OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [fortran/] [gfortran.texi] - Blame information for rev 712

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 712 jeremybenn
\input texinfo  @c -*-texinfo-*-
2
@c %**start of header
3
@setfilename gfortran.info
4
@set copyrights-gfortran 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5
 
6
@include gcc-common.texi
7
 
8
@settitle The GNU Fortran Compiler
9
 
10
@c Create a separate index for command line options
11
@defcodeindex op
12
@c Merge the standard indexes into a single one.
13
@syncodeindex fn cp
14
@syncodeindex vr cp
15
@syncodeindex ky cp
16
@syncodeindex pg cp
17
@syncodeindex tp cp
18
 
19
@c TODO: The following "Part" definitions are included here temporarily
20
@c until they are incorporated into the official Texinfo distribution.
21
@c They borrow heavily from Texinfo's \unnchapentry definitions.
22
 
23
@tex
24
\gdef\part#1#2{%
25
  \pchapsepmacro
26
  \gdef\thischapter{}
27
  \begingroup
28
    \vglue\titlepagetopglue
29
    \titlefonts \rm
30
    \leftline{Part #1:@* #2}
31
    \vskip4pt \hrule height 4pt width \hsize \vskip4pt
32
  \endgroup
33
  \writetocentry{part}{#2}{#1}
34
}
35
\gdef\blankpart{%
36
  \writetocentry{blankpart}{}{}
37
}
38
% Part TOC-entry definition for summary contents.
39
\gdef\dosmallpartentry#1#2#3#4{%
40
  \vskip .5\baselineskip plus.2\baselineskip
41
  \begingroup
42
    \let\rm=\bf \rm
43
    \tocentry{Part #2: #1}{\doshortpageno\bgroup#4\egroup}
44
  \endgroup
45
}
46
\gdef\dosmallblankpartentry#1#2#3#4{%
47
  \vskip .5\baselineskip plus.2\baselineskip
48
}
49
% Part TOC-entry definition for regular contents.  This has to be
50
% equated to an existing entry to not cause problems when the PDF
51
% outline is created.
52
\gdef\dopartentry#1#2#3#4{%
53
  \unnchapentry{Part #2: #1}{}{#3}{#4}
54
}
55
\gdef\doblankpartentry#1#2#3#4{}
56
@end tex
57
 
58
@c %**end of header
59
 
60
@c Use with @@smallbook.
61
 
62
@c %** start of document
63
 
64
@c Cause even numbered pages to be printed on the left hand side of
65
@c the page and odd numbered pages to be printed on the right hand
66
@c side of the page.  Using this, you can print on both sides of a
67
@c sheet of paper and have the text on the same part of the sheet.
68
 
69
@c The text on right hand pages is pushed towards the right hand
70
@c margin and the text on left hand pages is pushed toward the left
71
@c hand margin.
72
@c (To provide the reverse effect, set bindingoffset to -0.75in.)
73
 
74
@c @tex
75
@c \global\bindingoffset=0.75in
76
@c \global\normaloffset =0.75in
77
@c @end tex
78
 
79
@copying
80
Copyright @copyright{} @value{copyrights-gfortran} Free Software Foundation, Inc.
81
 
82
Permission is granted to copy, distribute and/or modify this document
83
under the terms of the GNU Free Documentation License, Version 1.3 or
84
any later version published by the Free Software Foundation; with the
85
Invariant Sections being ``Funding Free Software'', the Front-Cover
86
Texts being (a) (see below), and with the Back-Cover Texts being (b)
87
(see below).  A copy of the license is included in the section entitled
88
``GNU Free Documentation License''.
89
 
90
(a) The FSF's Front-Cover Text is:
91
 
92
     A GNU Manual
93
 
94
(b) The FSF's Back-Cover Text is:
95
 
96
     You have freedom to copy and modify this GNU Manual, like GNU
97
     software.  Copies published by the Free Software Foundation raise
98
     funds for GNU development.
99
@end copying
100
 
101
@ifinfo
102
@dircategory Software development
103
@direntry
104
* gfortran: (gfortran).                  The GNU Fortran Compiler.
105
@end direntry
106
This file documents the use and the internals of
107
the GNU Fortran compiler, (@command{gfortran}).
108
 
109
Published by the Free Software Foundation
110
51 Franklin Street, Fifth Floor
111
Boston, MA 02110-1301 USA
112
 
113
@insertcopying
114
@end ifinfo
115
 
116
 
117
@setchapternewpage odd
118
@titlepage
119
@title Using GNU Fortran
120
@versionsubtitle
121
@author The @t{gfortran} team
122
@page
123
@vskip 0pt plus 1filll
124
Published by the Free Software Foundation@*
125
51 Franklin Street, Fifth Floor@*
126
Boston, MA 02110-1301, USA@*
127
@c Last printed ??ber, 19??.@*
128
@c Printed copies are available for $? each.@*
129
@c ISBN ???
130
@sp 1
131
@insertcopying
132
@end titlepage
133
 
134
@c TODO: The following "Part" definitions are included here temporarily
135
@c until they are incorporated into the official Texinfo distribution.
136
 
137
@tex
138
\global\let\partentry=\dosmallpartentry
139
\global\let\blankpartentry=\dosmallblankpartentry
140
@end tex
141
@summarycontents
142
 
143
@tex
144
\global\let\partentry=\dopartentry
145
\global\let\blankpartentry=\doblankpartentry
146
@end tex
147
@contents
148
 
149
@page
150
 
151
@c ---------------------------------------------------------------------
152
@c TexInfo table of contents.
153
@c ---------------------------------------------------------------------
154
 
155
@ifnottex
156
@node Top
157
@top Introduction
158
@cindex Introduction
159
 
160
This manual documents the use of @command{gfortran},
161
the GNU Fortran compiler.  You can find in this manual how to invoke
162
@command{gfortran}, as well as its features and incompatibilities.
163
 
164
@ifset DEVELOPMENT
165
@emph{Warning:} This document, and the compiler it describes, are still
166
under development.  While efforts are made to keep it up-to-date, it might
167
not accurately reflect the status of the most recent GNU Fortran compiler.
168
@end ifset
169
 
170
@comment
171
@comment  When you add a new menu item, please keep the right hand
172
@comment  aligned to the same column.  Do not use tabs.  This provides
173
@comment  better formatting.
174
@comment
175
@menu
176
* Introduction::
177
 
178
Part I: Invoking GNU Fortran
179
* Invoking GNU Fortran:: Command options supported by @command{gfortran}.
180
* Runtime::              Influencing runtime behavior with environment variables.
181
 
182
Part II: Language Reference
183
* Fortran 2003 and 2008 status::  Fortran 2003 and 2008 features supported by GNU Fortran.
184
* Compiler Characteristics::      User-visible implementation details.
185
* Mixed-Language Programming::    Interoperability with C
186
* Extensions::           Language extensions implemented by GNU Fortran.
187
* Intrinsic Procedures:: Intrinsic procedures supported by GNU Fortran.
188
* Intrinsic Modules::    Intrinsic modules supported by GNU Fortran.
189
 
190
* Contributing::         How you can help.
191
* Copying::              GNU General Public License says
192
                         how you can copy and share GNU Fortran.
193
* GNU Free Documentation License::
194
                         How you can copy and share this manual.
195
* Funding::              How to help assure continued work for free software.
196
* Option Index::         Index of command line options
197
* Keyword Index::        Index of concepts
198
@end menu
199
@end ifnottex
200
 
201
@c ---------------------------------------------------------------------
202
@c Introduction
203
@c ---------------------------------------------------------------------
204
 
205
@node Introduction
206
@chapter Introduction
207
 
208
@c The following duplicates the text on the TexInfo table of contents.
209
@iftex
210
This manual documents the use of @command{gfortran}, the GNU Fortran
211
compiler.  You can find in this manual how to invoke @command{gfortran},
212
as well as its features and incompatibilities.
213
 
214
@ifset DEVELOPMENT
215
@emph{Warning:} This document, and the compiler it describes, are still
216
under development.  While efforts are made to keep it up-to-date, it
217
might not accurately reflect the status of the most recent GNU Fortran
218
compiler.
219
@end ifset
220
@end iftex
221
 
222
The GNU Fortran compiler front end was
223
designed initially as a free replacement for,
224
or alternative to, the unix @command{f95} command;
225
@command{gfortran} is the command you will use to invoke the compiler.
226
 
227
@menu
228
* About GNU Fortran::    What you should know about the GNU Fortran compiler.
229
* GNU Fortran and GCC::  You can compile Fortran, C, or other programs.
230
* Preprocessing and conditional compilation:: The Fortran preprocessor
231
* GNU Fortran and G77::  Why we chose to start from scratch.
232
* Project Status::       Status of GNU Fortran, roadmap, proposed extensions.
233
* Standards::            Standards supported by GNU Fortran.
234
@end menu
235
 
236
 
237
@c ---------------------------------------------------------------------
238
@c About GNU Fortran
239
@c ---------------------------------------------------------------------
240
 
241
@node About GNU Fortran
242
@section About GNU Fortran
243
 
244
The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards
245
completely, parts of the Fortran 2003 and Fortran 2008 standards, and
246
several vendor extensions.  The development goal is to provide the
247
following features:
248
 
249
@itemize @bullet
250
@item
251
Read a user's program,
252
stored in a file and containing instructions written
253
in Fortran 77, Fortran 90, Fortran 95, Fortran 2003 or Fortran 2008.
254
This file contains @dfn{source code}.
255
 
256
@item
257
Translate the user's program into instructions a computer
258
can carry out more quickly than it takes to translate the
259
instructions in the first
260
place.  The result after compilation of a program is
261
@dfn{machine code},
262
code designed to be efficiently translated and processed
263
by a machine such as your computer.
264
Humans usually are not as good writing machine code
265
as they are at writing Fortran (or C++, Ada, or Java),
266
because it is easy to make tiny mistakes writing machine code.
267
 
268
@item
269
Provide the user with information about the reasons why
270
the compiler is unable to create a binary from the source code.
271
Usually this will be the case if the source code is flawed.
272
The Fortran 90 standard requires that the compiler can point out
273
mistakes to the user.
274
An incorrect usage of the language causes an @dfn{error message}.
275
 
276
The compiler will also attempt to diagnose cases where the
277
user's program contains a correct usage of the language,
278
but instructs the computer to do something questionable.
279
This kind of diagnostics message is called a @dfn{warning message}.
280
 
281
@item
282
Provide optional information about the translation passes
283
from the source code to machine code.
284
This can help a user of the compiler to find the cause of
285
certain bugs which may not be obvious in the source code,
286
but may be more easily found at a lower level compiler output.
287
It also helps developers to find bugs in the compiler itself.
288
 
289
@item
290
Provide information in the generated machine code that can
291
make it easier to find bugs in the program (using a debugging tool,
292
called a @dfn{debugger}, such as the GNU Debugger @command{gdb}).
293
 
294
@item
295
Locate and gather machine code already generated to
296
perform actions requested by statements in the user's program.
297
This machine code is organized into @dfn{modules} and is located
298
and @dfn{linked} to the user program.
299
@end itemize
300
 
301
The GNU Fortran compiler consists of several components:
302
 
303
@itemize @bullet
304
@item
305
A version of the @command{gcc} command
306
(which also might be installed as the system's @command{cc} command)
307
that also understands and accepts Fortran source code.
308
The @command{gcc} command is the @dfn{driver} program for
309
all the languages in the GNU Compiler Collection (GCC);
310
With @command{gcc},
311
you can compile the source code of any language for
312
which a front end is available in GCC.
313
 
314
@item
315
The @command{gfortran} command itself,
316
which also might be installed as the
317
system's @command{f95} command.
318
@command{gfortran} is just another driver program,
319
but specifically for the Fortran compiler only.
320
The difference with @command{gcc} is that @command{gfortran}
321
will automatically link the correct libraries to your program.
322
 
323
@item
324
A collection of run-time libraries.
325
These libraries contain the machine code needed to support
326
capabilities of the Fortran language that are not directly
327
provided by the machine code generated by the
328
@command{gfortran} compilation phase,
329
such as intrinsic functions and subroutines,
330
and routines for interaction with files and the operating system.
331
@c and mechanisms to spawn,
332
@c unleash and pause threads in parallelized code.
333
 
334
@item
335
The Fortran compiler itself, (@command{f951}).
336
This is the GNU Fortran parser and code generator,
337
linked to and interfaced with the GCC backend library.
338
@command{f951} ``translates'' the source code to
339
assembler code.  You would typically not use this
340
program directly;
341
instead, the @command{gcc} or @command{gfortran} driver
342
programs will call it for you.
343
@end itemize
344
 
345
 
346
@c ---------------------------------------------------------------------
347
@c GNU Fortran and GCC
348
@c ---------------------------------------------------------------------
349
 
350
@node GNU Fortran and GCC
351
@section GNU Fortran and GCC
352
@cindex GNU Compiler Collection
353
@cindex GCC
354
 
355
GNU Fortran is a part of GCC, the @dfn{GNU Compiler Collection}.  GCC
356
consists of a collection of front ends for various languages, which
357
translate the source code into a language-independent form called
358
@dfn{GENERIC}.  This is then processed by a common middle end which
359
provides optimization, and then passed to one of a collection of back
360
ends which generate code for different computer architectures and
361
operating systems.
362
 
363
Functionally, this is implemented with a driver program (@command{gcc})
364
which provides the command-line interface for the compiler.  It calls
365
the relevant compiler front-end program (e.g., @command{f951} for
366
Fortran) for each file in the source code, and then calls the assembler
367
and linker as appropriate to produce the compiled output.  In a copy of
368
GCC which has been compiled with Fortran language support enabled,
369
@command{gcc} will recognize files with @file{.f}, @file{.for}, @file{.ftn},
370
@file{.f90}, @file{.f95}, @file{.f03} and @file{.f08} extensions as
371
Fortran source code, and compile it accordingly.  A @command{gfortran}
372
driver program is also provided, which is identical to @command{gcc}
373
except that it automatically links the Fortran runtime libraries into the
374
compiled program.
375
 
376
Source files with @file{.f}, @file{.for}, @file{.fpp}, @file{.ftn}, @file{.F},
377
@file{.FOR}, @file{.FPP}, and @file{.FTN} extensions are treated as fixed form.
378
Source files with @file{.f90}, @file{.f95}, @file{.f03}, @file{.f08},
379
@file{.F90}, @file{.F95}, @file{.F03} and @file{.F08} extensions are
380
treated as free form.  The capitalized versions of either form are run
381
through preprocessing.  Source files with the lower case @file{.fpp}
382
extension are also run through preprocessing.
383
 
384
This manual specifically documents the Fortran front end, which handles
385
the programming language's syntax and semantics.  The aspects of GCC
386
which relate to the optimization passes and the back-end code generation
387
are documented in the GCC manual; see
388
@ref{Top,,Introduction,gcc,Using the GNU Compiler Collection (GCC)}.
389
The two manuals together provide a complete reference for the GNU
390
Fortran compiler.
391
 
392
 
393
@c ---------------------------------------------------------------------
394
@c Preprocessing and conditional compilation
395
@c ---------------------------------------------------------------------
396
 
397
@node Preprocessing and conditional compilation
398
@section Preprocessing and conditional compilation
399
@cindex CPP
400
@cindex FPP
401
@cindex Conditional compilation
402
@cindex Preprocessing
403
@cindex preprocessor, include file handling
404
 
405
Many Fortran compilers including GNU Fortran allow passing the source code
406
through a C preprocessor (CPP; sometimes also called the Fortran preprocessor,
407
FPP) to allow for conditional compilation.  In the case of GNU Fortran,
408
this is the GNU C Preprocessor in the traditional mode.  On systems with
409
case-preserving file names, the preprocessor is automatically invoked if the
410
filename extension is @file{.F}, @file{.FOR}, @file{.FTN}, @file{.fpp},
411
@file{.FPP}, @file{.F90}, @file{.F95}, @file{.F03} or @file{.F08}.  To manually
412
invoke the preprocessor on any file, use @option{-cpp}, to disable
413
preprocessing on files where the preprocessor is run automatically, use
414
@option{-nocpp}.
415
 
416
If a preprocessed file includes another file with the Fortran @code{INCLUDE}
417
statement, the included file is not preprocessed.  To preprocess included
418
files, use the equivalent preprocessor statement @code{#include}.
419
 
420
If GNU Fortran invokes the preprocessor, @code{__GFORTRAN__}
421
is defined and @code{__GNUC__}, @code{__GNUC_MINOR__} and
422
@code{__GNUC_PATCHLEVEL__} can be used to determine the version of the
423
compiler.  See @ref{Top,,Overview,cpp,The C Preprocessor} for details.
424
 
425
While CPP is the de-facto standard for preprocessing Fortran code,
426
Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines
427
Conditional Compilation, which is not widely used and not directly
428
supported by the GNU Fortran compiler.  You can use the program coco
429
to preprocess such files (@uref{http://www.daniellnagle.com/coco.html}).
430
 
431
 
432
@c ---------------------------------------------------------------------
433
@c GNU Fortran and G77
434
@c ---------------------------------------------------------------------
435
 
436
@node GNU Fortran and G77
437
@section GNU Fortran and G77
438
@cindex Fortran 77
439
@cindex @command{g77}
440
 
441
The GNU Fortran compiler is the successor to @command{g77}, the Fortran
442
77 front end included in GCC prior to version 4.  It is an entirely new
443
program that has been designed to provide Fortran 95 support and
444
extensibility for future Fortran language standards, as well as providing
445
backwards compatibility for Fortran 77 and nearly all of the GNU language
446
extensions supported by @command{g77}.
447
 
448
 
449
@c ---------------------------------------------------------------------
450
@c Project Status
451
@c ---------------------------------------------------------------------
452
 
453
@node Project Status
454
@section Project Status
455
 
456
@quotation
457
As soon as @command{gfortran} can parse all of the statements correctly,
458
it will be in the ``larva'' state.
459
When we generate code, the ``puppa'' state.
460
When @command{gfortran} is done,
461
we'll see if it will be a beautiful butterfly,
462
or just a big bug....
463
 
464
--Andy Vaught, April 2000
465
@end quotation
466
 
467
The start of the GNU Fortran 95 project was announced on
468
the GCC homepage in March 18, 2000
469
(even though Andy had already been working on it for a while,
470
of course).
471
 
472
The GNU Fortran compiler is able to compile nearly all
473
standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs,
474
including a number of standard and non-standard extensions, and can be
475
used on real-world programs.  In particular, the supported extensions
476
include OpenMP, Cray-style pointers, and several Fortran 2003 and Fortran
477
2008 features, including TR 15581.  However, it is still under
478
development and has a few remaining rough edges.
479
 
480
At present, the GNU Fortran compiler passes the
481
@uref{http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html,
482
NIST Fortran 77 Test Suite}, and produces acceptable results on the
483
@uref{http://www.netlib.org/lapack/faq.html#1.21, LAPACK Test Suite}.
484
It also provides respectable performance on
485
the @uref{http://www.polyhedron.com/pb05.html, Polyhedron Fortran
486
compiler benchmarks} and the
487
@uref{http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html,
488
Livermore Fortran Kernels test}.  It has been used to compile a number of
489
large real-world programs, including
490
@uref{http://mysite.verizon.net/serveall/moene.pdf, the HIRLAM
491
weather-forecasting code} and
492
@uref{http://www.theochem.uwa.edu.au/tonto/, the Tonto quantum
493
chemistry package}; see @url{http://gcc.gnu.org/@/wiki/@/GfortranApps} for an
494
extended list.
495
 
496
Among other things, the GNU Fortran compiler is intended as a replacement
497
for G77.  At this point, nearly all programs that could be compiled with
498
G77 can be compiled with GNU Fortran, although there are a few minor known
499
regressions.
500
 
501
The primary work remaining to be done on GNU Fortran falls into three
502
categories: bug fixing (primarily regarding the treatment of invalid code
503
and providing useful error messages), improving the compiler optimizations
504
and the performance of compiled code, and extending the compiler to support
505
future standards---in particular, Fortran 2003 and Fortran 2008.
506
 
507
 
508
@c ---------------------------------------------------------------------
509
@c Standards
510
@c ---------------------------------------------------------------------
511
 
512
@node Standards
513
@section Standards
514
@cindex Standards
515
 
516
@menu
517
* Varying Length Character Strings::
518
@end menu
519
 
520
The GNU Fortran compiler implements
521
ISO/IEC 1539:1997 (Fortran 95).  As such, it can also compile essentially all
522
standard-compliant Fortran 90 and Fortran 77 programs.   It also supports
523
the ISO/IEC TR-15581 enhancements to allocatable arrays.
524
 
525
In the future, the GNU Fortran compiler will also support ISO/IEC
526
1539-1:2004 (Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008) and
527
future Fortran standards.  Partial support of the Fortran 2003 and
528
Fortran 2008 standard is already provided; the current status of the
529
support is reported in the @ref{Fortran 2003 status} and
530
@ref{Fortran 2008 status} sections of the documentation.
531
 
532
Additionally, the GNU Fortran compilers supports the OpenMP specification
533
(version 3.1, @url{http://openmp.org/@/wp/@/openmp-specifications/}).
534
 
535
@node Varying Length Character Strings
536
@subsection Varying Length Character Strings
537
@cindex Varying length character strings
538
@cindex Varying length strings
539
@cindex strings, varying length
540
 
541
The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000)
542
varying length character strings.  While GNU Fortran currently does not
543
support such strings directly, there exist two Fortran implementations
544
for them, which work with GNU Fortran.  They can be found at
545
@uref{http://www.fortran.com/@/iso_varying_string.f95} and at
546
@uref{ftp://ftp.nag.co.uk/@/sc22wg5/@/ISO_VARYING_STRING/}.
547
 
548
 
549
 
550
@c =====================================================================
551
@c PART I: INVOCATION REFERENCE
552
@c =====================================================================
553
 
554
@tex
555
\part{I}{Invoking GNU Fortran}
556
@end tex
557
 
558
@c ---------------------------------------------------------------------
559
@c Compiler Options
560
@c ---------------------------------------------------------------------
561
 
562
@include invoke.texi
563
 
564
 
565
@c ---------------------------------------------------------------------
566
@c Runtime
567
@c ---------------------------------------------------------------------
568
 
569
@node Runtime
570
@chapter Runtime:  Influencing runtime behavior with environment variables
571
@cindex environment variable
572
 
573
The behavior of the @command{gfortran} can be influenced by
574
environment variables.
575
 
576
Malformed environment variables are silently ignored.
577
 
578
@menu
579
* GFORTRAN_STDIN_UNIT:: Unit number for standard input
580
* GFORTRAN_STDOUT_UNIT:: Unit number for standard output
581
* GFORTRAN_STDERR_UNIT:: Unit number for standard error
582
* GFORTRAN_TMPDIR:: Directory for scratch files
583
* GFORTRAN_UNBUFFERED_ALL:: Do not buffer I/O for all units.
584
* GFORTRAN_UNBUFFERED_PRECONNECTED:: Do not buffer I/O for preconnected units.
585
* GFORTRAN_SHOW_LOCUS::  Show location for runtime errors
586
* GFORTRAN_OPTIONAL_PLUS:: Print leading + where permitted
587
* GFORTRAN_DEFAULT_RECL:: Default record length for new files
588
* GFORTRAN_LIST_SEPARATOR::  Separator for list output
589
* GFORTRAN_CONVERT_UNIT::  Set endianness for unformatted I/O
590
* GFORTRAN_ERROR_BACKTRACE:: Show backtrace on run-time errors
591
@end menu
592
 
593
@node GFORTRAN_STDIN_UNIT
594
@section @env{GFORTRAN_STDIN_UNIT}---Unit number for standard input
595
 
596
This environment variable can be used to select the unit number
597
preconnected to standard input.  This must be a positive integer.
598
The default value is 5.
599
 
600
@node GFORTRAN_STDOUT_UNIT
601
@section @env{GFORTRAN_STDOUT_UNIT}---Unit number for standard output
602
 
603
This environment variable can be used to select the unit number
604
preconnected to standard output.  This must be a positive integer.
605
The default value is 6.
606
 
607
@node GFORTRAN_STDERR_UNIT
608
@section @env{GFORTRAN_STDERR_UNIT}---Unit number for standard error
609
 
610
This environment variable can be used to select the unit number
611
preconnected to standard error.  This must be a positive integer.
612
The default value is 0.
613
 
614
@node GFORTRAN_TMPDIR
615
@section @env{GFORTRAN_TMPDIR}---Directory for scratch files
616
 
617
This environment variable controls where scratch files are
618
created.  If this environment variable is missing,
619
GNU Fortran searches for the environment variable @env{TMP}, then @env{TEMP}.
620
If these are missing, the default is @file{/tmp}.
621
 
622
@node GFORTRAN_UNBUFFERED_ALL
623
@section @env{GFORTRAN_UNBUFFERED_ALL}---Do not buffer I/O on all units
624
 
625
This environment variable controls whether all I/O is unbuffered.  If
626
the first letter is @samp{y}, @samp{Y} or @samp{1}, all I/O is
627
unbuffered.  This will slow down small sequential reads and writes.  If
628
the first letter is @samp{n}, @samp{N} or @samp{0}, I/O is buffered.
629
This is the default.
630
 
631
@node GFORTRAN_UNBUFFERED_PRECONNECTED
632
@section @env{GFORTRAN_UNBUFFERED_PRECONNECTED}---Do not buffer I/O on preconnected units
633
 
634
The environment variable named @env{GFORTRAN_UNBUFFERED_PRECONNECTED} controls
635
whether I/O on a preconnected unit (i.e.@: STDOUT or STDERR) is unbuffered.  If
636
the first letter is @samp{y}, @samp{Y} or @samp{1}, I/O is unbuffered.  This
637
will slow down small sequential reads and writes.  If the first letter
638
is @samp{n}, @samp{N} or @samp{0}, I/O is buffered.  This is the default.
639
 
640
@node GFORTRAN_SHOW_LOCUS
641
@section @env{GFORTRAN_SHOW_LOCUS}---Show location for runtime errors
642
 
643
If the first letter is @samp{y}, @samp{Y} or @samp{1}, filename and
644
line numbers for runtime errors are printed.  If the first letter is
645
@samp{n}, @samp{N} or @samp{0}, do not print filename and line numbers
646
for runtime errors.  The default is to print the location.
647
 
648
@node GFORTRAN_OPTIONAL_PLUS
649
@section @env{GFORTRAN_OPTIONAL_PLUS}---Print leading + where permitted
650
 
651
If the first letter is @samp{y}, @samp{Y} or @samp{1},
652
a plus sign is printed
653
where permitted by the Fortran standard.  If the first letter
654
is @samp{n}, @samp{N} or @samp{0}, a plus sign is not printed
655
in most cases.  Default is not to print plus signs.
656
 
657
@node GFORTRAN_DEFAULT_RECL
658
@section @env{GFORTRAN_DEFAULT_RECL}---Default record length for new files
659
 
660
This environment variable specifies the default record length, in
661
bytes, for files which are opened without a @code{RECL} tag in the
662
@code{OPEN} statement.  This must be a positive integer.  The
663
default value is 1073741824 bytes (1 GB).
664
 
665
@node GFORTRAN_LIST_SEPARATOR
666
@section @env{GFORTRAN_LIST_SEPARATOR}---Separator for list output
667
 
668
This environment variable specifies the separator when writing
669
list-directed output.  It may contain any number of spaces and
670
at most one comma.  If you specify this on the command line,
671
be sure to quote spaces, as in
672
@smallexample
673
$ GFORTRAN_LIST_SEPARATOR='  ,  ' ./a.out
674
@end smallexample
675
when @command{a.out} is the compiled Fortran program that you want to run.
676
Default is a single space.
677
 
678
@node GFORTRAN_CONVERT_UNIT
679
@section @env{GFORTRAN_CONVERT_UNIT}---Set endianness for unformatted I/O
680
 
681
By setting the @env{GFORTRAN_CONVERT_UNIT} variable, it is possible
682
to change the representation of data for unformatted files.
683
The syntax for the @env{GFORTRAN_CONVERT_UNIT} variable is:
684
@smallexample
685
GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
686
mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
687
exception: mode ':' unit_list | unit_list ;
688
unit_list: unit_spec | unit_list unit_spec ;
689
unit_spec: INTEGER | INTEGER '-' INTEGER ;
690
@end smallexample
691
The variable consists of an optional default mode, followed by
692
a list of optional exceptions, which are separated by semicolons
693
from the preceding default and each other.  Each exception consists
694
of a format and a comma-separated list of units.  Valid values for
695
the modes are the same as for the @code{CONVERT} specifier:
696
 
697
@itemize @w{}
698
@item @code{NATIVE} Use the native format.  This is the default.
699
@item @code{SWAP} Swap between little- and big-endian.
700
@item @code{LITTLE_ENDIAN} Use the little-endian format
701
for unformatted files.
702
@item @code{BIG_ENDIAN} Use the big-endian format for unformatted files.
703
@end itemize
704
A missing mode for an exception is taken to mean @code{BIG_ENDIAN}.
705
Examples of values for @env{GFORTRAN_CONVERT_UNIT} are:
706
@itemize @w{}
707
@item @code{'big_endian'}  Do all unformatted I/O in big_endian mode.
708
@item @code{'little_endian;native:10-20,25'}  Do all unformatted I/O
709
in little_endian mode, except for units 10 to 20 and 25, which are in
710
native format.
711
@item @code{'10-20'}  Units 10 to 20 are big-endian, the rest is native.
712
@end itemize
713
 
714
Setting the environment variables should be done on the command
715
line or via the @command{export}
716
command for @command{sh}-compatible shells and via @command{setenv}
717
for @command{csh}-compatible shells.
718
 
719
Example for @command{sh}:
720
@smallexample
721
$ gfortran foo.f90
722
$ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out
723
@end smallexample
724
 
725
Example code for @command{csh}:
726
@smallexample
727
% gfortran foo.f90
728
% setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
729
% ./a.out
730
@end smallexample
731
 
732
Using anything but the native representation for unformatted data
733
carries a significant speed overhead.  If speed in this area matters
734
to you, it is best if you use this only for data that needs to be
735
portable.
736
 
737
@xref{CONVERT specifier}, for an alternative way to specify the
738
data representation for unformatted files.  @xref{Runtime Options}, for
739
setting a default data representation for the whole program.  The
740
@code{CONVERT} specifier overrides the @option{-fconvert} compile options.
741
 
742
@emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
743
environment variable will override the CONVERT specifier in the
744
open statement}.  This is to give control over data formats to
745
users who do not have the source code of their program available.
746
 
747
@node GFORTRAN_ERROR_BACKTRACE
748
@section @env{GFORTRAN_ERROR_BACKTRACE}---Show backtrace on run-time errors
749
 
750
If the @env{GFORTRAN_ERROR_BACKTRACE} variable is set to @samp{y},
751
@samp{Y} or @samp{1} (only the first letter is relevant) then a
752
backtrace is printed when a serious run-time error occurs.  To disable
753
the backtracing, set the variable to @samp{n}, @samp{N}, @samp{0}.
754
Default is to print a backtrace unless the @option{-fno-backtrace}
755
compile option was used.
756
 
757
@c =====================================================================
758
@c PART II: LANGUAGE REFERENCE
759
@c =====================================================================
760
 
761
@tex
762
\part{II}{Language Reference}
763
@end tex
764
 
765
@c ---------------------------------------------------------------------
766
@c Fortran 2003 and 2008 Status
767
@c ---------------------------------------------------------------------
768
 
769
@node Fortran 2003 and 2008 status
770
@chapter Fortran 2003 and 2008 Status
771
 
772
@menu
773
* Fortran 2003 status::
774
* Fortran 2008 status::
775
* TS 29113 status::
776
@end menu
777
 
778
@node Fortran 2003 status
779
@section Fortran 2003 status
780
 
781
GNU Fortran supports several Fortran 2003 features; an incomplete
782
list can be found below.  See also the
783
@uref{http://gcc.gnu.org/wiki/Fortran2003, wiki page} about Fortran 2003.
784
 
785
@itemize
786
@item Procedure pointers including procedure-pointer components with
787
@code{PASS} attribute.
788
 
789
@item Procedures which are bound to a derived type (type-bound procedures)
790
including @code{PASS}, @code{PROCEDURE} and @code{GENERIC}, and
791
operators bound to a type.
792
 
793
@item Abstract interfaces and type extension with the possibility to
794
override type-bound procedures or to have deferred binding.
795
 
796
@item Polymorphic entities (``@code{CLASS}'') for derived types -- including
797
@code{SAME_TYPE_AS}, @code{EXTENDS_TYPE_OF} and @code{SELECT TYPE}.
798
Note that unlimited polymorphism is currently not supported.
799
 
800
@item Generic interface names, which have the same name as derived types,
801
are now supported. This allows one to write constructor functions.  Note
802
that Fortran does not support static constructor functions.  For static
803
variables, only default initialization or structure-constructor
804
initialization are available.
805
 
806
@item The @code{ASSOCIATE} construct.
807
 
808
@item Interoperability with C including enumerations,
809
 
810
@item In structure constructors the components with default values may be
811
omitted.
812
 
813
@item Extensions to the @code{ALLOCATE} statement, allowing for a
814
type-specification with type parameter and for allocation and initialization
815
from a @code{SOURCE=} expression; @code{ALLOCATE} and @code{DEALLOCATE}
816
optionally return an error message string via @code{ERRMSG=}.
817
 
818
@item Reallocation on assignment: If an intrinsic assignment is
819
used, an allocatable variable on the left-hand side is automatically allocated
820
(if unallocated) or reallocated (if the shape is different). Currently, scalar
821
deferred character length left-hand sides are correctly handled but arrays
822
are not yet fully implemented.
823
 
824
@item Transferring of allocations via @code{MOVE_ALLOC}.
825
 
826
@item The @code{PRIVATE} and @code{PUBLIC} attributes may be given individually
827
to derived-type components.
828
 
829
@item In pointer assignments, the lower bound may be specified and
830
the remapping of elements is supported.
831
 
832
@item For pointers an @code{INTENT} may be specified which affect the
833
association status not the value of the pointer target.
834
 
835
@item Intrinsics @code{command_argument_count}, @code{get_command},
836
@code{get_command_argument}, and @code{get_environment_variable}.
837
 
838
@item Support for Unicode characters (ISO 10646) and UTF-8, including
839
the @code{SELECTED_CHAR_KIND} and @code{NEW_LINE} intrinsic functions.
840
 
841
@item Support for binary, octal and hexadecimal (BOZ) constants in the
842
intrinsic functions @code{INT}, @code{REAL}, @code{CMPLX} and @code{DBLE}.
843
 
844
@item Support for namelist variables with allocatable and pointer
845
attribute and nonconstant length type parameter.
846
 
847
@item
848
@cindex array, constructors
849
@cindex @code{[...]}
850
Array constructors using square brackets.  That is, @code{[...]} rather
851
than @code{(/.../)}.  Type-specification for array constructors like
852
@code{(/ some-type :: ... /)}.
853
 
854
@item Extensions to the specification and initialization expressions,
855
including the support for intrinsics with real and complex arguments.
856
 
857
@item Support for the asynchronous input/output syntax; however, the
858
data transfer is currently always synchronously performed.
859
 
860
@item
861
@cindex @code{FLUSH} statement
862
@cindex statement, @code{FLUSH}
863
@code{FLUSH} statement.
864
 
865
@item
866
@cindex @code{IOMSG=} specifier
867
@code{IOMSG=} specifier for I/O statements.
868
 
869
@item
870
@cindex @code{ENUM} statement
871
@cindex @code{ENUMERATOR} statement
872
@cindex statement, @code{ENUM}
873
@cindex statement, @code{ENUMERATOR}
874
@opindex @code{fshort-enums}
875
Support for the declaration of enumeration constants via the
876
@code{ENUM} and @code{ENUMERATOR} statements.  Interoperability with
877
@command{gcc} is guaranteed also for the case where the
878
@command{-fshort-enums} command line option is given.
879
 
880
@item
881
@cindex TR 15581
882
TR 15581:
883
@itemize
884
@item
885
@cindex @code{ALLOCATABLE} dummy arguments
886
@code{ALLOCATABLE} dummy arguments.
887
@item
888
@cindex @code{ALLOCATABLE} function results
889
@code{ALLOCATABLE} function results
890
@item
891
@cindex @code{ALLOCATABLE} components of derived types
892
@code{ALLOCATABLE} components of derived types
893
@end itemize
894
 
895
@item
896
@cindex @code{STREAM} I/O
897
@cindex @code{ACCESS='STREAM'} I/O
898
The @code{OPEN} statement supports the @code{ACCESS='STREAM'} specifier,
899
allowing I/O without any record structure.
900
 
901
@item
902
Namelist input/output for internal files.
903
 
904
@item Further I/O extensions: Rounding during formatted output, using of
905
a decimal comma instead of a decimal point, setting whether a plus sign
906
should appear for positive numbers.
907
 
908
@item
909
@cindex @code{PROTECTED} statement
910
@cindex statement, @code{PROTECTED}
911
The @code{PROTECTED} statement and attribute.
912
 
913
@item
914
@cindex @code{VALUE} statement
915
@cindex statement, @code{VALUE}
916
The @code{VALUE} statement and attribute.
917
 
918
@item
919
@cindex @code{VOLATILE} statement
920
@cindex statement, @code{VOLATILE}
921
The @code{VOLATILE} statement and attribute.
922
 
923
@item
924
@cindex @code{IMPORT} statement
925
@cindex statement, @code{IMPORT}
926
The @code{IMPORT} statement, allowing to import
927
host-associated derived types.
928
 
929
@item The intrinsic modules @code{ISO_FORTRAN_ENVIRONMENT} is supported,
930
which contains parameters of the I/O units, storage sizes. Additionally,
931
procedures for C interoperability are available in the @code{ISO_C_BINDING}
932
module.
933
 
934
@item
935
@cindex @code{USE, INTRINSIC} statement
936
@cindex statement, @code{USE, INTRINSIC}
937
@cindex @code{ISO_FORTRAN_ENV} statement
938
@cindex statement, @code{ISO_FORTRAN_ENV}
939
@code{USE} statement with @code{INTRINSIC} and @code{NON_INTRINSIC}
940
attribute; supported intrinsic modules: @code{ISO_FORTRAN_ENV},
941
@code{ISO_C_BINDING}, @code{OMP_LIB} and @code{OMP_LIB_KINDS}.
942
 
943
@item
944
Renaming of operators in the @code{USE} statement.
945
 
946
@end itemize
947
 
948
 
949
@node Fortran 2008 status
950
@section Fortran 2008 status
951
 
952
The latest version of the Fortran standard is ISO/IEC 1539-1:2010, informally
953
known as Fortran 2008.  The official version is available from International
954
Organization for Standardization (ISO) or its national member organizations.
955
The the final draft (FDIS) can be downloaded free of charge from
956
@url{http://www.nag.co.uk/@/sc22wg5/@/links.html}.  Fortran is developed by the
957
Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1 of the
958
International Organization for Standardization and the International
959
Electrotechnical Commission (IEC).  This group is known as
960
@uref{http://www.nag.co.uk/sc22wg5/, WG5}.
961
 
962
The GNU Fortran compiler supports several of the new features of Fortran 2008;
963
the @uref{http://gcc.gnu.org/wiki/Fortran2008Status, wiki} has some information
964
about the current Fortran 2008 implementation status.  In particular, the
965
following is implemented.
966
 
967
@itemize
968
@item The @option{-std=f2008} option and support for the file extensions
969
@file{.f08} and @file{.F08}.
970
 
971
@item The @code{OPEN} statement now supports the @code{NEWUNIT=} option,
972
which returns a unique file unit, thus preventing inadvertent use of the
973
same unit in different parts of the program.
974
 
975
@item The @code{g0} format descriptor and unlimited format items.
976
 
977
@item The mathematical intrinsics @code{ASINH}, @code{ACOSH}, @code{ATANH},
978
@code{ERF}, @code{ERFC}, @code{GAMMA}, @code{LOG_GAMMA}, @code{BESSEL_J0},
979
@code{BESSEL_J1}, @code{BESSEL_JN}, @code{BESSEL_Y0}, @code{BESSEL_Y1},
980
@code{BESSEL_YN}, @code{HYPOT}, @code{NORM2}, and @code{ERFC_SCALED}.
981
 
982
@item Using complex arguments with @code{TAN}, @code{SINH}, @code{COSH},
983
@code{TANH}, @code{ASIN}, @code{ACOS}, and @code{ATAN} is now possible;
984
@code{ATAN}(@var{Y},@var{X}) is now an alias for @code{ATAN2}(@var{Y},@var{X}).
985
 
986
@item Support of the @code{PARITY} intrinsic functions.
987
 
988
@item The following bit intrinsics: @code{LEADZ} and @code{TRAILZ} for
989
counting the number of leading and trailing zero bits, @code{POPCNT} and
990
@code{POPPAR} for counting the number of one bits and returning the parity;
991
@code{BGE}, @code{BGT}, @code{BLE}, and @code{BLT} for bitwise comparisons;
992
@code{DSHIFTL} and @code{DSHIFTR} for combined left and right shifts,
993
@code{MASKL} and @code{MASKR} for simple left and right justified masks,
994
@code{MERGE_BITS} for a bitwise merge using a mask, @code{SHIFTA},
995
@code{SHIFTL} and @code{SHIFTR} for shift operations, and the
996
transformational bit intrinsics @code{IALL}, @code{IANY} and @code{IPARITY}.
997
 
998
@item Support of the @code{EXECUTE_COMMAND_LINE} intrinsic subroutine.
999
 
1000
@item Support for the @code{STORAGE_SIZE} intrinsic inquiry function.
1001
 
1002
@item The @code{INT@{8,16,32@}} and @code{REAL@{32,64,128@}} kind type
1003
parameters and the array-valued named constants @code{INTEGER_KINDS},
1004
@code{LOGICAL_KINDS}, @code{REAL_KINDS} and @code{CHARACTER_KINDS} of
1005
the intrinsic module @code{ISO_FORTRAN_ENV}.
1006
 
1007
@item The module procedures @code{C_SIZEOF} of the intrinsic module
1008
@code{ISO_C_BINDINGS} and @code{COMPILER_VERSION} and @code{COMPILER_OPTIONS}
1009
of @code{ISO_FORTRAN_ENV}.
1010
 
1011
@item Coarray support for serial programs with @option{-fcoarray=single} flag
1012
and experimental support for multiple images with the @option{-fcoarray=lib}
1013
flag.
1014
 
1015
@item The @code{DO CONCURRENT} construct is supported.
1016
 
1017
@item The @code{BLOCK} construct is supported.
1018
 
1019
@item The @code{STOP} and the new @code{ERROR STOP} statements now
1020
support all constant expressions.
1021
 
1022
@item Support for the @code{CONTIGUOUS} attribute.
1023
 
1024
@item Support for @code{ALLOCATE} with @code{MOLD}.
1025
 
1026
@item Support for the @code{IMPURE} attribute for procedures, which
1027
allows for @code{ELEMENTAL} procedures without the restrictions of
1028
@code{PURE}.
1029
 
1030
@item Null pointers (including @code{NULL()}) and not-allocated variables
1031
can be used as actual argument to optional non-pointer, non-allocatable
1032
dummy arguments, denoting an absent argument.
1033
 
1034
@item Non-pointer variables with @code{TARGET} attribute can be used as
1035
actual argument to @code{POINTER} dummies with @code{INTENT(IN)}.
1036
 
1037
@item Pointers including procedure pointers and those in a derived
1038
type (pointer components) can now be initialized by a target instead
1039
of only by @code{NULL}.
1040
 
1041
@item The @code{EXIT} statement (with construct-name) can be now be
1042
used to leave not only the @code{DO} but also the @code{ASSOCIATE},
1043
@code{BLOCK}, @code{IF}, @code{SELECT CASE} and @code{SELECT TYPE}
1044
constructs.
1045
 
1046
@item Internal procedures can now be used as actual argument.
1047
 
1048
@item Minor features: obsolesce diagnostics for @code{ENTRY} with
1049
@option{-std=f2008}; a line may start with a semicolon; for internal
1050
and module procedures @code{END} can be used instead of
1051
@code{END SUBROUTINE} and @code{END FUNCTION}; @code{SELECTED_REAL_KIND}
1052
now also takes a @code{RADIX} argument; intrinsic types are supported
1053
for @code{TYPE}(@var{intrinsic-type-spec}); multiple type-bound procedures
1054
can be declared in a single @code{PROCEDURE} statement; implied-shape
1055
arrays are supported for named constants (@code{PARAMETER}).
1056
@end itemize
1057
 
1058
 
1059
 
1060
@node TS 29113 status
1061
@section Technical Specification 29113 Status
1062
 
1063
GNU Fortran supports some of the new features of the Technical
1064
Specification (TS) 29113 on Further Interoperability of Fortran with C.
1065
The @uref{http://gcc.gnu.org/wiki/TS29113Status, wiki} has some information
1066
about the current TS 29113 implementation status.  In particular, the
1067
following is implemented.
1068
 
1069
@itemize
1070
@item The @option{-std=f2008ts} option.
1071
 
1072
@item The @code{OPTIONAL} attribute is allowed for dummy arguments
1073
of @code{BIND(C) procedures.}
1074
 
1075
@item The RANK intrinsic is supported.
1076
 
1077
@item GNU Fortran's implementation for variables with @code{ASYNCHRONOUS}
1078
attribute is compatible with TS 29113.
1079
@end itemize
1080
 
1081
 
1082
 
1083
@c ---------------------------------------------------------------------
1084
@c Compiler Characteristics
1085
@c ---------------------------------------------------------------------
1086
 
1087
@node Compiler Characteristics
1088
@chapter Compiler Characteristics
1089
 
1090
This chapter describes certain characteristics of the GNU Fortran
1091
compiler, that are not specified by the Fortran standard, but which
1092
might in some way or another become visible to the programmer.
1093
 
1094
@menu
1095
* KIND Type Parameters::
1096
* Internal representation of LOGICAL variables::
1097
* Thread-safety of the runtime library::
1098
* Data consistency and durability::
1099
@end menu
1100
 
1101
 
1102
@node KIND Type Parameters
1103
@section KIND Type Parameters
1104
@cindex kind
1105
 
1106
The @code{KIND} type parameters supported by GNU Fortran for the primitive
1107
data types are:
1108
 
1109
@table @code
1110
 
1111
@item INTEGER
1112
1, 2, 4, 8*, 16*, default: 4 (1)
1113
 
1114
@item LOGICAL
1115
1, 2, 4, 8*, 16*, default: 4 (1)
1116
 
1117
@item REAL
1118
4, 8, 10*, 16*, default: 4 (2)
1119
 
1120
@item COMPLEX
1121
4, 8, 10*, 16*, default: 4 (2)
1122
 
1123
@item CHARACTER
1124
1, 4, default: 1
1125
 
1126
@end table
1127
 
1128
@noindent
1129
* = not available on all systems @*
1130
(1) Unless -fdefault-integer-8 is used @*
1131
(2) Unless -fdefault-real-8 is used
1132
 
1133
@noindent
1134
The @code{KIND} value matches the storage size in bytes, except for
1135
@code{COMPLEX} where the storage size is twice as much (or both real and
1136
imaginary part are a real value of the given size).  It is recommended to use
1137
the @code{SELECTED_CHAR_KIND}, @code{SELECTED_INT_KIND} and
1138
@code{SELECTED_REAL_KIND} intrinsics or the @code{INT8}, @code{INT16},
1139
@code{INT32}, @code{INT64}, @code{REAL32}, @code{REAL64}, and @code{REAL128}
1140
parameters of the @code{ISO_FORTRAN_ENV} module instead of the concrete values.
1141
The available kind parameters can be found in the constant arrays
1142
@code{CHARACTER_KINDS}, @code{INTEGER_KINDS}, @code{LOGICAL_KINDS} and
1143
@code{REAL_KINDS} in the @code{ISO_FORTRAN_ENV} module
1144
(see @ref{ISO_FORTRAN_ENV}).
1145
 
1146
 
1147
@node Internal representation of LOGICAL variables
1148
@section Internal representation of LOGICAL variables
1149
@cindex logical, variable representation
1150
 
1151
The Fortran standard does not specify how variables of @code{LOGICAL}
1152
type are represented, beyond requiring that @code{LOGICAL} variables
1153
of default kind have the same storage size as default @code{INTEGER}
1154
and @code{REAL} variables.  The GNU Fortran internal representation is
1155
as follows.
1156
 
1157
A @code{LOGICAL(KIND=N)} variable is represented as an
1158
@code{INTEGER(KIND=N)} variable, however, with only two permissible
1159
values: @code{1} for @code{.TRUE.} and @code{0} for
1160
@code{.FALSE.}.  Any other integer value results in undefined behavior.
1161
 
1162
Note that for mixed-language programming using the
1163
@code{ISO_C_BINDING} feature, there is a @code{C_BOOL} kind that can
1164
be used to create @code{LOGICAL(KIND=C_BOOL)} variables which are
1165
interoperable with the C99 _Bool type.  The C99 _Bool type has an
1166
internal representation described in the C99 standard, which is
1167
identical to the above description, i.e. with 1 for true and 0 for
1168
false being the only permissible values.  Thus the internal
1169
representation of @code{LOGICAL} variables in GNU Fortran is identical
1170
to C99 _Bool, except for a possible difference in storage size
1171
depending on the kind.
1172
 
1173
 
1174
@node Thread-safety of the runtime library
1175
@section Thread-safety of the runtime library
1176
@cindex thread-safety, threads
1177
 
1178
GNU Fortran can be used in programs with multiple threads, e.g.@: by
1179
using OpenMP, by calling OS thread handling functions via the
1180
@code{ISO_C_BINDING} facility, or by GNU Fortran compiled library code
1181
being called from a multi-threaded program.
1182
 
1183
The GNU Fortran runtime library, (@code{libgfortran}), supports being
1184
called concurrently from multiple threads with the following
1185
exceptions.
1186
 
1187
During library initialization, the C @code{getenv} function is used,
1188
which need not be thread-safe.  Similarly, the @code{getenv}
1189
function is used to implement the @code{GET_ENVIRONMENT_VARIABLE} and
1190
@code{GETENV} intrinsics.  It is the responsibility of the user to
1191
ensure that the environment is not being updated concurrently when any
1192
of these actions are taking place.
1193
 
1194
The @code{EXECUTE_COMMAND_LINE} and @code{SYSTEM} intrinsics are
1195
implemented with the @code{system} function, which need not be
1196
thread-safe.  It is the responsibility of the user to ensure that
1197
@code{system} is not called concurrently.
1198
 
1199
Finally, for platforms not supporting thread-safe POSIX functions,
1200
further functionality might not be thread-safe.  For details, please
1201
consult the documentation for your operating system.
1202
 
1203
 
1204
@node Data consistency and durability
1205
@section Data consistency and durability
1206
@cindex consistency, durability
1207
 
1208
This section contains a brief overview of data and metadata
1209
consistency and durability issues when doing I/O.
1210
 
1211
With respect to durability, GNU Fortran makes no effort to ensure that
1212
data is committed to stable storage. If this is required, the GNU
1213
Fortran programmer can use the intrinsic @code{FNUM} to retrieve the
1214
low level file descriptor corresponding to an open Fortran unit. Then,
1215
using e.g. the @code{ISO_C_BINDING} feature, one can call the
1216
underlying system call to flush dirty data to stable storage, such as
1217
@code{fsync} on POSIX, @code{_commit} on MingW, or @code{fcntl(fd,
1218
F_FULLSYNC, 0)} on Mac OS X. The following example shows how to call
1219
fsync:
1220
 
1221
@smallexample
1222
  ! Declare the interface for POSIX fsync function
1223
  interface
1224
    function fsync (fd) bind(c,name="fsync")
1225
    use iso_c_binding, only: c_int
1226
      integer(c_int), value :: fd
1227
      integer(c_int) :: fsync
1228
    end function fsync
1229
  end interface
1230
 
1231
  ! Variable declaration
1232
  integer :: ret
1233
 
1234
  ! Opening unit 10
1235
  open (10,file="foo")
1236
 
1237
  ! ...
1238
  ! Perform I/O on unit 10
1239
  ! ...
1240
 
1241
  ! Flush and sync
1242
  flush(10)
1243
  ret = fsync(fnum(10))
1244
 
1245
  ! Handle possible error
1246
  if (ret /= 0) stop "Error calling FSYNC"
1247
@end smallexample
1248
 
1249
With respect to consistency, for regular files GNU Fortran uses
1250
buffered I/O in order to improve performance. This buffer is flushed
1251
automatically when full and in some other situations, e.g. when
1252
closing a unit. It can also be explicitly flushed with the
1253
@code{FLUSH} statement. Also, the buffering can be turned off with the
1254
@code{GFORTRAN_UNBUFFERED_ALL} and
1255
@code{GFORTRAN_UNBUFFERED_PRECONNECTED} environment variables. Special
1256
files, such as terminals and pipes, are always unbuffered. Sometimes,
1257
however, further things may need to be done in order to allow other
1258
processes to see data that GNU Fortran has written, as follows.
1259
 
1260
The Windows platform supports a relaxed metadata consistency model,
1261
where file metadata is written to the directory lazily. This means
1262
that, for instance, the @code{dir} command can show a stale size for a
1263
file. One can force a directory metadata update by closing the unit,
1264
or by calling @code{_commit} on the file descriptor. Note, though,
1265
that @code{_commit} will force all dirty data to stable storage, which
1266
is often a very slow operation.
1267
 
1268
The Network File System (NFS) implements a relaxed consistency model
1269
called open-to-close consistency. Closing a file forces dirty data and
1270
metadata to be flushed to the server, and opening a file forces the
1271
client to contact the server in order to revalidate cached
1272
data. @code{fsync} will also force a flush of dirty data and metadata
1273
to the server. Similar to @code{open} and @code{close}, acquiring and
1274
releasing @code{fcntl} file locks, if the server supports them, will
1275
also force cache validation and flushing dirty data and metadata.
1276
 
1277
 
1278
@c ---------------------------------------------------------------------
1279
@c Extensions
1280
@c ---------------------------------------------------------------------
1281
 
1282
@c Maybe this chapter should be merged with the 'Standards' section,
1283
@c whenever that is written :-)
1284
 
1285
@node Extensions
1286
@chapter Extensions
1287
@cindex extensions
1288
 
1289
The two sections below detail the extensions to standard Fortran that are
1290
implemented in GNU Fortran, as well as some of the popular or
1291
historically important extensions that are not (or not yet) implemented.
1292
For the latter case, we explain the alternatives available to GNU Fortran
1293
users, including replacement by standard-conforming code or GNU
1294
extensions.
1295
 
1296
@menu
1297
* Extensions implemented in GNU Fortran::
1298
* Extensions not implemented in GNU Fortran::
1299
@end menu
1300
 
1301
 
1302
@node Extensions implemented in GNU Fortran
1303
@section Extensions implemented in GNU Fortran
1304
@cindex extensions, implemented
1305
 
1306
GNU Fortran implements a number of extensions over standard
1307
Fortran.  This chapter contains information on their syntax and
1308
meaning.  There are currently two categories of GNU Fortran
1309
extensions, those that provide functionality beyond that provided
1310
by any standard, and those that are supported by GNU Fortran
1311
purely for backward compatibility with legacy compilers.  By default,
1312
@option{-std=gnu} allows the compiler to accept both types of
1313
extensions, but to warn about the use of the latter.  Specifying
1314
either @option{-std=f95}, @option{-std=f2003} or @option{-std=f2008}
1315
disables both types of extensions, and @option{-std=legacy} allows both
1316
without warning.
1317
 
1318
@menu
1319
* Old-style kind specifications::
1320
* Old-style variable initialization::
1321
* Extensions to namelist::
1322
* X format descriptor without count field::
1323
* Commas in FORMAT specifications::
1324
* Missing period in FORMAT specifications::
1325
* I/O item lists::
1326
* BOZ literal constants::
1327
* @code{Q} exponent-letter::
1328
* Real array indices::
1329
* Unary operators::
1330
* Implicitly convert LOGICAL and INTEGER values::
1331
* Hollerith constants support::
1332
* Cray pointers::
1333
* CONVERT specifier::
1334
* OpenMP::
1335
* Argument list functions::
1336
@end menu
1337
 
1338
@node Old-style kind specifications
1339
@subsection Old-style kind specifications
1340
@cindex kind, old-style
1341
 
1342
GNU Fortran allows old-style kind specifications in declarations.  These
1343
look like:
1344
@smallexample
1345
      TYPESPEC*size x,y,z
1346
@end smallexample
1347
@noindent
1348
where @code{TYPESPEC} is a basic type (@code{INTEGER}, @code{REAL},
1349
etc.), and where @code{size} is a byte count corresponding to the
1350
storage size of a valid kind for that type.  (For @code{COMPLEX}
1351
variables, @code{size} is the total size of the real and imaginary
1352
parts.)  The statement then declares @code{x}, @code{y} and @code{z} to
1353
be of type @code{TYPESPEC} with the appropriate kind.  This is
1354
equivalent to the standard-conforming declaration
1355
@smallexample
1356
      TYPESPEC(k) x,y,z
1357
@end smallexample
1358
@noindent
1359
where @code{k} is the kind parameter suitable for the intended precision.  As
1360
kind parameters are implementation-dependent, use the @code{KIND},
1361
@code{SELECTED_INT_KIND} and @code{SELECTED_REAL_KIND} intrinsics to retrieve
1362
the correct value, for instance @code{REAL*8 x} can be replaced by:
1363
@smallexample
1364
INTEGER, PARAMETER :: dbl = KIND(1.0d0)
1365
REAL(KIND=dbl) :: x
1366
@end smallexample
1367
 
1368
@node Old-style variable initialization
1369
@subsection Old-style variable initialization
1370
 
1371
GNU Fortran allows old-style initialization of variables of the
1372
form:
1373
@smallexample
1374
      INTEGER i/1/,j/2/
1375
      REAL x(2,2) /3*0.,1./
1376
@end smallexample
1377
The syntax for the initializers is as for the @code{DATA} statement, but
1378
unlike in a @code{DATA} statement, an initializer only applies to the
1379
variable immediately preceding the initialization.  In other words,
1380
something like @code{INTEGER I,J/2,3/} is not valid.  This style of
1381
initialization is only allowed in declarations without double colons
1382
(@code{::}); the double colons were introduced in Fortran 90, which also
1383
introduced a standard syntax for initializing variables in type
1384
declarations.
1385
 
1386
Examples of standard-conforming code equivalent to the above example
1387
are:
1388
@smallexample
1389
! Fortran 90
1390
      INTEGER :: i = 1, j = 2
1391
      REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
1392
! Fortran 77
1393
      INTEGER i, j
1394
      REAL x(2,2)
1395
      DATA i/1/, j/2/, x/3*0.,1./
1396
@end smallexample
1397
 
1398
Note that variables which are explicitly initialized in declarations
1399
or in @code{DATA} statements automatically acquire the @code{SAVE}
1400
attribute.
1401
 
1402
@node Extensions to namelist
1403
@subsection Extensions to namelist
1404
@cindex Namelist
1405
 
1406
GNU Fortran fully supports the Fortran 95 standard for namelist I/O
1407
including array qualifiers, substrings and fully qualified derived types.
1408
The output from a namelist write is compatible with namelist read.  The
1409
output has all names in upper case and indentation to column 1 after the
1410
namelist name.  Two extensions are permitted:
1411
 
1412
Old-style use of @samp{$} instead of @samp{&}
1413
@smallexample
1414
$MYNML
1415
 X(:)%Y(2) = 1.0 2.0 3.0
1416
 CH(1:4) = "abcd"
1417
$END
1418
@end smallexample
1419
 
1420
It should be noted that the default terminator is @samp{/} rather than
1421
@samp{&END}.
1422
 
1423
Querying of the namelist when inputting from stdin.  After at least
1424
one space, entering @samp{?} sends to stdout the namelist name and the names of
1425
the variables in the namelist:
1426
@smallexample
1427
 ?
1428
 
1429
&mynml
1430
 x
1431
 x%y
1432
 ch
1433
&end
1434
@end smallexample
1435
 
1436
Entering @samp{=?} outputs the namelist to stdout, as if
1437
@code{WRITE(*,NML = mynml)} had been called:
1438
@smallexample
1439
=?
1440
 
1441
&MYNML
1442
 X(1)%Y=  0.000000    ,  1.000000    ,  0.000000    ,
1443
 X(2)%Y=  0.000000    ,  2.000000    ,  0.000000    ,
1444
 X(3)%Y=  0.000000    ,  3.000000    ,  0.000000    ,
1445
 CH=abcd,  /
1446
@end smallexample
1447
 
1448
To aid this dialog, when input is from stdin, errors send their
1449
messages to stderr and execution continues, even if @code{IOSTAT} is set.
1450
 
1451
@code{PRINT} namelist is permitted.  This causes an error if
1452
@option{-std=f95} is used.
1453
@smallexample
1454
PROGRAM test_print
1455
  REAL, dimension (4)  ::  x = (/1.0, 2.0, 3.0, 4.0/)
1456
  NAMELIST /mynml/ x
1457
  PRINT mynml
1458
END PROGRAM test_print
1459
@end smallexample
1460
 
1461
Expanded namelist reads are permitted.  This causes an error if
1462
@option{-std=f95} is used.  In the following example, the first element
1463
of the array will be given the value 0.00 and the two succeeding
1464
elements will be given the values 1.00 and 2.00.
1465
@smallexample
1466
&MYNML
1467
  X(1,1) = 0.00 , 1.00 , 2.00
1468
/
1469
@end smallexample
1470
 
1471
@node X format descriptor without count field
1472
@subsection @code{X} format descriptor without count field
1473
 
1474
To support legacy codes, GNU Fortran permits the count field of the
1475
@code{X} edit descriptor in @code{FORMAT} statements to be omitted.
1476
When omitted, the count is implicitly assumed to be one.
1477
 
1478
@smallexample
1479
       PRINT 10, 2, 3
1480
10     FORMAT (I1, X, I1)
1481
@end smallexample
1482
 
1483
@node Commas in FORMAT specifications
1484
@subsection Commas in @code{FORMAT} specifications
1485
 
1486
To support legacy codes, GNU Fortran allows the comma separator
1487
to be omitted immediately before and after character string edit
1488
descriptors in @code{FORMAT} statements.
1489
 
1490
@smallexample
1491
       PRINT 10, 2, 3
1492
10     FORMAT ('FOO='I1' BAR='I2)
1493
@end smallexample
1494
 
1495
 
1496
@node Missing period in FORMAT specifications
1497
@subsection Missing period in @code{FORMAT} specifications
1498
 
1499
To support legacy codes, GNU Fortran allows missing periods in format
1500
specifications if and only if @option{-std=legacy} is given on the
1501
command line.  This is considered non-conforming code and is
1502
discouraged.
1503
 
1504
@smallexample
1505
       REAL :: value
1506
       READ(*,10) value
1507
10     FORMAT ('F4')
1508
@end smallexample
1509
 
1510
@node I/O item lists
1511
@subsection I/O item lists
1512
@cindex I/O item lists
1513
 
1514
To support legacy codes, GNU Fortran allows the input item list
1515
of the @code{READ} statement, and the output item lists of the
1516
@code{WRITE} and @code{PRINT} statements, to start with a comma.
1517
 
1518
@node @code{Q} exponent-letter
1519
@subsection @code{Q} exponent-letter
1520
@cindex @code{Q} exponent-letter
1521
 
1522
GNU Fortran accepts real literal constants with an exponent-letter
1523
of @code{Q}, for example, @code{1.23Q45}.  The constant is interpreted
1524
as a @code{REAL(16)} entity on targets that support this type.  If
1525
the target does not support @code{REAL(16)} but has a @code{REAL(10)}
1526
type, then the real-literal-constant will be interpreted as a
1527
@code{REAL(10)} entity.  In the absence of @code{REAL(16)} and
1528
@code{REAL(10)}, an error will occur.
1529
 
1530
@node BOZ literal constants
1531
@subsection BOZ literal constants
1532
@cindex BOZ literal constants
1533
 
1534
Besides decimal constants, Fortran also supports binary (@code{b}),
1535
octal (@code{o}) and hexadecimal (@code{z}) integer constants.  The
1536
syntax is: @samp{prefix quote digits quote}, were the prefix is
1537
either @code{b}, @code{o} or @code{z}, quote is either @code{'} or
1538
@code{"} and the digits are for binary @code{0} or @code{1}, for
1539
octal between @code{0} and @code{7}, and for hexadecimal between
1540
@code{0} and @code{F}.  (Example: @code{b'01011101'}.)
1541
 
1542
Up to Fortran 95, BOZ literals were only allowed to initialize
1543
integer variables in DATA statements.  Since Fortran 2003 BOZ literals
1544
are also allowed as argument of @code{REAL}, @code{DBLE}, @code{INT}
1545
and @code{CMPLX}; the result is the same as if the integer BOZ
1546
literal had been converted by @code{TRANSFER} to, respectively,
1547
@code{real}, @code{double precision}, @code{integer} or @code{complex}.
1548
As GNU Fortran extension the intrinsic procedures @code{FLOAT},
1549
@code{DFLOAT}, @code{COMPLEX} and @code{DCMPLX} are treated alike.
1550
 
1551
As an extension, GNU Fortran allows hexadecimal BOZ literal constants to
1552
be specified using the @code{X} prefix, in addition to the standard
1553
@code{Z} prefix.  The BOZ literal can also be specified by adding a
1554
suffix to the string, for example, @code{Z'ABC'} and @code{'ABC'Z} are
1555
equivalent.
1556
 
1557
Furthermore, GNU Fortran allows using BOZ literal constants outside
1558
DATA statements and the four intrinsic functions allowed by Fortran 2003.
1559
In DATA statements, in direct assignments, where the right-hand side
1560
only contains a BOZ literal constant, and for old-style initializers of
1561
the form @code{integer i /o'0173'/}, the constant is transferred
1562
as if @code{TRANSFER} had been used; for @code{COMPLEX} numbers, only
1563
the real part is initialized unless @code{CMPLX} is used.  In all other
1564
cases, the BOZ literal constant is converted to an @code{INTEGER} value with
1565
the largest decimal representation.  This value is then converted
1566
numerically to the type and kind of the variable in question.
1567
(For instance, @code{real :: r = b'0000001' + 1} initializes @code{r}
1568
with @code{2.0}.) As different compilers implement the extension
1569
differently, one should be careful when doing bitwise initialization
1570
of non-integer variables.
1571
 
1572
Note that initializing an @code{INTEGER} variable with a statement such
1573
as @code{DATA i/Z'FFFFFFFF'/} will give an integer overflow error rather
1574
than the desired result of @math{-1} when @code{i} is a 32-bit integer
1575
on a system that supports 64-bit integers.  The @samp{-fno-range-check}
1576
option can be used as a workaround for legacy code that initializes
1577
integers in this manner.
1578
 
1579
@node Real array indices
1580
@subsection Real array indices
1581
@cindex array, indices of type real
1582
 
1583
As an extension, GNU Fortran allows the use of @code{REAL} expressions
1584
or variables as array indices.
1585
 
1586
@node Unary operators
1587
@subsection Unary operators
1588
@cindex operators, unary
1589
 
1590
As an extension, GNU Fortran allows unary plus and unary minus operators
1591
to appear as the second operand of binary arithmetic operators without
1592
the need for parenthesis.
1593
 
1594
@smallexample
1595
       X = Y * -Z
1596
@end smallexample
1597
 
1598
@node Implicitly convert LOGICAL and INTEGER values
1599
@subsection Implicitly convert @code{LOGICAL} and @code{INTEGER} values
1600
@cindex conversion, to integer
1601
@cindex conversion, to logical
1602
 
1603
As an extension for backwards compatibility with other compilers, GNU
1604
Fortran allows the implicit conversion of @code{LOGICAL} values to
1605
@code{INTEGER} values and vice versa.  When converting from a
1606
@code{LOGICAL} to an @code{INTEGER}, @code{.FALSE.} is interpreted as
1607
zero, and @code{.TRUE.} is interpreted as one.  When converting from
1608
@code{INTEGER} to @code{LOGICAL}, the value zero is interpreted as
1609
@code{.FALSE.} and any nonzero value is interpreted as @code{.TRUE.}.
1610
 
1611
@smallexample
1612
        LOGICAL :: l
1613
        l = 1
1614
@end smallexample
1615
@smallexample
1616
        INTEGER :: i
1617
        i = .TRUE.
1618
@end smallexample
1619
 
1620
However, there is no implicit conversion of @code{INTEGER} values in
1621
@code{if}-statements, nor of @code{LOGICAL} or @code{INTEGER} values
1622
in I/O operations.
1623
 
1624
@node Hollerith constants support
1625
@subsection Hollerith constants support
1626
@cindex Hollerith constants
1627
 
1628
GNU Fortran supports Hollerith constants in assignments, function
1629
arguments, and @code{DATA} and @code{ASSIGN} statements.  A Hollerith
1630
constant is written as a string of characters preceded by an integer
1631
constant indicating the character count, and the letter @code{H} or
1632
@code{h}, and stored in bytewise fashion in a numeric (@code{INTEGER},
1633
@code{REAL}, or @code{complex}) or @code{LOGICAL} variable.  The
1634
constant will be padded or truncated to fit the size of the variable in
1635
which it is stored.
1636
 
1637
Examples of valid uses of Hollerith constants:
1638
@smallexample
1639
      complex*16 x(2)
1640
      data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
1641
      x(1) = 16HABCDEFGHIJKLMNOP
1642
      call foo (4h abc)
1643
@end smallexample
1644
 
1645
Invalid Hollerith constants examples:
1646
@smallexample
1647
      integer*4 a
1648
      a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
1649
      a = 0H         ! At least one character is needed.
1650
@end smallexample
1651
 
1652
In general, Hollerith constants were used to provide a rudimentary
1653
facility for handling character strings in early Fortran compilers,
1654
prior to the introduction of @code{CHARACTER} variables in Fortran 77;
1655
in those cases, the standard-compliant equivalent is to convert the
1656
program to use proper character strings.  On occasion, there may be a
1657
case where the intent is specifically to initialize a numeric variable
1658
with a given byte sequence.  In these cases, the same result can be
1659
obtained by using the @code{TRANSFER} statement, as in this example.
1660
@smallexample
1661
      INTEGER(KIND=4) :: a
1662
      a = TRANSFER ("abcd", a)     ! equivalent to: a = 4Habcd
1663
@end smallexample
1664
 
1665
 
1666
@node Cray pointers
1667
@subsection Cray pointers
1668
@cindex pointer, Cray
1669
 
1670
Cray pointers are part of a non-standard extension that provides a
1671
C-like pointer in Fortran.  This is accomplished through a pair of
1672
variables: an integer "pointer" that holds a memory address, and a
1673
"pointee" that is used to dereference the pointer.
1674
 
1675
Pointer/pointee pairs are declared in statements of the form:
1676
@smallexample
1677
        pointer ( <pointer> , <pointee> )
1678
@end smallexample
1679
or,
1680
@smallexample
1681
        pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
1682
@end smallexample
1683
The pointer is an integer that is intended to hold a memory address.
1684
The pointee may be an array or scalar.  A pointee can be an assumed
1685
size array---that is, the last dimension may be left unspecified by
1686
using a @code{*} in place of a value---but a pointee cannot be an
1687
assumed shape array.  No space is allocated for the pointee.
1688
 
1689
The pointee may have its type declared before or after the pointer
1690
statement, and its array specification (if any) may be declared
1691
before, during, or after the pointer statement.  The pointer may be
1692
declared as an integer prior to the pointer statement.  However, some
1693
machines have default integer sizes that are different than the size
1694
of a pointer, and so the following code is not portable:
1695
@smallexample
1696
        integer ipt
1697
        pointer (ipt, iarr)
1698
@end smallexample
1699
If a pointer is declared with a kind that is too small, the compiler
1700
will issue a warning; the resulting binary will probably not work
1701
correctly, because the memory addresses stored in the pointers may be
1702
truncated.  It is safer to omit the first line of the above example;
1703
if explicit declaration of ipt's type is omitted, then the compiler
1704
will ensure that ipt is an integer variable large enough to hold a
1705
pointer.
1706
 
1707
Pointer arithmetic is valid with Cray pointers, but it is not the same
1708
as C pointer arithmetic.  Cray pointers are just ordinary integers, so
1709
the user is responsible for determining how many bytes to add to a
1710
pointer in order to increment it.  Consider the following example:
1711
@smallexample
1712
        real target(10)
1713
        real pointee(10)
1714
        pointer (ipt, pointee)
1715
        ipt = loc (target)
1716
        ipt = ipt + 1
1717
@end smallexample
1718
The last statement does not set @code{ipt} to the address of
1719
@code{target(1)}, as it would in C pointer arithmetic.  Adding @code{1}
1720
to @code{ipt} just adds one byte to the address stored in @code{ipt}.
1721
 
1722
Any expression involving the pointee will be translated to use the
1723
value stored in the pointer as the base address.
1724
 
1725
To get the address of elements, this extension provides an intrinsic
1726
function @code{LOC()}.  The @code{LOC()} function is equivalent to the
1727
@code{&} operator in C, except the address is cast to an integer type:
1728
@smallexample
1729
        real ar(10)
1730
        pointer(ipt, arpte(10))
1731
        real arpte
1732
        ipt = loc(ar)  ! Makes arpte is an alias for ar
1733
        arpte(1) = 1.0 ! Sets ar(1) to 1.0
1734
@end smallexample
1735
The pointer can also be set by a call to the @code{MALLOC} intrinsic
1736
(see @ref{MALLOC}).
1737
 
1738
Cray pointees often are used to alias an existing variable.  For
1739
example:
1740
@smallexample
1741
        integer target(10)
1742
        integer iarr(10)
1743
        pointer (ipt, iarr)
1744
        ipt = loc(target)
1745
@end smallexample
1746
As long as @code{ipt} remains unchanged, @code{iarr} is now an alias for
1747
@code{target}.  The optimizer, however, will not detect this aliasing, so
1748
it is unsafe to use @code{iarr} and @code{target} simultaneously.  Using
1749
a pointee in any way that violates the Fortran aliasing rules or
1750
assumptions is illegal.  It is the user's responsibility to avoid doing
1751
this; the compiler works under the assumption that no such aliasing
1752
occurs.
1753
 
1754
Cray pointers will work correctly when there is no aliasing (i.e., when
1755
they are used to access a dynamically allocated block of memory), and
1756
also in any routine where a pointee is used, but any variable with which
1757
it shares storage is not used.  Code that violates these rules may not
1758
run as the user intends.  This is not a bug in the optimizer; any code
1759
that violates the aliasing rules is illegal.  (Note that this is not
1760
unique to GNU Fortran; any Fortran compiler that supports Cray pointers
1761
will ``incorrectly'' optimize code with illegal aliasing.)
1762
 
1763
There are a number of restrictions on the attributes that can be applied
1764
to Cray pointers and pointees.  Pointees may not have the
1765
@code{ALLOCATABLE}, @code{INTENT}, @code{OPTIONAL}, @code{DUMMY},
1766
@code{TARGET}, @code{INTRINSIC}, or @code{POINTER} attributes.  Pointers
1767
may not have the @code{DIMENSION}, @code{POINTER}, @code{TARGET},
1768
@code{ALLOCATABLE}, @code{EXTERNAL}, or @code{INTRINSIC} attributes, nor
1769
may they be function results.  Pointees may not occur in more than one
1770
pointer statement.  A pointee cannot be a pointer.  Pointees cannot occur
1771
in equivalence, common, or data statements.
1772
 
1773
A Cray pointer may also point to a function or a subroutine.  For
1774
example, the following excerpt is valid:
1775
@smallexample
1776
  implicit none
1777
  external sub
1778
  pointer (subptr,subpte)
1779
  external subpte
1780
  subptr = loc(sub)
1781
  call subpte()
1782
  [...]
1783
  subroutine sub
1784
  [...]
1785
  end subroutine sub
1786
@end smallexample
1787
 
1788
A pointer may be modified during the course of a program, and this
1789
will change the location to which the pointee refers.  However, when
1790
pointees are passed as arguments, they are treated as ordinary
1791
variables in the invoked function.  Subsequent changes to the pointer
1792
will not change the base address of the array that was passed.
1793
 
1794
@node CONVERT specifier
1795
@subsection @code{CONVERT} specifier
1796
@cindex @code{CONVERT} specifier
1797
 
1798
GNU Fortran allows the conversion of unformatted data between little-
1799
and big-endian representation to facilitate moving of data
1800
between different systems.  The conversion can be indicated with
1801
the @code{CONVERT} specifier on the @code{OPEN} statement.
1802
@xref{GFORTRAN_CONVERT_UNIT}, for an alternative way of specifying
1803
the data format via an environment variable.
1804
 
1805
Valid values for @code{CONVERT} are:
1806
@itemize @w{}
1807
@item @code{CONVERT='NATIVE'} Use the native format.  This is the default.
1808
@item @code{CONVERT='SWAP'} Swap between little- and big-endian.
1809
@item @code{CONVERT='LITTLE_ENDIAN'} Use the little-endian representation
1810
for unformatted files.
1811
@item @code{CONVERT='BIG_ENDIAN'} Use the big-endian representation for
1812
unformatted files.
1813
@end itemize
1814
 
1815
Using the option could look like this:
1816
@smallexample
1817
  open(file='big.dat',form='unformatted',access='sequential', &
1818
       convert='big_endian')
1819
@end smallexample
1820
 
1821
The value of the conversion can be queried by using
1822
@code{INQUIRE(CONVERT=ch)}.  The values returned are
1823
@code{'BIG_ENDIAN'} and @code{'LITTLE_ENDIAN'}.
1824
 
1825
@code{CONVERT} works between big- and little-endian for
1826
@code{INTEGER} values of all supported kinds and for @code{REAL}
1827
on IEEE systems of kinds 4 and 8.  Conversion between different
1828
``extended double'' types on different architectures such as
1829
m68k and x86_64, which GNU Fortran
1830
supports as @code{REAL(KIND=10)} and @code{REAL(KIND=16)}, will
1831
probably not work.
1832
 
1833
@emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
1834
environment variable will override the CONVERT specifier in the
1835
open statement}.  This is to give control over data formats to
1836
users who do not have the source code of their program available.
1837
 
1838
Using anything but the native representation for unformatted data
1839
carries a significant speed overhead.  If speed in this area matters
1840
to you, it is best if you use this only for data that needs to be
1841
portable.
1842
 
1843
@node OpenMP
1844
@subsection OpenMP
1845
@cindex OpenMP
1846
 
1847
OpenMP (Open Multi-Processing) is an application programming
1848
interface (API) that supports multi-platform shared memory
1849
multiprocessing programming in C/C++ and Fortran on many
1850
architectures, including Unix and Microsoft Windows platforms.
1851
It consists of a set of compiler directives, library routines,
1852
and environment variables that influence run-time behavior.
1853
 
1854
GNU Fortran strives to be compatible to the
1855
@uref{http://www.openmp.org/mp-documents/spec31.pdf,
1856
OpenMP Application Program Interface v3.1}.
1857
 
1858
To enable the processing of the OpenMP directive @code{!$omp} in
1859
free-form source code; the @code{c$omp}, @code{*$omp} and @code{!$omp}
1860
directives in fixed form; the @code{!$} conditional compilation sentinels
1861
in free form; and the @code{c$}, @code{*$} and @code{!$} sentinels
1862
in fixed form, @command{gfortran} needs to be invoked with the
1863
@option{-fopenmp}.  This also arranges for automatic linking of the
1864
GNU OpenMP runtime library @ref{Top,,libgomp,libgomp,GNU OpenMP
1865
runtime library}.
1866
 
1867
The OpenMP Fortran runtime library routines are provided both in a
1868
form of a Fortran 90 module named @code{omp_lib} and in a form of
1869
a Fortran @code{include} file named @file{omp_lib.h}.
1870
 
1871
An example of a parallelized loop taken from Appendix A.1 of
1872
the OpenMP Application Program Interface v2.5:
1873
@smallexample
1874
SUBROUTINE A1(N, A, B)
1875
  INTEGER I, N
1876
  REAL B(N), A(N)
1877
!$OMP PARALLEL DO !I is private by default
1878
  DO I=2,N
1879
    B(I) = (A(I) + A(I-1)) / 2.0
1880
  ENDDO
1881
!$OMP END PARALLEL DO
1882
END SUBROUTINE A1
1883
@end smallexample
1884
 
1885
Please note:
1886
@itemize
1887
@item
1888
@option{-fopenmp} implies @option{-frecursive}, i.e., all local arrays
1889
will be allocated on the stack.  When porting existing code to OpenMP,
1890
this may lead to surprising results, especially to segmentation faults
1891
if the stacksize is limited.
1892
 
1893
@item
1894
On glibc-based systems, OpenMP enabled applications cannot be statically
1895
linked due to limitations of the underlying pthreads-implementation.  It
1896
might be possible to get a working solution if
1897
@command{-Wl,--whole-archive -lpthread -Wl,--no-whole-archive} is added
1898
to the command line.  However, this is not supported by @command{gcc} and
1899
thus not recommended.
1900
@end itemize
1901
 
1902
@node Argument list functions
1903
@subsection Argument list functions @code{%VAL}, @code{%REF} and @code{%LOC}
1904
@cindex argument list functions
1905
@cindex @code{%VAL}
1906
@cindex @code{%REF}
1907
@cindex @code{%LOC}
1908
 
1909
GNU Fortran supports argument list functions @code{%VAL}, @code{%REF}
1910
and @code{%LOC} statements, for backward compatibility with g77.
1911
It is recommended that these should be used only for code that is
1912
accessing facilities outside of GNU Fortran, such as operating system
1913
or windowing facilities.  It is best to constrain such uses to isolated
1914
portions of a program--portions that deal specifically and exclusively
1915
with low-level, system-dependent facilities.  Such portions might well
1916
provide a portable interface for use by the program as a whole, but are
1917
themselves not portable, and should be thoroughly tested each time they
1918
are rebuilt using a new compiler or version of a compiler.
1919
 
1920
@code{%VAL} passes a scalar argument by value, @code{%REF} passes it by
1921
reference and @code{%LOC} passes its memory location.  Since gfortran
1922
already passes scalar arguments by reference, @code{%REF} is in effect
1923
a do-nothing.  @code{%LOC} has the same effect as a Fortran pointer.
1924
 
1925
An example of passing an argument by value to a C subroutine foo.:
1926
@smallexample
1927
C
1928
C prototype      void foo_ (float x);
1929
C
1930
      external foo
1931
      real*4 x
1932
      x = 3.14159
1933
      call foo (%VAL (x))
1934
      end
1935
@end smallexample
1936
 
1937
For details refer to the g77 manual
1938
@uref{http://gcc.gnu.org/@/onlinedocs/@/gcc-3.4.6/@/g77/@/index.html#Top}.
1939
 
1940
Also, @code{c_by_val.f} and its partner @code{c_by_val.c} of the
1941
GNU Fortran testsuite are worth a look.
1942
 
1943
 
1944
@node Extensions not implemented in GNU Fortran
1945
@section Extensions not implemented in GNU Fortran
1946
@cindex extensions, not implemented
1947
 
1948
The long history of the Fortran language, its wide use and broad
1949
userbase, the large number of different compiler vendors and the lack of
1950
some features crucial to users in the first standards have lead to the
1951
existence of a number of important extensions to the language.  While
1952
some of the most useful or popular extensions are supported by the GNU
1953
Fortran compiler, not all existing extensions are supported.  This section
1954
aims at listing these extensions and offering advice on how best make
1955
code that uses them running with the GNU Fortran compiler.
1956
 
1957
@c More can be found here:
1958
@c   -- http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/Missing-Features.html
1959
@c   -- the list of Fortran and libgfortran bugs closed as WONTFIX:
1960
@c      http://tinyurl.com/2u4h5y
1961
 
1962
@menu
1963
* STRUCTURE and RECORD::
1964
@c * UNION and MAP::
1965
* ENCODE and DECODE statements::
1966
* Variable FORMAT expressions::
1967
@c * Q edit descriptor::
1968
@c * AUTOMATIC statement::
1969
@c * TYPE and ACCEPT I/O Statements::
1970
@c * .XOR. operator::
1971
@c * CARRIAGECONTROL, DEFAULTFILE, DISPOSE and RECORDTYPE I/O specifiers::
1972
@c * Omitted arguments in procedure call::
1973
* Alternate complex function syntax::
1974
@end menu
1975
 
1976
 
1977
@node STRUCTURE and RECORD
1978
@subsection @code{STRUCTURE} and @code{RECORD}
1979
@cindex @code{STRUCTURE}
1980
@cindex @code{RECORD}
1981
 
1982
Structures are user-defined aggregate data types; this functionality was
1983
standardized in Fortran 90 with an different syntax, under the name of
1984
``derived types''.  Here is an example of code using the non portable
1985
structure syntax:
1986
 
1987
@example
1988
! Declaring a structure named ``item'' and containing three fields:
1989
! an integer ID, an description string and a floating-point price.
1990
STRUCTURE /item/
1991
  INTEGER id
1992
  CHARACTER(LEN=200) description
1993
  REAL price
1994
END STRUCTURE
1995
 
1996
! Define two variables, an single record of type ``item''
1997
! named ``pear'', and an array of items named ``store_catalog''
1998
RECORD /item/ pear, store_catalog(100)
1999
 
2000
! We can directly access the fields of both variables
2001
pear.id = 92316
2002
pear.description = "juicy D'Anjou pear"
2003
pear.price = 0.15
2004
store_catalog(7).id = 7831
2005
store_catalog(7).description = "milk bottle"
2006
store_catalog(7).price = 1.2
2007
 
2008
! We can also manipulate the whole structure
2009
store_catalog(12) = pear
2010
print *, store_catalog(12)
2011
@end example
2012
 
2013
@noindent
2014
This code can easily be rewritten in the Fortran 90 syntax as following:
2015
 
2016
@example
2017
! ``STRUCTURE /name/ ... END STRUCTURE'' becomes
2018
! ``TYPE name ... END TYPE''
2019
TYPE item
2020
  INTEGER id
2021
  CHARACTER(LEN=200) description
2022
  REAL price
2023
END TYPE
2024
 
2025
! ``RECORD /name/ variable'' becomes ``TYPE(name) variable''
2026
TYPE(item) pear, store_catalog(100)
2027
 
2028
! Instead of using a dot (.) to access fields of a record, the
2029
! standard syntax uses a percent sign (%)
2030
pear%id = 92316
2031
pear%description = "juicy D'Anjou pear"
2032
pear%price = 0.15
2033
store_catalog(7)%id = 7831
2034
store_catalog(7)%description = "milk bottle"
2035
store_catalog(7)%price = 1.2
2036
 
2037
! Assignments of a whole variable do not change
2038
store_catalog(12) = pear
2039
print *, store_catalog(12)
2040
@end example
2041
 
2042
 
2043
@c @node UNION and MAP
2044
@c @subsection @code{UNION} and @code{MAP}
2045
@c @cindex @code{UNION}
2046
@c @cindex @code{MAP}
2047
@c
2048
@c For help writing this one, see
2049
@c http://www.eng.umd.edu/~nsw/ench250/fortran1.htm#UNION and
2050
@c http://www.tacc.utexas.edu/services/userguides/pgi/pgiws_ug/pgi32u06.htm
2051
 
2052
 
2053
@node ENCODE and DECODE statements
2054
@subsection @code{ENCODE} and @code{DECODE} statements
2055
@cindex @code{ENCODE}
2056
@cindex @code{DECODE}
2057
 
2058
GNU Fortran does not support the @code{ENCODE} and @code{DECODE}
2059
statements.  These statements are best replaced by @code{READ} and
2060
@code{WRITE} statements involving internal files (@code{CHARACTER}
2061
variables and arrays), which have been part of the Fortran standard since
2062
Fortran 77.  For example, replace a code fragment like
2063
 
2064
@smallexample
2065
      INTEGER*1 LINE(80)
2066
      REAL A, B, C
2067
c     ... Code that sets LINE
2068
      DECODE (80, 9000, LINE) A, B, C
2069
 9000 FORMAT (1X, 3(F10.5))
2070
@end smallexample
2071
 
2072
@noindent
2073
with the following:
2074
 
2075
@smallexample
2076
      CHARACTER(LEN=80) LINE
2077
      REAL A, B, C
2078
c     ... Code that sets LINE
2079
      READ (UNIT=LINE, FMT=9000) A, B, C
2080
 9000 FORMAT (1X, 3(F10.5))
2081
@end smallexample
2082
 
2083
Similarly, replace a code fragment like
2084
 
2085
@smallexample
2086
      INTEGER*1 LINE(80)
2087
      REAL A, B, C
2088
c     ... Code that sets A, B and C
2089
      ENCODE (80, 9000, LINE) A, B, C
2090
 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
2091
@end smallexample
2092
 
2093
@noindent
2094
with the following:
2095
 
2096
@smallexample
2097
      CHARACTER(LEN=80) LINE
2098
      REAL A, B, C
2099
c     ... Code that sets A, B and C
2100
      WRITE (UNIT=LINE, FMT=9000) A, B, C
2101
 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
2102
@end smallexample
2103
 
2104
 
2105
@node Variable FORMAT expressions
2106
@subsection Variable @code{FORMAT} expressions
2107
@cindex @code{FORMAT}
2108
 
2109
A variable @code{FORMAT} expression is format statement which includes
2110
angle brackets enclosing a Fortran expression: @code{FORMAT(I<N>)}.  GNU
2111
Fortran does not support this legacy extension.  The effect of variable
2112
format expressions can be reproduced by using the more powerful (and
2113
standard) combination of internal output and string formats.  For example,
2114
replace a code fragment like this:
2115
 
2116
@smallexample
2117
      WRITE(6,20) INT1
2118
 20   FORMAT(I<N+1>)
2119
@end smallexample
2120
 
2121
@noindent
2122
with the following:
2123
 
2124
@smallexample
2125
c     Variable declaration
2126
      CHARACTER(LEN=20) FMT
2127
c
2128
c     Other code here...
2129
c
2130
      WRITE(FMT,'("(I", I0, ")")') N+1
2131
      WRITE(6,FMT) INT1
2132
@end smallexample
2133
 
2134
@noindent
2135
or with:
2136
 
2137
@smallexample
2138
c     Variable declaration
2139
      CHARACTER(LEN=20) FMT
2140
c
2141
c     Other code here...
2142
c
2143
      WRITE(FMT,*) N+1
2144
      WRITE(6,"(I" // ADJUSTL(FMT) // ")") INT1
2145
@end smallexample
2146
 
2147
 
2148
@node Alternate complex function syntax
2149
@subsection Alternate complex function syntax
2150
@cindex Complex function
2151
 
2152
Some Fortran compilers, including @command{g77}, let the user declare
2153
complex functions with the syntax @code{COMPLEX FUNCTION name*16()}, as
2154
well as @code{COMPLEX*16 FUNCTION name()}.  Both are non-standard, legacy
2155
extensions.  @command{gfortran} accepts the latter form, which is more
2156
common, but not the former.
2157
 
2158
 
2159
 
2160
@c ---------------------------------------------------------------------
2161
@c Mixed-Language Programming
2162
@c ---------------------------------------------------------------------
2163
 
2164
@node Mixed-Language Programming
2165
@chapter Mixed-Language Programming
2166
@cindex Interoperability
2167
@cindex Mixed-language programming
2168
 
2169
@menu
2170
* Interoperability with C::
2171
* GNU Fortran Compiler Directives::
2172
* Non-Fortran Main Program::
2173
@end menu
2174
 
2175
This chapter is about mixed-language interoperability, but also applies
2176
if one links Fortran code compiled by different compilers.  In most cases,
2177
use of the C Binding features of the Fortran 2003 standard is sufficient,
2178
and their use is highly recommended.
2179
 
2180
 
2181
@node Interoperability with C
2182
@section Interoperability with C
2183
 
2184
@menu
2185
* Intrinsic Types::
2186
* Derived Types and struct::
2187
* Interoperable Global Variables::
2188
* Interoperable Subroutines and Functions::
2189
* Working with Pointers::
2190
* Further Interoperability of Fortran with C::
2191
@end menu
2192
 
2193
Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a
2194
standardized way to generate procedure and derived-type
2195
declarations and global variables which are interoperable with C
2196
(ISO/IEC 9899:1999).  The @code{bind(C)} attribute has been added
2197
to inform the compiler that a symbol shall be interoperable with C;
2198
also, some constraints are added.  Note, however, that not
2199
all C features have a Fortran equivalent or vice versa.  For instance,
2200
neither C's unsigned integers nor C's functions with variable number
2201
of arguments have an equivalent in Fortran.
2202
 
2203
Note that array dimensions are reversely ordered in C and that arrays in
2204
C always start with index 0 while in Fortran they start by default with
2205
1.  Thus, an array declaration @code{A(n,m)} in Fortran matches
2206
@code{A[m][n]} in C and accessing the element @code{A(i,j)} matches
2207
@code{A[j-1][i-1]}.  The element following @code{A(i,j)} (C: @code{A[j-1][i-1]};
2208
assuming @math{i < n}) in memory is @code{A(i+1,j)} (C: @code{A[j-1][i]}).
2209
 
2210
@node Intrinsic Types
2211
@subsection Intrinsic Types
2212
 
2213
In order to ensure that exactly the same variable type and kind is used
2214
in C and Fortran, the named constants shall be used which are defined in the
2215
@code{ISO_C_BINDING} intrinsic module.  That module contains named constants
2216
for kind parameters and character named constants for the escape sequences
2217
in C.  For a list of the constants, see @ref{ISO_C_BINDING}.
2218
 
2219
@node Derived Types and struct
2220
@subsection Derived Types and struct
2221
 
2222
For compatibility of derived types with @code{struct}, one needs to use
2223
the @code{BIND(C)} attribute in the type declaration.  For instance, the
2224
following type declaration
2225
 
2226
@smallexample
2227
 USE ISO_C_BINDING
2228
 TYPE, BIND(C) :: myType
2229
   INTEGER(C_INT) :: i1, i2
2230
   INTEGER(C_SIGNED_CHAR) :: i3
2231
   REAL(C_DOUBLE) :: d1
2232
   COMPLEX(C_FLOAT_COMPLEX) :: c1
2233
   CHARACTER(KIND=C_CHAR) :: str(5)
2234
 END TYPE
2235
@end smallexample
2236
 
2237
matches the following @code{struct} declaration in C
2238
 
2239
@smallexample
2240
 struct @{
2241
   int i1, i2;
2242
   /* Note: "char" might be signed or unsigned.  */
2243
   signed char i3;
2244
   double d1;
2245
   float _Complex c1;
2246
   char str[5];
2247
 @} myType;
2248
@end smallexample
2249
 
2250
Derived types with the C binding attribute shall not have the @code{sequence}
2251
attribute, type parameters, the @code{extends} attribute, nor type-bound
2252
procedures.  Every component must be of interoperable type and kind and may not
2253
have the @code{pointer} or @code{allocatable} attribute.  The names of the
2254
variables are irrelevant for interoperability.
2255
 
2256
As there exist no direct Fortran equivalents, neither unions nor structs
2257
with bit field or variable-length array members are interoperable.
2258
 
2259
@node Interoperable Global Variables
2260
@subsection Interoperable Global Variables
2261
 
2262
Variables can be made accessible from C using the C binding attribute,
2263
optionally together with specifying a binding name.  Those variables
2264
have to be declared in the declaration part of a @code{MODULE},
2265
be of interoperable type, and have neither the @code{pointer} nor
2266
the @code{allocatable} attribute.
2267
 
2268
@smallexample
2269
  MODULE m
2270
    USE myType_module
2271
    USE ISO_C_BINDING
2272
    integer(C_INT), bind(C, name="_MyProject_flags") :: global_flag
2273
    type(myType), bind(C) :: tp
2274
  END MODULE
2275
@end smallexample
2276
 
2277
Here, @code{_MyProject_flags} is the case-sensitive name of the variable
2278
as seen from C programs while @code{global_flag} is the case-insensitive
2279
name as seen from Fortran.  If no binding name is specified, as for
2280
@var{tp}, the C binding name is the (lowercase) Fortran binding name.
2281
If a binding name is specified, only a single variable may be after the
2282
double colon.  Note of warning: You cannot use a global variable to
2283
access @var{errno} of the C library as the C standard allows it to be
2284
a macro.  Use the @code{IERRNO} intrinsic (GNU extension) instead.
2285
 
2286
@node Interoperable Subroutines and Functions
2287
@subsection Interoperable Subroutines and Functions
2288
 
2289
Subroutines and functions have to have the @code{BIND(C)} attribute to
2290
be compatible with C.  The dummy argument declaration is relatively
2291
straightforward.  However, one needs to be careful because C uses
2292
call-by-value by default while Fortran behaves usually similar to
2293
call-by-reference.  Furthermore, strings and pointers are handled
2294
differently.  Note that only explicit size and assumed-size arrays are
2295
supported but not assumed-shape or allocatable arrays.
2296
 
2297
To pass a variable by value, use the @code{VALUE} attribute.
2298
Thus the following C prototype
2299
 
2300
@smallexample
2301
@code{int func(int i, int *j)}
2302
@end smallexample
2303
 
2304
matches the Fortran declaration
2305
 
2306
@smallexample
2307
  integer(c_int) function func(i,j)
2308
    use iso_c_binding, only: c_int
2309
    integer(c_int), VALUE :: i
2310
    integer(c_int) :: j
2311
@end smallexample
2312
 
2313
Note that pointer arguments also frequently need the @code{VALUE} attribute,
2314
see @ref{Working with Pointers}.
2315
 
2316
Strings are handled quite differently in C and Fortran.  In C a string
2317
is a @code{NUL}-terminated array of characters while in Fortran each string
2318
has a length associated with it and is thus not terminated (by e.g.
2319
@code{NUL}).  For example, if one wants to use the following C function,
2320
 
2321
@smallexample
2322
  #include <stdio.h>
2323
  void print_C(char *string) /* equivalent: char string[]  */
2324
  @{
2325
     printf("%s\n", string);
2326
  @}
2327
@end smallexample
2328
 
2329
to print ``Hello World'' from Fortran, one can call it using
2330
 
2331
@smallexample
2332
  use iso_c_binding, only: C_CHAR, C_NULL_CHAR
2333
  interface
2334
    subroutine print_c(string) bind(C, name="print_C")
2335
      use iso_c_binding, only: c_char
2336
      character(kind=c_char) :: string(*)
2337
    end subroutine print_c
2338
  end interface
2339
  call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)
2340
@end smallexample
2341
 
2342
As the example shows, one needs to ensure that the
2343
string is @code{NUL} terminated.  Additionally, the dummy argument
2344
@var{string} of @code{print_C} is a length-one assumed-size
2345
array; using @code{character(len=*)} is not allowed.  The example
2346
above uses @code{c_char_"Hello World"} to ensure the string
2347
literal has the right type; typically the default character
2348
kind and @code{c_char} are the same and thus @code{"Hello World"}
2349
is equivalent.  However, the standard does not guarantee this.
2350
 
2351
The use of strings is now further illustrated using the C library
2352
function @code{strncpy}, whose prototype is
2353
 
2354
@smallexample
2355
  char *strncpy(char *restrict s1, const char *restrict s2, size_t n);
2356
@end smallexample
2357
 
2358
The function @code{strncpy} copies at most @var{n} characters from
2359
string @var{s2} to @var{s1} and returns @var{s1}.  In the following
2360
example, we ignore the return value:
2361
 
2362
@smallexample
2363
  use iso_c_binding
2364
  implicit none
2365
  character(len=30) :: str,str2
2366
  interface
2367
    ! Ignore the return value of strncpy -> subroutine
2368
    ! "restrict" is always assumed if we do not pass a pointer
2369
    subroutine strncpy(dest, src, n) bind(C)
2370
      import
2371
      character(kind=c_char),  intent(out) :: dest(*)
2372
      character(kind=c_char),  intent(in)  :: src(*)
2373
      integer(c_size_t), value, intent(in) :: n
2374
    end subroutine strncpy
2375
  end interface
2376
  str = repeat('X',30) ! Initialize whole string with 'X'
2377
  call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
2378
               len(c_char_"Hello World",kind=c_size_t))
2379
  print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
2380
  end
2381
@end smallexample
2382
 
2383
The intrinsic procedures are described in @ref{Intrinsic Procedures}.
2384
 
2385
@node Working with Pointers
2386
@subsection Working with Pointers
2387
 
2388
C pointers are represented in Fortran via the special opaque derived type
2389
@code{type(c_ptr)} (with private components).  Thus one needs to
2390
use intrinsic conversion procedures to convert from or to C pointers.
2391
For example,
2392
 
2393
@smallexample
2394
  use iso_c_binding
2395
  type(c_ptr) :: cptr1, cptr2
2396
  integer, target :: array(7), scalar
2397
  integer, pointer :: pa(:), ps
2398
  cptr1 = c_loc(array(1)) ! The programmer needs to ensure that the
2399
                          ! array is contiguous if required by the C
2400
                          ! procedure
2401
  cptr2 = c_loc(scalar)
2402
  call c_f_pointer(cptr2, ps)
2403
  call c_f_pointer(cptr2, pa, shape=[7])
2404
@end smallexample
2405
 
2406
When converting C to Fortran arrays, the one-dimensional @code{SHAPE} argument
2407
has to be passed.
2408
 
2409
If a pointer is a dummy-argument of an interoperable procedure, it usually
2410
has to be declared using the @code{VALUE} attribute.  @code{void*}
2411
matches @code{TYPE(C_PTR), VALUE}, while @code{TYPE(C_PTR)} alone
2412
matches @code{void**}.
2413
 
2414
Procedure pointers are handled analogously to pointers; the C type is
2415
@code{TYPE(C_FUNPTR)} and the intrinsic conversion procedures are
2416
@code{C_F_PROCPOINTER} and @code{C_FUNLOC}.
2417
 
2418
Let us consider two examples of actually passing a procedure pointer from
2419
C to Fortran and vice versa.  Note that these examples are also very
2420
similar to passing ordinary pointers between both languages. First,
2421
consider this code in C:
2422
 
2423
@smallexample
2424
/* Procedure implemented in Fortran.  */
2425
void get_values (void (*)(double));
2426
 
2427
/* Call-back routine we want called from Fortran.  */
2428
void
2429
print_it (double x)
2430
@{
2431
  printf ("Number is %f.\n", x);
2432
@}
2433
 
2434
/* Call Fortran routine and pass call-back to it.  */
2435
void
2436
foobar ()
2437
@{
2438
  get_values (&print_it);
2439
@}
2440
@end smallexample
2441
 
2442
A matching implementation for @code{get_values} in Fortran, that correctly
2443
receives the procedure pointer from C and is able to call it, is given
2444
in the following @code{MODULE}:
2445
 
2446
@smallexample
2447
MODULE m
2448
  IMPLICIT NONE
2449
 
2450
  ! Define interface of call-back routine.
2451
  ABSTRACT INTERFACE
2452
    SUBROUTINE callback (x)
2453
      USE, INTRINSIC :: ISO_C_BINDING
2454
      REAL(KIND=C_DOUBLE), INTENT(IN), VALUE :: x
2455
    END SUBROUTINE callback
2456
  END INTERFACE
2457
 
2458
CONTAINS
2459
 
2460
  ! Define C-bound procedure.
2461
  SUBROUTINE get_values (cproc) BIND(C)
2462
    USE, INTRINSIC :: ISO_C_BINDING
2463
    TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc
2464
 
2465
    PROCEDURE(callback), POINTER :: proc
2466
 
2467
    ! Convert C to Fortran procedure pointer.
2468
    CALL C_F_PROCPOINTER (cproc, proc)
2469
 
2470
    ! Call it.
2471
    CALL proc (1.0_C_DOUBLE)
2472
    CALL proc (-42.0_C_DOUBLE)
2473
    CALL proc (18.12_C_DOUBLE)
2474
  END SUBROUTINE get_values
2475
 
2476
END MODULE m
2477
@end smallexample
2478
 
2479
Next, we want to call a C routine that expects a procedure pointer argument
2480
and pass it a Fortran procedure (which clearly must be interoperable!).
2481
Again, the C function may be:
2482
 
2483
@smallexample
2484
int
2485
call_it (int (*func)(int), int arg)
2486
@{
2487
  return func (arg);
2488
@}
2489
@end smallexample
2490
 
2491
It can be used as in the following Fortran code:
2492
 
2493
@smallexample
2494
MODULE m
2495
  USE, INTRINSIC :: ISO_C_BINDING
2496
  IMPLICIT NONE
2497
 
2498
  ! Define interface of C function.
2499
  INTERFACE
2500
    INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
2501
      USE, INTRINSIC :: ISO_C_BINDING
2502
      TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
2503
      INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
2504
    END FUNCTION call_it
2505
  END INTERFACE
2506
 
2507
CONTAINS
2508
 
2509
  ! Define procedure passed to C function.
2510
  ! It must be interoperable!
2511
  INTEGER(KIND=C_INT) FUNCTION double_it (arg) BIND(C)
2512
    INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
2513
    double_it = arg + arg
2514
  END FUNCTION double_it
2515
 
2516
  ! Call C function.
2517
  SUBROUTINE foobar ()
2518
    TYPE(C_FUNPTR) :: cproc
2519
    INTEGER(KIND=C_INT) :: i
2520
 
2521
    ! Get C procedure pointer.
2522
    cproc = C_FUNLOC (double_it)
2523
 
2524
    ! Use it.
2525
    DO i = 1_C_INT, 10_C_INT
2526
      PRINT *, call_it (cproc, i)
2527
    END DO
2528
  END SUBROUTINE foobar
2529
 
2530
END MODULE m
2531
@end smallexample
2532
 
2533
@node Further Interoperability of Fortran with C
2534
@subsection Further Interoperability of Fortran with C
2535
 
2536
Assumed-shape and allocatable arrays are passed using an array descriptor
2537
(dope vector).  The internal structure of the array descriptor used
2538
by GNU Fortran is not yet documented and will change.  There will also be
2539
a Technical Specification (TS 29113) which standardizes an interoperable
2540
array descriptor.  Until then, you can use the Chasm Language
2541
Interoperability Tools, @url{http://chasm-interop.sourceforge.net/},
2542
which provide an interface to GNU Fortran's array descriptor.
2543
 
2544
GNU Fortran already supports the C-interoperable @code{OPTIONAL}
2545
attribute; for absent arguments, a @code{NULL} pointer is passed.
2546
 
2547
 
2548
 
2549
@node GNU Fortran Compiler Directives
2550
@section GNU Fortran Compiler Directives
2551
 
2552
The Fortran standard describes how a conforming program shall
2553
behave; however, the exact implementation is not standardized.  In order
2554
to allow the user to choose specific implementation details, compiler
2555
directives can be used to set attributes of variables and procedures
2556
which are not part of the standard.  Whether a given attribute is
2557
supported and its exact effects depend on both the operating system and
2558
on the processor; see
2559
@ref{Top,,C Extensions,gcc,Using the GNU Compiler Collection (GCC)}
2560
for details.
2561
 
2562
For procedures and procedure pointers, the following attributes can
2563
be used to change the calling convention:
2564
 
2565
@itemize
2566
@item @code{CDECL} -- standard C calling convention
2567
@item @code{STDCALL} -- convention where the called procedure pops the stack
2568
@item @code{FASTCALL} -- part of the arguments are passed via registers
2569
instead using the stack
2570
@end itemize
2571
 
2572
Besides changing the calling convention, the attributes also influence
2573
the decoration of the symbol name, e.g., by a leading underscore or by
2574
a trailing at-sign followed by the number of bytes on the stack.  When
2575
assigning a procedure to a procedure pointer, both should use the same
2576
calling convention.
2577
 
2578
On some systems, procedures and global variables (module variables and
2579
@code{COMMON} blocks) need special handling to be accessible when they
2580
are in a shared library.  The following attributes are available:
2581
 
2582
@itemize
2583
@item @code{DLLEXPORT} -- provide a global pointer to a pointer in the DLL
2584
@item @code{DLLIMPORT} -- reference the function or variable using a global pointer
2585
@end itemize
2586
 
2587
The attributes are specified using the syntax
2588
 
2589
@code{!GCC$ ATTRIBUTES} @var{attribute-list} @code{::} @var{variable-list}
2590
 
2591
where in free-form source code only whitespace is allowed before @code{!GCC$}
2592
and in fixed-form source code @code{!GCC$}, @code{cGCC$} or @code{*GCC$} shall
2593
start in the first column.
2594
 
2595
For procedures, the compiler directives shall be placed into the body
2596
of the procedure; for variables and procedure pointers, they shall be in
2597
the same declaration part as the variable or procedure pointer.
2598
 
2599
 
2600
 
2601
@node Non-Fortran Main Program
2602
@section Non-Fortran Main Program
2603
 
2604
@menu
2605
* _gfortran_set_args:: Save command-line arguments
2606
* _gfortran_set_options:: Set library option flags
2607
* _gfortran_set_convert:: Set endian conversion
2608
* _gfortran_set_record_marker:: Set length of record markers
2609
* _gfortran_set_max_subrecord_length:: Set subrecord length
2610
* _gfortran_set_fpe:: Set when a Floating Point Exception should be raised
2611
@end menu
2612
 
2613
Even if you are doing mixed-language programming, it is very
2614
likely that you do not need to know or use the information in this
2615
section.  Since it is about the internal structure of GNU Fortran,
2616
it may also change in GCC minor releases.
2617
 
2618
When you compile a @code{PROGRAM} with GNU Fortran, a function
2619
with the name @code{main} (in the symbol table of the object file)
2620
is generated, which initializes the libgfortran library and then
2621
calls the actual program which uses the name @code{MAIN__}, for
2622
historic reasons.  If you link GNU Fortran compiled procedures
2623
to, e.g., a C or C++ program or to a Fortran program compiled by
2624
a different compiler, the libgfortran library is not initialized
2625
and thus a few intrinsic procedures do not work properly, e.g.
2626
those for obtaining the command-line arguments.
2627
 
2628
Therefore, if your @code{PROGRAM} is not compiled with
2629
GNU Fortran and the GNU Fortran compiled procedures require
2630
intrinsics relying on the library initialization, you need to
2631
initialize the library yourself.  Using the default options,
2632
gfortran calls @code{_gfortran_set_args} and
2633
@code{_gfortran_set_options}.  The initialization of the former
2634
is needed if the called procedures access the command line
2635
(and for backtracing); the latter sets some flags based on the
2636
standard chosen or to enable backtracing.  In typical programs,
2637
it is not necessary to call any initialization function.
2638
 
2639
If your @code{PROGRAM} is compiled with GNU Fortran, you shall
2640
not call any of the following functions.  The libgfortran
2641
initialization functions are shown in C syntax but using C
2642
bindings they are also accessible from Fortran.
2643
 
2644
 
2645
@node _gfortran_set_args
2646
@subsection @code{_gfortran_set_args} --- Save command-line arguments
2647
@fnindex _gfortran_set_args
2648
@cindex libgfortran initialization, set_args
2649
 
2650
@table @asis
2651
@item @emph{Description}:
2652
@code{_gfortran_set_args} saves the command-line arguments; this
2653
initialization is required if any of the command-line intrinsics
2654
is called.  Additionally, it shall be called if backtracing is
2655
enabled (see @code{_gfortran_set_options}).
2656
 
2657
@item @emph{Syntax}:
2658
@code{void _gfortran_set_args (int argc, char *argv[])}
2659
 
2660
@item @emph{Arguments}:
2661
@multitable @columnfractions .15 .70
2662
@item @var{argc} @tab number of command line argument strings
2663
@item @var{argv} @tab the command-line argument strings; argv[0]
2664
is the pathname of the executable itself.
2665
@end multitable
2666
 
2667
@item @emph{Example}:
2668
@smallexample
2669
int main (int argc, char *argv[])
2670
@{
2671
  /* Initialize libgfortran.  */
2672
  _gfortran_set_args (argc, argv);
2673
  return 0;
2674
@}
2675
@end smallexample
2676
@end table
2677
 
2678
 
2679
@node _gfortran_set_options
2680
@subsection @code{_gfortran_set_options} --- Set library option flags
2681
@fnindex _gfortran_set_options
2682
@cindex libgfortran initialization, set_options
2683
 
2684
@table @asis
2685
@item @emph{Description}:
2686
@code{_gfortran_set_options} sets several flags related to the Fortran
2687
standard to be used, whether backtracing should be enabled
2688
and whether range checks should be performed.  The syntax allows for
2689
upward compatibility since the number of passed flags is specified; for
2690
non-passed flags, the default value is used.  See also
2691
@pxref{Code Gen Options}.  Please note that not all flags are actually
2692
used.
2693
 
2694
@item @emph{Syntax}:
2695
@code{void _gfortran_set_options (int num, int options[])}
2696
 
2697
@item @emph{Arguments}:
2698
@multitable @columnfractions .15 .70
2699
@item @var{num} @tab number of options passed
2700
@item @var{argv} @tab The list of flag values
2701
@end multitable
2702
 
2703
@item @emph{option flag list}:
2704
@multitable @columnfractions .15 .70
2705
@item @var{option}[0] @tab Allowed standard; can give run-time errors
2706
if e.g. an input-output edit descriptor is invalid in a given standard.
2707
Possible values are (bitwise or-ed) @code{GFC_STD_F77} (1),
2708
@code{GFC_STD_F95_OBS} (2), @code{GFC_STD_F95_DEL} (4), @code{GFC_STD_F95}
2709
(8), @code{GFC_STD_F2003} (16), @code{GFC_STD_GNU} (32),
2710
@code{GFC_STD_LEGACY} (64), @code{GFC_STD_F2008} (128),
2711
@code{GFC_STD_F2008_OBS} (256) and GFC_STD_F2008_TS (512). Default:
2712
@code{GFC_STD_F95_OBS | GFC_STD_F95_DEL | GFC_STD_F95 | GFC_STD_F2003
2713
| GFC_STD_F2008 | GFC_STD_F2008_TS | GFC_STD_F2008_OBS | GFC_STD_F77
2714
| GFC_STD_GNU | GFC_STD_LEGACY}.
2715
@item @var{option}[1] @tab Standard-warning flag; prints a warning to
2716
standard error.  Default: @code{GFC_STD_F95_DEL | GFC_STD_LEGACY}.
2717
@item @var{option}[2] @tab If non zero, enable pedantic checking.
2718
Default: off.
2719
@item @var{option}[3] @tab Unused.
2720
@item @var{option}[4] @tab If non zero, enable backtracing on run-time
2721
errors.  Default: off.
2722
Note: Installs a signal handler and requires command-line
2723
initialization using @code{_gfortran_set_args}.
2724
@item @var{option}[5] @tab If non zero, supports signed zeros.
2725
Default: enabled.
2726
@item @var{option}[6] @tab Enables run-time checking.  Possible values
2727
are (bitwise or-ed): GFC_RTCHECK_BOUNDS (1), GFC_RTCHECK_ARRAY_TEMPS (2),
2728
GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO (16), GFC_RTCHECK_POINTER (32).
2729
Default: disabled.
2730
@item @var{option}[7] @tab If non zero, range checking is enabled.
2731
Default: enabled.  See -frange-check (@pxref{Code Gen Options}).
2732
@end multitable
2733
 
2734
@item @emph{Example}:
2735
@smallexample
2736
  /* Use gfortran 4.7 default options.  */
2737
  static int options[] = @{68, 511, 0, 0, 1, 1, 0, 1@};
2738
  _gfortran_set_options (8, &options);
2739
@end smallexample
2740
@end table
2741
 
2742
 
2743
@node _gfortran_set_convert
2744
@subsection @code{_gfortran_set_convert} --- Set endian conversion
2745
@fnindex _gfortran_set_convert
2746
@cindex libgfortran initialization, set_convert
2747
 
2748
@table @asis
2749
@item @emph{Description}:
2750
@code{_gfortran_set_convert} set the representation of data for
2751
unformatted files.
2752
 
2753
@item @emph{Syntax}:
2754
@code{void _gfortran_set_convert (int conv)}
2755
 
2756
@item @emph{Arguments}:
2757
@multitable @columnfractions .15 .70
2758
@item @var{conv} @tab Endian conversion, possible values:
2759
GFC_CONVERT_NATIVE (0, default), GFC_CONVERT_SWAP (1),
2760
GFC_CONVERT_BIG (2), GFC_CONVERT_LITTLE (3).
2761
@end multitable
2762
 
2763
@item @emph{Example}:
2764
@smallexample
2765
int main (int argc, char *argv[])
2766
@{
2767
  /* Initialize libgfortran.  */
2768
  _gfortran_set_args (argc, argv);
2769
  _gfortran_set_convert (1);
2770
  return 0;
2771
@}
2772
@end smallexample
2773
@end table
2774
 
2775
 
2776
@node _gfortran_set_record_marker
2777
@subsection @code{_gfortran_set_record_marker} --- Set length of record markers
2778
@fnindex _gfortran_set_record_marker
2779
@cindex libgfortran initialization, set_record_marker
2780
 
2781
@table @asis
2782
@item @emph{Description}:
2783
@code{_gfortran_set_record_marker} sets the length of record markers
2784
for unformatted files.
2785
 
2786
@item @emph{Syntax}:
2787
@code{void _gfortran_set_record_marker (int val)}
2788
 
2789
@item @emph{Arguments}:
2790
@multitable @columnfractions .15 .70
2791
@item @var{val} @tab Length of the record marker; valid values
2792
are 4 and 8.  Default is 4.
2793
@end multitable
2794
 
2795
@item @emph{Example}:
2796
@smallexample
2797
int main (int argc, char *argv[])
2798
@{
2799
  /* Initialize libgfortran.  */
2800
  _gfortran_set_args (argc, argv);
2801
  _gfortran_set_record_marker (8);
2802
  return 0;
2803
@}
2804
@end smallexample
2805
@end table
2806
 
2807
 
2808
@node _gfortran_set_fpe
2809
@subsection @code{_gfortran_set_fpe} --- Enable floating point exception traps
2810
@fnindex _gfortran_set_fpe
2811
@cindex libgfortran initialization, set_fpe
2812
 
2813
@table @asis
2814
@item @emph{Description}:
2815
@code{_gfortran_set_fpe} enables floating point exception traps for
2816
the specified exceptions.  On most systems, this will result in a
2817
SIGFPE signal being sent and the program being aborted.
2818
 
2819
@item @emph{Syntax}:
2820
@code{void _gfortran_set_fpe (int val)}
2821
 
2822
@item @emph{Arguments}:
2823
@multitable @columnfractions .15 .70
2824
@item @var{option}[0] @tab IEEE exceptions.  Possible values are
2825
(bitwise or-ed) zero (0, default) no trapping,
2826
@code{GFC_FPE_INVALID} (1), @code{GFC_FPE_DENORMAL} (2),
2827
@code{GFC_FPE_ZERO} (4), @code{GFC_FPE_OVERFLOW} (8),
2828
@code{GFC_FPE_UNDERFLOW} (16), and @code{GFC_FPE_INEXACT} (32).
2829
@end multitable
2830
 
2831
@item @emph{Example}:
2832
@smallexample
2833
int main (int argc, char *argv[])
2834
@{
2835
  /* Initialize libgfortran.  */
2836
  _gfortran_set_args (argc, argv);
2837
  /* FPE for invalid operations such as SQRT(-1.0).  */
2838
  _gfortran_set_fpe (1);
2839
  return 0;
2840
@}
2841
@end smallexample
2842
@end table
2843
 
2844
 
2845
@node _gfortran_set_max_subrecord_length
2846
@subsection @code{_gfortran_set_max_subrecord_length} --- Set subrecord length
2847
@fnindex _gfortran_set_max_subrecord_length
2848
@cindex libgfortran initialization, set_max_subrecord_length
2849
 
2850
@table @asis
2851
@item @emph{Description}:
2852
@code{_gfortran_set_max_subrecord_length} set the maximum length
2853
for a subrecord.  This option only makes sense for testing and
2854
debugging of unformatted I/O.
2855
 
2856
@item @emph{Syntax}:
2857
@code{void _gfortran_set_max_subrecord_length (int val)}
2858
 
2859
@item @emph{Arguments}:
2860
@multitable @columnfractions .15 .70
2861
@item @var{val} @tab the maximum length for a subrecord;
2862
the maximum permitted value is 2147483639, which is also
2863
the default.
2864
@end multitable
2865
 
2866
@item @emph{Example}:
2867
@smallexample
2868
int main (int argc, char *argv[])
2869
@{
2870
  /* Initialize libgfortran.  */
2871
  _gfortran_set_args (argc, argv);
2872
  _gfortran_set_max_subrecord_length (8);
2873
  return 0;
2874
@}
2875
@end smallexample
2876
@end table
2877
 
2878
 
2879
 
2880
@c Intrinsic Procedures
2881
@c ---------------------------------------------------------------------
2882
 
2883
@include intrinsic.texi
2884
 
2885
 
2886
@tex
2887
\blankpart
2888
@end tex
2889
 
2890
@c ---------------------------------------------------------------------
2891
@c Contributing
2892
@c ---------------------------------------------------------------------
2893
 
2894
@node Contributing
2895
@unnumbered Contributing
2896
@cindex Contributing
2897
 
2898
Free software is only possible if people contribute to efforts
2899
to create it.
2900
We're always in need of more people helping out with ideas
2901
and comments, writing documentation and contributing code.
2902
 
2903
If you want to contribute to GNU Fortran,
2904
have a look at the long lists of projects you can take on.
2905
Some of these projects are small,
2906
some of them are large;
2907
some are completely orthogonal to the rest of what is
2908
happening on GNU Fortran,
2909
but others are ``mainstream'' projects in need of enthusiastic hackers.
2910
All of these projects are important!
2911
We will eventually get around to the things here,
2912
but they are also things doable by someone who is willing and able.
2913
 
2914
@menu
2915
* Contributors::
2916
* Projects::
2917
* Proposed Extensions::
2918
@end menu
2919
 
2920
 
2921
@node Contributors
2922
@section Contributors to GNU Fortran
2923
@cindex Contributors
2924
@cindex Credits
2925
@cindex Authors
2926
 
2927
Most of the parser was hand-crafted by @emph{Andy Vaught}, who is
2928
also the initiator of the whole project.  Thanks Andy!
2929
Most of the interface with GCC was written by @emph{Paul Brook}.
2930
 
2931
The following individuals have contributed code and/or
2932
ideas and significant help to the GNU Fortran project
2933
(in alphabetical order):
2934
 
2935
@itemize @minus
2936
@item Janne Blomqvist
2937
@item Steven Bosscher
2938
@item Paul Brook
2939
@item Tobias Burnus
2940
@item Fran@,{c}ois-Xavier Coudert
2941
@item Bud Davis
2942
@item Jerry DeLisle
2943
@item Erik Edelmann
2944
@item Bernhard Fischer
2945
@item Daniel Franke
2946
@item Richard Guenther
2947
@item Richard Henderson
2948
@item Katherine Holcomb
2949
@item Jakub Jelinek
2950
@item Niels Kristian Bech Jensen
2951
@item Steven Johnson
2952
@item Steven G. Kargl
2953
@item Thomas Koenig
2954
@item Asher Langton
2955
@item H. J. Lu
2956
@item Toon Moene
2957
@item Brooks Moses
2958
@item Andrew Pinski
2959
@item Tim Prince
2960
@item Christopher D. Rickett
2961
@item Richard Sandiford
2962
@item Tobias Schl@"uter
2963
@item Roger Sayle
2964
@item Paul Thomas
2965
@item Andy Vaught
2966
@item Feng Wang
2967
@item Janus Weil
2968
@item Daniel Kraft
2969
@end itemize
2970
 
2971
The following people have contributed bug reports,
2972
smaller or larger patches,
2973
and much needed feedback and encouragement for the
2974
GNU Fortran project:
2975
 
2976
@itemize @minus
2977
@item Bill Clodius
2978
@item Dominique d'Humi@`eres
2979
@item Kate Hedstrom
2980
@item Erik Schnetter
2981
@item Joost VandeVondele
2982
@end itemize
2983
 
2984
Many other individuals have helped debug,
2985
test and improve the GNU Fortran compiler over the past few years,
2986
and we welcome you to do the same!
2987
If you already have done so,
2988
and you would like to see your name listed in the
2989
list above, please contact us.
2990
 
2991
 
2992
@node Projects
2993
@section Projects
2994
 
2995
@table @emph
2996
 
2997
@item Help build the test suite
2998
Solicit more code for donation to the test suite: the more extensive the
2999
testsuite, the smaller the risk of breaking things in the future! We can
3000
keep code private on request.
3001
 
3002
@item Bug hunting/squishing
3003
Find bugs and write more test cases! Test cases are especially very
3004
welcome, because it allows us to concentrate on fixing bugs instead of
3005
isolating them.  Going through the bugzilla database at
3006
@url{http://gcc.gnu.org/@/bugzilla/} to reduce testcases posted there and
3007
add more information (for example, for which version does the testcase
3008
work, for which versions does it fail?) is also very helpful.
3009
 
3010
@end table
3011
 
3012
 
3013
@node Proposed Extensions
3014
@section Proposed Extensions
3015
 
3016
Here's a list of proposed extensions for the GNU Fortran compiler, in no particular
3017
order.  Most of these are necessary to be fully compatible with
3018
existing Fortran compilers, but they are not part of the official
3019
J3 Fortran 95 standard.
3020
 
3021
@subsection Compiler extensions:
3022
@itemize @bullet
3023
@item
3024
User-specified alignment rules for structures.
3025
 
3026
@item
3027
Automatically extend single precision constants to double.
3028
 
3029
@item
3030
Compile code that conserves memory by dynamically allocating common and
3031
module storage either on stack or heap.
3032
 
3033
@item
3034
Compile flag to generate code for array conformance checking (suggest -CC).
3035
 
3036
@item
3037
User control of symbol names (underscores, etc).
3038
 
3039
@item
3040
Compile setting for maximum size of stack frame size before spilling
3041
parts to static or heap.
3042
 
3043
@item
3044
Flag to force local variables into static space.
3045
 
3046
@item
3047
Flag to force local variables onto stack.
3048
@end itemize
3049
 
3050
 
3051
@subsection Environment Options
3052
@itemize @bullet
3053
@item
3054
Pluggable library modules for random numbers, linear algebra.
3055
LA should use BLAS calling conventions.
3056
 
3057
@item
3058
Environment variables controlling actions on arithmetic exceptions like
3059
overflow, underflow, precision loss---Generate NaN, abort, default.
3060
action.
3061
 
3062
@item
3063
Set precision for fp units that support it (i387).
3064
 
3065
@item
3066
Variable for setting fp rounding mode.
3067
 
3068
@item
3069
Variable to fill uninitialized variables with a user-defined bit
3070
pattern.
3071
 
3072
@item
3073
Environment variable controlling filename that is opened for that unit
3074
number.
3075
 
3076
@item
3077
Environment variable to clear/trash memory being freed.
3078
 
3079
@item
3080
Environment variable to control tracing of allocations and frees.
3081
 
3082
@item
3083
Environment variable to display allocated memory at normal program end.
3084
 
3085
@item
3086
Environment variable for filename for * IO-unit.
3087
 
3088
@item
3089
Environment variable for temporary file directory.
3090
 
3091
@item
3092
Environment variable forcing standard output to be line buffered (unix).
3093
 
3094
@end itemize
3095
 
3096
 
3097
@c ---------------------------------------------------------------------
3098
@c GNU General Public License
3099
@c ---------------------------------------------------------------------
3100
 
3101
@include gpl_v3.texi
3102
 
3103
 
3104
 
3105
@c ---------------------------------------------------------------------
3106
@c GNU Free Documentation License
3107
@c ---------------------------------------------------------------------
3108
 
3109
@include fdl.texi
3110
 
3111
 
3112
 
3113
@c ---------------------------------------------------------------------
3114
@c Funding Free Software
3115
@c ---------------------------------------------------------------------
3116
 
3117
@include funding.texi
3118
 
3119
@c ---------------------------------------------------------------------
3120
@c Indices
3121
@c ---------------------------------------------------------------------
3122
 
3123
@node Option Index
3124
@unnumbered Option Index
3125
@command{gfortran}'s command line options are indexed here without any
3126
initial @samp{-} or @samp{--}.  Where an option has both positive and
3127
negative forms (such as -foption and -fno-option), relevant entries in
3128
the manual are indexed under the most appropriate form; it may sometimes
3129
be useful to look up both forms.
3130
@printindex op
3131
 
3132
@node Keyword Index
3133
@unnumbered Keyword Index
3134
@printindex cp
3135
 
3136
@bye

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.