| 1 |
684 |
jeremybenn |
/* Partial redundancy elimination / Hoisting for RTL.
|
| 2 |
|
|
Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
| 3 |
|
|
2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 8 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 10 |
|
|
version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
/* TODO
|
| 22 |
|
|
- reordering of memory allocation and freeing to be more space efficient
|
| 23 |
|
|
- do rough calc of how many regs are needed in each block, and a rough
|
| 24 |
|
|
calc of how many regs are available in each class and use that to
|
| 25 |
|
|
throttle back the code in cases where RTX_COST is minimal.
|
| 26 |
|
|
*/
|
| 27 |
|
|
|
| 28 |
|
|
/* References searched while implementing this.
|
| 29 |
|
|
|
| 30 |
|
|
Compilers Principles, Techniques and Tools
|
| 31 |
|
|
Aho, Sethi, Ullman
|
| 32 |
|
|
Addison-Wesley, 1988
|
| 33 |
|
|
|
| 34 |
|
|
Global Optimization by Suppression of Partial Redundancies
|
| 35 |
|
|
E. Morel, C. Renvoise
|
| 36 |
|
|
communications of the acm, Vol. 22, Num. 2, Feb. 1979
|
| 37 |
|
|
|
| 38 |
|
|
A Portable Machine-Independent Global Optimizer - Design and Measurements
|
| 39 |
|
|
Frederick Chow
|
| 40 |
|
|
Stanford Ph.D. thesis, Dec. 1983
|
| 41 |
|
|
|
| 42 |
|
|
A Fast Algorithm for Code Movement Optimization
|
| 43 |
|
|
D.M. Dhamdhere
|
| 44 |
|
|
SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
|
| 45 |
|
|
|
| 46 |
|
|
A Solution to a Problem with Morel and Renvoise's
|
| 47 |
|
|
Global Optimization by Suppression of Partial Redundancies
|
| 48 |
|
|
K-H Drechsler, M.P. Stadel
|
| 49 |
|
|
ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
|
| 50 |
|
|
|
| 51 |
|
|
Practical Adaptation of the Global Optimization
|
| 52 |
|
|
Algorithm of Morel and Renvoise
|
| 53 |
|
|
D.M. Dhamdhere
|
| 54 |
|
|
ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
|
| 55 |
|
|
|
| 56 |
|
|
Efficiently Computing Static Single Assignment Form and the Control
|
| 57 |
|
|
Dependence Graph
|
| 58 |
|
|
R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
|
| 59 |
|
|
ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
|
| 60 |
|
|
|
| 61 |
|
|
Lazy Code Motion
|
| 62 |
|
|
J. Knoop, O. Ruthing, B. Steffen
|
| 63 |
|
|
ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
|
| 64 |
|
|
|
| 65 |
|
|
What's In a Region? Or Computing Control Dependence Regions in Near-Linear
|
| 66 |
|
|
Time for Reducible Flow Control
|
| 67 |
|
|
Thomas Ball
|
| 68 |
|
|
ACM Letters on Programming Languages and Systems,
|
| 69 |
|
|
Vol. 2, Num. 1-4, Mar-Dec 1993
|
| 70 |
|
|
|
| 71 |
|
|
An Efficient Representation for Sparse Sets
|
| 72 |
|
|
Preston Briggs, Linda Torczon
|
| 73 |
|
|
ACM Letters on Programming Languages and Systems,
|
| 74 |
|
|
Vol. 2, Num. 1-4, Mar-Dec 1993
|
| 75 |
|
|
|
| 76 |
|
|
A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
|
| 77 |
|
|
K-H Drechsler, M.P. Stadel
|
| 78 |
|
|
ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
|
| 79 |
|
|
|
| 80 |
|
|
Partial Dead Code Elimination
|
| 81 |
|
|
J. Knoop, O. Ruthing, B. Steffen
|
| 82 |
|
|
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
|
| 83 |
|
|
|
| 84 |
|
|
Effective Partial Redundancy Elimination
|
| 85 |
|
|
P. Briggs, K.D. Cooper
|
| 86 |
|
|
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
|
| 87 |
|
|
|
| 88 |
|
|
The Program Structure Tree: Computing Control Regions in Linear Time
|
| 89 |
|
|
R. Johnson, D. Pearson, K. Pingali
|
| 90 |
|
|
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
|
| 91 |
|
|
|
| 92 |
|
|
Optimal Code Motion: Theory and Practice
|
| 93 |
|
|
J. Knoop, O. Ruthing, B. Steffen
|
| 94 |
|
|
ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
|
| 95 |
|
|
|
| 96 |
|
|
The power of assignment motion
|
| 97 |
|
|
J. Knoop, O. Ruthing, B. Steffen
|
| 98 |
|
|
ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
|
| 99 |
|
|
|
| 100 |
|
|
Global code motion / global value numbering
|
| 101 |
|
|
C. Click
|
| 102 |
|
|
ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
|
| 103 |
|
|
|
| 104 |
|
|
Value Driven Redundancy Elimination
|
| 105 |
|
|
L.T. Simpson
|
| 106 |
|
|
Rice University Ph.D. thesis, Apr. 1996
|
| 107 |
|
|
|
| 108 |
|
|
Value Numbering
|
| 109 |
|
|
L.T. Simpson
|
| 110 |
|
|
Massively Scalar Compiler Project, Rice University, Sep. 1996
|
| 111 |
|
|
|
| 112 |
|
|
High Performance Compilers for Parallel Computing
|
| 113 |
|
|
Michael Wolfe
|
| 114 |
|
|
Addison-Wesley, 1996
|
| 115 |
|
|
|
| 116 |
|
|
Advanced Compiler Design and Implementation
|
| 117 |
|
|
Steven Muchnick
|
| 118 |
|
|
Morgan Kaufmann, 1997
|
| 119 |
|
|
|
| 120 |
|
|
Building an Optimizing Compiler
|
| 121 |
|
|
Robert Morgan
|
| 122 |
|
|
Digital Press, 1998
|
| 123 |
|
|
|
| 124 |
|
|
People wishing to speed up the code here should read:
|
| 125 |
|
|
Elimination Algorithms for Data Flow Analysis
|
| 126 |
|
|
B.G. Ryder, M.C. Paull
|
| 127 |
|
|
ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
|
| 128 |
|
|
|
| 129 |
|
|
How to Analyze Large Programs Efficiently and Informatively
|
| 130 |
|
|
D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
|
| 131 |
|
|
ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
|
| 132 |
|
|
|
| 133 |
|
|
People wishing to do something different can find various possibilities
|
| 134 |
|
|
in the above papers and elsewhere.
|
| 135 |
|
|
*/
|
| 136 |
|
|
|
| 137 |
|
|
#include "config.h"
|
| 138 |
|
|
#include "system.h"
|
| 139 |
|
|
#include "coretypes.h"
|
| 140 |
|
|
#include "tm.h"
|
| 141 |
|
|
#include "diagnostic-core.h"
|
| 142 |
|
|
#include "toplev.h"
|
| 143 |
|
|
|
| 144 |
|
|
#include "rtl.h"
|
| 145 |
|
|
#include "tree.h"
|
| 146 |
|
|
#include "tm_p.h"
|
| 147 |
|
|
#include "regs.h"
|
| 148 |
|
|
#include "hard-reg-set.h"
|
| 149 |
|
|
#include "flags.h"
|
| 150 |
|
|
#include "insn-config.h"
|
| 151 |
|
|
#include "recog.h"
|
| 152 |
|
|
#include "basic-block.h"
|
| 153 |
|
|
#include "output.h"
|
| 154 |
|
|
#include "function.h"
|
| 155 |
|
|
#include "expr.h"
|
| 156 |
|
|
#include "except.h"
|
| 157 |
|
|
#include "ggc.h"
|
| 158 |
|
|
#include "params.h"
|
| 159 |
|
|
#include "cselib.h"
|
| 160 |
|
|
#include "intl.h"
|
| 161 |
|
|
#include "obstack.h"
|
| 162 |
|
|
#include "timevar.h"
|
| 163 |
|
|
#include "tree-pass.h"
|
| 164 |
|
|
#include "hashtab.h"
|
| 165 |
|
|
#include "df.h"
|
| 166 |
|
|
#include "dbgcnt.h"
|
| 167 |
|
|
#include "target.h"
|
| 168 |
|
|
#include "gcse.h"
|
| 169 |
|
|
|
| 170 |
|
|
/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
|
| 171 |
|
|
are a superset of those done by classic GCSE.
|
| 172 |
|
|
|
| 173 |
|
|
Two passes of copy/constant propagation are done around PRE or hoisting
|
| 174 |
|
|
because the first one enables more GCSE and the second one helps to clean
|
| 175 |
|
|
up the copies that PRE and HOIST create. This is needed more for PRE than
|
| 176 |
|
|
for HOIST because code hoisting will try to use an existing register
|
| 177 |
|
|
containing the common subexpression rather than create a new one. This is
|
| 178 |
|
|
harder to do for PRE because of the code motion (which HOIST doesn't do).
|
| 179 |
|
|
|
| 180 |
|
|
Expressions we are interested in GCSE-ing are of the form
|
| 181 |
|
|
(set (pseudo-reg) (expression)).
|
| 182 |
|
|
Function want_to_gcse_p says what these are.
|
| 183 |
|
|
|
| 184 |
|
|
In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
|
| 185 |
|
|
This allows PRE to hoist expressions that are expressed in multiple insns,
|
| 186 |
|
|
such as complex address calculations (e.g. for PIC code, or loads with a
|
| 187 |
|
|
high part and a low part).
|
| 188 |
|
|
|
| 189 |
|
|
PRE handles moving invariant expressions out of loops (by treating them as
|
| 190 |
|
|
partially redundant).
|
| 191 |
|
|
|
| 192 |
|
|
**********************
|
| 193 |
|
|
|
| 194 |
|
|
We used to support multiple passes but there are diminishing returns in
|
| 195 |
|
|
doing so. The first pass usually makes 90% of the changes that are doable.
|
| 196 |
|
|
A second pass can make a few more changes made possible by the first pass.
|
| 197 |
|
|
Experiments show any further passes don't make enough changes to justify
|
| 198 |
|
|
the expense.
|
| 199 |
|
|
|
| 200 |
|
|
A study of spec92 using an unlimited number of passes:
|
| 201 |
|
|
[1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
|
| 202 |
|
|
[6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
|
| 203 |
|
|
[12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
|
| 204 |
|
|
|
| 205 |
|
|
It was found doing copy propagation between each pass enables further
|
| 206 |
|
|
substitutions.
|
| 207 |
|
|
|
| 208 |
|
|
This study was done before expressions in REG_EQUAL notes were added as
|
| 209 |
|
|
candidate expressions for optimization, and before the GIMPLE optimizers
|
| 210 |
|
|
were added. Probably, multiple passes is even less efficient now than
|
| 211 |
|
|
at the time when the study was conducted.
|
| 212 |
|
|
|
| 213 |
|
|
PRE is quite expensive in complicated functions because the DFA can take
|
| 214 |
|
|
a while to converge. Hence we only perform one pass.
|
| 215 |
|
|
|
| 216 |
|
|
**********************
|
| 217 |
|
|
|
| 218 |
|
|
The steps for PRE are:
|
| 219 |
|
|
|
| 220 |
|
|
1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
|
| 221 |
|
|
|
| 222 |
|
|
2) Perform the data flow analysis for PRE.
|
| 223 |
|
|
|
| 224 |
|
|
3) Delete the redundant instructions
|
| 225 |
|
|
|
| 226 |
|
|
4) Insert the required copies [if any] that make the partially
|
| 227 |
|
|
redundant instructions fully redundant.
|
| 228 |
|
|
|
| 229 |
|
|
5) For other reaching expressions, insert an instruction to copy the value
|
| 230 |
|
|
to a newly created pseudo that will reach the redundant instruction.
|
| 231 |
|
|
|
| 232 |
|
|
The deletion is done first so that when we do insertions we
|
| 233 |
|
|
know which pseudo reg to use.
|
| 234 |
|
|
|
| 235 |
|
|
Various papers have argued that PRE DFA is expensive (O(n^2)) and others
|
| 236 |
|
|
argue it is not. The number of iterations for the algorithm to converge
|
| 237 |
|
|
is typically 2-4 so I don't view it as that expensive (relatively speaking).
|
| 238 |
|
|
|
| 239 |
|
|
PRE GCSE depends heavily on the second CPROP pass to clean up the copies
|
| 240 |
|
|
we create. To make an expression reach the place where it's redundant,
|
| 241 |
|
|
the result of the expression is copied to a new register, and the redundant
|
| 242 |
|
|
expression is deleted by replacing it with this new register. Classic GCSE
|
| 243 |
|
|
doesn't have this problem as much as it computes the reaching defs of
|
| 244 |
|
|
each register in each block and thus can try to use an existing
|
| 245 |
|
|
register. */
|
| 246 |
|
|
|
| 247 |
|
|
/* GCSE global vars. */
|
| 248 |
|
|
|
| 249 |
|
|
struct target_gcse default_target_gcse;
|
| 250 |
|
|
#if SWITCHABLE_TARGET
|
| 251 |
|
|
struct target_gcse *this_target_gcse = &default_target_gcse;
|
| 252 |
|
|
#endif
|
| 253 |
|
|
|
| 254 |
|
|
/* Set to non-zero if CSE should run after all GCSE optimizations are done. */
|
| 255 |
|
|
int flag_rerun_cse_after_global_opts;
|
| 256 |
|
|
|
| 257 |
|
|
/* An obstack for our working variables. */
|
| 258 |
|
|
static struct obstack gcse_obstack;
|
| 259 |
|
|
|
| 260 |
|
|
struct reg_use {rtx reg_rtx; };
|
| 261 |
|
|
|
| 262 |
|
|
/* Hash table of expressions. */
|
| 263 |
|
|
|
| 264 |
|
|
struct expr
|
| 265 |
|
|
{
|
| 266 |
|
|
/* The expression. */
|
| 267 |
|
|
rtx expr;
|
| 268 |
|
|
/* Index in the available expression bitmaps. */
|
| 269 |
|
|
int bitmap_index;
|
| 270 |
|
|
/* Next entry with the same hash. */
|
| 271 |
|
|
struct expr *next_same_hash;
|
| 272 |
|
|
/* List of anticipatable occurrences in basic blocks in the function.
|
| 273 |
|
|
An "anticipatable occurrence" is one that is the first occurrence in the
|
| 274 |
|
|
basic block, the operands are not modified in the basic block prior
|
| 275 |
|
|
to the occurrence and the output is not used between the start of
|
| 276 |
|
|
the block and the occurrence. */
|
| 277 |
|
|
struct occr *antic_occr;
|
| 278 |
|
|
/* List of available occurrence in basic blocks in the function.
|
| 279 |
|
|
An "available occurrence" is one that is the last occurrence in the
|
| 280 |
|
|
basic block and the operands are not modified by following statements in
|
| 281 |
|
|
the basic block [including this insn]. */
|
| 282 |
|
|
struct occr *avail_occr;
|
| 283 |
|
|
/* Non-null if the computation is PRE redundant.
|
| 284 |
|
|
The value is the newly created pseudo-reg to record a copy of the
|
| 285 |
|
|
expression in all the places that reach the redundant copy. */
|
| 286 |
|
|
rtx reaching_reg;
|
| 287 |
|
|
/* Maximum distance in instructions this expression can travel.
|
| 288 |
|
|
We avoid moving simple expressions for more than a few instructions
|
| 289 |
|
|
to keep register pressure under control.
|
| 290 |
|
|
A value of "0" removes restrictions on how far the expression can
|
| 291 |
|
|
travel. */
|
| 292 |
|
|
int max_distance;
|
| 293 |
|
|
};
|
| 294 |
|
|
|
| 295 |
|
|
/* Occurrence of an expression.
|
| 296 |
|
|
There is one per basic block. If a pattern appears more than once the
|
| 297 |
|
|
last appearance is used [or first for anticipatable expressions]. */
|
| 298 |
|
|
|
| 299 |
|
|
struct occr
|
| 300 |
|
|
{
|
| 301 |
|
|
/* Next occurrence of this expression. */
|
| 302 |
|
|
struct occr *next;
|
| 303 |
|
|
/* The insn that computes the expression. */
|
| 304 |
|
|
rtx insn;
|
| 305 |
|
|
/* Nonzero if this [anticipatable] occurrence has been deleted. */
|
| 306 |
|
|
char deleted_p;
|
| 307 |
|
|
/* Nonzero if this [available] occurrence has been copied to
|
| 308 |
|
|
reaching_reg. */
|
| 309 |
|
|
/* ??? This is mutually exclusive with deleted_p, so they could share
|
| 310 |
|
|
the same byte. */
|
| 311 |
|
|
char copied_p;
|
| 312 |
|
|
};
|
| 313 |
|
|
|
| 314 |
|
|
typedef struct occr *occr_t;
|
| 315 |
|
|
DEF_VEC_P (occr_t);
|
| 316 |
|
|
DEF_VEC_ALLOC_P (occr_t, heap);
|
| 317 |
|
|
|
| 318 |
|
|
/* Expression hash tables.
|
| 319 |
|
|
Each hash table is an array of buckets.
|
| 320 |
|
|
??? It is known that if it were an array of entries, structure elements
|
| 321 |
|
|
`next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
|
| 322 |
|
|
not clear whether in the final analysis a sufficient amount of memory would
|
| 323 |
|
|
be saved as the size of the available expression bitmaps would be larger
|
| 324 |
|
|
[one could build a mapping table without holes afterwards though].
|
| 325 |
|
|
Someday I'll perform the computation and figure it out. */
|
| 326 |
|
|
|
| 327 |
|
|
struct hash_table_d
|
| 328 |
|
|
{
|
| 329 |
|
|
/* The table itself.
|
| 330 |
|
|
This is an array of `expr_hash_table_size' elements. */
|
| 331 |
|
|
struct expr **table;
|
| 332 |
|
|
|
| 333 |
|
|
/* Size of the hash table, in elements. */
|
| 334 |
|
|
unsigned int size;
|
| 335 |
|
|
|
| 336 |
|
|
/* Number of hash table elements. */
|
| 337 |
|
|
unsigned int n_elems;
|
| 338 |
|
|
};
|
| 339 |
|
|
|
| 340 |
|
|
/* Expression hash table. */
|
| 341 |
|
|
static struct hash_table_d expr_hash_table;
|
| 342 |
|
|
|
| 343 |
|
|
/* This is a list of expressions which are MEMs and will be used by load
|
| 344 |
|
|
or store motion.
|
| 345 |
|
|
Load motion tracks MEMs which aren't killed by anything except itself,
|
| 346 |
|
|
i.e. loads and stores to a single location.
|
| 347 |
|
|
We can then allow movement of these MEM refs with a little special
|
| 348 |
|
|
allowance. (all stores copy the same value to the reaching reg used
|
| 349 |
|
|
for the loads). This means all values used to store into memory must have
|
| 350 |
|
|
no side effects so we can re-issue the setter value. */
|
| 351 |
|
|
|
| 352 |
|
|
struct ls_expr
|
| 353 |
|
|
{
|
| 354 |
|
|
struct expr * expr; /* Gcse expression reference for LM. */
|
| 355 |
|
|
rtx pattern; /* Pattern of this mem. */
|
| 356 |
|
|
rtx pattern_regs; /* List of registers mentioned by the mem. */
|
| 357 |
|
|
rtx loads; /* INSN list of loads seen. */
|
| 358 |
|
|
rtx stores; /* INSN list of stores seen. */
|
| 359 |
|
|
struct ls_expr * next; /* Next in the list. */
|
| 360 |
|
|
int invalid; /* Invalid for some reason. */
|
| 361 |
|
|
int index; /* If it maps to a bitmap index. */
|
| 362 |
|
|
unsigned int hash_index; /* Index when in a hash table. */
|
| 363 |
|
|
rtx reaching_reg; /* Register to use when re-writing. */
|
| 364 |
|
|
};
|
| 365 |
|
|
|
| 366 |
|
|
/* Head of the list of load/store memory refs. */
|
| 367 |
|
|
static struct ls_expr * pre_ldst_mems = NULL;
|
| 368 |
|
|
|
| 369 |
|
|
/* Hashtable for the load/store memory refs. */
|
| 370 |
|
|
static htab_t pre_ldst_table = NULL;
|
| 371 |
|
|
|
| 372 |
|
|
/* Bitmap containing one bit for each register in the program.
|
| 373 |
|
|
Used when performing GCSE to track which registers have been set since
|
| 374 |
|
|
the start of the basic block. */
|
| 375 |
|
|
static regset reg_set_bitmap;
|
| 376 |
|
|
|
| 377 |
|
|
/* Array, indexed by basic block number for a list of insns which modify
|
| 378 |
|
|
memory within that block. */
|
| 379 |
|
|
static VEC (rtx,heap) **modify_mem_list;
|
| 380 |
|
|
static bitmap modify_mem_list_set;
|
| 381 |
|
|
|
| 382 |
|
|
typedef struct modify_pair_s
|
| 383 |
|
|
{
|
| 384 |
|
|
rtx dest; /* A MEM. */
|
| 385 |
|
|
rtx dest_addr; /* The canonical address of `dest'. */
|
| 386 |
|
|
} modify_pair;
|
| 387 |
|
|
|
| 388 |
|
|
DEF_VEC_O(modify_pair);
|
| 389 |
|
|
DEF_VEC_ALLOC_O(modify_pair,heap);
|
| 390 |
|
|
|
| 391 |
|
|
/* This array parallels modify_mem_list, except that it stores MEMs
|
| 392 |
|
|
being set and their canonicalized memory addresses. */
|
| 393 |
|
|
static VEC (modify_pair,heap) **canon_modify_mem_list;
|
| 394 |
|
|
|
| 395 |
|
|
/* Bitmap indexed by block numbers to record which blocks contain
|
| 396 |
|
|
function calls. */
|
| 397 |
|
|
static bitmap blocks_with_calls;
|
| 398 |
|
|
|
| 399 |
|
|
/* Various variables for statistics gathering. */
|
| 400 |
|
|
|
| 401 |
|
|
/* Memory used in a pass.
|
| 402 |
|
|
This isn't intended to be absolutely precise. Its intent is only
|
| 403 |
|
|
to keep an eye on memory usage. */
|
| 404 |
|
|
static int bytes_used;
|
| 405 |
|
|
|
| 406 |
|
|
/* GCSE substitutions made. */
|
| 407 |
|
|
static int gcse_subst_count;
|
| 408 |
|
|
/* Number of copy instructions created. */
|
| 409 |
|
|
static int gcse_create_count;
|
| 410 |
|
|
|
| 411 |
|
|
/* Doing code hoisting. */
|
| 412 |
|
|
static bool doing_code_hoisting_p = false;
|
| 413 |
|
|
|
| 414 |
|
|
/* For available exprs */
|
| 415 |
|
|
static sbitmap *ae_kill;
|
| 416 |
|
|
|
| 417 |
|
|
static void compute_can_copy (void);
|
| 418 |
|
|
static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
|
| 419 |
|
|
static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
|
| 420 |
|
|
static void *gcse_alloc (unsigned long);
|
| 421 |
|
|
static void alloc_gcse_mem (void);
|
| 422 |
|
|
static void free_gcse_mem (void);
|
| 423 |
|
|
static void hash_scan_insn (rtx, struct hash_table_d *);
|
| 424 |
|
|
static void hash_scan_set (rtx, rtx, struct hash_table_d *);
|
| 425 |
|
|
static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
|
| 426 |
|
|
static void hash_scan_call (rtx, rtx, struct hash_table_d *);
|
| 427 |
|
|
static int want_to_gcse_p (rtx, int *);
|
| 428 |
|
|
static int oprs_unchanged_p (const_rtx, const_rtx, int);
|
| 429 |
|
|
static int oprs_anticipatable_p (const_rtx, const_rtx);
|
| 430 |
|
|
static int oprs_available_p (const_rtx, const_rtx);
|
| 431 |
|
|
static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
|
| 432 |
|
|
struct hash_table_d *);
|
| 433 |
|
|
static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
|
| 434 |
|
|
static int expr_equiv_p (const_rtx, const_rtx);
|
| 435 |
|
|
static void record_last_reg_set_info (rtx, int);
|
| 436 |
|
|
static void record_last_mem_set_info (rtx);
|
| 437 |
|
|
static void record_last_set_info (rtx, const_rtx, void *);
|
| 438 |
|
|
static void compute_hash_table (struct hash_table_d *);
|
| 439 |
|
|
static void alloc_hash_table (struct hash_table_d *);
|
| 440 |
|
|
static void free_hash_table (struct hash_table_d *);
|
| 441 |
|
|
static void compute_hash_table_work (struct hash_table_d *);
|
| 442 |
|
|
static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
|
| 443 |
|
|
static void compute_transp (const_rtx, int, sbitmap *);
|
| 444 |
|
|
static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
|
| 445 |
|
|
struct hash_table_d *);
|
| 446 |
|
|
static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
|
| 447 |
|
|
static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
|
| 448 |
|
|
static void canon_list_insert (rtx, const_rtx, void *);
|
| 449 |
|
|
static void alloc_pre_mem (int, int);
|
| 450 |
|
|
static void free_pre_mem (void);
|
| 451 |
|
|
static struct edge_list *compute_pre_data (void);
|
| 452 |
|
|
static int pre_expr_reaches_here_p (basic_block, struct expr *,
|
| 453 |
|
|
basic_block);
|
| 454 |
|
|
static void insert_insn_end_basic_block (struct expr *, basic_block);
|
| 455 |
|
|
static void pre_insert_copy_insn (struct expr *, rtx);
|
| 456 |
|
|
static void pre_insert_copies (void);
|
| 457 |
|
|
static int pre_delete (void);
|
| 458 |
|
|
static int pre_gcse (struct edge_list *);
|
| 459 |
|
|
static int one_pre_gcse_pass (void);
|
| 460 |
|
|
static void add_label_notes (rtx, rtx);
|
| 461 |
|
|
static void alloc_code_hoist_mem (int, int);
|
| 462 |
|
|
static void free_code_hoist_mem (void);
|
| 463 |
|
|
static void compute_code_hoist_vbeinout (void);
|
| 464 |
|
|
static void compute_code_hoist_data (void);
|
| 465 |
|
|
static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *,
|
| 466 |
|
|
int, int *);
|
| 467 |
|
|
static int hoist_code (void);
|
| 468 |
|
|
static int one_code_hoisting_pass (void);
|
| 469 |
|
|
static rtx process_insert_insn (struct expr *);
|
| 470 |
|
|
static int pre_edge_insert (struct edge_list *, struct expr **);
|
| 471 |
|
|
static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
|
| 472 |
|
|
basic_block, char *);
|
| 473 |
|
|
static struct ls_expr * ldst_entry (rtx);
|
| 474 |
|
|
static void free_ldst_entry (struct ls_expr *);
|
| 475 |
|
|
static void free_ld_motion_mems (void);
|
| 476 |
|
|
static void print_ldst_list (FILE *);
|
| 477 |
|
|
static struct ls_expr * find_rtx_in_ldst (rtx);
|
| 478 |
|
|
static int simple_mem (const_rtx);
|
| 479 |
|
|
static void invalidate_any_buried_refs (rtx);
|
| 480 |
|
|
static void compute_ld_motion_mems (void);
|
| 481 |
|
|
static void trim_ld_motion_mems (void);
|
| 482 |
|
|
static void update_ld_motion_stores (struct expr *);
|
| 483 |
|
|
static void clear_modify_mem_tables (void);
|
| 484 |
|
|
static void free_modify_mem_tables (void);
|
| 485 |
|
|
static rtx gcse_emit_move_after (rtx, rtx, rtx);
|
| 486 |
|
|
static bool is_too_expensive (const char *);
|
| 487 |
|
|
|
| 488 |
|
|
#define GNEW(T) ((T *) gmalloc (sizeof (T)))
|
| 489 |
|
|
#define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
|
| 490 |
|
|
|
| 491 |
|
|
#define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
|
| 492 |
|
|
#define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
|
| 493 |
|
|
|
| 494 |
|
|
#define GNEWVAR(T, S) ((T *) gmalloc ((S)))
|
| 495 |
|
|
#define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
|
| 496 |
|
|
|
| 497 |
|
|
#define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
|
| 498 |
|
|
#define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
|
| 499 |
|
|
|
| 500 |
|
|
/* Misc. utilities. */
|
| 501 |
|
|
|
| 502 |
|
|
#define can_copy \
|
| 503 |
|
|
(this_target_gcse->x_can_copy)
|
| 504 |
|
|
#define can_copy_init_p \
|
| 505 |
|
|
(this_target_gcse->x_can_copy_init_p)
|
| 506 |
|
|
|
| 507 |
|
|
/* Compute which modes support reg/reg copy operations. */
|
| 508 |
|
|
|
| 509 |
|
|
static void
|
| 510 |
|
|
compute_can_copy (void)
|
| 511 |
|
|
{
|
| 512 |
|
|
int i;
|
| 513 |
|
|
#ifndef AVOID_CCMODE_COPIES
|
| 514 |
|
|
rtx reg, insn;
|
| 515 |
|
|
#endif
|
| 516 |
|
|
memset (can_copy, 0, NUM_MACHINE_MODES);
|
| 517 |
|
|
|
| 518 |
|
|
start_sequence ();
|
| 519 |
|
|
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
| 520 |
|
|
if (GET_MODE_CLASS (i) == MODE_CC)
|
| 521 |
|
|
{
|
| 522 |
|
|
#ifdef AVOID_CCMODE_COPIES
|
| 523 |
|
|
can_copy[i] = 0;
|
| 524 |
|
|
#else
|
| 525 |
|
|
reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
|
| 526 |
|
|
insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
|
| 527 |
|
|
if (recog (PATTERN (insn), insn, NULL) >= 0)
|
| 528 |
|
|
can_copy[i] = 1;
|
| 529 |
|
|
#endif
|
| 530 |
|
|
}
|
| 531 |
|
|
else
|
| 532 |
|
|
can_copy[i] = 1;
|
| 533 |
|
|
|
| 534 |
|
|
end_sequence ();
|
| 535 |
|
|
}
|
| 536 |
|
|
|
| 537 |
|
|
/* Returns whether the mode supports reg/reg copy operations. */
|
| 538 |
|
|
|
| 539 |
|
|
bool
|
| 540 |
|
|
can_copy_p (enum machine_mode mode)
|
| 541 |
|
|
{
|
| 542 |
|
|
if (! can_copy_init_p)
|
| 543 |
|
|
{
|
| 544 |
|
|
compute_can_copy ();
|
| 545 |
|
|
can_copy_init_p = true;
|
| 546 |
|
|
}
|
| 547 |
|
|
|
| 548 |
|
|
return can_copy[mode] != 0;
|
| 549 |
|
|
}
|
| 550 |
|
|
|
| 551 |
|
|
/* Cover function to xmalloc to record bytes allocated. */
|
| 552 |
|
|
|
| 553 |
|
|
static void *
|
| 554 |
|
|
gmalloc (size_t size)
|
| 555 |
|
|
{
|
| 556 |
|
|
bytes_used += size;
|
| 557 |
|
|
return xmalloc (size);
|
| 558 |
|
|
}
|
| 559 |
|
|
|
| 560 |
|
|
/* Cover function to xcalloc to record bytes allocated. */
|
| 561 |
|
|
|
| 562 |
|
|
static void *
|
| 563 |
|
|
gcalloc (size_t nelem, size_t elsize)
|
| 564 |
|
|
{
|
| 565 |
|
|
bytes_used += nelem * elsize;
|
| 566 |
|
|
return xcalloc (nelem, elsize);
|
| 567 |
|
|
}
|
| 568 |
|
|
|
| 569 |
|
|
/* Cover function to obstack_alloc. */
|
| 570 |
|
|
|
| 571 |
|
|
static void *
|
| 572 |
|
|
gcse_alloc (unsigned long size)
|
| 573 |
|
|
{
|
| 574 |
|
|
bytes_used += size;
|
| 575 |
|
|
return obstack_alloc (&gcse_obstack, size);
|
| 576 |
|
|
}
|
| 577 |
|
|
|
| 578 |
|
|
/* Allocate memory for the reg/memory set tracking tables.
|
| 579 |
|
|
This is called at the start of each pass. */
|
| 580 |
|
|
|
| 581 |
|
|
static void
|
| 582 |
|
|
alloc_gcse_mem (void)
|
| 583 |
|
|
{
|
| 584 |
|
|
/* Allocate vars to track sets of regs. */
|
| 585 |
|
|
reg_set_bitmap = ALLOC_REG_SET (NULL);
|
| 586 |
|
|
|
| 587 |
|
|
/* Allocate array to keep a list of insns which modify memory in each
|
| 588 |
|
|
basic block. */
|
| 589 |
|
|
modify_mem_list = GCNEWVEC (VEC (rtx,heap) *, last_basic_block);
|
| 590 |
|
|
canon_modify_mem_list = GCNEWVEC (VEC (modify_pair,heap) *,
|
| 591 |
|
|
last_basic_block);
|
| 592 |
|
|
modify_mem_list_set = BITMAP_ALLOC (NULL);
|
| 593 |
|
|
blocks_with_calls = BITMAP_ALLOC (NULL);
|
| 594 |
|
|
}
|
| 595 |
|
|
|
| 596 |
|
|
/* Free memory allocated by alloc_gcse_mem. */
|
| 597 |
|
|
|
| 598 |
|
|
static void
|
| 599 |
|
|
free_gcse_mem (void)
|
| 600 |
|
|
{
|
| 601 |
|
|
FREE_REG_SET (reg_set_bitmap);
|
| 602 |
|
|
|
| 603 |
|
|
free_modify_mem_tables ();
|
| 604 |
|
|
BITMAP_FREE (modify_mem_list_set);
|
| 605 |
|
|
BITMAP_FREE (blocks_with_calls);
|
| 606 |
|
|
}
|
| 607 |
|
|
|
| 608 |
|
|
/* Compute the local properties of each recorded expression.
|
| 609 |
|
|
|
| 610 |
|
|
Local properties are those that are defined by the block, irrespective of
|
| 611 |
|
|
other blocks.
|
| 612 |
|
|
|
| 613 |
|
|
An expression is transparent in a block if its operands are not modified
|
| 614 |
|
|
in the block.
|
| 615 |
|
|
|
| 616 |
|
|
An expression is computed (locally available) in a block if it is computed
|
| 617 |
|
|
at least once and expression would contain the same value if the
|
| 618 |
|
|
computation was moved to the end of the block.
|
| 619 |
|
|
|
| 620 |
|
|
An expression is locally anticipatable in a block if it is computed at
|
| 621 |
|
|
least once and expression would contain the same value if the computation
|
| 622 |
|
|
was moved to the beginning of the block.
|
| 623 |
|
|
|
| 624 |
|
|
We call this routine for pre and code hoisting. They all compute
|
| 625 |
|
|
basically the same information and thus can easily share this code.
|
| 626 |
|
|
|
| 627 |
|
|
TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
|
| 628 |
|
|
properties. If NULL, then it is not necessary to compute or record that
|
| 629 |
|
|
particular property.
|
| 630 |
|
|
|
| 631 |
|
|
TABLE controls which hash table to look at. */
|
| 632 |
|
|
|
| 633 |
|
|
static void
|
| 634 |
|
|
compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
|
| 635 |
|
|
struct hash_table_d *table)
|
| 636 |
|
|
{
|
| 637 |
|
|
unsigned int i;
|
| 638 |
|
|
|
| 639 |
|
|
/* Initialize any bitmaps that were passed in. */
|
| 640 |
|
|
if (transp)
|
| 641 |
|
|
{
|
| 642 |
|
|
sbitmap_vector_ones (transp, last_basic_block);
|
| 643 |
|
|
}
|
| 644 |
|
|
|
| 645 |
|
|
if (comp)
|
| 646 |
|
|
sbitmap_vector_zero (comp, last_basic_block);
|
| 647 |
|
|
if (antloc)
|
| 648 |
|
|
sbitmap_vector_zero (antloc, last_basic_block);
|
| 649 |
|
|
|
| 650 |
|
|
for (i = 0; i < table->size; i++)
|
| 651 |
|
|
{
|
| 652 |
|
|
struct expr *expr;
|
| 653 |
|
|
|
| 654 |
|
|
for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
|
| 655 |
|
|
{
|
| 656 |
|
|
int indx = expr->bitmap_index;
|
| 657 |
|
|
struct occr *occr;
|
| 658 |
|
|
|
| 659 |
|
|
/* The expression is transparent in this block if it is not killed.
|
| 660 |
|
|
We start by assuming all are transparent [none are killed], and
|
| 661 |
|
|
then reset the bits for those that are. */
|
| 662 |
|
|
if (transp)
|
| 663 |
|
|
compute_transp (expr->expr, indx, transp);
|
| 664 |
|
|
|
| 665 |
|
|
/* The occurrences recorded in antic_occr are exactly those that
|
| 666 |
|
|
we want to set to nonzero in ANTLOC. */
|
| 667 |
|
|
if (antloc)
|
| 668 |
|
|
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
| 669 |
|
|
{
|
| 670 |
|
|
SET_BIT (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
|
| 671 |
|
|
|
| 672 |
|
|
/* While we're scanning the table, this is a good place to
|
| 673 |
|
|
initialize this. */
|
| 674 |
|
|
occr->deleted_p = 0;
|
| 675 |
|
|
}
|
| 676 |
|
|
|
| 677 |
|
|
/* The occurrences recorded in avail_occr are exactly those that
|
| 678 |
|
|
we want to set to nonzero in COMP. */
|
| 679 |
|
|
if (comp)
|
| 680 |
|
|
for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
|
| 681 |
|
|
{
|
| 682 |
|
|
SET_BIT (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
|
| 683 |
|
|
|
| 684 |
|
|
/* While we're scanning the table, this is a good place to
|
| 685 |
|
|
initialize this. */
|
| 686 |
|
|
occr->copied_p = 0;
|
| 687 |
|
|
}
|
| 688 |
|
|
|
| 689 |
|
|
/* While we're scanning the table, this is a good place to
|
| 690 |
|
|
initialize this. */
|
| 691 |
|
|
expr->reaching_reg = 0;
|
| 692 |
|
|
}
|
| 693 |
|
|
}
|
| 694 |
|
|
}
|
| 695 |
|
|
|
| 696 |
|
|
/* Hash table support. */
|
| 697 |
|
|
|
| 698 |
|
|
struct reg_avail_info
|
| 699 |
|
|
{
|
| 700 |
|
|
basic_block last_bb;
|
| 701 |
|
|
int first_set;
|
| 702 |
|
|
int last_set;
|
| 703 |
|
|
};
|
| 704 |
|
|
|
| 705 |
|
|
static struct reg_avail_info *reg_avail_info;
|
| 706 |
|
|
static basic_block current_bb;
|
| 707 |
|
|
|
| 708 |
|
|
/* See whether X, the source of a set, is something we want to consider for
|
| 709 |
|
|
GCSE. */
|
| 710 |
|
|
|
| 711 |
|
|
static int
|
| 712 |
|
|
want_to_gcse_p (rtx x, int *max_distance_ptr)
|
| 713 |
|
|
{
|
| 714 |
|
|
#ifdef STACK_REGS
|
| 715 |
|
|
/* On register stack architectures, don't GCSE constants from the
|
| 716 |
|
|
constant pool, as the benefits are often swamped by the overhead
|
| 717 |
|
|
of shuffling the register stack between basic blocks. */
|
| 718 |
|
|
if (IS_STACK_MODE (GET_MODE (x)))
|
| 719 |
|
|
x = avoid_constant_pool_reference (x);
|
| 720 |
|
|
#endif
|
| 721 |
|
|
|
| 722 |
|
|
/* GCSE'ing constants:
|
| 723 |
|
|
|
| 724 |
|
|
We do not specifically distinguish between constant and non-constant
|
| 725 |
|
|
expressions in PRE and Hoist. We use set_src_cost below to limit
|
| 726 |
|
|
the maximum distance simple expressions can travel.
|
| 727 |
|
|
|
| 728 |
|
|
Nevertheless, constants are much easier to GCSE, and, hence,
|
| 729 |
|
|
it is easy to overdo the optimizations. Usually, excessive PRE and
|
| 730 |
|
|
Hoisting of constant leads to increased register pressure.
|
| 731 |
|
|
|
| 732 |
|
|
RA can deal with this by rematerialing some of the constants.
|
| 733 |
|
|
Therefore, it is important that the back-end generates sets of constants
|
| 734 |
|
|
in a way that allows reload rematerialize them under high register
|
| 735 |
|
|
pressure, i.e., a pseudo register with REG_EQUAL to constant
|
| 736 |
|
|
is set only once. Failing to do so will result in IRA/reload
|
| 737 |
|
|
spilling such constants under high register pressure instead of
|
| 738 |
|
|
rematerializing them. */
|
| 739 |
|
|
|
| 740 |
|
|
switch (GET_CODE (x))
|
| 741 |
|
|
{
|
| 742 |
|
|
case REG:
|
| 743 |
|
|
case SUBREG:
|
| 744 |
|
|
case CALL:
|
| 745 |
|
|
return 0;
|
| 746 |
|
|
|
| 747 |
|
|
case CONST_INT:
|
| 748 |
|
|
case CONST_DOUBLE:
|
| 749 |
|
|
case CONST_FIXED:
|
| 750 |
|
|
case CONST_VECTOR:
|
| 751 |
|
|
if (!doing_code_hoisting_p)
|
| 752 |
|
|
/* Do not PRE constants. */
|
| 753 |
|
|
return 0;
|
| 754 |
|
|
|
| 755 |
|
|
/* FALLTHRU */
|
| 756 |
|
|
|
| 757 |
|
|
default:
|
| 758 |
|
|
if (doing_code_hoisting_p)
|
| 759 |
|
|
/* PRE doesn't implement max_distance restriction. */
|
| 760 |
|
|
{
|
| 761 |
|
|
int cost;
|
| 762 |
|
|
int max_distance;
|
| 763 |
|
|
|
| 764 |
|
|
gcc_assert (!optimize_function_for_speed_p (cfun)
|
| 765 |
|
|
&& optimize_function_for_size_p (cfun));
|
| 766 |
|
|
cost = set_src_cost (x, 0);
|
| 767 |
|
|
|
| 768 |
|
|
if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
|
| 769 |
|
|
{
|
| 770 |
|
|
max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
|
| 771 |
|
|
if (max_distance == 0)
|
| 772 |
|
|
return 0;
|
| 773 |
|
|
|
| 774 |
|
|
gcc_assert (max_distance > 0);
|
| 775 |
|
|
}
|
| 776 |
|
|
else
|
| 777 |
|
|
max_distance = 0;
|
| 778 |
|
|
|
| 779 |
|
|
if (max_distance_ptr)
|
| 780 |
|
|
*max_distance_ptr = max_distance;
|
| 781 |
|
|
}
|
| 782 |
|
|
|
| 783 |
|
|
return can_assign_to_reg_without_clobbers_p (x);
|
| 784 |
|
|
}
|
| 785 |
|
|
}
|
| 786 |
|
|
|
| 787 |
|
|
/* Used internally by can_assign_to_reg_without_clobbers_p. */
|
| 788 |
|
|
|
| 789 |
|
|
static GTY(()) rtx test_insn;
|
| 790 |
|
|
|
| 791 |
|
|
/* Return true if we can assign X to a pseudo register such that the
|
| 792 |
|
|
resulting insn does not result in clobbering a hard register as a
|
| 793 |
|
|
side-effect.
|
| 794 |
|
|
|
| 795 |
|
|
Additionally, if the target requires it, check that the resulting insn
|
| 796 |
|
|
can be copied. If it cannot, this means that X is special and probably
|
| 797 |
|
|
has hidden side-effects we don't want to mess with.
|
| 798 |
|
|
|
| 799 |
|
|
This function is typically used by code motion passes, to verify
|
| 800 |
|
|
that it is safe to insert an insn without worrying about clobbering
|
| 801 |
|
|
maybe live hard regs. */
|
| 802 |
|
|
|
| 803 |
|
|
bool
|
| 804 |
|
|
can_assign_to_reg_without_clobbers_p (rtx x)
|
| 805 |
|
|
{
|
| 806 |
|
|
int num_clobbers = 0;
|
| 807 |
|
|
int icode;
|
| 808 |
|
|
|
| 809 |
|
|
/* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
|
| 810 |
|
|
if (general_operand (x, GET_MODE (x)))
|
| 811 |
|
|
return 1;
|
| 812 |
|
|
else if (GET_MODE (x) == VOIDmode)
|
| 813 |
|
|
return 0;
|
| 814 |
|
|
|
| 815 |
|
|
/* Otherwise, check if we can make a valid insn from it. First initialize
|
| 816 |
|
|
our test insn if we haven't already. */
|
| 817 |
|
|
if (test_insn == 0)
|
| 818 |
|
|
{
|
| 819 |
|
|
test_insn
|
| 820 |
|
|
= make_insn_raw (gen_rtx_SET (VOIDmode,
|
| 821 |
|
|
gen_rtx_REG (word_mode,
|
| 822 |
|
|
FIRST_PSEUDO_REGISTER * 2),
|
| 823 |
|
|
const0_rtx));
|
| 824 |
|
|
NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
|
| 825 |
|
|
}
|
| 826 |
|
|
|
| 827 |
|
|
/* Now make an insn like the one we would make when GCSE'ing and see if
|
| 828 |
|
|
valid. */
|
| 829 |
|
|
PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
|
| 830 |
|
|
SET_SRC (PATTERN (test_insn)) = x;
|
| 831 |
|
|
|
| 832 |
|
|
icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
|
| 833 |
|
|
if (icode < 0)
|
| 834 |
|
|
return false;
|
| 835 |
|
|
|
| 836 |
|
|
if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
|
| 837 |
|
|
return false;
|
| 838 |
|
|
|
| 839 |
|
|
if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
|
| 840 |
|
|
return false;
|
| 841 |
|
|
|
| 842 |
|
|
return true;
|
| 843 |
|
|
}
|
| 844 |
|
|
|
| 845 |
|
|
/* Return nonzero if the operands of expression X are unchanged from the
|
| 846 |
|
|
start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
|
| 847 |
|
|
or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
|
| 848 |
|
|
|
| 849 |
|
|
static int
|
| 850 |
|
|
oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
|
| 851 |
|
|
{
|
| 852 |
|
|
int i, j;
|
| 853 |
|
|
enum rtx_code code;
|
| 854 |
|
|
const char *fmt;
|
| 855 |
|
|
|
| 856 |
|
|
if (x == 0)
|
| 857 |
|
|
return 1;
|
| 858 |
|
|
|
| 859 |
|
|
code = GET_CODE (x);
|
| 860 |
|
|
switch (code)
|
| 861 |
|
|
{
|
| 862 |
|
|
case REG:
|
| 863 |
|
|
{
|
| 864 |
|
|
struct reg_avail_info *info = ®_avail_info[REGNO (x)];
|
| 865 |
|
|
|
| 866 |
|
|
if (info->last_bb != current_bb)
|
| 867 |
|
|
return 1;
|
| 868 |
|
|
if (avail_p)
|
| 869 |
|
|
return info->last_set < DF_INSN_LUID (insn);
|
| 870 |
|
|
else
|
| 871 |
|
|
return info->first_set >= DF_INSN_LUID (insn);
|
| 872 |
|
|
}
|
| 873 |
|
|
|
| 874 |
|
|
case MEM:
|
| 875 |
|
|
if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
|
| 876 |
|
|
x, avail_p))
|
| 877 |
|
|
return 0;
|
| 878 |
|
|
else
|
| 879 |
|
|
return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
|
| 880 |
|
|
|
| 881 |
|
|
case PRE_DEC:
|
| 882 |
|
|
case PRE_INC:
|
| 883 |
|
|
case POST_DEC:
|
| 884 |
|
|
case POST_INC:
|
| 885 |
|
|
case PRE_MODIFY:
|
| 886 |
|
|
case POST_MODIFY:
|
| 887 |
|
|
return 0;
|
| 888 |
|
|
|
| 889 |
|
|
case PC:
|
| 890 |
|
|
case CC0: /*FIXME*/
|
| 891 |
|
|
case CONST:
|
| 892 |
|
|
case CONST_INT:
|
| 893 |
|
|
case CONST_DOUBLE:
|
| 894 |
|
|
case CONST_FIXED:
|
| 895 |
|
|
case CONST_VECTOR:
|
| 896 |
|
|
case SYMBOL_REF:
|
| 897 |
|
|
case LABEL_REF:
|
| 898 |
|
|
case ADDR_VEC:
|
| 899 |
|
|
case ADDR_DIFF_VEC:
|
| 900 |
|
|
return 1;
|
| 901 |
|
|
|
| 902 |
|
|
default:
|
| 903 |
|
|
break;
|
| 904 |
|
|
}
|
| 905 |
|
|
|
| 906 |
|
|
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
|
| 907 |
|
|
{
|
| 908 |
|
|
if (fmt[i] == 'e')
|
| 909 |
|
|
{
|
| 910 |
|
|
/* If we are about to do the last recursive call needed at this
|
| 911 |
|
|
level, change it into iteration. This function is called enough
|
| 912 |
|
|
to be worth it. */
|
| 913 |
|
|
if (i == 0)
|
| 914 |
|
|
return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
|
| 915 |
|
|
|
| 916 |
|
|
else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
|
| 917 |
|
|
return 0;
|
| 918 |
|
|
}
|
| 919 |
|
|
else if (fmt[i] == 'E')
|
| 920 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 921 |
|
|
if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
|
| 922 |
|
|
return 0;
|
| 923 |
|
|
}
|
| 924 |
|
|
|
| 925 |
|
|
return 1;
|
| 926 |
|
|
}
|
| 927 |
|
|
|
| 928 |
|
|
/* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
|
| 929 |
|
|
|
| 930 |
|
|
struct mem_conflict_info
|
| 931 |
|
|
{
|
| 932 |
|
|
/* A memory reference for a load instruction, mems_conflict_for_gcse_p will
|
| 933 |
|
|
see if a memory store conflicts with this memory load. */
|
| 934 |
|
|
const_rtx mem;
|
| 935 |
|
|
|
| 936 |
|
|
/* True if mems_conflict_for_gcse_p finds a conflict between two memory
|
| 937 |
|
|
references. */
|
| 938 |
|
|
bool conflict;
|
| 939 |
|
|
};
|
| 940 |
|
|
|
| 941 |
|
|
/* DEST is the output of an instruction. If it is a memory reference and
|
| 942 |
|
|
possibly conflicts with the load found in DATA, then communicate this
|
| 943 |
|
|
information back through DATA. */
|
| 944 |
|
|
|
| 945 |
|
|
static void
|
| 946 |
|
|
mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
|
| 947 |
|
|
void *data)
|
| 948 |
|
|
{
|
| 949 |
|
|
struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
|
| 950 |
|
|
|
| 951 |
|
|
while (GET_CODE (dest) == SUBREG
|
| 952 |
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
| 953 |
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
| 954 |
|
|
dest = XEXP (dest, 0);
|
| 955 |
|
|
|
| 956 |
|
|
/* If DEST is not a MEM, then it will not conflict with the load. Note
|
| 957 |
|
|
that function calls are assumed to clobber memory, but are handled
|
| 958 |
|
|
elsewhere. */
|
| 959 |
|
|
if (! MEM_P (dest))
|
| 960 |
|
|
return;
|
| 961 |
|
|
|
| 962 |
|
|
/* If we are setting a MEM in our list of specially recognized MEMs,
|
| 963 |
|
|
don't mark as killed this time. */
|
| 964 |
|
|
if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
|
| 965 |
|
|
{
|
| 966 |
|
|
if (!find_rtx_in_ldst (dest))
|
| 967 |
|
|
mci->conflict = true;
|
| 968 |
|
|
return;
|
| 969 |
|
|
}
|
| 970 |
|
|
|
| 971 |
|
|
if (true_dependence (dest, GET_MODE (dest), mci->mem))
|
| 972 |
|
|
mci->conflict = true;
|
| 973 |
|
|
}
|
| 974 |
|
|
|
| 975 |
|
|
/* Return nonzero if the expression in X (a memory reference) is killed
|
| 976 |
|
|
in block BB before or after the insn with the LUID in UID_LIMIT.
|
| 977 |
|
|
AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
|
| 978 |
|
|
before UID_LIMIT.
|
| 979 |
|
|
|
| 980 |
|
|
To check the entire block, set UID_LIMIT to max_uid + 1 and
|
| 981 |
|
|
AVAIL_P to 0. */
|
| 982 |
|
|
|
| 983 |
|
|
static int
|
| 984 |
|
|
load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
|
| 985 |
|
|
int avail_p)
|
| 986 |
|
|
{
|
| 987 |
|
|
VEC (rtx,heap) *list = modify_mem_list[bb->index];
|
| 988 |
|
|
rtx setter;
|
| 989 |
|
|
unsigned ix;
|
| 990 |
|
|
|
| 991 |
|
|
/* If this is a readonly then we aren't going to be changing it. */
|
| 992 |
|
|
if (MEM_READONLY_P (x))
|
| 993 |
|
|
return 0;
|
| 994 |
|
|
|
| 995 |
|
|
FOR_EACH_VEC_ELT_REVERSE (rtx, list, ix, setter)
|
| 996 |
|
|
{
|
| 997 |
|
|
struct mem_conflict_info mci;
|
| 998 |
|
|
|
| 999 |
|
|
/* Ignore entries in the list that do not apply. */
|
| 1000 |
|
|
if ((avail_p
|
| 1001 |
|
|
&& DF_INSN_LUID (setter) < uid_limit)
|
| 1002 |
|
|
|| (! avail_p
|
| 1003 |
|
|
&& DF_INSN_LUID (setter) > uid_limit))
|
| 1004 |
|
|
continue;
|
| 1005 |
|
|
|
| 1006 |
|
|
/* If SETTER is a call everything is clobbered. Note that calls
|
| 1007 |
|
|
to pure functions are never put on the list, so we need not
|
| 1008 |
|
|
worry about them. */
|
| 1009 |
|
|
if (CALL_P (setter))
|
| 1010 |
|
|
return 1;
|
| 1011 |
|
|
|
| 1012 |
|
|
/* SETTER must be an INSN of some kind that sets memory. Call
|
| 1013 |
|
|
note_stores to examine each hunk of memory that is modified. */
|
| 1014 |
|
|
mci.mem = x;
|
| 1015 |
|
|
mci.conflict = false;
|
| 1016 |
|
|
note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
|
| 1017 |
|
|
if (mci.conflict)
|
| 1018 |
|
|
return 1;
|
| 1019 |
|
|
}
|
| 1020 |
|
|
return 0;
|
| 1021 |
|
|
}
|
| 1022 |
|
|
|
| 1023 |
|
|
/* Return nonzero if the operands of expression X are unchanged from
|
| 1024 |
|
|
the start of INSN's basic block up to but not including INSN. */
|
| 1025 |
|
|
|
| 1026 |
|
|
static int
|
| 1027 |
|
|
oprs_anticipatable_p (const_rtx x, const_rtx insn)
|
| 1028 |
|
|
{
|
| 1029 |
|
|
return oprs_unchanged_p (x, insn, 0);
|
| 1030 |
|
|
}
|
| 1031 |
|
|
|
| 1032 |
|
|
/* Return nonzero if the operands of expression X are unchanged from
|
| 1033 |
|
|
INSN to the end of INSN's basic block. */
|
| 1034 |
|
|
|
| 1035 |
|
|
static int
|
| 1036 |
|
|
oprs_available_p (const_rtx x, const_rtx insn)
|
| 1037 |
|
|
{
|
| 1038 |
|
|
return oprs_unchanged_p (x, insn, 1);
|
| 1039 |
|
|
}
|
| 1040 |
|
|
|
| 1041 |
|
|
/* Hash expression X.
|
| 1042 |
|
|
|
| 1043 |
|
|
MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
|
| 1044 |
|
|
indicating if a volatile operand is found or if the expression contains
|
| 1045 |
|
|
something we don't want to insert in the table. HASH_TABLE_SIZE is
|
| 1046 |
|
|
the current size of the hash table to be probed. */
|
| 1047 |
|
|
|
| 1048 |
|
|
static unsigned int
|
| 1049 |
|
|
hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
|
| 1050 |
|
|
int hash_table_size)
|
| 1051 |
|
|
{
|
| 1052 |
|
|
unsigned int hash;
|
| 1053 |
|
|
|
| 1054 |
|
|
*do_not_record_p = 0;
|
| 1055 |
|
|
|
| 1056 |
|
|
hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
|
| 1057 |
|
|
return hash % hash_table_size;
|
| 1058 |
|
|
}
|
| 1059 |
|
|
|
| 1060 |
|
|
/* Return nonzero if exp1 is equivalent to exp2. */
|
| 1061 |
|
|
|
| 1062 |
|
|
static int
|
| 1063 |
|
|
expr_equiv_p (const_rtx x, const_rtx y)
|
| 1064 |
|
|
{
|
| 1065 |
|
|
return exp_equiv_p (x, y, 0, true);
|
| 1066 |
|
|
}
|
| 1067 |
|
|
|
| 1068 |
|
|
/* Insert expression X in INSN in the hash TABLE.
|
| 1069 |
|
|
If it is already present, record it as the last occurrence in INSN's
|
| 1070 |
|
|
basic block.
|
| 1071 |
|
|
|
| 1072 |
|
|
MODE is the mode of the value X is being stored into.
|
| 1073 |
|
|
It is only used if X is a CONST_INT.
|
| 1074 |
|
|
|
| 1075 |
|
|
ANTIC_P is nonzero if X is an anticipatable expression.
|
| 1076 |
|
|
AVAIL_P is nonzero if X is an available expression.
|
| 1077 |
|
|
|
| 1078 |
|
|
MAX_DISTANCE is the maximum distance in instructions this expression can
|
| 1079 |
|
|
be moved. */
|
| 1080 |
|
|
|
| 1081 |
|
|
static void
|
| 1082 |
|
|
insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
|
| 1083 |
|
|
int avail_p, int max_distance, struct hash_table_d *table)
|
| 1084 |
|
|
{
|
| 1085 |
|
|
int found, do_not_record_p;
|
| 1086 |
|
|
unsigned int hash;
|
| 1087 |
|
|
struct expr *cur_expr, *last_expr = NULL;
|
| 1088 |
|
|
struct occr *antic_occr, *avail_occr;
|
| 1089 |
|
|
|
| 1090 |
|
|
hash = hash_expr (x, mode, &do_not_record_p, table->size);
|
| 1091 |
|
|
|
| 1092 |
|
|
/* Do not insert expression in table if it contains volatile operands,
|
| 1093 |
|
|
or if hash_expr determines the expression is something we don't want
|
| 1094 |
|
|
to or can't handle. */
|
| 1095 |
|
|
if (do_not_record_p)
|
| 1096 |
|
|
return;
|
| 1097 |
|
|
|
| 1098 |
|
|
cur_expr = table->table[hash];
|
| 1099 |
|
|
found = 0;
|
| 1100 |
|
|
|
| 1101 |
|
|
while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
|
| 1102 |
|
|
{
|
| 1103 |
|
|
/* If the expression isn't found, save a pointer to the end of
|
| 1104 |
|
|
the list. */
|
| 1105 |
|
|
last_expr = cur_expr;
|
| 1106 |
|
|
cur_expr = cur_expr->next_same_hash;
|
| 1107 |
|
|
}
|
| 1108 |
|
|
|
| 1109 |
|
|
if (! found)
|
| 1110 |
|
|
{
|
| 1111 |
|
|
cur_expr = GOBNEW (struct expr);
|
| 1112 |
|
|
bytes_used += sizeof (struct expr);
|
| 1113 |
|
|
if (table->table[hash] == NULL)
|
| 1114 |
|
|
/* This is the first pattern that hashed to this index. */
|
| 1115 |
|
|
table->table[hash] = cur_expr;
|
| 1116 |
|
|
else
|
| 1117 |
|
|
/* Add EXPR to end of this hash chain. */
|
| 1118 |
|
|
last_expr->next_same_hash = cur_expr;
|
| 1119 |
|
|
|
| 1120 |
|
|
/* Set the fields of the expr element. */
|
| 1121 |
|
|
cur_expr->expr = x;
|
| 1122 |
|
|
cur_expr->bitmap_index = table->n_elems++;
|
| 1123 |
|
|
cur_expr->next_same_hash = NULL;
|
| 1124 |
|
|
cur_expr->antic_occr = NULL;
|
| 1125 |
|
|
cur_expr->avail_occr = NULL;
|
| 1126 |
|
|
gcc_assert (max_distance >= 0);
|
| 1127 |
|
|
cur_expr->max_distance = max_distance;
|
| 1128 |
|
|
}
|
| 1129 |
|
|
else
|
| 1130 |
|
|
gcc_assert (cur_expr->max_distance == max_distance);
|
| 1131 |
|
|
|
| 1132 |
|
|
/* Now record the occurrence(s). */
|
| 1133 |
|
|
if (antic_p)
|
| 1134 |
|
|
{
|
| 1135 |
|
|
antic_occr = cur_expr->antic_occr;
|
| 1136 |
|
|
|
| 1137 |
|
|
if (antic_occr
|
| 1138 |
|
|
&& BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
|
| 1139 |
|
|
antic_occr = NULL;
|
| 1140 |
|
|
|
| 1141 |
|
|
if (antic_occr)
|
| 1142 |
|
|
/* Found another instance of the expression in the same basic block.
|
| 1143 |
|
|
Prefer the currently recorded one. We want the first one in the
|
| 1144 |
|
|
block and the block is scanned from start to end. */
|
| 1145 |
|
|
; /* nothing to do */
|
| 1146 |
|
|
else
|
| 1147 |
|
|
{
|
| 1148 |
|
|
/* First occurrence of this expression in this basic block. */
|
| 1149 |
|
|
antic_occr = GOBNEW (struct occr);
|
| 1150 |
|
|
bytes_used += sizeof (struct occr);
|
| 1151 |
|
|
antic_occr->insn = insn;
|
| 1152 |
|
|
antic_occr->next = cur_expr->antic_occr;
|
| 1153 |
|
|
antic_occr->deleted_p = 0;
|
| 1154 |
|
|
cur_expr->antic_occr = antic_occr;
|
| 1155 |
|
|
}
|
| 1156 |
|
|
}
|
| 1157 |
|
|
|
| 1158 |
|
|
if (avail_p)
|
| 1159 |
|
|
{
|
| 1160 |
|
|
avail_occr = cur_expr->avail_occr;
|
| 1161 |
|
|
|
| 1162 |
|
|
if (avail_occr
|
| 1163 |
|
|
&& BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
|
| 1164 |
|
|
{
|
| 1165 |
|
|
/* Found another instance of the expression in the same basic block.
|
| 1166 |
|
|
Prefer this occurrence to the currently recorded one. We want
|
| 1167 |
|
|
the last one in the block and the block is scanned from start
|
| 1168 |
|
|
to end. */
|
| 1169 |
|
|
avail_occr->insn = insn;
|
| 1170 |
|
|
}
|
| 1171 |
|
|
else
|
| 1172 |
|
|
{
|
| 1173 |
|
|
/* First occurrence of this expression in this basic block. */
|
| 1174 |
|
|
avail_occr = GOBNEW (struct occr);
|
| 1175 |
|
|
bytes_used += sizeof (struct occr);
|
| 1176 |
|
|
avail_occr->insn = insn;
|
| 1177 |
|
|
avail_occr->next = cur_expr->avail_occr;
|
| 1178 |
|
|
avail_occr->deleted_p = 0;
|
| 1179 |
|
|
cur_expr->avail_occr = avail_occr;
|
| 1180 |
|
|
}
|
| 1181 |
|
|
}
|
| 1182 |
|
|
}
|
| 1183 |
|
|
|
| 1184 |
|
|
/* Scan SET present in INSN and add an entry to the hash TABLE. */
|
| 1185 |
|
|
|
| 1186 |
|
|
static void
|
| 1187 |
|
|
hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
|
| 1188 |
|
|
{
|
| 1189 |
|
|
rtx src = SET_SRC (set);
|
| 1190 |
|
|
rtx dest = SET_DEST (set);
|
| 1191 |
|
|
rtx note;
|
| 1192 |
|
|
|
| 1193 |
|
|
if (GET_CODE (src) == CALL)
|
| 1194 |
|
|
hash_scan_call (src, insn, table);
|
| 1195 |
|
|
|
| 1196 |
|
|
else if (REG_P (dest))
|
| 1197 |
|
|
{
|
| 1198 |
|
|
unsigned int regno = REGNO (dest);
|
| 1199 |
|
|
int max_distance = 0;
|
| 1200 |
|
|
|
| 1201 |
|
|
/* See if a REG_EQUAL note shows this equivalent to a simpler expression.
|
| 1202 |
|
|
|
| 1203 |
|
|
This allows us to do a single GCSE pass and still eliminate
|
| 1204 |
|
|
redundant constants, addresses or other expressions that are
|
| 1205 |
|
|
constructed with multiple instructions.
|
| 1206 |
|
|
|
| 1207 |
|
|
However, keep the original SRC if INSN is a simple reg-reg move.
|
| 1208 |
|
|
In this case, there will almost always be a REG_EQUAL note on the
|
| 1209 |
|
|
insn that sets SRC. By recording the REG_EQUAL value here as SRC
|
| 1210 |
|
|
for INSN, we miss copy propagation opportunities and we perform the
|
| 1211 |
|
|
same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
|
| 1212 |
|
|
do more than one PRE GCSE pass.
|
| 1213 |
|
|
|
| 1214 |
|
|
Note that this does not impede profitable constant propagations. We
|
| 1215 |
|
|
"look through" reg-reg sets in lookup_avail_set. */
|
| 1216 |
|
|
note = find_reg_equal_equiv_note (insn);
|
| 1217 |
|
|
if (note != 0
|
| 1218 |
|
|
&& REG_NOTE_KIND (note) == REG_EQUAL
|
| 1219 |
|
|
&& !REG_P (src)
|
| 1220 |
|
|
&& want_to_gcse_p (XEXP (note, 0), NULL))
|
| 1221 |
|
|
src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
|
| 1222 |
|
|
|
| 1223 |
|
|
/* Only record sets of pseudo-regs in the hash table. */
|
| 1224 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER
|
| 1225 |
|
|
/* Don't GCSE something if we can't do a reg/reg copy. */
|
| 1226 |
|
|
&& can_copy_p (GET_MODE (dest))
|
| 1227 |
|
|
/* GCSE commonly inserts instruction after the insn. We can't
|
| 1228 |
|
|
do that easily for EH edges so disable GCSE on these for now. */
|
| 1229 |
|
|
/* ??? We can now easily create new EH landing pads at the
|
| 1230 |
|
|
gimple level, for splitting edges; there's no reason we
|
| 1231 |
|
|
can't do the same thing at the rtl level. */
|
| 1232 |
|
|
&& !can_throw_internal (insn)
|
| 1233 |
|
|
/* Is SET_SRC something we want to gcse? */
|
| 1234 |
|
|
&& want_to_gcse_p (src, &max_distance)
|
| 1235 |
|
|
/* Don't CSE a nop. */
|
| 1236 |
|
|
&& ! set_noop_p (set)
|
| 1237 |
|
|
/* Don't GCSE if it has attached REG_EQUIV note.
|
| 1238 |
|
|
At this point this only function parameters should have
|
| 1239 |
|
|
REG_EQUIV notes and if the argument slot is used somewhere
|
| 1240 |
|
|
explicitly, it means address of parameter has been taken,
|
| 1241 |
|
|
so we should not extend the lifetime of the pseudo. */
|
| 1242 |
|
|
&& (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
|
| 1243 |
|
|
{
|
| 1244 |
|
|
/* An expression is not anticipatable if its operands are
|
| 1245 |
|
|
modified before this insn or if this is not the only SET in
|
| 1246 |
|
|
this insn. The latter condition does not have to mean that
|
| 1247 |
|
|
SRC itself is not anticipatable, but we just will not be
|
| 1248 |
|
|
able to handle code motion of insns with multiple sets. */
|
| 1249 |
|
|
int antic_p = oprs_anticipatable_p (src, insn)
|
| 1250 |
|
|
&& !multiple_sets (insn);
|
| 1251 |
|
|
/* An expression is not available if its operands are
|
| 1252 |
|
|
subsequently modified, including this insn. It's also not
|
| 1253 |
|
|
available if this is a branch, because we can't insert
|
| 1254 |
|
|
a set after the branch. */
|
| 1255 |
|
|
int avail_p = (oprs_available_p (src, insn)
|
| 1256 |
|
|
&& ! JUMP_P (insn));
|
| 1257 |
|
|
|
| 1258 |
|
|
insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
|
| 1259 |
|
|
max_distance, table);
|
| 1260 |
|
|
}
|
| 1261 |
|
|
}
|
| 1262 |
|
|
/* In case of store we want to consider the memory value as available in
|
| 1263 |
|
|
the REG stored in that memory. This makes it possible to remove
|
| 1264 |
|
|
redundant loads from due to stores to the same location. */
|
| 1265 |
|
|
else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
|
| 1266 |
|
|
{
|
| 1267 |
|
|
unsigned int regno = REGNO (src);
|
| 1268 |
|
|
int max_distance = 0;
|
| 1269 |
|
|
|
| 1270 |
|
|
/* Only record sets of pseudo-regs in the hash table. */
|
| 1271 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER
|
| 1272 |
|
|
/* Don't GCSE something if we can't do a reg/reg copy. */
|
| 1273 |
|
|
&& can_copy_p (GET_MODE (src))
|
| 1274 |
|
|
/* GCSE commonly inserts instruction after the insn. We can't
|
| 1275 |
|
|
do that easily for EH edges so disable GCSE on these for now. */
|
| 1276 |
|
|
&& !can_throw_internal (insn)
|
| 1277 |
|
|
/* Is SET_DEST something we want to gcse? */
|
| 1278 |
|
|
&& want_to_gcse_p (dest, &max_distance)
|
| 1279 |
|
|
/* Don't CSE a nop. */
|
| 1280 |
|
|
&& ! set_noop_p (set)
|
| 1281 |
|
|
/* Don't GCSE if it has attached REG_EQUIV note.
|
| 1282 |
|
|
At this point this only function parameters should have
|
| 1283 |
|
|
REG_EQUIV notes and if the argument slot is used somewhere
|
| 1284 |
|
|
explicitly, it means address of parameter has been taken,
|
| 1285 |
|
|
so we should not extend the lifetime of the pseudo. */
|
| 1286 |
|
|
&& ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
|
| 1287 |
|
|
|| ! MEM_P (XEXP (note, 0))))
|
| 1288 |
|
|
{
|
| 1289 |
|
|
/* Stores are never anticipatable. */
|
| 1290 |
|
|
int antic_p = 0;
|
| 1291 |
|
|
/* An expression is not available if its operands are
|
| 1292 |
|
|
subsequently modified, including this insn. It's also not
|
| 1293 |
|
|
available if this is a branch, because we can't insert
|
| 1294 |
|
|
a set after the branch. */
|
| 1295 |
|
|
int avail_p = oprs_available_p (dest, insn)
|
| 1296 |
|
|
&& ! JUMP_P (insn);
|
| 1297 |
|
|
|
| 1298 |
|
|
/* Record the memory expression (DEST) in the hash table. */
|
| 1299 |
|
|
insert_expr_in_table (dest, GET_MODE (dest), insn,
|
| 1300 |
|
|
antic_p, avail_p, max_distance, table);
|
| 1301 |
|
|
}
|
| 1302 |
|
|
}
|
| 1303 |
|
|
}
|
| 1304 |
|
|
|
| 1305 |
|
|
static void
|
| 1306 |
|
|
hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
|
| 1307 |
|
|
struct hash_table_d *table ATTRIBUTE_UNUSED)
|
| 1308 |
|
|
{
|
| 1309 |
|
|
/* Currently nothing to do. */
|
| 1310 |
|
|
}
|
| 1311 |
|
|
|
| 1312 |
|
|
static void
|
| 1313 |
|
|
hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
|
| 1314 |
|
|
struct hash_table_d *table ATTRIBUTE_UNUSED)
|
| 1315 |
|
|
{
|
| 1316 |
|
|
/* Currently nothing to do. */
|
| 1317 |
|
|
}
|
| 1318 |
|
|
|
| 1319 |
|
|
/* Process INSN and add hash table entries as appropriate. */
|
| 1320 |
|
|
|
| 1321 |
|
|
static void
|
| 1322 |
|
|
hash_scan_insn (rtx insn, struct hash_table_d *table)
|
| 1323 |
|
|
{
|
| 1324 |
|
|
rtx pat = PATTERN (insn);
|
| 1325 |
|
|
int i;
|
| 1326 |
|
|
|
| 1327 |
|
|
/* Pick out the sets of INSN and for other forms of instructions record
|
| 1328 |
|
|
what's been modified. */
|
| 1329 |
|
|
|
| 1330 |
|
|
if (GET_CODE (pat) == SET)
|
| 1331 |
|
|
hash_scan_set (pat, insn, table);
|
| 1332 |
|
|
|
| 1333 |
|
|
else if (GET_CODE (pat) == CLOBBER)
|
| 1334 |
|
|
hash_scan_clobber (pat, insn, table);
|
| 1335 |
|
|
|
| 1336 |
|
|
else if (GET_CODE (pat) == CALL)
|
| 1337 |
|
|
hash_scan_call (pat, insn, table);
|
| 1338 |
|
|
|
| 1339 |
|
|
else if (GET_CODE (pat) == PARALLEL)
|
| 1340 |
|
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
| 1341 |
|
|
{
|
| 1342 |
|
|
rtx x = XVECEXP (pat, 0, i);
|
| 1343 |
|
|
|
| 1344 |
|
|
if (GET_CODE (x) == SET)
|
| 1345 |
|
|
hash_scan_set (x, insn, table);
|
| 1346 |
|
|
else if (GET_CODE (x) == CLOBBER)
|
| 1347 |
|
|
hash_scan_clobber (x, insn, table);
|
| 1348 |
|
|
else if (GET_CODE (x) == CALL)
|
| 1349 |
|
|
hash_scan_call (x, insn, table);
|
| 1350 |
|
|
}
|
| 1351 |
|
|
}
|
| 1352 |
|
|
|
| 1353 |
|
|
/* Dump the hash table TABLE to file FILE under the name NAME. */
|
| 1354 |
|
|
|
| 1355 |
|
|
static void
|
| 1356 |
|
|
dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
|
| 1357 |
|
|
{
|
| 1358 |
|
|
int i;
|
| 1359 |
|
|
/* Flattened out table, so it's printed in proper order. */
|
| 1360 |
|
|
struct expr **flat_table;
|
| 1361 |
|
|
unsigned int *hash_val;
|
| 1362 |
|
|
struct expr *expr;
|
| 1363 |
|
|
|
| 1364 |
|
|
flat_table = XCNEWVEC (struct expr *, table->n_elems);
|
| 1365 |
|
|
hash_val = XNEWVEC (unsigned int, table->n_elems);
|
| 1366 |
|
|
|
| 1367 |
|
|
for (i = 0; i < (int) table->size; i++)
|
| 1368 |
|
|
for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
|
| 1369 |
|
|
{
|
| 1370 |
|
|
flat_table[expr->bitmap_index] = expr;
|
| 1371 |
|
|
hash_val[expr->bitmap_index] = i;
|
| 1372 |
|
|
}
|
| 1373 |
|
|
|
| 1374 |
|
|
fprintf (file, "%s hash table (%d buckets, %d entries)\n",
|
| 1375 |
|
|
name, table->size, table->n_elems);
|
| 1376 |
|
|
|
| 1377 |
|
|
for (i = 0; i < (int) table->n_elems; i++)
|
| 1378 |
|
|
if (flat_table[i] != 0)
|
| 1379 |
|
|
{
|
| 1380 |
|
|
expr = flat_table[i];
|
| 1381 |
|
|
fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
|
| 1382 |
|
|
expr->bitmap_index, hash_val[i], expr->max_distance);
|
| 1383 |
|
|
print_rtl (file, expr->expr);
|
| 1384 |
|
|
fprintf (file, "\n");
|
| 1385 |
|
|
}
|
| 1386 |
|
|
|
| 1387 |
|
|
fprintf (file, "\n");
|
| 1388 |
|
|
|
| 1389 |
|
|
free (flat_table);
|
| 1390 |
|
|
free (hash_val);
|
| 1391 |
|
|
}
|
| 1392 |
|
|
|
| 1393 |
|
|
/* Record register first/last/block set information for REGNO in INSN.
|
| 1394 |
|
|
|
| 1395 |
|
|
first_set records the first place in the block where the register
|
| 1396 |
|
|
is set and is used to compute "anticipatability".
|
| 1397 |
|
|
|
| 1398 |
|
|
last_set records the last place in the block where the register
|
| 1399 |
|
|
is set and is used to compute "availability".
|
| 1400 |
|
|
|
| 1401 |
|
|
last_bb records the block for which first_set and last_set are
|
| 1402 |
|
|
valid, as a quick test to invalidate them. */
|
| 1403 |
|
|
|
| 1404 |
|
|
static void
|
| 1405 |
|
|
record_last_reg_set_info (rtx insn, int regno)
|
| 1406 |
|
|
{
|
| 1407 |
|
|
struct reg_avail_info *info = ®_avail_info[regno];
|
| 1408 |
|
|
int luid = DF_INSN_LUID (insn);
|
| 1409 |
|
|
|
| 1410 |
|
|
info->last_set = luid;
|
| 1411 |
|
|
if (info->last_bb != current_bb)
|
| 1412 |
|
|
{
|
| 1413 |
|
|
info->last_bb = current_bb;
|
| 1414 |
|
|
info->first_set = luid;
|
| 1415 |
|
|
}
|
| 1416 |
|
|
}
|
| 1417 |
|
|
|
| 1418 |
|
|
/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
|
| 1419 |
|
|
Note we store a pair of elements in the list, so they have to be
|
| 1420 |
|
|
taken off pairwise. */
|
| 1421 |
|
|
|
| 1422 |
|
|
static void
|
| 1423 |
|
|
canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
|
| 1424 |
|
|
void * v_insn)
|
| 1425 |
|
|
{
|
| 1426 |
|
|
rtx dest_addr, insn;
|
| 1427 |
|
|
int bb;
|
| 1428 |
|
|
modify_pair *pair;
|
| 1429 |
|
|
|
| 1430 |
|
|
while (GET_CODE (dest) == SUBREG
|
| 1431 |
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
| 1432 |
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
| 1433 |
|
|
dest = XEXP (dest, 0);
|
| 1434 |
|
|
|
| 1435 |
|
|
/* If DEST is not a MEM, then it will not conflict with a load. Note
|
| 1436 |
|
|
that function calls are assumed to clobber memory, but are handled
|
| 1437 |
|
|
elsewhere. */
|
| 1438 |
|
|
|
| 1439 |
|
|
if (! MEM_P (dest))
|
| 1440 |
|
|
return;
|
| 1441 |
|
|
|
| 1442 |
|
|
dest_addr = get_addr (XEXP (dest, 0));
|
| 1443 |
|
|
dest_addr = canon_rtx (dest_addr);
|
| 1444 |
|
|
insn = (rtx) v_insn;
|
| 1445 |
|
|
bb = BLOCK_FOR_INSN (insn)->index;
|
| 1446 |
|
|
|
| 1447 |
|
|
pair = VEC_safe_push (modify_pair, heap, canon_modify_mem_list[bb], NULL);
|
| 1448 |
|
|
pair->dest = dest;
|
| 1449 |
|
|
pair->dest_addr = dest_addr;
|
| 1450 |
|
|
}
|
| 1451 |
|
|
|
| 1452 |
|
|
/* Record memory modification information for INSN. We do not actually care
|
| 1453 |
|
|
about the memory location(s) that are set, or even how they are set (consider
|
| 1454 |
|
|
a CALL_INSN). We merely need to record which insns modify memory. */
|
| 1455 |
|
|
|
| 1456 |
|
|
static void
|
| 1457 |
|
|
record_last_mem_set_info (rtx insn)
|
| 1458 |
|
|
{
|
| 1459 |
|
|
int bb = BLOCK_FOR_INSN (insn)->index;
|
| 1460 |
|
|
|
| 1461 |
|
|
/* load_killed_in_block_p will handle the case of calls clobbering
|
| 1462 |
|
|
everything. */
|
| 1463 |
|
|
VEC_safe_push (rtx, heap, modify_mem_list[bb], insn);
|
| 1464 |
|
|
bitmap_set_bit (modify_mem_list_set, bb);
|
| 1465 |
|
|
|
| 1466 |
|
|
if (CALL_P (insn))
|
| 1467 |
|
|
bitmap_set_bit (blocks_with_calls, bb);
|
| 1468 |
|
|
else
|
| 1469 |
|
|
note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
|
| 1470 |
|
|
}
|
| 1471 |
|
|
|
| 1472 |
|
|
/* Called from compute_hash_table via note_stores to handle one
|
| 1473 |
|
|
SET or CLOBBER in an insn. DATA is really the instruction in which
|
| 1474 |
|
|
the SET is taking place. */
|
| 1475 |
|
|
|
| 1476 |
|
|
static void
|
| 1477 |
|
|
record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
|
| 1478 |
|
|
{
|
| 1479 |
|
|
rtx last_set_insn = (rtx) data;
|
| 1480 |
|
|
|
| 1481 |
|
|
if (GET_CODE (dest) == SUBREG)
|
| 1482 |
|
|
dest = SUBREG_REG (dest);
|
| 1483 |
|
|
|
| 1484 |
|
|
if (REG_P (dest))
|
| 1485 |
|
|
record_last_reg_set_info (last_set_insn, REGNO (dest));
|
| 1486 |
|
|
else if (MEM_P (dest)
|
| 1487 |
|
|
/* Ignore pushes, they clobber nothing. */
|
| 1488 |
|
|
&& ! push_operand (dest, GET_MODE (dest)))
|
| 1489 |
|
|
record_last_mem_set_info (last_set_insn);
|
| 1490 |
|
|
}
|
| 1491 |
|
|
|
| 1492 |
|
|
/* Top level function to create an expression hash table.
|
| 1493 |
|
|
|
| 1494 |
|
|
Expression entries are placed in the hash table if
|
| 1495 |
|
|
- they are of the form (set (pseudo-reg) src),
|
| 1496 |
|
|
- src is something we want to perform GCSE on,
|
| 1497 |
|
|
- none of the operands are subsequently modified in the block
|
| 1498 |
|
|
|
| 1499 |
|
|
Currently src must be a pseudo-reg or a const_int.
|
| 1500 |
|
|
|
| 1501 |
|
|
TABLE is the table computed. */
|
| 1502 |
|
|
|
| 1503 |
|
|
static void
|
| 1504 |
|
|
compute_hash_table_work (struct hash_table_d *table)
|
| 1505 |
|
|
{
|
| 1506 |
|
|
int i;
|
| 1507 |
|
|
|
| 1508 |
|
|
/* re-Cache any INSN_LIST nodes we have allocated. */
|
| 1509 |
|
|
clear_modify_mem_tables ();
|
| 1510 |
|
|
/* Some working arrays used to track first and last set in each block. */
|
| 1511 |
|
|
reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
|
| 1512 |
|
|
|
| 1513 |
|
|
for (i = 0; i < max_reg_num (); ++i)
|
| 1514 |
|
|
reg_avail_info[i].last_bb = NULL;
|
| 1515 |
|
|
|
| 1516 |
|
|
FOR_EACH_BB (current_bb)
|
| 1517 |
|
|
{
|
| 1518 |
|
|
rtx insn;
|
| 1519 |
|
|
unsigned int regno;
|
| 1520 |
|
|
|
| 1521 |
|
|
/* First pass over the instructions records information used to
|
| 1522 |
|
|
determine when registers and memory are first and last set. */
|
| 1523 |
|
|
FOR_BB_INSNS (current_bb, insn)
|
| 1524 |
|
|
{
|
| 1525 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
| 1526 |
|
|
continue;
|
| 1527 |
|
|
|
| 1528 |
|
|
if (CALL_P (insn))
|
| 1529 |
|
|
{
|
| 1530 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
| 1531 |
|
|
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
|
| 1532 |
|
|
record_last_reg_set_info (insn, regno);
|
| 1533 |
|
|
|
| 1534 |
|
|
if (! RTL_CONST_OR_PURE_CALL_P (insn))
|
| 1535 |
|
|
record_last_mem_set_info (insn);
|
| 1536 |
|
|
}
|
| 1537 |
|
|
|
| 1538 |
|
|
note_stores (PATTERN (insn), record_last_set_info, insn);
|
| 1539 |
|
|
}
|
| 1540 |
|
|
|
| 1541 |
|
|
/* The next pass builds the hash table. */
|
| 1542 |
|
|
FOR_BB_INSNS (current_bb, insn)
|
| 1543 |
|
|
if (NONDEBUG_INSN_P (insn))
|
| 1544 |
|
|
hash_scan_insn (insn, table);
|
| 1545 |
|
|
}
|
| 1546 |
|
|
|
| 1547 |
|
|
free (reg_avail_info);
|
| 1548 |
|
|
reg_avail_info = NULL;
|
| 1549 |
|
|
}
|
| 1550 |
|
|
|
| 1551 |
|
|
/* Allocate space for the set/expr hash TABLE.
|
| 1552 |
|
|
It is used to determine the number of buckets to use. */
|
| 1553 |
|
|
|
| 1554 |
|
|
static void
|
| 1555 |
|
|
alloc_hash_table (struct hash_table_d *table)
|
| 1556 |
|
|
{
|
| 1557 |
|
|
int n;
|
| 1558 |
|
|
|
| 1559 |
|
|
n = get_max_insn_count ();
|
| 1560 |
|
|
|
| 1561 |
|
|
table->size = n / 4;
|
| 1562 |
|
|
if (table->size < 11)
|
| 1563 |
|
|
table->size = 11;
|
| 1564 |
|
|
|
| 1565 |
|
|
/* Attempt to maintain efficient use of hash table.
|
| 1566 |
|
|
Making it an odd number is simplest for now.
|
| 1567 |
|
|
??? Later take some measurements. */
|
| 1568 |
|
|
table->size |= 1;
|
| 1569 |
|
|
n = table->size * sizeof (struct expr *);
|
| 1570 |
|
|
table->table = GNEWVAR (struct expr *, n);
|
| 1571 |
|
|
}
|
| 1572 |
|
|
|
| 1573 |
|
|
/* Free things allocated by alloc_hash_table. */
|
| 1574 |
|
|
|
| 1575 |
|
|
static void
|
| 1576 |
|
|
free_hash_table (struct hash_table_d *table)
|
| 1577 |
|
|
{
|
| 1578 |
|
|
free (table->table);
|
| 1579 |
|
|
}
|
| 1580 |
|
|
|
| 1581 |
|
|
/* Compute the expression hash table TABLE. */
|
| 1582 |
|
|
|
| 1583 |
|
|
static void
|
| 1584 |
|
|
compute_hash_table (struct hash_table_d *table)
|
| 1585 |
|
|
{
|
| 1586 |
|
|
/* Initialize count of number of entries in hash table. */
|
| 1587 |
|
|
table->n_elems = 0;
|
| 1588 |
|
|
memset (table->table, 0, table->size * sizeof (struct expr *));
|
| 1589 |
|
|
|
| 1590 |
|
|
compute_hash_table_work (table);
|
| 1591 |
|
|
}
|
| 1592 |
|
|
|
| 1593 |
|
|
/* Expression tracking support. */
|
| 1594 |
|
|
|
| 1595 |
|
|
/* Clear canon_modify_mem_list and modify_mem_list tables. */
|
| 1596 |
|
|
static void
|
| 1597 |
|
|
clear_modify_mem_tables (void)
|
| 1598 |
|
|
{
|
| 1599 |
|
|
unsigned i;
|
| 1600 |
|
|
bitmap_iterator bi;
|
| 1601 |
|
|
|
| 1602 |
|
|
EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
|
| 1603 |
|
|
{
|
| 1604 |
|
|
VEC_free (rtx, heap, modify_mem_list[i]);
|
| 1605 |
|
|
VEC_free (modify_pair, heap, canon_modify_mem_list[i]);
|
| 1606 |
|
|
}
|
| 1607 |
|
|
bitmap_clear (modify_mem_list_set);
|
| 1608 |
|
|
bitmap_clear (blocks_with_calls);
|
| 1609 |
|
|
}
|
| 1610 |
|
|
|
| 1611 |
|
|
/* Release memory used by modify_mem_list_set. */
|
| 1612 |
|
|
|
| 1613 |
|
|
static void
|
| 1614 |
|
|
free_modify_mem_tables (void)
|
| 1615 |
|
|
{
|
| 1616 |
|
|
clear_modify_mem_tables ();
|
| 1617 |
|
|
free (modify_mem_list);
|
| 1618 |
|
|
free (canon_modify_mem_list);
|
| 1619 |
|
|
modify_mem_list = 0;
|
| 1620 |
|
|
canon_modify_mem_list = 0;
|
| 1621 |
|
|
}
|
| 1622 |
|
|
|
| 1623 |
|
|
/* For each block, compute whether X is transparent. X is either an
|
| 1624 |
|
|
expression or an assignment [though we don't care which, for this context
|
| 1625 |
|
|
an assignment is treated as an expression]. For each block where an
|
| 1626 |
|
|
element of X is modified, reset the INDX bit in BMAP. */
|
| 1627 |
|
|
|
| 1628 |
|
|
static void
|
| 1629 |
|
|
compute_transp (const_rtx x, int indx, sbitmap *bmap)
|
| 1630 |
|
|
{
|
| 1631 |
|
|
int i, j;
|
| 1632 |
|
|
enum rtx_code code;
|
| 1633 |
|
|
const char *fmt;
|
| 1634 |
|
|
|
| 1635 |
|
|
/* repeat is used to turn tail-recursion into iteration since GCC
|
| 1636 |
|
|
can't do it when there's no return value. */
|
| 1637 |
|
|
repeat:
|
| 1638 |
|
|
|
| 1639 |
|
|
if (x == 0)
|
| 1640 |
|
|
return;
|
| 1641 |
|
|
|
| 1642 |
|
|
code = GET_CODE (x);
|
| 1643 |
|
|
switch (code)
|
| 1644 |
|
|
{
|
| 1645 |
|
|
case REG:
|
| 1646 |
|
|
{
|
| 1647 |
|
|
df_ref def;
|
| 1648 |
|
|
for (def = DF_REG_DEF_CHAIN (REGNO (x));
|
| 1649 |
|
|
def;
|
| 1650 |
|
|
def = DF_REF_NEXT_REG (def))
|
| 1651 |
|
|
RESET_BIT (bmap[DF_REF_BB (def)->index], indx);
|
| 1652 |
|
|
}
|
| 1653 |
|
|
|
| 1654 |
|
|
return;
|
| 1655 |
|
|
|
| 1656 |
|
|
case MEM:
|
| 1657 |
|
|
if (! MEM_READONLY_P (x))
|
| 1658 |
|
|
{
|
| 1659 |
|
|
bitmap_iterator bi;
|
| 1660 |
|
|
unsigned bb_index;
|
| 1661 |
|
|
|
| 1662 |
|
|
/* First handle all the blocks with calls. We don't need to
|
| 1663 |
|
|
do any list walking for them. */
|
| 1664 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
|
| 1665 |
|
|
{
|
| 1666 |
|
|
RESET_BIT (bmap[bb_index], indx);
|
| 1667 |
|
|
}
|
| 1668 |
|
|
|
| 1669 |
|
|
/* Now iterate over the blocks which have memory modifications
|
| 1670 |
|
|
but which do not have any calls. */
|
| 1671 |
|
|
EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
|
| 1672 |
|
|
blocks_with_calls,
|
| 1673 |
|
|
0, bb_index, bi)
|
| 1674 |
|
|
{
|
| 1675 |
|
|
VEC (modify_pair,heap) *list
|
| 1676 |
|
|
= canon_modify_mem_list[bb_index];
|
| 1677 |
|
|
modify_pair *pair;
|
| 1678 |
|
|
unsigned ix;
|
| 1679 |
|
|
|
| 1680 |
|
|
FOR_EACH_VEC_ELT_REVERSE (modify_pair, list, ix, pair)
|
| 1681 |
|
|
{
|
| 1682 |
|
|
rtx dest = pair->dest;
|
| 1683 |
|
|
rtx dest_addr = pair->dest_addr;
|
| 1684 |
|
|
|
| 1685 |
|
|
if (canon_true_dependence (dest, GET_MODE (dest),
|
| 1686 |
|
|
dest_addr, x, NULL_RTX))
|
| 1687 |
|
|
RESET_BIT (bmap[bb_index], indx);
|
| 1688 |
|
|
}
|
| 1689 |
|
|
}
|
| 1690 |
|
|
}
|
| 1691 |
|
|
|
| 1692 |
|
|
x = XEXP (x, 0);
|
| 1693 |
|
|
goto repeat;
|
| 1694 |
|
|
|
| 1695 |
|
|
case PC:
|
| 1696 |
|
|
case CC0: /*FIXME*/
|
| 1697 |
|
|
case CONST:
|
| 1698 |
|
|
case CONST_INT:
|
| 1699 |
|
|
case CONST_DOUBLE:
|
| 1700 |
|
|
case CONST_FIXED:
|
| 1701 |
|
|
case CONST_VECTOR:
|
| 1702 |
|
|
case SYMBOL_REF:
|
| 1703 |
|
|
case LABEL_REF:
|
| 1704 |
|
|
case ADDR_VEC:
|
| 1705 |
|
|
case ADDR_DIFF_VEC:
|
| 1706 |
|
|
return;
|
| 1707 |
|
|
|
| 1708 |
|
|
default:
|
| 1709 |
|
|
break;
|
| 1710 |
|
|
}
|
| 1711 |
|
|
|
| 1712 |
|
|
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
|
| 1713 |
|
|
{
|
| 1714 |
|
|
if (fmt[i] == 'e')
|
| 1715 |
|
|
{
|
| 1716 |
|
|
/* If we are about to do the last recursive call
|
| 1717 |
|
|
needed at this level, change it into iteration.
|
| 1718 |
|
|
This function is called enough to be worth it. */
|
| 1719 |
|
|
if (i == 0)
|
| 1720 |
|
|
{
|
| 1721 |
|
|
x = XEXP (x, i);
|
| 1722 |
|
|
goto repeat;
|
| 1723 |
|
|
}
|
| 1724 |
|
|
|
| 1725 |
|
|
compute_transp (XEXP (x, i), indx, bmap);
|
| 1726 |
|
|
}
|
| 1727 |
|
|
else if (fmt[i] == 'E')
|
| 1728 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 1729 |
|
|
compute_transp (XVECEXP (x, i, j), indx, bmap);
|
| 1730 |
|
|
}
|
| 1731 |
|
|
}
|
| 1732 |
|
|
|
| 1733 |
|
|
/* Compute PRE+LCM working variables. */
|
| 1734 |
|
|
|
| 1735 |
|
|
/* Local properties of expressions. */
|
| 1736 |
|
|
|
| 1737 |
|
|
/* Nonzero for expressions that are transparent in the block. */
|
| 1738 |
|
|
static sbitmap *transp;
|
| 1739 |
|
|
|
| 1740 |
|
|
/* Nonzero for expressions that are computed (available) in the block. */
|
| 1741 |
|
|
static sbitmap *comp;
|
| 1742 |
|
|
|
| 1743 |
|
|
/* Nonzero for expressions that are locally anticipatable in the block. */
|
| 1744 |
|
|
static sbitmap *antloc;
|
| 1745 |
|
|
|
| 1746 |
|
|
/* Nonzero for expressions where this block is an optimal computation
|
| 1747 |
|
|
point. */
|
| 1748 |
|
|
static sbitmap *pre_optimal;
|
| 1749 |
|
|
|
| 1750 |
|
|
/* Nonzero for expressions which are redundant in a particular block. */
|
| 1751 |
|
|
static sbitmap *pre_redundant;
|
| 1752 |
|
|
|
| 1753 |
|
|
/* Nonzero for expressions which should be inserted on a specific edge. */
|
| 1754 |
|
|
static sbitmap *pre_insert_map;
|
| 1755 |
|
|
|
| 1756 |
|
|
/* Nonzero for expressions which should be deleted in a specific block. */
|
| 1757 |
|
|
static sbitmap *pre_delete_map;
|
| 1758 |
|
|
|
| 1759 |
|
|
/* Allocate vars used for PRE analysis. */
|
| 1760 |
|
|
|
| 1761 |
|
|
static void
|
| 1762 |
|
|
alloc_pre_mem (int n_blocks, int n_exprs)
|
| 1763 |
|
|
{
|
| 1764 |
|
|
transp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
| 1765 |
|
|
comp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
| 1766 |
|
|
antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
|
| 1767 |
|
|
|
| 1768 |
|
|
pre_optimal = NULL;
|
| 1769 |
|
|
pre_redundant = NULL;
|
| 1770 |
|
|
pre_insert_map = NULL;
|
| 1771 |
|
|
pre_delete_map = NULL;
|
| 1772 |
|
|
ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
|
| 1773 |
|
|
|
| 1774 |
|
|
/* pre_insert and pre_delete are allocated later. */
|
| 1775 |
|
|
}
|
| 1776 |
|
|
|
| 1777 |
|
|
/* Free vars used for PRE analysis. */
|
| 1778 |
|
|
|
| 1779 |
|
|
static void
|
| 1780 |
|
|
free_pre_mem (void)
|
| 1781 |
|
|
{
|
| 1782 |
|
|
sbitmap_vector_free (transp);
|
| 1783 |
|
|
sbitmap_vector_free (comp);
|
| 1784 |
|
|
|
| 1785 |
|
|
/* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
|
| 1786 |
|
|
|
| 1787 |
|
|
if (pre_optimal)
|
| 1788 |
|
|
sbitmap_vector_free (pre_optimal);
|
| 1789 |
|
|
if (pre_redundant)
|
| 1790 |
|
|
sbitmap_vector_free (pre_redundant);
|
| 1791 |
|
|
if (pre_insert_map)
|
| 1792 |
|
|
sbitmap_vector_free (pre_insert_map);
|
| 1793 |
|
|
if (pre_delete_map)
|
| 1794 |
|
|
sbitmap_vector_free (pre_delete_map);
|
| 1795 |
|
|
|
| 1796 |
|
|
transp = comp = NULL;
|
| 1797 |
|
|
pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
|
| 1798 |
|
|
}
|
| 1799 |
|
|
|
| 1800 |
|
|
/* Remove certain expressions from anticipatable and transparent
|
| 1801 |
|
|
sets of basic blocks that have incoming abnormal edge.
|
| 1802 |
|
|
For PRE remove potentially trapping expressions to avoid placing
|
| 1803 |
|
|
them on abnormal edges. For hoisting remove memory references that
|
| 1804 |
|
|
can be clobbered by calls. */
|
| 1805 |
|
|
|
| 1806 |
|
|
static void
|
| 1807 |
|
|
prune_expressions (bool pre_p)
|
| 1808 |
|
|
{
|
| 1809 |
|
|
sbitmap prune_exprs;
|
| 1810 |
|
|
struct expr *expr;
|
| 1811 |
|
|
unsigned int ui;
|
| 1812 |
|
|
basic_block bb;
|
| 1813 |
|
|
|
| 1814 |
|
|
prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
|
| 1815 |
|
|
sbitmap_zero (prune_exprs);
|
| 1816 |
|
|
for (ui = 0; ui < expr_hash_table.size; ui++)
|
| 1817 |
|
|
{
|
| 1818 |
|
|
for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
|
| 1819 |
|
|
{
|
| 1820 |
|
|
/* Note potentially trapping expressions. */
|
| 1821 |
|
|
if (may_trap_p (expr->expr))
|
| 1822 |
|
|
{
|
| 1823 |
|
|
SET_BIT (prune_exprs, expr->bitmap_index);
|
| 1824 |
|
|
continue;
|
| 1825 |
|
|
}
|
| 1826 |
|
|
|
| 1827 |
|
|
if (!pre_p && MEM_P (expr->expr))
|
| 1828 |
|
|
/* Note memory references that can be clobbered by a call.
|
| 1829 |
|
|
We do not split abnormal edges in hoisting, so would
|
| 1830 |
|
|
a memory reference get hoisted along an abnormal edge,
|
| 1831 |
|
|
it would be placed /before/ the call. Therefore, only
|
| 1832 |
|
|
constant memory references can be hoisted along abnormal
|
| 1833 |
|
|
edges. */
|
| 1834 |
|
|
{
|
| 1835 |
|
|
if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
|
| 1836 |
|
|
&& CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
|
| 1837 |
|
|
continue;
|
| 1838 |
|
|
|
| 1839 |
|
|
if (MEM_READONLY_P (expr->expr)
|
| 1840 |
|
|
&& !MEM_VOLATILE_P (expr->expr)
|
| 1841 |
|
|
&& MEM_NOTRAP_P (expr->expr))
|
| 1842 |
|
|
/* Constant memory reference, e.g., a PIC address. */
|
| 1843 |
|
|
continue;
|
| 1844 |
|
|
|
| 1845 |
|
|
/* ??? Optimally, we would use interprocedural alias
|
| 1846 |
|
|
analysis to determine if this mem is actually killed
|
| 1847 |
|
|
by this call. */
|
| 1848 |
|
|
|
| 1849 |
|
|
SET_BIT (prune_exprs, expr->bitmap_index);
|
| 1850 |
|
|
}
|
| 1851 |
|
|
}
|
| 1852 |
|
|
}
|
| 1853 |
|
|
|
| 1854 |
|
|
FOR_EACH_BB (bb)
|
| 1855 |
|
|
{
|
| 1856 |
|
|
edge e;
|
| 1857 |
|
|
edge_iterator ei;
|
| 1858 |
|
|
|
| 1859 |
|
|
/* If the current block is the destination of an abnormal edge, we
|
| 1860 |
|
|
kill all trapping (for PRE) and memory (for hoist) expressions
|
| 1861 |
|
|
because we won't be able to properly place the instruction on
|
| 1862 |
|
|
the edge. So make them neither anticipatable nor transparent.
|
| 1863 |
|
|
This is fairly conservative.
|
| 1864 |
|
|
|
| 1865 |
|
|
??? For hoisting it may be necessary to check for set-and-jump
|
| 1866 |
|
|
instructions here, not just for abnormal edges. The general problem
|
| 1867 |
|
|
is that when an expression cannot not be placed right at the end of
|
| 1868 |
|
|
a basic block we should account for any side-effects of a subsequent
|
| 1869 |
|
|
jump instructions that could clobber the expression. It would
|
| 1870 |
|
|
be best to implement this check along the lines of
|
| 1871 |
|
|
hoist_expr_reaches_here_p where the target block is already known
|
| 1872 |
|
|
and, hence, there's no need to conservatively prune expressions on
|
| 1873 |
|
|
"intermediate" set-and-jump instructions. */
|
| 1874 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 1875 |
|
|
if ((e->flags & EDGE_ABNORMAL)
|
| 1876 |
|
|
&& (pre_p || CALL_P (BB_END (e->src))))
|
| 1877 |
|
|
{
|
| 1878 |
|
|
sbitmap_difference (antloc[bb->index],
|
| 1879 |
|
|
antloc[bb->index], prune_exprs);
|
| 1880 |
|
|
sbitmap_difference (transp[bb->index],
|
| 1881 |
|
|
transp[bb->index], prune_exprs);
|
| 1882 |
|
|
break;
|
| 1883 |
|
|
}
|
| 1884 |
|
|
}
|
| 1885 |
|
|
|
| 1886 |
|
|
sbitmap_free (prune_exprs);
|
| 1887 |
|
|
}
|
| 1888 |
|
|
|
| 1889 |
|
|
/* It may be necessary to insert a large number of insns on edges to
|
| 1890 |
|
|
make the existing occurrences of expressions fully redundant. This
|
| 1891 |
|
|
routine examines the set of insertions and deletions and if the ratio
|
| 1892 |
|
|
of insertions to deletions is too high for a particular expression, then
|
| 1893 |
|
|
the expression is removed from the insertion/deletion sets.
|
| 1894 |
|
|
|
| 1895 |
|
|
N_ELEMS is the number of elements in the hash table. */
|
| 1896 |
|
|
|
| 1897 |
|
|
static void
|
| 1898 |
|
|
prune_insertions_deletions (int n_elems)
|
| 1899 |
|
|
{
|
| 1900 |
|
|
sbitmap_iterator sbi;
|
| 1901 |
|
|
sbitmap prune_exprs;
|
| 1902 |
|
|
|
| 1903 |
|
|
/* We always use I to iterate over blocks/edges and J to iterate over
|
| 1904 |
|
|
expressions. */
|
| 1905 |
|
|
unsigned int i, j;
|
| 1906 |
|
|
|
| 1907 |
|
|
/* Counts for the number of times an expression needs to be inserted and
|
| 1908 |
|
|
number of times an expression can be removed as a result. */
|
| 1909 |
|
|
int *insertions = GCNEWVEC (int, n_elems);
|
| 1910 |
|
|
int *deletions = GCNEWVEC (int, n_elems);
|
| 1911 |
|
|
|
| 1912 |
|
|
/* Set of expressions which require too many insertions relative to
|
| 1913 |
|
|
the number of deletions achieved. We will prune these out of the
|
| 1914 |
|
|
insertion/deletion sets. */
|
| 1915 |
|
|
prune_exprs = sbitmap_alloc (n_elems);
|
| 1916 |
|
|
sbitmap_zero (prune_exprs);
|
| 1917 |
|
|
|
| 1918 |
|
|
/* Iterate over the edges counting the number of times each expression
|
| 1919 |
|
|
needs to be inserted. */
|
| 1920 |
|
|
for (i = 0; i < (unsigned) n_edges; i++)
|
| 1921 |
|
|
{
|
| 1922 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (pre_insert_map[i], 0, j, sbi)
|
| 1923 |
|
|
insertions[j]++;
|
| 1924 |
|
|
}
|
| 1925 |
|
|
|
| 1926 |
|
|
/* Similarly for deletions, but those occur in blocks rather than on
|
| 1927 |
|
|
edges. */
|
| 1928 |
|
|
for (i = 0; i < (unsigned) last_basic_block; i++)
|
| 1929 |
|
|
{
|
| 1930 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (pre_delete_map[i], 0, j, sbi)
|
| 1931 |
|
|
deletions[j]++;
|
| 1932 |
|
|
}
|
| 1933 |
|
|
|
| 1934 |
|
|
/* Now that we have accurate counts, iterate over the elements in the
|
| 1935 |
|
|
hash table and see if any need too many insertions relative to the
|
| 1936 |
|
|
number of evaluations that can be removed. If so, mark them in
|
| 1937 |
|
|
PRUNE_EXPRS. */
|
| 1938 |
|
|
for (j = 0; j < (unsigned) n_elems; j++)
|
| 1939 |
|
|
if (deletions[j]
|
| 1940 |
|
|
&& ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
|
| 1941 |
|
|
SET_BIT (prune_exprs, j);
|
| 1942 |
|
|
|
| 1943 |
|
|
/* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
|
| 1944 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (prune_exprs, 0, j, sbi)
|
| 1945 |
|
|
{
|
| 1946 |
|
|
for (i = 0; i < (unsigned) n_edges; i++)
|
| 1947 |
|
|
RESET_BIT (pre_insert_map[i], j);
|
| 1948 |
|
|
|
| 1949 |
|
|
for (i = 0; i < (unsigned) last_basic_block; i++)
|
| 1950 |
|
|
RESET_BIT (pre_delete_map[i], j);
|
| 1951 |
|
|
}
|
| 1952 |
|
|
|
| 1953 |
|
|
sbitmap_free (prune_exprs);
|
| 1954 |
|
|
free (insertions);
|
| 1955 |
|
|
free (deletions);
|
| 1956 |
|
|
}
|
| 1957 |
|
|
|
| 1958 |
|
|
/* Top level routine to do the dataflow analysis needed by PRE. */
|
| 1959 |
|
|
|
| 1960 |
|
|
static struct edge_list *
|
| 1961 |
|
|
compute_pre_data (void)
|
| 1962 |
|
|
{
|
| 1963 |
|
|
struct edge_list *edge_list;
|
| 1964 |
|
|
basic_block bb;
|
| 1965 |
|
|
|
| 1966 |
|
|
compute_local_properties (transp, comp, antloc, &expr_hash_table);
|
| 1967 |
|
|
prune_expressions (true);
|
| 1968 |
|
|
sbitmap_vector_zero (ae_kill, last_basic_block);
|
| 1969 |
|
|
|
| 1970 |
|
|
/* Compute ae_kill for each basic block using:
|
| 1971 |
|
|
|
| 1972 |
|
|
~(TRANSP | COMP)
|
| 1973 |
|
|
*/
|
| 1974 |
|
|
|
| 1975 |
|
|
FOR_EACH_BB (bb)
|
| 1976 |
|
|
{
|
| 1977 |
|
|
sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
|
| 1978 |
|
|
sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
|
| 1979 |
|
|
}
|
| 1980 |
|
|
|
| 1981 |
|
|
edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
|
| 1982 |
|
|
ae_kill, &pre_insert_map, &pre_delete_map);
|
| 1983 |
|
|
sbitmap_vector_free (antloc);
|
| 1984 |
|
|
antloc = NULL;
|
| 1985 |
|
|
sbitmap_vector_free (ae_kill);
|
| 1986 |
|
|
ae_kill = NULL;
|
| 1987 |
|
|
|
| 1988 |
|
|
prune_insertions_deletions (expr_hash_table.n_elems);
|
| 1989 |
|
|
|
| 1990 |
|
|
return edge_list;
|
| 1991 |
|
|
}
|
| 1992 |
|
|
|
| 1993 |
|
|
/* PRE utilities */
|
| 1994 |
|
|
|
| 1995 |
|
|
/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
|
| 1996 |
|
|
block BB.
|
| 1997 |
|
|
|
| 1998 |
|
|
VISITED is a pointer to a working buffer for tracking which BB's have
|
| 1999 |
|
|
been visited. It is NULL for the top-level call.
|
| 2000 |
|
|
|
| 2001 |
|
|
We treat reaching expressions that go through blocks containing the same
|
| 2002 |
|
|
reaching expression as "not reaching". E.g. if EXPR is generated in blocks
|
| 2003 |
|
|
2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
|
| 2004 |
|
|
2 as not reaching. The intent is to improve the probability of finding
|
| 2005 |
|
|
only one reaching expression and to reduce register lifetimes by picking
|
| 2006 |
|
|
the closest such expression. */
|
| 2007 |
|
|
|
| 2008 |
|
|
static int
|
| 2009 |
|
|
pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
|
| 2010 |
|
|
basic_block bb, char *visited)
|
| 2011 |
|
|
{
|
| 2012 |
|
|
edge pred;
|
| 2013 |
|
|
edge_iterator ei;
|
| 2014 |
|
|
|
| 2015 |
|
|
FOR_EACH_EDGE (pred, ei, bb->preds)
|
| 2016 |
|
|
{
|
| 2017 |
|
|
basic_block pred_bb = pred->src;
|
| 2018 |
|
|
|
| 2019 |
|
|
if (pred->src == ENTRY_BLOCK_PTR
|
| 2020 |
|
|
/* Has predecessor has already been visited? */
|
| 2021 |
|
|
|| visited[pred_bb->index])
|
| 2022 |
|
|
;/* Nothing to do. */
|
| 2023 |
|
|
|
| 2024 |
|
|
/* Does this predecessor generate this expression? */
|
| 2025 |
|
|
else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
|
| 2026 |
|
|
{
|
| 2027 |
|
|
/* Is this the occurrence we're looking for?
|
| 2028 |
|
|
Note that there's only one generating occurrence per block
|
| 2029 |
|
|
so we just need to check the block number. */
|
| 2030 |
|
|
if (occr_bb == pred_bb)
|
| 2031 |
|
|
return 1;
|
| 2032 |
|
|
|
| 2033 |
|
|
visited[pred_bb->index] = 1;
|
| 2034 |
|
|
}
|
| 2035 |
|
|
/* Ignore this predecessor if it kills the expression. */
|
| 2036 |
|
|
else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
|
| 2037 |
|
|
visited[pred_bb->index] = 1;
|
| 2038 |
|
|
|
| 2039 |
|
|
/* Neither gen nor kill. */
|
| 2040 |
|
|
else
|
| 2041 |
|
|
{
|
| 2042 |
|
|
visited[pred_bb->index] = 1;
|
| 2043 |
|
|
if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
|
| 2044 |
|
|
return 1;
|
| 2045 |
|
|
}
|
| 2046 |
|
|
}
|
| 2047 |
|
|
|
| 2048 |
|
|
/* All paths have been checked. */
|
| 2049 |
|
|
return 0;
|
| 2050 |
|
|
}
|
| 2051 |
|
|
|
| 2052 |
|
|
/* The wrapper for pre_expr_reaches_here_work that ensures that any
|
| 2053 |
|
|
memory allocated for that function is returned. */
|
| 2054 |
|
|
|
| 2055 |
|
|
static int
|
| 2056 |
|
|
pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
|
| 2057 |
|
|
{
|
| 2058 |
|
|
int rval;
|
| 2059 |
|
|
char *visited = XCNEWVEC (char, last_basic_block);
|
| 2060 |
|
|
|
| 2061 |
|
|
rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
|
| 2062 |
|
|
|
| 2063 |
|
|
free (visited);
|
| 2064 |
|
|
return rval;
|
| 2065 |
|
|
}
|
| 2066 |
|
|
|
| 2067 |
|
|
/* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
|
| 2068 |
|
|
|
| 2069 |
|
|
static rtx
|
| 2070 |
|
|
process_insert_insn (struct expr *expr)
|
| 2071 |
|
|
{
|
| 2072 |
|
|
rtx reg = expr->reaching_reg;
|
| 2073 |
|
|
/* Copy the expression to make sure we don't have any sharing issues. */
|
| 2074 |
|
|
rtx exp = copy_rtx (expr->expr);
|
| 2075 |
|
|
rtx pat;
|
| 2076 |
|
|
|
| 2077 |
|
|
start_sequence ();
|
| 2078 |
|
|
|
| 2079 |
|
|
/* If the expression is something that's an operand, like a constant,
|
| 2080 |
|
|
just copy it to a register. */
|
| 2081 |
|
|
if (general_operand (exp, GET_MODE (reg)))
|
| 2082 |
|
|
emit_move_insn (reg, exp);
|
| 2083 |
|
|
|
| 2084 |
|
|
/* Otherwise, make a new insn to compute this expression and make sure the
|
| 2085 |
|
|
insn will be recognized (this also adds any needed CLOBBERs). */
|
| 2086 |
|
|
else
|
| 2087 |
|
|
{
|
| 2088 |
|
|
rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
|
| 2089 |
|
|
|
| 2090 |
|
|
if (insn_invalid_p (insn))
|
| 2091 |
|
|
gcc_unreachable ();
|
| 2092 |
|
|
}
|
| 2093 |
|
|
|
| 2094 |
|
|
pat = get_insns ();
|
| 2095 |
|
|
end_sequence ();
|
| 2096 |
|
|
|
| 2097 |
|
|
return pat;
|
| 2098 |
|
|
}
|
| 2099 |
|
|
|
| 2100 |
|
|
/* Add EXPR to the end of basic block BB.
|
| 2101 |
|
|
|
| 2102 |
|
|
This is used by both the PRE and code hoisting. */
|
| 2103 |
|
|
|
| 2104 |
|
|
static void
|
| 2105 |
|
|
insert_insn_end_basic_block (struct expr *expr, basic_block bb)
|
| 2106 |
|
|
{
|
| 2107 |
|
|
rtx insn = BB_END (bb);
|
| 2108 |
|
|
rtx new_insn;
|
| 2109 |
|
|
rtx reg = expr->reaching_reg;
|
| 2110 |
|
|
int regno = REGNO (reg);
|
| 2111 |
|
|
rtx pat, pat_end;
|
| 2112 |
|
|
|
| 2113 |
|
|
pat = process_insert_insn (expr);
|
| 2114 |
|
|
gcc_assert (pat && INSN_P (pat));
|
| 2115 |
|
|
|
| 2116 |
|
|
pat_end = pat;
|
| 2117 |
|
|
while (NEXT_INSN (pat_end) != NULL_RTX)
|
| 2118 |
|
|
pat_end = NEXT_INSN (pat_end);
|
| 2119 |
|
|
|
| 2120 |
|
|
/* If the last insn is a jump, insert EXPR in front [taking care to
|
| 2121 |
|
|
handle cc0, etc. properly]. Similarly we need to care trapping
|
| 2122 |
|
|
instructions in presence of non-call exceptions. */
|
| 2123 |
|
|
|
| 2124 |
|
|
if (JUMP_P (insn)
|
| 2125 |
|
|
|| (NONJUMP_INSN_P (insn)
|
| 2126 |
|
|
&& (!single_succ_p (bb)
|
| 2127 |
|
|
|| single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
|
| 2128 |
|
|
{
|
| 2129 |
|
|
#ifdef HAVE_cc0
|
| 2130 |
|
|
rtx note;
|
| 2131 |
|
|
#endif
|
| 2132 |
|
|
|
| 2133 |
|
|
/* If this is a jump table, then we can't insert stuff here. Since
|
| 2134 |
|
|
we know the previous real insn must be the tablejump, we insert
|
| 2135 |
|
|
the new instruction just before the tablejump. */
|
| 2136 |
|
|
if (GET_CODE (PATTERN (insn)) == ADDR_VEC
|
| 2137 |
|
|
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
|
| 2138 |
|
|
insn = prev_active_insn (insn);
|
| 2139 |
|
|
|
| 2140 |
|
|
#ifdef HAVE_cc0
|
| 2141 |
|
|
/* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
|
| 2142 |
|
|
if cc0 isn't set. */
|
| 2143 |
|
|
note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
|
| 2144 |
|
|
if (note)
|
| 2145 |
|
|
insn = XEXP (note, 0);
|
| 2146 |
|
|
else
|
| 2147 |
|
|
{
|
| 2148 |
|
|
rtx maybe_cc0_setter = prev_nonnote_insn (insn);
|
| 2149 |
|
|
if (maybe_cc0_setter
|
| 2150 |
|
|
&& INSN_P (maybe_cc0_setter)
|
| 2151 |
|
|
&& sets_cc0_p (PATTERN (maybe_cc0_setter)))
|
| 2152 |
|
|
insn = maybe_cc0_setter;
|
| 2153 |
|
|
}
|
| 2154 |
|
|
#endif
|
| 2155 |
|
|
/* FIXME: What if something in cc0/jump uses value set in new insn? */
|
| 2156 |
|
|
new_insn = emit_insn_before_noloc (pat, insn, bb);
|
| 2157 |
|
|
}
|
| 2158 |
|
|
|
| 2159 |
|
|
/* Likewise if the last insn is a call, as will happen in the presence
|
| 2160 |
|
|
of exception handling. */
|
| 2161 |
|
|
else if (CALL_P (insn)
|
| 2162 |
|
|
&& (!single_succ_p (bb)
|
| 2163 |
|
|
|| single_succ_edge (bb)->flags & EDGE_ABNORMAL))
|
| 2164 |
|
|
{
|
| 2165 |
|
|
/* Keeping in mind targets with small register classes and parameters
|
| 2166 |
|
|
in registers, we search backward and place the instructions before
|
| 2167 |
|
|
the first parameter is loaded. Do this for everyone for consistency
|
| 2168 |
|
|
and a presumption that we'll get better code elsewhere as well. */
|
| 2169 |
|
|
|
| 2170 |
|
|
/* Since different machines initialize their parameter registers
|
| 2171 |
|
|
in different orders, assume nothing. Collect the set of all
|
| 2172 |
|
|
parameter registers. */
|
| 2173 |
|
|
insn = find_first_parameter_load (insn, BB_HEAD (bb));
|
| 2174 |
|
|
|
| 2175 |
|
|
/* If we found all the parameter loads, then we want to insert
|
| 2176 |
|
|
before the first parameter load.
|
| 2177 |
|
|
|
| 2178 |
|
|
If we did not find all the parameter loads, then we might have
|
| 2179 |
|
|
stopped on the head of the block, which could be a CODE_LABEL.
|
| 2180 |
|
|
If we inserted before the CODE_LABEL, then we would be putting
|
| 2181 |
|
|
the insn in the wrong basic block. In that case, put the insn
|
| 2182 |
|
|
after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
|
| 2183 |
|
|
while (LABEL_P (insn)
|
| 2184 |
|
|
|| NOTE_INSN_BASIC_BLOCK_P (insn))
|
| 2185 |
|
|
insn = NEXT_INSN (insn);
|
| 2186 |
|
|
|
| 2187 |
|
|
new_insn = emit_insn_before_noloc (pat, insn, bb);
|
| 2188 |
|
|
}
|
| 2189 |
|
|
else
|
| 2190 |
|
|
new_insn = emit_insn_after_noloc (pat, insn, bb);
|
| 2191 |
|
|
|
| 2192 |
|
|
while (1)
|
| 2193 |
|
|
{
|
| 2194 |
|
|
if (INSN_P (pat))
|
| 2195 |
|
|
add_label_notes (PATTERN (pat), new_insn);
|
| 2196 |
|
|
if (pat == pat_end)
|
| 2197 |
|
|
break;
|
| 2198 |
|
|
pat = NEXT_INSN (pat);
|
| 2199 |
|
|
}
|
| 2200 |
|
|
|
| 2201 |
|
|
gcse_create_count++;
|
| 2202 |
|
|
|
| 2203 |
|
|
if (dump_file)
|
| 2204 |
|
|
{
|
| 2205 |
|
|
fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
|
| 2206 |
|
|
bb->index, INSN_UID (new_insn));
|
| 2207 |
|
|
fprintf (dump_file, "copying expression %d to reg %d\n",
|
| 2208 |
|
|
expr->bitmap_index, regno);
|
| 2209 |
|
|
}
|
| 2210 |
|
|
}
|
| 2211 |
|
|
|
| 2212 |
|
|
/* Insert partially redundant expressions on edges in the CFG to make
|
| 2213 |
|
|
the expressions fully redundant. */
|
| 2214 |
|
|
|
| 2215 |
|
|
static int
|
| 2216 |
|
|
pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
|
| 2217 |
|
|
{
|
| 2218 |
|
|
int e, i, j, num_edges, set_size, did_insert = 0;
|
| 2219 |
|
|
sbitmap *inserted;
|
| 2220 |
|
|
|
| 2221 |
|
|
/* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
|
| 2222 |
|
|
if it reaches any of the deleted expressions. */
|
| 2223 |
|
|
|
| 2224 |
|
|
set_size = pre_insert_map[0]->size;
|
| 2225 |
|
|
num_edges = NUM_EDGES (edge_list);
|
| 2226 |
|
|
inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
|
| 2227 |
|
|
sbitmap_vector_zero (inserted, num_edges);
|
| 2228 |
|
|
|
| 2229 |
|
|
for (e = 0; e < num_edges; e++)
|
| 2230 |
|
|
{
|
| 2231 |
|
|
int indx;
|
| 2232 |
|
|
basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
|
| 2233 |
|
|
|
| 2234 |
|
|
for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
|
| 2235 |
|
|
{
|
| 2236 |
|
|
SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
|
| 2237 |
|
|
|
| 2238 |
|
|
for (j = indx;
|
| 2239 |
|
|
insert && j < (int) expr_hash_table.n_elems;
|
| 2240 |
|
|
j++, insert >>= 1)
|
| 2241 |
|
|
if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
|
| 2242 |
|
|
{
|
| 2243 |
|
|
struct expr *expr = index_map[j];
|
| 2244 |
|
|
struct occr *occr;
|
| 2245 |
|
|
|
| 2246 |
|
|
/* Now look at each deleted occurrence of this expression. */
|
| 2247 |
|
|
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
| 2248 |
|
|
{
|
| 2249 |
|
|
if (! occr->deleted_p)
|
| 2250 |
|
|
continue;
|
| 2251 |
|
|
|
| 2252 |
|
|
/* Insert this expression on this edge if it would
|
| 2253 |
|
|
reach the deleted occurrence in BB. */
|
| 2254 |
|
|
if (!TEST_BIT (inserted[e], j))
|
| 2255 |
|
|
{
|
| 2256 |
|
|
rtx insn;
|
| 2257 |
|
|
edge eg = INDEX_EDGE (edge_list, e);
|
| 2258 |
|
|
|
| 2259 |
|
|
/* We can't insert anything on an abnormal and
|
| 2260 |
|
|
critical edge, so we insert the insn at the end of
|
| 2261 |
|
|
the previous block. There are several alternatives
|
| 2262 |
|
|
detailed in Morgans book P277 (sec 10.5) for
|
| 2263 |
|
|
handling this situation. This one is easiest for
|
| 2264 |
|
|
now. */
|
| 2265 |
|
|
|
| 2266 |
|
|
if (eg->flags & EDGE_ABNORMAL)
|
| 2267 |
|
|
insert_insn_end_basic_block (index_map[j], bb);
|
| 2268 |
|
|
else
|
| 2269 |
|
|
{
|
| 2270 |
|
|
insn = process_insert_insn (index_map[j]);
|
| 2271 |
|
|
insert_insn_on_edge (insn, eg);
|
| 2272 |
|
|
}
|
| 2273 |
|
|
|
| 2274 |
|
|
if (dump_file)
|
| 2275 |
|
|
{
|
| 2276 |
|
|
fprintf (dump_file, "PRE: edge (%d,%d), ",
|
| 2277 |
|
|
bb->index,
|
| 2278 |
|
|
INDEX_EDGE_SUCC_BB (edge_list, e)->index);
|
| 2279 |
|
|
fprintf (dump_file, "copy expression %d\n",
|
| 2280 |
|
|
expr->bitmap_index);
|
| 2281 |
|
|
}
|
| 2282 |
|
|
|
| 2283 |
|
|
update_ld_motion_stores (expr);
|
| 2284 |
|
|
SET_BIT (inserted[e], j);
|
| 2285 |
|
|
did_insert = 1;
|
| 2286 |
|
|
gcse_create_count++;
|
| 2287 |
|
|
}
|
| 2288 |
|
|
}
|
| 2289 |
|
|
}
|
| 2290 |
|
|
}
|
| 2291 |
|
|
}
|
| 2292 |
|
|
|
| 2293 |
|
|
sbitmap_vector_free (inserted);
|
| 2294 |
|
|
return did_insert;
|
| 2295 |
|
|
}
|
| 2296 |
|
|
|
| 2297 |
|
|
/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
|
| 2298 |
|
|
Given "old_reg <- expr" (INSN), instead of adding after it
|
| 2299 |
|
|
reaching_reg <- old_reg
|
| 2300 |
|
|
it's better to do the following:
|
| 2301 |
|
|
reaching_reg <- expr
|
| 2302 |
|
|
old_reg <- reaching_reg
|
| 2303 |
|
|
because this way copy propagation can discover additional PRE
|
| 2304 |
|
|
opportunities. But if this fails, we try the old way.
|
| 2305 |
|
|
When "expr" is a store, i.e.
|
| 2306 |
|
|
given "MEM <- old_reg", instead of adding after it
|
| 2307 |
|
|
reaching_reg <- old_reg
|
| 2308 |
|
|
it's better to add it before as follows:
|
| 2309 |
|
|
reaching_reg <- old_reg
|
| 2310 |
|
|
MEM <- reaching_reg. */
|
| 2311 |
|
|
|
| 2312 |
|
|
static void
|
| 2313 |
|
|
pre_insert_copy_insn (struct expr *expr, rtx insn)
|
| 2314 |
|
|
{
|
| 2315 |
|
|
rtx reg = expr->reaching_reg;
|
| 2316 |
|
|
int regno = REGNO (reg);
|
| 2317 |
|
|
int indx = expr->bitmap_index;
|
| 2318 |
|
|
rtx pat = PATTERN (insn);
|
| 2319 |
|
|
rtx set, first_set, new_insn;
|
| 2320 |
|
|
rtx old_reg;
|
| 2321 |
|
|
int i;
|
| 2322 |
|
|
|
| 2323 |
|
|
/* This block matches the logic in hash_scan_insn. */
|
| 2324 |
|
|
switch (GET_CODE (pat))
|
| 2325 |
|
|
{
|
| 2326 |
|
|
case SET:
|
| 2327 |
|
|
set = pat;
|
| 2328 |
|
|
break;
|
| 2329 |
|
|
|
| 2330 |
|
|
case PARALLEL:
|
| 2331 |
|
|
/* Search through the parallel looking for the set whose
|
| 2332 |
|
|
source was the expression that we're interested in. */
|
| 2333 |
|
|
first_set = NULL_RTX;
|
| 2334 |
|
|
set = NULL_RTX;
|
| 2335 |
|
|
for (i = 0; i < XVECLEN (pat, 0); i++)
|
| 2336 |
|
|
{
|
| 2337 |
|
|
rtx x = XVECEXP (pat, 0, i);
|
| 2338 |
|
|
if (GET_CODE (x) == SET)
|
| 2339 |
|
|
{
|
| 2340 |
|
|
/* If the source was a REG_EQUAL or REG_EQUIV note, we
|
| 2341 |
|
|
may not find an equivalent expression, but in this
|
| 2342 |
|
|
case the PARALLEL will have a single set. */
|
| 2343 |
|
|
if (first_set == NULL_RTX)
|
| 2344 |
|
|
first_set = x;
|
| 2345 |
|
|
if (expr_equiv_p (SET_SRC (x), expr->expr))
|
| 2346 |
|
|
{
|
| 2347 |
|
|
set = x;
|
| 2348 |
|
|
break;
|
| 2349 |
|
|
}
|
| 2350 |
|
|
}
|
| 2351 |
|
|
}
|
| 2352 |
|
|
|
| 2353 |
|
|
gcc_assert (first_set);
|
| 2354 |
|
|
if (set == NULL_RTX)
|
| 2355 |
|
|
set = first_set;
|
| 2356 |
|
|
break;
|
| 2357 |
|
|
|
| 2358 |
|
|
default:
|
| 2359 |
|
|
gcc_unreachable ();
|
| 2360 |
|
|
}
|
| 2361 |
|
|
|
| 2362 |
|
|
if (REG_P (SET_DEST (set)))
|
| 2363 |
|
|
{
|
| 2364 |
|
|
old_reg = SET_DEST (set);
|
| 2365 |
|
|
/* Check if we can modify the set destination in the original insn. */
|
| 2366 |
|
|
if (validate_change (insn, &SET_DEST (set), reg, 0))
|
| 2367 |
|
|
{
|
| 2368 |
|
|
new_insn = gen_move_insn (old_reg, reg);
|
| 2369 |
|
|
new_insn = emit_insn_after (new_insn, insn);
|
| 2370 |
|
|
}
|
| 2371 |
|
|
else
|
| 2372 |
|
|
{
|
| 2373 |
|
|
new_insn = gen_move_insn (reg, old_reg);
|
| 2374 |
|
|
new_insn = emit_insn_after (new_insn, insn);
|
| 2375 |
|
|
}
|
| 2376 |
|
|
}
|
| 2377 |
|
|
else /* This is possible only in case of a store to memory. */
|
| 2378 |
|
|
{
|
| 2379 |
|
|
old_reg = SET_SRC (set);
|
| 2380 |
|
|
new_insn = gen_move_insn (reg, old_reg);
|
| 2381 |
|
|
|
| 2382 |
|
|
/* Check if we can modify the set source in the original insn. */
|
| 2383 |
|
|
if (validate_change (insn, &SET_SRC (set), reg, 0))
|
| 2384 |
|
|
new_insn = emit_insn_before (new_insn, insn);
|
| 2385 |
|
|
else
|
| 2386 |
|
|
new_insn = emit_insn_after (new_insn, insn);
|
| 2387 |
|
|
}
|
| 2388 |
|
|
|
| 2389 |
|
|
gcse_create_count++;
|
| 2390 |
|
|
|
| 2391 |
|
|
if (dump_file)
|
| 2392 |
|
|
fprintf (dump_file,
|
| 2393 |
|
|
"PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
|
| 2394 |
|
|
BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
|
| 2395 |
|
|
INSN_UID (insn), regno);
|
| 2396 |
|
|
}
|
| 2397 |
|
|
|
| 2398 |
|
|
/* Copy available expressions that reach the redundant expression
|
| 2399 |
|
|
to `reaching_reg'. */
|
| 2400 |
|
|
|
| 2401 |
|
|
static void
|
| 2402 |
|
|
pre_insert_copies (void)
|
| 2403 |
|
|
{
|
| 2404 |
|
|
unsigned int i, added_copy;
|
| 2405 |
|
|
struct expr *expr;
|
| 2406 |
|
|
struct occr *occr;
|
| 2407 |
|
|
struct occr *avail;
|
| 2408 |
|
|
|
| 2409 |
|
|
/* For each available expression in the table, copy the result to
|
| 2410 |
|
|
`reaching_reg' if the expression reaches a deleted one.
|
| 2411 |
|
|
|
| 2412 |
|
|
??? The current algorithm is rather brute force.
|
| 2413 |
|
|
Need to do some profiling. */
|
| 2414 |
|
|
|
| 2415 |
|
|
for (i = 0; i < expr_hash_table.size; i++)
|
| 2416 |
|
|
for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
|
| 2417 |
|
|
{
|
| 2418 |
|
|
/* If the basic block isn't reachable, PPOUT will be TRUE. However,
|
| 2419 |
|
|
we don't want to insert a copy here because the expression may not
|
| 2420 |
|
|
really be redundant. So only insert an insn if the expression was
|
| 2421 |
|
|
deleted. This test also avoids further processing if the
|
| 2422 |
|
|
expression wasn't deleted anywhere. */
|
| 2423 |
|
|
if (expr->reaching_reg == NULL)
|
| 2424 |
|
|
continue;
|
| 2425 |
|
|
|
| 2426 |
|
|
/* Set when we add a copy for that expression. */
|
| 2427 |
|
|
added_copy = 0;
|
| 2428 |
|
|
|
| 2429 |
|
|
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
| 2430 |
|
|
{
|
| 2431 |
|
|
if (! occr->deleted_p)
|
| 2432 |
|
|
continue;
|
| 2433 |
|
|
|
| 2434 |
|
|
for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
|
| 2435 |
|
|
{
|
| 2436 |
|
|
rtx insn = avail->insn;
|
| 2437 |
|
|
|
| 2438 |
|
|
/* No need to handle this one if handled already. */
|
| 2439 |
|
|
if (avail->copied_p)
|
| 2440 |
|
|
continue;
|
| 2441 |
|
|
|
| 2442 |
|
|
/* Don't handle this one if it's a redundant one. */
|
| 2443 |
|
|
if (INSN_DELETED_P (insn))
|
| 2444 |
|
|
continue;
|
| 2445 |
|
|
|
| 2446 |
|
|
/* Or if the expression doesn't reach the deleted one. */
|
| 2447 |
|
|
if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
|
| 2448 |
|
|
expr,
|
| 2449 |
|
|
BLOCK_FOR_INSN (occr->insn)))
|
| 2450 |
|
|
continue;
|
| 2451 |
|
|
|
| 2452 |
|
|
added_copy = 1;
|
| 2453 |
|
|
|
| 2454 |
|
|
/* Copy the result of avail to reaching_reg. */
|
| 2455 |
|
|
pre_insert_copy_insn (expr, insn);
|
| 2456 |
|
|
avail->copied_p = 1;
|
| 2457 |
|
|
}
|
| 2458 |
|
|
}
|
| 2459 |
|
|
|
| 2460 |
|
|
if (added_copy)
|
| 2461 |
|
|
update_ld_motion_stores (expr);
|
| 2462 |
|
|
}
|
| 2463 |
|
|
}
|
| 2464 |
|
|
|
| 2465 |
|
|
/* Emit move from SRC to DEST noting the equivalence with expression computed
|
| 2466 |
|
|
in INSN. */
|
| 2467 |
|
|
|
| 2468 |
|
|
static rtx
|
| 2469 |
|
|
gcse_emit_move_after (rtx dest, rtx src, rtx insn)
|
| 2470 |
|
|
{
|
| 2471 |
|
|
rtx new_rtx;
|
| 2472 |
|
|
rtx set = single_set (insn), set2;
|
| 2473 |
|
|
rtx note;
|
| 2474 |
|
|
rtx eqv;
|
| 2475 |
|
|
|
| 2476 |
|
|
/* This should never fail since we're creating a reg->reg copy
|
| 2477 |
|
|
we've verified to be valid. */
|
| 2478 |
|
|
|
| 2479 |
|
|
new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
|
| 2480 |
|
|
|
| 2481 |
|
|
/* Note the equivalence for local CSE pass. */
|
| 2482 |
|
|
set2 = single_set (new_rtx);
|
| 2483 |
|
|
if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
|
| 2484 |
|
|
return new_rtx;
|
| 2485 |
|
|
if ((note = find_reg_equal_equiv_note (insn)))
|
| 2486 |
|
|
eqv = XEXP (note, 0);
|
| 2487 |
|
|
else
|
| 2488 |
|
|
eqv = SET_SRC (set);
|
| 2489 |
|
|
|
| 2490 |
|
|
set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
|
| 2491 |
|
|
|
| 2492 |
|
|
return new_rtx;
|
| 2493 |
|
|
}
|
| 2494 |
|
|
|
| 2495 |
|
|
/* Delete redundant computations.
|
| 2496 |
|
|
Deletion is done by changing the insn to copy the `reaching_reg' of
|
| 2497 |
|
|
the expression into the result of the SET. It is left to later passes
|
| 2498 |
|
|
(cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
|
| 2499 |
|
|
|
| 2500 |
|
|
Return nonzero if a change is made. */
|
| 2501 |
|
|
|
| 2502 |
|
|
static int
|
| 2503 |
|
|
pre_delete (void)
|
| 2504 |
|
|
{
|
| 2505 |
|
|
unsigned int i;
|
| 2506 |
|
|
int changed;
|
| 2507 |
|
|
struct expr *expr;
|
| 2508 |
|
|
struct occr *occr;
|
| 2509 |
|
|
|
| 2510 |
|
|
changed = 0;
|
| 2511 |
|
|
for (i = 0; i < expr_hash_table.size; i++)
|
| 2512 |
|
|
for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
|
| 2513 |
|
|
{
|
| 2514 |
|
|
int indx = expr->bitmap_index;
|
| 2515 |
|
|
|
| 2516 |
|
|
/* We only need to search antic_occr since we require ANTLOC != 0. */
|
| 2517 |
|
|
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
| 2518 |
|
|
{
|
| 2519 |
|
|
rtx insn = occr->insn;
|
| 2520 |
|
|
rtx set;
|
| 2521 |
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
| 2522 |
|
|
|
| 2523 |
|
|
/* We only delete insns that have a single_set. */
|
| 2524 |
|
|
if (TEST_BIT (pre_delete_map[bb->index], indx)
|
| 2525 |
|
|
&& (set = single_set (insn)) != 0
|
| 2526 |
|
|
&& dbg_cnt (pre_insn))
|
| 2527 |
|
|
{
|
| 2528 |
|
|
/* Create a pseudo-reg to store the result of reaching
|
| 2529 |
|
|
expressions into. Get the mode for the new pseudo from
|
| 2530 |
|
|
the mode of the original destination pseudo. */
|
| 2531 |
|
|
if (expr->reaching_reg == NULL)
|
| 2532 |
|
|
expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
|
| 2533 |
|
|
|
| 2534 |
|
|
gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
|
| 2535 |
|
|
delete_insn (insn);
|
| 2536 |
|
|
occr->deleted_p = 1;
|
| 2537 |
|
|
changed = 1;
|
| 2538 |
|
|
gcse_subst_count++;
|
| 2539 |
|
|
|
| 2540 |
|
|
if (dump_file)
|
| 2541 |
|
|
{
|
| 2542 |
|
|
fprintf (dump_file,
|
| 2543 |
|
|
"PRE: redundant insn %d (expression %d) in ",
|
| 2544 |
|
|
INSN_UID (insn), indx);
|
| 2545 |
|
|
fprintf (dump_file, "bb %d, reaching reg is %d\n",
|
| 2546 |
|
|
bb->index, REGNO (expr->reaching_reg));
|
| 2547 |
|
|
}
|
| 2548 |
|
|
}
|
| 2549 |
|
|
}
|
| 2550 |
|
|
}
|
| 2551 |
|
|
|
| 2552 |
|
|
return changed;
|
| 2553 |
|
|
}
|
| 2554 |
|
|
|
| 2555 |
|
|
/* Perform GCSE optimizations using PRE.
|
| 2556 |
|
|
This is called by one_pre_gcse_pass after all the dataflow analysis
|
| 2557 |
|
|
has been done.
|
| 2558 |
|
|
|
| 2559 |
|
|
This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
|
| 2560 |
|
|
lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
|
| 2561 |
|
|
Compiler Design and Implementation.
|
| 2562 |
|
|
|
| 2563 |
|
|
??? A new pseudo reg is created to hold the reaching expression. The nice
|
| 2564 |
|
|
thing about the classical approach is that it would try to use an existing
|
| 2565 |
|
|
reg. If the register can't be adequately optimized [i.e. we introduce
|
| 2566 |
|
|
reload problems], one could add a pass here to propagate the new register
|
| 2567 |
|
|
through the block.
|
| 2568 |
|
|
|
| 2569 |
|
|
??? We don't handle single sets in PARALLELs because we're [currently] not
|
| 2570 |
|
|
able to copy the rest of the parallel when we insert copies to create full
|
| 2571 |
|
|
redundancies from partial redundancies. However, there's no reason why we
|
| 2572 |
|
|
can't handle PARALLELs in the cases where there are no partial
|
| 2573 |
|
|
redundancies. */
|
| 2574 |
|
|
|
| 2575 |
|
|
static int
|
| 2576 |
|
|
pre_gcse (struct edge_list *edge_list)
|
| 2577 |
|
|
{
|
| 2578 |
|
|
unsigned int i;
|
| 2579 |
|
|
int did_insert, changed;
|
| 2580 |
|
|
struct expr **index_map;
|
| 2581 |
|
|
struct expr *expr;
|
| 2582 |
|
|
|
| 2583 |
|
|
/* Compute a mapping from expression number (`bitmap_index') to
|
| 2584 |
|
|
hash table entry. */
|
| 2585 |
|
|
|
| 2586 |
|
|
index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
|
| 2587 |
|
|
for (i = 0; i < expr_hash_table.size; i++)
|
| 2588 |
|
|
for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
|
| 2589 |
|
|
index_map[expr->bitmap_index] = expr;
|
| 2590 |
|
|
|
| 2591 |
|
|
/* Delete the redundant insns first so that
|
| 2592 |
|
|
- we know what register to use for the new insns and for the other
|
| 2593 |
|
|
ones with reaching expressions
|
| 2594 |
|
|
- we know which insns are redundant when we go to create copies */
|
| 2595 |
|
|
|
| 2596 |
|
|
changed = pre_delete ();
|
| 2597 |
|
|
did_insert = pre_edge_insert (edge_list, index_map);
|
| 2598 |
|
|
|
| 2599 |
|
|
/* In other places with reaching expressions, copy the expression to the
|
| 2600 |
|
|
specially allocated pseudo-reg that reaches the redundant expr. */
|
| 2601 |
|
|
pre_insert_copies ();
|
| 2602 |
|
|
if (did_insert)
|
| 2603 |
|
|
{
|
| 2604 |
|
|
commit_edge_insertions ();
|
| 2605 |
|
|
changed = 1;
|
| 2606 |
|
|
}
|
| 2607 |
|
|
|
| 2608 |
|
|
free (index_map);
|
| 2609 |
|
|
return changed;
|
| 2610 |
|
|
}
|
| 2611 |
|
|
|
| 2612 |
|
|
/* Top level routine to perform one PRE GCSE pass.
|
| 2613 |
|
|
|
| 2614 |
|
|
Return nonzero if a change was made. */
|
| 2615 |
|
|
|
| 2616 |
|
|
static int
|
| 2617 |
|
|
one_pre_gcse_pass (void)
|
| 2618 |
|
|
{
|
| 2619 |
|
|
int changed = 0;
|
| 2620 |
|
|
|
| 2621 |
|
|
gcse_subst_count = 0;
|
| 2622 |
|
|
gcse_create_count = 0;
|
| 2623 |
|
|
|
| 2624 |
|
|
/* Return if there's nothing to do, or it is too expensive. */
|
| 2625 |
|
|
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
|
| 2626 |
|
|
|| is_too_expensive (_("PRE disabled")))
|
| 2627 |
|
|
return 0;
|
| 2628 |
|
|
|
| 2629 |
|
|
/* We need alias. */
|
| 2630 |
|
|
init_alias_analysis ();
|
| 2631 |
|
|
|
| 2632 |
|
|
bytes_used = 0;
|
| 2633 |
|
|
gcc_obstack_init (&gcse_obstack);
|
| 2634 |
|
|
alloc_gcse_mem ();
|
| 2635 |
|
|
|
| 2636 |
|
|
alloc_hash_table (&expr_hash_table);
|
| 2637 |
|
|
add_noreturn_fake_exit_edges ();
|
| 2638 |
|
|
if (flag_gcse_lm)
|
| 2639 |
|
|
compute_ld_motion_mems ();
|
| 2640 |
|
|
|
| 2641 |
|
|
compute_hash_table (&expr_hash_table);
|
| 2642 |
|
|
if (flag_gcse_lm)
|
| 2643 |
|
|
trim_ld_motion_mems ();
|
| 2644 |
|
|
if (dump_file)
|
| 2645 |
|
|
dump_hash_table (dump_file, "Expression", &expr_hash_table);
|
| 2646 |
|
|
|
| 2647 |
|
|
if (expr_hash_table.n_elems > 0)
|
| 2648 |
|
|
{
|
| 2649 |
|
|
struct edge_list *edge_list;
|
| 2650 |
|
|
alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
|
| 2651 |
|
|
edge_list = compute_pre_data ();
|
| 2652 |
|
|
changed |= pre_gcse (edge_list);
|
| 2653 |
|
|
free_edge_list (edge_list);
|
| 2654 |
|
|
free_pre_mem ();
|
| 2655 |
|
|
}
|
| 2656 |
|
|
|
| 2657 |
|
|
if (flag_gcse_lm)
|
| 2658 |
|
|
free_ld_motion_mems ();
|
| 2659 |
|
|
remove_fake_exit_edges ();
|
| 2660 |
|
|
free_hash_table (&expr_hash_table);
|
| 2661 |
|
|
|
| 2662 |
|
|
free_gcse_mem ();
|
| 2663 |
|
|
obstack_free (&gcse_obstack, NULL);
|
| 2664 |
|
|
|
| 2665 |
|
|
/* We are finished with alias. */
|
| 2666 |
|
|
end_alias_analysis ();
|
| 2667 |
|
|
|
| 2668 |
|
|
if (dump_file)
|
| 2669 |
|
|
{
|
| 2670 |
|
|
fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
|
| 2671 |
|
|
current_function_name (), n_basic_blocks, bytes_used);
|
| 2672 |
|
|
fprintf (dump_file, "%d substs, %d insns created\n",
|
| 2673 |
|
|
gcse_subst_count, gcse_create_count);
|
| 2674 |
|
|
}
|
| 2675 |
|
|
|
| 2676 |
|
|
return changed;
|
| 2677 |
|
|
}
|
| 2678 |
|
|
|
| 2679 |
|
|
/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
|
| 2680 |
|
|
to INSN. If such notes are added to an insn which references a
|
| 2681 |
|
|
CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
|
| 2682 |
|
|
that note, because the following loop optimization pass requires
|
| 2683 |
|
|
them. */
|
| 2684 |
|
|
|
| 2685 |
|
|
/* ??? If there was a jump optimization pass after gcse and before loop,
|
| 2686 |
|
|
then we would not need to do this here, because jump would add the
|
| 2687 |
|
|
necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
|
| 2688 |
|
|
|
| 2689 |
|
|
static void
|
| 2690 |
|
|
add_label_notes (rtx x, rtx insn)
|
| 2691 |
|
|
{
|
| 2692 |
|
|
enum rtx_code code = GET_CODE (x);
|
| 2693 |
|
|
int i, j;
|
| 2694 |
|
|
const char *fmt;
|
| 2695 |
|
|
|
| 2696 |
|
|
if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
|
| 2697 |
|
|
{
|
| 2698 |
|
|
/* This code used to ignore labels that referred to dispatch tables to
|
| 2699 |
|
|
avoid flow generating (slightly) worse code.
|
| 2700 |
|
|
|
| 2701 |
|
|
We no longer ignore such label references (see LABEL_REF handling in
|
| 2702 |
|
|
mark_jump_label for additional information). */
|
| 2703 |
|
|
|
| 2704 |
|
|
/* There's no reason for current users to emit jump-insns with
|
| 2705 |
|
|
such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
|
| 2706 |
|
|
notes. */
|
| 2707 |
|
|
gcc_assert (!JUMP_P (insn));
|
| 2708 |
|
|
add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
|
| 2709 |
|
|
|
| 2710 |
|
|
if (LABEL_P (XEXP (x, 0)))
|
| 2711 |
|
|
LABEL_NUSES (XEXP (x, 0))++;
|
| 2712 |
|
|
|
| 2713 |
|
|
return;
|
| 2714 |
|
|
}
|
| 2715 |
|
|
|
| 2716 |
|
|
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
|
| 2717 |
|
|
{
|
| 2718 |
|
|
if (fmt[i] == 'e')
|
| 2719 |
|
|
add_label_notes (XEXP (x, i), insn);
|
| 2720 |
|
|
else if (fmt[i] == 'E')
|
| 2721 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
| 2722 |
|
|
add_label_notes (XVECEXP (x, i, j), insn);
|
| 2723 |
|
|
}
|
| 2724 |
|
|
}
|
| 2725 |
|
|
|
| 2726 |
|
|
/* Code Hoisting variables and subroutines. */
|
| 2727 |
|
|
|
| 2728 |
|
|
/* Very busy expressions. */
|
| 2729 |
|
|
static sbitmap *hoist_vbein;
|
| 2730 |
|
|
static sbitmap *hoist_vbeout;
|
| 2731 |
|
|
|
| 2732 |
|
|
/* ??? We could compute post dominators and run this algorithm in
|
| 2733 |
|
|
reverse to perform tail merging, doing so would probably be
|
| 2734 |
|
|
more effective than the tail merging code in jump.c.
|
| 2735 |
|
|
|
| 2736 |
|
|
It's unclear if tail merging could be run in parallel with
|
| 2737 |
|
|
code hoisting. It would be nice. */
|
| 2738 |
|
|
|
| 2739 |
|
|
/* Allocate vars used for code hoisting analysis. */
|
| 2740 |
|
|
|
| 2741 |
|
|
static void
|
| 2742 |
|
|
alloc_code_hoist_mem (int n_blocks, int n_exprs)
|
| 2743 |
|
|
{
|
| 2744 |
|
|
antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
|
| 2745 |
|
|
transp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
| 2746 |
|
|
comp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
| 2747 |
|
|
|
| 2748 |
|
|
hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
|
| 2749 |
|
|
hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
| 2750 |
|
|
}
|
| 2751 |
|
|
|
| 2752 |
|
|
/* Free vars used for code hoisting analysis. */
|
| 2753 |
|
|
|
| 2754 |
|
|
static void
|
| 2755 |
|
|
free_code_hoist_mem (void)
|
| 2756 |
|
|
{
|
| 2757 |
|
|
sbitmap_vector_free (antloc);
|
| 2758 |
|
|
sbitmap_vector_free (transp);
|
| 2759 |
|
|
sbitmap_vector_free (comp);
|
| 2760 |
|
|
|
| 2761 |
|
|
sbitmap_vector_free (hoist_vbein);
|
| 2762 |
|
|
sbitmap_vector_free (hoist_vbeout);
|
| 2763 |
|
|
|
| 2764 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
| 2765 |
|
|
}
|
| 2766 |
|
|
|
| 2767 |
|
|
/* Compute the very busy expressions at entry/exit from each block.
|
| 2768 |
|
|
|
| 2769 |
|
|
An expression is very busy if all paths from a given point
|
| 2770 |
|
|
compute the expression. */
|
| 2771 |
|
|
|
| 2772 |
|
|
static void
|
| 2773 |
|
|
compute_code_hoist_vbeinout (void)
|
| 2774 |
|
|
{
|
| 2775 |
|
|
int changed, passes;
|
| 2776 |
|
|
basic_block bb;
|
| 2777 |
|
|
|
| 2778 |
|
|
sbitmap_vector_zero (hoist_vbeout, last_basic_block);
|
| 2779 |
|
|
sbitmap_vector_zero (hoist_vbein, last_basic_block);
|
| 2780 |
|
|
|
| 2781 |
|
|
passes = 0;
|
| 2782 |
|
|
changed = 1;
|
| 2783 |
|
|
|
| 2784 |
|
|
while (changed)
|
| 2785 |
|
|
{
|
| 2786 |
|
|
changed = 0;
|
| 2787 |
|
|
|
| 2788 |
|
|
/* We scan the blocks in the reverse order to speed up
|
| 2789 |
|
|
the convergence. */
|
| 2790 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
| 2791 |
|
|
{
|
| 2792 |
|
|
if (bb->next_bb != EXIT_BLOCK_PTR)
|
| 2793 |
|
|
{
|
| 2794 |
|
|
sbitmap_intersection_of_succs (hoist_vbeout[bb->index],
|
| 2795 |
|
|
hoist_vbein, bb->index);
|
| 2796 |
|
|
|
| 2797 |
|
|
/* Include expressions in VBEout that are calculated
|
| 2798 |
|
|
in BB and available at its end. */
|
| 2799 |
|
|
sbitmap_a_or_b (hoist_vbeout[bb->index],
|
| 2800 |
|
|
hoist_vbeout[bb->index], comp[bb->index]);
|
| 2801 |
|
|
}
|
| 2802 |
|
|
|
| 2803 |
|
|
changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index],
|
| 2804 |
|
|
antloc[bb->index],
|
| 2805 |
|
|
hoist_vbeout[bb->index],
|
| 2806 |
|
|
transp[bb->index]);
|
| 2807 |
|
|
}
|
| 2808 |
|
|
|
| 2809 |
|
|
passes++;
|
| 2810 |
|
|
}
|
| 2811 |
|
|
|
| 2812 |
|
|
if (dump_file)
|
| 2813 |
|
|
{
|
| 2814 |
|
|
fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
|
| 2815 |
|
|
|
| 2816 |
|
|
FOR_EACH_BB (bb)
|
| 2817 |
|
|
{
|
| 2818 |
|
|
fprintf (dump_file, "vbein (%d): ", bb->index);
|
| 2819 |
|
|
dump_sbitmap_file (dump_file, hoist_vbein[bb->index]);
|
| 2820 |
|
|
fprintf (dump_file, "vbeout(%d): ", bb->index);
|
| 2821 |
|
|
dump_sbitmap_file (dump_file, hoist_vbeout[bb->index]);
|
| 2822 |
|
|
}
|
| 2823 |
|
|
}
|
| 2824 |
|
|
}
|
| 2825 |
|
|
|
| 2826 |
|
|
/* Top level routine to do the dataflow analysis needed by code hoisting. */
|
| 2827 |
|
|
|
| 2828 |
|
|
static void
|
| 2829 |
|
|
compute_code_hoist_data (void)
|
| 2830 |
|
|
{
|
| 2831 |
|
|
compute_local_properties (transp, comp, antloc, &expr_hash_table);
|
| 2832 |
|
|
prune_expressions (false);
|
| 2833 |
|
|
compute_code_hoist_vbeinout ();
|
| 2834 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
| 2835 |
|
|
if (dump_file)
|
| 2836 |
|
|
fprintf (dump_file, "\n");
|
| 2837 |
|
|
}
|
| 2838 |
|
|
|
| 2839 |
|
|
/* Determine if the expression identified by EXPR_INDEX would
|
| 2840 |
|
|
reach BB unimpared if it was placed at the end of EXPR_BB.
|
| 2841 |
|
|
Stop the search if the expression would need to be moved more
|
| 2842 |
|
|
than DISTANCE instructions.
|
| 2843 |
|
|
|
| 2844 |
|
|
It's unclear exactly what Muchnick meant by "unimpared". It seems
|
| 2845 |
|
|
to me that the expression must either be computed or transparent in
|
| 2846 |
|
|
*every* block in the path(s) from EXPR_BB to BB. Any other definition
|
| 2847 |
|
|
would allow the expression to be hoisted out of loops, even if
|
| 2848 |
|
|
the expression wasn't a loop invariant.
|
| 2849 |
|
|
|
| 2850 |
|
|
Contrast this to reachability for PRE where an expression is
|
| 2851 |
|
|
considered reachable if *any* path reaches instead of *all*
|
| 2852 |
|
|
paths. */
|
| 2853 |
|
|
|
| 2854 |
|
|
static int
|
| 2855 |
|
|
hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb,
|
| 2856 |
|
|
char *visited, int distance, int *bb_size)
|
| 2857 |
|
|
{
|
| 2858 |
|
|
edge pred;
|
| 2859 |
|
|
edge_iterator ei;
|
| 2860 |
|
|
int visited_allocated_locally = 0;
|
| 2861 |
|
|
|
| 2862 |
|
|
/* Terminate the search if distance, for which EXPR is allowed to move,
|
| 2863 |
|
|
is exhausted. */
|
| 2864 |
|
|
if (distance > 0)
|
| 2865 |
|
|
{
|
| 2866 |
|
|
distance -= bb_size[bb->index];
|
| 2867 |
|
|
|
| 2868 |
|
|
if (distance <= 0)
|
| 2869 |
|
|
return 0;
|
| 2870 |
|
|
}
|
| 2871 |
|
|
else
|
| 2872 |
|
|
gcc_assert (distance == 0);
|
| 2873 |
|
|
|
| 2874 |
|
|
if (visited == NULL)
|
| 2875 |
|
|
{
|
| 2876 |
|
|
visited_allocated_locally = 1;
|
| 2877 |
|
|
visited = XCNEWVEC (char, last_basic_block);
|
| 2878 |
|
|
}
|
| 2879 |
|
|
|
| 2880 |
|
|
FOR_EACH_EDGE (pred, ei, bb->preds)
|
| 2881 |
|
|
{
|
| 2882 |
|
|
basic_block pred_bb = pred->src;
|
| 2883 |
|
|
|
| 2884 |
|
|
if (pred->src == ENTRY_BLOCK_PTR)
|
| 2885 |
|
|
break;
|
| 2886 |
|
|
else if (pred_bb == expr_bb)
|
| 2887 |
|
|
continue;
|
| 2888 |
|
|
else if (visited[pred_bb->index])
|
| 2889 |
|
|
continue;
|
| 2890 |
|
|
|
| 2891 |
|
|
else if (! TEST_BIT (transp[pred_bb->index], expr_index))
|
| 2892 |
|
|
break;
|
| 2893 |
|
|
|
| 2894 |
|
|
/* Not killed. */
|
| 2895 |
|
|
else
|
| 2896 |
|
|
{
|
| 2897 |
|
|
visited[pred_bb->index] = 1;
|
| 2898 |
|
|
if (! hoist_expr_reaches_here_p (expr_bb, expr_index, pred_bb,
|
| 2899 |
|
|
visited, distance, bb_size))
|
| 2900 |
|
|
break;
|
| 2901 |
|
|
}
|
| 2902 |
|
|
}
|
| 2903 |
|
|
if (visited_allocated_locally)
|
| 2904 |
|
|
free (visited);
|
| 2905 |
|
|
|
| 2906 |
|
|
return (pred == NULL);
|
| 2907 |
|
|
}
|
| 2908 |
|
|
|
| 2909 |
|
|
/* Find occurence in BB. */
|
| 2910 |
|
|
|
| 2911 |
|
|
static struct occr *
|
| 2912 |
|
|
find_occr_in_bb (struct occr *occr, basic_block bb)
|
| 2913 |
|
|
{
|
| 2914 |
|
|
/* Find the right occurrence of this expression. */
|
| 2915 |
|
|
while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
|
| 2916 |
|
|
occr = occr->next;
|
| 2917 |
|
|
|
| 2918 |
|
|
return occr;
|
| 2919 |
|
|
}
|
| 2920 |
|
|
|
| 2921 |
|
|
/* Actually perform code hoisting. */
|
| 2922 |
|
|
|
| 2923 |
|
|
static int
|
| 2924 |
|
|
hoist_code (void)
|
| 2925 |
|
|
{
|
| 2926 |
|
|
basic_block bb, dominated;
|
| 2927 |
|
|
VEC (basic_block, heap) *dom_tree_walk;
|
| 2928 |
|
|
unsigned int dom_tree_walk_index;
|
| 2929 |
|
|
VEC (basic_block, heap) *domby;
|
| 2930 |
|
|
unsigned int i,j;
|
| 2931 |
|
|
struct expr **index_map;
|
| 2932 |
|
|
struct expr *expr;
|
| 2933 |
|
|
int *to_bb_head;
|
| 2934 |
|
|
int *bb_size;
|
| 2935 |
|
|
int changed = 0;
|
| 2936 |
|
|
|
| 2937 |
|
|
/* Compute a mapping from expression number (`bitmap_index') to
|
| 2938 |
|
|
hash table entry. */
|
| 2939 |
|
|
|
| 2940 |
|
|
index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
|
| 2941 |
|
|
for (i = 0; i < expr_hash_table.size; i++)
|
| 2942 |
|
|
for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
|
| 2943 |
|
|
index_map[expr->bitmap_index] = expr;
|
| 2944 |
|
|
|
| 2945 |
|
|
/* Calculate sizes of basic blocks and note how far
|
| 2946 |
|
|
each instruction is from the start of its block. We then use this
|
| 2947 |
|
|
data to restrict distance an expression can travel. */
|
| 2948 |
|
|
|
| 2949 |
|
|
to_bb_head = XCNEWVEC (int, get_max_uid ());
|
| 2950 |
|
|
bb_size = XCNEWVEC (int, last_basic_block);
|
| 2951 |
|
|
|
| 2952 |
|
|
FOR_EACH_BB (bb)
|
| 2953 |
|
|
{
|
| 2954 |
|
|
rtx insn;
|
| 2955 |
|
|
int to_head;
|
| 2956 |
|
|
|
| 2957 |
|
|
to_head = 0;
|
| 2958 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 2959 |
|
|
{
|
| 2960 |
|
|
/* Don't count debug instructions to avoid them affecting
|
| 2961 |
|
|
decision choices. */
|
| 2962 |
|
|
if (NONDEBUG_INSN_P (insn))
|
| 2963 |
|
|
to_bb_head[INSN_UID (insn)] = to_head++;
|
| 2964 |
|
|
}
|
| 2965 |
|
|
|
| 2966 |
|
|
bb_size[bb->index] = to_head;
|
| 2967 |
|
|
}
|
| 2968 |
|
|
|
| 2969 |
|
|
gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
|
| 2970 |
|
|
&& (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
|
| 2971 |
|
|
== ENTRY_BLOCK_PTR->next_bb));
|
| 2972 |
|
|
|
| 2973 |
|
|
dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
|
| 2974 |
|
|
ENTRY_BLOCK_PTR->next_bb);
|
| 2975 |
|
|
|
| 2976 |
|
|
/* Walk over each basic block looking for potentially hoistable
|
| 2977 |
|
|
expressions, nothing gets hoisted from the entry block. */
|
| 2978 |
|
|
FOR_EACH_VEC_ELT (basic_block, dom_tree_walk, dom_tree_walk_index, bb)
|
| 2979 |
|
|
{
|
| 2980 |
|
|
domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
|
| 2981 |
|
|
|
| 2982 |
|
|
if (VEC_length (basic_block, domby) == 0)
|
| 2983 |
|
|
continue;
|
| 2984 |
|
|
|
| 2985 |
|
|
/* Examine each expression that is very busy at the exit of this
|
| 2986 |
|
|
block. These are the potentially hoistable expressions. */
|
| 2987 |
|
|
for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
|
| 2988 |
|
|
{
|
| 2989 |
|
|
if (TEST_BIT (hoist_vbeout[bb->index], i))
|
| 2990 |
|
|
{
|
| 2991 |
|
|
/* Current expression. */
|
| 2992 |
|
|
struct expr *expr = index_map[i];
|
| 2993 |
|
|
/* Number of occurences of EXPR that can be hoisted to BB. */
|
| 2994 |
|
|
int hoistable = 0;
|
| 2995 |
|
|
/* Basic blocks that have occurences reachable from BB. */
|
| 2996 |
|
|
bitmap_head _from_bbs, *from_bbs = &_from_bbs;
|
| 2997 |
|
|
/* Occurences reachable from BB. */
|
| 2998 |
|
|
VEC (occr_t, heap) *occrs_to_hoist = NULL;
|
| 2999 |
|
|
/* We want to insert the expression into BB only once, so
|
| 3000 |
|
|
note when we've inserted it. */
|
| 3001 |
|
|
int insn_inserted_p;
|
| 3002 |
|
|
occr_t occr;
|
| 3003 |
|
|
|
| 3004 |
|
|
bitmap_initialize (from_bbs, 0);
|
| 3005 |
|
|
|
| 3006 |
|
|
/* If an expression is computed in BB and is available at end of
|
| 3007 |
|
|
BB, hoist all occurences dominated by BB to BB. */
|
| 3008 |
|
|
if (TEST_BIT (comp[bb->index], i))
|
| 3009 |
|
|
{
|
| 3010 |
|
|
occr = find_occr_in_bb (expr->antic_occr, bb);
|
| 3011 |
|
|
|
| 3012 |
|
|
if (occr)
|
| 3013 |
|
|
{
|
| 3014 |
|
|
/* An occurence might've been already deleted
|
| 3015 |
|
|
while processing a dominator of BB. */
|
| 3016 |
|
|
if (!occr->deleted_p)
|
| 3017 |
|
|
{
|
| 3018 |
|
|
gcc_assert (NONDEBUG_INSN_P (occr->insn));
|
| 3019 |
|
|
hoistable++;
|
| 3020 |
|
|
}
|
| 3021 |
|
|
}
|
| 3022 |
|
|
else
|
| 3023 |
|
|
hoistable++;
|
| 3024 |
|
|
}
|
| 3025 |
|
|
|
| 3026 |
|
|
/* We've found a potentially hoistable expression, now
|
| 3027 |
|
|
we look at every block BB dominates to see if it
|
| 3028 |
|
|
computes the expression. */
|
| 3029 |
|
|
FOR_EACH_VEC_ELT (basic_block, domby, j, dominated)
|
| 3030 |
|
|
{
|
| 3031 |
|
|
int max_distance;
|
| 3032 |
|
|
|
| 3033 |
|
|
/* Ignore self dominance. */
|
| 3034 |
|
|
if (bb == dominated)
|
| 3035 |
|
|
continue;
|
| 3036 |
|
|
/* We've found a dominated block, now see if it computes
|
| 3037 |
|
|
the busy expression and whether or not moving that
|
| 3038 |
|
|
expression to the "beginning" of that block is safe. */
|
| 3039 |
|
|
if (!TEST_BIT (antloc[dominated->index], i))
|
| 3040 |
|
|
continue;
|
| 3041 |
|
|
|
| 3042 |
|
|
occr = find_occr_in_bb (expr->antic_occr, dominated);
|
| 3043 |
|
|
gcc_assert (occr);
|
| 3044 |
|
|
|
| 3045 |
|
|
/* An occurence might've been already deleted
|
| 3046 |
|
|
while processing a dominator of BB. */
|
| 3047 |
|
|
if (occr->deleted_p)
|
| 3048 |
|
|
continue;
|
| 3049 |
|
|
gcc_assert (NONDEBUG_INSN_P (occr->insn));
|
| 3050 |
|
|
|
| 3051 |
|
|
max_distance = expr->max_distance;
|
| 3052 |
|
|
if (max_distance > 0)
|
| 3053 |
|
|
/* Adjust MAX_DISTANCE to account for the fact that
|
| 3054 |
|
|
OCCR won't have to travel all of DOMINATED, but
|
| 3055 |
|
|
only part of it. */
|
| 3056 |
|
|
max_distance += (bb_size[dominated->index]
|
| 3057 |
|
|
- to_bb_head[INSN_UID (occr->insn)]);
|
| 3058 |
|
|
|
| 3059 |
|
|
/* Note if the expression would reach the dominated block
|
| 3060 |
|
|
unimpared if it was placed at the end of BB.
|
| 3061 |
|
|
|
| 3062 |
|
|
Keep track of how many times this expression is hoistable
|
| 3063 |
|
|
from a dominated block into BB. */
|
| 3064 |
|
|
if (hoist_expr_reaches_here_p (bb, i, dominated, NULL,
|
| 3065 |
|
|
max_distance, bb_size))
|
| 3066 |
|
|
{
|
| 3067 |
|
|
hoistable++;
|
| 3068 |
|
|
VEC_safe_push (occr_t, heap,
|
| 3069 |
|
|
occrs_to_hoist, occr);
|
| 3070 |
|
|
bitmap_set_bit (from_bbs, dominated->index);
|
| 3071 |
|
|
}
|
| 3072 |
|
|
}
|
| 3073 |
|
|
|
| 3074 |
|
|
/* If we found more than one hoistable occurrence of this
|
| 3075 |
|
|
expression, then note it in the vector of expressions to
|
| 3076 |
|
|
hoist. It makes no sense to hoist things which are computed
|
| 3077 |
|
|
in only one BB, and doing so tends to pessimize register
|
| 3078 |
|
|
allocation. One could increase this value to try harder
|
| 3079 |
|
|
to avoid any possible code expansion due to register
|
| 3080 |
|
|
allocation issues; however experiments have shown that
|
| 3081 |
|
|
the vast majority of hoistable expressions are only movable
|
| 3082 |
|
|
from two successors, so raising this threshold is likely
|
| 3083 |
|
|
to nullify any benefit we get from code hoisting. */
|
| 3084 |
|
|
if (hoistable > 1 && dbg_cnt (hoist_insn))
|
| 3085 |
|
|
{
|
| 3086 |
|
|
/* If (hoistable != VEC_length), then there is
|
| 3087 |
|
|
an occurence of EXPR in BB itself. Don't waste
|
| 3088 |
|
|
time looking for LCA in this case. */
|
| 3089 |
|
|
if ((unsigned) hoistable
|
| 3090 |
|
|
== VEC_length (occr_t, occrs_to_hoist))
|
| 3091 |
|
|
{
|
| 3092 |
|
|
basic_block lca;
|
| 3093 |
|
|
|
| 3094 |
|
|
lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
|
| 3095 |
|
|
from_bbs);
|
| 3096 |
|
|
if (lca != bb)
|
| 3097 |
|
|
/* Punt, it's better to hoist these occurences to
|
| 3098 |
|
|
LCA. */
|
| 3099 |
|
|
VEC_free (occr_t, heap, occrs_to_hoist);
|
| 3100 |
|
|
}
|
| 3101 |
|
|
}
|
| 3102 |
|
|
else
|
| 3103 |
|
|
/* Punt, no point hoisting a single occurence. */
|
| 3104 |
|
|
VEC_free (occr_t, heap, occrs_to_hoist);
|
| 3105 |
|
|
|
| 3106 |
|
|
insn_inserted_p = 0;
|
| 3107 |
|
|
|
| 3108 |
|
|
/* Walk through occurences of I'th expressions we want
|
| 3109 |
|
|
to hoist to BB and make the transformations. */
|
| 3110 |
|
|
FOR_EACH_VEC_ELT (occr_t, occrs_to_hoist, j, occr)
|
| 3111 |
|
|
{
|
| 3112 |
|
|
rtx insn;
|
| 3113 |
|
|
rtx set;
|
| 3114 |
|
|
|
| 3115 |
|
|
gcc_assert (!occr->deleted_p);
|
| 3116 |
|
|
|
| 3117 |
|
|
insn = occr->insn;
|
| 3118 |
|
|
set = single_set (insn);
|
| 3119 |
|
|
gcc_assert (set);
|
| 3120 |
|
|
|
| 3121 |
|
|
/* Create a pseudo-reg to store the result of reaching
|
| 3122 |
|
|
expressions into. Get the mode for the new pseudo
|
| 3123 |
|
|
from the mode of the original destination pseudo.
|
| 3124 |
|
|
|
| 3125 |
|
|
It is important to use new pseudos whenever we
|
| 3126 |
|
|
emit a set. This will allow reload to use
|
| 3127 |
|
|
rematerialization for such registers. */
|
| 3128 |
|
|
if (!insn_inserted_p)
|
| 3129 |
|
|
expr->reaching_reg
|
| 3130 |
|
|
= gen_reg_rtx_and_attrs (SET_DEST (set));
|
| 3131 |
|
|
|
| 3132 |
|
|
gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
|
| 3133 |
|
|
insn);
|
| 3134 |
|
|
delete_insn (insn);
|
| 3135 |
|
|
occr->deleted_p = 1;
|
| 3136 |
|
|
changed = 1;
|
| 3137 |
|
|
gcse_subst_count++;
|
| 3138 |
|
|
|
| 3139 |
|
|
if (!insn_inserted_p)
|
| 3140 |
|
|
{
|
| 3141 |
|
|
insert_insn_end_basic_block (expr, bb);
|
| 3142 |
|
|
insn_inserted_p = 1;
|
| 3143 |
|
|
}
|
| 3144 |
|
|
}
|
| 3145 |
|
|
|
| 3146 |
|
|
VEC_free (occr_t, heap, occrs_to_hoist);
|
| 3147 |
|
|
bitmap_clear (from_bbs);
|
| 3148 |
|
|
}
|
| 3149 |
|
|
}
|
| 3150 |
|
|
VEC_free (basic_block, heap, domby);
|
| 3151 |
|
|
}
|
| 3152 |
|
|
|
| 3153 |
|
|
VEC_free (basic_block, heap, dom_tree_walk);
|
| 3154 |
|
|
free (bb_size);
|
| 3155 |
|
|
free (to_bb_head);
|
| 3156 |
|
|
free (index_map);
|
| 3157 |
|
|
|
| 3158 |
|
|
return changed;
|
| 3159 |
|
|
}
|
| 3160 |
|
|
|
| 3161 |
|
|
/* Top level routine to perform one code hoisting (aka unification) pass
|
| 3162 |
|
|
|
| 3163 |
|
|
Return nonzero if a change was made. */
|
| 3164 |
|
|
|
| 3165 |
|
|
static int
|
| 3166 |
|
|
one_code_hoisting_pass (void)
|
| 3167 |
|
|
{
|
| 3168 |
|
|
int changed = 0;
|
| 3169 |
|
|
|
| 3170 |
|
|
gcse_subst_count = 0;
|
| 3171 |
|
|
gcse_create_count = 0;
|
| 3172 |
|
|
|
| 3173 |
|
|
/* Return if there's nothing to do, or it is too expensive. */
|
| 3174 |
|
|
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
|
| 3175 |
|
|
|| is_too_expensive (_("GCSE disabled")))
|
| 3176 |
|
|
return 0;
|
| 3177 |
|
|
|
| 3178 |
|
|
doing_code_hoisting_p = true;
|
| 3179 |
|
|
|
| 3180 |
|
|
/* We need alias. */
|
| 3181 |
|
|
init_alias_analysis ();
|
| 3182 |
|
|
|
| 3183 |
|
|
bytes_used = 0;
|
| 3184 |
|
|
gcc_obstack_init (&gcse_obstack);
|
| 3185 |
|
|
alloc_gcse_mem ();
|
| 3186 |
|
|
|
| 3187 |
|
|
alloc_hash_table (&expr_hash_table);
|
| 3188 |
|
|
compute_hash_table (&expr_hash_table);
|
| 3189 |
|
|
if (dump_file)
|
| 3190 |
|
|
dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
|
| 3191 |
|
|
|
| 3192 |
|
|
if (expr_hash_table.n_elems > 0)
|
| 3193 |
|
|
{
|
| 3194 |
|
|
alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
|
| 3195 |
|
|
compute_code_hoist_data ();
|
| 3196 |
|
|
changed = hoist_code ();
|
| 3197 |
|
|
free_code_hoist_mem ();
|
| 3198 |
|
|
}
|
| 3199 |
|
|
|
| 3200 |
|
|
free_hash_table (&expr_hash_table);
|
| 3201 |
|
|
free_gcse_mem ();
|
| 3202 |
|
|
obstack_free (&gcse_obstack, NULL);
|
| 3203 |
|
|
|
| 3204 |
|
|
/* We are finished with alias. */
|
| 3205 |
|
|
end_alias_analysis ();
|
| 3206 |
|
|
|
| 3207 |
|
|
if (dump_file)
|
| 3208 |
|
|
{
|
| 3209 |
|
|
fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
|
| 3210 |
|
|
current_function_name (), n_basic_blocks, bytes_used);
|
| 3211 |
|
|
fprintf (dump_file, "%d substs, %d insns created\n",
|
| 3212 |
|
|
gcse_subst_count, gcse_create_count);
|
| 3213 |
|
|
}
|
| 3214 |
|
|
|
| 3215 |
|
|
doing_code_hoisting_p = false;
|
| 3216 |
|
|
|
| 3217 |
|
|
return changed;
|
| 3218 |
|
|
}
|
| 3219 |
|
|
|
| 3220 |
|
|
/* Here we provide the things required to do store motion towards the exit.
|
| 3221 |
|
|
In order for this to be effective, gcse also needed to be taught how to
|
| 3222 |
|
|
move a load when it is killed only by a store to itself.
|
| 3223 |
|
|
|
| 3224 |
|
|
int i;
|
| 3225 |
|
|
float a[10];
|
| 3226 |
|
|
|
| 3227 |
|
|
void foo(float scale)
|
| 3228 |
|
|
{
|
| 3229 |
|
|
for (i=0; i<10; i++)
|
| 3230 |
|
|
a[i] *= scale;
|
| 3231 |
|
|
}
|
| 3232 |
|
|
|
| 3233 |
|
|
'i' is both loaded and stored to in the loop. Normally, gcse cannot move
|
| 3234 |
|
|
the load out since its live around the loop, and stored at the bottom
|
| 3235 |
|
|
of the loop.
|
| 3236 |
|
|
|
| 3237 |
|
|
The 'Load Motion' referred to and implemented in this file is
|
| 3238 |
|
|
an enhancement to gcse which when using edge based LCM, recognizes
|
| 3239 |
|
|
this situation and allows gcse to move the load out of the loop.
|
| 3240 |
|
|
|
| 3241 |
|
|
Once gcse has hoisted the load, store motion can then push this
|
| 3242 |
|
|
load towards the exit, and we end up with no loads or stores of 'i'
|
| 3243 |
|
|
in the loop. */
|
| 3244 |
|
|
|
| 3245 |
|
|
static hashval_t
|
| 3246 |
|
|
pre_ldst_expr_hash (const void *p)
|
| 3247 |
|
|
{
|
| 3248 |
|
|
int do_not_record_p = 0;
|
| 3249 |
|
|
const struct ls_expr *const x = (const struct ls_expr *) p;
|
| 3250 |
|
|
return
|
| 3251 |
|
|
hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
|
| 3252 |
|
|
}
|
| 3253 |
|
|
|
| 3254 |
|
|
static int
|
| 3255 |
|
|
pre_ldst_expr_eq (const void *p1, const void *p2)
|
| 3256 |
|
|
{
|
| 3257 |
|
|
const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
|
| 3258 |
|
|
*const ptr2 = (const struct ls_expr *) p2;
|
| 3259 |
|
|
return expr_equiv_p (ptr1->pattern, ptr2->pattern);
|
| 3260 |
|
|
}
|
| 3261 |
|
|
|
| 3262 |
|
|
/* This will search the ldst list for a matching expression. If it
|
| 3263 |
|
|
doesn't find one, we create one and initialize it. */
|
| 3264 |
|
|
|
| 3265 |
|
|
static struct ls_expr *
|
| 3266 |
|
|
ldst_entry (rtx x)
|
| 3267 |
|
|
{
|
| 3268 |
|
|
int do_not_record_p = 0;
|
| 3269 |
|
|
struct ls_expr * ptr;
|
| 3270 |
|
|
unsigned int hash;
|
| 3271 |
|
|
void **slot;
|
| 3272 |
|
|
struct ls_expr e;
|
| 3273 |
|
|
|
| 3274 |
|
|
hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
|
| 3275 |
|
|
NULL, /*have_reg_qty=*/false);
|
| 3276 |
|
|
|
| 3277 |
|
|
e.pattern = x;
|
| 3278 |
|
|
slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
|
| 3279 |
|
|
if (*slot)
|
| 3280 |
|
|
return (struct ls_expr *)*slot;
|
| 3281 |
|
|
|
| 3282 |
|
|
ptr = XNEW (struct ls_expr);
|
| 3283 |
|
|
|
| 3284 |
|
|
ptr->next = pre_ldst_mems;
|
| 3285 |
|
|
ptr->expr = NULL;
|
| 3286 |
|
|
ptr->pattern = x;
|
| 3287 |
|
|
ptr->pattern_regs = NULL_RTX;
|
| 3288 |
|
|
ptr->loads = NULL_RTX;
|
| 3289 |
|
|
ptr->stores = NULL_RTX;
|
| 3290 |
|
|
ptr->reaching_reg = NULL_RTX;
|
| 3291 |
|
|
ptr->invalid = 0;
|
| 3292 |
|
|
ptr->index = 0;
|
| 3293 |
|
|
ptr->hash_index = hash;
|
| 3294 |
|
|
pre_ldst_mems = ptr;
|
| 3295 |
|
|
*slot = ptr;
|
| 3296 |
|
|
|
| 3297 |
|
|
return ptr;
|
| 3298 |
|
|
}
|
| 3299 |
|
|
|
| 3300 |
|
|
/* Free up an individual ldst entry. */
|
| 3301 |
|
|
|
| 3302 |
|
|
static void
|
| 3303 |
|
|
free_ldst_entry (struct ls_expr * ptr)
|
| 3304 |
|
|
{
|
| 3305 |
|
|
free_INSN_LIST_list (& ptr->loads);
|
| 3306 |
|
|
free_INSN_LIST_list (& ptr->stores);
|
| 3307 |
|
|
|
| 3308 |
|
|
free (ptr);
|
| 3309 |
|
|
}
|
| 3310 |
|
|
|
| 3311 |
|
|
/* Free up all memory associated with the ldst list. */
|
| 3312 |
|
|
|
| 3313 |
|
|
static void
|
| 3314 |
|
|
free_ld_motion_mems (void)
|
| 3315 |
|
|
{
|
| 3316 |
|
|
if (pre_ldst_table)
|
| 3317 |
|
|
htab_delete (pre_ldst_table);
|
| 3318 |
|
|
pre_ldst_table = NULL;
|
| 3319 |
|
|
|
| 3320 |
|
|
while (pre_ldst_mems)
|
| 3321 |
|
|
{
|
| 3322 |
|
|
struct ls_expr * tmp = pre_ldst_mems;
|
| 3323 |
|
|
|
| 3324 |
|
|
pre_ldst_mems = pre_ldst_mems->next;
|
| 3325 |
|
|
|
| 3326 |
|
|
free_ldst_entry (tmp);
|
| 3327 |
|
|
}
|
| 3328 |
|
|
|
| 3329 |
|
|
pre_ldst_mems = NULL;
|
| 3330 |
|
|
}
|
| 3331 |
|
|
|
| 3332 |
|
|
/* Dump debugging info about the ldst list. */
|
| 3333 |
|
|
|
| 3334 |
|
|
static void
|
| 3335 |
|
|
print_ldst_list (FILE * file)
|
| 3336 |
|
|
{
|
| 3337 |
|
|
struct ls_expr * ptr;
|
| 3338 |
|
|
|
| 3339 |
|
|
fprintf (file, "LDST list: \n");
|
| 3340 |
|
|
|
| 3341 |
|
|
for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
|
| 3342 |
|
|
{
|
| 3343 |
|
|
fprintf (file, " Pattern (%3d): ", ptr->index);
|
| 3344 |
|
|
|
| 3345 |
|
|
print_rtl (file, ptr->pattern);
|
| 3346 |
|
|
|
| 3347 |
|
|
fprintf (file, "\n Loads : ");
|
| 3348 |
|
|
|
| 3349 |
|
|
if (ptr->loads)
|
| 3350 |
|
|
print_rtl (file, ptr->loads);
|
| 3351 |
|
|
else
|
| 3352 |
|
|
fprintf (file, "(nil)");
|
| 3353 |
|
|
|
| 3354 |
|
|
fprintf (file, "\n Stores : ");
|
| 3355 |
|
|
|
| 3356 |
|
|
if (ptr->stores)
|
| 3357 |
|
|
print_rtl (file, ptr->stores);
|
| 3358 |
|
|
else
|
| 3359 |
|
|
fprintf (file, "(nil)");
|
| 3360 |
|
|
|
| 3361 |
|
|
fprintf (file, "\n\n");
|
| 3362 |
|
|
}
|
| 3363 |
|
|
|
| 3364 |
|
|
fprintf (file, "\n");
|
| 3365 |
|
|
}
|
| 3366 |
|
|
|
| 3367 |
|
|
/* Returns 1 if X is in the list of ldst only expressions. */
|
| 3368 |
|
|
|
| 3369 |
|
|
static struct ls_expr *
|
| 3370 |
|
|
find_rtx_in_ldst (rtx x)
|
| 3371 |
|
|
{
|
| 3372 |
|
|
struct ls_expr e;
|
| 3373 |
|
|
void **slot;
|
| 3374 |
|
|
if (!pre_ldst_table)
|
| 3375 |
|
|
return NULL;
|
| 3376 |
|
|
e.pattern = x;
|
| 3377 |
|
|
slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
|
| 3378 |
|
|
if (!slot || ((struct ls_expr *)*slot)->invalid)
|
| 3379 |
|
|
return NULL;
|
| 3380 |
|
|
return (struct ls_expr *) *slot;
|
| 3381 |
|
|
}
|
| 3382 |
|
|
|
| 3383 |
|
|
/* Load Motion for loads which only kill themselves. */
|
| 3384 |
|
|
|
| 3385 |
|
|
/* Return true if x, a MEM, is a simple access with no side effects.
|
| 3386 |
|
|
These are the types of loads we consider for the ld_motion list,
|
| 3387 |
|
|
otherwise we let the usual aliasing take care of it. */
|
| 3388 |
|
|
|
| 3389 |
|
|
static int
|
| 3390 |
|
|
simple_mem (const_rtx x)
|
| 3391 |
|
|
{
|
| 3392 |
|
|
if (MEM_VOLATILE_P (x))
|
| 3393 |
|
|
return 0;
|
| 3394 |
|
|
|
| 3395 |
|
|
if (GET_MODE (x) == BLKmode)
|
| 3396 |
|
|
return 0;
|
| 3397 |
|
|
|
| 3398 |
|
|
/* If we are handling exceptions, we must be careful with memory references
|
| 3399 |
|
|
that may trap. If we are not, the behavior is undefined, so we may just
|
| 3400 |
|
|
continue. */
|
| 3401 |
|
|
if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
|
| 3402 |
|
|
return 0;
|
| 3403 |
|
|
|
| 3404 |
|
|
if (side_effects_p (x))
|
| 3405 |
|
|
return 0;
|
| 3406 |
|
|
|
| 3407 |
|
|
/* Do not consider function arguments passed on stack. */
|
| 3408 |
|
|
if (reg_mentioned_p (stack_pointer_rtx, x))
|
| 3409 |
|
|
return 0;
|
| 3410 |
|
|
|
| 3411 |
|
|
if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
|
| 3412 |
|
|
return 0;
|
| 3413 |
|
|
|
| 3414 |
|
|
return 1;
|
| 3415 |
|
|
}
|
| 3416 |
|
|
|
| 3417 |
|
|
/* Make sure there isn't a buried reference in this pattern anywhere.
|
| 3418 |
|
|
If there is, invalidate the entry for it since we're not capable
|
| 3419 |
|
|
of fixing it up just yet.. We have to be sure we know about ALL
|
| 3420 |
|
|
loads since the aliasing code will allow all entries in the
|
| 3421 |
|
|
ld_motion list to not-alias itself. If we miss a load, we will get
|
| 3422 |
|
|
the wrong value since gcse might common it and we won't know to
|
| 3423 |
|
|
fix it up. */
|
| 3424 |
|
|
|
| 3425 |
|
|
static void
|
| 3426 |
|
|
invalidate_any_buried_refs (rtx x)
|
| 3427 |
|
|
{
|
| 3428 |
|
|
const char * fmt;
|
| 3429 |
|
|
int i, j;
|
| 3430 |
|
|
struct ls_expr * ptr;
|
| 3431 |
|
|
|
| 3432 |
|
|
/* Invalidate it in the list. */
|
| 3433 |
|
|
if (MEM_P (x) && simple_mem (x))
|
| 3434 |
|
|
{
|
| 3435 |
|
|
ptr = ldst_entry (x);
|
| 3436 |
|
|
ptr->invalid = 1;
|
| 3437 |
|
|
}
|
| 3438 |
|
|
|
| 3439 |
|
|
/* Recursively process the insn. */
|
| 3440 |
|
|
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
| 3441 |
|
|
|
| 3442 |
|
|
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
| 3443 |
|
|
{
|
| 3444 |
|
|
if (fmt[i] == 'e')
|
| 3445 |
|
|
invalidate_any_buried_refs (XEXP (x, i));
|
| 3446 |
|
|
else if (fmt[i] == 'E')
|
| 3447 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
| 3448 |
|
|
invalidate_any_buried_refs (XVECEXP (x, i, j));
|
| 3449 |
|
|
}
|
| 3450 |
|
|
}
|
| 3451 |
|
|
|
| 3452 |
|
|
/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
|
| 3453 |
|
|
being defined as MEM loads and stores to symbols, with no side effects
|
| 3454 |
|
|
and no registers in the expression. For a MEM destination, we also
|
| 3455 |
|
|
check that the insn is still valid if we replace the destination with a
|
| 3456 |
|
|
REG, as is done in update_ld_motion_stores. If there are any uses/defs
|
| 3457 |
|
|
which don't match this criteria, they are invalidated and trimmed out
|
| 3458 |
|
|
later. */
|
| 3459 |
|
|
|
| 3460 |
|
|
static void
|
| 3461 |
|
|
compute_ld_motion_mems (void)
|
| 3462 |
|
|
{
|
| 3463 |
|
|
struct ls_expr * ptr;
|
| 3464 |
|
|
basic_block bb;
|
| 3465 |
|
|
rtx insn;
|
| 3466 |
|
|
|
| 3467 |
|
|
pre_ldst_mems = NULL;
|
| 3468 |
|
|
pre_ldst_table
|
| 3469 |
|
|
= htab_create (13, pre_ldst_expr_hash, pre_ldst_expr_eq, NULL);
|
| 3470 |
|
|
|
| 3471 |
|
|
FOR_EACH_BB (bb)
|
| 3472 |
|
|
{
|
| 3473 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 3474 |
|
|
{
|
| 3475 |
|
|
if (NONDEBUG_INSN_P (insn))
|
| 3476 |
|
|
{
|
| 3477 |
|
|
if (GET_CODE (PATTERN (insn)) == SET)
|
| 3478 |
|
|
{
|
| 3479 |
|
|
rtx src = SET_SRC (PATTERN (insn));
|
| 3480 |
|
|
rtx dest = SET_DEST (PATTERN (insn));
|
| 3481 |
|
|
|
| 3482 |
|
|
/* Check for a simple LOAD... */
|
| 3483 |
|
|
if (MEM_P (src) && simple_mem (src))
|
| 3484 |
|
|
{
|
| 3485 |
|
|
ptr = ldst_entry (src);
|
| 3486 |
|
|
if (REG_P (dest))
|
| 3487 |
|
|
ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
|
| 3488 |
|
|
else
|
| 3489 |
|
|
ptr->invalid = 1;
|
| 3490 |
|
|
}
|
| 3491 |
|
|
else
|
| 3492 |
|
|
{
|
| 3493 |
|
|
/* Make sure there isn't a buried load somewhere. */
|
| 3494 |
|
|
invalidate_any_buried_refs (src);
|
| 3495 |
|
|
}
|
| 3496 |
|
|
|
| 3497 |
|
|
/* Check for stores. Don't worry about aliased ones, they
|
| 3498 |
|
|
will block any movement we might do later. We only care
|
| 3499 |
|
|
about this exact pattern since those are the only
|
| 3500 |
|
|
circumstance that we will ignore the aliasing info. */
|
| 3501 |
|
|
if (MEM_P (dest) && simple_mem (dest))
|
| 3502 |
|
|
{
|
| 3503 |
|
|
ptr = ldst_entry (dest);
|
| 3504 |
|
|
|
| 3505 |
|
|
if (! MEM_P (src)
|
| 3506 |
|
|
&& GET_CODE (src) != ASM_OPERANDS
|
| 3507 |
|
|
/* Check for REG manually since want_to_gcse_p
|
| 3508 |
|
|
returns 0 for all REGs. */
|
| 3509 |
|
|
&& can_assign_to_reg_without_clobbers_p (src))
|
| 3510 |
|
|
ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
|
| 3511 |
|
|
else
|
| 3512 |
|
|
ptr->invalid = 1;
|
| 3513 |
|
|
}
|
| 3514 |
|
|
}
|
| 3515 |
|
|
else
|
| 3516 |
|
|
invalidate_any_buried_refs (PATTERN (insn));
|
| 3517 |
|
|
}
|
| 3518 |
|
|
}
|
| 3519 |
|
|
}
|
| 3520 |
|
|
}
|
| 3521 |
|
|
|
| 3522 |
|
|
/* Remove any references that have been either invalidated or are not in the
|
| 3523 |
|
|
expression list for pre gcse. */
|
| 3524 |
|
|
|
| 3525 |
|
|
static void
|
| 3526 |
|
|
trim_ld_motion_mems (void)
|
| 3527 |
|
|
{
|
| 3528 |
|
|
struct ls_expr * * last = & pre_ldst_mems;
|
| 3529 |
|
|
struct ls_expr * ptr = pre_ldst_mems;
|
| 3530 |
|
|
|
| 3531 |
|
|
while (ptr != NULL)
|
| 3532 |
|
|
{
|
| 3533 |
|
|
struct expr * expr;
|
| 3534 |
|
|
|
| 3535 |
|
|
/* Delete if entry has been made invalid. */
|
| 3536 |
|
|
if (! ptr->invalid)
|
| 3537 |
|
|
{
|
| 3538 |
|
|
/* Delete if we cannot find this mem in the expression list. */
|
| 3539 |
|
|
unsigned int hash = ptr->hash_index % expr_hash_table.size;
|
| 3540 |
|
|
|
| 3541 |
|
|
for (expr = expr_hash_table.table[hash];
|
| 3542 |
|
|
expr != NULL;
|
| 3543 |
|
|
expr = expr->next_same_hash)
|
| 3544 |
|
|
if (expr_equiv_p (expr->expr, ptr->pattern))
|
| 3545 |
|
|
break;
|
| 3546 |
|
|
}
|
| 3547 |
|
|
else
|
| 3548 |
|
|
expr = (struct expr *) 0;
|
| 3549 |
|
|
|
| 3550 |
|
|
if (expr)
|
| 3551 |
|
|
{
|
| 3552 |
|
|
/* Set the expression field if we are keeping it. */
|
| 3553 |
|
|
ptr->expr = expr;
|
| 3554 |
|
|
last = & ptr->next;
|
| 3555 |
|
|
ptr = ptr->next;
|
| 3556 |
|
|
}
|
| 3557 |
|
|
else
|
| 3558 |
|
|
{
|
| 3559 |
|
|
*last = ptr->next;
|
| 3560 |
|
|
htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
|
| 3561 |
|
|
free_ldst_entry (ptr);
|
| 3562 |
|
|
ptr = * last;
|
| 3563 |
|
|
}
|
| 3564 |
|
|
}
|
| 3565 |
|
|
|
| 3566 |
|
|
/* Show the world what we've found. */
|
| 3567 |
|
|
if (dump_file && pre_ldst_mems != NULL)
|
| 3568 |
|
|
print_ldst_list (dump_file);
|
| 3569 |
|
|
}
|
| 3570 |
|
|
|
| 3571 |
|
|
/* This routine will take an expression which we are replacing with
|
| 3572 |
|
|
a reaching register, and update any stores that are needed if
|
| 3573 |
|
|
that expression is in the ld_motion list. Stores are updated by
|
| 3574 |
|
|
copying their SRC to the reaching register, and then storing
|
| 3575 |
|
|
the reaching register into the store location. These keeps the
|
| 3576 |
|
|
correct value in the reaching register for the loads. */
|
| 3577 |
|
|
|
| 3578 |
|
|
static void
|
| 3579 |
|
|
update_ld_motion_stores (struct expr * expr)
|
| 3580 |
|
|
{
|
| 3581 |
|
|
struct ls_expr * mem_ptr;
|
| 3582 |
|
|
|
| 3583 |
|
|
if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
|
| 3584 |
|
|
{
|
| 3585 |
|
|
/* We can try to find just the REACHED stores, but is shouldn't
|
| 3586 |
|
|
matter to set the reaching reg everywhere... some might be
|
| 3587 |
|
|
dead and should be eliminated later. */
|
| 3588 |
|
|
|
| 3589 |
|
|
/* We replace (set mem expr) with (set reg expr) (set mem reg)
|
| 3590 |
|
|
where reg is the reaching reg used in the load. We checked in
|
| 3591 |
|
|
compute_ld_motion_mems that we can replace (set mem expr) with
|
| 3592 |
|
|
(set reg expr) in that insn. */
|
| 3593 |
|
|
rtx list = mem_ptr->stores;
|
| 3594 |
|
|
|
| 3595 |
|
|
for ( ; list != NULL_RTX; list = XEXP (list, 1))
|
| 3596 |
|
|
{
|
| 3597 |
|
|
rtx insn = XEXP (list, 0);
|
| 3598 |
|
|
rtx pat = PATTERN (insn);
|
| 3599 |
|
|
rtx src = SET_SRC (pat);
|
| 3600 |
|
|
rtx reg = expr->reaching_reg;
|
| 3601 |
|
|
rtx copy;
|
| 3602 |
|
|
|
| 3603 |
|
|
/* If we've already copied it, continue. */
|
| 3604 |
|
|
if (expr->reaching_reg == src)
|
| 3605 |
|
|
continue;
|
| 3606 |
|
|
|
| 3607 |
|
|
if (dump_file)
|
| 3608 |
|
|
{
|
| 3609 |
|
|
fprintf (dump_file, "PRE: store updated with reaching reg ");
|
| 3610 |
|
|
print_rtl (dump_file, reg);
|
| 3611 |
|
|
fprintf (dump_file, ":\n ");
|
| 3612 |
|
|
print_inline_rtx (dump_file, insn, 8);
|
| 3613 |
|
|
fprintf (dump_file, "\n");
|
| 3614 |
|
|
}
|
| 3615 |
|
|
|
| 3616 |
|
|
copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
|
| 3617 |
|
|
emit_insn_before (copy, insn);
|
| 3618 |
|
|
SET_SRC (pat) = reg;
|
| 3619 |
|
|
df_insn_rescan (insn);
|
| 3620 |
|
|
|
| 3621 |
|
|
/* un-recognize this pattern since it's probably different now. */
|
| 3622 |
|
|
INSN_CODE (insn) = -1;
|
| 3623 |
|
|
gcse_create_count++;
|
| 3624 |
|
|
}
|
| 3625 |
|
|
}
|
| 3626 |
|
|
}
|
| 3627 |
|
|
|
| 3628 |
|
|
/* Return true if the graph is too expensive to optimize. PASS is the
|
| 3629 |
|
|
optimization about to be performed. */
|
| 3630 |
|
|
|
| 3631 |
|
|
static bool
|
| 3632 |
|
|
is_too_expensive (const char *pass)
|
| 3633 |
|
|
{
|
| 3634 |
|
|
/* Trying to perform global optimizations on flow graphs which have
|
| 3635 |
|
|
a high connectivity will take a long time and is unlikely to be
|
| 3636 |
|
|
particularly useful.
|
| 3637 |
|
|
|
| 3638 |
|
|
In normal circumstances a cfg should have about twice as many
|
| 3639 |
|
|
edges as blocks. But we do not want to punish small functions
|
| 3640 |
|
|
which have a couple switch statements. Rather than simply
|
| 3641 |
|
|
threshold the number of blocks, uses something with a more
|
| 3642 |
|
|
graceful degradation. */
|
| 3643 |
|
|
if (n_edges > 20000 + n_basic_blocks * 4)
|
| 3644 |
|
|
{
|
| 3645 |
|
|
warning (OPT_Wdisabled_optimization,
|
| 3646 |
|
|
"%s: %d basic blocks and %d edges/basic block",
|
| 3647 |
|
|
pass, n_basic_blocks, n_edges / n_basic_blocks);
|
| 3648 |
|
|
|
| 3649 |
|
|
return true;
|
| 3650 |
|
|
}
|
| 3651 |
|
|
|
| 3652 |
|
|
/* If allocating memory for the dataflow bitmaps would take up too much
|
| 3653 |
|
|
storage it's better just to disable the optimization. */
|
| 3654 |
|
|
if ((n_basic_blocks
|
| 3655 |
|
|
* SBITMAP_SET_SIZE (max_reg_num ())
|
| 3656 |
|
|
* sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
|
| 3657 |
|
|
{
|
| 3658 |
|
|
warning (OPT_Wdisabled_optimization,
|
| 3659 |
|
|
"%s: %d basic blocks and %d registers",
|
| 3660 |
|
|
pass, n_basic_blocks, max_reg_num ());
|
| 3661 |
|
|
|
| 3662 |
|
|
return true;
|
| 3663 |
|
|
}
|
| 3664 |
|
|
|
| 3665 |
|
|
return false;
|
| 3666 |
|
|
}
|
| 3667 |
|
|
|
| 3668 |
|
|
/* All the passes implemented in this file. Each pass has its
|
| 3669 |
|
|
own gate and execute function, and at the end of the file a
|
| 3670 |
|
|
pass definition for passes.c.
|
| 3671 |
|
|
|
| 3672 |
|
|
We do not construct an accurate cfg in functions which call
|
| 3673 |
|
|
setjmp, so none of these passes runs if the function calls
|
| 3674 |
|
|
setjmp.
|
| 3675 |
|
|
FIXME: Should just handle setjmp via REG_SETJMP notes. */
|
| 3676 |
|
|
|
| 3677 |
|
|
static bool
|
| 3678 |
|
|
gate_rtl_pre (void)
|
| 3679 |
|
|
{
|
| 3680 |
|
|
return optimize > 0 && flag_gcse
|
| 3681 |
|
|
&& !cfun->calls_setjmp
|
| 3682 |
|
|
&& optimize_function_for_speed_p (cfun)
|
| 3683 |
|
|
&& dbg_cnt (pre);
|
| 3684 |
|
|
}
|
| 3685 |
|
|
|
| 3686 |
|
|
static unsigned int
|
| 3687 |
|
|
execute_rtl_pre (void)
|
| 3688 |
|
|
{
|
| 3689 |
|
|
int changed;
|
| 3690 |
|
|
delete_unreachable_blocks ();
|
| 3691 |
|
|
df_analyze ();
|
| 3692 |
|
|
changed = one_pre_gcse_pass ();
|
| 3693 |
|
|
flag_rerun_cse_after_global_opts |= changed;
|
| 3694 |
|
|
if (changed)
|
| 3695 |
|
|
cleanup_cfg (0);
|
| 3696 |
|
|
return 0;
|
| 3697 |
|
|
}
|
| 3698 |
|
|
|
| 3699 |
|
|
static bool
|
| 3700 |
|
|
gate_rtl_hoist (void)
|
| 3701 |
|
|
{
|
| 3702 |
|
|
return optimize > 0 && flag_gcse
|
| 3703 |
|
|
&& !cfun->calls_setjmp
|
| 3704 |
|
|
/* It does not make sense to run code hoisting unless we are optimizing
|
| 3705 |
|
|
for code size -- it rarely makes programs faster, and can make then
|
| 3706 |
|
|
bigger if we did PRE (when optimizing for space, we don't run PRE). */
|
| 3707 |
|
|
&& optimize_function_for_size_p (cfun)
|
| 3708 |
|
|
&& dbg_cnt (hoist);
|
| 3709 |
|
|
}
|
| 3710 |
|
|
|
| 3711 |
|
|
static unsigned int
|
| 3712 |
|
|
execute_rtl_hoist (void)
|
| 3713 |
|
|
{
|
| 3714 |
|
|
int changed;
|
| 3715 |
|
|
delete_unreachable_blocks ();
|
| 3716 |
|
|
df_analyze ();
|
| 3717 |
|
|
changed = one_code_hoisting_pass ();
|
| 3718 |
|
|
flag_rerun_cse_after_global_opts |= changed;
|
| 3719 |
|
|
if (changed)
|
| 3720 |
|
|
cleanup_cfg (0);
|
| 3721 |
|
|
return 0;
|
| 3722 |
|
|
}
|
| 3723 |
|
|
|
| 3724 |
|
|
struct rtl_opt_pass pass_rtl_pre =
|
| 3725 |
|
|
{
|
| 3726 |
|
|
{
|
| 3727 |
|
|
RTL_PASS,
|
| 3728 |
|
|
"rtl pre", /* name */
|
| 3729 |
|
|
gate_rtl_pre, /* gate */
|
| 3730 |
|
|
execute_rtl_pre, /* execute */
|
| 3731 |
|
|
NULL, /* sub */
|
| 3732 |
|
|
NULL, /* next */
|
| 3733 |
|
|
0, /* static_pass_number */
|
| 3734 |
|
|
TV_PRE, /* tv_id */
|
| 3735 |
|
|
PROP_cfglayout, /* properties_required */
|
| 3736 |
|
|
0, /* properties_provided */
|
| 3737 |
|
|
0, /* properties_destroyed */
|
| 3738 |
|
|
0, /* todo_flags_start */
|
| 3739 |
|
|
TODO_df_finish | TODO_verify_rtl_sharing |
|
| 3740 |
|
|
TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
|
| 3741 |
|
|
}
|
| 3742 |
|
|
};
|
| 3743 |
|
|
|
| 3744 |
|
|
struct rtl_opt_pass pass_rtl_hoist =
|
| 3745 |
|
|
{
|
| 3746 |
|
|
{
|
| 3747 |
|
|
RTL_PASS,
|
| 3748 |
|
|
"hoist", /* name */
|
| 3749 |
|
|
gate_rtl_hoist, /* gate */
|
| 3750 |
|
|
execute_rtl_hoist, /* execute */
|
| 3751 |
|
|
NULL, /* sub */
|
| 3752 |
|
|
NULL, /* next */
|
| 3753 |
|
|
0, /* static_pass_number */
|
| 3754 |
|
|
TV_HOIST, /* tv_id */
|
| 3755 |
|
|
PROP_cfglayout, /* properties_required */
|
| 3756 |
|
|
0, /* properties_provided */
|
| 3757 |
|
|
0, /* properties_destroyed */
|
| 3758 |
|
|
0, /* todo_flags_start */
|
| 3759 |
|
|
TODO_df_finish | TODO_verify_rtl_sharing |
|
| 3760 |
|
|
TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
|
| 3761 |
|
|
}
|
| 3762 |
|
|
};
|
| 3763 |
|
|
|
| 3764 |
|
|
#include "gt-gcse.h"
|