1240
     REQUIRED_ALIGN.  If STACK_DYNAMIC_OFFSET is defined, we don't
1241
     always know its final value at this point in the compilation (it
1242
     might depend on the size of the outgoing parameter lists, for
1243
     example), so we must align the value to be returned in that case.
1244
     (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1245
     STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1246
     We must also do an alignment operation on the returned value if
1247
     the stack pointer alignment is less strict than REQUIRED_ALIGN.
1248
 
1249
     If we have to align, we must leave space in SIZE for the hole
1250
     that might result from the alignment operation.  */
1251
 
1252
  must_align = (crtl->preferred_stack_boundary < required_align);
1253
  if (must_align)
1254
    {
1255
      if (required_align > PREFERRED_STACK_BOUNDARY)
1256
        extra_align = PREFERRED_STACK_BOUNDARY;
1257
      else if (required_align > STACK_BOUNDARY)
1258
        extra_align = STACK_BOUNDARY;
1259
      else
1260
        extra_align = BITS_PER_UNIT;
1261
    }
1262
 
1263
  /* ??? STACK_POINTER_OFFSET is always defined now.  */
1264
#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1265
  must_align = true;
1266
  extra_align = BITS_PER_UNIT;
1267
#endif
1268
 
1269
  if (must_align)
1270
    {
1271
      unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1272
 
1273
      size = plus_constant (size, extra);
1274
      size = force_operand (size, NULL_RTX);
1275
 
1276
      if (flag_stack_usage_info)
1277
        stack_usage_size += extra;
1278
 
1279
      if (extra && size_align > extra_align)
1280
        size_align = extra_align;
1281
    }
1282
 
1283
  /* Round the size to a multiple of the required stack alignment.
1284
     Since the stack if presumed to be rounded before this allocation,
1285
     this will maintain the required alignment.
1286
 
1287
     If the stack grows downward, we could save an insn by subtracting
1288
     SIZE from the stack pointer and then aligning the stack pointer.
1289
     The problem with this is that the stack pointer may be unaligned
1290
     between the execution of the subtraction and alignment insns and
1291
     some machines do not allow this.  Even on those that do, some
1292
     signal handlers malfunction if a signal should occur between those
1293
     insns.  Since this is an extremely rare event, we have no reliable
1294
     way of knowing which systems have this problem.  So we avoid even
1295
     momentarily mis-aligning the stack.  */
1296
  if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1297
    {
1298
      size = round_push (size);
1299
 
1300
      if (flag_stack_usage_info)
1301
        {
1302
          int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1303
          stack_usage_size = (stack_usage_size + align - 1) / align * align;
1304
        }
1305
    }
1306
 
1307
  target = gen_reg_rtx (Pmode);
1308
 
1309
  /* The size is supposed to be fully adjusted at this point so record it
1310
     if stack usage info is requested.  */
1311
  if (flag_stack_usage_info)
1312
    {
1313
      current_function_dynamic_stack_size += stack_usage_size;
1314
 
1315
      /* ??? This is gross but the only safe stance in the absence
1316
         of stack usage oriented flow analysis.  */
1317
      if (!cannot_accumulate)
1318
        current_function_has_unbounded_dynamic_stack_size = 1;
1319
    }
1320
 
1321
  final_label = NULL_RTX;
1322
  final_target = NULL_RTX;
1323
 
1324
  /* If we are splitting the stack, we need to ask the backend whether
1325
     there is enough room on the current stack.  If there isn't, or if
1326
     the backend doesn't know how to tell is, then we need to call a
1327
     function to allocate memory in some other way.  This memory will
1328
     be released when we release the current stack segment.  The
1329
     effect is that stack allocation becomes less efficient, but at
1330
     least it doesn't cause a stack overflow.  */
1331
  if (flag_split_stack)
1332
    {
1333
      rtx available_label, ask, space, func;
1334
 
1335
      available_label = NULL_RTX;
1336
 
1337
#ifdef HAVE_split_stack_space_check
1338
      if (HAVE_split_stack_space_check)
1339
        {
1340
          available_label = gen_label_rtx ();
1341
 
1342
          /* This instruction will branch to AVAILABLE_LABEL if there
1343
             are SIZE bytes available on the stack.  */
1344
          emit_insn (gen_split_stack_space_check (size, available_label));
1345
        }
1346
#endif
1347
 
1348
      /* The __morestack_allocate_stack_space function will allocate
1349
         memory using malloc.  If the alignment of the memory returned
1350
         by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1351
         make sure we allocate enough space.  */
1352
      if (MALLOC_ABI_ALIGNMENT >= required_align)
1353
        ask = size;
1354
      else
1355
        {
1356
          ask = expand_binop (Pmode, add_optab, size,
1357
                              GEN_INT (required_align / BITS_PER_UNIT - 1),
1358
                              NULL_RTX, 1, OPTAB_LIB_WIDEN);
1359
          must_align = true;
1360
        }
1361
 
1362
      func = init_one_libfunc ("__morestack_allocate_stack_space");
1363
 
1364
      space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1365
                                       1, ask, Pmode);
1366
 
1367
      if (available_label == NULL_RTX)
1368
        return space;
1369
 
1370
      final_target = gen_reg_rtx (Pmode);
1371
 
1372
      emit_move_insn (final_target, space);
1373
 
1374
      final_label = gen_label_rtx ();
1375
      emit_jump (final_label);
1376
 
1377
      emit_label (available_label);
1378
    }
1379
 
1380
  do_pending_stack_adjust ();
1381
 
1382
 /* We ought to be called always on the toplevel and stack ought to be aligned
1383
    properly.  */
1384
  gcc_assert (!(stack_pointer_delta
1385
                % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1386
 
1387
  /* If needed, check that we have the required amount of stack.  Take into
1388
     account what has already been checked.  */
1389
  if (STACK_CHECK_MOVING_SP)
1390
    ;
1391
  else if (flag_stack_check == GENERIC_STACK_CHECK)
1392
    probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1393
                       size);
1394
  else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1395
    probe_stack_range (STACK_CHECK_PROTECT, size);
1396
 
1397
  /* Don't let anti_adjust_stack emit notes.  */
1398
  suppress_reg_args_size = true;
1399
 
1400
  /* Perform the required allocation from the stack.  Some systems do
1401
     this differently than simply incrementing/decrementing from the
1402
     stack pointer, such as acquiring the space by calling malloc().  */
1403
#ifdef HAVE_allocate_stack
1404
  if (HAVE_allocate_stack)
1405
    {
1406
      struct expand_operand ops[2];
1407
      /* We don't have to check against the predicate for operand 0 since
1408
         TARGET is known to be a pseudo of the proper mode, which must
1409
         be valid for the operand.  */
1410
      create_fixed_operand (&ops[0], target);
1411
      create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1412
      expand_insn (CODE_FOR_allocate_stack, 2, ops);
1413
    }
1414
  else
1415
#endif
1416
    {
1417
      int saved_stack_pointer_delta;
1418
 
1419
#ifndef STACK_GROWS_DOWNWARD
1420
      emit_move_insn (target, virtual_stack_dynamic_rtx);
1421
#endif
1422
 
1423
      /* Check stack bounds if necessary.  */
1424
      if (crtl->limit_stack)
1425
        {
1426
          rtx available;
1427
          rtx space_available = gen_label_rtx ();
1428
#ifdef STACK_GROWS_DOWNWARD
1429
          available = expand_binop (Pmode, sub_optab,
1430
                                    stack_pointer_rtx, stack_limit_rtx,
1431
                                    NULL_RTX, 1, OPTAB_WIDEN);
1432
#else
1433
          available = expand_binop (Pmode, sub_optab,
1434
                                    stack_limit_rtx, stack_pointer_rtx,
1435
                                    NULL_RTX, 1, OPTAB_WIDEN);
1436
#endif
1437
          emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1438
                                   space_available);
1439
#ifdef HAVE_trap
1440
          if (HAVE_trap)
1441
            emit_insn (gen_trap ());
1442
          else
1443
#endif
1444
            error ("stack limits not supported on this target");
1445
          emit_barrier ();
1446
          emit_label (space_available);
1447
        }
1448
 
1449
      saved_stack_pointer_delta = stack_pointer_delta;
1450
 
1451
      if (flag_stack_check && STACK_CHECK_MOVING_SP)
1452
        anti_adjust_stack_and_probe (size, false);
1453
      else
1454
        anti_adjust_stack (size);
1455
 
1456
      /* Even if size is constant, don't modify stack_pointer_delta.
1457
         The constant size alloca should preserve
1458
         crtl->preferred_stack_boundary alignment.  */
1459
      stack_pointer_delta = saved_stack_pointer_delta;
1460
 
1461
#ifdef STACK_GROWS_DOWNWARD
1462
      emit_move_insn (target, virtual_stack_dynamic_rtx);
1463
#endif
1464
    }
1465
 
1466
  suppress_reg_args_size = false;
1467
 
1468
  /* Finish up the split stack handling.  */
1469
  if (final_label != NULL_RTX)
1470
    {
1471
      gcc_assert (flag_split_stack);
1472
      emit_move_insn (final_target, target);
1473
      emit_label (final_label);
1474
      target = final_target;
1475
    }
1476
 
1477
  if (must_align)
1478
    {
1479
      /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1480
         but we know it can't.  So add ourselves and then do
1481
         TRUNC_DIV_EXPR.  */
1482
      target = expand_binop (Pmode, add_optab, target,
1483
                             GEN_INT (required_align / BITS_PER_UNIT - 1),
1484
                             NULL_RTX, 1, OPTAB_LIB_WIDEN);
1485
      target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1486
                              GEN_INT (required_align / BITS_PER_UNIT),
1487
                              NULL_RTX, 1);
1488
      target = expand_mult (Pmode, target,
1489
                            GEN_INT (required_align / BITS_PER_UNIT),
1490
                            NULL_RTX, 1);
1491
    }
1492
 
1493
  /* Now that we've committed to a return value, mark its alignment.  */
1494
  mark_reg_pointer (target, required_align);
1495
 
1496
  /* Record the new stack level for nonlocal gotos.  */
1497
  if (cfun->nonlocal_goto_save_area != 0)
1498
    update_nonlocal_goto_save_area ();
1499
 
1500
  return target;
1501
}
1502
 
1503
/* A front end may want to override GCC's stack checking by providing a
1504
   run-time routine to call to check the stack, so provide a mechanism for
1505
   calling that routine.  */
1506
 
1507
static GTY(()) rtx stack_check_libfunc;
1508
 
1509
void
1510
set_stack_check_libfunc (const char *libfunc_name)
1511
{
1512
  gcc_assert (stack_check_libfunc == NULL_RTX);
1513
  stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1514
}
1515
 
1516
/* Emit one stack probe at ADDRESS, an address within the stack.  */
1517
 
1518
void
1519
emit_stack_probe (rtx address)
1520
{
1521
  rtx memref = gen_rtx_MEM (word_mode, address);
1522
 
1523
  MEM_VOLATILE_P (memref) = 1;
1524
 
1525
  /* See if we have an insn to probe the stack.  */
1526
#ifdef HAVE_probe_stack
1527
  if (HAVE_probe_stack)
1528
    emit_insn (gen_probe_stack (memref));
1529
  else
1530
#endif
1531
    emit_move_insn (memref, const0_rtx);
1532
}
1533
 
1534
/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1535
   FIRST is a constant and size is a Pmode RTX.  These are offsets from
1536
   the current stack pointer.  STACK_GROWS_DOWNWARD says whether to add
1537
   or subtract them from the stack pointer.  */
1538
 
1539
#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1540
 
1541
#ifdef STACK_GROWS_DOWNWARD
1542
#define STACK_GROW_OP MINUS
1543
#define STACK_GROW_OPTAB sub_optab
1544
#define STACK_GROW_OFF(off) -(off)
1545
#else
1546
#define STACK_GROW_OP PLUS
1547
#define STACK_GROW_OPTAB add_optab
1548
#define STACK_GROW_OFF(off) (off)
1549
#endif
1550
 
1551
void
1552
probe_stack_range (HOST_WIDE_INT first, rtx size)
1553
{
1554
  /* First ensure SIZE is Pmode.  */
1555
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1556
    size = convert_to_mode (Pmode, size, 1);
1557
 
1558
  /* Next see if we have a function to check the stack.  */
1559
  if (stack_check_libfunc)
1560
    {
1561
      rtx addr = memory_address (Pmode,
1562
                                 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1563
                                                 stack_pointer_rtx,
1564
                                                 plus_constant (size, first)));
1565
      emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1566
                         Pmode);
1567
      return;
1568
    }
1569
 
1570
  /* Next see if we have an insn to check the stack.  */
1571
#ifdef HAVE_check_stack
1572
  if (HAVE_check_stack)
1573
    {
1574
      struct expand_operand ops[1];
1575
      rtx addr = memory_address (Pmode,
1576
                                 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1577
                                                 stack_pointer_rtx,
1578
                                                 plus_constant (size, first)));
1579
 
1580
      create_input_operand (&ops[0], addr, Pmode);
1581
      if (maybe_expand_insn (CODE_FOR_check_stack, 1, ops))
1582
        return;
1583
    }
1584
#endif
1585
 
1586
  /* Otherwise we have to generate explicit probes.  If we have a constant
1587
     small number of them to generate, that's the easy case.  */
1588
  else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1589
    {
1590
      HOST_WIDE_INT isize = INTVAL (size), i;
1591
      rtx addr;
1592
 
1593
      /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1594
         it exceeds SIZE.  If only one probe is needed, this will not
1595
         generate any code.  Then probe at FIRST + SIZE.  */
1596
      for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1597
        {
1598
          addr = memory_address (Pmode,
1599
                                 plus_constant (stack_pointer_rtx,
1600
                                                STACK_GROW_OFF (first + i)));
1601
          emit_stack_probe (addr);
1602
        }
1603
 
1604
      addr = memory_address (Pmode,
1605
                             plus_constant (stack_pointer_rtx,
1606
                                            STACK_GROW_OFF (first + isize)));
1607
      emit_stack_probe (addr);
1608
    }
1609
 
1610
  /* In the variable case, do the same as above, but in a loop.  Note that we
1611
     must be extra careful with variables wrapping around because we might be
1612
     at the very top (or the very bottom) of the address space and we have to
1613
     be able to handle this case properly; in particular, we use an equality
1614
     test for the loop condition.  */
1615
  else
1616
    {
1617
      rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1618
      rtx loop_lab = gen_label_rtx ();
1619
      rtx end_lab = gen_label_rtx ();
1620
 
1621
 
1622
      /* Step 1: round SIZE to the previous multiple of the interval.  */
1623
 
1624
      /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1625
      rounded_size
1626
        = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1627
      rounded_size_op = force_operand (rounded_size, NULL_RTX);
1628
 
1629
 
1630
      /* Step 2: compute initial and final value of the loop counter.  */
1631
 
1632
      /* TEST_ADDR = SP + FIRST.  */
1633
      test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1634
                                                 stack_pointer_rtx,
1635
                                                 GEN_INT (first)), NULL_RTX);
1636
 
1637
      /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
1638
      last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1639
                                                 test_addr,
1640
                                                 rounded_size_op), NULL_RTX);
1641
 
1642
 
1643
      /* Step 3: the loop
1644
 
1645
         while (TEST_ADDR != LAST_ADDR)
1646
           {
1647
             TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1648
             probe at TEST_ADDR
1649
           }
1650
 
1651
         probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1652
         until it is equal to ROUNDED_SIZE.  */
1653
 
1654
      emit_label (loop_lab);
1655
 
1656
      /* Jump to END_LAB if TEST_ADDR == LAST_ADDR.  */
1657
      emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1658
                               end_lab);
1659
 
1660
      /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
1661
      temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1662
                           GEN_INT (PROBE_INTERVAL), test_addr,
1663
                           1, OPTAB_WIDEN);
1664
 
1665
      gcc_assert (temp == test_addr);
1666
 
1667
      /* Probe at TEST_ADDR.  */
1668
      emit_stack_probe (test_addr);
1669
 
1670
      emit_jump (loop_lab);
1671
 
1672
      emit_label (end_lab);
1673
 
1674
 
1675
      /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1676
         that SIZE is equal to ROUNDED_SIZE.  */
1677
 
1678
      /* TEMP = SIZE - ROUNDED_SIZE.  */
1679
      temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1680
      if (temp != const0_rtx)
1681
        {
1682
          rtx addr;
1683
 
1684
          if (CONST_INT_P (temp))
1685
            {
1686
              /* Use [base + disp} addressing mode if supported.  */
1687
              HOST_WIDE_INT offset = INTVAL (temp);
1688
              addr = memory_address (Pmode,
1689
                                     plus_constant (last_addr,
1690
                                                    STACK_GROW_OFF (offset)));
1691
            }
1692
          else
1693
            {
1694
              /* Manual CSE if the difference is not known at compile-time.  */
1695
              temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1696
              addr = memory_address (Pmode,
1697
                                     gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1698
                                                     last_addr, temp));
1699
            }
1700
 
1701
          emit_stack_probe (addr);
1702
        }
1703
    }
1704
}
1705
 
1706
/* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1707
   while probing it.  This pushes when SIZE is positive.  SIZE need not
1708
   be constant.  If ADJUST_BACK is true, adjust back the stack pointer
1709
   by plus SIZE at the end.  */
1710
 
1711
void
1712
anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1713
{
1714
  /* We skip the probe for the first interval + a small dope of 4 words and
1715
     probe that many bytes past the specified size to maintain a protection
1716
     area at the botton of the stack.  */
1717
  const int dope = 4 * UNITS_PER_WORD;
1718
 
1719
  /* First ensure SIZE is Pmode.  */
1720
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1721
    size = convert_to_mode (Pmode, size, 1);
1722
 
1723
  /* If we have a constant small number of probes to generate, that's the
1724
     easy case.  */
1725
  if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1726
    {
1727
      HOST_WIDE_INT isize = INTVAL (size), i;
1728
      bool first_probe = true;
1729
 
1730
      /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1731
         values of N from 1 until it exceeds SIZE.  If only one probe is
1732
         needed, this will not generate any code.  Then adjust and probe
1733
         to PROBE_INTERVAL + SIZE.  */
1734
      for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1735
        {
1736
          if (first_probe)
1737
            {
1738
              anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1739
              first_probe = false;
1740
            }
1741
          else
1742
            anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1743
          emit_stack_probe (stack_pointer_rtx);
1744
        }
1745
 
1746
      if (first_probe)
1747
        anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1748
      else
1749
        anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1750
      emit_stack_probe (stack_pointer_rtx);
1751
    }
1752
 
1753
  /* In the variable case, do the same as above, but in a loop.  Note that we
1754
     must be extra careful with variables wrapping around because we might be
1755
     at the very top (or the very bottom) of the address space and we have to
1756
     be able to handle this case properly; in particular, we use an equality
1757
     test for the loop condition.  */
1758
  else
1759
    {
1760
      rtx rounded_size, rounded_size_op, last_addr, temp;
1761
      rtx loop_lab = gen_label_rtx ();
1762
      rtx end_lab = gen_label_rtx ();
1763
 
1764
 
1765
      /* Step 1: round SIZE to the previous multiple of the interval.  */
1766
 
1767
      /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1768
      rounded_size
1769
        = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1770
      rounded_size_op = force_operand (rounded_size, NULL_RTX);
1771
 
1772
 
1773
      /* Step 2: compute initial and final value of the loop counter.  */
1774
 
1775
      /* SP = SP_0 + PROBE_INTERVAL.  */
1776
      anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1777
 
1778
      /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE.  */
1779
      last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1780
                                                 stack_pointer_rtx,
1781
                                                 rounded_size_op), NULL_RTX);
1782
 
1783
 
1784
      /* Step 3: the loop
1785
 
1786
         while (SP != LAST_ADDR)
1787
           {
1788
             SP = SP + PROBE_INTERVAL
1789
             probe at SP
1790
           }
1791
 
1792
         adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1793
         values of N from 1 until it is equal to ROUNDED_SIZE.  */
1794
 
1795
      emit_label (loop_lab);
1796
 
1797
      /* Jump to END_LAB if SP == LAST_ADDR.  */
1798
      emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1799
                               Pmode, 1, end_lab);
1800
 
1801
      /* SP = SP + PROBE_INTERVAL and probe at SP.  */
1802
      anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1803
      emit_stack_probe (stack_pointer_rtx);
1804
 
1805
      emit_jump (loop_lab);
1806
 
1807
      emit_label (end_lab);
1808
 
1809
 
1810
      /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1811
         assert at compile-time that SIZE is equal to ROUNDED_SIZE.  */
1812
 
1813
      /* TEMP = SIZE - ROUNDED_SIZE.  */
1814
      temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1815
      if (temp != const0_rtx)
1816
        {
1817
          /* Manual CSE if the difference is not known at compile-time.  */
1818
          if (GET_CODE (temp) != CONST_INT)
1819
            temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1820
          anti_adjust_stack (temp);
1821
          emit_stack_probe (stack_pointer_rtx);
1822
        }
1823
    }
1824
 
1825
  /* Adjust back and account for the additional first interval.  */
1826
  if (adjust_back)
1827
    adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1828
  else
1829
    adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1830
}
1831
 
1832
/* Return an rtx representing the register or memory location
1833
   in which a scalar value of data type VALTYPE
1834
   was returned by a function call to function FUNC.
1835
   FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1836
   function is known, otherwise 0.
1837
   OUTGOING is 1 if on a machine with register windows this function
1838
   should return the register in which the function will put its result
1839
   and 0 otherwise.  */
1840
 
1841
rtx
1842
hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1843
                     int outgoing ATTRIBUTE_UNUSED)
1844
{
1845
  rtx val;
1846
 
1847
  val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1848
 
1849
  if (REG_P (val)
1850
      && GET_MODE (val) == BLKmode)
1851
    {
1852
      unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1853
      enum machine_mode tmpmode;
1854
 
1855
      /* int_size_in_bytes can return -1.  We don't need a check here
1856
         since the value of bytes will then be large enough that no
1857
         mode will match anyway.  */
1858
 
1859
      for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1860
           tmpmode != VOIDmode;
1861
           tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1862
        {
1863
          /* Have we found a large enough mode?  */
1864
          if (GET_MODE_SIZE (tmpmode) >= bytes)
1865
            break;
1866
        }
1867
 
1868
      /* No suitable mode found.  */
1869
      gcc_assert (tmpmode != VOIDmode);
1870
 
1871
      PUT_MODE (val, tmpmode);
1872
    }
1873
  return val;
1874
}
1875
 
1876
/* Return an rtx representing the register or memory location
1877
   in which a scalar value of mode MODE was returned by a library call.  */
1878
 
1879
rtx
1880
hard_libcall_value (enum machine_mode mode, rtx fun)
1881
{
1882
  return targetm.calls.libcall_value (mode, fun);
1883
}
1884
 
1885
/* Look up the tree code for a given rtx code
1886
   to provide the arithmetic operation for REAL_ARITHMETIC.
1887
   The function returns an int because the caller may not know
1888
   what `enum tree_code' means.  */
1889
 
1890
int
1891
rtx_to_tree_code (enum rtx_code code)
1892
{
1893
  enum tree_code tcode;
1894
 
1895
  switch (code)
1896
    {
1897
    case PLUS:
1898
      tcode = PLUS_EXPR;
1899
      break;
1900
    case MINUS:
1901
      tcode = MINUS_EXPR;
1902
      break;
1903
    case MULT:
1904
      tcode = MULT_EXPR;
1905
      break;
1906
    case DIV:
1907
      tcode = RDIV_EXPR;
1908
      break;
1909
    case SMIN:
1910
      tcode = MIN_EXPR;
1911
      break;
1912
    case SMAX:
1913
      tcode = MAX_EXPR;
1914
      break;
1915
    default:
1916
      tcode = LAST_AND_UNUSED_TREE_CODE;
1917
      break;
1918
    }
1919
  return ((int) tcode);
1920
}
1921
 
1922
#include "gt-explow.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.