1 |
684 |
jeremybenn |
/* RTL-based forward propagation pass for GNU compiler.
|
2 |
|
|
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Paolo Bonzini and Steven Bosscher.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "diagnostic-core.h"
|
27 |
|
|
|
28 |
|
|
#include "sparseset.h"
|
29 |
|
|
#include "timevar.h"
|
30 |
|
|
#include "rtl.h"
|
31 |
|
|
#include "tm_p.h"
|
32 |
|
|
#include "insn-config.h"
|
33 |
|
|
#include "recog.h"
|
34 |
|
|
#include "flags.h"
|
35 |
|
|
#include "obstack.h"
|
36 |
|
|
#include "basic-block.h"
|
37 |
|
|
#include "output.h"
|
38 |
|
|
#include "df.h"
|
39 |
|
|
#include "target.h"
|
40 |
|
|
#include "cfgloop.h"
|
41 |
|
|
#include "tree-pass.h"
|
42 |
|
|
#include "domwalk.h"
|
43 |
|
|
#include "emit-rtl.h"
|
44 |
|
|
|
45 |
|
|
|
46 |
|
|
/* This pass does simple forward propagation and simplification when an
|
47 |
|
|
operand of an insn can only come from a single def. This pass uses
|
48 |
|
|
df.c, so it is global. However, we only do limited analysis of
|
49 |
|
|
available expressions.
|
50 |
|
|
|
51 |
|
|
1) The pass tries to propagate the source of the def into the use,
|
52 |
|
|
and checks if the result is independent of the substituted value.
|
53 |
|
|
For example, the high word of a (zero_extend:DI (reg:SI M)) is always
|
54 |
|
|
zero, independent of the source register.
|
55 |
|
|
|
56 |
|
|
In particular, we propagate constants into the use site. Sometimes
|
57 |
|
|
RTL expansion did not put the constant in the same insn on purpose,
|
58 |
|
|
to satisfy a predicate, and the result will fail to be recognized;
|
59 |
|
|
but this happens rarely and in this case we can still create a
|
60 |
|
|
REG_EQUAL note. For multi-word operations, this
|
61 |
|
|
|
62 |
|
|
(set (subreg:SI (reg:DI 120) 0) (const_int 0))
|
63 |
|
|
(set (subreg:SI (reg:DI 120) 4) (const_int -1))
|
64 |
|
|
(set (subreg:SI (reg:DI 122) 0)
|
65 |
|
|
(ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
|
66 |
|
|
(set (subreg:SI (reg:DI 122) 4)
|
67 |
|
|
(ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
|
68 |
|
|
|
69 |
|
|
can be simplified to the much simpler
|
70 |
|
|
|
71 |
|
|
(set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
|
72 |
|
|
(set (subreg:SI (reg:DI 122) 4) (const_int -1))
|
73 |
|
|
|
74 |
|
|
This particular propagation is also effective at putting together
|
75 |
|
|
complex addressing modes. We are more aggressive inside MEMs, in
|
76 |
|
|
that all definitions are propagated if the use is in a MEM; if the
|
77 |
|
|
result is a valid memory address we check address_cost to decide
|
78 |
|
|
whether the substitution is worthwhile.
|
79 |
|
|
|
80 |
|
|
2) The pass propagates register copies. This is not as effective as
|
81 |
|
|
the copy propagation done by CSE's canon_reg, which works by walking
|
82 |
|
|
the instruction chain, it can help the other transformations.
|
83 |
|
|
|
84 |
|
|
We should consider removing this optimization, and instead reorder the
|
85 |
|
|
RTL passes, because GCSE does this transformation too. With some luck,
|
86 |
|
|
the CSE pass at the end of rest_of_handle_gcse could also go away.
|
87 |
|
|
|
88 |
|
|
3) The pass looks for paradoxical subregs that are actually unnecessary.
|
89 |
|
|
Things like this:
|
90 |
|
|
|
91 |
|
|
(set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
|
92 |
|
|
(set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
|
93 |
|
|
(set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
|
94 |
|
|
(subreg:SI (reg:QI 121) 0)))
|
95 |
|
|
|
96 |
|
|
are very common on machines that can only do word-sized operations.
|
97 |
|
|
For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
|
98 |
|
|
if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
|
99 |
|
|
we can replace the paradoxical subreg with simply (reg:WIDE M). The
|
100 |
|
|
above will simplify this to
|
101 |
|
|
|
102 |
|
|
(set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
|
103 |
|
|
(set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
|
104 |
|
|
(set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
|
105 |
|
|
|
106 |
|
|
where the first two insns are now dead.
|
107 |
|
|
|
108 |
|
|
We used to use reaching definitions to find which uses have a
|
109 |
|
|
single reaching definition (sounds obvious...), but this is too
|
110 |
|
|
complex a problem in nasty testcases like PR33928. Now we use the
|
111 |
|
|
multiple definitions problem in df-problems.c. The similarity
|
112 |
|
|
between that problem and SSA form creation is taken further, in
|
113 |
|
|
that fwprop does a dominator walk to create its chains; however,
|
114 |
|
|
instead of creating a PHI function where multiple definitions meet
|
115 |
|
|
I just punt and record only singleton use-def chains, which is
|
116 |
|
|
all that is needed by fwprop. */
|
117 |
|
|
|
118 |
|
|
|
119 |
|
|
static int num_changes;
|
120 |
|
|
|
121 |
|
|
DEF_VEC_P(df_ref);
|
122 |
|
|
DEF_VEC_ALLOC_P(df_ref,heap);
|
123 |
|
|
static VEC(df_ref,heap) *use_def_ref;
|
124 |
|
|
static VEC(df_ref,heap) *reg_defs;
|
125 |
|
|
static VEC(df_ref,heap) *reg_defs_stack;
|
126 |
|
|
|
127 |
|
|
/* The MD bitmaps are trimmed to include only live registers to cut
|
128 |
|
|
memory usage on testcases like insn-recog.c. Track live registers
|
129 |
|
|
in the basic block and do not perform forward propagation if the
|
130 |
|
|
destination is a dead pseudo occurring in a note. */
|
131 |
|
|
static bitmap local_md;
|
132 |
|
|
static bitmap local_lr;
|
133 |
|
|
|
134 |
|
|
/* Return the only def in USE's use-def chain, or NULL if there is
|
135 |
|
|
more than one def in the chain. */
|
136 |
|
|
|
137 |
|
|
static inline df_ref
|
138 |
|
|
get_def_for_use (df_ref use)
|
139 |
|
|
{
|
140 |
|
|
return VEC_index (df_ref, use_def_ref, DF_REF_ID (use));
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
|
144 |
|
|
/* Update the reg_defs vector with non-partial definitions in DEF_REC.
|
145 |
|
|
TOP_FLAG says which artificials uses should be used, when DEF_REC
|
146 |
|
|
is an artificial def vector. LOCAL_MD is modified as after a
|
147 |
|
|
df_md_simulate_* function; we do more or less the same processing
|
148 |
|
|
done there, so we do not use those functions. */
|
149 |
|
|
|
150 |
|
|
#define DF_MD_GEN_FLAGS \
|
151 |
|
|
(DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
|
152 |
|
|
|
153 |
|
|
static void
|
154 |
|
|
process_defs (df_ref *def_rec, int top_flag)
|
155 |
|
|
{
|
156 |
|
|
df_ref def;
|
157 |
|
|
while ((def = *def_rec++) != NULL)
|
158 |
|
|
{
|
159 |
|
|
df_ref curr_def = VEC_index (df_ref, reg_defs, DF_REF_REGNO (def));
|
160 |
|
|
unsigned int dregno;
|
161 |
|
|
|
162 |
|
|
if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
|
163 |
|
|
continue;
|
164 |
|
|
|
165 |
|
|
dregno = DF_REF_REGNO (def);
|
166 |
|
|
if (curr_def)
|
167 |
|
|
VEC_safe_push (df_ref, heap, reg_defs_stack, curr_def);
|
168 |
|
|
else
|
169 |
|
|
{
|
170 |
|
|
/* Do not store anything if "transitioning" from NULL to NULL. But
|
171 |
|
|
otherwise, push a special entry on the stack to tell the
|
172 |
|
|
leave_block callback that the entry in reg_defs was NULL. */
|
173 |
|
|
if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
|
174 |
|
|
;
|
175 |
|
|
else
|
176 |
|
|
VEC_safe_push (df_ref, heap, reg_defs_stack, def);
|
177 |
|
|
}
|
178 |
|
|
|
179 |
|
|
if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
|
180 |
|
|
{
|
181 |
|
|
bitmap_set_bit (local_md, dregno);
|
182 |
|
|
VEC_replace (df_ref, reg_defs, dregno, NULL);
|
183 |
|
|
}
|
184 |
|
|
else
|
185 |
|
|
{
|
186 |
|
|
bitmap_clear_bit (local_md, dregno);
|
187 |
|
|
VEC_replace (df_ref, reg_defs, dregno, def);
|
188 |
|
|
}
|
189 |
|
|
}
|
190 |
|
|
}
|
191 |
|
|
|
192 |
|
|
|
193 |
|
|
/* Fill the use_def_ref vector with values for the uses in USE_REC,
|
194 |
|
|
taking reaching definitions info from LOCAL_MD and REG_DEFS.
|
195 |
|
|
TOP_FLAG says which artificials uses should be used, when USE_REC
|
196 |
|
|
is an artificial use vector. */
|
197 |
|
|
|
198 |
|
|
static void
|
199 |
|
|
process_uses (df_ref *use_rec, int top_flag)
|
200 |
|
|
{
|
201 |
|
|
df_ref use;
|
202 |
|
|
while ((use = *use_rec++) != NULL)
|
203 |
|
|
if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
|
204 |
|
|
{
|
205 |
|
|
unsigned int uregno = DF_REF_REGNO (use);
|
206 |
|
|
if (VEC_index (df_ref, reg_defs, uregno)
|
207 |
|
|
&& !bitmap_bit_p (local_md, uregno)
|
208 |
|
|
&& bitmap_bit_p (local_lr, uregno))
|
209 |
|
|
VEC_replace (df_ref, use_def_ref, DF_REF_ID (use),
|
210 |
|
|
VEC_index (df_ref, reg_defs, uregno));
|
211 |
|
|
}
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
|
215 |
|
|
static void
|
216 |
|
|
single_def_use_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
|
217 |
|
|
basic_block bb)
|
218 |
|
|
{
|
219 |
|
|
int bb_index = bb->index;
|
220 |
|
|
struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
|
221 |
|
|
struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
|
222 |
|
|
rtx insn;
|
223 |
|
|
|
224 |
|
|
bitmap_copy (local_md, &md_bb_info->in);
|
225 |
|
|
bitmap_copy (local_lr, &lr_bb_info->in);
|
226 |
|
|
|
227 |
|
|
/* Push a marker for the leave_block callback. */
|
228 |
|
|
VEC_safe_push (df_ref, heap, reg_defs_stack, NULL);
|
229 |
|
|
|
230 |
|
|
process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
|
231 |
|
|
process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
|
232 |
|
|
|
233 |
|
|
/* We don't call df_simulate_initialize_forwards, as it may overestimate
|
234 |
|
|
the live registers if there are unused artificial defs. We prefer
|
235 |
|
|
liveness to be underestimated. */
|
236 |
|
|
|
237 |
|
|
FOR_BB_INSNS (bb, insn)
|
238 |
|
|
if (INSN_P (insn))
|
239 |
|
|
{
|
240 |
|
|
unsigned int uid = INSN_UID (insn);
|
241 |
|
|
process_uses (DF_INSN_UID_USES (uid), 0);
|
242 |
|
|
process_uses (DF_INSN_UID_EQ_USES (uid), 0);
|
243 |
|
|
process_defs (DF_INSN_UID_DEFS (uid), 0);
|
244 |
|
|
df_simulate_one_insn_forwards (bb, insn, local_lr);
|
245 |
|
|
}
|
246 |
|
|
|
247 |
|
|
process_uses (df_get_artificial_uses (bb_index), 0);
|
248 |
|
|
process_defs (df_get_artificial_defs (bb_index), 0);
|
249 |
|
|
}
|
250 |
|
|
|
251 |
|
|
/* Pop the definitions created in this basic block when leaving its
|
252 |
|
|
dominated parts. */
|
253 |
|
|
|
254 |
|
|
static void
|
255 |
|
|
single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
|
256 |
|
|
basic_block bb ATTRIBUTE_UNUSED)
|
257 |
|
|
{
|
258 |
|
|
df_ref saved_def;
|
259 |
|
|
while ((saved_def = VEC_pop (df_ref, reg_defs_stack)) != NULL)
|
260 |
|
|
{
|
261 |
|
|
unsigned int dregno = DF_REF_REGNO (saved_def);
|
262 |
|
|
|
263 |
|
|
/* See also process_defs. */
|
264 |
|
|
if (saved_def == VEC_index (df_ref, reg_defs, dregno))
|
265 |
|
|
VEC_replace (df_ref, reg_defs, dregno, NULL);
|
266 |
|
|
else
|
267 |
|
|
VEC_replace (df_ref, reg_defs, dregno, saved_def);
|
268 |
|
|
}
|
269 |
|
|
}
|
270 |
|
|
|
271 |
|
|
|
272 |
|
|
/* Build a vector holding the reaching definitions of uses reached by a
|
273 |
|
|
single dominating definition. */
|
274 |
|
|
|
275 |
|
|
static void
|
276 |
|
|
build_single_def_use_links (void)
|
277 |
|
|
{
|
278 |
|
|
struct dom_walk_data walk_data;
|
279 |
|
|
|
280 |
|
|
/* We use the multiple definitions problem to compute our restricted
|
281 |
|
|
use-def chains. */
|
282 |
|
|
df_set_flags (DF_EQ_NOTES);
|
283 |
|
|
df_md_add_problem ();
|
284 |
|
|
df_note_add_problem ();
|
285 |
|
|
df_analyze ();
|
286 |
|
|
df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
|
287 |
|
|
|
288 |
|
|
use_def_ref = VEC_alloc (df_ref, heap, DF_USES_TABLE_SIZE ());
|
289 |
|
|
VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_USES_TABLE_SIZE ());
|
290 |
|
|
|
291 |
|
|
reg_defs = VEC_alloc (df_ref, heap, max_reg_num ());
|
292 |
|
|
VEC_safe_grow_cleared (df_ref, heap, reg_defs, max_reg_num ());
|
293 |
|
|
|
294 |
|
|
reg_defs_stack = VEC_alloc (df_ref, heap, n_basic_blocks * 10);
|
295 |
|
|
local_md = BITMAP_ALLOC (NULL);
|
296 |
|
|
local_lr = BITMAP_ALLOC (NULL);
|
297 |
|
|
|
298 |
|
|
/* Walk the dominator tree looking for single reaching definitions
|
299 |
|
|
dominating the uses. This is similar to how SSA form is built. */
|
300 |
|
|
walk_data.dom_direction = CDI_DOMINATORS;
|
301 |
|
|
walk_data.initialize_block_local_data = NULL;
|
302 |
|
|
walk_data.before_dom_children = single_def_use_enter_block;
|
303 |
|
|
walk_data.after_dom_children = single_def_use_leave_block;
|
304 |
|
|
|
305 |
|
|
init_walk_dominator_tree (&walk_data);
|
306 |
|
|
walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
|
307 |
|
|
fini_walk_dominator_tree (&walk_data);
|
308 |
|
|
|
309 |
|
|
BITMAP_FREE (local_lr);
|
310 |
|
|
BITMAP_FREE (local_md);
|
311 |
|
|
VEC_free (df_ref, heap, reg_defs);
|
312 |
|
|
VEC_free (df_ref, heap, reg_defs_stack);
|
313 |
|
|
}
|
314 |
|
|
|
315 |
|
|
|
316 |
|
|
/* Do not try to replace constant addresses or addresses of local and
|
317 |
|
|
argument slots. These MEM expressions are made only once and inserted
|
318 |
|
|
in many instructions, as well as being used to control symbol table
|
319 |
|
|
output. It is not safe to clobber them.
|
320 |
|
|
|
321 |
|
|
There are some uncommon cases where the address is already in a register
|
322 |
|
|
for some reason, but we cannot take advantage of that because we have
|
323 |
|
|
no easy way to unshare the MEM. In addition, looking up all stack
|
324 |
|
|
addresses is costly. */
|
325 |
|
|
|
326 |
|
|
static bool
|
327 |
|
|
can_simplify_addr (rtx addr)
|
328 |
|
|
{
|
329 |
|
|
rtx reg;
|
330 |
|
|
|
331 |
|
|
if (CONSTANT_ADDRESS_P (addr))
|
332 |
|
|
return false;
|
333 |
|
|
|
334 |
|
|
if (GET_CODE (addr) == PLUS)
|
335 |
|
|
reg = XEXP (addr, 0);
|
336 |
|
|
else
|
337 |
|
|
reg = addr;
|
338 |
|
|
|
339 |
|
|
return (!REG_P (reg)
|
340 |
|
|
|| (REGNO (reg) != FRAME_POINTER_REGNUM
|
341 |
|
|
&& REGNO (reg) != HARD_FRAME_POINTER_REGNUM
|
342 |
|
|
&& REGNO (reg) != ARG_POINTER_REGNUM));
|
343 |
|
|
}
|
344 |
|
|
|
345 |
|
|
/* Returns a canonical version of X for the address, from the point of view,
|
346 |
|
|
that all multiplications are represented as MULT instead of the multiply
|
347 |
|
|
by a power of 2 being represented as ASHIFT.
|
348 |
|
|
|
349 |
|
|
Every ASHIFT we find has been made by simplify_gen_binary and was not
|
350 |
|
|
there before, so it is not shared. So we can do this in place. */
|
351 |
|
|
|
352 |
|
|
static void
|
353 |
|
|
canonicalize_address (rtx x)
|
354 |
|
|
{
|
355 |
|
|
for (;;)
|
356 |
|
|
switch (GET_CODE (x))
|
357 |
|
|
{
|
358 |
|
|
case ASHIFT:
|
359 |
|
|
if (CONST_INT_P (XEXP (x, 1))
|
360 |
|
|
&& INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
|
361 |
|
|
&& INTVAL (XEXP (x, 1)) >= 0)
|
362 |
|
|
{
|
363 |
|
|
HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
|
364 |
|
|
PUT_CODE (x, MULT);
|
365 |
|
|
XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
|
366 |
|
|
GET_MODE (x));
|
367 |
|
|
}
|
368 |
|
|
|
369 |
|
|
x = XEXP (x, 0);
|
370 |
|
|
break;
|
371 |
|
|
|
372 |
|
|
case PLUS:
|
373 |
|
|
if (GET_CODE (XEXP (x, 0)) == PLUS
|
374 |
|
|
|| GET_CODE (XEXP (x, 0)) == ASHIFT
|
375 |
|
|
|| GET_CODE (XEXP (x, 0)) == CONST)
|
376 |
|
|
canonicalize_address (XEXP (x, 0));
|
377 |
|
|
|
378 |
|
|
x = XEXP (x, 1);
|
379 |
|
|
break;
|
380 |
|
|
|
381 |
|
|
case CONST:
|
382 |
|
|
x = XEXP (x, 0);
|
383 |
|
|
break;
|
384 |
|
|
|
385 |
|
|
default:
|
386 |
|
|
return;
|
387 |
|
|
}
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
/* OLD is a memory address. Return whether it is good to use NEW instead,
|
391 |
|
|
for a memory access in the given MODE. */
|
392 |
|
|
|
393 |
|
|
static bool
|
394 |
|
|
should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
|
395 |
|
|
addr_space_t as, bool speed)
|
396 |
|
|
{
|
397 |
|
|
int gain;
|
398 |
|
|
|
399 |
|
|
if (rtx_equal_p (old_rtx, new_rtx)
|
400 |
|
|
|| !memory_address_addr_space_p (mode, new_rtx, as))
|
401 |
|
|
return false;
|
402 |
|
|
|
403 |
|
|
/* Copy propagation is always ok. */
|
404 |
|
|
if (REG_P (old_rtx) && REG_P (new_rtx))
|
405 |
|
|
return true;
|
406 |
|
|
|
407 |
|
|
/* Prefer the new address if it is less expensive. */
|
408 |
|
|
gain = (address_cost (old_rtx, mode, as, speed)
|
409 |
|
|
- address_cost (new_rtx, mode, as, speed));
|
410 |
|
|
|
411 |
|
|
/* If the addresses have equivalent cost, prefer the new address
|
412 |
|
|
if it has the highest `set_src_cost'. That has the potential of
|
413 |
|
|
eliminating the most insns without additional costs, and it
|
414 |
|
|
is the same that cse.c used to do. */
|
415 |
|
|
if (gain == 0)
|
416 |
|
|
gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
|
417 |
|
|
|
418 |
|
|
return (gain > 0);
|
419 |
|
|
}
|
420 |
|
|
|
421 |
|
|
|
422 |
|
|
/* Flags for the last parameter of propagate_rtx_1. */
|
423 |
|
|
|
424 |
|
|
enum {
|
425 |
|
|
/* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
|
426 |
|
|
if it is false, propagate_rtx_1 returns false if, for at least
|
427 |
|
|
one occurrence OLD, it failed to collapse the result to a constant.
|
428 |
|
|
For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
|
429 |
|
|
collapse to zero if replacing (reg:M B) with (reg:M A).
|
430 |
|
|
|
431 |
|
|
PR_CAN_APPEAR is disregarded inside MEMs: in that case,
|
432 |
|
|
propagate_rtx_1 just tries to make cheaper and valid memory
|
433 |
|
|
addresses. */
|
434 |
|
|
PR_CAN_APPEAR = 1,
|
435 |
|
|
|
436 |
|
|
/* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
|
437 |
|
|
outside memory addresses. This is needed because propagate_rtx_1 does
|
438 |
|
|
not do any analysis on memory; thus it is very conservative and in general
|
439 |
|
|
it will fail if non-read-only MEMs are found in the source expression.
|
440 |
|
|
|
441 |
|
|
PR_HANDLE_MEM is set when the source of the propagation was not
|
442 |
|
|
another MEM. Then, it is safe not to treat non-read-only MEMs as
|
443 |
|
|
``opaque'' objects. */
|
444 |
|
|
PR_HANDLE_MEM = 2,
|
445 |
|
|
|
446 |
|
|
/* Set when costs should be optimized for speed. */
|
447 |
|
|
PR_OPTIMIZE_FOR_SPEED = 4
|
448 |
|
|
};
|
449 |
|
|
|
450 |
|
|
|
451 |
|
|
/* Replace all occurrences of OLD in *PX with NEW and try to simplify the
|
452 |
|
|
resulting expression. Replace *PX with a new RTL expression if an
|
453 |
|
|
occurrence of OLD was found.
|
454 |
|
|
|
455 |
|
|
This is only a wrapper around simplify-rtx.c: do not add any pattern
|
456 |
|
|
matching code here. (The sole exception is the handling of LO_SUM, but
|
457 |
|
|
that is because there is no simplify_gen_* function for LO_SUM). */
|
458 |
|
|
|
459 |
|
|
static bool
|
460 |
|
|
propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
|
461 |
|
|
{
|
462 |
|
|
rtx x = *px, tem = NULL_RTX, op0, op1, op2;
|
463 |
|
|
enum rtx_code code = GET_CODE (x);
|
464 |
|
|
enum machine_mode mode = GET_MODE (x);
|
465 |
|
|
enum machine_mode op_mode;
|
466 |
|
|
bool can_appear = (flags & PR_CAN_APPEAR) != 0;
|
467 |
|
|
bool valid_ops = true;
|
468 |
|
|
|
469 |
|
|
if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
|
470 |
|
|
{
|
471 |
|
|
/* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
|
472 |
|
|
they have side effects or not). */
|
473 |
|
|
*px = (side_effects_p (x)
|
474 |
|
|
? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
|
475 |
|
|
: gen_rtx_SCRATCH (GET_MODE (x)));
|
476 |
|
|
return false;
|
477 |
|
|
}
|
478 |
|
|
|
479 |
|
|
/* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
|
480 |
|
|
address, and we are *not* inside one. */
|
481 |
|
|
if (x == old_rtx)
|
482 |
|
|
{
|
483 |
|
|
*px = new_rtx;
|
484 |
|
|
return can_appear;
|
485 |
|
|
}
|
486 |
|
|
|
487 |
|
|
/* If this is an expression, try recursive substitution. */
|
488 |
|
|
switch (GET_RTX_CLASS (code))
|
489 |
|
|
{
|
490 |
|
|
case RTX_UNARY:
|
491 |
|
|
op0 = XEXP (x, 0);
|
492 |
|
|
op_mode = GET_MODE (op0);
|
493 |
|
|
valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
|
494 |
|
|
if (op0 == XEXP (x, 0))
|
495 |
|
|
return true;
|
496 |
|
|
tem = simplify_gen_unary (code, mode, op0, op_mode);
|
497 |
|
|
break;
|
498 |
|
|
|
499 |
|
|
case RTX_BIN_ARITH:
|
500 |
|
|
case RTX_COMM_ARITH:
|
501 |
|
|
op0 = XEXP (x, 0);
|
502 |
|
|
op1 = XEXP (x, 1);
|
503 |
|
|
valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
|
504 |
|
|
valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
|
505 |
|
|
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
506 |
|
|
return true;
|
507 |
|
|
tem = simplify_gen_binary (code, mode, op0, op1);
|
508 |
|
|
break;
|
509 |
|
|
|
510 |
|
|
case RTX_COMPARE:
|
511 |
|
|
case RTX_COMM_COMPARE:
|
512 |
|
|
op0 = XEXP (x, 0);
|
513 |
|
|
op1 = XEXP (x, 1);
|
514 |
|
|
op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
|
515 |
|
|
valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
|
516 |
|
|
valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
|
517 |
|
|
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
518 |
|
|
return true;
|
519 |
|
|
tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
|
520 |
|
|
break;
|
521 |
|
|
|
522 |
|
|
case RTX_TERNARY:
|
523 |
|
|
case RTX_BITFIELD_OPS:
|
524 |
|
|
op0 = XEXP (x, 0);
|
525 |
|
|
op1 = XEXP (x, 1);
|
526 |
|
|
op2 = XEXP (x, 2);
|
527 |
|
|
op_mode = GET_MODE (op0);
|
528 |
|
|
valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
|
529 |
|
|
valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
|
530 |
|
|
valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
|
531 |
|
|
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
|
532 |
|
|
return true;
|
533 |
|
|
if (op_mode == VOIDmode)
|
534 |
|
|
op_mode = GET_MODE (op0);
|
535 |
|
|
tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
|
536 |
|
|
break;
|
537 |
|
|
|
538 |
|
|
case RTX_EXTRA:
|
539 |
|
|
/* The only case we try to handle is a SUBREG. */
|
540 |
|
|
if (code == SUBREG)
|
541 |
|
|
{
|
542 |
|
|
op0 = XEXP (x, 0);
|
543 |
|
|
valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
|
544 |
|
|
if (op0 == XEXP (x, 0))
|
545 |
|
|
return true;
|
546 |
|
|
tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
|
547 |
|
|
SUBREG_BYTE (x));
|
548 |
|
|
}
|
549 |
|
|
break;
|
550 |
|
|
|
551 |
|
|
case RTX_OBJ:
|
552 |
|
|
if (code == MEM && x != new_rtx)
|
553 |
|
|
{
|
554 |
|
|
rtx new_op0;
|
555 |
|
|
op0 = XEXP (x, 0);
|
556 |
|
|
|
557 |
|
|
/* There are some addresses that we cannot work on. */
|
558 |
|
|
if (!can_simplify_addr (op0))
|
559 |
|
|
return true;
|
560 |
|
|
|
561 |
|
|
op0 = new_op0 = targetm.delegitimize_address (op0);
|
562 |
|
|
valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
|
563 |
|
|
flags | PR_CAN_APPEAR);
|
564 |
|
|
|
565 |
|
|
/* Dismiss transformation that we do not want to carry on. */
|
566 |
|
|
if (!valid_ops
|
567 |
|
|
|| new_op0 == op0
|
568 |
|
|
|| !(GET_MODE (new_op0) == GET_MODE (op0)
|
569 |
|
|
|| GET_MODE (new_op0) == VOIDmode))
|
570 |
|
|
return true;
|
571 |
|
|
|
572 |
|
|
canonicalize_address (new_op0);
|
573 |
|
|
|
574 |
|
|
/* Copy propagations are always ok. Otherwise check the costs. */
|
575 |
|
|
if (!(REG_P (old_rtx) && REG_P (new_rtx))
|
576 |
|
|
&& !should_replace_address (op0, new_op0, GET_MODE (x),
|
577 |
|
|
MEM_ADDR_SPACE (x),
|
578 |
|
|
flags & PR_OPTIMIZE_FOR_SPEED))
|
579 |
|
|
return true;
|
580 |
|
|
|
581 |
|
|
tem = replace_equiv_address_nv (x, new_op0);
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
else if (code == LO_SUM)
|
585 |
|
|
{
|
586 |
|
|
op0 = XEXP (x, 0);
|
587 |
|
|
op1 = XEXP (x, 1);
|
588 |
|
|
|
589 |
|
|
/* The only simplification we do attempts to remove references to op0
|
590 |
|
|
or make it constant -- in both cases, op0's invalidity will not
|
591 |
|
|
make the result invalid. */
|
592 |
|
|
propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
|
593 |
|
|
valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
|
594 |
|
|
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
|
595 |
|
|
return true;
|
596 |
|
|
|
597 |
|
|
/* (lo_sum (high x) x) -> x */
|
598 |
|
|
if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
|
599 |
|
|
tem = op1;
|
600 |
|
|
else
|
601 |
|
|
tem = gen_rtx_LO_SUM (mode, op0, op1);
|
602 |
|
|
|
603 |
|
|
/* OP1 is likely not a legitimate address, otherwise there would have
|
604 |
|
|
been no LO_SUM. We want it to disappear if it is invalid, return
|
605 |
|
|
false in that case. */
|
606 |
|
|
return memory_address_p (mode, tem);
|
607 |
|
|
}
|
608 |
|
|
|
609 |
|
|
else if (code == REG)
|
610 |
|
|
{
|
611 |
|
|
if (rtx_equal_p (x, old_rtx))
|
612 |
|
|
{
|
613 |
|
|
*px = new_rtx;
|
614 |
|
|
return can_appear;
|
615 |
|
|
}
|
616 |
|
|
}
|
617 |
|
|
break;
|
618 |
|
|
|
619 |
|
|
default:
|
620 |
|
|
break;
|
621 |
|
|
}
|
622 |
|
|
|
623 |
|
|
/* No change, no trouble. */
|
624 |
|
|
if (tem == NULL_RTX)
|
625 |
|
|
return true;
|
626 |
|
|
|
627 |
|
|
*px = tem;
|
628 |
|
|
|
629 |
|
|
/* The replacement we made so far is valid, if all of the recursive
|
630 |
|
|
replacements were valid, or we could simplify everything to
|
631 |
|
|
a constant. */
|
632 |
|
|
return valid_ops || can_appear || CONSTANT_P (tem);
|
633 |
|
|
}
|
634 |
|
|
|
635 |
|
|
|
636 |
|
|
/* for_each_rtx traversal function that returns 1 if BODY points to
|
637 |
|
|
a non-constant mem. */
|
638 |
|
|
|
639 |
|
|
static int
|
640 |
|
|
varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
|
641 |
|
|
{
|
642 |
|
|
rtx x = *body;
|
643 |
|
|
return MEM_P (x) && !MEM_READONLY_P (x);
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
|
647 |
|
|
/* Replace all occurrences of OLD in X with NEW and try to simplify the
|
648 |
|
|
resulting expression (in mode MODE). Return a new expression if it is
|
649 |
|
|
a constant, otherwise X.
|
650 |
|
|
|
651 |
|
|
Simplifications where occurrences of NEW collapse to a constant are always
|
652 |
|
|
accepted. All simplifications are accepted if NEW is a pseudo too.
|
653 |
|
|
Otherwise, we accept simplifications that have a lower or equal cost. */
|
654 |
|
|
|
655 |
|
|
static rtx
|
656 |
|
|
propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
|
657 |
|
|
bool speed)
|
658 |
|
|
{
|
659 |
|
|
rtx tem;
|
660 |
|
|
bool collapsed;
|
661 |
|
|
int flags;
|
662 |
|
|
|
663 |
|
|
if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
|
664 |
|
|
return NULL_RTX;
|
665 |
|
|
|
666 |
|
|
flags = 0;
|
667 |
|
|
if (REG_P (new_rtx) || CONSTANT_P (new_rtx))
|
668 |
|
|
flags |= PR_CAN_APPEAR;
|
669 |
|
|
if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
|
670 |
|
|
flags |= PR_HANDLE_MEM;
|
671 |
|
|
|
672 |
|
|
if (speed)
|
673 |
|
|
flags |= PR_OPTIMIZE_FOR_SPEED;
|
674 |
|
|
|
675 |
|
|
tem = x;
|
676 |
|
|
collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
|
677 |
|
|
if (tem == x || !collapsed)
|
678 |
|
|
return NULL_RTX;
|
679 |
|
|
|
680 |
|
|
/* gen_lowpart_common will not be able to process VOIDmode entities other
|
681 |
|
|
than CONST_INTs. */
|
682 |
|
|
if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
|
683 |
|
|
return NULL_RTX;
|
684 |
|
|
|
685 |
|
|
if (GET_MODE (tem) == VOIDmode)
|
686 |
|
|
tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
|
687 |
|
|
else
|
688 |
|
|
gcc_assert (GET_MODE (tem) == mode);
|
689 |
|
|
|
690 |
|
|
return tem;
|
691 |
|
|
}
|
692 |
|
|
|
693 |
|
|
|
694 |
|
|
|
695 |
|
|
|
696 |
|
|
/* Return true if the register from reference REF is killed
|
697 |
|
|
between FROM to (but not including) TO. */
|
698 |
|
|
|
699 |
|
|
static bool
|
700 |
|
|
local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
|
701 |
|
|
{
|
702 |
|
|
rtx insn;
|
703 |
|
|
|
704 |
|
|
for (insn = from; insn != to; insn = NEXT_INSN (insn))
|
705 |
|
|
{
|
706 |
|
|
df_ref *def_rec;
|
707 |
|
|
if (!INSN_P (insn))
|
708 |
|
|
continue;
|
709 |
|
|
|
710 |
|
|
for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
|
711 |
|
|
{
|
712 |
|
|
df_ref def = *def_rec;
|
713 |
|
|
if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
|
714 |
|
|
return true;
|
715 |
|
|
}
|
716 |
|
|
}
|
717 |
|
|
return false;
|
718 |
|
|
}
|
719 |
|
|
|
720 |
|
|
|
721 |
|
|
/* Check if the given DEF is available in INSN. This would require full
|
722 |
|
|
computation of available expressions; we check only restricted conditions:
|
723 |
|
|
- if DEF is the sole definition of its register, go ahead;
|
724 |
|
|
- in the same basic block, we check for no definitions killing the
|
725 |
|
|
definition of DEF_INSN;
|
726 |
|
|
- if USE's basic block has DEF's basic block as the sole predecessor,
|
727 |
|
|
we check if the definition is killed after DEF_INSN or before
|
728 |
|
|
TARGET_INSN insn, in their respective basic blocks. */
|
729 |
|
|
static bool
|
730 |
|
|
use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
|
731 |
|
|
{
|
732 |
|
|
basic_block def_bb = BLOCK_FOR_INSN (def_insn);
|
733 |
|
|
basic_block target_bb = BLOCK_FOR_INSN (target_insn);
|
734 |
|
|
int regno;
|
735 |
|
|
df_ref def;
|
736 |
|
|
|
737 |
|
|
/* We used to have a def reaching a use that is _before_ the def,
|
738 |
|
|
with the def not dominating the use even though the use and def
|
739 |
|
|
are in the same basic block, when a register may be used
|
740 |
|
|
uninitialized in a loop. This should not happen anymore since
|
741 |
|
|
we do not use reaching definitions, but still we test for such
|
742 |
|
|
cases and assume that DEF is not available. */
|
743 |
|
|
if (def_bb == target_bb
|
744 |
|
|
? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
|
745 |
|
|
: !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
|
746 |
|
|
return true;
|
747 |
|
|
|
748 |
|
|
/* Check if the reg in USE has only one definition. We already
|
749 |
|
|
know that this definition reaches use, or we wouldn't be here.
|
750 |
|
|
However, this is invalid for hard registers because if they are
|
751 |
|
|
live at the beginning of the function it does not mean that we
|
752 |
|
|
have an uninitialized access. */
|
753 |
|
|
regno = DF_REF_REGNO (use);
|
754 |
|
|
def = DF_REG_DEF_CHAIN (regno);
|
755 |
|
|
if (def
|
756 |
|
|
&& DF_REF_NEXT_REG (def) == NULL
|
757 |
|
|
&& regno >= FIRST_PSEUDO_REGISTER)
|
758 |
|
|
return false;
|
759 |
|
|
|
760 |
|
|
/* Check locally if we are in the same basic block. */
|
761 |
|
|
if (def_bb == target_bb)
|
762 |
|
|
return local_ref_killed_between_p (use, def_insn, target_insn);
|
763 |
|
|
|
764 |
|
|
/* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
|
765 |
|
|
if (single_pred_p (target_bb)
|
766 |
|
|
&& single_pred (target_bb) == def_bb)
|
767 |
|
|
{
|
768 |
|
|
df_ref x;
|
769 |
|
|
|
770 |
|
|
/* See if USE is killed between DEF_INSN and the last insn in the
|
771 |
|
|
basic block containing DEF_INSN. */
|
772 |
|
|
x = df_bb_regno_last_def_find (def_bb, regno);
|
773 |
|
|
if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
|
774 |
|
|
return true;
|
775 |
|
|
|
776 |
|
|
/* See if USE is killed between TARGET_INSN and the first insn in the
|
777 |
|
|
basic block containing TARGET_INSN. */
|
778 |
|
|
x = df_bb_regno_first_def_find (target_bb, regno);
|
779 |
|
|
if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
|
780 |
|
|
return true;
|
781 |
|
|
|
782 |
|
|
return false;
|
783 |
|
|
}
|
784 |
|
|
|
785 |
|
|
/* Otherwise assume the worst case. */
|
786 |
|
|
return true;
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
|
790 |
|
|
/* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
|
791 |
|
|
would require full computation of available expressions;
|
792 |
|
|
we check only restricted conditions, see use_killed_between. */
|
793 |
|
|
static bool
|
794 |
|
|
all_uses_available_at (rtx def_insn, rtx target_insn)
|
795 |
|
|
{
|
796 |
|
|
df_ref *use_rec;
|
797 |
|
|
struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
|
798 |
|
|
rtx def_set = single_set (def_insn);
|
799 |
|
|
|
800 |
|
|
gcc_assert (def_set);
|
801 |
|
|
|
802 |
|
|
/* If target_insn comes right after def_insn, which is very common
|
803 |
|
|
for addresses, we can use a quicker test. */
|
804 |
|
|
if (NEXT_INSN (def_insn) == target_insn
|
805 |
|
|
&& REG_P (SET_DEST (def_set)))
|
806 |
|
|
{
|
807 |
|
|
rtx def_reg = SET_DEST (def_set);
|
808 |
|
|
|
809 |
|
|
/* If the insn uses the reg that it defines, the substitution is
|
810 |
|
|
invalid. */
|
811 |
|
|
for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
|
812 |
|
|
{
|
813 |
|
|
df_ref use = *use_rec;
|
814 |
|
|
if (rtx_equal_p (DF_REF_REG (use), def_reg))
|
815 |
|
|
return false;
|
816 |
|
|
}
|
817 |
|
|
for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
|
818 |
|
|
{
|
819 |
|
|
df_ref use = *use_rec;
|
820 |
|
|
if (rtx_equal_p (DF_REF_REG (use), def_reg))
|
821 |
|
|
return false;
|
822 |
|
|
}
|
823 |
|
|
}
|
824 |
|
|
else
|
825 |
|
|
{
|
826 |
|
|
rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
|
827 |
|
|
|
828 |
|
|
/* Look at all the uses of DEF_INSN, and see if they are not
|
829 |
|
|
killed between DEF_INSN and TARGET_INSN. */
|
830 |
|
|
for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
|
831 |
|
|
{
|
832 |
|
|
df_ref use = *use_rec;
|
833 |
|
|
if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
|
834 |
|
|
return false;
|
835 |
|
|
if (use_killed_between (use, def_insn, target_insn))
|
836 |
|
|
return false;
|
837 |
|
|
}
|
838 |
|
|
for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
|
839 |
|
|
{
|
840 |
|
|
df_ref use = *use_rec;
|
841 |
|
|
if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
|
842 |
|
|
return false;
|
843 |
|
|
if (use_killed_between (use, def_insn, target_insn))
|
844 |
|
|
return false;
|
845 |
|
|
}
|
846 |
|
|
}
|
847 |
|
|
|
848 |
|
|
return true;
|
849 |
|
|
}
|
850 |
|
|
|
851 |
|
|
|
852 |
|
|
static df_ref *active_defs;
|
853 |
|
|
#ifdef ENABLE_CHECKING
|
854 |
|
|
static sparseset active_defs_check;
|
855 |
|
|
#endif
|
856 |
|
|
|
857 |
|
|
/* Fill the ACTIVE_DEFS array with the use->def link for the registers
|
858 |
|
|
mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
|
859 |
|
|
too, for checking purposes. */
|
860 |
|
|
|
861 |
|
|
static void
|
862 |
|
|
register_active_defs (df_ref *use_rec)
|
863 |
|
|
{
|
864 |
|
|
while (*use_rec)
|
865 |
|
|
{
|
866 |
|
|
df_ref use = *use_rec++;
|
867 |
|
|
df_ref def = get_def_for_use (use);
|
868 |
|
|
int regno = DF_REF_REGNO (use);
|
869 |
|
|
|
870 |
|
|
#ifdef ENABLE_CHECKING
|
871 |
|
|
sparseset_set_bit (active_defs_check, regno);
|
872 |
|
|
#endif
|
873 |
|
|
active_defs[regno] = def;
|
874 |
|
|
}
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
|
878 |
|
|
/* Build the use->def links that we use to update the dataflow info
|
879 |
|
|
for new uses. Note that building the links is very cheap and if
|
880 |
|
|
it were done earlier, they could be used to rule out invalid
|
881 |
|
|
propagations (in addition to what is done in all_uses_available_at).
|
882 |
|
|
I'm not doing this yet, though. */
|
883 |
|
|
|
884 |
|
|
static void
|
885 |
|
|
update_df_init (rtx def_insn, rtx insn)
|
886 |
|
|
{
|
887 |
|
|
#ifdef ENABLE_CHECKING
|
888 |
|
|
sparseset_clear (active_defs_check);
|
889 |
|
|
#endif
|
890 |
|
|
register_active_defs (DF_INSN_USES (def_insn));
|
891 |
|
|
register_active_defs (DF_INSN_USES (insn));
|
892 |
|
|
register_active_defs (DF_INSN_EQ_USES (insn));
|
893 |
|
|
}
|
894 |
|
|
|
895 |
|
|
|
896 |
|
|
/* Update the USE_DEF_REF array for the given use, using the active definitions
|
897 |
|
|
in the ACTIVE_DEFS array to match pseudos to their def. */
|
898 |
|
|
|
899 |
|
|
static inline void
|
900 |
|
|
update_uses (df_ref *use_rec)
|
901 |
|
|
{
|
902 |
|
|
while (*use_rec)
|
903 |
|
|
{
|
904 |
|
|
df_ref use = *use_rec++;
|
905 |
|
|
int regno = DF_REF_REGNO (use);
|
906 |
|
|
|
907 |
|
|
/* Set up the use-def chain. */
|
908 |
|
|
if (DF_REF_ID (use) >= (int) VEC_length (df_ref, use_def_ref))
|
909 |
|
|
VEC_safe_grow_cleared (df_ref, heap, use_def_ref,
|
910 |
|
|
DF_REF_ID (use) + 1);
|
911 |
|
|
|
912 |
|
|
#ifdef ENABLE_CHECKING
|
913 |
|
|
gcc_assert (sparseset_bit_p (active_defs_check, regno));
|
914 |
|
|
#endif
|
915 |
|
|
VEC_replace (df_ref, use_def_ref, DF_REF_ID (use), active_defs[regno]);
|
916 |
|
|
}
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
|
920 |
|
|
/* Update the USE_DEF_REF array for the uses in INSN. Only update note
|
921 |
|
|
uses if NOTES_ONLY is true. */
|
922 |
|
|
|
923 |
|
|
static void
|
924 |
|
|
update_df (rtx insn, rtx note)
|
925 |
|
|
{
|
926 |
|
|
struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
|
927 |
|
|
|
928 |
|
|
if (note)
|
929 |
|
|
{
|
930 |
|
|
df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
|
931 |
|
|
df_notes_rescan (insn);
|
932 |
|
|
}
|
933 |
|
|
else
|
934 |
|
|
{
|
935 |
|
|
df_uses_create (&PATTERN (insn), insn, 0);
|
936 |
|
|
df_insn_rescan (insn);
|
937 |
|
|
update_uses (DF_INSN_INFO_USES (insn_info));
|
938 |
|
|
}
|
939 |
|
|
|
940 |
|
|
update_uses (DF_INSN_INFO_EQ_USES (insn_info));
|
941 |
|
|
}
|
942 |
|
|
|
943 |
|
|
|
944 |
|
|
/* Try substituting NEW into LOC, which originated from forward propagation
|
945 |
|
|
of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
|
946 |
|
|
substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
|
947 |
|
|
new insn is not recognized. Return whether the substitution was
|
948 |
|
|
performed. */
|
949 |
|
|
|
950 |
|
|
static bool
|
951 |
|
|
try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
|
952 |
|
|
{
|
953 |
|
|
rtx insn = DF_REF_INSN (use);
|
954 |
|
|
rtx set = single_set (insn);
|
955 |
|
|
rtx note = NULL_RTX;
|
956 |
|
|
bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
|
957 |
|
|
int old_cost = 0;
|
958 |
|
|
bool ok;
|
959 |
|
|
|
960 |
|
|
update_df_init (def_insn, insn);
|
961 |
|
|
|
962 |
|
|
/* forward_propagate_subreg may be operating on an instruction with
|
963 |
|
|
multiple sets. If so, assume the cost of the new instruction is
|
964 |
|
|
not greater than the old one. */
|
965 |
|
|
if (set)
|
966 |
|
|
old_cost = set_src_cost (SET_SRC (set), speed);
|
967 |
|
|
if (dump_file)
|
968 |
|
|
{
|
969 |
|
|
fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
|
970 |
|
|
print_inline_rtx (dump_file, *loc, 2);
|
971 |
|
|
fprintf (dump_file, "\n with ");
|
972 |
|
|
print_inline_rtx (dump_file, new_rtx, 2);
|
973 |
|
|
fprintf (dump_file, "\n");
|
974 |
|
|
}
|
975 |
|
|
|
976 |
|
|
validate_unshare_change (insn, loc, new_rtx, true);
|
977 |
|
|
if (!verify_changes (0))
|
978 |
|
|
{
|
979 |
|
|
if (dump_file)
|
980 |
|
|
fprintf (dump_file, "Changes to insn %d not recognized\n",
|
981 |
|
|
INSN_UID (insn));
|
982 |
|
|
ok = false;
|
983 |
|
|
}
|
984 |
|
|
|
985 |
|
|
else if (DF_REF_TYPE (use) == DF_REF_REG_USE
|
986 |
|
|
&& set
|
987 |
|
|
&& set_src_cost (SET_SRC (set), speed) > old_cost)
|
988 |
|
|
{
|
989 |
|
|
if (dump_file)
|
990 |
|
|
fprintf (dump_file, "Changes to insn %d not profitable\n",
|
991 |
|
|
INSN_UID (insn));
|
992 |
|
|
ok = false;
|
993 |
|
|
}
|
994 |
|
|
|
995 |
|
|
else
|
996 |
|
|
{
|
997 |
|
|
if (dump_file)
|
998 |
|
|
fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
|
999 |
|
|
ok = true;
|
1000 |
|
|
}
|
1001 |
|
|
|
1002 |
|
|
if (ok)
|
1003 |
|
|
{
|
1004 |
|
|
confirm_change_group ();
|
1005 |
|
|
num_changes++;
|
1006 |
|
|
}
|
1007 |
|
|
else
|
1008 |
|
|
{
|
1009 |
|
|
cancel_changes (0);
|
1010 |
|
|
|
1011 |
|
|
/* Can also record a simplified value in a REG_EQUAL note,
|
1012 |
|
|
making a new one if one does not already exist. */
|
1013 |
|
|
if (set_reg_equal)
|
1014 |
|
|
{
|
1015 |
|
|
if (dump_file)
|
1016 |
|
|
fprintf (dump_file, " Setting REG_EQUAL note\n");
|
1017 |
|
|
|
1018 |
|
|
note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
|
1019 |
|
|
}
|
1020 |
|
|
}
|
1021 |
|
|
|
1022 |
|
|
if ((ok || note) && !CONSTANT_P (new_rtx))
|
1023 |
|
|
update_df (insn, note);
|
1024 |
|
|
|
1025 |
|
|
return ok;
|
1026 |
|
|
}
|
1027 |
|
|
|
1028 |
|
|
/* For the given single_set INSN, containing SRC known to be a
|
1029 |
|
|
ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
|
1030 |
|
|
is redundant due to the register being set by a LOAD_EXTEND_OP
|
1031 |
|
|
load from memory. */
|
1032 |
|
|
|
1033 |
|
|
static bool
|
1034 |
|
|
free_load_extend (rtx src, rtx insn)
|
1035 |
|
|
{
|
1036 |
|
|
rtx reg;
|
1037 |
|
|
df_ref *use_vec;
|
1038 |
|
|
df_ref use = 0, def;
|
1039 |
|
|
|
1040 |
|
|
reg = XEXP (src, 0);
|
1041 |
|
|
#ifdef LOAD_EXTEND_OP
|
1042 |
|
|
if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
|
1043 |
|
|
#endif
|
1044 |
|
|
return false;
|
1045 |
|
|
|
1046 |
|
|
for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
|
1047 |
|
|
{
|
1048 |
|
|
use = *use_vec;
|
1049 |
|
|
|
1050 |
|
|
if (!DF_REF_IS_ARTIFICIAL (use)
|
1051 |
|
|
&& DF_REF_TYPE (use) == DF_REF_REG_USE
|
1052 |
|
|
&& DF_REF_REG (use) == reg)
|
1053 |
|
|
break;
|
1054 |
|
|
}
|
1055 |
|
|
if (!use)
|
1056 |
|
|
return false;
|
1057 |
|
|
|
1058 |
|
|
def = get_def_for_use (use);
|
1059 |
|
|
if (!def)
|
1060 |
|
|
return false;
|
1061 |
|
|
|
1062 |
|
|
if (DF_REF_IS_ARTIFICIAL (def))
|
1063 |
|
|
return false;
|
1064 |
|
|
|
1065 |
|
|
if (NONJUMP_INSN_P (DF_REF_INSN (def)))
|
1066 |
|
|
{
|
1067 |
|
|
rtx patt = PATTERN (DF_REF_INSN (def));
|
1068 |
|
|
|
1069 |
|
|
if (GET_CODE (patt) == SET
|
1070 |
|
|
&& GET_CODE (SET_SRC (patt)) == MEM
|
1071 |
|
|
&& rtx_equal_p (SET_DEST (patt), reg))
|
1072 |
|
|
return true;
|
1073 |
|
|
}
|
1074 |
|
|
return false;
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
/* If USE is a subreg, see if it can be replaced by a pseudo. */
|
1078 |
|
|
|
1079 |
|
|
static bool
|
1080 |
|
|
forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
|
1081 |
|
|
{
|
1082 |
|
|
rtx use_reg = DF_REF_REG (use);
|
1083 |
|
|
rtx use_insn, src;
|
1084 |
|
|
|
1085 |
|
|
/* Only consider subregs... */
|
1086 |
|
|
enum machine_mode use_mode = GET_MODE (use_reg);
|
1087 |
|
|
if (GET_CODE (use_reg) != SUBREG
|
1088 |
|
|
|| !REG_P (SET_DEST (def_set)))
|
1089 |
|
|
return false;
|
1090 |
|
|
|
1091 |
|
|
/* If this is a paradoxical SUBREG... */
|
1092 |
|
|
if (GET_MODE_SIZE (use_mode)
|
1093 |
|
|
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
|
1094 |
|
|
{
|
1095 |
|
|
/* If this is a paradoxical SUBREG, we have no idea what value the
|
1096 |
|
|
extra bits would have. However, if the operand is equivalent to
|
1097 |
|
|
a SUBREG whose operand is the same as our mode, and all the modes
|
1098 |
|
|
are within a word, we can just use the inner operand because
|
1099 |
|
|
these SUBREGs just say how to treat the register. */
|
1100 |
|
|
use_insn = DF_REF_INSN (use);
|
1101 |
|
|
src = SET_SRC (def_set);
|
1102 |
|
|
if (GET_CODE (src) == SUBREG
|
1103 |
|
|
&& REG_P (SUBREG_REG (src))
|
1104 |
|
|
&& REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
|
1105 |
|
|
&& GET_MODE (SUBREG_REG (src)) == use_mode
|
1106 |
|
|
&& subreg_lowpart_p (src)
|
1107 |
|
|
&& all_uses_available_at (def_insn, use_insn))
|
1108 |
|
|
return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
|
1109 |
|
|
def_insn, false);
|
1110 |
|
|
}
|
1111 |
|
|
|
1112 |
|
|
/* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
|
1113 |
|
|
is the low part of the reg being extended then just use the inner
|
1114 |
|
|
operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
|
1115 |
|
|
be removed due to it matching a LOAD_EXTEND_OP load from memory,
|
1116 |
|
|
or due to the operation being a no-op when applied to registers.
|
1117 |
|
|
For example, if we have:
|
1118 |
|
|
|
1119 |
|
|
A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
|
1120 |
|
|
B: (... (subreg:SI (reg:DI X)) ...)
|
1121 |
|
|
|
1122 |
|
|
and mode_rep_extended says that Y is already sign-extended,
|
1123 |
|
|
the backend will typically allow A to be combined with the
|
1124 |
|
|
definition of Y or, failing that, allow A to be deleted after
|
1125 |
|
|
reload through register tying. Introducing more uses of Y
|
1126 |
|
|
prevents both optimisations. */
|
1127 |
|
|
else if (subreg_lowpart_p (use_reg))
|
1128 |
|
|
{
|
1129 |
|
|
use_insn = DF_REF_INSN (use);
|
1130 |
|
|
src = SET_SRC (def_set);
|
1131 |
|
|
if ((GET_CODE (src) == ZERO_EXTEND
|
1132 |
|
|
|| GET_CODE (src) == SIGN_EXTEND)
|
1133 |
|
|
&& REG_P (XEXP (src, 0))
|
1134 |
|
|
&& REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
|
1135 |
|
|
&& GET_MODE (XEXP (src, 0)) == use_mode
|
1136 |
|
|
&& !free_load_extend (src, def_insn)
|
1137 |
|
|
&& (targetm.mode_rep_extended (use_mode, GET_MODE (src))
|
1138 |
|
|
!= (int) GET_CODE (src))
|
1139 |
|
|
&& all_uses_available_at (def_insn, use_insn))
|
1140 |
|
|
return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
|
1141 |
|
|
def_insn, false);
|
1142 |
|
|
}
|
1143 |
|
|
|
1144 |
|
|
return false;
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
/* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
|
1148 |
|
|
|
1149 |
|
|
static bool
|
1150 |
|
|
forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
|
1151 |
|
|
{
|
1152 |
|
|
rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
|
1153 |
|
|
int speed_p, i;
|
1154 |
|
|
df_ref *use_vec;
|
1155 |
|
|
|
1156 |
|
|
gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
|
1157 |
|
|
|
1158 |
|
|
src = SET_SRC (def_set);
|
1159 |
|
|
use_pat = PATTERN (use_insn);
|
1160 |
|
|
|
1161 |
|
|
/* In __asm don't replace if src might need more registers than
|
1162 |
|
|
reg, as that could increase register pressure on the __asm. */
|
1163 |
|
|
use_vec = DF_INSN_USES (def_insn);
|
1164 |
|
|
if (use_vec[0] && use_vec[1])
|
1165 |
|
|
return false;
|
1166 |
|
|
|
1167 |
|
|
update_df_init (def_insn, use_insn);
|
1168 |
|
|
speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
|
1169 |
|
|
asm_operands = NULL_RTX;
|
1170 |
|
|
switch (GET_CODE (use_pat))
|
1171 |
|
|
{
|
1172 |
|
|
case ASM_OPERANDS:
|
1173 |
|
|
asm_operands = use_pat;
|
1174 |
|
|
break;
|
1175 |
|
|
case SET:
|
1176 |
|
|
if (MEM_P (SET_DEST (use_pat)))
|
1177 |
|
|
{
|
1178 |
|
|
loc = &SET_DEST (use_pat);
|
1179 |
|
|
new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
|
1180 |
|
|
if (new_rtx)
|
1181 |
|
|
validate_unshare_change (use_insn, loc, new_rtx, true);
|
1182 |
|
|
}
|
1183 |
|
|
asm_operands = SET_SRC (use_pat);
|
1184 |
|
|
break;
|
1185 |
|
|
case PARALLEL:
|
1186 |
|
|
for (i = 0; i < XVECLEN (use_pat, 0); i++)
|
1187 |
|
|
if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
|
1188 |
|
|
{
|
1189 |
|
|
if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
|
1190 |
|
|
{
|
1191 |
|
|
loc = &SET_DEST (XVECEXP (use_pat, 0, i));
|
1192 |
|
|
new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
|
1193 |
|
|
src, speed_p);
|
1194 |
|
|
if (new_rtx)
|
1195 |
|
|
validate_unshare_change (use_insn, loc, new_rtx, true);
|
1196 |
|
|
}
|
1197 |
|
|
asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
|
1198 |
|
|
}
|
1199 |
|
|
else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
|
1200 |
|
|
asm_operands = XVECEXP (use_pat, 0, i);
|
1201 |
|
|
break;
|
1202 |
|
|
default:
|
1203 |
|
|
gcc_unreachable ();
|
1204 |
|
|
}
|
1205 |
|
|
|
1206 |
|
|
gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
|
1207 |
|
|
for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
|
1208 |
|
|
{
|
1209 |
|
|
loc = &ASM_OPERANDS_INPUT (asm_operands, i);
|
1210 |
|
|
new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
|
1211 |
|
|
if (new_rtx)
|
1212 |
|
|
validate_unshare_change (use_insn, loc, new_rtx, true);
|
1213 |
|
|
}
|
1214 |
|
|
|
1215 |
|
|
if (num_changes_pending () == 0 || !apply_change_group ())
|
1216 |
|
|
return false;
|
1217 |
|
|
|
1218 |
|
|
update_df (use_insn, NULL);
|
1219 |
|
|
num_changes++;
|
1220 |
|
|
return true;
|
1221 |
|
|
}
|
1222 |
|
|
|
1223 |
|
|
/* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
|
1224 |
|
|
result. */
|
1225 |
|
|
|
1226 |
|
|
static bool
|
1227 |
|
|
forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
|
1228 |
|
|
{
|
1229 |
|
|
rtx use_insn = DF_REF_INSN (use);
|
1230 |
|
|
rtx use_set = single_set (use_insn);
|
1231 |
|
|
rtx src, reg, new_rtx, *loc;
|
1232 |
|
|
bool set_reg_equal;
|
1233 |
|
|
enum machine_mode mode;
|
1234 |
|
|
int asm_use = -1;
|
1235 |
|
|
|
1236 |
|
|
if (INSN_CODE (use_insn) < 0)
|
1237 |
|
|
asm_use = asm_noperands (PATTERN (use_insn));
|
1238 |
|
|
|
1239 |
|
|
if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
|
1240 |
|
|
return false;
|
1241 |
|
|
|
1242 |
|
|
/* Do not propagate into PC, CC0, etc. */
|
1243 |
|
|
if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
|
1244 |
|
|
return false;
|
1245 |
|
|
|
1246 |
|
|
/* If def and use are subreg, check if they match. */
|
1247 |
|
|
reg = DF_REF_REG (use);
|
1248 |
|
|
if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
|
1249 |
|
|
{
|
1250 |
|
|
if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
|
1251 |
|
|
return false;
|
1252 |
|
|
}
|
1253 |
|
|
/* Check if the def had a subreg, but the use has the whole reg. */
|
1254 |
|
|
else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
|
1255 |
|
|
return false;
|
1256 |
|
|
/* Check if the use has a subreg, but the def had the whole reg. Unlike the
|
1257 |
|
|
previous case, the optimization is possible and often useful indeed. */
|
1258 |
|
|
else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
|
1259 |
|
|
reg = SUBREG_REG (reg);
|
1260 |
|
|
|
1261 |
|
|
/* Make sure that we can treat REG as having the same mode as the
|
1262 |
|
|
source of DEF_SET. */
|
1263 |
|
|
if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
|
1264 |
|
|
return false;
|
1265 |
|
|
|
1266 |
|
|
/* Check if the substitution is valid (last, because it's the most
|
1267 |
|
|
expensive check!). */
|
1268 |
|
|
src = SET_SRC (def_set);
|
1269 |
|
|
if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
|
1270 |
|
|
return false;
|
1271 |
|
|
|
1272 |
|
|
/* Check if the def is loading something from the constant pool; in this
|
1273 |
|
|
case we would undo optimization such as compress_float_constant.
|
1274 |
|
|
Still, we can set a REG_EQUAL note. */
|
1275 |
|
|
if (MEM_P (src) && MEM_READONLY_P (src))
|
1276 |
|
|
{
|
1277 |
|
|
rtx x = avoid_constant_pool_reference (src);
|
1278 |
|
|
if (x != src && use_set)
|
1279 |
|
|
{
|
1280 |
|
|
rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
|
1281 |
|
|
rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
|
1282 |
|
|
rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
|
1283 |
|
|
if (old_rtx != new_rtx)
|
1284 |
|
|
set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
|
1285 |
|
|
}
|
1286 |
|
|
return false;
|
1287 |
|
|
}
|
1288 |
|
|
|
1289 |
|
|
if (asm_use >= 0)
|
1290 |
|
|
return forward_propagate_asm (use, def_insn, def_set, reg);
|
1291 |
|
|
|
1292 |
|
|
/* Else try simplifying. */
|
1293 |
|
|
|
1294 |
|
|
if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
|
1295 |
|
|
{
|
1296 |
|
|
loc = &SET_DEST (use_set);
|
1297 |
|
|
set_reg_equal = false;
|
1298 |
|
|
}
|
1299 |
|
|
else if (!use_set)
|
1300 |
|
|
{
|
1301 |
|
|
loc = &INSN_VAR_LOCATION_LOC (use_insn);
|
1302 |
|
|
set_reg_equal = false;
|
1303 |
|
|
}
|
1304 |
|
|
else
|
1305 |
|
|
{
|
1306 |
|
|
rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
|
1307 |
|
|
if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
|
1308 |
|
|
loc = &XEXP (note, 0);
|
1309 |
|
|
else
|
1310 |
|
|
loc = &SET_SRC (use_set);
|
1311 |
|
|
|
1312 |
|
|
/* Do not replace an existing REG_EQUAL note if the insn is not
|
1313 |
|
|
recognized. Either we're already replacing in the note, or we'll
|
1314 |
|
|
separately try plugging the definition in the note and simplifying.
|
1315 |
|
|
And only install a REQ_EQUAL note when the destination is a REG,
|
1316 |
|
|
as the note would be invalid otherwise. */
|
1317 |
|
|
set_reg_equal = (note == NULL_RTX && REG_P (SET_DEST (use_set)));
|
1318 |
|
|
}
|
1319 |
|
|
|
1320 |
|
|
if (GET_MODE (*loc) == VOIDmode)
|
1321 |
|
|
mode = GET_MODE (SET_DEST (use_set));
|
1322 |
|
|
else
|
1323 |
|
|
mode = GET_MODE (*loc);
|
1324 |
|
|
|
1325 |
|
|
new_rtx = propagate_rtx (*loc, mode, reg, src,
|
1326 |
|
|
optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
|
1327 |
|
|
|
1328 |
|
|
if (!new_rtx)
|
1329 |
|
|
return false;
|
1330 |
|
|
|
1331 |
|
|
return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
|
1332 |
|
|
}
|
1333 |
|
|
|
1334 |
|
|
|
1335 |
|
|
/* Given a use USE of an insn, if it has a single reaching
|
1336 |
|
|
definition, try to forward propagate it into that insn.
|
1337 |
|
|
Return true if cfg cleanup will be needed. */
|
1338 |
|
|
|
1339 |
|
|
static bool
|
1340 |
|
|
forward_propagate_into (df_ref use)
|
1341 |
|
|
{
|
1342 |
|
|
df_ref def;
|
1343 |
|
|
rtx def_insn, def_set, use_insn;
|
1344 |
|
|
rtx parent;
|
1345 |
|
|
|
1346 |
|
|
if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
|
1347 |
|
|
return false;
|
1348 |
|
|
if (DF_REF_IS_ARTIFICIAL (use))
|
1349 |
|
|
return false;
|
1350 |
|
|
|
1351 |
|
|
/* Only consider uses that have a single definition. */
|
1352 |
|
|
def = get_def_for_use (use);
|
1353 |
|
|
if (!def)
|
1354 |
|
|
return false;
|
1355 |
|
|
if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
|
1356 |
|
|
return false;
|
1357 |
|
|
if (DF_REF_IS_ARTIFICIAL (def))
|
1358 |
|
|
return false;
|
1359 |
|
|
|
1360 |
|
|
/* Do not propagate loop invariant definitions inside the loop. */
|
1361 |
|
|
if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
|
1362 |
|
|
return false;
|
1363 |
|
|
|
1364 |
|
|
/* Check if the use is still present in the insn! */
|
1365 |
|
|
use_insn = DF_REF_INSN (use);
|
1366 |
|
|
if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
|
1367 |
|
|
parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
|
1368 |
|
|
else
|
1369 |
|
|
parent = PATTERN (use_insn);
|
1370 |
|
|
|
1371 |
|
|
if (!reg_mentioned_p (DF_REF_REG (use), parent))
|
1372 |
|
|
return false;
|
1373 |
|
|
|
1374 |
|
|
def_insn = DF_REF_INSN (def);
|
1375 |
|
|
if (multiple_sets (def_insn))
|
1376 |
|
|
return false;
|
1377 |
|
|
def_set = single_set (def_insn);
|
1378 |
|
|
if (!def_set)
|
1379 |
|
|
return false;
|
1380 |
|
|
|
1381 |
|
|
/* Only try one kind of propagation. If two are possible, we'll
|
1382 |
|
|
do it on the following iterations. */
|
1383 |
|
|
if (forward_propagate_and_simplify (use, def_insn, def_set)
|
1384 |
|
|
|| forward_propagate_subreg (use, def_insn, def_set))
|
1385 |
|
|
{
|
1386 |
|
|
if (cfun->can_throw_non_call_exceptions
|
1387 |
|
|
&& find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
|
1388 |
|
|
&& purge_dead_edges (DF_REF_BB (use)))
|
1389 |
|
|
return true;
|
1390 |
|
|
}
|
1391 |
|
|
return false;
|
1392 |
|
|
}
|
1393 |
|
|
|
1394 |
|
|
|
1395 |
|
|
static void
|
1396 |
|
|
fwprop_init (void)
|
1397 |
|
|
{
|
1398 |
|
|
num_changes = 0;
|
1399 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
1400 |
|
|
|
1401 |
|
|
/* We do not always want to propagate into loops, so we have to find
|
1402 |
|
|
loops and be careful about them. But we have to call flow_loops_find
|
1403 |
|
|
before df_analyze, because flow_loops_find may introduce new jump
|
1404 |
|
|
insns (sadly) if we are not working in cfglayout mode. */
|
1405 |
|
|
loop_optimizer_init (0);
|
1406 |
|
|
|
1407 |
|
|
build_single_def_use_links ();
|
1408 |
|
|
df_set_flags (DF_DEFER_INSN_RESCAN);
|
1409 |
|
|
|
1410 |
|
|
active_defs = XNEWVEC (df_ref, max_reg_num ());
|
1411 |
|
|
#ifdef ENABLE_CHECKING
|
1412 |
|
|
active_defs_check = sparseset_alloc (max_reg_num ());
|
1413 |
|
|
#endif
|
1414 |
|
|
}
|
1415 |
|
|
|
1416 |
|
|
static void
|
1417 |
|
|
fwprop_done (void)
|
1418 |
|
|
{
|
1419 |
|
|
loop_optimizer_finalize ();
|
1420 |
|
|
|
1421 |
|
|
VEC_free (df_ref, heap, use_def_ref);
|
1422 |
|
|
free (active_defs);
|
1423 |
|
|
#ifdef ENABLE_CHECKING
|
1424 |
|
|
sparseset_free (active_defs_check);
|
1425 |
|
|
#endif
|
1426 |
|
|
|
1427 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
1428 |
|
|
cleanup_cfg (0);
|
1429 |
|
|
delete_trivially_dead_insns (get_insns (), max_reg_num ());
|
1430 |
|
|
|
1431 |
|
|
if (dump_file)
|
1432 |
|
|
fprintf (dump_file,
|
1433 |
|
|
"\nNumber of successful forward propagations: %d\n\n",
|
1434 |
|
|
num_changes);
|
1435 |
|
|
}
|
1436 |
|
|
|
1437 |
|
|
|
1438 |
|
|
/* Main entry point. */
|
1439 |
|
|
|
1440 |
|
|
static bool
|
1441 |
|
|
gate_fwprop (void)
|
1442 |
|
|
{
|
1443 |
|
|
return optimize > 0 && flag_forward_propagate;
|
1444 |
|
|
}
|
1445 |
|
|
|
1446 |
|
|
static unsigned int
|
1447 |
|
|
fwprop (void)
|
1448 |
|
|
{
|
1449 |
|
|
unsigned i;
|
1450 |
|
|
bool need_cleanup = false;
|
1451 |
|
|
|
1452 |
|
|
fwprop_init ();
|
1453 |
|
|
|
1454 |
|
|
/* Go through all the uses. df_uses_create will create new ones at the
|
1455 |
|
|
end, and we'll go through them as well.
|
1456 |
|
|
|
1457 |
|
|
Do not forward propagate addresses into loops until after unrolling.
|
1458 |
|
|
CSE did so because it was able to fix its own mess, but we are not. */
|
1459 |
|
|
|
1460 |
|
|
for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
|
1461 |
|
|
{
|
1462 |
|
|
df_ref use = DF_USES_GET (i);
|
1463 |
|
|
if (use)
|
1464 |
|
|
if (DF_REF_TYPE (use) == DF_REF_REG_USE
|
1465 |
|
|
|| DF_REF_BB (use)->loop_father == NULL
|
1466 |
|
|
/* The outer most loop is not really a loop. */
|
1467 |
|
|
|| loop_outer (DF_REF_BB (use)->loop_father) == NULL)
|
1468 |
|
|
need_cleanup |= forward_propagate_into (use);
|
1469 |
|
|
}
|
1470 |
|
|
|
1471 |
|
|
fwprop_done ();
|
1472 |
|
|
if (need_cleanup)
|
1473 |
|
|
cleanup_cfg (0);
|
1474 |
|
|
return 0;
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
struct rtl_opt_pass pass_rtl_fwprop =
|
1478 |
|
|
{
|
1479 |
|
|
{
|
1480 |
|
|
RTL_PASS,
|
1481 |
|
|
"fwprop1", /* name */
|
1482 |
|
|
gate_fwprop, /* gate */
|
1483 |
|
|
fwprop, /* execute */
|
1484 |
|
|
NULL, /* sub */
|
1485 |
|
|
NULL, /* next */
|
1486 |
|
|
0, /* static_pass_number */
|
1487 |
|
|
TV_FWPROP, /* tv_id */
|
1488 |
|
|
0, /* properties_required */
|
1489 |
|
|
0, /* properties_provided */
|
1490 |
|
|
0, /* properties_destroyed */
|
1491 |
|
|
0, /* todo_flags_start */
|
1492 |
|
|
TODO_df_finish
|
1493 |
|
|
| TODO_verify_flow
|
1494 |
|
|
| TODO_verify_rtl_sharing /* todo_flags_finish */
|
1495 |
|
|
}
|
1496 |
|
|
};
|
1497 |
|
|
|
1498 |
|
|
static unsigned int
|
1499 |
|
|
fwprop_addr (void)
|
1500 |
|
|
{
|
1501 |
|
|
unsigned i;
|
1502 |
|
|
bool need_cleanup = false;
|
1503 |
|
|
|
1504 |
|
|
fwprop_init ();
|
1505 |
|
|
|
1506 |
|
|
/* Go through all the uses. df_uses_create will create new ones at the
|
1507 |
|
|
end, and we'll go through them as well. */
|
1508 |
|
|
for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
|
1509 |
|
|
{
|
1510 |
|
|
df_ref use = DF_USES_GET (i);
|
1511 |
|
|
if (use)
|
1512 |
|
|
if (DF_REF_TYPE (use) != DF_REF_REG_USE
|
1513 |
|
|
&& DF_REF_BB (use)->loop_father != NULL
|
1514 |
|
|
/* The outer most loop is not really a loop. */
|
1515 |
|
|
&& loop_outer (DF_REF_BB (use)->loop_father) != NULL)
|
1516 |
|
|
need_cleanup |= forward_propagate_into (use);
|
1517 |
|
|
}
|
1518 |
|
|
|
1519 |
|
|
fwprop_done ();
|
1520 |
|
|
|
1521 |
|
|
if (need_cleanup)
|
1522 |
|
|
cleanup_cfg (0);
|
1523 |
|
|
return 0;
|
1524 |
|
|
}
|
1525 |
|
|
|
1526 |
|
|
struct rtl_opt_pass pass_rtl_fwprop_addr =
|
1527 |
|
|
{
|
1528 |
|
|
{
|
1529 |
|
|
RTL_PASS,
|
1530 |
|
|
"fwprop2", /* name */
|
1531 |
|
|
gate_fwprop, /* gate */
|
1532 |
|
|
fwprop_addr, /* execute */
|
1533 |
|
|
NULL, /* sub */
|
1534 |
|
|
NULL, /* next */
|
1535 |
|
|
0, /* static_pass_number */
|
1536 |
|
|
TV_FWPROP, /* tv_id */
|
1537 |
|
|
0, /* properties_required */
|
1538 |
|
|
0, /* properties_provided */
|
1539 |
|
|
0, /* properties_destroyed */
|
1540 |
|
|
0, /* todo_flags_start */
|
1541 |
|
|
TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */
|
1542 |
|
|
}
|
1543 |
|
|
};
|