OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ggc-page.c] - Blame information for rev 852

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* "Bag-of-pages" garbage collector for the GNU compiler.
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
3
   2010, 2011 Free Software Foundation, Inc.
4
 
5
This file is part of GCC.
6
 
7
GCC is free software; you can redistribute it and/or modify it under
8
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10
version.
11
 
12
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13
WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15
for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING3.  If not see
19
<http://www.gnu.org/licenses/>.  */
20
 
21
#include "config.h"
22
#include "system.h"
23
#include "coretypes.h"
24
#include "tm.h"
25
#include "tree.h"
26
#include "rtl.h"
27
#include "tm_p.h"
28
#include "diagnostic-core.h"
29
#include "flags.h"
30
#include "ggc.h"
31
#include "ggc-internal.h"
32
#include "timevar.h"
33
#include "params.h"
34
#include "tree-flow.h"
35
#include "cfgloop.h"
36
#include "plugin.h"
37
 
38
/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
39
   file open.  Prefer either to valloc.  */
40
#ifdef HAVE_MMAP_ANON
41
# undef HAVE_MMAP_DEV_ZERO
42
# define USING_MMAP
43
#endif
44
 
45
#ifdef HAVE_MMAP_DEV_ZERO
46
# define USING_MMAP
47
#endif
48
 
49
#ifndef USING_MMAP
50
#define USING_MALLOC_PAGE_GROUPS
51
#endif
52
 
53
#if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
54
    && defined(USING_MMAP)
55
# define USING_MADVISE
56
#endif
57
 
58
/* Strategy:
59
 
60
   This garbage-collecting allocator allocates objects on one of a set
61
   of pages.  Each page can allocate objects of a single size only;
62
   available sizes are powers of two starting at four bytes.  The size
63
   of an allocation request is rounded up to the next power of two
64
   (`order'), and satisfied from the appropriate page.
65
 
66
   Each page is recorded in a page-entry, which also maintains an
67
   in-use bitmap of object positions on the page.  This allows the
68
   allocation state of a particular object to be flipped without
69
   touching the page itself.
70
 
71
   Each page-entry also has a context depth, which is used to track
72
   pushing and popping of allocation contexts.  Only objects allocated
73
   in the current (highest-numbered) context may be collected.
74
 
75
   Page entries are arranged in an array of singly-linked lists.  The
76
   array is indexed by the allocation size, in bits, of the pages on
77
   it; i.e. all pages on a list allocate objects of the same size.
78
   Pages are ordered on the list such that all non-full pages precede
79
   all full pages, with non-full pages arranged in order of decreasing
80
   context depth.
81
 
82
   Empty pages (of all orders) are kept on a single page cache list,
83
   and are considered first when new pages are required; they are
84
   deallocated at the start of the next collection if they haven't
85
   been recycled by then.  */
86
 
87
/* Define GGC_DEBUG_LEVEL to print debugging information.
88
     0: No debugging output.
89
     1: GC statistics only.
90
     2: Page-entry allocations/deallocations as well.
91
     3: Object allocations as well.
92
     4: Object marks as well.  */
93
#define GGC_DEBUG_LEVEL (0)
94
 
95
#ifndef HOST_BITS_PER_PTR
96
#define HOST_BITS_PER_PTR  HOST_BITS_PER_LONG
97
#endif
98
 
99
 
100
/* A two-level tree is used to look up the page-entry for a given
101
   pointer.  Two chunks of the pointer's bits are extracted to index
102
   the first and second levels of the tree, as follows:
103
 
104
                                   HOST_PAGE_SIZE_BITS
105
                           32           |      |
106
       msb +----------------+----+------+------+ lsb
107
                            |    |      |
108
                         PAGE_L1_BITS   |
109
                                 |      |
110
                               PAGE_L2_BITS
111
 
112
   The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
113
   pages are aligned on system page boundaries.  The next most
114
   significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
115
   index values in the lookup table, respectively.
116
 
117
   For 32-bit architectures and the settings below, there are no
118
   leftover bits.  For architectures with wider pointers, the lookup
119
   tree points to a list of pages, which must be scanned to find the
120
   correct one.  */
121
 
122
#define PAGE_L1_BITS    (8)
123
#define PAGE_L2_BITS    (32 - PAGE_L1_BITS - G.lg_pagesize)
124
#define PAGE_L1_SIZE    ((size_t) 1 << PAGE_L1_BITS)
125
#define PAGE_L2_SIZE    ((size_t) 1 << PAGE_L2_BITS)
126
 
127
#define LOOKUP_L1(p) \
128
  (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
129
 
130
#define LOOKUP_L2(p) \
131
  (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
132
 
133
/* The number of objects per allocation page, for objects on a page of
134
   the indicated ORDER.  */
135
#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
136
 
137
/* The number of objects in P.  */
138
#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
139
 
140
/* The size of an object on a page of the indicated ORDER.  */
141
#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
142
 
143
/* For speed, we avoid doing a general integer divide to locate the
144
   offset in the allocation bitmap, by precalculating numbers M, S
145
   such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
146
   within the page which is evenly divisible by the object size Z.  */
147
#define DIV_MULT(ORDER) inverse_table[ORDER].mult
148
#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
149
#define OFFSET_TO_BIT(OFFSET, ORDER) \
150
  (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
151
 
152
/* We use this structure to determine the alignment required for
153
   allocations.  For power-of-two sized allocations, that's not a
154
   problem, but it does matter for odd-sized allocations.
155
   We do not care about alignment for floating-point types.  */
156
 
157
struct max_alignment {
158
  char c;
159
  union {
160
    HOST_WIDEST_INT i;
161
    void *p;
162
  } u;
163
};
164
 
165
/* The biggest alignment required.  */
166
 
167
#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
168
 
169
 
170
/* The number of extra orders, not corresponding to power-of-two sized
171
   objects.  */
172
 
173
#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
174
 
175
#define RTL_SIZE(NSLOTS) \
176
  (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
177
 
178
#define TREE_EXP_SIZE(OPS) \
179
  (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
180
 
181
/* The Ith entry is the maximum size of an object to be stored in the
182
   Ith extra order.  Adding a new entry to this array is the *only*
183
   thing you need to do to add a new special allocation size.  */
184
 
185
static const size_t extra_order_size_table[] = {
186
  /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
187
     There are a lot of structures with these sizes and explicitly
188
     listing them risks orders being dropped because they changed size.  */
189
  MAX_ALIGNMENT * 3,
190
  MAX_ALIGNMENT * 5,
191
  MAX_ALIGNMENT * 6,
192
  MAX_ALIGNMENT * 7,
193
  MAX_ALIGNMENT * 9,
194
  MAX_ALIGNMENT * 10,
195
  MAX_ALIGNMENT * 11,
196
  MAX_ALIGNMENT * 12,
197
  MAX_ALIGNMENT * 13,
198
  MAX_ALIGNMENT * 14,
199
  MAX_ALIGNMENT * 15,
200
  sizeof (struct tree_decl_non_common),
201
  sizeof (struct tree_field_decl),
202
  sizeof (struct tree_parm_decl),
203
  sizeof (struct tree_var_decl),
204
  sizeof (struct tree_type_non_common),
205
  sizeof (struct function),
206
  sizeof (struct basic_block_def),
207
  sizeof (struct cgraph_node),
208
  sizeof (struct loop),
209
};
210
 
211
/* The total number of orders.  */
212
 
213
#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
214
 
215
/* Compute the smallest nonnegative number which when added to X gives
216
   a multiple of F.  */
217
 
218
#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
219
 
220
/* Compute the smallest multiple of F that is >= X.  */
221
 
222
#define ROUND_UP(x, f) (CEIL (x, f) * (f))
223
 
224
/* Round X to next multiple of the page size */
225
 
226
#define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
227
 
228
/* The Ith entry is the number of objects on a page or order I.  */
229
 
230
static unsigned objects_per_page_table[NUM_ORDERS];
231
 
232
/* The Ith entry is the size of an object on a page of order I.  */
233
 
234
static size_t object_size_table[NUM_ORDERS];
235
 
236
/* The Ith entry is a pair of numbers (mult, shift) such that
237
   ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
238
   for all k evenly divisible by OBJECT_SIZE(I).  */
239
 
240
static struct
241
{
242
  size_t mult;
243
  unsigned int shift;
244
}
245
inverse_table[NUM_ORDERS];
246
 
247
/* A page_entry records the status of an allocation page.  This
248
   structure is dynamically sized to fit the bitmap in_use_p.  */
249
typedef struct page_entry
250
{
251
  /* The next page-entry with objects of the same size, or NULL if
252
     this is the last page-entry.  */
253
  struct page_entry *next;
254
 
255
  /* The previous page-entry with objects of the same size, or NULL if
256
     this is the first page-entry.   The PREV pointer exists solely to
257
     keep the cost of ggc_free manageable.  */
258
  struct page_entry *prev;
259
 
260
  /* The number of bytes allocated.  (This will always be a multiple
261
     of the host system page size.)  */
262
  size_t bytes;
263
 
264
  /* The address at which the memory is allocated.  */
265
  char *page;
266
 
267
#ifdef USING_MALLOC_PAGE_GROUPS
268
  /* Back pointer to the page group this page came from.  */
269
  struct page_group *group;
270
#endif
271
 
272
  /* This is the index in the by_depth varray where this page table
273
     can be found.  */
274
  unsigned long index_by_depth;
275
 
276
  /* Context depth of this page.  */
277
  unsigned short context_depth;
278
 
279
  /* The number of free objects remaining on this page.  */
280
  unsigned short num_free_objects;
281
 
282
  /* A likely candidate for the bit position of a free object for the
283
     next allocation from this page.  */
284
  unsigned short next_bit_hint;
285
 
286
  /* The lg of size of objects allocated from this page.  */
287
  unsigned char order;
288
 
289
  /* Discarded page? */
290
  bool discarded;
291
 
292
  /* A bit vector indicating whether or not objects are in use.  The
293
     Nth bit is one if the Nth object on this page is allocated.  This
294
     array is dynamically sized.  */
295
  unsigned long in_use_p[1];
296
} page_entry;
297
 
298
#ifdef USING_MALLOC_PAGE_GROUPS
299
/* A page_group describes a large allocation from malloc, from which
300
   we parcel out aligned pages.  */
301
typedef struct page_group
302
{
303
  /* A linked list of all extant page groups.  */
304
  struct page_group *next;
305
 
306
  /* The address we received from malloc.  */
307
  char *allocation;
308
 
309
  /* The size of the block.  */
310
  size_t alloc_size;
311
 
312
  /* A bitmask of pages in use.  */
313
  unsigned int in_use;
314
} page_group;
315
#endif
316
 
317
#if HOST_BITS_PER_PTR <= 32
318
 
319
/* On 32-bit hosts, we use a two level page table, as pictured above.  */
320
typedef page_entry **page_table[PAGE_L1_SIZE];
321
 
322
#else
323
 
324
/* On 64-bit hosts, we use the same two level page tables plus a linked
325
   list that disambiguates the top 32-bits.  There will almost always be
326
   exactly one entry in the list.  */
327
typedef struct page_table_chain
328
{
329
  struct page_table_chain *next;
330
  size_t high_bits;
331
  page_entry **table[PAGE_L1_SIZE];
332
} *page_table;
333
 
334
#endif
335
 
336
#ifdef ENABLE_GC_ALWAYS_COLLECT
337
/* List of free objects to be verified as actually free on the
338
   next collection.  */
339
struct free_object
340
{
341
  void *object;
342
  struct free_object *next;
343
};
344
#endif
345
 
346
/* The rest of the global variables.  */
347
static struct globals
348
{
349
  /* The Nth element in this array is a page with objects of size 2^N.
350
     If there are any pages with free objects, they will be at the
351
     head of the list.  NULL if there are no page-entries for this
352
     object size.  */
353
  page_entry *pages[NUM_ORDERS];
354
 
355
  /* The Nth element in this array is the last page with objects of
356
     size 2^N.  NULL if there are no page-entries for this object
357
     size.  */
358
  page_entry *page_tails[NUM_ORDERS];
359
 
360
  /* Lookup table for associating allocation pages with object addresses.  */
361
  page_table lookup;
362
 
363
  /* The system's page size.  */
364
  size_t pagesize;
365
  size_t lg_pagesize;
366
 
367
  /* Bytes currently allocated.  */
368
  size_t allocated;
369
 
370
  /* Bytes currently allocated at the end of the last collection.  */
371
  size_t allocated_last_gc;
372
 
373
  /* Total amount of memory mapped.  */
374
  size_t bytes_mapped;
375
 
376
  /* Bit N set if any allocations have been done at context depth N.  */
377
  unsigned long context_depth_allocations;
378
 
379
  /* Bit N set if any collections have been done at context depth N.  */
380
  unsigned long context_depth_collections;
381
 
382
  /* The current depth in the context stack.  */
383
  unsigned short context_depth;
384
 
385
  /* A file descriptor open to /dev/zero for reading.  */
386
#if defined (HAVE_MMAP_DEV_ZERO)
387
  int dev_zero_fd;
388
#endif
389
 
390
  /* A cache of free system pages.  */
391
  page_entry *free_pages;
392
 
393
#ifdef USING_MALLOC_PAGE_GROUPS
394
  page_group *page_groups;
395
#endif
396
 
397
  /* The file descriptor for debugging output.  */
398
  FILE *debug_file;
399
 
400
  /* Current number of elements in use in depth below.  */
401
  unsigned int depth_in_use;
402
 
403
  /* Maximum number of elements that can be used before resizing.  */
404
  unsigned int depth_max;
405
 
406
  /* Each element of this array is an index in by_depth where the given
407
     depth starts.  This structure is indexed by that given depth we
408
     are interested in.  */
409
  unsigned int *depth;
410
 
411
  /* Current number of elements in use in by_depth below.  */
412
  unsigned int by_depth_in_use;
413
 
414
  /* Maximum number of elements that can be used before resizing.  */
415
  unsigned int by_depth_max;
416
 
417
  /* Each element of this array is a pointer to a page_entry, all
418
     page_entries can be found in here by increasing depth.
419
     index_by_depth in the page_entry is the index into this data
420
     structure where that page_entry can be found.  This is used to
421
     speed up finding all page_entries at a particular depth.  */
422
  page_entry **by_depth;
423
 
424
  /* Each element is a pointer to the saved in_use_p bits, if any,
425
     zero otherwise.  We allocate them all together, to enable a
426
     better runtime data access pattern.  */
427
  unsigned long **save_in_use;
428
 
429
#ifdef ENABLE_GC_ALWAYS_COLLECT
430
  /* List of free objects to be verified as actually free on the
431
     next collection.  */
432
  struct free_object *free_object_list;
433
#endif
434
 
435
#ifdef GATHER_STATISTICS
436
  struct
437
  {
438
    /* Total GC-allocated memory.  */
439
    unsigned long long total_allocated;
440
    /* Total overhead for GC-allocated memory.  */
441
    unsigned long long total_overhead;
442
 
443
    /* Total allocations and overhead for sizes less than 32, 64 and 128.
444
       These sizes are interesting because they are typical cache line
445
       sizes.  */
446
 
447
    unsigned long long total_allocated_under32;
448
    unsigned long long total_overhead_under32;
449
 
450
    unsigned long long total_allocated_under64;
451
    unsigned long long total_overhead_under64;
452
 
453
    unsigned long long total_allocated_under128;
454
    unsigned long long total_overhead_under128;
455
 
456
    /* The allocations for each of the allocation orders.  */
457
    unsigned long long total_allocated_per_order[NUM_ORDERS];
458
 
459
    /* The overhead for each of the allocation orders.  */
460
    unsigned long long total_overhead_per_order[NUM_ORDERS];
461
  } stats;
462
#endif
463
} G;
464
 
465
/* The size in bytes required to maintain a bitmap for the objects
466
   on a page-entry.  */
467
#define BITMAP_SIZE(Num_objects) \
468
  (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
469
 
470
/* Allocate pages in chunks of this size, to throttle calls to memory
471
   allocation routines.  The first page is used, the rest go onto the
472
   free list.  This cannot be larger than HOST_BITS_PER_INT for the
473
   in_use bitmask for page_group.  Hosts that need a different value
474
   can override this by defining GGC_QUIRE_SIZE explicitly.  */
475
#ifndef GGC_QUIRE_SIZE
476
# ifdef USING_MMAP
477
#  define GGC_QUIRE_SIZE 512    /* 2MB for 4K pages */
478
# else
479
#  define GGC_QUIRE_SIZE 16
480
# endif
481
#endif
482
 
483
/* Initial guess as to how many page table entries we might need.  */
484
#define INITIAL_PTE_COUNT 128
485
 
486
static int ggc_allocated_p (const void *);
487
static page_entry *lookup_page_table_entry (const void *);
488
static void set_page_table_entry (void *, page_entry *);
489
#ifdef USING_MMAP
490
static char *alloc_anon (char *, size_t, bool check);
491
#endif
492
#ifdef USING_MALLOC_PAGE_GROUPS
493
static size_t page_group_index (char *, char *);
494
static void set_page_group_in_use (page_group *, char *);
495
static void clear_page_group_in_use (page_group *, char *);
496
#endif
497
static struct page_entry * alloc_page (unsigned);
498
static void free_page (struct page_entry *);
499
static void release_pages (void);
500
static void clear_marks (void);
501
static void sweep_pages (void);
502
static void ggc_recalculate_in_use_p (page_entry *);
503
static void compute_inverse (unsigned);
504
static inline void adjust_depth (void);
505
static void move_ptes_to_front (int, int);
506
 
507
void debug_print_page_list (int);
508
static void push_depth (unsigned int);
509
static void push_by_depth (page_entry *, unsigned long *);
510
 
511
/* Push an entry onto G.depth.  */
512
 
513
inline static void
514
push_depth (unsigned int i)
515
{
516
  if (G.depth_in_use >= G.depth_max)
517
    {
518
      G.depth_max *= 2;
519
      G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
520
    }
521
  G.depth[G.depth_in_use++] = i;
522
}
523
 
524
/* Push an entry onto G.by_depth and G.save_in_use.  */
525
 
526
inline static void
527
push_by_depth (page_entry *p, unsigned long *s)
528
{
529
  if (G.by_depth_in_use >= G.by_depth_max)
530
    {
531
      G.by_depth_max *= 2;
532
      G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
533
      G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
534
                                  G.by_depth_max);
535
    }
536
  G.by_depth[G.by_depth_in_use] = p;
537
  G.save_in_use[G.by_depth_in_use++] = s;
538
}
539
 
540
#if (GCC_VERSION < 3001)
541
#define prefetch(X) ((void) X)
542
#else
543
#define prefetch(X) __builtin_prefetch (X)
544
#endif
545
 
546
#define save_in_use_p_i(__i) \
547
  (G.save_in_use[__i])
548
#define save_in_use_p(__p) \
549
  (save_in_use_p_i (__p->index_by_depth))
550
 
551
/* Returns nonzero if P was allocated in GC'able memory.  */
552
 
553
static inline int
554
ggc_allocated_p (const void *p)
555
{
556
  page_entry ***base;
557
  size_t L1, L2;
558
 
559
#if HOST_BITS_PER_PTR <= 32
560
  base = &G.lookup[0];
561
#else
562
  page_table table = G.lookup;
563
  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
564
  while (1)
565
    {
566
      if (table == NULL)
567
        return 0;
568
      if (table->high_bits == high_bits)
569
        break;
570
      table = table->next;
571
    }
572
  base = &table->table[0];
573
#endif
574
 
575
  /* Extract the level 1 and 2 indices.  */
576
  L1 = LOOKUP_L1 (p);
577
  L2 = LOOKUP_L2 (p);
578
 
579
  return base[L1] && base[L1][L2];
580
}
581
 
582
/* Traverse the page table and find the entry for a page.
583
   Die (probably) if the object wasn't allocated via GC.  */
584
 
585
static inline page_entry *
586
lookup_page_table_entry (const void *p)
587
{
588
  page_entry ***base;
589
  size_t L1, L2;
590
 
591
#if HOST_BITS_PER_PTR <= 32
592
  base = &G.lookup[0];
593
#else
594
  page_table table = G.lookup;
595
  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
596
  while (table->high_bits != high_bits)
597
    table = table->next;
598
  base = &table->table[0];
599
#endif
600
 
601
  /* Extract the level 1 and 2 indices.  */
602
  L1 = LOOKUP_L1 (p);
603
  L2 = LOOKUP_L2 (p);
604
 
605
  return base[L1][L2];
606
}
607
 
608
/* Set the page table entry for a page.  */
609
 
610
static void
611
set_page_table_entry (void *p, page_entry *entry)
612
{
613
  page_entry ***base;
614
  size_t L1, L2;
615
 
616
#if HOST_BITS_PER_PTR <= 32
617
  base = &G.lookup[0];
618
#else
619
  page_table table;
620
  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
621
  for (table = G.lookup; table; table = table->next)
622
    if (table->high_bits == high_bits)
623
      goto found;
624
 
625
  /* Not found -- allocate a new table.  */
626
  table = XCNEW (struct page_table_chain);
627
  table->next = G.lookup;
628
  table->high_bits = high_bits;
629
  G.lookup = table;
630
found:
631
  base = &table->table[0];
632
#endif
633
 
634
  /* Extract the level 1 and 2 indices.  */
635
  L1 = LOOKUP_L1 (p);
636
  L2 = LOOKUP_L2 (p);
637
 
638
  if (base[L1] == NULL)
639
    base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
640
 
641
  base[L1][L2] = entry;
642
}
643
 
644
/* Prints the page-entry for object size ORDER, for debugging.  */
645
 
646
DEBUG_FUNCTION void
647
debug_print_page_list (int order)
648
{
649
  page_entry *p;
650
  printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
651
          (void *) G.page_tails[order]);
652
  p = G.pages[order];
653
  while (p != NULL)
654
    {
655
      printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
656
              p->num_free_objects);
657
      p = p->next;
658
    }
659
  printf ("NULL\n");
660
  fflush (stdout);
661
}
662
 
663
#ifdef USING_MMAP
664
/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
665
   (if non-null).  The ifdef structure here is intended to cause a
666
   compile error unless exactly one of the HAVE_* is defined.  */
667
 
668
static inline char *
669
alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
670
{
671
#ifdef HAVE_MMAP_ANON
672
  char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
673
                              MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
674
#endif
675
#ifdef HAVE_MMAP_DEV_ZERO
676
  char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
677
                              MAP_PRIVATE, G.dev_zero_fd, 0);
678
#endif
679
 
680
  if (page == (char *) MAP_FAILED)
681
    {
682
      if (!check)
683
        return NULL;
684
      perror ("virtual memory exhausted");
685
      exit (FATAL_EXIT_CODE);
686
    }
687
 
688
  /* Remember that we allocated this memory.  */
689
  G.bytes_mapped += size;
690
 
691
  /* Pretend we don't have access to the allocated pages.  We'll enable
692
     access to smaller pieces of the area in ggc_internal_alloc.  Discard the
693
     handle to avoid handle leak.  */
694
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
695
 
696
  return page;
697
}
698
#endif
699
#ifdef USING_MALLOC_PAGE_GROUPS
700
/* Compute the index for this page into the page group.  */
701
 
702
static inline size_t
703
page_group_index (char *allocation, char *page)
704
{
705
  return (size_t) (page - allocation) >> G.lg_pagesize;
706
}
707
 
708
/* Set and clear the in_use bit for this page in the page group.  */
709
 
710
static inline void
711
set_page_group_in_use (page_group *group, char *page)
712
{
713
  group->in_use |= 1 << page_group_index (group->allocation, page);
714
}
715
 
716
static inline void
717
clear_page_group_in_use (page_group *group, char *page)
718
{
719
  group->in_use &= ~(1 << page_group_index (group->allocation, page));
720
}
721
#endif
722
 
723
/* Allocate a new page for allocating objects of size 2^ORDER,
724
   and return an entry for it.  The entry is not added to the
725
   appropriate page_table list.  */
726
 
727
static inline struct page_entry *
728
alloc_page (unsigned order)
729
{
730
  struct page_entry *entry, *p, **pp;
731
  char *page;
732
  size_t num_objects;
733
  size_t bitmap_size;
734
  size_t page_entry_size;
735
  size_t entry_size;
736
#ifdef USING_MALLOC_PAGE_GROUPS
737
  page_group *group;
738
#endif
739
 
740
  num_objects = OBJECTS_PER_PAGE (order);
741
  bitmap_size = BITMAP_SIZE (num_objects + 1);
742
  page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
743
  entry_size = num_objects * OBJECT_SIZE (order);
744
  if (entry_size < G.pagesize)
745
    entry_size = G.pagesize;
746
  entry_size = PAGE_ALIGN (entry_size);
747
 
748
  entry = NULL;
749
  page = NULL;
750
 
751
  /* Check the list of free pages for one we can use.  */
752
  for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
753
    if (p->bytes == entry_size)
754
      break;
755
 
756
  if (p != NULL)
757
    {
758
      if (p->discarded)
759
        G.bytes_mapped += p->bytes;
760
      p->discarded = false;
761
 
762
      /* Recycle the allocated memory from this page ...  */
763
      *pp = p->next;
764
      page = p->page;
765
 
766
#ifdef USING_MALLOC_PAGE_GROUPS
767
      group = p->group;
768
#endif
769
 
770
      /* ... and, if possible, the page entry itself.  */
771
      if (p->order == order)
772
        {
773
          entry = p;
774
          memset (entry, 0, page_entry_size);
775
        }
776
      else
777
        free (p);
778
    }
779
#ifdef USING_MMAP
780
  else if (entry_size == G.pagesize)
781
    {
782
      /* We want just one page.  Allocate a bunch of them and put the
783
         extras on the freelist.  (Can only do this optimization with
784
         mmap for backing store.)  */
785
      struct page_entry *e, *f = G.free_pages;
786
      int i, entries = GGC_QUIRE_SIZE;
787
 
788
      page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
789
      if (page == NULL)
790
        {
791
          page = alloc_anon(NULL, G.pagesize, true);
792
          entries = 1;
793
        }
794
 
795
      /* This loop counts down so that the chain will be in ascending
796
         memory order.  */
797
      for (i = entries - 1; i >= 1; i--)
798
        {
799
          e = XCNEWVAR (struct page_entry, page_entry_size);
800
          e->order = order;
801
          e->bytes = G.pagesize;
802
          e->page = page + (i << G.lg_pagesize);
803
          e->next = f;
804
          f = e;
805
        }
806
 
807
      G.free_pages = f;
808
    }
809
  else
810
    page = alloc_anon (NULL, entry_size, true);
811
#endif
812
#ifdef USING_MALLOC_PAGE_GROUPS
813
  else
814
    {
815
      /* Allocate a large block of memory and serve out the aligned
816
         pages therein.  This results in much less memory wastage
817
         than the traditional implementation of valloc.  */
818
 
819
      char *allocation, *a, *enda;
820
      size_t alloc_size, head_slop, tail_slop;
821
      int multiple_pages = (entry_size == G.pagesize);
822
 
823
      if (multiple_pages)
824
        alloc_size = GGC_QUIRE_SIZE * G.pagesize;
825
      else
826
        alloc_size = entry_size + G.pagesize - 1;
827
      allocation = XNEWVEC (char, alloc_size);
828
 
829
      page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
830
      head_slop = page - allocation;
831
      if (multiple_pages)
832
        tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
833
      else
834
        tail_slop = alloc_size - entry_size - head_slop;
835
      enda = allocation + alloc_size - tail_slop;
836
 
837
      /* We allocated N pages, which are likely not aligned, leaving
838
         us with N-1 usable pages.  We plan to place the page_group
839
         structure somewhere in the slop.  */
840
      if (head_slop >= sizeof (page_group))
841
        group = (page_group *)page - 1;
842
      else
843
        {
844
          /* We magically got an aligned allocation.  Too bad, we have
845
             to waste a page anyway.  */
846
          if (tail_slop == 0)
847
            {
848
              enda -= G.pagesize;
849
              tail_slop += G.pagesize;
850
            }
851
          gcc_assert (tail_slop >= sizeof (page_group));
852
          group = (page_group *)enda;
853
          tail_slop -= sizeof (page_group);
854
        }
855
 
856
      /* Remember that we allocated this memory.  */
857
      group->next = G.page_groups;
858
      group->allocation = allocation;
859
      group->alloc_size = alloc_size;
860
      group->in_use = 0;
861
      G.page_groups = group;
862
      G.bytes_mapped += alloc_size;
863
 
864
      /* If we allocated multiple pages, put the rest on the free list.  */
865
      if (multiple_pages)
866
        {
867
          struct page_entry *e, *f = G.free_pages;
868
          for (a = enda - G.pagesize; a != page; a -= G.pagesize)
869
            {
870
              e = XCNEWVAR (struct page_entry, page_entry_size);
871
              e->order = order;
872
              e->bytes = G.pagesize;
873
              e->page = a;
874
              e->group = group;
875
              e->next = f;
876
              f = e;
877
            }
878
          G.free_pages = f;
879
        }
880
    }
881
#endif
882
 
883
  if (entry == NULL)
884
    entry = XCNEWVAR (struct page_entry, page_entry_size);
885
 
886
  entry->bytes = entry_size;
887
  entry->page = page;
888
  entry->context_depth = G.context_depth;
889
  entry->order = order;
890
  entry->num_free_objects = num_objects;
891
  entry->next_bit_hint = 1;
892
 
893
  G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
894
 
895
#ifdef USING_MALLOC_PAGE_GROUPS
896
  entry->group = group;
897
  set_page_group_in_use (group, page);
898
#endif
899
 
900
  /* Set the one-past-the-end in-use bit.  This acts as a sentry as we
901
     increment the hint.  */
902
  entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
903
    = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
904
 
905
  set_page_table_entry (page, entry);
906
 
907
  if (GGC_DEBUG_LEVEL >= 2)
908
    fprintf (G.debug_file,
909
             "Allocating page at %p, object size=%lu, data %p-%p\n",
910
             (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
911
             page + entry_size - 1);
912
 
913
  return entry;
914
}
915
 
916
/* Adjust the size of G.depth so that no index greater than the one
917
   used by the top of the G.by_depth is used.  */
918
 
919
static inline void
920
adjust_depth (void)
921
{
922
  page_entry *top;
923
 
924
  if (G.by_depth_in_use)
925
    {
926
      top = G.by_depth[G.by_depth_in_use-1];
927
 
928
      /* Peel back indices in depth that index into by_depth, so that
929
         as new elements are added to by_depth, we note the indices
930
         of those elements, if they are for new context depths.  */
931
      while (G.depth_in_use > (size_t)top->context_depth+1)
932
        --G.depth_in_use;
933
    }
934
}
935
 
936
/* For a page that is no longer needed, put it on the free page list.  */
937
 
938
static void
939
free_page (page_entry *entry)
940
{
941
  if (GGC_DEBUG_LEVEL >= 2)
942
    fprintf (G.debug_file,
943
             "Deallocating page at %p, data %p-%p\n", (void *) entry,
944
             entry->page, entry->page + entry->bytes - 1);
945
 
946
  /* Mark the page as inaccessible.  Discard the handle to avoid handle
947
     leak.  */
948
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
949
 
950
  set_page_table_entry (entry->page, NULL);
951
 
952
#ifdef USING_MALLOC_PAGE_GROUPS
953
  clear_page_group_in_use (entry->group, entry->page);
954
#endif
955
 
956
  if (G.by_depth_in_use > 1)
957
    {
958
      page_entry *top = G.by_depth[G.by_depth_in_use-1];
959
      int i = entry->index_by_depth;
960
 
961
      /* We cannot free a page from a context deeper than the current
962
         one.  */
963
      gcc_assert (entry->context_depth == top->context_depth);
964
 
965
      /* Put top element into freed slot.  */
966
      G.by_depth[i] = top;
967
      G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
968
      top->index_by_depth = i;
969
    }
970
  --G.by_depth_in_use;
971
 
972
  adjust_depth ();
973
 
974
  entry->next = G.free_pages;
975
  G.free_pages = entry;
976
}
977
 
978
/* Release the free page cache to the system.  */
979
 
980
static void
981
release_pages (void)
982
{
983
#ifdef USING_MADVISE
984
  page_entry *p, *start_p;
985
  char *start;
986
  size_t len;
987
  size_t mapped_len;
988
  page_entry *next, *prev, *newprev;
989
  size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
990
 
991
  /* First free larger continuous areas to the OS.
992
     This allows other allocators to grab these areas if needed.
993
     This is only done on larger chunks to avoid fragmentation.
994
     This does not always work because the free_pages list is only
995
     approximately sorted. */
996
 
997
  p = G.free_pages;
998
  prev = NULL;
999
  while (p)
1000
    {
1001
      start = p->page;
1002
      start_p = p;
1003
      len = 0;
1004
      mapped_len = 0;
1005
      newprev = prev;
1006
      while (p && p->page == start + len)
1007
        {
1008
          len += p->bytes;
1009
          if (!p->discarded)
1010
              mapped_len += p->bytes;
1011
          newprev = p;
1012
          p = p->next;
1013
        }
1014
      if (len >= free_unit)
1015
        {
1016
          while (start_p != p)
1017
            {
1018
              next = start_p->next;
1019
              free (start_p);
1020
              start_p = next;
1021
            }
1022
          munmap (start, len);
1023
          if (prev)
1024
            prev->next = p;
1025
          else
1026
            G.free_pages = p;
1027
          G.bytes_mapped -= mapped_len;
1028
          continue;
1029
        }
1030
      prev = newprev;
1031
   }
1032
 
1033
  /* Now give back the fragmented pages to the OS, but keep the address
1034
     space to reuse it next time. */
1035
 
1036
  for (p = G.free_pages; p; )
1037
    {
1038
      if (p->discarded)
1039
        {
1040
          p = p->next;
1041
          continue;
1042
        }
1043
      start = p->page;
1044
      len = p->bytes;
1045
      start_p = p;
1046
      p = p->next;
1047
      while (p && p->page == start + len)
1048
        {
1049
          len += p->bytes;
1050
          p = p->next;
1051
        }
1052
      /* Give the page back to the kernel, but don't free the mapping.
1053
         This avoids fragmentation in the virtual memory map of the
1054
         process. Next time we can reuse it by just touching it. */
1055
      madvise (start, len, MADV_DONTNEED);
1056
      /* Don't count those pages as mapped to not touch the garbage collector
1057
         unnecessarily. */
1058
      G.bytes_mapped -= len;
1059
      while (start_p != p)
1060
        {
1061
          start_p->discarded = true;
1062
          start_p = start_p->next;
1063
        }
1064
    }
1065
#endif
1066
#if defined(USING_MMAP) && !defined(USING_MADVISE)
1067
  page_entry *p, *next;
1068
  char *start;
1069
  size_t len;
1070
 
1071
  /* Gather up adjacent pages so they are unmapped together.  */
1072
  p = G.free_pages;
1073
 
1074
  while (p)
1075
    {
1076
      start = p->page;
1077
      next = p->next;
1078
      len = p->bytes;
1079
      free (p);
1080
      p = next;
1081
 
1082
      while (p && p->page == start + len)
1083
        {
1084
          next = p->next;
1085
          len += p->bytes;
1086
          free (p);
1087
          p = next;
1088
        }
1089
 
1090
      munmap (start, len);
1091
      G.bytes_mapped -= len;
1092
    }
1093
 
1094
  G.free_pages = NULL;
1095
#endif
1096
#ifdef USING_MALLOC_PAGE_GROUPS
1097
  page_entry **pp, *p;
1098
  page_group **gp, *g;
1099
 
1100
  /* Remove all pages from free page groups from the list.  */
1101
  pp = &G.free_pages;
1102
  while ((p = *pp) != NULL)
1103
    if (p->group->in_use == 0)
1104
      {
1105
        *pp = p->next;
1106
        free (p);
1107
      }
1108
    else
1109
      pp = &p->next;
1110
 
1111
  /* Remove all free page groups, and release the storage.  */
1112
  gp = &G.page_groups;
1113
  while ((g = *gp) != NULL)
1114
    if (g->in_use == 0)
1115
      {
1116
        *gp = g->next;
1117
        G.bytes_mapped -= g->alloc_size;
1118
        free (g->allocation);
1119
      }
1120
    else
1121
      gp = &g->next;
1122
#endif
1123
}
1124
 
1125
/* This table provides a fast way to determine ceil(log_2(size)) for
1126
   allocation requests.  The minimum allocation size is eight bytes.  */
1127
#define NUM_SIZE_LOOKUP 512
1128
static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1129
{
1130
  3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1131
  4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1132
  5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1133
  6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1134
  6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1135
  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1136
  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1137
  7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1138
  7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1139
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1140
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1141
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1142
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1143
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1144
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1145
  8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1146
  8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1147
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1148
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1149
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1150
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1151
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1152
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1153
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1154
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1155
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1156
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1157
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1158
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1159
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1160
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1161
  9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1162
};
1163
 
1164
/* For a given size of memory requested for allocation, return the
1165
   actual size that is going to be allocated, as well as the size
1166
   order.  */
1167
 
1168
static void
1169
ggc_round_alloc_size_1 (size_t requested_size,
1170
                        size_t *size_order,
1171
                        size_t *alloced_size)
1172
{
1173
  size_t order, object_size;
1174
 
1175
  if (requested_size < NUM_SIZE_LOOKUP)
1176
    {
1177
      order = size_lookup[requested_size];
1178
      object_size = OBJECT_SIZE (order);
1179
    }
1180
  else
1181
    {
1182
      order = 10;
1183
      while (requested_size > (object_size = OBJECT_SIZE (order)))
1184
        order++;
1185
    }
1186
 
1187
  if (size_order)
1188
    *size_order = order;
1189
  if (alloced_size)
1190
    *alloced_size = object_size;
1191
}
1192
 
1193
/* For a given size of memory requested for allocation, return the
1194
   actual size that is going to be allocated.  */
1195
 
1196
size_t
1197
ggc_round_alloc_size (size_t requested_size)
1198
{
1199
  size_t size = 0;
1200
 
1201
  ggc_round_alloc_size_1 (requested_size, NULL, &size);
1202
  return size;
1203
}
1204
 
1205
/* Typed allocation function.  Does nothing special in this collector.  */
1206
 
1207
void *
1208
ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1209
                      MEM_STAT_DECL)
1210
{
1211
  return ggc_internal_alloc_stat (size PASS_MEM_STAT);
1212
}
1213
 
1214
/* Allocate a chunk of memory of SIZE bytes.  Its contents are undefined.  */
1215
 
1216
void *
1217
ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
1218
{
1219
  size_t order, word, bit, object_offset, object_size;
1220
  struct page_entry *entry;
1221
  void *result;
1222
 
1223
  ggc_round_alloc_size_1 (size, &order, &object_size);
1224
 
1225
  /* If there are non-full pages for this size allocation, they are at
1226
     the head of the list.  */
1227
  entry = G.pages[order];
1228
 
1229
  /* If there is no page for this object size, or all pages in this
1230
     context are full, allocate a new page.  */
1231
  if (entry == NULL || entry->num_free_objects == 0)
1232
    {
1233
      struct page_entry *new_entry;
1234
      new_entry = alloc_page (order);
1235
 
1236
      new_entry->index_by_depth = G.by_depth_in_use;
1237
      push_by_depth (new_entry, 0);
1238
 
1239
      /* We can skip context depths, if we do, make sure we go all the
1240
         way to the new depth.  */
1241
      while (new_entry->context_depth >= G.depth_in_use)
1242
        push_depth (G.by_depth_in_use-1);
1243
 
1244
      /* If this is the only entry, it's also the tail.  If it is not
1245
         the only entry, then we must update the PREV pointer of the
1246
         ENTRY (G.pages[order]) to point to our new page entry.  */
1247
      if (entry == NULL)
1248
        G.page_tails[order] = new_entry;
1249
      else
1250
        entry->prev = new_entry;
1251
 
1252
      /* Put new pages at the head of the page list.  By definition the
1253
         entry at the head of the list always has a NULL pointer.  */
1254
      new_entry->next = entry;
1255
      new_entry->prev = NULL;
1256
      entry = new_entry;
1257
      G.pages[order] = new_entry;
1258
 
1259
      /* For a new page, we know the word and bit positions (in the
1260
         in_use bitmap) of the first available object -- they're zero.  */
1261
      new_entry->next_bit_hint = 1;
1262
      word = 0;
1263
      bit = 0;
1264
      object_offset = 0;
1265
    }
1266
  else
1267
    {
1268
      /* First try to use the hint left from the previous allocation
1269
         to locate a clear bit in the in-use bitmap.  We've made sure
1270
         that the one-past-the-end bit is always set, so if the hint
1271
         has run over, this test will fail.  */
1272
      unsigned hint = entry->next_bit_hint;
1273
      word = hint / HOST_BITS_PER_LONG;
1274
      bit = hint % HOST_BITS_PER_LONG;
1275
 
1276
      /* If the hint didn't work, scan the bitmap from the beginning.  */
1277
      if ((entry->in_use_p[word] >> bit) & 1)
1278
        {
1279
          word = bit = 0;
1280
          while (~entry->in_use_p[word] == 0)
1281
            ++word;
1282
 
1283
#if GCC_VERSION >= 3004
1284
          bit = __builtin_ctzl (~entry->in_use_p[word]);
1285
#else
1286
          while ((entry->in_use_p[word] >> bit) & 1)
1287
            ++bit;
1288
#endif
1289
 
1290
          hint = word * HOST_BITS_PER_LONG + bit;
1291
        }
1292
 
1293
      /* Next time, try the next bit.  */
1294
      entry->next_bit_hint = hint + 1;
1295
 
1296
      object_offset = hint * object_size;
1297
    }
1298
 
1299
  /* Set the in-use bit.  */
1300
  entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1301
 
1302
  /* Keep a running total of the number of free objects.  If this page
1303
     fills up, we may have to move it to the end of the list if the
1304
     next page isn't full.  If the next page is full, all subsequent
1305
     pages are full, so there's no need to move it.  */
1306
  if (--entry->num_free_objects == 0
1307
      && entry->next != NULL
1308
      && entry->next->num_free_objects > 0)
1309
    {
1310
      /* We have a new head for the list.  */
1311
      G.pages[order] = entry->next;
1312
 
1313
      /* We are moving ENTRY to the end of the page table list.
1314
         The new page at the head of the list will have NULL in
1315
         its PREV field and ENTRY will have NULL in its NEXT field.  */
1316
      entry->next->prev = NULL;
1317
      entry->next = NULL;
1318
 
1319
      /* Append ENTRY to the tail of the list.  */
1320
      entry->prev = G.page_tails[order];
1321
      G.page_tails[order]->next = entry;
1322
      G.page_tails[order] = entry;
1323
    }
1324
 
1325
  /* Calculate the object's address.  */
1326
  result = entry->page + object_offset;
1327
#ifdef GATHER_STATISTICS
1328
  ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1329
                       result PASS_MEM_STAT);
1330
#endif
1331
 
1332
#ifdef ENABLE_GC_CHECKING
1333
  /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1334
     exact same semantics in presence of memory bugs, regardless of
1335
     ENABLE_VALGRIND_CHECKING.  We override this request below.  Drop the
1336
     handle to avoid handle leak.  */
1337
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1338
 
1339
  /* `Poison' the entire allocated object, including any padding at
1340
     the end.  */
1341
  memset (result, 0xaf, object_size);
1342
 
1343
  /* Make the bytes after the end of the object unaccessible.  Discard the
1344
     handle to avoid handle leak.  */
1345
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1346
                                                object_size - size));
1347
#endif
1348
 
1349
  /* Tell Valgrind that the memory is there, but its content isn't
1350
     defined.  The bytes at the end of the object are still marked
1351
     unaccessible.  */
1352
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1353
 
1354
  /* Keep track of how many bytes are being allocated.  This
1355
     information is used in deciding when to collect.  */
1356
  G.allocated += object_size;
1357
 
1358
  /* For timevar statistics.  */
1359
  timevar_ggc_mem_total += object_size;
1360
 
1361
#ifdef GATHER_STATISTICS
1362
  {
1363
    size_t overhead = object_size - size;
1364
 
1365
    G.stats.total_overhead += overhead;
1366
    G.stats.total_allocated += object_size;
1367
    G.stats.total_overhead_per_order[order] += overhead;
1368
    G.stats.total_allocated_per_order[order] += object_size;
1369
 
1370
    if (size <= 32)
1371
      {
1372
        G.stats.total_overhead_under32 += overhead;
1373
        G.stats.total_allocated_under32 += object_size;
1374
      }
1375
    if (size <= 64)
1376
      {
1377
        G.stats.total_overhead_under64 += overhead;
1378
        G.stats.total_allocated_under64 += object_size;
1379
      }
1380
    if (size <= 128)
1381
      {
1382
        G.stats.total_overhead_under128 += overhead;
1383
        G.stats.total_allocated_under128 += object_size;
1384
      }
1385
  }
1386
#endif
1387
 
1388
  if (GGC_DEBUG_LEVEL >= 3)
1389
    fprintf (G.debug_file,
1390
             "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1391
             (unsigned long) size, (unsigned long) object_size, result,
1392
             (void *) entry);
1393
 
1394
  return result;
1395
}
1396
 
1397
/* Mark function for strings.  */
1398
 
1399
void
1400
gt_ggc_m_S (const void *p)
1401
{
1402
  page_entry *entry;
1403
  unsigned bit, word;
1404
  unsigned long mask;
1405
  unsigned long offset;
1406
 
1407
  if (!p || !ggc_allocated_p (p))
1408
    return;
1409
 
1410
  /* Look up the page on which the object is alloced.  .  */
1411
  entry = lookup_page_table_entry (p);
1412
  gcc_assert (entry);
1413
 
1414
  /* Calculate the index of the object on the page; this is its bit
1415
     position in the in_use_p bitmap.  Note that because a char* might
1416
     point to the middle of an object, we need special code here to
1417
     make sure P points to the start of an object.  */
1418
  offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1419
  if (offset)
1420
    {
1421
      /* Here we've seen a char* which does not point to the beginning
1422
         of an allocated object.  We assume it points to the middle of
1423
         a STRING_CST.  */
1424
      gcc_assert (offset == offsetof (struct tree_string, str));
1425
      p = ((const char *) p) - offset;
1426
      gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1427
      return;
1428
    }
1429
 
1430
  bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1431
  word = bit / HOST_BITS_PER_LONG;
1432
  mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1433
 
1434
  /* If the bit was previously set, skip it.  */
1435
  if (entry->in_use_p[word] & mask)
1436
    return;
1437
 
1438
  /* Otherwise set it, and decrement the free object count.  */
1439
  entry->in_use_p[word] |= mask;
1440
  entry->num_free_objects -= 1;
1441
 
1442
  if (GGC_DEBUG_LEVEL >= 4)
1443
    fprintf (G.debug_file, "Marking %p\n", p);
1444
 
1445
  return;
1446
}
1447
 
1448
/* If P is not marked, marks it and return false.  Otherwise return true.
1449
   P must have been allocated by the GC allocator; it mustn't point to
1450
   static objects, stack variables, or memory allocated with malloc.  */
1451
 
1452
int
1453
ggc_set_mark (const void *p)
1454
{
1455
  page_entry *entry;
1456
  unsigned bit, word;
1457
  unsigned long mask;
1458
 
1459
  /* Look up the page on which the object is alloced.  If the object
1460
     wasn't allocated by the collector, we'll probably die.  */
1461
  entry = lookup_page_table_entry (p);
1462
  gcc_assert (entry);
1463
 
1464
  /* Calculate the index of the object on the page; this is its bit
1465
     position in the in_use_p bitmap.  */
1466
  bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1467
  word = bit / HOST_BITS_PER_LONG;
1468
  mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1469
 
1470
  /* If the bit was previously set, skip it.  */
1471
  if (entry->in_use_p[word] & mask)
1472
    return 1;
1473
 
1474
  /* Otherwise set it, and decrement the free object count.  */
1475
  entry->in_use_p[word] |= mask;
1476
  entry->num_free_objects -= 1;
1477
 
1478
  if (GGC_DEBUG_LEVEL >= 4)
1479
    fprintf (G.debug_file, "Marking %p\n", p);
1480
 
1481
  return 0;
1482
}
1483
 
1484
/* Return 1 if P has been marked, zero otherwise.
1485
   P must have been allocated by the GC allocator; it mustn't point to
1486
   static objects, stack variables, or memory allocated with malloc.  */
1487
 
1488
int
1489
ggc_marked_p (const void *p)
1490
{
1491
  page_entry *entry;
1492
  unsigned bit, word;
1493
  unsigned long mask;
1494
 
1495
  /* Look up the page on which the object is alloced.  If the object
1496
     wasn't allocated by the collector, we'll probably die.  */
1497
  entry = lookup_page_table_entry (p);
1498
  gcc_assert (entry);
1499
 
1500
  /* Calculate the index of the object on the page; this is its bit
1501
     position in the in_use_p bitmap.  */
1502
  bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1503
  word = bit / HOST_BITS_PER_LONG;
1504
  mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1505
 
1506
  return (entry->in_use_p[word] & mask) != 0;
1507
}
1508
 
1509
/* Return the size of the gc-able object P.  */
1510
 
1511
size_t
1512
ggc_get_size (const void *p)
1513
{
1514
  page_entry *pe = lookup_page_table_entry (p);
1515
  return OBJECT_SIZE (pe->order);
1516
}
1517
 
1518
/* Release the memory for object P.  */
1519
 
1520
void
1521
ggc_free (void *p)
1522
{
1523
  page_entry *pe = lookup_page_table_entry (p);
1524
  size_t order = pe->order;
1525
  size_t size = OBJECT_SIZE (order);
1526
 
1527
#ifdef GATHER_STATISTICS
1528
  ggc_free_overhead (p);
1529
#endif
1530
 
1531
  if (GGC_DEBUG_LEVEL >= 3)
1532
    fprintf (G.debug_file,
1533
             "Freeing object, actual size=%lu, at %p on %p\n",
1534
             (unsigned long) size, p, (void *) pe);
1535
 
1536
#ifdef ENABLE_GC_CHECKING
1537
  /* Poison the data, to indicate the data is garbage.  */
1538
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1539
  memset (p, 0xa5, size);
1540
#endif
1541
  /* Let valgrind know the object is free.  */
1542
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1543
 
1544
#ifdef ENABLE_GC_ALWAYS_COLLECT
1545
  /* In the completely-anal-checking mode, we do *not* immediately free
1546
     the data, but instead verify that the data is *actually* not
1547
     reachable the next time we collect.  */
1548
  {
1549
    struct free_object *fo = XNEW (struct free_object);
1550
    fo->object = p;
1551
    fo->next = G.free_object_list;
1552
    G.free_object_list = fo;
1553
  }
1554
#else
1555
  {
1556
    unsigned int bit_offset, word, bit;
1557
 
1558
    G.allocated -= size;
1559
 
1560
    /* Mark the object not-in-use.  */
1561
    bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1562
    word = bit_offset / HOST_BITS_PER_LONG;
1563
    bit = bit_offset % HOST_BITS_PER_LONG;
1564
    pe->in_use_p[word] &= ~(1UL << bit);
1565
 
1566
    if (pe->num_free_objects++ == 0)
1567
      {
1568
        page_entry *p, *q;
1569
 
1570
        /* If the page is completely full, then it's supposed to
1571
           be after all pages that aren't.  Since we've freed one
1572
           object from a page that was full, we need to move the
1573
           page to the head of the list.
1574
 
1575
           PE is the node we want to move.  Q is the previous node
1576
           and P is the next node in the list.  */
1577
        q = pe->prev;
1578
        if (q && q->num_free_objects == 0)
1579
          {
1580
            p = pe->next;
1581
 
1582
            q->next = p;
1583
 
1584
            /* If PE was at the end of the list, then Q becomes the
1585
               new end of the list.  If PE was not the end of the
1586
               list, then we need to update the PREV field for P.  */
1587
            if (!p)
1588
              G.page_tails[order] = q;
1589
            else
1590
              p->prev = q;
1591
 
1592
            /* Move PE to the head of the list.  */
1593
            pe->next = G.pages[order];
1594
            pe->prev = NULL;
1595
            G.pages[order]->prev = pe;
1596
            G.pages[order] = pe;
1597
          }
1598
 
1599
        /* Reset the hint bit to point to the only free object.  */
1600
        pe->next_bit_hint = bit_offset;
1601
      }
1602
  }
1603
#endif
1604
}
1605
 
1606
/* Subroutine of init_ggc which computes the pair of numbers used to
1607
   perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1608
 
1609
   This algorithm is taken from Granlund and Montgomery's paper
1610
   "Division by Invariant Integers using Multiplication"
1611
   (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1612
   constants).  */
1613
 
1614
static void
1615
compute_inverse (unsigned order)
1616
{
1617
  size_t size, inv;
1618
  unsigned int e;
1619
 
1620
  size = OBJECT_SIZE (order);
1621
  e = 0;
1622
  while (size % 2 == 0)
1623
    {
1624
      e++;
1625
      size >>= 1;
1626
    }
1627
 
1628
  inv = size;
1629
  while (inv * size != 1)
1630
    inv = inv * (2 - inv*size);
1631
 
1632
  DIV_MULT (order) = inv;
1633
  DIV_SHIFT (order) = e;
1634
}
1635
 
1636
/* Initialize the ggc-mmap allocator.  */
1637
void
1638
init_ggc (void)
1639
{
1640
  unsigned order;
1641
 
1642
  G.pagesize = getpagesize();
1643
  G.lg_pagesize = exact_log2 (G.pagesize);
1644
 
1645
#ifdef HAVE_MMAP_DEV_ZERO
1646
  G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1647
  if (G.dev_zero_fd == -1)
1648
    internal_error ("open /dev/zero: %m");
1649
#endif
1650
 
1651
#if 0
1652
  G.debug_file = fopen ("ggc-mmap.debug", "w");
1653
#else
1654
  G.debug_file = stdout;
1655
#endif
1656
 
1657
#ifdef USING_MMAP
1658
  /* StunOS has an amazing off-by-one error for the first mmap allocation
1659
     after fiddling with RLIMIT_STACK.  The result, as hard as it is to
1660
     believe, is an unaligned page allocation, which would cause us to
1661
     hork badly if we tried to use it.  */
1662
  {
1663
    char *p = alloc_anon (NULL, G.pagesize, true);
1664
    struct page_entry *e;
1665
    if ((size_t)p & (G.pagesize - 1))
1666
      {
1667
        /* How losing.  Discard this one and try another.  If we still
1668
           can't get something useful, give up.  */
1669
 
1670
        p = alloc_anon (NULL, G.pagesize, true);
1671
        gcc_assert (!((size_t)p & (G.pagesize - 1)));
1672
      }
1673
 
1674
    /* We have a good page, might as well hold onto it...  */
1675
    e = XCNEW (struct page_entry);
1676
    e->bytes = G.pagesize;
1677
    e->page = p;
1678
    e->next = G.free_pages;
1679
    G.free_pages = e;
1680
  }
1681
#endif
1682
 
1683
  /* Initialize the object size table.  */
1684
  for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1685
    object_size_table[order] = (size_t) 1 << order;
1686
  for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1687
    {
1688
      size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1689
 
1690
      /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1691
         so that we're sure of getting aligned memory.  */
1692
      s = ROUND_UP (s, MAX_ALIGNMENT);
1693
      object_size_table[order] = s;
1694
    }
1695
 
1696
  /* Initialize the objects-per-page and inverse tables.  */
1697
  for (order = 0; order < NUM_ORDERS; ++order)
1698
    {
1699
      objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1700
      if (objects_per_page_table[order] == 0)
1701
        objects_per_page_table[order] = 1;
1702
      compute_inverse (order);
1703
    }
1704
 
1705
  /* Reset the size_lookup array to put appropriately sized objects in
1706
     the special orders.  All objects bigger than the previous power
1707
     of two, but no greater than the special size, should go in the
1708
     new order.  */
1709
  for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1710
    {
1711
      int o;
1712
      int i;
1713
 
1714
      i = OBJECT_SIZE (order);
1715
      if (i >= NUM_SIZE_LOOKUP)
1716
        continue;
1717
 
1718
      for (o = size_lookup[i]; o == size_lookup [i]; --i)
1719
        size_lookup[i] = order;
1720
    }
1721
 
1722
  G.depth_in_use = 0;
1723
  G.depth_max = 10;
1724
  G.depth = XNEWVEC (unsigned int, G.depth_max);
1725
 
1726
  G.by_depth_in_use = 0;
1727
  G.by_depth_max = INITIAL_PTE_COUNT;
1728
  G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1729
  G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1730
}
1731
 
1732
/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1733
   reflects reality.  Recalculate NUM_FREE_OBJECTS as well.  */
1734
 
1735
static void
1736
ggc_recalculate_in_use_p (page_entry *p)
1737
{
1738
  unsigned int i;
1739
  size_t num_objects;
1740
 
1741
  /* Because the past-the-end bit in in_use_p is always set, we
1742
     pretend there is one additional object.  */
1743
  num_objects = OBJECTS_IN_PAGE (p) + 1;
1744
 
1745
  /* Reset the free object count.  */
1746
  p->num_free_objects = num_objects;
1747
 
1748
  /* Combine the IN_USE_P and SAVE_IN_USE_P arrays.  */
1749
  for (i = 0;
1750
       i < CEIL (BITMAP_SIZE (num_objects),
1751
                 sizeof (*p->in_use_p));
1752
       ++i)
1753
    {
1754
      unsigned long j;
1755
 
1756
      /* Something is in use if it is marked, or if it was in use in a
1757
         context further down the context stack.  */
1758
      p->in_use_p[i] |= save_in_use_p (p)[i];
1759
 
1760
      /* Decrement the free object count for every object allocated.  */
1761
      for (j = p->in_use_p[i]; j; j >>= 1)
1762
        p->num_free_objects -= (j & 1);
1763
    }
1764
 
1765
  gcc_assert (p->num_free_objects < num_objects);
1766
}
1767
 
1768
/* Unmark all objects.  */
1769
 
1770
static void
1771
clear_marks (void)
1772
{
1773
  unsigned order;
1774
 
1775
  for (order = 2; order < NUM_ORDERS; order++)
1776
    {
1777
      page_entry *p;
1778
 
1779
      for (p = G.pages[order]; p != NULL; p = p->next)
1780
        {
1781
          size_t num_objects = OBJECTS_IN_PAGE (p);
1782
          size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1783
 
1784
          /* The data should be page-aligned.  */
1785
          gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1786
 
1787
          /* Pages that aren't in the topmost context are not collected;
1788
             nevertheless, we need their in-use bit vectors to store GC
1789
             marks.  So, back them up first.  */
1790
          if (p->context_depth < G.context_depth)
1791
            {
1792
              if (! save_in_use_p (p))
1793
                save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1794
              memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1795
            }
1796
 
1797
          /* Reset reset the number of free objects and clear the
1798
             in-use bits.  These will be adjusted by mark_obj.  */
1799
          p->num_free_objects = num_objects;
1800
          memset (p->in_use_p, 0, bitmap_size);
1801
 
1802
          /* Make sure the one-past-the-end bit is always set.  */
1803
          p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1804
            = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1805
        }
1806
    }
1807
}
1808
 
1809
/* Free all empty pages.  Partially empty pages need no attention
1810
   because the `mark' bit doubles as an `unused' bit.  */
1811
 
1812
static void
1813
sweep_pages (void)
1814
{
1815
  unsigned order;
1816
 
1817
  for (order = 2; order < NUM_ORDERS; order++)
1818
    {
1819
      /* The last page-entry to consider, regardless of entries
1820
         placed at the end of the list.  */
1821
      page_entry * const last = G.page_tails[order];
1822
 
1823
      size_t num_objects;
1824
      size_t live_objects;
1825
      page_entry *p, *previous;
1826
      int done;
1827
 
1828
      p = G.pages[order];
1829
      if (p == NULL)
1830
        continue;
1831
 
1832
      previous = NULL;
1833
      do
1834
        {
1835
          page_entry *next = p->next;
1836
 
1837
          /* Loop until all entries have been examined.  */
1838
          done = (p == last);
1839
 
1840
          num_objects = OBJECTS_IN_PAGE (p);
1841
 
1842
          /* Add all live objects on this page to the count of
1843
             allocated memory.  */
1844
          live_objects = num_objects - p->num_free_objects;
1845
 
1846
          G.allocated += OBJECT_SIZE (order) * live_objects;
1847
 
1848
          /* Only objects on pages in the topmost context should get
1849
             collected.  */
1850
          if (p->context_depth < G.context_depth)
1851
            ;
1852
 
1853
          /* Remove the page if it's empty.  */
1854
          else if (live_objects == 0)
1855
            {
1856
              /* If P was the first page in the list, then NEXT
1857
                 becomes the new first page in the list, otherwise
1858
                 splice P out of the forward pointers.  */
1859
              if (! previous)
1860
                G.pages[order] = next;
1861
              else
1862
                previous->next = next;
1863
 
1864
              /* Splice P out of the back pointers too.  */
1865
              if (next)
1866
                next->prev = previous;
1867
 
1868
              /* Are we removing the last element?  */
1869
              if (p == G.page_tails[order])
1870
                G.page_tails[order] = previous;
1871
              free_page (p);
1872
              p = previous;
1873
            }
1874
 
1875
          /* If the page is full, move it to the end.  */
1876
          else if (p->num_free_objects == 0)
1877
            {
1878
              /* Don't move it if it's already at the end.  */
1879
              if (p != G.page_tails[order])
1880
                {
1881
                  /* Move p to the end of the list.  */
1882
                  p->next = NULL;
1883
                  p->prev = G.page_tails[order];
1884
                  G.page_tails[order]->next = p;
1885
 
1886
                  /* Update the tail pointer...  */
1887
                  G.page_tails[order] = p;
1888
 
1889
                  /* ... and the head pointer, if necessary.  */
1890
                  if (! previous)
1891
                    G.pages[order] = next;
1892
                  else
1893
                    previous->next = next;
1894
 
1895
                  /* And update the backpointer in NEXT if necessary.  */
1896
                  if (next)
1897
                    next->prev = previous;
1898
 
1899
                  p = previous;
1900
                }
1901
            }
1902
 
1903
          /* If we've fallen through to here, it's a page in the
1904
             topmost context that is neither full nor empty.  Such a
1905
             page must precede pages at lesser context depth in the
1906
             list, so move it to the head.  */
1907
          else if (p != G.pages[order])
1908
            {
1909
              previous->next = p->next;
1910
 
1911
              /* Update the backchain in the next node if it exists.  */
1912
              if (p->next)
1913
                p->next->prev = previous;
1914
 
1915
              /* Move P to the head of the list.  */
1916
              p->next = G.pages[order];
1917
              p->prev = NULL;
1918
              G.pages[order]->prev = p;
1919
 
1920
              /* Update the head pointer.  */
1921
              G.pages[order] = p;
1922
 
1923
              /* Are we moving the last element?  */
1924
              if (G.page_tails[order] == p)
1925
                G.page_tails[order] = previous;
1926
              p = previous;
1927
            }
1928
 
1929
          previous = p;
1930
          p = next;
1931
        }
1932
      while (! done);
1933
 
1934
      /* Now, restore the in_use_p vectors for any pages from contexts
1935
         other than the current one.  */
1936
      for (p = G.pages[order]; p; p = p->next)
1937
        if (p->context_depth != G.context_depth)
1938
          ggc_recalculate_in_use_p (p);
1939
    }
1940
}
1941
 
1942
#ifdef ENABLE_GC_CHECKING
1943
/* Clobber all free objects.  */
1944
 
1945
static void
1946
poison_pages (void)
1947
{
1948
  unsigned order;
1949
 
1950
  for (order = 2; order < NUM_ORDERS; order++)
1951
    {
1952
      size_t size = OBJECT_SIZE (order);
1953
      page_entry *p;
1954
 
1955
      for (p = G.pages[order]; p != NULL; p = p->next)
1956
        {
1957
          size_t num_objects;
1958
          size_t i;
1959
 
1960
          if (p->context_depth != G.context_depth)
1961
            /* Since we don't do any collection for pages in pushed
1962
               contexts, there's no need to do any poisoning.  And
1963
               besides, the IN_USE_P array isn't valid until we pop
1964
               contexts.  */
1965
            continue;
1966
 
1967
          num_objects = OBJECTS_IN_PAGE (p);
1968
          for (i = 0; i < num_objects; i++)
1969
            {
1970
              size_t word, bit;
1971
              word = i / HOST_BITS_PER_LONG;
1972
              bit = i % HOST_BITS_PER_LONG;
1973
              if (((p->in_use_p[word] >> bit) & 1) == 0)
1974
                {
1975
                  char *object = p->page + i * size;
1976
 
1977
                  /* Keep poison-by-write when we expect to use Valgrind,
1978
                     so the exact same memory semantics is kept, in case
1979
                     there are memory errors.  We override this request
1980
                     below.  */
1981
                  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1982
                                                                 size));
1983
                  memset (object, 0xa5, size);
1984
 
1985
                  /* Drop the handle to avoid handle leak.  */
1986
                  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
1987
                }
1988
            }
1989
        }
1990
    }
1991
}
1992
#else
1993
#define poison_pages()
1994
#endif
1995
 
1996
#ifdef ENABLE_GC_ALWAYS_COLLECT
1997
/* Validate that the reportedly free objects actually are.  */
1998
 
1999
static void
2000
validate_free_objects (void)
2001
{
2002
  struct free_object *f, *next, *still_free = NULL;
2003
 
2004
  for (f = G.free_object_list; f ; f = next)
2005
    {
2006
      page_entry *pe = lookup_page_table_entry (f->object);
2007
      size_t bit, word;
2008
 
2009
      bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2010
      word = bit / HOST_BITS_PER_LONG;
2011
      bit = bit % HOST_BITS_PER_LONG;
2012
      next = f->next;
2013
 
2014
      /* Make certain it isn't visible from any root.  Notice that we
2015
         do this check before sweep_pages merges save_in_use_p.  */
2016
      gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2017
 
2018
      /* If the object comes from an outer context, then retain the
2019
         free_object entry, so that we can verify that the address
2020
         isn't live on the stack in some outer context.  */
2021
      if (pe->context_depth != G.context_depth)
2022
        {
2023
          f->next = still_free;
2024
          still_free = f;
2025
        }
2026
      else
2027
        free (f);
2028
    }
2029
 
2030
  G.free_object_list = still_free;
2031
}
2032
#else
2033
#define validate_free_objects()
2034
#endif
2035
 
2036
/* Top level mark-and-sweep routine.  */
2037
 
2038
void
2039
ggc_collect (void)
2040
{
2041
  /* Avoid frequent unnecessary work by skipping collection if the
2042
     total allocations haven't expanded much since the last
2043
     collection.  */
2044
  float allocated_last_gc =
2045
    MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2046
 
2047
  float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2048
 
2049
  if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2050
    return;
2051
 
2052
  timevar_push (TV_GC);
2053
  if (!quiet_flag)
2054
    fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2055
  if (GGC_DEBUG_LEVEL >= 2)
2056
    fprintf (G.debug_file, "BEGIN COLLECTING\n");
2057
 
2058
  /* Zero the total allocated bytes.  This will be recalculated in the
2059
     sweep phase.  */
2060
  G.allocated = 0;
2061
 
2062
  /* Release the pages we freed the last time we collected, but didn't
2063
     reuse in the interim.  */
2064
  release_pages ();
2065
 
2066
  /* Indicate that we've seen collections at this context depth.  */
2067
  G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2068
 
2069
  invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2070
 
2071
  clear_marks ();
2072
  ggc_mark_roots ();
2073
#ifdef GATHER_STATISTICS
2074
  ggc_prune_overhead_list ();
2075
#endif
2076
  poison_pages ();
2077
  validate_free_objects ();
2078
  sweep_pages ();
2079
 
2080
  G.allocated_last_gc = G.allocated;
2081
 
2082
  invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2083
 
2084
  timevar_pop (TV_GC);
2085
 
2086
  if (!quiet_flag)
2087
    fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2088
  if (GGC_DEBUG_LEVEL >= 2)
2089
    fprintf (G.debug_file, "END COLLECTING\n");
2090
}
2091
 
2092
/* Print allocation statistics.  */
2093
#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2094
                  ? (x) \
2095
                  : ((x) < 1024*1024*10 \
2096
                     ? (x) / 1024 \
2097
                     : (x) / (1024*1024))))
2098
#define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2099
 
2100
void
2101
ggc_print_statistics (void)
2102
{
2103
  struct ggc_statistics stats;
2104
  unsigned int i;
2105
  size_t total_overhead = 0;
2106
 
2107
  /* Clear the statistics.  */
2108
  memset (&stats, 0, sizeof (stats));
2109
 
2110
  /* Make sure collection will really occur.  */
2111
  G.allocated_last_gc = 0;
2112
 
2113
  /* Collect and print the statistics common across collectors.  */
2114
  ggc_print_common_statistics (stderr, &stats);
2115
 
2116
  /* Release free pages so that we will not count the bytes allocated
2117
     there as part of the total allocated memory.  */
2118
  release_pages ();
2119
 
2120
  /* Collect some information about the various sizes of
2121
     allocation.  */
2122
  fprintf (stderr,
2123
           "Memory still allocated at the end of the compilation process\n");
2124
  fprintf (stderr, "%-5s %10s  %10s  %10s\n",
2125
           "Size", "Allocated", "Used", "Overhead");
2126
  for (i = 0; i < NUM_ORDERS; ++i)
2127
    {
2128
      page_entry *p;
2129
      size_t allocated;
2130
      size_t in_use;
2131
      size_t overhead;
2132
 
2133
      /* Skip empty entries.  */
2134
      if (!G.pages[i])
2135
        continue;
2136
 
2137
      overhead = allocated = in_use = 0;
2138
 
2139
      /* Figure out the total number of bytes allocated for objects of
2140
         this size, and how many of them are actually in use.  Also figure
2141
         out how much memory the page table is using.  */
2142
      for (p = G.pages[i]; p; p = p->next)
2143
        {
2144
          allocated += p->bytes;
2145
          in_use +=
2146
            (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2147
 
2148
          overhead += (sizeof (page_entry) - sizeof (long)
2149
                       + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2150
        }
2151
      fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2152
               (unsigned long) OBJECT_SIZE (i),
2153
               SCALE (allocated), STAT_LABEL (allocated),
2154
               SCALE (in_use), STAT_LABEL (in_use),
2155
               SCALE (overhead), STAT_LABEL (overhead));
2156
      total_overhead += overhead;
2157
    }
2158
  fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2159
           SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2160
           SCALE (G.allocated), STAT_LABEL(G.allocated),
2161
           SCALE (total_overhead), STAT_LABEL (total_overhead));
2162
 
2163
#ifdef GATHER_STATISTICS
2164
  {
2165
    fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2166
 
2167
    fprintf (stderr, "Total Overhead:                        %10lld\n",
2168
             G.stats.total_overhead);
2169
    fprintf (stderr, "Total Allocated:                       %10lld\n",
2170
             G.stats.total_allocated);
2171
 
2172
    fprintf (stderr, "Total Overhead  under  32B:            %10lld\n",
2173
             G.stats.total_overhead_under32);
2174
    fprintf (stderr, "Total Allocated under  32B:            %10lld\n",
2175
             G.stats.total_allocated_under32);
2176
    fprintf (stderr, "Total Overhead  under  64B:            %10lld\n",
2177
             G.stats.total_overhead_under64);
2178
    fprintf (stderr, "Total Allocated under  64B:            %10lld\n",
2179
             G.stats.total_allocated_under64);
2180
    fprintf (stderr, "Total Overhead  under 128B:            %10lld\n",
2181
             G.stats.total_overhead_under128);
2182
    fprintf (stderr, "Total Allocated under 128B:            %10lld\n",
2183
             G.stats.total_allocated_under128);
2184
 
2185
    for (i = 0; i < NUM_ORDERS; i++)
2186
      if (G.stats.total_allocated_per_order[i])
2187
        {
2188
          fprintf (stderr, "Total Overhead  page size %7lu:     %10lld\n",
2189
                   (unsigned long) OBJECT_SIZE (i),
2190
                   G.stats.total_overhead_per_order[i]);
2191
          fprintf (stderr, "Total Allocated page size %7lu:     %10lld\n",
2192
                   (unsigned long) OBJECT_SIZE (i),
2193
                   G.stats.total_allocated_per_order[i]);
2194
        }
2195
  }
2196
#endif
2197
}
2198
 
2199
struct ggc_pch_ondisk
2200
{
2201
  unsigned totals[NUM_ORDERS];
2202
};
2203
 
2204
struct ggc_pch_data
2205
{
2206
  struct ggc_pch_ondisk d;
2207
  size_t base[NUM_ORDERS];
2208
  size_t written[NUM_ORDERS];
2209
};
2210
 
2211
struct ggc_pch_data *
2212
init_ggc_pch (void)
2213
{
2214
  return XCNEW (struct ggc_pch_data);
2215
}
2216
 
2217
void
2218
ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2219
                      size_t size, bool is_string ATTRIBUTE_UNUSED,
2220
                      enum gt_types_enum type ATTRIBUTE_UNUSED)
2221
{
2222
  unsigned order;
2223
 
2224
  if (size < NUM_SIZE_LOOKUP)
2225
    order = size_lookup[size];
2226
  else
2227
    {
2228
      order = 10;
2229
      while (size > OBJECT_SIZE (order))
2230
        order++;
2231
    }
2232
 
2233
  d->d.totals[order]++;
2234
}
2235
 
2236
size_t
2237
ggc_pch_total_size (struct ggc_pch_data *d)
2238
{
2239
  size_t a = 0;
2240
  unsigned i;
2241
 
2242
  for (i = 0; i < NUM_ORDERS; i++)
2243
    a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2244
  return a;
2245
}
2246
 
2247
void
2248
ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2249
{
2250
  size_t a = (size_t) base;
2251
  unsigned i;
2252
 
2253
  for (i = 0; i < NUM_ORDERS; i++)
2254
    {
2255
      d->base[i] = a;
2256
      a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2257
    }
2258
}
2259
 
2260
 
2261
char *
2262
ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2263
                      size_t size, bool is_string ATTRIBUTE_UNUSED,
2264
                      enum gt_types_enum type ATTRIBUTE_UNUSED)
2265
{
2266
  unsigned order;
2267
  char *result;
2268
 
2269
  if (size < NUM_SIZE_LOOKUP)
2270
    order = size_lookup[size];
2271
  else
2272
    {
2273
      order = 10;
2274
      while (size > OBJECT_SIZE (order))
2275
        order++;
2276
    }
2277
 
2278
  result = (char *) d->base[order];
2279
  d->base[order] += OBJECT_SIZE (order);
2280
  return result;
2281
}
2282
 
2283
void
2284
ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2285
                       FILE *f ATTRIBUTE_UNUSED)
2286
{
2287
  /* Nothing to do.  */
2288
}
2289
 
2290
void
2291
ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2292
                      FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2293
                      size_t size, bool is_string ATTRIBUTE_UNUSED)
2294
{
2295
  unsigned order;
2296
  static const char emptyBytes[256] = { 0 };
2297
 
2298
  if (size < NUM_SIZE_LOOKUP)
2299
    order = size_lookup[size];
2300
  else
2301
    {
2302
      order = 10;
2303
      while (size > OBJECT_SIZE (order))
2304
        order++;
2305
    }
2306
 
2307
  if (fwrite (x, size, 1, f) != 1)
2308
    fatal_error ("can%'t write PCH file: %m");
2309
 
2310
  /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2311
     object out to OBJECT_SIZE(order).  This happens for strings.  */
2312
 
2313
  if (size != OBJECT_SIZE (order))
2314
    {
2315
      unsigned padding = OBJECT_SIZE(order) - size;
2316
 
2317
      /* To speed small writes, we use a nulled-out array that's larger
2318
         than most padding requests as the source for our null bytes.  This
2319
         permits us to do the padding with fwrite() rather than fseek(), and
2320
         limits the chance the OS may try to flush any outstanding writes.  */
2321
      if (padding <= sizeof(emptyBytes))
2322
        {
2323
          if (fwrite (emptyBytes, 1, padding, f) != padding)
2324
            fatal_error ("can%'t write PCH file");
2325
        }
2326
      else
2327
        {
2328
          /* Larger than our buffer?  Just default to fseek.  */
2329
          if (fseek (f, padding, SEEK_CUR) != 0)
2330
            fatal_error ("can%'t write PCH file");
2331
        }
2332
    }
2333
 
2334
  d->written[order]++;
2335
  if (d->written[order] == d->d.totals[order]
2336
      && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2337
                                   G.pagesize),
2338
                SEEK_CUR) != 0)
2339
    fatal_error ("can%'t write PCH file: %m");
2340
}
2341
 
2342
void
2343
ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2344
{
2345
  if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2346
    fatal_error ("can%'t write PCH file: %m");
2347
  free (d);
2348
}
2349
 
2350
/* Move the PCH PTE entries just added to the end of by_depth, to the
2351
   front.  */
2352
 
2353
static void
2354
move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2355
{
2356
  unsigned i;
2357
 
2358
  /* First, we swap the new entries to the front of the varrays.  */
2359
  page_entry **new_by_depth;
2360
  unsigned long **new_save_in_use;
2361
 
2362
  new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2363
  new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2364
 
2365
  memcpy (&new_by_depth[0],
2366
          &G.by_depth[count_old_page_tables],
2367
          count_new_page_tables * sizeof (void *));
2368
  memcpy (&new_by_depth[count_new_page_tables],
2369
          &G.by_depth[0],
2370
          count_old_page_tables * sizeof (void *));
2371
  memcpy (&new_save_in_use[0],
2372
          &G.save_in_use[count_old_page_tables],
2373
          count_new_page_tables * sizeof (void *));
2374
  memcpy (&new_save_in_use[count_new_page_tables],
2375
          &G.save_in_use[0],
2376
          count_old_page_tables * sizeof (void *));
2377
 
2378
  free (G.by_depth);
2379
  free (G.save_in_use);
2380
 
2381
  G.by_depth = new_by_depth;
2382
  G.save_in_use = new_save_in_use;
2383
 
2384
  /* Now update all the index_by_depth fields.  */
2385
  for (i = G.by_depth_in_use; i > 0; --i)
2386
    {
2387
      page_entry *p = G.by_depth[i-1];
2388
      p->index_by_depth = i-1;
2389
    }
2390
 
2391
  /* And last, we update the depth pointers in G.depth.  The first
2392
     entry is already 0, and context 0 entries always start at index
2393
     0, so there is nothing to update in the first slot.  We need a
2394
     second slot, only if we have old ptes, and if we do, they start
2395
     at index count_new_page_tables.  */
2396
  if (count_old_page_tables)
2397
    push_depth (count_new_page_tables);
2398
}
2399
 
2400
void
2401
ggc_pch_read (FILE *f, void *addr)
2402
{
2403
  struct ggc_pch_ondisk d;
2404
  unsigned i;
2405
  char *offs = (char *) addr;
2406
  unsigned long count_old_page_tables;
2407
  unsigned long count_new_page_tables;
2408
 
2409
  count_old_page_tables = G.by_depth_in_use;
2410
 
2411
  /* We've just read in a PCH file.  So, every object that used to be
2412
     allocated is now free.  */
2413
  clear_marks ();
2414
#ifdef ENABLE_GC_CHECKING
2415
  poison_pages ();
2416
#endif
2417
  /* Since we free all the allocated objects, the free list becomes
2418
     useless.  Validate it now, which will also clear it.  */
2419
  validate_free_objects();
2420
 
2421
  /* No object read from a PCH file should ever be freed.  So, set the
2422
     context depth to 1, and set the depth of all the currently-allocated
2423
     pages to be 1 too.  PCH pages will have depth 0.  */
2424
  gcc_assert (!G.context_depth);
2425
  G.context_depth = 1;
2426
  for (i = 0; i < NUM_ORDERS; i++)
2427
    {
2428
      page_entry *p;
2429
      for (p = G.pages[i]; p != NULL; p = p->next)
2430
        p->context_depth = G.context_depth;
2431
    }
2432
 
2433
  /* Allocate the appropriate page-table entries for the pages read from
2434
     the PCH file.  */
2435
  if (fread (&d, sizeof (d), 1, f) != 1)
2436
    fatal_error ("can%'t read PCH file: %m");
2437
 
2438
  for (i = 0; i < NUM_ORDERS; i++)
2439
    {
2440
      struct page_entry *entry;
2441
      char *pte;
2442
      size_t bytes;
2443
      size_t num_objs;
2444
      size_t j;
2445
 
2446
      if (d.totals[i] == 0)
2447
        continue;
2448
 
2449
      bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2450
      num_objs = bytes / OBJECT_SIZE (i);
2451
      entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2452
                                            - sizeof (long)
2453
                                            + BITMAP_SIZE (num_objs + 1)));
2454
      entry->bytes = bytes;
2455
      entry->page = offs;
2456
      entry->context_depth = 0;
2457
      offs += bytes;
2458
      entry->num_free_objects = 0;
2459
      entry->order = i;
2460
 
2461
      for (j = 0;
2462
           j + HOST_BITS_PER_LONG <= num_objs + 1;
2463
           j += HOST_BITS_PER_LONG)
2464
        entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2465
      for (; j < num_objs + 1; j++)
2466
        entry->in_use_p[j / HOST_BITS_PER_LONG]
2467
          |= 1L << (j % HOST_BITS_PER_LONG);
2468
 
2469
      for (pte = entry->page;
2470
           pte < entry->page + entry->bytes;
2471
           pte += G.pagesize)
2472
        set_page_table_entry (pte, entry);
2473
 
2474
      if (G.page_tails[i] != NULL)
2475
        G.page_tails[i]->next = entry;
2476
      else
2477
        G.pages[i] = entry;
2478
      G.page_tails[i] = entry;
2479
 
2480
      /* We start off by just adding all the new information to the
2481
         end of the varrays, later, we will move the new information
2482
         to the front of the varrays, as the PCH page tables are at
2483
         context 0.  */
2484
      push_by_depth (entry, 0);
2485
    }
2486
 
2487
  /* Now, we update the various data structures that speed page table
2488
     handling.  */
2489
  count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2490
 
2491
  move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2492
 
2493
  /* Update the statistics.  */
2494
  G.allocated = G.allocated_last_gc = offs - (char *)addr;
2495
}
2496
 
2497
struct alloc_zone
2498
{
2499
  int dummy;
2500
};
2501
 
2502
struct alloc_zone rtl_zone;
2503
struct alloc_zone tree_zone;
2504
struct alloc_zone tree_id_zone;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.