| 1 |
684 |
jeremybenn |
/* Generate code from machine description to recognize rtl as insns.
|
| 2 |
|
|
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
|
| 3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
|
| 4 |
|
|
Free Software Foundation, Inc.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 9 |
|
|
under the terms of the GNU General Public License as published by
|
| 10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 11 |
|
|
any later version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 14 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| 15 |
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
| 16 |
|
|
License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
|
| 23 |
|
|
/* This program is used to produce insn-recog.c, which contains a
|
| 24 |
|
|
function called `recog' plus its subroutines. These functions
|
| 25 |
|
|
contain a decision tree that recognizes whether an rtx, the
|
| 26 |
|
|
argument given to recog, is a valid instruction.
|
| 27 |
|
|
|
| 28 |
|
|
recog returns -1 if the rtx is not valid. If the rtx is valid,
|
| 29 |
|
|
recog returns a nonnegative number which is the insn code number
|
| 30 |
|
|
for the pattern that matched. This is the same as the order in the
|
| 31 |
|
|
machine description of the entry that matched. This number can be
|
| 32 |
|
|
used as an index into various insn_* tables, such as insn_template,
|
| 33 |
|
|
insn_outfun, and insn_n_operands (found in insn-output.c).
|
| 34 |
|
|
|
| 35 |
|
|
The third argument to recog is an optional pointer to an int. If
|
| 36 |
|
|
present, recog will accept a pattern if it matches except for
|
| 37 |
|
|
missing CLOBBER expressions at the end. In that case, the value
|
| 38 |
|
|
pointed to by the optional pointer will be set to the number of
|
| 39 |
|
|
CLOBBERs that need to be added (it should be initialized to zero by
|
| 40 |
|
|
the caller). If it is set nonzero, the caller should allocate a
|
| 41 |
|
|
PARALLEL of the appropriate size, copy the initial entries, and
|
| 42 |
|
|
call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
|
| 43 |
|
|
|
| 44 |
|
|
This program also generates the function `split_insns', which
|
| 45 |
|
|
returns 0 if the rtl could not be split, or it returns the split
|
| 46 |
|
|
rtl as an INSN list.
|
| 47 |
|
|
|
| 48 |
|
|
This program also generates the function `peephole2_insns', which
|
| 49 |
|
|
returns 0 if the rtl could not be matched. If there was a match,
|
| 50 |
|
|
the new rtl is returned in an INSN list, and LAST_INSN will point
|
| 51 |
|
|
to the last recognized insn in the old sequence. */
|
| 52 |
|
|
|
| 53 |
|
|
#include "bconfig.h"
|
| 54 |
|
|
#include "system.h"
|
| 55 |
|
|
#include "coretypes.h"
|
| 56 |
|
|
#include "tm.h"
|
| 57 |
|
|
#include "rtl.h"
|
| 58 |
|
|
#include "errors.h"
|
| 59 |
|
|
#include "read-md.h"
|
| 60 |
|
|
#include "gensupport.h"
|
| 61 |
|
|
|
| 62 |
|
|
#define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
|
| 63 |
|
|
printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
|
| 64 |
|
|
|
| 65 |
|
|
/* Ways of obtaining an rtx to be tested. */
|
| 66 |
|
|
enum position_type {
|
| 67 |
|
|
/* PATTERN (peep2_next_insn (ARG)). */
|
| 68 |
|
|
POS_PEEP2_INSN,
|
| 69 |
|
|
|
| 70 |
|
|
/* XEXP (BASE, ARG). */
|
| 71 |
|
|
POS_XEXP,
|
| 72 |
|
|
|
| 73 |
|
|
/* XVECEXP (BASE, 0, ARG). */
|
| 74 |
|
|
POS_XVECEXP0
|
| 75 |
|
|
};
|
| 76 |
|
|
|
| 77 |
|
|
/* The position of an rtx relative to X0. Each useful position is
|
| 78 |
|
|
represented by exactly one instance of this structure. */
|
| 79 |
|
|
struct position
|
| 80 |
|
|
{
|
| 81 |
|
|
/* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
|
| 82 |
|
|
struct position *base;
|
| 83 |
|
|
|
| 84 |
|
|
/* A position with the same BASE and TYPE, but with the next value
|
| 85 |
|
|
of ARG. */
|
| 86 |
|
|
struct position *next;
|
| 87 |
|
|
|
| 88 |
|
|
/* A list of all POS_XEXP positions that use this one as their base,
|
| 89 |
|
|
chained by NEXT fields. The first entry represents XEXP (this, 0),
|
| 90 |
|
|
the second represents XEXP (this, 1), and so on. */
|
| 91 |
|
|
struct position *xexps;
|
| 92 |
|
|
|
| 93 |
|
|
/* A list of POS_XVECEXP0 positions that use this one as their base,
|
| 94 |
|
|
chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
|
| 95 |
|
|
the second represents XVECEXP (this, 0, 1), and so on. */
|
| 96 |
|
|
struct position *xvecexp0s;
|
| 97 |
|
|
|
| 98 |
|
|
/* The type of position. */
|
| 99 |
|
|
enum position_type type;
|
| 100 |
|
|
|
| 101 |
|
|
/* The argument to TYPE (shown as ARG in the position_type comments). */
|
| 102 |
|
|
int arg;
|
| 103 |
|
|
|
| 104 |
|
|
/* The depth of this position, with 0 as the root. */
|
| 105 |
|
|
int depth;
|
| 106 |
|
|
};
|
| 107 |
|
|
|
| 108 |
|
|
/* A listhead of decision trees. The alternatives to a node are kept
|
| 109 |
|
|
in a doubly-linked list so we can easily add nodes to the proper
|
| 110 |
|
|
place when merging. */
|
| 111 |
|
|
|
| 112 |
|
|
struct decision_head
|
| 113 |
|
|
{
|
| 114 |
|
|
struct decision *first;
|
| 115 |
|
|
struct decision *last;
|
| 116 |
|
|
};
|
| 117 |
|
|
|
| 118 |
|
|
/* These types are roughly in the order in which we'd like to test them. */
|
| 119 |
|
|
enum decision_type
|
| 120 |
|
|
{
|
| 121 |
|
|
DT_num_insns,
|
| 122 |
|
|
DT_mode, DT_code, DT_veclen,
|
| 123 |
|
|
DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
|
| 124 |
|
|
DT_const_int,
|
| 125 |
|
|
DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
|
| 126 |
|
|
DT_accept_op, DT_accept_insn
|
| 127 |
|
|
};
|
| 128 |
|
|
|
| 129 |
|
|
/* A single test. The two accept types aren't tests per-se, but
|
| 130 |
|
|
their equality (or lack thereof) does affect tree merging so
|
| 131 |
|
|
it is convenient to keep them here. */
|
| 132 |
|
|
|
| 133 |
|
|
struct decision_test
|
| 134 |
|
|
{
|
| 135 |
|
|
/* A linked list through the tests attached to a node. */
|
| 136 |
|
|
struct decision_test *next;
|
| 137 |
|
|
|
| 138 |
|
|
enum decision_type type;
|
| 139 |
|
|
|
| 140 |
|
|
union
|
| 141 |
|
|
{
|
| 142 |
|
|
int num_insns; /* Number if insn in a define_peephole2. */
|
| 143 |
|
|
enum machine_mode mode; /* Machine mode of node. */
|
| 144 |
|
|
RTX_CODE code; /* Code to test. */
|
| 145 |
|
|
|
| 146 |
|
|
struct
|
| 147 |
|
|
{
|
| 148 |
|
|
const char *name; /* Predicate to call. */
|
| 149 |
|
|
const struct pred_data *data;
|
| 150 |
|
|
/* Optimization hints for this predicate. */
|
| 151 |
|
|
enum machine_mode mode; /* Machine mode for node. */
|
| 152 |
|
|
} pred;
|
| 153 |
|
|
|
| 154 |
|
|
const char *c_test; /* Additional test to perform. */
|
| 155 |
|
|
int veclen; /* Length of vector. */
|
| 156 |
|
|
int dup; /* Number of operand to compare against. */
|
| 157 |
|
|
HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
|
| 158 |
|
|
int opno; /* Operand number matched. */
|
| 159 |
|
|
|
| 160 |
|
|
struct {
|
| 161 |
|
|
int code_number; /* Insn number matched. */
|
| 162 |
|
|
int lineno; /* Line number of the insn. */
|
| 163 |
|
|
int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
|
| 164 |
|
|
} insn;
|
| 165 |
|
|
} u;
|
| 166 |
|
|
};
|
| 167 |
|
|
|
| 168 |
|
|
/* Data structure for decision tree for recognizing legitimate insns. */
|
| 169 |
|
|
|
| 170 |
|
|
struct decision
|
| 171 |
|
|
{
|
| 172 |
|
|
struct decision_head success; /* Nodes to test on success. */
|
| 173 |
|
|
struct decision *next; /* Node to test on failure. */
|
| 174 |
|
|
struct decision *prev; /* Node whose failure tests us. */
|
| 175 |
|
|
struct decision *afterward; /* Node to test on success,
|
| 176 |
|
|
but failure of successor nodes. */
|
| 177 |
|
|
|
| 178 |
|
|
struct position *position; /* Position in pattern. */
|
| 179 |
|
|
|
| 180 |
|
|
struct decision_test *tests; /* The tests for this node. */
|
| 181 |
|
|
|
| 182 |
|
|
int number; /* Node number, used for labels */
|
| 183 |
|
|
int subroutine_number; /* Number of subroutine this node starts */
|
| 184 |
|
|
int need_label; /* Label needs to be output. */
|
| 185 |
|
|
};
|
| 186 |
|
|
|
| 187 |
|
|
#define SUBROUTINE_THRESHOLD 100
|
| 188 |
|
|
|
| 189 |
|
|
static int next_subroutine_number;
|
| 190 |
|
|
|
| 191 |
|
|
/* We can write three types of subroutines: One for insn recognition,
|
| 192 |
|
|
one to split insns, and one for peephole-type optimizations. This
|
| 193 |
|
|
defines which type is being written. */
|
| 194 |
|
|
|
| 195 |
|
|
enum routine_type {
|
| 196 |
|
|
RECOG, SPLIT, PEEPHOLE2
|
| 197 |
|
|
};
|
| 198 |
|
|
|
| 199 |
|
|
#define IS_SPLIT(X) ((X) != RECOG)
|
| 200 |
|
|
|
| 201 |
|
|
/* Next available node number for tree nodes. */
|
| 202 |
|
|
|
| 203 |
|
|
static int next_number;
|
| 204 |
|
|
|
| 205 |
|
|
/* Next number to use as an insn_code. */
|
| 206 |
|
|
|
| 207 |
|
|
static int next_insn_code;
|
| 208 |
|
|
|
| 209 |
|
|
/* Record the highest depth we ever have so we know how many variables to
|
| 210 |
|
|
allocate in each subroutine we make. */
|
| 211 |
|
|
|
| 212 |
|
|
static int max_depth;
|
| 213 |
|
|
|
| 214 |
|
|
/* The line number of the start of the pattern currently being processed. */
|
| 215 |
|
|
static int pattern_lineno;
|
| 216 |
|
|
|
| 217 |
|
|
/* The root position (x0). */
|
| 218 |
|
|
static struct position root_pos;
|
| 219 |
|
|
|
| 220 |
|
|
/* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
|
| 221 |
|
|
since we are given that instruction's pattern as x0. */
|
| 222 |
|
|
static struct position *peep2_insn_pos_list = &root_pos;
|
| 223 |
|
|
|
| 224 |
|
|
extern void debug_decision
|
| 225 |
|
|
(struct decision *);
|
| 226 |
|
|
extern void debug_decision_list
|
| 227 |
|
|
(struct decision *);
|
| 228 |
|
|
|
| 229 |
|
|
/* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
|
| 230 |
|
|
points to where the unique object that represents the position
|
| 231 |
|
|
should be stored. Create the object if it doesn't already exist,
|
| 232 |
|
|
otherwise reuse the object that is already there. */
|
| 233 |
|
|
|
| 234 |
|
|
static struct position *
|
| 235 |
|
|
next_position (struct position **next_ptr, struct position *base,
|
| 236 |
|
|
enum position_type type, int arg)
|
| 237 |
|
|
{
|
| 238 |
|
|
struct position *pos;
|
| 239 |
|
|
|
| 240 |
|
|
pos = *next_ptr;
|
| 241 |
|
|
if (!pos)
|
| 242 |
|
|
{
|
| 243 |
|
|
pos = XCNEW (struct position);
|
| 244 |
|
|
pos->base = base;
|
| 245 |
|
|
pos->type = type;
|
| 246 |
|
|
pos->arg = arg;
|
| 247 |
|
|
pos->depth = base->depth + 1;
|
| 248 |
|
|
*next_ptr = pos;
|
| 249 |
|
|
}
|
| 250 |
|
|
return pos;
|
| 251 |
|
|
}
|
| 252 |
|
|
|
| 253 |
|
|
/* Compare positions POS1 and POS2 lexicographically. */
|
| 254 |
|
|
|
| 255 |
|
|
static int
|
| 256 |
|
|
compare_positions (struct position *pos1, struct position *pos2)
|
| 257 |
|
|
{
|
| 258 |
|
|
int diff;
|
| 259 |
|
|
|
| 260 |
|
|
diff = pos1->depth - pos2->depth;
|
| 261 |
|
|
if (diff < 0)
|
| 262 |
|
|
do
|
| 263 |
|
|
pos2 = pos2->base;
|
| 264 |
|
|
while (pos1->depth != pos2->depth);
|
| 265 |
|
|
else if (diff > 0)
|
| 266 |
|
|
do
|
| 267 |
|
|
pos1 = pos1->base;
|
| 268 |
|
|
while (pos1->depth != pos2->depth);
|
| 269 |
|
|
while (pos1 != pos2)
|
| 270 |
|
|
{
|
| 271 |
|
|
diff = (int) pos1->type - (int) pos2->type;
|
| 272 |
|
|
if (diff == 0)
|
| 273 |
|
|
diff = pos1->arg - pos2->arg;
|
| 274 |
|
|
pos1 = pos1->base;
|
| 275 |
|
|
pos2 = pos2->base;
|
| 276 |
|
|
}
|
| 277 |
|
|
return diff;
|
| 278 |
|
|
}
|
| 279 |
|
|
|
| 280 |
|
|
/* Create a new node in sequence after LAST. */
|
| 281 |
|
|
|
| 282 |
|
|
static struct decision *
|
| 283 |
|
|
new_decision (struct position *pos, struct decision_head *last)
|
| 284 |
|
|
{
|
| 285 |
|
|
struct decision *new_decision = XCNEW (struct decision);
|
| 286 |
|
|
|
| 287 |
|
|
new_decision->success = *last;
|
| 288 |
|
|
new_decision->position = pos;
|
| 289 |
|
|
new_decision->number = next_number++;
|
| 290 |
|
|
|
| 291 |
|
|
last->first = last->last = new_decision;
|
| 292 |
|
|
return new_decision;
|
| 293 |
|
|
}
|
| 294 |
|
|
|
| 295 |
|
|
/* Create a new test and link it in at PLACE. */
|
| 296 |
|
|
|
| 297 |
|
|
static struct decision_test *
|
| 298 |
|
|
new_decision_test (enum decision_type type, struct decision_test ***pplace)
|
| 299 |
|
|
{
|
| 300 |
|
|
struct decision_test **place = *pplace;
|
| 301 |
|
|
struct decision_test *test;
|
| 302 |
|
|
|
| 303 |
|
|
test = XNEW (struct decision_test);
|
| 304 |
|
|
test->next = *place;
|
| 305 |
|
|
test->type = type;
|
| 306 |
|
|
*place = test;
|
| 307 |
|
|
|
| 308 |
|
|
place = &test->next;
|
| 309 |
|
|
*pplace = place;
|
| 310 |
|
|
|
| 311 |
|
|
return test;
|
| 312 |
|
|
}
|
| 313 |
|
|
|
| 314 |
|
|
/* Search for and return operand N, stop when reaching node STOP. */
|
| 315 |
|
|
|
| 316 |
|
|
static rtx
|
| 317 |
|
|
find_operand (rtx pattern, int n, rtx stop)
|
| 318 |
|
|
{
|
| 319 |
|
|
const char *fmt;
|
| 320 |
|
|
RTX_CODE code;
|
| 321 |
|
|
int i, j, len;
|
| 322 |
|
|
rtx r;
|
| 323 |
|
|
|
| 324 |
|
|
if (pattern == stop)
|
| 325 |
|
|
return stop;
|
| 326 |
|
|
|
| 327 |
|
|
code = GET_CODE (pattern);
|
| 328 |
|
|
if ((code == MATCH_SCRATCH
|
| 329 |
|
|
|| code == MATCH_OPERAND
|
| 330 |
|
|
|| code == MATCH_OPERATOR
|
| 331 |
|
|
|| code == MATCH_PARALLEL)
|
| 332 |
|
|
&& XINT (pattern, 0) == n)
|
| 333 |
|
|
return pattern;
|
| 334 |
|
|
|
| 335 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 336 |
|
|
len = GET_RTX_LENGTH (code);
|
| 337 |
|
|
for (i = 0; i < len; i++)
|
| 338 |
|
|
{
|
| 339 |
|
|
switch (fmt[i])
|
| 340 |
|
|
{
|
| 341 |
|
|
case 'e': case 'u':
|
| 342 |
|
|
if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
|
| 343 |
|
|
return r;
|
| 344 |
|
|
break;
|
| 345 |
|
|
|
| 346 |
|
|
case 'V':
|
| 347 |
|
|
if (! XVEC (pattern, i))
|
| 348 |
|
|
break;
|
| 349 |
|
|
/* Fall through. */
|
| 350 |
|
|
|
| 351 |
|
|
case 'E':
|
| 352 |
|
|
for (j = 0; j < XVECLEN (pattern, i); j++)
|
| 353 |
|
|
if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
|
| 354 |
|
|
!= NULL_RTX)
|
| 355 |
|
|
return r;
|
| 356 |
|
|
break;
|
| 357 |
|
|
|
| 358 |
|
|
case 'i': case 'w': case '0': case 's':
|
| 359 |
|
|
break;
|
| 360 |
|
|
|
| 361 |
|
|
default:
|
| 362 |
|
|
gcc_unreachable ();
|
| 363 |
|
|
}
|
| 364 |
|
|
}
|
| 365 |
|
|
|
| 366 |
|
|
return NULL;
|
| 367 |
|
|
}
|
| 368 |
|
|
|
| 369 |
|
|
/* Search for and return operand M, such that it has a matching
|
| 370 |
|
|
constraint for operand N. */
|
| 371 |
|
|
|
| 372 |
|
|
static rtx
|
| 373 |
|
|
find_matching_operand (rtx pattern, int n)
|
| 374 |
|
|
{
|
| 375 |
|
|
const char *fmt;
|
| 376 |
|
|
RTX_CODE code;
|
| 377 |
|
|
int i, j, len;
|
| 378 |
|
|
rtx r;
|
| 379 |
|
|
|
| 380 |
|
|
code = GET_CODE (pattern);
|
| 381 |
|
|
if (code == MATCH_OPERAND
|
| 382 |
|
|
&& (XSTR (pattern, 2)[0] == '0' + n
|
| 383 |
|
|
|| (XSTR (pattern, 2)[0] == '%'
|
| 384 |
|
|
&& XSTR (pattern, 2)[1] == '0' + n)))
|
| 385 |
|
|
return pattern;
|
| 386 |
|
|
|
| 387 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 388 |
|
|
len = GET_RTX_LENGTH (code);
|
| 389 |
|
|
for (i = 0; i < len; i++)
|
| 390 |
|
|
{
|
| 391 |
|
|
switch (fmt[i])
|
| 392 |
|
|
{
|
| 393 |
|
|
case 'e': case 'u':
|
| 394 |
|
|
if ((r = find_matching_operand (XEXP (pattern, i), n)))
|
| 395 |
|
|
return r;
|
| 396 |
|
|
break;
|
| 397 |
|
|
|
| 398 |
|
|
case 'V':
|
| 399 |
|
|
if (! XVEC (pattern, i))
|
| 400 |
|
|
break;
|
| 401 |
|
|
/* Fall through. */
|
| 402 |
|
|
|
| 403 |
|
|
case 'E':
|
| 404 |
|
|
for (j = 0; j < XVECLEN (pattern, i); j++)
|
| 405 |
|
|
if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
|
| 406 |
|
|
return r;
|
| 407 |
|
|
break;
|
| 408 |
|
|
|
| 409 |
|
|
case 'i': case 'w': case '0': case 's':
|
| 410 |
|
|
break;
|
| 411 |
|
|
|
| 412 |
|
|
default:
|
| 413 |
|
|
gcc_unreachable ();
|
| 414 |
|
|
}
|
| 415 |
|
|
}
|
| 416 |
|
|
|
| 417 |
|
|
return NULL;
|
| 418 |
|
|
}
|
| 419 |
|
|
|
| 420 |
|
|
|
| 421 |
|
|
/* Check for various errors in patterns. SET is nonnull for a destination,
|
| 422 |
|
|
and is the complete set pattern. SET_CODE is '=' for normal sets, and
|
| 423 |
|
|
'+' within a context that requires in-out constraints. */
|
| 424 |
|
|
|
| 425 |
|
|
static void
|
| 426 |
|
|
validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
|
| 427 |
|
|
{
|
| 428 |
|
|
const char *fmt;
|
| 429 |
|
|
RTX_CODE code;
|
| 430 |
|
|
size_t i, len;
|
| 431 |
|
|
int j;
|
| 432 |
|
|
|
| 433 |
|
|
code = GET_CODE (pattern);
|
| 434 |
|
|
switch (code)
|
| 435 |
|
|
{
|
| 436 |
|
|
case MATCH_SCRATCH:
|
| 437 |
|
|
return;
|
| 438 |
|
|
case MATCH_DUP:
|
| 439 |
|
|
case MATCH_OP_DUP:
|
| 440 |
|
|
case MATCH_PAR_DUP:
|
| 441 |
|
|
if (find_operand (insn, XINT (pattern, 0), pattern) == pattern)
|
| 442 |
|
|
error_with_line (pattern_lineno,
|
| 443 |
|
|
"operand %i duplicated before defined",
|
| 444 |
|
|
XINT (pattern, 0));
|
| 445 |
|
|
break;
|
| 446 |
|
|
case MATCH_OPERAND:
|
| 447 |
|
|
case MATCH_OPERATOR:
|
| 448 |
|
|
{
|
| 449 |
|
|
const char *pred_name = XSTR (pattern, 1);
|
| 450 |
|
|
const struct pred_data *pred;
|
| 451 |
|
|
const char *c_test;
|
| 452 |
|
|
|
| 453 |
|
|
if (GET_CODE (insn) == DEFINE_INSN)
|
| 454 |
|
|
c_test = XSTR (insn, 2);
|
| 455 |
|
|
else
|
| 456 |
|
|
c_test = XSTR (insn, 1);
|
| 457 |
|
|
|
| 458 |
|
|
if (pred_name[0] != 0)
|
| 459 |
|
|
{
|
| 460 |
|
|
pred = lookup_predicate (pred_name);
|
| 461 |
|
|
if (!pred)
|
| 462 |
|
|
message_with_line (pattern_lineno,
|
| 463 |
|
|
"warning: unknown predicate '%s'",
|
| 464 |
|
|
pred_name);
|
| 465 |
|
|
}
|
| 466 |
|
|
else
|
| 467 |
|
|
pred = 0;
|
| 468 |
|
|
|
| 469 |
|
|
if (code == MATCH_OPERAND)
|
| 470 |
|
|
{
|
| 471 |
|
|
const char constraints0 = XSTR (pattern, 2)[0];
|
| 472 |
|
|
|
| 473 |
|
|
/* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
|
| 474 |
|
|
don't use the MATCH_OPERAND constraint, only the predicate.
|
| 475 |
|
|
This is confusing to folks doing new ports, so help them
|
| 476 |
|
|
not make the mistake. */
|
| 477 |
|
|
if (GET_CODE (insn) == DEFINE_EXPAND
|
| 478 |
|
|
|| GET_CODE (insn) == DEFINE_SPLIT
|
| 479 |
|
|
|| GET_CODE (insn) == DEFINE_PEEPHOLE2)
|
| 480 |
|
|
{
|
| 481 |
|
|
if (constraints0)
|
| 482 |
|
|
message_with_line (pattern_lineno,
|
| 483 |
|
|
"warning: constraints not supported in %s",
|
| 484 |
|
|
rtx_name[GET_CODE (insn)]);
|
| 485 |
|
|
}
|
| 486 |
|
|
|
| 487 |
|
|
/* A MATCH_OPERAND that is a SET should have an output reload. */
|
| 488 |
|
|
else if (set && constraints0)
|
| 489 |
|
|
{
|
| 490 |
|
|
if (set_code == '+')
|
| 491 |
|
|
{
|
| 492 |
|
|
if (constraints0 == '+')
|
| 493 |
|
|
;
|
| 494 |
|
|
/* If we've only got an output reload for this operand,
|
| 495 |
|
|
we'd better have a matching input operand. */
|
| 496 |
|
|
else if (constraints0 == '='
|
| 497 |
|
|
&& find_matching_operand (insn, XINT (pattern, 0)))
|
| 498 |
|
|
;
|
| 499 |
|
|
else
|
| 500 |
|
|
error_with_line (pattern_lineno,
|
| 501 |
|
|
"operand %d missing in-out reload",
|
| 502 |
|
|
XINT (pattern, 0));
|
| 503 |
|
|
}
|
| 504 |
|
|
else if (constraints0 != '=' && constraints0 != '+')
|
| 505 |
|
|
error_with_line (pattern_lineno,
|
| 506 |
|
|
"operand %d missing output reload",
|
| 507 |
|
|
XINT (pattern, 0));
|
| 508 |
|
|
}
|
| 509 |
|
|
}
|
| 510 |
|
|
|
| 511 |
|
|
/* Allowing non-lvalues in destinations -- particularly CONST_INT --
|
| 512 |
|
|
while not likely to occur at runtime, results in less efficient
|
| 513 |
|
|
code from insn-recog.c. */
|
| 514 |
|
|
if (set && pred && pred->allows_non_lvalue)
|
| 515 |
|
|
message_with_line (pattern_lineno,
|
| 516 |
|
|
"warning: destination operand %d "
|
| 517 |
|
|
"allows non-lvalue",
|
| 518 |
|
|
XINT (pattern, 0));
|
| 519 |
|
|
|
| 520 |
|
|
/* A modeless MATCH_OPERAND can be handy when we can check for
|
| 521 |
|
|
multiple modes in the c_test. In most other cases, it is a
|
| 522 |
|
|
mistake. Only DEFINE_INSN is eligible, since SPLIT and
|
| 523 |
|
|
PEEP2 can FAIL within the output pattern. Exclude special
|
| 524 |
|
|
predicates, which check the mode themselves. Also exclude
|
| 525 |
|
|
predicates that allow only constants. Exclude the SET_DEST
|
| 526 |
|
|
of a call instruction, as that is a common idiom. */
|
| 527 |
|
|
|
| 528 |
|
|
if (GET_MODE (pattern) == VOIDmode
|
| 529 |
|
|
&& code == MATCH_OPERAND
|
| 530 |
|
|
&& GET_CODE (insn) == DEFINE_INSN
|
| 531 |
|
|
&& pred
|
| 532 |
|
|
&& !pred->special
|
| 533 |
|
|
&& pred->allows_non_const
|
| 534 |
|
|
&& strstr (c_test, "operands") == NULL
|
| 535 |
|
|
&& ! (set
|
| 536 |
|
|
&& GET_CODE (set) == SET
|
| 537 |
|
|
&& GET_CODE (SET_SRC (set)) == CALL))
|
| 538 |
|
|
message_with_line (pattern_lineno,
|
| 539 |
|
|
"warning: operand %d missing mode?",
|
| 540 |
|
|
XINT (pattern, 0));
|
| 541 |
|
|
return;
|
| 542 |
|
|
}
|
| 543 |
|
|
|
| 544 |
|
|
case SET:
|
| 545 |
|
|
{
|
| 546 |
|
|
enum machine_mode dmode, smode;
|
| 547 |
|
|
rtx dest, src;
|
| 548 |
|
|
|
| 549 |
|
|
dest = SET_DEST (pattern);
|
| 550 |
|
|
src = SET_SRC (pattern);
|
| 551 |
|
|
|
| 552 |
|
|
/* STRICT_LOW_PART is a wrapper. Its argument is the real
|
| 553 |
|
|
destination, and it's mode should match the source. */
|
| 554 |
|
|
if (GET_CODE (dest) == STRICT_LOW_PART)
|
| 555 |
|
|
dest = XEXP (dest, 0);
|
| 556 |
|
|
|
| 557 |
|
|
/* Find the referent for a DUP. */
|
| 558 |
|
|
|
| 559 |
|
|
if (GET_CODE (dest) == MATCH_DUP
|
| 560 |
|
|
|| GET_CODE (dest) == MATCH_OP_DUP
|
| 561 |
|
|
|| GET_CODE (dest) == MATCH_PAR_DUP)
|
| 562 |
|
|
dest = find_operand (insn, XINT (dest, 0), NULL);
|
| 563 |
|
|
|
| 564 |
|
|
if (GET_CODE (src) == MATCH_DUP
|
| 565 |
|
|
|| GET_CODE (src) == MATCH_OP_DUP
|
| 566 |
|
|
|| GET_CODE (src) == MATCH_PAR_DUP)
|
| 567 |
|
|
src = find_operand (insn, XINT (src, 0), NULL);
|
| 568 |
|
|
|
| 569 |
|
|
dmode = GET_MODE (dest);
|
| 570 |
|
|
smode = GET_MODE (src);
|
| 571 |
|
|
|
| 572 |
|
|
/* The mode of an ADDRESS_OPERAND is the mode of the memory
|
| 573 |
|
|
reference, not the mode of the address. */
|
| 574 |
|
|
if (GET_CODE (src) == MATCH_OPERAND
|
| 575 |
|
|
&& ! strcmp (XSTR (src, 1), "address_operand"))
|
| 576 |
|
|
;
|
| 577 |
|
|
|
| 578 |
|
|
/* The operands of a SET must have the same mode unless one
|
| 579 |
|
|
is VOIDmode. */
|
| 580 |
|
|
else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
|
| 581 |
|
|
error_with_line (pattern_lineno,
|
| 582 |
|
|
"mode mismatch in set: %smode vs %smode",
|
| 583 |
|
|
GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
|
| 584 |
|
|
|
| 585 |
|
|
/* If only one of the operands is VOIDmode, and PC or CC0 is
|
| 586 |
|
|
not involved, it's probably a mistake. */
|
| 587 |
|
|
else if (dmode != smode
|
| 588 |
|
|
&& GET_CODE (dest) != PC
|
| 589 |
|
|
&& GET_CODE (dest) != CC0
|
| 590 |
|
|
&& GET_CODE (src) != PC
|
| 591 |
|
|
&& GET_CODE (src) != CC0
|
| 592 |
|
|
&& !CONST_INT_P (src)
|
| 593 |
|
|
&& GET_CODE (src) != CALL)
|
| 594 |
|
|
{
|
| 595 |
|
|
const char *which;
|
| 596 |
|
|
which = (dmode == VOIDmode ? "destination" : "source");
|
| 597 |
|
|
message_with_line (pattern_lineno,
|
| 598 |
|
|
"warning: %s missing a mode?", which);
|
| 599 |
|
|
}
|
| 600 |
|
|
|
| 601 |
|
|
if (dest != SET_DEST (pattern))
|
| 602 |
|
|
validate_pattern (dest, insn, pattern, '=');
|
| 603 |
|
|
validate_pattern (SET_DEST (pattern), insn, pattern, '=');
|
| 604 |
|
|
validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
|
| 605 |
|
|
return;
|
| 606 |
|
|
}
|
| 607 |
|
|
|
| 608 |
|
|
case CLOBBER:
|
| 609 |
|
|
validate_pattern (SET_DEST (pattern), insn, pattern, '=');
|
| 610 |
|
|
return;
|
| 611 |
|
|
|
| 612 |
|
|
case ZERO_EXTRACT:
|
| 613 |
|
|
validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
|
| 614 |
|
|
validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
|
| 615 |
|
|
validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
|
| 616 |
|
|
return;
|
| 617 |
|
|
|
| 618 |
|
|
case STRICT_LOW_PART:
|
| 619 |
|
|
validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
|
| 620 |
|
|
return;
|
| 621 |
|
|
|
| 622 |
|
|
case LABEL_REF:
|
| 623 |
|
|
if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
|
| 624 |
|
|
error_with_line (pattern_lineno,
|
| 625 |
|
|
"operand to label_ref %smode not VOIDmode",
|
| 626 |
|
|
GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
|
| 627 |
|
|
break;
|
| 628 |
|
|
|
| 629 |
|
|
default:
|
| 630 |
|
|
break;
|
| 631 |
|
|
}
|
| 632 |
|
|
|
| 633 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 634 |
|
|
len = GET_RTX_LENGTH (code);
|
| 635 |
|
|
for (i = 0; i < len; i++)
|
| 636 |
|
|
{
|
| 637 |
|
|
switch (fmt[i])
|
| 638 |
|
|
{
|
| 639 |
|
|
case 'e': case 'u':
|
| 640 |
|
|
validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
|
| 641 |
|
|
break;
|
| 642 |
|
|
|
| 643 |
|
|
case 'E':
|
| 644 |
|
|
for (j = 0; j < XVECLEN (pattern, i); j++)
|
| 645 |
|
|
validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
|
| 646 |
|
|
break;
|
| 647 |
|
|
|
| 648 |
|
|
case 'i': case 'w': case '0': case 's':
|
| 649 |
|
|
break;
|
| 650 |
|
|
|
| 651 |
|
|
default:
|
| 652 |
|
|
gcc_unreachable ();
|
| 653 |
|
|
}
|
| 654 |
|
|
}
|
| 655 |
|
|
}
|
| 656 |
|
|
|
| 657 |
|
|
/* Create a chain of nodes to verify that an rtl expression matches
|
| 658 |
|
|
PATTERN.
|
| 659 |
|
|
|
| 660 |
|
|
LAST is a pointer to the listhead in the previous node in the chain (or
|
| 661 |
|
|
in the calling function, for the first node).
|
| 662 |
|
|
|
| 663 |
|
|
POSITION is the current position in the insn.
|
| 664 |
|
|
|
| 665 |
|
|
INSN_TYPE is the type of insn for which we are emitting code.
|
| 666 |
|
|
|
| 667 |
|
|
A pointer to the final node in the chain is returned. */
|
| 668 |
|
|
|
| 669 |
|
|
static struct decision *
|
| 670 |
|
|
add_to_sequence (rtx pattern, struct decision_head *last,
|
| 671 |
|
|
struct position *pos, enum routine_type insn_type, int top)
|
| 672 |
|
|
{
|
| 673 |
|
|
RTX_CODE code;
|
| 674 |
|
|
struct decision *this_decision, *sub;
|
| 675 |
|
|
struct decision_test *test;
|
| 676 |
|
|
struct decision_test **place;
|
| 677 |
|
|
struct position *subpos, **subpos_ptr;
|
| 678 |
|
|
size_t i;
|
| 679 |
|
|
const char *fmt;
|
| 680 |
|
|
int len;
|
| 681 |
|
|
enum machine_mode mode;
|
| 682 |
|
|
enum position_type pos_type;
|
| 683 |
|
|
|
| 684 |
|
|
if (pos->depth > max_depth)
|
| 685 |
|
|
max_depth = pos->depth;
|
| 686 |
|
|
|
| 687 |
|
|
sub = this_decision = new_decision (pos, last);
|
| 688 |
|
|
place = &this_decision->tests;
|
| 689 |
|
|
|
| 690 |
|
|
restart:
|
| 691 |
|
|
mode = GET_MODE (pattern);
|
| 692 |
|
|
code = GET_CODE (pattern);
|
| 693 |
|
|
|
| 694 |
|
|
switch (code)
|
| 695 |
|
|
{
|
| 696 |
|
|
case PARALLEL:
|
| 697 |
|
|
/* Toplevel peephole pattern. */
|
| 698 |
|
|
if (insn_type == PEEPHOLE2 && top)
|
| 699 |
|
|
{
|
| 700 |
|
|
int num_insns;
|
| 701 |
|
|
|
| 702 |
|
|
/* Check we have sufficient insns. This avoids complications
|
| 703 |
|
|
because we then know peep2_next_insn never fails. */
|
| 704 |
|
|
num_insns = XVECLEN (pattern, 0);
|
| 705 |
|
|
if (num_insns > 1)
|
| 706 |
|
|
{
|
| 707 |
|
|
test = new_decision_test (DT_num_insns, &place);
|
| 708 |
|
|
test->u.num_insns = num_insns;
|
| 709 |
|
|
last = &sub->success;
|
| 710 |
|
|
}
|
| 711 |
|
|
else
|
| 712 |
|
|
{
|
| 713 |
|
|
/* We don't need the node we just created -- unlink it. */
|
| 714 |
|
|
last->first = last->last = NULL;
|
| 715 |
|
|
}
|
| 716 |
|
|
|
| 717 |
|
|
subpos_ptr = &peep2_insn_pos_list;
|
| 718 |
|
|
for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
|
| 719 |
|
|
{
|
| 720 |
|
|
subpos = next_position (subpos_ptr, &root_pos,
|
| 721 |
|
|
POS_PEEP2_INSN, i);
|
| 722 |
|
|
sub = add_to_sequence (XVECEXP (pattern, 0, i),
|
| 723 |
|
|
last, subpos, insn_type, 0);
|
| 724 |
|
|
last = &sub->success;
|
| 725 |
|
|
subpos_ptr = &subpos->next;
|
| 726 |
|
|
}
|
| 727 |
|
|
goto ret;
|
| 728 |
|
|
}
|
| 729 |
|
|
|
| 730 |
|
|
/* Else nothing special. */
|
| 731 |
|
|
break;
|
| 732 |
|
|
|
| 733 |
|
|
case MATCH_PARALLEL:
|
| 734 |
|
|
/* The explicit patterns within a match_parallel enforce a minimum
|
| 735 |
|
|
length on the vector. The match_parallel predicate may allow
|
| 736 |
|
|
for more elements. We do need to check for this minimum here
|
| 737 |
|
|
or the code generated to match the internals may reference data
|
| 738 |
|
|
beyond the end of the vector. */
|
| 739 |
|
|
test = new_decision_test (DT_veclen_ge, &place);
|
| 740 |
|
|
test->u.veclen = XVECLEN (pattern, 2);
|
| 741 |
|
|
/* Fall through. */
|
| 742 |
|
|
|
| 743 |
|
|
case MATCH_OPERAND:
|
| 744 |
|
|
case MATCH_SCRATCH:
|
| 745 |
|
|
case MATCH_OPERATOR:
|
| 746 |
|
|
{
|
| 747 |
|
|
RTX_CODE was_code = code;
|
| 748 |
|
|
const char *pred_name;
|
| 749 |
|
|
bool allows_const_int = true;
|
| 750 |
|
|
|
| 751 |
|
|
if (code == MATCH_SCRATCH)
|
| 752 |
|
|
{
|
| 753 |
|
|
pred_name = "scratch_operand";
|
| 754 |
|
|
code = UNKNOWN;
|
| 755 |
|
|
}
|
| 756 |
|
|
else
|
| 757 |
|
|
{
|
| 758 |
|
|
pred_name = XSTR (pattern, 1);
|
| 759 |
|
|
if (code == MATCH_PARALLEL)
|
| 760 |
|
|
code = PARALLEL;
|
| 761 |
|
|
else
|
| 762 |
|
|
code = UNKNOWN;
|
| 763 |
|
|
}
|
| 764 |
|
|
|
| 765 |
|
|
if (pred_name[0] != 0)
|
| 766 |
|
|
{
|
| 767 |
|
|
const struct pred_data *pred;
|
| 768 |
|
|
|
| 769 |
|
|
test = new_decision_test (DT_pred, &place);
|
| 770 |
|
|
test->u.pred.name = pred_name;
|
| 771 |
|
|
test->u.pred.mode = mode;
|
| 772 |
|
|
|
| 773 |
|
|
/* See if we know about this predicate.
|
| 774 |
|
|
If we do, remember it for use below.
|
| 775 |
|
|
|
| 776 |
|
|
We can optimize the generated code a little if either
|
| 777 |
|
|
(a) the predicate only accepts one code, or (b) the
|
| 778 |
|
|
predicate does not allow CONST_INT, in which case it
|
| 779 |
|
|
can match only if the modes match. */
|
| 780 |
|
|
pred = lookup_predicate (pred_name);
|
| 781 |
|
|
if (pred)
|
| 782 |
|
|
{
|
| 783 |
|
|
test->u.pred.data = pred;
|
| 784 |
|
|
allows_const_int = pred->codes[CONST_INT];
|
| 785 |
|
|
if (was_code == MATCH_PARALLEL
|
| 786 |
|
|
&& pred->singleton != PARALLEL)
|
| 787 |
|
|
message_with_line (pattern_lineno,
|
| 788 |
|
|
"predicate '%s' used in match_parallel "
|
| 789 |
|
|
"does not allow only PARALLEL", pred->name);
|
| 790 |
|
|
else
|
| 791 |
|
|
code = pred->singleton;
|
| 792 |
|
|
}
|
| 793 |
|
|
else
|
| 794 |
|
|
message_with_line (pattern_lineno,
|
| 795 |
|
|
"warning: unknown predicate '%s' in '%s' expression",
|
| 796 |
|
|
pred_name, GET_RTX_NAME (was_code));
|
| 797 |
|
|
}
|
| 798 |
|
|
|
| 799 |
|
|
/* Can't enforce a mode if we allow const_int. */
|
| 800 |
|
|
if (allows_const_int)
|
| 801 |
|
|
mode = VOIDmode;
|
| 802 |
|
|
|
| 803 |
|
|
/* Accept the operand, i.e. record it in `operands'. */
|
| 804 |
|
|
test = new_decision_test (DT_accept_op, &place);
|
| 805 |
|
|
test->u.opno = XINT (pattern, 0);
|
| 806 |
|
|
|
| 807 |
|
|
if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
|
| 808 |
|
|
{
|
| 809 |
|
|
if (was_code == MATCH_OPERATOR)
|
| 810 |
|
|
{
|
| 811 |
|
|
pos_type = POS_XEXP;
|
| 812 |
|
|
subpos_ptr = &pos->xexps;
|
| 813 |
|
|
}
|
| 814 |
|
|
else
|
| 815 |
|
|
{
|
| 816 |
|
|
pos_type = POS_XVECEXP0;
|
| 817 |
|
|
subpos_ptr = &pos->xvecexp0s;
|
| 818 |
|
|
}
|
| 819 |
|
|
for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
|
| 820 |
|
|
{
|
| 821 |
|
|
subpos = next_position (subpos_ptr, pos, pos_type, i);
|
| 822 |
|
|
sub = add_to_sequence (XVECEXP (pattern, 2, i),
|
| 823 |
|
|
&sub->success, subpos, insn_type, 0);
|
| 824 |
|
|
subpos_ptr = &subpos->next;
|
| 825 |
|
|
}
|
| 826 |
|
|
}
|
| 827 |
|
|
goto fini;
|
| 828 |
|
|
}
|
| 829 |
|
|
|
| 830 |
|
|
case MATCH_OP_DUP:
|
| 831 |
|
|
code = UNKNOWN;
|
| 832 |
|
|
|
| 833 |
|
|
test = new_decision_test (DT_dup, &place);
|
| 834 |
|
|
test->u.dup = XINT (pattern, 0);
|
| 835 |
|
|
|
| 836 |
|
|
test = new_decision_test (DT_accept_op, &place);
|
| 837 |
|
|
test->u.opno = XINT (pattern, 0);
|
| 838 |
|
|
|
| 839 |
|
|
subpos_ptr = &pos->xexps;
|
| 840 |
|
|
for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
|
| 841 |
|
|
{
|
| 842 |
|
|
subpos = next_position (subpos_ptr, pos, POS_XEXP, i);
|
| 843 |
|
|
sub = add_to_sequence (XVECEXP (pattern, 1, i),
|
| 844 |
|
|
&sub->success, subpos, insn_type, 0);
|
| 845 |
|
|
subpos_ptr = &subpos->next;
|
| 846 |
|
|
}
|
| 847 |
|
|
goto fini;
|
| 848 |
|
|
|
| 849 |
|
|
case MATCH_DUP:
|
| 850 |
|
|
case MATCH_PAR_DUP:
|
| 851 |
|
|
code = UNKNOWN;
|
| 852 |
|
|
|
| 853 |
|
|
test = new_decision_test (DT_dup, &place);
|
| 854 |
|
|
test->u.dup = XINT (pattern, 0);
|
| 855 |
|
|
goto fini;
|
| 856 |
|
|
|
| 857 |
|
|
case ADDRESS:
|
| 858 |
|
|
pattern = XEXP (pattern, 0);
|
| 859 |
|
|
goto restart;
|
| 860 |
|
|
|
| 861 |
|
|
default:
|
| 862 |
|
|
break;
|
| 863 |
|
|
}
|
| 864 |
|
|
|
| 865 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 866 |
|
|
len = GET_RTX_LENGTH (code);
|
| 867 |
|
|
|
| 868 |
|
|
/* Do tests against the current node first. */
|
| 869 |
|
|
for (i = 0; i < (size_t) len; i++)
|
| 870 |
|
|
{
|
| 871 |
|
|
if (fmt[i] == 'i')
|
| 872 |
|
|
{
|
| 873 |
|
|
gcc_assert (i < 2);
|
| 874 |
|
|
|
| 875 |
|
|
if (!i)
|
| 876 |
|
|
{
|
| 877 |
|
|
test = new_decision_test (DT_elt_zero_int, &place);
|
| 878 |
|
|
test->u.intval = XINT (pattern, i);
|
| 879 |
|
|
}
|
| 880 |
|
|
else
|
| 881 |
|
|
{
|
| 882 |
|
|
test = new_decision_test (DT_elt_one_int, &place);
|
| 883 |
|
|
test->u.intval = XINT (pattern, i);
|
| 884 |
|
|
}
|
| 885 |
|
|
}
|
| 886 |
|
|
else if (fmt[i] == 'w')
|
| 887 |
|
|
{
|
| 888 |
|
|
/* If this value actually fits in an int, we can use a switch
|
| 889 |
|
|
statement here, so indicate that. */
|
| 890 |
|
|
enum decision_type type
|
| 891 |
|
|
= ((int) XWINT (pattern, i) == XWINT (pattern, i))
|
| 892 |
|
|
? DT_elt_zero_wide_safe : DT_elt_zero_wide;
|
| 893 |
|
|
|
| 894 |
|
|
gcc_assert (!i);
|
| 895 |
|
|
|
| 896 |
|
|
test = new_decision_test (type, &place);
|
| 897 |
|
|
test->u.intval = XWINT (pattern, i);
|
| 898 |
|
|
}
|
| 899 |
|
|
else if (fmt[i] == 'E')
|
| 900 |
|
|
{
|
| 901 |
|
|
gcc_assert (!i);
|
| 902 |
|
|
|
| 903 |
|
|
test = new_decision_test (DT_veclen, &place);
|
| 904 |
|
|
test->u.veclen = XVECLEN (pattern, i);
|
| 905 |
|
|
}
|
| 906 |
|
|
}
|
| 907 |
|
|
|
| 908 |
|
|
/* Now test our sub-patterns. */
|
| 909 |
|
|
subpos_ptr = &pos->xexps;
|
| 910 |
|
|
for (i = 0; i < (size_t) len; i++)
|
| 911 |
|
|
{
|
| 912 |
|
|
subpos = next_position (subpos_ptr, pos, POS_XEXP, i);
|
| 913 |
|
|
switch (fmt[i])
|
| 914 |
|
|
{
|
| 915 |
|
|
case 'e': case 'u':
|
| 916 |
|
|
sub = add_to_sequence (XEXP (pattern, i), &sub->success,
|
| 917 |
|
|
subpos, insn_type, 0);
|
| 918 |
|
|
break;
|
| 919 |
|
|
|
| 920 |
|
|
case 'E':
|
| 921 |
|
|
{
|
| 922 |
|
|
struct position *subpos2, **subpos2_ptr;
|
| 923 |
|
|
int j;
|
| 924 |
|
|
|
| 925 |
|
|
subpos2_ptr = &pos->xvecexp0s;
|
| 926 |
|
|
for (j = 0; j < XVECLEN (pattern, i); j++)
|
| 927 |
|
|
{
|
| 928 |
|
|
subpos2 = next_position (subpos2_ptr, pos, POS_XVECEXP0, j);
|
| 929 |
|
|
sub = add_to_sequence (XVECEXP (pattern, i, j),
|
| 930 |
|
|
&sub->success, subpos2, insn_type, 0);
|
| 931 |
|
|
subpos2_ptr = &subpos2->next;
|
| 932 |
|
|
}
|
| 933 |
|
|
break;
|
| 934 |
|
|
}
|
| 935 |
|
|
|
| 936 |
|
|
case 'i': case 'w':
|
| 937 |
|
|
/* Handled above. */
|
| 938 |
|
|
break;
|
| 939 |
|
|
case '0':
|
| 940 |
|
|
break;
|
| 941 |
|
|
|
| 942 |
|
|
default:
|
| 943 |
|
|
gcc_unreachable ();
|
| 944 |
|
|
}
|
| 945 |
|
|
subpos_ptr = &subpos->next;
|
| 946 |
|
|
}
|
| 947 |
|
|
|
| 948 |
|
|
fini:
|
| 949 |
|
|
/* Insert nodes testing mode and code, if they're still relevant,
|
| 950 |
|
|
before any of the nodes we may have added above. */
|
| 951 |
|
|
if (code != UNKNOWN)
|
| 952 |
|
|
{
|
| 953 |
|
|
place = &this_decision->tests;
|
| 954 |
|
|
test = new_decision_test (DT_code, &place);
|
| 955 |
|
|
test->u.code = code;
|
| 956 |
|
|
}
|
| 957 |
|
|
|
| 958 |
|
|
if (mode != VOIDmode)
|
| 959 |
|
|
{
|
| 960 |
|
|
place = &this_decision->tests;
|
| 961 |
|
|
test = new_decision_test (DT_mode, &place);
|
| 962 |
|
|
test->u.mode = mode;
|
| 963 |
|
|
}
|
| 964 |
|
|
|
| 965 |
|
|
/* If we didn't insert any tests or accept nodes, hork. */
|
| 966 |
|
|
gcc_assert (this_decision->tests);
|
| 967 |
|
|
|
| 968 |
|
|
ret:
|
| 969 |
|
|
return sub;
|
| 970 |
|
|
}
|
| 971 |
|
|
|
| 972 |
|
|
/* A subroutine of maybe_both_true; examines only one test.
|
| 973 |
|
|
Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
|
| 974 |
|
|
|
| 975 |
|
|
static int
|
| 976 |
|
|
maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
|
| 977 |
|
|
{
|
| 978 |
|
|
if (d1->type == d2->type)
|
| 979 |
|
|
{
|
| 980 |
|
|
switch (d1->type)
|
| 981 |
|
|
{
|
| 982 |
|
|
case DT_num_insns:
|
| 983 |
|
|
if (d1->u.num_insns == d2->u.num_insns)
|
| 984 |
|
|
return 1;
|
| 985 |
|
|
else
|
| 986 |
|
|
return -1;
|
| 987 |
|
|
|
| 988 |
|
|
case DT_mode:
|
| 989 |
|
|
return d1->u.mode == d2->u.mode;
|
| 990 |
|
|
|
| 991 |
|
|
case DT_code:
|
| 992 |
|
|
return d1->u.code == d2->u.code;
|
| 993 |
|
|
|
| 994 |
|
|
case DT_veclen:
|
| 995 |
|
|
return d1->u.veclen == d2->u.veclen;
|
| 996 |
|
|
|
| 997 |
|
|
case DT_elt_zero_int:
|
| 998 |
|
|
case DT_elt_one_int:
|
| 999 |
|
|
case DT_elt_zero_wide:
|
| 1000 |
|
|
case DT_elt_zero_wide_safe:
|
| 1001 |
|
|
return d1->u.intval == d2->u.intval;
|
| 1002 |
|
|
|
| 1003 |
|
|
default:
|
| 1004 |
|
|
break;
|
| 1005 |
|
|
}
|
| 1006 |
|
|
}
|
| 1007 |
|
|
|
| 1008 |
|
|
/* If either has a predicate that we know something about, set
|
| 1009 |
|
|
things up so that D1 is the one that always has a known
|
| 1010 |
|
|
predicate. Then see if they have any codes in common. */
|
| 1011 |
|
|
|
| 1012 |
|
|
if (d1->type == DT_pred || d2->type == DT_pred)
|
| 1013 |
|
|
{
|
| 1014 |
|
|
if (d2->type == DT_pred)
|
| 1015 |
|
|
{
|
| 1016 |
|
|
struct decision_test *tmp;
|
| 1017 |
|
|
tmp = d1, d1 = d2, d2 = tmp;
|
| 1018 |
|
|
}
|
| 1019 |
|
|
|
| 1020 |
|
|
/* If D2 tests a mode, see if it matches D1. */
|
| 1021 |
|
|
if (d1->u.pred.mode != VOIDmode)
|
| 1022 |
|
|
{
|
| 1023 |
|
|
if (d2->type == DT_mode)
|
| 1024 |
|
|
{
|
| 1025 |
|
|
if (d1->u.pred.mode != d2->u.mode
|
| 1026 |
|
|
/* The mode of an address_operand predicate is the
|
| 1027 |
|
|
mode of the memory, not the operand. It can only
|
| 1028 |
|
|
be used for testing the predicate, so we must
|
| 1029 |
|
|
ignore it here. */
|
| 1030 |
|
|
&& strcmp (d1->u.pred.name, "address_operand") != 0)
|
| 1031 |
|
|
return 0;
|
| 1032 |
|
|
}
|
| 1033 |
|
|
/* Don't check two predicate modes here, because if both predicates
|
| 1034 |
|
|
accept CONST_INT, then both can still be true even if the modes
|
| 1035 |
|
|
are different. If they don't accept CONST_INT, there will be a
|
| 1036 |
|
|
separate DT_mode that will make maybe_both_true_1 return 0. */
|
| 1037 |
|
|
}
|
| 1038 |
|
|
|
| 1039 |
|
|
if (d1->u.pred.data)
|
| 1040 |
|
|
{
|
| 1041 |
|
|
/* If D2 tests a code, see if it is in the list of valid
|
| 1042 |
|
|
codes for D1's predicate. */
|
| 1043 |
|
|
if (d2->type == DT_code)
|
| 1044 |
|
|
{
|
| 1045 |
|
|
if (!d1->u.pred.data->codes[d2->u.code])
|
| 1046 |
|
|
return 0;
|
| 1047 |
|
|
}
|
| 1048 |
|
|
|
| 1049 |
|
|
/* Otherwise see if the predicates have any codes in common. */
|
| 1050 |
|
|
else if (d2->type == DT_pred && d2->u.pred.data)
|
| 1051 |
|
|
{
|
| 1052 |
|
|
bool common = false;
|
| 1053 |
|
|
int c;
|
| 1054 |
|
|
|
| 1055 |
|
|
for (c = 0; c < NUM_RTX_CODE; c++)
|
| 1056 |
|
|
if (d1->u.pred.data->codes[c] && d2->u.pred.data->codes[c])
|
| 1057 |
|
|
{
|
| 1058 |
|
|
common = true;
|
| 1059 |
|
|
break;
|
| 1060 |
|
|
}
|
| 1061 |
|
|
|
| 1062 |
|
|
if (!common)
|
| 1063 |
|
|
return 0;
|
| 1064 |
|
|
}
|
| 1065 |
|
|
}
|
| 1066 |
|
|
}
|
| 1067 |
|
|
|
| 1068 |
|
|
/* Tests vs veclen may be known when strict equality is involved. */
|
| 1069 |
|
|
if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
|
| 1070 |
|
|
return d1->u.veclen >= d2->u.veclen;
|
| 1071 |
|
|
if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
|
| 1072 |
|
|
return d2->u.veclen >= d1->u.veclen;
|
| 1073 |
|
|
|
| 1074 |
|
|
return -1;
|
| 1075 |
|
|
}
|
| 1076 |
|
|
|
| 1077 |
|
|
/* A subroutine of maybe_both_true; examines all the tests for a given node.
|
| 1078 |
|
|
Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
|
| 1079 |
|
|
|
| 1080 |
|
|
static int
|
| 1081 |
|
|
maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
|
| 1082 |
|
|
{
|
| 1083 |
|
|
struct decision_test *t1, *t2;
|
| 1084 |
|
|
|
| 1085 |
|
|
/* A match_operand with no predicate can match anything. Recognize
|
| 1086 |
|
|
this by the existence of a lone DT_accept_op test. */
|
| 1087 |
|
|
if (d1->type == DT_accept_op || d2->type == DT_accept_op)
|
| 1088 |
|
|
return 1;
|
| 1089 |
|
|
|
| 1090 |
|
|
/* Eliminate pairs of tests while they can exactly match. */
|
| 1091 |
|
|
while (d1 && d2 && d1->type == d2->type)
|
| 1092 |
|
|
{
|
| 1093 |
|
|
if (maybe_both_true_2 (d1, d2) == 0)
|
| 1094 |
|
|
return 0;
|
| 1095 |
|
|
d1 = d1->next, d2 = d2->next;
|
| 1096 |
|
|
}
|
| 1097 |
|
|
|
| 1098 |
|
|
/* After that, consider all pairs. */
|
| 1099 |
|
|
for (t1 = d1; t1 ; t1 = t1->next)
|
| 1100 |
|
|
for (t2 = d2; t2 ; t2 = t2->next)
|
| 1101 |
|
|
if (maybe_both_true_2 (t1, t2) == 0)
|
| 1102 |
|
|
return 0;
|
| 1103 |
|
|
|
| 1104 |
|
|
return -1;
|
| 1105 |
|
|
}
|
| 1106 |
|
|
|
| 1107 |
|
|
/* Return 0 if we can prove that there is no RTL that can match both
|
| 1108 |
|
|
D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
|
| 1109 |
|
|
can match both or just that we couldn't prove there wasn't such an RTL).
|
| 1110 |
|
|
|
| 1111 |
|
|
TOPLEVEL is nonzero if we are to only look at the top level and not
|
| 1112 |
|
|
recursively descend. */
|
| 1113 |
|
|
|
| 1114 |
|
|
static int
|
| 1115 |
|
|
maybe_both_true (struct decision *d1, struct decision *d2,
|
| 1116 |
|
|
int toplevel)
|
| 1117 |
|
|
{
|
| 1118 |
|
|
struct decision *p1, *p2;
|
| 1119 |
|
|
int cmp;
|
| 1120 |
|
|
|
| 1121 |
|
|
/* Don't compare strings on the different positions in insn. Doing so
|
| 1122 |
|
|
is incorrect and results in false matches from constructs like
|
| 1123 |
|
|
|
| 1124 |
|
|
[(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
|
| 1125 |
|
|
(subreg:HI (match_operand:SI "register_operand" "r") 0))]
|
| 1126 |
|
|
vs
|
| 1127 |
|
|
[(set (match_operand:HI "register_operand" "r")
|
| 1128 |
|
|
(match_operand:HI "register_operand" "r"))]
|
| 1129 |
|
|
|
| 1130 |
|
|
If we are presented with such, we are recursing through the remainder
|
| 1131 |
|
|
of a node's success nodes (from the loop at the end of this function).
|
| 1132 |
|
|
Skip forward until we come to a position that matches.
|
| 1133 |
|
|
|
| 1134 |
|
|
Due to the way positions are constructed, we know that iterating
|
| 1135 |
|
|
forward from the lexically lower position will run into the lexically
|
| 1136 |
|
|
higher position and not the other way around. This saves a bit
|
| 1137 |
|
|
of effort. */
|
| 1138 |
|
|
|
| 1139 |
|
|
cmp = compare_positions (d1->position, d2->position);
|
| 1140 |
|
|
if (cmp != 0)
|
| 1141 |
|
|
{
|
| 1142 |
|
|
gcc_assert (!toplevel);
|
| 1143 |
|
|
|
| 1144 |
|
|
/* If the d2->position was lexically lower, swap. */
|
| 1145 |
|
|
if (cmp > 0)
|
| 1146 |
|
|
p1 = d1, d1 = d2, d2 = p1;
|
| 1147 |
|
|
|
| 1148 |
|
|
if (d1->success.first == 0)
|
| 1149 |
|
|
return 1;
|
| 1150 |
|
|
for (p1 = d1->success.first; p1; p1 = p1->next)
|
| 1151 |
|
|
if (maybe_both_true (p1, d2, 0))
|
| 1152 |
|
|
return 1;
|
| 1153 |
|
|
|
| 1154 |
|
|
return 0;
|
| 1155 |
|
|
}
|
| 1156 |
|
|
|
| 1157 |
|
|
/* Test the current level. */
|
| 1158 |
|
|
cmp = maybe_both_true_1 (d1->tests, d2->tests);
|
| 1159 |
|
|
if (cmp >= 0)
|
| 1160 |
|
|
return cmp;
|
| 1161 |
|
|
|
| 1162 |
|
|
/* We can't prove that D1 and D2 cannot both be true. If we are only
|
| 1163 |
|
|
to check the top level, return 1. Otherwise, see if we can prove
|
| 1164 |
|
|
that all choices in both successors are mutually exclusive. If
|
| 1165 |
|
|
either does not have any successors, we can't prove they can't both
|
| 1166 |
|
|
be true. */
|
| 1167 |
|
|
|
| 1168 |
|
|
if (toplevel || d1->success.first == 0 || d2->success.first == 0)
|
| 1169 |
|
|
return 1;
|
| 1170 |
|
|
|
| 1171 |
|
|
for (p1 = d1->success.first; p1; p1 = p1->next)
|
| 1172 |
|
|
for (p2 = d2->success.first; p2; p2 = p2->next)
|
| 1173 |
|
|
if (maybe_both_true (p1, p2, 0))
|
| 1174 |
|
|
return 1;
|
| 1175 |
|
|
|
| 1176 |
|
|
return 0;
|
| 1177 |
|
|
}
|
| 1178 |
|
|
|
| 1179 |
|
|
/* A subroutine of nodes_identical. Examine two tests for equivalence. */
|
| 1180 |
|
|
|
| 1181 |
|
|
static int
|
| 1182 |
|
|
nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
|
| 1183 |
|
|
{
|
| 1184 |
|
|
switch (d1->type)
|
| 1185 |
|
|
{
|
| 1186 |
|
|
case DT_num_insns:
|
| 1187 |
|
|
return d1->u.num_insns == d2->u.num_insns;
|
| 1188 |
|
|
|
| 1189 |
|
|
case DT_mode:
|
| 1190 |
|
|
return d1->u.mode == d2->u.mode;
|
| 1191 |
|
|
|
| 1192 |
|
|
case DT_code:
|
| 1193 |
|
|
return d1->u.code == d2->u.code;
|
| 1194 |
|
|
|
| 1195 |
|
|
case DT_pred:
|
| 1196 |
|
|
return (d1->u.pred.mode == d2->u.pred.mode
|
| 1197 |
|
|
&& strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
|
| 1198 |
|
|
|
| 1199 |
|
|
case DT_c_test:
|
| 1200 |
|
|
return strcmp (d1->u.c_test, d2->u.c_test) == 0;
|
| 1201 |
|
|
|
| 1202 |
|
|
case DT_veclen:
|
| 1203 |
|
|
case DT_veclen_ge:
|
| 1204 |
|
|
return d1->u.veclen == d2->u.veclen;
|
| 1205 |
|
|
|
| 1206 |
|
|
case DT_dup:
|
| 1207 |
|
|
return d1->u.dup == d2->u.dup;
|
| 1208 |
|
|
|
| 1209 |
|
|
case DT_elt_zero_int:
|
| 1210 |
|
|
case DT_elt_one_int:
|
| 1211 |
|
|
case DT_elt_zero_wide:
|
| 1212 |
|
|
case DT_elt_zero_wide_safe:
|
| 1213 |
|
|
return d1->u.intval == d2->u.intval;
|
| 1214 |
|
|
|
| 1215 |
|
|
case DT_accept_op:
|
| 1216 |
|
|
return d1->u.opno == d2->u.opno;
|
| 1217 |
|
|
|
| 1218 |
|
|
case DT_accept_insn:
|
| 1219 |
|
|
/* Differences will be handled in merge_accept_insn. */
|
| 1220 |
|
|
return 1;
|
| 1221 |
|
|
|
| 1222 |
|
|
default:
|
| 1223 |
|
|
gcc_unreachable ();
|
| 1224 |
|
|
}
|
| 1225 |
|
|
}
|
| 1226 |
|
|
|
| 1227 |
|
|
/* True iff the two nodes are identical (on one level only). Due
|
| 1228 |
|
|
to the way these lists are constructed, we shouldn't have to
|
| 1229 |
|
|
consider different orderings on the tests. */
|
| 1230 |
|
|
|
| 1231 |
|
|
static int
|
| 1232 |
|
|
nodes_identical (struct decision *d1, struct decision *d2)
|
| 1233 |
|
|
{
|
| 1234 |
|
|
struct decision_test *t1, *t2;
|
| 1235 |
|
|
|
| 1236 |
|
|
for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
|
| 1237 |
|
|
{
|
| 1238 |
|
|
if (t1->type != t2->type)
|
| 1239 |
|
|
return 0;
|
| 1240 |
|
|
if (! nodes_identical_1 (t1, t2))
|
| 1241 |
|
|
return 0;
|
| 1242 |
|
|
}
|
| 1243 |
|
|
|
| 1244 |
|
|
/* For success, they should now both be null. */
|
| 1245 |
|
|
if (t1 != t2)
|
| 1246 |
|
|
return 0;
|
| 1247 |
|
|
|
| 1248 |
|
|
/* Check that their subnodes are at the same position, as any one set
|
| 1249 |
|
|
of sibling decisions must be at the same position. Allowing this
|
| 1250 |
|
|
requires complications to find_afterward and when change_state is
|
| 1251 |
|
|
invoked. */
|
| 1252 |
|
|
if (d1->success.first
|
| 1253 |
|
|
&& d2->success.first
|
| 1254 |
|
|
&& d1->success.first->position != d2->success.first->position)
|
| 1255 |
|
|
return 0;
|
| 1256 |
|
|
|
| 1257 |
|
|
return 1;
|
| 1258 |
|
|
}
|
| 1259 |
|
|
|
| 1260 |
|
|
/* A subroutine of merge_trees; given two nodes that have been declared
|
| 1261 |
|
|
identical, cope with two insn accept states. If they differ in the
|
| 1262 |
|
|
number of clobbers, then the conflict was created by make_insn_sequence
|
| 1263 |
|
|
and we can drop the with-clobbers version on the floor. If both
|
| 1264 |
|
|
nodes have no additional clobbers, we have found an ambiguity in the
|
| 1265 |
|
|
source machine description. */
|
| 1266 |
|
|
|
| 1267 |
|
|
static void
|
| 1268 |
|
|
merge_accept_insn (struct decision *oldd, struct decision *addd)
|
| 1269 |
|
|
{
|
| 1270 |
|
|
struct decision_test *old, *add;
|
| 1271 |
|
|
|
| 1272 |
|
|
for (old = oldd->tests; old; old = old->next)
|
| 1273 |
|
|
if (old->type == DT_accept_insn)
|
| 1274 |
|
|
break;
|
| 1275 |
|
|
if (old == NULL)
|
| 1276 |
|
|
return;
|
| 1277 |
|
|
|
| 1278 |
|
|
for (add = addd->tests; add; add = add->next)
|
| 1279 |
|
|
if (add->type == DT_accept_insn)
|
| 1280 |
|
|
break;
|
| 1281 |
|
|
if (add == NULL)
|
| 1282 |
|
|
return;
|
| 1283 |
|
|
|
| 1284 |
|
|
/* If one node is for a normal insn and the second is for the base
|
| 1285 |
|
|
insn with clobbers stripped off, the second node should be ignored. */
|
| 1286 |
|
|
|
| 1287 |
|
|
if (old->u.insn.num_clobbers_to_add == 0
|
| 1288 |
|
|
&& add->u.insn.num_clobbers_to_add > 0)
|
| 1289 |
|
|
{
|
| 1290 |
|
|
/* Nothing to do here. */
|
| 1291 |
|
|
}
|
| 1292 |
|
|
else if (old->u.insn.num_clobbers_to_add > 0
|
| 1293 |
|
|
&& add->u.insn.num_clobbers_to_add == 0)
|
| 1294 |
|
|
{
|
| 1295 |
|
|
/* In this case, replace OLD with ADD. */
|
| 1296 |
|
|
old->u.insn = add->u.insn;
|
| 1297 |
|
|
}
|
| 1298 |
|
|
else
|
| 1299 |
|
|
{
|
| 1300 |
|
|
error_with_line (add->u.insn.lineno, "`%s' matches `%s'",
|
| 1301 |
|
|
get_insn_name (add->u.insn.code_number),
|
| 1302 |
|
|
get_insn_name (old->u.insn.code_number));
|
| 1303 |
|
|
message_with_line (old->u.insn.lineno, "previous definition of `%s'",
|
| 1304 |
|
|
get_insn_name (old->u.insn.code_number));
|
| 1305 |
|
|
}
|
| 1306 |
|
|
}
|
| 1307 |
|
|
|
| 1308 |
|
|
/* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
|
| 1309 |
|
|
|
| 1310 |
|
|
static void
|
| 1311 |
|
|
merge_trees (struct decision_head *oldh, struct decision_head *addh)
|
| 1312 |
|
|
{
|
| 1313 |
|
|
struct decision *next, *add;
|
| 1314 |
|
|
|
| 1315 |
|
|
if (addh->first == 0)
|
| 1316 |
|
|
return;
|
| 1317 |
|
|
if (oldh->first == 0)
|
| 1318 |
|
|
{
|
| 1319 |
|
|
*oldh = *addh;
|
| 1320 |
|
|
return;
|
| 1321 |
|
|
}
|
| 1322 |
|
|
|
| 1323 |
|
|
/* Trying to merge bits at different positions isn't possible. */
|
| 1324 |
|
|
gcc_assert (oldh->first->position == addh->first->position);
|
| 1325 |
|
|
|
| 1326 |
|
|
for (add = addh->first; add ; add = next)
|
| 1327 |
|
|
{
|
| 1328 |
|
|
struct decision *old, *insert_before = NULL;
|
| 1329 |
|
|
|
| 1330 |
|
|
next = add->next;
|
| 1331 |
|
|
|
| 1332 |
|
|
/* The semantics of pattern matching state that the tests are
|
| 1333 |
|
|
done in the order given in the MD file so that if an insn
|
| 1334 |
|
|
matches two patterns, the first one will be used. However,
|
| 1335 |
|
|
in practice, most, if not all, patterns are unambiguous so
|
| 1336 |
|
|
that their order is independent. In that case, we can merge
|
| 1337 |
|
|
identical tests and group all similar modes and codes together.
|
| 1338 |
|
|
|
| 1339 |
|
|
Scan starting from the end of OLDH until we reach a point
|
| 1340 |
|
|
where we reach the head of the list or where we pass a
|
| 1341 |
|
|
pattern that could also be true if NEW is true. If we find
|
| 1342 |
|
|
an identical pattern, we can merge them. Also, record the
|
| 1343 |
|
|
last node that tests the same code and mode and the last one
|
| 1344 |
|
|
that tests just the same mode.
|
| 1345 |
|
|
|
| 1346 |
|
|
If we have no match, place NEW after the closest match we found. */
|
| 1347 |
|
|
|
| 1348 |
|
|
for (old = oldh->last; old; old = old->prev)
|
| 1349 |
|
|
{
|
| 1350 |
|
|
if (nodes_identical (old, add))
|
| 1351 |
|
|
{
|
| 1352 |
|
|
merge_accept_insn (old, add);
|
| 1353 |
|
|
merge_trees (&old->success, &add->success);
|
| 1354 |
|
|
goto merged_nodes;
|
| 1355 |
|
|
}
|
| 1356 |
|
|
|
| 1357 |
|
|
if (maybe_both_true (old, add, 0))
|
| 1358 |
|
|
break;
|
| 1359 |
|
|
|
| 1360 |
|
|
/* Insert the nodes in DT test type order, which is roughly
|
| 1361 |
|
|
how expensive/important the test is. Given that the tests
|
| 1362 |
|
|
are also ordered within the list, examining the first is
|
| 1363 |
|
|
sufficient. */
|
| 1364 |
|
|
if ((int) add->tests->type < (int) old->tests->type)
|
| 1365 |
|
|
insert_before = old;
|
| 1366 |
|
|
}
|
| 1367 |
|
|
|
| 1368 |
|
|
if (insert_before == NULL)
|
| 1369 |
|
|
{
|
| 1370 |
|
|
add->next = NULL;
|
| 1371 |
|
|
add->prev = oldh->last;
|
| 1372 |
|
|
oldh->last->next = add;
|
| 1373 |
|
|
oldh->last = add;
|
| 1374 |
|
|
}
|
| 1375 |
|
|
else
|
| 1376 |
|
|
{
|
| 1377 |
|
|
if ((add->prev = insert_before->prev) != NULL)
|
| 1378 |
|
|
add->prev->next = add;
|
| 1379 |
|
|
else
|
| 1380 |
|
|
oldh->first = add;
|
| 1381 |
|
|
add->next = insert_before;
|
| 1382 |
|
|
insert_before->prev = add;
|
| 1383 |
|
|
}
|
| 1384 |
|
|
|
| 1385 |
|
|
merged_nodes:;
|
| 1386 |
|
|
}
|
| 1387 |
|
|
}
|
| 1388 |
|
|
|
| 1389 |
|
|
/* Walk the tree looking for sub-nodes that perform common tests.
|
| 1390 |
|
|
Factor out the common test into a new node. This enables us
|
| 1391 |
|
|
(depending on the test type) to emit switch statements later. */
|
| 1392 |
|
|
|
| 1393 |
|
|
static void
|
| 1394 |
|
|
factor_tests (struct decision_head *head)
|
| 1395 |
|
|
{
|
| 1396 |
|
|
struct decision *first, *next;
|
| 1397 |
|
|
|
| 1398 |
|
|
for (first = head->first; first && first->next; first = next)
|
| 1399 |
|
|
{
|
| 1400 |
|
|
enum decision_type type;
|
| 1401 |
|
|
struct decision *new_dec, *old_last;
|
| 1402 |
|
|
|
| 1403 |
|
|
type = first->tests->type;
|
| 1404 |
|
|
next = first->next;
|
| 1405 |
|
|
|
| 1406 |
|
|
/* Want at least two compatible sequential nodes. */
|
| 1407 |
|
|
if (next->tests->type != type)
|
| 1408 |
|
|
continue;
|
| 1409 |
|
|
|
| 1410 |
|
|
/* Don't want all node types, just those we can turn into
|
| 1411 |
|
|
switch statements. */
|
| 1412 |
|
|
if (type != DT_mode
|
| 1413 |
|
|
&& type != DT_code
|
| 1414 |
|
|
&& type != DT_veclen
|
| 1415 |
|
|
&& type != DT_elt_zero_int
|
| 1416 |
|
|
&& type != DT_elt_one_int
|
| 1417 |
|
|
&& type != DT_elt_zero_wide_safe)
|
| 1418 |
|
|
continue;
|
| 1419 |
|
|
|
| 1420 |
|
|
/* If we'd been performing more than one test, create a new node
|
| 1421 |
|
|
below our first test. */
|
| 1422 |
|
|
if (first->tests->next != NULL)
|
| 1423 |
|
|
{
|
| 1424 |
|
|
new_dec = new_decision (first->position, &first->success);
|
| 1425 |
|
|
new_dec->tests = first->tests->next;
|
| 1426 |
|
|
first->tests->next = NULL;
|
| 1427 |
|
|
}
|
| 1428 |
|
|
|
| 1429 |
|
|
/* Crop the node tree off after our first test. */
|
| 1430 |
|
|
first->next = NULL;
|
| 1431 |
|
|
old_last = head->last;
|
| 1432 |
|
|
head->last = first;
|
| 1433 |
|
|
|
| 1434 |
|
|
/* For each compatible test, adjust to perform only one test in
|
| 1435 |
|
|
the top level node, then merge the node back into the tree. */
|
| 1436 |
|
|
do
|
| 1437 |
|
|
{
|
| 1438 |
|
|
struct decision_head h;
|
| 1439 |
|
|
|
| 1440 |
|
|
if (next->tests->next != NULL)
|
| 1441 |
|
|
{
|
| 1442 |
|
|
new_dec = new_decision (next->position, &next->success);
|
| 1443 |
|
|
new_dec->tests = next->tests->next;
|
| 1444 |
|
|
next->tests->next = NULL;
|
| 1445 |
|
|
}
|
| 1446 |
|
|
new_dec = next;
|
| 1447 |
|
|
next = next->next;
|
| 1448 |
|
|
new_dec->next = NULL;
|
| 1449 |
|
|
h.first = h.last = new_dec;
|
| 1450 |
|
|
|
| 1451 |
|
|
merge_trees (head, &h);
|
| 1452 |
|
|
}
|
| 1453 |
|
|
while (next && next->tests->type == type);
|
| 1454 |
|
|
|
| 1455 |
|
|
/* After we run out of compatible tests, graft the remaining nodes
|
| 1456 |
|
|
back onto the tree. */
|
| 1457 |
|
|
if (next)
|
| 1458 |
|
|
{
|
| 1459 |
|
|
next->prev = head->last;
|
| 1460 |
|
|
head->last->next = next;
|
| 1461 |
|
|
head->last = old_last;
|
| 1462 |
|
|
}
|
| 1463 |
|
|
}
|
| 1464 |
|
|
|
| 1465 |
|
|
/* Recurse. */
|
| 1466 |
|
|
for (first = head->first; first; first = first->next)
|
| 1467 |
|
|
factor_tests (&first->success);
|
| 1468 |
|
|
}
|
| 1469 |
|
|
|
| 1470 |
|
|
/* After factoring, try to simplify the tests on any one node.
|
| 1471 |
|
|
Tests that are useful for switch statements are recognizable
|
| 1472 |
|
|
by having only a single test on a node -- we'll be manipulating
|
| 1473 |
|
|
nodes with multiple tests:
|
| 1474 |
|
|
|
| 1475 |
|
|
If we have mode tests or code tests that are redundant with
|
| 1476 |
|
|
predicates, remove them. */
|
| 1477 |
|
|
|
| 1478 |
|
|
static void
|
| 1479 |
|
|
simplify_tests (struct decision_head *head)
|
| 1480 |
|
|
{
|
| 1481 |
|
|
struct decision *tree;
|
| 1482 |
|
|
|
| 1483 |
|
|
for (tree = head->first; tree; tree = tree->next)
|
| 1484 |
|
|
{
|
| 1485 |
|
|
struct decision_test *a, *b;
|
| 1486 |
|
|
|
| 1487 |
|
|
a = tree->tests;
|
| 1488 |
|
|
b = a->next;
|
| 1489 |
|
|
if (b == NULL)
|
| 1490 |
|
|
continue;
|
| 1491 |
|
|
|
| 1492 |
|
|
/* Find a predicate node. */
|
| 1493 |
|
|
while (b && b->type != DT_pred)
|
| 1494 |
|
|
b = b->next;
|
| 1495 |
|
|
if (b)
|
| 1496 |
|
|
{
|
| 1497 |
|
|
/* Due to how these tests are constructed, we don't even need
|
| 1498 |
|
|
to check that the mode and code are compatible -- they were
|
| 1499 |
|
|
generated from the predicate in the first place. */
|
| 1500 |
|
|
while (a->type == DT_mode || a->type == DT_code)
|
| 1501 |
|
|
a = a->next;
|
| 1502 |
|
|
tree->tests = a;
|
| 1503 |
|
|
}
|
| 1504 |
|
|
}
|
| 1505 |
|
|
|
| 1506 |
|
|
/* Recurse. */
|
| 1507 |
|
|
for (tree = head->first; tree; tree = tree->next)
|
| 1508 |
|
|
simplify_tests (&tree->success);
|
| 1509 |
|
|
}
|
| 1510 |
|
|
|
| 1511 |
|
|
/* Count the number of subnodes of HEAD. If the number is high enough,
|
| 1512 |
|
|
make the first node in HEAD start a separate subroutine in the C code
|
| 1513 |
|
|
that is generated. */
|
| 1514 |
|
|
|
| 1515 |
|
|
static int
|
| 1516 |
|
|
break_out_subroutines (struct decision_head *head, int initial)
|
| 1517 |
|
|
{
|
| 1518 |
|
|
int size = 0;
|
| 1519 |
|
|
struct decision *sub;
|
| 1520 |
|
|
|
| 1521 |
|
|
for (sub = head->first; sub; sub = sub->next)
|
| 1522 |
|
|
size += 1 + break_out_subroutines (&sub->success, 0);
|
| 1523 |
|
|
|
| 1524 |
|
|
if (size > SUBROUTINE_THRESHOLD && ! initial)
|
| 1525 |
|
|
{
|
| 1526 |
|
|
head->first->subroutine_number = ++next_subroutine_number;
|
| 1527 |
|
|
size = 1;
|
| 1528 |
|
|
}
|
| 1529 |
|
|
return size;
|
| 1530 |
|
|
}
|
| 1531 |
|
|
|
| 1532 |
|
|
/* For each node p, find the next alternative that might be true
|
| 1533 |
|
|
when p is true. */
|
| 1534 |
|
|
|
| 1535 |
|
|
static void
|
| 1536 |
|
|
find_afterward (struct decision_head *head, struct decision *real_afterward)
|
| 1537 |
|
|
{
|
| 1538 |
|
|
struct decision *p, *q, *afterward;
|
| 1539 |
|
|
|
| 1540 |
|
|
/* We can't propagate alternatives across subroutine boundaries.
|
| 1541 |
|
|
This is not incorrect, merely a minor optimization loss. */
|
| 1542 |
|
|
|
| 1543 |
|
|
p = head->first;
|
| 1544 |
|
|
afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
|
| 1545 |
|
|
|
| 1546 |
|
|
for ( ; p ; p = p->next)
|
| 1547 |
|
|
{
|
| 1548 |
|
|
/* Find the next node that might be true if this one fails. */
|
| 1549 |
|
|
for (q = p->next; q ; q = q->next)
|
| 1550 |
|
|
if (maybe_both_true (p, q, 1))
|
| 1551 |
|
|
break;
|
| 1552 |
|
|
|
| 1553 |
|
|
/* If we reached the end of the list without finding one,
|
| 1554 |
|
|
use the incoming afterward position. */
|
| 1555 |
|
|
if (!q)
|
| 1556 |
|
|
q = afterward;
|
| 1557 |
|
|
p->afterward = q;
|
| 1558 |
|
|
if (q)
|
| 1559 |
|
|
q->need_label = 1;
|
| 1560 |
|
|
}
|
| 1561 |
|
|
|
| 1562 |
|
|
/* Recurse. */
|
| 1563 |
|
|
for (p = head->first; p ; p = p->next)
|
| 1564 |
|
|
if (p->success.first)
|
| 1565 |
|
|
find_afterward (&p->success, p->afterward);
|
| 1566 |
|
|
|
| 1567 |
|
|
/* When we are generating a subroutine, record the real afterward
|
| 1568 |
|
|
position in the first node where write_tree can find it, and we
|
| 1569 |
|
|
can do the right thing at the subroutine call site. */
|
| 1570 |
|
|
p = head->first;
|
| 1571 |
|
|
if (p->subroutine_number > 0)
|
| 1572 |
|
|
p->afterward = real_afterward;
|
| 1573 |
|
|
}
|
| 1574 |
|
|
|
| 1575 |
|
|
/* Assuming that the state of argument is denoted by OLDPOS, take whatever
|
| 1576 |
|
|
actions are necessary to move to NEWPOS. If we fail to move to the
|
| 1577 |
|
|
new state, branch to node AFTERWARD if nonzero, otherwise return.
|
| 1578 |
|
|
|
| 1579 |
|
|
Failure to move to the new state can only occur if we are trying to
|
| 1580 |
|
|
match multiple insns and we try to step past the end of the stream. */
|
| 1581 |
|
|
|
| 1582 |
|
|
static void
|
| 1583 |
|
|
change_state (struct position *oldpos, struct position *newpos,
|
| 1584 |
|
|
const char *indent)
|
| 1585 |
|
|
{
|
| 1586 |
|
|
while (oldpos->depth > newpos->depth)
|
| 1587 |
|
|
oldpos = oldpos->base;
|
| 1588 |
|
|
|
| 1589 |
|
|
if (oldpos != newpos)
|
| 1590 |
|
|
switch (newpos->type)
|
| 1591 |
|
|
{
|
| 1592 |
|
|
case POS_PEEP2_INSN:
|
| 1593 |
|
|
printf ("%stem = peep2_next_insn (%d);\n", indent, newpos->arg);
|
| 1594 |
|
|
printf ("%sx%d = PATTERN (tem);\n", indent, newpos->depth);
|
| 1595 |
|
|
break;
|
| 1596 |
|
|
|
| 1597 |
|
|
case POS_XEXP:
|
| 1598 |
|
|
change_state (oldpos, newpos->base, indent);
|
| 1599 |
|
|
printf ("%sx%d = XEXP (x%d, %d);\n",
|
| 1600 |
|
|
indent, newpos->depth, newpos->depth - 1, newpos->arg);
|
| 1601 |
|
|
break;
|
| 1602 |
|
|
|
| 1603 |
|
|
case POS_XVECEXP0:
|
| 1604 |
|
|
change_state (oldpos, newpos->base, indent);
|
| 1605 |
|
|
printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
|
| 1606 |
|
|
indent, newpos->depth, newpos->depth - 1, newpos->arg);
|
| 1607 |
|
|
break;
|
| 1608 |
|
|
}
|
| 1609 |
|
|
}
|
| 1610 |
|
|
|
| 1611 |
|
|
/* Print the enumerator constant for CODE -- the upcase version of
|
| 1612 |
|
|
the name. */
|
| 1613 |
|
|
|
| 1614 |
|
|
static void
|
| 1615 |
|
|
print_code (enum rtx_code code)
|
| 1616 |
|
|
{
|
| 1617 |
|
|
const char *p;
|
| 1618 |
|
|
for (p = GET_RTX_NAME (code); *p; p++)
|
| 1619 |
|
|
putchar (TOUPPER (*p));
|
| 1620 |
|
|
}
|
| 1621 |
|
|
|
| 1622 |
|
|
/* Emit code to cross an afterward link -- change state and branch. */
|
| 1623 |
|
|
|
| 1624 |
|
|
static void
|
| 1625 |
|
|
write_afterward (struct decision *start, struct decision *afterward,
|
| 1626 |
|
|
const char *indent)
|
| 1627 |
|
|
{
|
| 1628 |
|
|
if (!afterward || start->subroutine_number > 0)
|
| 1629 |
|
|
printf("%sgoto ret0;\n", indent);
|
| 1630 |
|
|
else
|
| 1631 |
|
|
{
|
| 1632 |
|
|
change_state (start->position, afterward->position, indent);
|
| 1633 |
|
|
printf ("%sgoto L%d;\n", indent, afterward->number);
|
| 1634 |
|
|
}
|
| 1635 |
|
|
}
|
| 1636 |
|
|
|
| 1637 |
|
|
/* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
|
| 1638 |
|
|
special care to avoid "decimal constant is so large that it is unsigned"
|
| 1639 |
|
|
warnings in the resulting code. */
|
| 1640 |
|
|
|
| 1641 |
|
|
static void
|
| 1642 |
|
|
print_host_wide_int (HOST_WIDE_INT val)
|
| 1643 |
|
|
{
|
| 1644 |
|
|
HOST_WIDE_INT min = (unsigned HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1);
|
| 1645 |
|
|
if (val == min)
|
| 1646 |
|
|
printf ("(" HOST_WIDE_INT_PRINT_DEC_C "-1)", val + 1);
|
| 1647 |
|
|
else
|
| 1648 |
|
|
printf (HOST_WIDE_INT_PRINT_DEC_C, val);
|
| 1649 |
|
|
}
|
| 1650 |
|
|
|
| 1651 |
|
|
/* Emit a switch statement, if possible, for an initial sequence of
|
| 1652 |
|
|
nodes at START. Return the first node yet untested. */
|
| 1653 |
|
|
|
| 1654 |
|
|
static struct decision *
|
| 1655 |
|
|
write_switch (struct decision *start, int depth)
|
| 1656 |
|
|
{
|
| 1657 |
|
|
struct decision *p = start;
|
| 1658 |
|
|
enum decision_type type = p->tests->type;
|
| 1659 |
|
|
struct decision *needs_label = NULL;
|
| 1660 |
|
|
|
| 1661 |
|
|
/* If we have two or more nodes in sequence that test the same one
|
| 1662 |
|
|
thing, we may be able to use a switch statement. */
|
| 1663 |
|
|
|
| 1664 |
|
|
if (!p->next
|
| 1665 |
|
|
|| p->tests->next
|
| 1666 |
|
|
|| p->next->tests->type != type
|
| 1667 |
|
|
|| p->next->tests->next
|
| 1668 |
|
|
|| nodes_identical_1 (p->tests, p->next->tests))
|
| 1669 |
|
|
return p;
|
| 1670 |
|
|
|
| 1671 |
|
|
/* DT_code is special in that we can do interesting things with
|
| 1672 |
|
|
known predicates at the same time. */
|
| 1673 |
|
|
if (type == DT_code)
|
| 1674 |
|
|
{
|
| 1675 |
|
|
char codemap[NUM_RTX_CODE];
|
| 1676 |
|
|
struct decision *ret;
|
| 1677 |
|
|
RTX_CODE code;
|
| 1678 |
|
|
|
| 1679 |
|
|
memset (codemap, 0, sizeof(codemap));
|
| 1680 |
|
|
|
| 1681 |
|
|
printf (" switch (GET_CODE (x%d))\n {\n", depth);
|
| 1682 |
|
|
code = p->tests->u.code;
|
| 1683 |
|
|
do
|
| 1684 |
|
|
{
|
| 1685 |
|
|
if (p != start && p->need_label && needs_label == NULL)
|
| 1686 |
|
|
needs_label = p;
|
| 1687 |
|
|
|
| 1688 |
|
|
printf (" case ");
|
| 1689 |
|
|
print_code (code);
|
| 1690 |
|
|
printf (":\n goto L%d;\n", p->success.first->number);
|
| 1691 |
|
|
p->success.first->need_label = 1;
|
| 1692 |
|
|
|
| 1693 |
|
|
codemap[code] = 1;
|
| 1694 |
|
|
p = p->next;
|
| 1695 |
|
|
}
|
| 1696 |
|
|
while (p
|
| 1697 |
|
|
&& ! p->tests->next
|
| 1698 |
|
|
&& p->tests->type == DT_code
|
| 1699 |
|
|
&& ! codemap[code = p->tests->u.code]);
|
| 1700 |
|
|
|
| 1701 |
|
|
/* If P is testing a predicate that we know about and we haven't
|
| 1702 |
|
|
seen any of the codes that are valid for the predicate, we can
|
| 1703 |
|
|
write a series of "case" statement, one for each possible code.
|
| 1704 |
|
|
Since we are already in a switch, these redundant tests are very
|
| 1705 |
|
|
cheap and will reduce the number of predicates called. */
|
| 1706 |
|
|
|
| 1707 |
|
|
/* Note that while we write out cases for these predicates here,
|
| 1708 |
|
|
we don't actually write the test here, as it gets kinda messy.
|
| 1709 |
|
|
It is trivial to leave this to later by telling our caller that
|
| 1710 |
|
|
we only processed the CODE tests. */
|
| 1711 |
|
|
if (needs_label != NULL)
|
| 1712 |
|
|
ret = needs_label;
|
| 1713 |
|
|
else
|
| 1714 |
|
|
ret = p;
|
| 1715 |
|
|
|
| 1716 |
|
|
while (p && p->tests->type == DT_pred && p->tests->u.pred.data)
|
| 1717 |
|
|
{
|
| 1718 |
|
|
const struct pred_data *data = p->tests->u.pred.data;
|
| 1719 |
|
|
int c;
|
| 1720 |
|
|
|
| 1721 |
|
|
for (c = 0; c < NUM_RTX_CODE; c++)
|
| 1722 |
|
|
if (codemap[c] && data->codes[c])
|
| 1723 |
|
|
goto pred_done;
|
| 1724 |
|
|
|
| 1725 |
|
|
for (c = 0; c < NUM_RTX_CODE; c++)
|
| 1726 |
|
|
if (data->codes[c])
|
| 1727 |
|
|
{
|
| 1728 |
|
|
fputs (" case ", stdout);
|
| 1729 |
|
|
print_code ((enum rtx_code) c);
|
| 1730 |
|
|
fputs (":\n", stdout);
|
| 1731 |
|
|
codemap[c] = 1;
|
| 1732 |
|
|
}
|
| 1733 |
|
|
|
| 1734 |
|
|
printf (" goto L%d;\n", p->number);
|
| 1735 |
|
|
p->need_label = 1;
|
| 1736 |
|
|
p = p->next;
|
| 1737 |
|
|
}
|
| 1738 |
|
|
|
| 1739 |
|
|
pred_done:
|
| 1740 |
|
|
/* Make the default case skip the predicates we managed to match. */
|
| 1741 |
|
|
|
| 1742 |
|
|
printf (" default:\n");
|
| 1743 |
|
|
if (p != ret)
|
| 1744 |
|
|
{
|
| 1745 |
|
|
if (p)
|
| 1746 |
|
|
{
|
| 1747 |
|
|
printf (" goto L%d;\n", p->number);
|
| 1748 |
|
|
p->need_label = 1;
|
| 1749 |
|
|
}
|
| 1750 |
|
|
else
|
| 1751 |
|
|
write_afterward (start, start->afterward, " ");
|
| 1752 |
|
|
}
|
| 1753 |
|
|
else
|
| 1754 |
|
|
printf (" break;\n");
|
| 1755 |
|
|
printf (" }\n");
|
| 1756 |
|
|
|
| 1757 |
|
|
return ret;
|
| 1758 |
|
|
}
|
| 1759 |
|
|
else if (type == DT_mode
|
| 1760 |
|
|
|| type == DT_veclen
|
| 1761 |
|
|
|| type == DT_elt_zero_int
|
| 1762 |
|
|
|| type == DT_elt_one_int
|
| 1763 |
|
|
|| type == DT_elt_zero_wide_safe)
|
| 1764 |
|
|
{
|
| 1765 |
|
|
const char *indent = "";
|
| 1766 |
|
|
|
| 1767 |
|
|
/* We cast switch parameter to integer, so we must ensure that the value
|
| 1768 |
|
|
fits. */
|
| 1769 |
|
|
if (type == DT_elt_zero_wide_safe)
|
| 1770 |
|
|
{
|
| 1771 |
|
|
indent = " ";
|
| 1772 |
|
|
printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
|
| 1773 |
|
|
}
|
| 1774 |
|
|
printf ("%s switch (", indent);
|
| 1775 |
|
|
switch (type)
|
| 1776 |
|
|
{
|
| 1777 |
|
|
case DT_mode:
|
| 1778 |
|
|
printf ("GET_MODE (x%d)", depth);
|
| 1779 |
|
|
break;
|
| 1780 |
|
|
case DT_veclen:
|
| 1781 |
|
|
printf ("XVECLEN (x%d, 0)", depth);
|
| 1782 |
|
|
break;
|
| 1783 |
|
|
case DT_elt_zero_int:
|
| 1784 |
|
|
printf ("XINT (x%d, 0)", depth);
|
| 1785 |
|
|
break;
|
| 1786 |
|
|
case DT_elt_one_int:
|
| 1787 |
|
|
printf ("XINT (x%d, 1)", depth);
|
| 1788 |
|
|
break;
|
| 1789 |
|
|
case DT_elt_zero_wide_safe:
|
| 1790 |
|
|
/* Convert result of XWINT to int for portability since some C
|
| 1791 |
|
|
compilers won't do it and some will. */
|
| 1792 |
|
|
printf ("(int) XWINT (x%d, 0)", depth);
|
| 1793 |
|
|
break;
|
| 1794 |
|
|
default:
|
| 1795 |
|
|
gcc_unreachable ();
|
| 1796 |
|
|
}
|
| 1797 |
|
|
printf (")\n%s {\n", indent);
|
| 1798 |
|
|
|
| 1799 |
|
|
do
|
| 1800 |
|
|
{
|
| 1801 |
|
|
/* Merge trees will not unify identical nodes if their
|
| 1802 |
|
|
sub-nodes are at different levels. Thus we must check
|
| 1803 |
|
|
for duplicate cases. */
|
| 1804 |
|
|
struct decision *q;
|
| 1805 |
|
|
for (q = start; q != p; q = q->next)
|
| 1806 |
|
|
if (nodes_identical_1 (p->tests, q->tests))
|
| 1807 |
|
|
goto case_done;
|
| 1808 |
|
|
|
| 1809 |
|
|
if (p != start && p->need_label && needs_label == NULL)
|
| 1810 |
|
|
needs_label = p;
|
| 1811 |
|
|
|
| 1812 |
|
|
printf ("%s case ", indent);
|
| 1813 |
|
|
switch (type)
|
| 1814 |
|
|
{
|
| 1815 |
|
|
case DT_mode:
|
| 1816 |
|
|
printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
|
| 1817 |
|
|
break;
|
| 1818 |
|
|
case DT_veclen:
|
| 1819 |
|
|
printf ("%d", p->tests->u.veclen);
|
| 1820 |
|
|
break;
|
| 1821 |
|
|
case DT_elt_zero_int:
|
| 1822 |
|
|
case DT_elt_one_int:
|
| 1823 |
|
|
case DT_elt_zero_wide:
|
| 1824 |
|
|
case DT_elt_zero_wide_safe:
|
| 1825 |
|
|
print_host_wide_int (p->tests->u.intval);
|
| 1826 |
|
|
break;
|
| 1827 |
|
|
default:
|
| 1828 |
|
|
gcc_unreachable ();
|
| 1829 |
|
|
}
|
| 1830 |
|
|
printf (":\n%s goto L%d;\n", indent, p->success.first->number);
|
| 1831 |
|
|
p->success.first->need_label = 1;
|
| 1832 |
|
|
|
| 1833 |
|
|
p = p->next;
|
| 1834 |
|
|
}
|
| 1835 |
|
|
while (p && p->tests->type == type && !p->tests->next);
|
| 1836 |
|
|
|
| 1837 |
|
|
case_done:
|
| 1838 |
|
|
printf ("%s default:\n%s break;\n%s }\n",
|
| 1839 |
|
|
indent, indent, indent);
|
| 1840 |
|
|
|
| 1841 |
|
|
return needs_label != NULL ? needs_label : p;
|
| 1842 |
|
|
}
|
| 1843 |
|
|
else
|
| 1844 |
|
|
{
|
| 1845 |
|
|
/* None of the other tests are amenable. */
|
| 1846 |
|
|
return p;
|
| 1847 |
|
|
}
|
| 1848 |
|
|
}
|
| 1849 |
|
|
|
| 1850 |
|
|
/* Emit code for one test. */
|
| 1851 |
|
|
|
| 1852 |
|
|
static void
|
| 1853 |
|
|
write_cond (struct decision_test *p, int depth,
|
| 1854 |
|
|
enum routine_type subroutine_type)
|
| 1855 |
|
|
{
|
| 1856 |
|
|
switch (p->type)
|
| 1857 |
|
|
{
|
| 1858 |
|
|
case DT_num_insns:
|
| 1859 |
|
|
printf ("peep2_current_count >= %d", p->u.num_insns);
|
| 1860 |
|
|
break;
|
| 1861 |
|
|
|
| 1862 |
|
|
case DT_mode:
|
| 1863 |
|
|
printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
|
| 1864 |
|
|
break;
|
| 1865 |
|
|
|
| 1866 |
|
|
case DT_code:
|
| 1867 |
|
|
printf ("GET_CODE (x%d) == ", depth);
|
| 1868 |
|
|
print_code (p->u.code);
|
| 1869 |
|
|
break;
|
| 1870 |
|
|
|
| 1871 |
|
|
case DT_veclen:
|
| 1872 |
|
|
printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
|
| 1873 |
|
|
break;
|
| 1874 |
|
|
|
| 1875 |
|
|
case DT_elt_zero_int:
|
| 1876 |
|
|
printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
|
| 1877 |
|
|
break;
|
| 1878 |
|
|
|
| 1879 |
|
|
case DT_elt_one_int:
|
| 1880 |
|
|
printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
|
| 1881 |
|
|
break;
|
| 1882 |
|
|
|
| 1883 |
|
|
case DT_elt_zero_wide:
|
| 1884 |
|
|
case DT_elt_zero_wide_safe:
|
| 1885 |
|
|
printf ("XWINT (x%d, 0) == ", depth);
|
| 1886 |
|
|
print_host_wide_int (p->u.intval);
|
| 1887 |
|
|
break;
|
| 1888 |
|
|
|
| 1889 |
|
|
case DT_const_int:
|
| 1890 |
|
|
printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
|
| 1891 |
|
|
depth, (int) p->u.intval);
|
| 1892 |
|
|
break;
|
| 1893 |
|
|
|
| 1894 |
|
|
case DT_veclen_ge:
|
| 1895 |
|
|
printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
|
| 1896 |
|
|
break;
|
| 1897 |
|
|
|
| 1898 |
|
|
case DT_dup:
|
| 1899 |
|
|
printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
|
| 1900 |
|
|
break;
|
| 1901 |
|
|
|
| 1902 |
|
|
case DT_pred:
|
| 1903 |
|
|
printf ("%s (x%d, %smode)", p->u.pred.name, depth,
|
| 1904 |
|
|
GET_MODE_NAME (p->u.pred.mode));
|
| 1905 |
|
|
break;
|
| 1906 |
|
|
|
| 1907 |
|
|
case DT_c_test:
|
| 1908 |
|
|
print_c_condition (p->u.c_test);
|
| 1909 |
|
|
break;
|
| 1910 |
|
|
|
| 1911 |
|
|
case DT_accept_insn:
|
| 1912 |
|
|
gcc_assert (subroutine_type == RECOG);
|
| 1913 |
|
|
gcc_assert (p->u.insn.num_clobbers_to_add);
|
| 1914 |
|
|
printf ("pnum_clobbers != NULL");
|
| 1915 |
|
|
break;
|
| 1916 |
|
|
|
| 1917 |
|
|
default:
|
| 1918 |
|
|
gcc_unreachable ();
|
| 1919 |
|
|
}
|
| 1920 |
|
|
}
|
| 1921 |
|
|
|
| 1922 |
|
|
/* Emit code for one action. The previous tests have succeeded;
|
| 1923 |
|
|
TEST is the last of the chain. In the normal case we simply
|
| 1924 |
|
|
perform a state change. For the `accept' tests we must do more work. */
|
| 1925 |
|
|
|
| 1926 |
|
|
static void
|
| 1927 |
|
|
write_action (struct decision *p, struct decision_test *test,
|
| 1928 |
|
|
int depth, int uncond, struct decision *success,
|
| 1929 |
|
|
enum routine_type subroutine_type)
|
| 1930 |
|
|
{
|
| 1931 |
|
|
const char *indent;
|
| 1932 |
|
|
int want_close = 0;
|
| 1933 |
|
|
|
| 1934 |
|
|
if (uncond)
|
| 1935 |
|
|
indent = " ";
|
| 1936 |
|
|
else if (test->type == DT_accept_op || test->type == DT_accept_insn)
|
| 1937 |
|
|
{
|
| 1938 |
|
|
fputs (" {\n", stdout);
|
| 1939 |
|
|
indent = " ";
|
| 1940 |
|
|
want_close = 1;
|
| 1941 |
|
|
}
|
| 1942 |
|
|
else
|
| 1943 |
|
|
indent = " ";
|
| 1944 |
|
|
|
| 1945 |
|
|
if (test->type == DT_accept_op)
|
| 1946 |
|
|
{
|
| 1947 |
|
|
printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
|
| 1948 |
|
|
|
| 1949 |
|
|
/* Only allow DT_accept_insn to follow. */
|
| 1950 |
|
|
if (test->next)
|
| 1951 |
|
|
{
|
| 1952 |
|
|
test = test->next;
|
| 1953 |
|
|
gcc_assert (test->type == DT_accept_insn);
|
| 1954 |
|
|
}
|
| 1955 |
|
|
}
|
| 1956 |
|
|
|
| 1957 |
|
|
/* Sanity check that we're now at the end of the list of tests. */
|
| 1958 |
|
|
gcc_assert (!test->next);
|
| 1959 |
|
|
|
| 1960 |
|
|
if (test->type == DT_accept_insn)
|
| 1961 |
|
|
{
|
| 1962 |
|
|
switch (subroutine_type)
|
| 1963 |
|
|
{
|
| 1964 |
|
|
case RECOG:
|
| 1965 |
|
|
if (test->u.insn.num_clobbers_to_add != 0)
|
| 1966 |
|
|
printf ("%s*pnum_clobbers = %d;\n",
|
| 1967 |
|
|
indent, test->u.insn.num_clobbers_to_add);
|
| 1968 |
|
|
printf ("%sreturn %d; /* %s */\n", indent,
|
| 1969 |
|
|
test->u.insn.code_number,
|
| 1970 |
|
|
get_insn_name (test->u.insn.code_number));
|
| 1971 |
|
|
break;
|
| 1972 |
|
|
|
| 1973 |
|
|
case SPLIT:
|
| 1974 |
|
|
printf ("%sreturn gen_split_%d (insn, operands);\n",
|
| 1975 |
|
|
indent, test->u.insn.code_number);
|
| 1976 |
|
|
break;
|
| 1977 |
|
|
|
| 1978 |
|
|
case PEEPHOLE2:
|
| 1979 |
|
|
{
|
| 1980 |
|
|
int match_len = 0;
|
| 1981 |
|
|
struct position *pos;
|
| 1982 |
|
|
|
| 1983 |
|
|
for (pos = p->position; pos; pos = pos->base)
|
| 1984 |
|
|
if (pos->type == POS_PEEP2_INSN)
|
| 1985 |
|
|
{
|
| 1986 |
|
|
match_len = pos->arg;
|
| 1987 |
|
|
break;
|
| 1988 |
|
|
}
|
| 1989 |
|
|
printf ("%s*_pmatch_len = %d;\n", indent, match_len);
|
| 1990 |
|
|
printf ("%stem = gen_peephole2_%d (insn, operands);\n",
|
| 1991 |
|
|
indent, test->u.insn.code_number);
|
| 1992 |
|
|
printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
|
| 1993 |
|
|
}
|
| 1994 |
|
|
break;
|
| 1995 |
|
|
|
| 1996 |
|
|
default:
|
| 1997 |
|
|
gcc_unreachable ();
|
| 1998 |
|
|
}
|
| 1999 |
|
|
}
|
| 2000 |
|
|
else
|
| 2001 |
|
|
{
|
| 2002 |
|
|
printf("%sgoto L%d;\n", indent, success->number);
|
| 2003 |
|
|
success->need_label = 1;
|
| 2004 |
|
|
}
|
| 2005 |
|
|
|
| 2006 |
|
|
if (want_close)
|
| 2007 |
|
|
fputs (" }\n", stdout);
|
| 2008 |
|
|
}
|
| 2009 |
|
|
|
| 2010 |
|
|
/* Return 1 if the test is always true and has no fallthru path. Return -1
|
| 2011 |
|
|
if the test does have a fallthru path, but requires that the condition be
|
| 2012 |
|
|
terminated. Otherwise return 0 for a normal test. */
|
| 2013 |
|
|
/* ??? is_unconditional is a stupid name for a tri-state function. */
|
| 2014 |
|
|
|
| 2015 |
|
|
static int
|
| 2016 |
|
|
is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
|
| 2017 |
|
|
{
|
| 2018 |
|
|
if (t->type == DT_accept_op)
|
| 2019 |
|
|
return 1;
|
| 2020 |
|
|
|
| 2021 |
|
|
if (t->type == DT_accept_insn)
|
| 2022 |
|
|
{
|
| 2023 |
|
|
switch (subroutine_type)
|
| 2024 |
|
|
{
|
| 2025 |
|
|
case RECOG:
|
| 2026 |
|
|
return (t->u.insn.num_clobbers_to_add == 0);
|
| 2027 |
|
|
case SPLIT:
|
| 2028 |
|
|
return 1;
|
| 2029 |
|
|
case PEEPHOLE2:
|
| 2030 |
|
|
return -1;
|
| 2031 |
|
|
default:
|
| 2032 |
|
|
gcc_unreachable ();
|
| 2033 |
|
|
}
|
| 2034 |
|
|
}
|
| 2035 |
|
|
|
| 2036 |
|
|
return 0;
|
| 2037 |
|
|
}
|
| 2038 |
|
|
|
| 2039 |
|
|
/* Emit code for one node -- the conditional and the accompanying action.
|
| 2040 |
|
|
Return true if there is no fallthru path. */
|
| 2041 |
|
|
|
| 2042 |
|
|
static int
|
| 2043 |
|
|
write_node (struct decision *p, int depth,
|
| 2044 |
|
|
enum routine_type subroutine_type)
|
| 2045 |
|
|
{
|
| 2046 |
|
|
struct decision_test *test, *last_test;
|
| 2047 |
|
|
int uncond;
|
| 2048 |
|
|
|
| 2049 |
|
|
/* Scan the tests and simplify comparisons against small
|
| 2050 |
|
|
constants. */
|
| 2051 |
|
|
for (test = p->tests; test; test = test->next)
|
| 2052 |
|
|
{
|
| 2053 |
|
|
if (test->type == DT_code
|
| 2054 |
|
|
&& test->u.code == CONST_INT
|
| 2055 |
|
|
&& test->next
|
| 2056 |
|
|
&& test->next->type == DT_elt_zero_wide_safe
|
| 2057 |
|
|
&& -MAX_SAVED_CONST_INT <= test->next->u.intval
|
| 2058 |
|
|
&& test->next->u.intval <= MAX_SAVED_CONST_INT)
|
| 2059 |
|
|
{
|
| 2060 |
|
|
test->type = DT_const_int;
|
| 2061 |
|
|
test->u.intval = test->next->u.intval;
|
| 2062 |
|
|
test->next = test->next->next;
|
| 2063 |
|
|
}
|
| 2064 |
|
|
}
|
| 2065 |
|
|
|
| 2066 |
|
|
last_test = test = p->tests;
|
| 2067 |
|
|
uncond = is_unconditional (test, subroutine_type);
|
| 2068 |
|
|
if (uncond == 0)
|
| 2069 |
|
|
{
|
| 2070 |
|
|
printf (" if (");
|
| 2071 |
|
|
write_cond (test, depth, subroutine_type);
|
| 2072 |
|
|
|
| 2073 |
|
|
while ((test = test->next) != NULL)
|
| 2074 |
|
|
{
|
| 2075 |
|
|
last_test = test;
|
| 2076 |
|
|
if (is_unconditional (test, subroutine_type))
|
| 2077 |
|
|
break;
|
| 2078 |
|
|
|
| 2079 |
|
|
printf ("\n && ");
|
| 2080 |
|
|
write_cond (test, depth, subroutine_type);
|
| 2081 |
|
|
}
|
| 2082 |
|
|
|
| 2083 |
|
|
printf (")\n");
|
| 2084 |
|
|
}
|
| 2085 |
|
|
|
| 2086 |
|
|
write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
|
| 2087 |
|
|
|
| 2088 |
|
|
return uncond > 0;
|
| 2089 |
|
|
}
|
| 2090 |
|
|
|
| 2091 |
|
|
/* Emit code for all of the sibling nodes of HEAD. */
|
| 2092 |
|
|
|
| 2093 |
|
|
static void
|
| 2094 |
|
|
write_tree_1 (struct decision_head *head, int depth,
|
| 2095 |
|
|
enum routine_type subroutine_type)
|
| 2096 |
|
|
{
|
| 2097 |
|
|
struct decision *p, *next;
|
| 2098 |
|
|
int uncond = 0;
|
| 2099 |
|
|
|
| 2100 |
|
|
for (p = head->first; p ; p = next)
|
| 2101 |
|
|
{
|
| 2102 |
|
|
/* The label for the first element was printed in write_tree. */
|
| 2103 |
|
|
if (p != head->first && p->need_label)
|
| 2104 |
|
|
OUTPUT_LABEL (" ", p->number);
|
| 2105 |
|
|
|
| 2106 |
|
|
/* Attempt to write a switch statement for a whole sequence. */
|
| 2107 |
|
|
next = write_switch (p, depth);
|
| 2108 |
|
|
if (p != next)
|
| 2109 |
|
|
uncond = 0;
|
| 2110 |
|
|
else
|
| 2111 |
|
|
{
|
| 2112 |
|
|
/* Failed -- fall back and write one node. */
|
| 2113 |
|
|
uncond = write_node (p, depth, subroutine_type);
|
| 2114 |
|
|
next = p->next;
|
| 2115 |
|
|
}
|
| 2116 |
|
|
}
|
| 2117 |
|
|
|
| 2118 |
|
|
/* Finished with this chain. Close a fallthru path by branching
|
| 2119 |
|
|
to the afterward node. */
|
| 2120 |
|
|
if (! uncond)
|
| 2121 |
|
|
write_afterward (head->last, head->last->afterward, " ");
|
| 2122 |
|
|
}
|
| 2123 |
|
|
|
| 2124 |
|
|
/* Write out the decision tree starting at HEAD. PREVPOS is the
|
| 2125 |
|
|
position at the node that branched to this node. */
|
| 2126 |
|
|
|
| 2127 |
|
|
static void
|
| 2128 |
|
|
write_tree (struct decision_head *head, struct position *prevpos,
|
| 2129 |
|
|
enum routine_type type, int initial)
|
| 2130 |
|
|
{
|
| 2131 |
|
|
struct decision *p = head->first;
|
| 2132 |
|
|
|
| 2133 |
|
|
putchar ('\n');
|
| 2134 |
|
|
if (p->need_label)
|
| 2135 |
|
|
OUTPUT_LABEL (" ", p->number);
|
| 2136 |
|
|
|
| 2137 |
|
|
if (! initial && p->subroutine_number > 0)
|
| 2138 |
|
|
{
|
| 2139 |
|
|
static const char * const name_prefix[] = {
|
| 2140 |
|
|
"recog", "split", "peephole2"
|
| 2141 |
|
|
};
|
| 2142 |
|
|
|
| 2143 |
|
|
static const char * const call_suffix[] = {
|
| 2144 |
|
|
", pnum_clobbers", "", ", _pmatch_len"
|
| 2145 |
|
|
};
|
| 2146 |
|
|
|
| 2147 |
|
|
/* This node has been broken out into a separate subroutine.
|
| 2148 |
|
|
Call it, test the result, and branch accordingly. */
|
| 2149 |
|
|
|
| 2150 |
|
|
if (p->afterward)
|
| 2151 |
|
|
{
|
| 2152 |
|
|
printf (" tem = %s_%d (x0, insn%s);\n",
|
| 2153 |
|
|
name_prefix[type], p->subroutine_number, call_suffix[type]);
|
| 2154 |
|
|
if (IS_SPLIT (type))
|
| 2155 |
|
|
printf (" if (tem != 0)\n return tem;\n");
|
| 2156 |
|
|
else
|
| 2157 |
|
|
printf (" if (tem >= 0)\n return tem;\n");
|
| 2158 |
|
|
|
| 2159 |
|
|
change_state (p->position, p->afterward->position, " ");
|
| 2160 |
|
|
printf (" goto L%d;\n", p->afterward->number);
|
| 2161 |
|
|
}
|
| 2162 |
|
|
else
|
| 2163 |
|
|
{
|
| 2164 |
|
|
printf (" return %s_%d (x0, insn%s);\n",
|
| 2165 |
|
|
name_prefix[type], p->subroutine_number, call_suffix[type]);
|
| 2166 |
|
|
}
|
| 2167 |
|
|
}
|
| 2168 |
|
|
else
|
| 2169 |
|
|
{
|
| 2170 |
|
|
change_state (prevpos, p->position, " ");
|
| 2171 |
|
|
write_tree_1 (head, p->position->depth, type);
|
| 2172 |
|
|
|
| 2173 |
|
|
for (p = head->first; p; p = p->next)
|
| 2174 |
|
|
if (p->success.first)
|
| 2175 |
|
|
write_tree (&p->success, p->position, type, 0);
|
| 2176 |
|
|
}
|
| 2177 |
|
|
}
|
| 2178 |
|
|
|
| 2179 |
|
|
/* Write out a subroutine of type TYPE to do comparisons starting at
|
| 2180 |
|
|
node TREE. */
|
| 2181 |
|
|
|
| 2182 |
|
|
static void
|
| 2183 |
|
|
write_subroutine (struct decision_head *head, enum routine_type type)
|
| 2184 |
|
|
{
|
| 2185 |
|
|
int subfunction = head->first ? head->first->subroutine_number : 0;
|
| 2186 |
|
|
const char *s_or_e;
|
| 2187 |
|
|
char extension[32];
|
| 2188 |
|
|
int i;
|
| 2189 |
|
|
|
| 2190 |
|
|
s_or_e = subfunction ? "static " : "";
|
| 2191 |
|
|
|
| 2192 |
|
|
if (subfunction)
|
| 2193 |
|
|
sprintf (extension, "_%d", subfunction);
|
| 2194 |
|
|
else if (type == RECOG)
|
| 2195 |
|
|
extension[0] = '\0';
|
| 2196 |
|
|
else
|
| 2197 |
|
|
strcpy (extension, "_insns");
|
| 2198 |
|
|
|
| 2199 |
|
|
switch (type)
|
| 2200 |
|
|
{
|
| 2201 |
|
|
case RECOG:
|
| 2202 |
|
|
printf ("%sint\n\
|
| 2203 |
|
|
recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
|
| 2204 |
|
|
break;
|
| 2205 |
|
|
case SPLIT:
|
| 2206 |
|
|
printf ("%srtx\n\
|
| 2207 |
|
|
split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
|
| 2208 |
|
|
s_or_e, extension);
|
| 2209 |
|
|
break;
|
| 2210 |
|
|
case PEEPHOLE2:
|
| 2211 |
|
|
printf ("%srtx\n\
|
| 2212 |
|
|
peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
|
| 2213 |
|
|
s_or_e, extension);
|
| 2214 |
|
|
break;
|
| 2215 |
|
|
}
|
| 2216 |
|
|
|
| 2217 |
|
|
printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
|
| 2218 |
|
|
for (i = 1; i <= max_depth; i++)
|
| 2219 |
|
|
printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
|
| 2220 |
|
|
|
| 2221 |
|
|
printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
|
| 2222 |
|
|
|
| 2223 |
|
|
if (!subfunction)
|
| 2224 |
|
|
printf (" recog_data.insn = NULL_RTX;\n");
|
| 2225 |
|
|
|
| 2226 |
|
|
if (head->first)
|
| 2227 |
|
|
write_tree (head, &root_pos, type, 1);
|
| 2228 |
|
|
else
|
| 2229 |
|
|
printf (" goto ret0;\n");
|
| 2230 |
|
|
|
| 2231 |
|
|
printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
|
| 2232 |
|
|
}
|
| 2233 |
|
|
|
| 2234 |
|
|
/* In break_out_subroutines, we discovered the boundaries for the
|
| 2235 |
|
|
subroutines, but did not write them out. Do so now. */
|
| 2236 |
|
|
|
| 2237 |
|
|
static void
|
| 2238 |
|
|
write_subroutines (struct decision_head *head, enum routine_type type)
|
| 2239 |
|
|
{
|
| 2240 |
|
|
struct decision *p;
|
| 2241 |
|
|
|
| 2242 |
|
|
for (p = head->first; p ; p = p->next)
|
| 2243 |
|
|
if (p->success.first)
|
| 2244 |
|
|
write_subroutines (&p->success, type);
|
| 2245 |
|
|
|
| 2246 |
|
|
if (head->first->subroutine_number > 0)
|
| 2247 |
|
|
write_subroutine (head, type);
|
| 2248 |
|
|
}
|
| 2249 |
|
|
|
| 2250 |
|
|
/* Begin the output file. */
|
| 2251 |
|
|
|
| 2252 |
|
|
static void
|
| 2253 |
|
|
write_header (void)
|
| 2254 |
|
|
{
|
| 2255 |
|
|
puts ("\
|
| 2256 |
|
|
/* Generated automatically by the program `genrecog' from the target\n\
|
| 2257 |
|
|
machine description file. */\n\
|
| 2258 |
|
|
\n\
|
| 2259 |
|
|
#include \"config.h\"\n\
|
| 2260 |
|
|
#include \"system.h\"\n\
|
| 2261 |
|
|
#include \"coretypes.h\"\n\
|
| 2262 |
|
|
#include \"tm.h\"\n\
|
| 2263 |
|
|
#include \"rtl.h\"\n\
|
| 2264 |
|
|
#include \"tm_p.h\"\n\
|
| 2265 |
|
|
#include \"function.h\"\n\
|
| 2266 |
|
|
#include \"insn-config.h\"\n\
|
| 2267 |
|
|
#include \"recog.h\"\n\
|
| 2268 |
|
|
#include \"output.h\"\n\
|
| 2269 |
|
|
#include \"flags.h\"\n\
|
| 2270 |
|
|
#include \"hard-reg-set.h\"\n\
|
| 2271 |
|
|
#include \"resource.h\"\n\
|
| 2272 |
|
|
#include \"diagnostic-core.h\"\n\
|
| 2273 |
|
|
#include \"reload.h\"\n\
|
| 2274 |
|
|
#include \"regs.h\"\n\
|
| 2275 |
|
|
#include \"tm-constrs.h\"\n\
|
| 2276 |
|
|
\n");
|
| 2277 |
|
|
|
| 2278 |
|
|
puts ("\n\
|
| 2279 |
|
|
/* `recog' contains a decision tree that recognizes whether the rtx\n\
|
| 2280 |
|
|
X0 is a valid instruction.\n\
|
| 2281 |
|
|
\n\
|
| 2282 |
|
|
recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
|
| 2283 |
|
|
returns a nonnegative number which is the insn code number for the\n\
|
| 2284 |
|
|
pattern that matched. This is the same as the order in the machine\n\
|
| 2285 |
|
|
description of the entry that matched. This number can be used as an\n\
|
| 2286 |
|
|
index into `insn_data' and other tables.\n");
|
| 2287 |
|
|
puts ("\
|
| 2288 |
|
|
The third argument to recog is an optional pointer to an int. If\n\
|
| 2289 |
|
|
present, recog will accept a pattern if it matches except for missing\n\
|
| 2290 |
|
|
CLOBBER expressions at the end. In that case, the value pointed to by\n\
|
| 2291 |
|
|
the optional pointer will be set to the number of CLOBBERs that need\n\
|
| 2292 |
|
|
to be added (it should be initialized to zero by the caller). If it");
|
| 2293 |
|
|
puts ("\
|
| 2294 |
|
|
is set nonzero, the caller should allocate a PARALLEL of the\n\
|
| 2295 |
|
|
appropriate size, copy the initial entries, and call add_clobbers\n\
|
| 2296 |
|
|
(found in insn-emit.c) to fill in the CLOBBERs.\n\
|
| 2297 |
|
|
");
|
| 2298 |
|
|
|
| 2299 |
|
|
puts ("\n\
|
| 2300 |
|
|
The function split_insns returns 0 if the rtl could not\n\
|
| 2301 |
|
|
be split or the split rtl as an INSN list if it can be.\n\
|
| 2302 |
|
|
\n\
|
| 2303 |
|
|
The function peephole2_insns returns 0 if the rtl could not\n\
|
| 2304 |
|
|
be matched. If there was a match, the new rtl is returned in an INSN list,\n\
|
| 2305 |
|
|
and LAST_INSN will point to the last recognized insn in the old sequence.\n\
|
| 2306 |
|
|
*/\n\n");
|
| 2307 |
|
|
}
|
| 2308 |
|
|
|
| 2309 |
|
|
|
| 2310 |
|
|
/* Construct and return a sequence of decisions
|
| 2311 |
|
|
that will recognize INSN.
|
| 2312 |
|
|
|
| 2313 |
|
|
TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
|
| 2314 |
|
|
|
| 2315 |
|
|
static struct decision_head
|
| 2316 |
|
|
make_insn_sequence (rtx insn, enum routine_type type)
|
| 2317 |
|
|
{
|
| 2318 |
|
|
rtx x;
|
| 2319 |
|
|
const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
|
| 2320 |
|
|
int truth = maybe_eval_c_test (c_test);
|
| 2321 |
|
|
struct decision *last;
|
| 2322 |
|
|
struct decision_test *test, **place;
|
| 2323 |
|
|
struct decision_head head;
|
| 2324 |
|
|
struct position *c_test_pos, **pos_ptr;
|
| 2325 |
|
|
|
| 2326 |
|
|
/* We should never see an insn whose C test is false at compile time. */
|
| 2327 |
|
|
gcc_assert (truth);
|
| 2328 |
|
|
|
| 2329 |
|
|
c_test_pos = &root_pos;
|
| 2330 |
|
|
if (type == PEEPHOLE2)
|
| 2331 |
|
|
{
|
| 2332 |
|
|
int i, j;
|
| 2333 |
|
|
|
| 2334 |
|
|
/* peephole2 gets special treatment:
|
| 2335 |
|
|
- X always gets an outer parallel even if it's only one entry
|
| 2336 |
|
|
- we remove all traces of outer-level match_scratch and match_dup
|
| 2337 |
|
|
expressions here. */
|
| 2338 |
|
|
x = rtx_alloc (PARALLEL);
|
| 2339 |
|
|
PUT_MODE (x, VOIDmode);
|
| 2340 |
|
|
XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
|
| 2341 |
|
|
pos_ptr = &peep2_insn_pos_list;
|
| 2342 |
|
|
for (i = j = 0; i < XVECLEN (insn, 0); i++)
|
| 2343 |
|
|
{
|
| 2344 |
|
|
rtx tmp = XVECEXP (insn, 0, i);
|
| 2345 |
|
|
if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
|
| 2346 |
|
|
{
|
| 2347 |
|
|
c_test_pos = next_position (pos_ptr, &root_pos,
|
| 2348 |
|
|
POS_PEEP2_INSN, j);
|
| 2349 |
|
|
XVECEXP (x, 0, j) = tmp;
|
| 2350 |
|
|
j++;
|
| 2351 |
|
|
pos_ptr = &c_test_pos->next;
|
| 2352 |
|
|
}
|
| 2353 |
|
|
}
|
| 2354 |
|
|
XVECLEN (x, 0) = j;
|
| 2355 |
|
|
}
|
| 2356 |
|
|
else if (XVECLEN (insn, type == RECOG) == 1)
|
| 2357 |
|
|
x = XVECEXP (insn, type == RECOG, 0);
|
| 2358 |
|
|
else
|
| 2359 |
|
|
{
|
| 2360 |
|
|
x = rtx_alloc (PARALLEL);
|
| 2361 |
|
|
XVEC (x, 0) = XVEC (insn, type == RECOG);
|
| 2362 |
|
|
PUT_MODE (x, VOIDmode);
|
| 2363 |
|
|
}
|
| 2364 |
|
|
|
| 2365 |
|
|
validate_pattern (x, insn, NULL_RTX, 0);
|
| 2366 |
|
|
|
| 2367 |
|
|
memset(&head, 0, sizeof(head));
|
| 2368 |
|
|
last = add_to_sequence (x, &head, &root_pos, type, 1);
|
| 2369 |
|
|
|
| 2370 |
|
|
/* Find the end of the test chain on the last node. */
|
| 2371 |
|
|
for (test = last->tests; test->next; test = test->next)
|
| 2372 |
|
|
continue;
|
| 2373 |
|
|
place = &test->next;
|
| 2374 |
|
|
|
| 2375 |
|
|
/* Skip the C test if it's known to be true at compile time. */
|
| 2376 |
|
|
if (truth == -1)
|
| 2377 |
|
|
{
|
| 2378 |
|
|
/* Need a new node if we have another test to add. */
|
| 2379 |
|
|
if (test->type == DT_accept_op)
|
| 2380 |
|
|
{
|
| 2381 |
|
|
last = new_decision (c_test_pos, &last->success);
|
| 2382 |
|
|
place = &last->tests;
|
| 2383 |
|
|
}
|
| 2384 |
|
|
test = new_decision_test (DT_c_test, &place);
|
| 2385 |
|
|
test->u.c_test = c_test;
|
| 2386 |
|
|
}
|
| 2387 |
|
|
|
| 2388 |
|
|
test = new_decision_test (DT_accept_insn, &place);
|
| 2389 |
|
|
test->u.insn.code_number = next_insn_code;
|
| 2390 |
|
|
test->u.insn.lineno = pattern_lineno;
|
| 2391 |
|
|
test->u.insn.num_clobbers_to_add = 0;
|
| 2392 |
|
|
|
| 2393 |
|
|
switch (type)
|
| 2394 |
|
|
{
|
| 2395 |
|
|
case RECOG:
|
| 2396 |
|
|
/* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
|
| 2397 |
|
|
with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
|
| 2398 |
|
|
If so, set up to recognize the pattern without these CLOBBERs. */
|
| 2399 |
|
|
|
| 2400 |
|
|
if (GET_CODE (x) == PARALLEL)
|
| 2401 |
|
|
{
|
| 2402 |
|
|
int i;
|
| 2403 |
|
|
|
| 2404 |
|
|
/* Find the last non-clobber in the parallel. */
|
| 2405 |
|
|
for (i = XVECLEN (x, 0); i > 0; i--)
|
| 2406 |
|
|
{
|
| 2407 |
|
|
rtx y = XVECEXP (x, 0, i - 1);
|
| 2408 |
|
|
if (GET_CODE (y) != CLOBBER
|
| 2409 |
|
|
|| (!REG_P (XEXP (y, 0))
|
| 2410 |
|
|
&& GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
|
| 2411 |
|
|
break;
|
| 2412 |
|
|
}
|
| 2413 |
|
|
|
| 2414 |
|
|
if (i != XVECLEN (x, 0))
|
| 2415 |
|
|
{
|
| 2416 |
|
|
rtx new_rtx;
|
| 2417 |
|
|
struct decision_head clobber_head;
|
| 2418 |
|
|
|
| 2419 |
|
|
/* Build a similar insn without the clobbers. */
|
| 2420 |
|
|
if (i == 1)
|
| 2421 |
|
|
new_rtx = XVECEXP (x, 0, 0);
|
| 2422 |
|
|
else
|
| 2423 |
|
|
{
|
| 2424 |
|
|
int j;
|
| 2425 |
|
|
|
| 2426 |
|
|
new_rtx = rtx_alloc (PARALLEL);
|
| 2427 |
|
|
XVEC (new_rtx, 0) = rtvec_alloc (i);
|
| 2428 |
|
|
for (j = i - 1; j >= 0; j--)
|
| 2429 |
|
|
XVECEXP (new_rtx, 0, j) = XVECEXP (x, 0, j);
|
| 2430 |
|
|
}
|
| 2431 |
|
|
|
| 2432 |
|
|
/* Recognize it. */
|
| 2433 |
|
|
memset (&clobber_head, 0, sizeof(clobber_head));
|
| 2434 |
|
|
last = add_to_sequence (new_rtx, &clobber_head, &root_pos,
|
| 2435 |
|
|
type, 1);
|
| 2436 |
|
|
|
| 2437 |
|
|
/* Find the end of the test chain on the last node. */
|
| 2438 |
|
|
for (test = last->tests; test->next; test = test->next)
|
| 2439 |
|
|
continue;
|
| 2440 |
|
|
|
| 2441 |
|
|
/* We definitely have a new test to add -- create a new
|
| 2442 |
|
|
node if needed. */
|
| 2443 |
|
|
place = &test->next;
|
| 2444 |
|
|
if (test->type == DT_accept_op)
|
| 2445 |
|
|
{
|
| 2446 |
|
|
last = new_decision (&root_pos, &last->success);
|
| 2447 |
|
|
place = &last->tests;
|
| 2448 |
|
|
}
|
| 2449 |
|
|
|
| 2450 |
|
|
/* Skip the C test if it's known to be true at compile
|
| 2451 |
|
|
time. */
|
| 2452 |
|
|
if (truth == -1)
|
| 2453 |
|
|
{
|
| 2454 |
|
|
test = new_decision_test (DT_c_test, &place);
|
| 2455 |
|
|
test->u.c_test = c_test;
|
| 2456 |
|
|
}
|
| 2457 |
|
|
|
| 2458 |
|
|
test = new_decision_test (DT_accept_insn, &place);
|
| 2459 |
|
|
test->u.insn.code_number = next_insn_code;
|
| 2460 |
|
|
test->u.insn.lineno = pattern_lineno;
|
| 2461 |
|
|
test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
|
| 2462 |
|
|
|
| 2463 |
|
|
merge_trees (&head, &clobber_head);
|
| 2464 |
|
|
}
|
| 2465 |
|
|
}
|
| 2466 |
|
|
break;
|
| 2467 |
|
|
|
| 2468 |
|
|
case SPLIT:
|
| 2469 |
|
|
/* Define the subroutine we will call below and emit in genemit. */
|
| 2470 |
|
|
printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code);
|
| 2471 |
|
|
break;
|
| 2472 |
|
|
|
| 2473 |
|
|
case PEEPHOLE2:
|
| 2474 |
|
|
/* Define the subroutine we will call below and emit in genemit. */
|
| 2475 |
|
|
printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
|
| 2476 |
|
|
next_insn_code);
|
| 2477 |
|
|
break;
|
| 2478 |
|
|
}
|
| 2479 |
|
|
|
| 2480 |
|
|
return head;
|
| 2481 |
|
|
}
|
| 2482 |
|
|
|
| 2483 |
|
|
static void
|
| 2484 |
|
|
process_tree (struct decision_head *head, enum routine_type subroutine_type)
|
| 2485 |
|
|
{
|
| 2486 |
|
|
if (head->first == NULL)
|
| 2487 |
|
|
{
|
| 2488 |
|
|
/* We can elide peephole2_insns, but not recog or split_insns. */
|
| 2489 |
|
|
if (subroutine_type == PEEPHOLE2)
|
| 2490 |
|
|
return;
|
| 2491 |
|
|
}
|
| 2492 |
|
|
else
|
| 2493 |
|
|
{
|
| 2494 |
|
|
factor_tests (head);
|
| 2495 |
|
|
|
| 2496 |
|
|
next_subroutine_number = 0;
|
| 2497 |
|
|
break_out_subroutines (head, 1);
|
| 2498 |
|
|
find_afterward (head, NULL);
|
| 2499 |
|
|
|
| 2500 |
|
|
/* We run this after find_afterward, because find_afterward needs
|
| 2501 |
|
|
the redundant DT_mode tests on predicates to determine whether
|
| 2502 |
|
|
two tests can both be true or not. */
|
| 2503 |
|
|
simplify_tests(head);
|
| 2504 |
|
|
|
| 2505 |
|
|
write_subroutines (head, subroutine_type);
|
| 2506 |
|
|
}
|
| 2507 |
|
|
|
| 2508 |
|
|
write_subroutine (head, subroutine_type);
|
| 2509 |
|
|
}
|
| 2510 |
|
|
|
| 2511 |
|
|
extern int main (int, char **);
|
| 2512 |
|
|
|
| 2513 |
|
|
int
|
| 2514 |
|
|
main (int argc, char **argv)
|
| 2515 |
|
|
{
|
| 2516 |
|
|
rtx desc;
|
| 2517 |
|
|
struct decision_head recog_tree, split_tree, peephole2_tree, h;
|
| 2518 |
|
|
|
| 2519 |
|
|
progname = "genrecog";
|
| 2520 |
|
|
|
| 2521 |
|
|
memset (&recog_tree, 0, sizeof recog_tree);
|
| 2522 |
|
|
memset (&split_tree, 0, sizeof split_tree);
|
| 2523 |
|
|
memset (&peephole2_tree, 0, sizeof peephole2_tree);
|
| 2524 |
|
|
|
| 2525 |
|
|
if (!init_rtx_reader_args (argc, argv))
|
| 2526 |
|
|
return (FATAL_EXIT_CODE);
|
| 2527 |
|
|
|
| 2528 |
|
|
next_insn_code = 0;
|
| 2529 |
|
|
|
| 2530 |
|
|
write_header ();
|
| 2531 |
|
|
|
| 2532 |
|
|
/* Read the machine description. */
|
| 2533 |
|
|
|
| 2534 |
|
|
while (1)
|
| 2535 |
|
|
{
|
| 2536 |
|
|
desc = read_md_rtx (&pattern_lineno, &next_insn_code);
|
| 2537 |
|
|
if (desc == NULL)
|
| 2538 |
|
|
break;
|
| 2539 |
|
|
|
| 2540 |
|
|
switch (GET_CODE (desc))
|
| 2541 |
|
|
{
|
| 2542 |
|
|
case DEFINE_INSN:
|
| 2543 |
|
|
h = make_insn_sequence (desc, RECOG);
|
| 2544 |
|
|
merge_trees (&recog_tree, &h);
|
| 2545 |
|
|
break;
|
| 2546 |
|
|
|
| 2547 |
|
|
case DEFINE_SPLIT:
|
| 2548 |
|
|
h = make_insn_sequence (desc, SPLIT);
|
| 2549 |
|
|
merge_trees (&split_tree, &h);
|
| 2550 |
|
|
break;
|
| 2551 |
|
|
|
| 2552 |
|
|
case DEFINE_PEEPHOLE2:
|
| 2553 |
|
|
h = make_insn_sequence (desc, PEEPHOLE2);
|
| 2554 |
|
|
merge_trees (&peephole2_tree, &h);
|
| 2555 |
|
|
|
| 2556 |
|
|
default:
|
| 2557 |
|
|
/* do nothing */;
|
| 2558 |
|
|
}
|
| 2559 |
|
|
}
|
| 2560 |
|
|
|
| 2561 |
|
|
if (have_error)
|
| 2562 |
|
|
return FATAL_EXIT_CODE;
|
| 2563 |
|
|
|
| 2564 |
|
|
puts ("\n\n");
|
| 2565 |
|
|
|
| 2566 |
|
|
process_tree (&recog_tree, RECOG);
|
| 2567 |
|
|
process_tree (&split_tree, SPLIT);
|
| 2568 |
|
|
process_tree (&peephole2_tree, PEEPHOLE2);
|
| 2569 |
|
|
|
| 2570 |
|
|
fflush (stdout);
|
| 2571 |
|
|
return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
|
| 2572 |
|
|
}
|
| 2573 |
|
|
|
| 2574 |
|
|
static void
|
| 2575 |
|
|
debug_decision_2 (struct decision_test *test)
|
| 2576 |
|
|
{
|
| 2577 |
|
|
switch (test->type)
|
| 2578 |
|
|
{
|
| 2579 |
|
|
case DT_num_insns:
|
| 2580 |
|
|
fprintf (stderr, "num_insns=%d", test->u.num_insns);
|
| 2581 |
|
|
break;
|
| 2582 |
|
|
case DT_mode:
|
| 2583 |
|
|
fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
|
| 2584 |
|
|
break;
|
| 2585 |
|
|
case DT_code:
|
| 2586 |
|
|
fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
|
| 2587 |
|
|
break;
|
| 2588 |
|
|
case DT_veclen:
|
| 2589 |
|
|
fprintf (stderr, "veclen=%d", test->u.veclen);
|
| 2590 |
|
|
break;
|
| 2591 |
|
|
case DT_elt_zero_int:
|
| 2592 |
|
|
fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
|
| 2593 |
|
|
break;
|
| 2594 |
|
|
case DT_elt_one_int:
|
| 2595 |
|
|
fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
|
| 2596 |
|
|
break;
|
| 2597 |
|
|
case DT_elt_zero_wide:
|
| 2598 |
|
|
fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
|
| 2599 |
|
|
break;
|
| 2600 |
|
|
case DT_elt_zero_wide_safe:
|
| 2601 |
|
|
fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
|
| 2602 |
|
|
break;
|
| 2603 |
|
|
case DT_veclen_ge:
|
| 2604 |
|
|
fprintf (stderr, "veclen>=%d", test->u.veclen);
|
| 2605 |
|
|
break;
|
| 2606 |
|
|
case DT_dup:
|
| 2607 |
|
|
fprintf (stderr, "dup=%d", test->u.dup);
|
| 2608 |
|
|
break;
|
| 2609 |
|
|
case DT_pred:
|
| 2610 |
|
|
fprintf (stderr, "pred=(%s,%s)",
|
| 2611 |
|
|
test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
|
| 2612 |
|
|
break;
|
| 2613 |
|
|
case DT_c_test:
|
| 2614 |
|
|
{
|
| 2615 |
|
|
char sub[16+4];
|
| 2616 |
|
|
strncpy (sub, test->u.c_test, sizeof(sub));
|
| 2617 |
|
|
memcpy (sub+16, "...", 4);
|
| 2618 |
|
|
fprintf (stderr, "c_test=\"%s\"", sub);
|
| 2619 |
|
|
}
|
| 2620 |
|
|
break;
|
| 2621 |
|
|
case DT_accept_op:
|
| 2622 |
|
|
fprintf (stderr, "A_op=%d", test->u.opno);
|
| 2623 |
|
|
break;
|
| 2624 |
|
|
case DT_accept_insn:
|
| 2625 |
|
|
fprintf (stderr, "A_insn=(%d,%d)",
|
| 2626 |
|
|
test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
|
| 2627 |
|
|
break;
|
| 2628 |
|
|
|
| 2629 |
|
|
default:
|
| 2630 |
|
|
gcc_unreachable ();
|
| 2631 |
|
|
}
|
| 2632 |
|
|
}
|
| 2633 |
|
|
|
| 2634 |
|
|
static void
|
| 2635 |
|
|
debug_decision_1 (struct decision *d, int indent)
|
| 2636 |
|
|
{
|
| 2637 |
|
|
int i;
|
| 2638 |
|
|
struct decision_test *test;
|
| 2639 |
|
|
|
| 2640 |
|
|
if (d == NULL)
|
| 2641 |
|
|
{
|
| 2642 |
|
|
for (i = 0; i < indent; ++i)
|
| 2643 |
|
|
putc (' ', stderr);
|
| 2644 |
|
|
fputs ("(nil)\n", stderr);
|
| 2645 |
|
|
return;
|
| 2646 |
|
|
}
|
| 2647 |
|
|
|
| 2648 |
|
|
for (i = 0; i < indent; ++i)
|
| 2649 |
|
|
putc (' ', stderr);
|
| 2650 |
|
|
|
| 2651 |
|
|
putc ('{', stderr);
|
| 2652 |
|
|
test = d->tests;
|
| 2653 |
|
|
if (test)
|
| 2654 |
|
|
{
|
| 2655 |
|
|
debug_decision_2 (test);
|
| 2656 |
|
|
while ((test = test->next) != NULL)
|
| 2657 |
|
|
{
|
| 2658 |
|
|
fputs (" + ", stderr);
|
| 2659 |
|
|
debug_decision_2 (test);
|
| 2660 |
|
|
}
|
| 2661 |
|
|
}
|
| 2662 |
|
|
fprintf (stderr, "} %d n %d a %d\n", d->number,
|
| 2663 |
|
|
(d->next ? d->next->number : -1),
|
| 2664 |
|
|
(d->afterward ? d->afterward->number : -1));
|
| 2665 |
|
|
}
|
| 2666 |
|
|
|
| 2667 |
|
|
static void
|
| 2668 |
|
|
debug_decision_0 (struct decision *d, int indent, int maxdepth)
|
| 2669 |
|
|
{
|
| 2670 |
|
|
struct decision *n;
|
| 2671 |
|
|
int i;
|
| 2672 |
|
|
|
| 2673 |
|
|
if (maxdepth < 0)
|
| 2674 |
|
|
return;
|
| 2675 |
|
|
if (d == NULL)
|
| 2676 |
|
|
{
|
| 2677 |
|
|
for (i = 0; i < indent; ++i)
|
| 2678 |
|
|
putc (' ', stderr);
|
| 2679 |
|
|
fputs ("(nil)\n", stderr);
|
| 2680 |
|
|
return;
|
| 2681 |
|
|
}
|
| 2682 |
|
|
|
| 2683 |
|
|
debug_decision_1 (d, indent);
|
| 2684 |
|
|
for (n = d->success.first; n ; n = n->next)
|
| 2685 |
|
|
debug_decision_0 (n, indent + 2, maxdepth - 1);
|
| 2686 |
|
|
}
|
| 2687 |
|
|
|
| 2688 |
|
|
DEBUG_FUNCTION void
|
| 2689 |
|
|
debug_decision (struct decision *d)
|
| 2690 |
|
|
{
|
| 2691 |
|
|
debug_decision_0 (d, 0, 1000000);
|
| 2692 |
|
|
}
|
| 2693 |
|
|
|
| 2694 |
|
|
DEBUG_FUNCTION void
|
| 2695 |
|
|
debug_decision_list (struct decision *d)
|
| 2696 |
|
|
{
|
| 2697 |
|
|
while (d)
|
| 2698 |
|
|
{
|
| 2699 |
|
|
debug_decision_0 (d, 0, 0);
|
| 2700 |
|
|
d = d->next;
|
| 2701 |
|
|
}
|
| 2702 |
|
|
}
|