1 |
684 |
jeremybenn |
/* Partial redundancy elimination / Hoisting for RTL.
|
2 |
|
|
Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
3 |
|
|
2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
/* TODO
|
22 |
|
|
- reordering of memory allocation and freeing to be more space efficient
|
23 |
|
|
- do rough calc of how many regs are needed in each block, and a rough
|
24 |
|
|
calc of how many regs are available in each class and use that to
|
25 |
|
|
throttle back the code in cases where RTX_COST is minimal.
|
26 |
|
|
*/
|
27 |
|
|
|
28 |
|
|
/* References searched while implementing this.
|
29 |
|
|
|
30 |
|
|
Compilers Principles, Techniques and Tools
|
31 |
|
|
Aho, Sethi, Ullman
|
32 |
|
|
Addison-Wesley, 1988
|
33 |
|
|
|
34 |
|
|
Global Optimization by Suppression of Partial Redundancies
|
35 |
|
|
E. Morel, C. Renvoise
|
36 |
|
|
communications of the acm, Vol. 22, Num. 2, Feb. 1979
|
37 |
|
|
|
38 |
|
|
A Portable Machine-Independent Global Optimizer - Design and Measurements
|
39 |
|
|
Frederick Chow
|
40 |
|
|
Stanford Ph.D. thesis, Dec. 1983
|
41 |
|
|
|
42 |
|
|
A Fast Algorithm for Code Movement Optimization
|
43 |
|
|
D.M. Dhamdhere
|
44 |
|
|
SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
|
45 |
|
|
|
46 |
|
|
A Solution to a Problem with Morel and Renvoise's
|
47 |
|
|
Global Optimization by Suppression of Partial Redundancies
|
48 |
|
|
K-H Drechsler, M.P. Stadel
|
49 |
|
|
ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
|
50 |
|
|
|
51 |
|
|
Practical Adaptation of the Global Optimization
|
52 |
|
|
Algorithm of Morel and Renvoise
|
53 |
|
|
D.M. Dhamdhere
|
54 |
|
|
ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
|
55 |
|
|
|
56 |
|
|
Efficiently Computing Static Single Assignment Form and the Control
|
57 |
|
|
Dependence Graph
|
58 |
|
|
R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
|
59 |
|
|
ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
|
60 |
|
|
|
61 |
|
|
Lazy Code Motion
|
62 |
|
|
J. Knoop, O. Ruthing, B. Steffen
|
63 |
|
|
ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
|
64 |
|
|
|
65 |
|
|
What's In a Region? Or Computing Control Dependence Regions in Near-Linear
|
66 |
|
|
Time for Reducible Flow Control
|
67 |
|
|
Thomas Ball
|
68 |
|
|
ACM Letters on Programming Languages and Systems,
|
69 |
|
|
Vol. 2, Num. 1-4, Mar-Dec 1993
|
70 |
|
|
|
71 |
|
|
An Efficient Representation for Sparse Sets
|
72 |
|
|
Preston Briggs, Linda Torczon
|
73 |
|
|
ACM Letters on Programming Languages and Systems,
|
74 |
|
|
Vol. 2, Num. 1-4, Mar-Dec 1993
|
75 |
|
|
|
76 |
|
|
A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
|
77 |
|
|
K-H Drechsler, M.P. Stadel
|
78 |
|
|
ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
|
79 |
|
|
|
80 |
|
|
Partial Dead Code Elimination
|
81 |
|
|
J. Knoop, O. Ruthing, B. Steffen
|
82 |
|
|
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
|
83 |
|
|
|
84 |
|
|
Effective Partial Redundancy Elimination
|
85 |
|
|
P. Briggs, K.D. Cooper
|
86 |
|
|
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
|
87 |
|
|
|
88 |
|
|
The Program Structure Tree: Computing Control Regions in Linear Time
|
89 |
|
|
R. Johnson, D. Pearson, K. Pingali
|
90 |
|
|
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
|
91 |
|
|
|
92 |
|
|
Optimal Code Motion: Theory and Practice
|
93 |
|
|
J. Knoop, O. Ruthing, B. Steffen
|
94 |
|
|
ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
|
95 |
|
|
|
96 |
|
|
The power of assignment motion
|
97 |
|
|
J. Knoop, O. Ruthing, B. Steffen
|
98 |
|
|
ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
|
99 |
|
|
|
100 |
|
|
Global code motion / global value numbering
|
101 |
|
|
C. Click
|
102 |
|
|
ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
|
103 |
|
|
|
104 |
|
|
Value Driven Redundancy Elimination
|
105 |
|
|
L.T. Simpson
|
106 |
|
|
Rice University Ph.D. thesis, Apr. 1996
|
107 |
|
|
|
108 |
|
|
Value Numbering
|
109 |
|
|
L.T. Simpson
|
110 |
|
|
Massively Scalar Compiler Project, Rice University, Sep. 1996
|
111 |
|
|
|
112 |
|
|
High Performance Compilers for Parallel Computing
|
113 |
|
|
Michael Wolfe
|
114 |
|
|
Addison-Wesley, 1996
|
115 |
|
|
|
116 |
|
|
Advanced Compiler Design and Implementation
|
117 |
|
|
Steven Muchnick
|
118 |
|
|
Morgan Kaufmann, 1997
|
119 |
|
|
|
120 |
|
|
Building an Optimizing Compiler
|
121 |
|
|
Robert Morgan
|
122 |
|
|
Digital Press, 1998
|
123 |
|
|
|
124 |
|
|
People wishing to speed up the code here should read:
|
125 |
|
|
Elimination Algorithms for Data Flow Analysis
|
126 |
|
|
B.G. Ryder, M.C. Paull
|
127 |
|
|
ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
|
128 |
|
|
|
129 |
|
|
How to Analyze Large Programs Efficiently and Informatively
|
130 |
|
|
D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
|
131 |
|
|
ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
|
132 |
|
|
|
133 |
|
|
People wishing to do something different can find various possibilities
|
134 |
|
|
in the above papers and elsewhere.
|
135 |
|
|
*/
|
136 |
|
|
|
137 |
|
|
#include "config.h"
|
138 |
|
|
#include "system.h"
|
139 |
|
|
#include "coretypes.h"
|
140 |
|
|
#include "tm.h"
|
141 |
|
|
#include "diagnostic-core.h"
|
142 |
|
|
#include "toplev.h"
|
143 |
|
|
|
144 |
|
|
#include "rtl.h"
|
145 |
|
|
#include "tree.h"
|
146 |
|
|
#include "tm_p.h"
|
147 |
|
|
#include "regs.h"
|
148 |
|
|
#include "hard-reg-set.h"
|
149 |
|
|
#include "flags.h"
|
150 |
|
|
#include "insn-config.h"
|
151 |
|
|
#include "recog.h"
|
152 |
|
|
#include "basic-block.h"
|
153 |
|
|
#include "output.h"
|
154 |
|
|
#include "function.h"
|
155 |
|
|
#include "expr.h"
|
156 |
|
|
#include "except.h"
|
157 |
|
|
#include "ggc.h"
|
158 |
|
|
#include "params.h"
|
159 |
|
|
#include "cselib.h"
|
160 |
|
|
#include "intl.h"
|
161 |
|
|
#include "obstack.h"
|
162 |
|
|
#include "timevar.h"
|
163 |
|
|
#include "tree-pass.h"
|
164 |
|
|
#include "hashtab.h"
|
165 |
|
|
#include "df.h"
|
166 |
|
|
#include "dbgcnt.h"
|
167 |
|
|
#include "target.h"
|
168 |
|
|
#include "gcse.h"
|
169 |
|
|
|
170 |
|
|
/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
|
171 |
|
|
are a superset of those done by classic GCSE.
|
172 |
|
|
|
173 |
|
|
Two passes of copy/constant propagation are done around PRE or hoisting
|
174 |
|
|
because the first one enables more GCSE and the second one helps to clean
|
175 |
|
|
up the copies that PRE and HOIST create. This is needed more for PRE than
|
176 |
|
|
for HOIST because code hoisting will try to use an existing register
|
177 |
|
|
containing the common subexpression rather than create a new one. This is
|
178 |
|
|
harder to do for PRE because of the code motion (which HOIST doesn't do).
|
179 |
|
|
|
180 |
|
|
Expressions we are interested in GCSE-ing are of the form
|
181 |
|
|
(set (pseudo-reg) (expression)).
|
182 |
|
|
Function want_to_gcse_p says what these are.
|
183 |
|
|
|
184 |
|
|
In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
|
185 |
|
|
This allows PRE to hoist expressions that are expressed in multiple insns,
|
186 |
|
|
such as complex address calculations (e.g. for PIC code, or loads with a
|
187 |
|
|
high part and a low part).
|
188 |
|
|
|
189 |
|
|
PRE handles moving invariant expressions out of loops (by treating them as
|
190 |
|
|
partially redundant).
|
191 |
|
|
|
192 |
|
|
**********************
|
193 |
|
|
|
194 |
|
|
We used to support multiple passes but there are diminishing returns in
|
195 |
|
|
doing so. The first pass usually makes 90% of the changes that are doable.
|
196 |
|
|
A second pass can make a few more changes made possible by the first pass.
|
197 |
|
|
Experiments show any further passes don't make enough changes to justify
|
198 |
|
|
the expense.
|
199 |
|
|
|
200 |
|
|
A study of spec92 using an unlimited number of passes:
|
201 |
|
|
[1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
|
202 |
|
|
[6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
|
203 |
|
|
[12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
|
204 |
|
|
|
205 |
|
|
It was found doing copy propagation between each pass enables further
|
206 |
|
|
substitutions.
|
207 |
|
|
|
208 |
|
|
This study was done before expressions in REG_EQUAL notes were added as
|
209 |
|
|
candidate expressions for optimization, and before the GIMPLE optimizers
|
210 |
|
|
were added. Probably, multiple passes is even less efficient now than
|
211 |
|
|
at the time when the study was conducted.
|
212 |
|
|
|
213 |
|
|
PRE is quite expensive in complicated functions because the DFA can take
|
214 |
|
|
a while to converge. Hence we only perform one pass.
|
215 |
|
|
|
216 |
|
|
**********************
|
217 |
|
|
|
218 |
|
|
The steps for PRE are:
|
219 |
|
|
|
220 |
|
|
1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
|
221 |
|
|
|
222 |
|
|
2) Perform the data flow analysis for PRE.
|
223 |
|
|
|
224 |
|
|
3) Delete the redundant instructions
|
225 |
|
|
|
226 |
|
|
4) Insert the required copies [if any] that make the partially
|
227 |
|
|
redundant instructions fully redundant.
|
228 |
|
|
|
229 |
|
|
5) For other reaching expressions, insert an instruction to copy the value
|
230 |
|
|
to a newly created pseudo that will reach the redundant instruction.
|
231 |
|
|
|
232 |
|
|
The deletion is done first so that when we do insertions we
|
233 |
|
|
know which pseudo reg to use.
|
234 |
|
|
|
235 |
|
|
Various papers have argued that PRE DFA is expensive (O(n^2)) and others
|
236 |
|
|
argue it is not. The number of iterations for the algorithm to converge
|
237 |
|
|
is typically 2-4 so I don't view it as that expensive (relatively speaking).
|
238 |
|
|
|
239 |
|
|
PRE GCSE depends heavily on the second CPROP pass to clean up the copies
|
240 |
|
|
we create. To make an expression reach the place where it's redundant,
|
241 |
|
|
the result of the expression is copied to a new register, and the redundant
|
242 |
|
|
expression is deleted by replacing it with this new register. Classic GCSE
|
243 |
|
|
doesn't have this problem as much as it computes the reaching defs of
|
244 |
|
|
each register in each block and thus can try to use an existing
|
245 |
|
|
register. */
|
246 |
|
|
|
247 |
|
|
/* GCSE global vars. */
|
248 |
|
|
|
249 |
|
|
struct target_gcse default_target_gcse;
|
250 |
|
|
#if SWITCHABLE_TARGET
|
251 |
|
|
struct target_gcse *this_target_gcse = &default_target_gcse;
|
252 |
|
|
#endif
|
253 |
|
|
|
254 |
|
|
/* Set to non-zero if CSE should run after all GCSE optimizations are done. */
|
255 |
|
|
int flag_rerun_cse_after_global_opts;
|
256 |
|
|
|
257 |
|
|
/* An obstack for our working variables. */
|
258 |
|
|
static struct obstack gcse_obstack;
|
259 |
|
|
|
260 |
|
|
struct reg_use {rtx reg_rtx; };
|
261 |
|
|
|
262 |
|
|
/* Hash table of expressions. */
|
263 |
|
|
|
264 |
|
|
struct expr
|
265 |
|
|
{
|
266 |
|
|
/* The expression. */
|
267 |
|
|
rtx expr;
|
268 |
|
|
/* Index in the available expression bitmaps. */
|
269 |
|
|
int bitmap_index;
|
270 |
|
|
/* Next entry with the same hash. */
|
271 |
|
|
struct expr *next_same_hash;
|
272 |
|
|
/* List of anticipatable occurrences in basic blocks in the function.
|
273 |
|
|
An "anticipatable occurrence" is one that is the first occurrence in the
|
274 |
|
|
basic block, the operands are not modified in the basic block prior
|
275 |
|
|
to the occurrence and the output is not used between the start of
|
276 |
|
|
the block and the occurrence. */
|
277 |
|
|
struct occr *antic_occr;
|
278 |
|
|
/* List of available occurrence in basic blocks in the function.
|
279 |
|
|
An "available occurrence" is one that is the last occurrence in the
|
280 |
|
|
basic block and the operands are not modified by following statements in
|
281 |
|
|
the basic block [including this insn]. */
|
282 |
|
|
struct occr *avail_occr;
|
283 |
|
|
/* Non-null if the computation is PRE redundant.
|
284 |
|
|
The value is the newly created pseudo-reg to record a copy of the
|
285 |
|
|
expression in all the places that reach the redundant copy. */
|
286 |
|
|
rtx reaching_reg;
|
287 |
|
|
/* Maximum distance in instructions this expression can travel.
|
288 |
|
|
We avoid moving simple expressions for more than a few instructions
|
289 |
|
|
to keep register pressure under control.
|
290 |
|
|
A value of "0" removes restrictions on how far the expression can
|
291 |
|
|
travel. */
|
292 |
|
|
int max_distance;
|
293 |
|
|
};
|
294 |
|
|
|
295 |
|
|
/* Occurrence of an expression.
|
296 |
|
|
There is one per basic block. If a pattern appears more than once the
|
297 |
|
|
last appearance is used [or first for anticipatable expressions]. */
|
298 |
|
|
|
299 |
|
|
struct occr
|
300 |
|
|
{
|
301 |
|
|
/* Next occurrence of this expression. */
|
302 |
|
|
struct occr *next;
|
303 |
|
|
/* The insn that computes the expression. */
|
304 |
|
|
rtx insn;
|
305 |
|
|
/* Nonzero if this [anticipatable] occurrence has been deleted. */
|
306 |
|
|
char deleted_p;
|
307 |
|
|
/* Nonzero if this [available] occurrence has been copied to
|
308 |
|
|
reaching_reg. */
|
309 |
|
|
/* ??? This is mutually exclusive with deleted_p, so they could share
|
310 |
|
|
the same byte. */
|
311 |
|
|
char copied_p;
|
312 |
|
|
};
|
313 |
|
|
|
314 |
|
|
typedef struct occr *occr_t;
|
315 |
|
|
DEF_VEC_P (occr_t);
|
316 |
|
|
DEF_VEC_ALLOC_P (occr_t, heap);
|
317 |
|
|
|
318 |
|
|
/* Expression hash tables.
|
319 |
|
|
Each hash table is an array of buckets.
|
320 |
|
|
??? It is known that if it were an array of entries, structure elements
|
321 |
|
|
`next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
|
322 |
|
|
not clear whether in the final analysis a sufficient amount of memory would
|
323 |
|
|
be saved as the size of the available expression bitmaps would be larger
|
324 |
|
|
[one could build a mapping table without holes afterwards though].
|
325 |
|
|
Someday I'll perform the computation and figure it out. */
|
326 |
|
|
|
327 |
|
|
struct hash_table_d
|
328 |
|
|
{
|
329 |
|
|
/* The table itself.
|
330 |
|
|
This is an array of `expr_hash_table_size' elements. */
|
331 |
|
|
struct expr **table;
|
332 |
|
|
|
333 |
|
|
/* Size of the hash table, in elements. */
|
334 |
|
|
unsigned int size;
|
335 |
|
|
|
336 |
|
|
/* Number of hash table elements. */
|
337 |
|
|
unsigned int n_elems;
|
338 |
|
|
};
|
339 |
|
|
|
340 |
|
|
/* Expression hash table. */
|
341 |
|
|
static struct hash_table_d expr_hash_table;
|
342 |
|
|
|
343 |
|
|
/* This is a list of expressions which are MEMs and will be used by load
|
344 |
|
|
or store motion.
|
345 |
|
|
Load motion tracks MEMs which aren't killed by anything except itself,
|
346 |
|
|
i.e. loads and stores to a single location.
|
347 |
|
|
We can then allow movement of these MEM refs with a little special
|
348 |
|
|
allowance. (all stores copy the same value to the reaching reg used
|
349 |
|
|
for the loads). This means all values used to store into memory must have
|
350 |
|
|
no side effects so we can re-issue the setter value. */
|
351 |
|
|
|
352 |
|
|
struct ls_expr
|
353 |
|
|
{
|
354 |
|
|
struct expr * expr; /* Gcse expression reference for LM. */
|
355 |
|
|
rtx pattern; /* Pattern of this mem. */
|
356 |
|
|
rtx pattern_regs; /* List of registers mentioned by the mem. */
|
357 |
|
|
rtx loads; /* INSN list of loads seen. */
|
358 |
|
|
rtx stores; /* INSN list of stores seen. */
|
359 |
|
|
struct ls_expr * next; /* Next in the list. */
|
360 |
|
|
int invalid; /* Invalid for some reason. */
|
361 |
|
|
int index; /* If it maps to a bitmap index. */
|
362 |
|
|
unsigned int hash_index; /* Index when in a hash table. */
|
363 |
|
|
rtx reaching_reg; /* Register to use when re-writing. */
|
364 |
|
|
};
|
365 |
|
|
|
366 |
|
|
/* Head of the list of load/store memory refs. */
|
367 |
|
|
static struct ls_expr * pre_ldst_mems = NULL;
|
368 |
|
|
|
369 |
|
|
/* Hashtable for the load/store memory refs. */
|
370 |
|
|
static htab_t pre_ldst_table = NULL;
|
371 |
|
|
|
372 |
|
|
/* Bitmap containing one bit for each register in the program.
|
373 |
|
|
Used when performing GCSE to track which registers have been set since
|
374 |
|
|
the start of the basic block. */
|
375 |
|
|
static regset reg_set_bitmap;
|
376 |
|
|
|
377 |
|
|
/* Array, indexed by basic block number for a list of insns which modify
|
378 |
|
|
memory within that block. */
|
379 |
|
|
static VEC (rtx,heap) **modify_mem_list;
|
380 |
|
|
static bitmap modify_mem_list_set;
|
381 |
|
|
|
382 |
|
|
typedef struct modify_pair_s
|
383 |
|
|
{
|
384 |
|
|
rtx dest; /* A MEM. */
|
385 |
|
|
rtx dest_addr; /* The canonical address of `dest'. */
|
386 |
|
|
} modify_pair;
|
387 |
|
|
|
388 |
|
|
DEF_VEC_O(modify_pair);
|
389 |
|
|
DEF_VEC_ALLOC_O(modify_pair,heap);
|
390 |
|
|
|
391 |
|
|
/* This array parallels modify_mem_list, except that it stores MEMs
|
392 |
|
|
being set and their canonicalized memory addresses. */
|
393 |
|
|
static VEC (modify_pair,heap) **canon_modify_mem_list;
|
394 |
|
|
|
395 |
|
|
/* Bitmap indexed by block numbers to record which blocks contain
|
396 |
|
|
function calls. */
|
397 |
|
|
static bitmap blocks_with_calls;
|
398 |
|
|
|
399 |
|
|
/* Various variables for statistics gathering. */
|
400 |
|
|
|
401 |
|
|
/* Memory used in a pass.
|
402 |
|
|
This isn't intended to be absolutely precise. Its intent is only
|
403 |
|
|
to keep an eye on memory usage. */
|
404 |
|
|
static int bytes_used;
|
405 |
|
|
|
406 |
|
|
/* GCSE substitutions made. */
|
407 |
|
|
static int gcse_subst_count;
|
408 |
|
|
/* Number of copy instructions created. */
|
409 |
|
|
static int gcse_create_count;
|
410 |
|
|
|
411 |
|
|
/* Doing code hoisting. */
|
412 |
|
|
static bool doing_code_hoisting_p = false;
|
413 |
|
|
|
414 |
|
|
/* For available exprs */
|
415 |
|
|
static sbitmap *ae_kill;
|
416 |
|
|
|
417 |
|
|
static void compute_can_copy (void);
|
418 |
|
|
static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
|
419 |
|
|
static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
|
420 |
|
|
static void *gcse_alloc (unsigned long);
|
421 |
|
|
static void alloc_gcse_mem (void);
|
422 |
|
|
static void free_gcse_mem (void);
|
423 |
|
|
static void hash_scan_insn (rtx, struct hash_table_d *);
|
424 |
|
|
static void hash_scan_set (rtx, rtx, struct hash_table_d *);
|
425 |
|
|
static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
|
426 |
|
|
static void hash_scan_call (rtx, rtx, struct hash_table_d *);
|
427 |
|
|
static int want_to_gcse_p (rtx, int *);
|
428 |
|
|
static int oprs_unchanged_p (const_rtx, const_rtx, int);
|
429 |
|
|
static int oprs_anticipatable_p (const_rtx, const_rtx);
|
430 |
|
|
static int oprs_available_p (const_rtx, const_rtx);
|
431 |
|
|
static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
|
432 |
|
|
struct hash_table_d *);
|
433 |
|
|
static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
|
434 |
|
|
static int expr_equiv_p (const_rtx, const_rtx);
|
435 |
|
|
static void record_last_reg_set_info (rtx, int);
|
436 |
|
|
static void record_last_mem_set_info (rtx);
|
437 |
|
|
static void record_last_set_info (rtx, const_rtx, void *);
|
438 |
|
|
static void compute_hash_table (struct hash_table_d *);
|
439 |
|
|
static void alloc_hash_table (struct hash_table_d *);
|
440 |
|
|
static void free_hash_table (struct hash_table_d *);
|
441 |
|
|
static void compute_hash_table_work (struct hash_table_d *);
|
442 |
|
|
static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
|
443 |
|
|
static void compute_transp (const_rtx, int, sbitmap *);
|
444 |
|
|
static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
|
445 |
|
|
struct hash_table_d *);
|
446 |
|
|
static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
|
447 |
|
|
static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
|
448 |
|
|
static void canon_list_insert (rtx, const_rtx, void *);
|
449 |
|
|
static void alloc_pre_mem (int, int);
|
450 |
|
|
static void free_pre_mem (void);
|
451 |
|
|
static struct edge_list *compute_pre_data (void);
|
452 |
|
|
static int pre_expr_reaches_here_p (basic_block, struct expr *,
|
453 |
|
|
basic_block);
|
454 |
|
|
static void insert_insn_end_basic_block (struct expr *, basic_block);
|
455 |
|
|
static void pre_insert_copy_insn (struct expr *, rtx);
|
456 |
|
|
static void pre_insert_copies (void);
|
457 |
|
|
static int pre_delete (void);
|
458 |
|
|
static int pre_gcse (struct edge_list *);
|
459 |
|
|
static int one_pre_gcse_pass (void);
|
460 |
|
|
static void add_label_notes (rtx, rtx);
|
461 |
|
|
static void alloc_code_hoist_mem (int, int);
|
462 |
|
|
static void free_code_hoist_mem (void);
|
463 |
|
|
static void compute_code_hoist_vbeinout (void);
|
464 |
|
|
static void compute_code_hoist_data (void);
|
465 |
|
|
static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *,
|
466 |
|
|
int, int *);
|
467 |
|
|
static int hoist_code (void);
|
468 |
|
|
static int one_code_hoisting_pass (void);
|
469 |
|
|
static rtx process_insert_insn (struct expr *);
|
470 |
|
|
static int pre_edge_insert (struct edge_list *, struct expr **);
|
471 |
|
|
static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
|
472 |
|
|
basic_block, char *);
|
473 |
|
|
static struct ls_expr * ldst_entry (rtx);
|
474 |
|
|
static void free_ldst_entry (struct ls_expr *);
|
475 |
|
|
static void free_ld_motion_mems (void);
|
476 |
|
|
static void print_ldst_list (FILE *);
|
477 |
|
|
static struct ls_expr * find_rtx_in_ldst (rtx);
|
478 |
|
|
static int simple_mem (const_rtx);
|
479 |
|
|
static void invalidate_any_buried_refs (rtx);
|
480 |
|
|
static void compute_ld_motion_mems (void);
|
481 |
|
|
static void trim_ld_motion_mems (void);
|
482 |
|
|
static void update_ld_motion_stores (struct expr *);
|
483 |
|
|
static void clear_modify_mem_tables (void);
|
484 |
|
|
static void free_modify_mem_tables (void);
|
485 |
|
|
static rtx gcse_emit_move_after (rtx, rtx, rtx);
|
486 |
|
|
static bool is_too_expensive (const char *);
|
487 |
|
|
|
488 |
|
|
#define GNEW(T) ((T *) gmalloc (sizeof (T)))
|
489 |
|
|
#define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
|
490 |
|
|
|
491 |
|
|
#define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
|
492 |
|
|
#define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
|
493 |
|
|
|
494 |
|
|
#define GNEWVAR(T, S) ((T *) gmalloc ((S)))
|
495 |
|
|
#define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
|
496 |
|
|
|
497 |
|
|
#define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
|
498 |
|
|
#define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
|
499 |
|
|
|
500 |
|
|
/* Misc. utilities. */
|
501 |
|
|
|
502 |
|
|
#define can_copy \
|
503 |
|
|
(this_target_gcse->x_can_copy)
|
504 |
|
|
#define can_copy_init_p \
|
505 |
|
|
(this_target_gcse->x_can_copy_init_p)
|
506 |
|
|
|
507 |
|
|
/* Compute which modes support reg/reg copy operations. */
|
508 |
|
|
|
509 |
|
|
static void
|
510 |
|
|
compute_can_copy (void)
|
511 |
|
|
{
|
512 |
|
|
int i;
|
513 |
|
|
#ifndef AVOID_CCMODE_COPIES
|
514 |
|
|
rtx reg, insn;
|
515 |
|
|
#endif
|
516 |
|
|
memset (can_copy, 0, NUM_MACHINE_MODES);
|
517 |
|
|
|
518 |
|
|
start_sequence ();
|
519 |
|
|
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
520 |
|
|
if (GET_MODE_CLASS (i) == MODE_CC)
|
521 |
|
|
{
|
522 |
|
|
#ifdef AVOID_CCMODE_COPIES
|
523 |
|
|
can_copy[i] = 0;
|
524 |
|
|
#else
|
525 |
|
|
reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
|
526 |
|
|
insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
|
527 |
|
|
if (recog (PATTERN (insn), insn, NULL) >= 0)
|
528 |
|
|
can_copy[i] = 1;
|
529 |
|
|
#endif
|
530 |
|
|
}
|
531 |
|
|
else
|
532 |
|
|
can_copy[i] = 1;
|
533 |
|
|
|
534 |
|
|
end_sequence ();
|
535 |
|
|
}
|
536 |
|
|
|
537 |
|
|
/* Returns whether the mode supports reg/reg copy operations. */
|
538 |
|
|
|
539 |
|
|
bool
|
540 |
|
|
can_copy_p (enum machine_mode mode)
|
541 |
|
|
{
|
542 |
|
|
if (! can_copy_init_p)
|
543 |
|
|
{
|
544 |
|
|
compute_can_copy ();
|
545 |
|
|
can_copy_init_p = true;
|
546 |
|
|
}
|
547 |
|
|
|
548 |
|
|
return can_copy[mode] != 0;
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
/* Cover function to xmalloc to record bytes allocated. */
|
552 |
|
|
|
553 |
|
|
static void *
|
554 |
|
|
gmalloc (size_t size)
|
555 |
|
|
{
|
556 |
|
|
bytes_used += size;
|
557 |
|
|
return xmalloc (size);
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
/* Cover function to xcalloc to record bytes allocated. */
|
561 |
|
|
|
562 |
|
|
static void *
|
563 |
|
|
gcalloc (size_t nelem, size_t elsize)
|
564 |
|
|
{
|
565 |
|
|
bytes_used += nelem * elsize;
|
566 |
|
|
return xcalloc (nelem, elsize);
|
567 |
|
|
}
|
568 |
|
|
|
569 |
|
|
/* Cover function to obstack_alloc. */
|
570 |
|
|
|
571 |
|
|
static void *
|
572 |
|
|
gcse_alloc (unsigned long size)
|
573 |
|
|
{
|
574 |
|
|
bytes_used += size;
|
575 |
|
|
return obstack_alloc (&gcse_obstack, size);
|
576 |
|
|
}
|
577 |
|
|
|
578 |
|
|
/* Allocate memory for the reg/memory set tracking tables.
|
579 |
|
|
This is called at the start of each pass. */
|
580 |
|
|
|
581 |
|
|
static void
|
582 |
|
|
alloc_gcse_mem (void)
|
583 |
|
|
{
|
584 |
|
|
/* Allocate vars to track sets of regs. */
|
585 |
|
|
reg_set_bitmap = ALLOC_REG_SET (NULL);
|
586 |
|
|
|
587 |
|
|
/* Allocate array to keep a list of insns which modify memory in each
|
588 |
|
|
basic block. */
|
589 |
|
|
modify_mem_list = GCNEWVEC (VEC (rtx,heap) *, last_basic_block);
|
590 |
|
|
canon_modify_mem_list = GCNEWVEC (VEC (modify_pair,heap) *,
|
591 |
|
|
last_basic_block);
|
592 |
|
|
modify_mem_list_set = BITMAP_ALLOC (NULL);
|
593 |
|
|
blocks_with_calls = BITMAP_ALLOC (NULL);
|
594 |
|
|
}
|
595 |
|
|
|
596 |
|
|
/* Free memory allocated by alloc_gcse_mem. */
|
597 |
|
|
|
598 |
|
|
static void
|
599 |
|
|
free_gcse_mem (void)
|
600 |
|
|
{
|
601 |
|
|
FREE_REG_SET (reg_set_bitmap);
|
602 |
|
|
|
603 |
|
|
free_modify_mem_tables ();
|
604 |
|
|
BITMAP_FREE (modify_mem_list_set);
|
605 |
|
|
BITMAP_FREE (blocks_with_calls);
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* Compute the local properties of each recorded expression.
|
609 |
|
|
|
610 |
|
|
Local properties are those that are defined by the block, irrespective of
|
611 |
|
|
other blocks.
|
612 |
|
|
|
613 |
|
|
An expression is transparent in a block if its operands are not modified
|
614 |
|
|
in the block.
|
615 |
|
|
|
616 |
|
|
An expression is computed (locally available) in a block if it is computed
|
617 |
|
|
at least once and expression would contain the same value if the
|
618 |
|
|
computation was moved to the end of the block.
|
619 |
|
|
|
620 |
|
|
An expression is locally anticipatable in a block if it is computed at
|
621 |
|
|
least once and expression would contain the same value if the computation
|
622 |
|
|
was moved to the beginning of the block.
|
623 |
|
|
|
624 |
|
|
We call this routine for pre and code hoisting. They all compute
|
625 |
|
|
basically the same information and thus can easily share this code.
|
626 |
|
|
|
627 |
|
|
TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
|
628 |
|
|
properties. If NULL, then it is not necessary to compute or record that
|
629 |
|
|
particular property.
|
630 |
|
|
|
631 |
|
|
TABLE controls which hash table to look at. */
|
632 |
|
|
|
633 |
|
|
static void
|
634 |
|
|
compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
|
635 |
|
|
struct hash_table_d *table)
|
636 |
|
|
{
|
637 |
|
|
unsigned int i;
|
638 |
|
|
|
639 |
|
|
/* Initialize any bitmaps that were passed in. */
|
640 |
|
|
if (transp)
|
641 |
|
|
{
|
642 |
|
|
sbitmap_vector_ones (transp, last_basic_block);
|
643 |
|
|
}
|
644 |
|
|
|
645 |
|
|
if (comp)
|
646 |
|
|
sbitmap_vector_zero (comp, last_basic_block);
|
647 |
|
|
if (antloc)
|
648 |
|
|
sbitmap_vector_zero (antloc, last_basic_block);
|
649 |
|
|
|
650 |
|
|
for (i = 0; i < table->size; i++)
|
651 |
|
|
{
|
652 |
|
|
struct expr *expr;
|
653 |
|
|
|
654 |
|
|
for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
|
655 |
|
|
{
|
656 |
|
|
int indx = expr->bitmap_index;
|
657 |
|
|
struct occr *occr;
|
658 |
|
|
|
659 |
|
|
/* The expression is transparent in this block if it is not killed.
|
660 |
|
|
We start by assuming all are transparent [none are killed], and
|
661 |
|
|
then reset the bits for those that are. */
|
662 |
|
|
if (transp)
|
663 |
|
|
compute_transp (expr->expr, indx, transp);
|
664 |
|
|
|
665 |
|
|
/* The occurrences recorded in antic_occr are exactly those that
|
666 |
|
|
we want to set to nonzero in ANTLOC. */
|
667 |
|
|
if (antloc)
|
668 |
|
|
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
669 |
|
|
{
|
670 |
|
|
SET_BIT (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
|
671 |
|
|
|
672 |
|
|
/* While we're scanning the table, this is a good place to
|
673 |
|
|
initialize this. */
|
674 |
|
|
occr->deleted_p = 0;
|
675 |
|
|
}
|
676 |
|
|
|
677 |
|
|
/* The occurrences recorded in avail_occr are exactly those that
|
678 |
|
|
we want to set to nonzero in COMP. */
|
679 |
|
|
if (comp)
|
680 |
|
|
for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
|
681 |
|
|
{
|
682 |
|
|
SET_BIT (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
|
683 |
|
|
|
684 |
|
|
/* While we're scanning the table, this is a good place to
|
685 |
|
|
initialize this. */
|
686 |
|
|
occr->copied_p = 0;
|
687 |
|
|
}
|
688 |
|
|
|
689 |
|
|
/* While we're scanning the table, this is a good place to
|
690 |
|
|
initialize this. */
|
691 |
|
|
expr->reaching_reg = 0;
|
692 |
|
|
}
|
693 |
|
|
}
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
/* Hash table support. */
|
697 |
|
|
|
698 |
|
|
struct reg_avail_info
|
699 |
|
|
{
|
700 |
|
|
basic_block last_bb;
|
701 |
|
|
int first_set;
|
702 |
|
|
int last_set;
|
703 |
|
|
};
|
704 |
|
|
|
705 |
|
|
static struct reg_avail_info *reg_avail_info;
|
706 |
|
|
static basic_block current_bb;
|
707 |
|
|
|
708 |
|
|
/* See whether X, the source of a set, is something we want to consider for
|
709 |
|
|
GCSE. */
|
710 |
|
|
|
711 |
|
|
static int
|
712 |
|
|
want_to_gcse_p (rtx x, int *max_distance_ptr)
|
713 |
|
|
{
|
714 |
|
|
#ifdef STACK_REGS
|
715 |
|
|
/* On register stack architectures, don't GCSE constants from the
|
716 |
|
|
constant pool, as the benefits are often swamped by the overhead
|
717 |
|
|
of shuffling the register stack between basic blocks. */
|
718 |
|
|
if (IS_STACK_MODE (GET_MODE (x)))
|
719 |
|
|
x = avoid_constant_pool_reference (x);
|
720 |
|
|
#endif
|
721 |
|
|
|
722 |
|
|
/* GCSE'ing constants:
|
723 |
|
|
|
724 |
|
|
We do not specifically distinguish between constant and non-constant
|
725 |
|
|
expressions in PRE and Hoist. We use set_src_cost below to limit
|
726 |
|
|
the maximum distance simple expressions can travel.
|
727 |
|
|
|
728 |
|
|
Nevertheless, constants are much easier to GCSE, and, hence,
|
729 |
|
|
it is easy to overdo the optimizations. Usually, excessive PRE and
|
730 |
|
|
Hoisting of constant leads to increased register pressure.
|
731 |
|
|
|
732 |
|
|
RA can deal with this by rematerialing some of the constants.
|
733 |
|
|
Therefore, it is important that the back-end generates sets of constants
|
734 |
|
|
in a way that allows reload rematerialize them under high register
|
735 |
|
|
pressure, i.e., a pseudo register with REG_EQUAL to constant
|
736 |
|
|
is set only once. Failing to do so will result in IRA/reload
|
737 |
|
|
spilling such constants under high register pressure instead of
|
738 |
|
|
rematerializing them. */
|
739 |
|
|
|
740 |
|
|
switch (GET_CODE (x))
|
741 |
|
|
{
|
742 |
|
|
case REG:
|
743 |
|
|
case SUBREG:
|
744 |
|
|
case CALL:
|
745 |
|
|
return 0;
|
746 |
|
|
|
747 |
|
|
case CONST_INT:
|
748 |
|
|
case CONST_DOUBLE:
|
749 |
|
|
case CONST_FIXED:
|
750 |
|
|
case CONST_VECTOR:
|
751 |
|
|
if (!doing_code_hoisting_p)
|
752 |
|
|
/* Do not PRE constants. */
|
753 |
|
|
return 0;
|
754 |
|
|
|
755 |
|
|
/* FALLTHRU */
|
756 |
|
|
|
757 |
|
|
default:
|
758 |
|
|
if (doing_code_hoisting_p)
|
759 |
|
|
/* PRE doesn't implement max_distance restriction. */
|
760 |
|
|
{
|
761 |
|
|
int cost;
|
762 |
|
|
int max_distance;
|
763 |
|
|
|
764 |
|
|
gcc_assert (!optimize_function_for_speed_p (cfun)
|
765 |
|
|
&& optimize_function_for_size_p (cfun));
|
766 |
|
|
cost = set_src_cost (x, 0);
|
767 |
|
|
|
768 |
|
|
if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
|
769 |
|
|
{
|
770 |
|
|
max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
|
771 |
|
|
if (max_distance == 0)
|
772 |
|
|
return 0;
|
773 |
|
|
|
774 |
|
|
gcc_assert (max_distance > 0);
|
775 |
|
|
}
|
776 |
|
|
else
|
777 |
|
|
max_distance = 0;
|
778 |
|
|
|
779 |
|
|
if (max_distance_ptr)
|
780 |
|
|
*max_distance_ptr = max_distance;
|
781 |
|
|
}
|
782 |
|
|
|
783 |
|
|
return can_assign_to_reg_without_clobbers_p (x);
|
784 |
|
|
}
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
/* Used internally by can_assign_to_reg_without_clobbers_p. */
|
788 |
|
|
|
789 |
|
|
static GTY(()) rtx test_insn;
|
790 |
|
|
|
791 |
|
|
/* Return true if we can assign X to a pseudo register such that the
|
792 |
|
|
resulting insn does not result in clobbering a hard register as a
|
793 |
|
|
side-effect.
|
794 |
|
|
|
795 |
|
|
Additionally, if the target requires it, check that the resulting insn
|
796 |
|
|
can be copied. If it cannot, this means that X is special and probably
|
797 |
|
|
has hidden side-effects we don't want to mess with.
|
798 |
|
|
|
799 |
|
|
This function is typically used by code motion passes, to verify
|
800 |
|
|
that it is safe to insert an insn without worrying about clobbering
|
801 |
|
|
maybe live hard regs. */
|
802 |
|
|
|
803 |
|
|
bool
|
804 |
|
|
can_assign_to_reg_without_clobbers_p (rtx x)
|
805 |
|
|
{
|
806 |
|
|
int num_clobbers = 0;
|
807 |
|
|
int icode;
|
808 |
|
|
|
809 |
|
|
/* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
|
810 |
|
|
if (general_operand (x, GET_MODE (x)))
|
811 |
|
|
return 1;
|
812 |
|
|
else if (GET_MODE (x) == VOIDmode)
|
813 |
|
|
return 0;
|
814 |
|
|
|
815 |
|
|
/* Otherwise, check if we can make a valid insn from it. First initialize
|
816 |
|
|
our test insn if we haven't already. */
|
817 |
|
|
if (test_insn == 0)
|
818 |
|
|
{
|
819 |
|
|
test_insn
|
820 |
|
|
= make_insn_raw (gen_rtx_SET (VOIDmode,
|
821 |
|
|
gen_rtx_REG (word_mode,
|
822 |
|
|
FIRST_PSEUDO_REGISTER * 2),
|
823 |
|
|
const0_rtx));
|
824 |
|
|
NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
/* Now make an insn like the one we would make when GCSE'ing and see if
|
828 |
|
|
valid. */
|
829 |
|
|
PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
|
830 |
|
|
SET_SRC (PATTERN (test_insn)) = x;
|
831 |
|
|
|
832 |
|
|
icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
|
833 |
|
|
if (icode < 0)
|
834 |
|
|
return false;
|
835 |
|
|
|
836 |
|
|
if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
|
837 |
|
|
return false;
|
838 |
|
|
|
839 |
|
|
if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
|
840 |
|
|
return false;
|
841 |
|
|
|
842 |
|
|
return true;
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
/* Return nonzero if the operands of expression X are unchanged from the
|
846 |
|
|
start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
|
847 |
|
|
or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
|
848 |
|
|
|
849 |
|
|
static int
|
850 |
|
|
oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
|
851 |
|
|
{
|
852 |
|
|
int i, j;
|
853 |
|
|
enum rtx_code code;
|
854 |
|
|
const char *fmt;
|
855 |
|
|
|
856 |
|
|
if (x == 0)
|
857 |
|
|
return 1;
|
858 |
|
|
|
859 |
|
|
code = GET_CODE (x);
|
860 |
|
|
switch (code)
|
861 |
|
|
{
|
862 |
|
|
case REG:
|
863 |
|
|
{
|
864 |
|
|
struct reg_avail_info *info = ®_avail_info[REGNO (x)];
|
865 |
|
|
|
866 |
|
|
if (info->last_bb != current_bb)
|
867 |
|
|
return 1;
|
868 |
|
|
if (avail_p)
|
869 |
|
|
return info->last_set < DF_INSN_LUID (insn);
|
870 |
|
|
else
|
871 |
|
|
return info->first_set >= DF_INSN_LUID (insn);
|
872 |
|
|
}
|
873 |
|
|
|
874 |
|
|
case MEM:
|
875 |
|
|
if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
|
876 |
|
|
x, avail_p))
|
877 |
|
|
return 0;
|
878 |
|
|
else
|
879 |
|
|
return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
|
880 |
|
|
|
881 |
|
|
case PRE_DEC:
|
882 |
|
|
case PRE_INC:
|
883 |
|
|
case POST_DEC:
|
884 |
|
|
case POST_INC:
|
885 |
|
|
case PRE_MODIFY:
|
886 |
|
|
case POST_MODIFY:
|
887 |
|
|
return 0;
|
888 |
|
|
|
889 |
|
|
case PC:
|
890 |
|
|
case CC0: /*FIXME*/
|
891 |
|
|
case CONST:
|
892 |
|
|
case CONST_INT:
|
893 |
|
|
case CONST_DOUBLE:
|
894 |
|
|
case CONST_FIXED:
|
895 |
|
|
case CONST_VECTOR:
|
896 |
|
|
case SYMBOL_REF:
|
897 |
|
|
case LABEL_REF:
|
898 |
|
|
case ADDR_VEC:
|
899 |
|
|
case ADDR_DIFF_VEC:
|
900 |
|
|
return 1;
|
901 |
|
|
|
902 |
|
|
default:
|
903 |
|
|
break;
|
904 |
|
|
}
|
905 |
|
|
|
906 |
|
|
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
|
907 |
|
|
{
|
908 |
|
|
if (fmt[i] == 'e')
|
909 |
|
|
{
|
910 |
|
|
/* If we are about to do the last recursive call needed at this
|
911 |
|
|
level, change it into iteration. This function is called enough
|
912 |
|
|
to be worth it. */
|
913 |
|
|
if (i == 0)
|
914 |
|
|
return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
|
915 |
|
|
|
916 |
|
|
else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
|
917 |
|
|
return 0;
|
918 |
|
|
}
|
919 |
|
|
else if (fmt[i] == 'E')
|
920 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
921 |
|
|
if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
|
922 |
|
|
return 0;
|
923 |
|
|
}
|
924 |
|
|
|
925 |
|
|
return 1;
|
926 |
|
|
}
|
927 |
|
|
|
928 |
|
|
/* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
|
929 |
|
|
|
930 |
|
|
struct mem_conflict_info
|
931 |
|
|
{
|
932 |
|
|
/* A memory reference for a load instruction, mems_conflict_for_gcse_p will
|
933 |
|
|
see if a memory store conflicts with this memory load. */
|
934 |
|
|
const_rtx mem;
|
935 |
|
|
|
936 |
|
|
/* True if mems_conflict_for_gcse_p finds a conflict between two memory
|
937 |
|
|
references. */
|
938 |
|
|
bool conflict;
|
939 |
|
|
};
|
940 |
|
|
|
941 |
|
|
/* DEST is the output of an instruction. If it is a memory reference and
|
942 |
|
|
possibly conflicts with the load found in DATA, then communicate this
|
943 |
|
|
information back through DATA. */
|
944 |
|
|
|
945 |
|
|
static void
|
946 |
|
|
mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
|
947 |
|
|
void *data)
|
948 |
|
|
{
|
949 |
|
|
struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
|
950 |
|
|
|
951 |
|
|
while (GET_CODE (dest) == SUBREG
|
952 |
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
953 |
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
954 |
|
|
dest = XEXP (dest, 0);
|
955 |
|
|
|
956 |
|
|
/* If DEST is not a MEM, then it will not conflict with the load. Note
|
957 |
|
|
that function calls are assumed to clobber memory, but are handled
|
958 |
|
|
elsewhere. */
|
959 |
|
|
if (! MEM_P (dest))
|
960 |
|
|
return;
|
961 |
|
|
|
962 |
|
|
/* If we are setting a MEM in our list of specially recognized MEMs,
|
963 |
|
|
don't mark as killed this time. */
|
964 |
|
|
if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
|
965 |
|
|
{
|
966 |
|
|
if (!find_rtx_in_ldst (dest))
|
967 |
|
|
mci->conflict = true;
|
968 |
|
|
return;
|
969 |
|
|
}
|
970 |
|
|
|
971 |
|
|
if (true_dependence (dest, GET_MODE (dest), mci->mem))
|
972 |
|
|
mci->conflict = true;
|
973 |
|
|
}
|
974 |
|
|
|
975 |
|
|
/* Return nonzero if the expression in X (a memory reference) is killed
|
976 |
|
|
in block BB before or after the insn with the LUID in UID_LIMIT.
|
977 |
|
|
AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
|
978 |
|
|
before UID_LIMIT.
|
979 |
|
|
|
980 |
|
|
To check the entire block, set UID_LIMIT to max_uid + 1 and
|
981 |
|
|
AVAIL_P to 0. */
|
982 |
|
|
|
983 |
|
|
static int
|
984 |
|
|
load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
|
985 |
|
|
int avail_p)
|
986 |
|
|
{
|
987 |
|
|
VEC (rtx,heap) *list = modify_mem_list[bb->index];
|
988 |
|
|
rtx setter;
|
989 |
|
|
unsigned ix;
|
990 |
|
|
|
991 |
|
|
/* If this is a readonly then we aren't going to be changing it. */
|
992 |
|
|
if (MEM_READONLY_P (x))
|
993 |
|
|
return 0;
|
994 |
|
|
|
995 |
|
|
FOR_EACH_VEC_ELT_REVERSE (rtx, list, ix, setter)
|
996 |
|
|
{
|
997 |
|
|
struct mem_conflict_info mci;
|
998 |
|
|
|
999 |
|
|
/* Ignore entries in the list that do not apply. */
|
1000 |
|
|
if ((avail_p
|
1001 |
|
|
&& DF_INSN_LUID (setter) < uid_limit)
|
1002 |
|
|
|| (! avail_p
|
1003 |
|
|
&& DF_INSN_LUID (setter) > uid_limit))
|
1004 |
|
|
continue;
|
1005 |
|
|
|
1006 |
|
|
/* If SETTER is a call everything is clobbered. Note that calls
|
1007 |
|
|
to pure functions are never put on the list, so we need not
|
1008 |
|
|
worry about them. */
|
1009 |
|
|
if (CALL_P (setter))
|
1010 |
|
|
return 1;
|
1011 |
|
|
|
1012 |
|
|
/* SETTER must be an INSN of some kind that sets memory. Call
|
1013 |
|
|
note_stores to examine each hunk of memory that is modified. */
|
1014 |
|
|
mci.mem = x;
|
1015 |
|
|
mci.conflict = false;
|
1016 |
|
|
note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
|
1017 |
|
|
if (mci.conflict)
|
1018 |
|
|
return 1;
|
1019 |
|
|
}
|
1020 |
|
|
return 0;
|
1021 |
|
|
}
|
1022 |
|
|
|
1023 |
|
|
/* Return nonzero if the operands of expression X are unchanged from
|
1024 |
|
|
the start of INSN's basic block up to but not including INSN. */
|
1025 |
|
|
|
1026 |
|
|
static int
|
1027 |
|
|
oprs_anticipatable_p (const_rtx x, const_rtx insn)
|
1028 |
|
|
{
|
1029 |
|
|
return oprs_unchanged_p (x, insn, 0);
|
1030 |
|
|
}
|
1031 |
|
|
|
1032 |
|
|
/* Return nonzero if the operands of expression X are unchanged from
|
1033 |
|
|
INSN to the end of INSN's basic block. */
|
1034 |
|
|
|
1035 |
|
|
static int
|
1036 |
|
|
oprs_available_p (const_rtx x, const_rtx insn)
|
1037 |
|
|
{
|
1038 |
|
|
return oprs_unchanged_p (x, insn, 1);
|
1039 |
|
|
}
|
1040 |
|
|
|
1041 |
|
|
/* Hash expression X.
|
1042 |
|
|
|
1043 |
|
|
MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
|
1044 |
|
|
indicating if a volatile operand is found or if the expression contains
|
1045 |
|
|
something we don't want to insert in the table. HASH_TABLE_SIZE is
|
1046 |
|
|
the current size of the hash table to be probed. */
|
1047 |
|
|
|
1048 |
|
|
static unsigned int
|
1049 |
|
|
hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
|
1050 |
|
|
int hash_table_size)
|
1051 |
|
|
{
|
1052 |
|
|
unsigned int hash;
|
1053 |
|
|
|
1054 |
|
|
*do_not_record_p = 0;
|
1055 |
|
|
|
1056 |
|
|
hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
|
1057 |
|
|
return hash % hash_table_size;
|
1058 |
|
|
}
|
1059 |
|
|
|
1060 |
|
|
/* Return nonzero if exp1 is equivalent to exp2. */
|
1061 |
|
|
|
1062 |
|
|
static int
|
1063 |
|
|
expr_equiv_p (const_rtx x, const_rtx y)
|
1064 |
|
|
{
|
1065 |
|
|
return exp_equiv_p (x, y, 0, true);
|
1066 |
|
|
}
|
1067 |
|
|
|
1068 |
|
|
/* Insert expression X in INSN in the hash TABLE.
|
1069 |
|
|
If it is already present, record it as the last occurrence in INSN's
|
1070 |
|
|
basic block.
|
1071 |
|
|
|
1072 |
|
|
MODE is the mode of the value X is being stored into.
|
1073 |
|
|
It is only used if X is a CONST_INT.
|
1074 |
|
|
|
1075 |
|
|
ANTIC_P is nonzero if X is an anticipatable expression.
|
1076 |
|
|
AVAIL_P is nonzero if X is an available expression.
|
1077 |
|
|
|
1078 |
|
|
MAX_DISTANCE is the maximum distance in instructions this expression can
|
1079 |
|
|
be moved. */
|
1080 |
|
|
|
1081 |
|
|
static void
|
1082 |
|
|
insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
|
1083 |
|
|
int avail_p, int max_distance, struct hash_table_d *table)
|
1084 |
|
|
{
|
1085 |
|
|
int found, do_not_record_p;
|
1086 |
|
|
unsigned int hash;
|
1087 |
|
|
struct expr *cur_expr, *last_expr = NULL;
|
1088 |
|
|
struct occr *antic_occr, *avail_occr;
|
1089 |
|
|
|
1090 |
|
|
hash = hash_expr (x, mode, &do_not_record_p, table->size);
|
1091 |
|
|
|
1092 |
|
|
/* Do not insert expression in table if it contains volatile operands,
|
1093 |
|
|
or if hash_expr determines the expression is something we don't want
|
1094 |
|
|
to or can't handle. */
|
1095 |
|
|
if (do_not_record_p)
|
1096 |
|
|
return;
|
1097 |
|
|
|
1098 |
|
|
cur_expr = table->table[hash];
|
1099 |
|
|
found = 0;
|
1100 |
|
|
|
1101 |
|
|
while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
|
1102 |
|
|
{
|
1103 |
|
|
/* If the expression isn't found, save a pointer to the end of
|
1104 |
|
|
the list. */
|
1105 |
|
|
last_expr = cur_expr;
|
1106 |
|
|
cur_expr = cur_expr->next_same_hash;
|
1107 |
|
|
}
|
1108 |
|
|
|
1109 |
|
|
if (! found)
|
1110 |
|
|
{
|
1111 |
|
|
cur_expr = GOBNEW (struct expr);
|
1112 |
|
|
bytes_used += sizeof (struct expr);
|
1113 |
|
|
if (table->table[hash] == NULL)
|
1114 |
|
|
/* This is the first pattern that hashed to this index. */
|
1115 |
|
|
table->table[hash] = cur_expr;
|
1116 |
|
|
else
|
1117 |
|
|
/* Add EXPR to end of this hash chain. */
|
1118 |
|
|
last_expr->next_same_hash = cur_expr;
|
1119 |
|
|
|
1120 |
|
|
/* Set the fields of the expr element. */
|
1121 |
|
|
cur_expr->expr = x;
|
1122 |
|
|
cur_expr->bitmap_index = table->n_elems++;
|
1123 |
|
|
cur_expr->next_same_hash = NULL;
|
1124 |
|
|
cur_expr->antic_occr = NULL;
|
1125 |
|
|
cur_expr->avail_occr = NULL;
|
1126 |
|
|
gcc_assert (max_distance >= 0);
|
1127 |
|
|
cur_expr->max_distance = max_distance;
|
1128 |
|
|
}
|
1129 |
|
|
else
|
1130 |
|
|
gcc_assert (cur_expr->max_distance == max_distance);
|
1131 |
|
|
|
1132 |
|
|
/* Now record the occurrence(s). */
|
1133 |
|
|
if (antic_p)
|
1134 |
|
|
{
|
1135 |
|
|
antic_occr = cur_expr->antic_occr;
|
1136 |
|
|
|
1137 |
|
|
if (antic_occr
|
1138 |
|
|
&& BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
|
1139 |
|
|
antic_occr = NULL;
|
1140 |
|
|
|
1141 |
|
|
if (antic_occr)
|
1142 |
|
|
/* Found another instance of the expression in the same basic block.
|
1143 |
|
|
Prefer the currently recorded one. We want the first one in the
|
1144 |
|
|
block and the block is scanned from start to end. */
|
1145 |
|
|
; /* nothing to do */
|
1146 |
|
|
else
|
1147 |
|
|
{
|
1148 |
|
|
/* First occurrence of this expression in this basic block. */
|
1149 |
|
|
antic_occr = GOBNEW (struct occr);
|
1150 |
|
|
bytes_used += sizeof (struct occr);
|
1151 |
|
|
antic_occr->insn = insn;
|
1152 |
|
|
antic_occr->next = cur_expr->antic_occr;
|
1153 |
|
|
antic_occr->deleted_p = 0;
|
1154 |
|
|
cur_expr->antic_occr = antic_occr;
|
1155 |
|
|
}
|
1156 |
|
|
}
|
1157 |
|
|
|
1158 |
|
|
if (avail_p)
|
1159 |
|
|
{
|
1160 |
|
|
avail_occr = cur_expr->avail_occr;
|
1161 |
|
|
|
1162 |
|
|
if (avail_occr
|
1163 |
|
|
&& BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
|
1164 |
|
|
{
|
1165 |
|
|
/* Found another instance of the expression in the same basic block.
|
1166 |
|
|
Prefer this occurrence to the currently recorded one. We want
|
1167 |
|
|
the last one in the block and the block is scanned from start
|
1168 |
|
|
to end. */
|
1169 |
|
|
avail_occr->insn = insn;
|
1170 |
|
|
}
|
1171 |
|
|
else
|
1172 |
|
|
{
|
1173 |
|
|
/* First occurrence of this expression in this basic block. */
|
1174 |
|
|
avail_occr = GOBNEW (struct occr);
|
1175 |
|
|
bytes_used += sizeof (struct occr);
|
1176 |
|
|
avail_occr->insn = insn;
|
1177 |
|
|
avail_occr->next = cur_expr->avail_occr;
|
1178 |
|
|
avail_occr->deleted_p = 0;
|
1179 |
|
|
cur_expr->avail_occr = avail_occr;
|
1180 |
|
|
}
|
1181 |
|
|
}
|
1182 |
|
|
}
|
1183 |
|
|
|
1184 |
|
|
/* Scan SET present in INSN and add an entry to the hash TABLE. */
|
1185 |
|
|
|
1186 |
|
|
static void
|
1187 |
|
|
hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
|
1188 |
|
|
{
|
1189 |
|
|
rtx src = SET_SRC (set);
|
1190 |
|
|
rtx dest = SET_DEST (set);
|
1191 |
|
|
rtx note;
|
1192 |
|
|
|
1193 |
|
|
if (GET_CODE (src) == CALL)
|
1194 |
|
|
hash_scan_call (src, insn, table);
|
1195 |
|
|
|
1196 |
|
|
else if (REG_P (dest))
|
1197 |
|
|
{
|
1198 |
|
|
unsigned int regno = REGNO (dest);
|
1199 |
|
|
int max_distance = 0;
|
1200 |
|
|
|
1201 |
|
|
/* See if a REG_EQUAL note shows this equivalent to a simpler expression.
|
1202 |
|
|
|
1203 |
|
|
This allows us to do a single GCSE pass and still eliminate
|
1204 |
|
|
redundant constants, addresses or other expressions that are
|
1205 |
|
|
constructed with multiple instructions.
|
1206 |
|
|
|
1207 |
|
|
However, keep the original SRC if INSN is a simple reg-reg move.
|
1208 |
|
|
In this case, there will almost always be a REG_EQUAL note on the
|
1209 |
|
|
insn that sets SRC. By recording the REG_EQUAL value here as SRC
|
1210 |
|
|
for INSN, we miss copy propagation opportunities and we perform the
|
1211 |
|
|
same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
|
1212 |
|
|
do more than one PRE GCSE pass.
|
1213 |
|
|
|
1214 |
|
|
Note that this does not impede profitable constant propagations. We
|
1215 |
|
|
"look through" reg-reg sets in lookup_avail_set. */
|
1216 |
|
|
note = find_reg_equal_equiv_note (insn);
|
1217 |
|
|
if (note != 0
|
1218 |
|
|
&& REG_NOTE_KIND (note) == REG_EQUAL
|
1219 |
|
|
&& !REG_P (src)
|
1220 |
|
|
&& want_to_gcse_p (XEXP (note, 0), NULL))
|
1221 |
|
|
src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
|
1222 |
|
|
|
1223 |
|
|
/* Only record sets of pseudo-regs in the hash table. */
|
1224 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER
|
1225 |
|
|
/* Don't GCSE something if we can't do a reg/reg copy. */
|
1226 |
|
|
&& can_copy_p (GET_MODE (dest))
|
1227 |
|
|
/* GCSE commonly inserts instruction after the insn. We can't
|
1228 |
|
|
do that easily for EH edges so disable GCSE on these for now. */
|
1229 |
|
|
/* ??? We can now easily create new EH landing pads at the
|
1230 |
|
|
gimple level, for splitting edges; there's no reason we
|
1231 |
|
|
can't do the same thing at the rtl level. */
|
1232 |
|
|
&& !can_throw_internal (insn)
|
1233 |
|
|
/* Is SET_SRC something we want to gcse? */
|
1234 |
|
|
&& want_to_gcse_p (src, &max_distance)
|
1235 |
|
|
/* Don't CSE a nop. */
|
1236 |
|
|
&& ! set_noop_p (set)
|
1237 |
|
|
/* Don't GCSE if it has attached REG_EQUIV note.
|
1238 |
|
|
At this point this only function parameters should have
|
1239 |
|
|
REG_EQUIV notes and if the argument slot is used somewhere
|
1240 |
|
|
explicitly, it means address of parameter has been taken,
|
1241 |
|
|
so we should not extend the lifetime of the pseudo. */
|
1242 |
|
|
&& (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
|
1243 |
|
|
{
|
1244 |
|
|
/* An expression is not anticipatable if its operands are
|
1245 |
|
|
modified before this insn or if this is not the only SET in
|
1246 |
|
|
this insn. The latter condition does not have to mean that
|
1247 |
|
|
SRC itself is not anticipatable, but we just will not be
|
1248 |
|
|
able to handle code motion of insns with multiple sets. */
|
1249 |
|
|
int antic_p = oprs_anticipatable_p (src, insn)
|
1250 |
|
|
&& !multiple_sets (insn);
|
1251 |
|
|
/* An expression is not available if its operands are
|
1252 |
|
|
subsequently modified, including this insn. It's also not
|
1253 |
|
|
available if this is a branch, because we can't insert
|
1254 |
|
|
a set after the branch. */
|
1255 |
|
|
int avail_p = (oprs_available_p (src, insn)
|
1256 |
|
|
&& ! JUMP_P (insn));
|
1257 |
|
|
|
1258 |
|
|
insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
|
1259 |
|
|
max_distance, table);
|
1260 |
|
|
}
|
1261 |
|
|
}
|
1262 |
|
|
/* In case of store we want to consider the memory value as available in
|
1263 |
|
|
the REG stored in that memory. This makes it possible to remove
|
1264 |
|
|
redundant loads from due to stores to the same location. */
|
1265 |
|
|
else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
|
1266 |
|
|
{
|
1267 |
|
|
unsigned int regno = REGNO (src);
|
1268 |
|
|
int max_distance = 0;
|
1269 |
|
|
|
1270 |
|
|
/* Only record sets of pseudo-regs in the hash table. */
|
1271 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER
|
1272 |
|
|
/* Don't GCSE something if we can't do a reg/reg copy. */
|
1273 |
|
|
&& can_copy_p (GET_MODE (src))
|
1274 |
|
|
/* GCSE commonly inserts instruction after the insn. We can't
|
1275 |
|
|
do that easily for EH edges so disable GCSE on these for now. */
|
1276 |
|
|
&& !can_throw_internal (insn)
|
1277 |
|
|
/* Is SET_DEST something we want to gcse? */
|
1278 |
|
|
&& want_to_gcse_p (dest, &max_distance)
|
1279 |
|
|
/* Don't CSE a nop. */
|
1280 |
|
|
&& ! set_noop_p (set)
|
1281 |
|
|
/* Don't GCSE if it has attached REG_EQUIV note.
|
1282 |
|
|
At this point this only function parameters should have
|
1283 |
|
|
REG_EQUIV notes and if the argument slot is used somewhere
|
1284 |
|
|
explicitly, it means address of parameter has been taken,
|
1285 |
|
|
so we should not extend the lifetime of the pseudo. */
|
1286 |
|
|
&& ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
|
1287 |
|
|
|| ! MEM_P (XEXP (note, 0))))
|
1288 |
|
|
{
|
1289 |
|
|
/* Stores are never anticipatable. */
|
1290 |
|
|
int antic_p = 0;
|
1291 |
|
|
/* An expression is not available if its operands are
|
1292 |
|
|
subsequently modified, including this insn. It's also not
|
1293 |
|
|
available if this is a branch, because we can't insert
|
1294 |
|
|
a set after the branch. */
|
1295 |
|
|
int avail_p = oprs_available_p (dest, insn)
|
1296 |
|
|
&& ! JUMP_P (insn);
|
1297 |
|
|
|
1298 |
|
|
/* Record the memory expression (DEST) in the hash table. */
|
1299 |
|
|
insert_expr_in_table (dest, GET_MODE (dest), insn,
|
1300 |
|
|
antic_p, avail_p, max_distance, table);
|
1301 |
|
|
}
|
1302 |
|
|
}
|
1303 |
|
|
}
|
1304 |
|
|
|
1305 |
|
|
static void
|
1306 |
|
|
hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
|
1307 |
|
|
struct hash_table_d *table ATTRIBUTE_UNUSED)
|
1308 |
|
|
{
|
1309 |
|
|
/* Currently nothing to do. */
|
1310 |
|
|
}
|
1311 |
|
|
|
1312 |
|
|
static void
|
1313 |
|
|
hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
|
1314 |
|
|
struct hash_table_d *table ATTRIBUTE_UNUSED)
|
1315 |
|
|
{
|
1316 |
|
|
/* Currently nothing to do. */
|
1317 |
|
|
}
|
1318 |
|
|
|
1319 |
|
|
/* Process INSN and add hash table entries as appropriate. */
|
1320 |
|
|
|
1321 |
|
|
static void
|
1322 |
|
|
hash_scan_insn (rtx insn, struct hash_table_d *table)
|
1323 |
|
|
{
|
1324 |
|
|
rtx pat = PATTERN (insn);
|
1325 |
|
|
int i;
|
1326 |
|
|
|
1327 |
|
|
/* Pick out the sets of INSN and for other forms of instructions record
|
1328 |
|
|
what's been modified. */
|
1329 |
|
|
|
1330 |
|
|
if (GET_CODE (pat) == SET)
|
1331 |
|
|
hash_scan_set (pat, insn, table);
|
1332 |
|
|
|
1333 |
|
|
else if (GET_CODE (pat) == CLOBBER)
|
1334 |
|
|
hash_scan_clobber (pat, insn, table);
|
1335 |
|
|
|
1336 |
|
|
else if (GET_CODE (pat) == CALL)
|
1337 |
|
|
hash_scan_call (pat, insn, table);
|
1338 |
|
|
|
1339 |
|
|
else if (GET_CODE (pat) == PARALLEL)
|
1340 |
|
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
1341 |
|
|
{
|
1342 |
|
|
rtx x = XVECEXP (pat, 0, i);
|
1343 |
|
|
|
1344 |
|
|
if (GET_CODE (x) == SET)
|
1345 |
|
|
hash_scan_set (x, insn, table);
|
1346 |
|
|
else if (GET_CODE (x) == CLOBBER)
|
1347 |
|
|
hash_scan_clobber (x, insn, table);
|
1348 |
|
|
else if (GET_CODE (x) == CALL)
|
1349 |
|
|
hash_scan_call (x, insn, table);
|
1350 |
|
|
}
|
1351 |
|
|
}
|
1352 |
|
|
|
1353 |
|
|
/* Dump the hash table TABLE to file FILE under the name NAME. */
|
1354 |
|
|
|
1355 |
|
|
static void
|
1356 |
|
|
dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
|
1357 |
|
|
{
|
1358 |
|
|
int i;
|
1359 |
|
|
/* Flattened out table, so it's printed in proper order. */
|
1360 |
|
|
struct expr **flat_table;
|
1361 |
|
|
unsigned int *hash_val;
|
1362 |
|
|
struct expr *expr;
|
1363 |
|
|
|
1364 |
|
|
flat_table = XCNEWVEC (struct expr *, table->n_elems);
|
1365 |
|
|
hash_val = XNEWVEC (unsigned int, table->n_elems);
|
1366 |
|
|
|
1367 |
|
|
for (i = 0; i < (int) table->size; i++)
|
1368 |
|
|
for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
|
1369 |
|
|
{
|
1370 |
|
|
flat_table[expr->bitmap_index] = expr;
|
1371 |
|
|
hash_val[expr->bitmap_index] = i;
|
1372 |
|
|
}
|
1373 |
|
|
|
1374 |
|
|
fprintf (file, "%s hash table (%d buckets, %d entries)\n",
|
1375 |
|
|
name, table->size, table->n_elems);
|
1376 |
|
|
|
1377 |
|
|
for (i = 0; i < (int) table->n_elems; i++)
|
1378 |
|
|
if (flat_table[i] != 0)
|
1379 |
|
|
{
|
1380 |
|
|
expr = flat_table[i];
|
1381 |
|
|
fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
|
1382 |
|
|
expr->bitmap_index, hash_val[i], expr->max_distance);
|
1383 |
|
|
print_rtl (file, expr->expr);
|
1384 |
|
|
fprintf (file, "\n");
|
1385 |
|
|
}
|
1386 |
|
|
|
1387 |
|
|
fprintf (file, "\n");
|
1388 |
|
|
|
1389 |
|
|
free (flat_table);
|
1390 |
|
|
free (hash_val);
|
1391 |
|
|
}
|
1392 |
|
|
|
1393 |
|
|
/* Record register first/last/block set information for REGNO in INSN.
|
1394 |
|
|
|
1395 |
|
|
first_set records the first place in the block where the register
|
1396 |
|
|
is set and is used to compute "anticipatability".
|
1397 |
|
|
|
1398 |
|
|
last_set records the last place in the block where the register
|
1399 |
|
|
is set and is used to compute "availability".
|
1400 |
|
|
|
1401 |
|
|
last_bb records the block for which first_set and last_set are
|
1402 |
|
|
valid, as a quick test to invalidate them. */
|
1403 |
|
|
|
1404 |
|
|
static void
|
1405 |
|
|
record_last_reg_set_info (rtx insn, int regno)
|
1406 |
|
|
{
|
1407 |
|
|
struct reg_avail_info *info = ®_avail_info[regno];
|
1408 |
|
|
int luid = DF_INSN_LUID (insn);
|
1409 |
|
|
|
1410 |
|
|
info->last_set = luid;
|
1411 |
|
|
if (info->last_bb != current_bb)
|
1412 |
|
|
{
|
1413 |
|
|
info->last_bb = current_bb;
|
1414 |
|
|
info->first_set = luid;
|
1415 |
|
|
}
|
1416 |
|
|
}
|
1417 |
|
|
|
1418 |
|
|
/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
|
1419 |
|
|
Note we store a pair of elements in the list, so they have to be
|
1420 |
|
|
taken off pairwise. */
|
1421 |
|
|
|
1422 |
|
|
static void
|
1423 |
|
|
canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
|
1424 |
|
|
void * v_insn)
|
1425 |
|
|
{
|
1426 |
|
|
rtx dest_addr, insn;
|
1427 |
|
|
int bb;
|
1428 |
|
|
modify_pair *pair;
|
1429 |
|
|
|
1430 |
|
|
while (GET_CODE (dest) == SUBREG
|
1431 |
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
1432 |
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
1433 |
|
|
dest = XEXP (dest, 0);
|
1434 |
|
|
|
1435 |
|
|
/* If DEST is not a MEM, then it will not conflict with a load. Note
|
1436 |
|
|
that function calls are assumed to clobber memory, but are handled
|
1437 |
|
|
elsewhere. */
|
1438 |
|
|
|
1439 |
|
|
if (! MEM_P (dest))
|
1440 |
|
|
return;
|
1441 |
|
|
|
1442 |
|
|
dest_addr = get_addr (XEXP (dest, 0));
|
1443 |
|
|
dest_addr = canon_rtx (dest_addr);
|
1444 |
|
|
insn = (rtx) v_insn;
|
1445 |
|
|
bb = BLOCK_FOR_INSN (insn)->index;
|
1446 |
|
|
|
1447 |
|
|
pair = VEC_safe_push (modify_pair, heap, canon_modify_mem_list[bb], NULL);
|
1448 |
|
|
pair->dest = dest;
|
1449 |
|
|
pair->dest_addr = dest_addr;
|
1450 |
|
|
}
|
1451 |
|
|
|
1452 |
|
|
/* Record memory modification information for INSN. We do not actually care
|
1453 |
|
|
about the memory location(s) that are set, or even how they are set (consider
|
1454 |
|
|
a CALL_INSN). We merely need to record which insns modify memory. */
|
1455 |
|
|
|
1456 |
|
|
static void
|
1457 |
|
|
record_last_mem_set_info (rtx insn)
|
1458 |
|
|
{
|
1459 |
|
|
int bb = BLOCK_FOR_INSN (insn)->index;
|
1460 |
|
|
|
1461 |
|
|
/* load_killed_in_block_p will handle the case of calls clobbering
|
1462 |
|
|
everything. */
|
1463 |
|
|
VEC_safe_push (rtx, heap, modify_mem_list[bb], insn);
|
1464 |
|
|
bitmap_set_bit (modify_mem_list_set, bb);
|
1465 |
|
|
|
1466 |
|
|
if (CALL_P (insn))
|
1467 |
|
|
bitmap_set_bit (blocks_with_calls, bb);
|
1468 |
|
|
else
|
1469 |
|
|
note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
|
1470 |
|
|
}
|
1471 |
|
|
|
1472 |
|
|
/* Called from compute_hash_table via note_stores to handle one
|
1473 |
|
|
SET or CLOBBER in an insn. DATA is really the instruction in which
|
1474 |
|
|
the SET is taking place. */
|
1475 |
|
|
|
1476 |
|
|
static void
|
1477 |
|
|
record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
|
1478 |
|
|
{
|
1479 |
|
|
rtx last_set_insn = (rtx) data;
|
1480 |
|
|
|
1481 |
|
|
if (GET_CODE (dest) == SUBREG)
|
1482 |
|
|
dest = SUBREG_REG (dest);
|
1483 |
|
|
|
1484 |
|
|
if (REG_P (dest))
|
1485 |
|
|
record_last_reg_set_info (last_set_insn, REGNO (dest));
|
1486 |
|
|
else if (MEM_P (dest)
|
1487 |
|
|
/* Ignore pushes, they clobber nothing. */
|
1488 |
|
|
&& ! push_operand (dest, GET_MODE (dest)))
|
1489 |
|
|
record_last_mem_set_info (last_set_insn);
|
1490 |
|
|
}
|
1491 |
|
|
|
1492 |
|
|
/* Top level function to create an expression hash table.
|
1493 |
|
|
|
1494 |
|
|
Expression entries are placed in the hash table if
|
1495 |
|
|
- they are of the form (set (pseudo-reg) src),
|
1496 |
|
|
- src is something we want to perform GCSE on,
|
1497 |
|
|
- none of the operands are subsequently modified in the block
|
1498 |
|
|
|
1499 |
|
|
Currently src must be a pseudo-reg or a const_int.
|
1500 |
|
|
|
1501 |
|
|
TABLE is the table computed. */
|
1502 |
|
|
|
1503 |
|
|
static void
|
1504 |
|
|
compute_hash_table_work (struct hash_table_d *table)
|
1505 |
|
|
{
|
1506 |
|
|
int i;
|
1507 |
|
|
|
1508 |
|
|
/* re-Cache any INSN_LIST nodes we have allocated. */
|
1509 |
|
|
clear_modify_mem_tables ();
|
1510 |
|
|
/* Some working arrays used to track first and last set in each block. */
|
1511 |
|
|
reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
|
1512 |
|
|
|
1513 |
|
|
for (i = 0; i < max_reg_num (); ++i)
|
1514 |
|
|
reg_avail_info[i].last_bb = NULL;
|
1515 |
|
|
|
1516 |
|
|
FOR_EACH_BB (current_bb)
|
1517 |
|
|
{
|
1518 |
|
|
rtx insn;
|
1519 |
|
|
unsigned int regno;
|
1520 |
|
|
|
1521 |
|
|
/* First pass over the instructions records information used to
|
1522 |
|
|
determine when registers and memory are first and last set. */
|
1523 |
|
|
FOR_BB_INSNS (current_bb, insn)
|
1524 |
|
|
{
|
1525 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
1526 |
|
|
continue;
|
1527 |
|
|
|
1528 |
|
|
if (CALL_P (insn))
|
1529 |
|
|
{
|
1530 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
1531 |
|
|
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
|
1532 |
|
|
record_last_reg_set_info (insn, regno);
|
1533 |
|
|
|
1534 |
|
|
if (! RTL_CONST_OR_PURE_CALL_P (insn))
|
1535 |
|
|
record_last_mem_set_info (insn);
|
1536 |
|
|
}
|
1537 |
|
|
|
1538 |
|
|
note_stores (PATTERN (insn), record_last_set_info, insn);
|
1539 |
|
|
}
|
1540 |
|
|
|
1541 |
|
|
/* The next pass builds the hash table. */
|
1542 |
|
|
FOR_BB_INSNS (current_bb, insn)
|
1543 |
|
|
if (NONDEBUG_INSN_P (insn))
|
1544 |
|
|
hash_scan_insn (insn, table);
|
1545 |
|
|
}
|
1546 |
|
|
|
1547 |
|
|
free (reg_avail_info);
|
1548 |
|
|
reg_avail_info = NULL;
|
1549 |
|
|
}
|
1550 |
|
|
|
1551 |
|
|
/* Allocate space for the set/expr hash TABLE.
|
1552 |
|
|
It is used to determine the number of buckets to use. */
|
1553 |
|
|
|
1554 |
|
|
static void
|
1555 |
|
|
alloc_hash_table (struct hash_table_d *table)
|
1556 |
|
|
{
|
1557 |
|
|
int n;
|
1558 |
|
|
|
1559 |
|
|
n = get_max_insn_count ();
|
1560 |
|
|
|
1561 |
|
|
table->size = n / 4;
|
1562 |
|
|
if (table->size < 11)
|
1563 |
|
|
table->size = 11;
|
1564 |
|
|
|
1565 |
|
|
/* Attempt to maintain efficient use of hash table.
|
1566 |
|
|
Making it an odd number is simplest for now.
|
1567 |
|
|
??? Later take some measurements. */
|
1568 |
|
|
table->size |= 1;
|
1569 |
|
|
n = table->size * sizeof (struct expr *);
|
1570 |
|
|
table->table = GNEWVAR (struct expr *, n);
|
1571 |
|
|
}
|
1572 |
|
|
|
1573 |
|
|
/* Free things allocated by alloc_hash_table. */
|
1574 |
|
|
|
1575 |
|
|
static void
|
1576 |
|
|
free_hash_table (struct hash_table_d *table)
|
1577 |
|
|
{
|
1578 |
|
|
free (table->table);
|
1579 |
|
|
}
|
1580 |
|
|
|
1581 |
|
|
/* Compute the expression hash table TABLE. */
|
1582 |
|
|
|
1583 |
|
|
static void
|
1584 |
|
|
compute_hash_table (struct hash_table_d *table)
|
1585 |
|
|
{
|
1586 |
|
|
/* Initialize count of number of entries in hash table. */
|
1587 |
|
|
table->n_elems = 0;
|
1588 |
|
|
memset (table->table, 0, table->size * sizeof (struct expr *));
|
1589 |
|
|
|
1590 |
|
|
compute_hash_table_work (table);
|
1591 |
|
|
}
|
1592 |
|
|
|
1593 |
|
|
/* Expression tracking support. */
|
1594 |
|
|
|
1595 |
|
|
/* Clear canon_modify_mem_list and modify_mem_list tables. */
|
1596 |
|
|
static void
|
1597 |
|
|
clear_modify_mem_tables (void)
|
1598 |
|
|
{
|
1599 |
|
|
unsigned i;
|
1600 |
|
|
bitmap_iterator bi;
|
1601 |
|
|
|
1602 |
|
|
EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
|
1603 |
|
|
{
|
1604 |
|
|
VEC_free (rtx, heap, modify_mem_list[i]);
|
1605 |
|
|
VEC_free (modify_pair, heap, canon_modify_mem_list[i]);
|
1606 |
|
|
}
|
1607 |
|
|
bitmap_clear (modify_mem_list_set);
|
1608 |
|
|
bitmap_clear (blocks_with_calls);
|
1609 |
|
|
}
|
1610 |
|
|
|
1611 |
|
|
/* Release memory used by modify_mem_list_set. */
|
1612 |
|
|
|
1613 |
|
|
static void
|
1614 |
|
|
free_modify_mem_tables (void)
|
1615 |
|
|
{
|
1616 |
|
|
clear_modify_mem_tables ();
|
1617 |
|
|
free (modify_mem_list);
|
1618 |
|
|
free (canon_modify_mem_list);
|
1619 |
|
|
modify_mem_list = 0;
|
1620 |
|
|
canon_modify_mem_list = 0;
|
1621 |
|
|
}
|
1622 |
|
|
|
1623 |
|
|
/* For each block, compute whether X is transparent. X is either an
|
1624 |
|
|
expression or an assignment [though we don't care which, for this context
|
1625 |
|
|
an assignment is treated as an expression]. For each block where an
|
1626 |
|
|
element of X is modified, reset the INDX bit in BMAP. */
|
1627 |
|
|
|
1628 |
|
|
static void
|
1629 |
|
|
compute_transp (const_rtx x, int indx, sbitmap *bmap)
|
1630 |
|
|
{
|
1631 |
|
|
int i, j;
|
1632 |
|
|
enum rtx_code code;
|
1633 |
|
|
const char *fmt;
|
1634 |
|
|
|
1635 |
|
|
/* repeat is used to turn tail-recursion into iteration since GCC
|
1636 |
|
|
can't do it when there's no return value. */
|
1637 |
|
|
repeat:
|
1638 |
|
|
|
1639 |
|
|
if (x == 0)
|
1640 |
|
|
return;
|
1641 |
|
|
|
1642 |
|
|
code = GET_CODE (x);
|
1643 |
|
|
switch (code)
|
1644 |
|
|
{
|
1645 |
|
|
case REG:
|
1646 |
|
|
{
|
1647 |
|
|
df_ref def;
|
1648 |
|
|
for (def = DF_REG_DEF_CHAIN (REGNO (x));
|
1649 |
|
|
def;
|
1650 |
|
|
def = DF_REF_NEXT_REG (def))
|
1651 |
|
|
RESET_BIT (bmap[DF_REF_BB (def)->index], indx);
|
1652 |
|
|
}
|
1653 |
|
|
|
1654 |
|
|
return;
|
1655 |
|
|
|
1656 |
|
|
case MEM:
|
1657 |
|
|
if (! MEM_READONLY_P (x))
|
1658 |
|
|
{
|
1659 |
|
|
bitmap_iterator bi;
|
1660 |
|
|
unsigned bb_index;
|
1661 |
|
|
|
1662 |
|
|
/* First handle all the blocks with calls. We don't need to
|
1663 |
|
|
do any list walking for them. */
|
1664 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
|
1665 |
|
|
{
|
1666 |
|
|
RESET_BIT (bmap[bb_index], indx);
|
1667 |
|
|
}
|
1668 |
|
|
|
1669 |
|
|
/* Now iterate over the blocks which have memory modifications
|
1670 |
|
|
but which do not have any calls. */
|
1671 |
|
|
EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
|
1672 |
|
|
blocks_with_calls,
|
1673 |
|
|
0, bb_index, bi)
|
1674 |
|
|
{
|
1675 |
|
|
VEC (modify_pair,heap) *list
|
1676 |
|
|
= canon_modify_mem_list[bb_index];
|
1677 |
|
|
modify_pair *pair;
|
1678 |
|
|
unsigned ix;
|
1679 |
|
|
|
1680 |
|
|
FOR_EACH_VEC_ELT_REVERSE (modify_pair, list, ix, pair)
|
1681 |
|
|
{
|
1682 |
|
|
rtx dest = pair->dest;
|
1683 |
|
|
rtx dest_addr = pair->dest_addr;
|
1684 |
|
|
|
1685 |
|
|
if (canon_true_dependence (dest, GET_MODE (dest),
|
1686 |
|
|
dest_addr, x, NULL_RTX))
|
1687 |
|
|
RESET_BIT (bmap[bb_index], indx);
|
1688 |
|
|
}
|
1689 |
|
|
}
|
1690 |
|
|
}
|
1691 |
|
|
|
1692 |
|
|
x = XEXP (x, 0);
|
1693 |
|
|
goto repeat;
|
1694 |
|
|
|
1695 |
|
|
case PC:
|
1696 |
|
|
case CC0: /*FIXME*/
|
1697 |
|
|
case CONST:
|
1698 |
|
|
case CONST_INT:
|
1699 |
|
|
case CONST_DOUBLE:
|
1700 |
|
|
case CONST_FIXED:
|
1701 |
|
|
case CONST_VECTOR:
|
1702 |
|
|
case SYMBOL_REF:
|
1703 |
|
|
case LABEL_REF:
|
1704 |
|
|
case ADDR_VEC:
|
1705 |
|
|
case ADDR_DIFF_VEC:
|
1706 |
|
|
return;
|
1707 |
|
|
|
1708 |
|
|
default:
|
1709 |
|
|
break;
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
|
1713 |
|
|
{
|
1714 |
|
|
if (fmt[i] == 'e')
|
1715 |
|
|
{
|
1716 |
|
|
/* If we are about to do the last recursive call
|
1717 |
|
|
needed at this level, change it into iteration.
|
1718 |
|
|
This function is called enough to be worth it. */
|
1719 |
|
|
if (i == 0)
|
1720 |
|
|
{
|
1721 |
|
|
x = XEXP (x, i);
|
1722 |
|
|
goto repeat;
|
1723 |
|
|
}
|
1724 |
|
|
|
1725 |
|
|
compute_transp (XEXP (x, i), indx, bmap);
|
1726 |
|
|
}
|
1727 |
|
|
else if (fmt[i] == 'E')
|
1728 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
1729 |
|
|
compute_transp (XVECEXP (x, i, j), indx, bmap);
|
1730 |
|
|
}
|
1731 |
|
|
}
|
1732 |
|
|
|
1733 |
|
|
/* Compute PRE+LCM working variables. */
|
1734 |
|
|
|
1735 |
|
|
/* Local properties of expressions. */
|
1736 |
|
|
|
1737 |
|
|
/* Nonzero for expressions that are transparent in the block. */
|
1738 |
|
|
static sbitmap *transp;
|
1739 |
|
|
|
1740 |
|
|
/* Nonzero for expressions that are computed (available) in the block. */
|
1741 |
|
|
static sbitmap *comp;
|
1742 |
|
|
|
1743 |
|
|
/* Nonzero for expressions that are locally anticipatable in the block. */
|
1744 |
|
|
static sbitmap *antloc;
|
1745 |
|
|
|
1746 |
|
|
/* Nonzero for expressions where this block is an optimal computation
|
1747 |
|
|
point. */
|
1748 |
|
|
static sbitmap *pre_optimal;
|
1749 |
|
|
|
1750 |
|
|
/* Nonzero for expressions which are redundant in a particular block. */
|
1751 |
|
|
static sbitmap *pre_redundant;
|
1752 |
|
|
|
1753 |
|
|
/* Nonzero for expressions which should be inserted on a specific edge. */
|
1754 |
|
|
static sbitmap *pre_insert_map;
|
1755 |
|
|
|
1756 |
|
|
/* Nonzero for expressions which should be deleted in a specific block. */
|
1757 |
|
|
static sbitmap *pre_delete_map;
|
1758 |
|
|
|
1759 |
|
|
/* Allocate vars used for PRE analysis. */
|
1760 |
|
|
|
1761 |
|
|
static void
|
1762 |
|
|
alloc_pre_mem (int n_blocks, int n_exprs)
|
1763 |
|
|
{
|
1764 |
|
|
transp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
1765 |
|
|
comp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
1766 |
|
|
antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
|
1767 |
|
|
|
1768 |
|
|
pre_optimal = NULL;
|
1769 |
|
|
pre_redundant = NULL;
|
1770 |
|
|
pre_insert_map = NULL;
|
1771 |
|
|
pre_delete_map = NULL;
|
1772 |
|
|
ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
|
1773 |
|
|
|
1774 |
|
|
/* pre_insert and pre_delete are allocated later. */
|
1775 |
|
|
}
|
1776 |
|
|
|
1777 |
|
|
/* Free vars used for PRE analysis. */
|
1778 |
|
|
|
1779 |
|
|
static void
|
1780 |
|
|
free_pre_mem (void)
|
1781 |
|
|
{
|
1782 |
|
|
sbitmap_vector_free (transp);
|
1783 |
|
|
sbitmap_vector_free (comp);
|
1784 |
|
|
|
1785 |
|
|
/* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
|
1786 |
|
|
|
1787 |
|
|
if (pre_optimal)
|
1788 |
|
|
sbitmap_vector_free (pre_optimal);
|
1789 |
|
|
if (pre_redundant)
|
1790 |
|
|
sbitmap_vector_free (pre_redundant);
|
1791 |
|
|
if (pre_insert_map)
|
1792 |
|
|
sbitmap_vector_free (pre_insert_map);
|
1793 |
|
|
if (pre_delete_map)
|
1794 |
|
|
sbitmap_vector_free (pre_delete_map);
|
1795 |
|
|
|
1796 |
|
|
transp = comp = NULL;
|
1797 |
|
|
pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
|
1798 |
|
|
}
|
1799 |
|
|
|
1800 |
|
|
/* Remove certain expressions from anticipatable and transparent
|
1801 |
|
|
sets of basic blocks that have incoming abnormal edge.
|
1802 |
|
|
For PRE remove potentially trapping expressions to avoid placing
|
1803 |
|
|
them on abnormal edges. For hoisting remove memory references that
|
1804 |
|
|
can be clobbered by calls. */
|
1805 |
|
|
|
1806 |
|
|
static void
|
1807 |
|
|
prune_expressions (bool pre_p)
|
1808 |
|
|
{
|
1809 |
|
|
sbitmap prune_exprs;
|
1810 |
|
|
struct expr *expr;
|
1811 |
|
|
unsigned int ui;
|
1812 |
|
|
basic_block bb;
|
1813 |
|
|
|
1814 |
|
|
prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
|
1815 |
|
|
sbitmap_zero (prune_exprs);
|
1816 |
|
|
for (ui = 0; ui < expr_hash_table.size; ui++)
|
1817 |
|
|
{
|
1818 |
|
|
for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
|
1819 |
|
|
{
|
1820 |
|
|
/* Note potentially trapping expressions. */
|
1821 |
|
|
if (may_trap_p (expr->expr))
|
1822 |
|
|
{
|
1823 |
|
|
SET_BIT (prune_exprs, expr->bitmap_index);
|
1824 |
|
|
continue;
|
1825 |
|
|
}
|
1826 |
|
|
|
1827 |
|
|
if (!pre_p && MEM_P (expr->expr))
|
1828 |
|
|
/* Note memory references that can be clobbered by a call.
|
1829 |
|
|
We do not split abnormal edges in hoisting, so would
|
1830 |
|
|
a memory reference get hoisted along an abnormal edge,
|
1831 |
|
|
it would be placed /before/ the call. Therefore, only
|
1832 |
|
|
constant memory references can be hoisted along abnormal
|
1833 |
|
|
edges. */
|
1834 |
|
|
{
|
1835 |
|
|
if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
|
1836 |
|
|
&& CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
|
1837 |
|
|
continue;
|
1838 |
|
|
|
1839 |
|
|
if (MEM_READONLY_P (expr->expr)
|
1840 |
|
|
&& !MEM_VOLATILE_P (expr->expr)
|
1841 |
|
|
&& MEM_NOTRAP_P (expr->expr))
|
1842 |
|
|
/* Constant memory reference, e.g., a PIC address. */
|
1843 |
|
|
continue;
|
1844 |
|
|
|
1845 |
|
|
/* ??? Optimally, we would use interprocedural alias
|
1846 |
|
|
analysis to determine if this mem is actually killed
|
1847 |
|
|
by this call. */
|
1848 |
|
|
|
1849 |
|
|
SET_BIT (prune_exprs, expr->bitmap_index);
|
1850 |
|
|
}
|
1851 |
|
|
}
|
1852 |
|
|
}
|
1853 |
|
|
|
1854 |
|
|
FOR_EACH_BB (bb)
|
1855 |
|
|
{
|
1856 |
|
|
edge e;
|
1857 |
|
|
edge_iterator ei;
|
1858 |
|
|
|
1859 |
|
|
/* If the current block is the destination of an abnormal edge, we
|
1860 |
|
|
kill all trapping (for PRE) and memory (for hoist) expressions
|
1861 |
|
|
because we won't be able to properly place the instruction on
|
1862 |
|
|
the edge. So make them neither anticipatable nor transparent.
|
1863 |
|
|
This is fairly conservative.
|
1864 |
|
|
|
1865 |
|
|
??? For hoisting it may be necessary to check for set-and-jump
|
1866 |
|
|
instructions here, not just for abnormal edges. The general problem
|
1867 |
|
|
is that when an expression cannot not be placed right at the end of
|
1868 |
|
|
a basic block we should account for any side-effects of a subsequent
|
1869 |
|
|
jump instructions that could clobber the expression. It would
|
1870 |
|
|
be best to implement this check along the lines of
|
1871 |
|
|
hoist_expr_reaches_here_p where the target block is already known
|
1872 |
|
|
and, hence, there's no need to conservatively prune expressions on
|
1873 |
|
|
"intermediate" set-and-jump instructions. */
|
1874 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1875 |
|
|
if ((e->flags & EDGE_ABNORMAL)
|
1876 |
|
|
&& (pre_p || CALL_P (BB_END (e->src))))
|
1877 |
|
|
{
|
1878 |
|
|
sbitmap_difference (antloc[bb->index],
|
1879 |
|
|
antloc[bb->index], prune_exprs);
|
1880 |
|
|
sbitmap_difference (transp[bb->index],
|
1881 |
|
|
transp[bb->index], prune_exprs);
|
1882 |
|
|
break;
|
1883 |
|
|
}
|
1884 |
|
|
}
|
1885 |
|
|
|
1886 |
|
|
sbitmap_free (prune_exprs);
|
1887 |
|
|
}
|
1888 |
|
|
|
1889 |
|
|
/* It may be necessary to insert a large number of insns on edges to
|
1890 |
|
|
make the existing occurrences of expressions fully redundant. This
|
1891 |
|
|
routine examines the set of insertions and deletions and if the ratio
|
1892 |
|
|
of insertions to deletions is too high for a particular expression, then
|
1893 |
|
|
the expression is removed from the insertion/deletion sets.
|
1894 |
|
|
|
1895 |
|
|
N_ELEMS is the number of elements in the hash table. */
|
1896 |
|
|
|
1897 |
|
|
static void
|
1898 |
|
|
prune_insertions_deletions (int n_elems)
|
1899 |
|
|
{
|
1900 |
|
|
sbitmap_iterator sbi;
|
1901 |
|
|
sbitmap prune_exprs;
|
1902 |
|
|
|
1903 |
|
|
/* We always use I to iterate over blocks/edges and J to iterate over
|
1904 |
|
|
expressions. */
|
1905 |
|
|
unsigned int i, j;
|
1906 |
|
|
|
1907 |
|
|
/* Counts for the number of times an expression needs to be inserted and
|
1908 |
|
|
number of times an expression can be removed as a result. */
|
1909 |
|
|
int *insertions = GCNEWVEC (int, n_elems);
|
1910 |
|
|
int *deletions = GCNEWVEC (int, n_elems);
|
1911 |
|
|
|
1912 |
|
|
/* Set of expressions which require too many insertions relative to
|
1913 |
|
|
the number of deletions achieved. We will prune these out of the
|
1914 |
|
|
insertion/deletion sets. */
|
1915 |
|
|
prune_exprs = sbitmap_alloc (n_elems);
|
1916 |
|
|
sbitmap_zero (prune_exprs);
|
1917 |
|
|
|
1918 |
|
|
/* Iterate over the edges counting the number of times each expression
|
1919 |
|
|
needs to be inserted. */
|
1920 |
|
|
for (i = 0; i < (unsigned) n_edges; i++)
|
1921 |
|
|
{
|
1922 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (pre_insert_map[i], 0, j, sbi)
|
1923 |
|
|
insertions[j]++;
|
1924 |
|
|
}
|
1925 |
|
|
|
1926 |
|
|
/* Similarly for deletions, but those occur in blocks rather than on
|
1927 |
|
|
edges. */
|
1928 |
|
|
for (i = 0; i < (unsigned) last_basic_block; i++)
|
1929 |
|
|
{
|
1930 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (pre_delete_map[i], 0, j, sbi)
|
1931 |
|
|
deletions[j]++;
|
1932 |
|
|
}
|
1933 |
|
|
|
1934 |
|
|
/* Now that we have accurate counts, iterate over the elements in the
|
1935 |
|
|
hash table and see if any need too many insertions relative to the
|
1936 |
|
|
number of evaluations that can be removed. If so, mark them in
|
1937 |
|
|
PRUNE_EXPRS. */
|
1938 |
|
|
for (j = 0; j < (unsigned) n_elems; j++)
|
1939 |
|
|
if (deletions[j]
|
1940 |
|
|
&& ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
|
1941 |
|
|
SET_BIT (prune_exprs, j);
|
1942 |
|
|
|
1943 |
|
|
/* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
|
1944 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (prune_exprs, 0, j, sbi)
|
1945 |
|
|
{
|
1946 |
|
|
for (i = 0; i < (unsigned) n_edges; i++)
|
1947 |
|
|
RESET_BIT (pre_insert_map[i], j);
|
1948 |
|
|
|
1949 |
|
|
for (i = 0; i < (unsigned) last_basic_block; i++)
|
1950 |
|
|
RESET_BIT (pre_delete_map[i], j);
|
1951 |
|
|
}
|
1952 |
|
|
|
1953 |
|
|
sbitmap_free (prune_exprs);
|
1954 |
|
|
free (insertions);
|
1955 |
|
|
free (deletions);
|
1956 |
|
|
}
|
1957 |
|
|
|
1958 |
|
|
/* Top level routine to do the dataflow analysis needed by PRE. */
|
1959 |
|
|
|
1960 |
|
|
static struct edge_list *
|
1961 |
|
|
compute_pre_data (void)
|
1962 |
|
|
{
|
1963 |
|
|
struct edge_list *edge_list;
|
1964 |
|
|
basic_block bb;
|
1965 |
|
|
|
1966 |
|
|
compute_local_properties (transp, comp, antloc, &expr_hash_table);
|
1967 |
|
|
prune_expressions (true);
|
1968 |
|
|
sbitmap_vector_zero (ae_kill, last_basic_block);
|
1969 |
|
|
|
1970 |
|
|
/* Compute ae_kill for each basic block using:
|
1971 |
|
|
|
1972 |
|
|
~(TRANSP | COMP)
|
1973 |
|
|
*/
|
1974 |
|
|
|
1975 |
|
|
FOR_EACH_BB (bb)
|
1976 |
|
|
{
|
1977 |
|
|
sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
|
1978 |
|
|
sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
|
1979 |
|
|
}
|
1980 |
|
|
|
1981 |
|
|
edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
|
1982 |
|
|
ae_kill, &pre_insert_map, &pre_delete_map);
|
1983 |
|
|
sbitmap_vector_free (antloc);
|
1984 |
|
|
antloc = NULL;
|
1985 |
|
|
sbitmap_vector_free (ae_kill);
|
1986 |
|
|
ae_kill = NULL;
|
1987 |
|
|
|
1988 |
|
|
prune_insertions_deletions (expr_hash_table.n_elems);
|
1989 |
|
|
|
1990 |
|
|
return edge_list;
|
1991 |
|
|
}
|
1992 |
|
|
|
1993 |
|
|
/* PRE utilities */
|
1994 |
|
|
|
1995 |
|
|
/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
|
1996 |
|
|
block BB.
|
1997 |
|
|
|
1998 |
|
|
VISITED is a pointer to a working buffer for tracking which BB's have
|
1999 |
|
|
been visited. It is NULL for the top-level call.
|
2000 |
|
|
|
2001 |
|
|
We treat reaching expressions that go through blocks containing the same
|
2002 |
|
|
reaching expression as "not reaching". E.g. if EXPR is generated in blocks
|
2003 |
|
|
2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
|
2004 |
|
|
2 as not reaching. The intent is to improve the probability of finding
|
2005 |
|
|
only one reaching expression and to reduce register lifetimes by picking
|
2006 |
|
|
the closest such expression. */
|
2007 |
|
|
|
2008 |
|
|
static int
|
2009 |
|
|
pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
|
2010 |
|
|
basic_block bb, char *visited)
|
2011 |
|
|
{
|
2012 |
|
|
edge pred;
|
2013 |
|
|
edge_iterator ei;
|
2014 |
|
|
|
2015 |
|
|
FOR_EACH_EDGE (pred, ei, bb->preds)
|
2016 |
|
|
{
|
2017 |
|
|
basic_block pred_bb = pred->src;
|
2018 |
|
|
|
2019 |
|
|
if (pred->src == ENTRY_BLOCK_PTR
|
2020 |
|
|
/* Has predecessor has already been visited? */
|
2021 |
|
|
|| visited[pred_bb->index])
|
2022 |
|
|
;/* Nothing to do. */
|
2023 |
|
|
|
2024 |
|
|
/* Does this predecessor generate this expression? */
|
2025 |
|
|
else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
|
2026 |
|
|
{
|
2027 |
|
|
/* Is this the occurrence we're looking for?
|
2028 |
|
|
Note that there's only one generating occurrence per block
|
2029 |
|
|
so we just need to check the block number. */
|
2030 |
|
|
if (occr_bb == pred_bb)
|
2031 |
|
|
return 1;
|
2032 |
|
|
|
2033 |
|
|
visited[pred_bb->index] = 1;
|
2034 |
|
|
}
|
2035 |
|
|
/* Ignore this predecessor if it kills the expression. */
|
2036 |
|
|
else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
|
2037 |
|
|
visited[pred_bb->index] = 1;
|
2038 |
|
|
|
2039 |
|
|
/* Neither gen nor kill. */
|
2040 |
|
|
else
|
2041 |
|
|
{
|
2042 |
|
|
visited[pred_bb->index] = 1;
|
2043 |
|
|
if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
|
2044 |
|
|
return 1;
|
2045 |
|
|
}
|
2046 |
|
|
}
|
2047 |
|
|
|
2048 |
|
|
/* All paths have been checked. */
|
2049 |
|
|
return 0;
|
2050 |
|
|
}
|
2051 |
|
|
|
2052 |
|
|
/* The wrapper for pre_expr_reaches_here_work that ensures that any
|
2053 |
|
|
memory allocated for that function is returned. */
|
2054 |
|
|
|
2055 |
|
|
static int
|
2056 |
|
|
pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
|
2057 |
|
|
{
|
2058 |
|
|
int rval;
|
2059 |
|
|
char *visited = XCNEWVEC (char, last_basic_block);
|
2060 |
|
|
|
2061 |
|
|
rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
|
2062 |
|
|
|
2063 |
|
|
free (visited);
|
2064 |
|
|
return rval;
|
2065 |
|
|
}
|
2066 |
|
|
|
2067 |
|
|
/* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
|
2068 |
|
|
|
2069 |
|
|
static rtx
|
2070 |
|
|
process_insert_insn (struct expr *expr)
|
2071 |
|
|
{
|
2072 |
|
|
rtx reg = expr->reaching_reg;
|
2073 |
|
|
/* Copy the expression to make sure we don't have any sharing issues. */
|
2074 |
|
|
rtx exp = copy_rtx (expr->expr);
|
2075 |
|
|
rtx pat;
|
2076 |
|
|
|
2077 |
|
|
start_sequence ();
|
2078 |
|
|
|
2079 |
|
|
/* If the expression is something that's an operand, like a constant,
|
2080 |
|
|
just copy it to a register. */
|
2081 |
|
|
if (general_operand (exp, GET_MODE (reg)))
|
2082 |
|
|
emit_move_insn (reg, exp);
|
2083 |
|
|
|
2084 |
|
|
/* Otherwise, make a new insn to compute this expression and make sure the
|
2085 |
|
|
insn will be recognized (this also adds any needed CLOBBERs). */
|
2086 |
|
|
else
|
2087 |
|
|
{
|
2088 |
|
|
rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
|
2089 |
|
|
|
2090 |
|
|
if (insn_invalid_p (insn))
|
2091 |
|
|
gcc_unreachable ();
|
2092 |
|
|
}
|
2093 |
|
|
|
2094 |
|
|
pat = get_insns ();
|
2095 |
|
|
end_sequence ();
|
2096 |
|
|
|
2097 |
|
|
return pat;
|
2098 |
|
|
}
|
2099 |
|
|
|
2100 |
|
|
/* Add EXPR to the end of basic block BB.
|
2101 |
|
|
|
2102 |
|
|
This is used by both the PRE and code hoisting. */
|
2103 |
|
|
|
2104 |
|
|
static void
|
2105 |
|
|
insert_insn_end_basic_block (struct expr *expr, basic_block bb)
|
2106 |
|
|
{
|
2107 |
|
|
rtx insn = BB_END (bb);
|
2108 |
|
|
rtx new_insn;
|
2109 |
|
|
rtx reg = expr->reaching_reg;
|
2110 |
|
|
int regno = REGNO (reg);
|
2111 |
|
|
rtx pat, pat_end;
|
2112 |
|
|
|
2113 |
|
|
pat = process_insert_insn (expr);
|
2114 |
|
|
gcc_assert (pat && INSN_P (pat));
|
2115 |
|
|
|
2116 |
|
|
pat_end = pat;
|
2117 |
|
|
while (NEXT_INSN (pat_end) != NULL_RTX)
|
2118 |
|
|
pat_end = NEXT_INSN (pat_end);
|
2119 |
|
|
|
2120 |
|
|
/* If the last insn is a jump, insert EXPR in front [taking care to
|
2121 |
|
|
handle cc0, etc. properly]. Similarly we need to care trapping
|
2122 |
|
|
instructions in presence of non-call exceptions. */
|
2123 |
|
|
|
2124 |
|
|
if (JUMP_P (insn)
|
2125 |
|
|
|| (NONJUMP_INSN_P (insn)
|
2126 |
|
|
&& (!single_succ_p (bb)
|
2127 |
|
|
|| single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
|
2128 |
|
|
{
|
2129 |
|
|
#ifdef HAVE_cc0
|
2130 |
|
|
rtx note;
|
2131 |
|
|
#endif
|
2132 |
|
|
|
2133 |
|
|
/* If this is a jump table, then we can't insert stuff here. Since
|
2134 |
|
|
we know the previous real insn must be the tablejump, we insert
|
2135 |
|
|
the new instruction just before the tablejump. */
|
2136 |
|
|
if (GET_CODE (PATTERN (insn)) == ADDR_VEC
|
2137 |
|
|
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
|
2138 |
|
|
insn = prev_active_insn (insn);
|
2139 |
|
|
|
2140 |
|
|
#ifdef HAVE_cc0
|
2141 |
|
|
/* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
|
2142 |
|
|
if cc0 isn't set. */
|
2143 |
|
|
note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
|
2144 |
|
|
if (note)
|
2145 |
|
|
insn = XEXP (note, 0);
|
2146 |
|
|
else
|
2147 |
|
|
{
|
2148 |
|
|
rtx maybe_cc0_setter = prev_nonnote_insn (insn);
|
2149 |
|
|
if (maybe_cc0_setter
|
2150 |
|
|
&& INSN_P (maybe_cc0_setter)
|
2151 |
|
|
&& sets_cc0_p (PATTERN (maybe_cc0_setter)))
|
2152 |
|
|
insn = maybe_cc0_setter;
|
2153 |
|
|
}
|
2154 |
|
|
#endif
|
2155 |
|
|
/* FIXME: What if something in cc0/jump uses value set in new insn? */
|
2156 |
|
|
new_insn = emit_insn_before_noloc (pat, insn, bb);
|
2157 |
|
|
}
|
2158 |
|
|
|
2159 |
|
|
/* Likewise if the last insn is a call, as will happen in the presence
|
2160 |
|
|
of exception handling. */
|
2161 |
|
|
else if (CALL_P (insn)
|
2162 |
|
|
&& (!single_succ_p (bb)
|
2163 |
|
|
|| single_succ_edge (bb)->flags & EDGE_ABNORMAL))
|
2164 |
|
|
{
|
2165 |
|
|
/* Keeping in mind targets with small register classes and parameters
|
2166 |
|
|
in registers, we search backward and place the instructions before
|
2167 |
|
|
the first parameter is loaded. Do this for everyone for consistency
|
2168 |
|
|
and a presumption that we'll get better code elsewhere as well. */
|
2169 |
|
|
|
2170 |
|
|
/* Since different machines initialize their parameter registers
|
2171 |
|
|
in different orders, assume nothing. Collect the set of all
|
2172 |
|
|
parameter registers. */
|
2173 |
|
|
insn = find_first_parameter_load (insn, BB_HEAD (bb));
|
2174 |
|
|
|
2175 |
|
|
/* If we found all the parameter loads, then we want to insert
|
2176 |
|
|
before the first parameter load.
|
2177 |
|
|
|
2178 |
|
|
If we did not find all the parameter loads, then we might have
|
2179 |
|
|
stopped on the head of the block, which could be a CODE_LABEL.
|
2180 |
|
|
If we inserted before the CODE_LABEL, then we would be putting
|
2181 |
|
|
the insn in the wrong basic block. In that case, put the insn
|
2182 |
|
|
after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
|
2183 |
|
|
while (LABEL_P (insn)
|
2184 |
|
|
|| NOTE_INSN_BASIC_BLOCK_P (insn))
|
2185 |
|
|
insn = NEXT_INSN (insn);
|
2186 |
|
|
|
2187 |
|
|
new_insn = emit_insn_before_noloc (pat, insn, bb);
|
2188 |
|
|
}
|
2189 |
|
|
else
|
2190 |
|
|
new_insn = emit_insn_after_noloc (pat, insn, bb);
|
2191 |
|
|
|
2192 |
|
|
while (1)
|
2193 |
|
|
{
|
2194 |
|
|
if (INSN_P (pat))
|
2195 |
|
|
add_label_notes (PATTERN (pat), new_insn);
|
2196 |
|
|
if (pat == pat_end)
|
2197 |
|
|
break;
|
2198 |
|
|
pat = NEXT_INSN (pat);
|
2199 |
|
|
}
|
2200 |
|
|
|
2201 |
|
|
gcse_create_count++;
|
2202 |
|
|
|
2203 |
|
|
if (dump_file)
|
2204 |
|
|
{
|
2205 |
|
|
fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
|
2206 |
|
|
bb->index, INSN_UID (new_insn));
|
2207 |
|
|
fprintf (dump_file, "copying expression %d to reg %d\n",
|
2208 |
|
|
expr->bitmap_index, regno);
|
2209 |
|
|
}
|
2210 |
|
|
}
|
2211 |
|
|
|
2212 |
|
|
/* Insert partially redundant expressions on edges in the CFG to make
|
2213 |
|
|
the expressions fully redundant. */
|
2214 |
|
|
|
2215 |
|
|
static int
|
2216 |
|
|
pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
|
2217 |
|
|
{
|
2218 |
|
|
int e, i, j, num_edges, set_size, did_insert = 0;
|
2219 |
|
|
sbitmap *inserted;
|
2220 |
|
|
|
2221 |
|
|
/* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
|
2222 |
|
|
if it reaches any of the deleted expressions. */
|
2223 |
|
|
|
2224 |
|
|
set_size = pre_insert_map[0]->size;
|
2225 |
|
|
num_edges = NUM_EDGES (edge_list);
|
2226 |
|
|
inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
|
2227 |
|
|
sbitmap_vector_zero (inserted, num_edges);
|
2228 |
|
|
|
2229 |
|
|
for (e = 0; e < num_edges; e++)
|
2230 |
|
|
{
|
2231 |
|
|
int indx;
|
2232 |
|
|
basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
|
2233 |
|
|
|
2234 |
|
|
for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
|
2235 |
|
|
{
|
2236 |
|
|
SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
|
2237 |
|
|
|
2238 |
|
|
for (j = indx;
|
2239 |
|
|
insert && j < (int) expr_hash_table.n_elems;
|
2240 |
|
|
j++, insert >>= 1)
|
2241 |
|
|
if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
|
2242 |
|
|
{
|
2243 |
|
|
struct expr *expr = index_map[j];
|
2244 |
|
|
struct occr *occr;
|
2245 |
|
|
|
2246 |
|
|
/* Now look at each deleted occurrence of this expression. */
|
2247 |
|
|
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
2248 |
|
|
{
|
2249 |
|
|
if (! occr->deleted_p)
|
2250 |
|
|
continue;
|
2251 |
|
|
|
2252 |
|
|
/* Insert this expression on this edge if it would
|
2253 |
|
|
reach the deleted occurrence in BB. */
|
2254 |
|
|
if (!TEST_BIT (inserted[e], j))
|
2255 |
|
|
{
|
2256 |
|
|
rtx insn;
|
2257 |
|
|
edge eg = INDEX_EDGE (edge_list, e);
|
2258 |
|
|
|
2259 |
|
|
/* We can't insert anything on an abnormal and
|
2260 |
|
|
critical edge, so we insert the insn at the end of
|
2261 |
|
|
the previous block. There are several alternatives
|
2262 |
|
|
detailed in Morgans book P277 (sec 10.5) for
|
2263 |
|
|
handling this situation. This one is easiest for
|
2264 |
|
|
now. */
|
2265 |
|
|
|
2266 |
|
|
if (eg->flags & EDGE_ABNORMAL)
|
2267 |
|
|
insert_insn_end_basic_block (index_map[j], bb);
|
2268 |
|
|
else
|
2269 |
|
|
{
|
2270 |
|
|
insn = process_insert_insn (index_map[j]);
|
2271 |
|
|
insert_insn_on_edge (insn, eg);
|
2272 |
|
|
}
|
2273 |
|
|
|
2274 |
|
|
if (dump_file)
|
2275 |
|
|
{
|
2276 |
|
|
fprintf (dump_file, "PRE: edge (%d,%d), ",
|
2277 |
|
|
bb->index,
|
2278 |
|
|
INDEX_EDGE_SUCC_BB (edge_list, e)->index);
|
2279 |
|
|
fprintf (dump_file, "copy expression %d\n",
|
2280 |
|
|
expr->bitmap_index);
|
2281 |
|
|
}
|
2282 |
|
|
|
2283 |
|
|
update_ld_motion_stores (expr);
|
2284 |
|
|
SET_BIT (inserted[e], j);
|
2285 |
|
|
did_insert = 1;
|
2286 |
|
|
gcse_create_count++;
|
2287 |
|
|
}
|
2288 |
|
|
}
|
2289 |
|
|
}
|
2290 |
|
|
}
|
2291 |
|
|
}
|
2292 |
|
|
|
2293 |
|
|
sbitmap_vector_free (inserted);
|
2294 |
|
|
return did_insert;
|
2295 |
|
|
}
|
2296 |
|
|
|
2297 |
|
|
/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
|
2298 |
|
|
Given "old_reg <- expr" (INSN), instead of adding after it
|
2299 |
|
|
reaching_reg <- old_reg
|
2300 |
|
|
it's better to do the following:
|
2301 |
|
|
reaching_reg <- expr
|
2302 |
|
|
old_reg <- reaching_reg
|
2303 |
|
|
because this way copy propagation can discover additional PRE
|
2304 |
|
|
opportunities. But if this fails, we try the old way.
|
2305 |
|
|
When "expr" is a store, i.e.
|
2306 |
|
|
given "MEM <- old_reg", instead of adding after it
|
2307 |
|
|
reaching_reg <- old_reg
|
2308 |
|
|
it's better to add it before as follows:
|
2309 |
|
|
reaching_reg <- old_reg
|
2310 |
|
|
MEM <- reaching_reg. */
|
2311 |
|
|
|
2312 |
|
|
static void
|
2313 |
|
|
pre_insert_copy_insn (struct expr *expr, rtx insn)
|
2314 |
|
|
{
|
2315 |
|
|
rtx reg = expr->reaching_reg;
|
2316 |
|
|
int regno = REGNO (reg);
|
2317 |
|
|
int indx = expr->bitmap_index;
|
2318 |
|
|
rtx pat = PATTERN (insn);
|
2319 |
|
|
rtx set, first_set, new_insn;
|
2320 |
|
|
rtx old_reg;
|
2321 |
|
|
int i;
|
2322 |
|
|
|
2323 |
|
|
/* This block matches the logic in hash_scan_insn. */
|
2324 |
|
|
switch (GET_CODE (pat))
|
2325 |
|
|
{
|
2326 |
|
|
case SET:
|
2327 |
|
|
set = pat;
|
2328 |
|
|
break;
|
2329 |
|
|
|
2330 |
|
|
case PARALLEL:
|
2331 |
|
|
/* Search through the parallel looking for the set whose
|
2332 |
|
|
source was the expression that we're interested in. */
|
2333 |
|
|
first_set = NULL_RTX;
|
2334 |
|
|
set = NULL_RTX;
|
2335 |
|
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
2336 |
|
|
{
|
2337 |
|
|
rtx x = XVECEXP (pat, 0, i);
|
2338 |
|
|
if (GET_CODE (x) == SET)
|
2339 |
|
|
{
|
2340 |
|
|
/* If the source was a REG_EQUAL or REG_EQUIV note, we
|
2341 |
|
|
may not find an equivalent expression, but in this
|
2342 |
|
|
case the PARALLEL will have a single set. */
|
2343 |
|
|
if (first_set == NULL_RTX)
|
2344 |
|
|
first_set = x;
|
2345 |
|
|
if (expr_equiv_p (SET_SRC (x), expr->expr))
|
2346 |
|
|
{
|
2347 |
|
|
set = x;
|
2348 |
|
|
break;
|
2349 |
|
|
}
|
2350 |
|
|
}
|
2351 |
|
|
}
|
2352 |
|
|
|
2353 |
|
|
gcc_assert (first_set);
|
2354 |
|
|
if (set == NULL_RTX)
|
2355 |
|
|
set = first_set;
|
2356 |
|
|
break;
|
2357 |
|
|
|
2358 |
|
|
default:
|
2359 |
|
|
gcc_unreachable ();
|
2360 |
|
|
}
|
2361 |
|
|
|
2362 |
|
|
if (REG_P (SET_DEST (set)))
|
2363 |
|
|
{
|
2364 |
|
|
old_reg = SET_DEST (set);
|
2365 |
|
|
/* Check if we can modify the set destination in the original insn. */
|
2366 |
|
|
if (validate_change (insn, &SET_DEST (set), reg, 0))
|
2367 |
|
|
{
|
2368 |
|
|
new_insn = gen_move_insn (old_reg, reg);
|
2369 |
|
|
new_insn = emit_insn_after (new_insn, insn);
|
2370 |
|
|
}
|
2371 |
|
|
else
|
2372 |
|
|
{
|
2373 |
|
|
new_insn = gen_move_insn (reg, old_reg);
|
2374 |
|
|
new_insn = emit_insn_after (new_insn, insn);
|
2375 |
|
|
}
|
2376 |
|
|
}
|
2377 |
|
|
else /* This is possible only in case of a store to memory. */
|
2378 |
|
|
{
|
2379 |
|
|
old_reg = SET_SRC (set);
|
2380 |
|
|
new_insn = gen_move_insn (reg, old_reg);
|
2381 |
|
|
|
2382 |
|
|
/* Check if we can modify the set source in the original insn. */
|
2383 |
|
|
if (validate_change (insn, &SET_SRC (set), reg, 0))
|
2384 |
|
|
new_insn = emit_insn_before (new_insn, insn);
|
2385 |
|
|
else
|
2386 |
|
|
new_insn = emit_insn_after (new_insn, insn);
|
2387 |
|
|
}
|
2388 |
|
|
|
2389 |
|
|
gcse_create_count++;
|
2390 |
|
|
|
2391 |
|
|
if (dump_file)
|
2392 |
|
|
fprintf (dump_file,
|
2393 |
|
|
"PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
|
2394 |
|
|
BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
|
2395 |
|
|
INSN_UID (insn), regno);
|
2396 |
|
|
}
|
2397 |
|
|
|
2398 |
|
|
/* Copy available expressions that reach the redundant expression
|
2399 |
|
|
to `reaching_reg'. */
|
2400 |
|
|
|
2401 |
|
|
static void
|
2402 |
|
|
pre_insert_copies (void)
|
2403 |
|
|
{
|
2404 |
|
|
unsigned int i, added_copy;
|
2405 |
|
|
struct expr *expr;
|
2406 |
|
|
struct occr *occr;
|
2407 |
|
|
struct occr *avail;
|
2408 |
|
|
|
2409 |
|
|
/* For each available expression in the table, copy the result to
|
2410 |
|
|
`reaching_reg' if the expression reaches a deleted one.
|
2411 |
|
|
|
2412 |
|
|
??? The current algorithm is rather brute force.
|
2413 |
|
|
Need to do some profiling. */
|
2414 |
|
|
|
2415 |
|
|
for (i = 0; i < expr_hash_table.size; i++)
|
2416 |
|
|
for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
|
2417 |
|
|
{
|
2418 |
|
|
/* If the basic block isn't reachable, PPOUT will be TRUE. However,
|
2419 |
|
|
we don't want to insert a copy here because the expression may not
|
2420 |
|
|
really be redundant. So only insert an insn if the expression was
|
2421 |
|
|
deleted. This test also avoids further processing if the
|
2422 |
|
|
expression wasn't deleted anywhere. */
|
2423 |
|
|
if (expr->reaching_reg == NULL)
|
2424 |
|
|
continue;
|
2425 |
|
|
|
2426 |
|
|
/* Set when we add a copy for that expression. */
|
2427 |
|
|
added_copy = 0;
|
2428 |
|
|
|
2429 |
|
|
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
2430 |
|
|
{
|
2431 |
|
|
if (! occr->deleted_p)
|
2432 |
|
|
continue;
|
2433 |
|
|
|
2434 |
|
|
for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
|
2435 |
|
|
{
|
2436 |
|
|
rtx insn = avail->insn;
|
2437 |
|
|
|
2438 |
|
|
/* No need to handle this one if handled already. */
|
2439 |
|
|
if (avail->copied_p)
|
2440 |
|
|
continue;
|
2441 |
|
|
|
2442 |
|
|
/* Don't handle this one if it's a redundant one. */
|
2443 |
|
|
if (INSN_DELETED_P (insn))
|
2444 |
|
|
continue;
|
2445 |
|
|
|
2446 |
|
|
/* Or if the expression doesn't reach the deleted one. */
|
2447 |
|
|
if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
|
2448 |
|
|
expr,
|
2449 |
|
|
BLOCK_FOR_INSN (occr->insn)))
|
2450 |
|
|
continue;
|
2451 |
|
|
|
2452 |
|
|
added_copy = 1;
|
2453 |
|
|
|
2454 |
|
|
/* Copy the result of avail to reaching_reg. */
|
2455 |
|
|
pre_insert_copy_insn (expr, insn);
|
2456 |
|
|
avail->copied_p = 1;
|
2457 |
|
|
}
|
2458 |
|
|
}
|
2459 |
|
|
|
2460 |
|
|
if (added_copy)
|
2461 |
|
|
update_ld_motion_stores (expr);
|
2462 |
|
|
}
|
2463 |
|
|
}
|
2464 |
|
|
|
2465 |
|
|
/* Emit move from SRC to DEST noting the equivalence with expression computed
|
2466 |
|
|
in INSN. */
|
2467 |
|
|
|
2468 |
|
|
static rtx
|
2469 |
|
|
gcse_emit_move_after (rtx dest, rtx src, rtx insn)
|
2470 |
|
|
{
|
2471 |
|
|
rtx new_rtx;
|
2472 |
|
|
rtx set = single_set (insn), set2;
|
2473 |
|
|
rtx note;
|
2474 |
|
|
rtx eqv;
|
2475 |
|
|
|
2476 |
|
|
/* This should never fail since we're creating a reg->reg copy
|
2477 |
|
|
we've verified to be valid. */
|
2478 |
|
|
|
2479 |
|
|
new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
|
2480 |
|
|
|
2481 |
|
|
/* Note the equivalence for local CSE pass. */
|
2482 |
|
|
set2 = single_set (new_rtx);
|
2483 |
|
|
if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
|
2484 |
|
|
return new_rtx;
|
2485 |
|
|
if ((note = find_reg_equal_equiv_note (insn)))
|
2486 |
|
|
eqv = XEXP (note, 0);
|
2487 |
|
|
else
|
2488 |
|
|
eqv = SET_SRC (set);
|
2489 |
|
|
|
2490 |
|
|
set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
|
2491 |
|
|
|
2492 |
|
|
return new_rtx;
|
2493 |
|
|
}
|
2494 |
|
|
|
2495 |
|
|
/* Delete redundant computations.
|
2496 |
|
|
Deletion is done by changing the insn to copy the `reaching_reg' of
|
2497 |
|
|
the expression into the result of the SET. It is left to later passes
|
2498 |
|
|
(cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
|
2499 |
|
|
|
2500 |
|
|
Return nonzero if a change is made. */
|
2501 |
|
|
|
2502 |
|
|
static int
|
2503 |
|
|
pre_delete (void)
|
2504 |
|
|
{
|
2505 |
|
|
unsigned int i;
|
2506 |
|
|
int changed;
|
2507 |
|
|
struct expr *expr;
|
2508 |
|
|
struct occr *occr;
|
2509 |
|
|
|
2510 |
|
|
changed = 0;
|
2511 |
|
|
for (i = 0; i < expr_hash_table.size; i++)
|
2512 |
|
|
for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
|
2513 |
|
|
{
|
2514 |
|
|
int indx = expr->bitmap_index;
|
2515 |
|
|
|
2516 |
|
|
/* We only need to search antic_occr since we require ANTLOC != 0. */
|
2517 |
|
|
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
2518 |
|
|
{
|
2519 |
|
|
rtx insn = occr->insn;
|
2520 |
|
|
rtx set;
|
2521 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
2522 |
|
|
|
2523 |
|
|
/* We only delete insns that have a single_set. */
|
2524 |
|
|
if (TEST_BIT (pre_delete_map[bb->index], indx)
|
2525 |
|
|
&& (set = single_set (insn)) != 0
|
2526 |
|
|
&& dbg_cnt (pre_insn))
|
2527 |
|
|
{
|
2528 |
|
|
/* Create a pseudo-reg to store the result of reaching
|
2529 |
|
|
expressions into. Get the mode for the new pseudo from
|
2530 |
|
|
the mode of the original destination pseudo. */
|
2531 |
|
|
if (expr->reaching_reg == NULL)
|
2532 |
|
|
expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
|
2533 |
|
|
|
2534 |
|
|
gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
|
2535 |
|
|
delete_insn (insn);
|
2536 |
|
|
occr->deleted_p = 1;
|
2537 |
|
|
changed = 1;
|
2538 |
|
|
gcse_subst_count++;
|
2539 |
|
|
|
2540 |
|
|
if (dump_file)
|
2541 |
|
|
{
|
2542 |
|
|
fprintf (dump_file,
|
2543 |
|
|
"PRE: redundant insn %d (expression %d) in ",
|
2544 |
|
|
INSN_UID (insn), indx);
|
2545 |
|
|
fprintf (dump_file, "bb %d, reaching reg is %d\n",
|
2546 |
|
|
bb->index, REGNO (expr->reaching_reg));
|
2547 |
|
|
}
|
2548 |
|
|
}
|
2549 |
|
|
}
|
2550 |
|
|
}
|
2551 |
|
|
|
2552 |
|
|
return changed;
|
2553 |
|
|
}
|
2554 |
|
|
|
2555 |
|
|
/* Perform GCSE optimizations using PRE.
|
2556 |
|
|
This is called by one_pre_gcse_pass after all the dataflow analysis
|
2557 |
|
|
has been done.
|
2558 |
|
|
|
2559 |
|
|
This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
|
2560 |
|
|
lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
|
2561 |
|
|
Compiler Design and Implementation.
|
2562 |
|
|
|
2563 |
|
|
??? A new pseudo reg is created to hold the reaching expression. The nice
|
2564 |
|
|
thing about the classical approach is that it would try to use an existing
|
2565 |
|
|
reg. If the register can't be adequately optimized [i.e. we introduce
|
2566 |
|
|
reload problems], one could add a pass here to propagate the new register
|
2567 |
|
|
through the block.
|
2568 |
|
|
|
2569 |
|
|
??? We don't handle single sets in PARALLELs because we're [currently] not
|
2570 |
|
|
able to copy the rest of the parallel when we insert copies to create full
|
2571 |
|
|
redundancies from partial redundancies. However, there's no reason why we
|
2572 |
|
|
can't handle PARALLELs in the cases where there are no partial
|
2573 |
|
|
redundancies. */
|
2574 |
|
|
|
2575 |
|
|
static int
|
2576 |
|
|
pre_gcse (struct edge_list *edge_list)
|
2577 |
|
|
{
|
2578 |
|
|
unsigned int i;
|
2579 |
|
|
int did_insert, changed;
|
2580 |
|
|
struct expr **index_map;
|
2581 |
|
|
struct expr *expr;
|
2582 |
|
|
|
2583 |
|
|
/* Compute a mapping from expression number (`bitmap_index') to
|
2584 |
|
|
hash table entry. */
|
2585 |
|
|
|
2586 |
|
|
index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
|
2587 |
|
|
for (i = 0; i < expr_hash_table.size; i++)
|
2588 |
|
|
for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
|
2589 |
|
|
index_map[expr->bitmap_index] = expr;
|
2590 |
|
|
|
2591 |
|
|
/* Delete the redundant insns first so that
|
2592 |
|
|
- we know what register to use for the new insns and for the other
|
2593 |
|
|
ones with reaching expressions
|
2594 |
|
|
- we know which insns are redundant when we go to create copies */
|
2595 |
|
|
|
2596 |
|
|
changed = pre_delete ();
|
2597 |
|
|
did_insert = pre_edge_insert (edge_list, index_map);
|
2598 |
|
|
|
2599 |
|
|
/* In other places with reaching expressions, copy the expression to the
|
2600 |
|
|
specially allocated pseudo-reg that reaches the redundant expr. */
|
2601 |
|
|
pre_insert_copies ();
|
2602 |
|
|
if (did_insert)
|
2603 |
|
|
{
|
2604 |
|
|
commit_edge_insertions ();
|
2605 |
|
|
changed = 1;
|
2606 |
|
|
}
|
2607 |
|
|
|
2608 |
|
|
free (index_map);
|
2609 |
|
|
return changed;
|
2610 |
|
|
}
|
2611 |
|
|
|
2612 |
|
|
/* Top level routine to perform one PRE GCSE pass.
|
2613 |
|
|
|
2614 |
|
|
Return nonzero if a change was made. */
|
2615 |
|
|
|
2616 |
|
|
static int
|
2617 |
|
|
one_pre_gcse_pass (void)
|
2618 |
|
|
{
|
2619 |
|
|
int changed = 0;
|
2620 |
|
|
|
2621 |
|
|
gcse_subst_count = 0;
|
2622 |
|
|
gcse_create_count = 0;
|
2623 |
|
|
|
2624 |
|
|
/* Return if there's nothing to do, or it is too expensive. */
|
2625 |
|
|
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
|
2626 |
|
|
|| is_too_expensive (_("PRE disabled")))
|
2627 |
|
|
return 0;
|
2628 |
|
|
|
2629 |
|
|
/* We need alias. */
|
2630 |
|
|
init_alias_analysis ();
|
2631 |
|
|
|
2632 |
|
|
bytes_used = 0;
|
2633 |
|
|
gcc_obstack_init (&gcse_obstack);
|
2634 |
|
|
alloc_gcse_mem ();
|
2635 |
|
|
|
2636 |
|
|
alloc_hash_table (&expr_hash_table);
|
2637 |
|
|
add_noreturn_fake_exit_edges ();
|
2638 |
|
|
if (flag_gcse_lm)
|
2639 |
|
|
compute_ld_motion_mems ();
|
2640 |
|
|
|
2641 |
|
|
compute_hash_table (&expr_hash_table);
|
2642 |
|
|
if (flag_gcse_lm)
|
2643 |
|
|
trim_ld_motion_mems ();
|
2644 |
|
|
if (dump_file)
|
2645 |
|
|
dump_hash_table (dump_file, "Expression", &expr_hash_table);
|
2646 |
|
|
|
2647 |
|
|
if (expr_hash_table.n_elems > 0)
|
2648 |
|
|
{
|
2649 |
|
|
struct edge_list *edge_list;
|
2650 |
|
|
alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
|
2651 |
|
|
edge_list = compute_pre_data ();
|
2652 |
|
|
changed |= pre_gcse (edge_list);
|
2653 |
|
|
free_edge_list (edge_list);
|
2654 |
|
|
free_pre_mem ();
|
2655 |
|
|
}
|
2656 |
|
|
|
2657 |
|
|
if (flag_gcse_lm)
|
2658 |
|
|
free_ld_motion_mems ();
|
2659 |
|
|
remove_fake_exit_edges ();
|
2660 |
|
|
free_hash_table (&expr_hash_table);
|
2661 |
|
|
|
2662 |
|
|
free_gcse_mem ();
|
2663 |
|
|
obstack_free (&gcse_obstack, NULL);
|
2664 |
|
|
|
2665 |
|
|
/* We are finished with alias. */
|
2666 |
|
|
end_alias_analysis ();
|
2667 |
|
|
|
2668 |
|
|
if (dump_file)
|
2669 |
|
|
{
|
2670 |
|
|
fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
|
2671 |
|
|
current_function_name (), n_basic_blocks, bytes_used);
|
2672 |
|
|
fprintf (dump_file, "%d substs, %d insns created\n",
|
2673 |
|
|
gcse_subst_count, gcse_create_count);
|
2674 |
|
|
}
|
2675 |
|
|
|
2676 |
|
|
return changed;
|
2677 |
|
|
}
|
2678 |
|
|
|
2679 |
|
|
/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
|
2680 |
|
|
to INSN. If such notes are added to an insn which references a
|
2681 |
|
|
CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
|
2682 |
|
|
that note, because the following loop optimization pass requires
|
2683 |
|
|
them. */
|
2684 |
|
|
|
2685 |
|
|
/* ??? If there was a jump optimization pass after gcse and before loop,
|
2686 |
|
|
then we would not need to do this here, because jump would add the
|
2687 |
|
|
necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
|
2688 |
|
|
|
2689 |
|
|
static void
|
2690 |
|
|
add_label_notes (rtx x, rtx insn)
|
2691 |
|
|
{
|
2692 |
|
|
enum rtx_code code = GET_CODE (x);
|
2693 |
|
|
int i, j;
|
2694 |
|
|
const char *fmt;
|
2695 |
|
|
|
2696 |
|
|
if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
|
2697 |
|
|
{
|
2698 |
|
|
/* This code used to ignore labels that referred to dispatch tables to
|
2699 |
|
|
avoid flow generating (slightly) worse code.
|
2700 |
|
|
|
2701 |
|
|
We no longer ignore such label references (see LABEL_REF handling in
|
2702 |
|
|
mark_jump_label for additional information). */
|
2703 |
|
|
|
2704 |
|
|
/* There's no reason for current users to emit jump-insns with
|
2705 |
|
|
such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
|
2706 |
|
|
notes. */
|
2707 |
|
|
gcc_assert (!JUMP_P (insn));
|
2708 |
|
|
add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
|
2709 |
|
|
|
2710 |
|
|
if (LABEL_P (XEXP (x, 0)))
|
2711 |
|
|
LABEL_NUSES (XEXP (x, 0))++;
|
2712 |
|
|
|
2713 |
|
|
return;
|
2714 |
|
|
}
|
2715 |
|
|
|
2716 |
|
|
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
|
2717 |
|
|
{
|
2718 |
|
|
if (fmt[i] == 'e')
|
2719 |
|
|
add_label_notes (XEXP (x, i), insn);
|
2720 |
|
|
else if (fmt[i] == 'E')
|
2721 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
2722 |
|
|
add_label_notes (XVECEXP (x, i, j), insn);
|
2723 |
|
|
}
|
2724 |
|
|
}
|
2725 |
|
|
|
2726 |
|
|
/* Code Hoisting variables and subroutines. */
|
2727 |
|
|
|
2728 |
|
|
/* Very busy expressions. */
|
2729 |
|
|
static sbitmap *hoist_vbein;
|
2730 |
|
|
static sbitmap *hoist_vbeout;
|
2731 |
|
|
|
2732 |
|
|
/* ??? We could compute post dominators and run this algorithm in
|
2733 |
|
|
reverse to perform tail merging, doing so would probably be
|
2734 |
|
|
more effective than the tail merging code in jump.c.
|
2735 |
|
|
|
2736 |
|
|
It's unclear if tail merging could be run in parallel with
|
2737 |
|
|
code hoisting. It would be nice. */
|
2738 |
|
|
|
2739 |
|
|
/* Allocate vars used for code hoisting analysis. */
|
2740 |
|
|
|
2741 |
|
|
static void
|
2742 |
|
|
alloc_code_hoist_mem (int n_blocks, int n_exprs)
|
2743 |
|
|
{
|
2744 |
|
|
antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
|
2745 |
|
|
transp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
2746 |
|
|
comp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
2747 |
|
|
|
2748 |
|
|
hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
|
2749 |
|
|
hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
2750 |
|
|
}
|
2751 |
|
|
|
2752 |
|
|
/* Free vars used for code hoisting analysis. */
|
2753 |
|
|
|
2754 |
|
|
static void
|
2755 |
|
|
free_code_hoist_mem (void)
|
2756 |
|
|
{
|
2757 |
|
|
sbitmap_vector_free (antloc);
|
2758 |
|
|
sbitmap_vector_free (transp);
|
2759 |
|
|
sbitmap_vector_free (comp);
|
2760 |
|
|
|
2761 |
|
|
sbitmap_vector_free (hoist_vbein);
|
2762 |
|
|
sbitmap_vector_free (hoist_vbeout);
|
2763 |
|
|
|
2764 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
2765 |
|
|
}
|
2766 |
|
|
|
2767 |
|
|
/* Compute the very busy expressions at entry/exit from each block.
|
2768 |
|
|
|
2769 |
|
|
An expression is very busy if all paths from a given point
|
2770 |
|
|
compute the expression. */
|
2771 |
|
|
|
2772 |
|
|
static void
|
2773 |
|
|
compute_code_hoist_vbeinout (void)
|
2774 |
|
|
{
|
2775 |
|
|
int changed, passes;
|
2776 |
|
|
basic_block bb;
|
2777 |
|
|
|
2778 |
|
|
sbitmap_vector_zero (hoist_vbeout, last_basic_block);
|
2779 |
|
|
sbitmap_vector_zero (hoist_vbein, last_basic_block);
|
2780 |
|
|
|
2781 |
|
|
passes = 0;
|
2782 |
|
|
changed = 1;
|
2783 |
|
|
|
2784 |
|
|
while (changed)
|
2785 |
|
|
{
|
2786 |
|
|
changed = 0;
|
2787 |
|
|
|
2788 |
|
|
/* We scan the blocks in the reverse order to speed up
|
2789 |
|
|
the convergence. */
|
2790 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
2791 |
|
|
{
|
2792 |
|
|
if (bb->next_bb != EXIT_BLOCK_PTR)
|
2793 |
|
|
{
|
2794 |
|
|
sbitmap_intersection_of_succs (hoist_vbeout[bb->index],
|
2795 |
|
|
hoist_vbein, bb->index);
|
2796 |
|
|
|
2797 |
|
|
/* Include expressions in VBEout that are calculated
|
2798 |
|
|
in BB and available at its end. */
|
2799 |
|
|
sbitmap_a_or_b (hoist_vbeout[bb->index],
|
2800 |
|
|
hoist_vbeout[bb->index], comp[bb->index]);
|
2801 |
|
|
}
|
2802 |
|
|
|
2803 |
|
|
changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index],
|
2804 |
|
|
antloc[bb->index],
|
2805 |
|
|
hoist_vbeout[bb->index],
|
2806 |
|
|
transp[bb->index]);
|
2807 |
|
|
}
|
2808 |
|
|
|
2809 |
|
|
passes++;
|
2810 |
|
|
}
|
2811 |
|
|
|
2812 |
|
|
if (dump_file)
|
2813 |
|
|
{
|
2814 |
|
|
fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
|
2815 |
|
|
|
2816 |
|
|
FOR_EACH_BB (bb)
|
2817 |
|
|
{
|
2818 |
|
|
fprintf (dump_file, "vbein (%d): ", bb->index);
|
2819 |
|
|
dump_sbitmap_file (dump_file, hoist_vbein[bb->index]);
|
2820 |
|
|
fprintf (dump_file, "vbeout(%d): ", bb->index);
|
2821 |
|
|
dump_sbitmap_file (dump_file, hoist_vbeout[bb->index]);
|
2822 |
|
|
}
|
2823 |
|
|
}
|
2824 |
|
|
}
|
2825 |
|
|
|
2826 |
|
|
/* Top level routine to do the dataflow analysis needed by code hoisting. */
|
2827 |
|
|
|
2828 |
|
|
static void
|
2829 |
|
|
compute_code_hoist_data (void)
|
2830 |
|
|
{
|
2831 |
|
|
compute_local_properties (transp, comp, antloc, &expr_hash_table);
|
2832 |
|
|
prune_expressions (false);
|
2833 |
|
|
compute_code_hoist_vbeinout ();
|
2834 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
2835 |
|
|
if (dump_file)
|
2836 |
|
|
fprintf (dump_file, "\n");
|
2837 |
|
|
}
|
2838 |
|
|
|
2839 |
|
|
/* Determine if the expression identified by EXPR_INDEX would
|
2840 |
|
|
reach BB unimpared if it was placed at the end of EXPR_BB.
|
2841 |
|
|
Stop the search if the expression would need to be moved more
|
2842 |
|
|
than DISTANCE instructions.
|
2843 |
|
|
|
2844 |
|
|
It's unclear exactly what Muchnick meant by "unimpared". It seems
|
2845 |
|
|
to me that the expression must either be computed or transparent in
|
2846 |
|
|
*every* block in the path(s) from EXPR_BB to BB. Any other definition
|
2847 |
|
|
would allow the expression to be hoisted out of loops, even if
|
2848 |
|
|
the expression wasn't a loop invariant.
|
2849 |
|
|
|
2850 |
|
|
Contrast this to reachability for PRE where an expression is
|
2851 |
|
|
considered reachable if *any* path reaches instead of *all*
|
2852 |
|
|
paths. */
|
2853 |
|
|
|
2854 |
|
|
static int
|
2855 |
|
|
hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb,
|
2856 |
|
|
char *visited, int distance, int *bb_size)
|
2857 |
|
|
{
|
2858 |
|
|
edge pred;
|
2859 |
|
|
edge_iterator ei;
|
2860 |
|
|
int visited_allocated_locally = 0;
|
2861 |
|
|
|
2862 |
|
|
/* Terminate the search if distance, for which EXPR is allowed to move,
|
2863 |
|
|
is exhausted. */
|
2864 |
|
|
if (distance > 0)
|
2865 |
|
|
{
|
2866 |
|
|
distance -= bb_size[bb->index];
|
2867 |
|
|
|
2868 |
|
|
if (distance <= 0)
|
2869 |
|
|
return 0;
|
2870 |
|
|
}
|
2871 |
|
|
else
|
2872 |
|
|
gcc_assert (distance == 0);
|
2873 |
|
|
|
2874 |
|
|
if (visited == NULL)
|
2875 |
|
|
{
|
2876 |
|
|
visited_allocated_locally = 1;
|
2877 |
|
|
visited = XCNEWVEC (char, last_basic_block);
|
2878 |
|
|
}
|
2879 |
|
|
|
2880 |
|
|
FOR_EACH_EDGE (pred, ei, bb->preds)
|
2881 |
|
|
{
|
2882 |
|
|
basic_block pred_bb = pred->src;
|
2883 |
|
|
|
2884 |
|
|
if (pred->src == ENTRY_BLOCK_PTR)
|
2885 |
|
|
break;
|
2886 |
|
|
else if (pred_bb == expr_bb)
|
2887 |
|
|
continue;
|
2888 |
|
|
else if (visited[pred_bb->index])
|
2889 |
|
|
continue;
|
2890 |
|
|
|
2891 |
|
|
else if (! TEST_BIT (transp[pred_bb->index], expr_index))
|
2892 |
|
|
break;
|
2893 |
|
|
|
2894 |
|
|
/* Not killed. */
|
2895 |
|
|
else
|
2896 |
|
|
{
|
2897 |
|
|
visited[pred_bb->index] = 1;
|
2898 |
|
|
if (! hoist_expr_reaches_here_p (expr_bb, expr_index, pred_bb,
|
2899 |
|
|
visited, distance, bb_size))
|
2900 |
|
|
break;
|
2901 |
|
|
}
|
2902 |
|
|
}
|
2903 |
|
|
if (visited_allocated_locally)
|
2904 |
|
|
free (visited);
|
2905 |
|
|
|
2906 |
|
|
return (pred == NULL);
|
2907 |
|
|
}
|
2908 |
|
|
|
2909 |
|
|
/* Find occurence in BB. */
|
2910 |
|
|
|
2911 |
|
|
static struct occr *
|
2912 |
|
|
find_occr_in_bb (struct occr *occr, basic_block bb)
|
2913 |
|
|
{
|
2914 |
|
|
/* Find the right occurrence of this expression. */
|
2915 |
|
|
while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
|
2916 |
|
|
occr = occr->next;
|
2917 |
|
|
|
2918 |
|
|
return occr;
|
2919 |
|
|
}
|
2920 |
|
|
|
2921 |
|
|
/* Actually perform code hoisting. */
|
2922 |
|
|
|
2923 |
|
|
static int
|
2924 |
|
|
hoist_code (void)
|
2925 |
|
|
{
|
2926 |
|
|
basic_block bb, dominated;
|
2927 |
|
|
VEC (basic_block, heap) *dom_tree_walk;
|
2928 |
|
|
unsigned int dom_tree_walk_index;
|
2929 |
|
|
VEC (basic_block, heap) *domby;
|
2930 |
|
|
unsigned int i,j;
|
2931 |
|
|
struct expr **index_map;
|
2932 |
|
|
struct expr *expr;
|
2933 |
|
|
int *to_bb_head;
|
2934 |
|
|
int *bb_size;
|
2935 |
|
|
int changed = 0;
|
2936 |
|
|
|
2937 |
|
|
/* Compute a mapping from expression number (`bitmap_index') to
|
2938 |
|
|
hash table entry. */
|
2939 |
|
|
|
2940 |
|
|
index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
|
2941 |
|
|
for (i = 0; i < expr_hash_table.size; i++)
|
2942 |
|
|
for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
|
2943 |
|
|
index_map[expr->bitmap_index] = expr;
|
2944 |
|
|
|
2945 |
|
|
/* Calculate sizes of basic blocks and note how far
|
2946 |
|
|
each instruction is from the start of its block. We then use this
|
2947 |
|
|
data to restrict distance an expression can travel. */
|
2948 |
|
|
|
2949 |
|
|
to_bb_head = XCNEWVEC (int, get_max_uid ());
|
2950 |
|
|
bb_size = XCNEWVEC (int, last_basic_block);
|
2951 |
|
|
|
2952 |
|
|
FOR_EACH_BB (bb)
|
2953 |
|
|
{
|
2954 |
|
|
rtx insn;
|
2955 |
|
|
int to_head;
|
2956 |
|
|
|
2957 |
|
|
to_head = 0;
|
2958 |
|
|
FOR_BB_INSNS (bb, insn)
|
2959 |
|
|
{
|
2960 |
|
|
/* Don't count debug instructions to avoid them affecting
|
2961 |
|
|
decision choices. */
|
2962 |
|
|
if (NONDEBUG_INSN_P (insn))
|
2963 |
|
|
to_bb_head[INSN_UID (insn)] = to_head++;
|
2964 |
|
|
}
|
2965 |
|
|
|
2966 |
|
|
bb_size[bb->index] = to_head;
|
2967 |
|
|
}
|
2968 |
|
|
|
2969 |
|
|
gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
|
2970 |
|
|
&& (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
|
2971 |
|
|
== ENTRY_BLOCK_PTR->next_bb));
|
2972 |
|
|
|
2973 |
|
|
dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
|
2974 |
|
|
ENTRY_BLOCK_PTR->next_bb);
|
2975 |
|
|
|
2976 |
|
|
/* Walk over each basic block looking for potentially hoistable
|
2977 |
|
|
expressions, nothing gets hoisted from the entry block. */
|
2978 |
|
|
FOR_EACH_VEC_ELT (basic_block, dom_tree_walk, dom_tree_walk_index, bb)
|
2979 |
|
|
{
|
2980 |
|
|
domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
|
2981 |
|
|
|
2982 |
|
|
if (VEC_length (basic_block, domby) == 0)
|
2983 |
|
|
continue;
|
2984 |
|
|
|
2985 |
|
|
/* Examine each expression that is very busy at the exit of this
|
2986 |
|
|
block. These are the potentially hoistable expressions. */
|
2987 |
|
|
for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
|
2988 |
|
|
{
|
2989 |
|
|
if (TEST_BIT (hoist_vbeout[bb->index], i))
|
2990 |
|
|
{
|
2991 |
|
|
/* Current expression. */
|
2992 |
|
|
struct expr *expr = index_map[i];
|
2993 |
|
|
/* Number of occurences of EXPR that can be hoisted to BB. */
|
2994 |
|
|
int hoistable = 0;
|
2995 |
|
|
/* Basic blocks that have occurences reachable from BB. */
|
2996 |
|
|
bitmap_head _from_bbs, *from_bbs = &_from_bbs;
|
2997 |
|
|
/* Occurences reachable from BB. */
|
2998 |
|
|
VEC (occr_t, heap) *occrs_to_hoist = NULL;
|
2999 |
|
|
/* We want to insert the expression into BB only once, so
|
3000 |
|
|
note when we've inserted it. */
|
3001 |
|
|
int insn_inserted_p;
|
3002 |
|
|
occr_t occr;
|
3003 |
|
|
|
3004 |
|
|
bitmap_initialize (from_bbs, 0);
|
3005 |
|
|
|
3006 |
|
|
/* If an expression is computed in BB and is available at end of
|
3007 |
|
|
BB, hoist all occurences dominated by BB to BB. */
|
3008 |
|
|
if (TEST_BIT (comp[bb->index], i))
|
3009 |
|
|
{
|
3010 |
|
|
occr = find_occr_in_bb (expr->antic_occr, bb);
|
3011 |
|
|
|
3012 |
|
|
if (occr)
|
3013 |
|
|
{
|
3014 |
|
|
/* An occurence might've been already deleted
|
3015 |
|
|
while processing a dominator of BB. */
|
3016 |
|
|
if (!occr->deleted_p)
|
3017 |
|
|
{
|
3018 |
|
|
gcc_assert (NONDEBUG_INSN_P (occr->insn));
|
3019 |
|
|
hoistable++;
|
3020 |
|
|
}
|
3021 |
|
|
}
|
3022 |
|
|
else
|
3023 |
|
|
hoistable++;
|
3024 |
|
|
}
|
3025 |
|
|
|
3026 |
|
|
/* We've found a potentially hoistable expression, now
|
3027 |
|
|
we look at every block BB dominates to see if it
|
3028 |
|
|
computes the expression. */
|
3029 |
|
|
FOR_EACH_VEC_ELT (basic_block, domby, j, dominated)
|
3030 |
|
|
{
|
3031 |
|
|
int max_distance;
|
3032 |
|
|
|
3033 |
|
|
/* Ignore self dominance. */
|
3034 |
|
|
if (bb == dominated)
|
3035 |
|
|
continue;
|
3036 |
|
|
/* We've found a dominated block, now see if it computes
|
3037 |
|
|
the busy expression and whether or not moving that
|
3038 |
|
|
expression to the "beginning" of that block is safe. */
|
3039 |
|
|
if (!TEST_BIT (antloc[dominated->index], i))
|
3040 |
|
|
continue;
|
3041 |
|
|
|
3042 |
|
|
occr = find_occr_in_bb (expr->antic_occr, dominated);
|
3043 |
|
|
gcc_assert (occr);
|
3044 |
|
|
|
3045 |
|
|
/* An occurence might've been already deleted
|
3046 |
|
|
while processing a dominator of BB. */
|
3047 |
|
|
if (occr->deleted_p)
|
3048 |
|
|
continue;
|
3049 |
|
|
gcc_assert (NONDEBUG_INSN_P (occr->insn));
|
3050 |
|
|
|
3051 |
|
|
max_distance = expr->max_distance;
|
3052 |
|
|
if (max_distance > 0)
|
3053 |
|
|
/* Adjust MAX_DISTANCE to account for the fact that
|
3054 |
|
|
OCCR won't have to travel all of DOMINATED, but
|
3055 |
|
|
only part of it. */
|
3056 |
|
|
max_distance += (bb_size[dominated->index]
|
3057 |
|
|
- to_bb_head[INSN_UID (occr->insn)]);
|
3058 |
|
|
|
3059 |
|
|
/* Note if the expression would reach the dominated block
|
3060 |
|
|
unimpared if it was placed at the end of BB.
|
3061 |
|
|
|
3062 |
|
|
Keep track of how many times this expression is hoistable
|
3063 |
|
|
from a dominated block into BB. */
|
3064 |
|
|
if (hoist_expr_reaches_here_p (bb, i, dominated, NULL,
|
3065 |
|
|
max_distance, bb_size))
|
3066 |
|
|
{
|
3067 |
|
|
hoistable++;
|
3068 |
|
|
VEC_safe_push (occr_t, heap,
|
3069 |
|
|
occrs_to_hoist, occr);
|
3070 |
|
|
bitmap_set_bit (from_bbs, dominated->index);
|
3071 |
|
|
}
|
3072 |
|
|
}
|
3073 |
|
|
|
3074 |
|
|
/* If we found more than one hoistable occurrence of this
|
3075 |
|
|
expression, then note it in the vector of expressions to
|
3076 |
|
|
hoist. It makes no sense to hoist things which are computed
|
3077 |
|
|
in only one BB, and doing so tends to pessimize register
|
3078 |
|
|
allocation. One could increase this value to try harder
|
3079 |
|
|
to avoid any possible code expansion due to register
|
3080 |
|
|
allocation issues; however experiments have shown that
|
3081 |
|
|
the vast majority of hoistable expressions are only movable
|
3082 |
|
|
from two successors, so raising this threshold is likely
|
3083 |
|
|
to nullify any benefit we get from code hoisting. */
|
3084 |
|
|
if (hoistable > 1 && dbg_cnt (hoist_insn))
|
3085 |
|
|
{
|
3086 |
|
|
/* If (hoistable != VEC_length), then there is
|
3087 |
|
|
an occurence of EXPR in BB itself. Don't waste
|
3088 |
|
|
time looking for LCA in this case. */
|
3089 |
|
|
if ((unsigned) hoistable
|
3090 |
|
|
== VEC_length (occr_t, occrs_to_hoist))
|
3091 |
|
|
{
|
3092 |
|
|
basic_block lca;
|
3093 |
|
|
|
3094 |
|
|
lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
|
3095 |
|
|
from_bbs);
|
3096 |
|
|
if (lca != bb)
|
3097 |
|
|
/* Punt, it's better to hoist these occurences to
|
3098 |
|
|
LCA. */
|
3099 |
|
|
VEC_free (occr_t, heap, occrs_to_hoist);
|
3100 |
|
|
}
|
3101 |
|
|
}
|
3102 |
|
|
else
|
3103 |
|
|
/* Punt, no point hoisting a single occurence. */
|
3104 |
|
|
VEC_free (occr_t, heap, occrs_to_hoist);
|
3105 |
|
|
|
3106 |
|
|
insn_inserted_p = 0;
|
3107 |
|
|
|
3108 |
|
|
/* Walk through occurences of I'th expressions we want
|
3109 |
|
|
to hoist to BB and make the transformations. */
|
3110 |
|
|
FOR_EACH_VEC_ELT (occr_t, occrs_to_hoist, j, occr)
|
3111 |
|
|
{
|
3112 |
|
|
rtx insn;
|
3113 |
|
|
rtx set;
|
3114 |
|
|
|
3115 |
|
|
gcc_assert (!occr->deleted_p);
|
3116 |
|
|
|
3117 |
|
|
insn = occr->insn;
|
3118 |
|
|
set = single_set (insn);
|
3119 |
|
|
gcc_assert (set);
|
3120 |
|
|
|
3121 |
|
|
/* Create a pseudo-reg to store the result of reaching
|
3122 |
|
|
expressions into. Get the mode for the new pseudo
|
3123 |
|
|
from the mode of the original destination pseudo.
|
3124 |
|
|
|
3125 |
|
|
It is important to use new pseudos whenever we
|
3126 |
|
|
emit a set. This will allow reload to use
|
3127 |
|
|
rematerialization for such registers. */
|
3128 |
|
|
if (!insn_inserted_p)
|
3129 |
|
|
expr->reaching_reg
|
3130 |
|
|
= gen_reg_rtx_and_attrs (SET_DEST (set));
|
3131 |
|
|
|
3132 |
|
|
gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
|
3133 |
|
|
insn);
|
3134 |
|
|
delete_insn (insn);
|
3135 |
|
|
occr->deleted_p = 1;
|
3136 |
|
|
changed = 1;
|
3137 |
|
|
gcse_subst_count++;
|
3138 |
|
|
|
3139 |
|
|
if (!insn_inserted_p)
|
3140 |
|
|
{
|
3141 |
|
|
insert_insn_end_basic_block (expr, bb);
|
3142 |
|
|
insn_inserted_p = 1;
|
3143 |
|
|
}
|
3144 |
|
|
}
|
3145 |
|
|
|
3146 |
|
|
VEC_free (occr_t, heap, occrs_to_hoist);
|
3147 |
|
|
bitmap_clear (from_bbs);
|
3148 |
|
|
}
|
3149 |
|
|
}
|
3150 |
|
|
VEC_free (basic_block, heap, domby);
|
3151 |
|
|
}
|
3152 |
|
|
|
3153 |
|
|
VEC_free (basic_block, heap, dom_tree_walk);
|
3154 |
|
|
free (bb_size);
|
3155 |
|
|
free (to_bb_head);
|
3156 |
|
|
free (index_map);
|
3157 |
|
|
|
3158 |
|
|
return changed;
|
3159 |
|
|
}
|
3160 |
|
|
|
3161 |
|
|
/* Top level routine to perform one code hoisting (aka unification) pass
|
3162 |
|
|
|
3163 |
|
|
Return nonzero if a change was made. */
|
3164 |
|
|
|
3165 |
|
|
static int
|
3166 |
|
|
one_code_hoisting_pass (void)
|
3167 |
|
|
{
|
3168 |
|
|
int changed = 0;
|
3169 |
|
|
|
3170 |
|
|
gcse_subst_count = 0;
|
3171 |
|
|
gcse_create_count = 0;
|
3172 |
|
|
|
3173 |
|
|
/* Return if there's nothing to do, or it is too expensive. */
|
3174 |
|
|
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
|
3175 |
|
|
|| is_too_expensive (_("GCSE disabled")))
|
3176 |
|
|
return 0;
|
3177 |
|
|
|
3178 |
|
|
doing_code_hoisting_p = true;
|
3179 |
|
|
|
3180 |
|
|
/* We need alias. */
|
3181 |
|
|
init_alias_analysis ();
|
3182 |
|
|
|
3183 |
|
|
bytes_used = 0;
|
3184 |
|
|
gcc_obstack_init (&gcse_obstack);
|
3185 |
|
|
alloc_gcse_mem ();
|
3186 |
|
|
|
3187 |
|
|
alloc_hash_table (&expr_hash_table);
|
3188 |
|
|
compute_hash_table (&expr_hash_table);
|
3189 |
|
|
if (dump_file)
|
3190 |
|
|
dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
|
3191 |
|
|
|
3192 |
|
|
if (expr_hash_table.n_elems > 0)
|
3193 |
|
|
{
|
3194 |
|
|
alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
|
3195 |
|
|
compute_code_hoist_data ();
|
3196 |
|
|
changed = hoist_code ();
|
3197 |
|
|
free_code_hoist_mem ();
|
3198 |
|
|
}
|
3199 |
|
|
|
3200 |
|
|
free_hash_table (&expr_hash_table);
|
3201 |
|
|
free_gcse_mem ();
|
3202 |
|
|
obstack_free (&gcse_obstack, NULL);
|
3203 |
|
|
|
3204 |
|
|
/* We are finished with alias. */
|
3205 |
|
|
end_alias_analysis ();
|
3206 |
|
|
|
3207 |
|
|
if (dump_file)
|
3208 |
|
|
{
|
3209 |
|
|
fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
|
3210 |
|
|
current_function_name (), n_basic_blocks, bytes_used);
|
3211 |
|
|
fprintf (dump_file, "%d substs, %d insns created\n",
|
3212 |
|
|
gcse_subst_count, gcse_create_count);
|
3213 |
|
|
}
|
3214 |
|
|
|
3215 |
|
|
doing_code_hoisting_p = false;
|
3216 |
|
|
|
3217 |
|
|
return changed;
|
3218 |
|
|
}
|
3219 |
|
|
|
3220 |
|
|
/* Here we provide the things required to do store motion towards the exit.
|
3221 |
|
|
In order for this to be effective, gcse also needed to be taught how to
|
3222 |
|
|
move a load when it is killed only by a store to itself.
|
3223 |
|
|
|
3224 |
|
|
int i;
|
3225 |
|
|
float a[10];
|
3226 |
|
|
|
3227 |
|
|
void foo(float scale)
|
3228 |
|
|
{
|
3229 |
|
|
for (i=0; i<10; i++)
|
3230 |
|
|
a[i] *= scale;
|
3231 |
|
|
}
|
3232 |
|
|
|
3233 |
|
|
'i' is both loaded and stored to in the loop. Normally, gcse cannot move
|
3234 |
|
|
the load out since its live around the loop, and stored at the bottom
|
3235 |
|
|
of the loop.
|
3236 |
|
|
|
3237 |
|
|
The 'Load Motion' referred to and implemented in this file is
|
3238 |
|
|
an enhancement to gcse which when using edge based LCM, recognizes
|
3239 |
|
|
this situation and allows gcse to move the load out of the loop.
|
3240 |
|
|
|
3241 |
|
|
Once gcse has hoisted the load, store motion can then push this
|
3242 |
|
|
load towards the exit, and we end up with no loads or stores of 'i'
|
3243 |
|
|
in the loop. */
|
3244 |
|
|
|
3245 |
|
|
static hashval_t
|
3246 |
|
|
pre_ldst_expr_hash (const void *p)
|
3247 |
|
|
{
|
3248 |
|
|
int do_not_record_p = 0;
|
3249 |
|
|
const struct ls_expr *const x = (const struct ls_expr *) p;
|
3250 |
|
|
return
|
3251 |
|
|
hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
|
3252 |
|
|
}
|
3253 |
|
|
|
3254 |
|
|
static int
|
3255 |
|
|
pre_ldst_expr_eq (const void *p1, const void *p2)
|
3256 |
|
|
{
|
3257 |
|
|
const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
|
3258 |
|
|
*const ptr2 = (const struct ls_expr *) p2;
|
3259 |
|
|
return expr_equiv_p (ptr1->pattern, ptr2->pattern);
|
3260 |
|
|
}
|
3261 |
|
|
|
3262 |
|
|
/* This will search the ldst list for a matching expression. If it
|
3263 |
|
|
doesn't find one, we create one and initialize it. */
|
3264 |
|
|
|
3265 |
|
|
static struct ls_expr *
|
3266 |
|
|
ldst_entry (rtx x)
|
3267 |
|
|
{
|
3268 |
|
|
int do_not_record_p = 0;
|
3269 |
|
|
struct ls_expr * ptr;
|
3270 |
|
|
unsigned int hash;
|
3271 |
|
|
void **slot;
|
3272 |
|
|
struct ls_expr e;
|
3273 |
|
|
|
3274 |
|
|
hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
|
3275 |
|
|
NULL, /*have_reg_qty=*/false);
|
3276 |
|
|
|
3277 |
|
|
e.pattern = x;
|
3278 |
|
|
slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
|
3279 |
|
|
if (*slot)
|
3280 |
|
|
return (struct ls_expr *)*slot;
|
3281 |
|
|
|
3282 |
|
|
ptr = XNEW (struct ls_expr);
|
3283 |
|
|
|
3284 |
|
|
ptr->next = pre_ldst_mems;
|
3285 |
|
|
ptr->expr = NULL;
|
3286 |
|
|
ptr->pattern = x;
|
3287 |
|
|
ptr->pattern_regs = NULL_RTX;
|
3288 |
|
|
ptr->loads = NULL_RTX;
|
3289 |
|
|
ptr->stores = NULL_RTX;
|
3290 |
|
|
ptr->reaching_reg = NULL_RTX;
|
3291 |
|
|
ptr->invalid = 0;
|
3292 |
|
|
ptr->index = 0;
|
3293 |
|
|
ptr->hash_index = hash;
|
3294 |
|
|
pre_ldst_mems = ptr;
|
3295 |
|
|
*slot = ptr;
|
3296 |
|
|
|
3297 |
|
|
return ptr;
|
3298 |
|
|
}
|
3299 |
|
|
|
3300 |
|
|
/* Free up an individual ldst entry. */
|
3301 |
|
|
|
3302 |
|
|
static void
|
3303 |
|
|
free_ldst_entry (struct ls_expr * ptr)
|
3304 |
|
|
{
|
3305 |
|
|
free_INSN_LIST_list (& ptr->loads);
|
3306 |
|
|
free_INSN_LIST_list (& ptr->stores);
|
3307 |
|
|
|
3308 |
|
|
free (ptr);
|
3309 |
|
|
}
|
3310 |
|
|
|
3311 |
|
|
/* Free up all memory associated with the ldst list. */
|
3312 |
|
|
|
3313 |
|
|
static void
|
3314 |
|
|
free_ld_motion_mems (void)
|
3315 |
|
|
{
|
3316 |
|
|
if (pre_ldst_table)
|
3317 |
|
|
htab_delete (pre_ldst_table);
|
3318 |
|
|
pre_ldst_table = NULL;
|
3319 |
|
|
|
3320 |
|
|
while (pre_ldst_mems)
|
3321 |
|
|
{
|
3322 |
|
|
struct ls_expr * tmp = pre_ldst_mems;
|
3323 |
|
|
|
3324 |
|
|
pre_ldst_mems = pre_ldst_mems->next;
|
3325 |
|
|
|
3326 |
|
|
free_ldst_entry (tmp);
|
3327 |
|
|
}
|
3328 |
|
|
|
3329 |
|
|
pre_ldst_mems = NULL;
|
3330 |
|
|
}
|
3331 |
|
|
|
3332 |
|
|
/* Dump debugging info about the ldst list. */
|
3333 |
|
|
|
3334 |
|
|
static void
|
3335 |
|
|
print_ldst_list (FILE * file)
|
3336 |
|
|
{
|
3337 |
|
|
struct ls_expr * ptr;
|
3338 |
|
|
|
3339 |
|
|
fprintf (file, "LDST list: \n");
|
3340 |
|
|
|
3341 |
|
|
for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
|
3342 |
|
|
{
|
3343 |
|
|
fprintf (file, " Pattern (%3d): ", ptr->index);
|
3344 |
|
|
|
3345 |
|
|
print_rtl (file, ptr->pattern);
|
3346 |
|
|
|
3347 |
|
|
fprintf (file, "\n Loads : ");
|
3348 |
|
|
|
3349 |
|
|
if (ptr->loads)
|
3350 |
|
|
print_rtl (file, ptr->loads);
|
3351 |
|
|
else
|
3352 |
|
|
fprintf (file, "(nil)");
|
3353 |
|
|
|
3354 |
|
|
fprintf (file, "\n Stores : ");
|
3355 |
|
|
|
3356 |
|
|
if (ptr->stores)
|
3357 |
|
|
print_rtl (file, ptr->stores);
|
3358 |
|
|
else
|
3359 |
|
|
fprintf (file, "(nil)");
|
3360 |
|
|
|
3361 |
|
|
fprintf (file, "\n\n");
|
3362 |
|
|
}
|
3363 |
|
|
|
3364 |
|
|
fprintf (file, "\n");
|
3365 |
|
|
}
|
3366 |
|
|
|
3367 |
|
|
/* Returns 1 if X is in the list of ldst only expressions. */
|
3368 |
|
|
|
3369 |
|
|
static struct ls_expr *
|
3370 |
|
|
find_rtx_in_ldst (rtx x)
|
3371 |
|
|
{
|
3372 |
|
|
struct ls_expr e;
|
3373 |
|
|
void **slot;
|
3374 |
|
|
if (!pre_ldst_table)
|
3375 |
|
|
return NULL;
|
3376 |
|
|
e.pattern = x;
|
3377 |
|
|
slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
|
3378 |
|
|
if (!slot || ((struct ls_expr *)*slot)->invalid)
|
3379 |
|
|
return NULL;
|
3380 |
|
|
return (struct ls_expr *) *slot;
|
3381 |
|
|
}
|
3382 |
|
|
|
3383 |
|
|
/* Load Motion for loads which only kill themselves. */
|
3384 |
|
|
|
3385 |
|
|
/* Return true if x, a MEM, is a simple access with no side effects.
|
3386 |
|
|
These are the types of loads we consider for the ld_motion list,
|
3387 |
|
|
otherwise we let the usual aliasing take care of it. */
|
3388 |
|
|
|
3389 |
|
|
static int
|
3390 |
|
|
simple_mem (const_rtx x)
|
3391 |
|
|
{
|
3392 |
|
|
if (MEM_VOLATILE_P (x))
|
3393 |
|
|
return 0;
|
3394 |
|
|
|
3395 |
|
|
if (GET_MODE (x) == BLKmode)
|
3396 |
|
|
return 0;
|
3397 |
|
|
|
3398 |
|
|
/* If we are handling exceptions, we must be careful with memory references
|
3399 |
|
|
that may trap. If we are not, the behavior is undefined, so we may just
|
3400 |
|
|
continue. */
|
3401 |
|
|
if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
|
3402 |
|
|
return 0;
|
3403 |
|
|
|
3404 |
|
|
if (side_effects_p (x))
|
3405 |
|
|
return 0;
|
3406 |
|
|
|
3407 |
|
|
/* Do not consider function arguments passed on stack. */
|
3408 |
|
|
if (reg_mentioned_p (stack_pointer_rtx, x))
|
3409 |
|
|
return 0;
|
3410 |
|
|
|
3411 |
|
|
if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
|
3412 |
|
|
return 0;
|
3413 |
|
|
|
3414 |
|
|
return 1;
|
3415 |
|
|
}
|
3416 |
|
|
|
3417 |
|
|
/* Make sure there isn't a buried reference in this pattern anywhere.
|
3418 |
|
|
If there is, invalidate the entry for it since we're not capable
|
3419 |
|
|
of fixing it up just yet.. We have to be sure we know about ALL
|
3420 |
|
|
loads since the aliasing code will allow all entries in the
|
3421 |
|
|
ld_motion list to not-alias itself. If we miss a load, we will get
|
3422 |
|
|
the wrong value since gcse might common it and we won't know to
|
3423 |
|
|
fix it up. */
|
3424 |
|
|
|
3425 |
|
|
static void
|
3426 |
|
|
invalidate_any_buried_refs (rtx x)
|
3427 |
|
|
{
|
3428 |
|
|
const char * fmt;
|
3429 |
|
|
int i, j;
|
3430 |
|
|
struct ls_expr * ptr;
|
3431 |
|
|
|
3432 |
|
|
/* Invalidate it in the list. */
|
3433 |
|
|
if (MEM_P (x) && simple_mem (x))
|
3434 |
|
|
{
|
3435 |
|
|
ptr = ldst_entry (x);
|
3436 |
|
|
ptr->invalid = 1;
|
3437 |
|
|
}
|
3438 |
|
|
|
3439 |
|
|
/* Recursively process the insn. */
|
3440 |
|
|
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
3441 |
|
|
|
3442 |
|
|
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
3443 |
|
|
{
|
3444 |
|
|
if (fmt[i] == 'e')
|
3445 |
|
|
invalidate_any_buried_refs (XEXP (x, i));
|
3446 |
|
|
else if (fmt[i] == 'E')
|
3447 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
3448 |
|
|
invalidate_any_buried_refs (XVECEXP (x, i, j));
|
3449 |
|
|
}
|
3450 |
|
|
}
|
3451 |
|
|
|
3452 |
|
|
/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
|
3453 |
|
|
being defined as MEM loads and stores to symbols, with no side effects
|
3454 |
|
|
and no registers in the expression. For a MEM destination, we also
|
3455 |
|
|
check that the insn is still valid if we replace the destination with a
|
3456 |
|
|
REG, as is done in update_ld_motion_stores. If there are any uses/defs
|
3457 |
|
|
which don't match this criteria, they are invalidated and trimmed out
|
3458 |
|
|
later. */
|
3459 |
|
|
|
3460 |
|
|
static void
|
3461 |
|
|
compute_ld_motion_mems (void)
|
3462 |
|
|
{
|
3463 |
|
|
struct ls_expr * ptr;
|
3464 |
|
|
basic_block bb;
|
3465 |
|
|
rtx insn;
|
3466 |
|
|
|
3467 |
|
|
pre_ldst_mems = NULL;
|
3468 |
|
|
pre_ldst_table
|
3469 |
|
|
= htab_create (13, pre_ldst_expr_hash, pre_ldst_expr_eq, NULL);
|
3470 |
|
|
|
3471 |
|
|
FOR_EACH_BB (bb)
|
3472 |
|
|
{
|
3473 |
|
|
FOR_BB_INSNS (bb, insn)
|
3474 |
|
|
{
|
3475 |
|
|
if (NONDEBUG_INSN_P (insn))
|
3476 |
|
|
{
|
3477 |
|
|
if (GET_CODE (PATTERN (insn)) == SET)
|
3478 |
|
|
{
|
3479 |
|
|
rtx src = SET_SRC (PATTERN (insn));
|
3480 |
|
|
rtx dest = SET_DEST (PATTERN (insn));
|
3481 |
|
|
|
3482 |
|
|
/* Check for a simple LOAD... */
|
3483 |
|
|
if (MEM_P (src) && simple_mem (src))
|
3484 |
|
|
{
|
3485 |
|
|
ptr = ldst_entry (src);
|
3486 |
|
|
if (REG_P (dest))
|
3487 |
|
|
ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
|
3488 |
|
|
else
|
3489 |
|
|
ptr->invalid = 1;
|
3490 |
|
|
}
|
3491 |
|
|
else
|
3492 |
|
|
{
|
3493 |
|
|
/* Make sure there isn't a buried load somewhere. */
|
3494 |
|
|
invalidate_any_buried_refs (src);
|
3495 |
|
|
}
|
3496 |
|
|
|
3497 |
|
|
/* Check for stores. Don't worry about aliased ones, they
|
3498 |
|
|
will block any movement we might do later. We only care
|
3499 |
|
|
about this exact pattern since those are the only
|
3500 |
|
|
circumstance that we will ignore the aliasing info. */
|
3501 |
|
|
if (MEM_P (dest) && simple_mem (dest))
|
3502 |
|
|
{
|
3503 |
|
|
ptr = ldst_entry (dest);
|
3504 |
|
|
|
3505 |
|
|
if (! MEM_P (src)
|
3506 |
|
|
&& GET_CODE (src) != ASM_OPERANDS
|
3507 |
|
|
/* Check for REG manually since want_to_gcse_p
|
3508 |
|
|
returns 0 for all REGs. */
|
3509 |
|
|
&& can_assign_to_reg_without_clobbers_p (src))
|
3510 |
|
|
ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
|
3511 |
|
|
else
|
3512 |
|
|
ptr->invalid = 1;
|
3513 |
|
|
}
|
3514 |
|
|
}
|
3515 |
|
|
else
|
3516 |
|
|
invalidate_any_buried_refs (PATTERN (insn));
|
3517 |
|
|
}
|
3518 |
|
|
}
|
3519 |
|
|
}
|
3520 |
|
|
}
|
3521 |
|
|
|
3522 |
|
|
/* Remove any references that have been either invalidated or are not in the
|
3523 |
|
|
expression list for pre gcse. */
|
3524 |
|
|
|
3525 |
|
|
static void
|
3526 |
|
|
trim_ld_motion_mems (void)
|
3527 |
|
|
{
|
3528 |
|
|
struct ls_expr * * last = & pre_ldst_mems;
|
3529 |
|
|
struct ls_expr * ptr = pre_ldst_mems;
|
3530 |
|
|
|
3531 |
|
|
while (ptr != NULL)
|
3532 |
|
|
{
|
3533 |
|
|
struct expr * expr;
|
3534 |
|
|
|
3535 |
|
|
/* Delete if entry has been made invalid. */
|
3536 |
|
|
if (! ptr->invalid)
|
3537 |
|
|
{
|
3538 |
|
|
/* Delete if we cannot find this mem in the expression list. */
|
3539 |
|
|
unsigned int hash = ptr->hash_index % expr_hash_table.size;
|
3540 |
|
|
|
3541 |
|
|
for (expr = expr_hash_table.table[hash];
|
3542 |
|
|
expr != NULL;
|
3543 |
|
|
expr = expr->next_same_hash)
|
3544 |
|
|
if (expr_equiv_p (expr->expr, ptr->pattern))
|
3545 |
|
|
break;
|
3546 |
|
|
}
|
3547 |
|
|
else
|
3548 |
|
|
expr = (struct expr *) 0;
|
3549 |
|
|
|
3550 |
|
|
if (expr)
|
3551 |
|
|
{
|
3552 |
|
|
/* Set the expression field if we are keeping it. */
|
3553 |
|
|
ptr->expr = expr;
|
3554 |
|
|
last = & ptr->next;
|
3555 |
|
|
ptr = ptr->next;
|
3556 |
|
|
}
|
3557 |
|
|
else
|
3558 |
|
|
{
|
3559 |
|
|
*last = ptr->next;
|
3560 |
|
|
htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
|
3561 |
|
|
free_ldst_entry (ptr);
|
3562 |
|
|
ptr = * last;
|
3563 |
|
|
}
|
3564 |
|
|
}
|
3565 |
|
|
|
3566 |
|
|
/* Show the world what we've found. */
|
3567 |
|
|
if (dump_file && pre_ldst_mems != NULL)
|
3568 |
|
|
print_ldst_list (dump_file);
|
3569 |
|
|
}
|
3570 |
|
|
|
3571 |
|
|
/* This routine will take an expression which we are replacing with
|
3572 |
|
|
a reaching register, and update any stores that are needed if
|
3573 |
|
|
that expression is in the ld_motion list. Stores are updated by
|
3574 |
|
|
copying their SRC to the reaching register, and then storing
|
3575 |
|
|
the reaching register into the store location. These keeps the
|
3576 |
|
|
correct value in the reaching register for the loads. */
|
3577 |
|
|
|
3578 |
|
|
static void
|
3579 |
|
|
update_ld_motion_stores (struct expr * expr)
|
3580 |
|
|
{
|
3581 |
|
|
struct ls_expr * mem_ptr;
|
3582 |
|
|
|
3583 |
|
|
if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
|
3584 |
|
|
{
|
3585 |
|
|
/* We can try to find just the REACHED stores, but is shouldn't
|
3586 |
|
|
matter to set the reaching reg everywhere... some might be
|
3587 |
|
|
dead and should be eliminated later. */
|
3588 |
|
|
|
3589 |
|
|
/* We replace (set mem expr) with (set reg expr) (set mem reg)
|
3590 |
|
|
where reg is the reaching reg used in the load. We checked in
|
3591 |
|
|
compute_ld_motion_mems that we can replace (set mem expr) with
|
3592 |
|
|
(set reg expr) in that insn. */
|
3593 |
|
|
rtx list = mem_ptr->stores;
|
3594 |
|
|
|
3595 |
|
|
for ( ; list != NULL_RTX; list = XEXP (list, 1))
|
3596 |
|
|
{
|
3597 |
|
|
rtx insn = XEXP (list, 0);
|
3598 |
|
|
rtx pat = PATTERN (insn);
|
3599 |
|
|
rtx src = SET_SRC (pat);
|
3600 |
|
|
rtx reg = expr->reaching_reg;
|
3601 |
|
|
rtx copy;
|
3602 |
|
|
|
3603 |
|
|
/* If we've already copied it, continue. */
|
3604 |
|
|
if (expr->reaching_reg == src)
|
3605 |
|
|
continue;
|
3606 |
|
|
|
3607 |
|
|
if (dump_file)
|
3608 |
|
|
{
|
3609 |
|
|
fprintf (dump_file, "PRE: store updated with reaching reg ");
|
3610 |
|
|
print_rtl (dump_file, reg);
|
3611 |
|
|
fprintf (dump_file, ":\n ");
|
3612 |
|
|
print_inline_rtx (dump_file, insn, 8);
|
3613 |
|
|
fprintf (dump_file, "\n");
|
3614 |
|
|
}
|
3615 |
|
|
|
3616 |
|
|
copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
|
3617 |
|
|
emit_insn_before (copy, insn);
|
3618 |
|
|
SET_SRC (pat) = reg;
|
3619 |
|
|
df_insn_rescan (insn);
|
3620 |
|
|
|
3621 |
|
|
/* un-recognize this pattern since it's probably different now. */
|
3622 |
|
|
INSN_CODE (insn) = -1;
|
3623 |
|
|
gcse_create_count++;
|
3624 |
|
|
}
|
3625 |
|
|
}
|
3626 |
|
|
}
|
3627 |
|
|
|
3628 |
|
|
/* Return true if the graph is too expensive to optimize. PASS is the
|
3629 |
|
|
optimization about to be performed. */
|
3630 |
|
|
|
3631 |
|
|
static bool
|
3632 |
|
|
is_too_expensive (const char *pass)
|
3633 |
|
|
{
|
3634 |
|
|
/* Trying to perform global optimizations on flow graphs which have
|
3635 |
|
|
a high connectivity will take a long time and is unlikely to be
|
3636 |
|
|
particularly useful.
|
3637 |
|
|
|
3638 |
|
|
In normal circumstances a cfg should have about twice as many
|
3639 |
|
|
edges as blocks. But we do not want to punish small functions
|
3640 |
|
|
which have a couple switch statements. Rather than simply
|
3641 |
|
|
threshold the number of blocks, uses something with a more
|
3642 |
|
|
graceful degradation. */
|
3643 |
|
|
if (n_edges > 20000 + n_basic_blocks * 4)
|
3644 |
|
|
{
|
3645 |
|
|
warning (OPT_Wdisabled_optimization,
|
3646 |
|
|
"%s: %d basic blocks and %d edges/basic block",
|
3647 |
|
|
pass, n_basic_blocks, n_edges / n_basic_blocks);
|
3648 |
|
|
|
3649 |
|
|
return true;
|
3650 |
|
|
}
|
3651 |
|
|
|
3652 |
|
|
/* If allocating memory for the dataflow bitmaps would take up too much
|
3653 |
|
|
storage it's better just to disable the optimization. */
|
3654 |
|
|
if ((n_basic_blocks
|
3655 |
|
|
* SBITMAP_SET_SIZE (max_reg_num ())
|
3656 |
|
|
* sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
|
3657 |
|
|
{
|
3658 |
|
|
warning (OPT_Wdisabled_optimization,
|
3659 |
|
|
"%s: %d basic blocks and %d registers",
|
3660 |
|
|
pass, n_basic_blocks, max_reg_num ());
|
3661 |
|
|
|
3662 |
|
|
return true;
|
3663 |
|
|
}
|
3664 |
|
|
|
3665 |
|
|
return false;
|
3666 |
|
|
}
|
3667 |
|
|
|
3668 |
|
|
/* All the passes implemented in this file. Each pass has its
|
3669 |
|
|
own gate and execute function, and at the end of the file a
|
3670 |
|
|
pass definition for passes.c.
|
3671 |
|
|
|
3672 |
|
|
We do not construct an accurate cfg in functions which call
|
3673 |
|
|
setjmp, so none of these passes runs if the function calls
|
3674 |
|
|
setjmp.
|
3675 |
|
|
FIXME: Should just handle setjmp via REG_SETJMP notes. */
|
3676 |
|
|
|
3677 |
|
|
static bool
|
3678 |
|
|
gate_rtl_pre (void)
|
3679 |
|
|
{
|
3680 |
|
|
return optimize > 0 && flag_gcse
|
3681 |
|
|
&& !cfun->calls_setjmp
|
3682 |
|
|
&& optimize_function_for_speed_p (cfun)
|
3683 |
|
|
&& dbg_cnt (pre);
|
3684 |
|
|
}
|
3685 |
|
|
|
3686 |
|
|
static unsigned int
|
3687 |
|
|
execute_rtl_pre (void)
|
3688 |
|
|
{
|
3689 |
|
|
int changed;
|
3690 |
|
|
delete_unreachable_blocks ();
|
3691 |
|
|
df_analyze ();
|
3692 |
|
|
changed = one_pre_gcse_pass ();
|
3693 |
|
|
flag_rerun_cse_after_global_opts |= changed;
|
3694 |
|
|
if (changed)
|
3695 |
|
|
cleanup_cfg (0);
|
3696 |
|
|
return 0;
|
3697 |
|
|
}
|
3698 |
|
|
|
3699 |
|
|
static bool
|
3700 |
|
|
gate_rtl_hoist (void)
|
3701 |
|
|
{
|
3702 |
|
|
return optimize > 0 && flag_gcse
|
3703 |
|
|
&& !cfun->calls_setjmp
|
3704 |
|
|
/* It does not make sense to run code hoisting unless we are optimizing
|
3705 |
|
|
for code size -- it rarely makes programs faster, and can make then
|
3706 |
|
|
bigger if we did PRE (when optimizing for space, we don't run PRE). */
|
3707 |
|
|
&& optimize_function_for_size_p (cfun)
|
3708 |
|
|
&& dbg_cnt (hoist);
|
3709 |
|
|
}
|
3710 |
|
|
|
3711 |
|
|
static unsigned int
|
3712 |
|
|
execute_rtl_hoist (void)
|
3713 |
|
|
{
|
3714 |
|
|
int changed;
|
3715 |
|
|
delete_unreachable_blocks ();
|
3716 |
|
|
df_analyze ();
|
3717 |
|
|
changed = one_code_hoisting_pass ();
|
3718 |
|
|
flag_rerun_cse_after_global_opts |= changed;
|
3719 |
|
|
if (changed)
|
3720 |
|
|
cleanup_cfg (0);
|
3721 |
|
|
return 0;
|
3722 |
|
|
}
|
3723 |
|
|
|
3724 |
|
|
struct rtl_opt_pass pass_rtl_pre =
|
3725 |
|
|
{
|
3726 |
|
|
{
|
3727 |
|
|
RTL_PASS,
|
3728 |
|
|
"rtl pre", /* name */
|
3729 |
|
|
gate_rtl_pre, /* gate */
|
3730 |
|
|
execute_rtl_pre, /* execute */
|
3731 |
|
|
NULL, /* sub */
|
3732 |
|
|
NULL, /* next */
|
3733 |
|
|
0, /* static_pass_number */
|
3734 |
|
|
TV_PRE, /* tv_id */
|
3735 |
|
|
PROP_cfglayout, /* properties_required */
|
3736 |
|
|
0, /* properties_provided */
|
3737 |
|
|
0, /* properties_destroyed */
|
3738 |
|
|
0, /* todo_flags_start */
|
3739 |
|
|
TODO_df_finish | TODO_verify_rtl_sharing |
|
3740 |
|
|
TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
|
3741 |
|
|
}
|
3742 |
|
|
};
|
3743 |
|
|
|
3744 |
|
|
struct rtl_opt_pass pass_rtl_hoist =
|
3745 |
|
|
{
|
3746 |
|
|
{
|
3747 |
|
|
RTL_PASS,
|
3748 |
|
|
"hoist", /* name */
|
3749 |
|
|
gate_rtl_hoist, /* gate */
|
3750 |
|
|
execute_rtl_hoist, /* execute */
|
3751 |
|
|
NULL, /* sub */
|
3752 |
|
|
NULL, /* next */
|
3753 |
|
|
0, /* static_pass_number */
|
3754 |
|
|
TV_HOIST, /* tv_id */
|
3755 |
|
|
PROP_cfglayout, /* properties_required */
|
3756 |
|
|
0, /* properties_provided */
|
3757 |
|
|
0, /* properties_destroyed */
|
3758 |
|
|
0, /* todo_flags_start */
|
3759 |
|
|
TODO_df_finish | TODO_verify_rtl_sharing |
|
3760 |
|
|
TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
|
3761 |
|
|
}
|
3762 |
|
|
};
|
3763 |
|
|
|
3764 |
|
|
#include "gt-gcse.h"
|