OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [fortran/] [arith.c] - Blame information for rev 722

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 712 jeremybenn
/* Compiler arithmetic
2
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3
   2009, 2010
4
   Free Software Foundation, Inc.
5
   Contributed by Andy Vaught
6
 
7
This file is part of GCC.
8
 
9
GCC is free software; you can redistribute it and/or modify it under
10
the terms of the GNU General Public License as published by the Free
11
Software Foundation; either version 3, or (at your option) any later
12
version.
13
 
14
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15
WARRANTY; without even the implied warranty of MERCHANTABILITY or
16
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17
for more details.
18
 
19
You should have received a copy of the GNU General Public License
20
along with GCC; see the file COPYING3.  If not see
21
<http://www.gnu.org/licenses/>.  */
22
 
23
/* Since target arithmetic must be done on the host, there has to
24
   be some way of evaluating arithmetic expressions as the host
25
   would evaluate them.  We use the GNU MP library and the MPFR
26
   library to do arithmetic, and this file provides the interface.  */
27
 
28
#include "config.h"
29
#include "system.h"
30
#include "flags.h"
31
#include "gfortran.h"
32
#include "arith.h"
33
#include "target-memory.h"
34
#include "constructor.h"
35
 
36
/* MPFR does not have a direct replacement for mpz_set_f() from GMP.
37
   It's easily implemented with a few calls though.  */
38
 
39
void
40
gfc_mpfr_to_mpz (mpz_t z, mpfr_t x, locus *where)
41
{
42
  mp_exp_t e;
43
 
44
  if (mpfr_inf_p (x) || mpfr_nan_p (x))
45
    {
46
      gfc_error ("Conversion of an Infinity or Not-a-Number at %L "
47
                 "to INTEGER", where);
48
      mpz_set_ui (z, 0);
49
      return;
50
    }
51
 
52
  e = mpfr_get_z_exp (z, x);
53
 
54
  if (e > 0)
55
    mpz_mul_2exp (z, z, e);
56
  else
57
    mpz_tdiv_q_2exp (z, z, -e);
58
}
59
 
60
 
61
/* Set the model number precision by the requested KIND.  */
62
 
63
void
64
gfc_set_model_kind (int kind)
65
{
66
  int index = gfc_validate_kind (BT_REAL, kind, false);
67
  int base2prec;
68
 
69
  base2prec = gfc_real_kinds[index].digits;
70
  if (gfc_real_kinds[index].radix != 2)
71
    base2prec *= gfc_real_kinds[index].radix / 2;
72
  mpfr_set_default_prec (base2prec);
73
}
74
 
75
 
76
/* Set the model number precision from mpfr_t x.  */
77
 
78
void
79
gfc_set_model (mpfr_t x)
80
{
81
  mpfr_set_default_prec (mpfr_get_prec (x));
82
}
83
 
84
 
85
/* Given an arithmetic error code, return a pointer to a string that
86
   explains the error.  */
87
 
88
static const char *
89
gfc_arith_error (arith code)
90
{
91
  const char *p;
92
 
93
  switch (code)
94
    {
95
    case ARITH_OK:
96
      p = _("Arithmetic OK at %L");
97
      break;
98
    case ARITH_OVERFLOW:
99
      p = _("Arithmetic overflow at %L");
100
      break;
101
    case ARITH_UNDERFLOW:
102
      p = _("Arithmetic underflow at %L");
103
      break;
104
    case ARITH_NAN:
105
      p = _("Arithmetic NaN at %L");
106
      break;
107
    case ARITH_DIV0:
108
      p = _("Division by zero at %L");
109
      break;
110
    case ARITH_INCOMMENSURATE:
111
      p = _("Array operands are incommensurate at %L");
112
      break;
113
    case ARITH_ASYMMETRIC:
114
      p =
115
        _("Integer outside symmetric range implied by Standard Fortran at %L");
116
      break;
117
    default:
118
      gfc_internal_error ("gfc_arith_error(): Bad error code");
119
    }
120
 
121
  return p;
122
}
123
 
124
 
125
/* Get things ready to do math.  */
126
 
127
void
128
gfc_arith_init_1 (void)
129
{
130
  gfc_integer_info *int_info;
131
  gfc_real_info *real_info;
132
  mpfr_t a, b;
133
  int i;
134
 
135
  mpfr_set_default_prec (128);
136
  mpfr_init (a);
137
 
138
  /* Convert the minimum and maximum values for each kind into their
139
     GNU MP representation.  */
140
  for (int_info = gfc_integer_kinds; int_info->kind != 0; int_info++)
141
    {
142
      /* Huge  */
143
      mpz_init (int_info->huge);
144
      mpz_set_ui (int_info->huge, int_info->radix);
145
      mpz_pow_ui (int_info->huge, int_info->huge, int_info->digits);
146
      mpz_sub_ui (int_info->huge, int_info->huge, 1);
147
 
148
      /* These are the numbers that are actually representable by the
149
         target.  For bases other than two, this needs to be changed.  */
150
      if (int_info->radix != 2)
151
        gfc_internal_error ("Fix min_int calculation");
152
 
153
      /* See PRs 13490 and 17912, related to integer ranges.
154
         The pedantic_min_int exists for range checking when a program
155
         is compiled with -pedantic, and reflects the belief that
156
         Standard Fortran requires integers to be symmetrical, i.e.
157
         every negative integer must have a representable positive
158
         absolute value, and vice versa.  */
159
 
160
      mpz_init (int_info->pedantic_min_int);
161
      mpz_neg (int_info->pedantic_min_int, int_info->huge);
162
 
163
      mpz_init (int_info->min_int);
164
      mpz_sub_ui (int_info->min_int, int_info->pedantic_min_int, 1);
165
 
166
      /* Range  */
167
      mpfr_set_z (a, int_info->huge, GFC_RND_MODE);
168
      mpfr_log10 (a, a, GFC_RND_MODE);
169
      mpfr_trunc (a, a);
170
      int_info->range = (int) mpfr_get_si (a, GFC_RND_MODE);
171
    }
172
 
173
  mpfr_clear (a);
174
 
175
  for (real_info = gfc_real_kinds; real_info->kind != 0; real_info++)
176
    {
177
      gfc_set_model_kind (real_info->kind);
178
 
179
      mpfr_init (a);
180
      mpfr_init (b);
181
 
182
      /* huge(x) = (1 - b**(-p)) * b**(emax-1) * b  */
183
      /* 1 - b**(-p)  */
184
      mpfr_init (real_info->huge);
185
      mpfr_set_ui (real_info->huge, 1, GFC_RND_MODE);
186
      mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
187
      mpfr_pow_si (a, a, -real_info->digits, GFC_RND_MODE);
188
      mpfr_sub (real_info->huge, real_info->huge, a, GFC_RND_MODE);
189
 
190
      /* b**(emax-1)  */
191
      mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
192
      mpfr_pow_ui (a, a, real_info->max_exponent - 1, GFC_RND_MODE);
193
 
194
      /* (1 - b**(-p)) * b**(emax-1)  */
195
      mpfr_mul (real_info->huge, real_info->huge, a, GFC_RND_MODE);
196
 
197
      /* (1 - b**(-p)) * b**(emax-1) * b  */
198
      mpfr_mul_ui (real_info->huge, real_info->huge, real_info->radix,
199
                   GFC_RND_MODE);
200
 
201
      /* tiny(x) = b**(emin-1)  */
202
      mpfr_init (real_info->tiny);
203
      mpfr_set_ui (real_info->tiny, real_info->radix, GFC_RND_MODE);
204
      mpfr_pow_si (real_info->tiny, real_info->tiny,
205
                   real_info->min_exponent - 1, GFC_RND_MODE);
206
 
207
      /* subnormal (x) = b**(emin - digit)  */
208
      mpfr_init (real_info->subnormal);
209
      mpfr_set_ui (real_info->subnormal, real_info->radix, GFC_RND_MODE);
210
      mpfr_pow_si (real_info->subnormal, real_info->subnormal,
211
                   real_info->min_exponent - real_info->digits, GFC_RND_MODE);
212
 
213
      /* epsilon(x) = b**(1-p)  */
214
      mpfr_init (real_info->epsilon);
215
      mpfr_set_ui (real_info->epsilon, real_info->radix, GFC_RND_MODE);
216
      mpfr_pow_si (real_info->epsilon, real_info->epsilon,
217
                   1 - real_info->digits, GFC_RND_MODE);
218
 
219
      /* range(x) = int(min(log10(huge(x)), -log10(tiny))  */
220
      mpfr_log10 (a, real_info->huge, GFC_RND_MODE);
221
      mpfr_log10 (b, real_info->tiny, GFC_RND_MODE);
222
      mpfr_neg (b, b, GFC_RND_MODE);
223
 
224
      /* a = min(a, b)  */
225
      mpfr_min (a, a, b, GFC_RND_MODE);
226
      mpfr_trunc (a, a);
227
      real_info->range = (int) mpfr_get_si (a, GFC_RND_MODE);
228
 
229
      /* precision(x) = int((p - 1) * log10(b)) + k  */
230
      mpfr_set_ui (a, real_info->radix, GFC_RND_MODE);
231
      mpfr_log10 (a, a, GFC_RND_MODE);
232
      mpfr_mul_ui (a, a, real_info->digits - 1, GFC_RND_MODE);
233
      mpfr_trunc (a, a);
234
      real_info->precision = (int) mpfr_get_si (a, GFC_RND_MODE);
235
 
236
      /* If the radix is an integral power of 10, add one to the precision.  */
237
      for (i = 10; i <= real_info->radix; i *= 10)
238
        if (i == real_info->radix)
239
          real_info->precision++;
240
 
241
      mpfr_clears (a, b, NULL);
242
    }
243
}
244
 
245
 
246
/* Clean up, get rid of numeric constants.  */
247
 
248
void
249
gfc_arith_done_1 (void)
250
{
251
  gfc_integer_info *ip;
252
  gfc_real_info *rp;
253
 
254
  for (ip = gfc_integer_kinds; ip->kind; ip++)
255
    {
256
      mpz_clear (ip->min_int);
257
      mpz_clear (ip->pedantic_min_int);
258
      mpz_clear (ip->huge);
259
    }
260
 
261
  for (rp = gfc_real_kinds; rp->kind; rp++)
262
    mpfr_clears (rp->epsilon, rp->huge, rp->tiny, rp->subnormal, NULL);
263
 
264
  mpfr_free_cache ();
265
}
266
 
267
 
268
/* Given a wide character value and a character kind, determine whether
269
   the character is representable for that kind.  */
270
bool
271
gfc_check_character_range (gfc_char_t c, int kind)
272
{
273
  /* As wide characters are stored as 32-bit values, they're all
274
     representable in UCS=4.  */
275
  if (kind == 4)
276
    return true;
277
 
278
  if (kind == 1)
279
    return c <= 255 ? true : false;
280
 
281
  gcc_unreachable ();
282
}
283
 
284
 
285
/* Given an integer and a kind, make sure that the integer lies within
286
   the range of the kind.  Returns ARITH_OK, ARITH_ASYMMETRIC or
287
   ARITH_OVERFLOW.  */
288
 
289
arith
290
gfc_check_integer_range (mpz_t p, int kind)
291
{
292
  arith result;
293
  int i;
294
 
295
  i = gfc_validate_kind (BT_INTEGER, kind, false);
296
  result = ARITH_OK;
297
 
298
  if (pedantic)
299
    {
300
      if (mpz_cmp (p, gfc_integer_kinds[i].pedantic_min_int) < 0)
301
        result = ARITH_ASYMMETRIC;
302
    }
303
 
304
 
305
  if (gfc_option.flag_range_check == 0)
306
    return result;
307
 
308
  if (mpz_cmp (p, gfc_integer_kinds[i].min_int) < 0
309
      || mpz_cmp (p, gfc_integer_kinds[i].huge) > 0)
310
    result = ARITH_OVERFLOW;
311
 
312
  return result;
313
}
314
 
315
 
316
/* Given a real and a kind, make sure that the real lies within the
317
   range of the kind.  Returns ARITH_OK, ARITH_OVERFLOW or
318
   ARITH_UNDERFLOW.  */
319
 
320
static arith
321
gfc_check_real_range (mpfr_t p, int kind)
322
{
323
  arith retval;
324
  mpfr_t q;
325
  int i;
326
 
327
  i = gfc_validate_kind (BT_REAL, kind, false);
328
 
329
  gfc_set_model (p);
330
  mpfr_init (q);
331
  mpfr_abs (q, p, GFC_RND_MODE);
332
 
333
  retval = ARITH_OK;
334
 
335
  if (mpfr_inf_p (p))
336
    {
337
      if (gfc_option.flag_range_check != 0)
338
        retval = ARITH_OVERFLOW;
339
    }
340
  else if (mpfr_nan_p (p))
341
    {
342
      if (gfc_option.flag_range_check != 0)
343
        retval = ARITH_NAN;
344
    }
345
  else if (mpfr_sgn (q) == 0)
346
    {
347
      mpfr_clear (q);
348
      return retval;
349
    }
350
  else if (mpfr_cmp (q, gfc_real_kinds[i].huge) > 0)
351
    {
352
      if (gfc_option.flag_range_check == 0)
353
        mpfr_set_inf (p, mpfr_sgn (p));
354
      else
355
        retval = ARITH_OVERFLOW;
356
    }
357
  else if (mpfr_cmp (q, gfc_real_kinds[i].subnormal) < 0)
358
    {
359
      if (gfc_option.flag_range_check == 0)
360
        {
361
          if (mpfr_sgn (p) < 0)
362
            {
363
              mpfr_set_ui (p, 0, GFC_RND_MODE);
364
              mpfr_set_si (q, -1, GFC_RND_MODE);
365
              mpfr_copysign (p, p, q, GFC_RND_MODE);
366
            }
367
          else
368
            mpfr_set_ui (p, 0, GFC_RND_MODE);
369
        }
370
      else
371
        retval = ARITH_UNDERFLOW;
372
    }
373
  else if (mpfr_cmp (q, gfc_real_kinds[i].tiny) < 0)
374
    {
375
      mp_exp_t emin, emax;
376
      int en;
377
 
378
      /* Save current values of emin and emax.  */
379
      emin = mpfr_get_emin ();
380
      emax = mpfr_get_emax ();
381
 
382
      /* Set emin and emax for the current model number.  */
383
      en = gfc_real_kinds[i].min_exponent - gfc_real_kinds[i].digits + 1;
384
      mpfr_set_emin ((mp_exp_t) en);
385
      mpfr_set_emax ((mp_exp_t) gfc_real_kinds[i].max_exponent);
386
      mpfr_check_range (q, 0, GFC_RND_MODE);
387
      mpfr_subnormalize (q, 0, GFC_RND_MODE);
388
 
389
      /* Reset emin and emax.  */
390
      mpfr_set_emin (emin);
391
      mpfr_set_emax (emax);
392
 
393
      /* Copy sign if needed.  */
394
      if (mpfr_sgn (p) < 0)
395
        mpfr_neg (p, q, GMP_RNDN);
396
      else
397
        mpfr_set (p, q, GMP_RNDN);
398
    }
399
 
400
  mpfr_clear (q);
401
 
402
  return retval;
403
}
404
 
405
 
406
/* Low-level arithmetic functions.  All of these subroutines assume
407
   that all operands are of the same type and return an operand of the
408
   same type.  The other thing about these subroutines is that they
409
   can fail in various ways -- overflow, underflow, division by zero,
410
   zero raised to the zero, etc.  */
411
 
412
static arith
413
gfc_arith_not (gfc_expr *op1, gfc_expr **resultp)
414
{
415
  gfc_expr *result;
416
 
417
  result = gfc_get_constant_expr (BT_LOGICAL, op1->ts.kind, &op1->where);
418
  result->value.logical = !op1->value.logical;
419
  *resultp = result;
420
 
421
  return ARITH_OK;
422
}
423
 
424
 
425
static arith
426
gfc_arith_and (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
427
{
428
  gfc_expr *result;
429
 
430
  result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
431
                                  &op1->where);
432
  result->value.logical = op1->value.logical && op2->value.logical;
433
  *resultp = result;
434
 
435
  return ARITH_OK;
436
}
437
 
438
 
439
static arith
440
gfc_arith_or (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
441
{
442
  gfc_expr *result;
443
 
444
  result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
445
                                  &op1->where);
446
  result->value.logical = op1->value.logical || op2->value.logical;
447
  *resultp = result;
448
 
449
  return ARITH_OK;
450
}
451
 
452
 
453
static arith
454
gfc_arith_eqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
455
{
456
  gfc_expr *result;
457
 
458
  result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
459
                                  &op1->where);
460
  result->value.logical = op1->value.logical == op2->value.logical;
461
  *resultp = result;
462
 
463
  return ARITH_OK;
464
}
465
 
466
 
467
static arith
468
gfc_arith_neqv (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
469
{
470
  gfc_expr *result;
471
 
472
  result = gfc_get_constant_expr (BT_LOGICAL, gfc_kind_max (op1, op2),
473
                                  &op1->where);
474
  result->value.logical = op1->value.logical != op2->value.logical;
475
  *resultp = result;
476
 
477
  return ARITH_OK;
478
}
479
 
480
 
481
/* Make sure a constant numeric expression is within the range for
482
   its type and kind.  Note that there's also a gfc_check_range(),
483
   but that one deals with the intrinsic RANGE function.  */
484
 
485
arith
486
gfc_range_check (gfc_expr *e)
487
{
488
  arith rc;
489
  arith rc2;
490
 
491
  switch (e->ts.type)
492
    {
493
    case BT_INTEGER:
494
      rc = gfc_check_integer_range (e->value.integer, e->ts.kind);
495
      break;
496
 
497
    case BT_REAL:
498
      rc = gfc_check_real_range (e->value.real, e->ts.kind);
499
      if (rc == ARITH_UNDERFLOW)
500
        mpfr_set_ui (e->value.real, 0, GFC_RND_MODE);
501
      if (rc == ARITH_OVERFLOW)
502
        mpfr_set_inf (e->value.real, mpfr_sgn (e->value.real));
503
      if (rc == ARITH_NAN)
504
        mpfr_set_nan (e->value.real);
505
      break;
506
 
507
    case BT_COMPLEX:
508
      rc = gfc_check_real_range (mpc_realref (e->value.complex), e->ts.kind);
509
      if (rc == ARITH_UNDERFLOW)
510
        mpfr_set_ui (mpc_realref (e->value.complex), 0, GFC_RND_MODE);
511
      if (rc == ARITH_OVERFLOW)
512
        mpfr_set_inf (mpc_realref (e->value.complex),
513
                      mpfr_sgn (mpc_realref (e->value.complex)));
514
      if (rc == ARITH_NAN)
515
        mpfr_set_nan (mpc_realref (e->value.complex));
516
 
517
      rc2 = gfc_check_real_range (mpc_imagref (e->value.complex), e->ts.kind);
518
      if (rc == ARITH_UNDERFLOW)
519
        mpfr_set_ui (mpc_imagref (e->value.complex), 0, GFC_RND_MODE);
520
      if (rc == ARITH_OVERFLOW)
521
        mpfr_set_inf (mpc_imagref (e->value.complex),
522
                      mpfr_sgn (mpc_imagref (e->value.complex)));
523
      if (rc == ARITH_NAN)
524
        mpfr_set_nan (mpc_imagref (e->value.complex));
525
 
526
      if (rc == ARITH_OK)
527
        rc = rc2;
528
      break;
529
 
530
    default:
531
      gfc_internal_error ("gfc_range_check(): Bad type");
532
    }
533
 
534
  return rc;
535
}
536
 
537
 
538
/* Several of the following routines use the same set of statements to
539
   check the validity of the result.  Encapsulate the checking here.  */
540
 
541
static arith
542
check_result (arith rc, gfc_expr *x, gfc_expr *r, gfc_expr **rp)
543
{
544
  arith val = rc;
545
 
546
  if (val == ARITH_UNDERFLOW)
547
    {
548
      if (gfc_option.warn_underflow)
549
        gfc_warning (gfc_arith_error (val), &x->where);
550
      val = ARITH_OK;
551
    }
552
 
553
  if (val == ARITH_ASYMMETRIC)
554
    {
555
      gfc_warning (gfc_arith_error (val), &x->where);
556
      val = ARITH_OK;
557
    }
558
 
559
  if (val != ARITH_OK)
560
    gfc_free_expr (r);
561
  else
562
    *rp = r;
563
 
564
  return val;
565
}
566
 
567
 
568
/* It may seem silly to have a subroutine that actually computes the
569
   unary plus of a constant, but it prevents us from making exceptions
570
   in the code elsewhere.  Used for unary plus and parenthesized
571
   expressions.  */
572
 
573
static arith
574
gfc_arith_identity (gfc_expr *op1, gfc_expr **resultp)
575
{
576
  *resultp = gfc_copy_expr (op1);
577
  return ARITH_OK;
578
}
579
 
580
 
581
static arith
582
gfc_arith_uminus (gfc_expr *op1, gfc_expr **resultp)
583
{
584
  gfc_expr *result;
585
  arith rc;
586
 
587
  result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
588
 
589
  switch (op1->ts.type)
590
    {
591
    case BT_INTEGER:
592
      mpz_neg (result->value.integer, op1->value.integer);
593
      break;
594
 
595
    case BT_REAL:
596
      mpfr_neg (result->value.real, op1->value.real, GFC_RND_MODE);
597
      break;
598
 
599
    case BT_COMPLEX:
600
      mpc_neg (result->value.complex, op1->value.complex, GFC_MPC_RND_MODE);
601
      break;
602
 
603
    default:
604
      gfc_internal_error ("gfc_arith_uminus(): Bad basic type");
605
    }
606
 
607
  rc = gfc_range_check (result);
608
 
609
  return check_result (rc, op1, result, resultp);
610
}
611
 
612
 
613
static arith
614
gfc_arith_plus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
615
{
616
  gfc_expr *result;
617
  arith rc;
618
 
619
  result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
620
 
621
  switch (op1->ts.type)
622
    {
623
    case BT_INTEGER:
624
      mpz_add (result->value.integer, op1->value.integer, op2->value.integer);
625
      break;
626
 
627
    case BT_REAL:
628
      mpfr_add (result->value.real, op1->value.real, op2->value.real,
629
               GFC_RND_MODE);
630
      break;
631
 
632
    case BT_COMPLEX:
633
      mpc_add (result->value.complex, op1->value.complex, op2->value.complex,
634
               GFC_MPC_RND_MODE);
635
      break;
636
 
637
    default:
638
      gfc_internal_error ("gfc_arith_plus(): Bad basic type");
639
    }
640
 
641
  rc = gfc_range_check (result);
642
 
643
  return check_result (rc, op1, result, resultp);
644
}
645
 
646
 
647
static arith
648
gfc_arith_minus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
649
{
650
  gfc_expr *result;
651
  arith rc;
652
 
653
  result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
654
 
655
  switch (op1->ts.type)
656
    {
657
    case BT_INTEGER:
658
      mpz_sub (result->value.integer, op1->value.integer, op2->value.integer);
659
      break;
660
 
661
    case BT_REAL:
662
      mpfr_sub (result->value.real, op1->value.real, op2->value.real,
663
                GFC_RND_MODE);
664
      break;
665
 
666
    case BT_COMPLEX:
667
      mpc_sub (result->value.complex, op1->value.complex,
668
               op2->value.complex, GFC_MPC_RND_MODE);
669
      break;
670
 
671
    default:
672
      gfc_internal_error ("gfc_arith_minus(): Bad basic type");
673
    }
674
 
675
  rc = gfc_range_check (result);
676
 
677
  return check_result (rc, op1, result, resultp);
678
}
679
 
680
 
681
static arith
682
gfc_arith_times (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
683
{
684
  gfc_expr *result;
685
  arith rc;
686
 
687
  result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
688
 
689
  switch (op1->ts.type)
690
    {
691
    case BT_INTEGER:
692
      mpz_mul (result->value.integer, op1->value.integer, op2->value.integer);
693
      break;
694
 
695
    case BT_REAL:
696
      mpfr_mul (result->value.real, op1->value.real, op2->value.real,
697
               GFC_RND_MODE);
698
      break;
699
 
700
    case BT_COMPLEX:
701
      gfc_set_model (mpc_realref (op1->value.complex));
702
      mpc_mul (result->value.complex, op1->value.complex, op2->value.complex,
703
               GFC_MPC_RND_MODE);
704
      break;
705
 
706
    default:
707
      gfc_internal_error ("gfc_arith_times(): Bad basic type");
708
    }
709
 
710
  rc = gfc_range_check (result);
711
 
712
  return check_result (rc, op1, result, resultp);
713
}
714
 
715
 
716
static arith
717
gfc_arith_divide (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
718
{
719
  gfc_expr *result;
720
  arith rc;
721
 
722
  rc = ARITH_OK;
723
 
724
  result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
725
 
726
  switch (op1->ts.type)
727
    {
728
    case BT_INTEGER:
729
      if (mpz_sgn (op2->value.integer) == 0)
730
        {
731
          rc = ARITH_DIV0;
732
          break;
733
        }
734
 
735
      mpz_tdiv_q (result->value.integer, op1->value.integer,
736
                  op2->value.integer);
737
      break;
738
 
739
    case BT_REAL:
740
      if (mpfr_sgn (op2->value.real) == 0 && gfc_option.flag_range_check == 1)
741
        {
742
          rc = ARITH_DIV0;
743
          break;
744
        }
745
 
746
      mpfr_div (result->value.real, op1->value.real, op2->value.real,
747
               GFC_RND_MODE);
748
      break;
749
 
750
    case BT_COMPLEX:
751
      if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0
752
          && gfc_option.flag_range_check == 1)
753
        {
754
          rc = ARITH_DIV0;
755
          break;
756
        }
757
 
758
      gfc_set_model (mpc_realref (op1->value.complex));
759
      if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0)
760
      {
761
        /* In Fortran, return (NaN + NaN I) for any zero divisor.  See
762
           PR 40318. */
763
        mpfr_set_nan (mpc_realref (result->value.complex));
764
        mpfr_set_nan (mpc_imagref (result->value.complex));
765
      }
766
      else
767
        mpc_div (result->value.complex, op1->value.complex, op2->value.complex,
768
                 GFC_MPC_RND_MODE);
769
      break;
770
 
771
    default:
772
      gfc_internal_error ("gfc_arith_divide(): Bad basic type");
773
    }
774
 
775
  if (rc == ARITH_OK)
776
    rc = gfc_range_check (result);
777
 
778
  return check_result (rc, op1, result, resultp);
779
}
780
 
781
/* Raise a number to a power.  */
782
 
783
static arith
784
arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
785
{
786
  int power_sign;
787
  gfc_expr *result;
788
  arith rc;
789
 
790
  rc = ARITH_OK;
791
  result = gfc_get_constant_expr (op1->ts.type, op1->ts.kind, &op1->where);
792
 
793
  switch (op2->ts.type)
794
    {
795
    case BT_INTEGER:
796
      power_sign = mpz_sgn (op2->value.integer);
797
 
798
      if (power_sign == 0)
799
        {
800
          /* Handle something to the zeroth power.  Since we're dealing
801
             with integral exponents, there is no ambiguity in the
802
             limiting procedure used to determine the value of 0**0.  */
803
          switch (op1->ts.type)
804
            {
805
            case BT_INTEGER:
806
              mpz_set_ui (result->value.integer, 1);
807
              break;
808
 
809
            case BT_REAL:
810
              mpfr_set_ui (result->value.real, 1, GFC_RND_MODE);
811
              break;
812
 
813
            case BT_COMPLEX:
814
              mpc_set_ui (result->value.complex, 1, GFC_MPC_RND_MODE);
815
              break;
816
 
817
            default:
818
              gfc_internal_error ("arith_power(): Bad base");
819
            }
820
        }
821
      else
822
        {
823
          switch (op1->ts.type)
824
            {
825
            case BT_INTEGER:
826
              {
827
                int power;
828
 
829
                /* First, we simplify the cases of op1 == 1, 0 or -1.  */
830
                if (mpz_cmp_si (op1->value.integer, 1) == 0)
831
                  {
832
                    /* 1**op2 == 1 */
833
                    mpz_set_si (result->value.integer, 1);
834
                  }
835
                else if (mpz_cmp_si (op1->value.integer, 0) == 0)
836
                  {
837
                    /* 0**op2 == 0, if op2 > 0
838
                       0**op2 overflow, if op2 < 0 ; in that case, we
839
                       set the result to 0 and return ARITH_DIV0.  */
840
                    mpz_set_si (result->value.integer, 0);
841
                    if (mpz_cmp_si (op2->value.integer, 0) < 0)
842
                      rc = ARITH_DIV0;
843
                  }
844
                else if (mpz_cmp_si (op1->value.integer, -1) == 0)
845
                  {
846
                    /* (-1)**op2 == (-1)**(mod(op2,2)) */
847
                    unsigned int odd = mpz_fdiv_ui (op2->value.integer, 2);
848
                    if (odd)
849
                      mpz_set_si (result->value.integer, -1);
850
                    else
851
                      mpz_set_si (result->value.integer, 1);
852
                  }
853
                /* Then, we take care of op2 < 0.  */
854
                else if (mpz_cmp_si (op2->value.integer, 0) < 0)
855
                  {
856
                    /* if op2 < 0, op1**op2 == 0  because abs(op1) > 1.  */
857
                    mpz_set_si (result->value.integer, 0);
858
                  }
859
                else if (gfc_extract_int (op2, &power) != NULL)
860
                  {
861
                    /* If op2 doesn't fit in an int, the exponentiation will
862
                       overflow, because op2 > 0 and abs(op1) > 1.  */
863
                    mpz_t max;
864
                    int i;
865
                    i = gfc_validate_kind (BT_INTEGER, result->ts.kind, false);
866
 
867
                    if (gfc_option.flag_range_check)
868
                      rc = ARITH_OVERFLOW;
869
 
870
                    /* Still, we want to give the same value as the
871
                       processor.  */
872
                    mpz_init (max);
873
                    mpz_add_ui (max, gfc_integer_kinds[i].huge, 1);
874
                    mpz_mul_ui (max, max, 2);
875
                    mpz_powm (result->value.integer, op1->value.integer,
876
                              op2->value.integer, max);
877
                    mpz_clear (max);
878
                  }
879
                else
880
                  mpz_pow_ui (result->value.integer, op1->value.integer,
881
                              power);
882
              }
883
              break;
884
 
885
            case BT_REAL:
886
              mpfr_pow_z (result->value.real, op1->value.real,
887
                          op2->value.integer, GFC_RND_MODE);
888
              break;
889
 
890
            case BT_COMPLEX:
891
              mpc_pow_z (result->value.complex, op1->value.complex,
892
                         op2->value.integer, GFC_MPC_RND_MODE);
893
              break;
894
 
895
            default:
896
              break;
897
            }
898
        }
899
      break;
900
 
901
    case BT_REAL:
902
 
903
      if (gfc_init_expr_flag)
904
        {
905
          if (gfc_notify_std (GFC_STD_F2003,"Fortran 2003: Noninteger "
906
                              "exponent in an initialization "
907
                              "expression at %L", &op2->where) == FAILURE)
908
            return ARITH_PROHIBIT;
909
        }
910
 
911
      if (mpfr_cmp_si (op1->value.real, 0) < 0)
912
        {
913
          gfc_error ("Raising a negative REAL at %L to "
914
                     "a REAL power is prohibited", &op1->where);
915
          gfc_free_expr (result);
916
          return ARITH_PROHIBIT;
917
        }
918
 
919
        mpfr_pow (result->value.real, op1->value.real, op2->value.real,
920
                  GFC_RND_MODE);
921
      break;
922
 
923
    case BT_COMPLEX:
924
      {
925
        if (gfc_init_expr_flag)
926
          {
927
            if (gfc_notify_std (GFC_STD_F2003,"Fortran 2003: Noninteger "
928
                                "exponent in an initialization "
929
                                "expression at %L", &op2->where) == FAILURE)
930
              return ARITH_PROHIBIT;
931
          }
932
 
933
        mpc_pow (result->value.complex, op1->value.complex,
934
                 op2->value.complex, GFC_MPC_RND_MODE);
935
      }
936
      break;
937
    default:
938
      gfc_internal_error ("arith_power(): unknown type");
939
    }
940
 
941
  if (rc == ARITH_OK)
942
    rc = gfc_range_check (result);
943
 
944
  return check_result (rc, op1, result, resultp);
945
}
946
 
947
 
948
/* Concatenate two string constants.  */
949
 
950
static arith
951
gfc_arith_concat (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
952
{
953
  gfc_expr *result;
954
  int len;
955
 
956
  gcc_assert (op1->ts.kind == op2->ts.kind);
957
  result = gfc_get_constant_expr (BT_CHARACTER, op1->ts.kind,
958
                                  &op1->where);
959
 
960
  len = op1->value.character.length + op2->value.character.length;
961
 
962
  result->value.character.string = gfc_get_wide_string (len + 1);
963
  result->value.character.length = len;
964
 
965
  memcpy (result->value.character.string, op1->value.character.string,
966
          op1->value.character.length * sizeof (gfc_char_t));
967
 
968
  memcpy (&result->value.character.string[op1->value.character.length],
969
          op2->value.character.string,
970
          op2->value.character.length * sizeof (gfc_char_t));
971
 
972
  result->value.character.string[len] = '\0';
973
 
974
  *resultp = result;
975
 
976
  return ARITH_OK;
977
}
978
 
979
/* Comparison between real values; returns 0 if (op1 .op. op2) is true.
980
   This function mimics mpfr_cmp but takes NaN into account.  */
981
 
982
static int
983
compare_real (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
984
{
985
  int rc;
986
  switch (op)
987
    {
988
      case INTRINSIC_EQ:
989
        rc = mpfr_equal_p (op1->value.real, op2->value.real) ? 0 : 1;
990
        break;
991
      case INTRINSIC_GT:
992
        rc = mpfr_greater_p (op1->value.real, op2->value.real) ? 1 : -1;
993
        break;
994
      case INTRINSIC_GE:
995
        rc = mpfr_greaterequal_p (op1->value.real, op2->value.real) ? 1 : -1;
996
        break;
997
      case INTRINSIC_LT:
998
        rc = mpfr_less_p (op1->value.real, op2->value.real) ? -1 : 1;
999
        break;
1000
      case INTRINSIC_LE:
1001
        rc = mpfr_lessequal_p (op1->value.real, op2->value.real) ? -1 : 1;
1002
        break;
1003
      default:
1004
        gfc_internal_error ("compare_real(): Bad operator");
1005
    }
1006
 
1007
  return rc;
1008
}
1009
 
1010
/* Comparison operators.  Assumes that the two expression nodes
1011
   contain two constants of the same type. The op argument is
1012
   needed to handle NaN correctly.  */
1013
 
1014
int
1015
gfc_compare_expr (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1016
{
1017
  int rc;
1018
 
1019
  switch (op1->ts.type)
1020
    {
1021
    case BT_INTEGER:
1022
      rc = mpz_cmp (op1->value.integer, op2->value.integer);
1023
      break;
1024
 
1025
    case BT_REAL:
1026
      rc = compare_real (op1, op2, op);
1027
      break;
1028
 
1029
    case BT_CHARACTER:
1030
      rc = gfc_compare_string (op1, op2);
1031
      break;
1032
 
1033
    case BT_LOGICAL:
1034
      rc = ((!op1->value.logical && op2->value.logical)
1035
            || (op1->value.logical && !op2->value.logical));
1036
      break;
1037
 
1038
    default:
1039
      gfc_internal_error ("gfc_compare_expr(): Bad basic type");
1040
    }
1041
 
1042
  return rc;
1043
}
1044
 
1045
 
1046
/* Compare a pair of complex numbers.  Naturally, this is only for
1047
   equality and inequality.  */
1048
 
1049
static int
1050
compare_complex (gfc_expr *op1, gfc_expr *op2)
1051
{
1052
  return mpc_cmp (op1->value.complex, op2->value.complex) == 0;
1053
}
1054
 
1055
 
1056
/* Given two constant strings and the inverse collating sequence, compare the
1057
   strings.  We return -1 for a < b, 0 for a == b and 1 for a > b.
1058
   We use the processor's default collating sequence.  */
1059
 
1060
int
1061
gfc_compare_string (gfc_expr *a, gfc_expr *b)
1062
{
1063
  int len, alen, blen, i;
1064
  gfc_char_t ac, bc;
1065
 
1066
  alen = a->value.character.length;
1067
  blen = b->value.character.length;
1068
 
1069
  len = MAX(alen, blen);
1070
 
1071
  for (i = 0; i < len; i++)
1072
    {
1073
      ac = ((i < alen) ? a->value.character.string[i] : ' ');
1074
      bc = ((i < blen) ? b->value.character.string[i] : ' ');
1075
 
1076
      if (ac < bc)
1077
        return -1;
1078
      if (ac > bc)
1079
        return 1;
1080
    }
1081
 
1082
  /* Strings are equal */
1083
  return 0;
1084
}
1085
 
1086
 
1087
int
1088
gfc_compare_with_Cstring (gfc_expr *a, const char *b, bool case_sensitive)
1089
{
1090
  int len, alen, blen, i;
1091
  gfc_char_t ac, bc;
1092
 
1093
  alen = a->value.character.length;
1094
  blen = strlen (b);
1095
 
1096
  len = MAX(alen, blen);
1097
 
1098
  for (i = 0; i < len; i++)
1099
    {
1100
      ac = ((i < alen) ? a->value.character.string[i] : ' ');
1101
      bc = ((i < blen) ? b[i] : ' ');
1102
 
1103
      if (!case_sensitive)
1104
        {
1105
          ac = TOLOWER (ac);
1106
          bc = TOLOWER (bc);
1107
        }
1108
 
1109
      if (ac < bc)
1110
        return -1;
1111
      if (ac > bc)
1112
        return 1;
1113
    }
1114
 
1115
  /* Strings are equal */
1116
  return 0;
1117
}
1118
 
1119
 
1120
/* Specific comparison subroutines.  */
1121
 
1122
static arith
1123
gfc_arith_eq (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
1124
{
1125
  gfc_expr *result;
1126
 
1127
  result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
1128
                                  &op1->where);
1129
  result->value.logical = (op1->ts.type == BT_COMPLEX)
1130
                        ? compare_complex (op1, op2)
1131
                        : (gfc_compare_expr (op1, op2, INTRINSIC_EQ) == 0);
1132
 
1133
  *resultp = result;
1134
  return ARITH_OK;
1135
}
1136
 
1137
 
1138
static arith
1139
gfc_arith_ne (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
1140
{
1141
  gfc_expr *result;
1142
 
1143
  result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
1144
                                  &op1->where);
1145
  result->value.logical = (op1->ts.type == BT_COMPLEX)
1146
                        ? !compare_complex (op1, op2)
1147
                        : (gfc_compare_expr (op1, op2, INTRINSIC_EQ) != 0);
1148
 
1149
  *resultp = result;
1150
  return ARITH_OK;
1151
}
1152
 
1153
 
1154
static arith
1155
gfc_arith_gt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
1156
{
1157
  gfc_expr *result;
1158
 
1159
  result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
1160
                                  &op1->where);
1161
  result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GT) > 0);
1162
  *resultp = result;
1163
 
1164
  return ARITH_OK;
1165
}
1166
 
1167
 
1168
static arith
1169
gfc_arith_ge (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
1170
{
1171
  gfc_expr *result;
1172
 
1173
  result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
1174
                                  &op1->where);
1175
  result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_GE) >= 0);
1176
  *resultp = result;
1177
 
1178
  return ARITH_OK;
1179
}
1180
 
1181
 
1182
static arith
1183
gfc_arith_lt (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
1184
{
1185
  gfc_expr *result;
1186
 
1187
  result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
1188
                                  &op1->where);
1189
  result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LT) < 0);
1190
  *resultp = result;
1191
 
1192
  return ARITH_OK;
1193
}
1194
 
1195
 
1196
static arith
1197
gfc_arith_le (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
1198
{
1199
  gfc_expr *result;
1200
 
1201
  result = gfc_get_constant_expr (BT_LOGICAL, gfc_default_logical_kind,
1202
                                  &op1->where);
1203
  result->value.logical = (gfc_compare_expr (op1, op2, INTRINSIC_LE) <= 0);
1204
  *resultp = result;
1205
 
1206
  return ARITH_OK;
1207
}
1208
 
1209
 
1210
static arith
1211
reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr *op,
1212
              gfc_expr **result)
1213
{
1214
  gfc_constructor_base head;
1215
  gfc_constructor *c;
1216
  gfc_expr *r;
1217
  arith rc;
1218
 
1219
  if (op->expr_type == EXPR_CONSTANT)
1220
    return eval (op, result);
1221
 
1222
  rc = ARITH_OK;
1223
  head = gfc_constructor_copy (op->value.constructor);
1224
  for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
1225
    {
1226
      rc = reduce_unary (eval, c->expr, &r);
1227
 
1228
      if (rc != ARITH_OK)
1229
        break;
1230
 
1231
      gfc_replace_expr (c->expr, r);
1232
    }
1233
 
1234
  if (rc != ARITH_OK)
1235
    gfc_constructor_free (head);
1236
  else
1237
    {
1238
      gfc_constructor *c = gfc_constructor_first (head);
1239
      r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
1240
                              &op->where);
1241
      r->shape = gfc_copy_shape (op->shape, op->rank);
1242
      r->rank = op->rank;
1243
      r->value.constructor = head;
1244
      *result = r;
1245
    }
1246
 
1247
  return rc;
1248
}
1249
 
1250
 
1251
static arith
1252
reduce_binary_ac (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
1253
                  gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
1254
{
1255
  gfc_constructor_base head;
1256
  gfc_constructor *c;
1257
  gfc_expr *r;
1258
  arith rc = ARITH_OK;
1259
 
1260
  head = gfc_constructor_copy (op1->value.constructor);
1261
  for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
1262
    {
1263
      if (c->expr->expr_type == EXPR_CONSTANT)
1264
        rc = eval (c->expr, op2, &r);
1265
      else
1266
        rc = reduce_binary_ac (eval, c->expr, op2, &r);
1267
 
1268
      if (rc != ARITH_OK)
1269
        break;
1270
 
1271
      gfc_replace_expr (c->expr, r);
1272
    }
1273
 
1274
  if (rc != ARITH_OK)
1275
    gfc_constructor_free (head);
1276
  else
1277
    {
1278
      gfc_constructor *c = gfc_constructor_first (head);
1279
      r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
1280
                              &op1->where);
1281
      r->shape = gfc_copy_shape (op1->shape, op1->rank);
1282
      r->rank = op1->rank;
1283
      r->value.constructor = head;
1284
      *result = r;
1285
    }
1286
 
1287
  return rc;
1288
}
1289
 
1290
 
1291
static arith
1292
reduce_binary_ca (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
1293
                  gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
1294
{
1295
  gfc_constructor_base head;
1296
  gfc_constructor *c;
1297
  gfc_expr *r;
1298
  arith rc = ARITH_OK;
1299
 
1300
  head = gfc_constructor_copy (op2->value.constructor);
1301
  for (c = gfc_constructor_first (head); c; c = gfc_constructor_next (c))
1302
    {
1303
      if (c->expr->expr_type == EXPR_CONSTANT)
1304
        rc = eval (op1, c->expr, &r);
1305
      else
1306
        rc = reduce_binary_ca (eval, op1, c->expr, &r);
1307
 
1308
      if (rc != ARITH_OK)
1309
        break;
1310
 
1311
      gfc_replace_expr (c->expr, r);
1312
    }
1313
 
1314
  if (rc != ARITH_OK)
1315
    gfc_constructor_free (head);
1316
  else
1317
    {
1318
      gfc_constructor *c = gfc_constructor_first (head);
1319
      r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
1320
                              &op2->where);
1321
      r->shape = gfc_copy_shape (op2->shape, op2->rank);
1322
      r->rank = op2->rank;
1323
      r->value.constructor = head;
1324
      *result = r;
1325
    }
1326
 
1327
  return rc;
1328
}
1329
 
1330
 
1331
/* We need a forward declaration of reduce_binary.  */
1332
static arith reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
1333
                            gfc_expr *op1, gfc_expr *op2, gfc_expr **result);
1334
 
1335
 
1336
static arith
1337
reduce_binary_aa (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
1338
                  gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
1339
{
1340
  gfc_constructor_base head;
1341
  gfc_constructor *c, *d;
1342
  gfc_expr *r;
1343
  arith rc = ARITH_OK;
1344
 
1345
  if (gfc_check_conformance (op1, op2,
1346
                             "elemental binary operation") != SUCCESS)
1347
    return ARITH_INCOMMENSURATE;
1348
 
1349
  head = gfc_constructor_copy (op1->value.constructor);
1350
  for (c = gfc_constructor_first (head),
1351
       d = gfc_constructor_first (op2->value.constructor);
1352
       c && d;
1353
       c = gfc_constructor_next (c), d = gfc_constructor_next (d))
1354
    {
1355
        rc = reduce_binary (eval, c->expr, d->expr, &r);
1356
        if (rc != ARITH_OK)
1357
          break;
1358
 
1359
        gfc_replace_expr (c->expr, r);
1360
    }
1361
 
1362
  if (c || d)
1363
    rc = ARITH_INCOMMENSURATE;
1364
 
1365
  if (rc != ARITH_OK)
1366
    gfc_constructor_free (head);
1367
  else
1368
    {
1369
      gfc_constructor *c = gfc_constructor_first (head);
1370
      r = gfc_get_array_expr (c->expr->ts.type, c->expr->ts.kind,
1371
                              &op1->where);
1372
      r->shape = gfc_copy_shape (op1->shape, op1->rank);
1373
      r->rank = op1->rank;
1374
      r->value.constructor = head;
1375
      *result = r;
1376
    }
1377
 
1378
  return rc;
1379
}
1380
 
1381
 
1382
static arith
1383
reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
1384
               gfc_expr *op1, gfc_expr *op2, gfc_expr **result)
1385
{
1386
  if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_CONSTANT)
1387
    return eval (op1, op2, result);
1388
 
1389
  if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_ARRAY)
1390
    return reduce_binary_ca (eval, op1, op2, result);
1391
 
1392
  if (op1->expr_type == EXPR_ARRAY && op2->expr_type == EXPR_CONSTANT)
1393
    return reduce_binary_ac (eval, op1, op2, result);
1394
 
1395
  return reduce_binary_aa (eval, op1, op2, result);
1396
}
1397
 
1398
 
1399
typedef union
1400
{
1401
  arith (*f2)(gfc_expr *, gfc_expr **);
1402
  arith (*f3)(gfc_expr *, gfc_expr *, gfc_expr **);
1403
}
1404
eval_f;
1405
 
1406
/* High level arithmetic subroutines.  These subroutines go into
1407
   eval_intrinsic(), which can do one of several things to its
1408
   operands.  If the operands are incompatible with the intrinsic
1409
   operation, we return a node pointing to the operands and hope that
1410
   an operator interface is found during resolution.
1411
 
1412
   If the operands are compatible and are constants, then we try doing
1413
   the arithmetic.  We also handle the cases where either or both
1414
   operands are array constructors.  */
1415
 
1416
static gfc_expr *
1417
eval_intrinsic (gfc_intrinsic_op op,
1418
                eval_f eval, gfc_expr *op1, gfc_expr *op2)
1419
{
1420
  gfc_expr temp, *result;
1421
  int unary;
1422
  arith rc;
1423
 
1424
  gfc_clear_ts (&temp.ts);
1425
 
1426
  switch (op)
1427
    {
1428
    /* Logical unary  */
1429
    case INTRINSIC_NOT:
1430
      if (op1->ts.type != BT_LOGICAL)
1431
        goto runtime;
1432
 
1433
      temp.ts.type = BT_LOGICAL;
1434
      temp.ts.kind = gfc_default_logical_kind;
1435
      unary = 1;
1436
      break;
1437
 
1438
    /* Logical binary operators  */
1439
    case INTRINSIC_OR:
1440
    case INTRINSIC_AND:
1441
    case INTRINSIC_NEQV:
1442
    case INTRINSIC_EQV:
1443
      if (op1->ts.type != BT_LOGICAL || op2->ts.type != BT_LOGICAL)
1444
        goto runtime;
1445
 
1446
      temp.ts.type = BT_LOGICAL;
1447
      temp.ts.kind = gfc_default_logical_kind;
1448
      unary = 0;
1449
      break;
1450
 
1451
    /* Numeric unary  */
1452
    case INTRINSIC_UPLUS:
1453
    case INTRINSIC_UMINUS:
1454
      if (!gfc_numeric_ts (&op1->ts))
1455
        goto runtime;
1456
 
1457
      temp.ts = op1->ts;
1458
      unary = 1;
1459
      break;
1460
 
1461
    case INTRINSIC_PARENTHESES:
1462
      temp.ts = op1->ts;
1463
      unary = 1;
1464
      break;
1465
 
1466
    /* Additional restrictions for ordering relations.  */
1467
    case INTRINSIC_GE:
1468
    case INTRINSIC_GE_OS:
1469
    case INTRINSIC_LT:
1470
    case INTRINSIC_LT_OS:
1471
    case INTRINSIC_LE:
1472
    case INTRINSIC_LE_OS:
1473
    case INTRINSIC_GT:
1474
    case INTRINSIC_GT_OS:
1475
      if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
1476
        {
1477
          temp.ts.type = BT_LOGICAL;
1478
          temp.ts.kind = gfc_default_logical_kind;
1479
          goto runtime;
1480
        }
1481
 
1482
    /* Fall through  */
1483
    case INTRINSIC_EQ:
1484
    case INTRINSIC_EQ_OS:
1485
    case INTRINSIC_NE:
1486
    case INTRINSIC_NE_OS:
1487
      if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER)
1488
        {
1489
          unary = 0;
1490
          temp.ts.type = BT_LOGICAL;
1491
          temp.ts.kind = gfc_default_logical_kind;
1492
 
1493
          /* If kind mismatch, exit and we'll error out later.  */
1494
          if (op1->ts.kind != op2->ts.kind)
1495
            goto runtime;
1496
 
1497
          break;
1498
        }
1499
 
1500
    /* Fall through  */
1501
    /* Numeric binary  */
1502
    case INTRINSIC_PLUS:
1503
    case INTRINSIC_MINUS:
1504
    case INTRINSIC_TIMES:
1505
    case INTRINSIC_DIVIDE:
1506
    case INTRINSIC_POWER:
1507
      if (!gfc_numeric_ts (&op1->ts) || !gfc_numeric_ts (&op2->ts))
1508
        goto runtime;
1509
 
1510
      /* Insert any necessary type conversions to make the operands
1511
         compatible.  */
1512
 
1513
      temp.expr_type = EXPR_OP;
1514
      gfc_clear_ts (&temp.ts);
1515
      temp.value.op.op = op;
1516
 
1517
      temp.value.op.op1 = op1;
1518
      temp.value.op.op2 = op2;
1519
 
1520
      gfc_type_convert_binary (&temp, 0);
1521
 
1522
      if (op == INTRINSIC_EQ || op == INTRINSIC_NE
1523
          || op == INTRINSIC_GE || op == INTRINSIC_GT
1524
          || op == INTRINSIC_LE || op == INTRINSIC_LT
1525
          || op == INTRINSIC_EQ_OS || op == INTRINSIC_NE_OS
1526
          || op == INTRINSIC_GE_OS || op == INTRINSIC_GT_OS
1527
          || op == INTRINSIC_LE_OS || op == INTRINSIC_LT_OS)
1528
        {
1529
          temp.ts.type = BT_LOGICAL;
1530
          temp.ts.kind = gfc_default_logical_kind;
1531
        }
1532
 
1533
      unary = 0;
1534
      break;
1535
 
1536
    /* Character binary  */
1537
    case INTRINSIC_CONCAT:
1538
      if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER
1539
          || op1->ts.kind != op2->ts.kind)
1540
        goto runtime;
1541
 
1542
      temp.ts.type = BT_CHARACTER;
1543
      temp.ts.kind = op1->ts.kind;
1544
      unary = 0;
1545
      break;
1546
 
1547
    case INTRINSIC_USER:
1548
      goto runtime;
1549
 
1550
    default:
1551
      gfc_internal_error ("eval_intrinsic(): Bad operator");
1552
    }
1553
 
1554
  if (op1->expr_type != EXPR_CONSTANT
1555
      && (op1->expr_type != EXPR_ARRAY
1556
          || !gfc_is_constant_expr (op1) || !gfc_expanded_ac (op1)))
1557
    goto runtime;
1558
 
1559
  if (op2 != NULL
1560
      && op2->expr_type != EXPR_CONSTANT
1561
         && (op2->expr_type != EXPR_ARRAY
1562
             || !gfc_is_constant_expr (op2) || !gfc_expanded_ac (op2)))
1563
    goto runtime;
1564
 
1565
  if (unary)
1566
    rc = reduce_unary (eval.f2, op1, &result);
1567
  else
1568
    rc = reduce_binary (eval.f3, op1, op2, &result);
1569
 
1570
 
1571
  /* Something went wrong.  */
1572
  if (op == INTRINSIC_POWER && rc == ARITH_PROHIBIT)
1573
    return NULL;
1574
 
1575
  if (rc != ARITH_OK)
1576
    {
1577
      gfc_error (gfc_arith_error (rc), &op1->where);
1578
      return NULL;
1579
    }
1580
 
1581
  gfc_free_expr (op1);
1582
  gfc_free_expr (op2);
1583
  return result;
1584
 
1585
runtime:
1586
  /* Create a run-time expression.  */
1587
  result = gfc_get_operator_expr (&op1->where, op, op1, op2);
1588
  result->ts = temp.ts;
1589
 
1590
  return result;
1591
}
1592
 
1593
 
1594
/* Modify type of expression for zero size array.  */
1595
 
1596
static gfc_expr *
1597
eval_type_intrinsic0 (gfc_intrinsic_op iop, gfc_expr *op)
1598
{
1599
  if (op == NULL)
1600
    gfc_internal_error ("eval_type_intrinsic0(): op NULL");
1601
 
1602
  switch (iop)
1603
    {
1604
    case INTRINSIC_GE:
1605
    case INTRINSIC_GE_OS:
1606
    case INTRINSIC_LT:
1607
    case INTRINSIC_LT_OS:
1608
    case INTRINSIC_LE:
1609
    case INTRINSIC_LE_OS:
1610
    case INTRINSIC_GT:
1611
    case INTRINSIC_GT_OS:
1612
    case INTRINSIC_EQ:
1613
    case INTRINSIC_EQ_OS:
1614
    case INTRINSIC_NE:
1615
    case INTRINSIC_NE_OS:
1616
      op->ts.type = BT_LOGICAL;
1617
      op->ts.kind = gfc_default_logical_kind;
1618
      break;
1619
 
1620
    default:
1621
      break;
1622
    }
1623
 
1624
  return op;
1625
}
1626
 
1627
 
1628
/* Return nonzero if the expression is a zero size array.  */
1629
 
1630
static int
1631
gfc_zero_size_array (gfc_expr *e)
1632
{
1633
  if (e->expr_type != EXPR_ARRAY)
1634
    return 0;
1635
 
1636
  return e->value.constructor == NULL;
1637
}
1638
 
1639
 
1640
/* Reduce a binary expression where at least one of the operands
1641
   involves a zero-length array.  Returns NULL if neither of the
1642
   operands is a zero-length array.  */
1643
 
1644
static gfc_expr *
1645
reduce_binary0 (gfc_expr *op1, gfc_expr *op2)
1646
{
1647
  if (gfc_zero_size_array (op1))
1648
    {
1649
      gfc_free_expr (op2);
1650
      return op1;
1651
    }
1652
 
1653
  if (gfc_zero_size_array (op2))
1654
    {
1655
      gfc_free_expr (op1);
1656
      return op2;
1657
    }
1658
 
1659
  return NULL;
1660
}
1661
 
1662
 
1663
static gfc_expr *
1664
eval_intrinsic_f2 (gfc_intrinsic_op op,
1665
                   arith (*eval) (gfc_expr *, gfc_expr **),
1666
                   gfc_expr *op1, gfc_expr *op2)
1667
{
1668
  gfc_expr *result;
1669
  eval_f f;
1670
 
1671
  if (op2 == NULL)
1672
    {
1673
      if (gfc_zero_size_array (op1))
1674
        return eval_type_intrinsic0 (op, op1);
1675
    }
1676
  else
1677
    {
1678
      result = reduce_binary0 (op1, op2);
1679
      if (result != NULL)
1680
        return eval_type_intrinsic0 (op, result);
1681
    }
1682
 
1683
  f.f2 = eval;
1684
  return eval_intrinsic (op, f, op1, op2);
1685
}
1686
 
1687
 
1688
static gfc_expr *
1689
eval_intrinsic_f3 (gfc_intrinsic_op op,
1690
                   arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **),
1691
                   gfc_expr *op1, gfc_expr *op2)
1692
{
1693
  gfc_expr *result;
1694
  eval_f f;
1695
 
1696
  result = reduce_binary0 (op1, op2);
1697
  if (result != NULL)
1698
    return eval_type_intrinsic0(op, result);
1699
 
1700
  f.f3 = eval;
1701
  return eval_intrinsic (op, f, op1, op2);
1702
}
1703
 
1704
 
1705
gfc_expr *
1706
gfc_parentheses (gfc_expr *op)
1707
{
1708
  if (gfc_is_constant_expr (op))
1709
    return op;
1710
 
1711
  return eval_intrinsic_f2 (INTRINSIC_PARENTHESES, gfc_arith_identity,
1712
                            op, NULL);
1713
}
1714
 
1715
gfc_expr *
1716
gfc_uplus (gfc_expr *op)
1717
{
1718
  return eval_intrinsic_f2 (INTRINSIC_UPLUS, gfc_arith_identity, op, NULL);
1719
}
1720
 
1721
 
1722
gfc_expr *
1723
gfc_uminus (gfc_expr *op)
1724
{
1725
  return eval_intrinsic_f2 (INTRINSIC_UMINUS, gfc_arith_uminus, op, NULL);
1726
}
1727
 
1728
 
1729
gfc_expr *
1730
gfc_add (gfc_expr *op1, gfc_expr *op2)
1731
{
1732
  return eval_intrinsic_f3 (INTRINSIC_PLUS, gfc_arith_plus, op1, op2);
1733
}
1734
 
1735
 
1736
gfc_expr *
1737
gfc_subtract (gfc_expr *op1, gfc_expr *op2)
1738
{
1739
  return eval_intrinsic_f3 (INTRINSIC_MINUS, gfc_arith_minus, op1, op2);
1740
}
1741
 
1742
 
1743
gfc_expr *
1744
gfc_multiply (gfc_expr *op1, gfc_expr *op2)
1745
{
1746
  return eval_intrinsic_f3 (INTRINSIC_TIMES, gfc_arith_times, op1, op2);
1747
}
1748
 
1749
 
1750
gfc_expr *
1751
gfc_divide (gfc_expr *op1, gfc_expr *op2)
1752
{
1753
  return eval_intrinsic_f3 (INTRINSIC_DIVIDE, gfc_arith_divide, op1, op2);
1754
}
1755
 
1756
 
1757
gfc_expr *
1758
gfc_power (gfc_expr *op1, gfc_expr *op2)
1759
{
1760
  return eval_intrinsic_f3 (INTRINSIC_POWER, arith_power, op1, op2);
1761
}
1762
 
1763
 
1764
gfc_expr *
1765
gfc_concat (gfc_expr *op1, gfc_expr *op2)
1766
{
1767
  return eval_intrinsic_f3 (INTRINSIC_CONCAT, gfc_arith_concat, op1, op2);
1768
}
1769
 
1770
 
1771
gfc_expr *
1772
gfc_and (gfc_expr *op1, gfc_expr *op2)
1773
{
1774
  return eval_intrinsic_f3 (INTRINSIC_AND, gfc_arith_and, op1, op2);
1775
}
1776
 
1777
 
1778
gfc_expr *
1779
gfc_or (gfc_expr *op1, gfc_expr *op2)
1780
{
1781
  return eval_intrinsic_f3 (INTRINSIC_OR, gfc_arith_or, op1, op2);
1782
}
1783
 
1784
 
1785
gfc_expr *
1786
gfc_not (gfc_expr *op1)
1787
{
1788
  return eval_intrinsic_f2 (INTRINSIC_NOT, gfc_arith_not, op1, NULL);
1789
}
1790
 
1791
 
1792
gfc_expr *
1793
gfc_eqv (gfc_expr *op1, gfc_expr *op2)
1794
{
1795
  return eval_intrinsic_f3 (INTRINSIC_EQV, gfc_arith_eqv, op1, op2);
1796
}
1797
 
1798
 
1799
gfc_expr *
1800
gfc_neqv (gfc_expr *op1, gfc_expr *op2)
1801
{
1802
  return eval_intrinsic_f3 (INTRINSIC_NEQV, gfc_arith_neqv, op1, op2);
1803
}
1804
 
1805
 
1806
gfc_expr *
1807
gfc_eq (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1808
{
1809
  return eval_intrinsic_f3 (op, gfc_arith_eq, op1, op2);
1810
}
1811
 
1812
 
1813
gfc_expr *
1814
gfc_ne (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1815
{
1816
  return eval_intrinsic_f3 (op, gfc_arith_ne, op1, op2);
1817
}
1818
 
1819
 
1820
gfc_expr *
1821
gfc_gt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1822
{
1823
  return eval_intrinsic_f3 (op, gfc_arith_gt, op1, op2);
1824
}
1825
 
1826
 
1827
gfc_expr *
1828
gfc_ge (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1829
{
1830
  return eval_intrinsic_f3 (op, gfc_arith_ge, op1, op2);
1831
}
1832
 
1833
 
1834
gfc_expr *
1835
gfc_lt (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1836
{
1837
  return eval_intrinsic_f3 (op, gfc_arith_lt, op1, op2);
1838
}
1839
 
1840
 
1841
gfc_expr *
1842
gfc_le (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op)
1843
{
1844
  return eval_intrinsic_f3 (op, gfc_arith_le, op1, op2);
1845
}
1846
 
1847
 
1848
/* Convert an integer string to an expression node.  */
1849
 
1850
gfc_expr *
1851
gfc_convert_integer (const char *buffer, int kind, int radix, locus *where)
1852
{
1853
  gfc_expr *e;
1854
  const char *t;
1855
 
1856
  e = gfc_get_constant_expr (BT_INTEGER, kind, where);
1857
  /* A leading plus is allowed, but not by mpz_set_str.  */
1858
  if (buffer[0] == '+')
1859
    t = buffer + 1;
1860
  else
1861
    t = buffer;
1862
  mpz_set_str (e->value.integer, t, radix);
1863
 
1864
  return e;
1865
}
1866
 
1867
 
1868
/* Convert a real string to an expression node.  */
1869
 
1870
gfc_expr *
1871
gfc_convert_real (const char *buffer, int kind, locus *where)
1872
{
1873
  gfc_expr *e;
1874
 
1875
  e = gfc_get_constant_expr (BT_REAL, kind, where);
1876
  mpfr_set_str (e->value.real, buffer, 10, GFC_RND_MODE);
1877
 
1878
  return e;
1879
}
1880
 
1881
 
1882
/* Convert a pair of real, constant expression nodes to a single
1883
   complex expression node.  */
1884
 
1885
gfc_expr *
1886
gfc_convert_complex (gfc_expr *real, gfc_expr *imag, int kind)
1887
{
1888
  gfc_expr *e;
1889
 
1890
  e = gfc_get_constant_expr (BT_COMPLEX, kind, &real->where);
1891
  mpc_set_fr_fr (e->value.complex, real->value.real, imag->value.real,
1892
                 GFC_MPC_RND_MODE);
1893
 
1894
  return e;
1895
}
1896
 
1897
 
1898
/******* Simplification of intrinsic functions with constant arguments *****/
1899
 
1900
 
1901
/* Deal with an arithmetic error.  */
1902
 
1903
static void
1904
arith_error (arith rc, gfc_typespec *from, gfc_typespec *to, locus *where)
1905
{
1906
  switch (rc)
1907
    {
1908
    case ARITH_OK:
1909
      gfc_error ("Arithmetic OK converting %s to %s at %L",
1910
                 gfc_typename (from), gfc_typename (to), where);
1911
      break;
1912
    case ARITH_OVERFLOW:
1913
      gfc_error ("Arithmetic overflow converting %s to %s at %L. This check "
1914
                 "can be disabled with the option -fno-range-check",
1915
                 gfc_typename (from), gfc_typename (to), where);
1916
      break;
1917
    case ARITH_UNDERFLOW:
1918
      gfc_error ("Arithmetic underflow converting %s to %s at %L. This check "
1919
                 "can be disabled with the option -fno-range-check",
1920
                 gfc_typename (from), gfc_typename (to), where);
1921
      break;
1922
    case ARITH_NAN:
1923
      gfc_error ("Arithmetic NaN converting %s to %s at %L. This check "
1924
                 "can be disabled with the option -fno-range-check",
1925
                 gfc_typename (from), gfc_typename (to), where);
1926
      break;
1927
    case ARITH_DIV0:
1928
      gfc_error ("Division by zero converting %s to %s at %L",
1929
                 gfc_typename (from), gfc_typename (to), where);
1930
      break;
1931
    case ARITH_INCOMMENSURATE:
1932
      gfc_error ("Array operands are incommensurate converting %s to %s at %L",
1933
                 gfc_typename (from), gfc_typename (to), where);
1934
      break;
1935
    case ARITH_ASYMMETRIC:
1936
      gfc_error ("Integer outside symmetric range implied by Standard Fortran"
1937
                 " converting %s to %s at %L",
1938
                 gfc_typename (from), gfc_typename (to), where);
1939
      break;
1940
    default:
1941
      gfc_internal_error ("gfc_arith_error(): Bad error code");
1942
    }
1943
 
1944
  /* TODO: Do something about the error, i.e., throw exception, return
1945
     NaN, etc.  */
1946
}
1947
 
1948
 
1949
/* Convert integers to integers.  */
1950
 
1951
gfc_expr *
1952
gfc_int2int (gfc_expr *src, int kind)
1953
{
1954
  gfc_expr *result;
1955
  arith rc;
1956
 
1957
  result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
1958
 
1959
  mpz_set (result->value.integer, src->value.integer);
1960
 
1961
  if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
1962
    {
1963
      if (rc == ARITH_ASYMMETRIC)
1964
        {
1965
          gfc_warning (gfc_arith_error (rc), &src->where);
1966
        }
1967
      else
1968
        {
1969
          arith_error (rc, &src->ts, &result->ts, &src->where);
1970
          gfc_free_expr (result);
1971
          return NULL;
1972
        }
1973
    }
1974
 
1975
  return result;
1976
}
1977
 
1978
 
1979
/* Convert integers to reals.  */
1980
 
1981
gfc_expr *
1982
gfc_int2real (gfc_expr *src, int kind)
1983
{
1984
  gfc_expr *result;
1985
  arith rc;
1986
 
1987
  result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
1988
 
1989
  mpfr_set_z (result->value.real, src->value.integer, GFC_RND_MODE);
1990
 
1991
  if ((rc = gfc_check_real_range (result->value.real, kind)) != ARITH_OK)
1992
    {
1993
      arith_error (rc, &src->ts, &result->ts, &src->where);
1994
      gfc_free_expr (result);
1995
      return NULL;
1996
    }
1997
 
1998
  return result;
1999
}
2000
 
2001
 
2002
/* Convert default integer to default complex.  */
2003
 
2004
gfc_expr *
2005
gfc_int2complex (gfc_expr *src, int kind)
2006
{
2007
  gfc_expr *result;
2008
  arith rc;
2009
 
2010
  result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
2011
 
2012
  mpc_set_z (result->value.complex, src->value.integer, GFC_MPC_RND_MODE);
2013
 
2014
  if ((rc = gfc_check_real_range (mpc_realref (result->value.complex), kind))
2015
      != ARITH_OK)
2016
    {
2017
      arith_error (rc, &src->ts, &result->ts, &src->where);
2018
      gfc_free_expr (result);
2019
      return NULL;
2020
    }
2021
 
2022
  return result;
2023
}
2024
 
2025
 
2026
/* Convert default real to default integer.  */
2027
 
2028
gfc_expr *
2029
gfc_real2int (gfc_expr *src, int kind)
2030
{
2031
  gfc_expr *result;
2032
  arith rc;
2033
 
2034
  result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
2035
 
2036
  gfc_mpfr_to_mpz (result->value.integer, src->value.real, &src->where);
2037
 
2038
  if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
2039
    {
2040
      arith_error (rc, &src->ts, &result->ts, &src->where);
2041
      gfc_free_expr (result);
2042
      return NULL;
2043
    }
2044
 
2045
  return result;
2046
}
2047
 
2048
 
2049
/* Convert real to real.  */
2050
 
2051
gfc_expr *
2052
gfc_real2real (gfc_expr *src, int kind)
2053
{
2054
  gfc_expr *result;
2055
  arith rc;
2056
 
2057
  result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
2058
 
2059
  mpfr_set (result->value.real, src->value.real, GFC_RND_MODE);
2060
 
2061
  rc = gfc_check_real_range (result->value.real, kind);
2062
 
2063
  if (rc == ARITH_UNDERFLOW)
2064
    {
2065
      if (gfc_option.warn_underflow)
2066
        gfc_warning (gfc_arith_error (rc), &src->where);
2067
      mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
2068
    }
2069
  else if (rc != ARITH_OK)
2070
    {
2071
      arith_error (rc, &src->ts, &result->ts, &src->where);
2072
      gfc_free_expr (result);
2073
      return NULL;
2074
    }
2075
 
2076
  return result;
2077
}
2078
 
2079
 
2080
/* Convert real to complex.  */
2081
 
2082
gfc_expr *
2083
gfc_real2complex (gfc_expr *src, int kind)
2084
{
2085
  gfc_expr *result;
2086
  arith rc;
2087
 
2088
  result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
2089
 
2090
  mpc_set_fr (result->value.complex, src->value.real, GFC_MPC_RND_MODE);
2091
 
2092
  rc = gfc_check_real_range (mpc_realref (result->value.complex), kind);
2093
 
2094
  if (rc == ARITH_UNDERFLOW)
2095
    {
2096
      if (gfc_option.warn_underflow)
2097
        gfc_warning (gfc_arith_error (rc), &src->where);
2098
      mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE);
2099
    }
2100
  else if (rc != ARITH_OK)
2101
    {
2102
      arith_error (rc, &src->ts, &result->ts, &src->where);
2103
      gfc_free_expr (result);
2104
      return NULL;
2105
    }
2106
 
2107
  return result;
2108
}
2109
 
2110
 
2111
/* Convert complex to integer.  */
2112
 
2113
gfc_expr *
2114
gfc_complex2int (gfc_expr *src, int kind)
2115
{
2116
  gfc_expr *result;
2117
  arith rc;
2118
 
2119
  result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
2120
 
2121
  gfc_mpfr_to_mpz (result->value.integer, mpc_realref (src->value.complex),
2122
                   &src->where);
2123
 
2124
  if ((rc = gfc_check_integer_range (result->value.integer, kind)) != ARITH_OK)
2125
    {
2126
      arith_error (rc, &src->ts, &result->ts, &src->where);
2127
      gfc_free_expr (result);
2128
      return NULL;
2129
    }
2130
 
2131
  return result;
2132
}
2133
 
2134
 
2135
/* Convert complex to real.  */
2136
 
2137
gfc_expr *
2138
gfc_complex2real (gfc_expr *src, int kind)
2139
{
2140
  gfc_expr *result;
2141
  arith rc;
2142
 
2143
  result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
2144
 
2145
  mpc_real (result->value.real, src->value.complex, GFC_RND_MODE);
2146
 
2147
  rc = gfc_check_real_range (result->value.real, kind);
2148
 
2149
  if (rc == ARITH_UNDERFLOW)
2150
    {
2151
      if (gfc_option.warn_underflow)
2152
        gfc_warning (gfc_arith_error (rc), &src->where);
2153
      mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
2154
    }
2155
  if (rc != ARITH_OK)
2156
    {
2157
      arith_error (rc, &src->ts, &result->ts, &src->where);
2158
      gfc_free_expr (result);
2159
      return NULL;
2160
    }
2161
 
2162
  return result;
2163
}
2164
 
2165
 
2166
/* Convert complex to complex.  */
2167
 
2168
gfc_expr *
2169
gfc_complex2complex (gfc_expr *src, int kind)
2170
{
2171
  gfc_expr *result;
2172
  arith rc;
2173
 
2174
  result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
2175
 
2176
  mpc_set (result->value.complex, src->value.complex, GFC_MPC_RND_MODE);
2177
 
2178
  rc = gfc_check_real_range (mpc_realref (result->value.complex), kind);
2179
 
2180
  if (rc == ARITH_UNDERFLOW)
2181
    {
2182
      if (gfc_option.warn_underflow)
2183
        gfc_warning (gfc_arith_error (rc), &src->where);
2184
      mpfr_set_ui (mpc_realref (result->value.complex), 0, GFC_RND_MODE);
2185
    }
2186
  else if (rc != ARITH_OK)
2187
    {
2188
      arith_error (rc, &src->ts, &result->ts, &src->where);
2189
      gfc_free_expr (result);
2190
      return NULL;
2191
    }
2192
 
2193
  rc = gfc_check_real_range (mpc_imagref (result->value.complex), kind);
2194
 
2195
  if (rc == ARITH_UNDERFLOW)
2196
    {
2197
      if (gfc_option.warn_underflow)
2198
        gfc_warning (gfc_arith_error (rc), &src->where);
2199
      mpfr_set_ui (mpc_imagref (result->value.complex), 0, GFC_RND_MODE);
2200
    }
2201
  else if (rc != ARITH_OK)
2202
    {
2203
      arith_error (rc, &src->ts, &result->ts, &src->where);
2204
      gfc_free_expr (result);
2205
      return NULL;
2206
    }
2207
 
2208
  return result;
2209
}
2210
 
2211
 
2212
/* Logical kind conversion.  */
2213
 
2214
gfc_expr *
2215
gfc_log2log (gfc_expr *src, int kind)
2216
{
2217
  gfc_expr *result;
2218
 
2219
  result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
2220
  result->value.logical = src->value.logical;
2221
 
2222
  return result;
2223
}
2224
 
2225
 
2226
/* Convert logical to integer.  */
2227
 
2228
gfc_expr *
2229
gfc_log2int (gfc_expr *src, int kind)
2230
{
2231
  gfc_expr *result;
2232
 
2233
  result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
2234
  mpz_set_si (result->value.integer, src->value.logical);
2235
 
2236
  return result;
2237
}
2238
 
2239
 
2240
/* Convert integer to logical.  */
2241
 
2242
gfc_expr *
2243
gfc_int2log (gfc_expr *src, int kind)
2244
{
2245
  gfc_expr *result;
2246
 
2247
  result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
2248
  result->value.logical = (mpz_cmp_si (src->value.integer, 0) != 0);
2249
 
2250
  return result;
2251
}
2252
 
2253
 
2254
/* Helper function to set the representation in a Hollerith conversion.
2255
   This assumes that the ts.type and ts.kind of the result have already
2256
   been set.  */
2257
 
2258
static void
2259
hollerith2representation (gfc_expr *result, gfc_expr *src)
2260
{
2261
  int src_len, result_len;
2262
 
2263
  src_len = src->representation.length - src->ts.u.pad;
2264
  result_len = gfc_target_expr_size (result);
2265
 
2266
  if (src_len > result_len)
2267
    {
2268
      gfc_warning ("The Hollerith constant at %L is too long to convert to %s",
2269
                   &src->where, gfc_typename(&result->ts));
2270
    }
2271
 
2272
  result->representation.string = XCNEWVEC (char, result_len + 1);
2273
  memcpy (result->representation.string, src->representation.string,
2274
          MIN (result_len, src_len));
2275
 
2276
  if (src_len < result_len)
2277
    memset (&result->representation.string[src_len], ' ', result_len - src_len);
2278
 
2279
  result->representation.string[result_len] = '\0'; /* For debugger  */
2280
  result->representation.length = result_len;
2281
}
2282
 
2283
 
2284
/* Convert Hollerith to integer. The constant will be padded or truncated.  */
2285
 
2286
gfc_expr *
2287
gfc_hollerith2int (gfc_expr *src, int kind)
2288
{
2289
  gfc_expr *result;
2290
  result = gfc_get_constant_expr (BT_INTEGER, kind, &src->where);
2291
 
2292
  hollerith2representation (result, src);
2293
  gfc_interpret_integer (kind, (unsigned char *) result->representation.string,
2294
                         result->representation.length, result->value.integer);
2295
 
2296
  return result;
2297
}
2298
 
2299
 
2300
/* Convert Hollerith to real. The constant will be padded or truncated.  */
2301
 
2302
gfc_expr *
2303
gfc_hollerith2real (gfc_expr *src, int kind)
2304
{
2305
  gfc_expr *result;
2306
  result = gfc_get_constant_expr (BT_REAL, kind, &src->where);
2307
 
2308
  hollerith2representation (result, src);
2309
  gfc_interpret_float (kind, (unsigned char *) result->representation.string,
2310
                       result->representation.length, result->value.real);
2311
 
2312
  return result;
2313
}
2314
 
2315
 
2316
/* Convert Hollerith to complex. The constant will be padded or truncated.  */
2317
 
2318
gfc_expr *
2319
gfc_hollerith2complex (gfc_expr *src, int kind)
2320
{
2321
  gfc_expr *result;
2322
  result = gfc_get_constant_expr (BT_COMPLEX, kind, &src->where);
2323
 
2324
  hollerith2representation (result, src);
2325
  gfc_interpret_complex (kind, (unsigned char *) result->representation.string,
2326
                         result->representation.length, result->value.complex);
2327
 
2328
  return result;
2329
}
2330
 
2331
 
2332
/* Convert Hollerith to character. */
2333
 
2334
gfc_expr *
2335
gfc_hollerith2character (gfc_expr *src, int kind)
2336
{
2337
  gfc_expr *result;
2338
 
2339
  result = gfc_copy_expr (src);
2340
  result->ts.type = BT_CHARACTER;
2341
  result->ts.kind = kind;
2342
 
2343
  result->value.character.length = result->representation.length;
2344
  result->value.character.string
2345
    = gfc_char_to_widechar (result->representation.string);
2346
 
2347
  return result;
2348
}
2349
 
2350
 
2351
/* Convert Hollerith to logical. The constant will be padded or truncated.  */
2352
 
2353
gfc_expr *
2354
gfc_hollerith2logical (gfc_expr *src, int kind)
2355
{
2356
  gfc_expr *result;
2357
  result = gfc_get_constant_expr (BT_LOGICAL, kind, &src->where);
2358
 
2359
  hollerith2representation (result, src);
2360
  gfc_interpret_logical (kind, (unsigned char *) result->representation.string,
2361
                         result->representation.length, &result->value.logical);
2362
 
2363
  return result;
2364
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.