| 1 |
684 |
jeremybenn |
/* "Bag-of-pages" zone garbage collector for the GNU compiler.
|
| 2 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008,
|
| 3 |
|
|
2010 Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
Contributed by Richard Henderson (rth@redhat.com) and Daniel Berlin
|
| 6 |
|
|
(dberlin@dberlin.org). Rewritten by Daniel Jacobowitz
|
| 7 |
|
|
<dan@codesourcery.com>.
|
| 8 |
|
|
|
| 9 |
|
|
This file is part of GCC.
|
| 10 |
|
|
|
| 11 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 12 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 13 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 14 |
|
|
version.
|
| 15 |
|
|
|
| 16 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 17 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 18 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 19 |
|
|
for more details.
|
| 20 |
|
|
|
| 21 |
|
|
You should have received a copy of the GNU General Public License
|
| 22 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 23 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 24 |
|
|
|
| 25 |
|
|
#include "config.h"
|
| 26 |
|
|
#include "system.h"
|
| 27 |
|
|
#include "coretypes.h"
|
| 28 |
|
|
#include "tm.h"
|
| 29 |
|
|
#include "tree.h"
|
| 30 |
|
|
#include "rtl.h"
|
| 31 |
|
|
#include "tm_p.h"
|
| 32 |
|
|
#include "diagnostic-core.h"
|
| 33 |
|
|
#include "flags.h"
|
| 34 |
|
|
#include "ggc.h"
|
| 35 |
|
|
#include "ggc-internal.h"
|
| 36 |
|
|
#include "timevar.h"
|
| 37 |
|
|
#include "params.h"
|
| 38 |
|
|
#include "bitmap.h"
|
| 39 |
|
|
#include "plugin.h"
|
| 40 |
|
|
|
| 41 |
|
|
/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
|
| 42 |
|
|
file open. Prefer either to valloc. */
|
| 43 |
|
|
#ifdef HAVE_MMAP_ANON
|
| 44 |
|
|
# undef HAVE_MMAP_DEV_ZERO
|
| 45 |
|
|
# define USING_MMAP
|
| 46 |
|
|
#endif
|
| 47 |
|
|
|
| 48 |
|
|
#ifdef HAVE_MMAP_DEV_ZERO
|
| 49 |
|
|
# define USING_MMAP
|
| 50 |
|
|
#endif
|
| 51 |
|
|
|
| 52 |
|
|
#ifndef USING_MMAP
|
| 53 |
|
|
#error Zone collector requires mmap
|
| 54 |
|
|
#endif
|
| 55 |
|
|
|
| 56 |
|
|
#if (GCC_VERSION < 3001)
|
| 57 |
|
|
#define prefetch(X) ((void) X)
|
| 58 |
|
|
#define prefetchw(X) ((void) X)
|
| 59 |
|
|
#else
|
| 60 |
|
|
#define prefetch(X) __builtin_prefetch (X)
|
| 61 |
|
|
#define prefetchw(X) __builtin_prefetch (X, 1, 3)
|
| 62 |
|
|
#endif
|
| 63 |
|
|
|
| 64 |
|
|
/* FUTURE NOTES:
|
| 65 |
|
|
|
| 66 |
|
|
If we track inter-zone pointers, we can mark single zones at a
|
| 67 |
|
|
time.
|
| 68 |
|
|
|
| 69 |
|
|
If we have a zone where we guarantee no inter-zone pointers, we
|
| 70 |
|
|
could mark that zone separately.
|
| 71 |
|
|
|
| 72 |
|
|
The garbage zone should not be marked, and we should return 1 in
|
| 73 |
|
|
ggc_set_mark for any object in the garbage zone, which cuts off
|
| 74 |
|
|
marking quickly. */
|
| 75 |
|
|
|
| 76 |
|
|
/* Strategy:
|
| 77 |
|
|
|
| 78 |
|
|
This garbage-collecting allocator segregates objects into zones.
|
| 79 |
|
|
It also segregates objects into "large" and "small" bins. Large
|
| 80 |
|
|
objects are greater than page size.
|
| 81 |
|
|
|
| 82 |
|
|
Pages for small objects are broken up into chunks. The page has
|
| 83 |
|
|
a bitmap which marks the start position of each chunk (whether
|
| 84 |
|
|
allocated or free). Free chunks are on one of the zone's free
|
| 85 |
|
|
lists and contain a pointer to the next free chunk. Chunks in
|
| 86 |
|
|
most of the free lists have a fixed size determined by the
|
| 87 |
|
|
free list. Chunks in the "other" sized free list have their size
|
| 88 |
|
|
stored right after their chain pointer.
|
| 89 |
|
|
|
| 90 |
|
|
Empty pages (of all sizes) are kept on a single page cache list,
|
| 91 |
|
|
and are considered first when new pages are required; they are
|
| 92 |
|
|
deallocated at the start of the next collection if they haven't
|
| 93 |
|
|
been recycled by then. The free page list is currently per-zone. */
|
| 94 |
|
|
|
| 95 |
|
|
/* Define GGC_DEBUG_LEVEL to print debugging information.
|
| 96 |
|
|
0: No debugging output.
|
| 97 |
|
|
1: GC statistics only.
|
| 98 |
|
|
2: Page-entry allocations/deallocations as well.
|
| 99 |
|
|
3: Object allocations as well.
|
| 100 |
|
|
4: Object marks as well. */
|
| 101 |
|
|
#define GGC_DEBUG_LEVEL (0)
|
| 102 |
|
|
|
| 103 |
|
|
#ifndef HOST_BITS_PER_PTR
|
| 104 |
|
|
#define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
|
| 105 |
|
|
#endif
|
| 106 |
|
|
|
| 107 |
|
|
/* This structure manages small free chunks. The SIZE field is only
|
| 108 |
|
|
initialized if the chunk is in the "other" sized free list. Large
|
| 109 |
|
|
chunks are allocated one at a time to their own page, and so don't
|
| 110 |
|
|
come in here. */
|
| 111 |
|
|
|
| 112 |
|
|
struct alloc_chunk {
|
| 113 |
|
|
struct alloc_chunk *next_free;
|
| 114 |
|
|
unsigned int size;
|
| 115 |
|
|
};
|
| 116 |
|
|
|
| 117 |
|
|
/* The size of the fixed-size portion of a small page descriptor. */
|
| 118 |
|
|
#define PAGE_OVERHEAD (offsetof (struct small_page_entry, alloc_bits))
|
| 119 |
|
|
|
| 120 |
|
|
/* The collector's idea of the page size. This must be a power of two
|
| 121 |
|
|
no larger than the system page size, because pages must be aligned
|
| 122 |
|
|
to this amount and are tracked at this granularity in the page
|
| 123 |
|
|
table. We choose a size at compile time for efficiency.
|
| 124 |
|
|
|
| 125 |
|
|
We could make a better guess at compile time if PAGE_SIZE is a
|
| 126 |
|
|
constant in system headers, and PAGE_SHIFT is defined... */
|
| 127 |
|
|
#define GGC_PAGE_SIZE 4096
|
| 128 |
|
|
#define GGC_PAGE_MASK (GGC_PAGE_SIZE - 1)
|
| 129 |
|
|
#define GGC_PAGE_SHIFT 12
|
| 130 |
|
|
|
| 131 |
|
|
#if 0
|
| 132 |
|
|
/* Alternative definitions which use the runtime page size. */
|
| 133 |
|
|
#define GGC_PAGE_SIZE G.pagesize
|
| 134 |
|
|
#define GGC_PAGE_MASK G.page_mask
|
| 135 |
|
|
#define GGC_PAGE_SHIFT G.lg_pagesize
|
| 136 |
|
|
#endif
|
| 137 |
|
|
|
| 138 |
|
|
/* The size of a small page managed by the garbage collector. This
|
| 139 |
|
|
must currently be GGC_PAGE_SIZE, but with a few changes could
|
| 140 |
|
|
be any multiple of it to reduce certain kinds of overhead. */
|
| 141 |
|
|
#define SMALL_PAGE_SIZE GGC_PAGE_SIZE
|
| 142 |
|
|
|
| 143 |
|
|
/* Free bin information. These numbers may be in need of re-tuning.
|
| 144 |
|
|
In general, decreasing the number of free bins would seem to
|
| 145 |
|
|
increase the time it takes to allocate... */
|
| 146 |
|
|
|
| 147 |
|
|
/* FIXME: We can't use anything but MAX_ALIGNMENT for the bin size
|
| 148 |
|
|
today. */
|
| 149 |
|
|
|
| 150 |
|
|
#define NUM_FREE_BINS 64
|
| 151 |
|
|
#define FREE_BIN_DELTA MAX_ALIGNMENT
|
| 152 |
|
|
#define SIZE_BIN_DOWN(SIZE) ((SIZE) / FREE_BIN_DELTA)
|
| 153 |
|
|
|
| 154 |
|
|
/* Allocation and marking parameters. */
|
| 155 |
|
|
|
| 156 |
|
|
/* The smallest allocatable unit to keep track of. */
|
| 157 |
|
|
#define BYTES_PER_ALLOC_BIT MAX_ALIGNMENT
|
| 158 |
|
|
|
| 159 |
|
|
/* The smallest markable unit. If we require each allocated object
|
| 160 |
|
|
to contain at least two allocatable units, we can use half as many
|
| 161 |
|
|
bits for the mark bitmap. But this adds considerable complexity
|
| 162 |
|
|
to sweeping. */
|
| 163 |
|
|
#define BYTES_PER_MARK_BIT BYTES_PER_ALLOC_BIT
|
| 164 |
|
|
|
| 165 |
|
|
#define BYTES_PER_MARK_WORD (8 * BYTES_PER_MARK_BIT * sizeof (mark_type))
|
| 166 |
|
|
|
| 167 |
|
|
/* We use this structure to determine the alignment required for
|
| 168 |
|
|
allocations.
|
| 169 |
|
|
|
| 170 |
|
|
There are several things wrong with this estimation of alignment.
|
| 171 |
|
|
|
| 172 |
|
|
The maximum alignment for a structure is often less than the
|
| 173 |
|
|
maximum alignment for a basic data type; for instance, on some
|
| 174 |
|
|
targets long long must be aligned to sizeof (int) in a structure
|
| 175 |
|
|
and sizeof (long long) in a variable. i386-linux is one example;
|
| 176 |
|
|
Darwin is another (sometimes, depending on the compiler in use).
|
| 177 |
|
|
|
| 178 |
|
|
Also, long double is not included. Nothing in GCC uses long
|
| 179 |
|
|
double, so we assume that this is OK. On powerpc-darwin, adding
|
| 180 |
|
|
long double would bring the maximum alignment up to 16 bytes,
|
| 181 |
|
|
and until we need long double (or to vectorize compiler operations)
|
| 182 |
|
|
that's painfully wasteful. This will need to change, some day. */
|
| 183 |
|
|
|
| 184 |
|
|
struct max_alignment {
|
| 185 |
|
|
char c;
|
| 186 |
|
|
union {
|
| 187 |
|
|
HOST_WIDEST_INT i;
|
| 188 |
|
|
double d;
|
| 189 |
|
|
} u;
|
| 190 |
|
|
};
|
| 191 |
|
|
|
| 192 |
|
|
/* The biggest alignment required. */
|
| 193 |
|
|
|
| 194 |
|
|
#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
|
| 195 |
|
|
|
| 196 |
|
|
/* Compute the smallest multiple of F that is >= X. */
|
| 197 |
|
|
|
| 198 |
|
|
#define ROUND_UP(x, f) (CEIL (x, f) * (f))
|
| 199 |
|
|
|
| 200 |
|
|
/* Types to use for the allocation and mark bitmaps. It might be
|
| 201 |
|
|
a good idea to add ffsl to libiberty and use unsigned long
|
| 202 |
|
|
instead; that could speed us up where long is wider than int. */
|
| 203 |
|
|
|
| 204 |
|
|
typedef unsigned int alloc_type;
|
| 205 |
|
|
typedef unsigned int mark_type;
|
| 206 |
|
|
#define alloc_ffs(x) ffs(x)
|
| 207 |
|
|
|
| 208 |
|
|
/* A page_entry records the status of an allocation page. This is the
|
| 209 |
|
|
common data between all three kinds of pages - small, large, and
|
| 210 |
|
|
PCH. */
|
| 211 |
|
|
typedef struct page_entry
|
| 212 |
|
|
{
|
| 213 |
|
|
/* The address at which the memory is allocated. */
|
| 214 |
|
|
char *page;
|
| 215 |
|
|
|
| 216 |
|
|
/* The zone that this page entry belongs to. */
|
| 217 |
|
|
struct alloc_zone *zone;
|
| 218 |
|
|
|
| 219 |
|
|
#ifdef GATHER_STATISTICS
|
| 220 |
|
|
/* How many collections we've survived. */
|
| 221 |
|
|
size_t survived;
|
| 222 |
|
|
#endif
|
| 223 |
|
|
|
| 224 |
|
|
/* Does this page contain small objects, or one large object? */
|
| 225 |
|
|
bool large_p;
|
| 226 |
|
|
|
| 227 |
|
|
/* Is this page part of the loaded PCH? */
|
| 228 |
|
|
bool pch_p;
|
| 229 |
|
|
} page_entry;
|
| 230 |
|
|
|
| 231 |
|
|
/* Additional data needed for small pages. */
|
| 232 |
|
|
struct small_page_entry
|
| 233 |
|
|
{
|
| 234 |
|
|
struct page_entry common;
|
| 235 |
|
|
|
| 236 |
|
|
/* The next small page entry, or NULL if this is the last. */
|
| 237 |
|
|
struct small_page_entry *next;
|
| 238 |
|
|
|
| 239 |
|
|
/* If currently marking this zone, a pointer to the mark bits
|
| 240 |
|
|
for this page. If we aren't currently marking this zone,
|
| 241 |
|
|
this pointer may be stale (pointing to freed memory). */
|
| 242 |
|
|
mark_type *mark_bits;
|
| 243 |
|
|
|
| 244 |
|
|
/* The allocation bitmap. This array extends far enough to have
|
| 245 |
|
|
one bit for every BYTES_PER_ALLOC_BIT bytes in the page. */
|
| 246 |
|
|
alloc_type alloc_bits[1];
|
| 247 |
|
|
};
|
| 248 |
|
|
|
| 249 |
|
|
/* Additional data needed for large pages. */
|
| 250 |
|
|
struct large_page_entry
|
| 251 |
|
|
{
|
| 252 |
|
|
struct page_entry common;
|
| 253 |
|
|
|
| 254 |
|
|
/* The next large page entry, or NULL if this is the last. */
|
| 255 |
|
|
struct large_page_entry *next;
|
| 256 |
|
|
|
| 257 |
|
|
/* The number of bytes allocated, not including the page entry. */
|
| 258 |
|
|
size_t bytes;
|
| 259 |
|
|
|
| 260 |
|
|
/* The previous page in the list, so that we can unlink this one. */
|
| 261 |
|
|
struct large_page_entry *prev;
|
| 262 |
|
|
|
| 263 |
|
|
/* During marking, is this object marked? */
|
| 264 |
|
|
bool mark_p;
|
| 265 |
|
|
};
|
| 266 |
|
|
|
| 267 |
|
|
/* A two-level tree is used to look up the page-entry for a given
|
| 268 |
|
|
pointer. Two chunks of the pointer's bits are extracted to index
|
| 269 |
|
|
the first and second levels of the tree, as follows:
|
| 270 |
|
|
|
| 271 |
|
|
HOST_PAGE_SIZE_BITS
|
| 272 |
|
|
32 | |
|
| 273 |
|
|
msb +----------------+----+------+------+ lsb
|
| 274 |
|
|
| | |
|
| 275 |
|
|
PAGE_L1_BITS |
|
| 276 |
|
|
| |
|
| 277 |
|
|
PAGE_L2_BITS
|
| 278 |
|
|
|
| 279 |
|
|
The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
|
| 280 |
|
|
pages are aligned on system page boundaries. The next most
|
| 281 |
|
|
significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
|
| 282 |
|
|
index values in the lookup table, respectively.
|
| 283 |
|
|
|
| 284 |
|
|
For 32-bit architectures and the settings below, there are no
|
| 285 |
|
|
leftover bits. For architectures with wider pointers, the lookup
|
| 286 |
|
|
tree points to a list of pages, which must be scanned to find the
|
| 287 |
|
|
correct one. */
|
| 288 |
|
|
|
| 289 |
|
|
#define PAGE_L1_BITS (8)
|
| 290 |
|
|
#define PAGE_L2_BITS (32 - PAGE_L1_BITS - GGC_PAGE_SHIFT)
|
| 291 |
|
|
#define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
|
| 292 |
|
|
#define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
|
| 293 |
|
|
|
| 294 |
|
|
#define LOOKUP_L1(p) \
|
| 295 |
|
|
(((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
|
| 296 |
|
|
|
| 297 |
|
|
#define LOOKUP_L2(p) \
|
| 298 |
|
|
(((size_t) (p) >> GGC_PAGE_SHIFT) & ((1 << PAGE_L2_BITS) - 1))
|
| 299 |
|
|
|
| 300 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
| 301 |
|
|
|
| 302 |
|
|
/* On 32-bit hosts, we use a two level page table, as pictured above. */
|
| 303 |
|
|
typedef page_entry **page_table[PAGE_L1_SIZE];
|
| 304 |
|
|
|
| 305 |
|
|
#else
|
| 306 |
|
|
|
| 307 |
|
|
/* On 64-bit hosts, we use the same two level page tables plus a linked
|
| 308 |
|
|
list that disambiguates the top 32-bits. There will almost always be
|
| 309 |
|
|
exactly one entry in the list. */
|
| 310 |
|
|
typedef struct page_table_chain
|
| 311 |
|
|
{
|
| 312 |
|
|
struct page_table_chain *next;
|
| 313 |
|
|
size_t high_bits;
|
| 314 |
|
|
page_entry **table[PAGE_L1_SIZE];
|
| 315 |
|
|
} *page_table;
|
| 316 |
|
|
|
| 317 |
|
|
#endif
|
| 318 |
|
|
|
| 319 |
|
|
/* The global variables. */
|
| 320 |
|
|
static struct globals
|
| 321 |
|
|
{
|
| 322 |
|
|
/* The linked list of zones. */
|
| 323 |
|
|
struct alloc_zone *zones;
|
| 324 |
|
|
|
| 325 |
|
|
/* Lookup table for associating allocation pages with object addresses. */
|
| 326 |
|
|
page_table lookup;
|
| 327 |
|
|
|
| 328 |
|
|
/* The system's page size, and related constants. */
|
| 329 |
|
|
size_t pagesize;
|
| 330 |
|
|
size_t lg_pagesize;
|
| 331 |
|
|
size_t page_mask;
|
| 332 |
|
|
|
| 333 |
|
|
/* The size to allocate for a small page entry. This includes
|
| 334 |
|
|
the size of the structure and the size of the allocation
|
| 335 |
|
|
bitmap. */
|
| 336 |
|
|
size_t small_page_overhead;
|
| 337 |
|
|
|
| 338 |
|
|
#if defined (HAVE_MMAP_DEV_ZERO)
|
| 339 |
|
|
/* A file descriptor open to /dev/zero for reading. */
|
| 340 |
|
|
int dev_zero_fd;
|
| 341 |
|
|
#endif
|
| 342 |
|
|
|
| 343 |
|
|
/* Allocate pages in chunks of this size, to throttle calls to memory
|
| 344 |
|
|
allocation routines. The first page is used, the rest go onto the
|
| 345 |
|
|
free list. */
|
| 346 |
|
|
size_t quire_size;
|
| 347 |
|
|
|
| 348 |
|
|
/* The file descriptor for debugging output. */
|
| 349 |
|
|
FILE *debug_file;
|
| 350 |
|
|
} G;
|
| 351 |
|
|
|
| 352 |
|
|
/* A zone allocation structure. There is one of these for every
|
| 353 |
|
|
distinct allocation zone. */
|
| 354 |
|
|
struct alloc_zone
|
| 355 |
|
|
{
|
| 356 |
|
|
/* The most recent free chunk is saved here, instead of in the linked
|
| 357 |
|
|
free list, to decrease list manipulation. It is most likely that we
|
| 358 |
|
|
will want this one. */
|
| 359 |
|
|
char *cached_free;
|
| 360 |
|
|
size_t cached_free_size;
|
| 361 |
|
|
|
| 362 |
|
|
/* Linked lists of free storage. Slots 1 ... NUM_FREE_BINS have chunks of size
|
| 363 |
|
|
FREE_BIN_DELTA. All other chunks are in slot 0. */
|
| 364 |
|
|
struct alloc_chunk *free_chunks[NUM_FREE_BINS + 1];
|
| 365 |
|
|
|
| 366 |
|
|
/* The highest bin index which might be non-empty. It may turn out
|
| 367 |
|
|
to be empty, in which case we have to search downwards. */
|
| 368 |
|
|
size_t high_free_bin;
|
| 369 |
|
|
|
| 370 |
|
|
/* Bytes currently allocated in this zone. */
|
| 371 |
|
|
size_t allocated;
|
| 372 |
|
|
|
| 373 |
|
|
/* Linked list of the small pages in this zone. */
|
| 374 |
|
|
struct small_page_entry *pages;
|
| 375 |
|
|
|
| 376 |
|
|
/* Doubly linked list of large pages in this zone. */
|
| 377 |
|
|
struct large_page_entry *large_pages;
|
| 378 |
|
|
|
| 379 |
|
|
/* If we are currently marking this zone, a pointer to the mark bits. */
|
| 380 |
|
|
mark_type *mark_bits;
|
| 381 |
|
|
|
| 382 |
|
|
/* Name of the zone. */
|
| 383 |
|
|
const char *name;
|
| 384 |
|
|
|
| 385 |
|
|
/* The number of small pages currently allocated in this zone. */
|
| 386 |
|
|
size_t n_small_pages;
|
| 387 |
|
|
|
| 388 |
|
|
/* Bytes allocated at the end of the last collection. */
|
| 389 |
|
|
size_t allocated_last_gc;
|
| 390 |
|
|
|
| 391 |
|
|
/* Total amount of memory mapped. */
|
| 392 |
|
|
size_t bytes_mapped;
|
| 393 |
|
|
|
| 394 |
|
|
/* A cache of free system pages. */
|
| 395 |
|
|
struct small_page_entry *free_pages;
|
| 396 |
|
|
|
| 397 |
|
|
/* Next zone in the linked list of zones. */
|
| 398 |
|
|
struct alloc_zone *next_zone;
|
| 399 |
|
|
|
| 400 |
|
|
/* True if this zone was collected during this collection. */
|
| 401 |
|
|
bool was_collected;
|
| 402 |
|
|
|
| 403 |
|
|
/* True if this zone should be destroyed after the next collection. */
|
| 404 |
|
|
bool dead;
|
| 405 |
|
|
|
| 406 |
|
|
#ifdef GATHER_STATISTICS
|
| 407 |
|
|
struct
|
| 408 |
|
|
{
|
| 409 |
|
|
/* Total GC-allocated memory. */
|
| 410 |
|
|
unsigned long long total_allocated;
|
| 411 |
|
|
/* Total overhead for GC-allocated memory. */
|
| 412 |
|
|
unsigned long long total_overhead;
|
| 413 |
|
|
|
| 414 |
|
|
/* Total allocations and overhead for sizes less than 32, 64 and 128.
|
| 415 |
|
|
These sizes are interesting because they are typical cache line
|
| 416 |
|
|
sizes. */
|
| 417 |
|
|
|
| 418 |
|
|
unsigned long long total_allocated_under32;
|
| 419 |
|
|
unsigned long long total_overhead_under32;
|
| 420 |
|
|
|
| 421 |
|
|
unsigned long long total_allocated_under64;
|
| 422 |
|
|
unsigned long long total_overhead_under64;
|
| 423 |
|
|
|
| 424 |
|
|
unsigned long long total_allocated_under128;
|
| 425 |
|
|
unsigned long long total_overhead_under128;
|
| 426 |
|
|
} stats;
|
| 427 |
|
|
#endif
|
| 428 |
|
|
} main_zone;
|
| 429 |
|
|
|
| 430 |
|
|
/* Some default zones. */
|
| 431 |
|
|
struct alloc_zone rtl_zone;
|
| 432 |
|
|
struct alloc_zone tree_zone;
|
| 433 |
|
|
struct alloc_zone tree_id_zone;
|
| 434 |
|
|
|
| 435 |
|
|
/* The PCH zone does not need a normal zone structure, and it does
|
| 436 |
|
|
not live on the linked list of zones. */
|
| 437 |
|
|
struct pch_zone
|
| 438 |
|
|
{
|
| 439 |
|
|
/* The start of the PCH zone. NULL if there is none. */
|
| 440 |
|
|
char *page;
|
| 441 |
|
|
|
| 442 |
|
|
/* The end of the PCH zone. NULL if there is none. */
|
| 443 |
|
|
char *end;
|
| 444 |
|
|
|
| 445 |
|
|
/* The size of the PCH zone. 0 if there is none. */
|
| 446 |
|
|
size_t bytes;
|
| 447 |
|
|
|
| 448 |
|
|
/* The allocation bitmap for the PCH zone. */
|
| 449 |
|
|
alloc_type *alloc_bits;
|
| 450 |
|
|
|
| 451 |
|
|
/* If we are currently marking, the mark bitmap for the PCH zone.
|
| 452 |
|
|
When it is first read in, we could avoid marking the PCH,
|
| 453 |
|
|
because it will not contain any pointers to GC memory outside
|
| 454 |
|
|
of the PCH; however, the PCH is currently mapped as writable,
|
| 455 |
|
|
so we must mark it in case new pointers are added. */
|
| 456 |
|
|
mark_type *mark_bits;
|
| 457 |
|
|
} pch_zone;
|
| 458 |
|
|
|
| 459 |
|
|
#ifdef USING_MMAP
|
| 460 |
|
|
static char *alloc_anon (char *, size_t, struct alloc_zone *);
|
| 461 |
|
|
#endif
|
| 462 |
|
|
static struct small_page_entry * alloc_small_page (struct alloc_zone *);
|
| 463 |
|
|
static struct large_page_entry * alloc_large_page (size_t, struct alloc_zone *);
|
| 464 |
|
|
static void free_chunk (char *, size_t, struct alloc_zone *);
|
| 465 |
|
|
static void free_small_page (struct small_page_entry *);
|
| 466 |
|
|
static void free_large_page (struct large_page_entry *);
|
| 467 |
|
|
static void release_pages (struct alloc_zone *);
|
| 468 |
|
|
static void sweep_pages (struct alloc_zone *);
|
| 469 |
|
|
static bool ggc_collect_1 (struct alloc_zone *, bool);
|
| 470 |
|
|
static void new_ggc_zone_1 (struct alloc_zone *, const char *);
|
| 471 |
|
|
|
| 472 |
|
|
/* Traverse the page table and find the entry for a page.
|
| 473 |
|
|
Die (probably) if the object wasn't allocated via GC. */
|
| 474 |
|
|
|
| 475 |
|
|
static inline page_entry *
|
| 476 |
|
|
lookup_page_table_entry (const void *p)
|
| 477 |
|
|
{
|
| 478 |
|
|
page_entry ***base;
|
| 479 |
|
|
size_t L1, L2;
|
| 480 |
|
|
|
| 481 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
| 482 |
|
|
base = &G.lookup[0];
|
| 483 |
|
|
#else
|
| 484 |
|
|
page_table table = G.lookup;
|
| 485 |
|
|
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
| 486 |
|
|
while (table->high_bits != high_bits)
|
| 487 |
|
|
table = table->next;
|
| 488 |
|
|
base = &table->table[0];
|
| 489 |
|
|
#endif
|
| 490 |
|
|
|
| 491 |
|
|
/* Extract the level 1 and 2 indices. */
|
| 492 |
|
|
L1 = LOOKUP_L1 (p);
|
| 493 |
|
|
L2 = LOOKUP_L2 (p);
|
| 494 |
|
|
|
| 495 |
|
|
return base[L1][L2];
|
| 496 |
|
|
}
|
| 497 |
|
|
|
| 498 |
|
|
/* Traverse the page table and find the entry for a page.
|
| 499 |
|
|
Return NULL if the object wasn't allocated via the GC. */
|
| 500 |
|
|
|
| 501 |
|
|
static inline page_entry *
|
| 502 |
|
|
lookup_page_table_if_allocated (const void *p)
|
| 503 |
|
|
{
|
| 504 |
|
|
page_entry ***base;
|
| 505 |
|
|
size_t L1, L2;
|
| 506 |
|
|
|
| 507 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
| 508 |
|
|
base = &G.lookup[0];
|
| 509 |
|
|
#else
|
| 510 |
|
|
page_table table = G.lookup;
|
| 511 |
|
|
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
| 512 |
|
|
while (1)
|
| 513 |
|
|
{
|
| 514 |
|
|
if (table == NULL)
|
| 515 |
|
|
return NULL;
|
| 516 |
|
|
if (table->high_bits == high_bits)
|
| 517 |
|
|
break;
|
| 518 |
|
|
table = table->next;
|
| 519 |
|
|
}
|
| 520 |
|
|
base = &table->table[0];
|
| 521 |
|
|
#endif
|
| 522 |
|
|
|
| 523 |
|
|
/* Extract the level 1 and 2 indices. */
|
| 524 |
|
|
L1 = LOOKUP_L1 (p);
|
| 525 |
|
|
if (! base[L1])
|
| 526 |
|
|
return NULL;
|
| 527 |
|
|
|
| 528 |
|
|
L2 = LOOKUP_L2 (p);
|
| 529 |
|
|
if (L2 >= PAGE_L2_SIZE)
|
| 530 |
|
|
return NULL;
|
| 531 |
|
|
/* We might have a page entry which does not correspond exactly to a
|
| 532 |
|
|
system page. */
|
| 533 |
|
|
if (base[L1][L2] && (const char *) p < base[L1][L2]->page)
|
| 534 |
|
|
return NULL;
|
| 535 |
|
|
|
| 536 |
|
|
return base[L1][L2];
|
| 537 |
|
|
}
|
| 538 |
|
|
|
| 539 |
|
|
/* Set the page table entry for the page that starts at P. If ENTRY
|
| 540 |
|
|
is NULL, clear the entry. */
|
| 541 |
|
|
|
| 542 |
|
|
static void
|
| 543 |
|
|
set_page_table_entry (void *p, page_entry *entry)
|
| 544 |
|
|
{
|
| 545 |
|
|
page_entry ***base;
|
| 546 |
|
|
size_t L1, L2;
|
| 547 |
|
|
|
| 548 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
| 549 |
|
|
base = &G.lookup[0];
|
| 550 |
|
|
#else
|
| 551 |
|
|
page_table table;
|
| 552 |
|
|
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
| 553 |
|
|
for (table = G.lookup; table; table = table->next)
|
| 554 |
|
|
if (table->high_bits == high_bits)
|
| 555 |
|
|
goto found;
|
| 556 |
|
|
|
| 557 |
|
|
/* Not found -- allocate a new table. */
|
| 558 |
|
|
table = XCNEW (struct page_table_chain);
|
| 559 |
|
|
table->next = G.lookup;
|
| 560 |
|
|
table->high_bits = high_bits;
|
| 561 |
|
|
G.lookup = table;
|
| 562 |
|
|
found:
|
| 563 |
|
|
base = &table->table[0];
|
| 564 |
|
|
#endif
|
| 565 |
|
|
|
| 566 |
|
|
/* Extract the level 1 and 2 indices. */
|
| 567 |
|
|
L1 = LOOKUP_L1 (p);
|
| 568 |
|
|
L2 = LOOKUP_L2 (p);
|
| 569 |
|
|
|
| 570 |
|
|
if (base[L1] == NULL)
|
| 571 |
|
|
base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
|
| 572 |
|
|
|
| 573 |
|
|
base[L1][L2] = entry;
|
| 574 |
|
|
}
|
| 575 |
|
|
|
| 576 |
|
|
/* Find the page table entry associated with OBJECT. */
|
| 577 |
|
|
|
| 578 |
|
|
static inline struct page_entry *
|
| 579 |
|
|
zone_get_object_page (const void *object)
|
| 580 |
|
|
{
|
| 581 |
|
|
return lookup_page_table_entry (object);
|
| 582 |
|
|
}
|
| 583 |
|
|
|
| 584 |
|
|
/* Find which element of the alloc_bits array OBJECT should be
|
| 585 |
|
|
recorded in. */
|
| 586 |
|
|
static inline unsigned int
|
| 587 |
|
|
zone_get_object_alloc_word (const void *object)
|
| 588 |
|
|
{
|
| 589 |
|
|
return (((size_t) object & (GGC_PAGE_SIZE - 1))
|
| 590 |
|
|
/ (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
|
| 591 |
|
|
}
|
| 592 |
|
|
|
| 593 |
|
|
/* Find which bit of the appropriate word in the alloc_bits array
|
| 594 |
|
|
OBJECT should be recorded in. */
|
| 595 |
|
|
static inline unsigned int
|
| 596 |
|
|
zone_get_object_alloc_bit (const void *object)
|
| 597 |
|
|
{
|
| 598 |
|
|
return (((size_t) object / BYTES_PER_ALLOC_BIT)
|
| 599 |
|
|
% (8 * sizeof (alloc_type)));
|
| 600 |
|
|
}
|
| 601 |
|
|
|
| 602 |
|
|
/* Find which element of the mark_bits array OBJECT should be recorded
|
| 603 |
|
|
in. */
|
| 604 |
|
|
static inline unsigned int
|
| 605 |
|
|
zone_get_object_mark_word (const void *object)
|
| 606 |
|
|
{
|
| 607 |
|
|
return (((size_t) object & (GGC_PAGE_SIZE - 1))
|
| 608 |
|
|
/ (8 * sizeof (mark_type) * BYTES_PER_MARK_BIT));
|
| 609 |
|
|
}
|
| 610 |
|
|
|
| 611 |
|
|
/* Find which bit of the appropriate word in the mark_bits array
|
| 612 |
|
|
OBJECT should be recorded in. */
|
| 613 |
|
|
static inline unsigned int
|
| 614 |
|
|
zone_get_object_mark_bit (const void *object)
|
| 615 |
|
|
{
|
| 616 |
|
|
return (((size_t) object / BYTES_PER_MARK_BIT)
|
| 617 |
|
|
% (8 * sizeof (mark_type)));
|
| 618 |
|
|
}
|
| 619 |
|
|
|
| 620 |
|
|
/* Set the allocation bit corresponding to OBJECT in its page's
|
| 621 |
|
|
bitmap. Used to split this object from the preceding one. */
|
| 622 |
|
|
static inline void
|
| 623 |
|
|
zone_set_object_alloc_bit (const void *object)
|
| 624 |
|
|
{
|
| 625 |
|
|
struct small_page_entry *page
|
| 626 |
|
|
= (struct small_page_entry *) zone_get_object_page (object);
|
| 627 |
|
|
unsigned int start_word = zone_get_object_alloc_word (object);
|
| 628 |
|
|
unsigned int start_bit = zone_get_object_alloc_bit (object);
|
| 629 |
|
|
|
| 630 |
|
|
page->alloc_bits[start_word] |= 1L << start_bit;
|
| 631 |
|
|
}
|
| 632 |
|
|
|
| 633 |
|
|
/* Clear the allocation bit corresponding to OBJECT in PAGE's
|
| 634 |
|
|
bitmap. Used to coalesce this object with the preceding
|
| 635 |
|
|
one. */
|
| 636 |
|
|
static inline void
|
| 637 |
|
|
zone_clear_object_alloc_bit (struct small_page_entry *page,
|
| 638 |
|
|
const void *object)
|
| 639 |
|
|
{
|
| 640 |
|
|
unsigned int start_word = zone_get_object_alloc_word (object);
|
| 641 |
|
|
unsigned int start_bit = zone_get_object_alloc_bit (object);
|
| 642 |
|
|
|
| 643 |
|
|
/* Would xor be quicker? */
|
| 644 |
|
|
page->alloc_bits[start_word] &= ~(1L << start_bit);
|
| 645 |
|
|
}
|
| 646 |
|
|
|
| 647 |
|
|
/* Find the size of the object which starts at START_WORD and
|
| 648 |
|
|
START_BIT in ALLOC_BITS, which is at most MAX_SIZE bytes.
|
| 649 |
|
|
Helper function for ggc_get_size and zone_find_object_size. */
|
| 650 |
|
|
|
| 651 |
|
|
static inline size_t
|
| 652 |
|
|
zone_object_size_1 (alloc_type *alloc_bits,
|
| 653 |
|
|
size_t start_word, size_t start_bit,
|
| 654 |
|
|
size_t max_size)
|
| 655 |
|
|
{
|
| 656 |
|
|
size_t size;
|
| 657 |
|
|
alloc_type alloc_word;
|
| 658 |
|
|
int indx;
|
| 659 |
|
|
|
| 660 |
|
|
/* Load the first word. */
|
| 661 |
|
|
alloc_word = alloc_bits[start_word++];
|
| 662 |
|
|
|
| 663 |
|
|
/* If that was the last bit in this word, we'll want to continue
|
| 664 |
|
|
with the next word. Otherwise, handle the rest of this word. */
|
| 665 |
|
|
if (start_bit)
|
| 666 |
|
|
{
|
| 667 |
|
|
indx = alloc_ffs (alloc_word >> start_bit);
|
| 668 |
|
|
if (indx)
|
| 669 |
|
|
/* indx is 1-based. We started at the bit after the object's
|
| 670 |
|
|
start, but we also ended at the bit after the object's end.
|
| 671 |
|
|
It cancels out. */
|
| 672 |
|
|
return indx * BYTES_PER_ALLOC_BIT;
|
| 673 |
|
|
|
| 674 |
|
|
/* The extra 1 accounts for the starting unit, before start_bit. */
|
| 675 |
|
|
size = (sizeof (alloc_type) * 8 - start_bit + 1) * BYTES_PER_ALLOC_BIT;
|
| 676 |
|
|
|
| 677 |
|
|
if (size >= max_size)
|
| 678 |
|
|
return max_size;
|
| 679 |
|
|
|
| 680 |
|
|
alloc_word = alloc_bits[start_word++];
|
| 681 |
|
|
}
|
| 682 |
|
|
else
|
| 683 |
|
|
size = BYTES_PER_ALLOC_BIT;
|
| 684 |
|
|
|
| 685 |
|
|
while (alloc_word == 0)
|
| 686 |
|
|
{
|
| 687 |
|
|
size += sizeof (alloc_type) * 8 * BYTES_PER_ALLOC_BIT;
|
| 688 |
|
|
if (size >= max_size)
|
| 689 |
|
|
return max_size;
|
| 690 |
|
|
alloc_word = alloc_bits[start_word++];
|
| 691 |
|
|
}
|
| 692 |
|
|
|
| 693 |
|
|
indx = alloc_ffs (alloc_word);
|
| 694 |
|
|
return size + (indx - 1) * BYTES_PER_ALLOC_BIT;
|
| 695 |
|
|
}
|
| 696 |
|
|
|
| 697 |
|
|
/* Find the size of OBJECT on small page PAGE. */
|
| 698 |
|
|
|
| 699 |
|
|
static inline size_t
|
| 700 |
|
|
zone_find_object_size (struct small_page_entry *page,
|
| 701 |
|
|
const void *object)
|
| 702 |
|
|
{
|
| 703 |
|
|
const char *object_midptr = (const char *) object + BYTES_PER_ALLOC_BIT;
|
| 704 |
|
|
unsigned int start_word = zone_get_object_alloc_word (object_midptr);
|
| 705 |
|
|
unsigned int start_bit = zone_get_object_alloc_bit (object_midptr);
|
| 706 |
|
|
size_t max_size = (page->common.page + SMALL_PAGE_SIZE
|
| 707 |
|
|
- (const char *) object);
|
| 708 |
|
|
|
| 709 |
|
|
return zone_object_size_1 (page->alloc_bits, start_word, start_bit,
|
| 710 |
|
|
max_size);
|
| 711 |
|
|
}
|
| 712 |
|
|
|
| 713 |
|
|
/* highest_bit assumes that alloc_type is 32 bits. */
|
| 714 |
|
|
extern char check_alloc_type_size[(sizeof (alloc_type) == 4) ? 1 : -1];
|
| 715 |
|
|
|
| 716 |
|
|
/* Find the highest set bit in VALUE. Returns the bit number of that
|
| 717 |
|
|
bit, using the same values as ffs. */
|
| 718 |
|
|
static inline alloc_type
|
| 719 |
|
|
highest_bit (alloc_type value)
|
| 720 |
|
|
{
|
| 721 |
|
|
/* This also assumes that alloc_type is unsigned. */
|
| 722 |
|
|
value |= value >> 1;
|
| 723 |
|
|
value |= value >> 2;
|
| 724 |
|
|
value |= value >> 4;
|
| 725 |
|
|
value |= value >> 8;
|
| 726 |
|
|
value |= value >> 16;
|
| 727 |
|
|
value = value ^ (value >> 1);
|
| 728 |
|
|
return alloc_ffs (value);
|
| 729 |
|
|
}
|
| 730 |
|
|
|
| 731 |
|
|
/* Find the offset from the start of an object to P, which may point
|
| 732 |
|
|
into the interior of the object. */
|
| 733 |
|
|
|
| 734 |
|
|
static unsigned long
|
| 735 |
|
|
zone_find_object_offset (alloc_type *alloc_bits, size_t start_word,
|
| 736 |
|
|
size_t start_bit)
|
| 737 |
|
|
{
|
| 738 |
|
|
unsigned int offset_in_bits;
|
| 739 |
|
|
alloc_type alloc_word = alloc_bits[start_word];
|
| 740 |
|
|
|
| 741 |
|
|
/* Mask off any bits after the initial bit, but make sure to include
|
| 742 |
|
|
the initial bit in the result. Note that START_BIT is
|
| 743 |
|
|
0-based. */
|
| 744 |
|
|
if (start_bit < 8 * sizeof (alloc_type) - 1)
|
| 745 |
|
|
alloc_word &= (1 << (start_bit + 1)) - 1;
|
| 746 |
|
|
offset_in_bits = start_bit;
|
| 747 |
|
|
|
| 748 |
|
|
/* Search for the start of the object. */
|
| 749 |
|
|
while (alloc_word == 0 && start_word > 0)
|
| 750 |
|
|
{
|
| 751 |
|
|
alloc_word = alloc_bits[--start_word];
|
| 752 |
|
|
offset_in_bits += 8 * sizeof (alloc_type);
|
| 753 |
|
|
}
|
| 754 |
|
|
/* We must always find a set bit. */
|
| 755 |
|
|
gcc_assert (alloc_word != 0);
|
| 756 |
|
|
/* Note that the result of highest_bit is 1-based. */
|
| 757 |
|
|
offset_in_bits -= highest_bit (alloc_word) - 1;
|
| 758 |
|
|
|
| 759 |
|
|
return BYTES_PER_ALLOC_BIT * offset_in_bits;
|
| 760 |
|
|
}
|
| 761 |
|
|
|
| 762 |
|
|
/* Allocate the mark bits for every zone, and set the pointers on each
|
| 763 |
|
|
page. */
|
| 764 |
|
|
static void
|
| 765 |
|
|
zone_allocate_marks (void)
|
| 766 |
|
|
{
|
| 767 |
|
|
struct alloc_zone *zone;
|
| 768 |
|
|
|
| 769 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
| 770 |
|
|
{
|
| 771 |
|
|
struct small_page_entry *page;
|
| 772 |
|
|
mark_type *cur_marks;
|
| 773 |
|
|
size_t mark_words, mark_words_per_page;
|
| 774 |
|
|
#ifdef ENABLE_CHECKING
|
| 775 |
|
|
size_t n = 0;
|
| 776 |
|
|
#endif
|
| 777 |
|
|
|
| 778 |
|
|
mark_words_per_page
|
| 779 |
|
|
= (GGC_PAGE_SIZE + BYTES_PER_MARK_WORD - 1) / BYTES_PER_MARK_WORD;
|
| 780 |
|
|
mark_words = zone->n_small_pages * mark_words_per_page;
|
| 781 |
|
|
zone->mark_bits = (mark_type *) xcalloc (sizeof (mark_type),
|
| 782 |
|
|
mark_words);
|
| 783 |
|
|
cur_marks = zone->mark_bits;
|
| 784 |
|
|
for (page = zone->pages; page; page = page->next)
|
| 785 |
|
|
{
|
| 786 |
|
|
page->mark_bits = cur_marks;
|
| 787 |
|
|
cur_marks += mark_words_per_page;
|
| 788 |
|
|
#ifdef ENABLE_CHECKING
|
| 789 |
|
|
n++;
|
| 790 |
|
|
#endif
|
| 791 |
|
|
}
|
| 792 |
|
|
gcc_checking_assert (n == zone->n_small_pages);
|
| 793 |
|
|
}
|
| 794 |
|
|
|
| 795 |
|
|
/* We don't collect the PCH zone, but we do have to mark it
|
| 796 |
|
|
(for now). */
|
| 797 |
|
|
if (pch_zone.bytes)
|
| 798 |
|
|
pch_zone.mark_bits
|
| 799 |
|
|
= (mark_type *) xcalloc (sizeof (mark_type),
|
| 800 |
|
|
CEIL (pch_zone.bytes, BYTES_PER_MARK_WORD));
|
| 801 |
|
|
}
|
| 802 |
|
|
|
| 803 |
|
|
/* After marking and sweeping, release the memory used for mark bits. */
|
| 804 |
|
|
static void
|
| 805 |
|
|
zone_free_marks (void)
|
| 806 |
|
|
{
|
| 807 |
|
|
struct alloc_zone *zone;
|
| 808 |
|
|
|
| 809 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
| 810 |
|
|
if (zone->mark_bits)
|
| 811 |
|
|
{
|
| 812 |
|
|
free (zone->mark_bits);
|
| 813 |
|
|
zone->mark_bits = NULL;
|
| 814 |
|
|
}
|
| 815 |
|
|
|
| 816 |
|
|
if (pch_zone.bytes)
|
| 817 |
|
|
{
|
| 818 |
|
|
free (pch_zone.mark_bits);
|
| 819 |
|
|
pch_zone.mark_bits = NULL;
|
| 820 |
|
|
}
|
| 821 |
|
|
}
|
| 822 |
|
|
|
| 823 |
|
|
#ifdef USING_MMAP
|
| 824 |
|
|
/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
|
| 825 |
|
|
(if non-null). The ifdef structure here is intended to cause a
|
| 826 |
|
|
compile error unless exactly one of the HAVE_* is defined. */
|
| 827 |
|
|
|
| 828 |
|
|
static inline char *
|
| 829 |
|
|
alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, struct alloc_zone *zone)
|
| 830 |
|
|
{
|
| 831 |
|
|
#ifdef HAVE_MMAP_ANON
|
| 832 |
|
|
char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
|
| 833 |
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
| 834 |
|
|
#endif
|
| 835 |
|
|
#ifdef HAVE_MMAP_DEV_ZERO
|
| 836 |
|
|
char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
|
| 837 |
|
|
MAP_PRIVATE, G.dev_zero_fd, 0);
|
| 838 |
|
|
#endif
|
| 839 |
|
|
|
| 840 |
|
|
if (page == (char *) MAP_FAILED)
|
| 841 |
|
|
{
|
| 842 |
|
|
perror ("virtual memory exhausted");
|
| 843 |
|
|
exit (FATAL_EXIT_CODE);
|
| 844 |
|
|
}
|
| 845 |
|
|
|
| 846 |
|
|
/* Remember that we allocated this memory. */
|
| 847 |
|
|
zone->bytes_mapped += size;
|
| 848 |
|
|
|
| 849 |
|
|
/* Pretend we don't have access to the allocated pages. We'll enable
|
| 850 |
|
|
access to smaller pieces of the area in ggc_internal_alloc. Discard the
|
| 851 |
|
|
handle to avoid handle leak. */
|
| 852 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
|
| 853 |
|
|
|
| 854 |
|
|
return page;
|
| 855 |
|
|
}
|
| 856 |
|
|
#endif
|
| 857 |
|
|
|
| 858 |
|
|
/* Allocate a new page for allocating small objects in ZONE, and
|
| 859 |
|
|
return an entry for it. */
|
| 860 |
|
|
|
| 861 |
|
|
static struct small_page_entry *
|
| 862 |
|
|
alloc_small_page (struct alloc_zone *zone)
|
| 863 |
|
|
{
|
| 864 |
|
|
struct small_page_entry *entry;
|
| 865 |
|
|
|
| 866 |
|
|
/* Check the list of free pages for one we can use. */
|
| 867 |
|
|
entry = zone->free_pages;
|
| 868 |
|
|
if (entry != NULL)
|
| 869 |
|
|
{
|
| 870 |
|
|
/* Recycle the allocated memory from this page ... */
|
| 871 |
|
|
zone->free_pages = entry->next;
|
| 872 |
|
|
}
|
| 873 |
|
|
else
|
| 874 |
|
|
{
|
| 875 |
|
|
/* We want just one page. Allocate a bunch of them and put the
|
| 876 |
|
|
extras on the freelist. (Can only do this optimization with
|
| 877 |
|
|
mmap for backing store.) */
|
| 878 |
|
|
struct small_page_entry *e, *f = zone->free_pages;
|
| 879 |
|
|
int i;
|
| 880 |
|
|
char *page;
|
| 881 |
|
|
|
| 882 |
|
|
page = alloc_anon (NULL, GGC_PAGE_SIZE * G.quire_size, zone);
|
| 883 |
|
|
|
| 884 |
|
|
/* This loop counts down so that the chain will be in ascending
|
| 885 |
|
|
memory order. */
|
| 886 |
|
|
for (i = G.quire_size - 1; i >= 1; i--)
|
| 887 |
|
|
{
|
| 888 |
|
|
e = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
|
| 889 |
|
|
e->common.page = page + (i << GGC_PAGE_SHIFT);
|
| 890 |
|
|
e->common.zone = zone;
|
| 891 |
|
|
e->next = f;
|
| 892 |
|
|
f = e;
|
| 893 |
|
|
set_page_table_entry (e->common.page, &e->common);
|
| 894 |
|
|
}
|
| 895 |
|
|
|
| 896 |
|
|
zone->free_pages = f;
|
| 897 |
|
|
|
| 898 |
|
|
entry = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
|
| 899 |
|
|
entry->common.page = page;
|
| 900 |
|
|
entry->common.zone = zone;
|
| 901 |
|
|
set_page_table_entry (page, &entry->common);
|
| 902 |
|
|
}
|
| 903 |
|
|
|
| 904 |
|
|
zone->n_small_pages++;
|
| 905 |
|
|
|
| 906 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
| 907 |
|
|
fprintf (G.debug_file,
|
| 908 |
|
|
"Allocating %s page at %p, data %p-%p\n",
|
| 909 |
|
|
entry->common.zone->name, (PTR) entry, entry->common.page,
|
| 910 |
|
|
entry->common.page + SMALL_PAGE_SIZE - 1);
|
| 911 |
|
|
|
| 912 |
|
|
return entry;
|
| 913 |
|
|
}
|
| 914 |
|
|
|
| 915 |
|
|
/* Allocate a large page of size SIZE in ZONE. */
|
| 916 |
|
|
|
| 917 |
|
|
static struct large_page_entry *
|
| 918 |
|
|
alloc_large_page (size_t size, struct alloc_zone *zone)
|
| 919 |
|
|
{
|
| 920 |
|
|
struct large_page_entry *entry;
|
| 921 |
|
|
char *page;
|
| 922 |
|
|
size_t needed_size;
|
| 923 |
|
|
|
| 924 |
|
|
needed_size = size + sizeof (struct large_page_entry);
|
| 925 |
|
|
page = XNEWVAR (char, needed_size);
|
| 926 |
|
|
|
| 927 |
|
|
entry = (struct large_page_entry *) page;
|
| 928 |
|
|
|
| 929 |
|
|
entry->next = NULL;
|
| 930 |
|
|
entry->common.page = page + sizeof (struct large_page_entry);
|
| 931 |
|
|
entry->common.large_p = true;
|
| 932 |
|
|
entry->common.pch_p = false;
|
| 933 |
|
|
entry->common.zone = zone;
|
| 934 |
|
|
#ifdef GATHER_STATISTICS
|
| 935 |
|
|
entry->common.survived = 0;
|
| 936 |
|
|
#endif
|
| 937 |
|
|
entry->mark_p = false;
|
| 938 |
|
|
entry->bytes = size;
|
| 939 |
|
|
entry->prev = NULL;
|
| 940 |
|
|
|
| 941 |
|
|
set_page_table_entry (entry->common.page, &entry->common);
|
| 942 |
|
|
|
| 943 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
| 944 |
|
|
fprintf (G.debug_file,
|
| 945 |
|
|
"Allocating %s large page at %p, data %p-%p\n",
|
| 946 |
|
|
entry->common.zone->name, (PTR) entry, entry->common.page,
|
| 947 |
|
|
entry->common.page + SMALL_PAGE_SIZE - 1);
|
| 948 |
|
|
|
| 949 |
|
|
return entry;
|
| 950 |
|
|
}
|
| 951 |
|
|
|
| 952 |
|
|
|
| 953 |
|
|
/* For a page that is no longer needed, put it on the free page list. */
|
| 954 |
|
|
|
| 955 |
|
|
static inline void
|
| 956 |
|
|
free_small_page (struct small_page_entry *entry)
|
| 957 |
|
|
{
|
| 958 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
| 959 |
|
|
fprintf (G.debug_file,
|
| 960 |
|
|
"Deallocating %s page at %p, data %p-%p\n",
|
| 961 |
|
|
entry->common.zone->name, (PTR) entry,
|
| 962 |
|
|
entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);
|
| 963 |
|
|
|
| 964 |
|
|
gcc_assert (!entry->common.large_p);
|
| 965 |
|
|
|
| 966 |
|
|
/* Mark the page as inaccessible. Discard the handle to
|
| 967 |
|
|
avoid handle leak. */
|
| 968 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->common.page,
|
| 969 |
|
|
SMALL_PAGE_SIZE));
|
| 970 |
|
|
|
| 971 |
|
|
entry->next = entry->common.zone->free_pages;
|
| 972 |
|
|
entry->common.zone->free_pages = entry;
|
| 973 |
|
|
entry->common.zone->n_small_pages--;
|
| 974 |
|
|
}
|
| 975 |
|
|
|
| 976 |
|
|
/* Release a large page that is no longer needed. */
|
| 977 |
|
|
|
| 978 |
|
|
static inline void
|
| 979 |
|
|
free_large_page (struct large_page_entry *entry)
|
| 980 |
|
|
{
|
| 981 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
| 982 |
|
|
fprintf (G.debug_file,
|
| 983 |
|
|
"Deallocating %s page at %p, data %p-%p\n",
|
| 984 |
|
|
entry->common.zone->name, (PTR) entry,
|
| 985 |
|
|
entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);
|
| 986 |
|
|
|
| 987 |
|
|
gcc_assert (entry->common.large_p);
|
| 988 |
|
|
|
| 989 |
|
|
set_page_table_entry (entry->common.page, NULL);
|
| 990 |
|
|
free (entry);
|
| 991 |
|
|
}
|
| 992 |
|
|
|
| 993 |
|
|
/* Release the free page cache to the system. */
|
| 994 |
|
|
|
| 995 |
|
|
static void
|
| 996 |
|
|
release_pages (struct alloc_zone *zone)
|
| 997 |
|
|
{
|
| 998 |
|
|
#ifdef USING_MMAP
|
| 999 |
|
|
struct small_page_entry *p, *next;
|
| 1000 |
|
|
char *start;
|
| 1001 |
|
|
size_t len;
|
| 1002 |
|
|
|
| 1003 |
|
|
/* Gather up adjacent pages so they are unmapped together. */
|
| 1004 |
|
|
p = zone->free_pages;
|
| 1005 |
|
|
|
| 1006 |
|
|
while (p)
|
| 1007 |
|
|
{
|
| 1008 |
|
|
start = p->common.page;
|
| 1009 |
|
|
next = p->next;
|
| 1010 |
|
|
len = SMALL_PAGE_SIZE;
|
| 1011 |
|
|
set_page_table_entry (p->common.page, NULL);
|
| 1012 |
|
|
p = next;
|
| 1013 |
|
|
|
| 1014 |
|
|
while (p && p->common.page == start + len)
|
| 1015 |
|
|
{
|
| 1016 |
|
|
next = p->next;
|
| 1017 |
|
|
len += SMALL_PAGE_SIZE;
|
| 1018 |
|
|
set_page_table_entry (p->common.page, NULL);
|
| 1019 |
|
|
p = next;
|
| 1020 |
|
|
}
|
| 1021 |
|
|
|
| 1022 |
|
|
munmap (start, len);
|
| 1023 |
|
|
zone->bytes_mapped -= len;
|
| 1024 |
|
|
}
|
| 1025 |
|
|
|
| 1026 |
|
|
zone->free_pages = NULL;
|
| 1027 |
|
|
#endif
|
| 1028 |
|
|
}
|
| 1029 |
|
|
|
| 1030 |
|
|
/* Place the block at PTR of size SIZE on the free list for ZONE. */
|
| 1031 |
|
|
|
| 1032 |
|
|
static inline void
|
| 1033 |
|
|
free_chunk (char *ptr, size_t size, struct alloc_zone *zone)
|
| 1034 |
|
|
{
|
| 1035 |
|
|
struct alloc_chunk *chunk = (struct alloc_chunk *) ptr;
|
| 1036 |
|
|
size_t bin = 0;
|
| 1037 |
|
|
|
| 1038 |
|
|
bin = SIZE_BIN_DOWN (size);
|
| 1039 |
|
|
gcc_assert (bin != 0);
|
| 1040 |
|
|
if (bin > NUM_FREE_BINS)
|
| 1041 |
|
|
{
|
| 1042 |
|
|
bin = 0;
|
| 1043 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (chunk,
|
| 1044 |
|
|
sizeof (struct
|
| 1045 |
|
|
alloc_chunk)));
|
| 1046 |
|
|
chunk->size = size;
|
| 1047 |
|
|
chunk->next_free = zone->free_chunks[bin];
|
| 1048 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (ptr
|
| 1049 |
|
|
+ sizeof (struct
|
| 1050 |
|
|
alloc_chunk),
|
| 1051 |
|
|
size
|
| 1052 |
|
|
- sizeof (struct
|
| 1053 |
|
|
alloc_chunk)));
|
| 1054 |
|
|
}
|
| 1055 |
|
|
else
|
| 1056 |
|
|
{
|
| 1057 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (chunk,
|
| 1058 |
|
|
sizeof (struct
|
| 1059 |
|
|
alloc_chunk *)));
|
| 1060 |
|
|
chunk->next_free = zone->free_chunks[bin];
|
| 1061 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (ptr
|
| 1062 |
|
|
+ sizeof (struct
|
| 1063 |
|
|
alloc_chunk *),
|
| 1064 |
|
|
size
|
| 1065 |
|
|
- sizeof (struct
|
| 1066 |
|
|
alloc_chunk *)));
|
| 1067 |
|
|
}
|
| 1068 |
|
|
|
| 1069 |
|
|
zone->free_chunks[bin] = chunk;
|
| 1070 |
|
|
if (bin > zone->high_free_bin)
|
| 1071 |
|
|
zone->high_free_bin = bin;
|
| 1072 |
|
|
if (GGC_DEBUG_LEVEL >= 3)
|
| 1073 |
|
|
fprintf (G.debug_file, "Deallocating object, chunk=%p\n", (void *)chunk);
|
| 1074 |
|
|
}
|
| 1075 |
|
|
|
| 1076 |
|
|
/* For a given size of memory requested for allocation, return the
|
| 1077 |
|
|
actual size that is going to be allocated. */
|
| 1078 |
|
|
|
| 1079 |
|
|
size_t
|
| 1080 |
|
|
ggc_round_alloc_size (size_t requested_size)
|
| 1081 |
|
|
{
|
| 1082 |
|
|
size_t size;
|
| 1083 |
|
|
|
| 1084 |
|
|
/* Make sure that zero-sized allocations get a unique and freeable
|
| 1085 |
|
|
pointer. */
|
| 1086 |
|
|
if (requested_size == 0)
|
| 1087 |
|
|
size = MAX_ALIGNMENT;
|
| 1088 |
|
|
else
|
| 1089 |
|
|
size = (requested_size + MAX_ALIGNMENT - 1) & -MAX_ALIGNMENT;
|
| 1090 |
|
|
|
| 1091 |
|
|
return size;
|
| 1092 |
|
|
}
|
| 1093 |
|
|
|
| 1094 |
|
|
/* Allocate a chunk of memory of at least ORIG_SIZE bytes, in ZONE. */
|
| 1095 |
|
|
|
| 1096 |
|
|
void *
|
| 1097 |
|
|
ggc_internal_alloc_zone_stat (size_t orig_size, struct alloc_zone *zone
|
| 1098 |
|
|
MEM_STAT_DECL)
|
| 1099 |
|
|
{
|
| 1100 |
|
|
size_t bin;
|
| 1101 |
|
|
size_t csize;
|
| 1102 |
|
|
struct small_page_entry *entry;
|
| 1103 |
|
|
struct alloc_chunk *chunk, **pp;
|
| 1104 |
|
|
void *result;
|
| 1105 |
|
|
size_t size = ggc_round_alloc_size (orig_size);
|
| 1106 |
|
|
|
| 1107 |
|
|
/* Try to allocate the object from several different sources. Each
|
| 1108 |
|
|
of these cases is responsible for setting RESULT and SIZE to
|
| 1109 |
|
|
describe the allocated block, before jumping to FOUND. If a
|
| 1110 |
|
|
chunk is split, the allocate bit for the new chunk should also be
|
| 1111 |
|
|
set.
|
| 1112 |
|
|
|
| 1113 |
|
|
Large objects are handled specially. However, they'll just fail
|
| 1114 |
|
|
the next couple of conditions, so we can wait to check for them
|
| 1115 |
|
|
below. The large object case is relatively rare (< 1%), so this
|
| 1116 |
|
|
is a win. */
|
| 1117 |
|
|
|
| 1118 |
|
|
/* First try to split the last chunk we allocated. For best
|
| 1119 |
|
|
fragmentation behavior it would be better to look for a
|
| 1120 |
|
|
free bin of the appropriate size for a small object. However,
|
| 1121 |
|
|
we're unlikely (1% - 7%) to find one, and this gives better
|
| 1122 |
|
|
locality behavior anyway. This case handles the lion's share
|
| 1123 |
|
|
of all calls to this function. */
|
| 1124 |
|
|
if (size <= zone->cached_free_size)
|
| 1125 |
|
|
{
|
| 1126 |
|
|
result = zone->cached_free;
|
| 1127 |
|
|
|
| 1128 |
|
|
zone->cached_free_size -= size;
|
| 1129 |
|
|
if (zone->cached_free_size)
|
| 1130 |
|
|
{
|
| 1131 |
|
|
zone->cached_free += size;
|
| 1132 |
|
|
zone_set_object_alloc_bit (zone->cached_free);
|
| 1133 |
|
|
}
|
| 1134 |
|
|
|
| 1135 |
|
|
goto found;
|
| 1136 |
|
|
}
|
| 1137 |
|
|
|
| 1138 |
|
|
/* Next, try to find a free bin of the exactly correct size. */
|
| 1139 |
|
|
|
| 1140 |
|
|
/* We want to round SIZE up, rather than down, but we know it's
|
| 1141 |
|
|
already aligned to at least FREE_BIN_DELTA, so we can just
|
| 1142 |
|
|
shift. */
|
| 1143 |
|
|
bin = SIZE_BIN_DOWN (size);
|
| 1144 |
|
|
|
| 1145 |
|
|
if (bin <= NUM_FREE_BINS
|
| 1146 |
|
|
&& (chunk = zone->free_chunks[bin]) != NULL)
|
| 1147 |
|
|
{
|
| 1148 |
|
|
/* We have a chunk of the right size. Pull it off the free list
|
| 1149 |
|
|
and use it. */
|
| 1150 |
|
|
|
| 1151 |
|
|
zone->free_chunks[bin] = chunk->next_free;
|
| 1152 |
|
|
|
| 1153 |
|
|
/* NOTE: SIZE is only guaranteed to be right if MAX_ALIGNMENT
|
| 1154 |
|
|
== FREE_BIN_DELTA. */
|
| 1155 |
|
|
result = chunk;
|
| 1156 |
|
|
|
| 1157 |
|
|
/* The allocation bits are already set correctly. HIGH_FREE_BIN
|
| 1158 |
|
|
may now be wrong, if this was the last chunk in the high bin.
|
| 1159 |
|
|
Rather than fixing it up now, wait until we need to search
|
| 1160 |
|
|
the free bins. */
|
| 1161 |
|
|
|
| 1162 |
|
|
goto found;
|
| 1163 |
|
|
}
|
| 1164 |
|
|
|
| 1165 |
|
|
/* Next, if there wasn't a chunk of the ideal size, look for a chunk
|
| 1166 |
|
|
to split. We can find one in the too-big bin, or in the largest
|
| 1167 |
|
|
sized bin with a chunk in it. Try the largest normal-sized bin
|
| 1168 |
|
|
first. */
|
| 1169 |
|
|
|
| 1170 |
|
|
if (zone->high_free_bin > bin)
|
| 1171 |
|
|
{
|
| 1172 |
|
|
/* Find the highest numbered free bin. It will be at or below
|
| 1173 |
|
|
the watermark. */
|
| 1174 |
|
|
while (zone->high_free_bin > bin
|
| 1175 |
|
|
&& zone->free_chunks[zone->high_free_bin] == NULL)
|
| 1176 |
|
|
zone->high_free_bin--;
|
| 1177 |
|
|
|
| 1178 |
|
|
if (zone->high_free_bin > bin)
|
| 1179 |
|
|
{
|
| 1180 |
|
|
size_t tbin = zone->high_free_bin;
|
| 1181 |
|
|
chunk = zone->free_chunks[tbin];
|
| 1182 |
|
|
|
| 1183 |
|
|
/* Remove the chunk from its previous bin. */
|
| 1184 |
|
|
zone->free_chunks[tbin] = chunk->next_free;
|
| 1185 |
|
|
|
| 1186 |
|
|
result = (char *) chunk;
|
| 1187 |
|
|
|
| 1188 |
|
|
/* Save the rest of the chunk for future allocation. */
|
| 1189 |
|
|
if (zone->cached_free_size)
|
| 1190 |
|
|
free_chunk (zone->cached_free, zone->cached_free_size, zone);
|
| 1191 |
|
|
|
| 1192 |
|
|
chunk = (struct alloc_chunk *) ((char *) result + size);
|
| 1193 |
|
|
zone->cached_free = (char *) chunk;
|
| 1194 |
|
|
zone->cached_free_size = (tbin - bin) * FREE_BIN_DELTA;
|
| 1195 |
|
|
|
| 1196 |
|
|
/* Mark the new free chunk as an object, so that we can
|
| 1197 |
|
|
find the size of the newly allocated object. */
|
| 1198 |
|
|
zone_set_object_alloc_bit (chunk);
|
| 1199 |
|
|
|
| 1200 |
|
|
/* HIGH_FREE_BIN may now be wrong, if this was the last
|
| 1201 |
|
|
chunk in the high bin. Rather than fixing it up now,
|
| 1202 |
|
|
wait until we need to search the free bins. */
|
| 1203 |
|
|
|
| 1204 |
|
|
goto found;
|
| 1205 |
|
|
}
|
| 1206 |
|
|
}
|
| 1207 |
|
|
|
| 1208 |
|
|
/* Failing that, look through the "other" bucket for a chunk
|
| 1209 |
|
|
that is large enough. */
|
| 1210 |
|
|
pp = &(zone->free_chunks[0]);
|
| 1211 |
|
|
chunk = *pp;
|
| 1212 |
|
|
while (chunk && chunk->size < size)
|
| 1213 |
|
|
{
|
| 1214 |
|
|
pp = &chunk->next_free;
|
| 1215 |
|
|
chunk = *pp;
|
| 1216 |
|
|
}
|
| 1217 |
|
|
|
| 1218 |
|
|
if (chunk)
|
| 1219 |
|
|
{
|
| 1220 |
|
|
/* Remove the chunk from its previous bin. */
|
| 1221 |
|
|
*pp = chunk->next_free;
|
| 1222 |
|
|
|
| 1223 |
|
|
result = (char *) chunk;
|
| 1224 |
|
|
|
| 1225 |
|
|
/* Save the rest of the chunk for future allocation, if there's any
|
| 1226 |
|
|
left over. */
|
| 1227 |
|
|
csize = chunk->size;
|
| 1228 |
|
|
if (csize > size)
|
| 1229 |
|
|
{
|
| 1230 |
|
|
if (zone->cached_free_size)
|
| 1231 |
|
|
free_chunk (zone->cached_free, zone->cached_free_size, zone);
|
| 1232 |
|
|
|
| 1233 |
|
|
chunk = (struct alloc_chunk *) ((char *) result + size);
|
| 1234 |
|
|
zone->cached_free = (char *) chunk;
|
| 1235 |
|
|
zone->cached_free_size = csize - size;
|
| 1236 |
|
|
|
| 1237 |
|
|
/* Mark the new free chunk as an object. */
|
| 1238 |
|
|
zone_set_object_alloc_bit (chunk);
|
| 1239 |
|
|
}
|
| 1240 |
|
|
|
| 1241 |
|
|
goto found;
|
| 1242 |
|
|
}
|
| 1243 |
|
|
|
| 1244 |
|
|
/* Handle large allocations. We could choose any threshold between
|
| 1245 |
|
|
GGC_PAGE_SIZE - sizeof (struct large_page_entry) and
|
| 1246 |
|
|
GGC_PAGE_SIZE. It can't be smaller, because then it wouldn't
|
| 1247 |
|
|
be guaranteed to have a unique entry in the lookup table. Large
|
| 1248 |
|
|
allocations will always fall through to here. */
|
| 1249 |
|
|
if (size > GGC_PAGE_SIZE)
|
| 1250 |
|
|
{
|
| 1251 |
|
|
struct large_page_entry *entry = alloc_large_page (size, zone);
|
| 1252 |
|
|
|
| 1253 |
|
|
#ifdef GATHER_STATISTICS
|
| 1254 |
|
|
entry->common.survived = 0;
|
| 1255 |
|
|
#endif
|
| 1256 |
|
|
|
| 1257 |
|
|
entry->next = zone->large_pages;
|
| 1258 |
|
|
if (zone->large_pages)
|
| 1259 |
|
|
zone->large_pages->prev = entry;
|
| 1260 |
|
|
zone->large_pages = entry;
|
| 1261 |
|
|
|
| 1262 |
|
|
result = entry->common.page;
|
| 1263 |
|
|
|
| 1264 |
|
|
goto found;
|
| 1265 |
|
|
}
|
| 1266 |
|
|
|
| 1267 |
|
|
/* Failing everything above, allocate a new small page. */
|
| 1268 |
|
|
|
| 1269 |
|
|
entry = alloc_small_page (zone);
|
| 1270 |
|
|
entry->next = zone->pages;
|
| 1271 |
|
|
zone->pages = entry;
|
| 1272 |
|
|
|
| 1273 |
|
|
/* Mark the first chunk in the new page. */
|
| 1274 |
|
|
entry->alloc_bits[0] = 1;
|
| 1275 |
|
|
|
| 1276 |
|
|
result = entry->common.page;
|
| 1277 |
|
|
if (size < SMALL_PAGE_SIZE)
|
| 1278 |
|
|
{
|
| 1279 |
|
|
if (zone->cached_free_size)
|
| 1280 |
|
|
free_chunk (zone->cached_free, zone->cached_free_size, zone);
|
| 1281 |
|
|
|
| 1282 |
|
|
zone->cached_free = (char *) result + size;
|
| 1283 |
|
|
zone->cached_free_size = SMALL_PAGE_SIZE - size;
|
| 1284 |
|
|
|
| 1285 |
|
|
/* Mark the new free chunk as an object. */
|
| 1286 |
|
|
zone_set_object_alloc_bit (zone->cached_free);
|
| 1287 |
|
|
}
|
| 1288 |
|
|
|
| 1289 |
|
|
found:
|
| 1290 |
|
|
|
| 1291 |
|
|
/* We could save TYPE in the chunk, but we don't use that for
|
| 1292 |
|
|
anything yet. If we wanted to, we could do it by adding it
|
| 1293 |
|
|
either before the beginning of the chunk or after its end,
|
| 1294 |
|
|
and adjusting the size and pointer appropriately. */
|
| 1295 |
|
|
|
| 1296 |
|
|
/* We'll probably write to this after we return. */
|
| 1297 |
|
|
prefetchw (result);
|
| 1298 |
|
|
|
| 1299 |
|
|
#ifdef ENABLE_GC_CHECKING
|
| 1300 |
|
|
/* `Poison' the entire allocated object. */
|
| 1301 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
|
| 1302 |
|
|
memset (result, 0xaf, size);
|
| 1303 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (result + orig_size,
|
| 1304 |
|
|
size - orig_size));
|
| 1305 |
|
|
#endif
|
| 1306 |
|
|
|
| 1307 |
|
|
/* Tell Valgrind that the memory is there, but its content isn't
|
| 1308 |
|
|
defined. The bytes at the end of the object are still marked
|
| 1309 |
|
|
unaccessible. */
|
| 1310 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, orig_size));
|
| 1311 |
|
|
|
| 1312 |
|
|
/* Keep track of how many bytes are being allocated. This
|
| 1313 |
|
|
information is used in deciding when to collect. */
|
| 1314 |
|
|
zone->allocated += size;
|
| 1315 |
|
|
|
| 1316 |
|
|
timevar_ggc_mem_total += size;
|
| 1317 |
|
|
|
| 1318 |
|
|
#ifdef GATHER_STATISTICS
|
| 1319 |
|
|
ggc_record_overhead (orig_size, size - orig_size, result PASS_MEM_STAT);
|
| 1320 |
|
|
|
| 1321 |
|
|
{
|
| 1322 |
|
|
size_t object_size = size;
|
| 1323 |
|
|
size_t overhead = object_size - orig_size;
|
| 1324 |
|
|
|
| 1325 |
|
|
zone->stats.total_overhead += overhead;
|
| 1326 |
|
|
zone->stats.total_allocated += object_size;
|
| 1327 |
|
|
|
| 1328 |
|
|
if (orig_size <= 32)
|
| 1329 |
|
|
{
|
| 1330 |
|
|
zone->stats.total_overhead_under32 += overhead;
|
| 1331 |
|
|
zone->stats.total_allocated_under32 += object_size;
|
| 1332 |
|
|
}
|
| 1333 |
|
|
if (orig_size <= 64)
|
| 1334 |
|
|
{
|
| 1335 |
|
|
zone->stats.total_overhead_under64 += overhead;
|
| 1336 |
|
|
zone->stats.total_allocated_under64 += object_size;
|
| 1337 |
|
|
}
|
| 1338 |
|
|
if (orig_size <= 128)
|
| 1339 |
|
|
{
|
| 1340 |
|
|
zone->stats.total_overhead_under128 += overhead;
|
| 1341 |
|
|
zone->stats.total_allocated_under128 += object_size;
|
| 1342 |
|
|
}
|
| 1343 |
|
|
}
|
| 1344 |
|
|
#endif
|
| 1345 |
|
|
|
| 1346 |
|
|
if (GGC_DEBUG_LEVEL >= 3)
|
| 1347 |
|
|
fprintf (G.debug_file, "Allocating object, size=%lu at %p\n",
|
| 1348 |
|
|
(unsigned long) size, result);
|
| 1349 |
|
|
|
| 1350 |
|
|
return result;
|
| 1351 |
|
|
}
|
| 1352 |
|
|
|
| 1353 |
|
|
#define ggc_internal_alloc_zone_pass_stat(s,z) \
|
| 1354 |
|
|
ggc_internal_alloc_zone_stat (s,z PASS_MEM_STAT)
|
| 1355 |
|
|
|
| 1356 |
|
|
void *
|
| 1357 |
|
|
ggc_internal_cleared_alloc_zone_stat (size_t orig_size,
|
| 1358 |
|
|
struct alloc_zone *zone MEM_STAT_DECL)
|
| 1359 |
|
|
{
|
| 1360 |
|
|
void * result = ggc_internal_alloc_zone_pass_stat (orig_size, zone);
|
| 1361 |
|
|
memset (result, 0, orig_size);
|
| 1362 |
|
|
return result;
|
| 1363 |
|
|
}
|
| 1364 |
|
|
|
| 1365 |
|
|
|
| 1366 |
|
|
/* Allocate a SIZE of chunk memory of GTE type, into an appropriate zone
|
| 1367 |
|
|
for that type. */
|
| 1368 |
|
|
|
| 1369 |
|
|
void *
|
| 1370 |
|
|
ggc_alloc_typed_stat (enum gt_types_enum gte, size_t size
|
| 1371 |
|
|
MEM_STAT_DECL)
|
| 1372 |
|
|
{
|
| 1373 |
|
|
switch (gte)
|
| 1374 |
|
|
{
|
| 1375 |
|
|
case gt_ggc_e_14lang_tree_node:
|
| 1376 |
|
|
return ggc_internal_alloc_zone_pass_stat (size, &tree_zone);
|
| 1377 |
|
|
|
| 1378 |
|
|
case gt_ggc_e_7rtx_def:
|
| 1379 |
|
|
return ggc_internal_alloc_zone_pass_stat (size, &rtl_zone);
|
| 1380 |
|
|
|
| 1381 |
|
|
case gt_ggc_e_9rtvec_def:
|
| 1382 |
|
|
return ggc_internal_alloc_zone_pass_stat (size, &rtl_zone);
|
| 1383 |
|
|
|
| 1384 |
|
|
default:
|
| 1385 |
|
|
return ggc_internal_alloc_zone_pass_stat (size, &main_zone);
|
| 1386 |
|
|
}
|
| 1387 |
|
|
}
|
| 1388 |
|
|
|
| 1389 |
|
|
/* Normal GC allocation simply allocates into the main zone. */
|
| 1390 |
|
|
|
| 1391 |
|
|
void *
|
| 1392 |
|
|
ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
|
| 1393 |
|
|
{
|
| 1394 |
|
|
return ggc_internal_alloc_zone_pass_stat (size, &main_zone);
|
| 1395 |
|
|
}
|
| 1396 |
|
|
|
| 1397 |
|
|
/* Poison the chunk. */
|
| 1398 |
|
|
#ifdef ENABLE_GC_CHECKING
|
| 1399 |
|
|
#define poison_region(PTR, SIZE) \
|
| 1400 |
|
|
do { \
|
| 1401 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED ((PTR), (SIZE))); \
|
| 1402 |
|
|
memset ((PTR), 0xa5, (SIZE)); \
|
| 1403 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((PTR), (SIZE))); \
|
| 1404 |
|
|
} while (0)
|
| 1405 |
|
|
#else
|
| 1406 |
|
|
#define poison_region(PTR, SIZE)
|
| 1407 |
|
|
#endif
|
| 1408 |
|
|
|
| 1409 |
|
|
/* Free the object at P. */
|
| 1410 |
|
|
|
| 1411 |
|
|
void
|
| 1412 |
|
|
ggc_free (void *p)
|
| 1413 |
|
|
{
|
| 1414 |
|
|
struct page_entry *page;
|
| 1415 |
|
|
|
| 1416 |
|
|
#ifdef GATHER_STATISTICS
|
| 1417 |
|
|
ggc_free_overhead (p);
|
| 1418 |
|
|
#endif
|
| 1419 |
|
|
|
| 1420 |
|
|
poison_region (p, ggc_get_size (p));
|
| 1421 |
|
|
|
| 1422 |
|
|
page = zone_get_object_page (p);
|
| 1423 |
|
|
|
| 1424 |
|
|
if (page->large_p)
|
| 1425 |
|
|
{
|
| 1426 |
|
|
struct large_page_entry *large_page
|
| 1427 |
|
|
= (struct large_page_entry *) page;
|
| 1428 |
|
|
|
| 1429 |
|
|
/* Remove the page from the linked list. */
|
| 1430 |
|
|
if (large_page->prev)
|
| 1431 |
|
|
large_page->prev->next = large_page->next;
|
| 1432 |
|
|
else
|
| 1433 |
|
|
{
|
| 1434 |
|
|
gcc_assert (large_page->common.zone->large_pages == large_page);
|
| 1435 |
|
|
large_page->common.zone->large_pages = large_page->next;
|
| 1436 |
|
|
}
|
| 1437 |
|
|
if (large_page->next)
|
| 1438 |
|
|
large_page->next->prev = large_page->prev;
|
| 1439 |
|
|
|
| 1440 |
|
|
large_page->common.zone->allocated -= large_page->bytes;
|
| 1441 |
|
|
|
| 1442 |
|
|
/* Release the memory associated with this object. */
|
| 1443 |
|
|
free_large_page (large_page);
|
| 1444 |
|
|
}
|
| 1445 |
|
|
else if (page->pch_p)
|
| 1446 |
|
|
/* Don't do anything. We won't allocate a new object from the
|
| 1447 |
|
|
PCH zone so there's no point in releasing anything. */
|
| 1448 |
|
|
;
|
| 1449 |
|
|
else
|
| 1450 |
|
|
{
|
| 1451 |
|
|
size_t size = ggc_get_size (p);
|
| 1452 |
|
|
|
| 1453 |
|
|
page->zone->allocated -= size;
|
| 1454 |
|
|
|
| 1455 |
|
|
/* Add the chunk to the free list. We don't bother with coalescing,
|
| 1456 |
|
|
since we are likely to want a chunk of this size again. */
|
| 1457 |
|
|
free_chunk ((char *)p, size, page->zone);
|
| 1458 |
|
|
}
|
| 1459 |
|
|
}
|
| 1460 |
|
|
|
| 1461 |
|
|
/* Mark function for strings. */
|
| 1462 |
|
|
|
| 1463 |
|
|
void
|
| 1464 |
|
|
gt_ggc_m_S (const void *p)
|
| 1465 |
|
|
{
|
| 1466 |
|
|
page_entry *entry;
|
| 1467 |
|
|
unsigned long offset;
|
| 1468 |
|
|
|
| 1469 |
|
|
if (!p)
|
| 1470 |
|
|
return;
|
| 1471 |
|
|
|
| 1472 |
|
|
/* Look up the page on which the object is alloced. . */
|
| 1473 |
|
|
entry = lookup_page_table_if_allocated (p);
|
| 1474 |
|
|
if (! entry)
|
| 1475 |
|
|
return;
|
| 1476 |
|
|
|
| 1477 |
|
|
if (entry->pch_p)
|
| 1478 |
|
|
{
|
| 1479 |
|
|
size_t alloc_word, alloc_bit, t;
|
| 1480 |
|
|
t = ((const char *) p - pch_zone.page) / BYTES_PER_ALLOC_BIT;
|
| 1481 |
|
|
alloc_word = t / (8 * sizeof (alloc_type));
|
| 1482 |
|
|
alloc_bit = t % (8 * sizeof (alloc_type));
|
| 1483 |
|
|
offset = zone_find_object_offset (pch_zone.alloc_bits, alloc_word,
|
| 1484 |
|
|
alloc_bit);
|
| 1485 |
|
|
}
|
| 1486 |
|
|
else if (entry->large_p)
|
| 1487 |
|
|
{
|
| 1488 |
|
|
struct large_page_entry *le = (struct large_page_entry *) entry;
|
| 1489 |
|
|
offset = ((const char *) p) - entry->page;
|
| 1490 |
|
|
gcc_assert (offset < le->bytes);
|
| 1491 |
|
|
}
|
| 1492 |
|
|
else
|
| 1493 |
|
|
{
|
| 1494 |
|
|
struct small_page_entry *se = (struct small_page_entry *) entry;
|
| 1495 |
|
|
unsigned int start_word = zone_get_object_alloc_word (p);
|
| 1496 |
|
|
unsigned int start_bit = zone_get_object_alloc_bit (p);
|
| 1497 |
|
|
offset = zone_find_object_offset (se->alloc_bits, start_word, start_bit);
|
| 1498 |
|
|
|
| 1499 |
|
|
/* On some platforms a char* will not necessarily line up on an
|
| 1500 |
|
|
allocation boundary, so we have to update the offset to
|
| 1501 |
|
|
account for the leftover bytes. */
|
| 1502 |
|
|
offset += (size_t) p % BYTES_PER_ALLOC_BIT;
|
| 1503 |
|
|
}
|
| 1504 |
|
|
|
| 1505 |
|
|
if (offset)
|
| 1506 |
|
|
{
|
| 1507 |
|
|
/* Here we've seen a char* which does not point to the beginning
|
| 1508 |
|
|
of an allocated object. We assume it points to the middle of
|
| 1509 |
|
|
a STRING_CST. */
|
| 1510 |
|
|
gcc_assert (offset == offsetof (struct tree_string, str));
|
| 1511 |
|
|
p = ((const char *) p) - offset;
|
| 1512 |
|
|
gt_ggc_mx_lang_tree_node (CONST_CAST(void *, p));
|
| 1513 |
|
|
return;
|
| 1514 |
|
|
}
|
| 1515 |
|
|
|
| 1516 |
|
|
/* Inefficient, but also unlikely to matter. */
|
| 1517 |
|
|
ggc_set_mark (p);
|
| 1518 |
|
|
}
|
| 1519 |
|
|
|
| 1520 |
|
|
/* If P is not marked, mark it and return false. Otherwise return true.
|
| 1521 |
|
|
P must have been allocated by the GC allocator; it mustn't point to
|
| 1522 |
|
|
static objects, stack variables, or memory allocated with malloc. */
|
| 1523 |
|
|
|
| 1524 |
|
|
int
|
| 1525 |
|
|
ggc_set_mark (const void *p)
|
| 1526 |
|
|
{
|
| 1527 |
|
|
struct page_entry *page;
|
| 1528 |
|
|
const char *ptr = (const char *) p;
|
| 1529 |
|
|
|
| 1530 |
|
|
page = zone_get_object_page (p);
|
| 1531 |
|
|
|
| 1532 |
|
|
if (page->pch_p)
|
| 1533 |
|
|
{
|
| 1534 |
|
|
size_t mark_word, mark_bit, offset;
|
| 1535 |
|
|
offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
|
| 1536 |
|
|
mark_word = offset / (8 * sizeof (mark_type));
|
| 1537 |
|
|
mark_bit = offset % (8 * sizeof (mark_type));
|
| 1538 |
|
|
|
| 1539 |
|
|
if (pch_zone.mark_bits[mark_word] & (1 << mark_bit))
|
| 1540 |
|
|
return 1;
|
| 1541 |
|
|
pch_zone.mark_bits[mark_word] |= (1 << mark_bit);
|
| 1542 |
|
|
}
|
| 1543 |
|
|
else if (page->large_p)
|
| 1544 |
|
|
{
|
| 1545 |
|
|
struct large_page_entry *large_page
|
| 1546 |
|
|
= (struct large_page_entry *) page;
|
| 1547 |
|
|
|
| 1548 |
|
|
if (large_page->mark_p)
|
| 1549 |
|
|
return 1;
|
| 1550 |
|
|
large_page->mark_p = true;
|
| 1551 |
|
|
}
|
| 1552 |
|
|
else
|
| 1553 |
|
|
{
|
| 1554 |
|
|
struct small_page_entry *small_page
|
| 1555 |
|
|
= (struct small_page_entry *) page;
|
| 1556 |
|
|
|
| 1557 |
|
|
if (small_page->mark_bits[zone_get_object_mark_word (p)]
|
| 1558 |
|
|
& (1 << zone_get_object_mark_bit (p)))
|
| 1559 |
|
|
return 1;
|
| 1560 |
|
|
small_page->mark_bits[zone_get_object_mark_word (p)]
|
| 1561 |
|
|
|= (1 << zone_get_object_mark_bit (p));
|
| 1562 |
|
|
}
|
| 1563 |
|
|
|
| 1564 |
|
|
if (GGC_DEBUG_LEVEL >= 4)
|
| 1565 |
|
|
fprintf (G.debug_file, "Marking %p\n", p);
|
| 1566 |
|
|
|
| 1567 |
|
|
return 0;
|
| 1568 |
|
|
}
|
| 1569 |
|
|
|
| 1570 |
|
|
/* Return 1 if P has been marked, zero otherwise.
|
| 1571 |
|
|
P must have been allocated by the GC allocator; it mustn't point to
|
| 1572 |
|
|
static objects, stack variables, or memory allocated with malloc. */
|
| 1573 |
|
|
|
| 1574 |
|
|
int
|
| 1575 |
|
|
ggc_marked_p (const void *p)
|
| 1576 |
|
|
{
|
| 1577 |
|
|
struct page_entry *page;
|
| 1578 |
|
|
const char *ptr = (const char *) p;
|
| 1579 |
|
|
|
| 1580 |
|
|
page = zone_get_object_page (p);
|
| 1581 |
|
|
|
| 1582 |
|
|
if (page->pch_p)
|
| 1583 |
|
|
{
|
| 1584 |
|
|
size_t mark_word, mark_bit, offset;
|
| 1585 |
|
|
offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
|
| 1586 |
|
|
mark_word = offset / (8 * sizeof (mark_type));
|
| 1587 |
|
|
mark_bit = offset % (8 * sizeof (mark_type));
|
| 1588 |
|
|
|
| 1589 |
|
|
return (pch_zone.mark_bits[mark_word] & (1 << mark_bit)) != 0;
|
| 1590 |
|
|
}
|
| 1591 |
|
|
|
| 1592 |
|
|
if (page->large_p)
|
| 1593 |
|
|
{
|
| 1594 |
|
|
struct large_page_entry *large_page
|
| 1595 |
|
|
= (struct large_page_entry *) page;
|
| 1596 |
|
|
|
| 1597 |
|
|
return large_page->mark_p;
|
| 1598 |
|
|
}
|
| 1599 |
|
|
else
|
| 1600 |
|
|
{
|
| 1601 |
|
|
struct small_page_entry *small_page
|
| 1602 |
|
|
= (struct small_page_entry *) page;
|
| 1603 |
|
|
|
| 1604 |
|
|
return 0 != (small_page->mark_bits[zone_get_object_mark_word (p)]
|
| 1605 |
|
|
& (1 << zone_get_object_mark_bit (p)));
|
| 1606 |
|
|
}
|
| 1607 |
|
|
}
|
| 1608 |
|
|
|
| 1609 |
|
|
/* Return the size of the gc-able object P. */
|
| 1610 |
|
|
|
| 1611 |
|
|
size_t
|
| 1612 |
|
|
ggc_get_size (const void *p)
|
| 1613 |
|
|
{
|
| 1614 |
|
|
struct page_entry *page;
|
| 1615 |
|
|
const char *ptr = (const char *) p;
|
| 1616 |
|
|
|
| 1617 |
|
|
page = zone_get_object_page (p);
|
| 1618 |
|
|
|
| 1619 |
|
|
if (page->pch_p)
|
| 1620 |
|
|
{
|
| 1621 |
|
|
size_t alloc_word, alloc_bit, offset, max_size;
|
| 1622 |
|
|
offset = (ptr - pch_zone.page) / BYTES_PER_ALLOC_BIT + 1;
|
| 1623 |
|
|
alloc_word = offset / (8 * sizeof (alloc_type));
|
| 1624 |
|
|
alloc_bit = offset % (8 * sizeof (alloc_type));
|
| 1625 |
|
|
max_size = pch_zone.bytes - (ptr - pch_zone.page);
|
| 1626 |
|
|
return zone_object_size_1 (pch_zone.alloc_bits, alloc_word, alloc_bit,
|
| 1627 |
|
|
max_size);
|
| 1628 |
|
|
}
|
| 1629 |
|
|
|
| 1630 |
|
|
if (page->large_p)
|
| 1631 |
|
|
return ((struct large_page_entry *)page)->bytes;
|
| 1632 |
|
|
else
|
| 1633 |
|
|
return zone_find_object_size ((struct small_page_entry *) page, p);
|
| 1634 |
|
|
}
|
| 1635 |
|
|
|
| 1636 |
|
|
/* Initialize the ggc-zone-mmap allocator. */
|
| 1637 |
|
|
void
|
| 1638 |
|
|
init_ggc (void)
|
| 1639 |
|
|
{
|
| 1640 |
|
|
/* The allocation size must be greater than BYTES_PER_MARK_BIT, and
|
| 1641 |
|
|
a multiple of both BYTES_PER_ALLOC_BIT and FREE_BIN_DELTA, for
|
| 1642 |
|
|
the current assumptions to hold. */
|
| 1643 |
|
|
|
| 1644 |
|
|
gcc_assert (FREE_BIN_DELTA == MAX_ALIGNMENT);
|
| 1645 |
|
|
|
| 1646 |
|
|
/* Set up the main zone by hand. */
|
| 1647 |
|
|
main_zone.name = "Main zone";
|
| 1648 |
|
|
G.zones = &main_zone;
|
| 1649 |
|
|
|
| 1650 |
|
|
/* Allocate the default zones. */
|
| 1651 |
|
|
new_ggc_zone_1 (&rtl_zone, "RTL zone");
|
| 1652 |
|
|
new_ggc_zone_1 (&tree_zone, "Tree zone");
|
| 1653 |
|
|
new_ggc_zone_1 (&tree_id_zone, "Tree identifier zone");
|
| 1654 |
|
|
|
| 1655 |
|
|
G.pagesize = getpagesize();
|
| 1656 |
|
|
G.lg_pagesize = exact_log2 (G.pagesize);
|
| 1657 |
|
|
G.page_mask = ~(G.pagesize - 1);
|
| 1658 |
|
|
|
| 1659 |
|
|
/* Require the system page size to be a multiple of GGC_PAGE_SIZE. */
|
| 1660 |
|
|
gcc_assert ((G.pagesize & (GGC_PAGE_SIZE - 1)) == 0);
|
| 1661 |
|
|
|
| 1662 |
|
|
/* Allocate 16 system pages at a time. */
|
| 1663 |
|
|
G.quire_size = 16 * G.pagesize / GGC_PAGE_SIZE;
|
| 1664 |
|
|
|
| 1665 |
|
|
/* Calculate the size of the allocation bitmap and other overhead. */
|
| 1666 |
|
|
/* Right now we allocate bits for the page header and bitmap. These
|
| 1667 |
|
|
are wasted, but a little tricky to eliminate. */
|
| 1668 |
|
|
G.small_page_overhead
|
| 1669 |
|
|
= PAGE_OVERHEAD + (GGC_PAGE_SIZE / BYTES_PER_ALLOC_BIT / 8);
|
| 1670 |
|
|
/* G.small_page_overhead = ROUND_UP (G.small_page_overhead, MAX_ALIGNMENT); */
|
| 1671 |
|
|
|
| 1672 |
|
|
#ifdef HAVE_MMAP_DEV_ZERO
|
| 1673 |
|
|
G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
|
| 1674 |
|
|
gcc_assert (G.dev_zero_fd != -1);
|
| 1675 |
|
|
#endif
|
| 1676 |
|
|
|
| 1677 |
|
|
#if 0
|
| 1678 |
|
|
G.debug_file = fopen ("ggc-mmap.debug", "w");
|
| 1679 |
|
|
setlinebuf (G.debug_file);
|
| 1680 |
|
|
#else
|
| 1681 |
|
|
G.debug_file = stdout;
|
| 1682 |
|
|
#endif
|
| 1683 |
|
|
|
| 1684 |
|
|
#ifdef USING_MMAP
|
| 1685 |
|
|
/* StunOS has an amazing off-by-one error for the first mmap allocation
|
| 1686 |
|
|
after fiddling with RLIMIT_STACK. The result, as hard as it is to
|
| 1687 |
|
|
believe, is an unaligned page allocation, which would cause us to
|
| 1688 |
|
|
hork badly if we tried to use it. */
|
| 1689 |
|
|
{
|
| 1690 |
|
|
char *p = alloc_anon (NULL, G.pagesize, &main_zone);
|
| 1691 |
|
|
struct small_page_entry *e;
|
| 1692 |
|
|
if ((size_t)p & (G.pagesize - 1))
|
| 1693 |
|
|
{
|
| 1694 |
|
|
/* How losing. Discard this one and try another. If we still
|
| 1695 |
|
|
can't get something useful, give up. */
|
| 1696 |
|
|
|
| 1697 |
|
|
p = alloc_anon (NULL, G.pagesize, &main_zone);
|
| 1698 |
|
|
gcc_assert (!((size_t)p & (G.pagesize - 1)));
|
| 1699 |
|
|
}
|
| 1700 |
|
|
|
| 1701 |
|
|
if (GGC_PAGE_SIZE == G.pagesize)
|
| 1702 |
|
|
{
|
| 1703 |
|
|
/* We have a good page, might as well hold onto it... */
|
| 1704 |
|
|
e = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
|
| 1705 |
|
|
e->common.page = p;
|
| 1706 |
|
|
e->common.zone = &main_zone;
|
| 1707 |
|
|
e->next = main_zone.free_pages;
|
| 1708 |
|
|
set_page_table_entry (e->common.page, &e->common);
|
| 1709 |
|
|
main_zone.free_pages = e;
|
| 1710 |
|
|
}
|
| 1711 |
|
|
else
|
| 1712 |
|
|
{
|
| 1713 |
|
|
munmap (p, G.pagesize);
|
| 1714 |
|
|
}
|
| 1715 |
|
|
}
|
| 1716 |
|
|
#endif
|
| 1717 |
|
|
}
|
| 1718 |
|
|
|
| 1719 |
|
|
/* Start a new GGC zone. */
|
| 1720 |
|
|
|
| 1721 |
|
|
static void
|
| 1722 |
|
|
new_ggc_zone_1 (struct alloc_zone *new_zone, const char * name)
|
| 1723 |
|
|
{
|
| 1724 |
|
|
new_zone->name = name;
|
| 1725 |
|
|
new_zone->next_zone = G.zones->next_zone;
|
| 1726 |
|
|
G.zones->next_zone = new_zone;
|
| 1727 |
|
|
}
|
| 1728 |
|
|
|
| 1729 |
|
|
/* Free all empty pages and objects within a page for a given zone */
|
| 1730 |
|
|
|
| 1731 |
|
|
static void
|
| 1732 |
|
|
sweep_pages (struct alloc_zone *zone)
|
| 1733 |
|
|
{
|
| 1734 |
|
|
struct large_page_entry **lpp, *lp, *lnext;
|
| 1735 |
|
|
struct small_page_entry **spp, *sp, *snext;
|
| 1736 |
|
|
char *last_free;
|
| 1737 |
|
|
size_t allocated = 0;
|
| 1738 |
|
|
bool nomarksinpage;
|
| 1739 |
|
|
|
| 1740 |
|
|
/* First, reset the free_chunks lists, since we are going to
|
| 1741 |
|
|
re-free free chunks in hopes of coalescing them into large chunks. */
|
| 1742 |
|
|
memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
|
| 1743 |
|
|
zone->high_free_bin = 0;
|
| 1744 |
|
|
zone->cached_free = NULL;
|
| 1745 |
|
|
zone->cached_free_size = 0;
|
| 1746 |
|
|
|
| 1747 |
|
|
/* Large pages are all or none affairs. Either they are completely
|
| 1748 |
|
|
empty, or they are completely full. */
|
| 1749 |
|
|
lpp = &zone->large_pages;
|
| 1750 |
|
|
for (lp = zone->large_pages; lp != NULL; lp = lnext)
|
| 1751 |
|
|
{
|
| 1752 |
|
|
gcc_assert (lp->common.large_p);
|
| 1753 |
|
|
|
| 1754 |
|
|
lnext = lp->next;
|
| 1755 |
|
|
|
| 1756 |
|
|
#ifdef GATHER_STATISTICS
|
| 1757 |
|
|
/* This page has now survived another collection. */
|
| 1758 |
|
|
lp->common.survived++;
|
| 1759 |
|
|
#endif
|
| 1760 |
|
|
|
| 1761 |
|
|
if (lp->mark_p)
|
| 1762 |
|
|
{
|
| 1763 |
|
|
lp->mark_p = false;
|
| 1764 |
|
|
allocated += lp->bytes;
|
| 1765 |
|
|
lpp = &lp->next;
|
| 1766 |
|
|
}
|
| 1767 |
|
|
else
|
| 1768 |
|
|
{
|
| 1769 |
|
|
*lpp = lnext;
|
| 1770 |
|
|
#ifdef ENABLE_GC_CHECKING
|
| 1771 |
|
|
/* Poison the page. */
|
| 1772 |
|
|
memset (lp->common.page, 0xb5, SMALL_PAGE_SIZE);
|
| 1773 |
|
|
#endif
|
| 1774 |
|
|
if (lp->prev)
|
| 1775 |
|
|
lp->prev->next = lp->next;
|
| 1776 |
|
|
if (lp->next)
|
| 1777 |
|
|
lp->next->prev = lp->prev;
|
| 1778 |
|
|
free_large_page (lp);
|
| 1779 |
|
|
}
|
| 1780 |
|
|
}
|
| 1781 |
|
|
|
| 1782 |
|
|
spp = &zone->pages;
|
| 1783 |
|
|
for (sp = zone->pages; sp != NULL; sp = snext)
|
| 1784 |
|
|
{
|
| 1785 |
|
|
char *object, *last_object;
|
| 1786 |
|
|
char *end;
|
| 1787 |
|
|
alloc_type *alloc_word_p;
|
| 1788 |
|
|
mark_type *mark_word_p;
|
| 1789 |
|
|
|
| 1790 |
|
|
gcc_assert (!sp->common.large_p);
|
| 1791 |
|
|
|
| 1792 |
|
|
snext = sp->next;
|
| 1793 |
|
|
|
| 1794 |
|
|
#ifdef GATHER_STATISTICS
|
| 1795 |
|
|
/* This page has now survived another collection. */
|
| 1796 |
|
|
sp->common.survived++;
|
| 1797 |
|
|
#endif
|
| 1798 |
|
|
|
| 1799 |
|
|
/* Step through all chunks, consolidate those that are free and
|
| 1800 |
|
|
insert them into the free lists. Note that consolidation
|
| 1801 |
|
|
slows down collection slightly. */
|
| 1802 |
|
|
|
| 1803 |
|
|
last_object = object = sp->common.page;
|
| 1804 |
|
|
end = sp->common.page + SMALL_PAGE_SIZE;
|
| 1805 |
|
|
last_free = NULL;
|
| 1806 |
|
|
nomarksinpage = true;
|
| 1807 |
|
|
mark_word_p = sp->mark_bits;
|
| 1808 |
|
|
alloc_word_p = sp->alloc_bits;
|
| 1809 |
|
|
|
| 1810 |
|
|
gcc_assert (BYTES_PER_ALLOC_BIT == BYTES_PER_MARK_BIT);
|
| 1811 |
|
|
|
| 1812 |
|
|
object = sp->common.page;
|
| 1813 |
|
|
do
|
| 1814 |
|
|
{
|
| 1815 |
|
|
unsigned int i, n;
|
| 1816 |
|
|
alloc_type alloc_word;
|
| 1817 |
|
|
mark_type mark_word;
|
| 1818 |
|
|
|
| 1819 |
|
|
alloc_word = *alloc_word_p++;
|
| 1820 |
|
|
mark_word = *mark_word_p++;
|
| 1821 |
|
|
|
| 1822 |
|
|
if (mark_word)
|
| 1823 |
|
|
nomarksinpage = false;
|
| 1824 |
|
|
|
| 1825 |
|
|
/* There ought to be some way to do this without looping... */
|
| 1826 |
|
|
i = 0;
|
| 1827 |
|
|
while ((n = alloc_ffs (alloc_word)) != 0)
|
| 1828 |
|
|
{
|
| 1829 |
|
|
/* Extend the current state for n - 1 bits. We can't
|
| 1830 |
|
|
shift alloc_word by n, even though it isn't used in the
|
| 1831 |
|
|
loop, in case only the highest bit was set. */
|
| 1832 |
|
|
alloc_word >>= n - 1;
|
| 1833 |
|
|
mark_word >>= n - 1;
|
| 1834 |
|
|
object += BYTES_PER_MARK_BIT * (n - 1);
|
| 1835 |
|
|
|
| 1836 |
|
|
if (mark_word & 1)
|
| 1837 |
|
|
{
|
| 1838 |
|
|
if (last_free)
|
| 1839 |
|
|
{
|
| 1840 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (last_free,
|
| 1841 |
|
|
object
|
| 1842 |
|
|
- last_free));
|
| 1843 |
|
|
poison_region (last_free, object - last_free);
|
| 1844 |
|
|
free_chunk (last_free, object - last_free, zone);
|
| 1845 |
|
|
last_free = NULL;
|
| 1846 |
|
|
}
|
| 1847 |
|
|
else
|
| 1848 |
|
|
allocated += object - last_object;
|
| 1849 |
|
|
last_object = object;
|
| 1850 |
|
|
}
|
| 1851 |
|
|
else
|
| 1852 |
|
|
{
|
| 1853 |
|
|
if (last_free == NULL)
|
| 1854 |
|
|
{
|
| 1855 |
|
|
last_free = object;
|
| 1856 |
|
|
allocated += object - last_object;
|
| 1857 |
|
|
}
|
| 1858 |
|
|
else
|
| 1859 |
|
|
zone_clear_object_alloc_bit (sp, object);
|
| 1860 |
|
|
}
|
| 1861 |
|
|
|
| 1862 |
|
|
/* Shift to just after the alloc bit we handled. */
|
| 1863 |
|
|
alloc_word >>= 1;
|
| 1864 |
|
|
mark_word >>= 1;
|
| 1865 |
|
|
object += BYTES_PER_MARK_BIT;
|
| 1866 |
|
|
|
| 1867 |
|
|
i += n;
|
| 1868 |
|
|
}
|
| 1869 |
|
|
|
| 1870 |
|
|
object += BYTES_PER_MARK_BIT * (8 * sizeof (alloc_type) - i);
|
| 1871 |
|
|
}
|
| 1872 |
|
|
while (object < end);
|
| 1873 |
|
|
|
| 1874 |
|
|
if (nomarksinpage)
|
| 1875 |
|
|
{
|
| 1876 |
|
|
*spp = snext;
|
| 1877 |
|
|
#ifdef ENABLE_GC_CHECKING
|
| 1878 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (sp->common.page,
|
| 1879 |
|
|
SMALL_PAGE_SIZE));
|
| 1880 |
|
|
/* Poison the page. */
|
| 1881 |
|
|
memset (sp->common.page, 0xb5, SMALL_PAGE_SIZE);
|
| 1882 |
|
|
#endif
|
| 1883 |
|
|
free_small_page (sp);
|
| 1884 |
|
|
continue;
|
| 1885 |
|
|
}
|
| 1886 |
|
|
else if (last_free)
|
| 1887 |
|
|
{
|
| 1888 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (last_free,
|
| 1889 |
|
|
object - last_free));
|
| 1890 |
|
|
poison_region (last_free, object - last_free);
|
| 1891 |
|
|
free_chunk (last_free, object - last_free, zone);
|
| 1892 |
|
|
}
|
| 1893 |
|
|
else
|
| 1894 |
|
|
allocated += object - last_object;
|
| 1895 |
|
|
|
| 1896 |
|
|
spp = &sp->next;
|
| 1897 |
|
|
}
|
| 1898 |
|
|
|
| 1899 |
|
|
zone->allocated = allocated;
|
| 1900 |
|
|
}
|
| 1901 |
|
|
|
| 1902 |
|
|
/* mark-and-sweep routine for collecting a single zone. NEED_MARKING
|
| 1903 |
|
|
is true if we need to mark before sweeping, false if some other
|
| 1904 |
|
|
zone collection has already performed marking for us. Returns true
|
| 1905 |
|
|
if we collected, false otherwise. */
|
| 1906 |
|
|
|
| 1907 |
|
|
static bool
|
| 1908 |
|
|
ggc_collect_1 (struct alloc_zone *zone, bool need_marking)
|
| 1909 |
|
|
{
|
| 1910 |
|
|
#if 0
|
| 1911 |
|
|
/* */
|
| 1912 |
|
|
{
|
| 1913 |
|
|
int i;
|
| 1914 |
|
|
for (i = 0; i < NUM_FREE_BINS + 1; i++)
|
| 1915 |
|
|
{
|
| 1916 |
|
|
struct alloc_chunk *chunk;
|
| 1917 |
|
|
int n, tot;
|
| 1918 |
|
|
|
| 1919 |
|
|
n = 0;
|
| 1920 |
|
|
tot = 0;
|
| 1921 |
|
|
chunk = zone->free_chunks[i];
|
| 1922 |
|
|
while (chunk)
|
| 1923 |
|
|
{
|
| 1924 |
|
|
n++;
|
| 1925 |
|
|
tot += chunk->size;
|
| 1926 |
|
|
chunk = chunk->next_free;
|
| 1927 |
|
|
}
|
| 1928 |
|
|
fprintf (stderr, "Bin %d: %d free chunks (%d bytes)\n",
|
| 1929 |
|
|
i, n, tot);
|
| 1930 |
|
|
}
|
| 1931 |
|
|
}
|
| 1932 |
|
|
/* */
|
| 1933 |
|
|
#endif
|
| 1934 |
|
|
|
| 1935 |
|
|
if (!quiet_flag)
|
| 1936 |
|
|
fprintf (stderr, " {%s GC %luk -> ",
|
| 1937 |
|
|
zone->name, (unsigned long) zone->allocated / 1024);
|
| 1938 |
|
|
|
| 1939 |
|
|
/* Zero the total allocated bytes. This will be recalculated in the
|
| 1940 |
|
|
sweep phase. */
|
| 1941 |
|
|
zone->allocated = 0;
|
| 1942 |
|
|
|
| 1943 |
|
|
/* Release the pages we freed the last time we collected, but didn't
|
| 1944 |
|
|
reuse in the interim. */
|
| 1945 |
|
|
release_pages (zone);
|
| 1946 |
|
|
|
| 1947 |
|
|
if (need_marking)
|
| 1948 |
|
|
{
|
| 1949 |
|
|
zone_allocate_marks ();
|
| 1950 |
|
|
ggc_mark_roots ();
|
| 1951 |
|
|
#ifdef GATHER_STATISTICS
|
| 1952 |
|
|
ggc_prune_overhead_list ();
|
| 1953 |
|
|
#endif
|
| 1954 |
|
|
}
|
| 1955 |
|
|
|
| 1956 |
|
|
sweep_pages (zone);
|
| 1957 |
|
|
zone->was_collected = true;
|
| 1958 |
|
|
zone->allocated_last_gc = zone->allocated;
|
| 1959 |
|
|
|
| 1960 |
|
|
if (!quiet_flag)
|
| 1961 |
|
|
fprintf (stderr, "%luk}", (unsigned long) zone->allocated / 1024);
|
| 1962 |
|
|
return true;
|
| 1963 |
|
|
}
|
| 1964 |
|
|
|
| 1965 |
|
|
#ifdef GATHER_STATISTICS
|
| 1966 |
|
|
/* Calculate the average page survival rate in terms of number of
|
| 1967 |
|
|
collections. */
|
| 1968 |
|
|
|
| 1969 |
|
|
static float
|
| 1970 |
|
|
calculate_average_page_survival (struct alloc_zone *zone)
|
| 1971 |
|
|
{
|
| 1972 |
|
|
float count = 0.0;
|
| 1973 |
|
|
float survival = 0.0;
|
| 1974 |
|
|
struct small_page_entry *p;
|
| 1975 |
|
|
struct large_page_entry *lp;
|
| 1976 |
|
|
for (p = zone->pages; p; p = p->next)
|
| 1977 |
|
|
{
|
| 1978 |
|
|
count += 1.0;
|
| 1979 |
|
|
survival += p->common.survived;
|
| 1980 |
|
|
}
|
| 1981 |
|
|
for (lp = zone->large_pages; lp; lp = lp->next)
|
| 1982 |
|
|
{
|
| 1983 |
|
|
count += 1.0;
|
| 1984 |
|
|
survival += lp->common.survived;
|
| 1985 |
|
|
}
|
| 1986 |
|
|
return survival/count;
|
| 1987 |
|
|
}
|
| 1988 |
|
|
#endif
|
| 1989 |
|
|
|
| 1990 |
|
|
/* Top level collection routine. */
|
| 1991 |
|
|
|
| 1992 |
|
|
void
|
| 1993 |
|
|
ggc_collect (void)
|
| 1994 |
|
|
{
|
| 1995 |
|
|
struct alloc_zone *zone;
|
| 1996 |
|
|
bool marked = false;
|
| 1997 |
|
|
|
| 1998 |
|
|
timevar_push (TV_GC);
|
| 1999 |
|
|
|
| 2000 |
|
|
if (!ggc_force_collect)
|
| 2001 |
|
|
{
|
| 2002 |
|
|
float allocated_last_gc = 0, allocated = 0, min_expand;
|
| 2003 |
|
|
|
| 2004 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
| 2005 |
|
|
{
|
| 2006 |
|
|
allocated_last_gc += zone->allocated_last_gc;
|
| 2007 |
|
|
allocated += zone->allocated;
|
| 2008 |
|
|
}
|
| 2009 |
|
|
|
| 2010 |
|
|
allocated_last_gc =
|
| 2011 |
|
|
MAX (allocated_last_gc,
|
| 2012 |
|
|
(size_t) PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
|
| 2013 |
|
|
min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
|
| 2014 |
|
|
|
| 2015 |
|
|
if (allocated < allocated_last_gc + min_expand)
|
| 2016 |
|
|
{
|
| 2017 |
|
|
timevar_pop (TV_GC);
|
| 2018 |
|
|
return;
|
| 2019 |
|
|
}
|
| 2020 |
|
|
}
|
| 2021 |
|
|
|
| 2022 |
|
|
invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
|
| 2023 |
|
|
|
| 2024 |
|
|
/* Start by possibly collecting the main zone. */
|
| 2025 |
|
|
main_zone.was_collected = false;
|
| 2026 |
|
|
marked |= ggc_collect_1 (&main_zone, true);
|
| 2027 |
|
|
|
| 2028 |
|
|
/* In order to keep the number of collections down, we don't
|
| 2029 |
|
|
collect other zones unless we are collecting the main zone. This
|
| 2030 |
|
|
gives us roughly the same number of collections as we used to
|
| 2031 |
|
|
have with the old gc. The number of collection is important
|
| 2032 |
|
|
because our main slowdown (according to profiling) is now in
|
| 2033 |
|
|
marking. So if we mark twice as often as we used to, we'll be
|
| 2034 |
|
|
twice as slow. Hopefully we'll avoid this cost when we mark
|
| 2035 |
|
|
zone-at-a-time. */
|
| 2036 |
|
|
/* NOTE drow/2004-07-28: We now always collect the main zone, but
|
| 2037 |
|
|
keep this code in case the heuristics are further refined. */
|
| 2038 |
|
|
|
| 2039 |
|
|
if (main_zone.was_collected)
|
| 2040 |
|
|
{
|
| 2041 |
|
|
struct alloc_zone *zone;
|
| 2042 |
|
|
|
| 2043 |
|
|
for (zone = main_zone.next_zone; zone; zone = zone->next_zone)
|
| 2044 |
|
|
{
|
| 2045 |
|
|
zone->was_collected = false;
|
| 2046 |
|
|
marked |= ggc_collect_1 (zone, !marked);
|
| 2047 |
|
|
}
|
| 2048 |
|
|
}
|
| 2049 |
|
|
|
| 2050 |
|
|
#ifdef GATHER_STATISTICS
|
| 2051 |
|
|
/* Print page survival stats, if someone wants them. */
|
| 2052 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
| 2053 |
|
|
{
|
| 2054 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
| 2055 |
|
|
{
|
| 2056 |
|
|
if (zone->was_collected)
|
| 2057 |
|
|
{
|
| 2058 |
|
|
float f = calculate_average_page_survival (zone);
|
| 2059 |
|
|
printf ("Average page survival in zone `%s' is %f\n",
|
| 2060 |
|
|
zone->name, f);
|
| 2061 |
|
|
}
|
| 2062 |
|
|
}
|
| 2063 |
|
|
}
|
| 2064 |
|
|
#endif
|
| 2065 |
|
|
|
| 2066 |
|
|
if (marked)
|
| 2067 |
|
|
zone_free_marks ();
|
| 2068 |
|
|
|
| 2069 |
|
|
/* Free dead zones. */
|
| 2070 |
|
|
for (zone = G.zones; zone && zone->next_zone; zone = zone->next_zone)
|
| 2071 |
|
|
{
|
| 2072 |
|
|
if (zone->next_zone->dead)
|
| 2073 |
|
|
{
|
| 2074 |
|
|
struct alloc_zone *dead_zone = zone->next_zone;
|
| 2075 |
|
|
|
| 2076 |
|
|
printf ("Zone `%s' is dead and will be freed.\n", dead_zone->name);
|
| 2077 |
|
|
|
| 2078 |
|
|
/* The zone must be empty. */
|
| 2079 |
|
|
gcc_assert (!dead_zone->allocated);
|
| 2080 |
|
|
|
| 2081 |
|
|
/* Unchain the dead zone, release all its pages and free it. */
|
| 2082 |
|
|
zone->next_zone = zone->next_zone->next_zone;
|
| 2083 |
|
|
release_pages (dead_zone);
|
| 2084 |
|
|
free (dead_zone);
|
| 2085 |
|
|
}
|
| 2086 |
|
|
}
|
| 2087 |
|
|
|
| 2088 |
|
|
invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
|
| 2089 |
|
|
|
| 2090 |
|
|
timevar_pop (TV_GC);
|
| 2091 |
|
|
}
|
| 2092 |
|
|
|
| 2093 |
|
|
/* Print allocation statistics. */
|
| 2094 |
|
|
#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
|
| 2095 |
|
|
? (x) \
|
| 2096 |
|
|
: ((x) < 1024*1024*10 \
|
| 2097 |
|
|
? (x) / 1024 \
|
| 2098 |
|
|
: (x) / (1024*1024))))
|
| 2099 |
|
|
#define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
|
| 2100 |
|
|
|
| 2101 |
|
|
void
|
| 2102 |
|
|
ggc_print_statistics (void)
|
| 2103 |
|
|
{
|
| 2104 |
|
|
struct alloc_zone *zone;
|
| 2105 |
|
|
struct ggc_statistics stats;
|
| 2106 |
|
|
size_t total_overhead = 0, total_allocated = 0, total_bytes_mapped = 0;
|
| 2107 |
|
|
size_t pte_overhead, i;
|
| 2108 |
|
|
|
| 2109 |
|
|
/* Clear the statistics. */
|
| 2110 |
|
|
memset (&stats, 0, sizeof (stats));
|
| 2111 |
|
|
|
| 2112 |
|
|
/* Make sure collection will really occur. */
|
| 2113 |
|
|
ggc_force_collect = true;
|
| 2114 |
|
|
|
| 2115 |
|
|
/* Collect and print the statistics common across collectors. */
|
| 2116 |
|
|
ggc_print_common_statistics (stderr, &stats);
|
| 2117 |
|
|
|
| 2118 |
|
|
ggc_force_collect = false;
|
| 2119 |
|
|
|
| 2120 |
|
|
/* Release free pages so that we will not count the bytes allocated
|
| 2121 |
|
|
there as part of the total allocated memory. */
|
| 2122 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
| 2123 |
|
|
release_pages (zone);
|
| 2124 |
|
|
|
| 2125 |
|
|
/* Collect some information about the various sizes of
|
| 2126 |
|
|
allocation. */
|
| 2127 |
|
|
fprintf (stderr,
|
| 2128 |
|
|
"Memory still allocated at the end of the compilation process\n");
|
| 2129 |
|
|
|
| 2130 |
|
|
fprintf (stderr, "%20s %10s %10s %10s\n",
|
| 2131 |
|
|
"Zone", "Allocated", "Used", "Overhead");
|
| 2132 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
| 2133 |
|
|
{
|
| 2134 |
|
|
struct large_page_entry *large_page;
|
| 2135 |
|
|
size_t overhead, allocated, in_use;
|
| 2136 |
|
|
|
| 2137 |
|
|
/* Skip empty zones. */
|
| 2138 |
|
|
if (!zone->pages && !zone->large_pages)
|
| 2139 |
|
|
continue;
|
| 2140 |
|
|
|
| 2141 |
|
|
allocated = in_use = 0;
|
| 2142 |
|
|
|
| 2143 |
|
|
overhead = sizeof (struct alloc_zone);
|
| 2144 |
|
|
|
| 2145 |
|
|
for (large_page = zone->large_pages; large_page != NULL;
|
| 2146 |
|
|
large_page = large_page->next)
|
| 2147 |
|
|
{
|
| 2148 |
|
|
allocated += large_page->bytes;
|
| 2149 |
|
|
in_use += large_page->bytes;
|
| 2150 |
|
|
overhead += sizeof (struct large_page_entry);
|
| 2151 |
|
|
}
|
| 2152 |
|
|
|
| 2153 |
|
|
/* There's no easy way to walk through the small pages finding
|
| 2154 |
|
|
used and unused objects. Instead, add all the pages, and
|
| 2155 |
|
|
subtract out the free list. */
|
| 2156 |
|
|
|
| 2157 |
|
|
allocated += GGC_PAGE_SIZE * zone->n_small_pages;
|
| 2158 |
|
|
in_use += GGC_PAGE_SIZE * zone->n_small_pages;
|
| 2159 |
|
|
overhead += G.small_page_overhead * zone->n_small_pages;
|
| 2160 |
|
|
|
| 2161 |
|
|
for (i = 0; i <= NUM_FREE_BINS; i++)
|
| 2162 |
|
|
{
|
| 2163 |
|
|
struct alloc_chunk *chunk = zone->free_chunks[i];
|
| 2164 |
|
|
while (chunk)
|
| 2165 |
|
|
{
|
| 2166 |
|
|
in_use -= ggc_get_size (chunk);
|
| 2167 |
|
|
chunk = chunk->next_free;
|
| 2168 |
|
|
}
|
| 2169 |
|
|
}
|
| 2170 |
|
|
|
| 2171 |
|
|
fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n",
|
| 2172 |
|
|
zone->name,
|
| 2173 |
|
|
SCALE (allocated), LABEL (allocated),
|
| 2174 |
|
|
SCALE (in_use), LABEL (in_use),
|
| 2175 |
|
|
SCALE (overhead), LABEL (overhead));
|
| 2176 |
|
|
|
| 2177 |
|
|
gcc_assert (in_use == zone->allocated);
|
| 2178 |
|
|
|
| 2179 |
|
|
total_overhead += overhead;
|
| 2180 |
|
|
total_allocated += zone->allocated;
|
| 2181 |
|
|
total_bytes_mapped += zone->bytes_mapped;
|
| 2182 |
|
|
}
|
| 2183 |
|
|
|
| 2184 |
|
|
/* Count the size of the page table as best we can. */
|
| 2185 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
| 2186 |
|
|
pte_overhead = sizeof (G.lookup);
|
| 2187 |
|
|
for (i = 0; i < PAGE_L1_SIZE; i++)
|
| 2188 |
|
|
if (G.lookup[i])
|
| 2189 |
|
|
pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
|
| 2190 |
|
|
#else
|
| 2191 |
|
|
{
|
| 2192 |
|
|
page_table table = G.lookup;
|
| 2193 |
|
|
pte_overhead = 0;
|
| 2194 |
|
|
while (table)
|
| 2195 |
|
|
{
|
| 2196 |
|
|
pte_overhead += sizeof (*table);
|
| 2197 |
|
|
for (i = 0; i < PAGE_L1_SIZE; i++)
|
| 2198 |
|
|
if (table->table[i])
|
| 2199 |
|
|
pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
|
| 2200 |
|
|
table = table->next;
|
| 2201 |
|
|
}
|
| 2202 |
|
|
}
|
| 2203 |
|
|
#endif
|
| 2204 |
|
|
fprintf (stderr, "%20s %11s %11s %10lu%c\n", "Page Table",
|
| 2205 |
|
|
"", "", SCALE (pte_overhead), LABEL (pte_overhead));
|
| 2206 |
|
|
total_overhead += pte_overhead;
|
| 2207 |
|
|
|
| 2208 |
|
|
fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n", "Total",
|
| 2209 |
|
|
SCALE (total_bytes_mapped), LABEL (total_bytes_mapped),
|
| 2210 |
|
|
SCALE (total_allocated), LABEL(total_allocated),
|
| 2211 |
|
|
SCALE (total_overhead), LABEL (total_overhead));
|
| 2212 |
|
|
|
| 2213 |
|
|
#ifdef GATHER_STATISTICS
|
| 2214 |
|
|
{
|
| 2215 |
|
|
unsigned long long all_overhead = 0, all_allocated = 0;
|
| 2216 |
|
|
unsigned long long all_overhead_under32 = 0, all_allocated_under32 = 0;
|
| 2217 |
|
|
unsigned long long all_overhead_under64 = 0, all_allocated_under64 = 0;
|
| 2218 |
|
|
unsigned long long all_overhead_under128 = 0, all_allocated_under128 = 0;
|
| 2219 |
|
|
|
| 2220 |
|
|
fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
|
| 2221 |
|
|
|
| 2222 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
| 2223 |
|
|
{
|
| 2224 |
|
|
all_overhead += zone->stats.total_overhead;
|
| 2225 |
|
|
all_allocated += zone->stats.total_allocated;
|
| 2226 |
|
|
|
| 2227 |
|
|
all_allocated_under32 += zone->stats.total_allocated_under32;
|
| 2228 |
|
|
all_overhead_under32 += zone->stats.total_overhead_under32;
|
| 2229 |
|
|
|
| 2230 |
|
|
all_allocated_under64 += zone->stats.total_allocated_under64;
|
| 2231 |
|
|
all_overhead_under64 += zone->stats.total_overhead_under64;
|
| 2232 |
|
|
|
| 2233 |
|
|
all_allocated_under128 += zone->stats.total_allocated_under128;
|
| 2234 |
|
|
all_overhead_under128 += zone->stats.total_overhead_under128;
|
| 2235 |
|
|
|
| 2236 |
|
|
fprintf (stderr, "%20s: %10lld\n",
|
| 2237 |
|
|
zone->name, zone->stats.total_allocated);
|
| 2238 |
|
|
}
|
| 2239 |
|
|
|
| 2240 |
|
|
fprintf (stderr, "\n");
|
| 2241 |
|
|
|
| 2242 |
|
|
fprintf (stderr, "Total Overhead: %10lld\n",
|
| 2243 |
|
|
all_overhead);
|
| 2244 |
|
|
fprintf (stderr, "Total Allocated: %10lld\n",
|
| 2245 |
|
|
all_allocated);
|
| 2246 |
|
|
|
| 2247 |
|
|
fprintf (stderr, "Total Overhead under 32B: %10lld\n",
|
| 2248 |
|
|
all_overhead_under32);
|
| 2249 |
|
|
fprintf (stderr, "Total Allocated under 32B: %10lld\n",
|
| 2250 |
|
|
all_allocated_under32);
|
| 2251 |
|
|
fprintf (stderr, "Total Overhead under 64B: %10lld\n",
|
| 2252 |
|
|
all_overhead_under64);
|
| 2253 |
|
|
fprintf (stderr, "Total Allocated under 64B: %10lld\n",
|
| 2254 |
|
|
all_allocated_under64);
|
| 2255 |
|
|
fprintf (stderr, "Total Overhead under 128B: %10lld\n",
|
| 2256 |
|
|
all_overhead_under128);
|
| 2257 |
|
|
fprintf (stderr, "Total Allocated under 128B: %10lld\n",
|
| 2258 |
|
|
all_allocated_under128);
|
| 2259 |
|
|
}
|
| 2260 |
|
|
#endif
|
| 2261 |
|
|
}
|
| 2262 |
|
|
|
| 2263 |
|
|
/* Precompiled header support. */
|
| 2264 |
|
|
|
| 2265 |
|
|
/* For precompiled headers, we sort objects based on their type. We
|
| 2266 |
|
|
also sort various objects into their own buckets; currently this
|
| 2267 |
|
|
covers strings and IDENTIFIER_NODE trees. The choices of how
|
| 2268 |
|
|
to sort buckets have not yet been tuned. */
|
| 2269 |
|
|
|
| 2270 |
|
|
#define NUM_PCH_BUCKETS (gt_types_enum_last + 3)
|
| 2271 |
|
|
|
| 2272 |
|
|
#define OTHER_BUCKET (gt_types_enum_last + 0)
|
| 2273 |
|
|
#define IDENTIFIER_BUCKET (gt_types_enum_last + 1)
|
| 2274 |
|
|
#define STRING_BUCKET (gt_types_enum_last + 2)
|
| 2275 |
|
|
|
| 2276 |
|
|
struct ggc_pch_ondisk
|
| 2277 |
|
|
{
|
| 2278 |
|
|
size_t total;
|
| 2279 |
|
|
size_t type_totals[NUM_PCH_BUCKETS];
|
| 2280 |
|
|
};
|
| 2281 |
|
|
|
| 2282 |
|
|
struct ggc_pch_data
|
| 2283 |
|
|
{
|
| 2284 |
|
|
struct ggc_pch_ondisk d;
|
| 2285 |
|
|
size_t base;
|
| 2286 |
|
|
size_t orig_base;
|
| 2287 |
|
|
size_t alloc_size;
|
| 2288 |
|
|
alloc_type *alloc_bits;
|
| 2289 |
|
|
size_t type_bases[NUM_PCH_BUCKETS];
|
| 2290 |
|
|
size_t start_offset;
|
| 2291 |
|
|
};
|
| 2292 |
|
|
|
| 2293 |
|
|
/* Initialize the PCH data structure. */
|
| 2294 |
|
|
|
| 2295 |
|
|
struct ggc_pch_data *
|
| 2296 |
|
|
init_ggc_pch (void)
|
| 2297 |
|
|
{
|
| 2298 |
|
|
return XCNEW (struct ggc_pch_data);
|
| 2299 |
|
|
}
|
| 2300 |
|
|
|
| 2301 |
|
|
/* Return which of the page-aligned buckets the object at X, with type
|
| 2302 |
|
|
TYPE, should be sorted into in the PCH. Strings will have
|
| 2303 |
|
|
IS_STRING set and TYPE will be gt_types_enum_last. Other objects
|
| 2304 |
|
|
of unknown type will also have TYPE equal to gt_types_enum_last. */
|
| 2305 |
|
|
|
| 2306 |
|
|
static int
|
| 2307 |
|
|
pch_bucket (void *x, enum gt_types_enum type,
|
| 2308 |
|
|
bool is_string)
|
| 2309 |
|
|
{
|
| 2310 |
|
|
/* Sort identifiers into their own bucket, to improve locality
|
| 2311 |
|
|
when searching the identifier hash table. */
|
| 2312 |
|
|
if (type == gt_ggc_e_14lang_tree_node
|
| 2313 |
|
|
&& TREE_CODE ((tree) x) == IDENTIFIER_NODE)
|
| 2314 |
|
|
return IDENTIFIER_BUCKET;
|
| 2315 |
|
|
else if (type == gt_types_enum_last)
|
| 2316 |
|
|
{
|
| 2317 |
|
|
if (is_string)
|
| 2318 |
|
|
return STRING_BUCKET;
|
| 2319 |
|
|
return OTHER_BUCKET;
|
| 2320 |
|
|
}
|
| 2321 |
|
|
return type;
|
| 2322 |
|
|
}
|
| 2323 |
|
|
|
| 2324 |
|
|
/* Add the size of object X to the size of the PCH data. */
|
| 2325 |
|
|
|
| 2326 |
|
|
void
|
| 2327 |
|
|
ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
|
| 2328 |
|
|
size_t size, bool is_string, enum gt_types_enum type)
|
| 2329 |
|
|
{
|
| 2330 |
|
|
/* NOTE: Right now we don't need to align up the size of any objects.
|
| 2331 |
|
|
Strings can be unaligned, and everything else is allocated to a
|
| 2332 |
|
|
MAX_ALIGNMENT boundary already. */
|
| 2333 |
|
|
|
| 2334 |
|
|
d->d.type_totals[pch_bucket (x, type, is_string)] += size;
|
| 2335 |
|
|
}
|
| 2336 |
|
|
|
| 2337 |
|
|
/* Return the total size of the PCH data. */
|
| 2338 |
|
|
|
| 2339 |
|
|
size_t
|
| 2340 |
|
|
ggc_pch_total_size (struct ggc_pch_data *d)
|
| 2341 |
|
|
{
|
| 2342 |
|
|
int i;
|
| 2343 |
|
|
size_t alloc_size, total_size;
|
| 2344 |
|
|
|
| 2345 |
|
|
total_size = 0;
|
| 2346 |
|
|
for (i = 0; i < NUM_PCH_BUCKETS; i++)
|
| 2347 |
|
|
{
|
| 2348 |
|
|
d->d.type_totals[i] = ROUND_UP (d->d.type_totals[i], GGC_PAGE_SIZE);
|
| 2349 |
|
|
total_size += d->d.type_totals[i];
|
| 2350 |
|
|
}
|
| 2351 |
|
|
d->d.total = total_size;
|
| 2352 |
|
|
|
| 2353 |
|
|
/* Include the size of the allocation bitmap. */
|
| 2354 |
|
|
alloc_size = CEIL (d->d.total, BYTES_PER_ALLOC_BIT * 8);
|
| 2355 |
|
|
alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
|
| 2356 |
|
|
d->alloc_size = alloc_size;
|
| 2357 |
|
|
|
| 2358 |
|
|
return d->d.total + alloc_size;
|
| 2359 |
|
|
}
|
| 2360 |
|
|
|
| 2361 |
|
|
/* Set the base address for the objects in the PCH file. */
|
| 2362 |
|
|
|
| 2363 |
|
|
void
|
| 2364 |
|
|
ggc_pch_this_base (struct ggc_pch_data *d, void *base_)
|
| 2365 |
|
|
{
|
| 2366 |
|
|
int i;
|
| 2367 |
|
|
size_t base = (size_t) base_;
|
| 2368 |
|
|
|
| 2369 |
|
|
d->base = d->orig_base = base;
|
| 2370 |
|
|
for (i = 0; i < NUM_PCH_BUCKETS; i++)
|
| 2371 |
|
|
{
|
| 2372 |
|
|
d->type_bases[i] = base;
|
| 2373 |
|
|
base += d->d.type_totals[i];
|
| 2374 |
|
|
}
|
| 2375 |
|
|
|
| 2376 |
|
|
if (d->alloc_bits == NULL)
|
| 2377 |
|
|
d->alloc_bits = XCNEWVAR (alloc_type, d->alloc_size);
|
| 2378 |
|
|
}
|
| 2379 |
|
|
|
| 2380 |
|
|
/* Allocate a place for object X of size SIZE in the PCH file. */
|
| 2381 |
|
|
|
| 2382 |
|
|
char *
|
| 2383 |
|
|
ggc_pch_alloc_object (struct ggc_pch_data *d, void *x,
|
| 2384 |
|
|
size_t size, bool is_string,
|
| 2385 |
|
|
enum gt_types_enum type)
|
| 2386 |
|
|
{
|
| 2387 |
|
|
size_t alloc_word, alloc_bit;
|
| 2388 |
|
|
char *result;
|
| 2389 |
|
|
int bucket = pch_bucket (x, type, is_string);
|
| 2390 |
|
|
|
| 2391 |
|
|
/* Record the start of the object in the allocation bitmap. We
|
| 2392 |
|
|
can't assert that the allocation bit is previously clear, because
|
| 2393 |
|
|
strings may violate the invariant that they are at least
|
| 2394 |
|
|
BYTES_PER_ALLOC_BIT long. This is harmless - ggc_get_size
|
| 2395 |
|
|
should not be called for strings. */
|
| 2396 |
|
|
alloc_word = ((d->type_bases[bucket] - d->orig_base)
|
| 2397 |
|
|
/ (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
|
| 2398 |
|
|
alloc_bit = ((d->type_bases[bucket] - d->orig_base)
|
| 2399 |
|
|
/ BYTES_PER_ALLOC_BIT) % (8 * sizeof (alloc_type));
|
| 2400 |
|
|
d->alloc_bits[alloc_word] |= 1L << alloc_bit;
|
| 2401 |
|
|
|
| 2402 |
|
|
/* Place the object at the current pointer for this bucket. */
|
| 2403 |
|
|
result = (char *) d->type_bases[bucket];
|
| 2404 |
|
|
d->type_bases[bucket] += size;
|
| 2405 |
|
|
return result;
|
| 2406 |
|
|
}
|
| 2407 |
|
|
|
| 2408 |
|
|
/* Prepare to write out the PCH data to file F. */
|
| 2409 |
|
|
|
| 2410 |
|
|
void
|
| 2411 |
|
|
ggc_pch_prepare_write (struct ggc_pch_data *d,
|
| 2412 |
|
|
FILE *f)
|
| 2413 |
|
|
{
|
| 2414 |
|
|
/* We seek around a lot while writing. Record where the end
|
| 2415 |
|
|
of the padding in the PCH file is, so that we can
|
| 2416 |
|
|
locate each object's offset. */
|
| 2417 |
|
|
d->start_offset = ftell (f);
|
| 2418 |
|
|
}
|
| 2419 |
|
|
|
| 2420 |
|
|
/* Write out object X of SIZE to file F. */
|
| 2421 |
|
|
|
| 2422 |
|
|
void
|
| 2423 |
|
|
ggc_pch_write_object (struct ggc_pch_data *d,
|
| 2424 |
|
|
FILE *f, void *x, void *newx,
|
| 2425 |
|
|
size_t size, bool is_string ATTRIBUTE_UNUSED)
|
| 2426 |
|
|
{
|
| 2427 |
|
|
if (fseek (f, (size_t) newx - d->orig_base + d->start_offset, SEEK_SET) != 0)
|
| 2428 |
|
|
fatal_error ("can%'t seek PCH file: %m");
|
| 2429 |
|
|
|
| 2430 |
|
|
if (fwrite (x, size, 1, f) != 1)
|
| 2431 |
|
|
fatal_error ("can%'t write PCH file: %m");
|
| 2432 |
|
|
}
|
| 2433 |
|
|
|
| 2434 |
|
|
void
|
| 2435 |
|
|
ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
|
| 2436 |
|
|
{
|
| 2437 |
|
|
/* Write out the allocation bitmap. */
|
| 2438 |
|
|
if (fseek (f, d->start_offset + d->d.total, SEEK_SET) != 0)
|
| 2439 |
|
|
fatal_error ("can%'t seek PCH file: %m");
|
| 2440 |
|
|
|
| 2441 |
|
|
if (fwrite (d->alloc_bits, d->alloc_size, 1, f) != 1)
|
| 2442 |
|
|
fatal_error ("can%'t write PCH file: %m");
|
| 2443 |
|
|
|
| 2444 |
|
|
/* Done with the PCH, so write out our footer. */
|
| 2445 |
|
|
if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
|
| 2446 |
|
|
fatal_error ("can%'t write PCH file: %m");
|
| 2447 |
|
|
|
| 2448 |
|
|
free (d->alloc_bits);
|
| 2449 |
|
|
free (d);
|
| 2450 |
|
|
}
|
| 2451 |
|
|
|
| 2452 |
|
|
/* The PCH file from F has been mapped at ADDR. Read in any
|
| 2453 |
|
|
additional data from the file and set up the GC state. */
|
| 2454 |
|
|
|
| 2455 |
|
|
void
|
| 2456 |
|
|
ggc_pch_read (FILE *f, void *addr)
|
| 2457 |
|
|
{
|
| 2458 |
|
|
struct ggc_pch_ondisk d;
|
| 2459 |
|
|
size_t alloc_size;
|
| 2460 |
|
|
struct alloc_zone *zone;
|
| 2461 |
|
|
struct page_entry *pch_page;
|
| 2462 |
|
|
char *p;
|
| 2463 |
|
|
|
| 2464 |
|
|
if (fread (&d, sizeof (d), 1, f) != 1)
|
| 2465 |
|
|
fatal_error ("can%'t read PCH file: %m");
|
| 2466 |
|
|
|
| 2467 |
|
|
alloc_size = CEIL (d.total, BYTES_PER_ALLOC_BIT * 8);
|
| 2468 |
|
|
alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
|
| 2469 |
|
|
|
| 2470 |
|
|
pch_zone.bytes = d.total;
|
| 2471 |
|
|
pch_zone.alloc_bits = (alloc_type *) ((char *) addr + pch_zone.bytes);
|
| 2472 |
|
|
pch_zone.page = (char *) addr;
|
| 2473 |
|
|
pch_zone.end = (char *) pch_zone.alloc_bits;
|
| 2474 |
|
|
|
| 2475 |
|
|
/* We've just read in a PCH file. So, every object that used to be
|
| 2476 |
|
|
allocated is now free. */
|
| 2477 |
|
|
#ifdef GATHER_STATISTICS
|
| 2478 |
|
|
zone_allocate_marks ();
|
| 2479 |
|
|
ggc_prune_overhead_list ();
|
| 2480 |
|
|
zone_free_marks ();
|
| 2481 |
|
|
#endif
|
| 2482 |
|
|
|
| 2483 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
| 2484 |
|
|
{
|
| 2485 |
|
|
struct small_page_entry *page, *next_page;
|
| 2486 |
|
|
struct large_page_entry *large_page, *next_large_page;
|
| 2487 |
|
|
|
| 2488 |
|
|
zone->allocated = 0;
|
| 2489 |
|
|
|
| 2490 |
|
|
/* Clear the zone's free chunk list. */
|
| 2491 |
|
|
memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
|
| 2492 |
|
|
zone->high_free_bin = 0;
|
| 2493 |
|
|
zone->cached_free = NULL;
|
| 2494 |
|
|
zone->cached_free_size = 0;
|
| 2495 |
|
|
|
| 2496 |
|
|
/* Move all the small pages onto the free list. */
|
| 2497 |
|
|
for (page = zone->pages; page != NULL; page = next_page)
|
| 2498 |
|
|
{
|
| 2499 |
|
|
next_page = page->next;
|
| 2500 |
|
|
memset (page->alloc_bits, 0,
|
| 2501 |
|
|
G.small_page_overhead - PAGE_OVERHEAD);
|
| 2502 |
|
|
free_small_page (page);
|
| 2503 |
|
|
}
|
| 2504 |
|
|
|
| 2505 |
|
|
/* Discard all the large pages. */
|
| 2506 |
|
|
for (large_page = zone->large_pages; large_page != NULL;
|
| 2507 |
|
|
large_page = next_large_page)
|
| 2508 |
|
|
{
|
| 2509 |
|
|
next_large_page = large_page->next;
|
| 2510 |
|
|
free_large_page (large_page);
|
| 2511 |
|
|
}
|
| 2512 |
|
|
|
| 2513 |
|
|
zone->pages = NULL;
|
| 2514 |
|
|
zone->large_pages = NULL;
|
| 2515 |
|
|
}
|
| 2516 |
|
|
|
| 2517 |
|
|
/* Allocate the dummy page entry for the PCH, and set all pages
|
| 2518 |
|
|
mapped into the PCH to reference it. */
|
| 2519 |
|
|
pch_page = XCNEW (struct page_entry);
|
| 2520 |
|
|
pch_page->page = pch_zone.page;
|
| 2521 |
|
|
pch_page->pch_p = true;
|
| 2522 |
|
|
|
| 2523 |
|
|
for (p = pch_zone.page; p < pch_zone.end; p += GGC_PAGE_SIZE)
|
| 2524 |
|
|
set_page_table_entry (p, pch_page);
|
| 2525 |
|
|
}
|