| 1 |
684 |
jeremybenn |
/* Expands front end tree to back end RTL for GCC.
|
| 2 |
|
|
Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
| 3 |
|
|
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
| 4 |
|
|
2010, 2011, 2012 Free Software Foundation, Inc.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
/* This file handles the generation of rtl code from tree structure
|
| 23 |
|
|
at the level of the function as a whole.
|
| 24 |
|
|
It creates the rtl expressions for parameters and auto variables
|
| 25 |
|
|
and has full responsibility for allocating stack slots.
|
| 26 |
|
|
|
| 27 |
|
|
`expand_function_start' is called at the beginning of a function,
|
| 28 |
|
|
before the function body is parsed, and `expand_function_end' is
|
| 29 |
|
|
called after parsing the body.
|
| 30 |
|
|
|
| 31 |
|
|
Call `assign_stack_local' to allocate a stack slot for a local variable.
|
| 32 |
|
|
This is usually done during the RTL generation for the function body,
|
| 33 |
|
|
but it can also be done in the reload pass when a pseudo-register does
|
| 34 |
|
|
not get a hard register. */
|
| 35 |
|
|
|
| 36 |
|
|
#include "config.h"
|
| 37 |
|
|
#include "system.h"
|
| 38 |
|
|
#include "coretypes.h"
|
| 39 |
|
|
#include "tm.h"
|
| 40 |
|
|
#include "rtl-error.h"
|
| 41 |
|
|
#include "tree.h"
|
| 42 |
|
|
#include "flags.h"
|
| 43 |
|
|
#include "except.h"
|
| 44 |
|
|
#include "function.h"
|
| 45 |
|
|
#include "expr.h"
|
| 46 |
|
|
#include "optabs.h"
|
| 47 |
|
|
#include "libfuncs.h"
|
| 48 |
|
|
#include "regs.h"
|
| 49 |
|
|
#include "hard-reg-set.h"
|
| 50 |
|
|
#include "insn-config.h"
|
| 51 |
|
|
#include "recog.h"
|
| 52 |
|
|
#include "output.h"
|
| 53 |
|
|
#include "basic-block.h"
|
| 54 |
|
|
#include "hashtab.h"
|
| 55 |
|
|
#include "ggc.h"
|
| 56 |
|
|
#include "tm_p.h"
|
| 57 |
|
|
#include "integrate.h"
|
| 58 |
|
|
#include "langhooks.h"
|
| 59 |
|
|
#include "target.h"
|
| 60 |
|
|
#include "common/common-target.h"
|
| 61 |
|
|
#include "cfglayout.h"
|
| 62 |
|
|
#include "gimple.h"
|
| 63 |
|
|
#include "tree-pass.h"
|
| 64 |
|
|
#include "predict.h"
|
| 65 |
|
|
#include "df.h"
|
| 66 |
|
|
#include "timevar.h"
|
| 67 |
|
|
#include "vecprim.h"
|
| 68 |
|
|
#include "params.h"
|
| 69 |
|
|
#include "bb-reorder.h"
|
| 70 |
|
|
|
| 71 |
|
|
/* So we can assign to cfun in this file. */
|
| 72 |
|
|
#undef cfun
|
| 73 |
|
|
|
| 74 |
|
|
#ifndef STACK_ALIGNMENT_NEEDED
|
| 75 |
|
|
#define STACK_ALIGNMENT_NEEDED 1
|
| 76 |
|
|
#endif
|
| 77 |
|
|
|
| 78 |
|
|
#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
|
| 79 |
|
|
|
| 80 |
|
|
/* Some systems use __main in a way incompatible with its use in gcc, in these
|
| 81 |
|
|
cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
|
| 82 |
|
|
give the same symbol without quotes for an alternative entry point. You
|
| 83 |
|
|
must define both, or neither. */
|
| 84 |
|
|
#ifndef NAME__MAIN
|
| 85 |
|
|
#define NAME__MAIN "__main"
|
| 86 |
|
|
#endif
|
| 87 |
|
|
|
| 88 |
|
|
/* Round a value to the lowest integer less than it that is a multiple of
|
| 89 |
|
|
the required alignment. Avoid using division in case the value is
|
| 90 |
|
|
negative. Assume the alignment is a power of two. */
|
| 91 |
|
|
#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
|
| 92 |
|
|
|
| 93 |
|
|
/* Similar, but round to the next highest integer that meets the
|
| 94 |
|
|
alignment. */
|
| 95 |
|
|
#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
|
| 96 |
|
|
|
| 97 |
|
|
/* Nonzero if function being compiled doesn't contain any calls
|
| 98 |
|
|
(ignoring the prologue and epilogue). This is set prior to
|
| 99 |
|
|
local register allocation and is valid for the remaining
|
| 100 |
|
|
compiler passes. */
|
| 101 |
|
|
int current_function_is_leaf;
|
| 102 |
|
|
|
| 103 |
|
|
/* Nonzero if function being compiled doesn't modify the stack pointer
|
| 104 |
|
|
(ignoring the prologue and epilogue). This is only valid after
|
| 105 |
|
|
pass_stack_ptr_mod has run. */
|
| 106 |
|
|
int current_function_sp_is_unchanging;
|
| 107 |
|
|
|
| 108 |
|
|
/* Nonzero if the function being compiled is a leaf function which only
|
| 109 |
|
|
uses leaf registers. This is valid after reload (specifically after
|
| 110 |
|
|
sched2) and is useful only if the port defines LEAF_REGISTERS. */
|
| 111 |
|
|
int current_function_uses_only_leaf_regs;
|
| 112 |
|
|
|
| 113 |
|
|
/* Nonzero once virtual register instantiation has been done.
|
| 114 |
|
|
assign_stack_local uses frame_pointer_rtx when this is nonzero.
|
| 115 |
|
|
calls.c:emit_library_call_value_1 uses it to set up
|
| 116 |
|
|
post-instantiation libcalls. */
|
| 117 |
|
|
int virtuals_instantiated;
|
| 118 |
|
|
|
| 119 |
|
|
/* Assign unique numbers to labels generated for profiling, debugging, etc. */
|
| 120 |
|
|
static GTY(()) int funcdef_no;
|
| 121 |
|
|
|
| 122 |
|
|
/* These variables hold pointers to functions to create and destroy
|
| 123 |
|
|
target specific, per-function data structures. */
|
| 124 |
|
|
struct machine_function * (*init_machine_status) (void);
|
| 125 |
|
|
|
| 126 |
|
|
/* The currently compiled function. */
|
| 127 |
|
|
struct function *cfun = 0;
|
| 128 |
|
|
|
| 129 |
|
|
/* These hashes record the prologue and epilogue insns. */
|
| 130 |
|
|
static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
|
| 131 |
|
|
htab_t prologue_insn_hash;
|
| 132 |
|
|
static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
|
| 133 |
|
|
htab_t epilogue_insn_hash;
|
| 134 |
|
|
|
| 135 |
|
|
|
| 136 |
|
|
htab_t types_used_by_vars_hash = NULL;
|
| 137 |
|
|
VEC(tree,gc) *types_used_by_cur_var_decl;
|
| 138 |
|
|
|
| 139 |
|
|
/* Forward declarations. */
|
| 140 |
|
|
|
| 141 |
|
|
static struct temp_slot *find_temp_slot_from_address (rtx);
|
| 142 |
|
|
static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
|
| 143 |
|
|
static void pad_below (struct args_size *, enum machine_mode, tree);
|
| 144 |
|
|
static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
|
| 145 |
|
|
static int all_blocks (tree, tree *);
|
| 146 |
|
|
static tree *get_block_vector (tree, int *);
|
| 147 |
|
|
extern tree debug_find_var_in_block_tree (tree, tree);
|
| 148 |
|
|
/* We always define `record_insns' even if it's not used so that we
|
| 149 |
|
|
can always export `prologue_epilogue_contains'. */
|
| 150 |
|
|
static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
|
| 151 |
|
|
static bool contains (const_rtx, htab_t);
|
| 152 |
|
|
static void prepare_function_start (void);
|
| 153 |
|
|
static void do_clobber_return_reg (rtx, void *);
|
| 154 |
|
|
static void do_use_return_reg (rtx, void *);
|
| 155 |
|
|
static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
|
| 156 |
|
|
|
| 157 |
|
|
/* Stack of nested functions. */
|
| 158 |
|
|
/* Keep track of the cfun stack. */
|
| 159 |
|
|
|
| 160 |
|
|
typedef struct function *function_p;
|
| 161 |
|
|
|
| 162 |
|
|
DEF_VEC_P(function_p);
|
| 163 |
|
|
DEF_VEC_ALLOC_P(function_p,heap);
|
| 164 |
|
|
static VEC(function_p,heap) *function_context_stack;
|
| 165 |
|
|
|
| 166 |
|
|
/* Save the current context for compilation of a nested function.
|
| 167 |
|
|
This is called from language-specific code. */
|
| 168 |
|
|
|
| 169 |
|
|
void
|
| 170 |
|
|
push_function_context (void)
|
| 171 |
|
|
{
|
| 172 |
|
|
if (cfun == 0)
|
| 173 |
|
|
allocate_struct_function (NULL, false);
|
| 174 |
|
|
|
| 175 |
|
|
VEC_safe_push (function_p, heap, function_context_stack, cfun);
|
| 176 |
|
|
set_cfun (NULL);
|
| 177 |
|
|
}
|
| 178 |
|
|
|
| 179 |
|
|
/* Restore the last saved context, at the end of a nested function.
|
| 180 |
|
|
This function is called from language-specific code. */
|
| 181 |
|
|
|
| 182 |
|
|
void
|
| 183 |
|
|
pop_function_context (void)
|
| 184 |
|
|
{
|
| 185 |
|
|
struct function *p = VEC_pop (function_p, function_context_stack);
|
| 186 |
|
|
set_cfun (p);
|
| 187 |
|
|
current_function_decl = p->decl;
|
| 188 |
|
|
|
| 189 |
|
|
/* Reset variables that have known state during rtx generation. */
|
| 190 |
|
|
virtuals_instantiated = 0;
|
| 191 |
|
|
generating_concat_p = 1;
|
| 192 |
|
|
}
|
| 193 |
|
|
|
| 194 |
|
|
/* Clear out all parts of the state in F that can safely be discarded
|
| 195 |
|
|
after the function has been parsed, but not compiled, to let
|
| 196 |
|
|
garbage collection reclaim the memory. */
|
| 197 |
|
|
|
| 198 |
|
|
void
|
| 199 |
|
|
free_after_parsing (struct function *f)
|
| 200 |
|
|
{
|
| 201 |
|
|
f->language = 0;
|
| 202 |
|
|
}
|
| 203 |
|
|
|
| 204 |
|
|
/* Clear out all parts of the state in F that can safely be discarded
|
| 205 |
|
|
after the function has been compiled, to let garbage collection
|
| 206 |
|
|
reclaim the memory. */
|
| 207 |
|
|
|
| 208 |
|
|
void
|
| 209 |
|
|
free_after_compilation (struct function *f)
|
| 210 |
|
|
{
|
| 211 |
|
|
prologue_insn_hash = NULL;
|
| 212 |
|
|
epilogue_insn_hash = NULL;
|
| 213 |
|
|
|
| 214 |
|
|
free (crtl->emit.regno_pointer_align);
|
| 215 |
|
|
|
| 216 |
|
|
memset (crtl, 0, sizeof (struct rtl_data));
|
| 217 |
|
|
f->eh = NULL;
|
| 218 |
|
|
f->machine = NULL;
|
| 219 |
|
|
f->cfg = NULL;
|
| 220 |
|
|
|
| 221 |
|
|
regno_reg_rtx = NULL;
|
| 222 |
|
|
insn_locators_free ();
|
| 223 |
|
|
}
|
| 224 |
|
|
|
| 225 |
|
|
/* Return size needed for stack frame based on slots so far allocated.
|
| 226 |
|
|
This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
|
| 227 |
|
|
the caller may have to do that. */
|
| 228 |
|
|
|
| 229 |
|
|
HOST_WIDE_INT
|
| 230 |
|
|
get_frame_size (void)
|
| 231 |
|
|
{
|
| 232 |
|
|
if (FRAME_GROWS_DOWNWARD)
|
| 233 |
|
|
return -frame_offset;
|
| 234 |
|
|
else
|
| 235 |
|
|
return frame_offset;
|
| 236 |
|
|
}
|
| 237 |
|
|
|
| 238 |
|
|
/* Issue an error message and return TRUE if frame OFFSET overflows in
|
| 239 |
|
|
the signed target pointer arithmetics for function FUNC. Otherwise
|
| 240 |
|
|
return FALSE. */
|
| 241 |
|
|
|
| 242 |
|
|
bool
|
| 243 |
|
|
frame_offset_overflow (HOST_WIDE_INT offset, tree func)
|
| 244 |
|
|
{
|
| 245 |
|
|
unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
|
| 246 |
|
|
|
| 247 |
|
|
if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
|
| 248 |
|
|
/* Leave room for the fixed part of the frame. */
|
| 249 |
|
|
- 64 * UNITS_PER_WORD)
|
| 250 |
|
|
{
|
| 251 |
|
|
error_at (DECL_SOURCE_LOCATION (func),
|
| 252 |
|
|
"total size of local objects too large");
|
| 253 |
|
|
return TRUE;
|
| 254 |
|
|
}
|
| 255 |
|
|
|
| 256 |
|
|
return FALSE;
|
| 257 |
|
|
}
|
| 258 |
|
|
|
| 259 |
|
|
/* Return stack slot alignment in bits for TYPE and MODE. */
|
| 260 |
|
|
|
| 261 |
|
|
static unsigned int
|
| 262 |
|
|
get_stack_local_alignment (tree type, enum machine_mode mode)
|
| 263 |
|
|
{
|
| 264 |
|
|
unsigned int alignment;
|
| 265 |
|
|
|
| 266 |
|
|
if (mode == BLKmode)
|
| 267 |
|
|
alignment = BIGGEST_ALIGNMENT;
|
| 268 |
|
|
else
|
| 269 |
|
|
alignment = GET_MODE_ALIGNMENT (mode);
|
| 270 |
|
|
|
| 271 |
|
|
/* Allow the frond-end to (possibly) increase the alignment of this
|
| 272 |
|
|
stack slot. */
|
| 273 |
|
|
if (! type)
|
| 274 |
|
|
type = lang_hooks.types.type_for_mode (mode, 0);
|
| 275 |
|
|
|
| 276 |
|
|
return STACK_SLOT_ALIGNMENT (type, mode, alignment);
|
| 277 |
|
|
}
|
| 278 |
|
|
|
| 279 |
|
|
/* Determine whether it is possible to fit a stack slot of size SIZE and
|
| 280 |
|
|
alignment ALIGNMENT into an area in the stack frame that starts at
|
| 281 |
|
|
frame offset START and has a length of LENGTH. If so, store the frame
|
| 282 |
|
|
offset to be used for the stack slot in *POFFSET and return true;
|
| 283 |
|
|
return false otherwise. This function will extend the frame size when
|
| 284 |
|
|
given a start/length pair that lies at the end of the frame. */
|
| 285 |
|
|
|
| 286 |
|
|
static bool
|
| 287 |
|
|
try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
|
| 288 |
|
|
HOST_WIDE_INT size, unsigned int alignment,
|
| 289 |
|
|
HOST_WIDE_INT *poffset)
|
| 290 |
|
|
{
|
| 291 |
|
|
HOST_WIDE_INT this_frame_offset;
|
| 292 |
|
|
int frame_off, frame_alignment, frame_phase;
|
| 293 |
|
|
|
| 294 |
|
|
/* Calculate how many bytes the start of local variables is off from
|
| 295 |
|
|
stack alignment. */
|
| 296 |
|
|
frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
|
| 297 |
|
|
frame_off = STARTING_FRAME_OFFSET % frame_alignment;
|
| 298 |
|
|
frame_phase = frame_off ? frame_alignment - frame_off : 0;
|
| 299 |
|
|
|
| 300 |
|
|
/* Round the frame offset to the specified alignment. */
|
| 301 |
|
|
|
| 302 |
|
|
/* We must be careful here, since FRAME_OFFSET might be negative and
|
| 303 |
|
|
division with a negative dividend isn't as well defined as we might
|
| 304 |
|
|
like. So we instead assume that ALIGNMENT is a power of two and
|
| 305 |
|
|
use logical operations which are unambiguous. */
|
| 306 |
|
|
if (FRAME_GROWS_DOWNWARD)
|
| 307 |
|
|
this_frame_offset
|
| 308 |
|
|
= (FLOOR_ROUND (start + length - size - frame_phase,
|
| 309 |
|
|
(unsigned HOST_WIDE_INT) alignment)
|
| 310 |
|
|
+ frame_phase);
|
| 311 |
|
|
else
|
| 312 |
|
|
this_frame_offset
|
| 313 |
|
|
= (CEIL_ROUND (start - frame_phase,
|
| 314 |
|
|
(unsigned HOST_WIDE_INT) alignment)
|
| 315 |
|
|
+ frame_phase);
|
| 316 |
|
|
|
| 317 |
|
|
/* See if it fits. If this space is at the edge of the frame,
|
| 318 |
|
|
consider extending the frame to make it fit. Our caller relies on
|
| 319 |
|
|
this when allocating a new slot. */
|
| 320 |
|
|
if (frame_offset == start && this_frame_offset < frame_offset)
|
| 321 |
|
|
frame_offset = this_frame_offset;
|
| 322 |
|
|
else if (this_frame_offset < start)
|
| 323 |
|
|
return false;
|
| 324 |
|
|
else if (start + length == frame_offset
|
| 325 |
|
|
&& this_frame_offset + size > start + length)
|
| 326 |
|
|
frame_offset = this_frame_offset + size;
|
| 327 |
|
|
else if (this_frame_offset + size > start + length)
|
| 328 |
|
|
return false;
|
| 329 |
|
|
|
| 330 |
|
|
*poffset = this_frame_offset;
|
| 331 |
|
|
return true;
|
| 332 |
|
|
}
|
| 333 |
|
|
|
| 334 |
|
|
/* Create a new frame_space structure describing free space in the stack
|
| 335 |
|
|
frame beginning at START and ending at END, and chain it into the
|
| 336 |
|
|
function's frame_space_list. */
|
| 337 |
|
|
|
| 338 |
|
|
static void
|
| 339 |
|
|
add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
|
| 340 |
|
|
{
|
| 341 |
|
|
struct frame_space *space = ggc_alloc_frame_space ();
|
| 342 |
|
|
space->next = crtl->frame_space_list;
|
| 343 |
|
|
crtl->frame_space_list = space;
|
| 344 |
|
|
space->start = start;
|
| 345 |
|
|
space->length = end - start;
|
| 346 |
|
|
}
|
| 347 |
|
|
|
| 348 |
|
|
/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
|
| 349 |
|
|
with machine mode MODE.
|
| 350 |
|
|
|
| 351 |
|
|
ALIGN controls the amount of alignment for the address of the slot:
|
| 352 |
|
|
|
| 353 |
|
|
-1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
|
| 354 |
|
|
-2 means use BITS_PER_UNIT,
|
| 355 |
|
|
positive specifies alignment boundary in bits.
|
| 356 |
|
|
|
| 357 |
|
|
KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
|
| 358 |
|
|
alignment and ASLK_RECORD_PAD bit set if we should remember
|
| 359 |
|
|
extra space we allocated for alignment purposes. When we are
|
| 360 |
|
|
called from assign_stack_temp_for_type, it is not set so we don't
|
| 361 |
|
|
track the same stack slot in two independent lists.
|
| 362 |
|
|
|
| 363 |
|
|
We do not round to stack_boundary here. */
|
| 364 |
|
|
|
| 365 |
|
|
rtx
|
| 366 |
|
|
assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
|
| 367 |
|
|
int align, int kind)
|
| 368 |
|
|
{
|
| 369 |
|
|
rtx x, addr;
|
| 370 |
|
|
int bigend_correction = 0;
|
| 371 |
|
|
HOST_WIDE_INT slot_offset = 0, old_frame_offset;
|
| 372 |
|
|
unsigned int alignment, alignment_in_bits;
|
| 373 |
|
|
|
| 374 |
|
|
if (align == 0)
|
| 375 |
|
|
{
|
| 376 |
|
|
alignment = get_stack_local_alignment (NULL, mode);
|
| 377 |
|
|
alignment /= BITS_PER_UNIT;
|
| 378 |
|
|
}
|
| 379 |
|
|
else if (align == -1)
|
| 380 |
|
|
{
|
| 381 |
|
|
alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
|
| 382 |
|
|
size = CEIL_ROUND (size, alignment);
|
| 383 |
|
|
}
|
| 384 |
|
|
else if (align == -2)
|
| 385 |
|
|
alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
|
| 386 |
|
|
else
|
| 387 |
|
|
alignment = align / BITS_PER_UNIT;
|
| 388 |
|
|
|
| 389 |
|
|
alignment_in_bits = alignment * BITS_PER_UNIT;
|
| 390 |
|
|
|
| 391 |
|
|
/* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
|
| 392 |
|
|
if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
|
| 393 |
|
|
{
|
| 394 |
|
|
alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
|
| 395 |
|
|
alignment = alignment_in_bits / BITS_PER_UNIT;
|
| 396 |
|
|
}
|
| 397 |
|
|
|
| 398 |
|
|
if (SUPPORTS_STACK_ALIGNMENT)
|
| 399 |
|
|
{
|
| 400 |
|
|
if (crtl->stack_alignment_estimated < alignment_in_bits)
|
| 401 |
|
|
{
|
| 402 |
|
|
if (!crtl->stack_realign_processed)
|
| 403 |
|
|
crtl->stack_alignment_estimated = alignment_in_bits;
|
| 404 |
|
|
else
|
| 405 |
|
|
{
|
| 406 |
|
|
/* If stack is realigned and stack alignment value
|
| 407 |
|
|
hasn't been finalized, it is OK not to increase
|
| 408 |
|
|
stack_alignment_estimated. The bigger alignment
|
| 409 |
|
|
requirement is recorded in stack_alignment_needed
|
| 410 |
|
|
below. */
|
| 411 |
|
|
gcc_assert (!crtl->stack_realign_finalized);
|
| 412 |
|
|
if (!crtl->stack_realign_needed)
|
| 413 |
|
|
{
|
| 414 |
|
|
/* It is OK to reduce the alignment as long as the
|
| 415 |
|
|
requested size is 0 or the estimated stack
|
| 416 |
|
|
alignment >= mode alignment. */
|
| 417 |
|
|
gcc_assert ((kind & ASLK_REDUCE_ALIGN)
|
| 418 |
|
|
|| size == 0
|
| 419 |
|
|
|| (crtl->stack_alignment_estimated
|
| 420 |
|
|
>= GET_MODE_ALIGNMENT (mode)));
|
| 421 |
|
|
alignment_in_bits = crtl->stack_alignment_estimated;
|
| 422 |
|
|
alignment = alignment_in_bits / BITS_PER_UNIT;
|
| 423 |
|
|
}
|
| 424 |
|
|
}
|
| 425 |
|
|
}
|
| 426 |
|
|
}
|
| 427 |
|
|
|
| 428 |
|
|
if (crtl->stack_alignment_needed < alignment_in_bits)
|
| 429 |
|
|
crtl->stack_alignment_needed = alignment_in_bits;
|
| 430 |
|
|
if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
|
| 431 |
|
|
crtl->max_used_stack_slot_alignment = alignment_in_bits;
|
| 432 |
|
|
|
| 433 |
|
|
if (mode != BLKmode || size != 0)
|
| 434 |
|
|
{
|
| 435 |
|
|
if (kind & ASLK_RECORD_PAD)
|
| 436 |
|
|
{
|
| 437 |
|
|
struct frame_space **psp;
|
| 438 |
|
|
|
| 439 |
|
|
for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
|
| 440 |
|
|
{
|
| 441 |
|
|
struct frame_space *space = *psp;
|
| 442 |
|
|
if (!try_fit_stack_local (space->start, space->length, size,
|
| 443 |
|
|
alignment, &slot_offset))
|
| 444 |
|
|
continue;
|
| 445 |
|
|
*psp = space->next;
|
| 446 |
|
|
if (slot_offset > space->start)
|
| 447 |
|
|
add_frame_space (space->start, slot_offset);
|
| 448 |
|
|
if (slot_offset + size < space->start + space->length)
|
| 449 |
|
|
add_frame_space (slot_offset + size,
|
| 450 |
|
|
space->start + space->length);
|
| 451 |
|
|
goto found_space;
|
| 452 |
|
|
}
|
| 453 |
|
|
}
|
| 454 |
|
|
}
|
| 455 |
|
|
else if (!STACK_ALIGNMENT_NEEDED)
|
| 456 |
|
|
{
|
| 457 |
|
|
slot_offset = frame_offset;
|
| 458 |
|
|
goto found_space;
|
| 459 |
|
|
}
|
| 460 |
|
|
|
| 461 |
|
|
old_frame_offset = frame_offset;
|
| 462 |
|
|
|
| 463 |
|
|
if (FRAME_GROWS_DOWNWARD)
|
| 464 |
|
|
{
|
| 465 |
|
|
frame_offset -= size;
|
| 466 |
|
|
try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
|
| 467 |
|
|
|
| 468 |
|
|
if (kind & ASLK_RECORD_PAD)
|
| 469 |
|
|
{
|
| 470 |
|
|
if (slot_offset > frame_offset)
|
| 471 |
|
|
add_frame_space (frame_offset, slot_offset);
|
| 472 |
|
|
if (slot_offset + size < old_frame_offset)
|
| 473 |
|
|
add_frame_space (slot_offset + size, old_frame_offset);
|
| 474 |
|
|
}
|
| 475 |
|
|
}
|
| 476 |
|
|
else
|
| 477 |
|
|
{
|
| 478 |
|
|
frame_offset += size;
|
| 479 |
|
|
try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
|
| 480 |
|
|
|
| 481 |
|
|
if (kind & ASLK_RECORD_PAD)
|
| 482 |
|
|
{
|
| 483 |
|
|
if (slot_offset > old_frame_offset)
|
| 484 |
|
|
add_frame_space (old_frame_offset, slot_offset);
|
| 485 |
|
|
if (slot_offset + size < frame_offset)
|
| 486 |
|
|
add_frame_space (slot_offset + size, frame_offset);
|
| 487 |
|
|
}
|
| 488 |
|
|
}
|
| 489 |
|
|
|
| 490 |
|
|
found_space:
|
| 491 |
|
|
/* On a big-endian machine, if we are allocating more space than we will use,
|
| 492 |
|
|
use the least significant bytes of those that are allocated. */
|
| 493 |
|
|
if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
|
| 494 |
|
|
bigend_correction = size - GET_MODE_SIZE (mode);
|
| 495 |
|
|
|
| 496 |
|
|
/* If we have already instantiated virtual registers, return the actual
|
| 497 |
|
|
address relative to the frame pointer. */
|
| 498 |
|
|
if (virtuals_instantiated)
|
| 499 |
|
|
addr = plus_constant (frame_pointer_rtx,
|
| 500 |
|
|
trunc_int_for_mode
|
| 501 |
|
|
(slot_offset + bigend_correction
|
| 502 |
|
|
+ STARTING_FRAME_OFFSET, Pmode));
|
| 503 |
|
|
else
|
| 504 |
|
|
addr = plus_constant (virtual_stack_vars_rtx,
|
| 505 |
|
|
trunc_int_for_mode
|
| 506 |
|
|
(slot_offset + bigend_correction,
|
| 507 |
|
|
Pmode));
|
| 508 |
|
|
|
| 509 |
|
|
x = gen_rtx_MEM (mode, addr);
|
| 510 |
|
|
set_mem_align (x, alignment_in_bits);
|
| 511 |
|
|
MEM_NOTRAP_P (x) = 1;
|
| 512 |
|
|
|
| 513 |
|
|
stack_slot_list
|
| 514 |
|
|
= gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
|
| 515 |
|
|
|
| 516 |
|
|
if (frame_offset_overflow (frame_offset, current_function_decl))
|
| 517 |
|
|
frame_offset = 0;
|
| 518 |
|
|
|
| 519 |
|
|
return x;
|
| 520 |
|
|
}
|
| 521 |
|
|
|
| 522 |
|
|
/* Wrap up assign_stack_local_1 with last parameter as false. */
|
| 523 |
|
|
|
| 524 |
|
|
rtx
|
| 525 |
|
|
assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
|
| 526 |
|
|
{
|
| 527 |
|
|
return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
|
| 528 |
|
|
}
|
| 529 |
|
|
|
| 530 |
|
|
|
| 531 |
|
|
/* In order to evaluate some expressions, such as function calls returning
|
| 532 |
|
|
structures in memory, we need to temporarily allocate stack locations.
|
| 533 |
|
|
We record each allocated temporary in the following structure.
|
| 534 |
|
|
|
| 535 |
|
|
Associated with each temporary slot is a nesting level. When we pop up
|
| 536 |
|
|
one level, all temporaries associated with the previous level are freed.
|
| 537 |
|
|
Normally, all temporaries are freed after the execution of the statement
|
| 538 |
|
|
in which they were created. However, if we are inside a ({...}) grouping,
|
| 539 |
|
|
the result may be in a temporary and hence must be preserved. If the
|
| 540 |
|
|
result could be in a temporary, we preserve it if we can determine which
|
| 541 |
|
|
one it is in. If we cannot determine which temporary may contain the
|
| 542 |
|
|
result, all temporaries are preserved. A temporary is preserved by
|
| 543 |
|
|
pretending it was allocated at the previous nesting level.
|
| 544 |
|
|
|
| 545 |
|
|
Automatic variables are also assigned temporary slots, at the nesting
|
| 546 |
|
|
level where they are defined. They are marked a "kept" so that
|
| 547 |
|
|
free_temp_slots will not free them. */
|
| 548 |
|
|
|
| 549 |
|
|
struct GTY(()) temp_slot {
|
| 550 |
|
|
/* Points to next temporary slot. */
|
| 551 |
|
|
struct temp_slot *next;
|
| 552 |
|
|
/* Points to previous temporary slot. */
|
| 553 |
|
|
struct temp_slot *prev;
|
| 554 |
|
|
/* The rtx to used to reference the slot. */
|
| 555 |
|
|
rtx slot;
|
| 556 |
|
|
/* The size, in units, of the slot. */
|
| 557 |
|
|
HOST_WIDE_INT size;
|
| 558 |
|
|
/* The type of the object in the slot, or zero if it doesn't correspond
|
| 559 |
|
|
to a type. We use this to determine whether a slot can be reused.
|
| 560 |
|
|
It can be reused if objects of the type of the new slot will always
|
| 561 |
|
|
conflict with objects of the type of the old slot. */
|
| 562 |
|
|
tree type;
|
| 563 |
|
|
/* The alignment (in bits) of the slot. */
|
| 564 |
|
|
unsigned int align;
|
| 565 |
|
|
/* Nonzero if this temporary is currently in use. */
|
| 566 |
|
|
char in_use;
|
| 567 |
|
|
/* Nonzero if this temporary has its address taken. */
|
| 568 |
|
|
char addr_taken;
|
| 569 |
|
|
/* Nesting level at which this slot is being used. */
|
| 570 |
|
|
int level;
|
| 571 |
|
|
/* Nonzero if this should survive a call to free_temp_slots. */
|
| 572 |
|
|
int keep;
|
| 573 |
|
|
/* The offset of the slot from the frame_pointer, including extra space
|
| 574 |
|
|
for alignment. This info is for combine_temp_slots. */
|
| 575 |
|
|
HOST_WIDE_INT base_offset;
|
| 576 |
|
|
/* The size of the slot, including extra space for alignment. This
|
| 577 |
|
|
info is for combine_temp_slots. */
|
| 578 |
|
|
HOST_WIDE_INT full_size;
|
| 579 |
|
|
};
|
| 580 |
|
|
|
| 581 |
|
|
/* A table of addresses that represent a stack slot. The table is a mapping
|
| 582 |
|
|
from address RTXen to a temp slot. */
|
| 583 |
|
|
static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
|
| 584 |
|
|
|
| 585 |
|
|
/* Entry for the above hash table. */
|
| 586 |
|
|
struct GTY(()) temp_slot_address_entry {
|
| 587 |
|
|
hashval_t hash;
|
| 588 |
|
|
rtx address;
|
| 589 |
|
|
struct temp_slot *temp_slot;
|
| 590 |
|
|
};
|
| 591 |
|
|
|
| 592 |
|
|
/* Removes temporary slot TEMP from LIST. */
|
| 593 |
|
|
|
| 594 |
|
|
static void
|
| 595 |
|
|
cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
|
| 596 |
|
|
{
|
| 597 |
|
|
if (temp->next)
|
| 598 |
|
|
temp->next->prev = temp->prev;
|
| 599 |
|
|
if (temp->prev)
|
| 600 |
|
|
temp->prev->next = temp->next;
|
| 601 |
|
|
else
|
| 602 |
|
|
*list = temp->next;
|
| 603 |
|
|
|
| 604 |
|
|
temp->prev = temp->next = NULL;
|
| 605 |
|
|
}
|
| 606 |
|
|
|
| 607 |
|
|
/* Inserts temporary slot TEMP to LIST. */
|
| 608 |
|
|
|
| 609 |
|
|
static void
|
| 610 |
|
|
insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
|
| 611 |
|
|
{
|
| 612 |
|
|
temp->next = *list;
|
| 613 |
|
|
if (*list)
|
| 614 |
|
|
(*list)->prev = temp;
|
| 615 |
|
|
temp->prev = NULL;
|
| 616 |
|
|
*list = temp;
|
| 617 |
|
|
}
|
| 618 |
|
|
|
| 619 |
|
|
/* Returns the list of used temp slots at LEVEL. */
|
| 620 |
|
|
|
| 621 |
|
|
static struct temp_slot **
|
| 622 |
|
|
temp_slots_at_level (int level)
|
| 623 |
|
|
{
|
| 624 |
|
|
if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
|
| 625 |
|
|
VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
|
| 626 |
|
|
|
| 627 |
|
|
return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
|
| 628 |
|
|
}
|
| 629 |
|
|
|
| 630 |
|
|
/* Returns the maximal temporary slot level. */
|
| 631 |
|
|
|
| 632 |
|
|
static int
|
| 633 |
|
|
max_slot_level (void)
|
| 634 |
|
|
{
|
| 635 |
|
|
if (!used_temp_slots)
|
| 636 |
|
|
return -1;
|
| 637 |
|
|
|
| 638 |
|
|
return VEC_length (temp_slot_p, used_temp_slots) - 1;
|
| 639 |
|
|
}
|
| 640 |
|
|
|
| 641 |
|
|
/* Moves temporary slot TEMP to LEVEL. */
|
| 642 |
|
|
|
| 643 |
|
|
static void
|
| 644 |
|
|
move_slot_to_level (struct temp_slot *temp, int level)
|
| 645 |
|
|
{
|
| 646 |
|
|
cut_slot_from_list (temp, temp_slots_at_level (temp->level));
|
| 647 |
|
|
insert_slot_to_list (temp, temp_slots_at_level (level));
|
| 648 |
|
|
temp->level = level;
|
| 649 |
|
|
}
|
| 650 |
|
|
|
| 651 |
|
|
/* Make temporary slot TEMP available. */
|
| 652 |
|
|
|
| 653 |
|
|
static void
|
| 654 |
|
|
make_slot_available (struct temp_slot *temp)
|
| 655 |
|
|
{
|
| 656 |
|
|
cut_slot_from_list (temp, temp_slots_at_level (temp->level));
|
| 657 |
|
|
insert_slot_to_list (temp, &avail_temp_slots);
|
| 658 |
|
|
temp->in_use = 0;
|
| 659 |
|
|
temp->level = -1;
|
| 660 |
|
|
}
|
| 661 |
|
|
|
| 662 |
|
|
/* Compute the hash value for an address -> temp slot mapping.
|
| 663 |
|
|
The value is cached on the mapping entry. */
|
| 664 |
|
|
static hashval_t
|
| 665 |
|
|
temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
|
| 666 |
|
|
{
|
| 667 |
|
|
int do_not_record = 0;
|
| 668 |
|
|
return hash_rtx (t->address, GET_MODE (t->address),
|
| 669 |
|
|
&do_not_record, NULL, false);
|
| 670 |
|
|
}
|
| 671 |
|
|
|
| 672 |
|
|
/* Return the hash value for an address -> temp slot mapping. */
|
| 673 |
|
|
static hashval_t
|
| 674 |
|
|
temp_slot_address_hash (const void *p)
|
| 675 |
|
|
{
|
| 676 |
|
|
const struct temp_slot_address_entry *t;
|
| 677 |
|
|
t = (const struct temp_slot_address_entry *) p;
|
| 678 |
|
|
return t->hash;
|
| 679 |
|
|
}
|
| 680 |
|
|
|
| 681 |
|
|
/* Compare two address -> temp slot mapping entries. */
|
| 682 |
|
|
static int
|
| 683 |
|
|
temp_slot_address_eq (const void *p1, const void *p2)
|
| 684 |
|
|
{
|
| 685 |
|
|
const struct temp_slot_address_entry *t1, *t2;
|
| 686 |
|
|
t1 = (const struct temp_slot_address_entry *) p1;
|
| 687 |
|
|
t2 = (const struct temp_slot_address_entry *) p2;
|
| 688 |
|
|
return exp_equiv_p (t1->address, t2->address, 0, true);
|
| 689 |
|
|
}
|
| 690 |
|
|
|
| 691 |
|
|
/* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
|
| 692 |
|
|
static void
|
| 693 |
|
|
insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
|
| 694 |
|
|
{
|
| 695 |
|
|
void **slot;
|
| 696 |
|
|
struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
|
| 697 |
|
|
t->address = address;
|
| 698 |
|
|
t->temp_slot = temp_slot;
|
| 699 |
|
|
t->hash = temp_slot_address_compute_hash (t);
|
| 700 |
|
|
slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
|
| 701 |
|
|
*slot = t;
|
| 702 |
|
|
}
|
| 703 |
|
|
|
| 704 |
|
|
/* Remove an address -> temp slot mapping entry if the temp slot is
|
| 705 |
|
|
not in use anymore. Callback for remove_unused_temp_slot_addresses. */
|
| 706 |
|
|
static int
|
| 707 |
|
|
remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
|
| 708 |
|
|
{
|
| 709 |
|
|
const struct temp_slot_address_entry *t;
|
| 710 |
|
|
t = (const struct temp_slot_address_entry *) *slot;
|
| 711 |
|
|
if (! t->temp_slot->in_use)
|
| 712 |
|
|
*slot = NULL;
|
| 713 |
|
|
return 1;
|
| 714 |
|
|
}
|
| 715 |
|
|
|
| 716 |
|
|
/* Remove all mappings of addresses to unused temp slots. */
|
| 717 |
|
|
static void
|
| 718 |
|
|
remove_unused_temp_slot_addresses (void)
|
| 719 |
|
|
{
|
| 720 |
|
|
htab_traverse (temp_slot_address_table,
|
| 721 |
|
|
remove_unused_temp_slot_addresses_1,
|
| 722 |
|
|
NULL);
|
| 723 |
|
|
}
|
| 724 |
|
|
|
| 725 |
|
|
/* Find the temp slot corresponding to the object at address X. */
|
| 726 |
|
|
|
| 727 |
|
|
static struct temp_slot *
|
| 728 |
|
|
find_temp_slot_from_address (rtx x)
|
| 729 |
|
|
{
|
| 730 |
|
|
struct temp_slot *p;
|
| 731 |
|
|
struct temp_slot_address_entry tmp, *t;
|
| 732 |
|
|
|
| 733 |
|
|
/* First try the easy way:
|
| 734 |
|
|
See if X exists in the address -> temp slot mapping. */
|
| 735 |
|
|
tmp.address = x;
|
| 736 |
|
|
tmp.temp_slot = NULL;
|
| 737 |
|
|
tmp.hash = temp_slot_address_compute_hash (&tmp);
|
| 738 |
|
|
t = (struct temp_slot_address_entry *)
|
| 739 |
|
|
htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
|
| 740 |
|
|
if (t)
|
| 741 |
|
|
return t->temp_slot;
|
| 742 |
|
|
|
| 743 |
|
|
/* If we have a sum involving a register, see if it points to a temp
|
| 744 |
|
|
slot. */
|
| 745 |
|
|
if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
|
| 746 |
|
|
&& (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
|
| 747 |
|
|
return p;
|
| 748 |
|
|
else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
|
| 749 |
|
|
&& (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
|
| 750 |
|
|
return p;
|
| 751 |
|
|
|
| 752 |
|
|
/* Last resort: Address is a virtual stack var address. */
|
| 753 |
|
|
if (GET_CODE (x) == PLUS
|
| 754 |
|
|
&& XEXP (x, 0) == virtual_stack_vars_rtx
|
| 755 |
|
|
&& CONST_INT_P (XEXP (x, 1)))
|
| 756 |
|
|
{
|
| 757 |
|
|
int i;
|
| 758 |
|
|
for (i = max_slot_level (); i >= 0; i--)
|
| 759 |
|
|
for (p = *temp_slots_at_level (i); p; p = p->next)
|
| 760 |
|
|
{
|
| 761 |
|
|
if (INTVAL (XEXP (x, 1)) >= p->base_offset
|
| 762 |
|
|
&& INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
|
| 763 |
|
|
return p;
|
| 764 |
|
|
}
|
| 765 |
|
|
}
|
| 766 |
|
|
|
| 767 |
|
|
return NULL;
|
| 768 |
|
|
}
|
| 769 |
|
|
|
| 770 |
|
|
/* Allocate a temporary stack slot and record it for possible later
|
| 771 |
|
|
reuse.
|
| 772 |
|
|
|
| 773 |
|
|
MODE is the machine mode to be given to the returned rtx.
|
| 774 |
|
|
|
| 775 |
|
|
SIZE is the size in units of the space required. We do no rounding here
|
| 776 |
|
|
since assign_stack_local will do any required rounding.
|
| 777 |
|
|
|
| 778 |
|
|
KEEP is 1 if this slot is to be retained after a call to
|
| 779 |
|
|
free_temp_slots. Automatic variables for a block are allocated
|
| 780 |
|
|
with this flag. KEEP values of 2 or 3 were needed respectively
|
| 781 |
|
|
for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
|
| 782 |
|
|
or for SAVE_EXPRs, but they are now unused.
|
| 783 |
|
|
|
| 784 |
|
|
TYPE is the type that will be used for the stack slot. */
|
| 785 |
|
|
|
| 786 |
|
|
rtx
|
| 787 |
|
|
assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
|
| 788 |
|
|
int keep, tree type)
|
| 789 |
|
|
{
|
| 790 |
|
|
unsigned int align;
|
| 791 |
|
|
struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
|
| 792 |
|
|
rtx slot;
|
| 793 |
|
|
|
| 794 |
|
|
/* If SIZE is -1 it means that somebody tried to allocate a temporary
|
| 795 |
|
|
of a variable size. */
|
| 796 |
|
|
gcc_assert (size != -1);
|
| 797 |
|
|
|
| 798 |
|
|
/* These are now unused. */
|
| 799 |
|
|
gcc_assert (keep <= 1);
|
| 800 |
|
|
|
| 801 |
|
|
align = get_stack_local_alignment (type, mode);
|
| 802 |
|
|
|
| 803 |
|
|
/* Try to find an available, already-allocated temporary of the proper
|
| 804 |
|
|
mode which meets the size and alignment requirements. Choose the
|
| 805 |
|
|
smallest one with the closest alignment.
|
| 806 |
|
|
|
| 807 |
|
|
If assign_stack_temp is called outside of the tree->rtl expansion,
|
| 808 |
|
|
we cannot reuse the stack slots (that may still refer to
|
| 809 |
|
|
VIRTUAL_STACK_VARS_REGNUM). */
|
| 810 |
|
|
if (!virtuals_instantiated)
|
| 811 |
|
|
{
|
| 812 |
|
|
for (p = avail_temp_slots; p; p = p->next)
|
| 813 |
|
|
{
|
| 814 |
|
|
if (p->align >= align && p->size >= size
|
| 815 |
|
|
&& GET_MODE (p->slot) == mode
|
| 816 |
|
|
&& objects_must_conflict_p (p->type, type)
|
| 817 |
|
|
&& (best_p == 0 || best_p->size > p->size
|
| 818 |
|
|
|| (best_p->size == p->size && best_p->align > p->align)))
|
| 819 |
|
|
{
|
| 820 |
|
|
if (p->align == align && p->size == size)
|
| 821 |
|
|
{
|
| 822 |
|
|
selected = p;
|
| 823 |
|
|
cut_slot_from_list (selected, &avail_temp_slots);
|
| 824 |
|
|
best_p = 0;
|
| 825 |
|
|
break;
|
| 826 |
|
|
}
|
| 827 |
|
|
best_p = p;
|
| 828 |
|
|
}
|
| 829 |
|
|
}
|
| 830 |
|
|
}
|
| 831 |
|
|
|
| 832 |
|
|
/* Make our best, if any, the one to use. */
|
| 833 |
|
|
if (best_p)
|
| 834 |
|
|
{
|
| 835 |
|
|
selected = best_p;
|
| 836 |
|
|
cut_slot_from_list (selected, &avail_temp_slots);
|
| 837 |
|
|
|
| 838 |
|
|
/* If there are enough aligned bytes left over, make them into a new
|
| 839 |
|
|
temp_slot so that the extra bytes don't get wasted. Do this only
|
| 840 |
|
|
for BLKmode slots, so that we can be sure of the alignment. */
|
| 841 |
|
|
if (GET_MODE (best_p->slot) == BLKmode)
|
| 842 |
|
|
{
|
| 843 |
|
|
int alignment = best_p->align / BITS_PER_UNIT;
|
| 844 |
|
|
HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
|
| 845 |
|
|
|
| 846 |
|
|
if (best_p->size - rounded_size >= alignment)
|
| 847 |
|
|
{
|
| 848 |
|
|
p = ggc_alloc_temp_slot ();
|
| 849 |
|
|
p->in_use = p->addr_taken = 0;
|
| 850 |
|
|
p->size = best_p->size - rounded_size;
|
| 851 |
|
|
p->base_offset = best_p->base_offset + rounded_size;
|
| 852 |
|
|
p->full_size = best_p->full_size - rounded_size;
|
| 853 |
|
|
p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
|
| 854 |
|
|
p->align = best_p->align;
|
| 855 |
|
|
p->type = best_p->type;
|
| 856 |
|
|
insert_slot_to_list (p, &avail_temp_slots);
|
| 857 |
|
|
|
| 858 |
|
|
stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
|
| 859 |
|
|
stack_slot_list);
|
| 860 |
|
|
|
| 861 |
|
|
best_p->size = rounded_size;
|
| 862 |
|
|
best_p->full_size = rounded_size;
|
| 863 |
|
|
}
|
| 864 |
|
|
}
|
| 865 |
|
|
}
|
| 866 |
|
|
|
| 867 |
|
|
/* If we still didn't find one, make a new temporary. */
|
| 868 |
|
|
if (selected == 0)
|
| 869 |
|
|
{
|
| 870 |
|
|
HOST_WIDE_INT frame_offset_old = frame_offset;
|
| 871 |
|
|
|
| 872 |
|
|
p = ggc_alloc_temp_slot ();
|
| 873 |
|
|
|
| 874 |
|
|
/* We are passing an explicit alignment request to assign_stack_local.
|
| 875 |
|
|
One side effect of that is assign_stack_local will not round SIZE
|
| 876 |
|
|
to ensure the frame offset remains suitably aligned.
|
| 877 |
|
|
|
| 878 |
|
|
So for requests which depended on the rounding of SIZE, we go ahead
|
| 879 |
|
|
and round it now. We also make sure ALIGNMENT is at least
|
| 880 |
|
|
BIGGEST_ALIGNMENT. */
|
| 881 |
|
|
gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
|
| 882 |
|
|
p->slot = assign_stack_local_1 (mode,
|
| 883 |
|
|
(mode == BLKmode
|
| 884 |
|
|
? CEIL_ROUND (size,
|
| 885 |
|
|
(int) align
|
| 886 |
|
|
/ BITS_PER_UNIT)
|
| 887 |
|
|
: size),
|
| 888 |
|
|
align, 0);
|
| 889 |
|
|
|
| 890 |
|
|
p->align = align;
|
| 891 |
|
|
|
| 892 |
|
|
/* The following slot size computation is necessary because we don't
|
| 893 |
|
|
know the actual size of the temporary slot until assign_stack_local
|
| 894 |
|
|
has performed all the frame alignment and size rounding for the
|
| 895 |
|
|
requested temporary. Note that extra space added for alignment
|
| 896 |
|
|
can be either above or below this stack slot depending on which
|
| 897 |
|
|
way the frame grows. We include the extra space if and only if it
|
| 898 |
|
|
is above this slot. */
|
| 899 |
|
|
if (FRAME_GROWS_DOWNWARD)
|
| 900 |
|
|
p->size = frame_offset_old - frame_offset;
|
| 901 |
|
|
else
|
| 902 |
|
|
p->size = size;
|
| 903 |
|
|
|
| 904 |
|
|
/* Now define the fields used by combine_temp_slots. */
|
| 905 |
|
|
if (FRAME_GROWS_DOWNWARD)
|
| 906 |
|
|
{
|
| 907 |
|
|
p->base_offset = frame_offset;
|
| 908 |
|
|
p->full_size = frame_offset_old - frame_offset;
|
| 909 |
|
|
}
|
| 910 |
|
|
else
|
| 911 |
|
|
{
|
| 912 |
|
|
p->base_offset = frame_offset_old;
|
| 913 |
|
|
p->full_size = frame_offset - frame_offset_old;
|
| 914 |
|
|
}
|
| 915 |
|
|
|
| 916 |
|
|
selected = p;
|
| 917 |
|
|
}
|
| 918 |
|
|
|
| 919 |
|
|
p = selected;
|
| 920 |
|
|
p->in_use = 1;
|
| 921 |
|
|
p->addr_taken = 0;
|
| 922 |
|
|
p->type = type;
|
| 923 |
|
|
p->level = temp_slot_level;
|
| 924 |
|
|
p->keep = keep;
|
| 925 |
|
|
|
| 926 |
|
|
pp = temp_slots_at_level (p->level);
|
| 927 |
|
|
insert_slot_to_list (p, pp);
|
| 928 |
|
|
insert_temp_slot_address (XEXP (p->slot, 0), p);
|
| 929 |
|
|
|
| 930 |
|
|
/* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
|
| 931 |
|
|
slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
|
| 932 |
|
|
stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
|
| 933 |
|
|
|
| 934 |
|
|
/* If we know the alias set for the memory that will be used, use
|
| 935 |
|
|
it. If there's no TYPE, then we don't know anything about the
|
| 936 |
|
|
alias set for the memory. */
|
| 937 |
|
|
set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
|
| 938 |
|
|
set_mem_align (slot, align);
|
| 939 |
|
|
|
| 940 |
|
|
/* If a type is specified, set the relevant flags. */
|
| 941 |
|
|
if (type != 0)
|
| 942 |
|
|
MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
|
| 943 |
|
|
MEM_NOTRAP_P (slot) = 1;
|
| 944 |
|
|
|
| 945 |
|
|
return slot;
|
| 946 |
|
|
}
|
| 947 |
|
|
|
| 948 |
|
|
/* Allocate a temporary stack slot and record it for possible later
|
| 949 |
|
|
reuse. First three arguments are same as in preceding function. */
|
| 950 |
|
|
|
| 951 |
|
|
rtx
|
| 952 |
|
|
assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
|
| 953 |
|
|
{
|
| 954 |
|
|
return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
|
| 955 |
|
|
}
|
| 956 |
|
|
|
| 957 |
|
|
/* Assign a temporary.
|
| 958 |
|
|
If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
|
| 959 |
|
|
and so that should be used in error messages. In either case, we
|
| 960 |
|
|
allocate of the given type.
|
| 961 |
|
|
KEEP is as for assign_stack_temp.
|
| 962 |
|
|
MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
|
| 963 |
|
|
it is 0 if a register is OK.
|
| 964 |
|
|
DONT_PROMOTE is 1 if we should not promote values in register
|
| 965 |
|
|
to wider modes. */
|
| 966 |
|
|
|
| 967 |
|
|
rtx
|
| 968 |
|
|
assign_temp (tree type_or_decl, int keep, int memory_required,
|
| 969 |
|
|
int dont_promote ATTRIBUTE_UNUSED)
|
| 970 |
|
|
{
|
| 971 |
|
|
tree type, decl;
|
| 972 |
|
|
enum machine_mode mode;
|
| 973 |
|
|
#ifdef PROMOTE_MODE
|
| 974 |
|
|
int unsignedp;
|
| 975 |
|
|
#endif
|
| 976 |
|
|
|
| 977 |
|
|
if (DECL_P (type_or_decl))
|
| 978 |
|
|
decl = type_or_decl, type = TREE_TYPE (decl);
|
| 979 |
|
|
else
|
| 980 |
|
|
decl = NULL, type = type_or_decl;
|
| 981 |
|
|
|
| 982 |
|
|
mode = TYPE_MODE (type);
|
| 983 |
|
|
#ifdef PROMOTE_MODE
|
| 984 |
|
|
unsignedp = TYPE_UNSIGNED (type);
|
| 985 |
|
|
#endif
|
| 986 |
|
|
|
| 987 |
|
|
if (mode == BLKmode || memory_required)
|
| 988 |
|
|
{
|
| 989 |
|
|
HOST_WIDE_INT size = int_size_in_bytes (type);
|
| 990 |
|
|
rtx tmp;
|
| 991 |
|
|
|
| 992 |
|
|
/* Zero sized arrays are GNU C extension. Set size to 1 to avoid
|
| 993 |
|
|
problems with allocating the stack space. */
|
| 994 |
|
|
if (size == 0)
|
| 995 |
|
|
size = 1;
|
| 996 |
|
|
|
| 997 |
|
|
/* Unfortunately, we don't yet know how to allocate variable-sized
|
| 998 |
|
|
temporaries. However, sometimes we can find a fixed upper limit on
|
| 999 |
|
|
the size, so try that instead. */
|
| 1000 |
|
|
else if (size == -1)
|
| 1001 |
|
|
size = max_int_size_in_bytes (type);
|
| 1002 |
|
|
|
| 1003 |
|
|
/* The size of the temporary may be too large to fit into an integer. */
|
| 1004 |
|
|
/* ??? Not sure this should happen except for user silliness, so limit
|
| 1005 |
|
|
this to things that aren't compiler-generated temporaries. The
|
| 1006 |
|
|
rest of the time we'll die in assign_stack_temp_for_type. */
|
| 1007 |
|
|
if (decl && size == -1
|
| 1008 |
|
|
&& TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
|
| 1009 |
|
|
{
|
| 1010 |
|
|
error ("size of variable %q+D is too large", decl);
|
| 1011 |
|
|
size = 1;
|
| 1012 |
|
|
}
|
| 1013 |
|
|
|
| 1014 |
|
|
tmp = assign_stack_temp_for_type (mode, size, keep, type);
|
| 1015 |
|
|
return tmp;
|
| 1016 |
|
|
}
|
| 1017 |
|
|
|
| 1018 |
|
|
#ifdef PROMOTE_MODE
|
| 1019 |
|
|
if (! dont_promote)
|
| 1020 |
|
|
mode = promote_mode (type, mode, &unsignedp);
|
| 1021 |
|
|
#endif
|
| 1022 |
|
|
|
| 1023 |
|
|
return gen_reg_rtx (mode);
|
| 1024 |
|
|
}
|
| 1025 |
|
|
|
| 1026 |
|
|
/* Combine temporary stack slots which are adjacent on the stack.
|
| 1027 |
|
|
|
| 1028 |
|
|
This allows for better use of already allocated stack space. This is only
|
| 1029 |
|
|
done for BLKmode slots because we can be sure that we won't have alignment
|
| 1030 |
|
|
problems in this case. */
|
| 1031 |
|
|
|
| 1032 |
|
|
static void
|
| 1033 |
|
|
combine_temp_slots (void)
|
| 1034 |
|
|
{
|
| 1035 |
|
|
struct temp_slot *p, *q, *next, *next_q;
|
| 1036 |
|
|
int num_slots;
|
| 1037 |
|
|
|
| 1038 |
|
|
/* We can't combine slots, because the information about which slot
|
| 1039 |
|
|
is in which alias set will be lost. */
|
| 1040 |
|
|
if (flag_strict_aliasing)
|
| 1041 |
|
|
return;
|
| 1042 |
|
|
|
| 1043 |
|
|
/* If there are a lot of temp slots, don't do anything unless
|
| 1044 |
|
|
high levels of optimization. */
|
| 1045 |
|
|
if (! flag_expensive_optimizations)
|
| 1046 |
|
|
for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
|
| 1047 |
|
|
if (num_slots > 100 || (num_slots > 10 && optimize == 0))
|
| 1048 |
|
|
return;
|
| 1049 |
|
|
|
| 1050 |
|
|
for (p = avail_temp_slots; p; p = next)
|
| 1051 |
|
|
{
|
| 1052 |
|
|
int delete_p = 0;
|
| 1053 |
|
|
|
| 1054 |
|
|
next = p->next;
|
| 1055 |
|
|
|
| 1056 |
|
|
if (GET_MODE (p->slot) != BLKmode)
|
| 1057 |
|
|
continue;
|
| 1058 |
|
|
|
| 1059 |
|
|
for (q = p->next; q; q = next_q)
|
| 1060 |
|
|
{
|
| 1061 |
|
|
int delete_q = 0;
|
| 1062 |
|
|
|
| 1063 |
|
|
next_q = q->next;
|
| 1064 |
|
|
|
| 1065 |
|
|
if (GET_MODE (q->slot) != BLKmode)
|
| 1066 |
|
|
continue;
|
| 1067 |
|
|
|
| 1068 |
|
|
if (p->base_offset + p->full_size == q->base_offset)
|
| 1069 |
|
|
{
|
| 1070 |
|
|
/* Q comes after P; combine Q into P. */
|
| 1071 |
|
|
p->size += q->size;
|
| 1072 |
|
|
p->full_size += q->full_size;
|
| 1073 |
|
|
delete_q = 1;
|
| 1074 |
|
|
}
|
| 1075 |
|
|
else if (q->base_offset + q->full_size == p->base_offset)
|
| 1076 |
|
|
{
|
| 1077 |
|
|
/* P comes after Q; combine P into Q. */
|
| 1078 |
|
|
q->size += p->size;
|
| 1079 |
|
|
q->full_size += p->full_size;
|
| 1080 |
|
|
delete_p = 1;
|
| 1081 |
|
|
break;
|
| 1082 |
|
|
}
|
| 1083 |
|
|
if (delete_q)
|
| 1084 |
|
|
cut_slot_from_list (q, &avail_temp_slots);
|
| 1085 |
|
|
}
|
| 1086 |
|
|
|
| 1087 |
|
|
/* Either delete P or advance past it. */
|
| 1088 |
|
|
if (delete_p)
|
| 1089 |
|
|
cut_slot_from_list (p, &avail_temp_slots);
|
| 1090 |
|
|
}
|
| 1091 |
|
|
}
|
| 1092 |
|
|
|
| 1093 |
|
|
/* Indicate that NEW_RTX is an alternate way of referring to the temp
|
| 1094 |
|
|
slot that previously was known by OLD_RTX. */
|
| 1095 |
|
|
|
| 1096 |
|
|
void
|
| 1097 |
|
|
update_temp_slot_address (rtx old_rtx, rtx new_rtx)
|
| 1098 |
|
|
{
|
| 1099 |
|
|
struct temp_slot *p;
|
| 1100 |
|
|
|
| 1101 |
|
|
if (rtx_equal_p (old_rtx, new_rtx))
|
| 1102 |
|
|
return;
|
| 1103 |
|
|
|
| 1104 |
|
|
p = find_temp_slot_from_address (old_rtx);
|
| 1105 |
|
|
|
| 1106 |
|
|
/* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
|
| 1107 |
|
|
NEW_RTX is a register, see if one operand of the PLUS is a
|
| 1108 |
|
|
temporary location. If so, NEW_RTX points into it. Otherwise,
|
| 1109 |
|
|
if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
|
| 1110 |
|
|
in common between them. If so, try a recursive call on those
|
| 1111 |
|
|
values. */
|
| 1112 |
|
|
if (p == 0)
|
| 1113 |
|
|
{
|
| 1114 |
|
|
if (GET_CODE (old_rtx) != PLUS)
|
| 1115 |
|
|
return;
|
| 1116 |
|
|
|
| 1117 |
|
|
if (REG_P (new_rtx))
|
| 1118 |
|
|
{
|
| 1119 |
|
|
update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
|
| 1120 |
|
|
update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
|
| 1121 |
|
|
return;
|
| 1122 |
|
|
}
|
| 1123 |
|
|
else if (GET_CODE (new_rtx) != PLUS)
|
| 1124 |
|
|
return;
|
| 1125 |
|
|
|
| 1126 |
|
|
if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
|
| 1127 |
|
|
update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
|
| 1128 |
|
|
else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
|
| 1129 |
|
|
update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
|
| 1130 |
|
|
else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
|
| 1131 |
|
|
update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
|
| 1132 |
|
|
else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
|
| 1133 |
|
|
update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
|
| 1134 |
|
|
|
| 1135 |
|
|
return;
|
| 1136 |
|
|
}
|
| 1137 |
|
|
|
| 1138 |
|
|
/* Otherwise add an alias for the temp's address. */
|
| 1139 |
|
|
insert_temp_slot_address (new_rtx, p);
|
| 1140 |
|
|
}
|
| 1141 |
|
|
|
| 1142 |
|
|
/* If X could be a reference to a temporary slot, mark the fact that its
|
| 1143 |
|
|
address was taken. */
|
| 1144 |
|
|
|
| 1145 |
|
|
void
|
| 1146 |
|
|
mark_temp_addr_taken (rtx x)
|
| 1147 |
|
|
{
|
| 1148 |
|
|
struct temp_slot *p;
|
| 1149 |
|
|
|
| 1150 |
|
|
if (x == 0)
|
| 1151 |
|
|
return;
|
| 1152 |
|
|
|
| 1153 |
|
|
/* If X is not in memory or is at a constant address, it cannot be in
|
| 1154 |
|
|
a temporary slot. */
|
| 1155 |
|
|
if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
|
| 1156 |
|
|
return;
|
| 1157 |
|
|
|
| 1158 |
|
|
p = find_temp_slot_from_address (XEXP (x, 0));
|
| 1159 |
|
|
if (p != 0)
|
| 1160 |
|
|
p->addr_taken = 1;
|
| 1161 |
|
|
}
|
| 1162 |
|
|
|
| 1163 |
|
|
/* If X could be a reference to a temporary slot, mark that slot as
|
| 1164 |
|
|
belonging to the to one level higher than the current level. If X
|
| 1165 |
|
|
matched one of our slots, just mark that one. Otherwise, we can't
|
| 1166 |
|
|
easily predict which it is, so upgrade all of them. Kept slots
|
| 1167 |
|
|
need not be touched.
|
| 1168 |
|
|
|
| 1169 |
|
|
This is called when an ({...}) construct occurs and a statement
|
| 1170 |
|
|
returns a value in memory. */
|
| 1171 |
|
|
|
| 1172 |
|
|
void
|
| 1173 |
|
|
preserve_temp_slots (rtx x)
|
| 1174 |
|
|
{
|
| 1175 |
|
|
struct temp_slot *p = 0, *next;
|
| 1176 |
|
|
|
| 1177 |
|
|
/* If there is no result, we still might have some objects whose address
|
| 1178 |
|
|
were taken, so we need to make sure they stay around. */
|
| 1179 |
|
|
if (x == 0)
|
| 1180 |
|
|
{
|
| 1181 |
|
|
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
|
| 1182 |
|
|
{
|
| 1183 |
|
|
next = p->next;
|
| 1184 |
|
|
|
| 1185 |
|
|
if (p->addr_taken)
|
| 1186 |
|
|
move_slot_to_level (p, temp_slot_level - 1);
|
| 1187 |
|
|
}
|
| 1188 |
|
|
|
| 1189 |
|
|
return;
|
| 1190 |
|
|
}
|
| 1191 |
|
|
|
| 1192 |
|
|
/* If X is a register that is being used as a pointer, see if we have
|
| 1193 |
|
|
a temporary slot we know it points to. To be consistent with
|
| 1194 |
|
|
the code below, we really should preserve all non-kept slots
|
| 1195 |
|
|
if we can't find a match, but that seems to be much too costly. */
|
| 1196 |
|
|
if (REG_P (x) && REG_POINTER (x))
|
| 1197 |
|
|
p = find_temp_slot_from_address (x);
|
| 1198 |
|
|
|
| 1199 |
|
|
/* If X is not in memory or is at a constant address, it cannot be in
|
| 1200 |
|
|
a temporary slot, but it can contain something whose address was
|
| 1201 |
|
|
taken. */
|
| 1202 |
|
|
if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
|
| 1203 |
|
|
{
|
| 1204 |
|
|
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
|
| 1205 |
|
|
{
|
| 1206 |
|
|
next = p->next;
|
| 1207 |
|
|
|
| 1208 |
|
|
if (p->addr_taken)
|
| 1209 |
|
|
move_slot_to_level (p, temp_slot_level - 1);
|
| 1210 |
|
|
}
|
| 1211 |
|
|
|
| 1212 |
|
|
return;
|
| 1213 |
|
|
}
|
| 1214 |
|
|
|
| 1215 |
|
|
/* First see if we can find a match. */
|
| 1216 |
|
|
if (p == 0)
|
| 1217 |
|
|
p = find_temp_slot_from_address (XEXP (x, 0));
|
| 1218 |
|
|
|
| 1219 |
|
|
if (p != 0)
|
| 1220 |
|
|
{
|
| 1221 |
|
|
/* Move everything at our level whose address was taken to our new
|
| 1222 |
|
|
level in case we used its address. */
|
| 1223 |
|
|
struct temp_slot *q;
|
| 1224 |
|
|
|
| 1225 |
|
|
if (p->level == temp_slot_level)
|
| 1226 |
|
|
{
|
| 1227 |
|
|
for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
|
| 1228 |
|
|
{
|
| 1229 |
|
|
next = q->next;
|
| 1230 |
|
|
|
| 1231 |
|
|
if (p != q && q->addr_taken)
|
| 1232 |
|
|
move_slot_to_level (q, temp_slot_level - 1);
|
| 1233 |
|
|
}
|
| 1234 |
|
|
|
| 1235 |
|
|
move_slot_to_level (p, temp_slot_level - 1);
|
| 1236 |
|
|
p->addr_taken = 0;
|
| 1237 |
|
|
}
|
| 1238 |
|
|
return;
|
| 1239 |
|
|
}
|
| 1240 |
|
|
|
| 1241 |
|
|
/* Otherwise, preserve all non-kept slots at this level. */
|
| 1242 |
|
|
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
|
| 1243 |
|
|
{
|
| 1244 |
|
|
next = p->next;
|
| 1245 |
|
|
|
| 1246 |
|
|
if (!p->keep)
|
| 1247 |
|
|
move_slot_to_level (p, temp_slot_level - 1);
|
| 1248 |
|
|
}
|
| 1249 |
|
|
}
|
| 1250 |
|
|
|
| 1251 |
|
|
/* Free all temporaries used so far. This is normally called at the
|
| 1252 |
|
|
end of generating code for a statement. */
|
| 1253 |
|
|
|
| 1254 |
|
|
void
|
| 1255 |
|
|
free_temp_slots (void)
|
| 1256 |
|
|
{
|
| 1257 |
|
|
struct temp_slot *p, *next;
|
| 1258 |
|
|
bool some_available = false;
|
| 1259 |
|
|
|
| 1260 |
|
|
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
|
| 1261 |
|
|
{
|
| 1262 |
|
|
next = p->next;
|
| 1263 |
|
|
|
| 1264 |
|
|
if (!p->keep)
|
| 1265 |
|
|
{
|
| 1266 |
|
|
make_slot_available (p);
|
| 1267 |
|
|
some_available = true;
|
| 1268 |
|
|
}
|
| 1269 |
|
|
}
|
| 1270 |
|
|
|
| 1271 |
|
|
if (some_available)
|
| 1272 |
|
|
{
|
| 1273 |
|
|
remove_unused_temp_slot_addresses ();
|
| 1274 |
|
|
combine_temp_slots ();
|
| 1275 |
|
|
}
|
| 1276 |
|
|
}
|
| 1277 |
|
|
|
| 1278 |
|
|
/* Push deeper into the nesting level for stack temporaries. */
|
| 1279 |
|
|
|
| 1280 |
|
|
void
|
| 1281 |
|
|
push_temp_slots (void)
|
| 1282 |
|
|
{
|
| 1283 |
|
|
temp_slot_level++;
|
| 1284 |
|
|
}
|
| 1285 |
|
|
|
| 1286 |
|
|
/* Pop a temporary nesting level. All slots in use in the current level
|
| 1287 |
|
|
are freed. */
|
| 1288 |
|
|
|
| 1289 |
|
|
void
|
| 1290 |
|
|
pop_temp_slots (void)
|
| 1291 |
|
|
{
|
| 1292 |
|
|
struct temp_slot *p, *next;
|
| 1293 |
|
|
bool some_available = false;
|
| 1294 |
|
|
|
| 1295 |
|
|
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
|
| 1296 |
|
|
{
|
| 1297 |
|
|
next = p->next;
|
| 1298 |
|
|
make_slot_available (p);
|
| 1299 |
|
|
some_available = true;
|
| 1300 |
|
|
}
|
| 1301 |
|
|
|
| 1302 |
|
|
if (some_available)
|
| 1303 |
|
|
{
|
| 1304 |
|
|
remove_unused_temp_slot_addresses ();
|
| 1305 |
|
|
combine_temp_slots ();
|
| 1306 |
|
|
}
|
| 1307 |
|
|
|
| 1308 |
|
|
temp_slot_level--;
|
| 1309 |
|
|
}
|
| 1310 |
|
|
|
| 1311 |
|
|
/* Initialize temporary slots. */
|
| 1312 |
|
|
|
| 1313 |
|
|
void
|
| 1314 |
|
|
init_temp_slots (void)
|
| 1315 |
|
|
{
|
| 1316 |
|
|
/* We have not allocated any temporaries yet. */
|
| 1317 |
|
|
avail_temp_slots = 0;
|
| 1318 |
|
|
used_temp_slots = 0;
|
| 1319 |
|
|
temp_slot_level = 0;
|
| 1320 |
|
|
|
| 1321 |
|
|
/* Set up the table to map addresses to temp slots. */
|
| 1322 |
|
|
if (! temp_slot_address_table)
|
| 1323 |
|
|
temp_slot_address_table = htab_create_ggc (32,
|
| 1324 |
|
|
temp_slot_address_hash,
|
| 1325 |
|
|
temp_slot_address_eq,
|
| 1326 |
|
|
NULL);
|
| 1327 |
|
|
else
|
| 1328 |
|
|
htab_empty (temp_slot_address_table);
|
| 1329 |
|
|
}
|
| 1330 |
|
|
|
| 1331 |
|
|
/* These routines are responsible for converting virtual register references
|
| 1332 |
|
|
to the actual hard register references once RTL generation is complete.
|
| 1333 |
|
|
|
| 1334 |
|
|
The following four variables are used for communication between the
|
| 1335 |
|
|
routines. They contain the offsets of the virtual registers from their
|
| 1336 |
|
|
respective hard registers. */
|
| 1337 |
|
|
|
| 1338 |
|
|
static int in_arg_offset;
|
| 1339 |
|
|
static int var_offset;
|
| 1340 |
|
|
static int dynamic_offset;
|
| 1341 |
|
|
static int out_arg_offset;
|
| 1342 |
|
|
static int cfa_offset;
|
| 1343 |
|
|
|
| 1344 |
|
|
/* In most machines, the stack pointer register is equivalent to the bottom
|
| 1345 |
|
|
of the stack. */
|
| 1346 |
|
|
|
| 1347 |
|
|
#ifndef STACK_POINTER_OFFSET
|
| 1348 |
|
|
#define STACK_POINTER_OFFSET 0
|
| 1349 |
|
|
#endif
|
| 1350 |
|
|
|
| 1351 |
|
|
/* If not defined, pick an appropriate default for the offset of dynamically
|
| 1352 |
|
|
allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
|
| 1353 |
|
|
REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
|
| 1354 |
|
|
|
| 1355 |
|
|
#ifndef STACK_DYNAMIC_OFFSET
|
| 1356 |
|
|
|
| 1357 |
|
|
/* The bottom of the stack points to the actual arguments. If
|
| 1358 |
|
|
REG_PARM_STACK_SPACE is defined, this includes the space for the register
|
| 1359 |
|
|
parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
|
| 1360 |
|
|
stack space for register parameters is not pushed by the caller, but
|
| 1361 |
|
|
rather part of the fixed stack areas and hence not included in
|
| 1362 |
|
|
`crtl->outgoing_args_size'. Nevertheless, we must allow
|
| 1363 |
|
|
for it when allocating stack dynamic objects. */
|
| 1364 |
|
|
|
| 1365 |
|
|
#if defined(REG_PARM_STACK_SPACE)
|
| 1366 |
|
|
#define STACK_DYNAMIC_OFFSET(FNDECL) \
|
| 1367 |
|
|
((ACCUMULATE_OUTGOING_ARGS \
|
| 1368 |
|
|
? (crtl->outgoing_args_size \
|
| 1369 |
|
|
+ (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
|
| 1370 |
|
|
: REG_PARM_STACK_SPACE (FNDECL))) \
|
| 1371 |
|
|
: 0) + (STACK_POINTER_OFFSET))
|
| 1372 |
|
|
#else
|
| 1373 |
|
|
#define STACK_DYNAMIC_OFFSET(FNDECL) \
|
| 1374 |
|
|
((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
|
| 1375 |
|
|
+ (STACK_POINTER_OFFSET))
|
| 1376 |
|
|
#endif
|
| 1377 |
|
|
#endif
|
| 1378 |
|
|
|
| 1379 |
|
|
|
| 1380 |
|
|
/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
|
| 1381 |
|
|
is a virtual register, return the equivalent hard register and set the
|
| 1382 |
|
|
offset indirectly through the pointer. Otherwise, return 0. */
|
| 1383 |
|
|
|
| 1384 |
|
|
static rtx
|
| 1385 |
|
|
instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
|
| 1386 |
|
|
{
|
| 1387 |
|
|
rtx new_rtx;
|
| 1388 |
|
|
HOST_WIDE_INT offset;
|
| 1389 |
|
|
|
| 1390 |
|
|
if (x == virtual_incoming_args_rtx)
|
| 1391 |
|
|
{
|
| 1392 |
|
|
if (stack_realign_drap)
|
| 1393 |
|
|
{
|
| 1394 |
|
|
/* Replace virtual_incoming_args_rtx with internal arg
|
| 1395 |
|
|
pointer if DRAP is used to realign stack. */
|
| 1396 |
|
|
new_rtx = crtl->args.internal_arg_pointer;
|
| 1397 |
|
|
offset = 0;
|
| 1398 |
|
|
}
|
| 1399 |
|
|
else
|
| 1400 |
|
|
new_rtx = arg_pointer_rtx, offset = in_arg_offset;
|
| 1401 |
|
|
}
|
| 1402 |
|
|
else if (x == virtual_stack_vars_rtx)
|
| 1403 |
|
|
new_rtx = frame_pointer_rtx, offset = var_offset;
|
| 1404 |
|
|
else if (x == virtual_stack_dynamic_rtx)
|
| 1405 |
|
|
new_rtx = stack_pointer_rtx, offset = dynamic_offset;
|
| 1406 |
|
|
else if (x == virtual_outgoing_args_rtx)
|
| 1407 |
|
|
new_rtx = stack_pointer_rtx, offset = out_arg_offset;
|
| 1408 |
|
|
else if (x == virtual_cfa_rtx)
|
| 1409 |
|
|
{
|
| 1410 |
|
|
#ifdef FRAME_POINTER_CFA_OFFSET
|
| 1411 |
|
|
new_rtx = frame_pointer_rtx;
|
| 1412 |
|
|
#else
|
| 1413 |
|
|
new_rtx = arg_pointer_rtx;
|
| 1414 |
|
|
#endif
|
| 1415 |
|
|
offset = cfa_offset;
|
| 1416 |
|
|
}
|
| 1417 |
|
|
else if (x == virtual_preferred_stack_boundary_rtx)
|
| 1418 |
|
|
{
|
| 1419 |
|
|
new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
|
| 1420 |
|
|
offset = 0;
|
| 1421 |
|
|
}
|
| 1422 |
|
|
else
|
| 1423 |
|
|
return NULL_RTX;
|
| 1424 |
|
|
|
| 1425 |
|
|
*poffset = offset;
|
| 1426 |
|
|
return new_rtx;
|
| 1427 |
|
|
}
|
| 1428 |
|
|
|
| 1429 |
|
|
/* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
|
| 1430 |
|
|
Instantiate any virtual registers present inside of *LOC. The expression
|
| 1431 |
|
|
is simplified, as much as possible, but is not to be considered "valid"
|
| 1432 |
|
|
in any sense implied by the target. If any change is made, set CHANGED
|
| 1433 |
|
|
to true. */
|
| 1434 |
|
|
|
| 1435 |
|
|
static int
|
| 1436 |
|
|
instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
|
| 1437 |
|
|
{
|
| 1438 |
|
|
HOST_WIDE_INT offset;
|
| 1439 |
|
|
bool *changed = (bool *) data;
|
| 1440 |
|
|
rtx x, new_rtx;
|
| 1441 |
|
|
|
| 1442 |
|
|
x = *loc;
|
| 1443 |
|
|
if (x == 0)
|
| 1444 |
|
|
return 0;
|
| 1445 |
|
|
|
| 1446 |
|
|
switch (GET_CODE (x))
|
| 1447 |
|
|
{
|
| 1448 |
|
|
case REG:
|
| 1449 |
|
|
new_rtx = instantiate_new_reg (x, &offset);
|
| 1450 |
|
|
if (new_rtx)
|
| 1451 |
|
|
{
|
| 1452 |
|
|
*loc = plus_constant (new_rtx, offset);
|
| 1453 |
|
|
if (changed)
|
| 1454 |
|
|
*changed = true;
|
| 1455 |
|
|
}
|
| 1456 |
|
|
return -1;
|
| 1457 |
|
|
|
| 1458 |
|
|
case PLUS:
|
| 1459 |
|
|
new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
|
| 1460 |
|
|
if (new_rtx)
|
| 1461 |
|
|
{
|
| 1462 |
|
|
new_rtx = plus_constant (new_rtx, offset);
|
| 1463 |
|
|
*loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
|
| 1464 |
|
|
if (changed)
|
| 1465 |
|
|
*changed = true;
|
| 1466 |
|
|
return -1;
|
| 1467 |
|
|
}
|
| 1468 |
|
|
|
| 1469 |
|
|
/* FIXME -- from old code */
|
| 1470 |
|
|
/* If we have (plus (subreg (virtual-reg)) (const_int)), we know
|
| 1471 |
|
|
we can commute the PLUS and SUBREG because pointers into the
|
| 1472 |
|
|
frame are well-behaved. */
|
| 1473 |
|
|
break;
|
| 1474 |
|
|
|
| 1475 |
|
|
default:
|
| 1476 |
|
|
break;
|
| 1477 |
|
|
}
|
| 1478 |
|
|
|
| 1479 |
|
|
return 0;
|
| 1480 |
|
|
}
|
| 1481 |
|
|
|
| 1482 |
|
|
/* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
|
| 1483 |
|
|
matches the predicate for insn CODE operand OPERAND. */
|
| 1484 |
|
|
|
| 1485 |
|
|
static int
|
| 1486 |
|
|
safe_insn_predicate (int code, int operand, rtx x)
|
| 1487 |
|
|
{
|
| 1488 |
|
|
return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
|
| 1489 |
|
|
}
|
| 1490 |
|
|
|
| 1491 |
|
|
/* A subroutine of instantiate_virtual_regs. Instantiate any virtual
|
| 1492 |
|
|
registers present inside of insn. The result will be a valid insn. */
|
| 1493 |
|
|
|
| 1494 |
|
|
static void
|
| 1495 |
|
|
instantiate_virtual_regs_in_insn (rtx insn)
|
| 1496 |
|
|
{
|
| 1497 |
|
|
HOST_WIDE_INT offset;
|
| 1498 |
|
|
int insn_code, i;
|
| 1499 |
|
|
bool any_change = false;
|
| 1500 |
|
|
rtx set, new_rtx, x, seq;
|
| 1501 |
|
|
|
| 1502 |
|
|
/* There are some special cases to be handled first. */
|
| 1503 |
|
|
set = single_set (insn);
|
| 1504 |
|
|
if (set)
|
| 1505 |
|
|
{
|
| 1506 |
|
|
/* We're allowed to assign to a virtual register. This is interpreted
|
| 1507 |
|
|
to mean that the underlying register gets assigned the inverse
|
| 1508 |
|
|
transformation. This is used, for example, in the handling of
|
| 1509 |
|
|
non-local gotos. */
|
| 1510 |
|
|
new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
|
| 1511 |
|
|
if (new_rtx)
|
| 1512 |
|
|
{
|
| 1513 |
|
|
start_sequence ();
|
| 1514 |
|
|
|
| 1515 |
|
|
for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
|
| 1516 |
|
|
x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
|
| 1517 |
|
|
GEN_INT (-offset));
|
| 1518 |
|
|
x = force_operand (x, new_rtx);
|
| 1519 |
|
|
if (x != new_rtx)
|
| 1520 |
|
|
emit_move_insn (new_rtx, x);
|
| 1521 |
|
|
|
| 1522 |
|
|
seq = get_insns ();
|
| 1523 |
|
|
end_sequence ();
|
| 1524 |
|
|
|
| 1525 |
|
|
emit_insn_before (seq, insn);
|
| 1526 |
|
|
delete_insn (insn);
|
| 1527 |
|
|
return;
|
| 1528 |
|
|
}
|
| 1529 |
|
|
|
| 1530 |
|
|
/* Handle a straight copy from a virtual register by generating a
|
| 1531 |
|
|
new add insn. The difference between this and falling through
|
| 1532 |
|
|
to the generic case is avoiding a new pseudo and eliminating a
|
| 1533 |
|
|
move insn in the initial rtl stream. */
|
| 1534 |
|
|
new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
|
| 1535 |
|
|
if (new_rtx && offset != 0
|
| 1536 |
|
|
&& REG_P (SET_DEST (set))
|
| 1537 |
|
|
&& REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
|
| 1538 |
|
|
{
|
| 1539 |
|
|
start_sequence ();
|
| 1540 |
|
|
|
| 1541 |
|
|
x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
|
| 1542 |
|
|
new_rtx, GEN_INT (offset), SET_DEST (set),
|
| 1543 |
|
|
1, OPTAB_LIB_WIDEN);
|
| 1544 |
|
|
if (x != SET_DEST (set))
|
| 1545 |
|
|
emit_move_insn (SET_DEST (set), x);
|
| 1546 |
|
|
|
| 1547 |
|
|
seq = get_insns ();
|
| 1548 |
|
|
end_sequence ();
|
| 1549 |
|
|
|
| 1550 |
|
|
emit_insn_before (seq, insn);
|
| 1551 |
|
|
delete_insn (insn);
|
| 1552 |
|
|
return;
|
| 1553 |
|
|
}
|
| 1554 |
|
|
|
| 1555 |
|
|
extract_insn (insn);
|
| 1556 |
|
|
insn_code = INSN_CODE (insn);
|
| 1557 |
|
|
|
| 1558 |
|
|
/* Handle a plus involving a virtual register by determining if the
|
| 1559 |
|
|
operands remain valid if they're modified in place. */
|
| 1560 |
|
|
if (GET_CODE (SET_SRC (set)) == PLUS
|
| 1561 |
|
|
&& recog_data.n_operands >= 3
|
| 1562 |
|
|
&& recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
|
| 1563 |
|
|
&& recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
|
| 1564 |
|
|
&& CONST_INT_P (recog_data.operand[2])
|
| 1565 |
|
|
&& (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
|
| 1566 |
|
|
{
|
| 1567 |
|
|
offset += INTVAL (recog_data.operand[2]);
|
| 1568 |
|
|
|
| 1569 |
|
|
/* If the sum is zero, then replace with a plain move. */
|
| 1570 |
|
|
if (offset == 0
|
| 1571 |
|
|
&& REG_P (SET_DEST (set))
|
| 1572 |
|
|
&& REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
|
| 1573 |
|
|
{
|
| 1574 |
|
|
start_sequence ();
|
| 1575 |
|
|
emit_move_insn (SET_DEST (set), new_rtx);
|
| 1576 |
|
|
seq = get_insns ();
|
| 1577 |
|
|
end_sequence ();
|
| 1578 |
|
|
|
| 1579 |
|
|
emit_insn_before (seq, insn);
|
| 1580 |
|
|
delete_insn (insn);
|
| 1581 |
|
|
return;
|
| 1582 |
|
|
}
|
| 1583 |
|
|
|
| 1584 |
|
|
x = gen_int_mode (offset, recog_data.operand_mode[2]);
|
| 1585 |
|
|
|
| 1586 |
|
|
/* Using validate_change and apply_change_group here leaves
|
| 1587 |
|
|
recog_data in an invalid state. Since we know exactly what
|
| 1588 |
|
|
we want to check, do those two by hand. */
|
| 1589 |
|
|
if (safe_insn_predicate (insn_code, 1, new_rtx)
|
| 1590 |
|
|
&& safe_insn_predicate (insn_code, 2, x))
|
| 1591 |
|
|
{
|
| 1592 |
|
|
*recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
|
| 1593 |
|
|
*recog_data.operand_loc[2] = recog_data.operand[2] = x;
|
| 1594 |
|
|
any_change = true;
|
| 1595 |
|
|
|
| 1596 |
|
|
/* Fall through into the regular operand fixup loop in
|
| 1597 |
|
|
order to take care of operands other than 1 and 2. */
|
| 1598 |
|
|
}
|
| 1599 |
|
|
}
|
| 1600 |
|
|
}
|
| 1601 |
|
|
else
|
| 1602 |
|
|
{
|
| 1603 |
|
|
extract_insn (insn);
|
| 1604 |
|
|
insn_code = INSN_CODE (insn);
|
| 1605 |
|
|
}
|
| 1606 |
|
|
|
| 1607 |
|
|
/* In the general case, we expect virtual registers to appear only in
|
| 1608 |
|
|
operands, and then only as either bare registers or inside memories. */
|
| 1609 |
|
|
for (i = 0; i < recog_data.n_operands; ++i)
|
| 1610 |
|
|
{
|
| 1611 |
|
|
x = recog_data.operand[i];
|
| 1612 |
|
|
switch (GET_CODE (x))
|
| 1613 |
|
|
{
|
| 1614 |
|
|
case MEM:
|
| 1615 |
|
|
{
|
| 1616 |
|
|
rtx addr = XEXP (x, 0);
|
| 1617 |
|
|
bool changed = false;
|
| 1618 |
|
|
|
| 1619 |
|
|
for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
|
| 1620 |
|
|
if (!changed)
|
| 1621 |
|
|
continue;
|
| 1622 |
|
|
|
| 1623 |
|
|
start_sequence ();
|
| 1624 |
|
|
x = replace_equiv_address (x, addr);
|
| 1625 |
|
|
/* It may happen that the address with the virtual reg
|
| 1626 |
|
|
was valid (e.g. based on the virtual stack reg, which might
|
| 1627 |
|
|
be acceptable to the predicates with all offsets), whereas
|
| 1628 |
|
|
the address now isn't anymore, for instance when the address
|
| 1629 |
|
|
is still offsetted, but the base reg isn't virtual-stack-reg
|
| 1630 |
|
|
anymore. Below we would do a force_reg on the whole operand,
|
| 1631 |
|
|
but this insn might actually only accept memory. Hence,
|
| 1632 |
|
|
before doing that last resort, try to reload the address into
|
| 1633 |
|
|
a register, so this operand stays a MEM. */
|
| 1634 |
|
|
if (!safe_insn_predicate (insn_code, i, x))
|
| 1635 |
|
|
{
|
| 1636 |
|
|
addr = force_reg (GET_MODE (addr), addr);
|
| 1637 |
|
|
x = replace_equiv_address (x, addr);
|
| 1638 |
|
|
}
|
| 1639 |
|
|
seq = get_insns ();
|
| 1640 |
|
|
end_sequence ();
|
| 1641 |
|
|
if (seq)
|
| 1642 |
|
|
emit_insn_before (seq, insn);
|
| 1643 |
|
|
}
|
| 1644 |
|
|
break;
|
| 1645 |
|
|
|
| 1646 |
|
|
case REG:
|
| 1647 |
|
|
new_rtx = instantiate_new_reg (x, &offset);
|
| 1648 |
|
|
if (new_rtx == NULL)
|
| 1649 |
|
|
continue;
|
| 1650 |
|
|
if (offset == 0)
|
| 1651 |
|
|
x = new_rtx;
|
| 1652 |
|
|
else
|
| 1653 |
|
|
{
|
| 1654 |
|
|
start_sequence ();
|
| 1655 |
|
|
|
| 1656 |
|
|
/* Careful, special mode predicates may have stuff in
|
| 1657 |
|
|
insn_data[insn_code].operand[i].mode that isn't useful
|
| 1658 |
|
|
to us for computing a new value. */
|
| 1659 |
|
|
/* ??? Recognize address_operand and/or "p" constraints
|
| 1660 |
|
|
to see if (plus new offset) is a valid before we put
|
| 1661 |
|
|
this through expand_simple_binop. */
|
| 1662 |
|
|
x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
|
| 1663 |
|
|
GEN_INT (offset), NULL_RTX,
|
| 1664 |
|
|
1, OPTAB_LIB_WIDEN);
|
| 1665 |
|
|
seq = get_insns ();
|
| 1666 |
|
|
end_sequence ();
|
| 1667 |
|
|
emit_insn_before (seq, insn);
|
| 1668 |
|
|
}
|
| 1669 |
|
|
break;
|
| 1670 |
|
|
|
| 1671 |
|
|
case SUBREG:
|
| 1672 |
|
|
new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
|
| 1673 |
|
|
if (new_rtx == NULL)
|
| 1674 |
|
|
continue;
|
| 1675 |
|
|
if (offset != 0)
|
| 1676 |
|
|
{
|
| 1677 |
|
|
start_sequence ();
|
| 1678 |
|
|
new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
|
| 1679 |
|
|
GEN_INT (offset), NULL_RTX,
|
| 1680 |
|
|
1, OPTAB_LIB_WIDEN);
|
| 1681 |
|
|
seq = get_insns ();
|
| 1682 |
|
|
end_sequence ();
|
| 1683 |
|
|
emit_insn_before (seq, insn);
|
| 1684 |
|
|
}
|
| 1685 |
|
|
x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
|
| 1686 |
|
|
GET_MODE (new_rtx), SUBREG_BYTE (x));
|
| 1687 |
|
|
gcc_assert (x);
|
| 1688 |
|
|
break;
|
| 1689 |
|
|
|
| 1690 |
|
|
default:
|
| 1691 |
|
|
continue;
|
| 1692 |
|
|
}
|
| 1693 |
|
|
|
| 1694 |
|
|
/* At this point, X contains the new value for the operand.
|
| 1695 |
|
|
Validate the new value vs the insn predicate. Note that
|
| 1696 |
|
|
asm insns will have insn_code -1 here. */
|
| 1697 |
|
|
if (!safe_insn_predicate (insn_code, i, x))
|
| 1698 |
|
|
{
|
| 1699 |
|
|
start_sequence ();
|
| 1700 |
|
|
if (REG_P (x))
|
| 1701 |
|
|
{
|
| 1702 |
|
|
gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
|
| 1703 |
|
|
x = copy_to_reg (x);
|
| 1704 |
|
|
}
|
| 1705 |
|
|
else
|
| 1706 |
|
|
x = force_reg (insn_data[insn_code].operand[i].mode, x);
|
| 1707 |
|
|
seq = get_insns ();
|
| 1708 |
|
|
end_sequence ();
|
| 1709 |
|
|
if (seq)
|
| 1710 |
|
|
emit_insn_before (seq, insn);
|
| 1711 |
|
|
}
|
| 1712 |
|
|
|
| 1713 |
|
|
*recog_data.operand_loc[i] = recog_data.operand[i] = x;
|
| 1714 |
|
|
any_change = true;
|
| 1715 |
|
|
}
|
| 1716 |
|
|
|
| 1717 |
|
|
if (any_change)
|
| 1718 |
|
|
{
|
| 1719 |
|
|
/* Propagate operand changes into the duplicates. */
|
| 1720 |
|
|
for (i = 0; i < recog_data.n_dups; ++i)
|
| 1721 |
|
|
*recog_data.dup_loc[i]
|
| 1722 |
|
|
= copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
|
| 1723 |
|
|
|
| 1724 |
|
|
/* Force re-recognition of the instruction for validation. */
|
| 1725 |
|
|
INSN_CODE (insn) = -1;
|
| 1726 |
|
|
}
|
| 1727 |
|
|
|
| 1728 |
|
|
if (asm_noperands (PATTERN (insn)) >= 0)
|
| 1729 |
|
|
{
|
| 1730 |
|
|
if (!check_asm_operands (PATTERN (insn)))
|
| 1731 |
|
|
{
|
| 1732 |
|
|
error_for_asm (insn, "impossible constraint in %<asm%>");
|
| 1733 |
|
|
delete_insn_and_edges (insn);
|
| 1734 |
|
|
}
|
| 1735 |
|
|
}
|
| 1736 |
|
|
else
|
| 1737 |
|
|
{
|
| 1738 |
|
|
if (recog_memoized (insn) < 0)
|
| 1739 |
|
|
fatal_insn_not_found (insn);
|
| 1740 |
|
|
}
|
| 1741 |
|
|
}
|
| 1742 |
|
|
|
| 1743 |
|
|
/* Subroutine of instantiate_decls. Given RTL representing a decl,
|
| 1744 |
|
|
do any instantiation required. */
|
| 1745 |
|
|
|
| 1746 |
|
|
void
|
| 1747 |
|
|
instantiate_decl_rtl (rtx x)
|
| 1748 |
|
|
{
|
| 1749 |
|
|
rtx addr;
|
| 1750 |
|
|
|
| 1751 |
|
|
if (x == 0)
|
| 1752 |
|
|
return;
|
| 1753 |
|
|
|
| 1754 |
|
|
/* If this is a CONCAT, recurse for the pieces. */
|
| 1755 |
|
|
if (GET_CODE (x) == CONCAT)
|
| 1756 |
|
|
{
|
| 1757 |
|
|
instantiate_decl_rtl (XEXP (x, 0));
|
| 1758 |
|
|
instantiate_decl_rtl (XEXP (x, 1));
|
| 1759 |
|
|
return;
|
| 1760 |
|
|
}
|
| 1761 |
|
|
|
| 1762 |
|
|
/* If this is not a MEM, no need to do anything. Similarly if the
|
| 1763 |
|
|
address is a constant or a register that is not a virtual register. */
|
| 1764 |
|
|
if (!MEM_P (x))
|
| 1765 |
|
|
return;
|
| 1766 |
|
|
|
| 1767 |
|
|
addr = XEXP (x, 0);
|
| 1768 |
|
|
if (CONSTANT_P (addr)
|
| 1769 |
|
|
|| (REG_P (addr)
|
| 1770 |
|
|
&& (REGNO (addr) < FIRST_VIRTUAL_REGISTER
|
| 1771 |
|
|
|| REGNO (addr) > LAST_VIRTUAL_REGISTER)))
|
| 1772 |
|
|
return;
|
| 1773 |
|
|
|
| 1774 |
|
|
for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
|
| 1775 |
|
|
}
|
| 1776 |
|
|
|
| 1777 |
|
|
/* Helper for instantiate_decls called via walk_tree: Process all decls
|
| 1778 |
|
|
in the given DECL_VALUE_EXPR. */
|
| 1779 |
|
|
|
| 1780 |
|
|
static tree
|
| 1781 |
|
|
instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
|
| 1782 |
|
|
{
|
| 1783 |
|
|
tree t = *tp;
|
| 1784 |
|
|
if (! EXPR_P (t))
|
| 1785 |
|
|
{
|
| 1786 |
|
|
*walk_subtrees = 0;
|
| 1787 |
|
|
if (DECL_P (t))
|
| 1788 |
|
|
{
|
| 1789 |
|
|
if (DECL_RTL_SET_P (t))
|
| 1790 |
|
|
instantiate_decl_rtl (DECL_RTL (t));
|
| 1791 |
|
|
if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
|
| 1792 |
|
|
&& DECL_INCOMING_RTL (t))
|
| 1793 |
|
|
instantiate_decl_rtl (DECL_INCOMING_RTL (t));
|
| 1794 |
|
|
if ((TREE_CODE (t) == VAR_DECL
|
| 1795 |
|
|
|| TREE_CODE (t) == RESULT_DECL)
|
| 1796 |
|
|
&& DECL_HAS_VALUE_EXPR_P (t))
|
| 1797 |
|
|
{
|
| 1798 |
|
|
tree v = DECL_VALUE_EXPR (t);
|
| 1799 |
|
|
walk_tree (&v, instantiate_expr, NULL, NULL);
|
| 1800 |
|
|
}
|
| 1801 |
|
|
}
|
| 1802 |
|
|
}
|
| 1803 |
|
|
return NULL;
|
| 1804 |
|
|
}
|
| 1805 |
|
|
|
| 1806 |
|
|
/* Subroutine of instantiate_decls: Process all decls in the given
|
| 1807 |
|
|
BLOCK node and all its subblocks. */
|
| 1808 |
|
|
|
| 1809 |
|
|
static void
|
| 1810 |
|
|
instantiate_decls_1 (tree let)
|
| 1811 |
|
|
{
|
| 1812 |
|
|
tree t;
|
| 1813 |
|
|
|
| 1814 |
|
|
for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
|
| 1815 |
|
|
{
|
| 1816 |
|
|
if (DECL_RTL_SET_P (t))
|
| 1817 |
|
|
instantiate_decl_rtl (DECL_RTL (t));
|
| 1818 |
|
|
if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
|
| 1819 |
|
|
{
|
| 1820 |
|
|
tree v = DECL_VALUE_EXPR (t);
|
| 1821 |
|
|
walk_tree (&v, instantiate_expr, NULL, NULL);
|
| 1822 |
|
|
}
|
| 1823 |
|
|
}
|
| 1824 |
|
|
|
| 1825 |
|
|
/* Process all subblocks. */
|
| 1826 |
|
|
for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
|
| 1827 |
|
|
instantiate_decls_1 (t);
|
| 1828 |
|
|
}
|
| 1829 |
|
|
|
| 1830 |
|
|
/* Scan all decls in FNDECL (both variables and parameters) and instantiate
|
| 1831 |
|
|
all virtual registers in their DECL_RTL's. */
|
| 1832 |
|
|
|
| 1833 |
|
|
static void
|
| 1834 |
|
|
instantiate_decls (tree fndecl)
|
| 1835 |
|
|
{
|
| 1836 |
|
|
tree decl;
|
| 1837 |
|
|
unsigned ix;
|
| 1838 |
|
|
|
| 1839 |
|
|
/* Process all parameters of the function. */
|
| 1840 |
|
|
for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
|
| 1841 |
|
|
{
|
| 1842 |
|
|
instantiate_decl_rtl (DECL_RTL (decl));
|
| 1843 |
|
|
instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
|
| 1844 |
|
|
if (DECL_HAS_VALUE_EXPR_P (decl))
|
| 1845 |
|
|
{
|
| 1846 |
|
|
tree v = DECL_VALUE_EXPR (decl);
|
| 1847 |
|
|
walk_tree (&v, instantiate_expr, NULL, NULL);
|
| 1848 |
|
|
}
|
| 1849 |
|
|
}
|
| 1850 |
|
|
|
| 1851 |
|
|
if ((decl = DECL_RESULT (fndecl))
|
| 1852 |
|
|
&& TREE_CODE (decl) == RESULT_DECL)
|
| 1853 |
|
|
{
|
| 1854 |
|
|
if (DECL_RTL_SET_P (decl))
|
| 1855 |
|
|
instantiate_decl_rtl (DECL_RTL (decl));
|
| 1856 |
|
|
if (DECL_HAS_VALUE_EXPR_P (decl))
|
| 1857 |
|
|
{
|
| 1858 |
|
|
tree v = DECL_VALUE_EXPR (decl);
|
| 1859 |
|
|
walk_tree (&v, instantiate_expr, NULL, NULL);
|
| 1860 |
|
|
}
|
| 1861 |
|
|
}
|
| 1862 |
|
|
|
| 1863 |
|
|
/* Now process all variables defined in the function or its subblocks. */
|
| 1864 |
|
|
instantiate_decls_1 (DECL_INITIAL (fndecl));
|
| 1865 |
|
|
|
| 1866 |
|
|
FOR_EACH_LOCAL_DECL (cfun, ix, decl)
|
| 1867 |
|
|
if (DECL_RTL_SET_P (decl))
|
| 1868 |
|
|
instantiate_decl_rtl (DECL_RTL (decl));
|
| 1869 |
|
|
VEC_free (tree, gc, cfun->local_decls);
|
| 1870 |
|
|
}
|
| 1871 |
|
|
|
| 1872 |
|
|
/* Pass through the INSNS of function FNDECL and convert virtual register
|
| 1873 |
|
|
references to hard register references. */
|
| 1874 |
|
|
|
| 1875 |
|
|
static unsigned int
|
| 1876 |
|
|
instantiate_virtual_regs (void)
|
| 1877 |
|
|
{
|
| 1878 |
|
|
rtx insn;
|
| 1879 |
|
|
|
| 1880 |
|
|
/* Compute the offsets to use for this function. */
|
| 1881 |
|
|
in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
|
| 1882 |
|
|
var_offset = STARTING_FRAME_OFFSET;
|
| 1883 |
|
|
dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
|
| 1884 |
|
|
out_arg_offset = STACK_POINTER_OFFSET;
|
| 1885 |
|
|
#ifdef FRAME_POINTER_CFA_OFFSET
|
| 1886 |
|
|
cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
|
| 1887 |
|
|
#else
|
| 1888 |
|
|
cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
|
| 1889 |
|
|
#endif
|
| 1890 |
|
|
|
| 1891 |
|
|
/* Initialize recognition, indicating that volatile is OK. */
|
| 1892 |
|
|
init_recog ();
|
| 1893 |
|
|
|
| 1894 |
|
|
/* Scan through all the insns, instantiating every virtual register still
|
| 1895 |
|
|
present. */
|
| 1896 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
| 1897 |
|
|
if (INSN_P (insn))
|
| 1898 |
|
|
{
|
| 1899 |
|
|
/* These patterns in the instruction stream can never be recognized.
|
| 1900 |
|
|
Fortunately, they shouldn't contain virtual registers either. */
|
| 1901 |
|
|
if (GET_CODE (PATTERN (insn)) == USE
|
| 1902 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER
|
| 1903 |
|
|
|| GET_CODE (PATTERN (insn)) == ADDR_VEC
|
| 1904 |
|
|
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
|
| 1905 |
|
|
|| GET_CODE (PATTERN (insn)) == ASM_INPUT)
|
| 1906 |
|
|
continue;
|
| 1907 |
|
|
else if (DEBUG_INSN_P (insn))
|
| 1908 |
|
|
for_each_rtx (&INSN_VAR_LOCATION (insn),
|
| 1909 |
|
|
instantiate_virtual_regs_in_rtx, NULL);
|
| 1910 |
|
|
else
|
| 1911 |
|
|
instantiate_virtual_regs_in_insn (insn);
|
| 1912 |
|
|
|
| 1913 |
|
|
if (INSN_DELETED_P (insn))
|
| 1914 |
|
|
continue;
|
| 1915 |
|
|
|
| 1916 |
|
|
for_each_rtx (®_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
|
| 1917 |
|
|
|
| 1918 |
|
|
/* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
|
| 1919 |
|
|
if (CALL_P (insn))
|
| 1920 |
|
|
for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
|
| 1921 |
|
|
instantiate_virtual_regs_in_rtx, NULL);
|
| 1922 |
|
|
}
|
| 1923 |
|
|
|
| 1924 |
|
|
/* Instantiate the virtual registers in the DECLs for debugging purposes. */
|
| 1925 |
|
|
instantiate_decls (current_function_decl);
|
| 1926 |
|
|
|
| 1927 |
|
|
targetm.instantiate_decls ();
|
| 1928 |
|
|
|
| 1929 |
|
|
/* Indicate that, from now on, assign_stack_local should use
|
| 1930 |
|
|
frame_pointer_rtx. */
|
| 1931 |
|
|
virtuals_instantiated = 1;
|
| 1932 |
|
|
|
| 1933 |
|
|
return 0;
|
| 1934 |
|
|
}
|
| 1935 |
|
|
|
| 1936 |
|
|
struct rtl_opt_pass pass_instantiate_virtual_regs =
|
| 1937 |
|
|
{
|
| 1938 |
|
|
{
|
| 1939 |
|
|
RTL_PASS,
|
| 1940 |
|
|
"vregs", /* name */
|
| 1941 |
|
|
NULL, /* gate */
|
| 1942 |
|
|
instantiate_virtual_regs, /* execute */
|
| 1943 |
|
|
NULL, /* sub */
|
| 1944 |
|
|
NULL, /* next */
|
| 1945 |
|
|
0, /* static_pass_number */
|
| 1946 |
|
|
TV_NONE, /* tv_id */
|
| 1947 |
|
|
0, /* properties_required */
|
| 1948 |
|
|
0, /* properties_provided */
|
| 1949 |
|
|
0, /* properties_destroyed */
|
| 1950 |
|
|
0, /* todo_flags_start */
|
| 1951 |
|
|
|
| 1952 |
|
|
}
|
| 1953 |
|
|
};
|
| 1954 |
|
|
|
| 1955 |
|
|
|
| 1956 |
|
|
/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
|
| 1957 |
|
|
This means a type for which function calls must pass an address to the
|
| 1958 |
|
|
function or get an address back from the function.
|
| 1959 |
|
|
EXP may be a type node or an expression (whose type is tested). */
|
| 1960 |
|
|
|
| 1961 |
|
|
int
|
| 1962 |
|
|
aggregate_value_p (const_tree exp, const_tree fntype)
|
| 1963 |
|
|
{
|
| 1964 |
|
|
const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
|
| 1965 |
|
|
int i, regno, nregs;
|
| 1966 |
|
|
rtx reg;
|
| 1967 |
|
|
|
| 1968 |
|
|
if (fntype)
|
| 1969 |
|
|
switch (TREE_CODE (fntype))
|
| 1970 |
|
|
{
|
| 1971 |
|
|
case CALL_EXPR:
|
| 1972 |
|
|
{
|
| 1973 |
|
|
tree fndecl = get_callee_fndecl (fntype);
|
| 1974 |
|
|
fntype = (fndecl
|
| 1975 |
|
|
? TREE_TYPE (fndecl)
|
| 1976 |
|
|
: TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
|
| 1977 |
|
|
}
|
| 1978 |
|
|
break;
|
| 1979 |
|
|
case FUNCTION_DECL:
|
| 1980 |
|
|
fntype = TREE_TYPE (fntype);
|
| 1981 |
|
|
break;
|
| 1982 |
|
|
case FUNCTION_TYPE:
|
| 1983 |
|
|
case METHOD_TYPE:
|
| 1984 |
|
|
break;
|
| 1985 |
|
|
case IDENTIFIER_NODE:
|
| 1986 |
|
|
fntype = NULL_TREE;
|
| 1987 |
|
|
break;
|
| 1988 |
|
|
default:
|
| 1989 |
|
|
/* We don't expect other tree types here. */
|
| 1990 |
|
|
gcc_unreachable ();
|
| 1991 |
|
|
}
|
| 1992 |
|
|
|
| 1993 |
|
|
if (VOID_TYPE_P (type))
|
| 1994 |
|
|
return 0;
|
| 1995 |
|
|
|
| 1996 |
|
|
/* If a record should be passed the same as its first (and only) member
|
| 1997 |
|
|
don't pass it as an aggregate. */
|
| 1998 |
|
|
if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
|
| 1999 |
|
|
return aggregate_value_p (first_field (type), fntype);
|
| 2000 |
|
|
|
| 2001 |
|
|
/* If the front end has decided that this needs to be passed by
|
| 2002 |
|
|
reference, do so. */
|
| 2003 |
|
|
if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
|
| 2004 |
|
|
&& DECL_BY_REFERENCE (exp))
|
| 2005 |
|
|
return 1;
|
| 2006 |
|
|
|
| 2007 |
|
|
/* Function types that are TREE_ADDRESSABLE force return in memory. */
|
| 2008 |
|
|
if (fntype && TREE_ADDRESSABLE (fntype))
|
| 2009 |
|
|
return 1;
|
| 2010 |
|
|
|
| 2011 |
|
|
/* Types that are TREE_ADDRESSABLE must be constructed in memory,
|
| 2012 |
|
|
and thus can't be returned in registers. */
|
| 2013 |
|
|
if (TREE_ADDRESSABLE (type))
|
| 2014 |
|
|
return 1;
|
| 2015 |
|
|
|
| 2016 |
|
|
if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
|
| 2017 |
|
|
return 1;
|
| 2018 |
|
|
|
| 2019 |
|
|
if (targetm.calls.return_in_memory (type, fntype))
|
| 2020 |
|
|
return 1;
|
| 2021 |
|
|
|
| 2022 |
|
|
/* Make sure we have suitable call-clobbered regs to return
|
| 2023 |
|
|
the value in; if not, we must return it in memory. */
|
| 2024 |
|
|
reg = hard_function_value (type, 0, fntype, 0);
|
| 2025 |
|
|
|
| 2026 |
|
|
/* If we have something other than a REG (e.g. a PARALLEL), then assume
|
| 2027 |
|
|
it is OK. */
|
| 2028 |
|
|
if (!REG_P (reg))
|
| 2029 |
|
|
return 0;
|
| 2030 |
|
|
|
| 2031 |
|
|
regno = REGNO (reg);
|
| 2032 |
|
|
nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
|
| 2033 |
|
|
for (i = 0; i < nregs; i++)
|
| 2034 |
|
|
if (! call_used_regs[regno + i])
|
| 2035 |
|
|
return 1;
|
| 2036 |
|
|
|
| 2037 |
|
|
return 0;
|
| 2038 |
|
|
}
|
| 2039 |
|
|
|
| 2040 |
|
|
/* Return true if we should assign DECL a pseudo register; false if it
|
| 2041 |
|
|
should live on the local stack. */
|
| 2042 |
|
|
|
| 2043 |
|
|
bool
|
| 2044 |
|
|
use_register_for_decl (const_tree decl)
|
| 2045 |
|
|
{
|
| 2046 |
|
|
if (!targetm.calls.allocate_stack_slots_for_args())
|
| 2047 |
|
|
return true;
|
| 2048 |
|
|
|
| 2049 |
|
|
/* Honor volatile. */
|
| 2050 |
|
|
if (TREE_SIDE_EFFECTS (decl))
|
| 2051 |
|
|
return false;
|
| 2052 |
|
|
|
| 2053 |
|
|
/* Honor addressability. */
|
| 2054 |
|
|
if (TREE_ADDRESSABLE (decl))
|
| 2055 |
|
|
return false;
|
| 2056 |
|
|
|
| 2057 |
|
|
/* Only register-like things go in registers. */
|
| 2058 |
|
|
if (DECL_MODE (decl) == BLKmode)
|
| 2059 |
|
|
return false;
|
| 2060 |
|
|
|
| 2061 |
|
|
/* If -ffloat-store specified, don't put explicit float variables
|
| 2062 |
|
|
into registers. */
|
| 2063 |
|
|
/* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
|
| 2064 |
|
|
propagates values across these stores, and it probably shouldn't. */
|
| 2065 |
|
|
if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
|
| 2066 |
|
|
return false;
|
| 2067 |
|
|
|
| 2068 |
|
|
/* If we're not interested in tracking debugging information for
|
| 2069 |
|
|
this decl, then we can certainly put it in a register. */
|
| 2070 |
|
|
if (DECL_IGNORED_P (decl))
|
| 2071 |
|
|
return true;
|
| 2072 |
|
|
|
| 2073 |
|
|
if (optimize)
|
| 2074 |
|
|
return true;
|
| 2075 |
|
|
|
| 2076 |
|
|
if (!DECL_REGISTER (decl))
|
| 2077 |
|
|
return false;
|
| 2078 |
|
|
|
| 2079 |
|
|
switch (TREE_CODE (TREE_TYPE (decl)))
|
| 2080 |
|
|
{
|
| 2081 |
|
|
case RECORD_TYPE:
|
| 2082 |
|
|
case UNION_TYPE:
|
| 2083 |
|
|
case QUAL_UNION_TYPE:
|
| 2084 |
|
|
/* When not optimizing, disregard register keyword for variables with
|
| 2085 |
|
|
types containing methods, otherwise the methods won't be callable
|
| 2086 |
|
|
from the debugger. */
|
| 2087 |
|
|
if (TYPE_METHODS (TREE_TYPE (decl)))
|
| 2088 |
|
|
return false;
|
| 2089 |
|
|
break;
|
| 2090 |
|
|
default:
|
| 2091 |
|
|
break;
|
| 2092 |
|
|
}
|
| 2093 |
|
|
|
| 2094 |
|
|
return true;
|
| 2095 |
|
|
}
|
| 2096 |
|
|
|
| 2097 |
|
|
/* Return true if TYPE should be passed by invisible reference. */
|
| 2098 |
|
|
|
| 2099 |
|
|
bool
|
| 2100 |
|
|
pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
|
| 2101 |
|
|
tree type, bool named_arg)
|
| 2102 |
|
|
{
|
| 2103 |
|
|
if (type)
|
| 2104 |
|
|
{
|
| 2105 |
|
|
/* If this type contains non-trivial constructors, then it is
|
| 2106 |
|
|
forbidden for the middle-end to create any new copies. */
|
| 2107 |
|
|
if (TREE_ADDRESSABLE (type))
|
| 2108 |
|
|
return true;
|
| 2109 |
|
|
|
| 2110 |
|
|
/* GCC post 3.4 passes *all* variable sized types by reference. */
|
| 2111 |
|
|
if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
|
| 2112 |
|
|
return true;
|
| 2113 |
|
|
|
| 2114 |
|
|
/* If a record type should be passed the same as its first (and only)
|
| 2115 |
|
|
member, use the type and mode of that member. */
|
| 2116 |
|
|
if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
|
| 2117 |
|
|
{
|
| 2118 |
|
|
type = TREE_TYPE (first_field (type));
|
| 2119 |
|
|
mode = TYPE_MODE (type);
|
| 2120 |
|
|
}
|
| 2121 |
|
|
}
|
| 2122 |
|
|
|
| 2123 |
|
|
return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
|
| 2124 |
|
|
type, named_arg);
|
| 2125 |
|
|
}
|
| 2126 |
|
|
|
| 2127 |
|
|
/* Return true if TYPE, which is passed by reference, should be callee
|
| 2128 |
|
|
copied instead of caller copied. */
|
| 2129 |
|
|
|
| 2130 |
|
|
bool
|
| 2131 |
|
|
reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
|
| 2132 |
|
|
tree type, bool named_arg)
|
| 2133 |
|
|
{
|
| 2134 |
|
|
if (type && TREE_ADDRESSABLE (type))
|
| 2135 |
|
|
return false;
|
| 2136 |
|
|
return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
|
| 2137 |
|
|
named_arg);
|
| 2138 |
|
|
}
|
| 2139 |
|
|
|
| 2140 |
|
|
/* Structures to communicate between the subroutines of assign_parms.
|
| 2141 |
|
|
The first holds data persistent across all parameters, the second
|
| 2142 |
|
|
is cleared out for each parameter. */
|
| 2143 |
|
|
|
| 2144 |
|
|
struct assign_parm_data_all
|
| 2145 |
|
|
{
|
| 2146 |
|
|
/* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
|
| 2147 |
|
|
should become a job of the target or otherwise encapsulated. */
|
| 2148 |
|
|
CUMULATIVE_ARGS args_so_far_v;
|
| 2149 |
|
|
cumulative_args_t args_so_far;
|
| 2150 |
|
|
struct args_size stack_args_size;
|
| 2151 |
|
|
tree function_result_decl;
|
| 2152 |
|
|
tree orig_fnargs;
|
| 2153 |
|
|
rtx first_conversion_insn;
|
| 2154 |
|
|
rtx last_conversion_insn;
|
| 2155 |
|
|
HOST_WIDE_INT pretend_args_size;
|
| 2156 |
|
|
HOST_WIDE_INT extra_pretend_bytes;
|
| 2157 |
|
|
int reg_parm_stack_space;
|
| 2158 |
|
|
};
|
| 2159 |
|
|
|
| 2160 |
|
|
struct assign_parm_data_one
|
| 2161 |
|
|
{
|
| 2162 |
|
|
tree nominal_type;
|
| 2163 |
|
|
tree passed_type;
|
| 2164 |
|
|
rtx entry_parm;
|
| 2165 |
|
|
rtx stack_parm;
|
| 2166 |
|
|
enum machine_mode nominal_mode;
|
| 2167 |
|
|
enum machine_mode passed_mode;
|
| 2168 |
|
|
enum machine_mode promoted_mode;
|
| 2169 |
|
|
struct locate_and_pad_arg_data locate;
|
| 2170 |
|
|
int partial;
|
| 2171 |
|
|
BOOL_BITFIELD named_arg : 1;
|
| 2172 |
|
|
BOOL_BITFIELD passed_pointer : 1;
|
| 2173 |
|
|
BOOL_BITFIELD on_stack : 1;
|
| 2174 |
|
|
BOOL_BITFIELD loaded_in_reg : 1;
|
| 2175 |
|
|
};
|
| 2176 |
|
|
|
| 2177 |
|
|
/* A subroutine of assign_parms. Initialize ALL. */
|
| 2178 |
|
|
|
| 2179 |
|
|
static void
|
| 2180 |
|
|
assign_parms_initialize_all (struct assign_parm_data_all *all)
|
| 2181 |
|
|
{
|
| 2182 |
|
|
tree fntype ATTRIBUTE_UNUSED;
|
| 2183 |
|
|
|
| 2184 |
|
|
memset (all, 0, sizeof (*all));
|
| 2185 |
|
|
|
| 2186 |
|
|
fntype = TREE_TYPE (current_function_decl);
|
| 2187 |
|
|
|
| 2188 |
|
|
#ifdef INIT_CUMULATIVE_INCOMING_ARGS
|
| 2189 |
|
|
INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
|
| 2190 |
|
|
#else
|
| 2191 |
|
|
INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
|
| 2192 |
|
|
current_function_decl, -1);
|
| 2193 |
|
|
#endif
|
| 2194 |
|
|
all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
|
| 2195 |
|
|
|
| 2196 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
| 2197 |
|
|
all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
|
| 2198 |
|
|
#endif
|
| 2199 |
|
|
}
|
| 2200 |
|
|
|
| 2201 |
|
|
/* If ARGS contains entries with complex types, split the entry into two
|
| 2202 |
|
|
entries of the component type. Return a new list of substitutions are
|
| 2203 |
|
|
needed, else the old list. */
|
| 2204 |
|
|
|
| 2205 |
|
|
static void
|
| 2206 |
|
|
split_complex_args (VEC(tree, heap) **args)
|
| 2207 |
|
|
{
|
| 2208 |
|
|
unsigned i;
|
| 2209 |
|
|
tree p;
|
| 2210 |
|
|
|
| 2211 |
|
|
FOR_EACH_VEC_ELT (tree, *args, i, p)
|
| 2212 |
|
|
{
|
| 2213 |
|
|
tree type = TREE_TYPE (p);
|
| 2214 |
|
|
if (TREE_CODE (type) == COMPLEX_TYPE
|
| 2215 |
|
|
&& targetm.calls.split_complex_arg (type))
|
| 2216 |
|
|
{
|
| 2217 |
|
|
tree decl;
|
| 2218 |
|
|
tree subtype = TREE_TYPE (type);
|
| 2219 |
|
|
bool addressable = TREE_ADDRESSABLE (p);
|
| 2220 |
|
|
|
| 2221 |
|
|
/* Rewrite the PARM_DECL's type with its component. */
|
| 2222 |
|
|
p = copy_node (p);
|
| 2223 |
|
|
TREE_TYPE (p) = subtype;
|
| 2224 |
|
|
DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
|
| 2225 |
|
|
DECL_MODE (p) = VOIDmode;
|
| 2226 |
|
|
DECL_SIZE (p) = NULL;
|
| 2227 |
|
|
DECL_SIZE_UNIT (p) = NULL;
|
| 2228 |
|
|
/* If this arg must go in memory, put it in a pseudo here.
|
| 2229 |
|
|
We can't allow it to go in memory as per normal parms,
|
| 2230 |
|
|
because the usual place might not have the imag part
|
| 2231 |
|
|
adjacent to the real part. */
|
| 2232 |
|
|
DECL_ARTIFICIAL (p) = addressable;
|
| 2233 |
|
|
DECL_IGNORED_P (p) = addressable;
|
| 2234 |
|
|
TREE_ADDRESSABLE (p) = 0;
|
| 2235 |
|
|
layout_decl (p, 0);
|
| 2236 |
|
|
VEC_replace (tree, *args, i, p);
|
| 2237 |
|
|
|
| 2238 |
|
|
/* Build a second synthetic decl. */
|
| 2239 |
|
|
decl = build_decl (EXPR_LOCATION (p),
|
| 2240 |
|
|
PARM_DECL, NULL_TREE, subtype);
|
| 2241 |
|
|
DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
|
| 2242 |
|
|
DECL_ARTIFICIAL (decl) = addressable;
|
| 2243 |
|
|
DECL_IGNORED_P (decl) = addressable;
|
| 2244 |
|
|
layout_decl (decl, 0);
|
| 2245 |
|
|
VEC_safe_insert (tree, heap, *args, ++i, decl);
|
| 2246 |
|
|
}
|
| 2247 |
|
|
}
|
| 2248 |
|
|
}
|
| 2249 |
|
|
|
| 2250 |
|
|
/* A subroutine of assign_parms. Adjust the parameter list to incorporate
|
| 2251 |
|
|
the hidden struct return argument, and (abi willing) complex args.
|
| 2252 |
|
|
Return the new parameter list. */
|
| 2253 |
|
|
|
| 2254 |
|
|
static VEC(tree, heap) *
|
| 2255 |
|
|
assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
|
| 2256 |
|
|
{
|
| 2257 |
|
|
tree fndecl = current_function_decl;
|
| 2258 |
|
|
tree fntype = TREE_TYPE (fndecl);
|
| 2259 |
|
|
VEC(tree, heap) *fnargs = NULL;
|
| 2260 |
|
|
tree arg;
|
| 2261 |
|
|
|
| 2262 |
|
|
for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
|
| 2263 |
|
|
VEC_safe_push (tree, heap, fnargs, arg);
|
| 2264 |
|
|
|
| 2265 |
|
|
all->orig_fnargs = DECL_ARGUMENTS (fndecl);
|
| 2266 |
|
|
|
| 2267 |
|
|
/* If struct value address is treated as the first argument, make it so. */
|
| 2268 |
|
|
if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
|
| 2269 |
|
|
&& ! cfun->returns_pcc_struct
|
| 2270 |
|
|
&& targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
|
| 2271 |
|
|
{
|
| 2272 |
|
|
tree type = build_pointer_type (TREE_TYPE (fntype));
|
| 2273 |
|
|
tree decl;
|
| 2274 |
|
|
|
| 2275 |
|
|
decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
|
| 2276 |
|
|
PARM_DECL, get_identifier (".result_ptr"), type);
|
| 2277 |
|
|
DECL_ARG_TYPE (decl) = type;
|
| 2278 |
|
|
DECL_ARTIFICIAL (decl) = 1;
|
| 2279 |
|
|
DECL_NAMELESS (decl) = 1;
|
| 2280 |
|
|
TREE_CONSTANT (decl) = 1;
|
| 2281 |
|
|
|
| 2282 |
|
|
DECL_CHAIN (decl) = all->orig_fnargs;
|
| 2283 |
|
|
all->orig_fnargs = decl;
|
| 2284 |
|
|
VEC_safe_insert (tree, heap, fnargs, 0, decl);
|
| 2285 |
|
|
|
| 2286 |
|
|
all->function_result_decl = decl;
|
| 2287 |
|
|
}
|
| 2288 |
|
|
|
| 2289 |
|
|
/* If the target wants to split complex arguments into scalars, do so. */
|
| 2290 |
|
|
if (targetm.calls.split_complex_arg)
|
| 2291 |
|
|
split_complex_args (&fnargs);
|
| 2292 |
|
|
|
| 2293 |
|
|
return fnargs;
|
| 2294 |
|
|
}
|
| 2295 |
|
|
|
| 2296 |
|
|
/* A subroutine of assign_parms. Examine PARM and pull out type and mode
|
| 2297 |
|
|
data for the parameter. Incorporate ABI specifics such as pass-by-
|
| 2298 |
|
|
reference and type promotion. */
|
| 2299 |
|
|
|
| 2300 |
|
|
static void
|
| 2301 |
|
|
assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
|
| 2302 |
|
|
struct assign_parm_data_one *data)
|
| 2303 |
|
|
{
|
| 2304 |
|
|
tree nominal_type, passed_type;
|
| 2305 |
|
|
enum machine_mode nominal_mode, passed_mode, promoted_mode;
|
| 2306 |
|
|
int unsignedp;
|
| 2307 |
|
|
|
| 2308 |
|
|
memset (data, 0, sizeof (*data));
|
| 2309 |
|
|
|
| 2310 |
|
|
/* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
|
| 2311 |
|
|
if (!cfun->stdarg)
|
| 2312 |
|
|
data->named_arg = 1; /* No variadic parms. */
|
| 2313 |
|
|
else if (DECL_CHAIN (parm))
|
| 2314 |
|
|
data->named_arg = 1; /* Not the last non-variadic parm. */
|
| 2315 |
|
|
else if (targetm.calls.strict_argument_naming (all->args_so_far))
|
| 2316 |
|
|
data->named_arg = 1; /* Only variadic ones are unnamed. */
|
| 2317 |
|
|
else
|
| 2318 |
|
|
data->named_arg = 0; /* Treat as variadic. */
|
| 2319 |
|
|
|
| 2320 |
|
|
nominal_type = TREE_TYPE (parm);
|
| 2321 |
|
|
passed_type = DECL_ARG_TYPE (parm);
|
| 2322 |
|
|
|
| 2323 |
|
|
/* Look out for errors propagating this far. Also, if the parameter's
|
| 2324 |
|
|
type is void then its value doesn't matter. */
|
| 2325 |
|
|
if (TREE_TYPE (parm) == error_mark_node
|
| 2326 |
|
|
/* This can happen after weird syntax errors
|
| 2327 |
|
|
or if an enum type is defined among the parms. */
|
| 2328 |
|
|
|| TREE_CODE (parm) != PARM_DECL
|
| 2329 |
|
|
|| passed_type == NULL
|
| 2330 |
|
|
|| VOID_TYPE_P (nominal_type))
|
| 2331 |
|
|
{
|
| 2332 |
|
|
nominal_type = passed_type = void_type_node;
|
| 2333 |
|
|
nominal_mode = passed_mode = promoted_mode = VOIDmode;
|
| 2334 |
|
|
goto egress;
|
| 2335 |
|
|
}
|
| 2336 |
|
|
|
| 2337 |
|
|
/* Find mode of arg as it is passed, and mode of arg as it should be
|
| 2338 |
|
|
during execution of this function. */
|
| 2339 |
|
|
passed_mode = TYPE_MODE (passed_type);
|
| 2340 |
|
|
nominal_mode = TYPE_MODE (nominal_type);
|
| 2341 |
|
|
|
| 2342 |
|
|
/* If the parm is to be passed as a transparent union or record, use the
|
| 2343 |
|
|
type of the first field for the tests below. We have already verified
|
| 2344 |
|
|
that the modes are the same. */
|
| 2345 |
|
|
if ((TREE_CODE (passed_type) == UNION_TYPE
|
| 2346 |
|
|
|| TREE_CODE (passed_type) == RECORD_TYPE)
|
| 2347 |
|
|
&& TYPE_TRANSPARENT_AGGR (passed_type))
|
| 2348 |
|
|
passed_type = TREE_TYPE (first_field (passed_type));
|
| 2349 |
|
|
|
| 2350 |
|
|
/* See if this arg was passed by invisible reference. */
|
| 2351 |
|
|
if (pass_by_reference (&all->args_so_far_v, passed_mode,
|
| 2352 |
|
|
passed_type, data->named_arg))
|
| 2353 |
|
|
{
|
| 2354 |
|
|
passed_type = nominal_type = build_pointer_type (passed_type);
|
| 2355 |
|
|
data->passed_pointer = true;
|
| 2356 |
|
|
passed_mode = nominal_mode = Pmode;
|
| 2357 |
|
|
}
|
| 2358 |
|
|
|
| 2359 |
|
|
/* Find mode as it is passed by the ABI. */
|
| 2360 |
|
|
unsignedp = TYPE_UNSIGNED (passed_type);
|
| 2361 |
|
|
promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
|
| 2362 |
|
|
TREE_TYPE (current_function_decl), 0);
|
| 2363 |
|
|
|
| 2364 |
|
|
egress:
|
| 2365 |
|
|
data->nominal_type = nominal_type;
|
| 2366 |
|
|
data->passed_type = passed_type;
|
| 2367 |
|
|
data->nominal_mode = nominal_mode;
|
| 2368 |
|
|
data->passed_mode = passed_mode;
|
| 2369 |
|
|
data->promoted_mode = promoted_mode;
|
| 2370 |
|
|
}
|
| 2371 |
|
|
|
| 2372 |
|
|
/* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
|
| 2373 |
|
|
|
| 2374 |
|
|
static void
|
| 2375 |
|
|
assign_parms_setup_varargs (struct assign_parm_data_all *all,
|
| 2376 |
|
|
struct assign_parm_data_one *data, bool no_rtl)
|
| 2377 |
|
|
{
|
| 2378 |
|
|
int varargs_pretend_bytes = 0;
|
| 2379 |
|
|
|
| 2380 |
|
|
targetm.calls.setup_incoming_varargs (all->args_so_far,
|
| 2381 |
|
|
data->promoted_mode,
|
| 2382 |
|
|
data->passed_type,
|
| 2383 |
|
|
&varargs_pretend_bytes, no_rtl);
|
| 2384 |
|
|
|
| 2385 |
|
|
/* If the back-end has requested extra stack space, record how much is
|
| 2386 |
|
|
needed. Do not change pretend_args_size otherwise since it may be
|
| 2387 |
|
|
nonzero from an earlier partial argument. */
|
| 2388 |
|
|
if (varargs_pretend_bytes > 0)
|
| 2389 |
|
|
all->pretend_args_size = varargs_pretend_bytes;
|
| 2390 |
|
|
}
|
| 2391 |
|
|
|
| 2392 |
|
|
/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
|
| 2393 |
|
|
the incoming location of the current parameter. */
|
| 2394 |
|
|
|
| 2395 |
|
|
static void
|
| 2396 |
|
|
assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
|
| 2397 |
|
|
struct assign_parm_data_one *data)
|
| 2398 |
|
|
{
|
| 2399 |
|
|
HOST_WIDE_INT pretend_bytes = 0;
|
| 2400 |
|
|
rtx entry_parm;
|
| 2401 |
|
|
bool in_regs;
|
| 2402 |
|
|
|
| 2403 |
|
|
if (data->promoted_mode == VOIDmode)
|
| 2404 |
|
|
{
|
| 2405 |
|
|
data->entry_parm = data->stack_parm = const0_rtx;
|
| 2406 |
|
|
return;
|
| 2407 |
|
|
}
|
| 2408 |
|
|
|
| 2409 |
|
|
entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
|
| 2410 |
|
|
data->promoted_mode,
|
| 2411 |
|
|
data->passed_type,
|
| 2412 |
|
|
data->named_arg);
|
| 2413 |
|
|
|
| 2414 |
|
|
if (entry_parm == 0)
|
| 2415 |
|
|
data->promoted_mode = data->passed_mode;
|
| 2416 |
|
|
|
| 2417 |
|
|
/* Determine parm's home in the stack, in case it arrives in the stack
|
| 2418 |
|
|
or we should pretend it did. Compute the stack position and rtx where
|
| 2419 |
|
|
the argument arrives and its size.
|
| 2420 |
|
|
|
| 2421 |
|
|
There is one complexity here: If this was a parameter that would
|
| 2422 |
|
|
have been passed in registers, but wasn't only because it is
|
| 2423 |
|
|
__builtin_va_alist, we want locate_and_pad_parm to treat it as if
|
| 2424 |
|
|
it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
|
| 2425 |
|
|
In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
|
| 2426 |
|
|
as it was the previous time. */
|
| 2427 |
|
|
in_regs = entry_parm != 0;
|
| 2428 |
|
|
#ifdef STACK_PARMS_IN_REG_PARM_AREA
|
| 2429 |
|
|
in_regs = true;
|
| 2430 |
|
|
#endif
|
| 2431 |
|
|
if (!in_regs && !data->named_arg)
|
| 2432 |
|
|
{
|
| 2433 |
|
|
if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
|
| 2434 |
|
|
{
|
| 2435 |
|
|
rtx tem;
|
| 2436 |
|
|
tem = targetm.calls.function_incoming_arg (all->args_so_far,
|
| 2437 |
|
|
data->promoted_mode,
|
| 2438 |
|
|
data->passed_type, true);
|
| 2439 |
|
|
in_regs = tem != NULL;
|
| 2440 |
|
|
}
|
| 2441 |
|
|
}
|
| 2442 |
|
|
|
| 2443 |
|
|
/* If this parameter was passed both in registers and in the stack, use
|
| 2444 |
|
|
the copy on the stack. */
|
| 2445 |
|
|
if (targetm.calls.must_pass_in_stack (data->promoted_mode,
|
| 2446 |
|
|
data->passed_type))
|
| 2447 |
|
|
entry_parm = 0;
|
| 2448 |
|
|
|
| 2449 |
|
|
if (entry_parm)
|
| 2450 |
|
|
{
|
| 2451 |
|
|
int partial;
|
| 2452 |
|
|
|
| 2453 |
|
|
partial = targetm.calls.arg_partial_bytes (all->args_so_far,
|
| 2454 |
|
|
data->promoted_mode,
|
| 2455 |
|
|
data->passed_type,
|
| 2456 |
|
|
data->named_arg);
|
| 2457 |
|
|
data->partial = partial;
|
| 2458 |
|
|
|
| 2459 |
|
|
/* The caller might already have allocated stack space for the
|
| 2460 |
|
|
register parameters. */
|
| 2461 |
|
|
if (partial != 0 && all->reg_parm_stack_space == 0)
|
| 2462 |
|
|
{
|
| 2463 |
|
|
/* Part of this argument is passed in registers and part
|
| 2464 |
|
|
is passed on the stack. Ask the prologue code to extend
|
| 2465 |
|
|
the stack part so that we can recreate the full value.
|
| 2466 |
|
|
|
| 2467 |
|
|
PRETEND_BYTES is the size of the registers we need to store.
|
| 2468 |
|
|
CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
|
| 2469 |
|
|
stack space that the prologue should allocate.
|
| 2470 |
|
|
|
| 2471 |
|
|
Internally, gcc assumes that the argument pointer is aligned
|
| 2472 |
|
|
to STACK_BOUNDARY bits. This is used both for alignment
|
| 2473 |
|
|
optimizations (see init_emit) and to locate arguments that are
|
| 2474 |
|
|
aligned to more than PARM_BOUNDARY bits. We must preserve this
|
| 2475 |
|
|
invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
|
| 2476 |
|
|
a stack boundary. */
|
| 2477 |
|
|
|
| 2478 |
|
|
/* We assume at most one partial arg, and it must be the first
|
| 2479 |
|
|
argument on the stack. */
|
| 2480 |
|
|
gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
|
| 2481 |
|
|
|
| 2482 |
|
|
pretend_bytes = partial;
|
| 2483 |
|
|
all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
|
| 2484 |
|
|
|
| 2485 |
|
|
/* We want to align relative to the actual stack pointer, so
|
| 2486 |
|
|
don't include this in the stack size until later. */
|
| 2487 |
|
|
all->extra_pretend_bytes = all->pretend_args_size;
|
| 2488 |
|
|
}
|
| 2489 |
|
|
}
|
| 2490 |
|
|
|
| 2491 |
|
|
locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
|
| 2492 |
|
|
entry_parm ? data->partial : 0, current_function_decl,
|
| 2493 |
|
|
&all->stack_args_size, &data->locate);
|
| 2494 |
|
|
|
| 2495 |
|
|
/* Update parm_stack_boundary if this parameter is passed in the
|
| 2496 |
|
|
stack. */
|
| 2497 |
|
|
if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
|
| 2498 |
|
|
crtl->parm_stack_boundary = data->locate.boundary;
|
| 2499 |
|
|
|
| 2500 |
|
|
/* Adjust offsets to include the pretend args. */
|
| 2501 |
|
|
pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
|
| 2502 |
|
|
data->locate.slot_offset.constant += pretend_bytes;
|
| 2503 |
|
|
data->locate.offset.constant += pretend_bytes;
|
| 2504 |
|
|
|
| 2505 |
|
|
data->entry_parm = entry_parm;
|
| 2506 |
|
|
}
|
| 2507 |
|
|
|
| 2508 |
|
|
/* A subroutine of assign_parms. If there is actually space on the stack
|
| 2509 |
|
|
for this parm, count it in stack_args_size and return true. */
|
| 2510 |
|
|
|
| 2511 |
|
|
static bool
|
| 2512 |
|
|
assign_parm_is_stack_parm (struct assign_parm_data_all *all,
|
| 2513 |
|
|
struct assign_parm_data_one *data)
|
| 2514 |
|
|
{
|
| 2515 |
|
|
/* Trivially true if we've no incoming register. */
|
| 2516 |
|
|
if (data->entry_parm == NULL)
|
| 2517 |
|
|
;
|
| 2518 |
|
|
/* Also true if we're partially in registers and partially not,
|
| 2519 |
|
|
since we've arranged to drop the entire argument on the stack. */
|
| 2520 |
|
|
else if (data->partial != 0)
|
| 2521 |
|
|
;
|
| 2522 |
|
|
/* Also true if the target says that it's passed in both registers
|
| 2523 |
|
|
and on the stack. */
|
| 2524 |
|
|
else if (GET_CODE (data->entry_parm) == PARALLEL
|
| 2525 |
|
|
&& XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
|
| 2526 |
|
|
;
|
| 2527 |
|
|
/* Also true if the target says that there's stack allocated for
|
| 2528 |
|
|
all register parameters. */
|
| 2529 |
|
|
else if (all->reg_parm_stack_space > 0)
|
| 2530 |
|
|
;
|
| 2531 |
|
|
/* Otherwise, no, this parameter has no ABI defined stack slot. */
|
| 2532 |
|
|
else
|
| 2533 |
|
|
return false;
|
| 2534 |
|
|
|
| 2535 |
|
|
all->stack_args_size.constant += data->locate.size.constant;
|
| 2536 |
|
|
if (data->locate.size.var)
|
| 2537 |
|
|
ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
|
| 2538 |
|
|
|
| 2539 |
|
|
return true;
|
| 2540 |
|
|
}
|
| 2541 |
|
|
|
| 2542 |
|
|
/* A subroutine of assign_parms. Given that this parameter is allocated
|
| 2543 |
|
|
stack space by the ABI, find it. */
|
| 2544 |
|
|
|
| 2545 |
|
|
static void
|
| 2546 |
|
|
assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
|
| 2547 |
|
|
{
|
| 2548 |
|
|
rtx offset_rtx, stack_parm;
|
| 2549 |
|
|
unsigned int align, boundary;
|
| 2550 |
|
|
|
| 2551 |
|
|
/* If we're passing this arg using a reg, make its stack home the
|
| 2552 |
|
|
aligned stack slot. */
|
| 2553 |
|
|
if (data->entry_parm)
|
| 2554 |
|
|
offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
|
| 2555 |
|
|
else
|
| 2556 |
|
|
offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
|
| 2557 |
|
|
|
| 2558 |
|
|
stack_parm = crtl->args.internal_arg_pointer;
|
| 2559 |
|
|
if (offset_rtx != const0_rtx)
|
| 2560 |
|
|
stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
|
| 2561 |
|
|
stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
|
| 2562 |
|
|
|
| 2563 |
|
|
if (!data->passed_pointer)
|
| 2564 |
|
|
{
|
| 2565 |
|
|
set_mem_attributes (stack_parm, parm, 1);
|
| 2566 |
|
|
/* set_mem_attributes could set MEM_SIZE to the passed mode's size,
|
| 2567 |
|
|
while promoted mode's size is needed. */
|
| 2568 |
|
|
if (data->promoted_mode != BLKmode
|
| 2569 |
|
|
&& data->promoted_mode != DECL_MODE (parm))
|
| 2570 |
|
|
{
|
| 2571 |
|
|
set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
|
| 2572 |
|
|
if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
|
| 2573 |
|
|
{
|
| 2574 |
|
|
int offset = subreg_lowpart_offset (DECL_MODE (parm),
|
| 2575 |
|
|
data->promoted_mode);
|
| 2576 |
|
|
if (offset)
|
| 2577 |
|
|
set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
|
| 2578 |
|
|
}
|
| 2579 |
|
|
}
|
| 2580 |
|
|
}
|
| 2581 |
|
|
|
| 2582 |
|
|
boundary = data->locate.boundary;
|
| 2583 |
|
|
align = BITS_PER_UNIT;
|
| 2584 |
|
|
|
| 2585 |
|
|
/* If we're padding upward, we know that the alignment of the slot
|
| 2586 |
|
|
is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
|
| 2587 |
|
|
intentionally forcing upward padding. Otherwise we have to come
|
| 2588 |
|
|
up with a guess at the alignment based on OFFSET_RTX. */
|
| 2589 |
|
|
if (data->locate.where_pad != downward || data->entry_parm)
|
| 2590 |
|
|
align = boundary;
|
| 2591 |
|
|
else if (CONST_INT_P (offset_rtx))
|
| 2592 |
|
|
{
|
| 2593 |
|
|
align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
|
| 2594 |
|
|
align = align & -align;
|
| 2595 |
|
|
}
|
| 2596 |
|
|
set_mem_align (stack_parm, align);
|
| 2597 |
|
|
|
| 2598 |
|
|
if (data->entry_parm)
|
| 2599 |
|
|
set_reg_attrs_for_parm (data->entry_parm, stack_parm);
|
| 2600 |
|
|
|
| 2601 |
|
|
data->stack_parm = stack_parm;
|
| 2602 |
|
|
}
|
| 2603 |
|
|
|
| 2604 |
|
|
/* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
|
| 2605 |
|
|
always valid and contiguous. */
|
| 2606 |
|
|
|
| 2607 |
|
|
static void
|
| 2608 |
|
|
assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
|
| 2609 |
|
|
{
|
| 2610 |
|
|
rtx entry_parm = data->entry_parm;
|
| 2611 |
|
|
rtx stack_parm = data->stack_parm;
|
| 2612 |
|
|
|
| 2613 |
|
|
/* If this parm was passed part in regs and part in memory, pretend it
|
| 2614 |
|
|
arrived entirely in memory by pushing the register-part onto the stack.
|
| 2615 |
|
|
In the special case of a DImode or DFmode that is split, we could put
|
| 2616 |
|
|
it together in a pseudoreg directly, but for now that's not worth
|
| 2617 |
|
|
bothering with. */
|
| 2618 |
|
|
if (data->partial != 0)
|
| 2619 |
|
|
{
|
| 2620 |
|
|
/* Handle calls that pass values in multiple non-contiguous
|
| 2621 |
|
|
locations. The Irix 6 ABI has examples of this. */
|
| 2622 |
|
|
if (GET_CODE (entry_parm) == PARALLEL)
|
| 2623 |
|
|
emit_group_store (validize_mem (stack_parm), entry_parm,
|
| 2624 |
|
|
data->passed_type,
|
| 2625 |
|
|
int_size_in_bytes (data->passed_type));
|
| 2626 |
|
|
else
|
| 2627 |
|
|
{
|
| 2628 |
|
|
gcc_assert (data->partial % UNITS_PER_WORD == 0);
|
| 2629 |
|
|
move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
|
| 2630 |
|
|
data->partial / UNITS_PER_WORD);
|
| 2631 |
|
|
}
|
| 2632 |
|
|
|
| 2633 |
|
|
entry_parm = stack_parm;
|
| 2634 |
|
|
}
|
| 2635 |
|
|
|
| 2636 |
|
|
/* If we didn't decide this parm came in a register, by default it came
|
| 2637 |
|
|
on the stack. */
|
| 2638 |
|
|
else if (entry_parm == NULL)
|
| 2639 |
|
|
entry_parm = stack_parm;
|
| 2640 |
|
|
|
| 2641 |
|
|
/* When an argument is passed in multiple locations, we can't make use
|
| 2642 |
|
|
of this information, but we can save some copying if the whole argument
|
| 2643 |
|
|
is passed in a single register. */
|
| 2644 |
|
|
else if (GET_CODE (entry_parm) == PARALLEL
|
| 2645 |
|
|
&& data->nominal_mode != BLKmode
|
| 2646 |
|
|
&& data->passed_mode != BLKmode)
|
| 2647 |
|
|
{
|
| 2648 |
|
|
size_t i, len = XVECLEN (entry_parm, 0);
|
| 2649 |
|
|
|
| 2650 |
|
|
for (i = 0; i < len; i++)
|
| 2651 |
|
|
if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
|
| 2652 |
|
|
&& REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
|
| 2653 |
|
|
&& (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
|
| 2654 |
|
|
== data->passed_mode)
|
| 2655 |
|
|
&& INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
|
| 2656 |
|
|
{
|
| 2657 |
|
|
entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
|
| 2658 |
|
|
break;
|
| 2659 |
|
|
}
|
| 2660 |
|
|
}
|
| 2661 |
|
|
|
| 2662 |
|
|
data->entry_parm = entry_parm;
|
| 2663 |
|
|
}
|
| 2664 |
|
|
|
| 2665 |
|
|
/* A subroutine of assign_parms. Reconstitute any values which were
|
| 2666 |
|
|
passed in multiple registers and would fit in a single register. */
|
| 2667 |
|
|
|
| 2668 |
|
|
static void
|
| 2669 |
|
|
assign_parm_remove_parallels (struct assign_parm_data_one *data)
|
| 2670 |
|
|
{
|
| 2671 |
|
|
rtx entry_parm = data->entry_parm;
|
| 2672 |
|
|
|
| 2673 |
|
|
/* Convert the PARALLEL to a REG of the same mode as the parallel.
|
| 2674 |
|
|
This can be done with register operations rather than on the
|
| 2675 |
|
|
stack, even if we will store the reconstituted parameter on the
|
| 2676 |
|
|
stack later. */
|
| 2677 |
|
|
if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
|
| 2678 |
|
|
{
|
| 2679 |
|
|
rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
|
| 2680 |
|
|
emit_group_store (parmreg, entry_parm, data->passed_type,
|
| 2681 |
|
|
GET_MODE_SIZE (GET_MODE (entry_parm)));
|
| 2682 |
|
|
entry_parm = parmreg;
|
| 2683 |
|
|
}
|
| 2684 |
|
|
|
| 2685 |
|
|
data->entry_parm = entry_parm;
|
| 2686 |
|
|
}
|
| 2687 |
|
|
|
| 2688 |
|
|
/* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
|
| 2689 |
|
|
always valid and properly aligned. */
|
| 2690 |
|
|
|
| 2691 |
|
|
static void
|
| 2692 |
|
|
assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
|
| 2693 |
|
|
{
|
| 2694 |
|
|
rtx stack_parm = data->stack_parm;
|
| 2695 |
|
|
|
| 2696 |
|
|
/* If we can't trust the parm stack slot to be aligned enough for its
|
| 2697 |
|
|
ultimate type, don't use that slot after entry. We'll make another
|
| 2698 |
|
|
stack slot, if we need one. */
|
| 2699 |
|
|
if (stack_parm
|
| 2700 |
|
|
&& ((STRICT_ALIGNMENT
|
| 2701 |
|
|
&& GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
|
| 2702 |
|
|
|| (data->nominal_type
|
| 2703 |
|
|
&& TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
|
| 2704 |
|
|
&& MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
|
| 2705 |
|
|
stack_parm = NULL;
|
| 2706 |
|
|
|
| 2707 |
|
|
/* If parm was passed in memory, and we need to convert it on entry,
|
| 2708 |
|
|
don't store it back in that same slot. */
|
| 2709 |
|
|
else if (data->entry_parm == stack_parm
|
| 2710 |
|
|
&& data->nominal_mode != BLKmode
|
| 2711 |
|
|
&& data->nominal_mode != data->passed_mode)
|
| 2712 |
|
|
stack_parm = NULL;
|
| 2713 |
|
|
|
| 2714 |
|
|
/* If stack protection is in effect for this function, don't leave any
|
| 2715 |
|
|
pointers in their passed stack slots. */
|
| 2716 |
|
|
else if (crtl->stack_protect_guard
|
| 2717 |
|
|
&& (flag_stack_protect == 2
|
| 2718 |
|
|
|| data->passed_pointer
|
| 2719 |
|
|
|| POINTER_TYPE_P (data->nominal_type)))
|
| 2720 |
|
|
stack_parm = NULL;
|
| 2721 |
|
|
|
| 2722 |
|
|
data->stack_parm = stack_parm;
|
| 2723 |
|
|
}
|
| 2724 |
|
|
|
| 2725 |
|
|
/* A subroutine of assign_parms. Return true if the current parameter
|
| 2726 |
|
|
should be stored as a BLKmode in the current frame. */
|
| 2727 |
|
|
|
| 2728 |
|
|
static bool
|
| 2729 |
|
|
assign_parm_setup_block_p (struct assign_parm_data_one *data)
|
| 2730 |
|
|
{
|
| 2731 |
|
|
if (data->nominal_mode == BLKmode)
|
| 2732 |
|
|
return true;
|
| 2733 |
|
|
if (GET_MODE (data->entry_parm) == BLKmode)
|
| 2734 |
|
|
return true;
|
| 2735 |
|
|
|
| 2736 |
|
|
#ifdef BLOCK_REG_PADDING
|
| 2737 |
|
|
/* Only assign_parm_setup_block knows how to deal with register arguments
|
| 2738 |
|
|
that are padded at the least significant end. */
|
| 2739 |
|
|
if (REG_P (data->entry_parm)
|
| 2740 |
|
|
&& GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
|
| 2741 |
|
|
&& (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
|
| 2742 |
|
|
== (BYTES_BIG_ENDIAN ? upward : downward)))
|
| 2743 |
|
|
return true;
|
| 2744 |
|
|
#endif
|
| 2745 |
|
|
|
| 2746 |
|
|
return false;
|
| 2747 |
|
|
}
|
| 2748 |
|
|
|
| 2749 |
|
|
/* A subroutine of assign_parms. Arrange for the parameter to be
|
| 2750 |
|
|
present and valid in DATA->STACK_RTL. */
|
| 2751 |
|
|
|
| 2752 |
|
|
static void
|
| 2753 |
|
|
assign_parm_setup_block (struct assign_parm_data_all *all,
|
| 2754 |
|
|
tree parm, struct assign_parm_data_one *data)
|
| 2755 |
|
|
{
|
| 2756 |
|
|
rtx entry_parm = data->entry_parm;
|
| 2757 |
|
|
rtx stack_parm = data->stack_parm;
|
| 2758 |
|
|
HOST_WIDE_INT size;
|
| 2759 |
|
|
HOST_WIDE_INT size_stored;
|
| 2760 |
|
|
|
| 2761 |
|
|
if (GET_CODE (entry_parm) == PARALLEL)
|
| 2762 |
|
|
entry_parm = emit_group_move_into_temps (entry_parm);
|
| 2763 |
|
|
|
| 2764 |
|
|
size = int_size_in_bytes (data->passed_type);
|
| 2765 |
|
|
size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
|
| 2766 |
|
|
if (stack_parm == 0)
|
| 2767 |
|
|
{
|
| 2768 |
|
|
DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
|
| 2769 |
|
|
stack_parm = assign_stack_local (BLKmode, size_stored,
|
| 2770 |
|
|
DECL_ALIGN (parm));
|
| 2771 |
|
|
if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
|
| 2772 |
|
|
PUT_MODE (stack_parm, GET_MODE (entry_parm));
|
| 2773 |
|
|
set_mem_attributes (stack_parm, parm, 1);
|
| 2774 |
|
|
}
|
| 2775 |
|
|
|
| 2776 |
|
|
/* If a BLKmode arrives in registers, copy it to a stack slot. Handle
|
| 2777 |
|
|
calls that pass values in multiple non-contiguous locations. */
|
| 2778 |
|
|
if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
|
| 2779 |
|
|
{
|
| 2780 |
|
|
rtx mem;
|
| 2781 |
|
|
|
| 2782 |
|
|
/* Note that we will be storing an integral number of words.
|
| 2783 |
|
|
So we have to be careful to ensure that we allocate an
|
| 2784 |
|
|
integral number of words. We do this above when we call
|
| 2785 |
|
|
assign_stack_local if space was not allocated in the argument
|
| 2786 |
|
|
list. If it was, this will not work if PARM_BOUNDARY is not
|
| 2787 |
|
|
a multiple of BITS_PER_WORD. It isn't clear how to fix this
|
| 2788 |
|
|
if it becomes a problem. Exception is when BLKmode arrives
|
| 2789 |
|
|
with arguments not conforming to word_mode. */
|
| 2790 |
|
|
|
| 2791 |
|
|
if (data->stack_parm == 0)
|
| 2792 |
|
|
;
|
| 2793 |
|
|
else if (GET_CODE (entry_parm) == PARALLEL)
|
| 2794 |
|
|
;
|
| 2795 |
|
|
else
|
| 2796 |
|
|
gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
|
| 2797 |
|
|
|
| 2798 |
|
|
mem = validize_mem (stack_parm);
|
| 2799 |
|
|
|
| 2800 |
|
|
/* Handle values in multiple non-contiguous locations. */
|
| 2801 |
|
|
if (GET_CODE (entry_parm) == PARALLEL)
|
| 2802 |
|
|
{
|
| 2803 |
|
|
push_to_sequence2 (all->first_conversion_insn,
|
| 2804 |
|
|
all->last_conversion_insn);
|
| 2805 |
|
|
emit_group_store (mem, entry_parm, data->passed_type, size);
|
| 2806 |
|
|
all->first_conversion_insn = get_insns ();
|
| 2807 |
|
|
all->last_conversion_insn = get_last_insn ();
|
| 2808 |
|
|
end_sequence ();
|
| 2809 |
|
|
}
|
| 2810 |
|
|
|
| 2811 |
|
|
else if (size == 0)
|
| 2812 |
|
|
;
|
| 2813 |
|
|
|
| 2814 |
|
|
/* If SIZE is that of a mode no bigger than a word, just use
|
| 2815 |
|
|
that mode's store operation. */
|
| 2816 |
|
|
else if (size <= UNITS_PER_WORD)
|
| 2817 |
|
|
{
|
| 2818 |
|
|
enum machine_mode mode
|
| 2819 |
|
|
= mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
|
| 2820 |
|
|
|
| 2821 |
|
|
if (mode != BLKmode
|
| 2822 |
|
|
#ifdef BLOCK_REG_PADDING
|
| 2823 |
|
|
&& (size == UNITS_PER_WORD
|
| 2824 |
|
|
|| (BLOCK_REG_PADDING (mode, data->passed_type, 1)
|
| 2825 |
|
|
!= (BYTES_BIG_ENDIAN ? upward : downward)))
|
| 2826 |
|
|
#endif
|
| 2827 |
|
|
)
|
| 2828 |
|
|
{
|
| 2829 |
|
|
rtx reg;
|
| 2830 |
|
|
|
| 2831 |
|
|
/* We are really truncating a word_mode value containing
|
| 2832 |
|
|
SIZE bytes into a value of mode MODE. If such an
|
| 2833 |
|
|
operation requires no actual instructions, we can refer
|
| 2834 |
|
|
to the value directly in mode MODE, otherwise we must
|
| 2835 |
|
|
start with the register in word_mode and explicitly
|
| 2836 |
|
|
convert it. */
|
| 2837 |
|
|
if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
|
| 2838 |
|
|
reg = gen_rtx_REG (mode, REGNO (entry_parm));
|
| 2839 |
|
|
else
|
| 2840 |
|
|
{
|
| 2841 |
|
|
reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
|
| 2842 |
|
|
reg = convert_to_mode (mode, copy_to_reg (reg), 1);
|
| 2843 |
|
|
}
|
| 2844 |
|
|
emit_move_insn (change_address (mem, mode, 0), reg);
|
| 2845 |
|
|
}
|
| 2846 |
|
|
|
| 2847 |
|
|
/* Blocks smaller than a word on a BYTES_BIG_ENDIAN
|
| 2848 |
|
|
machine must be aligned to the left before storing
|
| 2849 |
|
|
to memory. Note that the previous test doesn't
|
| 2850 |
|
|
handle all cases (e.g. SIZE == 3). */
|
| 2851 |
|
|
else if (size != UNITS_PER_WORD
|
| 2852 |
|
|
#ifdef BLOCK_REG_PADDING
|
| 2853 |
|
|
&& (BLOCK_REG_PADDING (mode, data->passed_type, 1)
|
| 2854 |
|
|
== downward)
|
| 2855 |
|
|
#else
|
| 2856 |
|
|
&& BYTES_BIG_ENDIAN
|
| 2857 |
|
|
#endif
|
| 2858 |
|
|
)
|
| 2859 |
|
|
{
|
| 2860 |
|
|
rtx tem, x;
|
| 2861 |
|
|
int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
|
| 2862 |
|
|
rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
|
| 2863 |
|
|
|
| 2864 |
|
|
x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
|
| 2865 |
|
|
tem = change_address (mem, word_mode, 0);
|
| 2866 |
|
|
emit_move_insn (tem, x);
|
| 2867 |
|
|
}
|
| 2868 |
|
|
else
|
| 2869 |
|
|
move_block_from_reg (REGNO (entry_parm), mem,
|
| 2870 |
|
|
size_stored / UNITS_PER_WORD);
|
| 2871 |
|
|
}
|
| 2872 |
|
|
else
|
| 2873 |
|
|
move_block_from_reg (REGNO (entry_parm), mem,
|
| 2874 |
|
|
size_stored / UNITS_PER_WORD);
|
| 2875 |
|
|
}
|
| 2876 |
|
|
else if (data->stack_parm == 0)
|
| 2877 |
|
|
{
|
| 2878 |
|
|
push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
|
| 2879 |
|
|
emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
|
| 2880 |
|
|
BLOCK_OP_NORMAL);
|
| 2881 |
|
|
all->first_conversion_insn = get_insns ();
|
| 2882 |
|
|
all->last_conversion_insn = get_last_insn ();
|
| 2883 |
|
|
end_sequence ();
|
| 2884 |
|
|
}
|
| 2885 |
|
|
|
| 2886 |
|
|
data->stack_parm = stack_parm;
|
| 2887 |
|
|
SET_DECL_RTL (parm, stack_parm);
|
| 2888 |
|
|
}
|
| 2889 |
|
|
|
| 2890 |
|
|
/* A subroutine of assign_parms. Allocate a pseudo to hold the current
|
| 2891 |
|
|
parameter. Get it there. Perform all ABI specified conversions. */
|
| 2892 |
|
|
|
| 2893 |
|
|
static void
|
| 2894 |
|
|
assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
|
| 2895 |
|
|
struct assign_parm_data_one *data)
|
| 2896 |
|
|
{
|
| 2897 |
|
|
rtx parmreg, validated_mem;
|
| 2898 |
|
|
rtx equiv_stack_parm;
|
| 2899 |
|
|
enum machine_mode promoted_nominal_mode;
|
| 2900 |
|
|
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
|
| 2901 |
|
|
bool did_conversion = false;
|
| 2902 |
|
|
bool need_conversion, moved;
|
| 2903 |
|
|
|
| 2904 |
|
|
/* Store the parm in a pseudoregister during the function, but we may
|
| 2905 |
|
|
need to do it in a wider mode. Using 2 here makes the result
|
| 2906 |
|
|
consistent with promote_decl_mode and thus expand_expr_real_1. */
|
| 2907 |
|
|
promoted_nominal_mode
|
| 2908 |
|
|
= promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
|
| 2909 |
|
|
TREE_TYPE (current_function_decl), 2);
|
| 2910 |
|
|
|
| 2911 |
|
|
parmreg = gen_reg_rtx (promoted_nominal_mode);
|
| 2912 |
|
|
|
| 2913 |
|
|
if (!DECL_ARTIFICIAL (parm))
|
| 2914 |
|
|
mark_user_reg (parmreg);
|
| 2915 |
|
|
|
| 2916 |
|
|
/* If this was an item that we received a pointer to,
|
| 2917 |
|
|
set DECL_RTL appropriately. */
|
| 2918 |
|
|
if (data->passed_pointer)
|
| 2919 |
|
|
{
|
| 2920 |
|
|
rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
|
| 2921 |
|
|
set_mem_attributes (x, parm, 1);
|
| 2922 |
|
|
SET_DECL_RTL (parm, x);
|
| 2923 |
|
|
}
|
| 2924 |
|
|
else
|
| 2925 |
|
|
SET_DECL_RTL (parm, parmreg);
|
| 2926 |
|
|
|
| 2927 |
|
|
assign_parm_remove_parallels (data);
|
| 2928 |
|
|
|
| 2929 |
|
|
/* Copy the value into the register, thus bridging between
|
| 2930 |
|
|
assign_parm_find_data_types and expand_expr_real_1. */
|
| 2931 |
|
|
|
| 2932 |
|
|
equiv_stack_parm = data->stack_parm;
|
| 2933 |
|
|
validated_mem = validize_mem (data->entry_parm);
|
| 2934 |
|
|
|
| 2935 |
|
|
need_conversion = (data->nominal_mode != data->passed_mode
|
| 2936 |
|
|
|| promoted_nominal_mode != data->promoted_mode);
|
| 2937 |
|
|
moved = false;
|
| 2938 |
|
|
|
| 2939 |
|
|
if (need_conversion
|
| 2940 |
|
|
&& GET_MODE_CLASS (data->nominal_mode) == MODE_INT
|
| 2941 |
|
|
&& data->nominal_mode == data->passed_mode
|
| 2942 |
|
|
&& data->nominal_mode == GET_MODE (data->entry_parm))
|
| 2943 |
|
|
{
|
| 2944 |
|
|
/* ENTRY_PARM has been converted to PROMOTED_MODE, its
|
| 2945 |
|
|
mode, by the caller. We now have to convert it to
|
| 2946 |
|
|
NOMINAL_MODE, if different. However, PARMREG may be in
|
| 2947 |
|
|
a different mode than NOMINAL_MODE if it is being stored
|
| 2948 |
|
|
promoted.
|
| 2949 |
|
|
|
| 2950 |
|
|
If ENTRY_PARM is a hard register, it might be in a register
|
| 2951 |
|
|
not valid for operating in its mode (e.g., an odd-numbered
|
| 2952 |
|
|
register for a DFmode). In that case, moves are the only
|
| 2953 |
|
|
thing valid, so we can't do a convert from there. This
|
| 2954 |
|
|
occurs when the calling sequence allow such misaligned
|
| 2955 |
|
|
usages.
|
| 2956 |
|
|
|
| 2957 |
|
|
In addition, the conversion may involve a call, which could
|
| 2958 |
|
|
clobber parameters which haven't been copied to pseudo
|
| 2959 |
|
|
registers yet.
|
| 2960 |
|
|
|
| 2961 |
|
|
First, we try to emit an insn which performs the necessary
|
| 2962 |
|
|
conversion. We verify that this insn does not clobber any
|
| 2963 |
|
|
hard registers. */
|
| 2964 |
|
|
|
| 2965 |
|
|
enum insn_code icode;
|
| 2966 |
|
|
rtx op0, op1;
|
| 2967 |
|
|
|
| 2968 |
|
|
icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
|
| 2969 |
|
|
unsignedp);
|
| 2970 |
|
|
|
| 2971 |
|
|
op0 = parmreg;
|
| 2972 |
|
|
op1 = validated_mem;
|
| 2973 |
|
|
if (icode != CODE_FOR_nothing
|
| 2974 |
|
|
&& insn_operand_matches (icode, 0, op0)
|
| 2975 |
|
|
&& insn_operand_matches (icode, 1, op1))
|
| 2976 |
|
|
{
|
| 2977 |
|
|
enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
|
| 2978 |
|
|
rtx insn, insns;
|
| 2979 |
|
|
HARD_REG_SET hardregs;
|
| 2980 |
|
|
|
| 2981 |
|
|
start_sequence ();
|
| 2982 |
|
|
insn = gen_extend_insn (op0, op1, promoted_nominal_mode,
|
| 2983 |
|
|
data->passed_mode, unsignedp);
|
| 2984 |
|
|
emit_insn (insn);
|
| 2985 |
|
|
insns = get_insns ();
|
| 2986 |
|
|
|
| 2987 |
|
|
moved = true;
|
| 2988 |
|
|
CLEAR_HARD_REG_SET (hardregs);
|
| 2989 |
|
|
for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
|
| 2990 |
|
|
{
|
| 2991 |
|
|
if (INSN_P (insn))
|
| 2992 |
|
|
note_stores (PATTERN (insn), record_hard_reg_sets,
|
| 2993 |
|
|
&hardregs);
|
| 2994 |
|
|
if (!hard_reg_set_empty_p (hardregs))
|
| 2995 |
|
|
moved = false;
|
| 2996 |
|
|
}
|
| 2997 |
|
|
|
| 2998 |
|
|
end_sequence ();
|
| 2999 |
|
|
|
| 3000 |
|
|
if (moved)
|
| 3001 |
|
|
{
|
| 3002 |
|
|
emit_insn (insns);
|
| 3003 |
|
|
if (equiv_stack_parm != NULL_RTX)
|
| 3004 |
|
|
equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
|
| 3005 |
|
|
equiv_stack_parm);
|
| 3006 |
|
|
}
|
| 3007 |
|
|
}
|
| 3008 |
|
|
}
|
| 3009 |
|
|
|
| 3010 |
|
|
if (moved)
|
| 3011 |
|
|
/* Nothing to do. */
|
| 3012 |
|
|
;
|
| 3013 |
|
|
else if (need_conversion)
|
| 3014 |
|
|
{
|
| 3015 |
|
|
/* We did not have an insn to convert directly, or the sequence
|
| 3016 |
|
|
generated appeared unsafe. We must first copy the parm to a
|
| 3017 |
|
|
pseudo reg, and save the conversion until after all
|
| 3018 |
|
|
parameters have been moved. */
|
| 3019 |
|
|
|
| 3020 |
|
|
int save_tree_used;
|
| 3021 |
|
|
rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
|
| 3022 |
|
|
|
| 3023 |
|
|
emit_move_insn (tempreg, validated_mem);
|
| 3024 |
|
|
|
| 3025 |
|
|
push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
|
| 3026 |
|
|
tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
|
| 3027 |
|
|
|
| 3028 |
|
|
if (GET_CODE (tempreg) == SUBREG
|
| 3029 |
|
|
&& GET_MODE (tempreg) == data->nominal_mode
|
| 3030 |
|
|
&& REG_P (SUBREG_REG (tempreg))
|
| 3031 |
|
|
&& data->nominal_mode == data->passed_mode
|
| 3032 |
|
|
&& GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
|
| 3033 |
|
|
&& GET_MODE_SIZE (GET_MODE (tempreg))
|
| 3034 |
|
|
< GET_MODE_SIZE (GET_MODE (data->entry_parm)))
|
| 3035 |
|
|
{
|
| 3036 |
|
|
/* The argument is already sign/zero extended, so note it
|
| 3037 |
|
|
into the subreg. */
|
| 3038 |
|
|
SUBREG_PROMOTED_VAR_P (tempreg) = 1;
|
| 3039 |
|
|
SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
|
| 3040 |
|
|
}
|
| 3041 |
|
|
|
| 3042 |
|
|
/* TREE_USED gets set erroneously during expand_assignment. */
|
| 3043 |
|
|
save_tree_used = TREE_USED (parm);
|
| 3044 |
|
|
expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
|
| 3045 |
|
|
TREE_USED (parm) = save_tree_used;
|
| 3046 |
|
|
all->first_conversion_insn = get_insns ();
|
| 3047 |
|
|
all->last_conversion_insn = get_last_insn ();
|
| 3048 |
|
|
end_sequence ();
|
| 3049 |
|
|
|
| 3050 |
|
|
did_conversion = true;
|
| 3051 |
|
|
}
|
| 3052 |
|
|
else
|
| 3053 |
|
|
emit_move_insn (parmreg, validated_mem);
|
| 3054 |
|
|
|
| 3055 |
|
|
/* If we were passed a pointer but the actual value can safely live
|
| 3056 |
|
|
in a register, put it in one. */
|
| 3057 |
|
|
if (data->passed_pointer
|
| 3058 |
|
|
&& TYPE_MODE (TREE_TYPE (parm)) != BLKmode
|
| 3059 |
|
|
/* If by-reference argument was promoted, demote it. */
|
| 3060 |
|
|
&& (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
|
| 3061 |
|
|
|| use_register_for_decl (parm)))
|
| 3062 |
|
|
{
|
| 3063 |
|
|
/* We can't use nominal_mode, because it will have been set to
|
| 3064 |
|
|
Pmode above. We must use the actual mode of the parm. */
|
| 3065 |
|
|
parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
|
| 3066 |
|
|
mark_user_reg (parmreg);
|
| 3067 |
|
|
|
| 3068 |
|
|
if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
|
| 3069 |
|
|
{
|
| 3070 |
|
|
rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
|
| 3071 |
|
|
int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
|
| 3072 |
|
|
|
| 3073 |
|
|
push_to_sequence2 (all->first_conversion_insn,
|
| 3074 |
|
|
all->last_conversion_insn);
|
| 3075 |
|
|
emit_move_insn (tempreg, DECL_RTL (parm));
|
| 3076 |
|
|
tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
|
| 3077 |
|
|
emit_move_insn (parmreg, tempreg);
|
| 3078 |
|
|
all->first_conversion_insn = get_insns ();
|
| 3079 |
|
|
all->last_conversion_insn = get_last_insn ();
|
| 3080 |
|
|
end_sequence ();
|
| 3081 |
|
|
|
| 3082 |
|
|
did_conversion = true;
|
| 3083 |
|
|
}
|
| 3084 |
|
|
else
|
| 3085 |
|
|
emit_move_insn (parmreg, DECL_RTL (parm));
|
| 3086 |
|
|
|
| 3087 |
|
|
SET_DECL_RTL (parm, parmreg);
|
| 3088 |
|
|
|
| 3089 |
|
|
/* STACK_PARM is the pointer, not the parm, and PARMREG is
|
| 3090 |
|
|
now the parm. */
|
| 3091 |
|
|
data->stack_parm = NULL;
|
| 3092 |
|
|
}
|
| 3093 |
|
|
|
| 3094 |
|
|
/* Mark the register as eliminable if we did no conversion and it was
|
| 3095 |
|
|
copied from memory at a fixed offset, and the arg pointer was not
|
| 3096 |
|
|
copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
|
| 3097 |
|
|
offset formed an invalid address, such memory-equivalences as we
|
| 3098 |
|
|
make here would screw up life analysis for it. */
|
| 3099 |
|
|
if (data->nominal_mode == data->passed_mode
|
| 3100 |
|
|
&& !did_conversion
|
| 3101 |
|
|
&& data->stack_parm != 0
|
| 3102 |
|
|
&& MEM_P (data->stack_parm)
|
| 3103 |
|
|
&& data->locate.offset.var == 0
|
| 3104 |
|
|
&& reg_mentioned_p (virtual_incoming_args_rtx,
|
| 3105 |
|
|
XEXP (data->stack_parm, 0)))
|
| 3106 |
|
|
{
|
| 3107 |
|
|
rtx linsn = get_last_insn ();
|
| 3108 |
|
|
rtx sinsn, set;
|
| 3109 |
|
|
|
| 3110 |
|
|
/* Mark complex types separately. */
|
| 3111 |
|
|
if (GET_CODE (parmreg) == CONCAT)
|
| 3112 |
|
|
{
|
| 3113 |
|
|
enum machine_mode submode
|
| 3114 |
|
|
= GET_MODE_INNER (GET_MODE (parmreg));
|
| 3115 |
|
|
int regnor = REGNO (XEXP (parmreg, 0));
|
| 3116 |
|
|
int regnoi = REGNO (XEXP (parmreg, 1));
|
| 3117 |
|
|
rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
|
| 3118 |
|
|
rtx stacki = adjust_address_nv (data->stack_parm, submode,
|
| 3119 |
|
|
GET_MODE_SIZE (submode));
|
| 3120 |
|
|
|
| 3121 |
|
|
/* Scan backwards for the set of the real and
|
| 3122 |
|
|
imaginary parts. */
|
| 3123 |
|
|
for (sinsn = linsn; sinsn != 0;
|
| 3124 |
|
|
sinsn = prev_nonnote_insn (sinsn))
|
| 3125 |
|
|
{
|
| 3126 |
|
|
set = single_set (sinsn);
|
| 3127 |
|
|
if (set == 0)
|
| 3128 |
|
|
continue;
|
| 3129 |
|
|
|
| 3130 |
|
|
if (SET_DEST (set) == regno_reg_rtx [regnoi])
|
| 3131 |
|
|
set_unique_reg_note (sinsn, REG_EQUIV, stacki);
|
| 3132 |
|
|
else if (SET_DEST (set) == regno_reg_rtx [regnor])
|
| 3133 |
|
|
set_unique_reg_note (sinsn, REG_EQUIV, stackr);
|
| 3134 |
|
|
}
|
| 3135 |
|
|
}
|
| 3136 |
|
|
else
|
| 3137 |
|
|
set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
|
| 3138 |
|
|
}
|
| 3139 |
|
|
|
| 3140 |
|
|
/* For pointer data type, suggest pointer register. */
|
| 3141 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (parm)))
|
| 3142 |
|
|
mark_reg_pointer (parmreg,
|
| 3143 |
|
|
TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
|
| 3144 |
|
|
}
|
| 3145 |
|
|
|
| 3146 |
|
|
/* A subroutine of assign_parms. Allocate stack space to hold the current
|
| 3147 |
|
|
parameter. Get it there. Perform all ABI specified conversions. */
|
| 3148 |
|
|
|
| 3149 |
|
|
static void
|
| 3150 |
|
|
assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
|
| 3151 |
|
|
struct assign_parm_data_one *data)
|
| 3152 |
|
|
{
|
| 3153 |
|
|
/* Value must be stored in the stack slot STACK_PARM during function
|
| 3154 |
|
|
execution. */
|
| 3155 |
|
|
bool to_conversion = false;
|
| 3156 |
|
|
|
| 3157 |
|
|
assign_parm_remove_parallels (data);
|
| 3158 |
|
|
|
| 3159 |
|
|
if (data->promoted_mode != data->nominal_mode)
|
| 3160 |
|
|
{
|
| 3161 |
|
|
/* Conversion is required. */
|
| 3162 |
|
|
rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
|
| 3163 |
|
|
|
| 3164 |
|
|
emit_move_insn (tempreg, validize_mem (data->entry_parm));
|
| 3165 |
|
|
|
| 3166 |
|
|
push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
|
| 3167 |
|
|
to_conversion = true;
|
| 3168 |
|
|
|
| 3169 |
|
|
data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
|
| 3170 |
|
|
TYPE_UNSIGNED (TREE_TYPE (parm)));
|
| 3171 |
|
|
|
| 3172 |
|
|
if (data->stack_parm)
|
| 3173 |
|
|
{
|
| 3174 |
|
|
int offset = subreg_lowpart_offset (data->nominal_mode,
|
| 3175 |
|
|
GET_MODE (data->stack_parm));
|
| 3176 |
|
|
/* ??? This may need a big-endian conversion on sparc64. */
|
| 3177 |
|
|
data->stack_parm
|
| 3178 |
|
|
= adjust_address (data->stack_parm, data->nominal_mode, 0);
|
| 3179 |
|
|
if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
|
| 3180 |
|
|
set_mem_offset (data->stack_parm,
|
| 3181 |
|
|
MEM_OFFSET (data->stack_parm) + offset);
|
| 3182 |
|
|
}
|
| 3183 |
|
|
}
|
| 3184 |
|
|
|
| 3185 |
|
|
if (data->entry_parm != data->stack_parm)
|
| 3186 |
|
|
{
|
| 3187 |
|
|
rtx src, dest;
|
| 3188 |
|
|
|
| 3189 |
|
|
if (data->stack_parm == 0)
|
| 3190 |
|
|
{
|
| 3191 |
|
|
int align = STACK_SLOT_ALIGNMENT (data->passed_type,
|
| 3192 |
|
|
GET_MODE (data->entry_parm),
|
| 3193 |
|
|
TYPE_ALIGN (data->passed_type));
|
| 3194 |
|
|
data->stack_parm
|
| 3195 |
|
|
= assign_stack_local (GET_MODE (data->entry_parm),
|
| 3196 |
|
|
GET_MODE_SIZE (GET_MODE (data->entry_parm)),
|
| 3197 |
|
|
align);
|
| 3198 |
|
|
set_mem_attributes (data->stack_parm, parm, 1);
|
| 3199 |
|
|
}
|
| 3200 |
|
|
|
| 3201 |
|
|
dest = validize_mem (data->stack_parm);
|
| 3202 |
|
|
src = validize_mem (data->entry_parm);
|
| 3203 |
|
|
|
| 3204 |
|
|
if (MEM_P (src))
|
| 3205 |
|
|
{
|
| 3206 |
|
|
/* Use a block move to handle potentially misaligned entry_parm. */
|
| 3207 |
|
|
if (!to_conversion)
|
| 3208 |
|
|
push_to_sequence2 (all->first_conversion_insn,
|
| 3209 |
|
|
all->last_conversion_insn);
|
| 3210 |
|
|
to_conversion = true;
|
| 3211 |
|
|
|
| 3212 |
|
|
emit_block_move (dest, src,
|
| 3213 |
|
|
GEN_INT (int_size_in_bytes (data->passed_type)),
|
| 3214 |
|
|
BLOCK_OP_NORMAL);
|
| 3215 |
|
|
}
|
| 3216 |
|
|
else
|
| 3217 |
|
|
emit_move_insn (dest, src);
|
| 3218 |
|
|
}
|
| 3219 |
|
|
|
| 3220 |
|
|
if (to_conversion)
|
| 3221 |
|
|
{
|
| 3222 |
|
|
all->first_conversion_insn = get_insns ();
|
| 3223 |
|
|
all->last_conversion_insn = get_last_insn ();
|
| 3224 |
|
|
end_sequence ();
|
| 3225 |
|
|
}
|
| 3226 |
|
|
|
| 3227 |
|
|
SET_DECL_RTL (parm, data->stack_parm);
|
| 3228 |
|
|
}
|
| 3229 |
|
|
|
| 3230 |
|
|
/* A subroutine of assign_parms. If the ABI splits complex arguments, then
|
| 3231 |
|
|
undo the frobbing that we did in assign_parms_augmented_arg_list. */
|
| 3232 |
|
|
|
| 3233 |
|
|
static void
|
| 3234 |
|
|
assign_parms_unsplit_complex (struct assign_parm_data_all *all,
|
| 3235 |
|
|
VEC(tree, heap) *fnargs)
|
| 3236 |
|
|
{
|
| 3237 |
|
|
tree parm;
|
| 3238 |
|
|
tree orig_fnargs = all->orig_fnargs;
|
| 3239 |
|
|
unsigned i = 0;
|
| 3240 |
|
|
|
| 3241 |
|
|
for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
|
| 3242 |
|
|
{
|
| 3243 |
|
|
if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
|
| 3244 |
|
|
&& targetm.calls.split_complex_arg (TREE_TYPE (parm)))
|
| 3245 |
|
|
{
|
| 3246 |
|
|
rtx tmp, real, imag;
|
| 3247 |
|
|
enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
|
| 3248 |
|
|
|
| 3249 |
|
|
real = DECL_RTL (VEC_index (tree, fnargs, i));
|
| 3250 |
|
|
imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
|
| 3251 |
|
|
if (inner != GET_MODE (real))
|
| 3252 |
|
|
{
|
| 3253 |
|
|
real = gen_lowpart_SUBREG (inner, real);
|
| 3254 |
|
|
imag = gen_lowpart_SUBREG (inner, imag);
|
| 3255 |
|
|
}
|
| 3256 |
|
|
|
| 3257 |
|
|
if (TREE_ADDRESSABLE (parm))
|
| 3258 |
|
|
{
|
| 3259 |
|
|
rtx rmem, imem;
|
| 3260 |
|
|
HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
|
| 3261 |
|
|
int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
|
| 3262 |
|
|
DECL_MODE (parm),
|
| 3263 |
|
|
TYPE_ALIGN (TREE_TYPE (parm)));
|
| 3264 |
|
|
|
| 3265 |
|
|
/* split_complex_arg put the real and imag parts in
|
| 3266 |
|
|
pseudos. Move them to memory. */
|
| 3267 |
|
|
tmp = assign_stack_local (DECL_MODE (parm), size, align);
|
| 3268 |
|
|
set_mem_attributes (tmp, parm, 1);
|
| 3269 |
|
|
rmem = adjust_address_nv (tmp, inner, 0);
|
| 3270 |
|
|
imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
|
| 3271 |
|
|
push_to_sequence2 (all->first_conversion_insn,
|
| 3272 |
|
|
all->last_conversion_insn);
|
| 3273 |
|
|
emit_move_insn (rmem, real);
|
| 3274 |
|
|
emit_move_insn (imem, imag);
|
| 3275 |
|
|
all->first_conversion_insn = get_insns ();
|
| 3276 |
|
|
all->last_conversion_insn = get_last_insn ();
|
| 3277 |
|
|
end_sequence ();
|
| 3278 |
|
|
}
|
| 3279 |
|
|
else
|
| 3280 |
|
|
tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
|
| 3281 |
|
|
SET_DECL_RTL (parm, tmp);
|
| 3282 |
|
|
|
| 3283 |
|
|
real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
|
| 3284 |
|
|
imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
|
| 3285 |
|
|
if (inner != GET_MODE (real))
|
| 3286 |
|
|
{
|
| 3287 |
|
|
real = gen_lowpart_SUBREG (inner, real);
|
| 3288 |
|
|
imag = gen_lowpart_SUBREG (inner, imag);
|
| 3289 |
|
|
}
|
| 3290 |
|
|
tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
|
| 3291 |
|
|
set_decl_incoming_rtl (parm, tmp, false);
|
| 3292 |
|
|
i++;
|
| 3293 |
|
|
}
|
| 3294 |
|
|
}
|
| 3295 |
|
|
}
|
| 3296 |
|
|
|
| 3297 |
|
|
/* Assign RTL expressions to the function's parameters. This may involve
|
| 3298 |
|
|
copying them into registers and using those registers as the DECL_RTL. */
|
| 3299 |
|
|
|
| 3300 |
|
|
static void
|
| 3301 |
|
|
assign_parms (tree fndecl)
|
| 3302 |
|
|
{
|
| 3303 |
|
|
struct assign_parm_data_all all;
|
| 3304 |
|
|
tree parm;
|
| 3305 |
|
|
VEC(tree, heap) *fnargs;
|
| 3306 |
|
|
unsigned i;
|
| 3307 |
|
|
|
| 3308 |
|
|
crtl->args.internal_arg_pointer
|
| 3309 |
|
|
= targetm.calls.internal_arg_pointer ();
|
| 3310 |
|
|
|
| 3311 |
|
|
assign_parms_initialize_all (&all);
|
| 3312 |
|
|
fnargs = assign_parms_augmented_arg_list (&all);
|
| 3313 |
|
|
|
| 3314 |
|
|
FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
|
| 3315 |
|
|
{
|
| 3316 |
|
|
struct assign_parm_data_one data;
|
| 3317 |
|
|
|
| 3318 |
|
|
/* Extract the type of PARM; adjust it according to ABI. */
|
| 3319 |
|
|
assign_parm_find_data_types (&all, parm, &data);
|
| 3320 |
|
|
|
| 3321 |
|
|
/* Early out for errors and void parameters. */
|
| 3322 |
|
|
if (data.passed_mode == VOIDmode)
|
| 3323 |
|
|
{
|
| 3324 |
|
|
SET_DECL_RTL (parm, const0_rtx);
|
| 3325 |
|
|
DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
|
| 3326 |
|
|
continue;
|
| 3327 |
|
|
}
|
| 3328 |
|
|
|
| 3329 |
|
|
/* Estimate stack alignment from parameter alignment. */
|
| 3330 |
|
|
if (SUPPORTS_STACK_ALIGNMENT)
|
| 3331 |
|
|
{
|
| 3332 |
|
|
unsigned int align
|
| 3333 |
|
|
= targetm.calls.function_arg_boundary (data.promoted_mode,
|
| 3334 |
|
|
data.passed_type);
|
| 3335 |
|
|
align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
|
| 3336 |
|
|
align);
|
| 3337 |
|
|
if (TYPE_ALIGN (data.nominal_type) > align)
|
| 3338 |
|
|
align = MINIMUM_ALIGNMENT (data.nominal_type,
|
| 3339 |
|
|
TYPE_MODE (data.nominal_type),
|
| 3340 |
|
|
TYPE_ALIGN (data.nominal_type));
|
| 3341 |
|
|
if (crtl->stack_alignment_estimated < align)
|
| 3342 |
|
|
{
|
| 3343 |
|
|
gcc_assert (!crtl->stack_realign_processed);
|
| 3344 |
|
|
crtl->stack_alignment_estimated = align;
|
| 3345 |
|
|
}
|
| 3346 |
|
|
}
|
| 3347 |
|
|
|
| 3348 |
|
|
if (cfun->stdarg && !DECL_CHAIN (parm))
|
| 3349 |
|
|
assign_parms_setup_varargs (&all, &data, false);
|
| 3350 |
|
|
|
| 3351 |
|
|
/* Find out where the parameter arrives in this function. */
|
| 3352 |
|
|
assign_parm_find_entry_rtl (&all, &data);
|
| 3353 |
|
|
|
| 3354 |
|
|
/* Find out where stack space for this parameter might be. */
|
| 3355 |
|
|
if (assign_parm_is_stack_parm (&all, &data))
|
| 3356 |
|
|
{
|
| 3357 |
|
|
assign_parm_find_stack_rtl (parm, &data);
|
| 3358 |
|
|
assign_parm_adjust_entry_rtl (&data);
|
| 3359 |
|
|
}
|
| 3360 |
|
|
|
| 3361 |
|
|
/* Record permanently how this parm was passed. */
|
| 3362 |
|
|
if (data.passed_pointer)
|
| 3363 |
|
|
{
|
| 3364 |
|
|
rtx incoming_rtl
|
| 3365 |
|
|
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
|
| 3366 |
|
|
data.entry_parm);
|
| 3367 |
|
|
set_decl_incoming_rtl (parm, incoming_rtl, true);
|
| 3368 |
|
|
}
|
| 3369 |
|
|
else
|
| 3370 |
|
|
set_decl_incoming_rtl (parm, data.entry_parm, false);
|
| 3371 |
|
|
|
| 3372 |
|
|
/* Update info on where next arg arrives in registers. */
|
| 3373 |
|
|
targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
|
| 3374 |
|
|
data.passed_type, data.named_arg);
|
| 3375 |
|
|
|
| 3376 |
|
|
assign_parm_adjust_stack_rtl (&data);
|
| 3377 |
|
|
|
| 3378 |
|
|
if (assign_parm_setup_block_p (&data))
|
| 3379 |
|
|
assign_parm_setup_block (&all, parm, &data);
|
| 3380 |
|
|
else if (data.passed_pointer || use_register_for_decl (parm))
|
| 3381 |
|
|
assign_parm_setup_reg (&all, parm, &data);
|
| 3382 |
|
|
else
|
| 3383 |
|
|
assign_parm_setup_stack (&all, parm, &data);
|
| 3384 |
|
|
}
|
| 3385 |
|
|
|
| 3386 |
|
|
if (targetm.calls.split_complex_arg)
|
| 3387 |
|
|
assign_parms_unsplit_complex (&all, fnargs);
|
| 3388 |
|
|
|
| 3389 |
|
|
VEC_free (tree, heap, fnargs);
|
| 3390 |
|
|
|
| 3391 |
|
|
/* Output all parameter conversion instructions (possibly including calls)
|
| 3392 |
|
|
now that all parameters have been copied out of hard registers. */
|
| 3393 |
|
|
emit_insn (all.first_conversion_insn);
|
| 3394 |
|
|
|
| 3395 |
|
|
/* Estimate reload stack alignment from scalar return mode. */
|
| 3396 |
|
|
if (SUPPORTS_STACK_ALIGNMENT)
|
| 3397 |
|
|
{
|
| 3398 |
|
|
if (DECL_RESULT (fndecl))
|
| 3399 |
|
|
{
|
| 3400 |
|
|
tree type = TREE_TYPE (DECL_RESULT (fndecl));
|
| 3401 |
|
|
enum machine_mode mode = TYPE_MODE (type);
|
| 3402 |
|
|
|
| 3403 |
|
|
if (mode != BLKmode
|
| 3404 |
|
|
&& mode != VOIDmode
|
| 3405 |
|
|
&& !AGGREGATE_TYPE_P (type))
|
| 3406 |
|
|
{
|
| 3407 |
|
|
unsigned int align = GET_MODE_ALIGNMENT (mode);
|
| 3408 |
|
|
if (crtl->stack_alignment_estimated < align)
|
| 3409 |
|
|
{
|
| 3410 |
|
|
gcc_assert (!crtl->stack_realign_processed);
|
| 3411 |
|
|
crtl->stack_alignment_estimated = align;
|
| 3412 |
|
|
}
|
| 3413 |
|
|
}
|
| 3414 |
|
|
}
|
| 3415 |
|
|
}
|
| 3416 |
|
|
|
| 3417 |
|
|
/* If we are receiving a struct value address as the first argument, set up
|
| 3418 |
|
|
the RTL for the function result. As this might require code to convert
|
| 3419 |
|
|
the transmitted address to Pmode, we do this here to ensure that possible
|
| 3420 |
|
|
preliminary conversions of the address have been emitted already. */
|
| 3421 |
|
|
if (all.function_result_decl)
|
| 3422 |
|
|
{
|
| 3423 |
|
|
tree result = DECL_RESULT (current_function_decl);
|
| 3424 |
|
|
rtx addr = DECL_RTL (all.function_result_decl);
|
| 3425 |
|
|
rtx x;
|
| 3426 |
|
|
|
| 3427 |
|
|
if (DECL_BY_REFERENCE (result))
|
| 3428 |
|
|
{
|
| 3429 |
|
|
SET_DECL_VALUE_EXPR (result, all.function_result_decl);
|
| 3430 |
|
|
x = addr;
|
| 3431 |
|
|
}
|
| 3432 |
|
|
else
|
| 3433 |
|
|
{
|
| 3434 |
|
|
SET_DECL_VALUE_EXPR (result,
|
| 3435 |
|
|
build1 (INDIRECT_REF, TREE_TYPE (result),
|
| 3436 |
|
|
all.function_result_decl));
|
| 3437 |
|
|
addr = convert_memory_address (Pmode, addr);
|
| 3438 |
|
|
x = gen_rtx_MEM (DECL_MODE (result), addr);
|
| 3439 |
|
|
set_mem_attributes (x, result, 1);
|
| 3440 |
|
|
}
|
| 3441 |
|
|
|
| 3442 |
|
|
DECL_HAS_VALUE_EXPR_P (result) = 1;
|
| 3443 |
|
|
|
| 3444 |
|
|
SET_DECL_RTL (result, x);
|
| 3445 |
|
|
}
|
| 3446 |
|
|
|
| 3447 |
|
|
/* We have aligned all the args, so add space for the pretend args. */
|
| 3448 |
|
|
crtl->args.pretend_args_size = all.pretend_args_size;
|
| 3449 |
|
|
all.stack_args_size.constant += all.extra_pretend_bytes;
|
| 3450 |
|
|
crtl->args.size = all.stack_args_size.constant;
|
| 3451 |
|
|
|
| 3452 |
|
|
/* Adjust function incoming argument size for alignment and
|
| 3453 |
|
|
minimum length. */
|
| 3454 |
|
|
|
| 3455 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
| 3456 |
|
|
crtl->args.size = MAX (crtl->args.size,
|
| 3457 |
|
|
REG_PARM_STACK_SPACE (fndecl));
|
| 3458 |
|
|
#endif
|
| 3459 |
|
|
|
| 3460 |
|
|
crtl->args.size = CEIL_ROUND (crtl->args.size,
|
| 3461 |
|
|
PARM_BOUNDARY / BITS_PER_UNIT);
|
| 3462 |
|
|
|
| 3463 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
| 3464 |
|
|
crtl->args.arg_offset_rtx
|
| 3465 |
|
|
= (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
|
| 3466 |
|
|
: expand_expr (size_diffop (all.stack_args_size.var,
|
| 3467 |
|
|
size_int (-all.stack_args_size.constant)),
|
| 3468 |
|
|
NULL_RTX, VOIDmode, EXPAND_NORMAL));
|
| 3469 |
|
|
#else
|
| 3470 |
|
|
crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
|
| 3471 |
|
|
#endif
|
| 3472 |
|
|
|
| 3473 |
|
|
/* See how many bytes, if any, of its args a function should try to pop
|
| 3474 |
|
|
on return. */
|
| 3475 |
|
|
|
| 3476 |
|
|
crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
|
| 3477 |
|
|
TREE_TYPE (fndecl),
|
| 3478 |
|
|
crtl->args.size);
|
| 3479 |
|
|
|
| 3480 |
|
|
/* For stdarg.h function, save info about
|
| 3481 |
|
|
regs and stack space used by the named args. */
|
| 3482 |
|
|
|
| 3483 |
|
|
crtl->args.info = all.args_so_far_v;
|
| 3484 |
|
|
|
| 3485 |
|
|
/* Set the rtx used for the function return value. Put this in its
|
| 3486 |
|
|
own variable so any optimizers that need this information don't have
|
| 3487 |
|
|
to include tree.h. Do this here so it gets done when an inlined
|
| 3488 |
|
|
function gets output. */
|
| 3489 |
|
|
|
| 3490 |
|
|
crtl->return_rtx
|
| 3491 |
|
|
= (DECL_RTL_SET_P (DECL_RESULT (fndecl))
|
| 3492 |
|
|
? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
|
| 3493 |
|
|
|
| 3494 |
|
|
/* If scalar return value was computed in a pseudo-reg, or was a named
|
| 3495 |
|
|
return value that got dumped to the stack, copy that to the hard
|
| 3496 |
|
|
return register. */
|
| 3497 |
|
|
if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
|
| 3498 |
|
|
{
|
| 3499 |
|
|
tree decl_result = DECL_RESULT (fndecl);
|
| 3500 |
|
|
rtx decl_rtl = DECL_RTL (decl_result);
|
| 3501 |
|
|
|
| 3502 |
|
|
if (REG_P (decl_rtl)
|
| 3503 |
|
|
? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
|
| 3504 |
|
|
: DECL_REGISTER (decl_result))
|
| 3505 |
|
|
{
|
| 3506 |
|
|
rtx real_decl_rtl;
|
| 3507 |
|
|
|
| 3508 |
|
|
real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
|
| 3509 |
|
|
fndecl, true);
|
| 3510 |
|
|
REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
|
| 3511 |
|
|
/* The delay slot scheduler assumes that crtl->return_rtx
|
| 3512 |
|
|
holds the hard register containing the return value, not a
|
| 3513 |
|
|
temporary pseudo. */
|
| 3514 |
|
|
crtl->return_rtx = real_decl_rtl;
|
| 3515 |
|
|
}
|
| 3516 |
|
|
}
|
| 3517 |
|
|
}
|
| 3518 |
|
|
|
| 3519 |
|
|
/* A subroutine of gimplify_parameters, invoked via walk_tree.
|
| 3520 |
|
|
For all seen types, gimplify their sizes. */
|
| 3521 |
|
|
|
| 3522 |
|
|
static tree
|
| 3523 |
|
|
gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
|
| 3524 |
|
|
{
|
| 3525 |
|
|
tree t = *tp;
|
| 3526 |
|
|
|
| 3527 |
|
|
*walk_subtrees = 0;
|
| 3528 |
|
|
if (TYPE_P (t))
|
| 3529 |
|
|
{
|
| 3530 |
|
|
if (POINTER_TYPE_P (t))
|
| 3531 |
|
|
*walk_subtrees = 1;
|
| 3532 |
|
|
else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
|
| 3533 |
|
|
&& !TYPE_SIZES_GIMPLIFIED (t))
|
| 3534 |
|
|
{
|
| 3535 |
|
|
gimplify_type_sizes (t, (gimple_seq *) data);
|
| 3536 |
|
|
*walk_subtrees = 1;
|
| 3537 |
|
|
}
|
| 3538 |
|
|
}
|
| 3539 |
|
|
|
| 3540 |
|
|
return NULL;
|
| 3541 |
|
|
}
|
| 3542 |
|
|
|
| 3543 |
|
|
/* Gimplify the parameter list for current_function_decl. This involves
|
| 3544 |
|
|
evaluating SAVE_EXPRs of variable sized parameters and generating code
|
| 3545 |
|
|
to implement callee-copies reference parameters. Returns a sequence of
|
| 3546 |
|
|
statements to add to the beginning of the function. */
|
| 3547 |
|
|
|
| 3548 |
|
|
gimple_seq
|
| 3549 |
|
|
gimplify_parameters (void)
|
| 3550 |
|
|
{
|
| 3551 |
|
|
struct assign_parm_data_all all;
|
| 3552 |
|
|
tree parm;
|
| 3553 |
|
|
gimple_seq stmts = NULL;
|
| 3554 |
|
|
VEC(tree, heap) *fnargs;
|
| 3555 |
|
|
unsigned i;
|
| 3556 |
|
|
|
| 3557 |
|
|
assign_parms_initialize_all (&all);
|
| 3558 |
|
|
fnargs = assign_parms_augmented_arg_list (&all);
|
| 3559 |
|
|
|
| 3560 |
|
|
FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
|
| 3561 |
|
|
{
|
| 3562 |
|
|
struct assign_parm_data_one data;
|
| 3563 |
|
|
|
| 3564 |
|
|
/* Extract the type of PARM; adjust it according to ABI. */
|
| 3565 |
|
|
assign_parm_find_data_types (&all, parm, &data);
|
| 3566 |
|
|
|
| 3567 |
|
|
/* Early out for errors and void parameters. */
|
| 3568 |
|
|
if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
|
| 3569 |
|
|
continue;
|
| 3570 |
|
|
|
| 3571 |
|
|
/* Update info on where next arg arrives in registers. */
|
| 3572 |
|
|
targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
|
| 3573 |
|
|
data.passed_type, data.named_arg);
|
| 3574 |
|
|
|
| 3575 |
|
|
/* ??? Once upon a time variable_size stuffed parameter list
|
| 3576 |
|
|
SAVE_EXPRs (amongst others) onto a pending sizes list. This
|
| 3577 |
|
|
turned out to be less than manageable in the gimple world.
|
| 3578 |
|
|
Now we have to hunt them down ourselves. */
|
| 3579 |
|
|
walk_tree_without_duplicates (&data.passed_type,
|
| 3580 |
|
|
gimplify_parm_type, &stmts);
|
| 3581 |
|
|
|
| 3582 |
|
|
if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
|
| 3583 |
|
|
{
|
| 3584 |
|
|
gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
|
| 3585 |
|
|
gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
|
| 3586 |
|
|
}
|
| 3587 |
|
|
|
| 3588 |
|
|
if (data.passed_pointer)
|
| 3589 |
|
|
{
|
| 3590 |
|
|
tree type = TREE_TYPE (data.passed_type);
|
| 3591 |
|
|
if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
|
| 3592 |
|
|
type, data.named_arg))
|
| 3593 |
|
|
{
|
| 3594 |
|
|
tree local, t;
|
| 3595 |
|
|
|
| 3596 |
|
|
/* For constant-sized objects, this is trivial; for
|
| 3597 |
|
|
variable-sized objects, we have to play games. */
|
| 3598 |
|
|
if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
|
| 3599 |
|
|
&& !(flag_stack_check == GENERIC_STACK_CHECK
|
| 3600 |
|
|
&& compare_tree_int (DECL_SIZE_UNIT (parm),
|
| 3601 |
|
|
STACK_CHECK_MAX_VAR_SIZE) > 0))
|
| 3602 |
|
|
{
|
| 3603 |
|
|
local = create_tmp_var (type, get_name (parm));
|
| 3604 |
|
|
DECL_IGNORED_P (local) = 0;
|
| 3605 |
|
|
/* If PARM was addressable, move that flag over
|
| 3606 |
|
|
to the local copy, as its address will be taken,
|
| 3607 |
|
|
not the PARMs. Keep the parms address taken
|
| 3608 |
|
|
as we'll query that flag during gimplification. */
|
| 3609 |
|
|
if (TREE_ADDRESSABLE (parm))
|
| 3610 |
|
|
TREE_ADDRESSABLE (local) = 1;
|
| 3611 |
|
|
else if (TREE_CODE (type) == COMPLEX_TYPE
|
| 3612 |
|
|
|| TREE_CODE (type) == VECTOR_TYPE)
|
| 3613 |
|
|
DECL_GIMPLE_REG_P (local) = 1;
|
| 3614 |
|
|
}
|
| 3615 |
|
|
else
|
| 3616 |
|
|
{
|
| 3617 |
|
|
tree ptr_type, addr;
|
| 3618 |
|
|
|
| 3619 |
|
|
ptr_type = build_pointer_type (type);
|
| 3620 |
|
|
addr = create_tmp_reg (ptr_type, get_name (parm));
|
| 3621 |
|
|
DECL_IGNORED_P (addr) = 0;
|
| 3622 |
|
|
local = build_fold_indirect_ref (addr);
|
| 3623 |
|
|
|
| 3624 |
|
|
t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
|
| 3625 |
|
|
t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
|
| 3626 |
|
|
size_int (DECL_ALIGN (parm)));
|
| 3627 |
|
|
|
| 3628 |
|
|
/* The call has been built for a variable-sized object. */
|
| 3629 |
|
|
CALL_ALLOCA_FOR_VAR_P (t) = 1;
|
| 3630 |
|
|
t = fold_convert (ptr_type, t);
|
| 3631 |
|
|
t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
|
| 3632 |
|
|
gimplify_and_add (t, &stmts);
|
| 3633 |
|
|
}
|
| 3634 |
|
|
|
| 3635 |
|
|
gimplify_assign (local, parm, &stmts);
|
| 3636 |
|
|
|
| 3637 |
|
|
SET_DECL_VALUE_EXPR (parm, local);
|
| 3638 |
|
|
DECL_HAS_VALUE_EXPR_P (parm) = 1;
|
| 3639 |
|
|
}
|
| 3640 |
|
|
}
|
| 3641 |
|
|
}
|
| 3642 |
|
|
|
| 3643 |
|
|
VEC_free (tree, heap, fnargs);
|
| 3644 |
|
|
|
| 3645 |
|
|
return stmts;
|
| 3646 |
|
|
}
|
| 3647 |
|
|
|
| 3648 |
|
|
/* Compute the size and offset from the start of the stacked arguments for a
|
| 3649 |
|
|
parm passed in mode PASSED_MODE and with type TYPE.
|
| 3650 |
|
|
|
| 3651 |
|
|
INITIAL_OFFSET_PTR points to the current offset into the stacked
|
| 3652 |
|
|
arguments.
|
| 3653 |
|
|
|
| 3654 |
|
|
The starting offset and size for this parm are returned in
|
| 3655 |
|
|
LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
|
| 3656 |
|
|
nonzero, the offset is that of stack slot, which is returned in
|
| 3657 |
|
|
LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
|
| 3658 |
|
|
padding required from the initial offset ptr to the stack slot.
|
| 3659 |
|
|
|
| 3660 |
|
|
IN_REGS is nonzero if the argument will be passed in registers. It will
|
| 3661 |
|
|
never be set if REG_PARM_STACK_SPACE is not defined.
|
| 3662 |
|
|
|
| 3663 |
|
|
FNDECL is the function in which the argument was defined.
|
| 3664 |
|
|
|
| 3665 |
|
|
There are two types of rounding that are done. The first, controlled by
|
| 3666 |
|
|
TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
|
| 3667 |
|
|
argument list to be aligned to the specific boundary (in bits). This
|
| 3668 |
|
|
rounding affects the initial and starting offsets, but not the argument
|
| 3669 |
|
|
size.
|
| 3670 |
|
|
|
| 3671 |
|
|
The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
|
| 3672 |
|
|
optionally rounds the size of the parm to PARM_BOUNDARY. The
|
| 3673 |
|
|
initial offset is not affected by this rounding, while the size always
|
| 3674 |
|
|
is and the starting offset may be. */
|
| 3675 |
|
|
|
| 3676 |
|
|
/* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
|
| 3677 |
|
|
INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
|
| 3678 |
|
|
callers pass in the total size of args so far as
|
| 3679 |
|
|
INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
|
| 3680 |
|
|
|
| 3681 |
|
|
void
|
| 3682 |
|
|
locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
|
| 3683 |
|
|
int partial, tree fndecl ATTRIBUTE_UNUSED,
|
| 3684 |
|
|
struct args_size *initial_offset_ptr,
|
| 3685 |
|
|
struct locate_and_pad_arg_data *locate)
|
| 3686 |
|
|
{
|
| 3687 |
|
|
tree sizetree;
|
| 3688 |
|
|
enum direction where_pad;
|
| 3689 |
|
|
unsigned int boundary, round_boundary;
|
| 3690 |
|
|
int reg_parm_stack_space = 0;
|
| 3691 |
|
|
int part_size_in_regs;
|
| 3692 |
|
|
|
| 3693 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
| 3694 |
|
|
reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
|
| 3695 |
|
|
|
| 3696 |
|
|
/* If we have found a stack parm before we reach the end of the
|
| 3697 |
|
|
area reserved for registers, skip that area. */
|
| 3698 |
|
|
if (! in_regs)
|
| 3699 |
|
|
{
|
| 3700 |
|
|
if (reg_parm_stack_space > 0)
|
| 3701 |
|
|
{
|
| 3702 |
|
|
if (initial_offset_ptr->var)
|
| 3703 |
|
|
{
|
| 3704 |
|
|
initial_offset_ptr->var
|
| 3705 |
|
|
= size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
|
| 3706 |
|
|
ssize_int (reg_parm_stack_space));
|
| 3707 |
|
|
initial_offset_ptr->constant = 0;
|
| 3708 |
|
|
}
|
| 3709 |
|
|
else if (initial_offset_ptr->constant < reg_parm_stack_space)
|
| 3710 |
|
|
initial_offset_ptr->constant = reg_parm_stack_space;
|
| 3711 |
|
|
}
|
| 3712 |
|
|
}
|
| 3713 |
|
|
#endif /* REG_PARM_STACK_SPACE */
|
| 3714 |
|
|
|
| 3715 |
|
|
part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
|
| 3716 |
|
|
|
| 3717 |
|
|
sizetree
|
| 3718 |
|
|
= type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
|
| 3719 |
|
|
where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
|
| 3720 |
|
|
boundary = targetm.calls.function_arg_boundary (passed_mode, type);
|
| 3721 |
|
|
round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
|
| 3722 |
|
|
type);
|
| 3723 |
|
|
locate->where_pad = where_pad;
|
| 3724 |
|
|
|
| 3725 |
|
|
/* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
|
| 3726 |
|
|
if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
|
| 3727 |
|
|
boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
|
| 3728 |
|
|
|
| 3729 |
|
|
locate->boundary = boundary;
|
| 3730 |
|
|
|
| 3731 |
|
|
if (SUPPORTS_STACK_ALIGNMENT)
|
| 3732 |
|
|
{
|
| 3733 |
|
|
/* stack_alignment_estimated can't change after stack has been
|
| 3734 |
|
|
realigned. */
|
| 3735 |
|
|
if (crtl->stack_alignment_estimated < boundary)
|
| 3736 |
|
|
{
|
| 3737 |
|
|
if (!crtl->stack_realign_processed)
|
| 3738 |
|
|
crtl->stack_alignment_estimated = boundary;
|
| 3739 |
|
|
else
|
| 3740 |
|
|
{
|
| 3741 |
|
|
/* If stack is realigned and stack alignment value
|
| 3742 |
|
|
hasn't been finalized, it is OK not to increase
|
| 3743 |
|
|
stack_alignment_estimated. The bigger alignment
|
| 3744 |
|
|
requirement is recorded in stack_alignment_needed
|
| 3745 |
|
|
below. */
|
| 3746 |
|
|
gcc_assert (!crtl->stack_realign_finalized
|
| 3747 |
|
|
&& crtl->stack_realign_needed);
|
| 3748 |
|
|
}
|
| 3749 |
|
|
}
|
| 3750 |
|
|
}
|
| 3751 |
|
|
|
| 3752 |
|
|
/* Remember if the outgoing parameter requires extra alignment on the
|
| 3753 |
|
|
calling function side. */
|
| 3754 |
|
|
if (crtl->stack_alignment_needed < boundary)
|
| 3755 |
|
|
crtl->stack_alignment_needed = boundary;
|
| 3756 |
|
|
if (crtl->preferred_stack_boundary < boundary)
|
| 3757 |
|
|
crtl->preferred_stack_boundary = boundary;
|
| 3758 |
|
|
|
| 3759 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
| 3760 |
|
|
locate->slot_offset.constant = -initial_offset_ptr->constant;
|
| 3761 |
|
|
if (initial_offset_ptr->var)
|
| 3762 |
|
|
locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
|
| 3763 |
|
|
initial_offset_ptr->var);
|
| 3764 |
|
|
|
| 3765 |
|
|
{
|
| 3766 |
|
|
tree s2 = sizetree;
|
| 3767 |
|
|
if (where_pad != none
|
| 3768 |
|
|
&& (!host_integerp (sizetree, 1)
|
| 3769 |
|
|
|| (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
|
| 3770 |
|
|
s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
|
| 3771 |
|
|
SUB_PARM_SIZE (locate->slot_offset, s2);
|
| 3772 |
|
|
}
|
| 3773 |
|
|
|
| 3774 |
|
|
locate->slot_offset.constant += part_size_in_regs;
|
| 3775 |
|
|
|
| 3776 |
|
|
if (!in_regs
|
| 3777 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
| 3778 |
|
|
|| REG_PARM_STACK_SPACE (fndecl) > 0
|
| 3779 |
|
|
#endif
|
| 3780 |
|
|
)
|
| 3781 |
|
|
pad_to_arg_alignment (&locate->slot_offset, boundary,
|
| 3782 |
|
|
&locate->alignment_pad);
|
| 3783 |
|
|
|
| 3784 |
|
|
locate->size.constant = (-initial_offset_ptr->constant
|
| 3785 |
|
|
- locate->slot_offset.constant);
|
| 3786 |
|
|
if (initial_offset_ptr->var)
|
| 3787 |
|
|
locate->size.var = size_binop (MINUS_EXPR,
|
| 3788 |
|
|
size_binop (MINUS_EXPR,
|
| 3789 |
|
|
ssize_int (0),
|
| 3790 |
|
|
initial_offset_ptr->var),
|
| 3791 |
|
|
locate->slot_offset.var);
|
| 3792 |
|
|
|
| 3793 |
|
|
/* Pad_below needs the pre-rounded size to know how much to pad
|
| 3794 |
|
|
below. */
|
| 3795 |
|
|
locate->offset = locate->slot_offset;
|
| 3796 |
|
|
if (where_pad == downward)
|
| 3797 |
|
|
pad_below (&locate->offset, passed_mode, sizetree);
|
| 3798 |
|
|
|
| 3799 |
|
|
#else /* !ARGS_GROW_DOWNWARD */
|
| 3800 |
|
|
if (!in_regs
|
| 3801 |
|
|
#ifdef REG_PARM_STACK_SPACE
|
| 3802 |
|
|
|| REG_PARM_STACK_SPACE (fndecl) > 0
|
| 3803 |
|
|
#endif
|
| 3804 |
|
|
)
|
| 3805 |
|
|
pad_to_arg_alignment (initial_offset_ptr, boundary,
|
| 3806 |
|
|
&locate->alignment_pad);
|
| 3807 |
|
|
locate->slot_offset = *initial_offset_ptr;
|
| 3808 |
|
|
|
| 3809 |
|
|
#ifdef PUSH_ROUNDING
|
| 3810 |
|
|
if (passed_mode != BLKmode)
|
| 3811 |
|
|
sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
|
| 3812 |
|
|
#endif
|
| 3813 |
|
|
|
| 3814 |
|
|
/* Pad_below needs the pre-rounded size to know how much to pad below
|
| 3815 |
|
|
so this must be done before rounding up. */
|
| 3816 |
|
|
locate->offset = locate->slot_offset;
|
| 3817 |
|
|
if (where_pad == downward)
|
| 3818 |
|
|
pad_below (&locate->offset, passed_mode, sizetree);
|
| 3819 |
|
|
|
| 3820 |
|
|
if (where_pad != none
|
| 3821 |
|
|
&& (!host_integerp (sizetree, 1)
|
| 3822 |
|
|
|| (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
|
| 3823 |
|
|
sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
|
| 3824 |
|
|
|
| 3825 |
|
|
ADD_PARM_SIZE (locate->size, sizetree);
|
| 3826 |
|
|
|
| 3827 |
|
|
locate->size.constant -= part_size_in_regs;
|
| 3828 |
|
|
#endif /* ARGS_GROW_DOWNWARD */
|
| 3829 |
|
|
|
| 3830 |
|
|
#ifdef FUNCTION_ARG_OFFSET
|
| 3831 |
|
|
locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
|
| 3832 |
|
|
#endif
|
| 3833 |
|
|
}
|
| 3834 |
|
|
|
| 3835 |
|
|
/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
|
| 3836 |
|
|
BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
|
| 3837 |
|
|
|
| 3838 |
|
|
static void
|
| 3839 |
|
|
pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
|
| 3840 |
|
|
struct args_size *alignment_pad)
|
| 3841 |
|
|
{
|
| 3842 |
|
|
tree save_var = NULL_TREE;
|
| 3843 |
|
|
HOST_WIDE_INT save_constant = 0;
|
| 3844 |
|
|
int boundary_in_bytes = boundary / BITS_PER_UNIT;
|
| 3845 |
|
|
HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
|
| 3846 |
|
|
|
| 3847 |
|
|
#ifdef SPARC_STACK_BOUNDARY_HACK
|
| 3848 |
|
|
/* ??? The SPARC port may claim a STACK_BOUNDARY higher than
|
| 3849 |
|
|
the real alignment of %sp. However, when it does this, the
|
| 3850 |
|
|
alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
|
| 3851 |
|
|
if (SPARC_STACK_BOUNDARY_HACK)
|
| 3852 |
|
|
sp_offset = 0;
|
| 3853 |
|
|
#endif
|
| 3854 |
|
|
|
| 3855 |
|
|
if (boundary > PARM_BOUNDARY)
|
| 3856 |
|
|
{
|
| 3857 |
|
|
save_var = offset_ptr->var;
|
| 3858 |
|
|
save_constant = offset_ptr->constant;
|
| 3859 |
|
|
}
|
| 3860 |
|
|
|
| 3861 |
|
|
alignment_pad->var = NULL_TREE;
|
| 3862 |
|
|
alignment_pad->constant = 0;
|
| 3863 |
|
|
|
| 3864 |
|
|
if (boundary > BITS_PER_UNIT)
|
| 3865 |
|
|
{
|
| 3866 |
|
|
if (offset_ptr->var)
|
| 3867 |
|
|
{
|
| 3868 |
|
|
tree sp_offset_tree = ssize_int (sp_offset);
|
| 3869 |
|
|
tree offset = size_binop (PLUS_EXPR,
|
| 3870 |
|
|
ARGS_SIZE_TREE (*offset_ptr),
|
| 3871 |
|
|
sp_offset_tree);
|
| 3872 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
| 3873 |
|
|
tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
|
| 3874 |
|
|
#else
|
| 3875 |
|
|
tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
|
| 3876 |
|
|
#endif
|
| 3877 |
|
|
|
| 3878 |
|
|
offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
|
| 3879 |
|
|
/* ARGS_SIZE_TREE includes constant term. */
|
| 3880 |
|
|
offset_ptr->constant = 0;
|
| 3881 |
|
|
if (boundary > PARM_BOUNDARY)
|
| 3882 |
|
|
alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
|
| 3883 |
|
|
save_var);
|
| 3884 |
|
|
}
|
| 3885 |
|
|
else
|
| 3886 |
|
|
{
|
| 3887 |
|
|
offset_ptr->constant = -sp_offset +
|
| 3888 |
|
|
#ifdef ARGS_GROW_DOWNWARD
|
| 3889 |
|
|
FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
|
| 3890 |
|
|
#else
|
| 3891 |
|
|
CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
|
| 3892 |
|
|
#endif
|
| 3893 |
|
|
if (boundary > PARM_BOUNDARY)
|
| 3894 |
|
|
alignment_pad->constant = offset_ptr->constant - save_constant;
|
| 3895 |
|
|
}
|
| 3896 |
|
|
}
|
| 3897 |
|
|
}
|
| 3898 |
|
|
|
| 3899 |
|
|
static void
|
| 3900 |
|
|
pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
|
| 3901 |
|
|
{
|
| 3902 |
|
|
if (passed_mode != BLKmode)
|
| 3903 |
|
|
{
|
| 3904 |
|
|
if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
|
| 3905 |
|
|
offset_ptr->constant
|
| 3906 |
|
|
+= (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
|
| 3907 |
|
|
/ PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
|
| 3908 |
|
|
- GET_MODE_SIZE (passed_mode));
|
| 3909 |
|
|
}
|
| 3910 |
|
|
else
|
| 3911 |
|
|
{
|
| 3912 |
|
|
if (TREE_CODE (sizetree) != INTEGER_CST
|
| 3913 |
|
|
|| (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
|
| 3914 |
|
|
{
|
| 3915 |
|
|
/* Round the size up to multiple of PARM_BOUNDARY bits. */
|
| 3916 |
|
|
tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
|
| 3917 |
|
|
/* Add it in. */
|
| 3918 |
|
|
ADD_PARM_SIZE (*offset_ptr, s2);
|
| 3919 |
|
|
SUB_PARM_SIZE (*offset_ptr, sizetree);
|
| 3920 |
|
|
}
|
| 3921 |
|
|
}
|
| 3922 |
|
|
}
|
| 3923 |
|
|
|
| 3924 |
|
|
|
| 3925 |
|
|
/* True if register REGNO was alive at a place where `setjmp' was
|
| 3926 |
|
|
called and was set more than once or is an argument. Such regs may
|
| 3927 |
|
|
be clobbered by `longjmp'. */
|
| 3928 |
|
|
|
| 3929 |
|
|
static bool
|
| 3930 |
|
|
regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
|
| 3931 |
|
|
{
|
| 3932 |
|
|
/* There appear to be cases where some local vars never reach the
|
| 3933 |
|
|
backend but have bogus regnos. */
|
| 3934 |
|
|
if (regno >= max_reg_num ())
|
| 3935 |
|
|
return false;
|
| 3936 |
|
|
|
| 3937 |
|
|
return ((REG_N_SETS (regno) > 1
|
| 3938 |
|
|
|| REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
|
| 3939 |
|
|
&& REGNO_REG_SET_P (setjmp_crosses, regno));
|
| 3940 |
|
|
}
|
| 3941 |
|
|
|
| 3942 |
|
|
/* Walk the tree of blocks describing the binding levels within a
|
| 3943 |
|
|
function and warn about variables the might be killed by setjmp or
|
| 3944 |
|
|
vfork. This is done after calling flow_analysis before register
|
| 3945 |
|
|
allocation since that will clobber the pseudo-regs to hard
|
| 3946 |
|
|
regs. */
|
| 3947 |
|
|
|
| 3948 |
|
|
static void
|
| 3949 |
|
|
setjmp_vars_warning (bitmap setjmp_crosses, tree block)
|
| 3950 |
|
|
{
|
| 3951 |
|
|
tree decl, sub;
|
| 3952 |
|
|
|
| 3953 |
|
|
for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
|
| 3954 |
|
|
{
|
| 3955 |
|
|
if (TREE_CODE (decl) == VAR_DECL
|
| 3956 |
|
|
&& DECL_RTL_SET_P (decl)
|
| 3957 |
|
|
&& REG_P (DECL_RTL (decl))
|
| 3958 |
|
|
&& regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
|
| 3959 |
|
|
warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
|
| 3960 |
|
|
" %<longjmp%> or %<vfork%>", decl);
|
| 3961 |
|
|
}
|
| 3962 |
|
|
|
| 3963 |
|
|
for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
|
| 3964 |
|
|
setjmp_vars_warning (setjmp_crosses, sub);
|
| 3965 |
|
|
}
|
| 3966 |
|
|
|
| 3967 |
|
|
/* Do the appropriate part of setjmp_vars_warning
|
| 3968 |
|
|
but for arguments instead of local variables. */
|
| 3969 |
|
|
|
| 3970 |
|
|
static void
|
| 3971 |
|
|
setjmp_args_warning (bitmap setjmp_crosses)
|
| 3972 |
|
|
{
|
| 3973 |
|
|
tree decl;
|
| 3974 |
|
|
for (decl = DECL_ARGUMENTS (current_function_decl);
|
| 3975 |
|
|
decl; decl = DECL_CHAIN (decl))
|
| 3976 |
|
|
if (DECL_RTL (decl) != 0
|
| 3977 |
|
|
&& REG_P (DECL_RTL (decl))
|
| 3978 |
|
|
&& regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
|
| 3979 |
|
|
warning (OPT_Wclobbered,
|
| 3980 |
|
|
"argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
|
| 3981 |
|
|
decl);
|
| 3982 |
|
|
}
|
| 3983 |
|
|
|
| 3984 |
|
|
/* Generate warning messages for variables live across setjmp. */
|
| 3985 |
|
|
|
| 3986 |
|
|
void
|
| 3987 |
|
|
generate_setjmp_warnings (void)
|
| 3988 |
|
|
{
|
| 3989 |
|
|
bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
|
| 3990 |
|
|
|
| 3991 |
|
|
if (n_basic_blocks == NUM_FIXED_BLOCKS
|
| 3992 |
|
|
|| bitmap_empty_p (setjmp_crosses))
|
| 3993 |
|
|
return;
|
| 3994 |
|
|
|
| 3995 |
|
|
setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
|
| 3996 |
|
|
setjmp_args_warning (setjmp_crosses);
|
| 3997 |
|
|
}
|
| 3998 |
|
|
|
| 3999 |
|
|
|
| 4000 |
|
|
/* Reverse the order of elements in the fragment chain T of blocks,
|
| 4001 |
|
|
and return the new head of the chain (old last element). */
|
| 4002 |
|
|
|
| 4003 |
|
|
static tree
|
| 4004 |
|
|
block_fragments_nreverse (tree t)
|
| 4005 |
|
|
{
|
| 4006 |
|
|
tree prev = 0, block, next;
|
| 4007 |
|
|
for (block = t; block; block = next)
|
| 4008 |
|
|
{
|
| 4009 |
|
|
next = BLOCK_FRAGMENT_CHAIN (block);
|
| 4010 |
|
|
BLOCK_FRAGMENT_CHAIN (block) = prev;
|
| 4011 |
|
|
prev = block;
|
| 4012 |
|
|
}
|
| 4013 |
|
|
return prev;
|
| 4014 |
|
|
}
|
| 4015 |
|
|
|
| 4016 |
|
|
/* Reverse the order of elements in the chain T of blocks,
|
| 4017 |
|
|
and return the new head of the chain (old last element).
|
| 4018 |
|
|
Also do the same on subblocks and reverse the order of elements
|
| 4019 |
|
|
in BLOCK_FRAGMENT_CHAIN as well. */
|
| 4020 |
|
|
|
| 4021 |
|
|
static tree
|
| 4022 |
|
|
blocks_nreverse_all (tree t)
|
| 4023 |
|
|
{
|
| 4024 |
|
|
tree prev = 0, block, next;
|
| 4025 |
|
|
for (block = t; block; block = next)
|
| 4026 |
|
|
{
|
| 4027 |
|
|
next = BLOCK_CHAIN (block);
|
| 4028 |
|
|
BLOCK_CHAIN (block) = prev;
|
| 4029 |
|
|
BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
|
| 4030 |
|
|
if (BLOCK_FRAGMENT_CHAIN (block)
|
| 4031 |
|
|
&& BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
|
| 4032 |
|
|
BLOCK_FRAGMENT_CHAIN (block)
|
| 4033 |
|
|
= block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
|
| 4034 |
|
|
prev = block;
|
| 4035 |
|
|
}
|
| 4036 |
|
|
return prev;
|
| 4037 |
|
|
}
|
| 4038 |
|
|
|
| 4039 |
|
|
|
| 4040 |
|
|
/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
|
| 4041 |
|
|
and create duplicate blocks. */
|
| 4042 |
|
|
/* ??? Need an option to either create block fragments or to create
|
| 4043 |
|
|
abstract origin duplicates of a source block. It really depends
|
| 4044 |
|
|
on what optimization has been performed. */
|
| 4045 |
|
|
|
| 4046 |
|
|
void
|
| 4047 |
|
|
reorder_blocks (void)
|
| 4048 |
|
|
{
|
| 4049 |
|
|
tree block = DECL_INITIAL (current_function_decl);
|
| 4050 |
|
|
VEC(tree,heap) *block_stack;
|
| 4051 |
|
|
|
| 4052 |
|
|
if (block == NULL_TREE)
|
| 4053 |
|
|
return;
|
| 4054 |
|
|
|
| 4055 |
|
|
block_stack = VEC_alloc (tree, heap, 10);
|
| 4056 |
|
|
|
| 4057 |
|
|
/* Reset the TREE_ASM_WRITTEN bit for all blocks. */
|
| 4058 |
|
|
clear_block_marks (block);
|
| 4059 |
|
|
|
| 4060 |
|
|
/* Prune the old trees away, so that they don't get in the way. */
|
| 4061 |
|
|
BLOCK_SUBBLOCKS (block) = NULL_TREE;
|
| 4062 |
|
|
BLOCK_CHAIN (block) = NULL_TREE;
|
| 4063 |
|
|
|
| 4064 |
|
|
/* Recreate the block tree from the note nesting. */
|
| 4065 |
|
|
reorder_blocks_1 (get_insns (), block, &block_stack);
|
| 4066 |
|
|
BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
|
| 4067 |
|
|
|
| 4068 |
|
|
VEC_free (tree, heap, block_stack);
|
| 4069 |
|
|
}
|
| 4070 |
|
|
|
| 4071 |
|
|
/* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
|
| 4072 |
|
|
|
| 4073 |
|
|
void
|
| 4074 |
|
|
clear_block_marks (tree block)
|
| 4075 |
|
|
{
|
| 4076 |
|
|
while (block)
|
| 4077 |
|
|
{
|
| 4078 |
|
|
TREE_ASM_WRITTEN (block) = 0;
|
| 4079 |
|
|
clear_block_marks (BLOCK_SUBBLOCKS (block));
|
| 4080 |
|
|
block = BLOCK_CHAIN (block);
|
| 4081 |
|
|
}
|
| 4082 |
|
|
}
|
| 4083 |
|
|
|
| 4084 |
|
|
static void
|
| 4085 |
|
|
reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
|
| 4086 |
|
|
{
|
| 4087 |
|
|
rtx insn;
|
| 4088 |
|
|
|
| 4089 |
|
|
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
| 4090 |
|
|
{
|
| 4091 |
|
|
if (NOTE_P (insn))
|
| 4092 |
|
|
{
|
| 4093 |
|
|
if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
|
| 4094 |
|
|
{
|
| 4095 |
|
|
tree block = NOTE_BLOCK (insn);
|
| 4096 |
|
|
tree origin;
|
| 4097 |
|
|
|
| 4098 |
|
|
gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
|
| 4099 |
|
|
origin = block;
|
| 4100 |
|
|
|
| 4101 |
|
|
/* If we have seen this block before, that means it now
|
| 4102 |
|
|
spans multiple address regions. Create a new fragment. */
|
| 4103 |
|
|
if (TREE_ASM_WRITTEN (block))
|
| 4104 |
|
|
{
|
| 4105 |
|
|
tree new_block = copy_node (block);
|
| 4106 |
|
|
|
| 4107 |
|
|
BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
|
| 4108 |
|
|
BLOCK_FRAGMENT_CHAIN (new_block)
|
| 4109 |
|
|
= BLOCK_FRAGMENT_CHAIN (origin);
|
| 4110 |
|
|
BLOCK_FRAGMENT_CHAIN (origin) = new_block;
|
| 4111 |
|
|
|
| 4112 |
|
|
NOTE_BLOCK (insn) = new_block;
|
| 4113 |
|
|
block = new_block;
|
| 4114 |
|
|
}
|
| 4115 |
|
|
|
| 4116 |
|
|
BLOCK_SUBBLOCKS (block) = 0;
|
| 4117 |
|
|
TREE_ASM_WRITTEN (block) = 1;
|
| 4118 |
|
|
/* When there's only one block for the entire function,
|
| 4119 |
|
|
current_block == block and we mustn't do this, it
|
| 4120 |
|
|
will cause infinite recursion. */
|
| 4121 |
|
|
if (block != current_block)
|
| 4122 |
|
|
{
|
| 4123 |
|
|
if (block != origin)
|
| 4124 |
|
|
gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
|
| 4125 |
|
|
|
| 4126 |
|
|
BLOCK_SUPERCONTEXT (block) = current_block;
|
| 4127 |
|
|
BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
|
| 4128 |
|
|
BLOCK_SUBBLOCKS (current_block) = block;
|
| 4129 |
|
|
current_block = origin;
|
| 4130 |
|
|
}
|
| 4131 |
|
|
VEC_safe_push (tree, heap, *p_block_stack, block);
|
| 4132 |
|
|
}
|
| 4133 |
|
|
else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
|
| 4134 |
|
|
{
|
| 4135 |
|
|
NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
|
| 4136 |
|
|
current_block = BLOCK_SUPERCONTEXT (current_block);
|
| 4137 |
|
|
}
|
| 4138 |
|
|
}
|
| 4139 |
|
|
}
|
| 4140 |
|
|
}
|
| 4141 |
|
|
|
| 4142 |
|
|
/* Reverse the order of elements in the chain T of blocks,
|
| 4143 |
|
|
and return the new head of the chain (old last element). */
|
| 4144 |
|
|
|
| 4145 |
|
|
tree
|
| 4146 |
|
|
blocks_nreverse (tree t)
|
| 4147 |
|
|
{
|
| 4148 |
|
|
tree prev = 0, block, next;
|
| 4149 |
|
|
for (block = t; block; block = next)
|
| 4150 |
|
|
{
|
| 4151 |
|
|
next = BLOCK_CHAIN (block);
|
| 4152 |
|
|
BLOCK_CHAIN (block) = prev;
|
| 4153 |
|
|
prev = block;
|
| 4154 |
|
|
}
|
| 4155 |
|
|
return prev;
|
| 4156 |
|
|
}
|
| 4157 |
|
|
|
| 4158 |
|
|
/* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
|
| 4159 |
|
|
by modifying the last node in chain 1 to point to chain 2. */
|
| 4160 |
|
|
|
| 4161 |
|
|
tree
|
| 4162 |
|
|
block_chainon (tree op1, tree op2)
|
| 4163 |
|
|
{
|
| 4164 |
|
|
tree t1;
|
| 4165 |
|
|
|
| 4166 |
|
|
if (!op1)
|
| 4167 |
|
|
return op2;
|
| 4168 |
|
|
if (!op2)
|
| 4169 |
|
|
return op1;
|
| 4170 |
|
|
|
| 4171 |
|
|
for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
|
| 4172 |
|
|
continue;
|
| 4173 |
|
|
BLOCK_CHAIN (t1) = op2;
|
| 4174 |
|
|
|
| 4175 |
|
|
#ifdef ENABLE_TREE_CHECKING
|
| 4176 |
|
|
{
|
| 4177 |
|
|
tree t2;
|
| 4178 |
|
|
for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
|
| 4179 |
|
|
gcc_assert (t2 != t1);
|
| 4180 |
|
|
}
|
| 4181 |
|
|
#endif
|
| 4182 |
|
|
|
| 4183 |
|
|
return op1;
|
| 4184 |
|
|
}
|
| 4185 |
|
|
|
| 4186 |
|
|
/* Count the subblocks of the list starting with BLOCK. If VECTOR is
|
| 4187 |
|
|
non-NULL, list them all into VECTOR, in a depth-first preorder
|
| 4188 |
|
|
traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
|
| 4189 |
|
|
blocks. */
|
| 4190 |
|
|
|
| 4191 |
|
|
static int
|
| 4192 |
|
|
all_blocks (tree block, tree *vector)
|
| 4193 |
|
|
{
|
| 4194 |
|
|
int n_blocks = 0;
|
| 4195 |
|
|
|
| 4196 |
|
|
while (block)
|
| 4197 |
|
|
{
|
| 4198 |
|
|
TREE_ASM_WRITTEN (block) = 0;
|
| 4199 |
|
|
|
| 4200 |
|
|
/* Record this block. */
|
| 4201 |
|
|
if (vector)
|
| 4202 |
|
|
vector[n_blocks] = block;
|
| 4203 |
|
|
|
| 4204 |
|
|
++n_blocks;
|
| 4205 |
|
|
|
| 4206 |
|
|
/* Record the subblocks, and their subblocks... */
|
| 4207 |
|
|
n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
|
| 4208 |
|
|
vector ? vector + n_blocks : 0);
|
| 4209 |
|
|
block = BLOCK_CHAIN (block);
|
| 4210 |
|
|
}
|
| 4211 |
|
|
|
| 4212 |
|
|
return n_blocks;
|
| 4213 |
|
|
}
|
| 4214 |
|
|
|
| 4215 |
|
|
/* Return a vector containing all the blocks rooted at BLOCK. The
|
| 4216 |
|
|
number of elements in the vector is stored in N_BLOCKS_P. The
|
| 4217 |
|
|
vector is dynamically allocated; it is the caller's responsibility
|
| 4218 |
|
|
to call `free' on the pointer returned. */
|
| 4219 |
|
|
|
| 4220 |
|
|
static tree *
|
| 4221 |
|
|
get_block_vector (tree block, int *n_blocks_p)
|
| 4222 |
|
|
{
|
| 4223 |
|
|
tree *block_vector;
|
| 4224 |
|
|
|
| 4225 |
|
|
*n_blocks_p = all_blocks (block, NULL);
|
| 4226 |
|
|
block_vector = XNEWVEC (tree, *n_blocks_p);
|
| 4227 |
|
|
all_blocks (block, block_vector);
|
| 4228 |
|
|
|
| 4229 |
|
|
return block_vector;
|
| 4230 |
|
|
}
|
| 4231 |
|
|
|
| 4232 |
|
|
static GTY(()) int next_block_index = 2;
|
| 4233 |
|
|
|
| 4234 |
|
|
/* Set BLOCK_NUMBER for all the blocks in FN. */
|
| 4235 |
|
|
|
| 4236 |
|
|
void
|
| 4237 |
|
|
number_blocks (tree fn)
|
| 4238 |
|
|
{
|
| 4239 |
|
|
int i;
|
| 4240 |
|
|
int n_blocks;
|
| 4241 |
|
|
tree *block_vector;
|
| 4242 |
|
|
|
| 4243 |
|
|
/* For SDB and XCOFF debugging output, we start numbering the blocks
|
| 4244 |
|
|
from 1 within each function, rather than keeping a running
|
| 4245 |
|
|
count. */
|
| 4246 |
|
|
#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
|
| 4247 |
|
|
if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
|
| 4248 |
|
|
next_block_index = 1;
|
| 4249 |
|
|
#endif
|
| 4250 |
|
|
|
| 4251 |
|
|
block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
|
| 4252 |
|
|
|
| 4253 |
|
|
/* The top-level BLOCK isn't numbered at all. */
|
| 4254 |
|
|
for (i = 1; i < n_blocks; ++i)
|
| 4255 |
|
|
/* We number the blocks from two. */
|
| 4256 |
|
|
BLOCK_NUMBER (block_vector[i]) = next_block_index++;
|
| 4257 |
|
|
|
| 4258 |
|
|
free (block_vector);
|
| 4259 |
|
|
|
| 4260 |
|
|
return;
|
| 4261 |
|
|
}
|
| 4262 |
|
|
|
| 4263 |
|
|
/* If VAR is present in a subblock of BLOCK, return the subblock. */
|
| 4264 |
|
|
|
| 4265 |
|
|
DEBUG_FUNCTION tree
|
| 4266 |
|
|
debug_find_var_in_block_tree (tree var, tree block)
|
| 4267 |
|
|
{
|
| 4268 |
|
|
tree t;
|
| 4269 |
|
|
|
| 4270 |
|
|
for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
|
| 4271 |
|
|
if (t == var)
|
| 4272 |
|
|
return block;
|
| 4273 |
|
|
|
| 4274 |
|
|
for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
|
| 4275 |
|
|
{
|
| 4276 |
|
|
tree ret = debug_find_var_in_block_tree (var, t);
|
| 4277 |
|
|
if (ret)
|
| 4278 |
|
|
return ret;
|
| 4279 |
|
|
}
|
| 4280 |
|
|
|
| 4281 |
|
|
return NULL_TREE;
|
| 4282 |
|
|
}
|
| 4283 |
|
|
|
| 4284 |
|
|
/* Keep track of whether we're in a dummy function context. If we are,
|
| 4285 |
|
|
we don't want to invoke the set_current_function hook, because we'll
|
| 4286 |
|
|
get into trouble if the hook calls target_reinit () recursively or
|
| 4287 |
|
|
when the initial initialization is not yet complete. */
|
| 4288 |
|
|
|
| 4289 |
|
|
static bool in_dummy_function;
|
| 4290 |
|
|
|
| 4291 |
|
|
/* Invoke the target hook when setting cfun. Update the optimization options
|
| 4292 |
|
|
if the function uses different options than the default. */
|
| 4293 |
|
|
|
| 4294 |
|
|
static void
|
| 4295 |
|
|
invoke_set_current_function_hook (tree fndecl)
|
| 4296 |
|
|
{
|
| 4297 |
|
|
if (!in_dummy_function)
|
| 4298 |
|
|
{
|
| 4299 |
|
|
tree opts = ((fndecl)
|
| 4300 |
|
|
? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
|
| 4301 |
|
|
: optimization_default_node);
|
| 4302 |
|
|
|
| 4303 |
|
|
if (!opts)
|
| 4304 |
|
|
opts = optimization_default_node;
|
| 4305 |
|
|
|
| 4306 |
|
|
/* Change optimization options if needed. */
|
| 4307 |
|
|
if (optimization_current_node != opts)
|
| 4308 |
|
|
{
|
| 4309 |
|
|
optimization_current_node = opts;
|
| 4310 |
|
|
cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
|
| 4311 |
|
|
}
|
| 4312 |
|
|
|
| 4313 |
|
|
targetm.set_current_function (fndecl);
|
| 4314 |
|
|
}
|
| 4315 |
|
|
}
|
| 4316 |
|
|
|
| 4317 |
|
|
/* cfun should never be set directly; use this function. */
|
| 4318 |
|
|
|
| 4319 |
|
|
void
|
| 4320 |
|
|
set_cfun (struct function *new_cfun)
|
| 4321 |
|
|
{
|
| 4322 |
|
|
if (cfun != new_cfun)
|
| 4323 |
|
|
{
|
| 4324 |
|
|
cfun = new_cfun;
|
| 4325 |
|
|
invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
|
| 4326 |
|
|
}
|
| 4327 |
|
|
}
|
| 4328 |
|
|
|
| 4329 |
|
|
/* Initialized with NOGC, making this poisonous to the garbage collector. */
|
| 4330 |
|
|
|
| 4331 |
|
|
static VEC(function_p,heap) *cfun_stack;
|
| 4332 |
|
|
|
| 4333 |
|
|
/* Push the current cfun onto the stack, and set cfun to new_cfun. */
|
| 4334 |
|
|
|
| 4335 |
|
|
void
|
| 4336 |
|
|
push_cfun (struct function *new_cfun)
|
| 4337 |
|
|
{
|
| 4338 |
|
|
VEC_safe_push (function_p, heap, cfun_stack, cfun);
|
| 4339 |
|
|
set_cfun (new_cfun);
|
| 4340 |
|
|
}
|
| 4341 |
|
|
|
| 4342 |
|
|
/* Pop cfun from the stack. */
|
| 4343 |
|
|
|
| 4344 |
|
|
void
|
| 4345 |
|
|
pop_cfun (void)
|
| 4346 |
|
|
{
|
| 4347 |
|
|
struct function *new_cfun = VEC_pop (function_p, cfun_stack);
|
| 4348 |
|
|
set_cfun (new_cfun);
|
| 4349 |
|
|
}
|
| 4350 |
|
|
|
| 4351 |
|
|
/* Return value of funcdef and increase it. */
|
| 4352 |
|
|
int
|
| 4353 |
|
|
get_next_funcdef_no (void)
|
| 4354 |
|
|
{
|
| 4355 |
|
|
return funcdef_no++;
|
| 4356 |
|
|
}
|
| 4357 |
|
|
|
| 4358 |
|
|
/* Return value of funcdef. */
|
| 4359 |
|
|
int
|
| 4360 |
|
|
get_last_funcdef_no (void)
|
| 4361 |
|
|
{
|
| 4362 |
|
|
return funcdef_no;
|
| 4363 |
|
|
}
|
| 4364 |
|
|
|
| 4365 |
|
|
/* Allocate a function structure for FNDECL and set its contents
|
| 4366 |
|
|
to the defaults. Set cfun to the newly-allocated object.
|
| 4367 |
|
|
Some of the helper functions invoked during initialization assume
|
| 4368 |
|
|
that cfun has already been set. Therefore, assign the new object
|
| 4369 |
|
|
directly into cfun and invoke the back end hook explicitly at the
|
| 4370 |
|
|
very end, rather than initializing a temporary and calling set_cfun
|
| 4371 |
|
|
on it.
|
| 4372 |
|
|
|
| 4373 |
|
|
ABSTRACT_P is true if this is a function that will never be seen by
|
| 4374 |
|
|
the middle-end. Such functions are front-end concepts (like C++
|
| 4375 |
|
|
function templates) that do not correspond directly to functions
|
| 4376 |
|
|
placed in object files. */
|
| 4377 |
|
|
|
| 4378 |
|
|
void
|
| 4379 |
|
|
allocate_struct_function (tree fndecl, bool abstract_p)
|
| 4380 |
|
|
{
|
| 4381 |
|
|
tree result;
|
| 4382 |
|
|
tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
|
| 4383 |
|
|
|
| 4384 |
|
|
cfun = ggc_alloc_cleared_function ();
|
| 4385 |
|
|
|
| 4386 |
|
|
init_eh_for_function ();
|
| 4387 |
|
|
|
| 4388 |
|
|
if (init_machine_status)
|
| 4389 |
|
|
cfun->machine = (*init_machine_status) ();
|
| 4390 |
|
|
|
| 4391 |
|
|
#ifdef OVERRIDE_ABI_FORMAT
|
| 4392 |
|
|
OVERRIDE_ABI_FORMAT (fndecl);
|
| 4393 |
|
|
#endif
|
| 4394 |
|
|
|
| 4395 |
|
|
invoke_set_current_function_hook (fndecl);
|
| 4396 |
|
|
|
| 4397 |
|
|
if (fndecl != NULL_TREE)
|
| 4398 |
|
|
{
|
| 4399 |
|
|
DECL_STRUCT_FUNCTION (fndecl) = cfun;
|
| 4400 |
|
|
cfun->decl = fndecl;
|
| 4401 |
|
|
current_function_funcdef_no = get_next_funcdef_no ();
|
| 4402 |
|
|
|
| 4403 |
|
|
result = DECL_RESULT (fndecl);
|
| 4404 |
|
|
if (!abstract_p && aggregate_value_p (result, fndecl))
|
| 4405 |
|
|
{
|
| 4406 |
|
|
#ifdef PCC_STATIC_STRUCT_RETURN
|
| 4407 |
|
|
cfun->returns_pcc_struct = 1;
|
| 4408 |
|
|
#endif
|
| 4409 |
|
|
cfun->returns_struct = 1;
|
| 4410 |
|
|
}
|
| 4411 |
|
|
|
| 4412 |
|
|
cfun->stdarg = stdarg_p (fntype);
|
| 4413 |
|
|
|
| 4414 |
|
|
/* Assume all registers in stdarg functions need to be saved. */
|
| 4415 |
|
|
cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
|
| 4416 |
|
|
cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
|
| 4417 |
|
|
|
| 4418 |
|
|
/* ??? This could be set on a per-function basis by the front-end
|
| 4419 |
|
|
but is this worth the hassle? */
|
| 4420 |
|
|
cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
|
| 4421 |
|
|
}
|
| 4422 |
|
|
}
|
| 4423 |
|
|
|
| 4424 |
|
|
/* This is like allocate_struct_function, but pushes a new cfun for FNDECL
|
| 4425 |
|
|
instead of just setting it. */
|
| 4426 |
|
|
|
| 4427 |
|
|
void
|
| 4428 |
|
|
push_struct_function (tree fndecl)
|
| 4429 |
|
|
{
|
| 4430 |
|
|
VEC_safe_push (function_p, heap, cfun_stack, cfun);
|
| 4431 |
|
|
allocate_struct_function (fndecl, false);
|
| 4432 |
|
|
}
|
| 4433 |
|
|
|
| 4434 |
|
|
/* Reset crtl and other non-struct-function variables to defaults as
|
| 4435 |
|
|
appropriate for emitting rtl at the start of a function. */
|
| 4436 |
|
|
|
| 4437 |
|
|
static void
|
| 4438 |
|
|
prepare_function_start (void)
|
| 4439 |
|
|
{
|
| 4440 |
|
|
gcc_assert (!crtl->emit.x_last_insn);
|
| 4441 |
|
|
init_temp_slots ();
|
| 4442 |
|
|
init_emit ();
|
| 4443 |
|
|
init_varasm_status ();
|
| 4444 |
|
|
init_expr ();
|
| 4445 |
|
|
default_rtl_profile ();
|
| 4446 |
|
|
|
| 4447 |
|
|
if (flag_stack_usage_info)
|
| 4448 |
|
|
{
|
| 4449 |
|
|
cfun->su = ggc_alloc_cleared_stack_usage ();
|
| 4450 |
|
|
cfun->su->static_stack_size = -1;
|
| 4451 |
|
|
}
|
| 4452 |
|
|
|
| 4453 |
|
|
cse_not_expected = ! optimize;
|
| 4454 |
|
|
|
| 4455 |
|
|
/* Caller save not needed yet. */
|
| 4456 |
|
|
caller_save_needed = 0;
|
| 4457 |
|
|
|
| 4458 |
|
|
/* We haven't done register allocation yet. */
|
| 4459 |
|
|
reg_renumber = 0;
|
| 4460 |
|
|
|
| 4461 |
|
|
/* Indicate that we have not instantiated virtual registers yet. */
|
| 4462 |
|
|
virtuals_instantiated = 0;
|
| 4463 |
|
|
|
| 4464 |
|
|
/* Indicate that we want CONCATs now. */
|
| 4465 |
|
|
generating_concat_p = 1;
|
| 4466 |
|
|
|
| 4467 |
|
|
/* Indicate we have no need of a frame pointer yet. */
|
| 4468 |
|
|
frame_pointer_needed = 0;
|
| 4469 |
|
|
}
|
| 4470 |
|
|
|
| 4471 |
|
|
/* Initialize the rtl expansion mechanism so that we can do simple things
|
| 4472 |
|
|
like generate sequences. This is used to provide a context during global
|
| 4473 |
|
|
initialization of some passes. You must call expand_dummy_function_end
|
| 4474 |
|
|
to exit this context. */
|
| 4475 |
|
|
|
| 4476 |
|
|
void
|
| 4477 |
|
|
init_dummy_function_start (void)
|
| 4478 |
|
|
{
|
| 4479 |
|
|
gcc_assert (!in_dummy_function);
|
| 4480 |
|
|
in_dummy_function = true;
|
| 4481 |
|
|
push_struct_function (NULL_TREE);
|
| 4482 |
|
|
prepare_function_start ();
|
| 4483 |
|
|
}
|
| 4484 |
|
|
|
| 4485 |
|
|
/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
|
| 4486 |
|
|
and initialize static variables for generating RTL for the statements
|
| 4487 |
|
|
of the function. */
|
| 4488 |
|
|
|
| 4489 |
|
|
void
|
| 4490 |
|
|
init_function_start (tree subr)
|
| 4491 |
|
|
{
|
| 4492 |
|
|
if (subr && DECL_STRUCT_FUNCTION (subr))
|
| 4493 |
|
|
set_cfun (DECL_STRUCT_FUNCTION (subr));
|
| 4494 |
|
|
else
|
| 4495 |
|
|
allocate_struct_function (subr, false);
|
| 4496 |
|
|
prepare_function_start ();
|
| 4497 |
|
|
decide_function_section (subr);
|
| 4498 |
|
|
|
| 4499 |
|
|
/* Warn if this value is an aggregate type,
|
| 4500 |
|
|
regardless of which calling convention we are using for it. */
|
| 4501 |
|
|
if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
|
| 4502 |
|
|
warning (OPT_Waggregate_return, "function returns an aggregate");
|
| 4503 |
|
|
}
|
| 4504 |
|
|
|
| 4505 |
|
|
/* Make sure all values used by the optimization passes have sane defaults. */
|
| 4506 |
|
|
unsigned int
|
| 4507 |
|
|
init_function_for_compilation (void)
|
| 4508 |
|
|
{
|
| 4509 |
|
|
reg_renumber = 0;
|
| 4510 |
|
|
return 0;
|
| 4511 |
|
|
}
|
| 4512 |
|
|
|
| 4513 |
|
|
struct rtl_opt_pass pass_init_function =
|
| 4514 |
|
|
{
|
| 4515 |
|
|
{
|
| 4516 |
|
|
RTL_PASS,
|
| 4517 |
|
|
"*init_function", /* name */
|
| 4518 |
|
|
NULL, /* gate */
|
| 4519 |
|
|
init_function_for_compilation, /* execute */
|
| 4520 |
|
|
NULL, /* sub */
|
| 4521 |
|
|
NULL, /* next */
|
| 4522 |
|
|
0, /* static_pass_number */
|
| 4523 |
|
|
TV_NONE, /* tv_id */
|
| 4524 |
|
|
0, /* properties_required */
|
| 4525 |
|
|
0, /* properties_provided */
|
| 4526 |
|
|
0, /* properties_destroyed */
|
| 4527 |
|
|
0, /* todo_flags_start */
|
| 4528 |
|
|
|
| 4529 |
|
|
}
|
| 4530 |
|
|
};
|
| 4531 |
|
|
|
| 4532 |
|
|
|
| 4533 |
|
|
void
|
| 4534 |
|
|
expand_main_function (void)
|
| 4535 |
|
|
{
|
| 4536 |
|
|
#if (defined(INVOKE__main) \
|
| 4537 |
|
|
|| (!defined(HAS_INIT_SECTION) \
|
| 4538 |
|
|
&& !defined(INIT_SECTION_ASM_OP) \
|
| 4539 |
|
|
&& !defined(INIT_ARRAY_SECTION_ASM_OP)))
|
| 4540 |
|
|
emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
|
| 4541 |
|
|
#endif
|
| 4542 |
|
|
}
|
| 4543 |
|
|
|
| 4544 |
|
|
/* Expand code to initialize the stack_protect_guard. This is invoked at
|
| 4545 |
|
|
the beginning of a function to be protected. */
|
| 4546 |
|
|
|
| 4547 |
|
|
#ifndef HAVE_stack_protect_set
|
| 4548 |
|
|
# define HAVE_stack_protect_set 0
|
| 4549 |
|
|
# define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
|
| 4550 |
|
|
#endif
|
| 4551 |
|
|
|
| 4552 |
|
|
void
|
| 4553 |
|
|
stack_protect_prologue (void)
|
| 4554 |
|
|
{
|
| 4555 |
|
|
tree guard_decl = targetm.stack_protect_guard ();
|
| 4556 |
|
|
rtx x, y;
|
| 4557 |
|
|
|
| 4558 |
|
|
x = expand_normal (crtl->stack_protect_guard);
|
| 4559 |
|
|
y = expand_normal (guard_decl);
|
| 4560 |
|
|
|
| 4561 |
|
|
/* Allow the target to copy from Y to X without leaking Y into a
|
| 4562 |
|
|
register. */
|
| 4563 |
|
|
if (HAVE_stack_protect_set)
|
| 4564 |
|
|
{
|
| 4565 |
|
|
rtx insn = gen_stack_protect_set (x, y);
|
| 4566 |
|
|
if (insn)
|
| 4567 |
|
|
{
|
| 4568 |
|
|
emit_insn (insn);
|
| 4569 |
|
|
return;
|
| 4570 |
|
|
}
|
| 4571 |
|
|
}
|
| 4572 |
|
|
|
| 4573 |
|
|
/* Otherwise do a straight move. */
|
| 4574 |
|
|
emit_move_insn (x, y);
|
| 4575 |
|
|
}
|
| 4576 |
|
|
|
| 4577 |
|
|
/* Expand code to verify the stack_protect_guard. This is invoked at
|
| 4578 |
|
|
the end of a function to be protected. */
|
| 4579 |
|
|
|
| 4580 |
|
|
#ifndef HAVE_stack_protect_test
|
| 4581 |
|
|
# define HAVE_stack_protect_test 0
|
| 4582 |
|
|
# define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
|
| 4583 |
|
|
#endif
|
| 4584 |
|
|
|
| 4585 |
|
|
void
|
| 4586 |
|
|
stack_protect_epilogue (void)
|
| 4587 |
|
|
{
|
| 4588 |
|
|
tree guard_decl = targetm.stack_protect_guard ();
|
| 4589 |
|
|
rtx label = gen_label_rtx ();
|
| 4590 |
|
|
rtx x, y, tmp;
|
| 4591 |
|
|
|
| 4592 |
|
|
x = expand_normal (crtl->stack_protect_guard);
|
| 4593 |
|
|
y = expand_normal (guard_decl);
|
| 4594 |
|
|
|
| 4595 |
|
|
/* Allow the target to compare Y with X without leaking either into
|
| 4596 |
|
|
a register. */
|
| 4597 |
|
|
switch (HAVE_stack_protect_test != 0)
|
| 4598 |
|
|
{
|
| 4599 |
|
|
case 1:
|
| 4600 |
|
|
tmp = gen_stack_protect_test (x, y, label);
|
| 4601 |
|
|
if (tmp)
|
| 4602 |
|
|
{
|
| 4603 |
|
|
emit_insn (tmp);
|
| 4604 |
|
|
break;
|
| 4605 |
|
|
}
|
| 4606 |
|
|
/* FALLTHRU */
|
| 4607 |
|
|
|
| 4608 |
|
|
default:
|
| 4609 |
|
|
emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
|
| 4610 |
|
|
break;
|
| 4611 |
|
|
}
|
| 4612 |
|
|
|
| 4613 |
|
|
/* The noreturn predictor has been moved to the tree level. The rtl-level
|
| 4614 |
|
|
predictors estimate this branch about 20%, which isn't enough to get
|
| 4615 |
|
|
things moved out of line. Since this is the only extant case of adding
|
| 4616 |
|
|
a noreturn function at the rtl level, it doesn't seem worth doing ought
|
| 4617 |
|
|
except adding the prediction by hand. */
|
| 4618 |
|
|
tmp = get_last_insn ();
|
| 4619 |
|
|
if (JUMP_P (tmp))
|
| 4620 |
|
|
predict_insn_def (tmp, PRED_NORETURN, TAKEN);
|
| 4621 |
|
|
|
| 4622 |
|
|
expand_expr_stmt (targetm.stack_protect_fail ());
|
| 4623 |
|
|
emit_label (label);
|
| 4624 |
|
|
}
|
| 4625 |
|
|
|
| 4626 |
|
|
/* Start the RTL for a new function, and set variables used for
|
| 4627 |
|
|
emitting RTL.
|
| 4628 |
|
|
SUBR is the FUNCTION_DECL node.
|
| 4629 |
|
|
PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
|
| 4630 |
|
|
the function's parameters, which must be run at any return statement. */
|
| 4631 |
|
|
|
| 4632 |
|
|
void
|
| 4633 |
|
|
expand_function_start (tree subr)
|
| 4634 |
|
|
{
|
| 4635 |
|
|
/* Make sure volatile mem refs aren't considered
|
| 4636 |
|
|
valid operands of arithmetic insns. */
|
| 4637 |
|
|
init_recog_no_volatile ();
|
| 4638 |
|
|
|
| 4639 |
|
|
crtl->profile
|
| 4640 |
|
|
= (profile_flag
|
| 4641 |
|
|
&& ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
|
| 4642 |
|
|
|
| 4643 |
|
|
crtl->limit_stack
|
| 4644 |
|
|
= (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
|
| 4645 |
|
|
|
| 4646 |
|
|
/* Make the label for return statements to jump to. Do not special
|
| 4647 |
|
|
case machines with special return instructions -- they will be
|
| 4648 |
|
|
handled later during jump, ifcvt, or epilogue creation. */
|
| 4649 |
|
|
return_label = gen_label_rtx ();
|
| 4650 |
|
|
|
| 4651 |
|
|
/* Initialize rtx used to return the value. */
|
| 4652 |
|
|
/* Do this before assign_parms so that we copy the struct value address
|
| 4653 |
|
|
before any library calls that assign parms might generate. */
|
| 4654 |
|
|
|
| 4655 |
|
|
/* Decide whether to return the value in memory or in a register. */
|
| 4656 |
|
|
if (aggregate_value_p (DECL_RESULT (subr), subr))
|
| 4657 |
|
|
{
|
| 4658 |
|
|
/* Returning something that won't go in a register. */
|
| 4659 |
|
|
rtx value_address = 0;
|
| 4660 |
|
|
|
| 4661 |
|
|
#ifdef PCC_STATIC_STRUCT_RETURN
|
| 4662 |
|
|
if (cfun->returns_pcc_struct)
|
| 4663 |
|
|
{
|
| 4664 |
|
|
int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
|
| 4665 |
|
|
value_address = assemble_static_space (size);
|
| 4666 |
|
|
}
|
| 4667 |
|
|
else
|
| 4668 |
|
|
#endif
|
| 4669 |
|
|
{
|
| 4670 |
|
|
rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
|
| 4671 |
|
|
/* Expect to be passed the address of a place to store the value.
|
| 4672 |
|
|
If it is passed as an argument, assign_parms will take care of
|
| 4673 |
|
|
it. */
|
| 4674 |
|
|
if (sv)
|
| 4675 |
|
|
{
|
| 4676 |
|
|
value_address = gen_reg_rtx (Pmode);
|
| 4677 |
|
|
emit_move_insn (value_address, sv);
|
| 4678 |
|
|
}
|
| 4679 |
|
|
}
|
| 4680 |
|
|
if (value_address)
|
| 4681 |
|
|
{
|
| 4682 |
|
|
rtx x = value_address;
|
| 4683 |
|
|
if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
|
| 4684 |
|
|
{
|
| 4685 |
|
|
x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
|
| 4686 |
|
|
set_mem_attributes (x, DECL_RESULT (subr), 1);
|
| 4687 |
|
|
}
|
| 4688 |
|
|
SET_DECL_RTL (DECL_RESULT (subr), x);
|
| 4689 |
|
|
}
|
| 4690 |
|
|
}
|
| 4691 |
|
|
else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
|
| 4692 |
|
|
/* If return mode is void, this decl rtl should not be used. */
|
| 4693 |
|
|
SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
|
| 4694 |
|
|
else
|
| 4695 |
|
|
{
|
| 4696 |
|
|
/* Compute the return values into a pseudo reg, which we will copy
|
| 4697 |
|
|
into the true return register after the cleanups are done. */
|
| 4698 |
|
|
tree return_type = TREE_TYPE (DECL_RESULT (subr));
|
| 4699 |
|
|
if (TYPE_MODE (return_type) != BLKmode
|
| 4700 |
|
|
&& targetm.calls.return_in_msb (return_type))
|
| 4701 |
|
|
/* expand_function_end will insert the appropriate padding in
|
| 4702 |
|
|
this case. Use the return value's natural (unpadded) mode
|
| 4703 |
|
|
within the function proper. */
|
| 4704 |
|
|
SET_DECL_RTL (DECL_RESULT (subr),
|
| 4705 |
|
|
gen_reg_rtx (TYPE_MODE (return_type)));
|
| 4706 |
|
|
else
|
| 4707 |
|
|
{
|
| 4708 |
|
|
/* In order to figure out what mode to use for the pseudo, we
|
| 4709 |
|
|
figure out what the mode of the eventual return register will
|
| 4710 |
|
|
actually be, and use that. */
|
| 4711 |
|
|
rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
|
| 4712 |
|
|
|
| 4713 |
|
|
/* Structures that are returned in registers are not
|
| 4714 |
|
|
aggregate_value_p, so we may see a PARALLEL or a REG. */
|
| 4715 |
|
|
if (REG_P (hard_reg))
|
| 4716 |
|
|
SET_DECL_RTL (DECL_RESULT (subr),
|
| 4717 |
|
|
gen_reg_rtx (GET_MODE (hard_reg)));
|
| 4718 |
|
|
else
|
| 4719 |
|
|
{
|
| 4720 |
|
|
gcc_assert (GET_CODE (hard_reg) == PARALLEL);
|
| 4721 |
|
|
SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
|
| 4722 |
|
|
}
|
| 4723 |
|
|
}
|
| 4724 |
|
|
|
| 4725 |
|
|
/* Set DECL_REGISTER flag so that expand_function_end will copy the
|
| 4726 |
|
|
result to the real return register(s). */
|
| 4727 |
|
|
DECL_REGISTER (DECL_RESULT (subr)) = 1;
|
| 4728 |
|
|
}
|
| 4729 |
|
|
|
| 4730 |
|
|
/* Initialize rtx for parameters and local variables.
|
| 4731 |
|
|
In some cases this requires emitting insns. */
|
| 4732 |
|
|
assign_parms (subr);
|
| 4733 |
|
|
|
| 4734 |
|
|
/* If function gets a static chain arg, store it. */
|
| 4735 |
|
|
if (cfun->static_chain_decl)
|
| 4736 |
|
|
{
|
| 4737 |
|
|
tree parm = cfun->static_chain_decl;
|
| 4738 |
|
|
rtx local, chain, insn;
|
| 4739 |
|
|
|
| 4740 |
|
|
local = gen_reg_rtx (Pmode);
|
| 4741 |
|
|
chain = targetm.calls.static_chain (current_function_decl, true);
|
| 4742 |
|
|
|
| 4743 |
|
|
set_decl_incoming_rtl (parm, chain, false);
|
| 4744 |
|
|
SET_DECL_RTL (parm, local);
|
| 4745 |
|
|
mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
|
| 4746 |
|
|
|
| 4747 |
|
|
insn = emit_move_insn (local, chain);
|
| 4748 |
|
|
|
| 4749 |
|
|
/* Mark the register as eliminable, similar to parameters. */
|
| 4750 |
|
|
if (MEM_P (chain)
|
| 4751 |
|
|
&& reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
|
| 4752 |
|
|
set_dst_reg_note (insn, REG_EQUIV, chain, local);
|
| 4753 |
|
|
}
|
| 4754 |
|
|
|
| 4755 |
|
|
/* If the function receives a non-local goto, then store the
|
| 4756 |
|
|
bits we need to restore the frame pointer. */
|
| 4757 |
|
|
if (cfun->nonlocal_goto_save_area)
|
| 4758 |
|
|
{
|
| 4759 |
|
|
tree t_save;
|
| 4760 |
|
|
rtx r_save;
|
| 4761 |
|
|
|
| 4762 |
|
|
/* ??? We need to do this save early. Unfortunately here is
|
| 4763 |
|
|
before the frame variable gets declared. Help out... */
|
| 4764 |
|
|
tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
|
| 4765 |
|
|
if (!DECL_RTL_SET_P (var))
|
| 4766 |
|
|
expand_decl (var);
|
| 4767 |
|
|
|
| 4768 |
|
|
t_save = build4 (ARRAY_REF,
|
| 4769 |
|
|
TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
|
| 4770 |
|
|
cfun->nonlocal_goto_save_area,
|
| 4771 |
|
|
integer_zero_node, NULL_TREE, NULL_TREE);
|
| 4772 |
|
|
r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
|
| 4773 |
|
|
gcc_assert (GET_MODE (r_save) == Pmode);
|
| 4774 |
|
|
|
| 4775 |
|
|
emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
|
| 4776 |
|
|
update_nonlocal_goto_save_area ();
|
| 4777 |
|
|
}
|
| 4778 |
|
|
|
| 4779 |
|
|
/* The following was moved from init_function_start.
|
| 4780 |
|
|
The move is supposed to make sdb output more accurate. */
|
| 4781 |
|
|
/* Indicate the beginning of the function body,
|
| 4782 |
|
|
as opposed to parm setup. */
|
| 4783 |
|
|
emit_note (NOTE_INSN_FUNCTION_BEG);
|
| 4784 |
|
|
|
| 4785 |
|
|
gcc_assert (NOTE_P (get_last_insn ()));
|
| 4786 |
|
|
|
| 4787 |
|
|
parm_birth_insn = get_last_insn ();
|
| 4788 |
|
|
|
| 4789 |
|
|
if (crtl->profile)
|
| 4790 |
|
|
{
|
| 4791 |
|
|
#ifdef PROFILE_HOOK
|
| 4792 |
|
|
PROFILE_HOOK (current_function_funcdef_no);
|
| 4793 |
|
|
#endif
|
| 4794 |
|
|
}
|
| 4795 |
|
|
|
| 4796 |
|
|
/* If we are doing generic stack checking, the probe should go here. */
|
| 4797 |
|
|
if (flag_stack_check == GENERIC_STACK_CHECK)
|
| 4798 |
|
|
stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
|
| 4799 |
|
|
|
| 4800 |
|
|
/* Make sure there is a line number after the function entry setup code. */
|
| 4801 |
|
|
force_next_line_note ();
|
| 4802 |
|
|
}
|
| 4803 |
|
|
|
| 4804 |
|
|
/* Undo the effects of init_dummy_function_start. */
|
| 4805 |
|
|
void
|
| 4806 |
|
|
expand_dummy_function_end (void)
|
| 4807 |
|
|
{
|
| 4808 |
|
|
gcc_assert (in_dummy_function);
|
| 4809 |
|
|
|
| 4810 |
|
|
/* End any sequences that failed to be closed due to syntax errors. */
|
| 4811 |
|
|
while (in_sequence_p ())
|
| 4812 |
|
|
end_sequence ();
|
| 4813 |
|
|
|
| 4814 |
|
|
/* Outside function body, can't compute type's actual size
|
| 4815 |
|
|
until next function's body starts. */
|
| 4816 |
|
|
|
| 4817 |
|
|
free_after_parsing (cfun);
|
| 4818 |
|
|
free_after_compilation (cfun);
|
| 4819 |
|
|
pop_cfun ();
|
| 4820 |
|
|
in_dummy_function = false;
|
| 4821 |
|
|
}
|
| 4822 |
|
|
|
| 4823 |
|
|
/* Call DOIT for each hard register used as a return value from
|
| 4824 |
|
|
the current function. */
|
| 4825 |
|
|
|
| 4826 |
|
|
void
|
| 4827 |
|
|
diddle_return_value (void (*doit) (rtx, void *), void *arg)
|
| 4828 |
|
|
{
|
| 4829 |
|
|
rtx outgoing = crtl->return_rtx;
|
| 4830 |
|
|
|
| 4831 |
|
|
if (! outgoing)
|
| 4832 |
|
|
return;
|
| 4833 |
|
|
|
| 4834 |
|
|
if (REG_P (outgoing))
|
| 4835 |
|
|
(*doit) (outgoing, arg);
|
| 4836 |
|
|
else if (GET_CODE (outgoing) == PARALLEL)
|
| 4837 |
|
|
{
|
| 4838 |
|
|
int i;
|
| 4839 |
|
|
|
| 4840 |
|
|
for (i = 0; i < XVECLEN (outgoing, 0); i++)
|
| 4841 |
|
|
{
|
| 4842 |
|
|
rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
|
| 4843 |
|
|
|
| 4844 |
|
|
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
| 4845 |
|
|
(*doit) (x, arg);
|
| 4846 |
|
|
}
|
| 4847 |
|
|
}
|
| 4848 |
|
|
}
|
| 4849 |
|
|
|
| 4850 |
|
|
static void
|
| 4851 |
|
|
do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
|
| 4852 |
|
|
{
|
| 4853 |
|
|
emit_clobber (reg);
|
| 4854 |
|
|
}
|
| 4855 |
|
|
|
| 4856 |
|
|
void
|
| 4857 |
|
|
clobber_return_register (void)
|
| 4858 |
|
|
{
|
| 4859 |
|
|
diddle_return_value (do_clobber_return_reg, NULL);
|
| 4860 |
|
|
|
| 4861 |
|
|
/* In case we do use pseudo to return value, clobber it too. */
|
| 4862 |
|
|
if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
|
| 4863 |
|
|
{
|
| 4864 |
|
|
tree decl_result = DECL_RESULT (current_function_decl);
|
| 4865 |
|
|
rtx decl_rtl = DECL_RTL (decl_result);
|
| 4866 |
|
|
if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
|
| 4867 |
|
|
{
|
| 4868 |
|
|
do_clobber_return_reg (decl_rtl, NULL);
|
| 4869 |
|
|
}
|
| 4870 |
|
|
}
|
| 4871 |
|
|
}
|
| 4872 |
|
|
|
| 4873 |
|
|
static void
|
| 4874 |
|
|
do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
|
| 4875 |
|
|
{
|
| 4876 |
|
|
emit_use (reg);
|
| 4877 |
|
|
}
|
| 4878 |
|
|
|
| 4879 |
|
|
static void
|
| 4880 |
|
|
use_return_register (void)
|
| 4881 |
|
|
{
|
| 4882 |
|
|
diddle_return_value (do_use_return_reg, NULL);
|
| 4883 |
|
|
}
|
| 4884 |
|
|
|
| 4885 |
|
|
/* Possibly warn about unused parameters. */
|
| 4886 |
|
|
void
|
| 4887 |
|
|
do_warn_unused_parameter (tree fn)
|
| 4888 |
|
|
{
|
| 4889 |
|
|
tree decl;
|
| 4890 |
|
|
|
| 4891 |
|
|
for (decl = DECL_ARGUMENTS (fn);
|
| 4892 |
|
|
decl; decl = DECL_CHAIN (decl))
|
| 4893 |
|
|
if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
|
| 4894 |
|
|
&& DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
|
| 4895 |
|
|
&& !TREE_NO_WARNING (decl))
|
| 4896 |
|
|
warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
|
| 4897 |
|
|
}
|
| 4898 |
|
|
|
| 4899 |
|
|
static GTY(()) rtx initial_trampoline;
|
| 4900 |
|
|
|
| 4901 |
|
|
/* Generate RTL for the end of the current function. */
|
| 4902 |
|
|
|
| 4903 |
|
|
void
|
| 4904 |
|
|
expand_function_end (void)
|
| 4905 |
|
|
{
|
| 4906 |
|
|
rtx clobber_after;
|
| 4907 |
|
|
|
| 4908 |
|
|
/* If arg_pointer_save_area was referenced only from a nested
|
| 4909 |
|
|
function, we will not have initialized it yet. Do that now. */
|
| 4910 |
|
|
if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
|
| 4911 |
|
|
get_arg_pointer_save_area ();
|
| 4912 |
|
|
|
| 4913 |
|
|
/* If we are doing generic stack checking and this function makes calls,
|
| 4914 |
|
|
do a stack probe at the start of the function to ensure we have enough
|
| 4915 |
|
|
space for another stack frame. */
|
| 4916 |
|
|
if (flag_stack_check == GENERIC_STACK_CHECK)
|
| 4917 |
|
|
{
|
| 4918 |
|
|
rtx insn, seq;
|
| 4919 |
|
|
|
| 4920 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
| 4921 |
|
|
if (CALL_P (insn))
|
| 4922 |
|
|
{
|
| 4923 |
|
|
rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
|
| 4924 |
|
|
start_sequence ();
|
| 4925 |
|
|
if (STACK_CHECK_MOVING_SP)
|
| 4926 |
|
|
anti_adjust_stack_and_probe (max_frame_size, true);
|
| 4927 |
|
|
else
|
| 4928 |
|
|
probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
|
| 4929 |
|
|
seq = get_insns ();
|
| 4930 |
|
|
end_sequence ();
|
| 4931 |
|
|
set_insn_locators (seq, prologue_locator);
|
| 4932 |
|
|
emit_insn_before (seq, stack_check_probe_note);
|
| 4933 |
|
|
break;
|
| 4934 |
|
|
}
|
| 4935 |
|
|
}
|
| 4936 |
|
|
|
| 4937 |
|
|
/* End any sequences that failed to be closed due to syntax errors. */
|
| 4938 |
|
|
while (in_sequence_p ())
|
| 4939 |
|
|
end_sequence ();
|
| 4940 |
|
|
|
| 4941 |
|
|
clear_pending_stack_adjust ();
|
| 4942 |
|
|
do_pending_stack_adjust ();
|
| 4943 |
|
|
|
| 4944 |
|
|
/* Output a linenumber for the end of the function.
|
| 4945 |
|
|
SDB depends on this. */
|
| 4946 |
|
|
force_next_line_note ();
|
| 4947 |
|
|
set_curr_insn_source_location (input_location);
|
| 4948 |
|
|
|
| 4949 |
|
|
/* Before the return label (if any), clobber the return
|
| 4950 |
|
|
registers so that they are not propagated live to the rest of
|
| 4951 |
|
|
the function. This can only happen with functions that drop
|
| 4952 |
|
|
through; if there had been a return statement, there would
|
| 4953 |
|
|
have either been a return rtx, or a jump to the return label.
|
| 4954 |
|
|
|
| 4955 |
|
|
We delay actual code generation after the current_function_value_rtx
|
| 4956 |
|
|
is computed. */
|
| 4957 |
|
|
clobber_after = get_last_insn ();
|
| 4958 |
|
|
|
| 4959 |
|
|
/* Output the label for the actual return from the function. */
|
| 4960 |
|
|
emit_label (return_label);
|
| 4961 |
|
|
|
| 4962 |
|
|
if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
|
| 4963 |
|
|
{
|
| 4964 |
|
|
/* Let except.c know where it should emit the call to unregister
|
| 4965 |
|
|
the function context for sjlj exceptions. */
|
| 4966 |
|
|
if (flag_exceptions)
|
| 4967 |
|
|
sjlj_emit_function_exit_after (get_last_insn ());
|
| 4968 |
|
|
}
|
| 4969 |
|
|
else
|
| 4970 |
|
|
{
|
| 4971 |
|
|
/* We want to ensure that instructions that may trap are not
|
| 4972 |
|
|
moved into the epilogue by scheduling, because we don't
|
| 4973 |
|
|
always emit unwind information for the epilogue. */
|
| 4974 |
|
|
if (cfun->can_throw_non_call_exceptions)
|
| 4975 |
|
|
emit_insn (gen_blockage ());
|
| 4976 |
|
|
}
|
| 4977 |
|
|
|
| 4978 |
|
|
/* If this is an implementation of throw, do what's necessary to
|
| 4979 |
|
|
communicate between __builtin_eh_return and the epilogue. */
|
| 4980 |
|
|
expand_eh_return ();
|
| 4981 |
|
|
|
| 4982 |
|
|
/* If scalar return value was computed in a pseudo-reg, or was a named
|
| 4983 |
|
|
return value that got dumped to the stack, copy that to the hard
|
| 4984 |
|
|
return register. */
|
| 4985 |
|
|
if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
|
| 4986 |
|
|
{
|
| 4987 |
|
|
tree decl_result = DECL_RESULT (current_function_decl);
|
| 4988 |
|
|
rtx decl_rtl = DECL_RTL (decl_result);
|
| 4989 |
|
|
|
| 4990 |
|
|
if (REG_P (decl_rtl)
|
| 4991 |
|
|
? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
|
| 4992 |
|
|
: DECL_REGISTER (decl_result))
|
| 4993 |
|
|
{
|
| 4994 |
|
|
rtx real_decl_rtl = crtl->return_rtx;
|
| 4995 |
|
|
|
| 4996 |
|
|
/* This should be set in assign_parms. */
|
| 4997 |
|
|
gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
|
| 4998 |
|
|
|
| 4999 |
|
|
/* If this is a BLKmode structure being returned in registers,
|
| 5000 |
|
|
then use the mode computed in expand_return. Note that if
|
| 5001 |
|
|
decl_rtl is memory, then its mode may have been changed,
|
| 5002 |
|
|
but that crtl->return_rtx has not. */
|
| 5003 |
|
|
if (GET_MODE (real_decl_rtl) == BLKmode)
|
| 5004 |
|
|
PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
|
| 5005 |
|
|
|
| 5006 |
|
|
/* If a non-BLKmode return value should be padded at the least
|
| 5007 |
|
|
significant end of the register, shift it left by the appropriate
|
| 5008 |
|
|
amount. BLKmode results are handled using the group load/store
|
| 5009 |
|
|
machinery. */
|
| 5010 |
|
|
if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
|
| 5011 |
|
|
&& targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
|
| 5012 |
|
|
{
|
| 5013 |
|
|
emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
|
| 5014 |
|
|
REGNO (real_decl_rtl)),
|
| 5015 |
|
|
decl_rtl);
|
| 5016 |
|
|
shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
|
| 5017 |
|
|
}
|
| 5018 |
|
|
/* If a named return value dumped decl_return to memory, then
|
| 5019 |
|
|
we may need to re-do the PROMOTE_MODE signed/unsigned
|
| 5020 |
|
|
extension. */
|
| 5021 |
|
|
else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
|
| 5022 |
|
|
{
|
| 5023 |
|
|
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
|
| 5024 |
|
|
promote_function_mode (TREE_TYPE (decl_result),
|
| 5025 |
|
|
GET_MODE (decl_rtl), &unsignedp,
|
| 5026 |
|
|
TREE_TYPE (current_function_decl), 1);
|
| 5027 |
|
|
|
| 5028 |
|
|
convert_move (real_decl_rtl, decl_rtl, unsignedp);
|
| 5029 |
|
|
}
|
| 5030 |
|
|
else if (GET_CODE (real_decl_rtl) == PARALLEL)
|
| 5031 |
|
|
{
|
| 5032 |
|
|
/* If expand_function_start has created a PARALLEL for decl_rtl,
|
| 5033 |
|
|
move the result to the real return registers. Otherwise, do
|
| 5034 |
|
|
a group load from decl_rtl for a named return. */
|
| 5035 |
|
|
if (GET_CODE (decl_rtl) == PARALLEL)
|
| 5036 |
|
|
emit_group_move (real_decl_rtl, decl_rtl);
|
| 5037 |
|
|
else
|
| 5038 |
|
|
emit_group_load (real_decl_rtl, decl_rtl,
|
| 5039 |
|
|
TREE_TYPE (decl_result),
|
| 5040 |
|
|
int_size_in_bytes (TREE_TYPE (decl_result)));
|
| 5041 |
|
|
}
|
| 5042 |
|
|
/* In the case of complex integer modes smaller than a word, we'll
|
| 5043 |
|
|
need to generate some non-trivial bitfield insertions. Do that
|
| 5044 |
|
|
on a pseudo and not the hard register. */
|
| 5045 |
|
|
else if (GET_CODE (decl_rtl) == CONCAT
|
| 5046 |
|
|
&& GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
|
| 5047 |
|
|
&& GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
|
| 5048 |
|
|
{
|
| 5049 |
|
|
int old_generating_concat_p;
|
| 5050 |
|
|
rtx tmp;
|
| 5051 |
|
|
|
| 5052 |
|
|
old_generating_concat_p = generating_concat_p;
|
| 5053 |
|
|
generating_concat_p = 0;
|
| 5054 |
|
|
tmp = gen_reg_rtx (GET_MODE (decl_rtl));
|
| 5055 |
|
|
generating_concat_p = old_generating_concat_p;
|
| 5056 |
|
|
|
| 5057 |
|
|
emit_move_insn (tmp, decl_rtl);
|
| 5058 |
|
|
emit_move_insn (real_decl_rtl, tmp);
|
| 5059 |
|
|
}
|
| 5060 |
|
|
else
|
| 5061 |
|
|
emit_move_insn (real_decl_rtl, decl_rtl);
|
| 5062 |
|
|
}
|
| 5063 |
|
|
}
|
| 5064 |
|
|
|
| 5065 |
|
|
/* If returning a structure, arrange to return the address of the value
|
| 5066 |
|
|
in a place where debuggers expect to find it.
|
| 5067 |
|
|
|
| 5068 |
|
|
If returning a structure PCC style,
|
| 5069 |
|
|
the caller also depends on this value.
|
| 5070 |
|
|
And cfun->returns_pcc_struct is not necessarily set. */
|
| 5071 |
|
|
if (cfun->returns_struct
|
| 5072 |
|
|
|| cfun->returns_pcc_struct)
|
| 5073 |
|
|
{
|
| 5074 |
|
|
rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
|
| 5075 |
|
|
tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
|
| 5076 |
|
|
rtx outgoing;
|
| 5077 |
|
|
|
| 5078 |
|
|
if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
|
| 5079 |
|
|
type = TREE_TYPE (type);
|
| 5080 |
|
|
else
|
| 5081 |
|
|
value_address = XEXP (value_address, 0);
|
| 5082 |
|
|
|
| 5083 |
|
|
outgoing = targetm.calls.function_value (build_pointer_type (type),
|
| 5084 |
|
|
current_function_decl, true);
|
| 5085 |
|
|
|
| 5086 |
|
|
/* Mark this as a function return value so integrate will delete the
|
| 5087 |
|
|
assignment and USE below when inlining this function. */
|
| 5088 |
|
|
REG_FUNCTION_VALUE_P (outgoing) = 1;
|
| 5089 |
|
|
|
| 5090 |
|
|
/* The address may be ptr_mode and OUTGOING may be Pmode. */
|
| 5091 |
|
|
value_address = convert_memory_address (GET_MODE (outgoing),
|
| 5092 |
|
|
value_address);
|
| 5093 |
|
|
|
| 5094 |
|
|
emit_move_insn (outgoing, value_address);
|
| 5095 |
|
|
|
| 5096 |
|
|
/* Show return register used to hold result (in this case the address
|
| 5097 |
|
|
of the result. */
|
| 5098 |
|
|
crtl->return_rtx = outgoing;
|
| 5099 |
|
|
}
|
| 5100 |
|
|
|
| 5101 |
|
|
/* Emit the actual code to clobber return register. */
|
| 5102 |
|
|
{
|
| 5103 |
|
|
rtx seq;
|
| 5104 |
|
|
|
| 5105 |
|
|
start_sequence ();
|
| 5106 |
|
|
clobber_return_register ();
|
| 5107 |
|
|
seq = get_insns ();
|
| 5108 |
|
|
end_sequence ();
|
| 5109 |
|
|
|
| 5110 |
|
|
emit_insn_after (seq, clobber_after);
|
| 5111 |
|
|
}
|
| 5112 |
|
|
|
| 5113 |
|
|
/* Output the label for the naked return from the function. */
|
| 5114 |
|
|
if (naked_return_label)
|
| 5115 |
|
|
emit_label (naked_return_label);
|
| 5116 |
|
|
|
| 5117 |
|
|
/* @@@ This is a kludge. We want to ensure that instructions that
|
| 5118 |
|
|
may trap are not moved into the epilogue by scheduling, because
|
| 5119 |
|
|
we don't always emit unwind information for the epilogue. */
|
| 5120 |
|
|
if (cfun->can_throw_non_call_exceptions
|
| 5121 |
|
|
&& targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
|
| 5122 |
|
|
emit_insn (gen_blockage ());
|
| 5123 |
|
|
|
| 5124 |
|
|
/* If stack protection is enabled for this function, check the guard. */
|
| 5125 |
|
|
if (crtl->stack_protect_guard)
|
| 5126 |
|
|
stack_protect_epilogue ();
|
| 5127 |
|
|
|
| 5128 |
|
|
/* If we had calls to alloca, and this machine needs
|
| 5129 |
|
|
an accurate stack pointer to exit the function,
|
| 5130 |
|
|
insert some code to save and restore the stack pointer. */
|
| 5131 |
|
|
if (! EXIT_IGNORE_STACK
|
| 5132 |
|
|
&& cfun->calls_alloca)
|
| 5133 |
|
|
{
|
| 5134 |
|
|
rtx tem = 0, seq;
|
| 5135 |
|
|
|
| 5136 |
|
|
start_sequence ();
|
| 5137 |
|
|
emit_stack_save (SAVE_FUNCTION, &tem);
|
| 5138 |
|
|
seq = get_insns ();
|
| 5139 |
|
|
end_sequence ();
|
| 5140 |
|
|
emit_insn_before (seq, parm_birth_insn);
|
| 5141 |
|
|
|
| 5142 |
|
|
emit_stack_restore (SAVE_FUNCTION, tem);
|
| 5143 |
|
|
}
|
| 5144 |
|
|
|
| 5145 |
|
|
/* ??? This should no longer be necessary since stupid is no longer with
|
| 5146 |
|
|
us, but there are some parts of the compiler (eg reload_combine, and
|
| 5147 |
|
|
sh mach_dep_reorg) that still try and compute their own lifetime info
|
| 5148 |
|
|
instead of using the general framework. */
|
| 5149 |
|
|
use_return_register ();
|
| 5150 |
|
|
}
|
| 5151 |
|
|
|
| 5152 |
|
|
rtx
|
| 5153 |
|
|
get_arg_pointer_save_area (void)
|
| 5154 |
|
|
{
|
| 5155 |
|
|
rtx ret = arg_pointer_save_area;
|
| 5156 |
|
|
|
| 5157 |
|
|
if (! ret)
|
| 5158 |
|
|
{
|
| 5159 |
|
|
ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
|
| 5160 |
|
|
arg_pointer_save_area = ret;
|
| 5161 |
|
|
}
|
| 5162 |
|
|
|
| 5163 |
|
|
if (! crtl->arg_pointer_save_area_init)
|
| 5164 |
|
|
{
|
| 5165 |
|
|
rtx seq;
|
| 5166 |
|
|
|
| 5167 |
|
|
/* Save the arg pointer at the beginning of the function. The
|
| 5168 |
|
|
generated stack slot may not be a valid memory address, so we
|
| 5169 |
|
|
have to check it and fix it if necessary. */
|
| 5170 |
|
|
start_sequence ();
|
| 5171 |
|
|
emit_move_insn (validize_mem (ret),
|
| 5172 |
|
|
crtl->args.internal_arg_pointer);
|
| 5173 |
|
|
seq = get_insns ();
|
| 5174 |
|
|
end_sequence ();
|
| 5175 |
|
|
|
| 5176 |
|
|
push_topmost_sequence ();
|
| 5177 |
|
|
emit_insn_after (seq, entry_of_function ());
|
| 5178 |
|
|
pop_topmost_sequence ();
|
| 5179 |
|
|
|
| 5180 |
|
|
crtl->arg_pointer_save_area_init = true;
|
| 5181 |
|
|
}
|
| 5182 |
|
|
|
| 5183 |
|
|
return ret;
|
| 5184 |
|
|
}
|
| 5185 |
|
|
|
| 5186 |
|
|
/* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
|
| 5187 |
|
|
for the first time. */
|
| 5188 |
|
|
|
| 5189 |
|
|
static void
|
| 5190 |
|
|
record_insns (rtx insns, rtx end, htab_t *hashp)
|
| 5191 |
|
|
{
|
| 5192 |
|
|
rtx tmp;
|
| 5193 |
|
|
htab_t hash = *hashp;
|
| 5194 |
|
|
|
| 5195 |
|
|
if (hash == NULL)
|
| 5196 |
|
|
*hashp = hash
|
| 5197 |
|
|
= htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
|
| 5198 |
|
|
|
| 5199 |
|
|
for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
|
| 5200 |
|
|
{
|
| 5201 |
|
|
void **slot = htab_find_slot (hash, tmp, INSERT);
|
| 5202 |
|
|
gcc_assert (*slot == NULL);
|
| 5203 |
|
|
*slot = tmp;
|
| 5204 |
|
|
}
|
| 5205 |
|
|
}
|
| 5206 |
|
|
|
| 5207 |
|
|
/* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
|
| 5208 |
|
|
basic block, splitting or peepholes. If INSN is a prologue or epilogue
|
| 5209 |
|
|
insn, then record COPY as well. */
|
| 5210 |
|
|
|
| 5211 |
|
|
void
|
| 5212 |
|
|
maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
|
| 5213 |
|
|
{
|
| 5214 |
|
|
htab_t hash;
|
| 5215 |
|
|
void **slot;
|
| 5216 |
|
|
|
| 5217 |
|
|
hash = epilogue_insn_hash;
|
| 5218 |
|
|
if (!hash || !htab_find (hash, insn))
|
| 5219 |
|
|
{
|
| 5220 |
|
|
hash = prologue_insn_hash;
|
| 5221 |
|
|
if (!hash || !htab_find (hash, insn))
|
| 5222 |
|
|
return;
|
| 5223 |
|
|
}
|
| 5224 |
|
|
|
| 5225 |
|
|
slot = htab_find_slot (hash, copy, INSERT);
|
| 5226 |
|
|
gcc_assert (*slot == NULL);
|
| 5227 |
|
|
*slot = copy;
|
| 5228 |
|
|
}
|
| 5229 |
|
|
|
| 5230 |
|
|
/* Set the locator of the insn chain starting at INSN to LOC. */
|
| 5231 |
|
|
static void
|
| 5232 |
|
|
set_insn_locators (rtx insn, int loc)
|
| 5233 |
|
|
{
|
| 5234 |
|
|
while (insn != NULL_RTX)
|
| 5235 |
|
|
{
|
| 5236 |
|
|
if (INSN_P (insn))
|
| 5237 |
|
|
INSN_LOCATOR (insn) = loc;
|
| 5238 |
|
|
insn = NEXT_INSN (insn);
|
| 5239 |
|
|
}
|
| 5240 |
|
|
}
|
| 5241 |
|
|
|
| 5242 |
|
|
/* Determine if any INSNs in HASH are, or are part of, INSN. Because
|
| 5243 |
|
|
we can be running after reorg, SEQUENCE rtl is possible. */
|
| 5244 |
|
|
|
| 5245 |
|
|
static bool
|
| 5246 |
|
|
contains (const_rtx insn, htab_t hash)
|
| 5247 |
|
|
{
|
| 5248 |
|
|
if (hash == NULL)
|
| 5249 |
|
|
return false;
|
| 5250 |
|
|
|
| 5251 |
|
|
if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
|
| 5252 |
|
|
{
|
| 5253 |
|
|
int i;
|
| 5254 |
|
|
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
|
| 5255 |
|
|
if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
|
| 5256 |
|
|
return true;
|
| 5257 |
|
|
return false;
|
| 5258 |
|
|
}
|
| 5259 |
|
|
|
| 5260 |
|
|
return htab_find (hash, insn) != NULL;
|
| 5261 |
|
|
}
|
| 5262 |
|
|
|
| 5263 |
|
|
int
|
| 5264 |
|
|
prologue_epilogue_contains (const_rtx insn)
|
| 5265 |
|
|
{
|
| 5266 |
|
|
if (contains (insn, prologue_insn_hash))
|
| 5267 |
|
|
return 1;
|
| 5268 |
|
|
if (contains (insn, epilogue_insn_hash))
|
| 5269 |
|
|
return 1;
|
| 5270 |
|
|
return 0;
|
| 5271 |
|
|
}
|
| 5272 |
|
|
|
| 5273 |
|
|
#ifdef HAVE_simple_return
|
| 5274 |
|
|
|
| 5275 |
|
|
/* Return true if INSN requires the stack frame to be set up.
|
| 5276 |
|
|
PROLOGUE_USED contains the hard registers used in the function
|
| 5277 |
|
|
prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
|
| 5278 |
|
|
prologue to set up for the function. */
|
| 5279 |
|
|
bool
|
| 5280 |
|
|
requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
|
| 5281 |
|
|
HARD_REG_SET set_up_by_prologue)
|
| 5282 |
|
|
{
|
| 5283 |
|
|
df_ref *df_rec;
|
| 5284 |
|
|
HARD_REG_SET hardregs;
|
| 5285 |
|
|
unsigned regno;
|
| 5286 |
|
|
|
| 5287 |
|
|
if (CALL_P (insn))
|
| 5288 |
|
|
return !SIBLING_CALL_P (insn);
|
| 5289 |
|
|
|
| 5290 |
|
|
CLEAR_HARD_REG_SET (hardregs);
|
| 5291 |
|
|
for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
|
| 5292 |
|
|
{
|
| 5293 |
|
|
rtx dreg = DF_REF_REG (*df_rec);
|
| 5294 |
|
|
|
| 5295 |
|
|
if (!REG_P (dreg))
|
| 5296 |
|
|
continue;
|
| 5297 |
|
|
|
| 5298 |
|
|
add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
|
| 5299 |
|
|
REGNO (dreg));
|
| 5300 |
|
|
}
|
| 5301 |
|
|
if (hard_reg_set_intersect_p (hardregs, prologue_used))
|
| 5302 |
|
|
return true;
|
| 5303 |
|
|
AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
|
| 5304 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
| 5305 |
|
|
if (TEST_HARD_REG_BIT (hardregs, regno)
|
| 5306 |
|
|
&& df_regs_ever_live_p (regno))
|
| 5307 |
|
|
return true;
|
| 5308 |
|
|
|
| 5309 |
|
|
for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
|
| 5310 |
|
|
{
|
| 5311 |
|
|
rtx reg = DF_REF_REG (*df_rec);
|
| 5312 |
|
|
|
| 5313 |
|
|
if (!REG_P (reg))
|
| 5314 |
|
|
continue;
|
| 5315 |
|
|
|
| 5316 |
|
|
add_to_hard_reg_set (&hardregs, GET_MODE (reg),
|
| 5317 |
|
|
REGNO (reg));
|
| 5318 |
|
|
}
|
| 5319 |
|
|
if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
|
| 5320 |
|
|
return true;
|
| 5321 |
|
|
|
| 5322 |
|
|
return false;
|
| 5323 |
|
|
}
|
| 5324 |
|
|
|
| 5325 |
|
|
/* See whether BB has a single successor that uses [REGNO, END_REGNO),
|
| 5326 |
|
|
and if BB is its only predecessor. Return that block if so,
|
| 5327 |
|
|
otherwise return null. */
|
| 5328 |
|
|
|
| 5329 |
|
|
static basic_block
|
| 5330 |
|
|
next_block_for_reg (basic_block bb, int regno, int end_regno)
|
| 5331 |
|
|
{
|
| 5332 |
|
|
edge e, live_edge;
|
| 5333 |
|
|
edge_iterator ei;
|
| 5334 |
|
|
bitmap live;
|
| 5335 |
|
|
int i;
|
| 5336 |
|
|
|
| 5337 |
|
|
live_edge = NULL;
|
| 5338 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 5339 |
|
|
{
|
| 5340 |
|
|
live = df_get_live_in (e->dest);
|
| 5341 |
|
|
for (i = regno; i < end_regno; i++)
|
| 5342 |
|
|
if (REGNO_REG_SET_P (live, i))
|
| 5343 |
|
|
{
|
| 5344 |
|
|
if (live_edge && live_edge != e)
|
| 5345 |
|
|
return NULL;
|
| 5346 |
|
|
live_edge = e;
|
| 5347 |
|
|
}
|
| 5348 |
|
|
}
|
| 5349 |
|
|
|
| 5350 |
|
|
/* We can sometimes encounter dead code. Don't try to move it
|
| 5351 |
|
|
into the exit block. */
|
| 5352 |
|
|
if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
|
| 5353 |
|
|
return NULL;
|
| 5354 |
|
|
|
| 5355 |
|
|
/* Reject targets of abnormal edges. This is needed for correctness
|
| 5356 |
|
|
on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
|
| 5357 |
|
|
exception edges even though it is generally treated as call-saved
|
| 5358 |
|
|
for the majority of the compilation. Moving across abnormal edges
|
| 5359 |
|
|
isn't going to be interesting for shrink-wrap usage anyway. */
|
| 5360 |
|
|
if (live_edge->flags & EDGE_ABNORMAL)
|
| 5361 |
|
|
return NULL;
|
| 5362 |
|
|
|
| 5363 |
|
|
if (EDGE_COUNT (live_edge->dest->preds) > 1)
|
| 5364 |
|
|
return NULL;
|
| 5365 |
|
|
|
| 5366 |
|
|
return live_edge->dest;
|
| 5367 |
|
|
}
|
| 5368 |
|
|
|
| 5369 |
|
|
/* Try to move INSN from BB to a successor. Return true on success.
|
| 5370 |
|
|
USES and DEFS are the set of registers that are used and defined
|
| 5371 |
|
|
after INSN in BB. */
|
| 5372 |
|
|
|
| 5373 |
|
|
static bool
|
| 5374 |
|
|
move_insn_for_shrink_wrap (basic_block bb, rtx insn,
|
| 5375 |
|
|
const HARD_REG_SET uses,
|
| 5376 |
|
|
const HARD_REG_SET defs)
|
| 5377 |
|
|
{
|
| 5378 |
|
|
rtx set, src, dest;
|
| 5379 |
|
|
bitmap live_out, live_in, bb_uses, bb_defs;
|
| 5380 |
|
|
unsigned int i, dregno, end_dregno, sregno, end_sregno;
|
| 5381 |
|
|
basic_block next_block;
|
| 5382 |
|
|
|
| 5383 |
|
|
/* Look for a simple register copy. */
|
| 5384 |
|
|
set = single_set (insn);
|
| 5385 |
|
|
if (!set)
|
| 5386 |
|
|
return false;
|
| 5387 |
|
|
src = SET_SRC (set);
|
| 5388 |
|
|
dest = SET_DEST (set);
|
| 5389 |
|
|
if (!REG_P (dest) || !REG_P (src))
|
| 5390 |
|
|
return false;
|
| 5391 |
|
|
|
| 5392 |
|
|
/* Make sure that the source register isn't defined later in BB. */
|
| 5393 |
|
|
sregno = REGNO (src);
|
| 5394 |
|
|
end_sregno = END_REGNO (src);
|
| 5395 |
|
|
if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
|
| 5396 |
|
|
return false;
|
| 5397 |
|
|
|
| 5398 |
|
|
/* Make sure that the destination register isn't referenced later in BB. */
|
| 5399 |
|
|
dregno = REGNO (dest);
|
| 5400 |
|
|
end_dregno = END_REGNO (dest);
|
| 5401 |
|
|
if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
|
| 5402 |
|
|
|| overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
|
| 5403 |
|
|
return false;
|
| 5404 |
|
|
|
| 5405 |
|
|
/* See whether there is a successor block to which we could move INSN. */
|
| 5406 |
|
|
next_block = next_block_for_reg (bb, dregno, end_dregno);
|
| 5407 |
|
|
if (!next_block)
|
| 5408 |
|
|
return false;
|
| 5409 |
|
|
|
| 5410 |
|
|
/* At this point we are committed to moving INSN, but let's try to
|
| 5411 |
|
|
move it as far as we can. */
|
| 5412 |
|
|
do
|
| 5413 |
|
|
{
|
| 5414 |
|
|
live_out = df_get_live_out (bb);
|
| 5415 |
|
|
live_in = df_get_live_in (next_block);
|
| 5416 |
|
|
bb = next_block;
|
| 5417 |
|
|
|
| 5418 |
|
|
/* Check whether BB uses DEST or clobbers DEST. We need to add
|
| 5419 |
|
|
INSN to BB if so. Either way, DEST is no longer live on entry,
|
| 5420 |
|
|
except for any part that overlaps SRC (next loop). */
|
| 5421 |
|
|
bb_uses = &DF_LR_BB_INFO (bb)->use;
|
| 5422 |
|
|
bb_defs = &DF_LR_BB_INFO (bb)->def;
|
| 5423 |
|
|
for (i = dregno; i < end_dregno; i++)
|
| 5424 |
|
|
{
|
| 5425 |
|
|
if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
|
| 5426 |
|
|
next_block = NULL;
|
| 5427 |
|
|
CLEAR_REGNO_REG_SET (live_out, i);
|
| 5428 |
|
|
CLEAR_REGNO_REG_SET (live_in, i);
|
| 5429 |
|
|
}
|
| 5430 |
|
|
|
| 5431 |
|
|
/* Check whether BB clobbers SRC. We need to add INSN to BB if so.
|
| 5432 |
|
|
Either way, SRC is now live on entry. */
|
| 5433 |
|
|
for (i = sregno; i < end_sregno; i++)
|
| 5434 |
|
|
{
|
| 5435 |
|
|
if (REGNO_REG_SET_P (bb_defs, i))
|
| 5436 |
|
|
next_block = NULL;
|
| 5437 |
|
|
SET_REGNO_REG_SET (live_out, i);
|
| 5438 |
|
|
SET_REGNO_REG_SET (live_in, i);
|
| 5439 |
|
|
}
|
| 5440 |
|
|
|
| 5441 |
|
|
/* If we don't need to add the move to BB, look for a single
|
| 5442 |
|
|
successor block. */
|
| 5443 |
|
|
if (next_block)
|
| 5444 |
|
|
next_block = next_block_for_reg (next_block, dregno, end_dregno);
|
| 5445 |
|
|
}
|
| 5446 |
|
|
while (next_block);
|
| 5447 |
|
|
|
| 5448 |
|
|
/* BB now defines DEST. It only uses the parts of DEST that overlap SRC
|
| 5449 |
|
|
(next loop). */
|
| 5450 |
|
|
for (i = dregno; i < end_dregno; i++)
|
| 5451 |
|
|
{
|
| 5452 |
|
|
CLEAR_REGNO_REG_SET (bb_uses, i);
|
| 5453 |
|
|
SET_REGNO_REG_SET (bb_defs, i);
|
| 5454 |
|
|
}
|
| 5455 |
|
|
|
| 5456 |
|
|
/* BB now uses SRC. */
|
| 5457 |
|
|
for (i = sregno; i < end_sregno; i++)
|
| 5458 |
|
|
SET_REGNO_REG_SET (bb_uses, i);
|
| 5459 |
|
|
|
| 5460 |
|
|
emit_insn_after (PATTERN (insn), bb_note (bb));
|
| 5461 |
|
|
delete_insn (insn);
|
| 5462 |
|
|
return true;
|
| 5463 |
|
|
}
|
| 5464 |
|
|
|
| 5465 |
|
|
/* Look for register copies in the first block of the function, and move
|
| 5466 |
|
|
them down into successor blocks if the register is used only on one
|
| 5467 |
|
|
path. This exposes more opportunities for shrink-wrapping. These
|
| 5468 |
|
|
kinds of sets often occur when incoming argument registers are moved
|
| 5469 |
|
|
to call-saved registers because their values are live across one or
|
| 5470 |
|
|
more calls during the function. */
|
| 5471 |
|
|
|
| 5472 |
|
|
static void
|
| 5473 |
|
|
prepare_shrink_wrap (basic_block entry_block)
|
| 5474 |
|
|
{
|
| 5475 |
|
|
rtx insn, curr, x;
|
| 5476 |
|
|
HARD_REG_SET uses, defs;
|
| 5477 |
|
|
df_ref *ref;
|
| 5478 |
|
|
|
| 5479 |
|
|
CLEAR_HARD_REG_SET (uses);
|
| 5480 |
|
|
CLEAR_HARD_REG_SET (defs);
|
| 5481 |
|
|
FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
|
| 5482 |
|
|
if (NONDEBUG_INSN_P (insn)
|
| 5483 |
|
|
&& !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
|
| 5484 |
|
|
{
|
| 5485 |
|
|
/* Add all defined registers to DEFs. */
|
| 5486 |
|
|
for (ref = DF_INSN_DEFS (insn); *ref; ref++)
|
| 5487 |
|
|
{
|
| 5488 |
|
|
x = DF_REF_REG (*ref);
|
| 5489 |
|
|
if (REG_P (x) && HARD_REGISTER_P (x))
|
| 5490 |
|
|
SET_HARD_REG_BIT (defs, REGNO (x));
|
| 5491 |
|
|
}
|
| 5492 |
|
|
|
| 5493 |
|
|
/* Add all used registers to USESs. */
|
| 5494 |
|
|
for (ref = DF_INSN_USES (insn); *ref; ref++)
|
| 5495 |
|
|
{
|
| 5496 |
|
|
x = DF_REF_REG (*ref);
|
| 5497 |
|
|
if (REG_P (x) && HARD_REGISTER_P (x))
|
| 5498 |
|
|
SET_HARD_REG_BIT (uses, REGNO (x));
|
| 5499 |
|
|
}
|
| 5500 |
|
|
}
|
| 5501 |
|
|
}
|
| 5502 |
|
|
|
| 5503 |
|
|
#endif
|
| 5504 |
|
|
|
| 5505 |
|
|
#ifdef HAVE_return
|
| 5506 |
|
|
/* Insert use of return register before the end of BB. */
|
| 5507 |
|
|
|
| 5508 |
|
|
static void
|
| 5509 |
|
|
emit_use_return_register_into_block (basic_block bb)
|
| 5510 |
|
|
{
|
| 5511 |
|
|
rtx seq;
|
| 5512 |
|
|
start_sequence ();
|
| 5513 |
|
|
use_return_register ();
|
| 5514 |
|
|
seq = get_insns ();
|
| 5515 |
|
|
end_sequence ();
|
| 5516 |
|
|
emit_insn_before (seq, BB_END (bb));
|
| 5517 |
|
|
}
|
| 5518 |
|
|
|
| 5519 |
|
|
|
| 5520 |
|
|
/* Create a return pattern, either simple_return or return, depending on
|
| 5521 |
|
|
simple_p. */
|
| 5522 |
|
|
|
| 5523 |
|
|
static rtx
|
| 5524 |
|
|
gen_return_pattern (bool simple_p)
|
| 5525 |
|
|
{
|
| 5526 |
|
|
#ifdef HAVE_simple_return
|
| 5527 |
|
|
return simple_p ? gen_simple_return () : gen_return ();
|
| 5528 |
|
|
#else
|
| 5529 |
|
|
gcc_assert (!simple_p);
|
| 5530 |
|
|
return gen_return ();
|
| 5531 |
|
|
#endif
|
| 5532 |
|
|
}
|
| 5533 |
|
|
|
| 5534 |
|
|
/* Insert an appropriate return pattern at the end of block BB. This
|
| 5535 |
|
|
also means updating block_for_insn appropriately. SIMPLE_P is
|
| 5536 |
|
|
the same as in gen_return_pattern and passed to it. */
|
| 5537 |
|
|
|
| 5538 |
|
|
static void
|
| 5539 |
|
|
emit_return_into_block (bool simple_p, basic_block bb)
|
| 5540 |
|
|
{
|
| 5541 |
|
|
rtx jump, pat;
|
| 5542 |
|
|
jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
|
| 5543 |
|
|
pat = PATTERN (jump);
|
| 5544 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
| 5545 |
|
|
pat = XVECEXP (pat, 0, 0);
|
| 5546 |
|
|
gcc_assert (ANY_RETURN_P (pat));
|
| 5547 |
|
|
JUMP_LABEL (jump) = pat;
|
| 5548 |
|
|
}
|
| 5549 |
|
|
#endif
|
| 5550 |
|
|
|
| 5551 |
|
|
/* Set JUMP_LABEL for a return insn. */
|
| 5552 |
|
|
|
| 5553 |
|
|
void
|
| 5554 |
|
|
set_return_jump_label (rtx returnjump)
|
| 5555 |
|
|
{
|
| 5556 |
|
|
rtx pat = PATTERN (returnjump);
|
| 5557 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
| 5558 |
|
|
pat = XVECEXP (pat, 0, 0);
|
| 5559 |
|
|
if (ANY_RETURN_P (pat))
|
| 5560 |
|
|
JUMP_LABEL (returnjump) = pat;
|
| 5561 |
|
|
else
|
| 5562 |
|
|
JUMP_LABEL (returnjump) = ret_rtx;
|
| 5563 |
|
|
}
|
| 5564 |
|
|
|
| 5565 |
|
|
#ifdef HAVE_simple_return
|
| 5566 |
|
|
/* Create a copy of BB instructions and insert at BEFORE. Redirect
|
| 5567 |
|
|
preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
|
| 5568 |
|
|
static void
|
| 5569 |
|
|
dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
|
| 5570 |
|
|
bitmap_head *need_prologue)
|
| 5571 |
|
|
{
|
| 5572 |
|
|
edge_iterator ei;
|
| 5573 |
|
|
edge e;
|
| 5574 |
|
|
rtx insn = BB_END (bb);
|
| 5575 |
|
|
|
| 5576 |
|
|
/* We know BB has a single successor, so there is no need to copy a
|
| 5577 |
|
|
simple jump at the end of BB. */
|
| 5578 |
|
|
if (simplejump_p (insn))
|
| 5579 |
|
|
insn = PREV_INSN (insn);
|
| 5580 |
|
|
|
| 5581 |
|
|
start_sequence ();
|
| 5582 |
|
|
duplicate_insn_chain (BB_HEAD (bb), insn);
|
| 5583 |
|
|
if (dump_file)
|
| 5584 |
|
|
{
|
| 5585 |
|
|
unsigned count = 0;
|
| 5586 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
| 5587 |
|
|
if (active_insn_p (insn))
|
| 5588 |
|
|
++count;
|
| 5589 |
|
|
fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
|
| 5590 |
|
|
bb->index, copy_bb->index, count);
|
| 5591 |
|
|
}
|
| 5592 |
|
|
insn = get_insns ();
|
| 5593 |
|
|
end_sequence ();
|
| 5594 |
|
|
emit_insn_before (insn, before);
|
| 5595 |
|
|
|
| 5596 |
|
|
/* Redirect all the paths that need no prologue into copy_bb. */
|
| 5597 |
|
|
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
|
| 5598 |
|
|
if (!bitmap_bit_p (need_prologue, e->src->index))
|
| 5599 |
|
|
{
|
| 5600 |
|
|
redirect_edge_and_branch_force (e, copy_bb);
|
| 5601 |
|
|
continue;
|
| 5602 |
|
|
}
|
| 5603 |
|
|
else
|
| 5604 |
|
|
ei_next (&ei);
|
| 5605 |
|
|
}
|
| 5606 |
|
|
#endif
|
| 5607 |
|
|
|
| 5608 |
|
|
#if defined (HAVE_return) || defined (HAVE_simple_return)
|
| 5609 |
|
|
/* Return true if there are any active insns between HEAD and TAIL. */
|
| 5610 |
|
|
static bool
|
| 5611 |
|
|
active_insn_between (rtx head, rtx tail)
|
| 5612 |
|
|
{
|
| 5613 |
|
|
while (tail)
|
| 5614 |
|
|
{
|
| 5615 |
|
|
if (active_insn_p (tail))
|
| 5616 |
|
|
return true;
|
| 5617 |
|
|
if (tail == head)
|
| 5618 |
|
|
return false;
|
| 5619 |
|
|
tail = PREV_INSN (tail);
|
| 5620 |
|
|
}
|
| 5621 |
|
|
return false;
|
| 5622 |
|
|
}
|
| 5623 |
|
|
|
| 5624 |
|
|
/* LAST_BB is a block that exits, and empty of active instructions.
|
| 5625 |
|
|
Examine its predecessors for jumps that can be converted to
|
| 5626 |
|
|
(conditional) returns. */
|
| 5627 |
|
|
static VEC (edge, heap) *
|
| 5628 |
|
|
convert_jumps_to_returns (basic_block last_bb, bool simple_p,
|
| 5629 |
|
|
VEC (edge, heap) *unconverted ATTRIBUTE_UNUSED)
|
| 5630 |
|
|
{
|
| 5631 |
|
|
int i;
|
| 5632 |
|
|
basic_block bb;
|
| 5633 |
|
|
rtx label;
|
| 5634 |
|
|
edge_iterator ei;
|
| 5635 |
|
|
edge e;
|
| 5636 |
|
|
VEC(basic_block,heap) *src_bbs;
|
| 5637 |
|
|
|
| 5638 |
|
|
src_bbs = VEC_alloc (basic_block, heap, EDGE_COUNT (last_bb->preds));
|
| 5639 |
|
|
FOR_EACH_EDGE (e, ei, last_bb->preds)
|
| 5640 |
|
|
if (e->src != ENTRY_BLOCK_PTR)
|
| 5641 |
|
|
VEC_quick_push (basic_block, src_bbs, e->src);
|
| 5642 |
|
|
|
| 5643 |
|
|
label = BB_HEAD (last_bb);
|
| 5644 |
|
|
|
| 5645 |
|
|
FOR_EACH_VEC_ELT (basic_block, src_bbs, i, bb)
|
| 5646 |
|
|
{
|
| 5647 |
|
|
rtx jump = BB_END (bb);
|
| 5648 |
|
|
|
| 5649 |
|
|
if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
|
| 5650 |
|
|
continue;
|
| 5651 |
|
|
|
| 5652 |
|
|
e = find_edge (bb, last_bb);
|
| 5653 |
|
|
|
| 5654 |
|
|
/* If we have an unconditional jump, we can replace that
|
| 5655 |
|
|
with a simple return instruction. */
|
| 5656 |
|
|
if (simplejump_p (jump))
|
| 5657 |
|
|
{
|
| 5658 |
|
|
/* The use of the return register might be present in the exit
|
| 5659 |
|
|
fallthru block. Either:
|
| 5660 |
|
|
- removing the use is safe, and we should remove the use in
|
| 5661 |
|
|
the exit fallthru block, or
|
| 5662 |
|
|
- removing the use is not safe, and we should add it here.
|
| 5663 |
|
|
For now, we conservatively choose the latter. Either of the
|
| 5664 |
|
|
2 helps in crossjumping. */
|
| 5665 |
|
|
emit_use_return_register_into_block (bb);
|
| 5666 |
|
|
|
| 5667 |
|
|
emit_return_into_block (simple_p, bb);
|
| 5668 |
|
|
delete_insn (jump);
|
| 5669 |
|
|
}
|
| 5670 |
|
|
|
| 5671 |
|
|
/* If we have a conditional jump branching to the last
|
| 5672 |
|
|
block, we can try to replace that with a conditional
|
| 5673 |
|
|
return instruction. */
|
| 5674 |
|
|
else if (condjump_p (jump))
|
| 5675 |
|
|
{
|
| 5676 |
|
|
rtx dest;
|
| 5677 |
|
|
|
| 5678 |
|
|
if (simple_p)
|
| 5679 |
|
|
dest = simple_return_rtx;
|
| 5680 |
|
|
else
|
| 5681 |
|
|
dest = ret_rtx;
|
| 5682 |
|
|
if (!redirect_jump (jump, dest, 0))
|
| 5683 |
|
|
{
|
| 5684 |
|
|
#ifdef HAVE_simple_return
|
| 5685 |
|
|
if (simple_p)
|
| 5686 |
|
|
{
|
| 5687 |
|
|
if (dump_file)
|
| 5688 |
|
|
fprintf (dump_file,
|
| 5689 |
|
|
"Failed to redirect bb %d branch.\n", bb->index);
|
| 5690 |
|
|
VEC_safe_push (edge, heap, unconverted, e);
|
| 5691 |
|
|
}
|
| 5692 |
|
|
#endif
|
| 5693 |
|
|
continue;
|
| 5694 |
|
|
}
|
| 5695 |
|
|
|
| 5696 |
|
|
/* See comment in simplejump_p case above. */
|
| 5697 |
|
|
emit_use_return_register_into_block (bb);
|
| 5698 |
|
|
|
| 5699 |
|
|
/* If this block has only one successor, it both jumps
|
| 5700 |
|
|
and falls through to the fallthru block, so we can't
|
| 5701 |
|
|
delete the edge. */
|
| 5702 |
|
|
if (single_succ_p (bb))
|
| 5703 |
|
|
continue;
|
| 5704 |
|
|
}
|
| 5705 |
|
|
else
|
| 5706 |
|
|
{
|
| 5707 |
|
|
#ifdef HAVE_simple_return
|
| 5708 |
|
|
if (simple_p)
|
| 5709 |
|
|
{
|
| 5710 |
|
|
if (dump_file)
|
| 5711 |
|
|
fprintf (dump_file,
|
| 5712 |
|
|
"Failed to redirect bb %d branch.\n", bb->index);
|
| 5713 |
|
|
VEC_safe_push (edge, heap, unconverted, e);
|
| 5714 |
|
|
}
|
| 5715 |
|
|
#endif
|
| 5716 |
|
|
continue;
|
| 5717 |
|
|
}
|
| 5718 |
|
|
|
| 5719 |
|
|
/* Fix up the CFG for the successful change we just made. */
|
| 5720 |
|
|
redirect_edge_succ (e, EXIT_BLOCK_PTR);
|
| 5721 |
|
|
e->flags &= ~EDGE_CROSSING;
|
| 5722 |
|
|
}
|
| 5723 |
|
|
VEC_free (basic_block, heap, src_bbs);
|
| 5724 |
|
|
return unconverted;
|
| 5725 |
|
|
}
|
| 5726 |
|
|
|
| 5727 |
|
|
/* Emit a return insn for the exit fallthru block. */
|
| 5728 |
|
|
static basic_block
|
| 5729 |
|
|
emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
|
| 5730 |
|
|
{
|
| 5731 |
|
|
basic_block last_bb = exit_fallthru_edge->src;
|
| 5732 |
|
|
|
| 5733 |
|
|
if (JUMP_P (BB_END (last_bb)))
|
| 5734 |
|
|
{
|
| 5735 |
|
|
last_bb = split_edge (exit_fallthru_edge);
|
| 5736 |
|
|
exit_fallthru_edge = single_succ_edge (last_bb);
|
| 5737 |
|
|
}
|
| 5738 |
|
|
emit_barrier_after (BB_END (last_bb));
|
| 5739 |
|
|
emit_return_into_block (simple_p, last_bb);
|
| 5740 |
|
|
exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
|
| 5741 |
|
|
return last_bb;
|
| 5742 |
|
|
}
|
| 5743 |
|
|
#endif
|
| 5744 |
|
|
|
| 5745 |
|
|
|
| 5746 |
|
|
/* Generate the prologue and epilogue RTL if the machine supports it. Thread
|
| 5747 |
|
|
this into place with notes indicating where the prologue ends and where
|
| 5748 |
|
|
the epilogue begins. Update the basic block information when possible.
|
| 5749 |
|
|
|
| 5750 |
|
|
Notes on epilogue placement:
|
| 5751 |
|
|
There are several kinds of edges to the exit block:
|
| 5752 |
|
|
* a single fallthru edge from LAST_BB
|
| 5753 |
|
|
* possibly, edges from blocks containing sibcalls
|
| 5754 |
|
|
* possibly, fake edges from infinite loops
|
| 5755 |
|
|
|
| 5756 |
|
|
The epilogue is always emitted on the fallthru edge from the last basic
|
| 5757 |
|
|
block in the function, LAST_BB, into the exit block.
|
| 5758 |
|
|
|
| 5759 |
|
|
If LAST_BB is empty except for a label, it is the target of every
|
| 5760 |
|
|
other basic block in the function that ends in a return. If a
|
| 5761 |
|
|
target has a return or simple_return pattern (possibly with
|
| 5762 |
|
|
conditional variants), these basic blocks can be changed so that a
|
| 5763 |
|
|
return insn is emitted into them, and their target is adjusted to
|
| 5764 |
|
|
the real exit block.
|
| 5765 |
|
|
|
| 5766 |
|
|
Notes on shrink wrapping: We implement a fairly conservative
|
| 5767 |
|
|
version of shrink-wrapping rather than the textbook one. We only
|
| 5768 |
|
|
generate a single prologue and a single epilogue. This is
|
| 5769 |
|
|
sufficient to catch a number of interesting cases involving early
|
| 5770 |
|
|
exits.
|
| 5771 |
|
|
|
| 5772 |
|
|
First, we identify the blocks that require the prologue to occur before
|
| 5773 |
|
|
them. These are the ones that modify a call-saved register, or reference
|
| 5774 |
|
|
any of the stack or frame pointer registers. To simplify things, we then
|
| 5775 |
|
|
mark everything reachable from these blocks as also requiring a prologue.
|
| 5776 |
|
|
This takes care of loops automatically, and avoids the need to examine
|
| 5777 |
|
|
whether MEMs reference the frame, since it is sufficient to check for
|
| 5778 |
|
|
occurrences of the stack or frame pointer.
|
| 5779 |
|
|
|
| 5780 |
|
|
We then compute the set of blocks for which the need for a prologue
|
| 5781 |
|
|
is anticipatable (borrowing terminology from the shrink-wrapping
|
| 5782 |
|
|
description in Muchnick's book). These are the blocks which either
|
| 5783 |
|
|
require a prologue themselves, or those that have only successors
|
| 5784 |
|
|
where the prologue is anticipatable. The prologue needs to be
|
| 5785 |
|
|
inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
|
| 5786 |
|
|
is not. For the moment, we ensure that only one such edge exists.
|
| 5787 |
|
|
|
| 5788 |
|
|
The epilogue is placed as described above, but we make a
|
| 5789 |
|
|
distinction between inserting return and simple_return patterns
|
| 5790 |
|
|
when modifying other blocks that end in a return. Blocks that end
|
| 5791 |
|
|
in a sibcall omit the sibcall_epilogue if the block is not in
|
| 5792 |
|
|
ANTIC. */
|
| 5793 |
|
|
|
| 5794 |
|
|
static void
|
| 5795 |
|
|
thread_prologue_and_epilogue_insns (void)
|
| 5796 |
|
|
{
|
| 5797 |
|
|
bool inserted;
|
| 5798 |
|
|
#ifdef HAVE_simple_return
|
| 5799 |
|
|
VEC (edge, heap) *unconverted_simple_returns = NULL;
|
| 5800 |
|
|
bool nonempty_prologue;
|
| 5801 |
|
|
bitmap_head bb_flags;
|
| 5802 |
|
|
unsigned max_grow_size;
|
| 5803 |
|
|
#endif
|
| 5804 |
|
|
rtx returnjump;
|
| 5805 |
|
|
rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
|
| 5806 |
|
|
rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
|
| 5807 |
|
|
edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
|
| 5808 |
|
|
edge_iterator ei;
|
| 5809 |
|
|
|
| 5810 |
|
|
df_analyze ();
|
| 5811 |
|
|
|
| 5812 |
|
|
rtl_profile_for_bb (ENTRY_BLOCK_PTR);
|
| 5813 |
|
|
|
| 5814 |
|
|
inserted = false;
|
| 5815 |
|
|
seq = NULL_RTX;
|
| 5816 |
|
|
epilogue_end = NULL_RTX;
|
| 5817 |
|
|
returnjump = NULL_RTX;
|
| 5818 |
|
|
|
| 5819 |
|
|
/* Can't deal with multiple successors of the entry block at the
|
| 5820 |
|
|
moment. Function should always have at least one entry
|
| 5821 |
|
|
point. */
|
| 5822 |
|
|
gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
|
| 5823 |
|
|
entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
|
| 5824 |
|
|
orig_entry_edge = entry_edge;
|
| 5825 |
|
|
|
| 5826 |
|
|
split_prologue_seq = NULL_RTX;
|
| 5827 |
|
|
if (flag_split_stack
|
| 5828 |
|
|
&& (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
|
| 5829 |
|
|
== NULL))
|
| 5830 |
|
|
{
|
| 5831 |
|
|
#ifndef HAVE_split_stack_prologue
|
| 5832 |
|
|
gcc_unreachable ();
|
| 5833 |
|
|
#else
|
| 5834 |
|
|
gcc_assert (HAVE_split_stack_prologue);
|
| 5835 |
|
|
|
| 5836 |
|
|
start_sequence ();
|
| 5837 |
|
|
emit_insn (gen_split_stack_prologue ());
|
| 5838 |
|
|
split_prologue_seq = get_insns ();
|
| 5839 |
|
|
end_sequence ();
|
| 5840 |
|
|
|
| 5841 |
|
|
record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
|
| 5842 |
|
|
set_insn_locators (split_prologue_seq, prologue_locator);
|
| 5843 |
|
|
#endif
|
| 5844 |
|
|
}
|
| 5845 |
|
|
|
| 5846 |
|
|
prologue_seq = NULL_RTX;
|
| 5847 |
|
|
#ifdef HAVE_prologue
|
| 5848 |
|
|
if (HAVE_prologue)
|
| 5849 |
|
|
{
|
| 5850 |
|
|
start_sequence ();
|
| 5851 |
|
|
seq = gen_prologue ();
|
| 5852 |
|
|
emit_insn (seq);
|
| 5853 |
|
|
|
| 5854 |
|
|
/* Insert an explicit USE for the frame pointer
|
| 5855 |
|
|
if the profiling is on and the frame pointer is required. */
|
| 5856 |
|
|
if (crtl->profile && frame_pointer_needed)
|
| 5857 |
|
|
emit_use (hard_frame_pointer_rtx);
|
| 5858 |
|
|
|
| 5859 |
|
|
/* Retain a map of the prologue insns. */
|
| 5860 |
|
|
record_insns (seq, NULL, &prologue_insn_hash);
|
| 5861 |
|
|
emit_note (NOTE_INSN_PROLOGUE_END);
|
| 5862 |
|
|
|
| 5863 |
|
|
/* Ensure that instructions are not moved into the prologue when
|
| 5864 |
|
|
profiling is on. The call to the profiling routine can be
|
| 5865 |
|
|
emitted within the live range of a call-clobbered register. */
|
| 5866 |
|
|
if (!targetm.profile_before_prologue () && crtl->profile)
|
| 5867 |
|
|
emit_insn (gen_blockage ());
|
| 5868 |
|
|
|
| 5869 |
|
|
prologue_seq = get_insns ();
|
| 5870 |
|
|
end_sequence ();
|
| 5871 |
|
|
set_insn_locators (prologue_seq, prologue_locator);
|
| 5872 |
|
|
}
|
| 5873 |
|
|
#endif
|
| 5874 |
|
|
|
| 5875 |
|
|
#ifdef HAVE_simple_return
|
| 5876 |
|
|
bitmap_initialize (&bb_flags, &bitmap_default_obstack);
|
| 5877 |
|
|
|
| 5878 |
|
|
/* Try to perform a kind of shrink-wrapping, making sure the
|
| 5879 |
|
|
prologue/epilogue is emitted only around those parts of the
|
| 5880 |
|
|
function that require it. */
|
| 5881 |
|
|
|
| 5882 |
|
|
nonempty_prologue = false;
|
| 5883 |
|
|
for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
|
| 5884 |
|
|
if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
|
| 5885 |
|
|
{
|
| 5886 |
|
|
nonempty_prologue = true;
|
| 5887 |
|
|
break;
|
| 5888 |
|
|
}
|
| 5889 |
|
|
|
| 5890 |
|
|
if (flag_shrink_wrap && HAVE_simple_return
|
| 5891 |
|
|
&& (targetm.profile_before_prologue () || !crtl->profile)
|
| 5892 |
|
|
&& nonempty_prologue && !crtl->calls_eh_return)
|
| 5893 |
|
|
{
|
| 5894 |
|
|
HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
|
| 5895 |
|
|
struct hard_reg_set_container set_up_by_prologue;
|
| 5896 |
|
|
rtx p_insn;
|
| 5897 |
|
|
VEC(basic_block, heap) *vec;
|
| 5898 |
|
|
basic_block bb;
|
| 5899 |
|
|
bitmap_head bb_antic_flags;
|
| 5900 |
|
|
bitmap_head bb_on_list;
|
| 5901 |
|
|
bitmap_head bb_tail;
|
| 5902 |
|
|
|
| 5903 |
|
|
if (dump_file)
|
| 5904 |
|
|
fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
|
| 5905 |
|
|
|
| 5906 |
|
|
/* Compute the registers set and used in the prologue. */
|
| 5907 |
|
|
CLEAR_HARD_REG_SET (prologue_clobbered);
|
| 5908 |
|
|
CLEAR_HARD_REG_SET (prologue_used);
|
| 5909 |
|
|
for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
|
| 5910 |
|
|
{
|
| 5911 |
|
|
HARD_REG_SET this_used;
|
| 5912 |
|
|
if (!NONDEBUG_INSN_P (p_insn))
|
| 5913 |
|
|
continue;
|
| 5914 |
|
|
|
| 5915 |
|
|
CLEAR_HARD_REG_SET (this_used);
|
| 5916 |
|
|
note_uses (&PATTERN (p_insn), record_hard_reg_uses,
|
| 5917 |
|
|
&this_used);
|
| 5918 |
|
|
AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
|
| 5919 |
|
|
IOR_HARD_REG_SET (prologue_used, this_used);
|
| 5920 |
|
|
note_stores (PATTERN (p_insn), record_hard_reg_sets,
|
| 5921 |
|
|
&prologue_clobbered);
|
| 5922 |
|
|
}
|
| 5923 |
|
|
|
| 5924 |
|
|
prepare_shrink_wrap (entry_edge->dest);
|
| 5925 |
|
|
|
| 5926 |
|
|
bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
|
| 5927 |
|
|
bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
|
| 5928 |
|
|
bitmap_initialize (&bb_tail, &bitmap_default_obstack);
|
| 5929 |
|
|
|
| 5930 |
|
|
/* Find the set of basic blocks that require a stack frame,
|
| 5931 |
|
|
and blocks that are too big to be duplicated. */
|
| 5932 |
|
|
|
| 5933 |
|
|
vec = VEC_alloc (basic_block, heap, n_basic_blocks);
|
| 5934 |
|
|
|
| 5935 |
|
|
CLEAR_HARD_REG_SET (set_up_by_prologue.set);
|
| 5936 |
|
|
add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
|
| 5937 |
|
|
STACK_POINTER_REGNUM);
|
| 5938 |
|
|
add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
|
| 5939 |
|
|
if (frame_pointer_needed)
|
| 5940 |
|
|
add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
|
| 5941 |
|
|
HARD_FRAME_POINTER_REGNUM);
|
| 5942 |
|
|
if (pic_offset_table_rtx)
|
| 5943 |
|
|
add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
|
| 5944 |
|
|
PIC_OFFSET_TABLE_REGNUM);
|
| 5945 |
|
|
if (stack_realign_drap && crtl->drap_reg)
|
| 5946 |
|
|
add_to_hard_reg_set (&set_up_by_prologue.set,
|
| 5947 |
|
|
GET_MODE (crtl->drap_reg),
|
| 5948 |
|
|
REGNO (crtl->drap_reg));
|
| 5949 |
|
|
if (targetm.set_up_by_prologue)
|
| 5950 |
|
|
targetm.set_up_by_prologue (&set_up_by_prologue);
|
| 5951 |
|
|
|
| 5952 |
|
|
/* We don't use a different max size depending on
|
| 5953 |
|
|
optimize_bb_for_speed_p because increasing shrink-wrapping
|
| 5954 |
|
|
opportunities by duplicating tail blocks can actually result
|
| 5955 |
|
|
in an overall decrease in code size. */
|
| 5956 |
|
|
max_grow_size = get_uncond_jump_length ();
|
| 5957 |
|
|
max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
|
| 5958 |
|
|
|
| 5959 |
|
|
FOR_EACH_BB (bb)
|
| 5960 |
|
|
{
|
| 5961 |
|
|
rtx insn;
|
| 5962 |
|
|
unsigned size = 0;
|
| 5963 |
|
|
|
| 5964 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 5965 |
|
|
if (NONDEBUG_INSN_P (insn))
|
| 5966 |
|
|
{
|
| 5967 |
|
|
if (requires_stack_frame_p (insn, prologue_used,
|
| 5968 |
|
|
set_up_by_prologue.set))
|
| 5969 |
|
|
{
|
| 5970 |
|
|
if (bb == entry_edge->dest)
|
| 5971 |
|
|
goto fail_shrinkwrap;
|
| 5972 |
|
|
bitmap_set_bit (&bb_flags, bb->index);
|
| 5973 |
|
|
VEC_quick_push (basic_block, vec, bb);
|
| 5974 |
|
|
break;
|
| 5975 |
|
|
}
|
| 5976 |
|
|
else if (size <= max_grow_size)
|
| 5977 |
|
|
{
|
| 5978 |
|
|
size += get_attr_min_length (insn);
|
| 5979 |
|
|
if (size > max_grow_size)
|
| 5980 |
|
|
bitmap_set_bit (&bb_on_list, bb->index);
|
| 5981 |
|
|
}
|
| 5982 |
|
|
}
|
| 5983 |
|
|
}
|
| 5984 |
|
|
|
| 5985 |
|
|
/* Blocks that really need a prologue, or are too big for tails. */
|
| 5986 |
|
|
bitmap_ior_into (&bb_on_list, &bb_flags);
|
| 5987 |
|
|
|
| 5988 |
|
|
/* For every basic block that needs a prologue, mark all blocks
|
| 5989 |
|
|
reachable from it, so as to ensure they are also seen as
|
| 5990 |
|
|
requiring a prologue. */
|
| 5991 |
|
|
while (!VEC_empty (basic_block, vec))
|
| 5992 |
|
|
{
|
| 5993 |
|
|
basic_block tmp_bb = VEC_pop (basic_block, vec);
|
| 5994 |
|
|
|
| 5995 |
|
|
FOR_EACH_EDGE (e, ei, tmp_bb->succs)
|
| 5996 |
|
|
if (e->dest != EXIT_BLOCK_PTR
|
| 5997 |
|
|
&& bitmap_set_bit (&bb_flags, e->dest->index))
|
| 5998 |
|
|
VEC_quick_push (basic_block, vec, e->dest);
|
| 5999 |
|
|
}
|
| 6000 |
|
|
|
| 6001 |
|
|
/* Find the set of basic blocks that need no prologue, have a
|
| 6002 |
|
|
single successor, can be duplicated, meet a max size
|
| 6003 |
|
|
requirement, and go to the exit via like blocks. */
|
| 6004 |
|
|
VEC_quick_push (basic_block, vec, EXIT_BLOCK_PTR);
|
| 6005 |
|
|
while (!VEC_empty (basic_block, vec))
|
| 6006 |
|
|
{
|
| 6007 |
|
|
basic_block tmp_bb = VEC_pop (basic_block, vec);
|
| 6008 |
|
|
|
| 6009 |
|
|
FOR_EACH_EDGE (e, ei, tmp_bb->preds)
|
| 6010 |
|
|
if (single_succ_p (e->src)
|
| 6011 |
|
|
&& !bitmap_bit_p (&bb_on_list, e->src->index)
|
| 6012 |
|
|
&& can_duplicate_block_p (e->src))
|
| 6013 |
|
|
{
|
| 6014 |
|
|
edge pe;
|
| 6015 |
|
|
edge_iterator pei;
|
| 6016 |
|
|
|
| 6017 |
|
|
/* If there is predecessor of e->src which doesn't
|
| 6018 |
|
|
need prologue and the edge is complex,
|
| 6019 |
|
|
we might not be able to redirect the branch
|
| 6020 |
|
|
to a copy of e->src. */
|
| 6021 |
|
|
FOR_EACH_EDGE (pe, pei, e->src->preds)
|
| 6022 |
|
|
if ((pe->flags & EDGE_COMPLEX) != 0
|
| 6023 |
|
|
&& !bitmap_bit_p (&bb_flags, pe->src->index))
|
| 6024 |
|
|
break;
|
| 6025 |
|
|
if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
|
| 6026 |
|
|
VEC_quick_push (basic_block, vec, e->src);
|
| 6027 |
|
|
}
|
| 6028 |
|
|
}
|
| 6029 |
|
|
|
| 6030 |
|
|
/* Now walk backwards from every block that is marked as needing
|
| 6031 |
|
|
a prologue to compute the bb_antic_flags bitmap. Exclude
|
| 6032 |
|
|
tail blocks; They can be duplicated to be used on paths not
|
| 6033 |
|
|
needing a prologue. */
|
| 6034 |
|
|
bitmap_clear (&bb_on_list);
|
| 6035 |
|
|
bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
|
| 6036 |
|
|
FOR_EACH_BB (bb)
|
| 6037 |
|
|
{
|
| 6038 |
|
|
if (!bitmap_bit_p (&bb_antic_flags, bb->index))
|
| 6039 |
|
|
continue;
|
| 6040 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 6041 |
|
|
if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
|
| 6042 |
|
|
&& bitmap_set_bit (&bb_on_list, e->src->index))
|
| 6043 |
|
|
VEC_quick_push (basic_block, vec, e->src);
|
| 6044 |
|
|
}
|
| 6045 |
|
|
while (!VEC_empty (basic_block, vec))
|
| 6046 |
|
|
{
|
| 6047 |
|
|
basic_block tmp_bb = VEC_pop (basic_block, vec);
|
| 6048 |
|
|
bool all_set = true;
|
| 6049 |
|
|
|
| 6050 |
|
|
bitmap_clear_bit (&bb_on_list, tmp_bb->index);
|
| 6051 |
|
|
FOR_EACH_EDGE (e, ei, tmp_bb->succs)
|
| 6052 |
|
|
if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
|
| 6053 |
|
|
{
|
| 6054 |
|
|
all_set = false;
|
| 6055 |
|
|
break;
|
| 6056 |
|
|
}
|
| 6057 |
|
|
|
| 6058 |
|
|
if (all_set)
|
| 6059 |
|
|
{
|
| 6060 |
|
|
bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
|
| 6061 |
|
|
FOR_EACH_EDGE (e, ei, tmp_bb->preds)
|
| 6062 |
|
|
if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
|
| 6063 |
|
|
&& bitmap_set_bit (&bb_on_list, e->src->index))
|
| 6064 |
|
|
VEC_quick_push (basic_block, vec, e->src);
|
| 6065 |
|
|
}
|
| 6066 |
|
|
}
|
| 6067 |
|
|
/* Find exactly one edge that leads to a block in ANTIC from
|
| 6068 |
|
|
a block that isn't. */
|
| 6069 |
|
|
if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
|
| 6070 |
|
|
FOR_EACH_BB (bb)
|
| 6071 |
|
|
{
|
| 6072 |
|
|
if (!bitmap_bit_p (&bb_antic_flags, bb->index))
|
| 6073 |
|
|
continue;
|
| 6074 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 6075 |
|
|
if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
|
| 6076 |
|
|
{
|
| 6077 |
|
|
if (entry_edge != orig_entry_edge)
|
| 6078 |
|
|
{
|
| 6079 |
|
|
entry_edge = orig_entry_edge;
|
| 6080 |
|
|
if (dump_file)
|
| 6081 |
|
|
fprintf (dump_file, "More than one candidate edge.\n");
|
| 6082 |
|
|
goto fail_shrinkwrap;
|
| 6083 |
|
|
}
|
| 6084 |
|
|
if (dump_file)
|
| 6085 |
|
|
fprintf (dump_file, "Found candidate edge for "
|
| 6086 |
|
|
"shrink-wrapping, %d->%d.\n", e->src->index,
|
| 6087 |
|
|
e->dest->index);
|
| 6088 |
|
|
entry_edge = e;
|
| 6089 |
|
|
}
|
| 6090 |
|
|
}
|
| 6091 |
|
|
|
| 6092 |
|
|
if (entry_edge != orig_entry_edge)
|
| 6093 |
|
|
{
|
| 6094 |
|
|
/* Test whether the prologue is known to clobber any register
|
| 6095 |
|
|
(other than FP or SP) which are live on the edge. */
|
| 6096 |
|
|
CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
|
| 6097 |
|
|
if (frame_pointer_needed)
|
| 6098 |
|
|
CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
|
| 6099 |
|
|
CLEAR_HARD_REG_SET (live_on_edge);
|
| 6100 |
|
|
reg_set_to_hard_reg_set (&live_on_edge,
|
| 6101 |
|
|
df_get_live_in (entry_edge->dest));
|
| 6102 |
|
|
if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
|
| 6103 |
|
|
{
|
| 6104 |
|
|
entry_edge = orig_entry_edge;
|
| 6105 |
|
|
if (dump_file)
|
| 6106 |
|
|
fprintf (dump_file,
|
| 6107 |
|
|
"Shrink-wrapping aborted due to clobber.\n");
|
| 6108 |
|
|
}
|
| 6109 |
|
|
}
|
| 6110 |
|
|
if (entry_edge != orig_entry_edge)
|
| 6111 |
|
|
{
|
| 6112 |
|
|
crtl->shrink_wrapped = true;
|
| 6113 |
|
|
if (dump_file)
|
| 6114 |
|
|
fprintf (dump_file, "Performing shrink-wrapping.\n");
|
| 6115 |
|
|
|
| 6116 |
|
|
/* Find tail blocks reachable from both blocks needing a
|
| 6117 |
|
|
prologue and blocks not needing a prologue. */
|
| 6118 |
|
|
if (!bitmap_empty_p (&bb_tail))
|
| 6119 |
|
|
FOR_EACH_BB (bb)
|
| 6120 |
|
|
{
|
| 6121 |
|
|
bool some_pro, some_no_pro;
|
| 6122 |
|
|
if (!bitmap_bit_p (&bb_tail, bb->index))
|
| 6123 |
|
|
continue;
|
| 6124 |
|
|
some_pro = some_no_pro = false;
|
| 6125 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 6126 |
|
|
{
|
| 6127 |
|
|
if (bitmap_bit_p (&bb_flags, e->src->index))
|
| 6128 |
|
|
some_pro = true;
|
| 6129 |
|
|
else
|
| 6130 |
|
|
some_no_pro = true;
|
| 6131 |
|
|
}
|
| 6132 |
|
|
if (some_pro && some_no_pro)
|
| 6133 |
|
|
VEC_quick_push (basic_block, vec, bb);
|
| 6134 |
|
|
else
|
| 6135 |
|
|
bitmap_clear_bit (&bb_tail, bb->index);
|
| 6136 |
|
|
}
|
| 6137 |
|
|
/* Find the head of each tail. */
|
| 6138 |
|
|
while (!VEC_empty (basic_block, vec))
|
| 6139 |
|
|
{
|
| 6140 |
|
|
basic_block tbb = VEC_pop (basic_block, vec);
|
| 6141 |
|
|
|
| 6142 |
|
|
if (!bitmap_bit_p (&bb_tail, tbb->index))
|
| 6143 |
|
|
continue;
|
| 6144 |
|
|
|
| 6145 |
|
|
while (single_succ_p (tbb))
|
| 6146 |
|
|
{
|
| 6147 |
|
|
tbb = single_succ (tbb);
|
| 6148 |
|
|
bitmap_clear_bit (&bb_tail, tbb->index);
|
| 6149 |
|
|
}
|
| 6150 |
|
|
}
|
| 6151 |
|
|
/* Now duplicate the tails. */
|
| 6152 |
|
|
if (!bitmap_empty_p (&bb_tail))
|
| 6153 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
| 6154 |
|
|
{
|
| 6155 |
|
|
basic_block copy_bb, tbb;
|
| 6156 |
|
|
rtx insert_point;
|
| 6157 |
|
|
int eflags;
|
| 6158 |
|
|
|
| 6159 |
|
|
if (!bitmap_clear_bit (&bb_tail, bb->index))
|
| 6160 |
|
|
continue;
|
| 6161 |
|
|
|
| 6162 |
|
|
/* Create a copy of BB, instructions and all, for
|
| 6163 |
|
|
use on paths that don't need a prologue.
|
| 6164 |
|
|
Ideal placement of the copy is on a fall-thru edge
|
| 6165 |
|
|
or after a block that would jump to the copy. */
|
| 6166 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 6167 |
|
|
if (!bitmap_bit_p (&bb_flags, e->src->index)
|
| 6168 |
|
|
&& single_succ_p (e->src))
|
| 6169 |
|
|
break;
|
| 6170 |
|
|
if (e)
|
| 6171 |
|
|
{
|
| 6172 |
|
|
copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
|
| 6173 |
|
|
NULL_RTX, e->src);
|
| 6174 |
|
|
BB_COPY_PARTITION (copy_bb, e->src);
|
| 6175 |
|
|
}
|
| 6176 |
|
|
else
|
| 6177 |
|
|
{
|
| 6178 |
|
|
/* Otherwise put the copy at the end of the function. */
|
| 6179 |
|
|
copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
|
| 6180 |
|
|
EXIT_BLOCK_PTR->prev_bb);
|
| 6181 |
|
|
BB_COPY_PARTITION (copy_bb, bb);
|
| 6182 |
|
|
}
|
| 6183 |
|
|
|
| 6184 |
|
|
insert_point = emit_note_after (NOTE_INSN_DELETED,
|
| 6185 |
|
|
BB_END (copy_bb));
|
| 6186 |
|
|
emit_barrier_after (BB_END (copy_bb));
|
| 6187 |
|
|
|
| 6188 |
|
|
tbb = bb;
|
| 6189 |
|
|
while (1)
|
| 6190 |
|
|
{
|
| 6191 |
|
|
dup_block_and_redirect (tbb, copy_bb, insert_point,
|
| 6192 |
|
|
&bb_flags);
|
| 6193 |
|
|
tbb = single_succ (tbb);
|
| 6194 |
|
|
if (tbb == EXIT_BLOCK_PTR)
|
| 6195 |
|
|
break;
|
| 6196 |
|
|
e = split_block (copy_bb, PREV_INSN (insert_point));
|
| 6197 |
|
|
copy_bb = e->dest;
|
| 6198 |
|
|
}
|
| 6199 |
|
|
|
| 6200 |
|
|
/* Quiet verify_flow_info by (ab)using EDGE_FAKE.
|
| 6201 |
|
|
We have yet to add a simple_return to the tails,
|
| 6202 |
|
|
as we'd like to first convert_jumps_to_returns in
|
| 6203 |
|
|
case the block is no longer used after that. */
|
| 6204 |
|
|
eflags = EDGE_FAKE;
|
| 6205 |
|
|
if (CALL_P (PREV_INSN (insert_point))
|
| 6206 |
|
|
&& SIBLING_CALL_P (PREV_INSN (insert_point)))
|
| 6207 |
|
|
eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
|
| 6208 |
|
|
make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
|
| 6209 |
|
|
|
| 6210 |
|
|
/* verify_flow_info doesn't like a note after a
|
| 6211 |
|
|
sibling call. */
|
| 6212 |
|
|
delete_insn (insert_point);
|
| 6213 |
|
|
if (bitmap_empty_p (&bb_tail))
|
| 6214 |
|
|
break;
|
| 6215 |
|
|
}
|
| 6216 |
|
|
}
|
| 6217 |
|
|
|
| 6218 |
|
|
fail_shrinkwrap:
|
| 6219 |
|
|
bitmap_clear (&bb_tail);
|
| 6220 |
|
|
bitmap_clear (&bb_antic_flags);
|
| 6221 |
|
|
bitmap_clear (&bb_on_list);
|
| 6222 |
|
|
VEC_free (basic_block, heap, vec);
|
| 6223 |
|
|
}
|
| 6224 |
|
|
#endif
|
| 6225 |
|
|
|
| 6226 |
|
|
if (split_prologue_seq != NULL_RTX)
|
| 6227 |
|
|
{
|
| 6228 |
|
|
insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
|
| 6229 |
|
|
inserted = true;
|
| 6230 |
|
|
}
|
| 6231 |
|
|
if (prologue_seq != NULL_RTX)
|
| 6232 |
|
|
{
|
| 6233 |
|
|
insert_insn_on_edge (prologue_seq, entry_edge);
|
| 6234 |
|
|
inserted = true;
|
| 6235 |
|
|
}
|
| 6236 |
|
|
|
| 6237 |
|
|
/* If the exit block has no non-fake predecessors, we don't need
|
| 6238 |
|
|
an epilogue. */
|
| 6239 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
| 6240 |
|
|
if ((e->flags & EDGE_FAKE) == 0)
|
| 6241 |
|
|
break;
|
| 6242 |
|
|
if (e == NULL)
|
| 6243 |
|
|
goto epilogue_done;
|
| 6244 |
|
|
|
| 6245 |
|
|
rtl_profile_for_bb (EXIT_BLOCK_PTR);
|
| 6246 |
|
|
|
| 6247 |
|
|
exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
|
| 6248 |
|
|
|
| 6249 |
|
|
/* If we're allowed to generate a simple return instruction, then by
|
| 6250 |
|
|
definition we don't need a full epilogue. If the last basic
|
| 6251 |
|
|
block before the exit block does not contain active instructions,
|
| 6252 |
|
|
examine its predecessors and try to emit (conditional) return
|
| 6253 |
|
|
instructions. */
|
| 6254 |
|
|
#ifdef HAVE_simple_return
|
| 6255 |
|
|
if (entry_edge != orig_entry_edge)
|
| 6256 |
|
|
{
|
| 6257 |
|
|
if (optimize)
|
| 6258 |
|
|
{
|
| 6259 |
|
|
unsigned i, last;
|
| 6260 |
|
|
|
| 6261 |
|
|
/* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
|
| 6262 |
|
|
(but won't remove). Stop at end of current preds. */
|
| 6263 |
|
|
last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
|
| 6264 |
|
|
for (i = 0; i < last; i++)
|
| 6265 |
|
|
{
|
| 6266 |
|
|
e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
|
| 6267 |
|
|
if (LABEL_P (BB_HEAD (e->src))
|
| 6268 |
|
|
&& !bitmap_bit_p (&bb_flags, e->src->index)
|
| 6269 |
|
|
&& !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
|
| 6270 |
|
|
unconverted_simple_returns
|
| 6271 |
|
|
= convert_jumps_to_returns (e->src, true,
|
| 6272 |
|
|
unconverted_simple_returns);
|
| 6273 |
|
|
}
|
| 6274 |
|
|
}
|
| 6275 |
|
|
|
| 6276 |
|
|
if (exit_fallthru_edge != NULL
|
| 6277 |
|
|
&& EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
|
| 6278 |
|
|
&& !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
|
| 6279 |
|
|
{
|
| 6280 |
|
|
basic_block last_bb;
|
| 6281 |
|
|
|
| 6282 |
|
|
last_bb = emit_return_for_exit (exit_fallthru_edge, true);
|
| 6283 |
|
|
returnjump = BB_END (last_bb);
|
| 6284 |
|
|
exit_fallthru_edge = NULL;
|
| 6285 |
|
|
}
|
| 6286 |
|
|
}
|
| 6287 |
|
|
#endif
|
| 6288 |
|
|
#ifdef HAVE_return
|
| 6289 |
|
|
if (HAVE_return)
|
| 6290 |
|
|
{
|
| 6291 |
|
|
if (exit_fallthru_edge == NULL)
|
| 6292 |
|
|
goto epilogue_done;
|
| 6293 |
|
|
|
| 6294 |
|
|
if (optimize)
|
| 6295 |
|
|
{
|
| 6296 |
|
|
basic_block last_bb = exit_fallthru_edge->src;
|
| 6297 |
|
|
|
| 6298 |
|
|
if (LABEL_P (BB_HEAD (last_bb))
|
| 6299 |
|
|
&& !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
|
| 6300 |
|
|
convert_jumps_to_returns (last_bb, false, NULL);
|
| 6301 |
|
|
|
| 6302 |
|
|
if (EDGE_COUNT (last_bb->preds) != 0
|
| 6303 |
|
|
&& single_succ_p (last_bb))
|
| 6304 |
|
|
{
|
| 6305 |
|
|
last_bb = emit_return_for_exit (exit_fallthru_edge, false);
|
| 6306 |
|
|
epilogue_end = returnjump = BB_END (last_bb);
|
| 6307 |
|
|
#ifdef HAVE_simple_return
|
| 6308 |
|
|
/* Emitting the return may add a basic block.
|
| 6309 |
|
|
Fix bb_flags for the added block. */
|
| 6310 |
|
|
if (last_bb != exit_fallthru_edge->src)
|
| 6311 |
|
|
bitmap_set_bit (&bb_flags, last_bb->index);
|
| 6312 |
|
|
#endif
|
| 6313 |
|
|
goto epilogue_done;
|
| 6314 |
|
|
}
|
| 6315 |
|
|
}
|
| 6316 |
|
|
}
|
| 6317 |
|
|
#endif
|
| 6318 |
|
|
|
| 6319 |
|
|
/* A small fib -- epilogue is not yet completed, but we wish to re-use
|
| 6320 |
|
|
this marker for the splits of EH_RETURN patterns, and nothing else
|
| 6321 |
|
|
uses the flag in the meantime. */
|
| 6322 |
|
|
epilogue_completed = 1;
|
| 6323 |
|
|
|
| 6324 |
|
|
#ifdef HAVE_eh_return
|
| 6325 |
|
|
/* Find non-fallthru edges that end with EH_RETURN instructions. On
|
| 6326 |
|
|
some targets, these get split to a special version of the epilogue
|
| 6327 |
|
|
code. In order to be able to properly annotate these with unwind
|
| 6328 |
|
|
info, try to split them now. If we get a valid split, drop an
|
| 6329 |
|
|
EPILOGUE_BEG note and mark the insns as epilogue insns. */
|
| 6330 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
| 6331 |
|
|
{
|
| 6332 |
|
|
rtx prev, last, trial;
|
| 6333 |
|
|
|
| 6334 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
| 6335 |
|
|
continue;
|
| 6336 |
|
|
last = BB_END (e->src);
|
| 6337 |
|
|
if (!eh_returnjump_p (last))
|
| 6338 |
|
|
continue;
|
| 6339 |
|
|
|
| 6340 |
|
|
prev = PREV_INSN (last);
|
| 6341 |
|
|
trial = try_split (PATTERN (last), last, 1);
|
| 6342 |
|
|
if (trial == last)
|
| 6343 |
|
|
continue;
|
| 6344 |
|
|
|
| 6345 |
|
|
record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
|
| 6346 |
|
|
emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
|
| 6347 |
|
|
}
|
| 6348 |
|
|
#endif
|
| 6349 |
|
|
|
| 6350 |
|
|
/* If nothing falls through into the exit block, we don't need an
|
| 6351 |
|
|
epilogue. */
|
| 6352 |
|
|
|
| 6353 |
|
|
if (exit_fallthru_edge == NULL)
|
| 6354 |
|
|
goto epilogue_done;
|
| 6355 |
|
|
|
| 6356 |
|
|
#ifdef HAVE_epilogue
|
| 6357 |
|
|
if (HAVE_epilogue)
|
| 6358 |
|
|
{
|
| 6359 |
|
|
start_sequence ();
|
| 6360 |
|
|
epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
|
| 6361 |
|
|
seq = gen_epilogue ();
|
| 6362 |
|
|
if (seq)
|
| 6363 |
|
|
emit_jump_insn (seq);
|
| 6364 |
|
|
|
| 6365 |
|
|
/* Retain a map of the epilogue insns. */
|
| 6366 |
|
|
record_insns (seq, NULL, &epilogue_insn_hash);
|
| 6367 |
|
|
set_insn_locators (seq, epilogue_locator);
|
| 6368 |
|
|
|
| 6369 |
|
|
seq = get_insns ();
|
| 6370 |
|
|
returnjump = get_last_insn ();
|
| 6371 |
|
|
end_sequence ();
|
| 6372 |
|
|
|
| 6373 |
|
|
insert_insn_on_edge (seq, exit_fallthru_edge);
|
| 6374 |
|
|
inserted = true;
|
| 6375 |
|
|
|
| 6376 |
|
|
if (JUMP_P (returnjump))
|
| 6377 |
|
|
set_return_jump_label (returnjump);
|
| 6378 |
|
|
}
|
| 6379 |
|
|
else
|
| 6380 |
|
|
#endif
|
| 6381 |
|
|
{
|
| 6382 |
|
|
basic_block cur_bb;
|
| 6383 |
|
|
|
| 6384 |
|
|
if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
|
| 6385 |
|
|
goto epilogue_done;
|
| 6386 |
|
|
/* We have a fall-through edge to the exit block, the source is not
|
| 6387 |
|
|
at the end of the function, and there will be an assembler epilogue
|
| 6388 |
|
|
at the end of the function.
|
| 6389 |
|
|
We can't use force_nonfallthru here, because that would try to
|
| 6390 |
|
|
use return. Inserting a jump 'by hand' is extremely messy, so
|
| 6391 |
|
|
we take advantage of cfg_layout_finalize using
|
| 6392 |
|
|
fixup_fallthru_exit_predecessor. */
|
| 6393 |
|
|
cfg_layout_initialize (0);
|
| 6394 |
|
|
FOR_EACH_BB (cur_bb)
|
| 6395 |
|
|
if (cur_bb->index >= NUM_FIXED_BLOCKS
|
| 6396 |
|
|
&& cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
|
| 6397 |
|
|
cur_bb->aux = cur_bb->next_bb;
|
| 6398 |
|
|
cfg_layout_finalize ();
|
| 6399 |
|
|
}
|
| 6400 |
|
|
|
| 6401 |
|
|
epilogue_done:
|
| 6402 |
|
|
|
| 6403 |
|
|
default_rtl_profile ();
|
| 6404 |
|
|
|
| 6405 |
|
|
if (inserted)
|
| 6406 |
|
|
{
|
| 6407 |
|
|
sbitmap blocks;
|
| 6408 |
|
|
|
| 6409 |
|
|
commit_edge_insertions ();
|
| 6410 |
|
|
|
| 6411 |
|
|
/* Look for basic blocks within the prologue insns. */
|
| 6412 |
|
|
blocks = sbitmap_alloc (last_basic_block);
|
| 6413 |
|
|
sbitmap_zero (blocks);
|
| 6414 |
|
|
SET_BIT (blocks, entry_edge->dest->index);
|
| 6415 |
|
|
SET_BIT (blocks, orig_entry_edge->dest->index);
|
| 6416 |
|
|
find_many_sub_basic_blocks (blocks);
|
| 6417 |
|
|
sbitmap_free (blocks);
|
| 6418 |
|
|
|
| 6419 |
|
|
/* The epilogue insns we inserted may cause the exit edge to no longer
|
| 6420 |
|
|
be fallthru. */
|
| 6421 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
| 6422 |
|
|
{
|
| 6423 |
|
|
if (((e->flags & EDGE_FALLTHRU) != 0)
|
| 6424 |
|
|
&& returnjump_p (BB_END (e->src)))
|
| 6425 |
|
|
e->flags &= ~EDGE_FALLTHRU;
|
| 6426 |
|
|
}
|
| 6427 |
|
|
}
|
| 6428 |
|
|
|
| 6429 |
|
|
#ifdef HAVE_simple_return
|
| 6430 |
|
|
/* If there were branches to an empty LAST_BB which we tried to
|
| 6431 |
|
|
convert to conditional simple_returns, but couldn't for some
|
| 6432 |
|
|
reason, create a block to hold a simple_return insn and redirect
|
| 6433 |
|
|
those remaining edges. */
|
| 6434 |
|
|
if (!VEC_empty (edge, unconverted_simple_returns))
|
| 6435 |
|
|
{
|
| 6436 |
|
|
basic_block simple_return_block_hot = NULL;
|
| 6437 |
|
|
basic_block simple_return_block_cold = NULL;
|
| 6438 |
|
|
edge pending_edge_hot = NULL;
|
| 6439 |
|
|
edge pending_edge_cold = NULL;
|
| 6440 |
|
|
basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
|
| 6441 |
|
|
int i;
|
| 6442 |
|
|
|
| 6443 |
|
|
gcc_assert (entry_edge != orig_entry_edge);
|
| 6444 |
|
|
|
| 6445 |
|
|
/* See if we can reuse the last insn that was emitted for the
|
| 6446 |
|
|
epilogue. */
|
| 6447 |
|
|
if (returnjump != NULL_RTX
|
| 6448 |
|
|
&& JUMP_LABEL (returnjump) == simple_return_rtx)
|
| 6449 |
|
|
{
|
| 6450 |
|
|
e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
|
| 6451 |
|
|
if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
|
| 6452 |
|
|
simple_return_block_hot = e->dest;
|
| 6453 |
|
|
else
|
| 6454 |
|
|
simple_return_block_cold = e->dest;
|
| 6455 |
|
|
}
|
| 6456 |
|
|
|
| 6457 |
|
|
/* Also check returns we might need to add to tail blocks. */
|
| 6458 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
| 6459 |
|
|
if (EDGE_COUNT (e->src->preds) != 0
|
| 6460 |
|
|
&& (e->flags & EDGE_FAKE) != 0
|
| 6461 |
|
|
&& !bitmap_bit_p (&bb_flags, e->src->index))
|
| 6462 |
|
|
{
|
| 6463 |
|
|
if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
|
| 6464 |
|
|
pending_edge_hot = e;
|
| 6465 |
|
|
else
|
| 6466 |
|
|
pending_edge_cold = e;
|
| 6467 |
|
|
}
|
| 6468 |
|
|
|
| 6469 |
|
|
FOR_EACH_VEC_ELT (edge, unconverted_simple_returns, i, e)
|
| 6470 |
|
|
{
|
| 6471 |
|
|
basic_block *pdest_bb;
|
| 6472 |
|
|
edge pending;
|
| 6473 |
|
|
|
| 6474 |
|
|
if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
|
| 6475 |
|
|
{
|
| 6476 |
|
|
pdest_bb = &simple_return_block_hot;
|
| 6477 |
|
|
pending = pending_edge_hot;
|
| 6478 |
|
|
}
|
| 6479 |
|
|
else
|
| 6480 |
|
|
{
|
| 6481 |
|
|
pdest_bb = &simple_return_block_cold;
|
| 6482 |
|
|
pending = pending_edge_cold;
|
| 6483 |
|
|
}
|
| 6484 |
|
|
|
| 6485 |
|
|
if (*pdest_bb == NULL && pending != NULL)
|
| 6486 |
|
|
{
|
| 6487 |
|
|
emit_return_into_block (true, pending->src);
|
| 6488 |
|
|
pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
|
| 6489 |
|
|
*pdest_bb = pending->src;
|
| 6490 |
|
|
}
|
| 6491 |
|
|
else if (*pdest_bb == NULL)
|
| 6492 |
|
|
{
|
| 6493 |
|
|
basic_block bb;
|
| 6494 |
|
|
rtx start;
|
| 6495 |
|
|
|
| 6496 |
|
|
bb = create_basic_block (NULL, NULL, exit_pred);
|
| 6497 |
|
|
BB_COPY_PARTITION (bb, e->src);
|
| 6498 |
|
|
start = emit_jump_insn_after (gen_simple_return (),
|
| 6499 |
|
|
BB_END (bb));
|
| 6500 |
|
|
JUMP_LABEL (start) = simple_return_rtx;
|
| 6501 |
|
|
emit_barrier_after (start);
|
| 6502 |
|
|
|
| 6503 |
|
|
*pdest_bb = bb;
|
| 6504 |
|
|
make_edge (bb, EXIT_BLOCK_PTR, 0);
|
| 6505 |
|
|
}
|
| 6506 |
|
|
redirect_edge_and_branch_force (e, *pdest_bb);
|
| 6507 |
|
|
}
|
| 6508 |
|
|
VEC_free (edge, heap, unconverted_simple_returns);
|
| 6509 |
|
|
}
|
| 6510 |
|
|
|
| 6511 |
|
|
if (entry_edge != orig_entry_edge)
|
| 6512 |
|
|
{
|
| 6513 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
| 6514 |
|
|
if (EDGE_COUNT (e->src->preds) != 0
|
| 6515 |
|
|
&& (e->flags & EDGE_FAKE) != 0
|
| 6516 |
|
|
&& !bitmap_bit_p (&bb_flags, e->src->index))
|
| 6517 |
|
|
{
|
| 6518 |
|
|
emit_return_into_block (true, e->src);
|
| 6519 |
|
|
e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
|
| 6520 |
|
|
}
|
| 6521 |
|
|
}
|
| 6522 |
|
|
#endif
|
| 6523 |
|
|
|
| 6524 |
|
|
#ifdef HAVE_sibcall_epilogue
|
| 6525 |
|
|
/* Emit sibling epilogues before any sibling call sites. */
|
| 6526 |
|
|
for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
|
| 6527 |
|
|
{
|
| 6528 |
|
|
basic_block bb = e->src;
|
| 6529 |
|
|
rtx insn = BB_END (bb);
|
| 6530 |
|
|
rtx ep_seq;
|
| 6531 |
|
|
|
| 6532 |
|
|
if (!CALL_P (insn)
|
| 6533 |
|
|
|| ! SIBLING_CALL_P (insn)
|
| 6534 |
|
|
#ifdef HAVE_simple_return
|
| 6535 |
|
|
|| (entry_edge != orig_entry_edge
|
| 6536 |
|
|
&& !bitmap_bit_p (&bb_flags, bb->index))
|
| 6537 |
|
|
#endif
|
| 6538 |
|
|
)
|
| 6539 |
|
|
{
|
| 6540 |
|
|
ei_next (&ei);
|
| 6541 |
|
|
continue;
|
| 6542 |
|
|
}
|
| 6543 |
|
|
|
| 6544 |
|
|
ep_seq = gen_sibcall_epilogue ();
|
| 6545 |
|
|
if (ep_seq)
|
| 6546 |
|
|
{
|
| 6547 |
|
|
start_sequence ();
|
| 6548 |
|
|
emit_note (NOTE_INSN_EPILOGUE_BEG);
|
| 6549 |
|
|
emit_insn (ep_seq);
|
| 6550 |
|
|
seq = get_insns ();
|
| 6551 |
|
|
end_sequence ();
|
| 6552 |
|
|
|
| 6553 |
|
|
/* Retain a map of the epilogue insns. Used in life analysis to
|
| 6554 |
|
|
avoid getting rid of sibcall epilogue insns. Do this before we
|
| 6555 |
|
|
actually emit the sequence. */
|
| 6556 |
|
|
record_insns (seq, NULL, &epilogue_insn_hash);
|
| 6557 |
|
|
set_insn_locators (seq, epilogue_locator);
|
| 6558 |
|
|
|
| 6559 |
|
|
emit_insn_before (seq, insn);
|
| 6560 |
|
|
}
|
| 6561 |
|
|
ei_next (&ei);
|
| 6562 |
|
|
}
|
| 6563 |
|
|
#endif
|
| 6564 |
|
|
|
| 6565 |
|
|
#ifdef HAVE_epilogue
|
| 6566 |
|
|
if (epilogue_end)
|
| 6567 |
|
|
{
|
| 6568 |
|
|
rtx insn, next;
|
| 6569 |
|
|
|
| 6570 |
|
|
/* Similarly, move any line notes that appear after the epilogue.
|
| 6571 |
|
|
There is no need, however, to be quite so anal about the existence
|
| 6572 |
|
|
of such a note. Also possibly move
|
| 6573 |
|
|
NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
|
| 6574 |
|
|
info generation. */
|
| 6575 |
|
|
for (insn = epilogue_end; insn; insn = next)
|
| 6576 |
|
|
{
|
| 6577 |
|
|
next = NEXT_INSN (insn);
|
| 6578 |
|
|
if (NOTE_P (insn)
|
| 6579 |
|
|
&& (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
|
| 6580 |
|
|
reorder_insns (insn, insn, PREV_INSN (epilogue_end));
|
| 6581 |
|
|
}
|
| 6582 |
|
|
}
|
| 6583 |
|
|
#endif
|
| 6584 |
|
|
|
| 6585 |
|
|
#ifdef HAVE_simple_return
|
| 6586 |
|
|
bitmap_clear (&bb_flags);
|
| 6587 |
|
|
#endif
|
| 6588 |
|
|
|
| 6589 |
|
|
/* Threading the prologue and epilogue changes the artificial refs
|
| 6590 |
|
|
in the entry and exit blocks. */
|
| 6591 |
|
|
epilogue_completed = 1;
|
| 6592 |
|
|
df_update_entry_exit_and_calls ();
|
| 6593 |
|
|
}
|
| 6594 |
|
|
|
| 6595 |
|
|
/* Reposition the prologue-end and epilogue-begin notes after
|
| 6596 |
|
|
instruction scheduling. */
|
| 6597 |
|
|
|
| 6598 |
|
|
void
|
| 6599 |
|
|
reposition_prologue_and_epilogue_notes (void)
|
| 6600 |
|
|
{
|
| 6601 |
|
|
#if defined (HAVE_prologue) || defined (HAVE_epilogue) \
|
| 6602 |
|
|
|| defined (HAVE_sibcall_epilogue)
|
| 6603 |
|
|
/* Since the hash table is created on demand, the fact that it is
|
| 6604 |
|
|
non-null is a signal that it is non-empty. */
|
| 6605 |
|
|
if (prologue_insn_hash != NULL)
|
| 6606 |
|
|
{
|
| 6607 |
|
|
size_t len = htab_elements (prologue_insn_hash);
|
| 6608 |
|
|
rtx insn, last = NULL, note = NULL;
|
| 6609 |
|
|
|
| 6610 |
|
|
/* Scan from the beginning until we reach the last prologue insn. */
|
| 6611 |
|
|
/* ??? While we do have the CFG intact, there are two problems:
|
| 6612 |
|
|
(1) The prologue can contain loops (typically probing the stack),
|
| 6613 |
|
|
which means that the end of the prologue isn't in the first bb.
|
| 6614 |
|
|
(2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
|
| 6615 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
| 6616 |
|
|
{
|
| 6617 |
|
|
if (NOTE_P (insn))
|
| 6618 |
|
|
{
|
| 6619 |
|
|
if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
|
| 6620 |
|
|
note = insn;
|
| 6621 |
|
|
}
|
| 6622 |
|
|
else if (contains (insn, prologue_insn_hash))
|
| 6623 |
|
|
{
|
| 6624 |
|
|
last = insn;
|
| 6625 |
|
|
if (--len == 0)
|
| 6626 |
|
|
break;
|
| 6627 |
|
|
}
|
| 6628 |
|
|
}
|
| 6629 |
|
|
|
| 6630 |
|
|
if (last)
|
| 6631 |
|
|
{
|
| 6632 |
|
|
if (note == NULL)
|
| 6633 |
|
|
{
|
| 6634 |
|
|
/* Scan forward looking for the PROLOGUE_END note. It should
|
| 6635 |
|
|
be right at the beginning of the block, possibly with other
|
| 6636 |
|
|
insn notes that got moved there. */
|
| 6637 |
|
|
for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
|
| 6638 |
|
|
{
|
| 6639 |
|
|
if (NOTE_P (note)
|
| 6640 |
|
|
&& NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
|
| 6641 |
|
|
break;
|
| 6642 |
|
|
}
|
| 6643 |
|
|
}
|
| 6644 |
|
|
|
| 6645 |
|
|
/* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
|
| 6646 |
|
|
if (LABEL_P (last))
|
| 6647 |
|
|
last = NEXT_INSN (last);
|
| 6648 |
|
|
reorder_insns (note, note, last);
|
| 6649 |
|
|
}
|
| 6650 |
|
|
}
|
| 6651 |
|
|
|
| 6652 |
|
|
if (epilogue_insn_hash != NULL)
|
| 6653 |
|
|
{
|
| 6654 |
|
|
edge_iterator ei;
|
| 6655 |
|
|
edge e;
|
| 6656 |
|
|
|
| 6657 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
| 6658 |
|
|
{
|
| 6659 |
|
|
rtx insn, first = NULL, note = NULL;
|
| 6660 |
|
|
basic_block bb = e->src;
|
| 6661 |
|
|
|
| 6662 |
|
|
/* Scan from the beginning until we reach the first epilogue insn. */
|
| 6663 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 6664 |
|
|
{
|
| 6665 |
|
|
if (NOTE_P (insn))
|
| 6666 |
|
|
{
|
| 6667 |
|
|
if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
|
| 6668 |
|
|
{
|
| 6669 |
|
|
note = insn;
|
| 6670 |
|
|
if (first != NULL)
|
| 6671 |
|
|
break;
|
| 6672 |
|
|
}
|
| 6673 |
|
|
}
|
| 6674 |
|
|
else if (first == NULL && contains (insn, epilogue_insn_hash))
|
| 6675 |
|
|
{
|
| 6676 |
|
|
first = insn;
|
| 6677 |
|
|
if (note != NULL)
|
| 6678 |
|
|
break;
|
| 6679 |
|
|
}
|
| 6680 |
|
|
}
|
| 6681 |
|
|
|
| 6682 |
|
|
if (note)
|
| 6683 |
|
|
{
|
| 6684 |
|
|
/* If the function has a single basic block, and no real
|
| 6685 |
|
|
epilogue insns (e.g. sibcall with no cleanup), the
|
| 6686 |
|
|
epilogue note can get scheduled before the prologue
|
| 6687 |
|
|
note. If we have frame related prologue insns, having
|
| 6688 |
|
|
them scanned during the epilogue will result in a crash.
|
| 6689 |
|
|
In this case re-order the epilogue note to just before
|
| 6690 |
|
|
the last insn in the block. */
|
| 6691 |
|
|
if (first == NULL)
|
| 6692 |
|
|
first = BB_END (bb);
|
| 6693 |
|
|
|
| 6694 |
|
|
if (PREV_INSN (first) != note)
|
| 6695 |
|
|
reorder_insns (note, note, PREV_INSN (first));
|
| 6696 |
|
|
}
|
| 6697 |
|
|
}
|
| 6698 |
|
|
}
|
| 6699 |
|
|
#endif /* HAVE_prologue or HAVE_epilogue */
|
| 6700 |
|
|
}
|
| 6701 |
|
|
|
| 6702 |
|
|
/* Returns the name of the current function. */
|
| 6703 |
|
|
const char *
|
| 6704 |
|
|
current_function_name (void)
|
| 6705 |
|
|
{
|
| 6706 |
|
|
if (cfun == NULL)
|
| 6707 |
|
|
return "<none>";
|
| 6708 |
|
|
return lang_hooks.decl_printable_name (cfun->decl, 2);
|
| 6709 |
|
|
}
|
| 6710 |
|
|
|
| 6711 |
|
|
|
| 6712 |
|
|
static unsigned int
|
| 6713 |
|
|
rest_of_handle_check_leaf_regs (void)
|
| 6714 |
|
|
{
|
| 6715 |
|
|
#ifdef LEAF_REGISTERS
|
| 6716 |
|
|
current_function_uses_only_leaf_regs
|
| 6717 |
|
|
= optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
|
| 6718 |
|
|
#endif
|
| 6719 |
|
|
return 0;
|
| 6720 |
|
|
}
|
| 6721 |
|
|
|
| 6722 |
|
|
/* Insert a TYPE into the used types hash table of CFUN. */
|
| 6723 |
|
|
|
| 6724 |
|
|
static void
|
| 6725 |
|
|
used_types_insert_helper (tree type, struct function *func)
|
| 6726 |
|
|
{
|
| 6727 |
|
|
if (type != NULL && func != NULL)
|
| 6728 |
|
|
{
|
| 6729 |
|
|
void **slot;
|
| 6730 |
|
|
|
| 6731 |
|
|
if (func->used_types_hash == NULL)
|
| 6732 |
|
|
func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
|
| 6733 |
|
|
htab_eq_pointer, NULL);
|
| 6734 |
|
|
slot = htab_find_slot (func->used_types_hash, type, INSERT);
|
| 6735 |
|
|
if (*slot == NULL)
|
| 6736 |
|
|
*slot = type;
|
| 6737 |
|
|
}
|
| 6738 |
|
|
}
|
| 6739 |
|
|
|
| 6740 |
|
|
/* Given a type, insert it into the used hash table in cfun. */
|
| 6741 |
|
|
void
|
| 6742 |
|
|
used_types_insert (tree t)
|
| 6743 |
|
|
{
|
| 6744 |
|
|
while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
|
| 6745 |
|
|
if (TYPE_NAME (t))
|
| 6746 |
|
|
break;
|
| 6747 |
|
|
else
|
| 6748 |
|
|
t = TREE_TYPE (t);
|
| 6749 |
|
|
if (TREE_CODE (t) == ERROR_MARK)
|
| 6750 |
|
|
return;
|
| 6751 |
|
|
if (TYPE_NAME (t) == NULL_TREE
|
| 6752 |
|
|
|| TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
|
| 6753 |
|
|
t = TYPE_MAIN_VARIANT (t);
|
| 6754 |
|
|
if (debug_info_level > DINFO_LEVEL_NONE)
|
| 6755 |
|
|
{
|
| 6756 |
|
|
if (cfun)
|
| 6757 |
|
|
used_types_insert_helper (t, cfun);
|
| 6758 |
|
|
else
|
| 6759 |
|
|
/* So this might be a type referenced by a global variable.
|
| 6760 |
|
|
Record that type so that we can later decide to emit its debug
|
| 6761 |
|
|
information. */
|
| 6762 |
|
|
VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
|
| 6763 |
|
|
}
|
| 6764 |
|
|
}
|
| 6765 |
|
|
|
| 6766 |
|
|
/* Helper to Hash a struct types_used_by_vars_entry. */
|
| 6767 |
|
|
|
| 6768 |
|
|
static hashval_t
|
| 6769 |
|
|
hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
|
| 6770 |
|
|
{
|
| 6771 |
|
|
gcc_assert (entry && entry->var_decl && entry->type);
|
| 6772 |
|
|
|
| 6773 |
|
|
return iterative_hash_object (entry->type,
|
| 6774 |
|
|
iterative_hash_object (entry->var_decl, 0));
|
| 6775 |
|
|
}
|
| 6776 |
|
|
|
| 6777 |
|
|
/* Hash function of the types_used_by_vars_entry hash table. */
|
| 6778 |
|
|
|
| 6779 |
|
|
hashval_t
|
| 6780 |
|
|
types_used_by_vars_do_hash (const void *x)
|
| 6781 |
|
|
{
|
| 6782 |
|
|
const struct types_used_by_vars_entry *entry =
|
| 6783 |
|
|
(const struct types_used_by_vars_entry *) x;
|
| 6784 |
|
|
|
| 6785 |
|
|
return hash_types_used_by_vars_entry (entry);
|
| 6786 |
|
|
}
|
| 6787 |
|
|
|
| 6788 |
|
|
/*Equality function of the types_used_by_vars_entry hash table. */
|
| 6789 |
|
|
|
| 6790 |
|
|
int
|
| 6791 |
|
|
types_used_by_vars_eq (const void *x1, const void *x2)
|
| 6792 |
|
|
{
|
| 6793 |
|
|
const struct types_used_by_vars_entry *e1 =
|
| 6794 |
|
|
(const struct types_used_by_vars_entry *) x1;
|
| 6795 |
|
|
const struct types_used_by_vars_entry *e2 =
|
| 6796 |
|
|
(const struct types_used_by_vars_entry *)x2;
|
| 6797 |
|
|
|
| 6798 |
|
|
return (e1->var_decl == e2->var_decl && e1->type == e2->type);
|
| 6799 |
|
|
}
|
| 6800 |
|
|
|
| 6801 |
|
|
/* Inserts an entry into the types_used_by_vars_hash hash table. */
|
| 6802 |
|
|
|
| 6803 |
|
|
void
|
| 6804 |
|
|
types_used_by_var_decl_insert (tree type, tree var_decl)
|
| 6805 |
|
|
{
|
| 6806 |
|
|
if (type != NULL && var_decl != NULL)
|
| 6807 |
|
|
{
|
| 6808 |
|
|
void **slot;
|
| 6809 |
|
|
struct types_used_by_vars_entry e;
|
| 6810 |
|
|
e.var_decl = var_decl;
|
| 6811 |
|
|
e.type = type;
|
| 6812 |
|
|
if (types_used_by_vars_hash == NULL)
|
| 6813 |
|
|
types_used_by_vars_hash =
|
| 6814 |
|
|
htab_create_ggc (37, types_used_by_vars_do_hash,
|
| 6815 |
|
|
types_used_by_vars_eq, NULL);
|
| 6816 |
|
|
slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
|
| 6817 |
|
|
hash_types_used_by_vars_entry (&e), INSERT);
|
| 6818 |
|
|
if (*slot == NULL)
|
| 6819 |
|
|
{
|
| 6820 |
|
|
struct types_used_by_vars_entry *entry;
|
| 6821 |
|
|
entry = ggc_alloc_types_used_by_vars_entry ();
|
| 6822 |
|
|
entry->type = type;
|
| 6823 |
|
|
entry->var_decl = var_decl;
|
| 6824 |
|
|
*slot = entry;
|
| 6825 |
|
|
}
|
| 6826 |
|
|
}
|
| 6827 |
|
|
}
|
| 6828 |
|
|
|
| 6829 |
|
|
struct rtl_opt_pass pass_leaf_regs =
|
| 6830 |
|
|
{
|
| 6831 |
|
|
{
|
| 6832 |
|
|
RTL_PASS,
|
| 6833 |
|
|
"*leaf_regs", /* name */
|
| 6834 |
|
|
NULL, /* gate */
|
| 6835 |
|
|
rest_of_handle_check_leaf_regs, /* execute */
|
| 6836 |
|
|
NULL, /* sub */
|
| 6837 |
|
|
NULL, /* next */
|
| 6838 |
|
|
0, /* static_pass_number */
|
| 6839 |
|
|
TV_NONE, /* tv_id */
|
| 6840 |
|
|
0, /* properties_required */
|
| 6841 |
|
|
0, /* properties_provided */
|
| 6842 |
|
|
0, /* properties_destroyed */
|
| 6843 |
|
|
0, /* todo_flags_start */
|
| 6844 |
|
|
|
| 6845 |
|
|
}
|
| 6846 |
|
|
};
|
| 6847 |
|
|
|
| 6848 |
|
|
static unsigned int
|
| 6849 |
|
|
rest_of_handle_thread_prologue_and_epilogue (void)
|
| 6850 |
|
|
{
|
| 6851 |
|
|
if (optimize)
|
| 6852 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE);
|
| 6853 |
|
|
|
| 6854 |
|
|
/* On some machines, the prologue and epilogue code, or parts thereof,
|
| 6855 |
|
|
can be represented as RTL. Doing so lets us schedule insns between
|
| 6856 |
|
|
it and the rest of the code and also allows delayed branch
|
| 6857 |
|
|
scheduling to operate in the epilogue. */
|
| 6858 |
|
|
thread_prologue_and_epilogue_insns ();
|
| 6859 |
|
|
|
| 6860 |
|
|
/* The stack usage info is finalized during prologue expansion. */
|
| 6861 |
|
|
if (flag_stack_usage_info)
|
| 6862 |
|
|
output_stack_usage ();
|
| 6863 |
|
|
|
| 6864 |
|
|
return 0;
|
| 6865 |
|
|
}
|
| 6866 |
|
|
|
| 6867 |
|
|
struct rtl_opt_pass pass_thread_prologue_and_epilogue =
|
| 6868 |
|
|
{
|
| 6869 |
|
|
{
|
| 6870 |
|
|
RTL_PASS,
|
| 6871 |
|
|
"pro_and_epilogue", /* name */
|
| 6872 |
|
|
NULL, /* gate */
|
| 6873 |
|
|
rest_of_handle_thread_prologue_and_epilogue, /* execute */
|
| 6874 |
|
|
NULL, /* sub */
|
| 6875 |
|
|
NULL, /* next */
|
| 6876 |
|
|
0, /* static_pass_number */
|
| 6877 |
|
|
TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
|
| 6878 |
|
|
0, /* properties_required */
|
| 6879 |
|
|
0, /* properties_provided */
|
| 6880 |
|
|
0, /* properties_destroyed */
|
| 6881 |
|
|
TODO_verify_flow, /* todo_flags_start */
|
| 6882 |
|
|
TODO_df_verify |
|
| 6883 |
|
|
TODO_df_finish | TODO_verify_rtl_sharing |
|
| 6884 |
|
|
TODO_ggc_collect /* todo_flags_finish */
|
| 6885 |
|
|
}
|
| 6886 |
|
|
};
|
| 6887 |
|
|
|
| 6888 |
|
|
|
| 6889 |
|
|
/* This mini-pass fixes fall-out from SSA in asm statements that have
|
| 6890 |
|
|
in-out constraints. Say you start with
|
| 6891 |
|
|
|
| 6892 |
|
|
orig = inout;
|
| 6893 |
|
|
asm ("": "+mr" (inout));
|
| 6894 |
|
|
use (orig);
|
| 6895 |
|
|
|
| 6896 |
|
|
which is transformed very early to use explicit output and match operands:
|
| 6897 |
|
|
|
| 6898 |
|
|
orig = inout;
|
| 6899 |
|
|
asm ("": "=mr" (inout) : "0" (inout));
|
| 6900 |
|
|
use (orig);
|
| 6901 |
|
|
|
| 6902 |
|
|
Or, after SSA and copyprop,
|
| 6903 |
|
|
|
| 6904 |
|
|
asm ("": "=mr" (inout_2) : "0" (inout_1));
|
| 6905 |
|
|
use (inout_1);
|
| 6906 |
|
|
|
| 6907 |
|
|
Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
|
| 6908 |
|
|
they represent two separate values, so they will get different pseudo
|
| 6909 |
|
|
registers during expansion. Then, since the two operands need to match
|
| 6910 |
|
|
per the constraints, but use different pseudo registers, reload can
|
| 6911 |
|
|
only register a reload for these operands. But reloads can only be
|
| 6912 |
|
|
satisfied by hardregs, not by memory, so we need a register for this
|
| 6913 |
|
|
reload, just because we are presented with non-matching operands.
|
| 6914 |
|
|
So, even though we allow memory for this operand, no memory can be
|
| 6915 |
|
|
used for it, just because the two operands don't match. This can
|
| 6916 |
|
|
cause reload failures on register-starved targets.
|
| 6917 |
|
|
|
| 6918 |
|
|
So it's a symptom of reload not being able to use memory for reloads
|
| 6919 |
|
|
or, alternatively it's also a symptom of both operands not coming into
|
| 6920 |
|
|
reload as matching (in which case the pseudo could go to memory just
|
| 6921 |
|
|
fine, as the alternative allows it, and no reload would be necessary).
|
| 6922 |
|
|
We fix the latter problem here, by transforming
|
| 6923 |
|
|
|
| 6924 |
|
|
asm ("": "=mr" (inout_2) : "0" (inout_1));
|
| 6925 |
|
|
|
| 6926 |
|
|
back to
|
| 6927 |
|
|
|
| 6928 |
|
|
inout_2 = inout_1;
|
| 6929 |
|
|
asm ("": "=mr" (inout_2) : "0" (inout_2)); */
|
| 6930 |
|
|
|
| 6931 |
|
|
static void
|
| 6932 |
|
|
match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
|
| 6933 |
|
|
{
|
| 6934 |
|
|
int i;
|
| 6935 |
|
|
bool changed = false;
|
| 6936 |
|
|
rtx op = SET_SRC (p_sets[0]);
|
| 6937 |
|
|
int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
|
| 6938 |
|
|
rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
|
| 6939 |
|
|
bool *output_matched = XALLOCAVEC (bool, noutputs);
|
| 6940 |
|
|
|
| 6941 |
|
|
memset (output_matched, 0, noutputs * sizeof (bool));
|
| 6942 |
|
|
for (i = 0; i < ninputs; i++)
|
| 6943 |
|
|
{
|
| 6944 |
|
|
rtx input, output, insns;
|
| 6945 |
|
|
const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
|
| 6946 |
|
|
char *end;
|
| 6947 |
|
|
int match, j;
|
| 6948 |
|
|
|
| 6949 |
|
|
if (*constraint == '%')
|
| 6950 |
|
|
constraint++;
|
| 6951 |
|
|
|
| 6952 |
|
|
match = strtoul (constraint, &end, 10);
|
| 6953 |
|
|
if (end == constraint)
|
| 6954 |
|
|
continue;
|
| 6955 |
|
|
|
| 6956 |
|
|
gcc_assert (match < noutputs);
|
| 6957 |
|
|
output = SET_DEST (p_sets[match]);
|
| 6958 |
|
|
input = RTVEC_ELT (inputs, i);
|
| 6959 |
|
|
/* Only do the transformation for pseudos. */
|
| 6960 |
|
|
if (! REG_P (output)
|
| 6961 |
|
|
|| rtx_equal_p (output, input)
|
| 6962 |
|
|
|| (GET_MODE (input) != VOIDmode
|
| 6963 |
|
|
&& GET_MODE (input) != GET_MODE (output)))
|
| 6964 |
|
|
continue;
|
| 6965 |
|
|
|
| 6966 |
|
|
/* We can't do anything if the output is also used as input,
|
| 6967 |
|
|
as we're going to overwrite it. */
|
| 6968 |
|
|
for (j = 0; j < ninputs; j++)
|
| 6969 |
|
|
if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
|
| 6970 |
|
|
break;
|
| 6971 |
|
|
if (j != ninputs)
|
| 6972 |
|
|
continue;
|
| 6973 |
|
|
|
| 6974 |
|
|
/* Avoid changing the same input several times. For
|
| 6975 |
|
|
asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
|
| 6976 |
|
|
only change in once (to out1), rather than changing it
|
| 6977 |
|
|
first to out1 and afterwards to out2. */
|
| 6978 |
|
|
if (i > 0)
|
| 6979 |
|
|
{
|
| 6980 |
|
|
for (j = 0; j < noutputs; j++)
|
| 6981 |
|
|
if (output_matched[j] && input == SET_DEST (p_sets[j]))
|
| 6982 |
|
|
break;
|
| 6983 |
|
|
if (j != noutputs)
|
| 6984 |
|
|
continue;
|
| 6985 |
|
|
}
|
| 6986 |
|
|
output_matched[match] = true;
|
| 6987 |
|
|
|
| 6988 |
|
|
start_sequence ();
|
| 6989 |
|
|
emit_move_insn (output, input);
|
| 6990 |
|
|
insns = get_insns ();
|
| 6991 |
|
|
end_sequence ();
|
| 6992 |
|
|
emit_insn_before (insns, insn);
|
| 6993 |
|
|
|
| 6994 |
|
|
/* Now replace all mentions of the input with output. We can't
|
| 6995 |
|
|
just replace the occurrence in inputs[i], as the register might
|
| 6996 |
|
|
also be used in some other input (or even in an address of an
|
| 6997 |
|
|
output), which would mean possibly increasing the number of
|
| 6998 |
|
|
inputs by one (namely 'output' in addition), which might pose
|
| 6999 |
|
|
a too complicated problem for reload to solve. E.g. this situation:
|
| 7000 |
|
|
|
| 7001 |
|
|
asm ("" : "=r" (output), "=m" (input) : "0" (input))
|
| 7002 |
|
|
|
| 7003 |
|
|
Here 'input' is used in two occurrences as input (once for the
|
| 7004 |
|
|
input operand, once for the address in the second output operand).
|
| 7005 |
|
|
If we would replace only the occurrence of the input operand (to
|
| 7006 |
|
|
make the matching) we would be left with this:
|
| 7007 |
|
|
|
| 7008 |
|
|
output = input
|
| 7009 |
|
|
asm ("" : "=r" (output), "=m" (input) : "0" (output))
|
| 7010 |
|
|
|
| 7011 |
|
|
Now we suddenly have two different input values (containing the same
|
| 7012 |
|
|
value, but different pseudos) where we formerly had only one.
|
| 7013 |
|
|
With more complicated asms this might lead to reload failures
|
| 7014 |
|
|
which wouldn't have happen without this pass. So, iterate over
|
| 7015 |
|
|
all operands and replace all occurrences of the register used. */
|
| 7016 |
|
|
for (j = 0; j < noutputs; j++)
|
| 7017 |
|
|
if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
|
| 7018 |
|
|
&& reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
|
| 7019 |
|
|
SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
|
| 7020 |
|
|
input, output);
|
| 7021 |
|
|
for (j = 0; j < ninputs; j++)
|
| 7022 |
|
|
if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
|
| 7023 |
|
|
RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
|
| 7024 |
|
|
input, output);
|
| 7025 |
|
|
|
| 7026 |
|
|
changed = true;
|
| 7027 |
|
|
}
|
| 7028 |
|
|
|
| 7029 |
|
|
if (changed)
|
| 7030 |
|
|
df_insn_rescan (insn);
|
| 7031 |
|
|
}
|
| 7032 |
|
|
|
| 7033 |
|
|
static unsigned
|
| 7034 |
|
|
rest_of_match_asm_constraints (void)
|
| 7035 |
|
|
{
|
| 7036 |
|
|
basic_block bb;
|
| 7037 |
|
|
rtx insn, pat, *p_sets;
|
| 7038 |
|
|
int noutputs;
|
| 7039 |
|
|
|
| 7040 |
|
|
if (!crtl->has_asm_statement)
|
| 7041 |
|
|
return 0;
|
| 7042 |
|
|
|
| 7043 |
|
|
df_set_flags (DF_DEFER_INSN_RESCAN);
|
| 7044 |
|
|
FOR_EACH_BB (bb)
|
| 7045 |
|
|
{
|
| 7046 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 7047 |
|
|
{
|
| 7048 |
|
|
if (!INSN_P (insn))
|
| 7049 |
|
|
continue;
|
| 7050 |
|
|
|
| 7051 |
|
|
pat = PATTERN (insn);
|
| 7052 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
| 7053 |
|
|
p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
|
| 7054 |
|
|
else if (GET_CODE (pat) == SET)
|
| 7055 |
|
|
p_sets = &PATTERN (insn), noutputs = 1;
|
| 7056 |
|
|
else
|
| 7057 |
|
|
continue;
|
| 7058 |
|
|
|
| 7059 |
|
|
if (GET_CODE (*p_sets) == SET
|
| 7060 |
|
|
&& GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
|
| 7061 |
|
|
match_asm_constraints_1 (insn, p_sets, noutputs);
|
| 7062 |
|
|
}
|
| 7063 |
|
|
}
|
| 7064 |
|
|
|
| 7065 |
|
|
return TODO_df_finish;
|
| 7066 |
|
|
}
|
| 7067 |
|
|
|
| 7068 |
|
|
struct rtl_opt_pass pass_match_asm_constraints =
|
| 7069 |
|
|
{
|
| 7070 |
|
|
{
|
| 7071 |
|
|
RTL_PASS,
|
| 7072 |
|
|
"asmcons", /* name */
|
| 7073 |
|
|
NULL, /* gate */
|
| 7074 |
|
|
rest_of_match_asm_constraints, /* execute */
|
| 7075 |
|
|
NULL, /* sub */
|
| 7076 |
|
|
NULL, /* next */
|
| 7077 |
|
|
0, /* static_pass_number */
|
| 7078 |
|
|
TV_NONE, /* tv_id */
|
| 7079 |
|
|
0, /* properties_required */
|
| 7080 |
|
|
0, /* properties_provided */
|
| 7081 |
|
|
0, /* properties_destroyed */
|
| 7082 |
|
|
0, /* todo_flags_start */
|
| 7083 |
|
|
|
| 7084 |
|
|
}
|
| 7085 |
|
|
};
|
| 7086 |
|
|
|
| 7087 |
|
|
|
| 7088 |
|
|
#include "gt-function.h"
|