| 1 |
684 |
jeremybenn |
/* Medium-level subroutines: convert bit-field store and extract
|
| 2 |
|
|
and shifts, multiplies and divides to rtl instructions.
|
| 3 |
|
|
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
| 4 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
|
| 5 |
|
|
2011
|
| 6 |
|
|
Free Software Foundation, Inc.
|
| 7 |
|
|
|
| 8 |
|
|
This file is part of GCC.
|
| 9 |
|
|
|
| 10 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 11 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 12 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 13 |
|
|
version.
|
| 14 |
|
|
|
| 15 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 16 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 17 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 18 |
|
|
for more details.
|
| 19 |
|
|
|
| 20 |
|
|
You should have received a copy of the GNU General Public License
|
| 21 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 22 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 23 |
|
|
|
| 24 |
|
|
|
| 25 |
|
|
#include "config.h"
|
| 26 |
|
|
#include "system.h"
|
| 27 |
|
|
#include "coretypes.h"
|
| 28 |
|
|
#include "tm.h"
|
| 29 |
|
|
#include "diagnostic-core.h"
|
| 30 |
|
|
#include "rtl.h"
|
| 31 |
|
|
#include "tree.h"
|
| 32 |
|
|
#include "tm_p.h"
|
| 33 |
|
|
#include "flags.h"
|
| 34 |
|
|
#include "insn-config.h"
|
| 35 |
|
|
#include "expr.h"
|
| 36 |
|
|
#include "optabs.h"
|
| 37 |
|
|
#include "recog.h"
|
| 38 |
|
|
#include "langhooks.h"
|
| 39 |
|
|
#include "df.h"
|
| 40 |
|
|
#include "target.h"
|
| 41 |
|
|
#include "expmed.h"
|
| 42 |
|
|
|
| 43 |
|
|
struct target_expmed default_target_expmed;
|
| 44 |
|
|
#if SWITCHABLE_TARGET
|
| 45 |
|
|
struct target_expmed *this_target_expmed = &default_target_expmed;
|
| 46 |
|
|
#endif
|
| 47 |
|
|
|
| 48 |
|
|
static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
|
| 49 |
|
|
unsigned HOST_WIDE_INT,
|
| 50 |
|
|
unsigned HOST_WIDE_INT,
|
| 51 |
|
|
unsigned HOST_WIDE_INT,
|
| 52 |
|
|
unsigned HOST_WIDE_INT,
|
| 53 |
|
|
rtx);
|
| 54 |
|
|
static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
|
| 55 |
|
|
unsigned HOST_WIDE_INT,
|
| 56 |
|
|
unsigned HOST_WIDE_INT,
|
| 57 |
|
|
unsigned HOST_WIDE_INT,
|
| 58 |
|
|
rtx);
|
| 59 |
|
|
static rtx extract_fixed_bit_field (enum machine_mode, rtx,
|
| 60 |
|
|
unsigned HOST_WIDE_INT,
|
| 61 |
|
|
unsigned HOST_WIDE_INT,
|
| 62 |
|
|
unsigned HOST_WIDE_INT, rtx, int, bool);
|
| 63 |
|
|
static rtx mask_rtx (enum machine_mode, int, int, int);
|
| 64 |
|
|
static rtx lshift_value (enum machine_mode, rtx, int, int);
|
| 65 |
|
|
static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
|
| 66 |
|
|
unsigned HOST_WIDE_INT, int);
|
| 67 |
|
|
static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
|
| 68 |
|
|
static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
|
| 69 |
|
|
static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
|
| 70 |
|
|
|
| 71 |
|
|
/* Test whether a value is zero of a power of two. */
|
| 72 |
|
|
#define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
|
| 73 |
|
|
|
| 74 |
|
|
#ifndef SLOW_UNALIGNED_ACCESS
|
| 75 |
|
|
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
|
| 76 |
|
|
#endif
|
| 77 |
|
|
|
| 78 |
|
|
|
| 79 |
|
|
/* Reduce conditional compilation elsewhere. */
|
| 80 |
|
|
#ifndef HAVE_insv
|
| 81 |
|
|
#define HAVE_insv 0
|
| 82 |
|
|
#define CODE_FOR_insv CODE_FOR_nothing
|
| 83 |
|
|
#define gen_insv(a,b,c,d) NULL_RTX
|
| 84 |
|
|
#endif
|
| 85 |
|
|
#ifndef HAVE_extv
|
| 86 |
|
|
#define HAVE_extv 0
|
| 87 |
|
|
#define CODE_FOR_extv CODE_FOR_nothing
|
| 88 |
|
|
#define gen_extv(a,b,c,d) NULL_RTX
|
| 89 |
|
|
#endif
|
| 90 |
|
|
#ifndef HAVE_extzv
|
| 91 |
|
|
#define HAVE_extzv 0
|
| 92 |
|
|
#define CODE_FOR_extzv CODE_FOR_nothing
|
| 93 |
|
|
#define gen_extzv(a,b,c,d) NULL_RTX
|
| 94 |
|
|
#endif
|
| 95 |
|
|
|
| 96 |
|
|
void
|
| 97 |
|
|
init_expmed (void)
|
| 98 |
|
|
{
|
| 99 |
|
|
struct
|
| 100 |
|
|
{
|
| 101 |
|
|
struct rtx_def reg; rtunion reg_fld[2];
|
| 102 |
|
|
struct rtx_def plus; rtunion plus_fld1;
|
| 103 |
|
|
struct rtx_def neg;
|
| 104 |
|
|
struct rtx_def mult; rtunion mult_fld1;
|
| 105 |
|
|
struct rtx_def sdiv; rtunion sdiv_fld1;
|
| 106 |
|
|
struct rtx_def udiv; rtunion udiv_fld1;
|
| 107 |
|
|
struct rtx_def zext;
|
| 108 |
|
|
struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
|
| 109 |
|
|
struct rtx_def smod_32; rtunion smod_32_fld1;
|
| 110 |
|
|
struct rtx_def wide_mult; rtunion wide_mult_fld1;
|
| 111 |
|
|
struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
|
| 112 |
|
|
struct rtx_def wide_trunc;
|
| 113 |
|
|
struct rtx_def shift; rtunion shift_fld1;
|
| 114 |
|
|
struct rtx_def shift_mult; rtunion shift_mult_fld1;
|
| 115 |
|
|
struct rtx_def shift_add; rtunion shift_add_fld1;
|
| 116 |
|
|
struct rtx_def shift_sub0; rtunion shift_sub0_fld1;
|
| 117 |
|
|
struct rtx_def shift_sub1; rtunion shift_sub1_fld1;
|
| 118 |
|
|
} all;
|
| 119 |
|
|
|
| 120 |
|
|
rtx pow2[MAX_BITS_PER_WORD];
|
| 121 |
|
|
rtx cint[MAX_BITS_PER_WORD];
|
| 122 |
|
|
int m, n;
|
| 123 |
|
|
enum machine_mode mode, wider_mode;
|
| 124 |
|
|
int speed;
|
| 125 |
|
|
|
| 126 |
|
|
|
| 127 |
|
|
for (m = 1; m < MAX_BITS_PER_WORD; m++)
|
| 128 |
|
|
{
|
| 129 |
|
|
pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
|
| 130 |
|
|
cint[m] = GEN_INT (m);
|
| 131 |
|
|
}
|
| 132 |
|
|
memset (&all, 0, sizeof all);
|
| 133 |
|
|
|
| 134 |
|
|
PUT_CODE (&all.reg, REG);
|
| 135 |
|
|
/* Avoid using hard regs in ways which may be unsupported. */
|
| 136 |
|
|
SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
|
| 137 |
|
|
|
| 138 |
|
|
PUT_CODE (&all.plus, PLUS);
|
| 139 |
|
|
XEXP (&all.plus, 0) = &all.reg;
|
| 140 |
|
|
XEXP (&all.plus, 1) = &all.reg;
|
| 141 |
|
|
|
| 142 |
|
|
PUT_CODE (&all.neg, NEG);
|
| 143 |
|
|
XEXP (&all.neg, 0) = &all.reg;
|
| 144 |
|
|
|
| 145 |
|
|
PUT_CODE (&all.mult, MULT);
|
| 146 |
|
|
XEXP (&all.mult, 0) = &all.reg;
|
| 147 |
|
|
XEXP (&all.mult, 1) = &all.reg;
|
| 148 |
|
|
|
| 149 |
|
|
PUT_CODE (&all.sdiv, DIV);
|
| 150 |
|
|
XEXP (&all.sdiv, 0) = &all.reg;
|
| 151 |
|
|
XEXP (&all.sdiv, 1) = &all.reg;
|
| 152 |
|
|
|
| 153 |
|
|
PUT_CODE (&all.udiv, UDIV);
|
| 154 |
|
|
XEXP (&all.udiv, 0) = &all.reg;
|
| 155 |
|
|
XEXP (&all.udiv, 1) = &all.reg;
|
| 156 |
|
|
|
| 157 |
|
|
PUT_CODE (&all.sdiv_32, DIV);
|
| 158 |
|
|
XEXP (&all.sdiv_32, 0) = &all.reg;
|
| 159 |
|
|
XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
|
| 160 |
|
|
|
| 161 |
|
|
PUT_CODE (&all.smod_32, MOD);
|
| 162 |
|
|
XEXP (&all.smod_32, 0) = &all.reg;
|
| 163 |
|
|
XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
|
| 164 |
|
|
|
| 165 |
|
|
PUT_CODE (&all.zext, ZERO_EXTEND);
|
| 166 |
|
|
XEXP (&all.zext, 0) = &all.reg;
|
| 167 |
|
|
|
| 168 |
|
|
PUT_CODE (&all.wide_mult, MULT);
|
| 169 |
|
|
XEXP (&all.wide_mult, 0) = &all.zext;
|
| 170 |
|
|
XEXP (&all.wide_mult, 1) = &all.zext;
|
| 171 |
|
|
|
| 172 |
|
|
PUT_CODE (&all.wide_lshr, LSHIFTRT);
|
| 173 |
|
|
XEXP (&all.wide_lshr, 0) = &all.wide_mult;
|
| 174 |
|
|
|
| 175 |
|
|
PUT_CODE (&all.wide_trunc, TRUNCATE);
|
| 176 |
|
|
XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
|
| 177 |
|
|
|
| 178 |
|
|
PUT_CODE (&all.shift, ASHIFT);
|
| 179 |
|
|
XEXP (&all.shift, 0) = &all.reg;
|
| 180 |
|
|
|
| 181 |
|
|
PUT_CODE (&all.shift_mult, MULT);
|
| 182 |
|
|
XEXP (&all.shift_mult, 0) = &all.reg;
|
| 183 |
|
|
|
| 184 |
|
|
PUT_CODE (&all.shift_add, PLUS);
|
| 185 |
|
|
XEXP (&all.shift_add, 0) = &all.shift_mult;
|
| 186 |
|
|
XEXP (&all.shift_add, 1) = &all.reg;
|
| 187 |
|
|
|
| 188 |
|
|
PUT_CODE (&all.shift_sub0, MINUS);
|
| 189 |
|
|
XEXP (&all.shift_sub0, 0) = &all.shift_mult;
|
| 190 |
|
|
XEXP (&all.shift_sub0, 1) = &all.reg;
|
| 191 |
|
|
|
| 192 |
|
|
PUT_CODE (&all.shift_sub1, MINUS);
|
| 193 |
|
|
XEXP (&all.shift_sub1, 0) = &all.reg;
|
| 194 |
|
|
XEXP (&all.shift_sub1, 1) = &all.shift_mult;
|
| 195 |
|
|
|
| 196 |
|
|
for (speed = 0; speed < 2; speed++)
|
| 197 |
|
|
{
|
| 198 |
|
|
crtl->maybe_hot_insn_p = speed;
|
| 199 |
|
|
zero_cost[speed] = set_src_cost (const0_rtx, speed);
|
| 200 |
|
|
|
| 201 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
| 202 |
|
|
mode != VOIDmode;
|
| 203 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
| 204 |
|
|
{
|
| 205 |
|
|
PUT_MODE (&all.reg, mode);
|
| 206 |
|
|
PUT_MODE (&all.plus, mode);
|
| 207 |
|
|
PUT_MODE (&all.neg, mode);
|
| 208 |
|
|
PUT_MODE (&all.mult, mode);
|
| 209 |
|
|
PUT_MODE (&all.sdiv, mode);
|
| 210 |
|
|
PUT_MODE (&all.udiv, mode);
|
| 211 |
|
|
PUT_MODE (&all.sdiv_32, mode);
|
| 212 |
|
|
PUT_MODE (&all.smod_32, mode);
|
| 213 |
|
|
PUT_MODE (&all.wide_trunc, mode);
|
| 214 |
|
|
PUT_MODE (&all.shift, mode);
|
| 215 |
|
|
PUT_MODE (&all.shift_mult, mode);
|
| 216 |
|
|
PUT_MODE (&all.shift_add, mode);
|
| 217 |
|
|
PUT_MODE (&all.shift_sub0, mode);
|
| 218 |
|
|
PUT_MODE (&all.shift_sub1, mode);
|
| 219 |
|
|
|
| 220 |
|
|
add_cost[speed][mode] = set_src_cost (&all.plus, speed);
|
| 221 |
|
|
neg_cost[speed][mode] = set_src_cost (&all.neg, speed);
|
| 222 |
|
|
mul_cost[speed][mode] = set_src_cost (&all.mult, speed);
|
| 223 |
|
|
sdiv_cost[speed][mode] = set_src_cost (&all.sdiv, speed);
|
| 224 |
|
|
udiv_cost[speed][mode] = set_src_cost (&all.udiv, speed);
|
| 225 |
|
|
|
| 226 |
|
|
sdiv_pow2_cheap[speed][mode] = (set_src_cost (&all.sdiv_32, speed)
|
| 227 |
|
|
<= 2 * add_cost[speed][mode]);
|
| 228 |
|
|
smod_pow2_cheap[speed][mode] = (set_src_cost (&all.smod_32, speed)
|
| 229 |
|
|
<= 4 * add_cost[speed][mode]);
|
| 230 |
|
|
|
| 231 |
|
|
wider_mode = GET_MODE_WIDER_MODE (mode);
|
| 232 |
|
|
if (wider_mode != VOIDmode)
|
| 233 |
|
|
{
|
| 234 |
|
|
PUT_MODE (&all.zext, wider_mode);
|
| 235 |
|
|
PUT_MODE (&all.wide_mult, wider_mode);
|
| 236 |
|
|
PUT_MODE (&all.wide_lshr, wider_mode);
|
| 237 |
|
|
XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
|
| 238 |
|
|
|
| 239 |
|
|
mul_widen_cost[speed][wider_mode]
|
| 240 |
|
|
= set_src_cost (&all.wide_mult, speed);
|
| 241 |
|
|
mul_highpart_cost[speed][mode]
|
| 242 |
|
|
= set_src_cost (&all.wide_trunc, speed);
|
| 243 |
|
|
}
|
| 244 |
|
|
|
| 245 |
|
|
shift_cost[speed][mode][0] = 0;
|
| 246 |
|
|
shiftadd_cost[speed][mode][0] = shiftsub0_cost[speed][mode][0]
|
| 247 |
|
|
= shiftsub1_cost[speed][mode][0] = add_cost[speed][mode];
|
| 248 |
|
|
|
| 249 |
|
|
n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
|
| 250 |
|
|
for (m = 1; m < n; m++)
|
| 251 |
|
|
{
|
| 252 |
|
|
XEXP (&all.shift, 1) = cint[m];
|
| 253 |
|
|
XEXP (&all.shift_mult, 1) = pow2[m];
|
| 254 |
|
|
|
| 255 |
|
|
shift_cost[speed][mode][m] = set_src_cost (&all.shift, speed);
|
| 256 |
|
|
shiftadd_cost[speed][mode][m] = set_src_cost (&all.shift_add,
|
| 257 |
|
|
speed);
|
| 258 |
|
|
shiftsub0_cost[speed][mode][m] = set_src_cost (&all.shift_sub0,
|
| 259 |
|
|
speed);
|
| 260 |
|
|
shiftsub1_cost[speed][mode][m] = set_src_cost (&all.shift_sub1,
|
| 261 |
|
|
speed);
|
| 262 |
|
|
}
|
| 263 |
|
|
}
|
| 264 |
|
|
}
|
| 265 |
|
|
if (alg_hash_used_p)
|
| 266 |
|
|
memset (alg_hash, 0, sizeof (alg_hash));
|
| 267 |
|
|
else
|
| 268 |
|
|
alg_hash_used_p = true;
|
| 269 |
|
|
default_rtl_profile ();
|
| 270 |
|
|
}
|
| 271 |
|
|
|
| 272 |
|
|
/* Return an rtx representing minus the value of X.
|
| 273 |
|
|
MODE is the intended mode of the result,
|
| 274 |
|
|
useful if X is a CONST_INT. */
|
| 275 |
|
|
|
| 276 |
|
|
rtx
|
| 277 |
|
|
negate_rtx (enum machine_mode mode, rtx x)
|
| 278 |
|
|
{
|
| 279 |
|
|
rtx result = simplify_unary_operation (NEG, mode, x, mode);
|
| 280 |
|
|
|
| 281 |
|
|
if (result == 0)
|
| 282 |
|
|
result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
|
| 283 |
|
|
|
| 284 |
|
|
return result;
|
| 285 |
|
|
}
|
| 286 |
|
|
|
| 287 |
|
|
/* Report on the availability of insv/extv/extzv and the desired mode
|
| 288 |
|
|
of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
|
| 289 |
|
|
is false; else the mode of the specified operand. If OPNO is -1,
|
| 290 |
|
|
all the caller cares about is whether the insn is available. */
|
| 291 |
|
|
enum machine_mode
|
| 292 |
|
|
mode_for_extraction (enum extraction_pattern pattern, int opno)
|
| 293 |
|
|
{
|
| 294 |
|
|
const struct insn_data_d *data;
|
| 295 |
|
|
|
| 296 |
|
|
switch (pattern)
|
| 297 |
|
|
{
|
| 298 |
|
|
case EP_insv:
|
| 299 |
|
|
if (HAVE_insv)
|
| 300 |
|
|
{
|
| 301 |
|
|
data = &insn_data[CODE_FOR_insv];
|
| 302 |
|
|
break;
|
| 303 |
|
|
}
|
| 304 |
|
|
return MAX_MACHINE_MODE;
|
| 305 |
|
|
|
| 306 |
|
|
case EP_extv:
|
| 307 |
|
|
if (HAVE_extv)
|
| 308 |
|
|
{
|
| 309 |
|
|
data = &insn_data[CODE_FOR_extv];
|
| 310 |
|
|
break;
|
| 311 |
|
|
}
|
| 312 |
|
|
return MAX_MACHINE_MODE;
|
| 313 |
|
|
|
| 314 |
|
|
case EP_extzv:
|
| 315 |
|
|
if (HAVE_extzv)
|
| 316 |
|
|
{
|
| 317 |
|
|
data = &insn_data[CODE_FOR_extzv];
|
| 318 |
|
|
break;
|
| 319 |
|
|
}
|
| 320 |
|
|
return MAX_MACHINE_MODE;
|
| 321 |
|
|
|
| 322 |
|
|
default:
|
| 323 |
|
|
gcc_unreachable ();
|
| 324 |
|
|
}
|
| 325 |
|
|
|
| 326 |
|
|
if (opno == -1)
|
| 327 |
|
|
return VOIDmode;
|
| 328 |
|
|
|
| 329 |
|
|
/* Everyone who uses this function used to follow it with
|
| 330 |
|
|
if (result == VOIDmode) result = word_mode; */
|
| 331 |
|
|
if (data->operand[opno].mode == VOIDmode)
|
| 332 |
|
|
return word_mode;
|
| 333 |
|
|
return data->operand[opno].mode;
|
| 334 |
|
|
}
|
| 335 |
|
|
|
| 336 |
|
|
/* A subroutine of store_bit_field, with the same arguments. Return true
|
| 337 |
|
|
if the operation could be implemented.
|
| 338 |
|
|
|
| 339 |
|
|
If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
|
| 340 |
|
|
no other way of implementing the operation. If FALLBACK_P is false,
|
| 341 |
|
|
return false instead. */
|
| 342 |
|
|
|
| 343 |
|
|
static bool
|
| 344 |
|
|
store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
|
| 345 |
|
|
unsigned HOST_WIDE_INT bitnum,
|
| 346 |
|
|
unsigned HOST_WIDE_INT bitregion_start,
|
| 347 |
|
|
unsigned HOST_WIDE_INT bitregion_end,
|
| 348 |
|
|
enum machine_mode fieldmode,
|
| 349 |
|
|
rtx value, bool fallback_p)
|
| 350 |
|
|
{
|
| 351 |
|
|
unsigned int unit
|
| 352 |
|
|
= (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
|
| 353 |
|
|
unsigned HOST_WIDE_INT offset, bitpos;
|
| 354 |
|
|
rtx op0 = str_rtx;
|
| 355 |
|
|
int byte_offset;
|
| 356 |
|
|
rtx orig_value;
|
| 357 |
|
|
|
| 358 |
|
|
enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
|
| 359 |
|
|
|
| 360 |
|
|
while (GET_CODE (op0) == SUBREG)
|
| 361 |
|
|
{
|
| 362 |
|
|
/* The following line once was done only if WORDS_BIG_ENDIAN,
|
| 363 |
|
|
but I think that is a mistake. WORDS_BIG_ENDIAN is
|
| 364 |
|
|
meaningful at a much higher level; when structures are copied
|
| 365 |
|
|
between memory and regs, the higher-numbered regs
|
| 366 |
|
|
always get higher addresses. */
|
| 367 |
|
|
int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
|
| 368 |
|
|
int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
|
| 369 |
|
|
|
| 370 |
|
|
byte_offset = 0;
|
| 371 |
|
|
|
| 372 |
|
|
/* Paradoxical subregs need special handling on big endian machines. */
|
| 373 |
|
|
if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
|
| 374 |
|
|
{
|
| 375 |
|
|
int difference = inner_mode_size - outer_mode_size;
|
| 376 |
|
|
|
| 377 |
|
|
if (WORDS_BIG_ENDIAN)
|
| 378 |
|
|
byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
|
| 379 |
|
|
if (BYTES_BIG_ENDIAN)
|
| 380 |
|
|
byte_offset += difference % UNITS_PER_WORD;
|
| 381 |
|
|
}
|
| 382 |
|
|
else
|
| 383 |
|
|
byte_offset = SUBREG_BYTE (op0);
|
| 384 |
|
|
|
| 385 |
|
|
bitnum += byte_offset * BITS_PER_UNIT;
|
| 386 |
|
|
op0 = SUBREG_REG (op0);
|
| 387 |
|
|
}
|
| 388 |
|
|
|
| 389 |
|
|
/* No action is needed if the target is a register and if the field
|
| 390 |
|
|
lies completely outside that register. This can occur if the source
|
| 391 |
|
|
code contains an out-of-bounds access to a small array. */
|
| 392 |
|
|
if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
|
| 393 |
|
|
return true;
|
| 394 |
|
|
|
| 395 |
|
|
/* Use vec_set patterns for inserting parts of vectors whenever
|
| 396 |
|
|
available. */
|
| 397 |
|
|
if (VECTOR_MODE_P (GET_MODE (op0))
|
| 398 |
|
|
&& !MEM_P (op0)
|
| 399 |
|
|
&& optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
|
| 400 |
|
|
&& fieldmode == GET_MODE_INNER (GET_MODE (op0))
|
| 401 |
|
|
&& bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
|
| 402 |
|
|
&& !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
|
| 403 |
|
|
{
|
| 404 |
|
|
struct expand_operand ops[3];
|
| 405 |
|
|
enum machine_mode outermode = GET_MODE (op0);
|
| 406 |
|
|
enum machine_mode innermode = GET_MODE_INNER (outermode);
|
| 407 |
|
|
enum insn_code icode = optab_handler (vec_set_optab, outermode);
|
| 408 |
|
|
int pos = bitnum / GET_MODE_BITSIZE (innermode);
|
| 409 |
|
|
|
| 410 |
|
|
create_fixed_operand (&ops[0], op0);
|
| 411 |
|
|
create_input_operand (&ops[1], value, innermode);
|
| 412 |
|
|
create_integer_operand (&ops[2], pos);
|
| 413 |
|
|
if (maybe_expand_insn (icode, 3, ops))
|
| 414 |
|
|
return true;
|
| 415 |
|
|
}
|
| 416 |
|
|
|
| 417 |
|
|
/* If the target is a register, overwriting the entire object, or storing
|
| 418 |
|
|
a full-word or multi-word field can be done with just a SUBREG.
|
| 419 |
|
|
|
| 420 |
|
|
If the target is memory, storing any naturally aligned field can be
|
| 421 |
|
|
done with a simple store. For targets that support fast unaligned
|
| 422 |
|
|
memory, any naturally sized, unit aligned field can be done directly. */
|
| 423 |
|
|
|
| 424 |
|
|
offset = bitnum / unit;
|
| 425 |
|
|
bitpos = bitnum % unit;
|
| 426 |
|
|
byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
|
| 427 |
|
|
+ (offset * UNITS_PER_WORD);
|
| 428 |
|
|
|
| 429 |
|
|
if (bitpos == 0
|
| 430 |
|
|
&& bitsize == GET_MODE_BITSIZE (fieldmode)
|
| 431 |
|
|
&& (!MEM_P (op0)
|
| 432 |
|
|
? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
|
| 433 |
|
|
|| GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
|
| 434 |
|
|
&& ((GET_MODE (op0) == fieldmode && byte_offset == 0)
|
| 435 |
|
|
|| validate_subreg (fieldmode, GET_MODE (op0), op0,
|
| 436 |
|
|
byte_offset)))
|
| 437 |
|
|
: (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
|
| 438 |
|
|
|| (offset * BITS_PER_UNIT % bitsize == 0
|
| 439 |
|
|
&& MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
|
| 440 |
|
|
{
|
| 441 |
|
|
if (MEM_P (op0))
|
| 442 |
|
|
op0 = adjust_address (op0, fieldmode, offset);
|
| 443 |
|
|
else if (GET_MODE (op0) != fieldmode)
|
| 444 |
|
|
op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
|
| 445 |
|
|
byte_offset);
|
| 446 |
|
|
emit_move_insn (op0, value);
|
| 447 |
|
|
return true;
|
| 448 |
|
|
}
|
| 449 |
|
|
|
| 450 |
|
|
/* Make sure we are playing with integral modes. Pun with subregs
|
| 451 |
|
|
if we aren't. This must come after the entire register case above,
|
| 452 |
|
|
since that case is valid for any mode. The following cases are only
|
| 453 |
|
|
valid for integral modes. */
|
| 454 |
|
|
{
|
| 455 |
|
|
enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
|
| 456 |
|
|
if (imode != GET_MODE (op0))
|
| 457 |
|
|
{
|
| 458 |
|
|
if (MEM_P (op0))
|
| 459 |
|
|
op0 = adjust_address (op0, imode, 0);
|
| 460 |
|
|
else
|
| 461 |
|
|
{
|
| 462 |
|
|
gcc_assert (imode != BLKmode);
|
| 463 |
|
|
op0 = gen_lowpart (imode, op0);
|
| 464 |
|
|
}
|
| 465 |
|
|
}
|
| 466 |
|
|
}
|
| 467 |
|
|
|
| 468 |
|
|
/* We may be accessing data outside the field, which means
|
| 469 |
|
|
we can alias adjacent data. */
|
| 470 |
|
|
/* ?? not always for C++0x memory model ?? */
|
| 471 |
|
|
if (MEM_P (op0))
|
| 472 |
|
|
{
|
| 473 |
|
|
op0 = shallow_copy_rtx (op0);
|
| 474 |
|
|
set_mem_alias_set (op0, 0);
|
| 475 |
|
|
set_mem_expr (op0, 0);
|
| 476 |
|
|
}
|
| 477 |
|
|
|
| 478 |
|
|
/* If OP0 is a register, BITPOS must count within a word.
|
| 479 |
|
|
But as we have it, it counts within whatever size OP0 now has.
|
| 480 |
|
|
On a bigendian machine, these are not the same, so convert. */
|
| 481 |
|
|
if (BYTES_BIG_ENDIAN
|
| 482 |
|
|
&& !MEM_P (op0)
|
| 483 |
|
|
&& unit > GET_MODE_BITSIZE (GET_MODE (op0)))
|
| 484 |
|
|
bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
|
| 485 |
|
|
|
| 486 |
|
|
/* Storing an lsb-aligned field in a register
|
| 487 |
|
|
can be done with a movestrict instruction. */
|
| 488 |
|
|
|
| 489 |
|
|
if (!MEM_P (op0)
|
| 490 |
|
|
&& (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
|
| 491 |
|
|
&& bitsize == GET_MODE_BITSIZE (fieldmode)
|
| 492 |
|
|
&& optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
|
| 493 |
|
|
{
|
| 494 |
|
|
struct expand_operand ops[2];
|
| 495 |
|
|
enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
|
| 496 |
|
|
rtx arg0 = op0;
|
| 497 |
|
|
unsigned HOST_WIDE_INT subreg_off;
|
| 498 |
|
|
|
| 499 |
|
|
if (GET_CODE (arg0) == SUBREG)
|
| 500 |
|
|
{
|
| 501 |
|
|
/* Else we've got some float mode source being extracted into
|
| 502 |
|
|
a different float mode destination -- this combination of
|
| 503 |
|
|
subregs results in Severe Tire Damage. */
|
| 504 |
|
|
gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
|
| 505 |
|
|
|| GET_MODE_CLASS (fieldmode) == MODE_INT
|
| 506 |
|
|
|| GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
|
| 507 |
|
|
arg0 = SUBREG_REG (arg0);
|
| 508 |
|
|
}
|
| 509 |
|
|
|
| 510 |
|
|
subreg_off = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
|
| 511 |
|
|
+ (offset * UNITS_PER_WORD);
|
| 512 |
|
|
if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
|
| 513 |
|
|
{
|
| 514 |
|
|
arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
|
| 515 |
|
|
|
| 516 |
|
|
create_fixed_operand (&ops[0], arg0);
|
| 517 |
|
|
/* Shrink the source operand to FIELDMODE. */
|
| 518 |
|
|
create_convert_operand_to (&ops[1], value, fieldmode, false);
|
| 519 |
|
|
if (maybe_expand_insn (icode, 2, ops))
|
| 520 |
|
|
return true;
|
| 521 |
|
|
}
|
| 522 |
|
|
}
|
| 523 |
|
|
|
| 524 |
|
|
/* Handle fields bigger than a word. */
|
| 525 |
|
|
|
| 526 |
|
|
if (bitsize > BITS_PER_WORD)
|
| 527 |
|
|
{
|
| 528 |
|
|
/* Here we transfer the words of the field
|
| 529 |
|
|
in the order least significant first.
|
| 530 |
|
|
This is because the most significant word is the one which may
|
| 531 |
|
|
be less than full.
|
| 532 |
|
|
However, only do that if the value is not BLKmode. */
|
| 533 |
|
|
|
| 534 |
|
|
unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
|
| 535 |
|
|
unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
|
| 536 |
|
|
unsigned int i;
|
| 537 |
|
|
rtx last;
|
| 538 |
|
|
|
| 539 |
|
|
/* This is the mode we must force value to, so that there will be enough
|
| 540 |
|
|
subwords to extract. Note that fieldmode will often (always?) be
|
| 541 |
|
|
VOIDmode, because that is what store_field uses to indicate that this
|
| 542 |
|
|
is a bit field, but passing VOIDmode to operand_subword_force
|
| 543 |
|
|
is not allowed. */
|
| 544 |
|
|
fieldmode = GET_MODE (value);
|
| 545 |
|
|
if (fieldmode == VOIDmode)
|
| 546 |
|
|
fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
|
| 547 |
|
|
|
| 548 |
|
|
last = get_last_insn ();
|
| 549 |
|
|
for (i = 0; i < nwords; i++)
|
| 550 |
|
|
{
|
| 551 |
|
|
/* If I is 0, use the low-order word in both field and target;
|
| 552 |
|
|
if I is 1, use the next to lowest word; and so on. */
|
| 553 |
|
|
unsigned int wordnum = (backwards ? nwords - i - 1 : i);
|
| 554 |
|
|
unsigned int bit_offset = (backwards
|
| 555 |
|
|
? MAX ((int) bitsize - ((int) i + 1)
|
| 556 |
|
|
* BITS_PER_WORD,
|
| 557 |
|
|
0)
|
| 558 |
|
|
: (int) i * BITS_PER_WORD);
|
| 559 |
|
|
rtx value_word = operand_subword_force (value, wordnum, fieldmode);
|
| 560 |
|
|
unsigned HOST_WIDE_INT new_bitsize =
|
| 561 |
|
|
MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
|
| 562 |
|
|
|
| 563 |
|
|
/* If the remaining chunk doesn't have full wordsize we have
|
| 564 |
|
|
to make sure that for big endian machines the higher order
|
| 565 |
|
|
bits are used. */
|
| 566 |
|
|
if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
|
| 567 |
|
|
value_word = simplify_expand_binop (word_mode, lshr_optab,
|
| 568 |
|
|
value_word,
|
| 569 |
|
|
GEN_INT (BITS_PER_WORD
|
| 570 |
|
|
- new_bitsize),
|
| 571 |
|
|
NULL_RTX, true,
|
| 572 |
|
|
OPTAB_LIB_WIDEN);
|
| 573 |
|
|
|
| 574 |
|
|
if (!store_bit_field_1 (op0, new_bitsize,
|
| 575 |
|
|
bitnum + bit_offset,
|
| 576 |
|
|
bitregion_start, bitregion_end,
|
| 577 |
|
|
word_mode,
|
| 578 |
|
|
value_word, fallback_p))
|
| 579 |
|
|
{
|
| 580 |
|
|
delete_insns_since (last);
|
| 581 |
|
|
return false;
|
| 582 |
|
|
}
|
| 583 |
|
|
}
|
| 584 |
|
|
return true;
|
| 585 |
|
|
}
|
| 586 |
|
|
|
| 587 |
|
|
/* From here on we can assume that the field to be stored in is
|
| 588 |
|
|
a full-word (whatever type that is), since it is shorter than a word. */
|
| 589 |
|
|
|
| 590 |
|
|
/* OFFSET is the number of words or bytes (UNIT says which)
|
| 591 |
|
|
from STR_RTX to the first word or byte containing part of the field. */
|
| 592 |
|
|
|
| 593 |
|
|
if (!MEM_P (op0))
|
| 594 |
|
|
{
|
| 595 |
|
|
if (offset != 0
|
| 596 |
|
|
|| GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
|
| 597 |
|
|
{
|
| 598 |
|
|
if (!REG_P (op0))
|
| 599 |
|
|
{
|
| 600 |
|
|
/* Since this is a destination (lvalue), we can't copy
|
| 601 |
|
|
it to a pseudo. We can remove a SUBREG that does not
|
| 602 |
|
|
change the size of the operand. Such a SUBREG may
|
| 603 |
|
|
have been added above. */
|
| 604 |
|
|
gcc_assert (GET_CODE (op0) == SUBREG
|
| 605 |
|
|
&& (GET_MODE_SIZE (GET_MODE (op0))
|
| 606 |
|
|
== GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
|
| 607 |
|
|
op0 = SUBREG_REG (op0);
|
| 608 |
|
|
}
|
| 609 |
|
|
op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
|
| 610 |
|
|
op0, (offset * UNITS_PER_WORD));
|
| 611 |
|
|
}
|
| 612 |
|
|
offset = 0;
|
| 613 |
|
|
}
|
| 614 |
|
|
|
| 615 |
|
|
/* If VALUE has a floating-point or complex mode, access it as an
|
| 616 |
|
|
integer of the corresponding size. This can occur on a machine
|
| 617 |
|
|
with 64 bit registers that uses SFmode for float. It can also
|
| 618 |
|
|
occur for unaligned float or complex fields. */
|
| 619 |
|
|
orig_value = value;
|
| 620 |
|
|
if (GET_MODE (value) != VOIDmode
|
| 621 |
|
|
&& GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
|
| 622 |
|
|
&& GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
|
| 623 |
|
|
{
|
| 624 |
|
|
value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
|
| 625 |
|
|
emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
|
| 626 |
|
|
}
|
| 627 |
|
|
|
| 628 |
|
|
/* Now OFFSET is nonzero only if OP0 is memory
|
| 629 |
|
|
and is therefore always measured in bytes. */
|
| 630 |
|
|
|
| 631 |
|
|
if (HAVE_insv
|
| 632 |
|
|
&& GET_MODE (value) != BLKmode
|
| 633 |
|
|
&& bitsize > 0
|
| 634 |
|
|
&& GET_MODE_BITSIZE (op_mode) >= bitsize
|
| 635 |
|
|
/* Do not use insv for volatile bitfields when
|
| 636 |
|
|
-fstrict-volatile-bitfields is in effect. */
|
| 637 |
|
|
&& !(MEM_P (op0) && MEM_VOLATILE_P (op0)
|
| 638 |
|
|
&& flag_strict_volatile_bitfields > 0)
|
| 639 |
|
|
&& ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
|
| 640 |
|
|
&& (bitsize + bitpos > GET_MODE_BITSIZE (op_mode))))
|
| 641 |
|
|
{
|
| 642 |
|
|
struct expand_operand ops[4];
|
| 643 |
|
|
int xbitpos = bitpos;
|
| 644 |
|
|
rtx value1;
|
| 645 |
|
|
rtx xop0 = op0;
|
| 646 |
|
|
rtx last = get_last_insn ();
|
| 647 |
|
|
bool copy_back = false;
|
| 648 |
|
|
|
| 649 |
|
|
/* Add OFFSET into OP0's address. */
|
| 650 |
|
|
if (MEM_P (xop0))
|
| 651 |
|
|
xop0 = adjust_address (xop0, byte_mode, offset);
|
| 652 |
|
|
|
| 653 |
|
|
/* If xop0 is a register, we need it in OP_MODE
|
| 654 |
|
|
to make it acceptable to the format of insv. */
|
| 655 |
|
|
if (GET_CODE (xop0) == SUBREG)
|
| 656 |
|
|
/* We can't just change the mode, because this might clobber op0,
|
| 657 |
|
|
and we will need the original value of op0 if insv fails. */
|
| 658 |
|
|
xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
|
| 659 |
|
|
if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
|
| 660 |
|
|
xop0 = gen_lowpart_SUBREG (op_mode, xop0);
|
| 661 |
|
|
|
| 662 |
|
|
/* If the destination is a paradoxical subreg such that we need a
|
| 663 |
|
|
truncate to the inner mode, perform the insertion on a temporary and
|
| 664 |
|
|
truncate the result to the original destination. Note that we can't
|
| 665 |
|
|
just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
|
| 666 |
|
|
X) 0)) is (reg:N X). */
|
| 667 |
|
|
if (GET_CODE (xop0) == SUBREG
|
| 668 |
|
|
&& REG_P (SUBREG_REG (xop0))
|
| 669 |
|
|
&& (!TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
|
| 670 |
|
|
op_mode)))
|
| 671 |
|
|
{
|
| 672 |
|
|
rtx tem = gen_reg_rtx (op_mode);
|
| 673 |
|
|
emit_move_insn (tem, xop0);
|
| 674 |
|
|
xop0 = tem;
|
| 675 |
|
|
copy_back = true;
|
| 676 |
|
|
}
|
| 677 |
|
|
|
| 678 |
|
|
/* We have been counting XBITPOS within UNIT.
|
| 679 |
|
|
Count instead within the size of the register. */
|
| 680 |
|
|
if (BYTES_BIG_ENDIAN && !MEM_P (xop0))
|
| 681 |
|
|
xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
|
| 682 |
|
|
|
| 683 |
|
|
unit = GET_MODE_BITSIZE (op_mode);
|
| 684 |
|
|
|
| 685 |
|
|
/* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
|
| 686 |
|
|
"backwards" from the size of the unit we are inserting into.
|
| 687 |
|
|
Otherwise, we count bits from the most significant on a
|
| 688 |
|
|
BYTES/BITS_BIG_ENDIAN machine. */
|
| 689 |
|
|
|
| 690 |
|
|
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
| 691 |
|
|
xbitpos = unit - bitsize - xbitpos;
|
| 692 |
|
|
|
| 693 |
|
|
/* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
|
| 694 |
|
|
value1 = value;
|
| 695 |
|
|
if (GET_MODE (value) != op_mode)
|
| 696 |
|
|
{
|
| 697 |
|
|
if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
|
| 698 |
|
|
{
|
| 699 |
|
|
/* Optimization: Don't bother really extending VALUE
|
| 700 |
|
|
if it has all the bits we will actually use. However,
|
| 701 |
|
|
if we must narrow it, be sure we do it correctly. */
|
| 702 |
|
|
|
| 703 |
|
|
if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
|
| 704 |
|
|
{
|
| 705 |
|
|
rtx tmp;
|
| 706 |
|
|
|
| 707 |
|
|
tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
|
| 708 |
|
|
if (! tmp)
|
| 709 |
|
|
tmp = simplify_gen_subreg (op_mode,
|
| 710 |
|
|
force_reg (GET_MODE (value),
|
| 711 |
|
|
value1),
|
| 712 |
|
|
GET_MODE (value), 0);
|
| 713 |
|
|
value1 = tmp;
|
| 714 |
|
|
}
|
| 715 |
|
|
else
|
| 716 |
|
|
value1 = gen_lowpart (op_mode, value1);
|
| 717 |
|
|
}
|
| 718 |
|
|
else if (CONST_INT_P (value))
|
| 719 |
|
|
value1 = gen_int_mode (INTVAL (value), op_mode);
|
| 720 |
|
|
else
|
| 721 |
|
|
/* Parse phase is supposed to make VALUE's data type
|
| 722 |
|
|
match that of the component reference, which is a type
|
| 723 |
|
|
at least as wide as the field; so VALUE should have
|
| 724 |
|
|
a mode that corresponds to that type. */
|
| 725 |
|
|
gcc_assert (CONSTANT_P (value));
|
| 726 |
|
|
}
|
| 727 |
|
|
|
| 728 |
|
|
create_fixed_operand (&ops[0], xop0);
|
| 729 |
|
|
create_integer_operand (&ops[1], bitsize);
|
| 730 |
|
|
create_integer_operand (&ops[2], xbitpos);
|
| 731 |
|
|
create_input_operand (&ops[3], value1, op_mode);
|
| 732 |
|
|
if (maybe_expand_insn (CODE_FOR_insv, 4, ops))
|
| 733 |
|
|
{
|
| 734 |
|
|
if (copy_back)
|
| 735 |
|
|
convert_move (op0, xop0, true);
|
| 736 |
|
|
return true;
|
| 737 |
|
|
}
|
| 738 |
|
|
delete_insns_since (last);
|
| 739 |
|
|
}
|
| 740 |
|
|
|
| 741 |
|
|
/* If OP0 is a memory, try copying it to a register and seeing if a
|
| 742 |
|
|
cheap register alternative is available. */
|
| 743 |
|
|
if (HAVE_insv && MEM_P (op0))
|
| 744 |
|
|
{
|
| 745 |
|
|
enum machine_mode bestmode;
|
| 746 |
|
|
unsigned HOST_WIDE_INT maxbits = MAX_FIXED_MODE_SIZE;
|
| 747 |
|
|
|
| 748 |
|
|
if (bitregion_end)
|
| 749 |
|
|
maxbits = bitregion_end - bitregion_start + 1;
|
| 750 |
|
|
|
| 751 |
|
|
/* Get the mode to use for inserting into this field. If OP0 is
|
| 752 |
|
|
BLKmode, get the smallest mode consistent with the alignment. If
|
| 753 |
|
|
OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
|
| 754 |
|
|
mode. Otherwise, use the smallest mode containing the field. */
|
| 755 |
|
|
|
| 756 |
|
|
if (GET_MODE (op0) == BLKmode
|
| 757 |
|
|
|| GET_MODE_BITSIZE (GET_MODE (op0)) > maxbits
|
| 758 |
|
|
|| (op_mode != MAX_MACHINE_MODE
|
| 759 |
|
|
&& GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
|
| 760 |
|
|
bestmode = get_best_mode (bitsize, bitnum,
|
| 761 |
|
|
bitregion_start, bitregion_end,
|
| 762 |
|
|
MEM_ALIGN (op0),
|
| 763 |
|
|
(op_mode == MAX_MACHINE_MODE
|
| 764 |
|
|
? VOIDmode : op_mode),
|
| 765 |
|
|
MEM_VOLATILE_P (op0));
|
| 766 |
|
|
else
|
| 767 |
|
|
bestmode = GET_MODE (op0);
|
| 768 |
|
|
|
| 769 |
|
|
if (bestmode != VOIDmode
|
| 770 |
|
|
&& GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
|
| 771 |
|
|
&& !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
|
| 772 |
|
|
&& GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
|
| 773 |
|
|
{
|
| 774 |
|
|
rtx last, tempreg, xop0;
|
| 775 |
|
|
unsigned HOST_WIDE_INT xoffset, xbitpos;
|
| 776 |
|
|
|
| 777 |
|
|
last = get_last_insn ();
|
| 778 |
|
|
|
| 779 |
|
|
/* Adjust address to point to the containing unit of
|
| 780 |
|
|
that mode. Compute the offset as a multiple of this unit,
|
| 781 |
|
|
counting in bytes. */
|
| 782 |
|
|
unit = GET_MODE_BITSIZE (bestmode);
|
| 783 |
|
|
xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
|
| 784 |
|
|
xbitpos = bitnum % unit;
|
| 785 |
|
|
xop0 = adjust_address (op0, bestmode, xoffset);
|
| 786 |
|
|
|
| 787 |
|
|
/* Fetch that unit, store the bitfield in it, then store
|
| 788 |
|
|
the unit. */
|
| 789 |
|
|
tempreg = copy_to_reg (xop0);
|
| 790 |
|
|
if (store_bit_field_1 (tempreg, bitsize, xbitpos,
|
| 791 |
|
|
bitregion_start, bitregion_end,
|
| 792 |
|
|
fieldmode, orig_value, false))
|
| 793 |
|
|
{
|
| 794 |
|
|
emit_move_insn (xop0, tempreg);
|
| 795 |
|
|
return true;
|
| 796 |
|
|
}
|
| 797 |
|
|
delete_insns_since (last);
|
| 798 |
|
|
}
|
| 799 |
|
|
}
|
| 800 |
|
|
|
| 801 |
|
|
if (!fallback_p)
|
| 802 |
|
|
return false;
|
| 803 |
|
|
|
| 804 |
|
|
store_fixed_bit_field (op0, offset, bitsize, bitpos,
|
| 805 |
|
|
bitregion_start, bitregion_end, value);
|
| 806 |
|
|
return true;
|
| 807 |
|
|
}
|
| 808 |
|
|
|
| 809 |
|
|
/* Generate code to store value from rtx VALUE
|
| 810 |
|
|
into a bit-field within structure STR_RTX
|
| 811 |
|
|
containing BITSIZE bits starting at bit BITNUM.
|
| 812 |
|
|
|
| 813 |
|
|
BITREGION_START is bitpos of the first bitfield in this region.
|
| 814 |
|
|
BITREGION_END is the bitpos of the ending bitfield in this region.
|
| 815 |
|
|
These two fields are 0, if the C++ memory model does not apply,
|
| 816 |
|
|
or we are not interested in keeping track of bitfield regions.
|
| 817 |
|
|
|
| 818 |
|
|
FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
|
| 819 |
|
|
|
| 820 |
|
|
void
|
| 821 |
|
|
store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
|
| 822 |
|
|
unsigned HOST_WIDE_INT bitnum,
|
| 823 |
|
|
unsigned HOST_WIDE_INT bitregion_start,
|
| 824 |
|
|
unsigned HOST_WIDE_INT bitregion_end,
|
| 825 |
|
|
enum machine_mode fieldmode,
|
| 826 |
|
|
rtx value)
|
| 827 |
|
|
{
|
| 828 |
|
|
/* Under the C++0x memory model, we must not touch bits outside the
|
| 829 |
|
|
bit region. Adjust the address to start at the beginning of the
|
| 830 |
|
|
bit region. */
|
| 831 |
|
|
if (MEM_P (str_rtx)
|
| 832 |
|
|
&& bitregion_start > 0)
|
| 833 |
|
|
{
|
| 834 |
|
|
enum machine_mode bestmode;
|
| 835 |
|
|
enum machine_mode op_mode;
|
| 836 |
|
|
unsigned HOST_WIDE_INT offset;
|
| 837 |
|
|
|
| 838 |
|
|
op_mode = mode_for_extraction (EP_insv, 3);
|
| 839 |
|
|
if (op_mode == MAX_MACHINE_MODE)
|
| 840 |
|
|
op_mode = VOIDmode;
|
| 841 |
|
|
|
| 842 |
|
|
offset = bitregion_start / BITS_PER_UNIT;
|
| 843 |
|
|
bitnum -= bitregion_start;
|
| 844 |
|
|
bitregion_end -= bitregion_start;
|
| 845 |
|
|
bitregion_start = 0;
|
| 846 |
|
|
bestmode = get_best_mode (bitsize, bitnum,
|
| 847 |
|
|
bitregion_start, bitregion_end,
|
| 848 |
|
|
MEM_ALIGN (str_rtx),
|
| 849 |
|
|
op_mode,
|
| 850 |
|
|
MEM_VOLATILE_P (str_rtx));
|
| 851 |
|
|
str_rtx = adjust_address (str_rtx, bestmode, offset);
|
| 852 |
|
|
}
|
| 853 |
|
|
|
| 854 |
|
|
if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
|
| 855 |
|
|
bitregion_start, bitregion_end,
|
| 856 |
|
|
fieldmode, value, true))
|
| 857 |
|
|
gcc_unreachable ();
|
| 858 |
|
|
}
|
| 859 |
|
|
|
| 860 |
|
|
/* Use shifts and boolean operations to store VALUE
|
| 861 |
|
|
into a bit field of width BITSIZE
|
| 862 |
|
|
in a memory location specified by OP0 except offset by OFFSET bytes.
|
| 863 |
|
|
(OFFSET must be 0 if OP0 is a register.)
|
| 864 |
|
|
The field starts at position BITPOS within the byte.
|
| 865 |
|
|
(If OP0 is a register, it may be a full word or a narrower mode,
|
| 866 |
|
|
but BITPOS still counts within a full word,
|
| 867 |
|
|
which is significant on bigendian machines.) */
|
| 868 |
|
|
|
| 869 |
|
|
static void
|
| 870 |
|
|
store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
|
| 871 |
|
|
unsigned HOST_WIDE_INT bitsize,
|
| 872 |
|
|
unsigned HOST_WIDE_INT bitpos,
|
| 873 |
|
|
unsigned HOST_WIDE_INT bitregion_start,
|
| 874 |
|
|
unsigned HOST_WIDE_INT bitregion_end,
|
| 875 |
|
|
rtx value)
|
| 876 |
|
|
{
|
| 877 |
|
|
enum machine_mode mode;
|
| 878 |
|
|
unsigned int total_bits = BITS_PER_WORD;
|
| 879 |
|
|
rtx temp;
|
| 880 |
|
|
int all_zero = 0;
|
| 881 |
|
|
int all_one = 0;
|
| 882 |
|
|
|
| 883 |
|
|
/* There is a case not handled here:
|
| 884 |
|
|
a structure with a known alignment of just a halfword
|
| 885 |
|
|
and a field split across two aligned halfwords within the structure.
|
| 886 |
|
|
Or likewise a structure with a known alignment of just a byte
|
| 887 |
|
|
and a field split across two bytes.
|
| 888 |
|
|
Such cases are not supposed to be able to occur. */
|
| 889 |
|
|
|
| 890 |
|
|
if (REG_P (op0) || GET_CODE (op0) == SUBREG)
|
| 891 |
|
|
{
|
| 892 |
|
|
gcc_assert (!offset);
|
| 893 |
|
|
/* Special treatment for a bit field split across two registers. */
|
| 894 |
|
|
if (bitsize + bitpos > BITS_PER_WORD)
|
| 895 |
|
|
{
|
| 896 |
|
|
store_split_bit_field (op0, bitsize, bitpos,
|
| 897 |
|
|
bitregion_start, bitregion_end,
|
| 898 |
|
|
value);
|
| 899 |
|
|
return;
|
| 900 |
|
|
}
|
| 901 |
|
|
}
|
| 902 |
|
|
else
|
| 903 |
|
|
{
|
| 904 |
|
|
unsigned HOST_WIDE_INT maxbits = MAX_FIXED_MODE_SIZE;
|
| 905 |
|
|
|
| 906 |
|
|
if (bitregion_end)
|
| 907 |
|
|
maxbits = bitregion_end - bitregion_start + 1;
|
| 908 |
|
|
|
| 909 |
|
|
/* Get the proper mode to use for this field. We want a mode that
|
| 910 |
|
|
includes the entire field. If such a mode would be larger than
|
| 911 |
|
|
a word, we won't be doing the extraction the normal way.
|
| 912 |
|
|
We don't want a mode bigger than the destination. */
|
| 913 |
|
|
|
| 914 |
|
|
mode = GET_MODE (op0);
|
| 915 |
|
|
if (GET_MODE_BITSIZE (mode) == 0
|
| 916 |
|
|
|| GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
|
| 917 |
|
|
mode = word_mode;
|
| 918 |
|
|
|
| 919 |
|
|
if (MEM_VOLATILE_P (op0)
|
| 920 |
|
|
&& GET_MODE_BITSIZE (GET_MODE (op0)) > 0
|
| 921 |
|
|
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= maxbits
|
| 922 |
|
|
&& flag_strict_volatile_bitfields > 0)
|
| 923 |
|
|
mode = GET_MODE (op0);
|
| 924 |
|
|
else
|
| 925 |
|
|
mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
|
| 926 |
|
|
bitregion_start, bitregion_end,
|
| 927 |
|
|
MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
|
| 928 |
|
|
|
| 929 |
|
|
if (mode == VOIDmode)
|
| 930 |
|
|
{
|
| 931 |
|
|
/* The only way this should occur is if the field spans word
|
| 932 |
|
|
boundaries. */
|
| 933 |
|
|
store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
|
| 934 |
|
|
bitregion_start, bitregion_end, value);
|
| 935 |
|
|
return;
|
| 936 |
|
|
}
|
| 937 |
|
|
|
| 938 |
|
|
total_bits = GET_MODE_BITSIZE (mode);
|
| 939 |
|
|
|
| 940 |
|
|
/* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
|
| 941 |
|
|
be in the range 0 to total_bits-1, and put any excess bytes in
|
| 942 |
|
|
OFFSET. */
|
| 943 |
|
|
if (bitpos >= total_bits)
|
| 944 |
|
|
{
|
| 945 |
|
|
offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
|
| 946 |
|
|
bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
|
| 947 |
|
|
* BITS_PER_UNIT);
|
| 948 |
|
|
}
|
| 949 |
|
|
|
| 950 |
|
|
/* Get ref to an aligned byte, halfword, or word containing the field.
|
| 951 |
|
|
Adjust BITPOS to be position within a word,
|
| 952 |
|
|
and OFFSET to be the offset of that word.
|
| 953 |
|
|
Then alter OP0 to refer to that word. */
|
| 954 |
|
|
bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
|
| 955 |
|
|
offset -= (offset % (total_bits / BITS_PER_UNIT));
|
| 956 |
|
|
op0 = adjust_address (op0, mode, offset);
|
| 957 |
|
|
}
|
| 958 |
|
|
|
| 959 |
|
|
mode = GET_MODE (op0);
|
| 960 |
|
|
|
| 961 |
|
|
/* Now MODE is either some integral mode for a MEM as OP0,
|
| 962 |
|
|
or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
|
| 963 |
|
|
The bit field is contained entirely within OP0.
|
| 964 |
|
|
BITPOS is the starting bit number within OP0.
|
| 965 |
|
|
(OP0's mode may actually be narrower than MODE.) */
|
| 966 |
|
|
|
| 967 |
|
|
if (BYTES_BIG_ENDIAN)
|
| 968 |
|
|
/* BITPOS is the distance between our msb
|
| 969 |
|
|
and that of the containing datum.
|
| 970 |
|
|
Convert it to the distance from the lsb. */
|
| 971 |
|
|
bitpos = total_bits - bitsize - bitpos;
|
| 972 |
|
|
|
| 973 |
|
|
/* Now BITPOS is always the distance between our lsb
|
| 974 |
|
|
and that of OP0. */
|
| 975 |
|
|
|
| 976 |
|
|
/* Shift VALUE left by BITPOS bits. If VALUE is not constant,
|
| 977 |
|
|
we must first convert its mode to MODE. */
|
| 978 |
|
|
|
| 979 |
|
|
if (CONST_INT_P (value))
|
| 980 |
|
|
{
|
| 981 |
|
|
HOST_WIDE_INT v = INTVAL (value);
|
| 982 |
|
|
|
| 983 |
|
|
if (bitsize < HOST_BITS_PER_WIDE_INT)
|
| 984 |
|
|
v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
|
| 985 |
|
|
|
| 986 |
|
|
if (v == 0)
|
| 987 |
|
|
all_zero = 1;
|
| 988 |
|
|
else if ((bitsize < HOST_BITS_PER_WIDE_INT
|
| 989 |
|
|
&& v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
|
| 990 |
|
|
|| (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
|
| 991 |
|
|
all_one = 1;
|
| 992 |
|
|
|
| 993 |
|
|
value = lshift_value (mode, value, bitpos, bitsize);
|
| 994 |
|
|
}
|
| 995 |
|
|
else
|
| 996 |
|
|
{
|
| 997 |
|
|
int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
|
| 998 |
|
|
&& bitpos + bitsize != GET_MODE_BITSIZE (mode));
|
| 999 |
|
|
|
| 1000 |
|
|
if (GET_MODE (value) != mode)
|
| 1001 |
|
|
value = convert_to_mode (mode, value, 1);
|
| 1002 |
|
|
|
| 1003 |
|
|
if (must_and)
|
| 1004 |
|
|
value = expand_binop (mode, and_optab, value,
|
| 1005 |
|
|
mask_rtx (mode, 0, bitsize, 0),
|
| 1006 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 1007 |
|
|
if (bitpos > 0)
|
| 1008 |
|
|
value = expand_shift (LSHIFT_EXPR, mode, value,
|
| 1009 |
|
|
bitpos, NULL_RTX, 1);
|
| 1010 |
|
|
}
|
| 1011 |
|
|
|
| 1012 |
|
|
/* Now clear the chosen bits in OP0,
|
| 1013 |
|
|
except that if VALUE is -1 we need not bother. */
|
| 1014 |
|
|
/* We keep the intermediates in registers to allow CSE to combine
|
| 1015 |
|
|
consecutive bitfield assignments. */
|
| 1016 |
|
|
|
| 1017 |
|
|
temp = force_reg (mode, op0);
|
| 1018 |
|
|
|
| 1019 |
|
|
if (! all_one)
|
| 1020 |
|
|
{
|
| 1021 |
|
|
temp = expand_binop (mode, and_optab, temp,
|
| 1022 |
|
|
mask_rtx (mode, bitpos, bitsize, 1),
|
| 1023 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 1024 |
|
|
temp = force_reg (mode, temp);
|
| 1025 |
|
|
}
|
| 1026 |
|
|
|
| 1027 |
|
|
/* Now logical-or VALUE into OP0, unless it is zero. */
|
| 1028 |
|
|
|
| 1029 |
|
|
if (! all_zero)
|
| 1030 |
|
|
{
|
| 1031 |
|
|
temp = expand_binop (mode, ior_optab, temp, value,
|
| 1032 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 1033 |
|
|
temp = force_reg (mode, temp);
|
| 1034 |
|
|
}
|
| 1035 |
|
|
|
| 1036 |
|
|
if (op0 != temp)
|
| 1037 |
|
|
{
|
| 1038 |
|
|
op0 = copy_rtx (op0);
|
| 1039 |
|
|
emit_move_insn (op0, temp);
|
| 1040 |
|
|
}
|
| 1041 |
|
|
}
|
| 1042 |
|
|
|
| 1043 |
|
|
/* Store a bit field that is split across multiple accessible memory objects.
|
| 1044 |
|
|
|
| 1045 |
|
|
OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
|
| 1046 |
|
|
BITSIZE is the field width; BITPOS the position of its first bit
|
| 1047 |
|
|
(within the word).
|
| 1048 |
|
|
VALUE is the value to store.
|
| 1049 |
|
|
|
| 1050 |
|
|
This does not yet handle fields wider than BITS_PER_WORD. */
|
| 1051 |
|
|
|
| 1052 |
|
|
static void
|
| 1053 |
|
|
store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
|
| 1054 |
|
|
unsigned HOST_WIDE_INT bitpos,
|
| 1055 |
|
|
unsigned HOST_WIDE_INT bitregion_start,
|
| 1056 |
|
|
unsigned HOST_WIDE_INT bitregion_end,
|
| 1057 |
|
|
rtx value)
|
| 1058 |
|
|
{
|
| 1059 |
|
|
unsigned int unit;
|
| 1060 |
|
|
unsigned int bitsdone = 0;
|
| 1061 |
|
|
|
| 1062 |
|
|
/* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
|
| 1063 |
|
|
much at a time. */
|
| 1064 |
|
|
if (REG_P (op0) || GET_CODE (op0) == SUBREG)
|
| 1065 |
|
|
unit = BITS_PER_WORD;
|
| 1066 |
|
|
else
|
| 1067 |
|
|
unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
|
| 1068 |
|
|
|
| 1069 |
|
|
/* If VALUE is a constant other than a CONST_INT, get it into a register in
|
| 1070 |
|
|
WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
|
| 1071 |
|
|
that VALUE might be a floating-point constant. */
|
| 1072 |
|
|
if (CONSTANT_P (value) && !CONST_INT_P (value))
|
| 1073 |
|
|
{
|
| 1074 |
|
|
rtx word = gen_lowpart_common (word_mode, value);
|
| 1075 |
|
|
|
| 1076 |
|
|
if (word && (value != word))
|
| 1077 |
|
|
value = word;
|
| 1078 |
|
|
else
|
| 1079 |
|
|
value = gen_lowpart_common (word_mode,
|
| 1080 |
|
|
force_reg (GET_MODE (value) != VOIDmode
|
| 1081 |
|
|
? GET_MODE (value)
|
| 1082 |
|
|
: word_mode, value));
|
| 1083 |
|
|
}
|
| 1084 |
|
|
|
| 1085 |
|
|
while (bitsdone < bitsize)
|
| 1086 |
|
|
{
|
| 1087 |
|
|
unsigned HOST_WIDE_INT thissize;
|
| 1088 |
|
|
rtx part, word;
|
| 1089 |
|
|
unsigned HOST_WIDE_INT thispos;
|
| 1090 |
|
|
unsigned HOST_WIDE_INT offset;
|
| 1091 |
|
|
|
| 1092 |
|
|
offset = (bitpos + bitsdone) / unit;
|
| 1093 |
|
|
thispos = (bitpos + bitsdone) % unit;
|
| 1094 |
|
|
|
| 1095 |
|
|
/* THISSIZE must not overrun a word boundary. Otherwise,
|
| 1096 |
|
|
store_fixed_bit_field will call us again, and we will mutually
|
| 1097 |
|
|
recurse forever. */
|
| 1098 |
|
|
thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
|
| 1099 |
|
|
thissize = MIN (thissize, unit - thispos);
|
| 1100 |
|
|
|
| 1101 |
|
|
if (BYTES_BIG_ENDIAN)
|
| 1102 |
|
|
{
|
| 1103 |
|
|
int total_bits;
|
| 1104 |
|
|
|
| 1105 |
|
|
/* We must do an endian conversion exactly the same way as it is
|
| 1106 |
|
|
done in extract_bit_field, so that the two calls to
|
| 1107 |
|
|
extract_fixed_bit_field will have comparable arguments. */
|
| 1108 |
|
|
if (!MEM_P (value) || GET_MODE (value) == BLKmode)
|
| 1109 |
|
|
total_bits = BITS_PER_WORD;
|
| 1110 |
|
|
else
|
| 1111 |
|
|
total_bits = GET_MODE_BITSIZE (GET_MODE (value));
|
| 1112 |
|
|
|
| 1113 |
|
|
/* Fetch successively less significant portions. */
|
| 1114 |
|
|
if (CONST_INT_P (value))
|
| 1115 |
|
|
part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
|
| 1116 |
|
|
>> (bitsize - bitsdone - thissize))
|
| 1117 |
|
|
& (((HOST_WIDE_INT) 1 << thissize) - 1));
|
| 1118 |
|
|
else
|
| 1119 |
|
|
/* The args are chosen so that the last part includes the
|
| 1120 |
|
|
lsb. Give extract_bit_field the value it needs (with
|
| 1121 |
|
|
endianness compensation) to fetch the piece we want. */
|
| 1122 |
|
|
part = extract_fixed_bit_field (word_mode, value, 0, thissize,
|
| 1123 |
|
|
total_bits - bitsize + bitsdone,
|
| 1124 |
|
|
NULL_RTX, 1, false);
|
| 1125 |
|
|
}
|
| 1126 |
|
|
else
|
| 1127 |
|
|
{
|
| 1128 |
|
|
/* Fetch successively more significant portions. */
|
| 1129 |
|
|
if (CONST_INT_P (value))
|
| 1130 |
|
|
part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
|
| 1131 |
|
|
>> bitsdone)
|
| 1132 |
|
|
& (((HOST_WIDE_INT) 1 << thissize) - 1));
|
| 1133 |
|
|
else
|
| 1134 |
|
|
part = extract_fixed_bit_field (word_mode, value, 0, thissize,
|
| 1135 |
|
|
bitsdone, NULL_RTX, 1, false);
|
| 1136 |
|
|
}
|
| 1137 |
|
|
|
| 1138 |
|
|
/* If OP0 is a register, then handle OFFSET here.
|
| 1139 |
|
|
|
| 1140 |
|
|
When handling multiword bitfields, extract_bit_field may pass
|
| 1141 |
|
|
down a word_mode SUBREG of a larger REG for a bitfield that actually
|
| 1142 |
|
|
crosses a word boundary. Thus, for a SUBREG, we must find
|
| 1143 |
|
|
the current word starting from the base register. */
|
| 1144 |
|
|
if (GET_CODE (op0) == SUBREG)
|
| 1145 |
|
|
{
|
| 1146 |
|
|
int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
|
| 1147 |
|
|
enum machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
|
| 1148 |
|
|
if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
|
| 1149 |
|
|
word = word_offset ? const0_rtx : op0;
|
| 1150 |
|
|
else
|
| 1151 |
|
|
word = operand_subword_force (SUBREG_REG (op0), word_offset,
|
| 1152 |
|
|
GET_MODE (SUBREG_REG (op0)));
|
| 1153 |
|
|
offset = 0;
|
| 1154 |
|
|
}
|
| 1155 |
|
|
else if (REG_P (op0))
|
| 1156 |
|
|
{
|
| 1157 |
|
|
enum machine_mode op0_mode = GET_MODE (op0);
|
| 1158 |
|
|
if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
|
| 1159 |
|
|
word = offset ? const0_rtx : op0;
|
| 1160 |
|
|
else
|
| 1161 |
|
|
word = operand_subword_force (op0, offset, GET_MODE (op0));
|
| 1162 |
|
|
offset = 0;
|
| 1163 |
|
|
}
|
| 1164 |
|
|
else
|
| 1165 |
|
|
word = op0;
|
| 1166 |
|
|
|
| 1167 |
|
|
/* OFFSET is in UNITs, and UNIT is in bits.
|
| 1168 |
|
|
store_fixed_bit_field wants offset in bytes. If WORD is const0_rtx,
|
| 1169 |
|
|
it is just an out-of-bounds access. Ignore it. */
|
| 1170 |
|
|
if (word != const0_rtx)
|
| 1171 |
|
|
store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
|
| 1172 |
|
|
thispos, bitregion_start, bitregion_end, part);
|
| 1173 |
|
|
bitsdone += thissize;
|
| 1174 |
|
|
}
|
| 1175 |
|
|
}
|
| 1176 |
|
|
|
| 1177 |
|
|
/* A subroutine of extract_bit_field_1 that converts return value X
|
| 1178 |
|
|
to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
|
| 1179 |
|
|
to extract_bit_field. */
|
| 1180 |
|
|
|
| 1181 |
|
|
static rtx
|
| 1182 |
|
|
convert_extracted_bit_field (rtx x, enum machine_mode mode,
|
| 1183 |
|
|
enum machine_mode tmode, bool unsignedp)
|
| 1184 |
|
|
{
|
| 1185 |
|
|
if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
|
| 1186 |
|
|
return x;
|
| 1187 |
|
|
|
| 1188 |
|
|
/* If the x mode is not a scalar integral, first convert to the
|
| 1189 |
|
|
integer mode of that size and then access it as a floating-point
|
| 1190 |
|
|
value via a SUBREG. */
|
| 1191 |
|
|
if (!SCALAR_INT_MODE_P (tmode))
|
| 1192 |
|
|
{
|
| 1193 |
|
|
enum machine_mode smode;
|
| 1194 |
|
|
|
| 1195 |
|
|
smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
|
| 1196 |
|
|
x = convert_to_mode (smode, x, unsignedp);
|
| 1197 |
|
|
x = force_reg (smode, x);
|
| 1198 |
|
|
return gen_lowpart (tmode, x);
|
| 1199 |
|
|
}
|
| 1200 |
|
|
|
| 1201 |
|
|
return convert_to_mode (tmode, x, unsignedp);
|
| 1202 |
|
|
}
|
| 1203 |
|
|
|
| 1204 |
|
|
/* A subroutine of extract_bit_field, with the same arguments.
|
| 1205 |
|
|
If FALLBACK_P is true, fall back to extract_fixed_bit_field
|
| 1206 |
|
|
if we can find no other means of implementing the operation.
|
| 1207 |
|
|
if FALLBACK_P is false, return NULL instead. */
|
| 1208 |
|
|
|
| 1209 |
|
|
static rtx
|
| 1210 |
|
|
extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
|
| 1211 |
|
|
unsigned HOST_WIDE_INT bitnum,
|
| 1212 |
|
|
int unsignedp, bool packedp, rtx target,
|
| 1213 |
|
|
enum machine_mode mode, enum machine_mode tmode,
|
| 1214 |
|
|
bool fallback_p)
|
| 1215 |
|
|
{
|
| 1216 |
|
|
unsigned int unit
|
| 1217 |
|
|
= (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
|
| 1218 |
|
|
unsigned HOST_WIDE_INT offset, bitpos;
|
| 1219 |
|
|
rtx op0 = str_rtx;
|
| 1220 |
|
|
enum machine_mode int_mode;
|
| 1221 |
|
|
enum machine_mode ext_mode;
|
| 1222 |
|
|
enum machine_mode mode1;
|
| 1223 |
|
|
int byte_offset;
|
| 1224 |
|
|
|
| 1225 |
|
|
if (tmode == VOIDmode)
|
| 1226 |
|
|
tmode = mode;
|
| 1227 |
|
|
|
| 1228 |
|
|
while (GET_CODE (op0) == SUBREG)
|
| 1229 |
|
|
{
|
| 1230 |
|
|
bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
|
| 1231 |
|
|
op0 = SUBREG_REG (op0);
|
| 1232 |
|
|
}
|
| 1233 |
|
|
|
| 1234 |
|
|
/* If we have an out-of-bounds access to a register, just return an
|
| 1235 |
|
|
uninitialized register of the required mode. This can occur if the
|
| 1236 |
|
|
source code contains an out-of-bounds access to a small array. */
|
| 1237 |
|
|
if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
|
| 1238 |
|
|
return gen_reg_rtx (tmode);
|
| 1239 |
|
|
|
| 1240 |
|
|
if (REG_P (op0)
|
| 1241 |
|
|
&& mode == GET_MODE (op0)
|
| 1242 |
|
|
&& bitnum == 0
|
| 1243 |
|
|
&& bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
|
| 1244 |
|
|
{
|
| 1245 |
|
|
/* We're trying to extract a full register from itself. */
|
| 1246 |
|
|
return op0;
|
| 1247 |
|
|
}
|
| 1248 |
|
|
|
| 1249 |
|
|
/* See if we can get a better vector mode before extracting. */
|
| 1250 |
|
|
if (VECTOR_MODE_P (GET_MODE (op0))
|
| 1251 |
|
|
&& !MEM_P (op0)
|
| 1252 |
|
|
&& GET_MODE_INNER (GET_MODE (op0)) != tmode)
|
| 1253 |
|
|
{
|
| 1254 |
|
|
enum machine_mode new_mode;
|
| 1255 |
|
|
|
| 1256 |
|
|
if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
|
| 1257 |
|
|
new_mode = MIN_MODE_VECTOR_FLOAT;
|
| 1258 |
|
|
else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
|
| 1259 |
|
|
new_mode = MIN_MODE_VECTOR_FRACT;
|
| 1260 |
|
|
else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
|
| 1261 |
|
|
new_mode = MIN_MODE_VECTOR_UFRACT;
|
| 1262 |
|
|
else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
|
| 1263 |
|
|
new_mode = MIN_MODE_VECTOR_ACCUM;
|
| 1264 |
|
|
else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
|
| 1265 |
|
|
new_mode = MIN_MODE_VECTOR_UACCUM;
|
| 1266 |
|
|
else
|
| 1267 |
|
|
new_mode = MIN_MODE_VECTOR_INT;
|
| 1268 |
|
|
|
| 1269 |
|
|
for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
|
| 1270 |
|
|
if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
|
| 1271 |
|
|
&& targetm.vector_mode_supported_p (new_mode))
|
| 1272 |
|
|
break;
|
| 1273 |
|
|
if (new_mode != VOIDmode)
|
| 1274 |
|
|
op0 = gen_lowpart (new_mode, op0);
|
| 1275 |
|
|
}
|
| 1276 |
|
|
|
| 1277 |
|
|
/* Use vec_extract patterns for extracting parts of vectors whenever
|
| 1278 |
|
|
available. */
|
| 1279 |
|
|
if (VECTOR_MODE_P (GET_MODE (op0))
|
| 1280 |
|
|
&& !MEM_P (op0)
|
| 1281 |
|
|
&& optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
|
| 1282 |
|
|
&& ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
|
| 1283 |
|
|
== bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
|
| 1284 |
|
|
{
|
| 1285 |
|
|
struct expand_operand ops[3];
|
| 1286 |
|
|
enum machine_mode outermode = GET_MODE (op0);
|
| 1287 |
|
|
enum machine_mode innermode = GET_MODE_INNER (outermode);
|
| 1288 |
|
|
enum insn_code icode = optab_handler (vec_extract_optab, outermode);
|
| 1289 |
|
|
unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
|
| 1290 |
|
|
|
| 1291 |
|
|
create_output_operand (&ops[0], target, innermode);
|
| 1292 |
|
|
create_input_operand (&ops[1], op0, outermode);
|
| 1293 |
|
|
create_integer_operand (&ops[2], pos);
|
| 1294 |
|
|
if (maybe_expand_insn (icode, 3, ops))
|
| 1295 |
|
|
{
|
| 1296 |
|
|
target = ops[0].value;
|
| 1297 |
|
|
if (GET_MODE (target) != mode)
|
| 1298 |
|
|
return gen_lowpart (tmode, target);
|
| 1299 |
|
|
return target;
|
| 1300 |
|
|
}
|
| 1301 |
|
|
}
|
| 1302 |
|
|
|
| 1303 |
|
|
/* Make sure we are playing with integral modes. Pun with subregs
|
| 1304 |
|
|
if we aren't. */
|
| 1305 |
|
|
{
|
| 1306 |
|
|
enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
|
| 1307 |
|
|
if (imode != GET_MODE (op0))
|
| 1308 |
|
|
{
|
| 1309 |
|
|
if (MEM_P (op0))
|
| 1310 |
|
|
op0 = adjust_address (op0, imode, 0);
|
| 1311 |
|
|
else if (imode != BLKmode)
|
| 1312 |
|
|
{
|
| 1313 |
|
|
op0 = gen_lowpart (imode, op0);
|
| 1314 |
|
|
|
| 1315 |
|
|
/* If we got a SUBREG, force it into a register since we
|
| 1316 |
|
|
aren't going to be able to do another SUBREG on it. */
|
| 1317 |
|
|
if (GET_CODE (op0) == SUBREG)
|
| 1318 |
|
|
op0 = force_reg (imode, op0);
|
| 1319 |
|
|
}
|
| 1320 |
|
|
else if (REG_P (op0))
|
| 1321 |
|
|
{
|
| 1322 |
|
|
rtx reg, subreg;
|
| 1323 |
|
|
imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
|
| 1324 |
|
|
MODE_INT);
|
| 1325 |
|
|
reg = gen_reg_rtx (imode);
|
| 1326 |
|
|
subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
|
| 1327 |
|
|
emit_move_insn (subreg, op0);
|
| 1328 |
|
|
op0 = reg;
|
| 1329 |
|
|
bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
|
| 1330 |
|
|
}
|
| 1331 |
|
|
else
|
| 1332 |
|
|
{
|
| 1333 |
|
|
rtx mem = assign_stack_temp (GET_MODE (op0),
|
| 1334 |
|
|
GET_MODE_SIZE (GET_MODE (op0)), 0);
|
| 1335 |
|
|
emit_move_insn (mem, op0);
|
| 1336 |
|
|
op0 = adjust_address (mem, BLKmode, 0);
|
| 1337 |
|
|
}
|
| 1338 |
|
|
}
|
| 1339 |
|
|
}
|
| 1340 |
|
|
|
| 1341 |
|
|
/* We may be accessing data outside the field, which means
|
| 1342 |
|
|
we can alias adjacent data. */
|
| 1343 |
|
|
if (MEM_P (op0))
|
| 1344 |
|
|
{
|
| 1345 |
|
|
op0 = shallow_copy_rtx (op0);
|
| 1346 |
|
|
set_mem_alias_set (op0, 0);
|
| 1347 |
|
|
set_mem_expr (op0, 0);
|
| 1348 |
|
|
}
|
| 1349 |
|
|
|
| 1350 |
|
|
/* Extraction of a full-word or multi-word value from a structure
|
| 1351 |
|
|
in a register or aligned memory can be done with just a SUBREG.
|
| 1352 |
|
|
A subword value in the least significant part of a register
|
| 1353 |
|
|
can also be extracted with a SUBREG. For this, we need the
|
| 1354 |
|
|
byte offset of the value in op0. */
|
| 1355 |
|
|
|
| 1356 |
|
|
bitpos = bitnum % unit;
|
| 1357 |
|
|
offset = bitnum / unit;
|
| 1358 |
|
|
byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
|
| 1359 |
|
|
|
| 1360 |
|
|
/* If OP0 is a register, BITPOS must count within a word.
|
| 1361 |
|
|
But as we have it, it counts within whatever size OP0 now has.
|
| 1362 |
|
|
On a bigendian machine, these are not the same, so convert. */
|
| 1363 |
|
|
if (BYTES_BIG_ENDIAN
|
| 1364 |
|
|
&& !MEM_P (op0)
|
| 1365 |
|
|
&& unit > GET_MODE_BITSIZE (GET_MODE (op0)))
|
| 1366 |
|
|
bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
|
| 1367 |
|
|
|
| 1368 |
|
|
/* ??? We currently assume TARGET is at least as big as BITSIZE.
|
| 1369 |
|
|
If that's wrong, the solution is to test for it and set TARGET to 0
|
| 1370 |
|
|
if needed. */
|
| 1371 |
|
|
|
| 1372 |
|
|
/* Only scalar integer modes can be converted via subregs. There is an
|
| 1373 |
|
|
additional problem for FP modes here in that they can have a precision
|
| 1374 |
|
|
which is different from the size. mode_for_size uses precision, but
|
| 1375 |
|
|
we want a mode based on the size, so we must avoid calling it for FP
|
| 1376 |
|
|
modes. */
|
| 1377 |
|
|
mode1 = (SCALAR_INT_MODE_P (tmode)
|
| 1378 |
|
|
? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
|
| 1379 |
|
|
: mode);
|
| 1380 |
|
|
|
| 1381 |
|
|
/* If the bitfield is volatile, we need to make sure the access
|
| 1382 |
|
|
remains on a type-aligned boundary. */
|
| 1383 |
|
|
if (GET_CODE (op0) == MEM
|
| 1384 |
|
|
&& MEM_VOLATILE_P (op0)
|
| 1385 |
|
|
&& GET_MODE_BITSIZE (GET_MODE (op0)) > 0
|
| 1386 |
|
|
&& flag_strict_volatile_bitfields > 0)
|
| 1387 |
|
|
goto no_subreg_mode_swap;
|
| 1388 |
|
|
|
| 1389 |
|
|
if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
|
| 1390 |
|
|
&& bitpos % BITS_PER_WORD == 0)
|
| 1391 |
|
|
|| (mode1 != BLKmode
|
| 1392 |
|
|
/* ??? The big endian test here is wrong. This is correct
|
| 1393 |
|
|
if the value is in a register, and if mode_for_size is not
|
| 1394 |
|
|
the same mode as op0. This causes us to get unnecessarily
|
| 1395 |
|
|
inefficient code from the Thumb port when -mbig-endian. */
|
| 1396 |
|
|
&& (BYTES_BIG_ENDIAN
|
| 1397 |
|
|
? bitpos + bitsize == BITS_PER_WORD
|
| 1398 |
|
|
: bitpos == 0)))
|
| 1399 |
|
|
&& ((!MEM_P (op0)
|
| 1400 |
|
|
&& TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0))
|
| 1401 |
|
|
&& GET_MODE_SIZE (mode1) != 0
|
| 1402 |
|
|
&& byte_offset % GET_MODE_SIZE (mode1) == 0)
|
| 1403 |
|
|
|| (MEM_P (op0)
|
| 1404 |
|
|
&& (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
|
| 1405 |
|
|
|| (offset * BITS_PER_UNIT % bitsize == 0
|
| 1406 |
|
|
&& MEM_ALIGN (op0) % bitsize == 0)))))
|
| 1407 |
|
|
{
|
| 1408 |
|
|
if (MEM_P (op0))
|
| 1409 |
|
|
op0 = adjust_address (op0, mode1, offset);
|
| 1410 |
|
|
else if (mode1 != GET_MODE (op0))
|
| 1411 |
|
|
{
|
| 1412 |
|
|
rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
|
| 1413 |
|
|
byte_offset);
|
| 1414 |
|
|
if (sub == NULL)
|
| 1415 |
|
|
goto no_subreg_mode_swap;
|
| 1416 |
|
|
op0 = sub;
|
| 1417 |
|
|
}
|
| 1418 |
|
|
if (mode1 != mode)
|
| 1419 |
|
|
return convert_to_mode (tmode, op0, unsignedp);
|
| 1420 |
|
|
return op0;
|
| 1421 |
|
|
}
|
| 1422 |
|
|
no_subreg_mode_swap:
|
| 1423 |
|
|
|
| 1424 |
|
|
/* Handle fields bigger than a word. */
|
| 1425 |
|
|
|
| 1426 |
|
|
if (bitsize > BITS_PER_WORD)
|
| 1427 |
|
|
{
|
| 1428 |
|
|
/* Here we transfer the words of the field
|
| 1429 |
|
|
in the order least significant first.
|
| 1430 |
|
|
This is because the most significant word is the one which may
|
| 1431 |
|
|
be less than full. */
|
| 1432 |
|
|
|
| 1433 |
|
|
unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
|
| 1434 |
|
|
unsigned int i;
|
| 1435 |
|
|
|
| 1436 |
|
|
if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
|
| 1437 |
|
|
target = gen_reg_rtx (mode);
|
| 1438 |
|
|
|
| 1439 |
|
|
/* Indicate for flow that the entire target reg is being set. */
|
| 1440 |
|
|
emit_clobber (target);
|
| 1441 |
|
|
|
| 1442 |
|
|
for (i = 0; i < nwords; i++)
|
| 1443 |
|
|
{
|
| 1444 |
|
|
/* If I is 0, use the low-order word in both field and target;
|
| 1445 |
|
|
if I is 1, use the next to lowest word; and so on. */
|
| 1446 |
|
|
/* Word number in TARGET to use. */
|
| 1447 |
|
|
unsigned int wordnum
|
| 1448 |
|
|
= (WORDS_BIG_ENDIAN
|
| 1449 |
|
|
? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
|
| 1450 |
|
|
: i);
|
| 1451 |
|
|
/* Offset from start of field in OP0. */
|
| 1452 |
|
|
unsigned int bit_offset = (WORDS_BIG_ENDIAN
|
| 1453 |
|
|
? MAX (0, ((int) bitsize - ((int) i + 1)
|
| 1454 |
|
|
* (int) BITS_PER_WORD))
|
| 1455 |
|
|
: (int) i * BITS_PER_WORD);
|
| 1456 |
|
|
rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
|
| 1457 |
|
|
rtx result_part
|
| 1458 |
|
|
= extract_bit_field (op0, MIN (BITS_PER_WORD,
|
| 1459 |
|
|
bitsize - i * BITS_PER_WORD),
|
| 1460 |
|
|
bitnum + bit_offset, 1, false, target_part, mode,
|
| 1461 |
|
|
word_mode);
|
| 1462 |
|
|
|
| 1463 |
|
|
gcc_assert (target_part);
|
| 1464 |
|
|
|
| 1465 |
|
|
if (result_part != target_part)
|
| 1466 |
|
|
emit_move_insn (target_part, result_part);
|
| 1467 |
|
|
}
|
| 1468 |
|
|
|
| 1469 |
|
|
if (unsignedp)
|
| 1470 |
|
|
{
|
| 1471 |
|
|
/* Unless we've filled TARGET, the upper regs in a multi-reg value
|
| 1472 |
|
|
need to be zero'd out. */
|
| 1473 |
|
|
if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
|
| 1474 |
|
|
{
|
| 1475 |
|
|
unsigned int i, total_words;
|
| 1476 |
|
|
|
| 1477 |
|
|
total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
|
| 1478 |
|
|
for (i = nwords; i < total_words; i++)
|
| 1479 |
|
|
emit_move_insn
|
| 1480 |
|
|
(operand_subword (target,
|
| 1481 |
|
|
WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
|
| 1482 |
|
|
1, VOIDmode),
|
| 1483 |
|
|
const0_rtx);
|
| 1484 |
|
|
}
|
| 1485 |
|
|
return target;
|
| 1486 |
|
|
}
|
| 1487 |
|
|
|
| 1488 |
|
|
/* Signed bit field: sign-extend with two arithmetic shifts. */
|
| 1489 |
|
|
target = expand_shift (LSHIFT_EXPR, mode, target,
|
| 1490 |
|
|
GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
|
| 1491 |
|
|
return expand_shift (RSHIFT_EXPR, mode, target,
|
| 1492 |
|
|
GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
|
| 1493 |
|
|
}
|
| 1494 |
|
|
|
| 1495 |
|
|
/* From here on we know the desired field is smaller than a word. */
|
| 1496 |
|
|
|
| 1497 |
|
|
/* Check if there is a correspondingly-sized integer field, so we can
|
| 1498 |
|
|
safely extract it as one size of integer, if necessary; then
|
| 1499 |
|
|
truncate or extend to the size that is wanted; then use SUBREGs or
|
| 1500 |
|
|
convert_to_mode to get one of the modes we really wanted. */
|
| 1501 |
|
|
|
| 1502 |
|
|
int_mode = int_mode_for_mode (tmode);
|
| 1503 |
|
|
if (int_mode == BLKmode)
|
| 1504 |
|
|
int_mode = int_mode_for_mode (mode);
|
| 1505 |
|
|
/* Should probably push op0 out to memory and then do a load. */
|
| 1506 |
|
|
gcc_assert (int_mode != BLKmode);
|
| 1507 |
|
|
|
| 1508 |
|
|
/* OFFSET is the number of words or bytes (UNIT says which)
|
| 1509 |
|
|
from STR_RTX to the first word or byte containing part of the field. */
|
| 1510 |
|
|
if (!MEM_P (op0))
|
| 1511 |
|
|
{
|
| 1512 |
|
|
if (offset != 0
|
| 1513 |
|
|
|| GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
|
| 1514 |
|
|
{
|
| 1515 |
|
|
if (!REG_P (op0))
|
| 1516 |
|
|
op0 = copy_to_reg (op0);
|
| 1517 |
|
|
op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
|
| 1518 |
|
|
op0, (offset * UNITS_PER_WORD));
|
| 1519 |
|
|
}
|
| 1520 |
|
|
offset = 0;
|
| 1521 |
|
|
}
|
| 1522 |
|
|
|
| 1523 |
|
|
/* Now OFFSET is nonzero only for memory operands. */
|
| 1524 |
|
|
ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
|
| 1525 |
|
|
if (ext_mode != MAX_MACHINE_MODE
|
| 1526 |
|
|
&& bitsize > 0
|
| 1527 |
|
|
&& GET_MODE_BITSIZE (ext_mode) >= bitsize
|
| 1528 |
|
|
/* Do not use extv/extzv for volatile bitfields when
|
| 1529 |
|
|
-fstrict-volatile-bitfields is in effect. */
|
| 1530 |
|
|
&& !(MEM_P (op0) && MEM_VOLATILE_P (op0)
|
| 1531 |
|
|
&& flag_strict_volatile_bitfields > 0)
|
| 1532 |
|
|
/* If op0 is a register, we need it in EXT_MODE to make it
|
| 1533 |
|
|
acceptable to the format of ext(z)v. */
|
| 1534 |
|
|
&& !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
|
| 1535 |
|
|
&& !((REG_P (op0) || GET_CODE (op0) == SUBREG)
|
| 1536 |
|
|
&& (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode))))
|
| 1537 |
|
|
{
|
| 1538 |
|
|
struct expand_operand ops[4];
|
| 1539 |
|
|
unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
|
| 1540 |
|
|
rtx xop0 = op0;
|
| 1541 |
|
|
rtx xtarget = target;
|
| 1542 |
|
|
rtx xspec_target = target;
|
| 1543 |
|
|
rtx xspec_target_subreg = 0;
|
| 1544 |
|
|
|
| 1545 |
|
|
/* If op0 is a register, we need it in EXT_MODE to make it
|
| 1546 |
|
|
acceptable to the format of ext(z)v. */
|
| 1547 |
|
|
if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
|
| 1548 |
|
|
xop0 = gen_lowpart_SUBREG (ext_mode, xop0);
|
| 1549 |
|
|
if (MEM_P (xop0))
|
| 1550 |
|
|
/* Get ref to first byte containing part of the field. */
|
| 1551 |
|
|
xop0 = adjust_address (xop0, byte_mode, xoffset);
|
| 1552 |
|
|
|
| 1553 |
|
|
/* Now convert from counting within UNIT to counting in EXT_MODE. */
|
| 1554 |
|
|
if (BYTES_BIG_ENDIAN && !MEM_P (xop0))
|
| 1555 |
|
|
xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
|
| 1556 |
|
|
|
| 1557 |
|
|
unit = GET_MODE_BITSIZE (ext_mode);
|
| 1558 |
|
|
|
| 1559 |
|
|
/* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
|
| 1560 |
|
|
"backwards" from the size of the unit we are extracting from.
|
| 1561 |
|
|
Otherwise, we count bits from the most significant on a
|
| 1562 |
|
|
BYTES/BITS_BIG_ENDIAN machine. */
|
| 1563 |
|
|
|
| 1564 |
|
|
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
| 1565 |
|
|
xbitpos = unit - bitsize - xbitpos;
|
| 1566 |
|
|
|
| 1567 |
|
|
if (xtarget == 0)
|
| 1568 |
|
|
xtarget = xspec_target = gen_reg_rtx (tmode);
|
| 1569 |
|
|
|
| 1570 |
|
|
if (GET_MODE (xtarget) != ext_mode)
|
| 1571 |
|
|
{
|
| 1572 |
|
|
/* Don't use LHS paradoxical subreg if explicit truncation is needed
|
| 1573 |
|
|
between the mode of the extraction (word_mode) and the target
|
| 1574 |
|
|
mode. Instead, create a temporary and use convert_move to set
|
| 1575 |
|
|
the target. */
|
| 1576 |
|
|
if (REG_P (xtarget)
|
| 1577 |
|
|
&& TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (xtarget), ext_mode))
|
| 1578 |
|
|
{
|
| 1579 |
|
|
xtarget = gen_lowpart (ext_mode, xtarget);
|
| 1580 |
|
|
if (GET_MODE_PRECISION (ext_mode)
|
| 1581 |
|
|
> GET_MODE_PRECISION (GET_MODE (xspec_target)))
|
| 1582 |
|
|
xspec_target_subreg = xtarget;
|
| 1583 |
|
|
}
|
| 1584 |
|
|
else
|
| 1585 |
|
|
xtarget = gen_reg_rtx (ext_mode);
|
| 1586 |
|
|
}
|
| 1587 |
|
|
|
| 1588 |
|
|
create_output_operand (&ops[0], xtarget, ext_mode);
|
| 1589 |
|
|
create_fixed_operand (&ops[1], xop0);
|
| 1590 |
|
|
create_integer_operand (&ops[2], bitsize);
|
| 1591 |
|
|
create_integer_operand (&ops[3], xbitpos);
|
| 1592 |
|
|
if (maybe_expand_insn (unsignedp ? CODE_FOR_extzv : CODE_FOR_extv,
|
| 1593 |
|
|
4, ops))
|
| 1594 |
|
|
{
|
| 1595 |
|
|
xtarget = ops[0].value;
|
| 1596 |
|
|
if (xtarget == xspec_target)
|
| 1597 |
|
|
return xtarget;
|
| 1598 |
|
|
if (xtarget == xspec_target_subreg)
|
| 1599 |
|
|
return xspec_target;
|
| 1600 |
|
|
return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
|
| 1601 |
|
|
}
|
| 1602 |
|
|
}
|
| 1603 |
|
|
|
| 1604 |
|
|
/* If OP0 is a memory, try copying it to a register and seeing if a
|
| 1605 |
|
|
cheap register alternative is available. */
|
| 1606 |
|
|
if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
|
| 1607 |
|
|
{
|
| 1608 |
|
|
enum machine_mode bestmode;
|
| 1609 |
|
|
|
| 1610 |
|
|
/* Get the mode to use for inserting into this field. If
|
| 1611 |
|
|
OP0 is BLKmode, get the smallest mode consistent with the
|
| 1612 |
|
|
alignment. If OP0 is a non-BLKmode object that is no
|
| 1613 |
|
|
wider than EXT_MODE, use its mode. Otherwise, use the
|
| 1614 |
|
|
smallest mode containing the field. */
|
| 1615 |
|
|
|
| 1616 |
|
|
if (GET_MODE (op0) == BLKmode
|
| 1617 |
|
|
|| (ext_mode != MAX_MACHINE_MODE
|
| 1618 |
|
|
&& GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
|
| 1619 |
|
|
bestmode = get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
|
| 1620 |
|
|
(ext_mode == MAX_MACHINE_MODE
|
| 1621 |
|
|
? VOIDmode : ext_mode),
|
| 1622 |
|
|
MEM_VOLATILE_P (op0));
|
| 1623 |
|
|
else
|
| 1624 |
|
|
bestmode = GET_MODE (op0);
|
| 1625 |
|
|
|
| 1626 |
|
|
if (bestmode != VOIDmode
|
| 1627 |
|
|
&& !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
|
| 1628 |
|
|
&& GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
|
| 1629 |
|
|
{
|
| 1630 |
|
|
unsigned HOST_WIDE_INT xoffset, xbitpos;
|
| 1631 |
|
|
|
| 1632 |
|
|
/* Compute the offset as a multiple of this unit,
|
| 1633 |
|
|
counting in bytes. */
|
| 1634 |
|
|
unit = GET_MODE_BITSIZE (bestmode);
|
| 1635 |
|
|
xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
|
| 1636 |
|
|
xbitpos = bitnum % unit;
|
| 1637 |
|
|
|
| 1638 |
|
|
/* Make sure the register is big enough for the whole field. */
|
| 1639 |
|
|
if (xoffset * BITS_PER_UNIT + unit
|
| 1640 |
|
|
>= offset * BITS_PER_UNIT + bitsize)
|
| 1641 |
|
|
{
|
| 1642 |
|
|
rtx last, result, xop0;
|
| 1643 |
|
|
|
| 1644 |
|
|
last = get_last_insn ();
|
| 1645 |
|
|
|
| 1646 |
|
|
/* Fetch it to a register in that size. */
|
| 1647 |
|
|
xop0 = adjust_address (op0, bestmode, xoffset);
|
| 1648 |
|
|
xop0 = force_reg (bestmode, xop0);
|
| 1649 |
|
|
result = extract_bit_field_1 (xop0, bitsize, xbitpos,
|
| 1650 |
|
|
unsignedp, packedp, target,
|
| 1651 |
|
|
mode, tmode, false);
|
| 1652 |
|
|
if (result)
|
| 1653 |
|
|
return result;
|
| 1654 |
|
|
|
| 1655 |
|
|
delete_insns_since (last);
|
| 1656 |
|
|
}
|
| 1657 |
|
|
}
|
| 1658 |
|
|
}
|
| 1659 |
|
|
|
| 1660 |
|
|
if (!fallback_p)
|
| 1661 |
|
|
return NULL;
|
| 1662 |
|
|
|
| 1663 |
|
|
target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
|
| 1664 |
|
|
bitpos, target, unsignedp, packedp);
|
| 1665 |
|
|
return convert_extracted_bit_field (target, mode, tmode, unsignedp);
|
| 1666 |
|
|
}
|
| 1667 |
|
|
|
| 1668 |
|
|
/* Generate code to extract a byte-field from STR_RTX
|
| 1669 |
|
|
containing BITSIZE bits, starting at BITNUM,
|
| 1670 |
|
|
and put it in TARGET if possible (if TARGET is nonzero).
|
| 1671 |
|
|
Regardless of TARGET, we return the rtx for where the value is placed.
|
| 1672 |
|
|
|
| 1673 |
|
|
STR_RTX is the structure containing the byte (a REG or MEM).
|
| 1674 |
|
|
UNSIGNEDP is nonzero if this is an unsigned bit field.
|
| 1675 |
|
|
PACKEDP is nonzero if the field has the packed attribute.
|
| 1676 |
|
|
MODE is the natural mode of the field value once extracted.
|
| 1677 |
|
|
TMODE is the mode the caller would like the value to have;
|
| 1678 |
|
|
but the value may be returned with type MODE instead.
|
| 1679 |
|
|
|
| 1680 |
|
|
If a TARGET is specified and we can store in it at no extra cost,
|
| 1681 |
|
|
we do so, and return TARGET.
|
| 1682 |
|
|
Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
|
| 1683 |
|
|
if they are equally easy. */
|
| 1684 |
|
|
|
| 1685 |
|
|
rtx
|
| 1686 |
|
|
extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
|
| 1687 |
|
|
unsigned HOST_WIDE_INT bitnum, int unsignedp, bool packedp,
|
| 1688 |
|
|
rtx target, enum machine_mode mode, enum machine_mode tmode)
|
| 1689 |
|
|
{
|
| 1690 |
|
|
return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp, packedp,
|
| 1691 |
|
|
target, mode, tmode, true);
|
| 1692 |
|
|
}
|
| 1693 |
|
|
|
| 1694 |
|
|
/* Extract a bit field using shifts and boolean operations
|
| 1695 |
|
|
Returns an rtx to represent the value.
|
| 1696 |
|
|
OP0 addresses a register (word) or memory (byte).
|
| 1697 |
|
|
BITPOS says which bit within the word or byte the bit field starts in.
|
| 1698 |
|
|
OFFSET says how many bytes farther the bit field starts;
|
| 1699 |
|
|
it is 0 if OP0 is a register.
|
| 1700 |
|
|
BITSIZE says how many bits long the bit field is.
|
| 1701 |
|
|
(If OP0 is a register, it may be narrower than a full word,
|
| 1702 |
|
|
but BITPOS still counts within a full word,
|
| 1703 |
|
|
which is significant on bigendian machines.)
|
| 1704 |
|
|
|
| 1705 |
|
|
UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
|
| 1706 |
|
|
PACKEDP is true if the field has the packed attribute.
|
| 1707 |
|
|
|
| 1708 |
|
|
If TARGET is nonzero, attempts to store the value there
|
| 1709 |
|
|
and return TARGET, but this is not guaranteed.
|
| 1710 |
|
|
If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
|
| 1711 |
|
|
|
| 1712 |
|
|
static rtx
|
| 1713 |
|
|
extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
|
| 1714 |
|
|
unsigned HOST_WIDE_INT offset,
|
| 1715 |
|
|
unsigned HOST_WIDE_INT bitsize,
|
| 1716 |
|
|
unsigned HOST_WIDE_INT bitpos, rtx target,
|
| 1717 |
|
|
int unsignedp, bool packedp)
|
| 1718 |
|
|
{
|
| 1719 |
|
|
unsigned int total_bits = BITS_PER_WORD;
|
| 1720 |
|
|
enum machine_mode mode;
|
| 1721 |
|
|
|
| 1722 |
|
|
if (GET_CODE (op0) == SUBREG || REG_P (op0))
|
| 1723 |
|
|
{
|
| 1724 |
|
|
/* Special treatment for a bit field split across two registers. */
|
| 1725 |
|
|
if (bitsize + bitpos > BITS_PER_WORD)
|
| 1726 |
|
|
return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
|
| 1727 |
|
|
}
|
| 1728 |
|
|
else
|
| 1729 |
|
|
{
|
| 1730 |
|
|
/* Get the proper mode to use for this field. We want a mode that
|
| 1731 |
|
|
includes the entire field. If such a mode would be larger than
|
| 1732 |
|
|
a word, we won't be doing the extraction the normal way. */
|
| 1733 |
|
|
|
| 1734 |
|
|
if (MEM_VOLATILE_P (op0)
|
| 1735 |
|
|
&& flag_strict_volatile_bitfields > 0)
|
| 1736 |
|
|
{
|
| 1737 |
|
|
if (GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
|
| 1738 |
|
|
mode = GET_MODE (op0);
|
| 1739 |
|
|
else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
|
| 1740 |
|
|
mode = GET_MODE (target);
|
| 1741 |
|
|
else
|
| 1742 |
|
|
mode = tmode;
|
| 1743 |
|
|
}
|
| 1744 |
|
|
else
|
| 1745 |
|
|
mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT, 0, 0,
|
| 1746 |
|
|
MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
|
| 1747 |
|
|
|
| 1748 |
|
|
if (mode == VOIDmode)
|
| 1749 |
|
|
/* The only way this should occur is if the field spans word
|
| 1750 |
|
|
boundaries. */
|
| 1751 |
|
|
return extract_split_bit_field (op0, bitsize,
|
| 1752 |
|
|
bitpos + offset * BITS_PER_UNIT,
|
| 1753 |
|
|
unsignedp);
|
| 1754 |
|
|
|
| 1755 |
|
|
total_bits = GET_MODE_BITSIZE (mode);
|
| 1756 |
|
|
|
| 1757 |
|
|
/* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
|
| 1758 |
|
|
be in the range 0 to total_bits-1, and put any excess bytes in
|
| 1759 |
|
|
OFFSET. */
|
| 1760 |
|
|
if (bitpos >= total_bits)
|
| 1761 |
|
|
{
|
| 1762 |
|
|
offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
|
| 1763 |
|
|
bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
|
| 1764 |
|
|
* BITS_PER_UNIT);
|
| 1765 |
|
|
}
|
| 1766 |
|
|
|
| 1767 |
|
|
/* If we're accessing a volatile MEM, we can't do the next
|
| 1768 |
|
|
alignment step if it results in a multi-word access where we
|
| 1769 |
|
|
otherwise wouldn't have one. So, check for that case
|
| 1770 |
|
|
here. */
|
| 1771 |
|
|
if (MEM_P (op0)
|
| 1772 |
|
|
&& MEM_VOLATILE_P (op0)
|
| 1773 |
|
|
&& flag_strict_volatile_bitfields > 0
|
| 1774 |
|
|
&& bitpos + bitsize <= total_bits
|
| 1775 |
|
|
&& bitpos + bitsize + (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT > total_bits)
|
| 1776 |
|
|
{
|
| 1777 |
|
|
if (STRICT_ALIGNMENT)
|
| 1778 |
|
|
{
|
| 1779 |
|
|
static bool informed_about_misalignment = false;
|
| 1780 |
|
|
bool warned;
|
| 1781 |
|
|
|
| 1782 |
|
|
if (packedp)
|
| 1783 |
|
|
{
|
| 1784 |
|
|
if (bitsize == total_bits)
|
| 1785 |
|
|
warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
|
| 1786 |
|
|
"multiple accesses to volatile structure member"
|
| 1787 |
|
|
" because of packed attribute");
|
| 1788 |
|
|
else
|
| 1789 |
|
|
warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
|
| 1790 |
|
|
"multiple accesses to volatile structure bitfield"
|
| 1791 |
|
|
" because of packed attribute");
|
| 1792 |
|
|
|
| 1793 |
|
|
return extract_split_bit_field (op0, bitsize,
|
| 1794 |
|
|
bitpos + offset * BITS_PER_UNIT,
|
| 1795 |
|
|
unsignedp);
|
| 1796 |
|
|
}
|
| 1797 |
|
|
|
| 1798 |
|
|
if (bitsize == total_bits)
|
| 1799 |
|
|
warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
|
| 1800 |
|
|
"mis-aligned access used for structure member");
|
| 1801 |
|
|
else
|
| 1802 |
|
|
warned = warning_at (input_location, OPT_fstrict_volatile_bitfields,
|
| 1803 |
|
|
"mis-aligned access used for structure bitfield");
|
| 1804 |
|
|
|
| 1805 |
|
|
if (! informed_about_misalignment && warned)
|
| 1806 |
|
|
{
|
| 1807 |
|
|
informed_about_misalignment = true;
|
| 1808 |
|
|
inform (input_location,
|
| 1809 |
|
|
"when a volatile object spans multiple type-sized locations,"
|
| 1810 |
|
|
" the compiler must choose between using a single mis-aligned access to"
|
| 1811 |
|
|
" preserve the volatility, or using multiple aligned accesses to avoid"
|
| 1812 |
|
|
" runtime faults; this code may fail at runtime if the hardware does"
|
| 1813 |
|
|
" not allow this access");
|
| 1814 |
|
|
}
|
| 1815 |
|
|
}
|
| 1816 |
|
|
}
|
| 1817 |
|
|
else
|
| 1818 |
|
|
{
|
| 1819 |
|
|
|
| 1820 |
|
|
/* Get ref to an aligned byte, halfword, or word containing the field.
|
| 1821 |
|
|
Adjust BITPOS to be position within a word,
|
| 1822 |
|
|
and OFFSET to be the offset of that word.
|
| 1823 |
|
|
Then alter OP0 to refer to that word. */
|
| 1824 |
|
|
bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
|
| 1825 |
|
|
offset -= (offset % (total_bits / BITS_PER_UNIT));
|
| 1826 |
|
|
}
|
| 1827 |
|
|
|
| 1828 |
|
|
op0 = adjust_address (op0, mode, offset);
|
| 1829 |
|
|
}
|
| 1830 |
|
|
|
| 1831 |
|
|
mode = GET_MODE (op0);
|
| 1832 |
|
|
|
| 1833 |
|
|
if (BYTES_BIG_ENDIAN)
|
| 1834 |
|
|
/* BITPOS is the distance between our msb and that of OP0.
|
| 1835 |
|
|
Convert it to the distance from the lsb. */
|
| 1836 |
|
|
bitpos = total_bits - bitsize - bitpos;
|
| 1837 |
|
|
|
| 1838 |
|
|
/* Now BITPOS is always the distance between the field's lsb and that of OP0.
|
| 1839 |
|
|
We have reduced the big-endian case to the little-endian case. */
|
| 1840 |
|
|
|
| 1841 |
|
|
if (unsignedp)
|
| 1842 |
|
|
{
|
| 1843 |
|
|
if (bitpos)
|
| 1844 |
|
|
{
|
| 1845 |
|
|
/* If the field does not already start at the lsb,
|
| 1846 |
|
|
shift it so it does. */
|
| 1847 |
|
|
/* Maybe propagate the target for the shift. */
|
| 1848 |
|
|
/* But not if we will return it--could confuse integrate.c. */
|
| 1849 |
|
|
rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
|
| 1850 |
|
|
if (tmode != mode) subtarget = 0;
|
| 1851 |
|
|
op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitpos, subtarget, 1);
|
| 1852 |
|
|
}
|
| 1853 |
|
|
/* Convert the value to the desired mode. */
|
| 1854 |
|
|
if (mode != tmode)
|
| 1855 |
|
|
op0 = convert_to_mode (tmode, op0, 1);
|
| 1856 |
|
|
|
| 1857 |
|
|
/* Unless the msb of the field used to be the msb when we shifted,
|
| 1858 |
|
|
mask out the upper bits. */
|
| 1859 |
|
|
|
| 1860 |
|
|
if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
|
| 1861 |
|
|
return expand_binop (GET_MODE (op0), and_optab, op0,
|
| 1862 |
|
|
mask_rtx (GET_MODE (op0), 0, bitsize, 0),
|
| 1863 |
|
|
target, 1, OPTAB_LIB_WIDEN);
|
| 1864 |
|
|
return op0;
|
| 1865 |
|
|
}
|
| 1866 |
|
|
|
| 1867 |
|
|
/* To extract a signed bit-field, first shift its msb to the msb of the word,
|
| 1868 |
|
|
then arithmetic-shift its lsb to the lsb of the word. */
|
| 1869 |
|
|
op0 = force_reg (mode, op0);
|
| 1870 |
|
|
|
| 1871 |
|
|
/* Find the narrowest integer mode that contains the field. */
|
| 1872 |
|
|
|
| 1873 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
|
| 1874 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
| 1875 |
|
|
if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
|
| 1876 |
|
|
{
|
| 1877 |
|
|
op0 = convert_to_mode (mode, op0, 0);
|
| 1878 |
|
|
break;
|
| 1879 |
|
|
}
|
| 1880 |
|
|
|
| 1881 |
|
|
if (mode != tmode)
|
| 1882 |
|
|
target = 0;
|
| 1883 |
|
|
|
| 1884 |
|
|
if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
|
| 1885 |
|
|
{
|
| 1886 |
|
|
int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitpos);
|
| 1887 |
|
|
/* Maybe propagate the target for the shift. */
|
| 1888 |
|
|
rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
|
| 1889 |
|
|
op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
|
| 1890 |
|
|
}
|
| 1891 |
|
|
|
| 1892 |
|
|
return expand_shift (RSHIFT_EXPR, mode, op0,
|
| 1893 |
|
|
GET_MODE_BITSIZE (mode) - bitsize, target, 0);
|
| 1894 |
|
|
}
|
| 1895 |
|
|
|
| 1896 |
|
|
/* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
|
| 1897 |
|
|
of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
|
| 1898 |
|
|
complement of that if COMPLEMENT. The mask is truncated if
|
| 1899 |
|
|
necessary to the width of mode MODE. The mask is zero-extended if
|
| 1900 |
|
|
BITSIZE+BITPOS is too small for MODE. */
|
| 1901 |
|
|
|
| 1902 |
|
|
static rtx
|
| 1903 |
|
|
mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
|
| 1904 |
|
|
{
|
| 1905 |
|
|
double_int mask;
|
| 1906 |
|
|
|
| 1907 |
|
|
mask = double_int_mask (bitsize);
|
| 1908 |
|
|
mask = double_int_lshift (mask, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
|
| 1909 |
|
|
|
| 1910 |
|
|
if (complement)
|
| 1911 |
|
|
mask = double_int_not (mask);
|
| 1912 |
|
|
|
| 1913 |
|
|
return immed_double_int_const (mask, mode);
|
| 1914 |
|
|
}
|
| 1915 |
|
|
|
| 1916 |
|
|
/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
|
| 1917 |
|
|
VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
|
| 1918 |
|
|
|
| 1919 |
|
|
static rtx
|
| 1920 |
|
|
lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
|
| 1921 |
|
|
{
|
| 1922 |
|
|
double_int val;
|
| 1923 |
|
|
|
| 1924 |
|
|
val = double_int_zext (uhwi_to_double_int (INTVAL (value)), bitsize);
|
| 1925 |
|
|
val = double_int_lshift (val, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
|
| 1926 |
|
|
|
| 1927 |
|
|
return immed_double_int_const (val, mode);
|
| 1928 |
|
|
}
|
| 1929 |
|
|
|
| 1930 |
|
|
/* Extract a bit field that is split across two words
|
| 1931 |
|
|
and return an RTX for the result.
|
| 1932 |
|
|
|
| 1933 |
|
|
OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
|
| 1934 |
|
|
BITSIZE is the field width; BITPOS, position of its first bit, in the word.
|
| 1935 |
|
|
UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
|
| 1936 |
|
|
|
| 1937 |
|
|
static rtx
|
| 1938 |
|
|
extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
|
| 1939 |
|
|
unsigned HOST_WIDE_INT bitpos, int unsignedp)
|
| 1940 |
|
|
{
|
| 1941 |
|
|
unsigned int unit;
|
| 1942 |
|
|
unsigned int bitsdone = 0;
|
| 1943 |
|
|
rtx result = NULL_RTX;
|
| 1944 |
|
|
int first = 1;
|
| 1945 |
|
|
|
| 1946 |
|
|
/* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
|
| 1947 |
|
|
much at a time. */
|
| 1948 |
|
|
if (REG_P (op0) || GET_CODE (op0) == SUBREG)
|
| 1949 |
|
|
unit = BITS_PER_WORD;
|
| 1950 |
|
|
else
|
| 1951 |
|
|
unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
|
| 1952 |
|
|
|
| 1953 |
|
|
while (bitsdone < bitsize)
|
| 1954 |
|
|
{
|
| 1955 |
|
|
unsigned HOST_WIDE_INT thissize;
|
| 1956 |
|
|
rtx part, word;
|
| 1957 |
|
|
unsigned HOST_WIDE_INT thispos;
|
| 1958 |
|
|
unsigned HOST_WIDE_INT offset;
|
| 1959 |
|
|
|
| 1960 |
|
|
offset = (bitpos + bitsdone) / unit;
|
| 1961 |
|
|
thispos = (bitpos + bitsdone) % unit;
|
| 1962 |
|
|
|
| 1963 |
|
|
/* THISSIZE must not overrun a word boundary. Otherwise,
|
| 1964 |
|
|
extract_fixed_bit_field will call us again, and we will mutually
|
| 1965 |
|
|
recurse forever. */
|
| 1966 |
|
|
thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
|
| 1967 |
|
|
thissize = MIN (thissize, unit - thispos);
|
| 1968 |
|
|
|
| 1969 |
|
|
/* If OP0 is a register, then handle OFFSET here.
|
| 1970 |
|
|
|
| 1971 |
|
|
When handling multiword bitfields, extract_bit_field may pass
|
| 1972 |
|
|
down a word_mode SUBREG of a larger REG for a bitfield that actually
|
| 1973 |
|
|
crosses a word boundary. Thus, for a SUBREG, we must find
|
| 1974 |
|
|
the current word starting from the base register. */
|
| 1975 |
|
|
if (GET_CODE (op0) == SUBREG)
|
| 1976 |
|
|
{
|
| 1977 |
|
|
int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
|
| 1978 |
|
|
word = operand_subword_force (SUBREG_REG (op0), word_offset,
|
| 1979 |
|
|
GET_MODE (SUBREG_REG (op0)));
|
| 1980 |
|
|
offset = 0;
|
| 1981 |
|
|
}
|
| 1982 |
|
|
else if (REG_P (op0))
|
| 1983 |
|
|
{
|
| 1984 |
|
|
word = operand_subword_force (op0, offset, GET_MODE (op0));
|
| 1985 |
|
|
offset = 0;
|
| 1986 |
|
|
}
|
| 1987 |
|
|
else
|
| 1988 |
|
|
word = op0;
|
| 1989 |
|
|
|
| 1990 |
|
|
/* Extract the parts in bit-counting order,
|
| 1991 |
|
|
whose meaning is determined by BYTES_PER_UNIT.
|
| 1992 |
|
|
OFFSET is in UNITs, and UNIT is in bits.
|
| 1993 |
|
|
extract_fixed_bit_field wants offset in bytes. */
|
| 1994 |
|
|
part = extract_fixed_bit_field (word_mode, word,
|
| 1995 |
|
|
offset * unit / BITS_PER_UNIT,
|
| 1996 |
|
|
thissize, thispos, 0, 1, false);
|
| 1997 |
|
|
bitsdone += thissize;
|
| 1998 |
|
|
|
| 1999 |
|
|
/* Shift this part into place for the result. */
|
| 2000 |
|
|
if (BYTES_BIG_ENDIAN)
|
| 2001 |
|
|
{
|
| 2002 |
|
|
if (bitsize != bitsdone)
|
| 2003 |
|
|
part = expand_shift (LSHIFT_EXPR, word_mode, part,
|
| 2004 |
|
|
bitsize - bitsdone, 0, 1);
|
| 2005 |
|
|
}
|
| 2006 |
|
|
else
|
| 2007 |
|
|
{
|
| 2008 |
|
|
if (bitsdone != thissize)
|
| 2009 |
|
|
part = expand_shift (LSHIFT_EXPR, word_mode, part,
|
| 2010 |
|
|
bitsdone - thissize, 0, 1);
|
| 2011 |
|
|
}
|
| 2012 |
|
|
|
| 2013 |
|
|
if (first)
|
| 2014 |
|
|
result = part;
|
| 2015 |
|
|
else
|
| 2016 |
|
|
/* Combine the parts with bitwise or. This works
|
| 2017 |
|
|
because we extracted each part as an unsigned bit field. */
|
| 2018 |
|
|
result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
|
| 2019 |
|
|
OPTAB_LIB_WIDEN);
|
| 2020 |
|
|
|
| 2021 |
|
|
first = 0;
|
| 2022 |
|
|
}
|
| 2023 |
|
|
|
| 2024 |
|
|
/* Unsigned bit field: we are done. */
|
| 2025 |
|
|
if (unsignedp)
|
| 2026 |
|
|
return result;
|
| 2027 |
|
|
/* Signed bit field: sign-extend with two arithmetic shifts. */
|
| 2028 |
|
|
result = expand_shift (LSHIFT_EXPR, word_mode, result,
|
| 2029 |
|
|
BITS_PER_WORD - bitsize, NULL_RTX, 0);
|
| 2030 |
|
|
return expand_shift (RSHIFT_EXPR, word_mode, result,
|
| 2031 |
|
|
BITS_PER_WORD - bitsize, NULL_RTX, 0);
|
| 2032 |
|
|
}
|
| 2033 |
|
|
|
| 2034 |
|
|
/* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
|
| 2035 |
|
|
the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
|
| 2036 |
|
|
MODE, fill the upper bits with zeros. Fail if the layout of either
|
| 2037 |
|
|
mode is unknown (as for CC modes) or if the extraction would involve
|
| 2038 |
|
|
unprofitable mode punning. Return the value on success, otherwise
|
| 2039 |
|
|
return null.
|
| 2040 |
|
|
|
| 2041 |
|
|
This is different from gen_lowpart* in these respects:
|
| 2042 |
|
|
|
| 2043 |
|
|
- the returned value must always be considered an rvalue
|
| 2044 |
|
|
|
| 2045 |
|
|
- when MODE is wider than SRC_MODE, the extraction involves
|
| 2046 |
|
|
a zero extension
|
| 2047 |
|
|
|
| 2048 |
|
|
- when MODE is smaller than SRC_MODE, the extraction involves
|
| 2049 |
|
|
a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
|
| 2050 |
|
|
|
| 2051 |
|
|
In other words, this routine performs a computation, whereas the
|
| 2052 |
|
|
gen_lowpart* routines are conceptually lvalue or rvalue subreg
|
| 2053 |
|
|
operations. */
|
| 2054 |
|
|
|
| 2055 |
|
|
rtx
|
| 2056 |
|
|
extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
|
| 2057 |
|
|
{
|
| 2058 |
|
|
enum machine_mode int_mode, src_int_mode;
|
| 2059 |
|
|
|
| 2060 |
|
|
if (mode == src_mode)
|
| 2061 |
|
|
return src;
|
| 2062 |
|
|
|
| 2063 |
|
|
if (CONSTANT_P (src))
|
| 2064 |
|
|
{
|
| 2065 |
|
|
/* simplify_gen_subreg can't be used here, as if simplify_subreg
|
| 2066 |
|
|
fails, it will happily create (subreg (symbol_ref)) or similar
|
| 2067 |
|
|
invalid SUBREGs. */
|
| 2068 |
|
|
unsigned int byte = subreg_lowpart_offset (mode, src_mode);
|
| 2069 |
|
|
rtx ret = simplify_subreg (mode, src, src_mode, byte);
|
| 2070 |
|
|
if (ret)
|
| 2071 |
|
|
return ret;
|
| 2072 |
|
|
|
| 2073 |
|
|
if (GET_MODE (src) == VOIDmode
|
| 2074 |
|
|
|| !validate_subreg (mode, src_mode, src, byte))
|
| 2075 |
|
|
return NULL_RTX;
|
| 2076 |
|
|
|
| 2077 |
|
|
src = force_reg (GET_MODE (src), src);
|
| 2078 |
|
|
return gen_rtx_SUBREG (mode, src, byte);
|
| 2079 |
|
|
}
|
| 2080 |
|
|
|
| 2081 |
|
|
if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
|
| 2082 |
|
|
return NULL_RTX;
|
| 2083 |
|
|
|
| 2084 |
|
|
if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
|
| 2085 |
|
|
&& MODES_TIEABLE_P (mode, src_mode))
|
| 2086 |
|
|
{
|
| 2087 |
|
|
rtx x = gen_lowpart_common (mode, src);
|
| 2088 |
|
|
if (x)
|
| 2089 |
|
|
return x;
|
| 2090 |
|
|
}
|
| 2091 |
|
|
|
| 2092 |
|
|
src_int_mode = int_mode_for_mode (src_mode);
|
| 2093 |
|
|
int_mode = int_mode_for_mode (mode);
|
| 2094 |
|
|
if (src_int_mode == BLKmode || int_mode == BLKmode)
|
| 2095 |
|
|
return NULL_RTX;
|
| 2096 |
|
|
|
| 2097 |
|
|
if (!MODES_TIEABLE_P (src_int_mode, src_mode))
|
| 2098 |
|
|
return NULL_RTX;
|
| 2099 |
|
|
if (!MODES_TIEABLE_P (int_mode, mode))
|
| 2100 |
|
|
return NULL_RTX;
|
| 2101 |
|
|
|
| 2102 |
|
|
src = gen_lowpart (src_int_mode, src);
|
| 2103 |
|
|
src = convert_modes (int_mode, src_int_mode, src, true);
|
| 2104 |
|
|
src = gen_lowpart (mode, src);
|
| 2105 |
|
|
return src;
|
| 2106 |
|
|
}
|
| 2107 |
|
|
|
| 2108 |
|
|
/* Add INC into TARGET. */
|
| 2109 |
|
|
|
| 2110 |
|
|
void
|
| 2111 |
|
|
expand_inc (rtx target, rtx inc)
|
| 2112 |
|
|
{
|
| 2113 |
|
|
rtx value = expand_binop (GET_MODE (target), add_optab,
|
| 2114 |
|
|
target, inc,
|
| 2115 |
|
|
target, 0, OPTAB_LIB_WIDEN);
|
| 2116 |
|
|
if (value != target)
|
| 2117 |
|
|
emit_move_insn (target, value);
|
| 2118 |
|
|
}
|
| 2119 |
|
|
|
| 2120 |
|
|
/* Subtract DEC from TARGET. */
|
| 2121 |
|
|
|
| 2122 |
|
|
void
|
| 2123 |
|
|
expand_dec (rtx target, rtx dec)
|
| 2124 |
|
|
{
|
| 2125 |
|
|
rtx value = expand_binop (GET_MODE (target), sub_optab,
|
| 2126 |
|
|
target, dec,
|
| 2127 |
|
|
target, 0, OPTAB_LIB_WIDEN);
|
| 2128 |
|
|
if (value != target)
|
| 2129 |
|
|
emit_move_insn (target, value);
|
| 2130 |
|
|
}
|
| 2131 |
|
|
|
| 2132 |
|
|
/* Output a shift instruction for expression code CODE,
|
| 2133 |
|
|
with SHIFTED being the rtx for the value to shift,
|
| 2134 |
|
|
and AMOUNT the rtx for the amount to shift by.
|
| 2135 |
|
|
Store the result in the rtx TARGET, if that is convenient.
|
| 2136 |
|
|
If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
|
| 2137 |
|
|
Return the rtx for where the value is. */
|
| 2138 |
|
|
|
| 2139 |
|
|
static rtx
|
| 2140 |
|
|
expand_shift_1 (enum tree_code code, enum machine_mode mode, rtx shifted,
|
| 2141 |
|
|
rtx amount, rtx target, int unsignedp)
|
| 2142 |
|
|
{
|
| 2143 |
|
|
rtx op1, temp = 0;
|
| 2144 |
|
|
int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
|
| 2145 |
|
|
int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
|
| 2146 |
|
|
optab lshift_optab = ashl_optab;
|
| 2147 |
|
|
optab rshift_arith_optab = ashr_optab;
|
| 2148 |
|
|
optab rshift_uns_optab = lshr_optab;
|
| 2149 |
|
|
optab lrotate_optab = rotl_optab;
|
| 2150 |
|
|
optab rrotate_optab = rotr_optab;
|
| 2151 |
|
|
enum machine_mode op1_mode;
|
| 2152 |
|
|
int attempt;
|
| 2153 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
| 2154 |
|
|
|
| 2155 |
|
|
op1 = amount;
|
| 2156 |
|
|
op1_mode = GET_MODE (op1);
|
| 2157 |
|
|
|
| 2158 |
|
|
/* Determine whether the shift/rotate amount is a vector, or scalar. If the
|
| 2159 |
|
|
shift amount is a vector, use the vector/vector shift patterns. */
|
| 2160 |
|
|
if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
|
| 2161 |
|
|
{
|
| 2162 |
|
|
lshift_optab = vashl_optab;
|
| 2163 |
|
|
rshift_arith_optab = vashr_optab;
|
| 2164 |
|
|
rshift_uns_optab = vlshr_optab;
|
| 2165 |
|
|
lrotate_optab = vrotl_optab;
|
| 2166 |
|
|
rrotate_optab = vrotr_optab;
|
| 2167 |
|
|
}
|
| 2168 |
|
|
|
| 2169 |
|
|
/* Previously detected shift-counts computed by NEGATE_EXPR
|
| 2170 |
|
|
and shifted in the other direction; but that does not work
|
| 2171 |
|
|
on all machines. */
|
| 2172 |
|
|
|
| 2173 |
|
|
if (SHIFT_COUNT_TRUNCATED)
|
| 2174 |
|
|
{
|
| 2175 |
|
|
if (CONST_INT_P (op1)
|
| 2176 |
|
|
&& ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
|
| 2177 |
|
|
(unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
|
| 2178 |
|
|
op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
|
| 2179 |
|
|
% GET_MODE_BITSIZE (mode));
|
| 2180 |
|
|
else if (GET_CODE (op1) == SUBREG
|
| 2181 |
|
|
&& subreg_lowpart_p (op1)
|
| 2182 |
|
|
&& INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (op1))))
|
| 2183 |
|
|
op1 = SUBREG_REG (op1);
|
| 2184 |
|
|
}
|
| 2185 |
|
|
|
| 2186 |
|
|
if (op1 == const0_rtx)
|
| 2187 |
|
|
return shifted;
|
| 2188 |
|
|
|
| 2189 |
|
|
/* Check whether its cheaper to implement a left shift by a constant
|
| 2190 |
|
|
bit count by a sequence of additions. */
|
| 2191 |
|
|
if (code == LSHIFT_EXPR
|
| 2192 |
|
|
&& CONST_INT_P (op1)
|
| 2193 |
|
|
&& INTVAL (op1) > 0
|
| 2194 |
|
|
&& INTVAL (op1) < GET_MODE_PRECISION (mode)
|
| 2195 |
|
|
&& INTVAL (op1) < MAX_BITS_PER_WORD
|
| 2196 |
|
|
&& shift_cost[speed][mode][INTVAL (op1)] > INTVAL (op1) * add_cost[speed][mode]
|
| 2197 |
|
|
&& shift_cost[speed][mode][INTVAL (op1)] != MAX_COST)
|
| 2198 |
|
|
{
|
| 2199 |
|
|
int i;
|
| 2200 |
|
|
for (i = 0; i < INTVAL (op1); i++)
|
| 2201 |
|
|
{
|
| 2202 |
|
|
temp = force_reg (mode, shifted);
|
| 2203 |
|
|
shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
|
| 2204 |
|
|
unsignedp, OPTAB_LIB_WIDEN);
|
| 2205 |
|
|
}
|
| 2206 |
|
|
return shifted;
|
| 2207 |
|
|
}
|
| 2208 |
|
|
|
| 2209 |
|
|
for (attempt = 0; temp == 0 && attempt < 3; attempt++)
|
| 2210 |
|
|
{
|
| 2211 |
|
|
enum optab_methods methods;
|
| 2212 |
|
|
|
| 2213 |
|
|
if (attempt == 0)
|
| 2214 |
|
|
methods = OPTAB_DIRECT;
|
| 2215 |
|
|
else if (attempt == 1)
|
| 2216 |
|
|
methods = OPTAB_WIDEN;
|
| 2217 |
|
|
else
|
| 2218 |
|
|
methods = OPTAB_LIB_WIDEN;
|
| 2219 |
|
|
|
| 2220 |
|
|
if (rotate)
|
| 2221 |
|
|
{
|
| 2222 |
|
|
/* Widening does not work for rotation. */
|
| 2223 |
|
|
if (methods == OPTAB_WIDEN)
|
| 2224 |
|
|
continue;
|
| 2225 |
|
|
else if (methods == OPTAB_LIB_WIDEN)
|
| 2226 |
|
|
{
|
| 2227 |
|
|
/* If we have been unable to open-code this by a rotation,
|
| 2228 |
|
|
do it as the IOR of two shifts. I.e., to rotate A
|
| 2229 |
|
|
by N bits, compute (A << N) | ((unsigned) A >> (C - N))
|
| 2230 |
|
|
where C is the bitsize of A.
|
| 2231 |
|
|
|
| 2232 |
|
|
It is theoretically possible that the target machine might
|
| 2233 |
|
|
not be able to perform either shift and hence we would
|
| 2234 |
|
|
be making two libcalls rather than just the one for the
|
| 2235 |
|
|
shift (similarly if IOR could not be done). We will allow
|
| 2236 |
|
|
this extremely unlikely lossage to avoid complicating the
|
| 2237 |
|
|
code below. */
|
| 2238 |
|
|
|
| 2239 |
|
|
rtx subtarget = target == shifted ? 0 : target;
|
| 2240 |
|
|
rtx new_amount, other_amount;
|
| 2241 |
|
|
rtx temp1;
|
| 2242 |
|
|
|
| 2243 |
|
|
new_amount = op1;
|
| 2244 |
|
|
if (CONST_INT_P (op1))
|
| 2245 |
|
|
other_amount = GEN_INT (GET_MODE_BITSIZE (mode)
|
| 2246 |
|
|
- INTVAL (op1));
|
| 2247 |
|
|
else
|
| 2248 |
|
|
other_amount
|
| 2249 |
|
|
= simplify_gen_binary (MINUS, GET_MODE (op1),
|
| 2250 |
|
|
GEN_INT (GET_MODE_PRECISION (mode)),
|
| 2251 |
|
|
op1);
|
| 2252 |
|
|
|
| 2253 |
|
|
shifted = force_reg (mode, shifted);
|
| 2254 |
|
|
|
| 2255 |
|
|
temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
|
| 2256 |
|
|
mode, shifted, new_amount, 0, 1);
|
| 2257 |
|
|
temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
|
| 2258 |
|
|
mode, shifted, other_amount,
|
| 2259 |
|
|
subtarget, 1);
|
| 2260 |
|
|
return expand_binop (mode, ior_optab, temp, temp1, target,
|
| 2261 |
|
|
unsignedp, methods);
|
| 2262 |
|
|
}
|
| 2263 |
|
|
|
| 2264 |
|
|
temp = expand_binop (mode,
|
| 2265 |
|
|
left ? lrotate_optab : rrotate_optab,
|
| 2266 |
|
|
shifted, op1, target, unsignedp, methods);
|
| 2267 |
|
|
}
|
| 2268 |
|
|
else if (unsignedp)
|
| 2269 |
|
|
temp = expand_binop (mode,
|
| 2270 |
|
|
left ? lshift_optab : rshift_uns_optab,
|
| 2271 |
|
|
shifted, op1, target, unsignedp, methods);
|
| 2272 |
|
|
|
| 2273 |
|
|
/* Do arithmetic shifts.
|
| 2274 |
|
|
Also, if we are going to widen the operand, we can just as well
|
| 2275 |
|
|
use an arithmetic right-shift instead of a logical one. */
|
| 2276 |
|
|
if (temp == 0 && ! rotate
|
| 2277 |
|
|
&& (! unsignedp || (! left && methods == OPTAB_WIDEN)))
|
| 2278 |
|
|
{
|
| 2279 |
|
|
enum optab_methods methods1 = methods;
|
| 2280 |
|
|
|
| 2281 |
|
|
/* If trying to widen a log shift to an arithmetic shift,
|
| 2282 |
|
|
don't accept an arithmetic shift of the same size. */
|
| 2283 |
|
|
if (unsignedp)
|
| 2284 |
|
|
methods1 = OPTAB_MUST_WIDEN;
|
| 2285 |
|
|
|
| 2286 |
|
|
/* Arithmetic shift */
|
| 2287 |
|
|
|
| 2288 |
|
|
temp = expand_binop (mode,
|
| 2289 |
|
|
left ? lshift_optab : rshift_arith_optab,
|
| 2290 |
|
|
shifted, op1, target, unsignedp, methods1);
|
| 2291 |
|
|
}
|
| 2292 |
|
|
|
| 2293 |
|
|
/* We used to try extzv here for logical right shifts, but that was
|
| 2294 |
|
|
only useful for one machine, the VAX, and caused poor code
|
| 2295 |
|
|
generation there for lshrdi3, so the code was deleted and a
|
| 2296 |
|
|
define_expand for lshrsi3 was added to vax.md. */
|
| 2297 |
|
|
}
|
| 2298 |
|
|
|
| 2299 |
|
|
gcc_assert (temp);
|
| 2300 |
|
|
return temp;
|
| 2301 |
|
|
}
|
| 2302 |
|
|
|
| 2303 |
|
|
/* Output a shift instruction for expression code CODE,
|
| 2304 |
|
|
with SHIFTED being the rtx for the value to shift,
|
| 2305 |
|
|
and AMOUNT the amount to shift by.
|
| 2306 |
|
|
Store the result in the rtx TARGET, if that is convenient.
|
| 2307 |
|
|
If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
|
| 2308 |
|
|
Return the rtx for where the value is. */
|
| 2309 |
|
|
|
| 2310 |
|
|
rtx
|
| 2311 |
|
|
expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
|
| 2312 |
|
|
int amount, rtx target, int unsignedp)
|
| 2313 |
|
|
{
|
| 2314 |
|
|
return expand_shift_1 (code, mode,
|
| 2315 |
|
|
shifted, GEN_INT (amount), target, unsignedp);
|
| 2316 |
|
|
}
|
| 2317 |
|
|
|
| 2318 |
|
|
/* Output a shift instruction for expression code CODE,
|
| 2319 |
|
|
with SHIFTED being the rtx for the value to shift,
|
| 2320 |
|
|
and AMOUNT the tree for the amount to shift by.
|
| 2321 |
|
|
Store the result in the rtx TARGET, if that is convenient.
|
| 2322 |
|
|
If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
|
| 2323 |
|
|
Return the rtx for where the value is. */
|
| 2324 |
|
|
|
| 2325 |
|
|
rtx
|
| 2326 |
|
|
expand_variable_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
|
| 2327 |
|
|
tree amount, rtx target, int unsignedp)
|
| 2328 |
|
|
{
|
| 2329 |
|
|
return expand_shift_1 (code, mode,
|
| 2330 |
|
|
shifted, expand_normal (amount), target, unsignedp);
|
| 2331 |
|
|
}
|
| 2332 |
|
|
|
| 2333 |
|
|
|
| 2334 |
|
|
/* Indicates the type of fixup needed after a constant multiplication.
|
| 2335 |
|
|
BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
|
| 2336 |
|
|
the result should be negated, and ADD_VARIANT means that the
|
| 2337 |
|
|
multiplicand should be added to the result. */
|
| 2338 |
|
|
enum mult_variant {basic_variant, negate_variant, add_variant};
|
| 2339 |
|
|
|
| 2340 |
|
|
static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
|
| 2341 |
|
|
const struct mult_cost *, enum machine_mode mode);
|
| 2342 |
|
|
static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
|
| 2343 |
|
|
struct algorithm *, enum mult_variant *, int);
|
| 2344 |
|
|
static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
|
| 2345 |
|
|
const struct algorithm *, enum mult_variant);
|
| 2346 |
|
|
static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
|
| 2347 |
|
|
int, rtx *, int *, int *);
|
| 2348 |
|
|
static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
|
| 2349 |
|
|
static rtx extract_high_half (enum machine_mode, rtx);
|
| 2350 |
|
|
static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
|
| 2351 |
|
|
static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
|
| 2352 |
|
|
int, int);
|
| 2353 |
|
|
/* Compute and return the best algorithm for multiplying by T.
|
| 2354 |
|
|
The algorithm must cost less than cost_limit
|
| 2355 |
|
|
If retval.cost >= COST_LIMIT, no algorithm was found and all
|
| 2356 |
|
|
other field of the returned struct are undefined.
|
| 2357 |
|
|
MODE is the machine mode of the multiplication. */
|
| 2358 |
|
|
|
| 2359 |
|
|
static void
|
| 2360 |
|
|
synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
|
| 2361 |
|
|
const struct mult_cost *cost_limit, enum machine_mode mode)
|
| 2362 |
|
|
{
|
| 2363 |
|
|
int m;
|
| 2364 |
|
|
struct algorithm *alg_in, *best_alg;
|
| 2365 |
|
|
struct mult_cost best_cost;
|
| 2366 |
|
|
struct mult_cost new_limit;
|
| 2367 |
|
|
int op_cost, op_latency;
|
| 2368 |
|
|
unsigned HOST_WIDE_INT orig_t = t;
|
| 2369 |
|
|
unsigned HOST_WIDE_INT q;
|
| 2370 |
|
|
int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
|
| 2371 |
|
|
int hash_index;
|
| 2372 |
|
|
bool cache_hit = false;
|
| 2373 |
|
|
enum alg_code cache_alg = alg_zero;
|
| 2374 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
| 2375 |
|
|
|
| 2376 |
|
|
/* Indicate that no algorithm is yet found. If no algorithm
|
| 2377 |
|
|
is found, this value will be returned and indicate failure. */
|
| 2378 |
|
|
alg_out->cost.cost = cost_limit->cost + 1;
|
| 2379 |
|
|
alg_out->cost.latency = cost_limit->latency + 1;
|
| 2380 |
|
|
|
| 2381 |
|
|
if (cost_limit->cost < 0
|
| 2382 |
|
|
|| (cost_limit->cost == 0 && cost_limit->latency <= 0))
|
| 2383 |
|
|
return;
|
| 2384 |
|
|
|
| 2385 |
|
|
/* Restrict the bits of "t" to the multiplication's mode. */
|
| 2386 |
|
|
t &= GET_MODE_MASK (mode);
|
| 2387 |
|
|
|
| 2388 |
|
|
/* t == 1 can be done in zero cost. */
|
| 2389 |
|
|
if (t == 1)
|
| 2390 |
|
|
{
|
| 2391 |
|
|
alg_out->ops = 1;
|
| 2392 |
|
|
alg_out->cost.cost = 0;
|
| 2393 |
|
|
alg_out->cost.latency = 0;
|
| 2394 |
|
|
alg_out->op[0] = alg_m;
|
| 2395 |
|
|
return;
|
| 2396 |
|
|
}
|
| 2397 |
|
|
|
| 2398 |
|
|
/* t == 0 sometimes has a cost. If it does and it exceeds our limit,
|
| 2399 |
|
|
fail now. */
|
| 2400 |
|
|
if (t == 0)
|
| 2401 |
|
|
{
|
| 2402 |
|
|
if (MULT_COST_LESS (cost_limit, zero_cost[speed]))
|
| 2403 |
|
|
return;
|
| 2404 |
|
|
else
|
| 2405 |
|
|
{
|
| 2406 |
|
|
alg_out->ops = 1;
|
| 2407 |
|
|
alg_out->cost.cost = zero_cost[speed];
|
| 2408 |
|
|
alg_out->cost.latency = zero_cost[speed];
|
| 2409 |
|
|
alg_out->op[0] = alg_zero;
|
| 2410 |
|
|
return;
|
| 2411 |
|
|
}
|
| 2412 |
|
|
}
|
| 2413 |
|
|
|
| 2414 |
|
|
/* We'll be needing a couple extra algorithm structures now. */
|
| 2415 |
|
|
|
| 2416 |
|
|
alg_in = XALLOCA (struct algorithm);
|
| 2417 |
|
|
best_alg = XALLOCA (struct algorithm);
|
| 2418 |
|
|
best_cost = *cost_limit;
|
| 2419 |
|
|
|
| 2420 |
|
|
/* Compute the hash index. */
|
| 2421 |
|
|
hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
|
| 2422 |
|
|
|
| 2423 |
|
|
/* See if we already know what to do for T. */
|
| 2424 |
|
|
if (alg_hash[hash_index].t == t
|
| 2425 |
|
|
&& alg_hash[hash_index].mode == mode
|
| 2426 |
|
|
&& alg_hash[hash_index].mode == mode
|
| 2427 |
|
|
&& alg_hash[hash_index].speed == speed
|
| 2428 |
|
|
&& alg_hash[hash_index].alg != alg_unknown)
|
| 2429 |
|
|
{
|
| 2430 |
|
|
cache_alg = alg_hash[hash_index].alg;
|
| 2431 |
|
|
|
| 2432 |
|
|
if (cache_alg == alg_impossible)
|
| 2433 |
|
|
{
|
| 2434 |
|
|
/* The cache tells us that it's impossible to synthesize
|
| 2435 |
|
|
multiplication by T within alg_hash[hash_index].cost. */
|
| 2436 |
|
|
if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
|
| 2437 |
|
|
/* COST_LIMIT is at least as restrictive as the one
|
| 2438 |
|
|
recorded in the hash table, in which case we have no
|
| 2439 |
|
|
hope of synthesizing a multiplication. Just
|
| 2440 |
|
|
return. */
|
| 2441 |
|
|
return;
|
| 2442 |
|
|
|
| 2443 |
|
|
/* If we get here, COST_LIMIT is less restrictive than the
|
| 2444 |
|
|
one recorded in the hash table, so we may be able to
|
| 2445 |
|
|
synthesize a multiplication. Proceed as if we didn't
|
| 2446 |
|
|
have the cache entry. */
|
| 2447 |
|
|
}
|
| 2448 |
|
|
else
|
| 2449 |
|
|
{
|
| 2450 |
|
|
if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
|
| 2451 |
|
|
/* The cached algorithm shows that this multiplication
|
| 2452 |
|
|
requires more cost than COST_LIMIT. Just return. This
|
| 2453 |
|
|
way, we don't clobber this cache entry with
|
| 2454 |
|
|
alg_impossible but retain useful information. */
|
| 2455 |
|
|
return;
|
| 2456 |
|
|
|
| 2457 |
|
|
cache_hit = true;
|
| 2458 |
|
|
|
| 2459 |
|
|
switch (cache_alg)
|
| 2460 |
|
|
{
|
| 2461 |
|
|
case alg_shift:
|
| 2462 |
|
|
goto do_alg_shift;
|
| 2463 |
|
|
|
| 2464 |
|
|
case alg_add_t_m2:
|
| 2465 |
|
|
case alg_sub_t_m2:
|
| 2466 |
|
|
goto do_alg_addsub_t_m2;
|
| 2467 |
|
|
|
| 2468 |
|
|
case alg_add_factor:
|
| 2469 |
|
|
case alg_sub_factor:
|
| 2470 |
|
|
goto do_alg_addsub_factor;
|
| 2471 |
|
|
|
| 2472 |
|
|
case alg_add_t2_m:
|
| 2473 |
|
|
goto do_alg_add_t2_m;
|
| 2474 |
|
|
|
| 2475 |
|
|
case alg_sub_t2_m:
|
| 2476 |
|
|
goto do_alg_sub_t2_m;
|
| 2477 |
|
|
|
| 2478 |
|
|
default:
|
| 2479 |
|
|
gcc_unreachable ();
|
| 2480 |
|
|
}
|
| 2481 |
|
|
}
|
| 2482 |
|
|
}
|
| 2483 |
|
|
|
| 2484 |
|
|
/* If we have a group of zero bits at the low-order part of T, try
|
| 2485 |
|
|
multiplying by the remaining bits and then doing a shift. */
|
| 2486 |
|
|
|
| 2487 |
|
|
if ((t & 1) == 0)
|
| 2488 |
|
|
{
|
| 2489 |
|
|
do_alg_shift:
|
| 2490 |
|
|
m = floor_log2 (t & -t); /* m = number of low zero bits */
|
| 2491 |
|
|
if (m < maxm)
|
| 2492 |
|
|
{
|
| 2493 |
|
|
q = t >> m;
|
| 2494 |
|
|
/* The function expand_shift will choose between a shift and
|
| 2495 |
|
|
a sequence of additions, so the observed cost is given as
|
| 2496 |
|
|
MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]). */
|
| 2497 |
|
|
op_cost = m * add_cost[speed][mode];
|
| 2498 |
|
|
if (shift_cost[speed][mode][m] < op_cost)
|
| 2499 |
|
|
op_cost = shift_cost[speed][mode][m];
|
| 2500 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
| 2501 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
| 2502 |
|
|
synth_mult (alg_in, q, &new_limit, mode);
|
| 2503 |
|
|
|
| 2504 |
|
|
alg_in->cost.cost += op_cost;
|
| 2505 |
|
|
alg_in->cost.latency += op_cost;
|
| 2506 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
| 2507 |
|
|
{
|
| 2508 |
|
|
struct algorithm *x;
|
| 2509 |
|
|
best_cost = alg_in->cost;
|
| 2510 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
| 2511 |
|
|
best_alg->log[best_alg->ops] = m;
|
| 2512 |
|
|
best_alg->op[best_alg->ops] = alg_shift;
|
| 2513 |
|
|
}
|
| 2514 |
|
|
|
| 2515 |
|
|
/* See if treating ORIG_T as a signed number yields a better
|
| 2516 |
|
|
sequence. Try this sequence only for a negative ORIG_T
|
| 2517 |
|
|
as it would be useless for a non-negative ORIG_T. */
|
| 2518 |
|
|
if ((HOST_WIDE_INT) orig_t < 0)
|
| 2519 |
|
|
{
|
| 2520 |
|
|
/* Shift ORIG_T as follows because a right shift of a
|
| 2521 |
|
|
negative-valued signed type is implementation
|
| 2522 |
|
|
defined. */
|
| 2523 |
|
|
q = ~(~orig_t >> m);
|
| 2524 |
|
|
/* The function expand_shift will choose between a shift
|
| 2525 |
|
|
and a sequence of additions, so the observed cost is
|
| 2526 |
|
|
given as MIN (m * add_cost[speed][mode],
|
| 2527 |
|
|
shift_cost[speed][mode][m]). */
|
| 2528 |
|
|
op_cost = m * add_cost[speed][mode];
|
| 2529 |
|
|
if (shift_cost[speed][mode][m] < op_cost)
|
| 2530 |
|
|
op_cost = shift_cost[speed][mode][m];
|
| 2531 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
| 2532 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
| 2533 |
|
|
synth_mult (alg_in, q, &new_limit, mode);
|
| 2534 |
|
|
|
| 2535 |
|
|
alg_in->cost.cost += op_cost;
|
| 2536 |
|
|
alg_in->cost.latency += op_cost;
|
| 2537 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
| 2538 |
|
|
{
|
| 2539 |
|
|
struct algorithm *x;
|
| 2540 |
|
|
best_cost = alg_in->cost;
|
| 2541 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
| 2542 |
|
|
best_alg->log[best_alg->ops] = m;
|
| 2543 |
|
|
best_alg->op[best_alg->ops] = alg_shift;
|
| 2544 |
|
|
}
|
| 2545 |
|
|
}
|
| 2546 |
|
|
}
|
| 2547 |
|
|
if (cache_hit)
|
| 2548 |
|
|
goto done;
|
| 2549 |
|
|
}
|
| 2550 |
|
|
|
| 2551 |
|
|
/* If we have an odd number, add or subtract one. */
|
| 2552 |
|
|
if ((t & 1) != 0)
|
| 2553 |
|
|
{
|
| 2554 |
|
|
unsigned HOST_WIDE_INT w;
|
| 2555 |
|
|
|
| 2556 |
|
|
do_alg_addsub_t_m2:
|
| 2557 |
|
|
for (w = 1; (w & t) != 0; w <<= 1)
|
| 2558 |
|
|
;
|
| 2559 |
|
|
/* If T was -1, then W will be zero after the loop. This is another
|
| 2560 |
|
|
case where T ends with ...111. Handling this with (T + 1) and
|
| 2561 |
|
|
subtract 1 produces slightly better code and results in algorithm
|
| 2562 |
|
|
selection much faster than treating it like the ...0111 case
|
| 2563 |
|
|
below. */
|
| 2564 |
|
|
if (w == 0
|
| 2565 |
|
|
|| (w > 2
|
| 2566 |
|
|
/* Reject the case where t is 3.
|
| 2567 |
|
|
Thus we prefer addition in that case. */
|
| 2568 |
|
|
&& t != 3))
|
| 2569 |
|
|
{
|
| 2570 |
|
|
/* T ends with ...111. Multiply by (T + 1) and subtract 1. */
|
| 2571 |
|
|
|
| 2572 |
|
|
op_cost = add_cost[speed][mode];
|
| 2573 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
| 2574 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
| 2575 |
|
|
synth_mult (alg_in, t + 1, &new_limit, mode);
|
| 2576 |
|
|
|
| 2577 |
|
|
alg_in->cost.cost += op_cost;
|
| 2578 |
|
|
alg_in->cost.latency += op_cost;
|
| 2579 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
| 2580 |
|
|
{
|
| 2581 |
|
|
struct algorithm *x;
|
| 2582 |
|
|
best_cost = alg_in->cost;
|
| 2583 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
| 2584 |
|
|
best_alg->log[best_alg->ops] = 0;
|
| 2585 |
|
|
best_alg->op[best_alg->ops] = alg_sub_t_m2;
|
| 2586 |
|
|
}
|
| 2587 |
|
|
}
|
| 2588 |
|
|
else
|
| 2589 |
|
|
{
|
| 2590 |
|
|
/* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
|
| 2591 |
|
|
|
| 2592 |
|
|
op_cost = add_cost[speed][mode];
|
| 2593 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
| 2594 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
| 2595 |
|
|
synth_mult (alg_in, t - 1, &new_limit, mode);
|
| 2596 |
|
|
|
| 2597 |
|
|
alg_in->cost.cost += op_cost;
|
| 2598 |
|
|
alg_in->cost.latency += op_cost;
|
| 2599 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
| 2600 |
|
|
{
|
| 2601 |
|
|
struct algorithm *x;
|
| 2602 |
|
|
best_cost = alg_in->cost;
|
| 2603 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
| 2604 |
|
|
best_alg->log[best_alg->ops] = 0;
|
| 2605 |
|
|
best_alg->op[best_alg->ops] = alg_add_t_m2;
|
| 2606 |
|
|
}
|
| 2607 |
|
|
}
|
| 2608 |
|
|
|
| 2609 |
|
|
/* We may be able to calculate a * -7, a * -15, a * -31, etc
|
| 2610 |
|
|
quickly with a - a * n for some appropriate constant n. */
|
| 2611 |
|
|
m = exact_log2 (-orig_t + 1);
|
| 2612 |
|
|
if (m >= 0 && m < maxm)
|
| 2613 |
|
|
{
|
| 2614 |
|
|
op_cost = shiftsub1_cost[speed][mode][m];
|
| 2615 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
| 2616 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
| 2617 |
|
|
synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m, &new_limit, mode);
|
| 2618 |
|
|
|
| 2619 |
|
|
alg_in->cost.cost += op_cost;
|
| 2620 |
|
|
alg_in->cost.latency += op_cost;
|
| 2621 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
| 2622 |
|
|
{
|
| 2623 |
|
|
struct algorithm *x;
|
| 2624 |
|
|
best_cost = alg_in->cost;
|
| 2625 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
| 2626 |
|
|
best_alg->log[best_alg->ops] = m;
|
| 2627 |
|
|
best_alg->op[best_alg->ops] = alg_sub_t_m2;
|
| 2628 |
|
|
}
|
| 2629 |
|
|
}
|
| 2630 |
|
|
|
| 2631 |
|
|
if (cache_hit)
|
| 2632 |
|
|
goto done;
|
| 2633 |
|
|
}
|
| 2634 |
|
|
|
| 2635 |
|
|
/* Look for factors of t of the form
|
| 2636 |
|
|
t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
|
| 2637 |
|
|
If we find such a factor, we can multiply by t using an algorithm that
|
| 2638 |
|
|
multiplies by q, shift the result by m and add/subtract it to itself.
|
| 2639 |
|
|
|
| 2640 |
|
|
We search for large factors first and loop down, even if large factors
|
| 2641 |
|
|
are less probable than small; if we find a large factor we will find a
|
| 2642 |
|
|
good sequence quickly, and therefore be able to prune (by decreasing
|
| 2643 |
|
|
COST_LIMIT) the search. */
|
| 2644 |
|
|
|
| 2645 |
|
|
do_alg_addsub_factor:
|
| 2646 |
|
|
for (m = floor_log2 (t - 1); m >= 2; m--)
|
| 2647 |
|
|
{
|
| 2648 |
|
|
unsigned HOST_WIDE_INT d;
|
| 2649 |
|
|
|
| 2650 |
|
|
d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
|
| 2651 |
|
|
if (t % d == 0 && t > d && m < maxm
|
| 2652 |
|
|
&& (!cache_hit || cache_alg == alg_add_factor))
|
| 2653 |
|
|
{
|
| 2654 |
|
|
/* If the target has a cheap shift-and-add instruction use
|
| 2655 |
|
|
that in preference to a shift insn followed by an add insn.
|
| 2656 |
|
|
Assume that the shift-and-add is "atomic" with a latency
|
| 2657 |
|
|
equal to its cost, otherwise assume that on superscalar
|
| 2658 |
|
|
hardware the shift may be executed concurrently with the
|
| 2659 |
|
|
earlier steps in the algorithm. */
|
| 2660 |
|
|
op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
|
| 2661 |
|
|
if (shiftadd_cost[speed][mode][m] < op_cost)
|
| 2662 |
|
|
{
|
| 2663 |
|
|
op_cost = shiftadd_cost[speed][mode][m];
|
| 2664 |
|
|
op_latency = op_cost;
|
| 2665 |
|
|
}
|
| 2666 |
|
|
else
|
| 2667 |
|
|
op_latency = add_cost[speed][mode];
|
| 2668 |
|
|
|
| 2669 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
| 2670 |
|
|
new_limit.latency = best_cost.latency - op_latency;
|
| 2671 |
|
|
synth_mult (alg_in, t / d, &new_limit, mode);
|
| 2672 |
|
|
|
| 2673 |
|
|
alg_in->cost.cost += op_cost;
|
| 2674 |
|
|
alg_in->cost.latency += op_latency;
|
| 2675 |
|
|
if (alg_in->cost.latency < op_cost)
|
| 2676 |
|
|
alg_in->cost.latency = op_cost;
|
| 2677 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
| 2678 |
|
|
{
|
| 2679 |
|
|
struct algorithm *x;
|
| 2680 |
|
|
best_cost = alg_in->cost;
|
| 2681 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
| 2682 |
|
|
best_alg->log[best_alg->ops] = m;
|
| 2683 |
|
|
best_alg->op[best_alg->ops] = alg_add_factor;
|
| 2684 |
|
|
}
|
| 2685 |
|
|
/* Other factors will have been taken care of in the recursion. */
|
| 2686 |
|
|
break;
|
| 2687 |
|
|
}
|
| 2688 |
|
|
|
| 2689 |
|
|
d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
|
| 2690 |
|
|
if (t % d == 0 && t > d && m < maxm
|
| 2691 |
|
|
&& (!cache_hit || cache_alg == alg_sub_factor))
|
| 2692 |
|
|
{
|
| 2693 |
|
|
/* If the target has a cheap shift-and-subtract insn use
|
| 2694 |
|
|
that in preference to a shift insn followed by a sub insn.
|
| 2695 |
|
|
Assume that the shift-and-sub is "atomic" with a latency
|
| 2696 |
|
|
equal to it's cost, otherwise assume that on superscalar
|
| 2697 |
|
|
hardware the shift may be executed concurrently with the
|
| 2698 |
|
|
earlier steps in the algorithm. */
|
| 2699 |
|
|
op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
|
| 2700 |
|
|
if (shiftsub0_cost[speed][mode][m] < op_cost)
|
| 2701 |
|
|
{
|
| 2702 |
|
|
op_cost = shiftsub0_cost[speed][mode][m];
|
| 2703 |
|
|
op_latency = op_cost;
|
| 2704 |
|
|
}
|
| 2705 |
|
|
else
|
| 2706 |
|
|
op_latency = add_cost[speed][mode];
|
| 2707 |
|
|
|
| 2708 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
| 2709 |
|
|
new_limit.latency = best_cost.latency - op_latency;
|
| 2710 |
|
|
synth_mult (alg_in, t / d, &new_limit, mode);
|
| 2711 |
|
|
|
| 2712 |
|
|
alg_in->cost.cost += op_cost;
|
| 2713 |
|
|
alg_in->cost.latency += op_latency;
|
| 2714 |
|
|
if (alg_in->cost.latency < op_cost)
|
| 2715 |
|
|
alg_in->cost.latency = op_cost;
|
| 2716 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
| 2717 |
|
|
{
|
| 2718 |
|
|
struct algorithm *x;
|
| 2719 |
|
|
best_cost = alg_in->cost;
|
| 2720 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
| 2721 |
|
|
best_alg->log[best_alg->ops] = m;
|
| 2722 |
|
|
best_alg->op[best_alg->ops] = alg_sub_factor;
|
| 2723 |
|
|
}
|
| 2724 |
|
|
break;
|
| 2725 |
|
|
}
|
| 2726 |
|
|
}
|
| 2727 |
|
|
if (cache_hit)
|
| 2728 |
|
|
goto done;
|
| 2729 |
|
|
|
| 2730 |
|
|
/* Try shift-and-add (load effective address) instructions,
|
| 2731 |
|
|
i.e. do a*3, a*5, a*9. */
|
| 2732 |
|
|
if ((t & 1) != 0)
|
| 2733 |
|
|
{
|
| 2734 |
|
|
do_alg_add_t2_m:
|
| 2735 |
|
|
q = t - 1;
|
| 2736 |
|
|
q = q & -q;
|
| 2737 |
|
|
m = exact_log2 (q);
|
| 2738 |
|
|
if (m >= 0 && m < maxm)
|
| 2739 |
|
|
{
|
| 2740 |
|
|
op_cost = shiftadd_cost[speed][mode][m];
|
| 2741 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
| 2742 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
| 2743 |
|
|
synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
|
| 2744 |
|
|
|
| 2745 |
|
|
alg_in->cost.cost += op_cost;
|
| 2746 |
|
|
alg_in->cost.latency += op_cost;
|
| 2747 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
| 2748 |
|
|
{
|
| 2749 |
|
|
struct algorithm *x;
|
| 2750 |
|
|
best_cost = alg_in->cost;
|
| 2751 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
| 2752 |
|
|
best_alg->log[best_alg->ops] = m;
|
| 2753 |
|
|
best_alg->op[best_alg->ops] = alg_add_t2_m;
|
| 2754 |
|
|
}
|
| 2755 |
|
|
}
|
| 2756 |
|
|
if (cache_hit)
|
| 2757 |
|
|
goto done;
|
| 2758 |
|
|
|
| 2759 |
|
|
do_alg_sub_t2_m:
|
| 2760 |
|
|
q = t + 1;
|
| 2761 |
|
|
q = q & -q;
|
| 2762 |
|
|
m = exact_log2 (q);
|
| 2763 |
|
|
if (m >= 0 && m < maxm)
|
| 2764 |
|
|
{
|
| 2765 |
|
|
op_cost = shiftsub0_cost[speed][mode][m];
|
| 2766 |
|
|
new_limit.cost = best_cost.cost - op_cost;
|
| 2767 |
|
|
new_limit.latency = best_cost.latency - op_cost;
|
| 2768 |
|
|
synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
|
| 2769 |
|
|
|
| 2770 |
|
|
alg_in->cost.cost += op_cost;
|
| 2771 |
|
|
alg_in->cost.latency += op_cost;
|
| 2772 |
|
|
if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
|
| 2773 |
|
|
{
|
| 2774 |
|
|
struct algorithm *x;
|
| 2775 |
|
|
best_cost = alg_in->cost;
|
| 2776 |
|
|
x = alg_in, alg_in = best_alg, best_alg = x;
|
| 2777 |
|
|
best_alg->log[best_alg->ops] = m;
|
| 2778 |
|
|
best_alg->op[best_alg->ops] = alg_sub_t2_m;
|
| 2779 |
|
|
}
|
| 2780 |
|
|
}
|
| 2781 |
|
|
if (cache_hit)
|
| 2782 |
|
|
goto done;
|
| 2783 |
|
|
}
|
| 2784 |
|
|
|
| 2785 |
|
|
done:
|
| 2786 |
|
|
/* If best_cost has not decreased, we have not found any algorithm. */
|
| 2787 |
|
|
if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
|
| 2788 |
|
|
{
|
| 2789 |
|
|
/* We failed to find an algorithm. Record alg_impossible for
|
| 2790 |
|
|
this case (that is, <T, MODE, COST_LIMIT>) so that next time
|
| 2791 |
|
|
we are asked to find an algorithm for T within the same or
|
| 2792 |
|
|
lower COST_LIMIT, we can immediately return to the
|
| 2793 |
|
|
caller. */
|
| 2794 |
|
|
alg_hash[hash_index].t = t;
|
| 2795 |
|
|
alg_hash[hash_index].mode = mode;
|
| 2796 |
|
|
alg_hash[hash_index].speed = speed;
|
| 2797 |
|
|
alg_hash[hash_index].alg = alg_impossible;
|
| 2798 |
|
|
alg_hash[hash_index].cost = *cost_limit;
|
| 2799 |
|
|
return;
|
| 2800 |
|
|
}
|
| 2801 |
|
|
|
| 2802 |
|
|
/* Cache the result. */
|
| 2803 |
|
|
if (!cache_hit)
|
| 2804 |
|
|
{
|
| 2805 |
|
|
alg_hash[hash_index].t = t;
|
| 2806 |
|
|
alg_hash[hash_index].mode = mode;
|
| 2807 |
|
|
alg_hash[hash_index].speed = speed;
|
| 2808 |
|
|
alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
|
| 2809 |
|
|
alg_hash[hash_index].cost.cost = best_cost.cost;
|
| 2810 |
|
|
alg_hash[hash_index].cost.latency = best_cost.latency;
|
| 2811 |
|
|
}
|
| 2812 |
|
|
|
| 2813 |
|
|
/* If we are getting a too long sequence for `struct algorithm'
|
| 2814 |
|
|
to record, make this search fail. */
|
| 2815 |
|
|
if (best_alg->ops == MAX_BITS_PER_WORD)
|
| 2816 |
|
|
return;
|
| 2817 |
|
|
|
| 2818 |
|
|
/* Copy the algorithm from temporary space to the space at alg_out.
|
| 2819 |
|
|
We avoid using structure assignment because the majority of
|
| 2820 |
|
|
best_alg is normally undefined, and this is a critical function. */
|
| 2821 |
|
|
alg_out->ops = best_alg->ops + 1;
|
| 2822 |
|
|
alg_out->cost = best_cost;
|
| 2823 |
|
|
memcpy (alg_out->op, best_alg->op,
|
| 2824 |
|
|
alg_out->ops * sizeof *alg_out->op);
|
| 2825 |
|
|
memcpy (alg_out->log, best_alg->log,
|
| 2826 |
|
|
alg_out->ops * sizeof *alg_out->log);
|
| 2827 |
|
|
}
|
| 2828 |
|
|
|
| 2829 |
|
|
/* Find the cheapest way of multiplying a value of mode MODE by VAL.
|
| 2830 |
|
|
Try three variations:
|
| 2831 |
|
|
|
| 2832 |
|
|
- a shift/add sequence based on VAL itself
|
| 2833 |
|
|
- a shift/add sequence based on -VAL, followed by a negation
|
| 2834 |
|
|
- a shift/add sequence based on VAL - 1, followed by an addition.
|
| 2835 |
|
|
|
| 2836 |
|
|
Return true if the cheapest of these cost less than MULT_COST,
|
| 2837 |
|
|
describing the algorithm in *ALG and final fixup in *VARIANT. */
|
| 2838 |
|
|
|
| 2839 |
|
|
static bool
|
| 2840 |
|
|
choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
|
| 2841 |
|
|
struct algorithm *alg, enum mult_variant *variant,
|
| 2842 |
|
|
int mult_cost)
|
| 2843 |
|
|
{
|
| 2844 |
|
|
struct algorithm alg2;
|
| 2845 |
|
|
struct mult_cost limit;
|
| 2846 |
|
|
int op_cost;
|
| 2847 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
| 2848 |
|
|
|
| 2849 |
|
|
/* Fail quickly for impossible bounds. */
|
| 2850 |
|
|
if (mult_cost < 0)
|
| 2851 |
|
|
return false;
|
| 2852 |
|
|
|
| 2853 |
|
|
/* Ensure that mult_cost provides a reasonable upper bound.
|
| 2854 |
|
|
Any constant multiplication can be performed with less
|
| 2855 |
|
|
than 2 * bits additions. */
|
| 2856 |
|
|
op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[speed][mode];
|
| 2857 |
|
|
if (mult_cost > op_cost)
|
| 2858 |
|
|
mult_cost = op_cost;
|
| 2859 |
|
|
|
| 2860 |
|
|
*variant = basic_variant;
|
| 2861 |
|
|
limit.cost = mult_cost;
|
| 2862 |
|
|
limit.latency = mult_cost;
|
| 2863 |
|
|
synth_mult (alg, val, &limit, mode);
|
| 2864 |
|
|
|
| 2865 |
|
|
/* This works only if the inverted value actually fits in an
|
| 2866 |
|
|
`unsigned int' */
|
| 2867 |
|
|
if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
|
| 2868 |
|
|
{
|
| 2869 |
|
|
op_cost = neg_cost[speed][mode];
|
| 2870 |
|
|
if (MULT_COST_LESS (&alg->cost, mult_cost))
|
| 2871 |
|
|
{
|
| 2872 |
|
|
limit.cost = alg->cost.cost - op_cost;
|
| 2873 |
|
|
limit.latency = alg->cost.latency - op_cost;
|
| 2874 |
|
|
}
|
| 2875 |
|
|
else
|
| 2876 |
|
|
{
|
| 2877 |
|
|
limit.cost = mult_cost - op_cost;
|
| 2878 |
|
|
limit.latency = mult_cost - op_cost;
|
| 2879 |
|
|
}
|
| 2880 |
|
|
|
| 2881 |
|
|
synth_mult (&alg2, -val, &limit, mode);
|
| 2882 |
|
|
alg2.cost.cost += op_cost;
|
| 2883 |
|
|
alg2.cost.latency += op_cost;
|
| 2884 |
|
|
if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
|
| 2885 |
|
|
*alg = alg2, *variant = negate_variant;
|
| 2886 |
|
|
}
|
| 2887 |
|
|
|
| 2888 |
|
|
/* This proves very useful for division-by-constant. */
|
| 2889 |
|
|
op_cost = add_cost[speed][mode];
|
| 2890 |
|
|
if (MULT_COST_LESS (&alg->cost, mult_cost))
|
| 2891 |
|
|
{
|
| 2892 |
|
|
limit.cost = alg->cost.cost - op_cost;
|
| 2893 |
|
|
limit.latency = alg->cost.latency - op_cost;
|
| 2894 |
|
|
}
|
| 2895 |
|
|
else
|
| 2896 |
|
|
{
|
| 2897 |
|
|
limit.cost = mult_cost - op_cost;
|
| 2898 |
|
|
limit.latency = mult_cost - op_cost;
|
| 2899 |
|
|
}
|
| 2900 |
|
|
|
| 2901 |
|
|
synth_mult (&alg2, val - 1, &limit, mode);
|
| 2902 |
|
|
alg2.cost.cost += op_cost;
|
| 2903 |
|
|
alg2.cost.latency += op_cost;
|
| 2904 |
|
|
if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
|
| 2905 |
|
|
*alg = alg2, *variant = add_variant;
|
| 2906 |
|
|
|
| 2907 |
|
|
return MULT_COST_LESS (&alg->cost, mult_cost);
|
| 2908 |
|
|
}
|
| 2909 |
|
|
|
| 2910 |
|
|
/* A subroutine of expand_mult, used for constant multiplications.
|
| 2911 |
|
|
Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
|
| 2912 |
|
|
convenient. Use the shift/add sequence described by ALG and apply
|
| 2913 |
|
|
the final fixup specified by VARIANT. */
|
| 2914 |
|
|
|
| 2915 |
|
|
static rtx
|
| 2916 |
|
|
expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
|
| 2917 |
|
|
rtx target, const struct algorithm *alg,
|
| 2918 |
|
|
enum mult_variant variant)
|
| 2919 |
|
|
{
|
| 2920 |
|
|
HOST_WIDE_INT val_so_far;
|
| 2921 |
|
|
rtx insn, accum, tem;
|
| 2922 |
|
|
int opno;
|
| 2923 |
|
|
enum machine_mode nmode;
|
| 2924 |
|
|
|
| 2925 |
|
|
/* Avoid referencing memory over and over and invalid sharing
|
| 2926 |
|
|
on SUBREGs. */
|
| 2927 |
|
|
op0 = force_reg (mode, op0);
|
| 2928 |
|
|
|
| 2929 |
|
|
/* ACCUM starts out either as OP0 or as a zero, depending on
|
| 2930 |
|
|
the first operation. */
|
| 2931 |
|
|
|
| 2932 |
|
|
if (alg->op[0] == alg_zero)
|
| 2933 |
|
|
{
|
| 2934 |
|
|
accum = copy_to_mode_reg (mode, const0_rtx);
|
| 2935 |
|
|
val_so_far = 0;
|
| 2936 |
|
|
}
|
| 2937 |
|
|
else if (alg->op[0] == alg_m)
|
| 2938 |
|
|
{
|
| 2939 |
|
|
accum = copy_to_mode_reg (mode, op0);
|
| 2940 |
|
|
val_so_far = 1;
|
| 2941 |
|
|
}
|
| 2942 |
|
|
else
|
| 2943 |
|
|
gcc_unreachable ();
|
| 2944 |
|
|
|
| 2945 |
|
|
for (opno = 1; opno < alg->ops; opno++)
|
| 2946 |
|
|
{
|
| 2947 |
|
|
int log = alg->log[opno];
|
| 2948 |
|
|
rtx shift_subtarget = optimize ? 0 : accum;
|
| 2949 |
|
|
rtx add_target
|
| 2950 |
|
|
= (opno == alg->ops - 1 && target != 0 && variant != add_variant
|
| 2951 |
|
|
&& !optimize)
|
| 2952 |
|
|
? target : 0;
|
| 2953 |
|
|
rtx accum_target = optimize ? 0 : accum;
|
| 2954 |
|
|
rtx accum_inner;
|
| 2955 |
|
|
|
| 2956 |
|
|
switch (alg->op[opno])
|
| 2957 |
|
|
{
|
| 2958 |
|
|
case alg_shift:
|
| 2959 |
|
|
tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
|
| 2960 |
|
|
/* REG_EQUAL note will be attached to the following insn. */
|
| 2961 |
|
|
emit_move_insn (accum, tem);
|
| 2962 |
|
|
val_so_far <<= log;
|
| 2963 |
|
|
break;
|
| 2964 |
|
|
|
| 2965 |
|
|
case alg_add_t_m2:
|
| 2966 |
|
|
tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
|
| 2967 |
|
|
accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
|
| 2968 |
|
|
add_target ? add_target : accum_target);
|
| 2969 |
|
|
val_so_far += (HOST_WIDE_INT) 1 << log;
|
| 2970 |
|
|
break;
|
| 2971 |
|
|
|
| 2972 |
|
|
case alg_sub_t_m2:
|
| 2973 |
|
|
tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
|
| 2974 |
|
|
accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
|
| 2975 |
|
|
add_target ? add_target : accum_target);
|
| 2976 |
|
|
val_so_far -= (HOST_WIDE_INT) 1 << log;
|
| 2977 |
|
|
break;
|
| 2978 |
|
|
|
| 2979 |
|
|
case alg_add_t2_m:
|
| 2980 |
|
|
accum = expand_shift (LSHIFT_EXPR, mode, accum,
|
| 2981 |
|
|
log, shift_subtarget, 0);
|
| 2982 |
|
|
accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
|
| 2983 |
|
|
add_target ? add_target : accum_target);
|
| 2984 |
|
|
val_so_far = (val_so_far << log) + 1;
|
| 2985 |
|
|
break;
|
| 2986 |
|
|
|
| 2987 |
|
|
case alg_sub_t2_m:
|
| 2988 |
|
|
accum = expand_shift (LSHIFT_EXPR, mode, accum,
|
| 2989 |
|
|
log, shift_subtarget, 0);
|
| 2990 |
|
|
accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
|
| 2991 |
|
|
add_target ? add_target : accum_target);
|
| 2992 |
|
|
val_so_far = (val_so_far << log) - 1;
|
| 2993 |
|
|
break;
|
| 2994 |
|
|
|
| 2995 |
|
|
case alg_add_factor:
|
| 2996 |
|
|
tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
|
| 2997 |
|
|
accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
|
| 2998 |
|
|
add_target ? add_target : accum_target);
|
| 2999 |
|
|
val_so_far += val_so_far << log;
|
| 3000 |
|
|
break;
|
| 3001 |
|
|
|
| 3002 |
|
|
case alg_sub_factor:
|
| 3003 |
|
|
tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
|
| 3004 |
|
|
accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
|
| 3005 |
|
|
(add_target
|
| 3006 |
|
|
? add_target : (optimize ? 0 : tem)));
|
| 3007 |
|
|
val_so_far = (val_so_far << log) - val_so_far;
|
| 3008 |
|
|
break;
|
| 3009 |
|
|
|
| 3010 |
|
|
default:
|
| 3011 |
|
|
gcc_unreachable ();
|
| 3012 |
|
|
}
|
| 3013 |
|
|
|
| 3014 |
|
|
/* Write a REG_EQUAL note on the last insn so that we can cse
|
| 3015 |
|
|
multiplication sequences. Note that if ACCUM is a SUBREG,
|
| 3016 |
|
|
we've set the inner register and must properly indicate
|
| 3017 |
|
|
that. */
|
| 3018 |
|
|
|
| 3019 |
|
|
tem = op0, nmode = mode;
|
| 3020 |
|
|
accum_inner = accum;
|
| 3021 |
|
|
if (GET_CODE (accum) == SUBREG)
|
| 3022 |
|
|
{
|
| 3023 |
|
|
accum_inner = SUBREG_REG (accum);
|
| 3024 |
|
|
nmode = GET_MODE (accum_inner);
|
| 3025 |
|
|
tem = gen_lowpart (nmode, op0);
|
| 3026 |
|
|
}
|
| 3027 |
|
|
|
| 3028 |
|
|
insn = get_last_insn ();
|
| 3029 |
|
|
set_dst_reg_note (insn, REG_EQUAL,
|
| 3030 |
|
|
gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)),
|
| 3031 |
|
|
accum_inner);
|
| 3032 |
|
|
}
|
| 3033 |
|
|
|
| 3034 |
|
|
if (variant == negate_variant)
|
| 3035 |
|
|
{
|
| 3036 |
|
|
val_so_far = -val_so_far;
|
| 3037 |
|
|
accum = expand_unop (mode, neg_optab, accum, target, 0);
|
| 3038 |
|
|
}
|
| 3039 |
|
|
else if (variant == add_variant)
|
| 3040 |
|
|
{
|
| 3041 |
|
|
val_so_far = val_so_far + 1;
|
| 3042 |
|
|
accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
|
| 3043 |
|
|
}
|
| 3044 |
|
|
|
| 3045 |
|
|
/* Compare only the bits of val and val_so_far that are significant
|
| 3046 |
|
|
in the result mode, to avoid sign-/zero-extension confusion. */
|
| 3047 |
|
|
val &= GET_MODE_MASK (mode);
|
| 3048 |
|
|
val_so_far &= GET_MODE_MASK (mode);
|
| 3049 |
|
|
gcc_assert (val == val_so_far);
|
| 3050 |
|
|
|
| 3051 |
|
|
return accum;
|
| 3052 |
|
|
}
|
| 3053 |
|
|
|
| 3054 |
|
|
/* Perform a multiplication and return an rtx for the result.
|
| 3055 |
|
|
MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
|
| 3056 |
|
|
TARGET is a suggestion for where to store the result (an rtx).
|
| 3057 |
|
|
|
| 3058 |
|
|
We check specially for a constant integer as OP1.
|
| 3059 |
|
|
If you want this check for OP0 as well, then before calling
|
| 3060 |
|
|
you should swap the two operands if OP0 would be constant. */
|
| 3061 |
|
|
|
| 3062 |
|
|
rtx
|
| 3063 |
|
|
expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
|
| 3064 |
|
|
int unsignedp)
|
| 3065 |
|
|
{
|
| 3066 |
|
|
enum mult_variant variant;
|
| 3067 |
|
|
struct algorithm algorithm;
|
| 3068 |
|
|
int max_cost;
|
| 3069 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
| 3070 |
|
|
|
| 3071 |
|
|
/* Handling const0_rtx here allows us to use zero as a rogue value for
|
| 3072 |
|
|
coeff below. */
|
| 3073 |
|
|
if (op1 == const0_rtx)
|
| 3074 |
|
|
return const0_rtx;
|
| 3075 |
|
|
if (op1 == const1_rtx)
|
| 3076 |
|
|
return op0;
|
| 3077 |
|
|
if (op1 == constm1_rtx)
|
| 3078 |
|
|
return expand_unop (mode,
|
| 3079 |
|
|
GET_MODE_CLASS (mode) == MODE_INT
|
| 3080 |
|
|
&& !unsignedp && flag_trapv
|
| 3081 |
|
|
? negv_optab : neg_optab,
|
| 3082 |
|
|
op0, target, 0);
|
| 3083 |
|
|
|
| 3084 |
|
|
/* These are the operations that are potentially turned into a sequence
|
| 3085 |
|
|
of shifts and additions. */
|
| 3086 |
|
|
if (SCALAR_INT_MODE_P (mode)
|
| 3087 |
|
|
&& (unsignedp || !flag_trapv))
|
| 3088 |
|
|
{
|
| 3089 |
|
|
HOST_WIDE_INT coeff = 0;
|
| 3090 |
|
|
rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
|
| 3091 |
|
|
|
| 3092 |
|
|
/* synth_mult does an `unsigned int' multiply. As long as the mode is
|
| 3093 |
|
|
less than or equal in size to `unsigned int' this doesn't matter.
|
| 3094 |
|
|
If the mode is larger than `unsigned int', then synth_mult works
|
| 3095 |
|
|
only if the constant value exactly fits in an `unsigned int' without
|
| 3096 |
|
|
any truncation. This means that multiplying by negative values does
|
| 3097 |
|
|
not work; results are off by 2^32 on a 32 bit machine. */
|
| 3098 |
|
|
|
| 3099 |
|
|
if (CONST_INT_P (op1))
|
| 3100 |
|
|
{
|
| 3101 |
|
|
/* Attempt to handle multiplication of DImode values by negative
|
| 3102 |
|
|
coefficients, by performing the multiplication by a positive
|
| 3103 |
|
|
multiplier and then inverting the result. */
|
| 3104 |
|
|
if (INTVAL (op1) < 0
|
| 3105 |
|
|
&& GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
|
| 3106 |
|
|
{
|
| 3107 |
|
|
/* Its safe to use -INTVAL (op1) even for INT_MIN, as the
|
| 3108 |
|
|
result is interpreted as an unsigned coefficient.
|
| 3109 |
|
|
Exclude cost of op0 from max_cost to match the cost
|
| 3110 |
|
|
calculation of the synth_mult. */
|
| 3111 |
|
|
max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
|
| 3112 |
|
|
speed)
|
| 3113 |
|
|
- neg_cost[speed][mode]);
|
| 3114 |
|
|
if (max_cost > 0
|
| 3115 |
|
|
&& choose_mult_variant (mode, -INTVAL (op1), &algorithm,
|
| 3116 |
|
|
&variant, max_cost))
|
| 3117 |
|
|
{
|
| 3118 |
|
|
rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
|
| 3119 |
|
|
NULL_RTX, &algorithm,
|
| 3120 |
|
|
variant);
|
| 3121 |
|
|
return expand_unop (mode, neg_optab, temp, target, 0);
|
| 3122 |
|
|
}
|
| 3123 |
|
|
}
|
| 3124 |
|
|
else coeff = INTVAL (op1);
|
| 3125 |
|
|
}
|
| 3126 |
|
|
else if (GET_CODE (op1) == CONST_DOUBLE)
|
| 3127 |
|
|
{
|
| 3128 |
|
|
/* If we are multiplying in DImode, it may still be a win
|
| 3129 |
|
|
to try to work with shifts and adds. */
|
| 3130 |
|
|
if (CONST_DOUBLE_HIGH (op1) == 0
|
| 3131 |
|
|
&& CONST_DOUBLE_LOW (op1) > 0)
|
| 3132 |
|
|
coeff = CONST_DOUBLE_LOW (op1);
|
| 3133 |
|
|
else if (CONST_DOUBLE_LOW (op1) == 0
|
| 3134 |
|
|
&& EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
|
| 3135 |
|
|
{
|
| 3136 |
|
|
int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
|
| 3137 |
|
|
+ HOST_BITS_PER_WIDE_INT;
|
| 3138 |
|
|
return expand_shift (LSHIFT_EXPR, mode, op0,
|
| 3139 |
|
|
shift, target, unsignedp);
|
| 3140 |
|
|
}
|
| 3141 |
|
|
}
|
| 3142 |
|
|
|
| 3143 |
|
|
/* We used to test optimize here, on the grounds that it's better to
|
| 3144 |
|
|
produce a smaller program when -O is not used. But this causes
|
| 3145 |
|
|
such a terrible slowdown sometimes that it seems better to always
|
| 3146 |
|
|
use synth_mult. */
|
| 3147 |
|
|
if (coeff != 0)
|
| 3148 |
|
|
{
|
| 3149 |
|
|
/* Special case powers of two. */
|
| 3150 |
|
|
if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
|
| 3151 |
|
|
return expand_shift (LSHIFT_EXPR, mode, op0,
|
| 3152 |
|
|
floor_log2 (coeff), target, unsignedp);
|
| 3153 |
|
|
|
| 3154 |
|
|
/* Exclude cost of op0 from max_cost to match the cost
|
| 3155 |
|
|
calculation of the synth_mult. */
|
| 3156 |
|
|
max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed);
|
| 3157 |
|
|
if (choose_mult_variant (mode, coeff, &algorithm, &variant,
|
| 3158 |
|
|
max_cost))
|
| 3159 |
|
|
return expand_mult_const (mode, op0, coeff, target,
|
| 3160 |
|
|
&algorithm, variant);
|
| 3161 |
|
|
}
|
| 3162 |
|
|
}
|
| 3163 |
|
|
|
| 3164 |
|
|
if (GET_CODE (op0) == CONST_DOUBLE)
|
| 3165 |
|
|
{
|
| 3166 |
|
|
rtx temp = op0;
|
| 3167 |
|
|
op0 = op1;
|
| 3168 |
|
|
op1 = temp;
|
| 3169 |
|
|
}
|
| 3170 |
|
|
|
| 3171 |
|
|
/* Expand x*2.0 as x+x. */
|
| 3172 |
|
|
if (GET_CODE (op1) == CONST_DOUBLE
|
| 3173 |
|
|
&& SCALAR_FLOAT_MODE_P (mode))
|
| 3174 |
|
|
{
|
| 3175 |
|
|
REAL_VALUE_TYPE d;
|
| 3176 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
|
| 3177 |
|
|
|
| 3178 |
|
|
if (REAL_VALUES_EQUAL (d, dconst2))
|
| 3179 |
|
|
{
|
| 3180 |
|
|
op0 = force_reg (GET_MODE (op0), op0);
|
| 3181 |
|
|
return expand_binop (mode, add_optab, op0, op0,
|
| 3182 |
|
|
target, unsignedp, OPTAB_LIB_WIDEN);
|
| 3183 |
|
|
}
|
| 3184 |
|
|
}
|
| 3185 |
|
|
|
| 3186 |
|
|
/* This used to use umul_optab if unsigned, but for non-widening multiply
|
| 3187 |
|
|
there is no difference between signed and unsigned. */
|
| 3188 |
|
|
op0 = expand_binop (mode,
|
| 3189 |
|
|
! unsignedp
|
| 3190 |
|
|
&& flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
|
| 3191 |
|
|
? smulv_optab : smul_optab,
|
| 3192 |
|
|
op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
|
| 3193 |
|
|
gcc_assert (op0);
|
| 3194 |
|
|
return op0;
|
| 3195 |
|
|
}
|
| 3196 |
|
|
|
| 3197 |
|
|
/* Perform a widening multiplication and return an rtx for the result.
|
| 3198 |
|
|
MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
|
| 3199 |
|
|
TARGET is a suggestion for where to store the result (an rtx).
|
| 3200 |
|
|
THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
|
| 3201 |
|
|
or smul_widen_optab.
|
| 3202 |
|
|
|
| 3203 |
|
|
We check specially for a constant integer as OP1, comparing the
|
| 3204 |
|
|
cost of a widening multiply against the cost of a sequence of shifts
|
| 3205 |
|
|
and adds. */
|
| 3206 |
|
|
|
| 3207 |
|
|
rtx
|
| 3208 |
|
|
expand_widening_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
|
| 3209 |
|
|
int unsignedp, optab this_optab)
|
| 3210 |
|
|
{
|
| 3211 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
| 3212 |
|
|
rtx cop1;
|
| 3213 |
|
|
|
| 3214 |
|
|
if (CONST_INT_P (op1)
|
| 3215 |
|
|
&& GET_MODE (op0) != VOIDmode
|
| 3216 |
|
|
&& (cop1 = convert_modes (mode, GET_MODE (op0), op1,
|
| 3217 |
|
|
this_optab == umul_widen_optab))
|
| 3218 |
|
|
&& CONST_INT_P (cop1)
|
| 3219 |
|
|
&& (INTVAL (cop1) >= 0
|
| 3220 |
|
|
|| HWI_COMPUTABLE_MODE_P (mode)))
|
| 3221 |
|
|
{
|
| 3222 |
|
|
HOST_WIDE_INT coeff = INTVAL (cop1);
|
| 3223 |
|
|
int max_cost;
|
| 3224 |
|
|
enum mult_variant variant;
|
| 3225 |
|
|
struct algorithm algorithm;
|
| 3226 |
|
|
|
| 3227 |
|
|
/* Special case powers of two. */
|
| 3228 |
|
|
if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
|
| 3229 |
|
|
{
|
| 3230 |
|
|
op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
|
| 3231 |
|
|
return expand_shift (LSHIFT_EXPR, mode, op0,
|
| 3232 |
|
|
floor_log2 (coeff), target, unsignedp);
|
| 3233 |
|
|
}
|
| 3234 |
|
|
|
| 3235 |
|
|
/* Exclude cost of op0 from max_cost to match the cost
|
| 3236 |
|
|
calculation of the synth_mult. */
|
| 3237 |
|
|
max_cost = mul_widen_cost[speed][mode];
|
| 3238 |
|
|
if (choose_mult_variant (mode, coeff, &algorithm, &variant,
|
| 3239 |
|
|
max_cost))
|
| 3240 |
|
|
{
|
| 3241 |
|
|
op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
|
| 3242 |
|
|
return expand_mult_const (mode, op0, coeff, target,
|
| 3243 |
|
|
&algorithm, variant);
|
| 3244 |
|
|
}
|
| 3245 |
|
|
}
|
| 3246 |
|
|
return expand_binop (mode, this_optab, op0, op1, target,
|
| 3247 |
|
|
unsignedp, OPTAB_LIB_WIDEN);
|
| 3248 |
|
|
}
|
| 3249 |
|
|
|
| 3250 |
|
|
/* Return the smallest n such that 2**n >= X. */
|
| 3251 |
|
|
|
| 3252 |
|
|
int
|
| 3253 |
|
|
ceil_log2 (unsigned HOST_WIDE_INT x)
|
| 3254 |
|
|
{
|
| 3255 |
|
|
return floor_log2 (x - 1) + 1;
|
| 3256 |
|
|
}
|
| 3257 |
|
|
|
| 3258 |
|
|
/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
|
| 3259 |
|
|
replace division by D, and put the least significant N bits of the result
|
| 3260 |
|
|
in *MULTIPLIER_PTR and return the most significant bit.
|
| 3261 |
|
|
|
| 3262 |
|
|
The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
|
| 3263 |
|
|
needed precision is in PRECISION (should be <= N).
|
| 3264 |
|
|
|
| 3265 |
|
|
PRECISION should be as small as possible so this function can choose
|
| 3266 |
|
|
multiplier more freely.
|
| 3267 |
|
|
|
| 3268 |
|
|
The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
|
| 3269 |
|
|
is to be used for a final right shift is placed in *POST_SHIFT_PTR.
|
| 3270 |
|
|
|
| 3271 |
|
|
Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
|
| 3272 |
|
|
where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
|
| 3273 |
|
|
|
| 3274 |
|
|
static
|
| 3275 |
|
|
unsigned HOST_WIDE_INT
|
| 3276 |
|
|
choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
|
| 3277 |
|
|
rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
|
| 3278 |
|
|
{
|
| 3279 |
|
|
HOST_WIDE_INT mhigh_hi, mlow_hi;
|
| 3280 |
|
|
unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
|
| 3281 |
|
|
int lgup, post_shift;
|
| 3282 |
|
|
int pow, pow2;
|
| 3283 |
|
|
unsigned HOST_WIDE_INT nl, dummy1;
|
| 3284 |
|
|
HOST_WIDE_INT nh, dummy2;
|
| 3285 |
|
|
|
| 3286 |
|
|
/* lgup = ceil(log2(divisor)); */
|
| 3287 |
|
|
lgup = ceil_log2 (d);
|
| 3288 |
|
|
|
| 3289 |
|
|
gcc_assert (lgup <= n);
|
| 3290 |
|
|
|
| 3291 |
|
|
pow = n + lgup;
|
| 3292 |
|
|
pow2 = n + lgup - precision;
|
| 3293 |
|
|
|
| 3294 |
|
|
/* We could handle this with some effort, but this case is much
|
| 3295 |
|
|
better handled directly with a scc insn, so rely on caller using
|
| 3296 |
|
|
that. */
|
| 3297 |
|
|
gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
|
| 3298 |
|
|
|
| 3299 |
|
|
/* mlow = 2^(N + lgup)/d */
|
| 3300 |
|
|
if (pow >= HOST_BITS_PER_WIDE_INT)
|
| 3301 |
|
|
{
|
| 3302 |
|
|
nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
|
| 3303 |
|
|
nl = 0;
|
| 3304 |
|
|
}
|
| 3305 |
|
|
else
|
| 3306 |
|
|
{
|
| 3307 |
|
|
nh = 0;
|
| 3308 |
|
|
nl = (unsigned HOST_WIDE_INT) 1 << pow;
|
| 3309 |
|
|
}
|
| 3310 |
|
|
div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
|
| 3311 |
|
|
&mlow_lo, &mlow_hi, &dummy1, &dummy2);
|
| 3312 |
|
|
|
| 3313 |
|
|
/* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
|
| 3314 |
|
|
if (pow2 >= HOST_BITS_PER_WIDE_INT)
|
| 3315 |
|
|
nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
|
| 3316 |
|
|
else
|
| 3317 |
|
|
nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
|
| 3318 |
|
|
div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
|
| 3319 |
|
|
&mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
|
| 3320 |
|
|
|
| 3321 |
|
|
gcc_assert (!mhigh_hi || nh - d < d);
|
| 3322 |
|
|
gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
|
| 3323 |
|
|
/* Assert that mlow < mhigh. */
|
| 3324 |
|
|
gcc_assert (mlow_hi < mhigh_hi
|
| 3325 |
|
|
|| (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
|
| 3326 |
|
|
|
| 3327 |
|
|
/* If precision == N, then mlow, mhigh exceed 2^N
|
| 3328 |
|
|
(but they do not exceed 2^(N+1)). */
|
| 3329 |
|
|
|
| 3330 |
|
|
/* Reduce to lowest terms. */
|
| 3331 |
|
|
for (post_shift = lgup; post_shift > 0; post_shift--)
|
| 3332 |
|
|
{
|
| 3333 |
|
|
unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
|
| 3334 |
|
|
unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
|
| 3335 |
|
|
if (ml_lo >= mh_lo)
|
| 3336 |
|
|
break;
|
| 3337 |
|
|
|
| 3338 |
|
|
mlow_hi = 0;
|
| 3339 |
|
|
mlow_lo = ml_lo;
|
| 3340 |
|
|
mhigh_hi = 0;
|
| 3341 |
|
|
mhigh_lo = mh_lo;
|
| 3342 |
|
|
}
|
| 3343 |
|
|
|
| 3344 |
|
|
*post_shift_ptr = post_shift;
|
| 3345 |
|
|
*lgup_ptr = lgup;
|
| 3346 |
|
|
if (n < HOST_BITS_PER_WIDE_INT)
|
| 3347 |
|
|
{
|
| 3348 |
|
|
unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
|
| 3349 |
|
|
*multiplier_ptr = GEN_INT (mhigh_lo & mask);
|
| 3350 |
|
|
return mhigh_lo >= mask;
|
| 3351 |
|
|
}
|
| 3352 |
|
|
else
|
| 3353 |
|
|
{
|
| 3354 |
|
|
*multiplier_ptr = GEN_INT (mhigh_lo);
|
| 3355 |
|
|
return mhigh_hi;
|
| 3356 |
|
|
}
|
| 3357 |
|
|
}
|
| 3358 |
|
|
|
| 3359 |
|
|
/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
|
| 3360 |
|
|
congruent to 1 (mod 2**N). */
|
| 3361 |
|
|
|
| 3362 |
|
|
static unsigned HOST_WIDE_INT
|
| 3363 |
|
|
invert_mod2n (unsigned HOST_WIDE_INT x, int n)
|
| 3364 |
|
|
{
|
| 3365 |
|
|
/* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
|
| 3366 |
|
|
|
| 3367 |
|
|
/* The algorithm notes that the choice y = x satisfies
|
| 3368 |
|
|
x*y == 1 mod 2^3, since x is assumed odd.
|
| 3369 |
|
|
Each iteration doubles the number of bits of significance in y. */
|
| 3370 |
|
|
|
| 3371 |
|
|
unsigned HOST_WIDE_INT mask;
|
| 3372 |
|
|
unsigned HOST_WIDE_INT y = x;
|
| 3373 |
|
|
int nbit = 3;
|
| 3374 |
|
|
|
| 3375 |
|
|
mask = (n == HOST_BITS_PER_WIDE_INT
|
| 3376 |
|
|
? ~(unsigned HOST_WIDE_INT) 0
|
| 3377 |
|
|
: ((unsigned HOST_WIDE_INT) 1 << n) - 1);
|
| 3378 |
|
|
|
| 3379 |
|
|
while (nbit < n)
|
| 3380 |
|
|
{
|
| 3381 |
|
|
y = y * (2 - x*y) & mask; /* Modulo 2^N */
|
| 3382 |
|
|
nbit *= 2;
|
| 3383 |
|
|
}
|
| 3384 |
|
|
return y;
|
| 3385 |
|
|
}
|
| 3386 |
|
|
|
| 3387 |
|
|
/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
|
| 3388 |
|
|
flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
|
| 3389 |
|
|
product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
|
| 3390 |
|
|
to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
|
| 3391 |
|
|
become signed.
|
| 3392 |
|
|
|
| 3393 |
|
|
The result is put in TARGET if that is convenient.
|
| 3394 |
|
|
|
| 3395 |
|
|
MODE is the mode of operation. */
|
| 3396 |
|
|
|
| 3397 |
|
|
rtx
|
| 3398 |
|
|
expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
|
| 3399 |
|
|
rtx op1, rtx target, int unsignedp)
|
| 3400 |
|
|
{
|
| 3401 |
|
|
rtx tem;
|
| 3402 |
|
|
enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
|
| 3403 |
|
|
|
| 3404 |
|
|
tem = expand_shift (RSHIFT_EXPR, mode, op0,
|
| 3405 |
|
|
GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
|
| 3406 |
|
|
tem = expand_and (mode, tem, op1, NULL_RTX);
|
| 3407 |
|
|
adj_operand
|
| 3408 |
|
|
= force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
|
| 3409 |
|
|
adj_operand);
|
| 3410 |
|
|
|
| 3411 |
|
|
tem = expand_shift (RSHIFT_EXPR, mode, op1,
|
| 3412 |
|
|
GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
|
| 3413 |
|
|
tem = expand_and (mode, tem, op0, NULL_RTX);
|
| 3414 |
|
|
target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
|
| 3415 |
|
|
target);
|
| 3416 |
|
|
|
| 3417 |
|
|
return target;
|
| 3418 |
|
|
}
|
| 3419 |
|
|
|
| 3420 |
|
|
/* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
|
| 3421 |
|
|
|
| 3422 |
|
|
static rtx
|
| 3423 |
|
|
extract_high_half (enum machine_mode mode, rtx op)
|
| 3424 |
|
|
{
|
| 3425 |
|
|
enum machine_mode wider_mode;
|
| 3426 |
|
|
|
| 3427 |
|
|
if (mode == word_mode)
|
| 3428 |
|
|
return gen_highpart (mode, op);
|
| 3429 |
|
|
|
| 3430 |
|
|
gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
|
| 3431 |
|
|
|
| 3432 |
|
|
wider_mode = GET_MODE_WIDER_MODE (mode);
|
| 3433 |
|
|
op = expand_shift (RSHIFT_EXPR, wider_mode, op,
|
| 3434 |
|
|
GET_MODE_BITSIZE (mode), 0, 1);
|
| 3435 |
|
|
return convert_modes (mode, wider_mode, op, 0);
|
| 3436 |
|
|
}
|
| 3437 |
|
|
|
| 3438 |
|
|
/* Like expand_mult_highpart, but only consider using a multiplication
|
| 3439 |
|
|
optab. OP1 is an rtx for the constant operand. */
|
| 3440 |
|
|
|
| 3441 |
|
|
static rtx
|
| 3442 |
|
|
expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
|
| 3443 |
|
|
rtx target, int unsignedp, int max_cost)
|
| 3444 |
|
|
{
|
| 3445 |
|
|
rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
|
| 3446 |
|
|
enum machine_mode wider_mode;
|
| 3447 |
|
|
optab moptab;
|
| 3448 |
|
|
rtx tem;
|
| 3449 |
|
|
int size;
|
| 3450 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
| 3451 |
|
|
|
| 3452 |
|
|
gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
|
| 3453 |
|
|
|
| 3454 |
|
|
wider_mode = GET_MODE_WIDER_MODE (mode);
|
| 3455 |
|
|
size = GET_MODE_BITSIZE (mode);
|
| 3456 |
|
|
|
| 3457 |
|
|
/* Firstly, try using a multiplication insn that only generates the needed
|
| 3458 |
|
|
high part of the product, and in the sign flavor of unsignedp. */
|
| 3459 |
|
|
if (mul_highpart_cost[speed][mode] < max_cost)
|
| 3460 |
|
|
{
|
| 3461 |
|
|
moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
|
| 3462 |
|
|
tem = expand_binop (mode, moptab, op0, narrow_op1, target,
|
| 3463 |
|
|
unsignedp, OPTAB_DIRECT);
|
| 3464 |
|
|
if (tem)
|
| 3465 |
|
|
return tem;
|
| 3466 |
|
|
}
|
| 3467 |
|
|
|
| 3468 |
|
|
/* Secondly, same as above, but use sign flavor opposite of unsignedp.
|
| 3469 |
|
|
Need to adjust the result after the multiplication. */
|
| 3470 |
|
|
if (size - 1 < BITS_PER_WORD
|
| 3471 |
|
|
&& (mul_highpart_cost[speed][mode] + 2 * shift_cost[speed][mode][size-1]
|
| 3472 |
|
|
+ 4 * add_cost[speed][mode] < max_cost))
|
| 3473 |
|
|
{
|
| 3474 |
|
|
moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
|
| 3475 |
|
|
tem = expand_binop (mode, moptab, op0, narrow_op1, target,
|
| 3476 |
|
|
unsignedp, OPTAB_DIRECT);
|
| 3477 |
|
|
if (tem)
|
| 3478 |
|
|
/* We used the wrong signedness. Adjust the result. */
|
| 3479 |
|
|
return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
|
| 3480 |
|
|
tem, unsignedp);
|
| 3481 |
|
|
}
|
| 3482 |
|
|
|
| 3483 |
|
|
/* Try widening multiplication. */
|
| 3484 |
|
|
moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
|
| 3485 |
|
|
if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
|
| 3486 |
|
|
&& mul_widen_cost[speed][wider_mode] < max_cost)
|
| 3487 |
|
|
{
|
| 3488 |
|
|
tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
|
| 3489 |
|
|
unsignedp, OPTAB_WIDEN);
|
| 3490 |
|
|
if (tem)
|
| 3491 |
|
|
return extract_high_half (mode, tem);
|
| 3492 |
|
|
}
|
| 3493 |
|
|
|
| 3494 |
|
|
/* Try widening the mode and perform a non-widening multiplication. */
|
| 3495 |
|
|
if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
|
| 3496 |
|
|
&& size - 1 < BITS_PER_WORD
|
| 3497 |
|
|
&& mul_cost[speed][wider_mode] + shift_cost[speed][mode][size-1] < max_cost)
|
| 3498 |
|
|
{
|
| 3499 |
|
|
rtx insns, wop0, wop1;
|
| 3500 |
|
|
|
| 3501 |
|
|
/* We need to widen the operands, for example to ensure the
|
| 3502 |
|
|
constant multiplier is correctly sign or zero extended.
|
| 3503 |
|
|
Use a sequence to clean-up any instructions emitted by
|
| 3504 |
|
|
the conversions if things don't work out. */
|
| 3505 |
|
|
start_sequence ();
|
| 3506 |
|
|
wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
|
| 3507 |
|
|
wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
|
| 3508 |
|
|
tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
|
| 3509 |
|
|
unsignedp, OPTAB_WIDEN);
|
| 3510 |
|
|
insns = get_insns ();
|
| 3511 |
|
|
end_sequence ();
|
| 3512 |
|
|
|
| 3513 |
|
|
if (tem)
|
| 3514 |
|
|
{
|
| 3515 |
|
|
emit_insn (insns);
|
| 3516 |
|
|
return extract_high_half (mode, tem);
|
| 3517 |
|
|
}
|
| 3518 |
|
|
}
|
| 3519 |
|
|
|
| 3520 |
|
|
/* Try widening multiplication of opposite signedness, and adjust. */
|
| 3521 |
|
|
moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
|
| 3522 |
|
|
if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
|
| 3523 |
|
|
&& size - 1 < BITS_PER_WORD
|
| 3524 |
|
|
&& (mul_widen_cost[speed][wider_mode] + 2 * shift_cost[speed][mode][size-1]
|
| 3525 |
|
|
+ 4 * add_cost[speed][mode] < max_cost))
|
| 3526 |
|
|
{
|
| 3527 |
|
|
tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
|
| 3528 |
|
|
NULL_RTX, ! unsignedp, OPTAB_WIDEN);
|
| 3529 |
|
|
if (tem != 0)
|
| 3530 |
|
|
{
|
| 3531 |
|
|
tem = extract_high_half (mode, tem);
|
| 3532 |
|
|
/* We used the wrong signedness. Adjust the result. */
|
| 3533 |
|
|
return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
|
| 3534 |
|
|
target, unsignedp);
|
| 3535 |
|
|
}
|
| 3536 |
|
|
}
|
| 3537 |
|
|
|
| 3538 |
|
|
return 0;
|
| 3539 |
|
|
}
|
| 3540 |
|
|
|
| 3541 |
|
|
/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
|
| 3542 |
|
|
putting the high half of the result in TARGET if that is convenient,
|
| 3543 |
|
|
and return where the result is. If the operation can not be performed,
|
| 3544 |
|
|
|
| 3545 |
|
|
|
| 3546 |
|
|
MODE is the mode of operation and result.
|
| 3547 |
|
|
|
| 3548 |
|
|
UNSIGNEDP nonzero means unsigned multiply.
|
| 3549 |
|
|
|
| 3550 |
|
|
MAX_COST is the total allowed cost for the expanded RTL. */
|
| 3551 |
|
|
|
| 3552 |
|
|
static rtx
|
| 3553 |
|
|
expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
|
| 3554 |
|
|
rtx target, int unsignedp, int max_cost)
|
| 3555 |
|
|
{
|
| 3556 |
|
|
enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
|
| 3557 |
|
|
unsigned HOST_WIDE_INT cnst1;
|
| 3558 |
|
|
int extra_cost;
|
| 3559 |
|
|
bool sign_adjust = false;
|
| 3560 |
|
|
enum mult_variant variant;
|
| 3561 |
|
|
struct algorithm alg;
|
| 3562 |
|
|
rtx tem;
|
| 3563 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
| 3564 |
|
|
|
| 3565 |
|
|
gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
|
| 3566 |
|
|
/* We can't support modes wider than HOST_BITS_PER_INT. */
|
| 3567 |
|
|
gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
|
| 3568 |
|
|
|
| 3569 |
|
|
cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
|
| 3570 |
|
|
|
| 3571 |
|
|
/* We can't optimize modes wider than BITS_PER_WORD.
|
| 3572 |
|
|
??? We might be able to perform double-word arithmetic if
|
| 3573 |
|
|
mode == word_mode, however all the cost calculations in
|
| 3574 |
|
|
synth_mult etc. assume single-word operations. */
|
| 3575 |
|
|
if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
|
| 3576 |
|
|
return expand_mult_highpart_optab (mode, op0, op1, target,
|
| 3577 |
|
|
unsignedp, max_cost);
|
| 3578 |
|
|
|
| 3579 |
|
|
extra_cost = shift_cost[speed][mode][GET_MODE_BITSIZE (mode) - 1];
|
| 3580 |
|
|
|
| 3581 |
|
|
/* Check whether we try to multiply by a negative constant. */
|
| 3582 |
|
|
if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
|
| 3583 |
|
|
{
|
| 3584 |
|
|
sign_adjust = true;
|
| 3585 |
|
|
extra_cost += add_cost[speed][mode];
|
| 3586 |
|
|
}
|
| 3587 |
|
|
|
| 3588 |
|
|
/* See whether shift/add multiplication is cheap enough. */
|
| 3589 |
|
|
if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
|
| 3590 |
|
|
max_cost - extra_cost))
|
| 3591 |
|
|
{
|
| 3592 |
|
|
/* See whether the specialized multiplication optabs are
|
| 3593 |
|
|
cheaper than the shift/add version. */
|
| 3594 |
|
|
tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
|
| 3595 |
|
|
alg.cost.cost + extra_cost);
|
| 3596 |
|
|
if (tem)
|
| 3597 |
|
|
return tem;
|
| 3598 |
|
|
|
| 3599 |
|
|
tem = convert_to_mode (wider_mode, op0, unsignedp);
|
| 3600 |
|
|
tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
|
| 3601 |
|
|
tem = extract_high_half (mode, tem);
|
| 3602 |
|
|
|
| 3603 |
|
|
/* Adjust result for signedness. */
|
| 3604 |
|
|
if (sign_adjust)
|
| 3605 |
|
|
tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
|
| 3606 |
|
|
|
| 3607 |
|
|
return tem;
|
| 3608 |
|
|
}
|
| 3609 |
|
|
return expand_mult_highpart_optab (mode, op0, op1, target,
|
| 3610 |
|
|
unsignedp, max_cost);
|
| 3611 |
|
|
}
|
| 3612 |
|
|
|
| 3613 |
|
|
|
| 3614 |
|
|
/* Expand signed modulus of OP0 by a power of two D in mode MODE. */
|
| 3615 |
|
|
|
| 3616 |
|
|
static rtx
|
| 3617 |
|
|
expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
|
| 3618 |
|
|
{
|
| 3619 |
|
|
unsigned HOST_WIDE_INT masklow, maskhigh;
|
| 3620 |
|
|
rtx result, temp, shift, label;
|
| 3621 |
|
|
int logd;
|
| 3622 |
|
|
|
| 3623 |
|
|
logd = floor_log2 (d);
|
| 3624 |
|
|
result = gen_reg_rtx (mode);
|
| 3625 |
|
|
|
| 3626 |
|
|
/* Avoid conditional branches when they're expensive. */
|
| 3627 |
|
|
if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
|
| 3628 |
|
|
&& optimize_insn_for_speed_p ())
|
| 3629 |
|
|
{
|
| 3630 |
|
|
rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
|
| 3631 |
|
|
mode, 0, -1);
|
| 3632 |
|
|
if (signmask)
|
| 3633 |
|
|
{
|
| 3634 |
|
|
signmask = force_reg (mode, signmask);
|
| 3635 |
|
|
masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
|
| 3636 |
|
|
shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
|
| 3637 |
|
|
|
| 3638 |
|
|
/* Use the rtx_cost of a LSHIFTRT instruction to determine
|
| 3639 |
|
|
which instruction sequence to use. If logical right shifts
|
| 3640 |
|
|
are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
|
| 3641 |
|
|
use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
|
| 3642 |
|
|
|
| 3643 |
|
|
temp = gen_rtx_LSHIFTRT (mode, result, shift);
|
| 3644 |
|
|
if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
|
| 3645 |
|
|
|| (set_src_cost (temp, optimize_insn_for_speed_p ())
|
| 3646 |
|
|
> COSTS_N_INSNS (2)))
|
| 3647 |
|
|
{
|
| 3648 |
|
|
temp = expand_binop (mode, xor_optab, op0, signmask,
|
| 3649 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 3650 |
|
|
temp = expand_binop (mode, sub_optab, temp, signmask,
|
| 3651 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 3652 |
|
|
temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
|
| 3653 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 3654 |
|
|
temp = expand_binop (mode, xor_optab, temp, signmask,
|
| 3655 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 3656 |
|
|
temp = expand_binop (mode, sub_optab, temp, signmask,
|
| 3657 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 3658 |
|
|
}
|
| 3659 |
|
|
else
|
| 3660 |
|
|
{
|
| 3661 |
|
|
signmask = expand_binop (mode, lshr_optab, signmask, shift,
|
| 3662 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 3663 |
|
|
signmask = force_reg (mode, signmask);
|
| 3664 |
|
|
|
| 3665 |
|
|
temp = expand_binop (mode, add_optab, op0, signmask,
|
| 3666 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 3667 |
|
|
temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
|
| 3668 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 3669 |
|
|
temp = expand_binop (mode, sub_optab, temp, signmask,
|
| 3670 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 3671 |
|
|
}
|
| 3672 |
|
|
return temp;
|
| 3673 |
|
|
}
|
| 3674 |
|
|
}
|
| 3675 |
|
|
|
| 3676 |
|
|
/* Mask contains the mode's signbit and the significant bits of the
|
| 3677 |
|
|
modulus. By including the signbit in the operation, many targets
|
| 3678 |
|
|
can avoid an explicit compare operation in the following comparison
|
| 3679 |
|
|
against zero. */
|
| 3680 |
|
|
|
| 3681 |
|
|
masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
|
| 3682 |
|
|
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
| 3683 |
|
|
{
|
| 3684 |
|
|
masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
|
| 3685 |
|
|
maskhigh = -1;
|
| 3686 |
|
|
}
|
| 3687 |
|
|
else
|
| 3688 |
|
|
maskhigh = (HOST_WIDE_INT) -1
|
| 3689 |
|
|
<< (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
|
| 3690 |
|
|
|
| 3691 |
|
|
temp = expand_binop (mode, and_optab, op0,
|
| 3692 |
|
|
immed_double_const (masklow, maskhigh, mode),
|
| 3693 |
|
|
result, 1, OPTAB_LIB_WIDEN);
|
| 3694 |
|
|
if (temp != result)
|
| 3695 |
|
|
emit_move_insn (result, temp);
|
| 3696 |
|
|
|
| 3697 |
|
|
label = gen_label_rtx ();
|
| 3698 |
|
|
do_cmp_and_jump (result, const0_rtx, GE, mode, label);
|
| 3699 |
|
|
|
| 3700 |
|
|
temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
|
| 3701 |
|
|
0, OPTAB_LIB_WIDEN);
|
| 3702 |
|
|
masklow = (HOST_WIDE_INT) -1 << logd;
|
| 3703 |
|
|
maskhigh = -1;
|
| 3704 |
|
|
temp = expand_binop (mode, ior_optab, temp,
|
| 3705 |
|
|
immed_double_const (masklow, maskhigh, mode),
|
| 3706 |
|
|
result, 1, OPTAB_LIB_WIDEN);
|
| 3707 |
|
|
temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
|
| 3708 |
|
|
0, OPTAB_LIB_WIDEN);
|
| 3709 |
|
|
if (temp != result)
|
| 3710 |
|
|
emit_move_insn (result, temp);
|
| 3711 |
|
|
emit_label (label);
|
| 3712 |
|
|
return result;
|
| 3713 |
|
|
}
|
| 3714 |
|
|
|
| 3715 |
|
|
/* Expand signed division of OP0 by a power of two D in mode MODE.
|
| 3716 |
|
|
This routine is only called for positive values of D. */
|
| 3717 |
|
|
|
| 3718 |
|
|
static rtx
|
| 3719 |
|
|
expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
|
| 3720 |
|
|
{
|
| 3721 |
|
|
rtx temp, label;
|
| 3722 |
|
|
int logd;
|
| 3723 |
|
|
|
| 3724 |
|
|
logd = floor_log2 (d);
|
| 3725 |
|
|
|
| 3726 |
|
|
if (d == 2
|
| 3727 |
|
|
&& BRANCH_COST (optimize_insn_for_speed_p (),
|
| 3728 |
|
|
false) >= 1)
|
| 3729 |
|
|
{
|
| 3730 |
|
|
temp = gen_reg_rtx (mode);
|
| 3731 |
|
|
temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
|
| 3732 |
|
|
temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
|
| 3733 |
|
|
0, OPTAB_LIB_WIDEN);
|
| 3734 |
|
|
return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
|
| 3735 |
|
|
}
|
| 3736 |
|
|
|
| 3737 |
|
|
#ifdef HAVE_conditional_move
|
| 3738 |
|
|
if (BRANCH_COST (optimize_insn_for_speed_p (), false)
|
| 3739 |
|
|
>= 2)
|
| 3740 |
|
|
{
|
| 3741 |
|
|
rtx temp2;
|
| 3742 |
|
|
|
| 3743 |
|
|
/* ??? emit_conditional_move forces a stack adjustment via
|
| 3744 |
|
|
compare_from_rtx so, if the sequence is discarded, it will
|
| 3745 |
|
|
be lost. Do it now instead. */
|
| 3746 |
|
|
do_pending_stack_adjust ();
|
| 3747 |
|
|
|
| 3748 |
|
|
start_sequence ();
|
| 3749 |
|
|
temp2 = copy_to_mode_reg (mode, op0);
|
| 3750 |
|
|
temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
|
| 3751 |
|
|
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
| 3752 |
|
|
temp = force_reg (mode, temp);
|
| 3753 |
|
|
|
| 3754 |
|
|
/* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
|
| 3755 |
|
|
temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
|
| 3756 |
|
|
mode, temp, temp2, mode, 0);
|
| 3757 |
|
|
if (temp2)
|
| 3758 |
|
|
{
|
| 3759 |
|
|
rtx seq = get_insns ();
|
| 3760 |
|
|
end_sequence ();
|
| 3761 |
|
|
emit_insn (seq);
|
| 3762 |
|
|
return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
|
| 3763 |
|
|
}
|
| 3764 |
|
|
end_sequence ();
|
| 3765 |
|
|
}
|
| 3766 |
|
|
#endif
|
| 3767 |
|
|
|
| 3768 |
|
|
if (BRANCH_COST (optimize_insn_for_speed_p (),
|
| 3769 |
|
|
false) >= 2)
|
| 3770 |
|
|
{
|
| 3771 |
|
|
int ushift = GET_MODE_BITSIZE (mode) - logd;
|
| 3772 |
|
|
|
| 3773 |
|
|
temp = gen_reg_rtx (mode);
|
| 3774 |
|
|
temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
|
| 3775 |
|
|
if (shift_cost[optimize_insn_for_speed_p ()][mode][ushift] > COSTS_N_INSNS (1))
|
| 3776 |
|
|
temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
|
| 3777 |
|
|
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
| 3778 |
|
|
else
|
| 3779 |
|
|
temp = expand_shift (RSHIFT_EXPR, mode, temp,
|
| 3780 |
|
|
ushift, NULL_RTX, 1);
|
| 3781 |
|
|
temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
|
| 3782 |
|
|
0, OPTAB_LIB_WIDEN);
|
| 3783 |
|
|
return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
|
| 3784 |
|
|
}
|
| 3785 |
|
|
|
| 3786 |
|
|
label = gen_label_rtx ();
|
| 3787 |
|
|
temp = copy_to_mode_reg (mode, op0);
|
| 3788 |
|
|
do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
|
| 3789 |
|
|
expand_inc (temp, GEN_INT (d - 1));
|
| 3790 |
|
|
emit_label (label);
|
| 3791 |
|
|
return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
|
| 3792 |
|
|
}
|
| 3793 |
|
|
|
| 3794 |
|
|
/* Emit the code to divide OP0 by OP1, putting the result in TARGET
|
| 3795 |
|
|
if that is convenient, and returning where the result is.
|
| 3796 |
|
|
You may request either the quotient or the remainder as the result;
|
| 3797 |
|
|
specify REM_FLAG nonzero to get the remainder.
|
| 3798 |
|
|
|
| 3799 |
|
|
CODE is the expression code for which kind of division this is;
|
| 3800 |
|
|
it controls how rounding is done. MODE is the machine mode to use.
|
| 3801 |
|
|
UNSIGNEDP nonzero means do unsigned division. */
|
| 3802 |
|
|
|
| 3803 |
|
|
/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
|
| 3804 |
|
|
and then correct it by or'ing in missing high bits
|
| 3805 |
|
|
if result of ANDI is nonzero.
|
| 3806 |
|
|
For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
|
| 3807 |
|
|
This could optimize to a bfexts instruction.
|
| 3808 |
|
|
But C doesn't use these operations, so their optimizations are
|
| 3809 |
|
|
left for later. */
|
| 3810 |
|
|
/* ??? For modulo, we don't actually need the highpart of the first product,
|
| 3811 |
|
|
the low part will do nicely. And for small divisors, the second multiply
|
| 3812 |
|
|
can also be a low-part only multiply or even be completely left out.
|
| 3813 |
|
|
E.g. to calculate the remainder of a division by 3 with a 32 bit
|
| 3814 |
|
|
multiply, multiply with 0x55555556 and extract the upper two bits;
|
| 3815 |
|
|
the result is exact for inputs up to 0x1fffffff.
|
| 3816 |
|
|
The input range can be reduced by using cross-sum rules.
|
| 3817 |
|
|
For odd divisors >= 3, the following table gives right shift counts
|
| 3818 |
|
|
so that if a number is shifted by an integer multiple of the given
|
| 3819 |
|
|
amount, the remainder stays the same:
|
| 3820 |
|
|
2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
|
| 3821 |
|
|
14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
|
| 3822 |
|
|
0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
|
| 3823 |
|
|
20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
|
| 3824 |
|
|
0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
|
| 3825 |
|
|
|
| 3826 |
|
|
Cross-sum rules for even numbers can be derived by leaving as many bits
|
| 3827 |
|
|
to the right alone as the divisor has zeros to the right.
|
| 3828 |
|
|
E.g. if x is an unsigned 32 bit number:
|
| 3829 |
|
|
(x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
|
| 3830 |
|
|
*/
|
| 3831 |
|
|
|
| 3832 |
|
|
rtx
|
| 3833 |
|
|
expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
|
| 3834 |
|
|
rtx op0, rtx op1, rtx target, int unsignedp)
|
| 3835 |
|
|
{
|
| 3836 |
|
|
enum machine_mode compute_mode;
|
| 3837 |
|
|
rtx tquotient;
|
| 3838 |
|
|
rtx quotient = 0, remainder = 0;
|
| 3839 |
|
|
rtx last;
|
| 3840 |
|
|
int size;
|
| 3841 |
|
|
rtx insn;
|
| 3842 |
|
|
optab optab1, optab2;
|
| 3843 |
|
|
int op1_is_constant, op1_is_pow2 = 0;
|
| 3844 |
|
|
int max_cost, extra_cost;
|
| 3845 |
|
|
static HOST_WIDE_INT last_div_const = 0;
|
| 3846 |
|
|
static HOST_WIDE_INT ext_op1;
|
| 3847 |
|
|
bool speed = optimize_insn_for_speed_p ();
|
| 3848 |
|
|
|
| 3849 |
|
|
op1_is_constant = CONST_INT_P (op1);
|
| 3850 |
|
|
if (op1_is_constant)
|
| 3851 |
|
|
{
|
| 3852 |
|
|
ext_op1 = INTVAL (op1);
|
| 3853 |
|
|
if (unsignedp)
|
| 3854 |
|
|
ext_op1 &= GET_MODE_MASK (mode);
|
| 3855 |
|
|
op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
|
| 3856 |
|
|
|| (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
|
| 3857 |
|
|
}
|
| 3858 |
|
|
|
| 3859 |
|
|
/*
|
| 3860 |
|
|
This is the structure of expand_divmod:
|
| 3861 |
|
|
|
| 3862 |
|
|
First comes code to fix up the operands so we can perform the operations
|
| 3863 |
|
|
correctly and efficiently.
|
| 3864 |
|
|
|
| 3865 |
|
|
Second comes a switch statement with code specific for each rounding mode.
|
| 3866 |
|
|
For some special operands this code emits all RTL for the desired
|
| 3867 |
|
|
operation, for other cases, it generates only a quotient and stores it in
|
| 3868 |
|
|
QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
|
| 3869 |
|
|
to indicate that it has not done anything.
|
| 3870 |
|
|
|
| 3871 |
|
|
Last comes code that finishes the operation. If QUOTIENT is set and
|
| 3872 |
|
|
REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
|
| 3873 |
|
|
QUOTIENT is not set, it is computed using trunc rounding.
|
| 3874 |
|
|
|
| 3875 |
|
|
We try to generate special code for division and remainder when OP1 is a
|
| 3876 |
|
|
constant. If |OP1| = 2**n we can use shifts and some other fast
|
| 3877 |
|
|
operations. For other values of OP1, we compute a carefully selected
|
| 3878 |
|
|
fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
|
| 3879 |
|
|
by m.
|
| 3880 |
|
|
|
| 3881 |
|
|
In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
|
| 3882 |
|
|
half of the product. Different strategies for generating the product are
|
| 3883 |
|
|
implemented in expand_mult_highpart.
|
| 3884 |
|
|
|
| 3885 |
|
|
If what we actually want is the remainder, we generate that by another
|
| 3886 |
|
|
by-constant multiplication and a subtraction. */
|
| 3887 |
|
|
|
| 3888 |
|
|
/* We shouldn't be called with OP1 == const1_rtx, but some of the
|
| 3889 |
|
|
code below will malfunction if we are, so check here and handle
|
| 3890 |
|
|
the special case if so. */
|
| 3891 |
|
|
if (op1 == const1_rtx)
|
| 3892 |
|
|
return rem_flag ? const0_rtx : op0;
|
| 3893 |
|
|
|
| 3894 |
|
|
/* When dividing by -1, we could get an overflow.
|
| 3895 |
|
|
negv_optab can handle overflows. */
|
| 3896 |
|
|
if (! unsignedp && op1 == constm1_rtx)
|
| 3897 |
|
|
{
|
| 3898 |
|
|
if (rem_flag)
|
| 3899 |
|
|
return const0_rtx;
|
| 3900 |
|
|
return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
|
| 3901 |
|
|
? negv_optab : neg_optab, op0, target, 0);
|
| 3902 |
|
|
}
|
| 3903 |
|
|
|
| 3904 |
|
|
if (target
|
| 3905 |
|
|
/* Don't use the function value register as a target
|
| 3906 |
|
|
since we have to read it as well as write it,
|
| 3907 |
|
|
and function-inlining gets confused by this. */
|
| 3908 |
|
|
&& ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
|
| 3909 |
|
|
/* Don't clobber an operand while doing a multi-step calculation. */
|
| 3910 |
|
|
|| ((rem_flag || op1_is_constant)
|
| 3911 |
|
|
&& (reg_mentioned_p (target, op0)
|
| 3912 |
|
|
|| (MEM_P (op0) && MEM_P (target))))
|
| 3913 |
|
|
|| reg_mentioned_p (target, op1)
|
| 3914 |
|
|
|| (MEM_P (op1) && MEM_P (target))))
|
| 3915 |
|
|
target = 0;
|
| 3916 |
|
|
|
| 3917 |
|
|
/* Get the mode in which to perform this computation. Normally it will
|
| 3918 |
|
|
be MODE, but sometimes we can't do the desired operation in MODE.
|
| 3919 |
|
|
If so, pick a wider mode in which we can do the operation. Convert
|
| 3920 |
|
|
to that mode at the start to avoid repeated conversions.
|
| 3921 |
|
|
|
| 3922 |
|
|
First see what operations we need. These depend on the expression
|
| 3923 |
|
|
we are evaluating. (We assume that divxx3 insns exist under the
|
| 3924 |
|
|
same conditions that modxx3 insns and that these insns don't normally
|
| 3925 |
|
|
fail. If these assumptions are not correct, we may generate less
|
| 3926 |
|
|
efficient code in some cases.)
|
| 3927 |
|
|
|
| 3928 |
|
|
Then see if we find a mode in which we can open-code that operation
|
| 3929 |
|
|
(either a division, modulus, or shift). Finally, check for the smallest
|
| 3930 |
|
|
mode for which we can do the operation with a library call. */
|
| 3931 |
|
|
|
| 3932 |
|
|
/* We might want to refine this now that we have division-by-constant
|
| 3933 |
|
|
optimization. Since expand_mult_highpart tries so many variants, it is
|
| 3934 |
|
|
not straightforward to generalize this. Maybe we should make an array
|
| 3935 |
|
|
of possible modes in init_expmed? Save this for GCC 2.7. */
|
| 3936 |
|
|
|
| 3937 |
|
|
optab1 = ((op1_is_pow2 && op1 != const0_rtx)
|
| 3938 |
|
|
? (unsignedp ? lshr_optab : ashr_optab)
|
| 3939 |
|
|
: (unsignedp ? udiv_optab : sdiv_optab));
|
| 3940 |
|
|
optab2 = ((op1_is_pow2 && op1 != const0_rtx)
|
| 3941 |
|
|
? optab1
|
| 3942 |
|
|
: (unsignedp ? udivmod_optab : sdivmod_optab));
|
| 3943 |
|
|
|
| 3944 |
|
|
for (compute_mode = mode; compute_mode != VOIDmode;
|
| 3945 |
|
|
compute_mode = GET_MODE_WIDER_MODE (compute_mode))
|
| 3946 |
|
|
if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
|
| 3947 |
|
|
|| optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
|
| 3948 |
|
|
break;
|
| 3949 |
|
|
|
| 3950 |
|
|
if (compute_mode == VOIDmode)
|
| 3951 |
|
|
for (compute_mode = mode; compute_mode != VOIDmode;
|
| 3952 |
|
|
compute_mode = GET_MODE_WIDER_MODE (compute_mode))
|
| 3953 |
|
|
if (optab_libfunc (optab1, compute_mode)
|
| 3954 |
|
|
|| optab_libfunc (optab2, compute_mode))
|
| 3955 |
|
|
break;
|
| 3956 |
|
|
|
| 3957 |
|
|
/* If we still couldn't find a mode, use MODE, but expand_binop will
|
| 3958 |
|
|
probably die. */
|
| 3959 |
|
|
if (compute_mode == VOIDmode)
|
| 3960 |
|
|
compute_mode = mode;
|
| 3961 |
|
|
|
| 3962 |
|
|
if (target && GET_MODE (target) == compute_mode)
|
| 3963 |
|
|
tquotient = target;
|
| 3964 |
|
|
else
|
| 3965 |
|
|
tquotient = gen_reg_rtx (compute_mode);
|
| 3966 |
|
|
|
| 3967 |
|
|
size = GET_MODE_BITSIZE (compute_mode);
|
| 3968 |
|
|
#if 0
|
| 3969 |
|
|
/* It should be possible to restrict the precision to GET_MODE_BITSIZE
|
| 3970 |
|
|
(mode), and thereby get better code when OP1 is a constant. Do that
|
| 3971 |
|
|
later. It will require going over all usages of SIZE below. */
|
| 3972 |
|
|
size = GET_MODE_BITSIZE (mode);
|
| 3973 |
|
|
#endif
|
| 3974 |
|
|
|
| 3975 |
|
|
/* Only deduct something for a REM if the last divide done was
|
| 3976 |
|
|
for a different constant. Then set the constant of the last
|
| 3977 |
|
|
divide. */
|
| 3978 |
|
|
max_cost = unsignedp ? udiv_cost[speed][compute_mode] : sdiv_cost[speed][compute_mode];
|
| 3979 |
|
|
if (rem_flag && ! (last_div_const != 0 && op1_is_constant
|
| 3980 |
|
|
&& INTVAL (op1) == last_div_const))
|
| 3981 |
|
|
max_cost -= mul_cost[speed][compute_mode] + add_cost[speed][compute_mode];
|
| 3982 |
|
|
|
| 3983 |
|
|
last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
|
| 3984 |
|
|
|
| 3985 |
|
|
/* Now convert to the best mode to use. */
|
| 3986 |
|
|
if (compute_mode != mode)
|
| 3987 |
|
|
{
|
| 3988 |
|
|
op0 = convert_modes (compute_mode, mode, op0, unsignedp);
|
| 3989 |
|
|
op1 = convert_modes (compute_mode, mode, op1, unsignedp);
|
| 3990 |
|
|
|
| 3991 |
|
|
/* convert_modes may have placed op1 into a register, so we
|
| 3992 |
|
|
must recompute the following. */
|
| 3993 |
|
|
op1_is_constant = CONST_INT_P (op1);
|
| 3994 |
|
|
op1_is_pow2 = (op1_is_constant
|
| 3995 |
|
|
&& ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
|
| 3996 |
|
|
|| (! unsignedp
|
| 3997 |
|
|
&& EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
|
| 3998 |
|
|
}
|
| 3999 |
|
|
|
| 4000 |
|
|
/* If one of the operands is a volatile MEM, copy it into a register. */
|
| 4001 |
|
|
|
| 4002 |
|
|
if (MEM_P (op0) && MEM_VOLATILE_P (op0))
|
| 4003 |
|
|
op0 = force_reg (compute_mode, op0);
|
| 4004 |
|
|
if (MEM_P (op1) && MEM_VOLATILE_P (op1))
|
| 4005 |
|
|
op1 = force_reg (compute_mode, op1);
|
| 4006 |
|
|
|
| 4007 |
|
|
/* If we need the remainder or if OP1 is constant, we need to
|
| 4008 |
|
|
put OP0 in a register in case it has any queued subexpressions. */
|
| 4009 |
|
|
if (rem_flag || op1_is_constant)
|
| 4010 |
|
|
op0 = force_reg (compute_mode, op0);
|
| 4011 |
|
|
|
| 4012 |
|
|
last = get_last_insn ();
|
| 4013 |
|
|
|
| 4014 |
|
|
/* Promote floor rounding to trunc rounding for unsigned operations. */
|
| 4015 |
|
|
if (unsignedp)
|
| 4016 |
|
|
{
|
| 4017 |
|
|
if (code == FLOOR_DIV_EXPR)
|
| 4018 |
|
|
code = TRUNC_DIV_EXPR;
|
| 4019 |
|
|
if (code == FLOOR_MOD_EXPR)
|
| 4020 |
|
|
code = TRUNC_MOD_EXPR;
|
| 4021 |
|
|
if (code == EXACT_DIV_EXPR && op1_is_pow2)
|
| 4022 |
|
|
code = TRUNC_DIV_EXPR;
|
| 4023 |
|
|
}
|
| 4024 |
|
|
|
| 4025 |
|
|
if (op1 != const0_rtx)
|
| 4026 |
|
|
switch (code)
|
| 4027 |
|
|
{
|
| 4028 |
|
|
case TRUNC_MOD_EXPR:
|
| 4029 |
|
|
case TRUNC_DIV_EXPR:
|
| 4030 |
|
|
if (op1_is_constant)
|
| 4031 |
|
|
{
|
| 4032 |
|
|
if (unsignedp)
|
| 4033 |
|
|
{
|
| 4034 |
|
|
unsigned HOST_WIDE_INT mh;
|
| 4035 |
|
|
int pre_shift, post_shift;
|
| 4036 |
|
|
int dummy;
|
| 4037 |
|
|
rtx ml;
|
| 4038 |
|
|
unsigned HOST_WIDE_INT d = (INTVAL (op1)
|
| 4039 |
|
|
& GET_MODE_MASK (compute_mode));
|
| 4040 |
|
|
|
| 4041 |
|
|
if (EXACT_POWER_OF_2_OR_ZERO_P (d))
|
| 4042 |
|
|
{
|
| 4043 |
|
|
pre_shift = floor_log2 (d);
|
| 4044 |
|
|
if (rem_flag)
|
| 4045 |
|
|
{
|
| 4046 |
|
|
remainder
|
| 4047 |
|
|
= expand_binop (compute_mode, and_optab, op0,
|
| 4048 |
|
|
GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
|
| 4049 |
|
|
remainder, 1,
|
| 4050 |
|
|
OPTAB_LIB_WIDEN);
|
| 4051 |
|
|
if (remainder)
|
| 4052 |
|
|
return gen_lowpart (mode, remainder);
|
| 4053 |
|
|
}
|
| 4054 |
|
|
quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
| 4055 |
|
|
pre_shift, tquotient, 1);
|
| 4056 |
|
|
}
|
| 4057 |
|
|
else if (size <= HOST_BITS_PER_WIDE_INT)
|
| 4058 |
|
|
{
|
| 4059 |
|
|
if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
|
| 4060 |
|
|
{
|
| 4061 |
|
|
/* Most significant bit of divisor is set; emit an scc
|
| 4062 |
|
|
insn. */
|
| 4063 |
|
|
quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
|
| 4064 |
|
|
compute_mode, 1, 1);
|
| 4065 |
|
|
}
|
| 4066 |
|
|
else
|
| 4067 |
|
|
{
|
| 4068 |
|
|
/* Find a suitable multiplier and right shift count
|
| 4069 |
|
|
instead of multiplying with D. */
|
| 4070 |
|
|
|
| 4071 |
|
|
mh = choose_multiplier (d, size, size,
|
| 4072 |
|
|
&ml, &post_shift, &dummy);
|
| 4073 |
|
|
|
| 4074 |
|
|
/* If the suggested multiplier is more than SIZE bits,
|
| 4075 |
|
|
we can do better for even divisors, using an
|
| 4076 |
|
|
initial right shift. */
|
| 4077 |
|
|
if (mh != 0 && (d & 1) == 0)
|
| 4078 |
|
|
{
|
| 4079 |
|
|
pre_shift = floor_log2 (d & -d);
|
| 4080 |
|
|
mh = choose_multiplier (d >> pre_shift, size,
|
| 4081 |
|
|
size - pre_shift,
|
| 4082 |
|
|
&ml, &post_shift, &dummy);
|
| 4083 |
|
|
gcc_assert (!mh);
|
| 4084 |
|
|
}
|
| 4085 |
|
|
else
|
| 4086 |
|
|
pre_shift = 0;
|
| 4087 |
|
|
|
| 4088 |
|
|
if (mh != 0)
|
| 4089 |
|
|
{
|
| 4090 |
|
|
rtx t1, t2, t3, t4;
|
| 4091 |
|
|
|
| 4092 |
|
|
if (post_shift - 1 >= BITS_PER_WORD)
|
| 4093 |
|
|
goto fail1;
|
| 4094 |
|
|
|
| 4095 |
|
|
extra_cost
|
| 4096 |
|
|
= (shift_cost[speed][compute_mode][post_shift - 1]
|
| 4097 |
|
|
+ shift_cost[speed][compute_mode][1]
|
| 4098 |
|
|
+ 2 * add_cost[speed][compute_mode]);
|
| 4099 |
|
|
t1 = expand_mult_highpart (compute_mode, op0, ml,
|
| 4100 |
|
|
NULL_RTX, 1,
|
| 4101 |
|
|
max_cost - extra_cost);
|
| 4102 |
|
|
if (t1 == 0)
|
| 4103 |
|
|
goto fail1;
|
| 4104 |
|
|
t2 = force_operand (gen_rtx_MINUS (compute_mode,
|
| 4105 |
|
|
op0, t1),
|
| 4106 |
|
|
NULL_RTX);
|
| 4107 |
|
|
t3 = expand_shift (RSHIFT_EXPR, compute_mode,
|
| 4108 |
|
|
t2, 1, NULL_RTX, 1);
|
| 4109 |
|
|
t4 = force_operand (gen_rtx_PLUS (compute_mode,
|
| 4110 |
|
|
t1, t3),
|
| 4111 |
|
|
NULL_RTX);
|
| 4112 |
|
|
quotient = expand_shift
|
| 4113 |
|
|
(RSHIFT_EXPR, compute_mode, t4,
|
| 4114 |
|
|
post_shift - 1, tquotient, 1);
|
| 4115 |
|
|
}
|
| 4116 |
|
|
else
|
| 4117 |
|
|
{
|
| 4118 |
|
|
rtx t1, t2;
|
| 4119 |
|
|
|
| 4120 |
|
|
if (pre_shift >= BITS_PER_WORD
|
| 4121 |
|
|
|| post_shift >= BITS_PER_WORD)
|
| 4122 |
|
|
goto fail1;
|
| 4123 |
|
|
|
| 4124 |
|
|
t1 = expand_shift
|
| 4125 |
|
|
(RSHIFT_EXPR, compute_mode, op0,
|
| 4126 |
|
|
pre_shift, NULL_RTX, 1);
|
| 4127 |
|
|
extra_cost
|
| 4128 |
|
|
= (shift_cost[speed][compute_mode][pre_shift]
|
| 4129 |
|
|
+ shift_cost[speed][compute_mode][post_shift]);
|
| 4130 |
|
|
t2 = expand_mult_highpart (compute_mode, t1, ml,
|
| 4131 |
|
|
NULL_RTX, 1,
|
| 4132 |
|
|
max_cost - extra_cost);
|
| 4133 |
|
|
if (t2 == 0)
|
| 4134 |
|
|
goto fail1;
|
| 4135 |
|
|
quotient = expand_shift
|
| 4136 |
|
|
(RSHIFT_EXPR, compute_mode, t2,
|
| 4137 |
|
|
post_shift, tquotient, 1);
|
| 4138 |
|
|
}
|
| 4139 |
|
|
}
|
| 4140 |
|
|
}
|
| 4141 |
|
|
else /* Too wide mode to use tricky code */
|
| 4142 |
|
|
break;
|
| 4143 |
|
|
|
| 4144 |
|
|
insn = get_last_insn ();
|
| 4145 |
|
|
if (insn != last)
|
| 4146 |
|
|
set_dst_reg_note (insn, REG_EQUAL,
|
| 4147 |
|
|
gen_rtx_UDIV (compute_mode, op0, op1),
|
| 4148 |
|
|
quotient);
|
| 4149 |
|
|
}
|
| 4150 |
|
|
else /* TRUNC_DIV, signed */
|
| 4151 |
|
|
{
|
| 4152 |
|
|
unsigned HOST_WIDE_INT ml;
|
| 4153 |
|
|
int lgup, post_shift;
|
| 4154 |
|
|
rtx mlr;
|
| 4155 |
|
|
HOST_WIDE_INT d = INTVAL (op1);
|
| 4156 |
|
|
unsigned HOST_WIDE_INT abs_d;
|
| 4157 |
|
|
|
| 4158 |
|
|
/* Since d might be INT_MIN, we have to cast to
|
| 4159 |
|
|
unsigned HOST_WIDE_INT before negating to avoid
|
| 4160 |
|
|
undefined signed overflow. */
|
| 4161 |
|
|
abs_d = (d >= 0
|
| 4162 |
|
|
? (unsigned HOST_WIDE_INT) d
|
| 4163 |
|
|
: - (unsigned HOST_WIDE_INT) d);
|
| 4164 |
|
|
|
| 4165 |
|
|
/* n rem d = n rem -d */
|
| 4166 |
|
|
if (rem_flag && d < 0)
|
| 4167 |
|
|
{
|
| 4168 |
|
|
d = abs_d;
|
| 4169 |
|
|
op1 = gen_int_mode (abs_d, compute_mode);
|
| 4170 |
|
|
}
|
| 4171 |
|
|
|
| 4172 |
|
|
if (d == 1)
|
| 4173 |
|
|
quotient = op0;
|
| 4174 |
|
|
else if (d == -1)
|
| 4175 |
|
|
quotient = expand_unop (compute_mode, neg_optab, op0,
|
| 4176 |
|
|
tquotient, 0);
|
| 4177 |
|
|
else if (HOST_BITS_PER_WIDE_INT >= size
|
| 4178 |
|
|
&& abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
|
| 4179 |
|
|
{
|
| 4180 |
|
|
/* This case is not handled correctly below. */
|
| 4181 |
|
|
quotient = emit_store_flag (tquotient, EQ, op0, op1,
|
| 4182 |
|
|
compute_mode, 1, 1);
|
| 4183 |
|
|
if (quotient == 0)
|
| 4184 |
|
|
goto fail1;
|
| 4185 |
|
|
}
|
| 4186 |
|
|
else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
|
| 4187 |
|
|
&& (rem_flag ? smod_pow2_cheap[speed][compute_mode]
|
| 4188 |
|
|
: sdiv_pow2_cheap[speed][compute_mode])
|
| 4189 |
|
|
/* We assume that cheap metric is true if the
|
| 4190 |
|
|
optab has an expander for this mode. */
|
| 4191 |
|
|
&& ((optab_handler ((rem_flag ? smod_optab
|
| 4192 |
|
|
: sdiv_optab),
|
| 4193 |
|
|
compute_mode)
|
| 4194 |
|
|
!= CODE_FOR_nothing)
|
| 4195 |
|
|
|| (optab_handler (sdivmod_optab,
|
| 4196 |
|
|
compute_mode)
|
| 4197 |
|
|
!= CODE_FOR_nothing)))
|
| 4198 |
|
|
;
|
| 4199 |
|
|
else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
|
| 4200 |
|
|
{
|
| 4201 |
|
|
if (rem_flag)
|
| 4202 |
|
|
{
|
| 4203 |
|
|
remainder = expand_smod_pow2 (compute_mode, op0, d);
|
| 4204 |
|
|
if (remainder)
|
| 4205 |
|
|
return gen_lowpart (mode, remainder);
|
| 4206 |
|
|
}
|
| 4207 |
|
|
|
| 4208 |
|
|
if (sdiv_pow2_cheap[speed][compute_mode]
|
| 4209 |
|
|
&& ((optab_handler (sdiv_optab, compute_mode)
|
| 4210 |
|
|
!= CODE_FOR_nothing)
|
| 4211 |
|
|
|| (optab_handler (sdivmod_optab, compute_mode)
|
| 4212 |
|
|
!= CODE_FOR_nothing)))
|
| 4213 |
|
|
quotient = expand_divmod (0, TRUNC_DIV_EXPR,
|
| 4214 |
|
|
compute_mode, op0,
|
| 4215 |
|
|
gen_int_mode (abs_d,
|
| 4216 |
|
|
compute_mode),
|
| 4217 |
|
|
NULL_RTX, 0);
|
| 4218 |
|
|
else
|
| 4219 |
|
|
quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
|
| 4220 |
|
|
|
| 4221 |
|
|
/* We have computed OP0 / abs(OP1). If OP1 is negative,
|
| 4222 |
|
|
negate the quotient. */
|
| 4223 |
|
|
if (d < 0)
|
| 4224 |
|
|
{
|
| 4225 |
|
|
insn = get_last_insn ();
|
| 4226 |
|
|
if (insn != last
|
| 4227 |
|
|
&& abs_d < ((unsigned HOST_WIDE_INT) 1
|
| 4228 |
|
|
<< (HOST_BITS_PER_WIDE_INT - 1)))
|
| 4229 |
|
|
set_dst_reg_note (insn, REG_EQUAL,
|
| 4230 |
|
|
gen_rtx_DIV (compute_mode, op0,
|
| 4231 |
|
|
gen_int_mode
|
| 4232 |
|
|
(abs_d,
|
| 4233 |
|
|
compute_mode)),
|
| 4234 |
|
|
quotient);
|
| 4235 |
|
|
|
| 4236 |
|
|
quotient = expand_unop (compute_mode, neg_optab,
|
| 4237 |
|
|
quotient, quotient, 0);
|
| 4238 |
|
|
}
|
| 4239 |
|
|
}
|
| 4240 |
|
|
else if (size <= HOST_BITS_PER_WIDE_INT)
|
| 4241 |
|
|
{
|
| 4242 |
|
|
choose_multiplier (abs_d, size, size - 1,
|
| 4243 |
|
|
&mlr, &post_shift, &lgup);
|
| 4244 |
|
|
ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
|
| 4245 |
|
|
if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
|
| 4246 |
|
|
{
|
| 4247 |
|
|
rtx t1, t2, t3;
|
| 4248 |
|
|
|
| 4249 |
|
|
if (post_shift >= BITS_PER_WORD
|
| 4250 |
|
|
|| size - 1 >= BITS_PER_WORD)
|
| 4251 |
|
|
goto fail1;
|
| 4252 |
|
|
|
| 4253 |
|
|
extra_cost = (shift_cost[speed][compute_mode][post_shift]
|
| 4254 |
|
|
+ shift_cost[speed][compute_mode][size - 1]
|
| 4255 |
|
|
+ add_cost[speed][compute_mode]);
|
| 4256 |
|
|
t1 = expand_mult_highpart (compute_mode, op0, mlr,
|
| 4257 |
|
|
NULL_RTX, 0,
|
| 4258 |
|
|
max_cost - extra_cost);
|
| 4259 |
|
|
if (t1 == 0)
|
| 4260 |
|
|
goto fail1;
|
| 4261 |
|
|
t2 = expand_shift
|
| 4262 |
|
|
(RSHIFT_EXPR, compute_mode, t1,
|
| 4263 |
|
|
post_shift, NULL_RTX, 0);
|
| 4264 |
|
|
t3 = expand_shift
|
| 4265 |
|
|
(RSHIFT_EXPR, compute_mode, op0,
|
| 4266 |
|
|
size - 1, NULL_RTX, 0);
|
| 4267 |
|
|
if (d < 0)
|
| 4268 |
|
|
quotient
|
| 4269 |
|
|
= force_operand (gen_rtx_MINUS (compute_mode,
|
| 4270 |
|
|
t3, t2),
|
| 4271 |
|
|
tquotient);
|
| 4272 |
|
|
else
|
| 4273 |
|
|
quotient
|
| 4274 |
|
|
= force_operand (gen_rtx_MINUS (compute_mode,
|
| 4275 |
|
|
t2, t3),
|
| 4276 |
|
|
tquotient);
|
| 4277 |
|
|
}
|
| 4278 |
|
|
else
|
| 4279 |
|
|
{
|
| 4280 |
|
|
rtx t1, t2, t3, t4;
|
| 4281 |
|
|
|
| 4282 |
|
|
if (post_shift >= BITS_PER_WORD
|
| 4283 |
|
|
|| size - 1 >= BITS_PER_WORD)
|
| 4284 |
|
|
goto fail1;
|
| 4285 |
|
|
|
| 4286 |
|
|
ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
|
| 4287 |
|
|
mlr = gen_int_mode (ml, compute_mode);
|
| 4288 |
|
|
extra_cost = (shift_cost[speed][compute_mode][post_shift]
|
| 4289 |
|
|
+ shift_cost[speed][compute_mode][size - 1]
|
| 4290 |
|
|
+ 2 * add_cost[speed][compute_mode]);
|
| 4291 |
|
|
t1 = expand_mult_highpart (compute_mode, op0, mlr,
|
| 4292 |
|
|
NULL_RTX, 0,
|
| 4293 |
|
|
max_cost - extra_cost);
|
| 4294 |
|
|
if (t1 == 0)
|
| 4295 |
|
|
goto fail1;
|
| 4296 |
|
|
t2 = force_operand (gen_rtx_PLUS (compute_mode,
|
| 4297 |
|
|
t1, op0),
|
| 4298 |
|
|
NULL_RTX);
|
| 4299 |
|
|
t3 = expand_shift
|
| 4300 |
|
|
(RSHIFT_EXPR, compute_mode, t2,
|
| 4301 |
|
|
post_shift, NULL_RTX, 0);
|
| 4302 |
|
|
t4 = expand_shift
|
| 4303 |
|
|
(RSHIFT_EXPR, compute_mode, op0,
|
| 4304 |
|
|
size - 1, NULL_RTX, 0);
|
| 4305 |
|
|
if (d < 0)
|
| 4306 |
|
|
quotient
|
| 4307 |
|
|
= force_operand (gen_rtx_MINUS (compute_mode,
|
| 4308 |
|
|
t4, t3),
|
| 4309 |
|
|
tquotient);
|
| 4310 |
|
|
else
|
| 4311 |
|
|
quotient
|
| 4312 |
|
|
= force_operand (gen_rtx_MINUS (compute_mode,
|
| 4313 |
|
|
t3, t4),
|
| 4314 |
|
|
tquotient);
|
| 4315 |
|
|
}
|
| 4316 |
|
|
}
|
| 4317 |
|
|
else /* Too wide mode to use tricky code */
|
| 4318 |
|
|
break;
|
| 4319 |
|
|
|
| 4320 |
|
|
insn = get_last_insn ();
|
| 4321 |
|
|
if (insn != last)
|
| 4322 |
|
|
set_dst_reg_note (insn, REG_EQUAL,
|
| 4323 |
|
|
gen_rtx_DIV (compute_mode, op0, op1),
|
| 4324 |
|
|
quotient);
|
| 4325 |
|
|
}
|
| 4326 |
|
|
break;
|
| 4327 |
|
|
}
|
| 4328 |
|
|
fail1:
|
| 4329 |
|
|
delete_insns_since (last);
|
| 4330 |
|
|
break;
|
| 4331 |
|
|
|
| 4332 |
|
|
case FLOOR_DIV_EXPR:
|
| 4333 |
|
|
case FLOOR_MOD_EXPR:
|
| 4334 |
|
|
/* We will come here only for signed operations. */
|
| 4335 |
|
|
if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
|
| 4336 |
|
|
{
|
| 4337 |
|
|
unsigned HOST_WIDE_INT mh;
|
| 4338 |
|
|
int pre_shift, lgup, post_shift;
|
| 4339 |
|
|
HOST_WIDE_INT d = INTVAL (op1);
|
| 4340 |
|
|
rtx ml;
|
| 4341 |
|
|
|
| 4342 |
|
|
if (d > 0)
|
| 4343 |
|
|
{
|
| 4344 |
|
|
/* We could just as easily deal with negative constants here,
|
| 4345 |
|
|
but it does not seem worth the trouble for GCC 2.6. */
|
| 4346 |
|
|
if (EXACT_POWER_OF_2_OR_ZERO_P (d))
|
| 4347 |
|
|
{
|
| 4348 |
|
|
pre_shift = floor_log2 (d);
|
| 4349 |
|
|
if (rem_flag)
|
| 4350 |
|
|
{
|
| 4351 |
|
|
remainder = expand_binop (compute_mode, and_optab, op0,
|
| 4352 |
|
|
GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
|
| 4353 |
|
|
remainder, 0, OPTAB_LIB_WIDEN);
|
| 4354 |
|
|
if (remainder)
|
| 4355 |
|
|
return gen_lowpart (mode, remainder);
|
| 4356 |
|
|
}
|
| 4357 |
|
|
quotient = expand_shift
|
| 4358 |
|
|
(RSHIFT_EXPR, compute_mode, op0,
|
| 4359 |
|
|
pre_shift, tquotient, 0);
|
| 4360 |
|
|
}
|
| 4361 |
|
|
else
|
| 4362 |
|
|
{
|
| 4363 |
|
|
rtx t1, t2, t3, t4;
|
| 4364 |
|
|
|
| 4365 |
|
|
mh = choose_multiplier (d, size, size - 1,
|
| 4366 |
|
|
&ml, &post_shift, &lgup);
|
| 4367 |
|
|
gcc_assert (!mh);
|
| 4368 |
|
|
|
| 4369 |
|
|
if (post_shift < BITS_PER_WORD
|
| 4370 |
|
|
&& size - 1 < BITS_PER_WORD)
|
| 4371 |
|
|
{
|
| 4372 |
|
|
t1 = expand_shift
|
| 4373 |
|
|
(RSHIFT_EXPR, compute_mode, op0,
|
| 4374 |
|
|
size - 1, NULL_RTX, 0);
|
| 4375 |
|
|
t2 = expand_binop (compute_mode, xor_optab, op0, t1,
|
| 4376 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
| 4377 |
|
|
extra_cost = (shift_cost[speed][compute_mode][post_shift]
|
| 4378 |
|
|
+ shift_cost[speed][compute_mode][size - 1]
|
| 4379 |
|
|
+ 2 * add_cost[speed][compute_mode]);
|
| 4380 |
|
|
t3 = expand_mult_highpart (compute_mode, t2, ml,
|
| 4381 |
|
|
NULL_RTX, 1,
|
| 4382 |
|
|
max_cost - extra_cost);
|
| 4383 |
|
|
if (t3 != 0)
|
| 4384 |
|
|
{
|
| 4385 |
|
|
t4 = expand_shift
|
| 4386 |
|
|
(RSHIFT_EXPR, compute_mode, t3,
|
| 4387 |
|
|
post_shift, NULL_RTX, 1);
|
| 4388 |
|
|
quotient = expand_binop (compute_mode, xor_optab,
|
| 4389 |
|
|
t4, t1, tquotient, 0,
|
| 4390 |
|
|
OPTAB_WIDEN);
|
| 4391 |
|
|
}
|
| 4392 |
|
|
}
|
| 4393 |
|
|
}
|
| 4394 |
|
|
}
|
| 4395 |
|
|
else
|
| 4396 |
|
|
{
|
| 4397 |
|
|
rtx nsign, t1, t2, t3, t4;
|
| 4398 |
|
|
t1 = force_operand (gen_rtx_PLUS (compute_mode,
|
| 4399 |
|
|
op0, constm1_rtx), NULL_RTX);
|
| 4400 |
|
|
t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
|
| 4401 |
|
|
0, OPTAB_WIDEN);
|
| 4402 |
|
|
nsign = expand_shift
|
| 4403 |
|
|
(RSHIFT_EXPR, compute_mode, t2,
|
| 4404 |
|
|
size - 1, NULL_RTX, 0);
|
| 4405 |
|
|
t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
|
| 4406 |
|
|
NULL_RTX);
|
| 4407 |
|
|
t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
|
| 4408 |
|
|
NULL_RTX, 0);
|
| 4409 |
|
|
if (t4)
|
| 4410 |
|
|
{
|
| 4411 |
|
|
rtx t5;
|
| 4412 |
|
|
t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
|
| 4413 |
|
|
NULL_RTX, 0);
|
| 4414 |
|
|
quotient = force_operand (gen_rtx_PLUS (compute_mode,
|
| 4415 |
|
|
t4, t5),
|
| 4416 |
|
|
tquotient);
|
| 4417 |
|
|
}
|
| 4418 |
|
|
}
|
| 4419 |
|
|
}
|
| 4420 |
|
|
|
| 4421 |
|
|
if (quotient != 0)
|
| 4422 |
|
|
break;
|
| 4423 |
|
|
delete_insns_since (last);
|
| 4424 |
|
|
|
| 4425 |
|
|
/* Try using an instruction that produces both the quotient and
|
| 4426 |
|
|
remainder, using truncation. We can easily compensate the quotient
|
| 4427 |
|
|
or remainder to get floor rounding, once we have the remainder.
|
| 4428 |
|
|
Notice that we compute also the final remainder value here,
|
| 4429 |
|
|
and return the result right away. */
|
| 4430 |
|
|
if (target == 0 || GET_MODE (target) != compute_mode)
|
| 4431 |
|
|
target = gen_reg_rtx (compute_mode);
|
| 4432 |
|
|
|
| 4433 |
|
|
if (rem_flag)
|
| 4434 |
|
|
{
|
| 4435 |
|
|
remainder
|
| 4436 |
|
|
= REG_P (target) ? target : gen_reg_rtx (compute_mode);
|
| 4437 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
| 4438 |
|
|
}
|
| 4439 |
|
|
else
|
| 4440 |
|
|
{
|
| 4441 |
|
|
quotient
|
| 4442 |
|
|
= REG_P (target) ? target : gen_reg_rtx (compute_mode);
|
| 4443 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
| 4444 |
|
|
}
|
| 4445 |
|
|
|
| 4446 |
|
|
if (expand_twoval_binop (sdivmod_optab, op0, op1,
|
| 4447 |
|
|
quotient, remainder, 0))
|
| 4448 |
|
|
{
|
| 4449 |
|
|
/* This could be computed with a branch-less sequence.
|
| 4450 |
|
|
Save that for later. */
|
| 4451 |
|
|
rtx tem;
|
| 4452 |
|
|
rtx label = gen_label_rtx ();
|
| 4453 |
|
|
do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
|
| 4454 |
|
|
tem = expand_binop (compute_mode, xor_optab, op0, op1,
|
| 4455 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
| 4456 |
|
|
do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
|
| 4457 |
|
|
expand_dec (quotient, const1_rtx);
|
| 4458 |
|
|
expand_inc (remainder, op1);
|
| 4459 |
|
|
emit_label (label);
|
| 4460 |
|
|
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
| 4461 |
|
|
}
|
| 4462 |
|
|
|
| 4463 |
|
|
/* No luck with division elimination or divmod. Have to do it
|
| 4464 |
|
|
by conditionally adjusting op0 *and* the result. */
|
| 4465 |
|
|
{
|
| 4466 |
|
|
rtx label1, label2, label3, label4, label5;
|
| 4467 |
|
|
rtx adjusted_op0;
|
| 4468 |
|
|
rtx tem;
|
| 4469 |
|
|
|
| 4470 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
| 4471 |
|
|
adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
|
| 4472 |
|
|
label1 = gen_label_rtx ();
|
| 4473 |
|
|
label2 = gen_label_rtx ();
|
| 4474 |
|
|
label3 = gen_label_rtx ();
|
| 4475 |
|
|
label4 = gen_label_rtx ();
|
| 4476 |
|
|
label5 = gen_label_rtx ();
|
| 4477 |
|
|
do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
|
| 4478 |
|
|
do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
|
| 4479 |
|
|
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
| 4480 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
| 4481 |
|
|
if (tem != quotient)
|
| 4482 |
|
|
emit_move_insn (quotient, tem);
|
| 4483 |
|
|
emit_jump_insn (gen_jump (label5));
|
| 4484 |
|
|
emit_barrier ();
|
| 4485 |
|
|
emit_label (label1);
|
| 4486 |
|
|
expand_inc (adjusted_op0, const1_rtx);
|
| 4487 |
|
|
emit_jump_insn (gen_jump (label4));
|
| 4488 |
|
|
emit_barrier ();
|
| 4489 |
|
|
emit_label (label2);
|
| 4490 |
|
|
do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
|
| 4491 |
|
|
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
| 4492 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
| 4493 |
|
|
if (tem != quotient)
|
| 4494 |
|
|
emit_move_insn (quotient, tem);
|
| 4495 |
|
|
emit_jump_insn (gen_jump (label5));
|
| 4496 |
|
|
emit_barrier ();
|
| 4497 |
|
|
emit_label (label3);
|
| 4498 |
|
|
expand_dec (adjusted_op0, const1_rtx);
|
| 4499 |
|
|
emit_label (label4);
|
| 4500 |
|
|
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
| 4501 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
| 4502 |
|
|
if (tem != quotient)
|
| 4503 |
|
|
emit_move_insn (quotient, tem);
|
| 4504 |
|
|
expand_dec (quotient, const1_rtx);
|
| 4505 |
|
|
emit_label (label5);
|
| 4506 |
|
|
}
|
| 4507 |
|
|
break;
|
| 4508 |
|
|
|
| 4509 |
|
|
case CEIL_DIV_EXPR:
|
| 4510 |
|
|
case CEIL_MOD_EXPR:
|
| 4511 |
|
|
if (unsignedp)
|
| 4512 |
|
|
{
|
| 4513 |
|
|
if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
|
| 4514 |
|
|
{
|
| 4515 |
|
|
rtx t1, t2, t3;
|
| 4516 |
|
|
unsigned HOST_WIDE_INT d = INTVAL (op1);
|
| 4517 |
|
|
t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
| 4518 |
|
|
floor_log2 (d), tquotient, 1);
|
| 4519 |
|
|
t2 = expand_binop (compute_mode, and_optab, op0,
|
| 4520 |
|
|
GEN_INT (d - 1),
|
| 4521 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 4522 |
|
|
t3 = gen_reg_rtx (compute_mode);
|
| 4523 |
|
|
t3 = emit_store_flag (t3, NE, t2, const0_rtx,
|
| 4524 |
|
|
compute_mode, 1, 1);
|
| 4525 |
|
|
if (t3 == 0)
|
| 4526 |
|
|
{
|
| 4527 |
|
|
rtx lab;
|
| 4528 |
|
|
lab = gen_label_rtx ();
|
| 4529 |
|
|
do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
|
| 4530 |
|
|
expand_inc (t1, const1_rtx);
|
| 4531 |
|
|
emit_label (lab);
|
| 4532 |
|
|
quotient = t1;
|
| 4533 |
|
|
}
|
| 4534 |
|
|
else
|
| 4535 |
|
|
quotient = force_operand (gen_rtx_PLUS (compute_mode,
|
| 4536 |
|
|
t1, t3),
|
| 4537 |
|
|
tquotient);
|
| 4538 |
|
|
break;
|
| 4539 |
|
|
}
|
| 4540 |
|
|
|
| 4541 |
|
|
/* Try using an instruction that produces both the quotient and
|
| 4542 |
|
|
remainder, using truncation. We can easily compensate the
|
| 4543 |
|
|
quotient or remainder to get ceiling rounding, once we have the
|
| 4544 |
|
|
remainder. Notice that we compute also the final remainder
|
| 4545 |
|
|
value here, and return the result right away. */
|
| 4546 |
|
|
if (target == 0 || GET_MODE (target) != compute_mode)
|
| 4547 |
|
|
target = gen_reg_rtx (compute_mode);
|
| 4548 |
|
|
|
| 4549 |
|
|
if (rem_flag)
|
| 4550 |
|
|
{
|
| 4551 |
|
|
remainder = (REG_P (target)
|
| 4552 |
|
|
? target : gen_reg_rtx (compute_mode));
|
| 4553 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
| 4554 |
|
|
}
|
| 4555 |
|
|
else
|
| 4556 |
|
|
{
|
| 4557 |
|
|
quotient = (REG_P (target)
|
| 4558 |
|
|
? target : gen_reg_rtx (compute_mode));
|
| 4559 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
| 4560 |
|
|
}
|
| 4561 |
|
|
|
| 4562 |
|
|
if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
|
| 4563 |
|
|
remainder, 1))
|
| 4564 |
|
|
{
|
| 4565 |
|
|
/* This could be computed with a branch-less sequence.
|
| 4566 |
|
|
Save that for later. */
|
| 4567 |
|
|
rtx label = gen_label_rtx ();
|
| 4568 |
|
|
do_cmp_and_jump (remainder, const0_rtx, EQ,
|
| 4569 |
|
|
compute_mode, label);
|
| 4570 |
|
|
expand_inc (quotient, const1_rtx);
|
| 4571 |
|
|
expand_dec (remainder, op1);
|
| 4572 |
|
|
emit_label (label);
|
| 4573 |
|
|
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
| 4574 |
|
|
}
|
| 4575 |
|
|
|
| 4576 |
|
|
/* No luck with division elimination or divmod. Have to do it
|
| 4577 |
|
|
by conditionally adjusting op0 *and* the result. */
|
| 4578 |
|
|
{
|
| 4579 |
|
|
rtx label1, label2;
|
| 4580 |
|
|
rtx adjusted_op0, tem;
|
| 4581 |
|
|
|
| 4582 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
| 4583 |
|
|
adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
|
| 4584 |
|
|
label1 = gen_label_rtx ();
|
| 4585 |
|
|
label2 = gen_label_rtx ();
|
| 4586 |
|
|
do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
|
| 4587 |
|
|
compute_mode, label1);
|
| 4588 |
|
|
emit_move_insn (quotient, const0_rtx);
|
| 4589 |
|
|
emit_jump_insn (gen_jump (label2));
|
| 4590 |
|
|
emit_barrier ();
|
| 4591 |
|
|
emit_label (label1);
|
| 4592 |
|
|
expand_dec (adjusted_op0, const1_rtx);
|
| 4593 |
|
|
tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
|
| 4594 |
|
|
quotient, 1, OPTAB_LIB_WIDEN);
|
| 4595 |
|
|
if (tem != quotient)
|
| 4596 |
|
|
emit_move_insn (quotient, tem);
|
| 4597 |
|
|
expand_inc (quotient, const1_rtx);
|
| 4598 |
|
|
emit_label (label2);
|
| 4599 |
|
|
}
|
| 4600 |
|
|
}
|
| 4601 |
|
|
else /* signed */
|
| 4602 |
|
|
{
|
| 4603 |
|
|
if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
|
| 4604 |
|
|
&& INTVAL (op1) >= 0)
|
| 4605 |
|
|
{
|
| 4606 |
|
|
/* This is extremely similar to the code for the unsigned case
|
| 4607 |
|
|
above. For 2.7 we should merge these variants, but for
|
| 4608 |
|
|
2.6.1 I don't want to touch the code for unsigned since that
|
| 4609 |
|
|
get used in C. The signed case will only be used by other
|
| 4610 |
|
|
languages (Ada). */
|
| 4611 |
|
|
|
| 4612 |
|
|
rtx t1, t2, t3;
|
| 4613 |
|
|
unsigned HOST_WIDE_INT d = INTVAL (op1);
|
| 4614 |
|
|
t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
| 4615 |
|
|
floor_log2 (d), tquotient, 0);
|
| 4616 |
|
|
t2 = expand_binop (compute_mode, and_optab, op0,
|
| 4617 |
|
|
GEN_INT (d - 1),
|
| 4618 |
|
|
NULL_RTX, 1, OPTAB_LIB_WIDEN);
|
| 4619 |
|
|
t3 = gen_reg_rtx (compute_mode);
|
| 4620 |
|
|
t3 = emit_store_flag (t3, NE, t2, const0_rtx,
|
| 4621 |
|
|
compute_mode, 1, 1);
|
| 4622 |
|
|
if (t3 == 0)
|
| 4623 |
|
|
{
|
| 4624 |
|
|
rtx lab;
|
| 4625 |
|
|
lab = gen_label_rtx ();
|
| 4626 |
|
|
do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
|
| 4627 |
|
|
expand_inc (t1, const1_rtx);
|
| 4628 |
|
|
emit_label (lab);
|
| 4629 |
|
|
quotient = t1;
|
| 4630 |
|
|
}
|
| 4631 |
|
|
else
|
| 4632 |
|
|
quotient = force_operand (gen_rtx_PLUS (compute_mode,
|
| 4633 |
|
|
t1, t3),
|
| 4634 |
|
|
tquotient);
|
| 4635 |
|
|
break;
|
| 4636 |
|
|
}
|
| 4637 |
|
|
|
| 4638 |
|
|
/* Try using an instruction that produces both the quotient and
|
| 4639 |
|
|
remainder, using truncation. We can easily compensate the
|
| 4640 |
|
|
quotient or remainder to get ceiling rounding, once we have the
|
| 4641 |
|
|
remainder. Notice that we compute also the final remainder
|
| 4642 |
|
|
value here, and return the result right away. */
|
| 4643 |
|
|
if (target == 0 || GET_MODE (target) != compute_mode)
|
| 4644 |
|
|
target = gen_reg_rtx (compute_mode);
|
| 4645 |
|
|
if (rem_flag)
|
| 4646 |
|
|
{
|
| 4647 |
|
|
remainder= (REG_P (target)
|
| 4648 |
|
|
? target : gen_reg_rtx (compute_mode));
|
| 4649 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
| 4650 |
|
|
}
|
| 4651 |
|
|
else
|
| 4652 |
|
|
{
|
| 4653 |
|
|
quotient = (REG_P (target)
|
| 4654 |
|
|
? target : gen_reg_rtx (compute_mode));
|
| 4655 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
| 4656 |
|
|
}
|
| 4657 |
|
|
|
| 4658 |
|
|
if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
|
| 4659 |
|
|
remainder, 0))
|
| 4660 |
|
|
{
|
| 4661 |
|
|
/* This could be computed with a branch-less sequence.
|
| 4662 |
|
|
Save that for later. */
|
| 4663 |
|
|
rtx tem;
|
| 4664 |
|
|
rtx label = gen_label_rtx ();
|
| 4665 |
|
|
do_cmp_and_jump (remainder, const0_rtx, EQ,
|
| 4666 |
|
|
compute_mode, label);
|
| 4667 |
|
|
tem = expand_binop (compute_mode, xor_optab, op0, op1,
|
| 4668 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
| 4669 |
|
|
do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
|
| 4670 |
|
|
expand_inc (quotient, const1_rtx);
|
| 4671 |
|
|
expand_dec (remainder, op1);
|
| 4672 |
|
|
emit_label (label);
|
| 4673 |
|
|
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
| 4674 |
|
|
}
|
| 4675 |
|
|
|
| 4676 |
|
|
/* No luck with division elimination or divmod. Have to do it
|
| 4677 |
|
|
by conditionally adjusting op0 *and* the result. */
|
| 4678 |
|
|
{
|
| 4679 |
|
|
rtx label1, label2, label3, label4, label5;
|
| 4680 |
|
|
rtx adjusted_op0;
|
| 4681 |
|
|
rtx tem;
|
| 4682 |
|
|
|
| 4683 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
| 4684 |
|
|
adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
|
| 4685 |
|
|
label1 = gen_label_rtx ();
|
| 4686 |
|
|
label2 = gen_label_rtx ();
|
| 4687 |
|
|
label3 = gen_label_rtx ();
|
| 4688 |
|
|
label4 = gen_label_rtx ();
|
| 4689 |
|
|
label5 = gen_label_rtx ();
|
| 4690 |
|
|
do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
|
| 4691 |
|
|
do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
|
| 4692 |
|
|
compute_mode, label1);
|
| 4693 |
|
|
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
| 4694 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
| 4695 |
|
|
if (tem != quotient)
|
| 4696 |
|
|
emit_move_insn (quotient, tem);
|
| 4697 |
|
|
emit_jump_insn (gen_jump (label5));
|
| 4698 |
|
|
emit_barrier ();
|
| 4699 |
|
|
emit_label (label1);
|
| 4700 |
|
|
expand_dec (adjusted_op0, const1_rtx);
|
| 4701 |
|
|
emit_jump_insn (gen_jump (label4));
|
| 4702 |
|
|
emit_barrier ();
|
| 4703 |
|
|
emit_label (label2);
|
| 4704 |
|
|
do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
|
| 4705 |
|
|
compute_mode, label3);
|
| 4706 |
|
|
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
| 4707 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
| 4708 |
|
|
if (tem != quotient)
|
| 4709 |
|
|
emit_move_insn (quotient, tem);
|
| 4710 |
|
|
emit_jump_insn (gen_jump (label5));
|
| 4711 |
|
|
emit_barrier ();
|
| 4712 |
|
|
emit_label (label3);
|
| 4713 |
|
|
expand_inc (adjusted_op0, const1_rtx);
|
| 4714 |
|
|
emit_label (label4);
|
| 4715 |
|
|
tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
|
| 4716 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
| 4717 |
|
|
if (tem != quotient)
|
| 4718 |
|
|
emit_move_insn (quotient, tem);
|
| 4719 |
|
|
expand_inc (quotient, const1_rtx);
|
| 4720 |
|
|
emit_label (label5);
|
| 4721 |
|
|
}
|
| 4722 |
|
|
}
|
| 4723 |
|
|
break;
|
| 4724 |
|
|
|
| 4725 |
|
|
case EXACT_DIV_EXPR:
|
| 4726 |
|
|
if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
|
| 4727 |
|
|
{
|
| 4728 |
|
|
HOST_WIDE_INT d = INTVAL (op1);
|
| 4729 |
|
|
unsigned HOST_WIDE_INT ml;
|
| 4730 |
|
|
int pre_shift;
|
| 4731 |
|
|
rtx t1;
|
| 4732 |
|
|
|
| 4733 |
|
|
pre_shift = floor_log2 (d & -d);
|
| 4734 |
|
|
ml = invert_mod2n (d >> pre_shift, size);
|
| 4735 |
|
|
t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
|
| 4736 |
|
|
pre_shift, NULL_RTX, unsignedp);
|
| 4737 |
|
|
quotient = expand_mult (compute_mode, t1,
|
| 4738 |
|
|
gen_int_mode (ml, compute_mode),
|
| 4739 |
|
|
NULL_RTX, 1);
|
| 4740 |
|
|
|
| 4741 |
|
|
insn = get_last_insn ();
|
| 4742 |
|
|
set_dst_reg_note (insn, REG_EQUAL,
|
| 4743 |
|
|
gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
|
| 4744 |
|
|
compute_mode, op0, op1),
|
| 4745 |
|
|
quotient);
|
| 4746 |
|
|
}
|
| 4747 |
|
|
break;
|
| 4748 |
|
|
|
| 4749 |
|
|
case ROUND_DIV_EXPR:
|
| 4750 |
|
|
case ROUND_MOD_EXPR:
|
| 4751 |
|
|
if (unsignedp)
|
| 4752 |
|
|
{
|
| 4753 |
|
|
rtx tem;
|
| 4754 |
|
|
rtx label;
|
| 4755 |
|
|
label = gen_label_rtx ();
|
| 4756 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
| 4757 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
| 4758 |
|
|
if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
|
| 4759 |
|
|
{
|
| 4760 |
|
|
rtx tem;
|
| 4761 |
|
|
quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
|
| 4762 |
|
|
quotient, 1, OPTAB_LIB_WIDEN);
|
| 4763 |
|
|
tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
|
| 4764 |
|
|
remainder = expand_binop (compute_mode, sub_optab, op0, tem,
|
| 4765 |
|
|
remainder, 1, OPTAB_LIB_WIDEN);
|
| 4766 |
|
|
}
|
| 4767 |
|
|
tem = plus_constant (op1, -1);
|
| 4768 |
|
|
tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
|
| 4769 |
|
|
do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
|
| 4770 |
|
|
expand_inc (quotient, const1_rtx);
|
| 4771 |
|
|
expand_dec (remainder, op1);
|
| 4772 |
|
|
emit_label (label);
|
| 4773 |
|
|
}
|
| 4774 |
|
|
else
|
| 4775 |
|
|
{
|
| 4776 |
|
|
rtx abs_rem, abs_op1, tem, mask;
|
| 4777 |
|
|
rtx label;
|
| 4778 |
|
|
label = gen_label_rtx ();
|
| 4779 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
| 4780 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
| 4781 |
|
|
if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
|
| 4782 |
|
|
{
|
| 4783 |
|
|
rtx tem;
|
| 4784 |
|
|
quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
|
| 4785 |
|
|
quotient, 0, OPTAB_LIB_WIDEN);
|
| 4786 |
|
|
tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
|
| 4787 |
|
|
remainder = expand_binop (compute_mode, sub_optab, op0, tem,
|
| 4788 |
|
|
remainder, 0, OPTAB_LIB_WIDEN);
|
| 4789 |
|
|
}
|
| 4790 |
|
|
abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
|
| 4791 |
|
|
abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
|
| 4792 |
|
|
tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
|
| 4793 |
|
|
1, NULL_RTX, 1);
|
| 4794 |
|
|
do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
|
| 4795 |
|
|
tem = expand_binop (compute_mode, xor_optab, op0, op1,
|
| 4796 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
| 4797 |
|
|
mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
|
| 4798 |
|
|
size - 1, NULL_RTX, 0);
|
| 4799 |
|
|
tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
|
| 4800 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
| 4801 |
|
|
tem = expand_binop (compute_mode, sub_optab, tem, mask,
|
| 4802 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
| 4803 |
|
|
expand_inc (quotient, tem);
|
| 4804 |
|
|
tem = expand_binop (compute_mode, xor_optab, mask, op1,
|
| 4805 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
| 4806 |
|
|
tem = expand_binop (compute_mode, sub_optab, tem, mask,
|
| 4807 |
|
|
NULL_RTX, 0, OPTAB_WIDEN);
|
| 4808 |
|
|
expand_dec (remainder, tem);
|
| 4809 |
|
|
emit_label (label);
|
| 4810 |
|
|
}
|
| 4811 |
|
|
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
| 4812 |
|
|
|
| 4813 |
|
|
default:
|
| 4814 |
|
|
gcc_unreachable ();
|
| 4815 |
|
|
}
|
| 4816 |
|
|
|
| 4817 |
|
|
if (quotient == 0)
|
| 4818 |
|
|
{
|
| 4819 |
|
|
if (target && GET_MODE (target) != compute_mode)
|
| 4820 |
|
|
target = 0;
|
| 4821 |
|
|
|
| 4822 |
|
|
if (rem_flag)
|
| 4823 |
|
|
{
|
| 4824 |
|
|
/* Try to produce the remainder without producing the quotient.
|
| 4825 |
|
|
If we seem to have a divmod pattern that does not require widening,
|
| 4826 |
|
|
don't try widening here. We should really have a WIDEN argument
|
| 4827 |
|
|
to expand_twoval_binop, since what we'd really like to do here is
|
| 4828 |
|
|
1) try a mod insn in compute_mode
|
| 4829 |
|
|
2) try a divmod insn in compute_mode
|
| 4830 |
|
|
3) try a div insn in compute_mode and multiply-subtract to get
|
| 4831 |
|
|
remainder
|
| 4832 |
|
|
4) try the same things with widening allowed. */
|
| 4833 |
|
|
remainder
|
| 4834 |
|
|
= sign_expand_binop (compute_mode, umod_optab, smod_optab,
|
| 4835 |
|
|
op0, op1, target,
|
| 4836 |
|
|
unsignedp,
|
| 4837 |
|
|
((optab_handler (optab2, compute_mode)
|
| 4838 |
|
|
!= CODE_FOR_nothing)
|
| 4839 |
|
|
? OPTAB_DIRECT : OPTAB_WIDEN));
|
| 4840 |
|
|
if (remainder == 0)
|
| 4841 |
|
|
{
|
| 4842 |
|
|
/* No luck there. Can we do remainder and divide at once
|
| 4843 |
|
|
without a library call? */
|
| 4844 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
| 4845 |
|
|
if (! expand_twoval_binop ((unsignedp
|
| 4846 |
|
|
? udivmod_optab
|
| 4847 |
|
|
: sdivmod_optab),
|
| 4848 |
|
|
op0, op1,
|
| 4849 |
|
|
NULL_RTX, remainder, unsignedp))
|
| 4850 |
|
|
remainder = 0;
|
| 4851 |
|
|
}
|
| 4852 |
|
|
|
| 4853 |
|
|
if (remainder)
|
| 4854 |
|
|
return gen_lowpart (mode, remainder);
|
| 4855 |
|
|
}
|
| 4856 |
|
|
|
| 4857 |
|
|
/* Produce the quotient. Try a quotient insn, but not a library call.
|
| 4858 |
|
|
If we have a divmod in this mode, use it in preference to widening
|
| 4859 |
|
|
the div (for this test we assume it will not fail). Note that optab2
|
| 4860 |
|
|
is set to the one of the two optabs that the call below will use. */
|
| 4861 |
|
|
quotient
|
| 4862 |
|
|
= sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
|
| 4863 |
|
|
op0, op1, rem_flag ? NULL_RTX : target,
|
| 4864 |
|
|
unsignedp,
|
| 4865 |
|
|
((optab_handler (optab2, compute_mode)
|
| 4866 |
|
|
!= CODE_FOR_nothing)
|
| 4867 |
|
|
? OPTAB_DIRECT : OPTAB_WIDEN));
|
| 4868 |
|
|
|
| 4869 |
|
|
if (quotient == 0)
|
| 4870 |
|
|
{
|
| 4871 |
|
|
/* No luck there. Try a quotient-and-remainder insn,
|
| 4872 |
|
|
keeping the quotient alone. */
|
| 4873 |
|
|
quotient = gen_reg_rtx (compute_mode);
|
| 4874 |
|
|
if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
|
| 4875 |
|
|
op0, op1,
|
| 4876 |
|
|
quotient, NULL_RTX, unsignedp))
|
| 4877 |
|
|
{
|
| 4878 |
|
|
quotient = 0;
|
| 4879 |
|
|
if (! rem_flag)
|
| 4880 |
|
|
/* Still no luck. If we are not computing the remainder,
|
| 4881 |
|
|
use a library call for the quotient. */
|
| 4882 |
|
|
quotient = sign_expand_binop (compute_mode,
|
| 4883 |
|
|
udiv_optab, sdiv_optab,
|
| 4884 |
|
|
op0, op1, target,
|
| 4885 |
|
|
unsignedp, OPTAB_LIB_WIDEN);
|
| 4886 |
|
|
}
|
| 4887 |
|
|
}
|
| 4888 |
|
|
}
|
| 4889 |
|
|
|
| 4890 |
|
|
if (rem_flag)
|
| 4891 |
|
|
{
|
| 4892 |
|
|
if (target && GET_MODE (target) != compute_mode)
|
| 4893 |
|
|
target = 0;
|
| 4894 |
|
|
|
| 4895 |
|
|
if (quotient == 0)
|
| 4896 |
|
|
{
|
| 4897 |
|
|
/* No divide instruction either. Use library for remainder. */
|
| 4898 |
|
|
remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
|
| 4899 |
|
|
op0, op1, target,
|
| 4900 |
|
|
unsignedp, OPTAB_LIB_WIDEN);
|
| 4901 |
|
|
/* No remainder function. Try a quotient-and-remainder
|
| 4902 |
|
|
function, keeping the remainder. */
|
| 4903 |
|
|
if (!remainder)
|
| 4904 |
|
|
{
|
| 4905 |
|
|
remainder = gen_reg_rtx (compute_mode);
|
| 4906 |
|
|
if (!expand_twoval_binop_libfunc
|
| 4907 |
|
|
(unsignedp ? udivmod_optab : sdivmod_optab,
|
| 4908 |
|
|
op0, op1,
|
| 4909 |
|
|
NULL_RTX, remainder,
|
| 4910 |
|
|
unsignedp ? UMOD : MOD))
|
| 4911 |
|
|
remainder = NULL_RTX;
|
| 4912 |
|
|
}
|
| 4913 |
|
|
}
|
| 4914 |
|
|
else
|
| 4915 |
|
|
{
|
| 4916 |
|
|
/* We divided. Now finish doing X - Y * (X / Y). */
|
| 4917 |
|
|
remainder = expand_mult (compute_mode, quotient, op1,
|
| 4918 |
|
|
NULL_RTX, unsignedp);
|
| 4919 |
|
|
remainder = expand_binop (compute_mode, sub_optab, op0,
|
| 4920 |
|
|
remainder, target, unsignedp,
|
| 4921 |
|
|
OPTAB_LIB_WIDEN);
|
| 4922 |
|
|
}
|
| 4923 |
|
|
}
|
| 4924 |
|
|
|
| 4925 |
|
|
return gen_lowpart (mode, rem_flag ? remainder : quotient);
|
| 4926 |
|
|
}
|
| 4927 |
|
|
|
| 4928 |
|
|
/* Return a tree node with data type TYPE, describing the value of X.
|
| 4929 |
|
|
Usually this is an VAR_DECL, if there is no obvious better choice.
|
| 4930 |
|
|
X may be an expression, however we only support those expressions
|
| 4931 |
|
|
generated by loop.c. */
|
| 4932 |
|
|
|
| 4933 |
|
|
tree
|
| 4934 |
|
|
make_tree (tree type, rtx x)
|
| 4935 |
|
|
{
|
| 4936 |
|
|
tree t;
|
| 4937 |
|
|
|
| 4938 |
|
|
switch (GET_CODE (x))
|
| 4939 |
|
|
{
|
| 4940 |
|
|
case CONST_INT:
|
| 4941 |
|
|
{
|
| 4942 |
|
|
HOST_WIDE_INT hi = 0;
|
| 4943 |
|
|
|
| 4944 |
|
|
if (INTVAL (x) < 0
|
| 4945 |
|
|
&& !(TYPE_UNSIGNED (type)
|
| 4946 |
|
|
&& (GET_MODE_BITSIZE (TYPE_MODE (type))
|
| 4947 |
|
|
< HOST_BITS_PER_WIDE_INT)))
|
| 4948 |
|
|
hi = -1;
|
| 4949 |
|
|
|
| 4950 |
|
|
t = build_int_cst_wide (type, INTVAL (x), hi);
|
| 4951 |
|
|
|
| 4952 |
|
|
return t;
|
| 4953 |
|
|
}
|
| 4954 |
|
|
|
| 4955 |
|
|
case CONST_DOUBLE:
|
| 4956 |
|
|
if (GET_MODE (x) == VOIDmode)
|
| 4957 |
|
|
t = build_int_cst_wide (type,
|
| 4958 |
|
|
CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
|
| 4959 |
|
|
else
|
| 4960 |
|
|
{
|
| 4961 |
|
|
REAL_VALUE_TYPE d;
|
| 4962 |
|
|
|
| 4963 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (d, x);
|
| 4964 |
|
|
t = build_real (type, d);
|
| 4965 |
|
|
}
|
| 4966 |
|
|
|
| 4967 |
|
|
return t;
|
| 4968 |
|
|
|
| 4969 |
|
|
case CONST_VECTOR:
|
| 4970 |
|
|
{
|
| 4971 |
|
|
int units = CONST_VECTOR_NUNITS (x);
|
| 4972 |
|
|
tree itype = TREE_TYPE (type);
|
| 4973 |
|
|
tree t = NULL_TREE;
|
| 4974 |
|
|
int i;
|
| 4975 |
|
|
|
| 4976 |
|
|
|
| 4977 |
|
|
/* Build a tree with vector elements. */
|
| 4978 |
|
|
for (i = units - 1; i >= 0; --i)
|
| 4979 |
|
|
{
|
| 4980 |
|
|
rtx elt = CONST_VECTOR_ELT (x, i);
|
| 4981 |
|
|
t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
|
| 4982 |
|
|
}
|
| 4983 |
|
|
|
| 4984 |
|
|
return build_vector (type, t);
|
| 4985 |
|
|
}
|
| 4986 |
|
|
|
| 4987 |
|
|
case PLUS:
|
| 4988 |
|
|
return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
|
| 4989 |
|
|
make_tree (type, XEXP (x, 1)));
|
| 4990 |
|
|
|
| 4991 |
|
|
case MINUS:
|
| 4992 |
|
|
return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
|
| 4993 |
|
|
make_tree (type, XEXP (x, 1)));
|
| 4994 |
|
|
|
| 4995 |
|
|
case NEG:
|
| 4996 |
|
|
return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
|
| 4997 |
|
|
|
| 4998 |
|
|
case MULT:
|
| 4999 |
|
|
return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
|
| 5000 |
|
|
make_tree (type, XEXP (x, 1)));
|
| 5001 |
|
|
|
| 5002 |
|
|
case ASHIFT:
|
| 5003 |
|
|
return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
|
| 5004 |
|
|
make_tree (type, XEXP (x, 1)));
|
| 5005 |
|
|
|
| 5006 |
|
|
case LSHIFTRT:
|
| 5007 |
|
|
t = unsigned_type_for (type);
|
| 5008 |
|
|
return fold_convert (type, build2 (RSHIFT_EXPR, t,
|
| 5009 |
|
|
make_tree (t, XEXP (x, 0)),
|
| 5010 |
|
|
make_tree (type, XEXP (x, 1))));
|
| 5011 |
|
|
|
| 5012 |
|
|
case ASHIFTRT:
|
| 5013 |
|
|
t = signed_type_for (type);
|
| 5014 |
|
|
return fold_convert (type, build2 (RSHIFT_EXPR, t,
|
| 5015 |
|
|
make_tree (t, XEXP (x, 0)),
|
| 5016 |
|
|
make_tree (type, XEXP (x, 1))));
|
| 5017 |
|
|
|
| 5018 |
|
|
case DIV:
|
| 5019 |
|
|
if (TREE_CODE (type) != REAL_TYPE)
|
| 5020 |
|
|
t = signed_type_for (type);
|
| 5021 |
|
|
else
|
| 5022 |
|
|
t = type;
|
| 5023 |
|
|
|
| 5024 |
|
|
return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
|
| 5025 |
|
|
make_tree (t, XEXP (x, 0)),
|
| 5026 |
|
|
make_tree (t, XEXP (x, 1))));
|
| 5027 |
|
|
case UDIV:
|
| 5028 |
|
|
t = unsigned_type_for (type);
|
| 5029 |
|
|
return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
|
| 5030 |
|
|
make_tree (t, XEXP (x, 0)),
|
| 5031 |
|
|
make_tree (t, XEXP (x, 1))));
|
| 5032 |
|
|
|
| 5033 |
|
|
case SIGN_EXTEND:
|
| 5034 |
|
|
case ZERO_EXTEND:
|
| 5035 |
|
|
t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
|
| 5036 |
|
|
GET_CODE (x) == ZERO_EXTEND);
|
| 5037 |
|
|
return fold_convert (type, make_tree (t, XEXP (x, 0)));
|
| 5038 |
|
|
|
| 5039 |
|
|
case CONST:
|
| 5040 |
|
|
return make_tree (type, XEXP (x, 0));
|
| 5041 |
|
|
|
| 5042 |
|
|
case SYMBOL_REF:
|
| 5043 |
|
|
t = SYMBOL_REF_DECL (x);
|
| 5044 |
|
|
if (t)
|
| 5045 |
|
|
return fold_convert (type, build_fold_addr_expr (t));
|
| 5046 |
|
|
/* else fall through. */
|
| 5047 |
|
|
|
| 5048 |
|
|
default:
|
| 5049 |
|
|
t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
|
| 5050 |
|
|
|
| 5051 |
|
|
/* If TYPE is a POINTER_TYPE, we might need to convert X from
|
| 5052 |
|
|
address mode to pointer mode. */
|
| 5053 |
|
|
if (POINTER_TYPE_P (type))
|
| 5054 |
|
|
x = convert_memory_address_addr_space
|
| 5055 |
|
|
(TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
|
| 5056 |
|
|
|
| 5057 |
|
|
/* Note that we do *not* use SET_DECL_RTL here, because we do not
|
| 5058 |
|
|
want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
|
| 5059 |
|
|
t->decl_with_rtl.rtl = x;
|
| 5060 |
|
|
|
| 5061 |
|
|
return t;
|
| 5062 |
|
|
}
|
| 5063 |
|
|
}
|
| 5064 |
|
|
|
| 5065 |
|
|
/* Compute the logical-and of OP0 and OP1, storing it in TARGET
|
| 5066 |
|
|
and returning TARGET.
|
| 5067 |
|
|
|
| 5068 |
|
|
If TARGET is 0, a pseudo-register or constant is returned. */
|
| 5069 |
|
|
|
| 5070 |
|
|
rtx
|
| 5071 |
|
|
expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
|
| 5072 |
|
|
{
|
| 5073 |
|
|
rtx tem = 0;
|
| 5074 |
|
|
|
| 5075 |
|
|
if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
|
| 5076 |
|
|
tem = simplify_binary_operation (AND, mode, op0, op1);
|
| 5077 |
|
|
if (tem == 0)
|
| 5078 |
|
|
tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
|
| 5079 |
|
|
|
| 5080 |
|
|
if (target == 0)
|
| 5081 |
|
|
target = tem;
|
| 5082 |
|
|
else if (tem != target)
|
| 5083 |
|
|
emit_move_insn (target, tem);
|
| 5084 |
|
|
return target;
|
| 5085 |
|
|
}
|
| 5086 |
|
|
|
| 5087 |
|
|
/* Helper function for emit_store_flag. */
|
| 5088 |
|
|
static rtx
|
| 5089 |
|
|
emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
|
| 5090 |
|
|
enum machine_mode mode, enum machine_mode compare_mode,
|
| 5091 |
|
|
int unsignedp, rtx x, rtx y, int normalizep,
|
| 5092 |
|
|
enum machine_mode target_mode)
|
| 5093 |
|
|
{
|
| 5094 |
|
|
struct expand_operand ops[4];
|
| 5095 |
|
|
rtx op0, last, comparison, subtarget;
|
| 5096 |
|
|
enum machine_mode result_mode = insn_data[(int) icode].operand[0].mode;
|
| 5097 |
|
|
|
| 5098 |
|
|
last = get_last_insn ();
|
| 5099 |
|
|
x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
|
| 5100 |
|
|
y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
|
| 5101 |
|
|
if (!x || !y)
|
| 5102 |
|
|
{
|
| 5103 |
|
|
delete_insns_since (last);
|
| 5104 |
|
|
return NULL_RTX;
|
| 5105 |
|
|
}
|
| 5106 |
|
|
|
| 5107 |
|
|
if (target_mode == VOIDmode)
|
| 5108 |
|
|
target_mode = result_mode;
|
| 5109 |
|
|
if (!target)
|
| 5110 |
|
|
target = gen_reg_rtx (target_mode);
|
| 5111 |
|
|
|
| 5112 |
|
|
comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
|
| 5113 |
|
|
|
| 5114 |
|
|
create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
|
| 5115 |
|
|
create_fixed_operand (&ops[1], comparison);
|
| 5116 |
|
|
create_fixed_operand (&ops[2], x);
|
| 5117 |
|
|
create_fixed_operand (&ops[3], y);
|
| 5118 |
|
|
if (!maybe_expand_insn (icode, 4, ops))
|
| 5119 |
|
|
{
|
| 5120 |
|
|
delete_insns_since (last);
|
| 5121 |
|
|
return NULL_RTX;
|
| 5122 |
|
|
}
|
| 5123 |
|
|
subtarget = ops[0].value;
|
| 5124 |
|
|
|
| 5125 |
|
|
/* If we are converting to a wider mode, first convert to
|
| 5126 |
|
|
TARGET_MODE, then normalize. This produces better combining
|
| 5127 |
|
|
opportunities on machines that have a SIGN_EXTRACT when we are
|
| 5128 |
|
|
testing a single bit. This mostly benefits the 68k.
|
| 5129 |
|
|
|
| 5130 |
|
|
If STORE_FLAG_VALUE does not have the sign bit set when
|
| 5131 |
|
|
interpreted in MODE, we can do this conversion as unsigned, which
|
| 5132 |
|
|
is usually more efficient. */
|
| 5133 |
|
|
if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
|
| 5134 |
|
|
{
|
| 5135 |
|
|
convert_move (target, subtarget,
|
| 5136 |
|
|
val_signbit_known_clear_p (result_mode,
|
| 5137 |
|
|
STORE_FLAG_VALUE));
|
| 5138 |
|
|
op0 = target;
|
| 5139 |
|
|
result_mode = target_mode;
|
| 5140 |
|
|
}
|
| 5141 |
|
|
else
|
| 5142 |
|
|
op0 = subtarget;
|
| 5143 |
|
|
|
| 5144 |
|
|
/* If we want to keep subexpressions around, don't reuse our last
|
| 5145 |
|
|
target. */
|
| 5146 |
|
|
if (optimize)
|
| 5147 |
|
|
subtarget = 0;
|
| 5148 |
|
|
|
| 5149 |
|
|
/* Now normalize to the proper value in MODE. Sometimes we don't
|
| 5150 |
|
|
have to do anything. */
|
| 5151 |
|
|
if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
|
| 5152 |
|
|
;
|
| 5153 |
|
|
/* STORE_FLAG_VALUE might be the most negative number, so write
|
| 5154 |
|
|
the comparison this way to avoid a compiler-time warning. */
|
| 5155 |
|
|
else if (- normalizep == STORE_FLAG_VALUE)
|
| 5156 |
|
|
op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
|
| 5157 |
|
|
|
| 5158 |
|
|
/* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
|
| 5159 |
|
|
it hard to use a value of just the sign bit due to ANSI integer
|
| 5160 |
|
|
constant typing rules. */
|
| 5161 |
|
|
else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
|
| 5162 |
|
|
op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
|
| 5163 |
|
|
GET_MODE_BITSIZE (result_mode) - 1, subtarget,
|
| 5164 |
|
|
normalizep == 1);
|
| 5165 |
|
|
else
|
| 5166 |
|
|
{
|
| 5167 |
|
|
gcc_assert (STORE_FLAG_VALUE & 1);
|
| 5168 |
|
|
|
| 5169 |
|
|
op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
|
| 5170 |
|
|
if (normalizep == -1)
|
| 5171 |
|
|
op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
|
| 5172 |
|
|
}
|
| 5173 |
|
|
|
| 5174 |
|
|
/* If we were converting to a smaller mode, do the conversion now. */
|
| 5175 |
|
|
if (target_mode != result_mode)
|
| 5176 |
|
|
{
|
| 5177 |
|
|
convert_move (target, op0, 0);
|
| 5178 |
|
|
return target;
|
| 5179 |
|
|
}
|
| 5180 |
|
|
else
|
| 5181 |
|
|
return op0;
|
| 5182 |
|
|
}
|
| 5183 |
|
|
|
| 5184 |
|
|
|
| 5185 |
|
|
/* A subroutine of emit_store_flag only including "tricks" that do not
|
| 5186 |
|
|
need a recursive call. These are kept separate to avoid infinite
|
| 5187 |
|
|
loops. */
|
| 5188 |
|
|
|
| 5189 |
|
|
static rtx
|
| 5190 |
|
|
emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
| 5191 |
|
|
enum machine_mode mode, int unsignedp, int normalizep,
|
| 5192 |
|
|
enum machine_mode target_mode)
|
| 5193 |
|
|
{
|
| 5194 |
|
|
rtx subtarget;
|
| 5195 |
|
|
enum insn_code icode;
|
| 5196 |
|
|
enum machine_mode compare_mode;
|
| 5197 |
|
|
enum mode_class mclass;
|
| 5198 |
|
|
enum rtx_code scode;
|
| 5199 |
|
|
rtx tem;
|
| 5200 |
|
|
|
| 5201 |
|
|
if (unsignedp)
|
| 5202 |
|
|
code = unsigned_condition (code);
|
| 5203 |
|
|
scode = swap_condition (code);
|
| 5204 |
|
|
|
| 5205 |
|
|
/* If one operand is constant, make it the second one. Only do this
|
| 5206 |
|
|
if the other operand is not constant as well. */
|
| 5207 |
|
|
|
| 5208 |
|
|
if (swap_commutative_operands_p (op0, op1))
|
| 5209 |
|
|
{
|
| 5210 |
|
|
tem = op0;
|
| 5211 |
|
|
op0 = op1;
|
| 5212 |
|
|
op1 = tem;
|
| 5213 |
|
|
code = swap_condition (code);
|
| 5214 |
|
|
}
|
| 5215 |
|
|
|
| 5216 |
|
|
if (mode == VOIDmode)
|
| 5217 |
|
|
mode = GET_MODE (op0);
|
| 5218 |
|
|
|
| 5219 |
|
|
/* For some comparisons with 1 and -1, we can convert this to
|
| 5220 |
|
|
comparisons with zero. This will often produce more opportunities for
|
| 5221 |
|
|
store-flag insns. */
|
| 5222 |
|
|
|
| 5223 |
|
|
switch (code)
|
| 5224 |
|
|
{
|
| 5225 |
|
|
case LT:
|
| 5226 |
|
|
if (op1 == const1_rtx)
|
| 5227 |
|
|
op1 = const0_rtx, code = LE;
|
| 5228 |
|
|
break;
|
| 5229 |
|
|
case LE:
|
| 5230 |
|
|
if (op1 == constm1_rtx)
|
| 5231 |
|
|
op1 = const0_rtx, code = LT;
|
| 5232 |
|
|
break;
|
| 5233 |
|
|
case GE:
|
| 5234 |
|
|
if (op1 == const1_rtx)
|
| 5235 |
|
|
op1 = const0_rtx, code = GT;
|
| 5236 |
|
|
break;
|
| 5237 |
|
|
case GT:
|
| 5238 |
|
|
if (op1 == constm1_rtx)
|
| 5239 |
|
|
op1 = const0_rtx, code = GE;
|
| 5240 |
|
|
break;
|
| 5241 |
|
|
case GEU:
|
| 5242 |
|
|
if (op1 == const1_rtx)
|
| 5243 |
|
|
op1 = const0_rtx, code = NE;
|
| 5244 |
|
|
break;
|
| 5245 |
|
|
case LTU:
|
| 5246 |
|
|
if (op1 == const1_rtx)
|
| 5247 |
|
|
op1 = const0_rtx, code = EQ;
|
| 5248 |
|
|
break;
|
| 5249 |
|
|
default:
|
| 5250 |
|
|
break;
|
| 5251 |
|
|
}
|
| 5252 |
|
|
|
| 5253 |
|
|
/* If we are comparing a double-word integer with zero or -1, we can
|
| 5254 |
|
|
convert the comparison into one involving a single word. */
|
| 5255 |
|
|
if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
|
| 5256 |
|
|
&& GET_MODE_CLASS (mode) == MODE_INT
|
| 5257 |
|
|
&& (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
|
| 5258 |
|
|
{
|
| 5259 |
|
|
if ((code == EQ || code == NE)
|
| 5260 |
|
|
&& (op1 == const0_rtx || op1 == constm1_rtx))
|
| 5261 |
|
|
{
|
| 5262 |
|
|
rtx op00, op01;
|
| 5263 |
|
|
|
| 5264 |
|
|
/* Do a logical OR or AND of the two words and compare the
|
| 5265 |
|
|
result. */
|
| 5266 |
|
|
op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
|
| 5267 |
|
|
op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
|
| 5268 |
|
|
tem = expand_binop (word_mode,
|
| 5269 |
|
|
op1 == const0_rtx ? ior_optab : and_optab,
|
| 5270 |
|
|
op00, op01, NULL_RTX, unsignedp,
|
| 5271 |
|
|
OPTAB_DIRECT);
|
| 5272 |
|
|
|
| 5273 |
|
|
if (tem != 0)
|
| 5274 |
|
|
tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
|
| 5275 |
|
|
unsignedp, normalizep);
|
| 5276 |
|
|
}
|
| 5277 |
|
|
else if ((code == LT || code == GE) && op1 == const0_rtx)
|
| 5278 |
|
|
{
|
| 5279 |
|
|
rtx op0h;
|
| 5280 |
|
|
|
| 5281 |
|
|
/* If testing the sign bit, can just test on high word. */
|
| 5282 |
|
|
op0h = simplify_gen_subreg (word_mode, op0, mode,
|
| 5283 |
|
|
subreg_highpart_offset (word_mode,
|
| 5284 |
|
|
mode));
|
| 5285 |
|
|
tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
|
| 5286 |
|
|
unsignedp, normalizep);
|
| 5287 |
|
|
}
|
| 5288 |
|
|
else
|
| 5289 |
|
|
tem = NULL_RTX;
|
| 5290 |
|
|
|
| 5291 |
|
|
if (tem)
|
| 5292 |
|
|
{
|
| 5293 |
|
|
if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
|
| 5294 |
|
|
return tem;
|
| 5295 |
|
|
if (!target)
|
| 5296 |
|
|
target = gen_reg_rtx (target_mode);
|
| 5297 |
|
|
|
| 5298 |
|
|
convert_move (target, tem,
|
| 5299 |
|
|
!val_signbit_known_set_p (word_mode,
|
| 5300 |
|
|
(normalizep ? normalizep
|
| 5301 |
|
|
: STORE_FLAG_VALUE)));
|
| 5302 |
|
|
return target;
|
| 5303 |
|
|
}
|
| 5304 |
|
|
}
|
| 5305 |
|
|
|
| 5306 |
|
|
/* If this is A < 0 or A >= 0, we can do this by taking the ones
|
| 5307 |
|
|
complement of A (for GE) and shifting the sign bit to the low bit. */
|
| 5308 |
|
|
if (op1 == const0_rtx && (code == LT || code == GE)
|
| 5309 |
|
|
&& GET_MODE_CLASS (mode) == MODE_INT
|
| 5310 |
|
|
&& (normalizep || STORE_FLAG_VALUE == 1
|
| 5311 |
|
|
|| val_signbit_p (mode, STORE_FLAG_VALUE)))
|
| 5312 |
|
|
{
|
| 5313 |
|
|
subtarget = target;
|
| 5314 |
|
|
|
| 5315 |
|
|
if (!target)
|
| 5316 |
|
|
target_mode = mode;
|
| 5317 |
|
|
|
| 5318 |
|
|
/* If the result is to be wider than OP0, it is best to convert it
|
| 5319 |
|
|
first. If it is to be narrower, it is *incorrect* to convert it
|
| 5320 |
|
|
first. */
|
| 5321 |
|
|
else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
|
| 5322 |
|
|
{
|
| 5323 |
|
|
op0 = convert_modes (target_mode, mode, op0, 0);
|
| 5324 |
|
|
mode = target_mode;
|
| 5325 |
|
|
}
|
| 5326 |
|
|
|
| 5327 |
|
|
if (target_mode != mode)
|
| 5328 |
|
|
subtarget = 0;
|
| 5329 |
|
|
|
| 5330 |
|
|
if (code == GE)
|
| 5331 |
|
|
op0 = expand_unop (mode, one_cmpl_optab, op0,
|
| 5332 |
|
|
((STORE_FLAG_VALUE == 1 || normalizep)
|
| 5333 |
|
|
? 0 : subtarget), 0);
|
| 5334 |
|
|
|
| 5335 |
|
|
if (STORE_FLAG_VALUE == 1 || normalizep)
|
| 5336 |
|
|
/* If we are supposed to produce a 0/1 value, we want to do
|
| 5337 |
|
|
a logical shift from the sign bit to the low-order bit; for
|
| 5338 |
|
|
a -1/0 value, we do an arithmetic shift. */
|
| 5339 |
|
|
op0 = expand_shift (RSHIFT_EXPR, mode, op0,
|
| 5340 |
|
|
GET_MODE_BITSIZE (mode) - 1,
|
| 5341 |
|
|
subtarget, normalizep != -1);
|
| 5342 |
|
|
|
| 5343 |
|
|
if (mode != target_mode)
|
| 5344 |
|
|
op0 = convert_modes (target_mode, mode, op0, 0);
|
| 5345 |
|
|
|
| 5346 |
|
|
return op0;
|
| 5347 |
|
|
}
|
| 5348 |
|
|
|
| 5349 |
|
|
mclass = GET_MODE_CLASS (mode);
|
| 5350 |
|
|
for (compare_mode = mode; compare_mode != VOIDmode;
|
| 5351 |
|
|
compare_mode = GET_MODE_WIDER_MODE (compare_mode))
|
| 5352 |
|
|
{
|
| 5353 |
|
|
enum machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
|
| 5354 |
|
|
icode = optab_handler (cstore_optab, optab_mode);
|
| 5355 |
|
|
if (icode != CODE_FOR_nothing)
|
| 5356 |
|
|
{
|
| 5357 |
|
|
do_pending_stack_adjust ();
|
| 5358 |
|
|
tem = emit_cstore (target, icode, code, mode, compare_mode,
|
| 5359 |
|
|
unsignedp, op0, op1, normalizep, target_mode);
|
| 5360 |
|
|
if (tem)
|
| 5361 |
|
|
return tem;
|
| 5362 |
|
|
|
| 5363 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
| 5364 |
|
|
{
|
| 5365 |
|
|
tem = emit_cstore (target, icode, scode, mode, compare_mode,
|
| 5366 |
|
|
unsignedp, op1, op0, normalizep, target_mode);
|
| 5367 |
|
|
if (tem)
|
| 5368 |
|
|
return tem;
|
| 5369 |
|
|
}
|
| 5370 |
|
|
break;
|
| 5371 |
|
|
}
|
| 5372 |
|
|
}
|
| 5373 |
|
|
|
| 5374 |
|
|
return 0;
|
| 5375 |
|
|
}
|
| 5376 |
|
|
|
| 5377 |
|
|
/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
|
| 5378 |
|
|
and storing in TARGET. Normally return TARGET.
|
| 5379 |
|
|
Return 0 if that cannot be done.
|
| 5380 |
|
|
|
| 5381 |
|
|
MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
|
| 5382 |
|
|
it is VOIDmode, they cannot both be CONST_INT.
|
| 5383 |
|
|
|
| 5384 |
|
|
UNSIGNEDP is for the case where we have to widen the operands
|
| 5385 |
|
|
to perform the operation. It says to use zero-extension.
|
| 5386 |
|
|
|
| 5387 |
|
|
NORMALIZEP is 1 if we should convert the result to be either zero
|
| 5388 |
|
|
or one. Normalize is -1 if we should convert the result to be
|
| 5389 |
|
|
either zero or -1. If NORMALIZEP is zero, the result will be left
|
| 5390 |
|
|
"raw" out of the scc insn. */
|
| 5391 |
|
|
|
| 5392 |
|
|
rtx
|
| 5393 |
|
|
emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
| 5394 |
|
|
enum machine_mode mode, int unsignedp, int normalizep)
|
| 5395 |
|
|
{
|
| 5396 |
|
|
enum machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
|
| 5397 |
|
|
enum rtx_code rcode;
|
| 5398 |
|
|
rtx subtarget;
|
| 5399 |
|
|
rtx tem, last, trueval;
|
| 5400 |
|
|
|
| 5401 |
|
|
tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
|
| 5402 |
|
|
target_mode);
|
| 5403 |
|
|
if (tem)
|
| 5404 |
|
|
return tem;
|
| 5405 |
|
|
|
| 5406 |
|
|
/* If we reached here, we can't do this with a scc insn, however there
|
| 5407 |
|
|
are some comparisons that can be done in other ways. Don't do any
|
| 5408 |
|
|
of these cases if branches are very cheap. */
|
| 5409 |
|
|
if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
|
| 5410 |
|
|
return 0;
|
| 5411 |
|
|
|
| 5412 |
|
|
/* See what we need to return. We can only return a 1, -1, or the
|
| 5413 |
|
|
sign bit. */
|
| 5414 |
|
|
|
| 5415 |
|
|
if (normalizep == 0)
|
| 5416 |
|
|
{
|
| 5417 |
|
|
if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
|
| 5418 |
|
|
normalizep = STORE_FLAG_VALUE;
|
| 5419 |
|
|
|
| 5420 |
|
|
else if (val_signbit_p (mode, STORE_FLAG_VALUE))
|
| 5421 |
|
|
;
|
| 5422 |
|
|
else
|
| 5423 |
|
|
return 0;
|
| 5424 |
|
|
}
|
| 5425 |
|
|
|
| 5426 |
|
|
last = get_last_insn ();
|
| 5427 |
|
|
|
| 5428 |
|
|
/* If optimizing, use different pseudo registers for each insn, instead
|
| 5429 |
|
|
of reusing the same pseudo. This leads to better CSE, but slows
|
| 5430 |
|
|
down the compiler, since there are more pseudos */
|
| 5431 |
|
|
subtarget = (!optimize
|
| 5432 |
|
|
&& (target_mode == mode)) ? target : NULL_RTX;
|
| 5433 |
|
|
trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
|
| 5434 |
|
|
|
| 5435 |
|
|
/* For floating-point comparisons, try the reverse comparison or try
|
| 5436 |
|
|
changing the "orderedness" of the comparison. */
|
| 5437 |
|
|
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
|
| 5438 |
|
|
{
|
| 5439 |
|
|
enum rtx_code first_code;
|
| 5440 |
|
|
bool and_them;
|
| 5441 |
|
|
|
| 5442 |
|
|
rcode = reverse_condition_maybe_unordered (code);
|
| 5443 |
|
|
if (can_compare_p (rcode, mode, ccp_store_flag)
|
| 5444 |
|
|
&& (code == ORDERED || code == UNORDERED
|
| 5445 |
|
|
|| (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
|
| 5446 |
|
|
|| (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
|
| 5447 |
|
|
{
|
| 5448 |
|
|
int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
|
| 5449 |
|
|
|| (STORE_FLAG_VALUE == -1 && normalizep == 1));
|
| 5450 |
|
|
|
| 5451 |
|
|
/* For the reverse comparison, use either an addition or a XOR. */
|
| 5452 |
|
|
if (want_add
|
| 5453 |
|
|
&& rtx_cost (GEN_INT (normalizep), PLUS, 1,
|
| 5454 |
|
|
optimize_insn_for_speed_p ()) == 0)
|
| 5455 |
|
|
{
|
| 5456 |
|
|
tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
|
| 5457 |
|
|
STORE_FLAG_VALUE, target_mode);
|
| 5458 |
|
|
if (tem)
|
| 5459 |
|
|
return expand_binop (target_mode, add_optab, tem,
|
| 5460 |
|
|
GEN_INT (normalizep),
|
| 5461 |
|
|
target, 0, OPTAB_WIDEN);
|
| 5462 |
|
|
}
|
| 5463 |
|
|
else if (!want_add
|
| 5464 |
|
|
&& rtx_cost (trueval, XOR, 1,
|
| 5465 |
|
|
optimize_insn_for_speed_p ()) == 0)
|
| 5466 |
|
|
{
|
| 5467 |
|
|
tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
|
| 5468 |
|
|
normalizep, target_mode);
|
| 5469 |
|
|
if (tem)
|
| 5470 |
|
|
return expand_binop (target_mode, xor_optab, tem, trueval,
|
| 5471 |
|
|
target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
|
| 5472 |
|
|
}
|
| 5473 |
|
|
}
|
| 5474 |
|
|
|
| 5475 |
|
|
delete_insns_since (last);
|
| 5476 |
|
|
|
| 5477 |
|
|
/* Cannot split ORDERED and UNORDERED, only try the above trick. */
|
| 5478 |
|
|
if (code == ORDERED || code == UNORDERED)
|
| 5479 |
|
|
return 0;
|
| 5480 |
|
|
|
| 5481 |
|
|
and_them = split_comparison (code, mode, &first_code, &code);
|
| 5482 |
|
|
|
| 5483 |
|
|
/* If there are no NaNs, the first comparison should always fall through.
|
| 5484 |
|
|
Effectively change the comparison to the other one. */
|
| 5485 |
|
|
if (!HONOR_NANS (mode))
|
| 5486 |
|
|
{
|
| 5487 |
|
|
gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
|
| 5488 |
|
|
return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
|
| 5489 |
|
|
target_mode);
|
| 5490 |
|
|
}
|
| 5491 |
|
|
|
| 5492 |
|
|
#ifdef HAVE_conditional_move
|
| 5493 |
|
|
/* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
|
| 5494 |
|
|
conditional move. */
|
| 5495 |
|
|
tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
|
| 5496 |
|
|
normalizep, target_mode);
|
| 5497 |
|
|
if (tem == 0)
|
| 5498 |
|
|
return 0;
|
| 5499 |
|
|
|
| 5500 |
|
|
if (and_them)
|
| 5501 |
|
|
tem = emit_conditional_move (target, code, op0, op1, mode,
|
| 5502 |
|
|
tem, const0_rtx, GET_MODE (tem), 0);
|
| 5503 |
|
|
else
|
| 5504 |
|
|
tem = emit_conditional_move (target, code, op0, op1, mode,
|
| 5505 |
|
|
trueval, tem, GET_MODE (tem), 0);
|
| 5506 |
|
|
|
| 5507 |
|
|
if (tem == 0)
|
| 5508 |
|
|
delete_insns_since (last);
|
| 5509 |
|
|
return tem;
|
| 5510 |
|
|
#else
|
| 5511 |
|
|
return 0;
|
| 5512 |
|
|
#endif
|
| 5513 |
|
|
}
|
| 5514 |
|
|
|
| 5515 |
|
|
/* The remaining tricks only apply to integer comparisons. */
|
| 5516 |
|
|
|
| 5517 |
|
|
if (GET_MODE_CLASS (mode) != MODE_INT)
|
| 5518 |
|
|
return 0;
|
| 5519 |
|
|
|
| 5520 |
|
|
/* If this is an equality comparison of integers, we can try to exclusive-or
|
| 5521 |
|
|
(or subtract) the two operands and use a recursive call to try the
|
| 5522 |
|
|
comparison with zero. Don't do any of these cases if branches are
|
| 5523 |
|
|
very cheap. */
|
| 5524 |
|
|
|
| 5525 |
|
|
if ((code == EQ || code == NE) && op1 != const0_rtx)
|
| 5526 |
|
|
{
|
| 5527 |
|
|
tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
|
| 5528 |
|
|
OPTAB_WIDEN);
|
| 5529 |
|
|
|
| 5530 |
|
|
if (tem == 0)
|
| 5531 |
|
|
tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
|
| 5532 |
|
|
OPTAB_WIDEN);
|
| 5533 |
|
|
if (tem != 0)
|
| 5534 |
|
|
tem = emit_store_flag (target, code, tem, const0_rtx,
|
| 5535 |
|
|
mode, unsignedp, normalizep);
|
| 5536 |
|
|
if (tem != 0)
|
| 5537 |
|
|
return tem;
|
| 5538 |
|
|
|
| 5539 |
|
|
delete_insns_since (last);
|
| 5540 |
|
|
}
|
| 5541 |
|
|
|
| 5542 |
|
|
/* For integer comparisons, try the reverse comparison. However, for
|
| 5543 |
|
|
small X and if we'd have anyway to extend, implementing "X != 0"
|
| 5544 |
|
|
as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
|
| 5545 |
|
|
rcode = reverse_condition (code);
|
| 5546 |
|
|
if (can_compare_p (rcode, mode, ccp_store_flag)
|
| 5547 |
|
|
&& ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
|
| 5548 |
|
|
&& code == NE
|
| 5549 |
|
|
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD
|
| 5550 |
|
|
&& op1 == const0_rtx))
|
| 5551 |
|
|
{
|
| 5552 |
|
|
int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
|
| 5553 |
|
|
|| (STORE_FLAG_VALUE == -1 && normalizep == 1));
|
| 5554 |
|
|
|
| 5555 |
|
|
/* Again, for the reverse comparison, use either an addition or a XOR. */
|
| 5556 |
|
|
if (want_add
|
| 5557 |
|
|
&& rtx_cost (GEN_INT (normalizep), PLUS, 1,
|
| 5558 |
|
|
optimize_insn_for_speed_p ()) == 0)
|
| 5559 |
|
|
{
|
| 5560 |
|
|
tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
|
| 5561 |
|
|
STORE_FLAG_VALUE, target_mode);
|
| 5562 |
|
|
if (tem != 0)
|
| 5563 |
|
|
tem = expand_binop (target_mode, add_optab, tem,
|
| 5564 |
|
|
GEN_INT (normalizep), target, 0, OPTAB_WIDEN);
|
| 5565 |
|
|
}
|
| 5566 |
|
|
else if (!want_add
|
| 5567 |
|
|
&& rtx_cost (trueval, XOR, 1,
|
| 5568 |
|
|
optimize_insn_for_speed_p ()) == 0)
|
| 5569 |
|
|
{
|
| 5570 |
|
|
tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
|
| 5571 |
|
|
normalizep, target_mode);
|
| 5572 |
|
|
if (tem != 0)
|
| 5573 |
|
|
tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
|
| 5574 |
|
|
INTVAL (trueval) >= 0, OPTAB_WIDEN);
|
| 5575 |
|
|
}
|
| 5576 |
|
|
|
| 5577 |
|
|
if (tem != 0)
|
| 5578 |
|
|
return tem;
|
| 5579 |
|
|
delete_insns_since (last);
|
| 5580 |
|
|
}
|
| 5581 |
|
|
|
| 5582 |
|
|
/* Some other cases we can do are EQ, NE, LE, and GT comparisons with
|
| 5583 |
|
|
the constant zero. Reject all other comparisons at this point. Only
|
| 5584 |
|
|
do LE and GT if branches are expensive since they are expensive on
|
| 5585 |
|
|
2-operand machines. */
|
| 5586 |
|
|
|
| 5587 |
|
|
if (op1 != const0_rtx
|
| 5588 |
|
|
|| (code != EQ && code != NE
|
| 5589 |
|
|
&& (BRANCH_COST (optimize_insn_for_speed_p (),
|
| 5590 |
|
|
false) <= 1 || (code != LE && code != GT))))
|
| 5591 |
|
|
return 0;
|
| 5592 |
|
|
|
| 5593 |
|
|
/* Try to put the result of the comparison in the sign bit. Assume we can't
|
| 5594 |
|
|
do the necessary operation below. */
|
| 5595 |
|
|
|
| 5596 |
|
|
tem = 0;
|
| 5597 |
|
|
|
| 5598 |
|
|
/* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
|
| 5599 |
|
|
the sign bit set. */
|
| 5600 |
|
|
|
| 5601 |
|
|
if (code == LE)
|
| 5602 |
|
|
{
|
| 5603 |
|
|
/* This is destructive, so SUBTARGET can't be OP0. */
|
| 5604 |
|
|
if (rtx_equal_p (subtarget, op0))
|
| 5605 |
|
|
subtarget = 0;
|
| 5606 |
|
|
|
| 5607 |
|
|
tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
|
| 5608 |
|
|
OPTAB_WIDEN);
|
| 5609 |
|
|
if (tem)
|
| 5610 |
|
|
tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
|
| 5611 |
|
|
OPTAB_WIDEN);
|
| 5612 |
|
|
}
|
| 5613 |
|
|
|
| 5614 |
|
|
/* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
|
| 5615 |
|
|
number of bits in the mode of OP0, minus one. */
|
| 5616 |
|
|
|
| 5617 |
|
|
if (code == GT)
|
| 5618 |
|
|
{
|
| 5619 |
|
|
if (rtx_equal_p (subtarget, op0))
|
| 5620 |
|
|
subtarget = 0;
|
| 5621 |
|
|
|
| 5622 |
|
|
tem = expand_shift (RSHIFT_EXPR, mode, op0,
|
| 5623 |
|
|
GET_MODE_BITSIZE (mode) - 1,
|
| 5624 |
|
|
subtarget, 0);
|
| 5625 |
|
|
tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
|
| 5626 |
|
|
OPTAB_WIDEN);
|
| 5627 |
|
|
}
|
| 5628 |
|
|
|
| 5629 |
|
|
if (code == EQ || code == NE)
|
| 5630 |
|
|
{
|
| 5631 |
|
|
/* For EQ or NE, one way to do the comparison is to apply an operation
|
| 5632 |
|
|
that converts the operand into a positive number if it is nonzero
|
| 5633 |
|
|
or zero if it was originally zero. Then, for EQ, we subtract 1 and
|
| 5634 |
|
|
for NE we negate. This puts the result in the sign bit. Then we
|
| 5635 |
|
|
normalize with a shift, if needed.
|
| 5636 |
|
|
|
| 5637 |
|
|
Two operations that can do the above actions are ABS and FFS, so try
|
| 5638 |
|
|
them. If that doesn't work, and MODE is smaller than a full word,
|
| 5639 |
|
|
we can use zero-extension to the wider mode (an unsigned conversion)
|
| 5640 |
|
|
as the operation. */
|
| 5641 |
|
|
|
| 5642 |
|
|
/* Note that ABS doesn't yield a positive number for INT_MIN, but
|
| 5643 |
|
|
that is compensated by the subsequent overflow when subtracting
|
| 5644 |
|
|
one / negating. */
|
| 5645 |
|
|
|
| 5646 |
|
|
if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
|
| 5647 |
|
|
tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
|
| 5648 |
|
|
else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
|
| 5649 |
|
|
tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
|
| 5650 |
|
|
else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
|
| 5651 |
|
|
{
|
| 5652 |
|
|
tem = convert_modes (word_mode, mode, op0, 1);
|
| 5653 |
|
|
mode = word_mode;
|
| 5654 |
|
|
}
|
| 5655 |
|
|
|
| 5656 |
|
|
if (tem != 0)
|
| 5657 |
|
|
{
|
| 5658 |
|
|
if (code == EQ)
|
| 5659 |
|
|
tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
|
| 5660 |
|
|
0, OPTAB_WIDEN);
|
| 5661 |
|
|
else
|
| 5662 |
|
|
tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
|
| 5663 |
|
|
}
|
| 5664 |
|
|
|
| 5665 |
|
|
/* If we couldn't do it that way, for NE we can "or" the two's complement
|
| 5666 |
|
|
of the value with itself. For EQ, we take the one's complement of
|
| 5667 |
|
|
that "or", which is an extra insn, so we only handle EQ if branches
|
| 5668 |
|
|
are expensive. */
|
| 5669 |
|
|
|
| 5670 |
|
|
if (tem == 0
|
| 5671 |
|
|
&& (code == NE
|
| 5672 |
|
|
|| BRANCH_COST (optimize_insn_for_speed_p (),
|
| 5673 |
|
|
false) > 1))
|
| 5674 |
|
|
{
|
| 5675 |
|
|
if (rtx_equal_p (subtarget, op0))
|
| 5676 |
|
|
subtarget = 0;
|
| 5677 |
|
|
|
| 5678 |
|
|
tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
|
| 5679 |
|
|
tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
|
| 5680 |
|
|
OPTAB_WIDEN);
|
| 5681 |
|
|
|
| 5682 |
|
|
if (tem && code == EQ)
|
| 5683 |
|
|
tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
|
| 5684 |
|
|
}
|
| 5685 |
|
|
}
|
| 5686 |
|
|
|
| 5687 |
|
|
if (tem && normalizep)
|
| 5688 |
|
|
tem = expand_shift (RSHIFT_EXPR, mode, tem,
|
| 5689 |
|
|
GET_MODE_BITSIZE (mode) - 1,
|
| 5690 |
|
|
subtarget, normalizep == 1);
|
| 5691 |
|
|
|
| 5692 |
|
|
if (tem)
|
| 5693 |
|
|
{
|
| 5694 |
|
|
if (!target)
|
| 5695 |
|
|
;
|
| 5696 |
|
|
else if (GET_MODE (tem) != target_mode)
|
| 5697 |
|
|
{
|
| 5698 |
|
|
convert_move (target, tem, 0);
|
| 5699 |
|
|
tem = target;
|
| 5700 |
|
|
}
|
| 5701 |
|
|
else if (!subtarget)
|
| 5702 |
|
|
{
|
| 5703 |
|
|
emit_move_insn (target, tem);
|
| 5704 |
|
|
tem = target;
|
| 5705 |
|
|
}
|
| 5706 |
|
|
}
|
| 5707 |
|
|
else
|
| 5708 |
|
|
delete_insns_since (last);
|
| 5709 |
|
|
|
| 5710 |
|
|
return tem;
|
| 5711 |
|
|
}
|
| 5712 |
|
|
|
| 5713 |
|
|
/* Like emit_store_flag, but always succeeds. */
|
| 5714 |
|
|
|
| 5715 |
|
|
rtx
|
| 5716 |
|
|
emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
|
| 5717 |
|
|
enum machine_mode mode, int unsignedp, int normalizep)
|
| 5718 |
|
|
{
|
| 5719 |
|
|
rtx tem, label;
|
| 5720 |
|
|
rtx trueval, falseval;
|
| 5721 |
|
|
|
| 5722 |
|
|
/* First see if emit_store_flag can do the job. */
|
| 5723 |
|
|
tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
|
| 5724 |
|
|
if (tem != 0)
|
| 5725 |
|
|
return tem;
|
| 5726 |
|
|
|
| 5727 |
|
|
if (!target)
|
| 5728 |
|
|
target = gen_reg_rtx (word_mode);
|
| 5729 |
|
|
|
| 5730 |
|
|
/* If this failed, we have to do this with set/compare/jump/set code.
|
| 5731 |
|
|
For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
|
| 5732 |
|
|
trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
|
| 5733 |
|
|
if (code == NE
|
| 5734 |
|
|
&& GET_MODE_CLASS (mode) == MODE_INT
|
| 5735 |
|
|
&& REG_P (target)
|
| 5736 |
|
|
&& op0 == target
|
| 5737 |
|
|
&& op1 == const0_rtx)
|
| 5738 |
|
|
{
|
| 5739 |
|
|
label = gen_label_rtx ();
|
| 5740 |
|
|
do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
|
| 5741 |
|
|
mode, NULL_RTX, NULL_RTX, label, -1);
|
| 5742 |
|
|
emit_move_insn (target, trueval);
|
| 5743 |
|
|
emit_label (label);
|
| 5744 |
|
|
return target;
|
| 5745 |
|
|
}
|
| 5746 |
|
|
|
| 5747 |
|
|
if (!REG_P (target)
|
| 5748 |
|
|
|| reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
|
| 5749 |
|
|
target = gen_reg_rtx (GET_MODE (target));
|
| 5750 |
|
|
|
| 5751 |
|
|
/* Jump in the right direction if the target cannot implement CODE
|
| 5752 |
|
|
but can jump on its reverse condition. */
|
| 5753 |
|
|
falseval = const0_rtx;
|
| 5754 |
|
|
if (! can_compare_p (code, mode, ccp_jump)
|
| 5755 |
|
|
&& (! FLOAT_MODE_P (mode)
|
| 5756 |
|
|
|| code == ORDERED || code == UNORDERED
|
| 5757 |
|
|
|| (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
|
| 5758 |
|
|
|| (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
|
| 5759 |
|
|
{
|
| 5760 |
|
|
enum rtx_code rcode;
|
| 5761 |
|
|
if (FLOAT_MODE_P (mode))
|
| 5762 |
|
|
rcode = reverse_condition_maybe_unordered (code);
|
| 5763 |
|
|
else
|
| 5764 |
|
|
rcode = reverse_condition (code);
|
| 5765 |
|
|
|
| 5766 |
|
|
/* Canonicalize to UNORDERED for the libcall. */
|
| 5767 |
|
|
if (can_compare_p (rcode, mode, ccp_jump)
|
| 5768 |
|
|
|| (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
|
| 5769 |
|
|
{
|
| 5770 |
|
|
falseval = trueval;
|
| 5771 |
|
|
trueval = const0_rtx;
|
| 5772 |
|
|
code = rcode;
|
| 5773 |
|
|
}
|
| 5774 |
|
|
}
|
| 5775 |
|
|
|
| 5776 |
|
|
emit_move_insn (target, trueval);
|
| 5777 |
|
|
label = gen_label_rtx ();
|
| 5778 |
|
|
do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
|
| 5779 |
|
|
NULL_RTX, label, -1);
|
| 5780 |
|
|
|
| 5781 |
|
|
emit_move_insn (target, falseval);
|
| 5782 |
|
|
emit_label (label);
|
| 5783 |
|
|
|
| 5784 |
|
|
return target;
|
| 5785 |
|
|
}
|
| 5786 |
|
|
|
| 5787 |
|
|
/* Perform possibly multi-word comparison and conditional jump to LABEL
|
| 5788 |
|
|
if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
|
| 5789 |
|
|
now a thin wrapper around do_compare_rtx_and_jump. */
|
| 5790 |
|
|
|
| 5791 |
|
|
static void
|
| 5792 |
|
|
do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
|
| 5793 |
|
|
rtx label)
|
| 5794 |
|
|
{
|
| 5795 |
|
|
int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
|
| 5796 |
|
|
do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
|
| 5797 |
|
|
NULL_RTX, NULL_RTX, label, -1);
|
| 5798 |
|
|
}
|