1 |
684 |
jeremybenn |
/* "Bag-of-pages" zone garbage collector for the GNU compiler.
|
2 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008,
|
3 |
|
|
2010 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
Contributed by Richard Henderson (rth@redhat.com) and Daniel Berlin
|
6 |
|
|
(dberlin@dberlin.org). Rewritten by Daniel Jacobowitz
|
7 |
|
|
<dan@codesourcery.com>.
|
8 |
|
|
|
9 |
|
|
This file is part of GCC.
|
10 |
|
|
|
11 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
12 |
|
|
the terms of the GNU General Public License as published by the Free
|
13 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
14 |
|
|
version.
|
15 |
|
|
|
16 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
17 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
18 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
19 |
|
|
for more details.
|
20 |
|
|
|
21 |
|
|
You should have received a copy of the GNU General Public License
|
22 |
|
|
along with GCC; see the file COPYING3. If not see
|
23 |
|
|
<http://www.gnu.org/licenses/>. */
|
24 |
|
|
|
25 |
|
|
#include "config.h"
|
26 |
|
|
#include "system.h"
|
27 |
|
|
#include "coretypes.h"
|
28 |
|
|
#include "tm.h"
|
29 |
|
|
#include "tree.h"
|
30 |
|
|
#include "rtl.h"
|
31 |
|
|
#include "tm_p.h"
|
32 |
|
|
#include "diagnostic-core.h"
|
33 |
|
|
#include "flags.h"
|
34 |
|
|
#include "ggc.h"
|
35 |
|
|
#include "ggc-internal.h"
|
36 |
|
|
#include "timevar.h"
|
37 |
|
|
#include "params.h"
|
38 |
|
|
#include "bitmap.h"
|
39 |
|
|
#include "plugin.h"
|
40 |
|
|
|
41 |
|
|
/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
|
42 |
|
|
file open. Prefer either to valloc. */
|
43 |
|
|
#ifdef HAVE_MMAP_ANON
|
44 |
|
|
# undef HAVE_MMAP_DEV_ZERO
|
45 |
|
|
# define USING_MMAP
|
46 |
|
|
#endif
|
47 |
|
|
|
48 |
|
|
#ifdef HAVE_MMAP_DEV_ZERO
|
49 |
|
|
# define USING_MMAP
|
50 |
|
|
#endif
|
51 |
|
|
|
52 |
|
|
#ifndef USING_MMAP
|
53 |
|
|
#error Zone collector requires mmap
|
54 |
|
|
#endif
|
55 |
|
|
|
56 |
|
|
#if (GCC_VERSION < 3001)
|
57 |
|
|
#define prefetch(X) ((void) X)
|
58 |
|
|
#define prefetchw(X) ((void) X)
|
59 |
|
|
#else
|
60 |
|
|
#define prefetch(X) __builtin_prefetch (X)
|
61 |
|
|
#define prefetchw(X) __builtin_prefetch (X, 1, 3)
|
62 |
|
|
#endif
|
63 |
|
|
|
64 |
|
|
/* FUTURE NOTES:
|
65 |
|
|
|
66 |
|
|
If we track inter-zone pointers, we can mark single zones at a
|
67 |
|
|
time.
|
68 |
|
|
|
69 |
|
|
If we have a zone where we guarantee no inter-zone pointers, we
|
70 |
|
|
could mark that zone separately.
|
71 |
|
|
|
72 |
|
|
The garbage zone should not be marked, and we should return 1 in
|
73 |
|
|
ggc_set_mark for any object in the garbage zone, which cuts off
|
74 |
|
|
marking quickly. */
|
75 |
|
|
|
76 |
|
|
/* Strategy:
|
77 |
|
|
|
78 |
|
|
This garbage-collecting allocator segregates objects into zones.
|
79 |
|
|
It also segregates objects into "large" and "small" bins. Large
|
80 |
|
|
objects are greater than page size.
|
81 |
|
|
|
82 |
|
|
Pages for small objects are broken up into chunks. The page has
|
83 |
|
|
a bitmap which marks the start position of each chunk (whether
|
84 |
|
|
allocated or free). Free chunks are on one of the zone's free
|
85 |
|
|
lists and contain a pointer to the next free chunk. Chunks in
|
86 |
|
|
most of the free lists have a fixed size determined by the
|
87 |
|
|
free list. Chunks in the "other" sized free list have their size
|
88 |
|
|
stored right after their chain pointer.
|
89 |
|
|
|
90 |
|
|
Empty pages (of all sizes) are kept on a single page cache list,
|
91 |
|
|
and are considered first when new pages are required; they are
|
92 |
|
|
deallocated at the start of the next collection if they haven't
|
93 |
|
|
been recycled by then. The free page list is currently per-zone. */
|
94 |
|
|
|
95 |
|
|
/* Define GGC_DEBUG_LEVEL to print debugging information.
|
96 |
|
|
0: No debugging output.
|
97 |
|
|
1: GC statistics only.
|
98 |
|
|
2: Page-entry allocations/deallocations as well.
|
99 |
|
|
3: Object allocations as well.
|
100 |
|
|
4: Object marks as well. */
|
101 |
|
|
#define GGC_DEBUG_LEVEL (0)
|
102 |
|
|
|
103 |
|
|
#ifndef HOST_BITS_PER_PTR
|
104 |
|
|
#define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
|
105 |
|
|
#endif
|
106 |
|
|
|
107 |
|
|
/* This structure manages small free chunks. The SIZE field is only
|
108 |
|
|
initialized if the chunk is in the "other" sized free list. Large
|
109 |
|
|
chunks are allocated one at a time to their own page, and so don't
|
110 |
|
|
come in here. */
|
111 |
|
|
|
112 |
|
|
struct alloc_chunk {
|
113 |
|
|
struct alloc_chunk *next_free;
|
114 |
|
|
unsigned int size;
|
115 |
|
|
};
|
116 |
|
|
|
117 |
|
|
/* The size of the fixed-size portion of a small page descriptor. */
|
118 |
|
|
#define PAGE_OVERHEAD (offsetof (struct small_page_entry, alloc_bits))
|
119 |
|
|
|
120 |
|
|
/* The collector's idea of the page size. This must be a power of two
|
121 |
|
|
no larger than the system page size, because pages must be aligned
|
122 |
|
|
to this amount and are tracked at this granularity in the page
|
123 |
|
|
table. We choose a size at compile time for efficiency.
|
124 |
|
|
|
125 |
|
|
We could make a better guess at compile time if PAGE_SIZE is a
|
126 |
|
|
constant in system headers, and PAGE_SHIFT is defined... */
|
127 |
|
|
#define GGC_PAGE_SIZE 4096
|
128 |
|
|
#define GGC_PAGE_MASK (GGC_PAGE_SIZE - 1)
|
129 |
|
|
#define GGC_PAGE_SHIFT 12
|
130 |
|
|
|
131 |
|
|
#if 0
|
132 |
|
|
/* Alternative definitions which use the runtime page size. */
|
133 |
|
|
#define GGC_PAGE_SIZE G.pagesize
|
134 |
|
|
#define GGC_PAGE_MASK G.page_mask
|
135 |
|
|
#define GGC_PAGE_SHIFT G.lg_pagesize
|
136 |
|
|
#endif
|
137 |
|
|
|
138 |
|
|
/* The size of a small page managed by the garbage collector. This
|
139 |
|
|
must currently be GGC_PAGE_SIZE, but with a few changes could
|
140 |
|
|
be any multiple of it to reduce certain kinds of overhead. */
|
141 |
|
|
#define SMALL_PAGE_SIZE GGC_PAGE_SIZE
|
142 |
|
|
|
143 |
|
|
/* Free bin information. These numbers may be in need of re-tuning.
|
144 |
|
|
In general, decreasing the number of free bins would seem to
|
145 |
|
|
increase the time it takes to allocate... */
|
146 |
|
|
|
147 |
|
|
/* FIXME: We can't use anything but MAX_ALIGNMENT for the bin size
|
148 |
|
|
today. */
|
149 |
|
|
|
150 |
|
|
#define NUM_FREE_BINS 64
|
151 |
|
|
#define FREE_BIN_DELTA MAX_ALIGNMENT
|
152 |
|
|
#define SIZE_BIN_DOWN(SIZE) ((SIZE) / FREE_BIN_DELTA)
|
153 |
|
|
|
154 |
|
|
/* Allocation and marking parameters. */
|
155 |
|
|
|
156 |
|
|
/* The smallest allocatable unit to keep track of. */
|
157 |
|
|
#define BYTES_PER_ALLOC_BIT MAX_ALIGNMENT
|
158 |
|
|
|
159 |
|
|
/* The smallest markable unit. If we require each allocated object
|
160 |
|
|
to contain at least two allocatable units, we can use half as many
|
161 |
|
|
bits for the mark bitmap. But this adds considerable complexity
|
162 |
|
|
to sweeping. */
|
163 |
|
|
#define BYTES_PER_MARK_BIT BYTES_PER_ALLOC_BIT
|
164 |
|
|
|
165 |
|
|
#define BYTES_PER_MARK_WORD (8 * BYTES_PER_MARK_BIT * sizeof (mark_type))
|
166 |
|
|
|
167 |
|
|
/* We use this structure to determine the alignment required for
|
168 |
|
|
allocations.
|
169 |
|
|
|
170 |
|
|
There are several things wrong with this estimation of alignment.
|
171 |
|
|
|
172 |
|
|
The maximum alignment for a structure is often less than the
|
173 |
|
|
maximum alignment for a basic data type; for instance, on some
|
174 |
|
|
targets long long must be aligned to sizeof (int) in a structure
|
175 |
|
|
and sizeof (long long) in a variable. i386-linux is one example;
|
176 |
|
|
Darwin is another (sometimes, depending on the compiler in use).
|
177 |
|
|
|
178 |
|
|
Also, long double is not included. Nothing in GCC uses long
|
179 |
|
|
double, so we assume that this is OK. On powerpc-darwin, adding
|
180 |
|
|
long double would bring the maximum alignment up to 16 bytes,
|
181 |
|
|
and until we need long double (or to vectorize compiler operations)
|
182 |
|
|
that's painfully wasteful. This will need to change, some day. */
|
183 |
|
|
|
184 |
|
|
struct max_alignment {
|
185 |
|
|
char c;
|
186 |
|
|
union {
|
187 |
|
|
HOST_WIDEST_INT i;
|
188 |
|
|
double d;
|
189 |
|
|
} u;
|
190 |
|
|
};
|
191 |
|
|
|
192 |
|
|
/* The biggest alignment required. */
|
193 |
|
|
|
194 |
|
|
#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
|
195 |
|
|
|
196 |
|
|
/* Compute the smallest multiple of F that is >= X. */
|
197 |
|
|
|
198 |
|
|
#define ROUND_UP(x, f) (CEIL (x, f) * (f))
|
199 |
|
|
|
200 |
|
|
/* Types to use for the allocation and mark bitmaps. It might be
|
201 |
|
|
a good idea to add ffsl to libiberty and use unsigned long
|
202 |
|
|
instead; that could speed us up where long is wider than int. */
|
203 |
|
|
|
204 |
|
|
typedef unsigned int alloc_type;
|
205 |
|
|
typedef unsigned int mark_type;
|
206 |
|
|
#define alloc_ffs(x) ffs(x)
|
207 |
|
|
|
208 |
|
|
/* A page_entry records the status of an allocation page. This is the
|
209 |
|
|
common data between all three kinds of pages - small, large, and
|
210 |
|
|
PCH. */
|
211 |
|
|
typedef struct page_entry
|
212 |
|
|
{
|
213 |
|
|
/* The address at which the memory is allocated. */
|
214 |
|
|
char *page;
|
215 |
|
|
|
216 |
|
|
/* The zone that this page entry belongs to. */
|
217 |
|
|
struct alloc_zone *zone;
|
218 |
|
|
|
219 |
|
|
#ifdef GATHER_STATISTICS
|
220 |
|
|
/* How many collections we've survived. */
|
221 |
|
|
size_t survived;
|
222 |
|
|
#endif
|
223 |
|
|
|
224 |
|
|
/* Does this page contain small objects, or one large object? */
|
225 |
|
|
bool large_p;
|
226 |
|
|
|
227 |
|
|
/* Is this page part of the loaded PCH? */
|
228 |
|
|
bool pch_p;
|
229 |
|
|
} page_entry;
|
230 |
|
|
|
231 |
|
|
/* Additional data needed for small pages. */
|
232 |
|
|
struct small_page_entry
|
233 |
|
|
{
|
234 |
|
|
struct page_entry common;
|
235 |
|
|
|
236 |
|
|
/* The next small page entry, or NULL if this is the last. */
|
237 |
|
|
struct small_page_entry *next;
|
238 |
|
|
|
239 |
|
|
/* If currently marking this zone, a pointer to the mark bits
|
240 |
|
|
for this page. If we aren't currently marking this zone,
|
241 |
|
|
this pointer may be stale (pointing to freed memory). */
|
242 |
|
|
mark_type *mark_bits;
|
243 |
|
|
|
244 |
|
|
/* The allocation bitmap. This array extends far enough to have
|
245 |
|
|
one bit for every BYTES_PER_ALLOC_BIT bytes in the page. */
|
246 |
|
|
alloc_type alloc_bits[1];
|
247 |
|
|
};
|
248 |
|
|
|
249 |
|
|
/* Additional data needed for large pages. */
|
250 |
|
|
struct large_page_entry
|
251 |
|
|
{
|
252 |
|
|
struct page_entry common;
|
253 |
|
|
|
254 |
|
|
/* The next large page entry, or NULL if this is the last. */
|
255 |
|
|
struct large_page_entry *next;
|
256 |
|
|
|
257 |
|
|
/* The number of bytes allocated, not including the page entry. */
|
258 |
|
|
size_t bytes;
|
259 |
|
|
|
260 |
|
|
/* The previous page in the list, so that we can unlink this one. */
|
261 |
|
|
struct large_page_entry *prev;
|
262 |
|
|
|
263 |
|
|
/* During marking, is this object marked? */
|
264 |
|
|
bool mark_p;
|
265 |
|
|
};
|
266 |
|
|
|
267 |
|
|
/* A two-level tree is used to look up the page-entry for a given
|
268 |
|
|
pointer. Two chunks of the pointer's bits are extracted to index
|
269 |
|
|
the first and second levels of the tree, as follows:
|
270 |
|
|
|
271 |
|
|
HOST_PAGE_SIZE_BITS
|
272 |
|
|
32 | |
|
273 |
|
|
msb +----------------+----+------+------+ lsb
|
274 |
|
|
| | |
|
275 |
|
|
PAGE_L1_BITS |
|
276 |
|
|
| |
|
277 |
|
|
PAGE_L2_BITS
|
278 |
|
|
|
279 |
|
|
The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
|
280 |
|
|
pages are aligned on system page boundaries. The next most
|
281 |
|
|
significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
|
282 |
|
|
index values in the lookup table, respectively.
|
283 |
|
|
|
284 |
|
|
For 32-bit architectures and the settings below, there are no
|
285 |
|
|
leftover bits. For architectures with wider pointers, the lookup
|
286 |
|
|
tree points to a list of pages, which must be scanned to find the
|
287 |
|
|
correct one. */
|
288 |
|
|
|
289 |
|
|
#define PAGE_L1_BITS (8)
|
290 |
|
|
#define PAGE_L2_BITS (32 - PAGE_L1_BITS - GGC_PAGE_SHIFT)
|
291 |
|
|
#define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
|
292 |
|
|
#define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
|
293 |
|
|
|
294 |
|
|
#define LOOKUP_L1(p) \
|
295 |
|
|
(((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
|
296 |
|
|
|
297 |
|
|
#define LOOKUP_L2(p) \
|
298 |
|
|
(((size_t) (p) >> GGC_PAGE_SHIFT) & ((1 << PAGE_L2_BITS) - 1))
|
299 |
|
|
|
300 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
301 |
|
|
|
302 |
|
|
/* On 32-bit hosts, we use a two level page table, as pictured above. */
|
303 |
|
|
typedef page_entry **page_table[PAGE_L1_SIZE];
|
304 |
|
|
|
305 |
|
|
#else
|
306 |
|
|
|
307 |
|
|
/* On 64-bit hosts, we use the same two level page tables plus a linked
|
308 |
|
|
list that disambiguates the top 32-bits. There will almost always be
|
309 |
|
|
exactly one entry in the list. */
|
310 |
|
|
typedef struct page_table_chain
|
311 |
|
|
{
|
312 |
|
|
struct page_table_chain *next;
|
313 |
|
|
size_t high_bits;
|
314 |
|
|
page_entry **table[PAGE_L1_SIZE];
|
315 |
|
|
} *page_table;
|
316 |
|
|
|
317 |
|
|
#endif
|
318 |
|
|
|
319 |
|
|
/* The global variables. */
|
320 |
|
|
static struct globals
|
321 |
|
|
{
|
322 |
|
|
/* The linked list of zones. */
|
323 |
|
|
struct alloc_zone *zones;
|
324 |
|
|
|
325 |
|
|
/* Lookup table for associating allocation pages with object addresses. */
|
326 |
|
|
page_table lookup;
|
327 |
|
|
|
328 |
|
|
/* The system's page size, and related constants. */
|
329 |
|
|
size_t pagesize;
|
330 |
|
|
size_t lg_pagesize;
|
331 |
|
|
size_t page_mask;
|
332 |
|
|
|
333 |
|
|
/* The size to allocate for a small page entry. This includes
|
334 |
|
|
the size of the structure and the size of the allocation
|
335 |
|
|
bitmap. */
|
336 |
|
|
size_t small_page_overhead;
|
337 |
|
|
|
338 |
|
|
#if defined (HAVE_MMAP_DEV_ZERO)
|
339 |
|
|
/* A file descriptor open to /dev/zero for reading. */
|
340 |
|
|
int dev_zero_fd;
|
341 |
|
|
#endif
|
342 |
|
|
|
343 |
|
|
/* Allocate pages in chunks of this size, to throttle calls to memory
|
344 |
|
|
allocation routines. The first page is used, the rest go onto the
|
345 |
|
|
free list. */
|
346 |
|
|
size_t quire_size;
|
347 |
|
|
|
348 |
|
|
/* The file descriptor for debugging output. */
|
349 |
|
|
FILE *debug_file;
|
350 |
|
|
} G;
|
351 |
|
|
|
352 |
|
|
/* A zone allocation structure. There is one of these for every
|
353 |
|
|
distinct allocation zone. */
|
354 |
|
|
struct alloc_zone
|
355 |
|
|
{
|
356 |
|
|
/* The most recent free chunk is saved here, instead of in the linked
|
357 |
|
|
free list, to decrease list manipulation. It is most likely that we
|
358 |
|
|
will want this one. */
|
359 |
|
|
char *cached_free;
|
360 |
|
|
size_t cached_free_size;
|
361 |
|
|
|
362 |
|
|
/* Linked lists of free storage. Slots 1 ... NUM_FREE_BINS have chunks of size
|
363 |
|
|
FREE_BIN_DELTA. All other chunks are in slot 0. */
|
364 |
|
|
struct alloc_chunk *free_chunks[NUM_FREE_BINS + 1];
|
365 |
|
|
|
366 |
|
|
/* The highest bin index which might be non-empty. It may turn out
|
367 |
|
|
to be empty, in which case we have to search downwards. */
|
368 |
|
|
size_t high_free_bin;
|
369 |
|
|
|
370 |
|
|
/* Bytes currently allocated in this zone. */
|
371 |
|
|
size_t allocated;
|
372 |
|
|
|
373 |
|
|
/* Linked list of the small pages in this zone. */
|
374 |
|
|
struct small_page_entry *pages;
|
375 |
|
|
|
376 |
|
|
/* Doubly linked list of large pages in this zone. */
|
377 |
|
|
struct large_page_entry *large_pages;
|
378 |
|
|
|
379 |
|
|
/* If we are currently marking this zone, a pointer to the mark bits. */
|
380 |
|
|
mark_type *mark_bits;
|
381 |
|
|
|
382 |
|
|
/* Name of the zone. */
|
383 |
|
|
const char *name;
|
384 |
|
|
|
385 |
|
|
/* The number of small pages currently allocated in this zone. */
|
386 |
|
|
size_t n_small_pages;
|
387 |
|
|
|
388 |
|
|
/* Bytes allocated at the end of the last collection. */
|
389 |
|
|
size_t allocated_last_gc;
|
390 |
|
|
|
391 |
|
|
/* Total amount of memory mapped. */
|
392 |
|
|
size_t bytes_mapped;
|
393 |
|
|
|
394 |
|
|
/* A cache of free system pages. */
|
395 |
|
|
struct small_page_entry *free_pages;
|
396 |
|
|
|
397 |
|
|
/* Next zone in the linked list of zones. */
|
398 |
|
|
struct alloc_zone *next_zone;
|
399 |
|
|
|
400 |
|
|
/* True if this zone was collected during this collection. */
|
401 |
|
|
bool was_collected;
|
402 |
|
|
|
403 |
|
|
/* True if this zone should be destroyed after the next collection. */
|
404 |
|
|
bool dead;
|
405 |
|
|
|
406 |
|
|
#ifdef GATHER_STATISTICS
|
407 |
|
|
struct
|
408 |
|
|
{
|
409 |
|
|
/* Total GC-allocated memory. */
|
410 |
|
|
unsigned long long total_allocated;
|
411 |
|
|
/* Total overhead for GC-allocated memory. */
|
412 |
|
|
unsigned long long total_overhead;
|
413 |
|
|
|
414 |
|
|
/* Total allocations and overhead for sizes less than 32, 64 and 128.
|
415 |
|
|
These sizes are interesting because they are typical cache line
|
416 |
|
|
sizes. */
|
417 |
|
|
|
418 |
|
|
unsigned long long total_allocated_under32;
|
419 |
|
|
unsigned long long total_overhead_under32;
|
420 |
|
|
|
421 |
|
|
unsigned long long total_allocated_under64;
|
422 |
|
|
unsigned long long total_overhead_under64;
|
423 |
|
|
|
424 |
|
|
unsigned long long total_allocated_under128;
|
425 |
|
|
unsigned long long total_overhead_under128;
|
426 |
|
|
} stats;
|
427 |
|
|
#endif
|
428 |
|
|
} main_zone;
|
429 |
|
|
|
430 |
|
|
/* Some default zones. */
|
431 |
|
|
struct alloc_zone rtl_zone;
|
432 |
|
|
struct alloc_zone tree_zone;
|
433 |
|
|
struct alloc_zone tree_id_zone;
|
434 |
|
|
|
435 |
|
|
/* The PCH zone does not need a normal zone structure, and it does
|
436 |
|
|
not live on the linked list of zones. */
|
437 |
|
|
struct pch_zone
|
438 |
|
|
{
|
439 |
|
|
/* The start of the PCH zone. NULL if there is none. */
|
440 |
|
|
char *page;
|
441 |
|
|
|
442 |
|
|
/* The end of the PCH zone. NULL if there is none. */
|
443 |
|
|
char *end;
|
444 |
|
|
|
445 |
|
|
/* The size of the PCH zone. 0 if there is none. */
|
446 |
|
|
size_t bytes;
|
447 |
|
|
|
448 |
|
|
/* The allocation bitmap for the PCH zone. */
|
449 |
|
|
alloc_type *alloc_bits;
|
450 |
|
|
|
451 |
|
|
/* If we are currently marking, the mark bitmap for the PCH zone.
|
452 |
|
|
When it is first read in, we could avoid marking the PCH,
|
453 |
|
|
because it will not contain any pointers to GC memory outside
|
454 |
|
|
of the PCH; however, the PCH is currently mapped as writable,
|
455 |
|
|
so we must mark it in case new pointers are added. */
|
456 |
|
|
mark_type *mark_bits;
|
457 |
|
|
} pch_zone;
|
458 |
|
|
|
459 |
|
|
#ifdef USING_MMAP
|
460 |
|
|
static char *alloc_anon (char *, size_t, struct alloc_zone *);
|
461 |
|
|
#endif
|
462 |
|
|
static struct small_page_entry * alloc_small_page (struct alloc_zone *);
|
463 |
|
|
static struct large_page_entry * alloc_large_page (size_t, struct alloc_zone *);
|
464 |
|
|
static void free_chunk (char *, size_t, struct alloc_zone *);
|
465 |
|
|
static void free_small_page (struct small_page_entry *);
|
466 |
|
|
static void free_large_page (struct large_page_entry *);
|
467 |
|
|
static void release_pages (struct alloc_zone *);
|
468 |
|
|
static void sweep_pages (struct alloc_zone *);
|
469 |
|
|
static bool ggc_collect_1 (struct alloc_zone *, bool);
|
470 |
|
|
static void new_ggc_zone_1 (struct alloc_zone *, const char *);
|
471 |
|
|
|
472 |
|
|
/* Traverse the page table and find the entry for a page.
|
473 |
|
|
Die (probably) if the object wasn't allocated via GC. */
|
474 |
|
|
|
475 |
|
|
static inline page_entry *
|
476 |
|
|
lookup_page_table_entry (const void *p)
|
477 |
|
|
{
|
478 |
|
|
page_entry ***base;
|
479 |
|
|
size_t L1, L2;
|
480 |
|
|
|
481 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
482 |
|
|
base = &G.lookup[0];
|
483 |
|
|
#else
|
484 |
|
|
page_table table = G.lookup;
|
485 |
|
|
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
486 |
|
|
while (table->high_bits != high_bits)
|
487 |
|
|
table = table->next;
|
488 |
|
|
base = &table->table[0];
|
489 |
|
|
#endif
|
490 |
|
|
|
491 |
|
|
/* Extract the level 1 and 2 indices. */
|
492 |
|
|
L1 = LOOKUP_L1 (p);
|
493 |
|
|
L2 = LOOKUP_L2 (p);
|
494 |
|
|
|
495 |
|
|
return base[L1][L2];
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
/* Traverse the page table and find the entry for a page.
|
499 |
|
|
Return NULL if the object wasn't allocated via the GC. */
|
500 |
|
|
|
501 |
|
|
static inline page_entry *
|
502 |
|
|
lookup_page_table_if_allocated (const void *p)
|
503 |
|
|
{
|
504 |
|
|
page_entry ***base;
|
505 |
|
|
size_t L1, L2;
|
506 |
|
|
|
507 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
508 |
|
|
base = &G.lookup[0];
|
509 |
|
|
#else
|
510 |
|
|
page_table table = G.lookup;
|
511 |
|
|
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
512 |
|
|
while (1)
|
513 |
|
|
{
|
514 |
|
|
if (table == NULL)
|
515 |
|
|
return NULL;
|
516 |
|
|
if (table->high_bits == high_bits)
|
517 |
|
|
break;
|
518 |
|
|
table = table->next;
|
519 |
|
|
}
|
520 |
|
|
base = &table->table[0];
|
521 |
|
|
#endif
|
522 |
|
|
|
523 |
|
|
/* Extract the level 1 and 2 indices. */
|
524 |
|
|
L1 = LOOKUP_L1 (p);
|
525 |
|
|
if (! base[L1])
|
526 |
|
|
return NULL;
|
527 |
|
|
|
528 |
|
|
L2 = LOOKUP_L2 (p);
|
529 |
|
|
if (L2 >= PAGE_L2_SIZE)
|
530 |
|
|
return NULL;
|
531 |
|
|
/* We might have a page entry which does not correspond exactly to a
|
532 |
|
|
system page. */
|
533 |
|
|
if (base[L1][L2] && (const char *) p < base[L1][L2]->page)
|
534 |
|
|
return NULL;
|
535 |
|
|
|
536 |
|
|
return base[L1][L2];
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
/* Set the page table entry for the page that starts at P. If ENTRY
|
540 |
|
|
is NULL, clear the entry. */
|
541 |
|
|
|
542 |
|
|
static void
|
543 |
|
|
set_page_table_entry (void *p, page_entry *entry)
|
544 |
|
|
{
|
545 |
|
|
page_entry ***base;
|
546 |
|
|
size_t L1, L2;
|
547 |
|
|
|
548 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
549 |
|
|
base = &G.lookup[0];
|
550 |
|
|
#else
|
551 |
|
|
page_table table;
|
552 |
|
|
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
553 |
|
|
for (table = G.lookup; table; table = table->next)
|
554 |
|
|
if (table->high_bits == high_bits)
|
555 |
|
|
goto found;
|
556 |
|
|
|
557 |
|
|
/* Not found -- allocate a new table. */
|
558 |
|
|
table = XCNEW (struct page_table_chain);
|
559 |
|
|
table->next = G.lookup;
|
560 |
|
|
table->high_bits = high_bits;
|
561 |
|
|
G.lookup = table;
|
562 |
|
|
found:
|
563 |
|
|
base = &table->table[0];
|
564 |
|
|
#endif
|
565 |
|
|
|
566 |
|
|
/* Extract the level 1 and 2 indices. */
|
567 |
|
|
L1 = LOOKUP_L1 (p);
|
568 |
|
|
L2 = LOOKUP_L2 (p);
|
569 |
|
|
|
570 |
|
|
if (base[L1] == NULL)
|
571 |
|
|
base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
|
572 |
|
|
|
573 |
|
|
base[L1][L2] = entry;
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
/* Find the page table entry associated with OBJECT. */
|
577 |
|
|
|
578 |
|
|
static inline struct page_entry *
|
579 |
|
|
zone_get_object_page (const void *object)
|
580 |
|
|
{
|
581 |
|
|
return lookup_page_table_entry (object);
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
/* Find which element of the alloc_bits array OBJECT should be
|
585 |
|
|
recorded in. */
|
586 |
|
|
static inline unsigned int
|
587 |
|
|
zone_get_object_alloc_word (const void *object)
|
588 |
|
|
{
|
589 |
|
|
return (((size_t) object & (GGC_PAGE_SIZE - 1))
|
590 |
|
|
/ (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
/* Find which bit of the appropriate word in the alloc_bits array
|
594 |
|
|
OBJECT should be recorded in. */
|
595 |
|
|
static inline unsigned int
|
596 |
|
|
zone_get_object_alloc_bit (const void *object)
|
597 |
|
|
{
|
598 |
|
|
return (((size_t) object / BYTES_PER_ALLOC_BIT)
|
599 |
|
|
% (8 * sizeof (alloc_type)));
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
/* Find which element of the mark_bits array OBJECT should be recorded
|
603 |
|
|
in. */
|
604 |
|
|
static inline unsigned int
|
605 |
|
|
zone_get_object_mark_word (const void *object)
|
606 |
|
|
{
|
607 |
|
|
return (((size_t) object & (GGC_PAGE_SIZE - 1))
|
608 |
|
|
/ (8 * sizeof (mark_type) * BYTES_PER_MARK_BIT));
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
/* Find which bit of the appropriate word in the mark_bits array
|
612 |
|
|
OBJECT should be recorded in. */
|
613 |
|
|
static inline unsigned int
|
614 |
|
|
zone_get_object_mark_bit (const void *object)
|
615 |
|
|
{
|
616 |
|
|
return (((size_t) object / BYTES_PER_MARK_BIT)
|
617 |
|
|
% (8 * sizeof (mark_type)));
|
618 |
|
|
}
|
619 |
|
|
|
620 |
|
|
/* Set the allocation bit corresponding to OBJECT in its page's
|
621 |
|
|
bitmap. Used to split this object from the preceding one. */
|
622 |
|
|
static inline void
|
623 |
|
|
zone_set_object_alloc_bit (const void *object)
|
624 |
|
|
{
|
625 |
|
|
struct small_page_entry *page
|
626 |
|
|
= (struct small_page_entry *) zone_get_object_page (object);
|
627 |
|
|
unsigned int start_word = zone_get_object_alloc_word (object);
|
628 |
|
|
unsigned int start_bit = zone_get_object_alloc_bit (object);
|
629 |
|
|
|
630 |
|
|
page->alloc_bits[start_word] |= 1L << start_bit;
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
/* Clear the allocation bit corresponding to OBJECT in PAGE's
|
634 |
|
|
bitmap. Used to coalesce this object with the preceding
|
635 |
|
|
one. */
|
636 |
|
|
static inline void
|
637 |
|
|
zone_clear_object_alloc_bit (struct small_page_entry *page,
|
638 |
|
|
const void *object)
|
639 |
|
|
{
|
640 |
|
|
unsigned int start_word = zone_get_object_alloc_word (object);
|
641 |
|
|
unsigned int start_bit = zone_get_object_alloc_bit (object);
|
642 |
|
|
|
643 |
|
|
/* Would xor be quicker? */
|
644 |
|
|
page->alloc_bits[start_word] &= ~(1L << start_bit);
|
645 |
|
|
}
|
646 |
|
|
|
647 |
|
|
/* Find the size of the object which starts at START_WORD and
|
648 |
|
|
START_BIT in ALLOC_BITS, which is at most MAX_SIZE bytes.
|
649 |
|
|
Helper function for ggc_get_size and zone_find_object_size. */
|
650 |
|
|
|
651 |
|
|
static inline size_t
|
652 |
|
|
zone_object_size_1 (alloc_type *alloc_bits,
|
653 |
|
|
size_t start_word, size_t start_bit,
|
654 |
|
|
size_t max_size)
|
655 |
|
|
{
|
656 |
|
|
size_t size;
|
657 |
|
|
alloc_type alloc_word;
|
658 |
|
|
int indx;
|
659 |
|
|
|
660 |
|
|
/* Load the first word. */
|
661 |
|
|
alloc_word = alloc_bits[start_word++];
|
662 |
|
|
|
663 |
|
|
/* If that was the last bit in this word, we'll want to continue
|
664 |
|
|
with the next word. Otherwise, handle the rest of this word. */
|
665 |
|
|
if (start_bit)
|
666 |
|
|
{
|
667 |
|
|
indx = alloc_ffs (alloc_word >> start_bit);
|
668 |
|
|
if (indx)
|
669 |
|
|
/* indx is 1-based. We started at the bit after the object's
|
670 |
|
|
start, but we also ended at the bit after the object's end.
|
671 |
|
|
It cancels out. */
|
672 |
|
|
return indx * BYTES_PER_ALLOC_BIT;
|
673 |
|
|
|
674 |
|
|
/* The extra 1 accounts for the starting unit, before start_bit. */
|
675 |
|
|
size = (sizeof (alloc_type) * 8 - start_bit + 1) * BYTES_PER_ALLOC_BIT;
|
676 |
|
|
|
677 |
|
|
if (size >= max_size)
|
678 |
|
|
return max_size;
|
679 |
|
|
|
680 |
|
|
alloc_word = alloc_bits[start_word++];
|
681 |
|
|
}
|
682 |
|
|
else
|
683 |
|
|
size = BYTES_PER_ALLOC_BIT;
|
684 |
|
|
|
685 |
|
|
while (alloc_word == 0)
|
686 |
|
|
{
|
687 |
|
|
size += sizeof (alloc_type) * 8 * BYTES_PER_ALLOC_BIT;
|
688 |
|
|
if (size >= max_size)
|
689 |
|
|
return max_size;
|
690 |
|
|
alloc_word = alloc_bits[start_word++];
|
691 |
|
|
}
|
692 |
|
|
|
693 |
|
|
indx = alloc_ffs (alloc_word);
|
694 |
|
|
return size + (indx - 1) * BYTES_PER_ALLOC_BIT;
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
/* Find the size of OBJECT on small page PAGE. */
|
698 |
|
|
|
699 |
|
|
static inline size_t
|
700 |
|
|
zone_find_object_size (struct small_page_entry *page,
|
701 |
|
|
const void *object)
|
702 |
|
|
{
|
703 |
|
|
const char *object_midptr = (const char *) object + BYTES_PER_ALLOC_BIT;
|
704 |
|
|
unsigned int start_word = zone_get_object_alloc_word (object_midptr);
|
705 |
|
|
unsigned int start_bit = zone_get_object_alloc_bit (object_midptr);
|
706 |
|
|
size_t max_size = (page->common.page + SMALL_PAGE_SIZE
|
707 |
|
|
- (const char *) object);
|
708 |
|
|
|
709 |
|
|
return zone_object_size_1 (page->alloc_bits, start_word, start_bit,
|
710 |
|
|
max_size);
|
711 |
|
|
}
|
712 |
|
|
|
713 |
|
|
/* highest_bit assumes that alloc_type is 32 bits. */
|
714 |
|
|
extern char check_alloc_type_size[(sizeof (alloc_type) == 4) ? 1 : -1];
|
715 |
|
|
|
716 |
|
|
/* Find the highest set bit in VALUE. Returns the bit number of that
|
717 |
|
|
bit, using the same values as ffs. */
|
718 |
|
|
static inline alloc_type
|
719 |
|
|
highest_bit (alloc_type value)
|
720 |
|
|
{
|
721 |
|
|
/* This also assumes that alloc_type is unsigned. */
|
722 |
|
|
value |= value >> 1;
|
723 |
|
|
value |= value >> 2;
|
724 |
|
|
value |= value >> 4;
|
725 |
|
|
value |= value >> 8;
|
726 |
|
|
value |= value >> 16;
|
727 |
|
|
value = value ^ (value >> 1);
|
728 |
|
|
return alloc_ffs (value);
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
/* Find the offset from the start of an object to P, which may point
|
732 |
|
|
into the interior of the object. */
|
733 |
|
|
|
734 |
|
|
static unsigned long
|
735 |
|
|
zone_find_object_offset (alloc_type *alloc_bits, size_t start_word,
|
736 |
|
|
size_t start_bit)
|
737 |
|
|
{
|
738 |
|
|
unsigned int offset_in_bits;
|
739 |
|
|
alloc_type alloc_word = alloc_bits[start_word];
|
740 |
|
|
|
741 |
|
|
/* Mask off any bits after the initial bit, but make sure to include
|
742 |
|
|
the initial bit in the result. Note that START_BIT is
|
743 |
|
|
0-based. */
|
744 |
|
|
if (start_bit < 8 * sizeof (alloc_type) - 1)
|
745 |
|
|
alloc_word &= (1 << (start_bit + 1)) - 1;
|
746 |
|
|
offset_in_bits = start_bit;
|
747 |
|
|
|
748 |
|
|
/* Search for the start of the object. */
|
749 |
|
|
while (alloc_word == 0 && start_word > 0)
|
750 |
|
|
{
|
751 |
|
|
alloc_word = alloc_bits[--start_word];
|
752 |
|
|
offset_in_bits += 8 * sizeof (alloc_type);
|
753 |
|
|
}
|
754 |
|
|
/* We must always find a set bit. */
|
755 |
|
|
gcc_assert (alloc_word != 0);
|
756 |
|
|
/* Note that the result of highest_bit is 1-based. */
|
757 |
|
|
offset_in_bits -= highest_bit (alloc_word) - 1;
|
758 |
|
|
|
759 |
|
|
return BYTES_PER_ALLOC_BIT * offset_in_bits;
|
760 |
|
|
}
|
761 |
|
|
|
762 |
|
|
/* Allocate the mark bits for every zone, and set the pointers on each
|
763 |
|
|
page. */
|
764 |
|
|
static void
|
765 |
|
|
zone_allocate_marks (void)
|
766 |
|
|
{
|
767 |
|
|
struct alloc_zone *zone;
|
768 |
|
|
|
769 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
770 |
|
|
{
|
771 |
|
|
struct small_page_entry *page;
|
772 |
|
|
mark_type *cur_marks;
|
773 |
|
|
size_t mark_words, mark_words_per_page;
|
774 |
|
|
#ifdef ENABLE_CHECKING
|
775 |
|
|
size_t n = 0;
|
776 |
|
|
#endif
|
777 |
|
|
|
778 |
|
|
mark_words_per_page
|
779 |
|
|
= (GGC_PAGE_SIZE + BYTES_PER_MARK_WORD - 1) / BYTES_PER_MARK_WORD;
|
780 |
|
|
mark_words = zone->n_small_pages * mark_words_per_page;
|
781 |
|
|
zone->mark_bits = (mark_type *) xcalloc (sizeof (mark_type),
|
782 |
|
|
mark_words);
|
783 |
|
|
cur_marks = zone->mark_bits;
|
784 |
|
|
for (page = zone->pages; page; page = page->next)
|
785 |
|
|
{
|
786 |
|
|
page->mark_bits = cur_marks;
|
787 |
|
|
cur_marks += mark_words_per_page;
|
788 |
|
|
#ifdef ENABLE_CHECKING
|
789 |
|
|
n++;
|
790 |
|
|
#endif
|
791 |
|
|
}
|
792 |
|
|
gcc_checking_assert (n == zone->n_small_pages);
|
793 |
|
|
}
|
794 |
|
|
|
795 |
|
|
/* We don't collect the PCH zone, but we do have to mark it
|
796 |
|
|
(for now). */
|
797 |
|
|
if (pch_zone.bytes)
|
798 |
|
|
pch_zone.mark_bits
|
799 |
|
|
= (mark_type *) xcalloc (sizeof (mark_type),
|
800 |
|
|
CEIL (pch_zone.bytes, BYTES_PER_MARK_WORD));
|
801 |
|
|
}
|
802 |
|
|
|
803 |
|
|
/* After marking and sweeping, release the memory used for mark bits. */
|
804 |
|
|
static void
|
805 |
|
|
zone_free_marks (void)
|
806 |
|
|
{
|
807 |
|
|
struct alloc_zone *zone;
|
808 |
|
|
|
809 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
810 |
|
|
if (zone->mark_bits)
|
811 |
|
|
{
|
812 |
|
|
free (zone->mark_bits);
|
813 |
|
|
zone->mark_bits = NULL;
|
814 |
|
|
}
|
815 |
|
|
|
816 |
|
|
if (pch_zone.bytes)
|
817 |
|
|
{
|
818 |
|
|
free (pch_zone.mark_bits);
|
819 |
|
|
pch_zone.mark_bits = NULL;
|
820 |
|
|
}
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
#ifdef USING_MMAP
|
824 |
|
|
/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
|
825 |
|
|
(if non-null). The ifdef structure here is intended to cause a
|
826 |
|
|
compile error unless exactly one of the HAVE_* is defined. */
|
827 |
|
|
|
828 |
|
|
static inline char *
|
829 |
|
|
alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, struct alloc_zone *zone)
|
830 |
|
|
{
|
831 |
|
|
#ifdef HAVE_MMAP_ANON
|
832 |
|
|
char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
|
833 |
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
834 |
|
|
#endif
|
835 |
|
|
#ifdef HAVE_MMAP_DEV_ZERO
|
836 |
|
|
char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
|
837 |
|
|
MAP_PRIVATE, G.dev_zero_fd, 0);
|
838 |
|
|
#endif
|
839 |
|
|
|
840 |
|
|
if (page == (char *) MAP_FAILED)
|
841 |
|
|
{
|
842 |
|
|
perror ("virtual memory exhausted");
|
843 |
|
|
exit (FATAL_EXIT_CODE);
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
/* Remember that we allocated this memory. */
|
847 |
|
|
zone->bytes_mapped += size;
|
848 |
|
|
|
849 |
|
|
/* Pretend we don't have access to the allocated pages. We'll enable
|
850 |
|
|
access to smaller pieces of the area in ggc_internal_alloc. Discard the
|
851 |
|
|
handle to avoid handle leak. */
|
852 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
|
853 |
|
|
|
854 |
|
|
return page;
|
855 |
|
|
}
|
856 |
|
|
#endif
|
857 |
|
|
|
858 |
|
|
/* Allocate a new page for allocating small objects in ZONE, and
|
859 |
|
|
return an entry for it. */
|
860 |
|
|
|
861 |
|
|
static struct small_page_entry *
|
862 |
|
|
alloc_small_page (struct alloc_zone *zone)
|
863 |
|
|
{
|
864 |
|
|
struct small_page_entry *entry;
|
865 |
|
|
|
866 |
|
|
/* Check the list of free pages for one we can use. */
|
867 |
|
|
entry = zone->free_pages;
|
868 |
|
|
if (entry != NULL)
|
869 |
|
|
{
|
870 |
|
|
/* Recycle the allocated memory from this page ... */
|
871 |
|
|
zone->free_pages = entry->next;
|
872 |
|
|
}
|
873 |
|
|
else
|
874 |
|
|
{
|
875 |
|
|
/* We want just one page. Allocate a bunch of them and put the
|
876 |
|
|
extras on the freelist. (Can only do this optimization with
|
877 |
|
|
mmap for backing store.) */
|
878 |
|
|
struct small_page_entry *e, *f = zone->free_pages;
|
879 |
|
|
int i;
|
880 |
|
|
char *page;
|
881 |
|
|
|
882 |
|
|
page = alloc_anon (NULL, GGC_PAGE_SIZE * G.quire_size, zone);
|
883 |
|
|
|
884 |
|
|
/* This loop counts down so that the chain will be in ascending
|
885 |
|
|
memory order. */
|
886 |
|
|
for (i = G.quire_size - 1; i >= 1; i--)
|
887 |
|
|
{
|
888 |
|
|
e = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
|
889 |
|
|
e->common.page = page + (i << GGC_PAGE_SHIFT);
|
890 |
|
|
e->common.zone = zone;
|
891 |
|
|
e->next = f;
|
892 |
|
|
f = e;
|
893 |
|
|
set_page_table_entry (e->common.page, &e->common);
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
zone->free_pages = f;
|
897 |
|
|
|
898 |
|
|
entry = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
|
899 |
|
|
entry->common.page = page;
|
900 |
|
|
entry->common.zone = zone;
|
901 |
|
|
set_page_table_entry (page, &entry->common);
|
902 |
|
|
}
|
903 |
|
|
|
904 |
|
|
zone->n_small_pages++;
|
905 |
|
|
|
906 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
907 |
|
|
fprintf (G.debug_file,
|
908 |
|
|
"Allocating %s page at %p, data %p-%p\n",
|
909 |
|
|
entry->common.zone->name, (PTR) entry, entry->common.page,
|
910 |
|
|
entry->common.page + SMALL_PAGE_SIZE - 1);
|
911 |
|
|
|
912 |
|
|
return entry;
|
913 |
|
|
}
|
914 |
|
|
|
915 |
|
|
/* Allocate a large page of size SIZE in ZONE. */
|
916 |
|
|
|
917 |
|
|
static struct large_page_entry *
|
918 |
|
|
alloc_large_page (size_t size, struct alloc_zone *zone)
|
919 |
|
|
{
|
920 |
|
|
struct large_page_entry *entry;
|
921 |
|
|
char *page;
|
922 |
|
|
size_t needed_size;
|
923 |
|
|
|
924 |
|
|
needed_size = size + sizeof (struct large_page_entry);
|
925 |
|
|
page = XNEWVAR (char, needed_size);
|
926 |
|
|
|
927 |
|
|
entry = (struct large_page_entry *) page;
|
928 |
|
|
|
929 |
|
|
entry->next = NULL;
|
930 |
|
|
entry->common.page = page + sizeof (struct large_page_entry);
|
931 |
|
|
entry->common.large_p = true;
|
932 |
|
|
entry->common.pch_p = false;
|
933 |
|
|
entry->common.zone = zone;
|
934 |
|
|
#ifdef GATHER_STATISTICS
|
935 |
|
|
entry->common.survived = 0;
|
936 |
|
|
#endif
|
937 |
|
|
entry->mark_p = false;
|
938 |
|
|
entry->bytes = size;
|
939 |
|
|
entry->prev = NULL;
|
940 |
|
|
|
941 |
|
|
set_page_table_entry (entry->common.page, &entry->common);
|
942 |
|
|
|
943 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
944 |
|
|
fprintf (G.debug_file,
|
945 |
|
|
"Allocating %s large page at %p, data %p-%p\n",
|
946 |
|
|
entry->common.zone->name, (PTR) entry, entry->common.page,
|
947 |
|
|
entry->common.page + SMALL_PAGE_SIZE - 1);
|
948 |
|
|
|
949 |
|
|
return entry;
|
950 |
|
|
}
|
951 |
|
|
|
952 |
|
|
|
953 |
|
|
/* For a page that is no longer needed, put it on the free page list. */
|
954 |
|
|
|
955 |
|
|
static inline void
|
956 |
|
|
free_small_page (struct small_page_entry *entry)
|
957 |
|
|
{
|
958 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
959 |
|
|
fprintf (G.debug_file,
|
960 |
|
|
"Deallocating %s page at %p, data %p-%p\n",
|
961 |
|
|
entry->common.zone->name, (PTR) entry,
|
962 |
|
|
entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);
|
963 |
|
|
|
964 |
|
|
gcc_assert (!entry->common.large_p);
|
965 |
|
|
|
966 |
|
|
/* Mark the page as inaccessible. Discard the handle to
|
967 |
|
|
avoid handle leak. */
|
968 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->common.page,
|
969 |
|
|
SMALL_PAGE_SIZE));
|
970 |
|
|
|
971 |
|
|
entry->next = entry->common.zone->free_pages;
|
972 |
|
|
entry->common.zone->free_pages = entry;
|
973 |
|
|
entry->common.zone->n_small_pages--;
|
974 |
|
|
}
|
975 |
|
|
|
976 |
|
|
/* Release a large page that is no longer needed. */
|
977 |
|
|
|
978 |
|
|
static inline void
|
979 |
|
|
free_large_page (struct large_page_entry *entry)
|
980 |
|
|
{
|
981 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
982 |
|
|
fprintf (G.debug_file,
|
983 |
|
|
"Deallocating %s page at %p, data %p-%p\n",
|
984 |
|
|
entry->common.zone->name, (PTR) entry,
|
985 |
|
|
entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);
|
986 |
|
|
|
987 |
|
|
gcc_assert (entry->common.large_p);
|
988 |
|
|
|
989 |
|
|
set_page_table_entry (entry->common.page, NULL);
|
990 |
|
|
free (entry);
|
991 |
|
|
}
|
992 |
|
|
|
993 |
|
|
/* Release the free page cache to the system. */
|
994 |
|
|
|
995 |
|
|
static void
|
996 |
|
|
release_pages (struct alloc_zone *zone)
|
997 |
|
|
{
|
998 |
|
|
#ifdef USING_MMAP
|
999 |
|
|
struct small_page_entry *p, *next;
|
1000 |
|
|
char *start;
|
1001 |
|
|
size_t len;
|
1002 |
|
|
|
1003 |
|
|
/* Gather up adjacent pages so they are unmapped together. */
|
1004 |
|
|
p = zone->free_pages;
|
1005 |
|
|
|
1006 |
|
|
while (p)
|
1007 |
|
|
{
|
1008 |
|
|
start = p->common.page;
|
1009 |
|
|
next = p->next;
|
1010 |
|
|
len = SMALL_PAGE_SIZE;
|
1011 |
|
|
set_page_table_entry (p->common.page, NULL);
|
1012 |
|
|
p = next;
|
1013 |
|
|
|
1014 |
|
|
while (p && p->common.page == start + len)
|
1015 |
|
|
{
|
1016 |
|
|
next = p->next;
|
1017 |
|
|
len += SMALL_PAGE_SIZE;
|
1018 |
|
|
set_page_table_entry (p->common.page, NULL);
|
1019 |
|
|
p = next;
|
1020 |
|
|
}
|
1021 |
|
|
|
1022 |
|
|
munmap (start, len);
|
1023 |
|
|
zone->bytes_mapped -= len;
|
1024 |
|
|
}
|
1025 |
|
|
|
1026 |
|
|
zone->free_pages = NULL;
|
1027 |
|
|
#endif
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
/* Place the block at PTR of size SIZE on the free list for ZONE. */
|
1031 |
|
|
|
1032 |
|
|
static inline void
|
1033 |
|
|
free_chunk (char *ptr, size_t size, struct alloc_zone *zone)
|
1034 |
|
|
{
|
1035 |
|
|
struct alloc_chunk *chunk = (struct alloc_chunk *) ptr;
|
1036 |
|
|
size_t bin = 0;
|
1037 |
|
|
|
1038 |
|
|
bin = SIZE_BIN_DOWN (size);
|
1039 |
|
|
gcc_assert (bin != 0);
|
1040 |
|
|
if (bin > NUM_FREE_BINS)
|
1041 |
|
|
{
|
1042 |
|
|
bin = 0;
|
1043 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (chunk,
|
1044 |
|
|
sizeof (struct
|
1045 |
|
|
alloc_chunk)));
|
1046 |
|
|
chunk->size = size;
|
1047 |
|
|
chunk->next_free = zone->free_chunks[bin];
|
1048 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (ptr
|
1049 |
|
|
+ sizeof (struct
|
1050 |
|
|
alloc_chunk),
|
1051 |
|
|
size
|
1052 |
|
|
- sizeof (struct
|
1053 |
|
|
alloc_chunk)));
|
1054 |
|
|
}
|
1055 |
|
|
else
|
1056 |
|
|
{
|
1057 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (chunk,
|
1058 |
|
|
sizeof (struct
|
1059 |
|
|
alloc_chunk *)));
|
1060 |
|
|
chunk->next_free = zone->free_chunks[bin];
|
1061 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (ptr
|
1062 |
|
|
+ sizeof (struct
|
1063 |
|
|
alloc_chunk *),
|
1064 |
|
|
size
|
1065 |
|
|
- sizeof (struct
|
1066 |
|
|
alloc_chunk *)));
|
1067 |
|
|
}
|
1068 |
|
|
|
1069 |
|
|
zone->free_chunks[bin] = chunk;
|
1070 |
|
|
if (bin > zone->high_free_bin)
|
1071 |
|
|
zone->high_free_bin = bin;
|
1072 |
|
|
if (GGC_DEBUG_LEVEL >= 3)
|
1073 |
|
|
fprintf (G.debug_file, "Deallocating object, chunk=%p\n", (void *)chunk);
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
/* For a given size of memory requested for allocation, return the
|
1077 |
|
|
actual size that is going to be allocated. */
|
1078 |
|
|
|
1079 |
|
|
size_t
|
1080 |
|
|
ggc_round_alloc_size (size_t requested_size)
|
1081 |
|
|
{
|
1082 |
|
|
size_t size;
|
1083 |
|
|
|
1084 |
|
|
/* Make sure that zero-sized allocations get a unique and freeable
|
1085 |
|
|
pointer. */
|
1086 |
|
|
if (requested_size == 0)
|
1087 |
|
|
size = MAX_ALIGNMENT;
|
1088 |
|
|
else
|
1089 |
|
|
size = (requested_size + MAX_ALIGNMENT - 1) & -MAX_ALIGNMENT;
|
1090 |
|
|
|
1091 |
|
|
return size;
|
1092 |
|
|
}
|
1093 |
|
|
|
1094 |
|
|
/* Allocate a chunk of memory of at least ORIG_SIZE bytes, in ZONE. */
|
1095 |
|
|
|
1096 |
|
|
void *
|
1097 |
|
|
ggc_internal_alloc_zone_stat (size_t orig_size, struct alloc_zone *zone
|
1098 |
|
|
MEM_STAT_DECL)
|
1099 |
|
|
{
|
1100 |
|
|
size_t bin;
|
1101 |
|
|
size_t csize;
|
1102 |
|
|
struct small_page_entry *entry;
|
1103 |
|
|
struct alloc_chunk *chunk, **pp;
|
1104 |
|
|
void *result;
|
1105 |
|
|
size_t size = ggc_round_alloc_size (orig_size);
|
1106 |
|
|
|
1107 |
|
|
/* Try to allocate the object from several different sources. Each
|
1108 |
|
|
of these cases is responsible for setting RESULT and SIZE to
|
1109 |
|
|
describe the allocated block, before jumping to FOUND. If a
|
1110 |
|
|
chunk is split, the allocate bit for the new chunk should also be
|
1111 |
|
|
set.
|
1112 |
|
|
|
1113 |
|
|
Large objects are handled specially. However, they'll just fail
|
1114 |
|
|
the next couple of conditions, so we can wait to check for them
|
1115 |
|
|
below. The large object case is relatively rare (< 1%), so this
|
1116 |
|
|
is a win. */
|
1117 |
|
|
|
1118 |
|
|
/* First try to split the last chunk we allocated. For best
|
1119 |
|
|
fragmentation behavior it would be better to look for a
|
1120 |
|
|
free bin of the appropriate size for a small object. However,
|
1121 |
|
|
we're unlikely (1% - 7%) to find one, and this gives better
|
1122 |
|
|
locality behavior anyway. This case handles the lion's share
|
1123 |
|
|
of all calls to this function. */
|
1124 |
|
|
if (size <= zone->cached_free_size)
|
1125 |
|
|
{
|
1126 |
|
|
result = zone->cached_free;
|
1127 |
|
|
|
1128 |
|
|
zone->cached_free_size -= size;
|
1129 |
|
|
if (zone->cached_free_size)
|
1130 |
|
|
{
|
1131 |
|
|
zone->cached_free += size;
|
1132 |
|
|
zone_set_object_alloc_bit (zone->cached_free);
|
1133 |
|
|
}
|
1134 |
|
|
|
1135 |
|
|
goto found;
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
/* Next, try to find a free bin of the exactly correct size. */
|
1139 |
|
|
|
1140 |
|
|
/* We want to round SIZE up, rather than down, but we know it's
|
1141 |
|
|
already aligned to at least FREE_BIN_DELTA, so we can just
|
1142 |
|
|
shift. */
|
1143 |
|
|
bin = SIZE_BIN_DOWN (size);
|
1144 |
|
|
|
1145 |
|
|
if (bin <= NUM_FREE_BINS
|
1146 |
|
|
&& (chunk = zone->free_chunks[bin]) != NULL)
|
1147 |
|
|
{
|
1148 |
|
|
/* We have a chunk of the right size. Pull it off the free list
|
1149 |
|
|
and use it. */
|
1150 |
|
|
|
1151 |
|
|
zone->free_chunks[bin] = chunk->next_free;
|
1152 |
|
|
|
1153 |
|
|
/* NOTE: SIZE is only guaranteed to be right if MAX_ALIGNMENT
|
1154 |
|
|
== FREE_BIN_DELTA. */
|
1155 |
|
|
result = chunk;
|
1156 |
|
|
|
1157 |
|
|
/* The allocation bits are already set correctly. HIGH_FREE_BIN
|
1158 |
|
|
may now be wrong, if this was the last chunk in the high bin.
|
1159 |
|
|
Rather than fixing it up now, wait until we need to search
|
1160 |
|
|
the free bins. */
|
1161 |
|
|
|
1162 |
|
|
goto found;
|
1163 |
|
|
}
|
1164 |
|
|
|
1165 |
|
|
/* Next, if there wasn't a chunk of the ideal size, look for a chunk
|
1166 |
|
|
to split. We can find one in the too-big bin, or in the largest
|
1167 |
|
|
sized bin with a chunk in it. Try the largest normal-sized bin
|
1168 |
|
|
first. */
|
1169 |
|
|
|
1170 |
|
|
if (zone->high_free_bin > bin)
|
1171 |
|
|
{
|
1172 |
|
|
/* Find the highest numbered free bin. It will be at or below
|
1173 |
|
|
the watermark. */
|
1174 |
|
|
while (zone->high_free_bin > bin
|
1175 |
|
|
&& zone->free_chunks[zone->high_free_bin] == NULL)
|
1176 |
|
|
zone->high_free_bin--;
|
1177 |
|
|
|
1178 |
|
|
if (zone->high_free_bin > bin)
|
1179 |
|
|
{
|
1180 |
|
|
size_t tbin = zone->high_free_bin;
|
1181 |
|
|
chunk = zone->free_chunks[tbin];
|
1182 |
|
|
|
1183 |
|
|
/* Remove the chunk from its previous bin. */
|
1184 |
|
|
zone->free_chunks[tbin] = chunk->next_free;
|
1185 |
|
|
|
1186 |
|
|
result = (char *) chunk;
|
1187 |
|
|
|
1188 |
|
|
/* Save the rest of the chunk for future allocation. */
|
1189 |
|
|
if (zone->cached_free_size)
|
1190 |
|
|
free_chunk (zone->cached_free, zone->cached_free_size, zone);
|
1191 |
|
|
|
1192 |
|
|
chunk = (struct alloc_chunk *) ((char *) result + size);
|
1193 |
|
|
zone->cached_free = (char *) chunk;
|
1194 |
|
|
zone->cached_free_size = (tbin - bin) * FREE_BIN_DELTA;
|
1195 |
|
|
|
1196 |
|
|
/* Mark the new free chunk as an object, so that we can
|
1197 |
|
|
find the size of the newly allocated object. */
|
1198 |
|
|
zone_set_object_alloc_bit (chunk);
|
1199 |
|
|
|
1200 |
|
|
/* HIGH_FREE_BIN may now be wrong, if this was the last
|
1201 |
|
|
chunk in the high bin. Rather than fixing it up now,
|
1202 |
|
|
wait until we need to search the free bins. */
|
1203 |
|
|
|
1204 |
|
|
goto found;
|
1205 |
|
|
}
|
1206 |
|
|
}
|
1207 |
|
|
|
1208 |
|
|
/* Failing that, look through the "other" bucket for a chunk
|
1209 |
|
|
that is large enough. */
|
1210 |
|
|
pp = &(zone->free_chunks[0]);
|
1211 |
|
|
chunk = *pp;
|
1212 |
|
|
while (chunk && chunk->size < size)
|
1213 |
|
|
{
|
1214 |
|
|
pp = &chunk->next_free;
|
1215 |
|
|
chunk = *pp;
|
1216 |
|
|
}
|
1217 |
|
|
|
1218 |
|
|
if (chunk)
|
1219 |
|
|
{
|
1220 |
|
|
/* Remove the chunk from its previous bin. */
|
1221 |
|
|
*pp = chunk->next_free;
|
1222 |
|
|
|
1223 |
|
|
result = (char *) chunk;
|
1224 |
|
|
|
1225 |
|
|
/* Save the rest of the chunk for future allocation, if there's any
|
1226 |
|
|
left over. */
|
1227 |
|
|
csize = chunk->size;
|
1228 |
|
|
if (csize > size)
|
1229 |
|
|
{
|
1230 |
|
|
if (zone->cached_free_size)
|
1231 |
|
|
free_chunk (zone->cached_free, zone->cached_free_size, zone);
|
1232 |
|
|
|
1233 |
|
|
chunk = (struct alloc_chunk *) ((char *) result + size);
|
1234 |
|
|
zone->cached_free = (char *) chunk;
|
1235 |
|
|
zone->cached_free_size = csize - size;
|
1236 |
|
|
|
1237 |
|
|
/* Mark the new free chunk as an object. */
|
1238 |
|
|
zone_set_object_alloc_bit (chunk);
|
1239 |
|
|
}
|
1240 |
|
|
|
1241 |
|
|
goto found;
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
/* Handle large allocations. We could choose any threshold between
|
1245 |
|
|
GGC_PAGE_SIZE - sizeof (struct large_page_entry) and
|
1246 |
|
|
GGC_PAGE_SIZE. It can't be smaller, because then it wouldn't
|
1247 |
|
|
be guaranteed to have a unique entry in the lookup table. Large
|
1248 |
|
|
allocations will always fall through to here. */
|
1249 |
|
|
if (size > GGC_PAGE_SIZE)
|
1250 |
|
|
{
|
1251 |
|
|
struct large_page_entry *entry = alloc_large_page (size, zone);
|
1252 |
|
|
|
1253 |
|
|
#ifdef GATHER_STATISTICS
|
1254 |
|
|
entry->common.survived = 0;
|
1255 |
|
|
#endif
|
1256 |
|
|
|
1257 |
|
|
entry->next = zone->large_pages;
|
1258 |
|
|
if (zone->large_pages)
|
1259 |
|
|
zone->large_pages->prev = entry;
|
1260 |
|
|
zone->large_pages = entry;
|
1261 |
|
|
|
1262 |
|
|
result = entry->common.page;
|
1263 |
|
|
|
1264 |
|
|
goto found;
|
1265 |
|
|
}
|
1266 |
|
|
|
1267 |
|
|
/* Failing everything above, allocate a new small page. */
|
1268 |
|
|
|
1269 |
|
|
entry = alloc_small_page (zone);
|
1270 |
|
|
entry->next = zone->pages;
|
1271 |
|
|
zone->pages = entry;
|
1272 |
|
|
|
1273 |
|
|
/* Mark the first chunk in the new page. */
|
1274 |
|
|
entry->alloc_bits[0] = 1;
|
1275 |
|
|
|
1276 |
|
|
result = entry->common.page;
|
1277 |
|
|
if (size < SMALL_PAGE_SIZE)
|
1278 |
|
|
{
|
1279 |
|
|
if (zone->cached_free_size)
|
1280 |
|
|
free_chunk (zone->cached_free, zone->cached_free_size, zone);
|
1281 |
|
|
|
1282 |
|
|
zone->cached_free = (char *) result + size;
|
1283 |
|
|
zone->cached_free_size = SMALL_PAGE_SIZE - size;
|
1284 |
|
|
|
1285 |
|
|
/* Mark the new free chunk as an object. */
|
1286 |
|
|
zone_set_object_alloc_bit (zone->cached_free);
|
1287 |
|
|
}
|
1288 |
|
|
|
1289 |
|
|
found:
|
1290 |
|
|
|
1291 |
|
|
/* We could save TYPE in the chunk, but we don't use that for
|
1292 |
|
|
anything yet. If we wanted to, we could do it by adding it
|
1293 |
|
|
either before the beginning of the chunk or after its end,
|
1294 |
|
|
and adjusting the size and pointer appropriately. */
|
1295 |
|
|
|
1296 |
|
|
/* We'll probably write to this after we return. */
|
1297 |
|
|
prefetchw (result);
|
1298 |
|
|
|
1299 |
|
|
#ifdef ENABLE_GC_CHECKING
|
1300 |
|
|
/* `Poison' the entire allocated object. */
|
1301 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
|
1302 |
|
|
memset (result, 0xaf, size);
|
1303 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (result + orig_size,
|
1304 |
|
|
size - orig_size));
|
1305 |
|
|
#endif
|
1306 |
|
|
|
1307 |
|
|
/* Tell Valgrind that the memory is there, but its content isn't
|
1308 |
|
|
defined. The bytes at the end of the object are still marked
|
1309 |
|
|
unaccessible. */
|
1310 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, orig_size));
|
1311 |
|
|
|
1312 |
|
|
/* Keep track of how many bytes are being allocated. This
|
1313 |
|
|
information is used in deciding when to collect. */
|
1314 |
|
|
zone->allocated += size;
|
1315 |
|
|
|
1316 |
|
|
timevar_ggc_mem_total += size;
|
1317 |
|
|
|
1318 |
|
|
#ifdef GATHER_STATISTICS
|
1319 |
|
|
ggc_record_overhead (orig_size, size - orig_size, result PASS_MEM_STAT);
|
1320 |
|
|
|
1321 |
|
|
{
|
1322 |
|
|
size_t object_size = size;
|
1323 |
|
|
size_t overhead = object_size - orig_size;
|
1324 |
|
|
|
1325 |
|
|
zone->stats.total_overhead += overhead;
|
1326 |
|
|
zone->stats.total_allocated += object_size;
|
1327 |
|
|
|
1328 |
|
|
if (orig_size <= 32)
|
1329 |
|
|
{
|
1330 |
|
|
zone->stats.total_overhead_under32 += overhead;
|
1331 |
|
|
zone->stats.total_allocated_under32 += object_size;
|
1332 |
|
|
}
|
1333 |
|
|
if (orig_size <= 64)
|
1334 |
|
|
{
|
1335 |
|
|
zone->stats.total_overhead_under64 += overhead;
|
1336 |
|
|
zone->stats.total_allocated_under64 += object_size;
|
1337 |
|
|
}
|
1338 |
|
|
if (orig_size <= 128)
|
1339 |
|
|
{
|
1340 |
|
|
zone->stats.total_overhead_under128 += overhead;
|
1341 |
|
|
zone->stats.total_allocated_under128 += object_size;
|
1342 |
|
|
}
|
1343 |
|
|
}
|
1344 |
|
|
#endif
|
1345 |
|
|
|
1346 |
|
|
if (GGC_DEBUG_LEVEL >= 3)
|
1347 |
|
|
fprintf (G.debug_file, "Allocating object, size=%lu at %p\n",
|
1348 |
|
|
(unsigned long) size, result);
|
1349 |
|
|
|
1350 |
|
|
return result;
|
1351 |
|
|
}
|
1352 |
|
|
|
1353 |
|
|
#define ggc_internal_alloc_zone_pass_stat(s,z) \
|
1354 |
|
|
ggc_internal_alloc_zone_stat (s,z PASS_MEM_STAT)
|
1355 |
|
|
|
1356 |
|
|
void *
|
1357 |
|
|
ggc_internal_cleared_alloc_zone_stat (size_t orig_size,
|
1358 |
|
|
struct alloc_zone *zone MEM_STAT_DECL)
|
1359 |
|
|
{
|
1360 |
|
|
void * result = ggc_internal_alloc_zone_pass_stat (orig_size, zone);
|
1361 |
|
|
memset (result, 0, orig_size);
|
1362 |
|
|
return result;
|
1363 |
|
|
}
|
1364 |
|
|
|
1365 |
|
|
|
1366 |
|
|
/* Allocate a SIZE of chunk memory of GTE type, into an appropriate zone
|
1367 |
|
|
for that type. */
|
1368 |
|
|
|
1369 |
|
|
void *
|
1370 |
|
|
ggc_alloc_typed_stat (enum gt_types_enum gte, size_t size
|
1371 |
|
|
MEM_STAT_DECL)
|
1372 |
|
|
{
|
1373 |
|
|
switch (gte)
|
1374 |
|
|
{
|
1375 |
|
|
case gt_ggc_e_14lang_tree_node:
|
1376 |
|
|
return ggc_internal_alloc_zone_pass_stat (size, &tree_zone);
|
1377 |
|
|
|
1378 |
|
|
case gt_ggc_e_7rtx_def:
|
1379 |
|
|
return ggc_internal_alloc_zone_pass_stat (size, &rtl_zone);
|
1380 |
|
|
|
1381 |
|
|
case gt_ggc_e_9rtvec_def:
|
1382 |
|
|
return ggc_internal_alloc_zone_pass_stat (size, &rtl_zone);
|
1383 |
|
|
|
1384 |
|
|
default:
|
1385 |
|
|
return ggc_internal_alloc_zone_pass_stat (size, &main_zone);
|
1386 |
|
|
}
|
1387 |
|
|
}
|
1388 |
|
|
|
1389 |
|
|
/* Normal GC allocation simply allocates into the main zone. */
|
1390 |
|
|
|
1391 |
|
|
void *
|
1392 |
|
|
ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
|
1393 |
|
|
{
|
1394 |
|
|
return ggc_internal_alloc_zone_pass_stat (size, &main_zone);
|
1395 |
|
|
}
|
1396 |
|
|
|
1397 |
|
|
/* Poison the chunk. */
|
1398 |
|
|
#ifdef ENABLE_GC_CHECKING
|
1399 |
|
|
#define poison_region(PTR, SIZE) \
|
1400 |
|
|
do { \
|
1401 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED ((PTR), (SIZE))); \
|
1402 |
|
|
memset ((PTR), 0xa5, (SIZE)); \
|
1403 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((PTR), (SIZE))); \
|
1404 |
|
|
} while (0)
|
1405 |
|
|
#else
|
1406 |
|
|
#define poison_region(PTR, SIZE)
|
1407 |
|
|
#endif
|
1408 |
|
|
|
1409 |
|
|
/* Free the object at P. */
|
1410 |
|
|
|
1411 |
|
|
void
|
1412 |
|
|
ggc_free (void *p)
|
1413 |
|
|
{
|
1414 |
|
|
struct page_entry *page;
|
1415 |
|
|
|
1416 |
|
|
#ifdef GATHER_STATISTICS
|
1417 |
|
|
ggc_free_overhead (p);
|
1418 |
|
|
#endif
|
1419 |
|
|
|
1420 |
|
|
poison_region (p, ggc_get_size (p));
|
1421 |
|
|
|
1422 |
|
|
page = zone_get_object_page (p);
|
1423 |
|
|
|
1424 |
|
|
if (page->large_p)
|
1425 |
|
|
{
|
1426 |
|
|
struct large_page_entry *large_page
|
1427 |
|
|
= (struct large_page_entry *) page;
|
1428 |
|
|
|
1429 |
|
|
/* Remove the page from the linked list. */
|
1430 |
|
|
if (large_page->prev)
|
1431 |
|
|
large_page->prev->next = large_page->next;
|
1432 |
|
|
else
|
1433 |
|
|
{
|
1434 |
|
|
gcc_assert (large_page->common.zone->large_pages == large_page);
|
1435 |
|
|
large_page->common.zone->large_pages = large_page->next;
|
1436 |
|
|
}
|
1437 |
|
|
if (large_page->next)
|
1438 |
|
|
large_page->next->prev = large_page->prev;
|
1439 |
|
|
|
1440 |
|
|
large_page->common.zone->allocated -= large_page->bytes;
|
1441 |
|
|
|
1442 |
|
|
/* Release the memory associated with this object. */
|
1443 |
|
|
free_large_page (large_page);
|
1444 |
|
|
}
|
1445 |
|
|
else if (page->pch_p)
|
1446 |
|
|
/* Don't do anything. We won't allocate a new object from the
|
1447 |
|
|
PCH zone so there's no point in releasing anything. */
|
1448 |
|
|
;
|
1449 |
|
|
else
|
1450 |
|
|
{
|
1451 |
|
|
size_t size = ggc_get_size (p);
|
1452 |
|
|
|
1453 |
|
|
page->zone->allocated -= size;
|
1454 |
|
|
|
1455 |
|
|
/* Add the chunk to the free list. We don't bother with coalescing,
|
1456 |
|
|
since we are likely to want a chunk of this size again. */
|
1457 |
|
|
free_chunk ((char *)p, size, page->zone);
|
1458 |
|
|
}
|
1459 |
|
|
}
|
1460 |
|
|
|
1461 |
|
|
/* Mark function for strings. */
|
1462 |
|
|
|
1463 |
|
|
void
|
1464 |
|
|
gt_ggc_m_S (const void *p)
|
1465 |
|
|
{
|
1466 |
|
|
page_entry *entry;
|
1467 |
|
|
unsigned long offset;
|
1468 |
|
|
|
1469 |
|
|
if (!p)
|
1470 |
|
|
return;
|
1471 |
|
|
|
1472 |
|
|
/* Look up the page on which the object is alloced. . */
|
1473 |
|
|
entry = lookup_page_table_if_allocated (p);
|
1474 |
|
|
if (! entry)
|
1475 |
|
|
return;
|
1476 |
|
|
|
1477 |
|
|
if (entry->pch_p)
|
1478 |
|
|
{
|
1479 |
|
|
size_t alloc_word, alloc_bit, t;
|
1480 |
|
|
t = ((const char *) p - pch_zone.page) / BYTES_PER_ALLOC_BIT;
|
1481 |
|
|
alloc_word = t / (8 * sizeof (alloc_type));
|
1482 |
|
|
alloc_bit = t % (8 * sizeof (alloc_type));
|
1483 |
|
|
offset = zone_find_object_offset (pch_zone.alloc_bits, alloc_word,
|
1484 |
|
|
alloc_bit);
|
1485 |
|
|
}
|
1486 |
|
|
else if (entry->large_p)
|
1487 |
|
|
{
|
1488 |
|
|
struct large_page_entry *le = (struct large_page_entry *) entry;
|
1489 |
|
|
offset = ((const char *) p) - entry->page;
|
1490 |
|
|
gcc_assert (offset < le->bytes);
|
1491 |
|
|
}
|
1492 |
|
|
else
|
1493 |
|
|
{
|
1494 |
|
|
struct small_page_entry *se = (struct small_page_entry *) entry;
|
1495 |
|
|
unsigned int start_word = zone_get_object_alloc_word (p);
|
1496 |
|
|
unsigned int start_bit = zone_get_object_alloc_bit (p);
|
1497 |
|
|
offset = zone_find_object_offset (se->alloc_bits, start_word, start_bit);
|
1498 |
|
|
|
1499 |
|
|
/* On some platforms a char* will not necessarily line up on an
|
1500 |
|
|
allocation boundary, so we have to update the offset to
|
1501 |
|
|
account for the leftover bytes. */
|
1502 |
|
|
offset += (size_t) p % BYTES_PER_ALLOC_BIT;
|
1503 |
|
|
}
|
1504 |
|
|
|
1505 |
|
|
if (offset)
|
1506 |
|
|
{
|
1507 |
|
|
/* Here we've seen a char* which does not point to the beginning
|
1508 |
|
|
of an allocated object. We assume it points to the middle of
|
1509 |
|
|
a STRING_CST. */
|
1510 |
|
|
gcc_assert (offset == offsetof (struct tree_string, str));
|
1511 |
|
|
p = ((const char *) p) - offset;
|
1512 |
|
|
gt_ggc_mx_lang_tree_node (CONST_CAST(void *, p));
|
1513 |
|
|
return;
|
1514 |
|
|
}
|
1515 |
|
|
|
1516 |
|
|
/* Inefficient, but also unlikely to matter. */
|
1517 |
|
|
ggc_set_mark (p);
|
1518 |
|
|
}
|
1519 |
|
|
|
1520 |
|
|
/* If P is not marked, mark it and return false. Otherwise return true.
|
1521 |
|
|
P must have been allocated by the GC allocator; it mustn't point to
|
1522 |
|
|
static objects, stack variables, or memory allocated with malloc. */
|
1523 |
|
|
|
1524 |
|
|
int
|
1525 |
|
|
ggc_set_mark (const void *p)
|
1526 |
|
|
{
|
1527 |
|
|
struct page_entry *page;
|
1528 |
|
|
const char *ptr = (const char *) p;
|
1529 |
|
|
|
1530 |
|
|
page = zone_get_object_page (p);
|
1531 |
|
|
|
1532 |
|
|
if (page->pch_p)
|
1533 |
|
|
{
|
1534 |
|
|
size_t mark_word, mark_bit, offset;
|
1535 |
|
|
offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
|
1536 |
|
|
mark_word = offset / (8 * sizeof (mark_type));
|
1537 |
|
|
mark_bit = offset % (8 * sizeof (mark_type));
|
1538 |
|
|
|
1539 |
|
|
if (pch_zone.mark_bits[mark_word] & (1 << mark_bit))
|
1540 |
|
|
return 1;
|
1541 |
|
|
pch_zone.mark_bits[mark_word] |= (1 << mark_bit);
|
1542 |
|
|
}
|
1543 |
|
|
else if (page->large_p)
|
1544 |
|
|
{
|
1545 |
|
|
struct large_page_entry *large_page
|
1546 |
|
|
= (struct large_page_entry *) page;
|
1547 |
|
|
|
1548 |
|
|
if (large_page->mark_p)
|
1549 |
|
|
return 1;
|
1550 |
|
|
large_page->mark_p = true;
|
1551 |
|
|
}
|
1552 |
|
|
else
|
1553 |
|
|
{
|
1554 |
|
|
struct small_page_entry *small_page
|
1555 |
|
|
= (struct small_page_entry *) page;
|
1556 |
|
|
|
1557 |
|
|
if (small_page->mark_bits[zone_get_object_mark_word (p)]
|
1558 |
|
|
& (1 << zone_get_object_mark_bit (p)))
|
1559 |
|
|
return 1;
|
1560 |
|
|
small_page->mark_bits[zone_get_object_mark_word (p)]
|
1561 |
|
|
|= (1 << zone_get_object_mark_bit (p));
|
1562 |
|
|
}
|
1563 |
|
|
|
1564 |
|
|
if (GGC_DEBUG_LEVEL >= 4)
|
1565 |
|
|
fprintf (G.debug_file, "Marking %p\n", p);
|
1566 |
|
|
|
1567 |
|
|
return 0;
|
1568 |
|
|
}
|
1569 |
|
|
|
1570 |
|
|
/* Return 1 if P has been marked, zero otherwise.
|
1571 |
|
|
P must have been allocated by the GC allocator; it mustn't point to
|
1572 |
|
|
static objects, stack variables, or memory allocated with malloc. */
|
1573 |
|
|
|
1574 |
|
|
int
|
1575 |
|
|
ggc_marked_p (const void *p)
|
1576 |
|
|
{
|
1577 |
|
|
struct page_entry *page;
|
1578 |
|
|
const char *ptr = (const char *) p;
|
1579 |
|
|
|
1580 |
|
|
page = zone_get_object_page (p);
|
1581 |
|
|
|
1582 |
|
|
if (page->pch_p)
|
1583 |
|
|
{
|
1584 |
|
|
size_t mark_word, mark_bit, offset;
|
1585 |
|
|
offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
|
1586 |
|
|
mark_word = offset / (8 * sizeof (mark_type));
|
1587 |
|
|
mark_bit = offset % (8 * sizeof (mark_type));
|
1588 |
|
|
|
1589 |
|
|
return (pch_zone.mark_bits[mark_word] & (1 << mark_bit)) != 0;
|
1590 |
|
|
}
|
1591 |
|
|
|
1592 |
|
|
if (page->large_p)
|
1593 |
|
|
{
|
1594 |
|
|
struct large_page_entry *large_page
|
1595 |
|
|
= (struct large_page_entry *) page;
|
1596 |
|
|
|
1597 |
|
|
return large_page->mark_p;
|
1598 |
|
|
}
|
1599 |
|
|
else
|
1600 |
|
|
{
|
1601 |
|
|
struct small_page_entry *small_page
|
1602 |
|
|
= (struct small_page_entry *) page;
|
1603 |
|
|
|
1604 |
|
|
return 0 != (small_page->mark_bits[zone_get_object_mark_word (p)]
|
1605 |
|
|
& (1 << zone_get_object_mark_bit (p)));
|
1606 |
|
|
}
|
1607 |
|
|
}
|
1608 |
|
|
|
1609 |
|
|
/* Return the size of the gc-able object P. */
|
1610 |
|
|
|
1611 |
|
|
size_t
|
1612 |
|
|
ggc_get_size (const void *p)
|
1613 |
|
|
{
|
1614 |
|
|
struct page_entry *page;
|
1615 |
|
|
const char *ptr = (const char *) p;
|
1616 |
|
|
|
1617 |
|
|
page = zone_get_object_page (p);
|
1618 |
|
|
|
1619 |
|
|
if (page->pch_p)
|
1620 |
|
|
{
|
1621 |
|
|
size_t alloc_word, alloc_bit, offset, max_size;
|
1622 |
|
|
offset = (ptr - pch_zone.page) / BYTES_PER_ALLOC_BIT + 1;
|
1623 |
|
|
alloc_word = offset / (8 * sizeof (alloc_type));
|
1624 |
|
|
alloc_bit = offset % (8 * sizeof (alloc_type));
|
1625 |
|
|
max_size = pch_zone.bytes - (ptr - pch_zone.page);
|
1626 |
|
|
return zone_object_size_1 (pch_zone.alloc_bits, alloc_word, alloc_bit,
|
1627 |
|
|
max_size);
|
1628 |
|
|
}
|
1629 |
|
|
|
1630 |
|
|
if (page->large_p)
|
1631 |
|
|
return ((struct large_page_entry *)page)->bytes;
|
1632 |
|
|
else
|
1633 |
|
|
return zone_find_object_size ((struct small_page_entry *) page, p);
|
1634 |
|
|
}
|
1635 |
|
|
|
1636 |
|
|
/* Initialize the ggc-zone-mmap allocator. */
|
1637 |
|
|
void
|
1638 |
|
|
init_ggc (void)
|
1639 |
|
|
{
|
1640 |
|
|
/* The allocation size must be greater than BYTES_PER_MARK_BIT, and
|
1641 |
|
|
a multiple of both BYTES_PER_ALLOC_BIT and FREE_BIN_DELTA, for
|
1642 |
|
|
the current assumptions to hold. */
|
1643 |
|
|
|
1644 |
|
|
gcc_assert (FREE_BIN_DELTA == MAX_ALIGNMENT);
|
1645 |
|
|
|
1646 |
|
|
/* Set up the main zone by hand. */
|
1647 |
|
|
main_zone.name = "Main zone";
|
1648 |
|
|
G.zones = &main_zone;
|
1649 |
|
|
|
1650 |
|
|
/* Allocate the default zones. */
|
1651 |
|
|
new_ggc_zone_1 (&rtl_zone, "RTL zone");
|
1652 |
|
|
new_ggc_zone_1 (&tree_zone, "Tree zone");
|
1653 |
|
|
new_ggc_zone_1 (&tree_id_zone, "Tree identifier zone");
|
1654 |
|
|
|
1655 |
|
|
G.pagesize = getpagesize();
|
1656 |
|
|
G.lg_pagesize = exact_log2 (G.pagesize);
|
1657 |
|
|
G.page_mask = ~(G.pagesize - 1);
|
1658 |
|
|
|
1659 |
|
|
/* Require the system page size to be a multiple of GGC_PAGE_SIZE. */
|
1660 |
|
|
gcc_assert ((G.pagesize & (GGC_PAGE_SIZE - 1)) == 0);
|
1661 |
|
|
|
1662 |
|
|
/* Allocate 16 system pages at a time. */
|
1663 |
|
|
G.quire_size = 16 * G.pagesize / GGC_PAGE_SIZE;
|
1664 |
|
|
|
1665 |
|
|
/* Calculate the size of the allocation bitmap and other overhead. */
|
1666 |
|
|
/* Right now we allocate bits for the page header and bitmap. These
|
1667 |
|
|
are wasted, but a little tricky to eliminate. */
|
1668 |
|
|
G.small_page_overhead
|
1669 |
|
|
= PAGE_OVERHEAD + (GGC_PAGE_SIZE / BYTES_PER_ALLOC_BIT / 8);
|
1670 |
|
|
/* G.small_page_overhead = ROUND_UP (G.small_page_overhead, MAX_ALIGNMENT); */
|
1671 |
|
|
|
1672 |
|
|
#ifdef HAVE_MMAP_DEV_ZERO
|
1673 |
|
|
G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
|
1674 |
|
|
gcc_assert (G.dev_zero_fd != -1);
|
1675 |
|
|
#endif
|
1676 |
|
|
|
1677 |
|
|
#if 0
|
1678 |
|
|
G.debug_file = fopen ("ggc-mmap.debug", "w");
|
1679 |
|
|
setlinebuf (G.debug_file);
|
1680 |
|
|
#else
|
1681 |
|
|
G.debug_file = stdout;
|
1682 |
|
|
#endif
|
1683 |
|
|
|
1684 |
|
|
#ifdef USING_MMAP
|
1685 |
|
|
/* StunOS has an amazing off-by-one error for the first mmap allocation
|
1686 |
|
|
after fiddling with RLIMIT_STACK. The result, as hard as it is to
|
1687 |
|
|
believe, is an unaligned page allocation, which would cause us to
|
1688 |
|
|
hork badly if we tried to use it. */
|
1689 |
|
|
{
|
1690 |
|
|
char *p = alloc_anon (NULL, G.pagesize, &main_zone);
|
1691 |
|
|
struct small_page_entry *e;
|
1692 |
|
|
if ((size_t)p & (G.pagesize - 1))
|
1693 |
|
|
{
|
1694 |
|
|
/* How losing. Discard this one and try another. If we still
|
1695 |
|
|
can't get something useful, give up. */
|
1696 |
|
|
|
1697 |
|
|
p = alloc_anon (NULL, G.pagesize, &main_zone);
|
1698 |
|
|
gcc_assert (!((size_t)p & (G.pagesize - 1)));
|
1699 |
|
|
}
|
1700 |
|
|
|
1701 |
|
|
if (GGC_PAGE_SIZE == G.pagesize)
|
1702 |
|
|
{
|
1703 |
|
|
/* We have a good page, might as well hold onto it... */
|
1704 |
|
|
e = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
|
1705 |
|
|
e->common.page = p;
|
1706 |
|
|
e->common.zone = &main_zone;
|
1707 |
|
|
e->next = main_zone.free_pages;
|
1708 |
|
|
set_page_table_entry (e->common.page, &e->common);
|
1709 |
|
|
main_zone.free_pages = e;
|
1710 |
|
|
}
|
1711 |
|
|
else
|
1712 |
|
|
{
|
1713 |
|
|
munmap (p, G.pagesize);
|
1714 |
|
|
}
|
1715 |
|
|
}
|
1716 |
|
|
#endif
|
1717 |
|
|
}
|
1718 |
|
|
|
1719 |
|
|
/* Start a new GGC zone. */
|
1720 |
|
|
|
1721 |
|
|
static void
|
1722 |
|
|
new_ggc_zone_1 (struct alloc_zone *new_zone, const char * name)
|
1723 |
|
|
{
|
1724 |
|
|
new_zone->name = name;
|
1725 |
|
|
new_zone->next_zone = G.zones->next_zone;
|
1726 |
|
|
G.zones->next_zone = new_zone;
|
1727 |
|
|
}
|
1728 |
|
|
|
1729 |
|
|
/* Free all empty pages and objects within a page for a given zone */
|
1730 |
|
|
|
1731 |
|
|
static void
|
1732 |
|
|
sweep_pages (struct alloc_zone *zone)
|
1733 |
|
|
{
|
1734 |
|
|
struct large_page_entry **lpp, *lp, *lnext;
|
1735 |
|
|
struct small_page_entry **spp, *sp, *snext;
|
1736 |
|
|
char *last_free;
|
1737 |
|
|
size_t allocated = 0;
|
1738 |
|
|
bool nomarksinpage;
|
1739 |
|
|
|
1740 |
|
|
/* First, reset the free_chunks lists, since we are going to
|
1741 |
|
|
re-free free chunks in hopes of coalescing them into large chunks. */
|
1742 |
|
|
memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
|
1743 |
|
|
zone->high_free_bin = 0;
|
1744 |
|
|
zone->cached_free = NULL;
|
1745 |
|
|
zone->cached_free_size = 0;
|
1746 |
|
|
|
1747 |
|
|
/* Large pages are all or none affairs. Either they are completely
|
1748 |
|
|
empty, or they are completely full. */
|
1749 |
|
|
lpp = &zone->large_pages;
|
1750 |
|
|
for (lp = zone->large_pages; lp != NULL; lp = lnext)
|
1751 |
|
|
{
|
1752 |
|
|
gcc_assert (lp->common.large_p);
|
1753 |
|
|
|
1754 |
|
|
lnext = lp->next;
|
1755 |
|
|
|
1756 |
|
|
#ifdef GATHER_STATISTICS
|
1757 |
|
|
/* This page has now survived another collection. */
|
1758 |
|
|
lp->common.survived++;
|
1759 |
|
|
#endif
|
1760 |
|
|
|
1761 |
|
|
if (lp->mark_p)
|
1762 |
|
|
{
|
1763 |
|
|
lp->mark_p = false;
|
1764 |
|
|
allocated += lp->bytes;
|
1765 |
|
|
lpp = &lp->next;
|
1766 |
|
|
}
|
1767 |
|
|
else
|
1768 |
|
|
{
|
1769 |
|
|
*lpp = lnext;
|
1770 |
|
|
#ifdef ENABLE_GC_CHECKING
|
1771 |
|
|
/* Poison the page. */
|
1772 |
|
|
memset (lp->common.page, 0xb5, SMALL_PAGE_SIZE);
|
1773 |
|
|
#endif
|
1774 |
|
|
if (lp->prev)
|
1775 |
|
|
lp->prev->next = lp->next;
|
1776 |
|
|
if (lp->next)
|
1777 |
|
|
lp->next->prev = lp->prev;
|
1778 |
|
|
free_large_page (lp);
|
1779 |
|
|
}
|
1780 |
|
|
}
|
1781 |
|
|
|
1782 |
|
|
spp = &zone->pages;
|
1783 |
|
|
for (sp = zone->pages; sp != NULL; sp = snext)
|
1784 |
|
|
{
|
1785 |
|
|
char *object, *last_object;
|
1786 |
|
|
char *end;
|
1787 |
|
|
alloc_type *alloc_word_p;
|
1788 |
|
|
mark_type *mark_word_p;
|
1789 |
|
|
|
1790 |
|
|
gcc_assert (!sp->common.large_p);
|
1791 |
|
|
|
1792 |
|
|
snext = sp->next;
|
1793 |
|
|
|
1794 |
|
|
#ifdef GATHER_STATISTICS
|
1795 |
|
|
/* This page has now survived another collection. */
|
1796 |
|
|
sp->common.survived++;
|
1797 |
|
|
#endif
|
1798 |
|
|
|
1799 |
|
|
/* Step through all chunks, consolidate those that are free and
|
1800 |
|
|
insert them into the free lists. Note that consolidation
|
1801 |
|
|
slows down collection slightly. */
|
1802 |
|
|
|
1803 |
|
|
last_object = object = sp->common.page;
|
1804 |
|
|
end = sp->common.page + SMALL_PAGE_SIZE;
|
1805 |
|
|
last_free = NULL;
|
1806 |
|
|
nomarksinpage = true;
|
1807 |
|
|
mark_word_p = sp->mark_bits;
|
1808 |
|
|
alloc_word_p = sp->alloc_bits;
|
1809 |
|
|
|
1810 |
|
|
gcc_assert (BYTES_PER_ALLOC_BIT == BYTES_PER_MARK_BIT);
|
1811 |
|
|
|
1812 |
|
|
object = sp->common.page;
|
1813 |
|
|
do
|
1814 |
|
|
{
|
1815 |
|
|
unsigned int i, n;
|
1816 |
|
|
alloc_type alloc_word;
|
1817 |
|
|
mark_type mark_word;
|
1818 |
|
|
|
1819 |
|
|
alloc_word = *alloc_word_p++;
|
1820 |
|
|
mark_word = *mark_word_p++;
|
1821 |
|
|
|
1822 |
|
|
if (mark_word)
|
1823 |
|
|
nomarksinpage = false;
|
1824 |
|
|
|
1825 |
|
|
/* There ought to be some way to do this without looping... */
|
1826 |
|
|
i = 0;
|
1827 |
|
|
while ((n = alloc_ffs (alloc_word)) != 0)
|
1828 |
|
|
{
|
1829 |
|
|
/* Extend the current state for n - 1 bits. We can't
|
1830 |
|
|
shift alloc_word by n, even though it isn't used in the
|
1831 |
|
|
loop, in case only the highest bit was set. */
|
1832 |
|
|
alloc_word >>= n - 1;
|
1833 |
|
|
mark_word >>= n - 1;
|
1834 |
|
|
object += BYTES_PER_MARK_BIT * (n - 1);
|
1835 |
|
|
|
1836 |
|
|
if (mark_word & 1)
|
1837 |
|
|
{
|
1838 |
|
|
if (last_free)
|
1839 |
|
|
{
|
1840 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (last_free,
|
1841 |
|
|
object
|
1842 |
|
|
- last_free));
|
1843 |
|
|
poison_region (last_free, object - last_free);
|
1844 |
|
|
free_chunk (last_free, object - last_free, zone);
|
1845 |
|
|
last_free = NULL;
|
1846 |
|
|
}
|
1847 |
|
|
else
|
1848 |
|
|
allocated += object - last_object;
|
1849 |
|
|
last_object = object;
|
1850 |
|
|
}
|
1851 |
|
|
else
|
1852 |
|
|
{
|
1853 |
|
|
if (last_free == NULL)
|
1854 |
|
|
{
|
1855 |
|
|
last_free = object;
|
1856 |
|
|
allocated += object - last_object;
|
1857 |
|
|
}
|
1858 |
|
|
else
|
1859 |
|
|
zone_clear_object_alloc_bit (sp, object);
|
1860 |
|
|
}
|
1861 |
|
|
|
1862 |
|
|
/* Shift to just after the alloc bit we handled. */
|
1863 |
|
|
alloc_word >>= 1;
|
1864 |
|
|
mark_word >>= 1;
|
1865 |
|
|
object += BYTES_PER_MARK_BIT;
|
1866 |
|
|
|
1867 |
|
|
i += n;
|
1868 |
|
|
}
|
1869 |
|
|
|
1870 |
|
|
object += BYTES_PER_MARK_BIT * (8 * sizeof (alloc_type) - i);
|
1871 |
|
|
}
|
1872 |
|
|
while (object < end);
|
1873 |
|
|
|
1874 |
|
|
if (nomarksinpage)
|
1875 |
|
|
{
|
1876 |
|
|
*spp = snext;
|
1877 |
|
|
#ifdef ENABLE_GC_CHECKING
|
1878 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (sp->common.page,
|
1879 |
|
|
SMALL_PAGE_SIZE));
|
1880 |
|
|
/* Poison the page. */
|
1881 |
|
|
memset (sp->common.page, 0xb5, SMALL_PAGE_SIZE);
|
1882 |
|
|
#endif
|
1883 |
|
|
free_small_page (sp);
|
1884 |
|
|
continue;
|
1885 |
|
|
}
|
1886 |
|
|
else if (last_free)
|
1887 |
|
|
{
|
1888 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (last_free,
|
1889 |
|
|
object - last_free));
|
1890 |
|
|
poison_region (last_free, object - last_free);
|
1891 |
|
|
free_chunk (last_free, object - last_free, zone);
|
1892 |
|
|
}
|
1893 |
|
|
else
|
1894 |
|
|
allocated += object - last_object;
|
1895 |
|
|
|
1896 |
|
|
spp = &sp->next;
|
1897 |
|
|
}
|
1898 |
|
|
|
1899 |
|
|
zone->allocated = allocated;
|
1900 |
|
|
}
|
1901 |
|
|
|
1902 |
|
|
/* mark-and-sweep routine for collecting a single zone. NEED_MARKING
|
1903 |
|
|
is true if we need to mark before sweeping, false if some other
|
1904 |
|
|
zone collection has already performed marking for us. Returns true
|
1905 |
|
|
if we collected, false otherwise. */
|
1906 |
|
|
|
1907 |
|
|
static bool
|
1908 |
|
|
ggc_collect_1 (struct alloc_zone *zone, bool need_marking)
|
1909 |
|
|
{
|
1910 |
|
|
#if 0
|
1911 |
|
|
/* */
|
1912 |
|
|
{
|
1913 |
|
|
int i;
|
1914 |
|
|
for (i = 0; i < NUM_FREE_BINS + 1; i++)
|
1915 |
|
|
{
|
1916 |
|
|
struct alloc_chunk *chunk;
|
1917 |
|
|
int n, tot;
|
1918 |
|
|
|
1919 |
|
|
n = 0;
|
1920 |
|
|
tot = 0;
|
1921 |
|
|
chunk = zone->free_chunks[i];
|
1922 |
|
|
while (chunk)
|
1923 |
|
|
{
|
1924 |
|
|
n++;
|
1925 |
|
|
tot += chunk->size;
|
1926 |
|
|
chunk = chunk->next_free;
|
1927 |
|
|
}
|
1928 |
|
|
fprintf (stderr, "Bin %d: %d free chunks (%d bytes)\n",
|
1929 |
|
|
i, n, tot);
|
1930 |
|
|
}
|
1931 |
|
|
}
|
1932 |
|
|
/* */
|
1933 |
|
|
#endif
|
1934 |
|
|
|
1935 |
|
|
if (!quiet_flag)
|
1936 |
|
|
fprintf (stderr, " {%s GC %luk -> ",
|
1937 |
|
|
zone->name, (unsigned long) zone->allocated / 1024);
|
1938 |
|
|
|
1939 |
|
|
/* Zero the total allocated bytes. This will be recalculated in the
|
1940 |
|
|
sweep phase. */
|
1941 |
|
|
zone->allocated = 0;
|
1942 |
|
|
|
1943 |
|
|
/* Release the pages we freed the last time we collected, but didn't
|
1944 |
|
|
reuse in the interim. */
|
1945 |
|
|
release_pages (zone);
|
1946 |
|
|
|
1947 |
|
|
if (need_marking)
|
1948 |
|
|
{
|
1949 |
|
|
zone_allocate_marks ();
|
1950 |
|
|
ggc_mark_roots ();
|
1951 |
|
|
#ifdef GATHER_STATISTICS
|
1952 |
|
|
ggc_prune_overhead_list ();
|
1953 |
|
|
#endif
|
1954 |
|
|
}
|
1955 |
|
|
|
1956 |
|
|
sweep_pages (zone);
|
1957 |
|
|
zone->was_collected = true;
|
1958 |
|
|
zone->allocated_last_gc = zone->allocated;
|
1959 |
|
|
|
1960 |
|
|
if (!quiet_flag)
|
1961 |
|
|
fprintf (stderr, "%luk}", (unsigned long) zone->allocated / 1024);
|
1962 |
|
|
return true;
|
1963 |
|
|
}
|
1964 |
|
|
|
1965 |
|
|
#ifdef GATHER_STATISTICS
|
1966 |
|
|
/* Calculate the average page survival rate in terms of number of
|
1967 |
|
|
collections. */
|
1968 |
|
|
|
1969 |
|
|
static float
|
1970 |
|
|
calculate_average_page_survival (struct alloc_zone *zone)
|
1971 |
|
|
{
|
1972 |
|
|
float count = 0.0;
|
1973 |
|
|
float survival = 0.0;
|
1974 |
|
|
struct small_page_entry *p;
|
1975 |
|
|
struct large_page_entry *lp;
|
1976 |
|
|
for (p = zone->pages; p; p = p->next)
|
1977 |
|
|
{
|
1978 |
|
|
count += 1.0;
|
1979 |
|
|
survival += p->common.survived;
|
1980 |
|
|
}
|
1981 |
|
|
for (lp = zone->large_pages; lp; lp = lp->next)
|
1982 |
|
|
{
|
1983 |
|
|
count += 1.0;
|
1984 |
|
|
survival += lp->common.survived;
|
1985 |
|
|
}
|
1986 |
|
|
return survival/count;
|
1987 |
|
|
}
|
1988 |
|
|
#endif
|
1989 |
|
|
|
1990 |
|
|
/* Top level collection routine. */
|
1991 |
|
|
|
1992 |
|
|
void
|
1993 |
|
|
ggc_collect (void)
|
1994 |
|
|
{
|
1995 |
|
|
struct alloc_zone *zone;
|
1996 |
|
|
bool marked = false;
|
1997 |
|
|
|
1998 |
|
|
timevar_push (TV_GC);
|
1999 |
|
|
|
2000 |
|
|
if (!ggc_force_collect)
|
2001 |
|
|
{
|
2002 |
|
|
float allocated_last_gc = 0, allocated = 0, min_expand;
|
2003 |
|
|
|
2004 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
2005 |
|
|
{
|
2006 |
|
|
allocated_last_gc += zone->allocated_last_gc;
|
2007 |
|
|
allocated += zone->allocated;
|
2008 |
|
|
}
|
2009 |
|
|
|
2010 |
|
|
allocated_last_gc =
|
2011 |
|
|
MAX (allocated_last_gc,
|
2012 |
|
|
(size_t) PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
|
2013 |
|
|
min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
|
2014 |
|
|
|
2015 |
|
|
if (allocated < allocated_last_gc + min_expand)
|
2016 |
|
|
{
|
2017 |
|
|
timevar_pop (TV_GC);
|
2018 |
|
|
return;
|
2019 |
|
|
}
|
2020 |
|
|
}
|
2021 |
|
|
|
2022 |
|
|
invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
|
2023 |
|
|
|
2024 |
|
|
/* Start by possibly collecting the main zone. */
|
2025 |
|
|
main_zone.was_collected = false;
|
2026 |
|
|
marked |= ggc_collect_1 (&main_zone, true);
|
2027 |
|
|
|
2028 |
|
|
/* In order to keep the number of collections down, we don't
|
2029 |
|
|
collect other zones unless we are collecting the main zone. This
|
2030 |
|
|
gives us roughly the same number of collections as we used to
|
2031 |
|
|
have with the old gc. The number of collection is important
|
2032 |
|
|
because our main slowdown (according to profiling) is now in
|
2033 |
|
|
marking. So if we mark twice as often as we used to, we'll be
|
2034 |
|
|
twice as slow. Hopefully we'll avoid this cost when we mark
|
2035 |
|
|
zone-at-a-time. */
|
2036 |
|
|
/* NOTE drow/2004-07-28: We now always collect the main zone, but
|
2037 |
|
|
keep this code in case the heuristics are further refined. */
|
2038 |
|
|
|
2039 |
|
|
if (main_zone.was_collected)
|
2040 |
|
|
{
|
2041 |
|
|
struct alloc_zone *zone;
|
2042 |
|
|
|
2043 |
|
|
for (zone = main_zone.next_zone; zone; zone = zone->next_zone)
|
2044 |
|
|
{
|
2045 |
|
|
zone->was_collected = false;
|
2046 |
|
|
marked |= ggc_collect_1 (zone, !marked);
|
2047 |
|
|
}
|
2048 |
|
|
}
|
2049 |
|
|
|
2050 |
|
|
#ifdef GATHER_STATISTICS
|
2051 |
|
|
/* Print page survival stats, if someone wants them. */
|
2052 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
2053 |
|
|
{
|
2054 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
2055 |
|
|
{
|
2056 |
|
|
if (zone->was_collected)
|
2057 |
|
|
{
|
2058 |
|
|
float f = calculate_average_page_survival (zone);
|
2059 |
|
|
printf ("Average page survival in zone `%s' is %f\n",
|
2060 |
|
|
zone->name, f);
|
2061 |
|
|
}
|
2062 |
|
|
}
|
2063 |
|
|
}
|
2064 |
|
|
#endif
|
2065 |
|
|
|
2066 |
|
|
if (marked)
|
2067 |
|
|
zone_free_marks ();
|
2068 |
|
|
|
2069 |
|
|
/* Free dead zones. */
|
2070 |
|
|
for (zone = G.zones; zone && zone->next_zone; zone = zone->next_zone)
|
2071 |
|
|
{
|
2072 |
|
|
if (zone->next_zone->dead)
|
2073 |
|
|
{
|
2074 |
|
|
struct alloc_zone *dead_zone = zone->next_zone;
|
2075 |
|
|
|
2076 |
|
|
printf ("Zone `%s' is dead and will be freed.\n", dead_zone->name);
|
2077 |
|
|
|
2078 |
|
|
/* The zone must be empty. */
|
2079 |
|
|
gcc_assert (!dead_zone->allocated);
|
2080 |
|
|
|
2081 |
|
|
/* Unchain the dead zone, release all its pages and free it. */
|
2082 |
|
|
zone->next_zone = zone->next_zone->next_zone;
|
2083 |
|
|
release_pages (dead_zone);
|
2084 |
|
|
free (dead_zone);
|
2085 |
|
|
}
|
2086 |
|
|
}
|
2087 |
|
|
|
2088 |
|
|
invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
|
2089 |
|
|
|
2090 |
|
|
timevar_pop (TV_GC);
|
2091 |
|
|
}
|
2092 |
|
|
|
2093 |
|
|
/* Print allocation statistics. */
|
2094 |
|
|
#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
|
2095 |
|
|
? (x) \
|
2096 |
|
|
: ((x) < 1024*1024*10 \
|
2097 |
|
|
? (x) / 1024 \
|
2098 |
|
|
: (x) / (1024*1024))))
|
2099 |
|
|
#define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
|
2100 |
|
|
|
2101 |
|
|
void
|
2102 |
|
|
ggc_print_statistics (void)
|
2103 |
|
|
{
|
2104 |
|
|
struct alloc_zone *zone;
|
2105 |
|
|
struct ggc_statistics stats;
|
2106 |
|
|
size_t total_overhead = 0, total_allocated = 0, total_bytes_mapped = 0;
|
2107 |
|
|
size_t pte_overhead, i;
|
2108 |
|
|
|
2109 |
|
|
/* Clear the statistics. */
|
2110 |
|
|
memset (&stats, 0, sizeof (stats));
|
2111 |
|
|
|
2112 |
|
|
/* Make sure collection will really occur. */
|
2113 |
|
|
ggc_force_collect = true;
|
2114 |
|
|
|
2115 |
|
|
/* Collect and print the statistics common across collectors. */
|
2116 |
|
|
ggc_print_common_statistics (stderr, &stats);
|
2117 |
|
|
|
2118 |
|
|
ggc_force_collect = false;
|
2119 |
|
|
|
2120 |
|
|
/* Release free pages so that we will not count the bytes allocated
|
2121 |
|
|
there as part of the total allocated memory. */
|
2122 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
2123 |
|
|
release_pages (zone);
|
2124 |
|
|
|
2125 |
|
|
/* Collect some information about the various sizes of
|
2126 |
|
|
allocation. */
|
2127 |
|
|
fprintf (stderr,
|
2128 |
|
|
"Memory still allocated at the end of the compilation process\n");
|
2129 |
|
|
|
2130 |
|
|
fprintf (stderr, "%20s %10s %10s %10s\n",
|
2131 |
|
|
"Zone", "Allocated", "Used", "Overhead");
|
2132 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
2133 |
|
|
{
|
2134 |
|
|
struct large_page_entry *large_page;
|
2135 |
|
|
size_t overhead, allocated, in_use;
|
2136 |
|
|
|
2137 |
|
|
/* Skip empty zones. */
|
2138 |
|
|
if (!zone->pages && !zone->large_pages)
|
2139 |
|
|
continue;
|
2140 |
|
|
|
2141 |
|
|
allocated = in_use = 0;
|
2142 |
|
|
|
2143 |
|
|
overhead = sizeof (struct alloc_zone);
|
2144 |
|
|
|
2145 |
|
|
for (large_page = zone->large_pages; large_page != NULL;
|
2146 |
|
|
large_page = large_page->next)
|
2147 |
|
|
{
|
2148 |
|
|
allocated += large_page->bytes;
|
2149 |
|
|
in_use += large_page->bytes;
|
2150 |
|
|
overhead += sizeof (struct large_page_entry);
|
2151 |
|
|
}
|
2152 |
|
|
|
2153 |
|
|
/* There's no easy way to walk through the small pages finding
|
2154 |
|
|
used and unused objects. Instead, add all the pages, and
|
2155 |
|
|
subtract out the free list. */
|
2156 |
|
|
|
2157 |
|
|
allocated += GGC_PAGE_SIZE * zone->n_small_pages;
|
2158 |
|
|
in_use += GGC_PAGE_SIZE * zone->n_small_pages;
|
2159 |
|
|
overhead += G.small_page_overhead * zone->n_small_pages;
|
2160 |
|
|
|
2161 |
|
|
for (i = 0; i <= NUM_FREE_BINS; i++)
|
2162 |
|
|
{
|
2163 |
|
|
struct alloc_chunk *chunk = zone->free_chunks[i];
|
2164 |
|
|
while (chunk)
|
2165 |
|
|
{
|
2166 |
|
|
in_use -= ggc_get_size (chunk);
|
2167 |
|
|
chunk = chunk->next_free;
|
2168 |
|
|
}
|
2169 |
|
|
}
|
2170 |
|
|
|
2171 |
|
|
fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n",
|
2172 |
|
|
zone->name,
|
2173 |
|
|
SCALE (allocated), LABEL (allocated),
|
2174 |
|
|
SCALE (in_use), LABEL (in_use),
|
2175 |
|
|
SCALE (overhead), LABEL (overhead));
|
2176 |
|
|
|
2177 |
|
|
gcc_assert (in_use == zone->allocated);
|
2178 |
|
|
|
2179 |
|
|
total_overhead += overhead;
|
2180 |
|
|
total_allocated += zone->allocated;
|
2181 |
|
|
total_bytes_mapped += zone->bytes_mapped;
|
2182 |
|
|
}
|
2183 |
|
|
|
2184 |
|
|
/* Count the size of the page table as best we can. */
|
2185 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
2186 |
|
|
pte_overhead = sizeof (G.lookup);
|
2187 |
|
|
for (i = 0; i < PAGE_L1_SIZE; i++)
|
2188 |
|
|
if (G.lookup[i])
|
2189 |
|
|
pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
|
2190 |
|
|
#else
|
2191 |
|
|
{
|
2192 |
|
|
page_table table = G.lookup;
|
2193 |
|
|
pte_overhead = 0;
|
2194 |
|
|
while (table)
|
2195 |
|
|
{
|
2196 |
|
|
pte_overhead += sizeof (*table);
|
2197 |
|
|
for (i = 0; i < PAGE_L1_SIZE; i++)
|
2198 |
|
|
if (table->table[i])
|
2199 |
|
|
pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
|
2200 |
|
|
table = table->next;
|
2201 |
|
|
}
|
2202 |
|
|
}
|
2203 |
|
|
#endif
|
2204 |
|
|
fprintf (stderr, "%20s %11s %11s %10lu%c\n", "Page Table",
|
2205 |
|
|
"", "", SCALE (pte_overhead), LABEL (pte_overhead));
|
2206 |
|
|
total_overhead += pte_overhead;
|
2207 |
|
|
|
2208 |
|
|
fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n", "Total",
|
2209 |
|
|
SCALE (total_bytes_mapped), LABEL (total_bytes_mapped),
|
2210 |
|
|
SCALE (total_allocated), LABEL(total_allocated),
|
2211 |
|
|
SCALE (total_overhead), LABEL (total_overhead));
|
2212 |
|
|
|
2213 |
|
|
#ifdef GATHER_STATISTICS
|
2214 |
|
|
{
|
2215 |
|
|
unsigned long long all_overhead = 0, all_allocated = 0;
|
2216 |
|
|
unsigned long long all_overhead_under32 = 0, all_allocated_under32 = 0;
|
2217 |
|
|
unsigned long long all_overhead_under64 = 0, all_allocated_under64 = 0;
|
2218 |
|
|
unsigned long long all_overhead_under128 = 0, all_allocated_under128 = 0;
|
2219 |
|
|
|
2220 |
|
|
fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
|
2221 |
|
|
|
2222 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
2223 |
|
|
{
|
2224 |
|
|
all_overhead += zone->stats.total_overhead;
|
2225 |
|
|
all_allocated += zone->stats.total_allocated;
|
2226 |
|
|
|
2227 |
|
|
all_allocated_under32 += zone->stats.total_allocated_under32;
|
2228 |
|
|
all_overhead_under32 += zone->stats.total_overhead_under32;
|
2229 |
|
|
|
2230 |
|
|
all_allocated_under64 += zone->stats.total_allocated_under64;
|
2231 |
|
|
all_overhead_under64 += zone->stats.total_overhead_under64;
|
2232 |
|
|
|
2233 |
|
|
all_allocated_under128 += zone->stats.total_allocated_under128;
|
2234 |
|
|
all_overhead_under128 += zone->stats.total_overhead_under128;
|
2235 |
|
|
|
2236 |
|
|
fprintf (stderr, "%20s: %10lld\n",
|
2237 |
|
|
zone->name, zone->stats.total_allocated);
|
2238 |
|
|
}
|
2239 |
|
|
|
2240 |
|
|
fprintf (stderr, "\n");
|
2241 |
|
|
|
2242 |
|
|
fprintf (stderr, "Total Overhead: %10lld\n",
|
2243 |
|
|
all_overhead);
|
2244 |
|
|
fprintf (stderr, "Total Allocated: %10lld\n",
|
2245 |
|
|
all_allocated);
|
2246 |
|
|
|
2247 |
|
|
fprintf (stderr, "Total Overhead under 32B: %10lld\n",
|
2248 |
|
|
all_overhead_under32);
|
2249 |
|
|
fprintf (stderr, "Total Allocated under 32B: %10lld\n",
|
2250 |
|
|
all_allocated_under32);
|
2251 |
|
|
fprintf (stderr, "Total Overhead under 64B: %10lld\n",
|
2252 |
|
|
all_overhead_under64);
|
2253 |
|
|
fprintf (stderr, "Total Allocated under 64B: %10lld\n",
|
2254 |
|
|
all_allocated_under64);
|
2255 |
|
|
fprintf (stderr, "Total Overhead under 128B: %10lld\n",
|
2256 |
|
|
all_overhead_under128);
|
2257 |
|
|
fprintf (stderr, "Total Allocated under 128B: %10lld\n",
|
2258 |
|
|
all_allocated_under128);
|
2259 |
|
|
}
|
2260 |
|
|
#endif
|
2261 |
|
|
}
|
2262 |
|
|
|
2263 |
|
|
/* Precompiled header support. */
|
2264 |
|
|
|
2265 |
|
|
/* For precompiled headers, we sort objects based on their type. We
|
2266 |
|
|
also sort various objects into their own buckets; currently this
|
2267 |
|
|
covers strings and IDENTIFIER_NODE trees. The choices of how
|
2268 |
|
|
to sort buckets have not yet been tuned. */
|
2269 |
|
|
|
2270 |
|
|
#define NUM_PCH_BUCKETS (gt_types_enum_last + 3)
|
2271 |
|
|
|
2272 |
|
|
#define OTHER_BUCKET (gt_types_enum_last + 0)
|
2273 |
|
|
#define IDENTIFIER_BUCKET (gt_types_enum_last + 1)
|
2274 |
|
|
#define STRING_BUCKET (gt_types_enum_last + 2)
|
2275 |
|
|
|
2276 |
|
|
struct ggc_pch_ondisk
|
2277 |
|
|
{
|
2278 |
|
|
size_t total;
|
2279 |
|
|
size_t type_totals[NUM_PCH_BUCKETS];
|
2280 |
|
|
};
|
2281 |
|
|
|
2282 |
|
|
struct ggc_pch_data
|
2283 |
|
|
{
|
2284 |
|
|
struct ggc_pch_ondisk d;
|
2285 |
|
|
size_t base;
|
2286 |
|
|
size_t orig_base;
|
2287 |
|
|
size_t alloc_size;
|
2288 |
|
|
alloc_type *alloc_bits;
|
2289 |
|
|
size_t type_bases[NUM_PCH_BUCKETS];
|
2290 |
|
|
size_t start_offset;
|
2291 |
|
|
};
|
2292 |
|
|
|
2293 |
|
|
/* Initialize the PCH data structure. */
|
2294 |
|
|
|
2295 |
|
|
struct ggc_pch_data *
|
2296 |
|
|
init_ggc_pch (void)
|
2297 |
|
|
{
|
2298 |
|
|
return XCNEW (struct ggc_pch_data);
|
2299 |
|
|
}
|
2300 |
|
|
|
2301 |
|
|
/* Return which of the page-aligned buckets the object at X, with type
|
2302 |
|
|
TYPE, should be sorted into in the PCH. Strings will have
|
2303 |
|
|
IS_STRING set and TYPE will be gt_types_enum_last. Other objects
|
2304 |
|
|
of unknown type will also have TYPE equal to gt_types_enum_last. */
|
2305 |
|
|
|
2306 |
|
|
static int
|
2307 |
|
|
pch_bucket (void *x, enum gt_types_enum type,
|
2308 |
|
|
bool is_string)
|
2309 |
|
|
{
|
2310 |
|
|
/* Sort identifiers into their own bucket, to improve locality
|
2311 |
|
|
when searching the identifier hash table. */
|
2312 |
|
|
if (type == gt_ggc_e_14lang_tree_node
|
2313 |
|
|
&& TREE_CODE ((tree) x) == IDENTIFIER_NODE)
|
2314 |
|
|
return IDENTIFIER_BUCKET;
|
2315 |
|
|
else if (type == gt_types_enum_last)
|
2316 |
|
|
{
|
2317 |
|
|
if (is_string)
|
2318 |
|
|
return STRING_BUCKET;
|
2319 |
|
|
return OTHER_BUCKET;
|
2320 |
|
|
}
|
2321 |
|
|
return type;
|
2322 |
|
|
}
|
2323 |
|
|
|
2324 |
|
|
/* Add the size of object X to the size of the PCH data. */
|
2325 |
|
|
|
2326 |
|
|
void
|
2327 |
|
|
ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
|
2328 |
|
|
size_t size, bool is_string, enum gt_types_enum type)
|
2329 |
|
|
{
|
2330 |
|
|
/* NOTE: Right now we don't need to align up the size of any objects.
|
2331 |
|
|
Strings can be unaligned, and everything else is allocated to a
|
2332 |
|
|
MAX_ALIGNMENT boundary already. */
|
2333 |
|
|
|
2334 |
|
|
d->d.type_totals[pch_bucket (x, type, is_string)] += size;
|
2335 |
|
|
}
|
2336 |
|
|
|
2337 |
|
|
/* Return the total size of the PCH data. */
|
2338 |
|
|
|
2339 |
|
|
size_t
|
2340 |
|
|
ggc_pch_total_size (struct ggc_pch_data *d)
|
2341 |
|
|
{
|
2342 |
|
|
int i;
|
2343 |
|
|
size_t alloc_size, total_size;
|
2344 |
|
|
|
2345 |
|
|
total_size = 0;
|
2346 |
|
|
for (i = 0; i < NUM_PCH_BUCKETS; i++)
|
2347 |
|
|
{
|
2348 |
|
|
d->d.type_totals[i] = ROUND_UP (d->d.type_totals[i], GGC_PAGE_SIZE);
|
2349 |
|
|
total_size += d->d.type_totals[i];
|
2350 |
|
|
}
|
2351 |
|
|
d->d.total = total_size;
|
2352 |
|
|
|
2353 |
|
|
/* Include the size of the allocation bitmap. */
|
2354 |
|
|
alloc_size = CEIL (d->d.total, BYTES_PER_ALLOC_BIT * 8);
|
2355 |
|
|
alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
|
2356 |
|
|
d->alloc_size = alloc_size;
|
2357 |
|
|
|
2358 |
|
|
return d->d.total + alloc_size;
|
2359 |
|
|
}
|
2360 |
|
|
|
2361 |
|
|
/* Set the base address for the objects in the PCH file. */
|
2362 |
|
|
|
2363 |
|
|
void
|
2364 |
|
|
ggc_pch_this_base (struct ggc_pch_data *d, void *base_)
|
2365 |
|
|
{
|
2366 |
|
|
int i;
|
2367 |
|
|
size_t base = (size_t) base_;
|
2368 |
|
|
|
2369 |
|
|
d->base = d->orig_base = base;
|
2370 |
|
|
for (i = 0; i < NUM_PCH_BUCKETS; i++)
|
2371 |
|
|
{
|
2372 |
|
|
d->type_bases[i] = base;
|
2373 |
|
|
base += d->d.type_totals[i];
|
2374 |
|
|
}
|
2375 |
|
|
|
2376 |
|
|
if (d->alloc_bits == NULL)
|
2377 |
|
|
d->alloc_bits = XCNEWVAR (alloc_type, d->alloc_size);
|
2378 |
|
|
}
|
2379 |
|
|
|
2380 |
|
|
/* Allocate a place for object X of size SIZE in the PCH file. */
|
2381 |
|
|
|
2382 |
|
|
char *
|
2383 |
|
|
ggc_pch_alloc_object (struct ggc_pch_data *d, void *x,
|
2384 |
|
|
size_t size, bool is_string,
|
2385 |
|
|
enum gt_types_enum type)
|
2386 |
|
|
{
|
2387 |
|
|
size_t alloc_word, alloc_bit;
|
2388 |
|
|
char *result;
|
2389 |
|
|
int bucket = pch_bucket (x, type, is_string);
|
2390 |
|
|
|
2391 |
|
|
/* Record the start of the object in the allocation bitmap. We
|
2392 |
|
|
can't assert that the allocation bit is previously clear, because
|
2393 |
|
|
strings may violate the invariant that they are at least
|
2394 |
|
|
BYTES_PER_ALLOC_BIT long. This is harmless - ggc_get_size
|
2395 |
|
|
should not be called for strings. */
|
2396 |
|
|
alloc_word = ((d->type_bases[bucket] - d->orig_base)
|
2397 |
|
|
/ (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
|
2398 |
|
|
alloc_bit = ((d->type_bases[bucket] - d->orig_base)
|
2399 |
|
|
/ BYTES_PER_ALLOC_BIT) % (8 * sizeof (alloc_type));
|
2400 |
|
|
d->alloc_bits[alloc_word] |= 1L << alloc_bit;
|
2401 |
|
|
|
2402 |
|
|
/* Place the object at the current pointer for this bucket. */
|
2403 |
|
|
result = (char *) d->type_bases[bucket];
|
2404 |
|
|
d->type_bases[bucket] += size;
|
2405 |
|
|
return result;
|
2406 |
|
|
}
|
2407 |
|
|
|
2408 |
|
|
/* Prepare to write out the PCH data to file F. */
|
2409 |
|
|
|
2410 |
|
|
void
|
2411 |
|
|
ggc_pch_prepare_write (struct ggc_pch_data *d,
|
2412 |
|
|
FILE *f)
|
2413 |
|
|
{
|
2414 |
|
|
/* We seek around a lot while writing. Record where the end
|
2415 |
|
|
of the padding in the PCH file is, so that we can
|
2416 |
|
|
locate each object's offset. */
|
2417 |
|
|
d->start_offset = ftell (f);
|
2418 |
|
|
}
|
2419 |
|
|
|
2420 |
|
|
/* Write out object X of SIZE to file F. */
|
2421 |
|
|
|
2422 |
|
|
void
|
2423 |
|
|
ggc_pch_write_object (struct ggc_pch_data *d,
|
2424 |
|
|
FILE *f, void *x, void *newx,
|
2425 |
|
|
size_t size, bool is_string ATTRIBUTE_UNUSED)
|
2426 |
|
|
{
|
2427 |
|
|
if (fseek (f, (size_t) newx - d->orig_base + d->start_offset, SEEK_SET) != 0)
|
2428 |
|
|
fatal_error ("can%'t seek PCH file: %m");
|
2429 |
|
|
|
2430 |
|
|
if (fwrite (x, size, 1, f) != 1)
|
2431 |
|
|
fatal_error ("can%'t write PCH file: %m");
|
2432 |
|
|
}
|
2433 |
|
|
|
2434 |
|
|
void
|
2435 |
|
|
ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
|
2436 |
|
|
{
|
2437 |
|
|
/* Write out the allocation bitmap. */
|
2438 |
|
|
if (fseek (f, d->start_offset + d->d.total, SEEK_SET) != 0)
|
2439 |
|
|
fatal_error ("can%'t seek PCH file: %m");
|
2440 |
|
|
|
2441 |
|
|
if (fwrite (d->alloc_bits, d->alloc_size, 1, f) != 1)
|
2442 |
|
|
fatal_error ("can%'t write PCH file: %m");
|
2443 |
|
|
|
2444 |
|
|
/* Done with the PCH, so write out our footer. */
|
2445 |
|
|
if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
|
2446 |
|
|
fatal_error ("can%'t write PCH file: %m");
|
2447 |
|
|
|
2448 |
|
|
free (d->alloc_bits);
|
2449 |
|
|
free (d);
|
2450 |
|
|
}
|
2451 |
|
|
|
2452 |
|
|
/* The PCH file from F has been mapped at ADDR. Read in any
|
2453 |
|
|
additional data from the file and set up the GC state. */
|
2454 |
|
|
|
2455 |
|
|
void
|
2456 |
|
|
ggc_pch_read (FILE *f, void *addr)
|
2457 |
|
|
{
|
2458 |
|
|
struct ggc_pch_ondisk d;
|
2459 |
|
|
size_t alloc_size;
|
2460 |
|
|
struct alloc_zone *zone;
|
2461 |
|
|
struct page_entry *pch_page;
|
2462 |
|
|
char *p;
|
2463 |
|
|
|
2464 |
|
|
if (fread (&d, sizeof (d), 1, f) != 1)
|
2465 |
|
|
fatal_error ("can%'t read PCH file: %m");
|
2466 |
|
|
|
2467 |
|
|
alloc_size = CEIL (d.total, BYTES_PER_ALLOC_BIT * 8);
|
2468 |
|
|
alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
|
2469 |
|
|
|
2470 |
|
|
pch_zone.bytes = d.total;
|
2471 |
|
|
pch_zone.alloc_bits = (alloc_type *) ((char *) addr + pch_zone.bytes);
|
2472 |
|
|
pch_zone.page = (char *) addr;
|
2473 |
|
|
pch_zone.end = (char *) pch_zone.alloc_bits;
|
2474 |
|
|
|
2475 |
|
|
/* We've just read in a PCH file. So, every object that used to be
|
2476 |
|
|
allocated is now free. */
|
2477 |
|
|
#ifdef GATHER_STATISTICS
|
2478 |
|
|
zone_allocate_marks ();
|
2479 |
|
|
ggc_prune_overhead_list ();
|
2480 |
|
|
zone_free_marks ();
|
2481 |
|
|
#endif
|
2482 |
|
|
|
2483 |
|
|
for (zone = G.zones; zone; zone = zone->next_zone)
|
2484 |
|
|
{
|
2485 |
|
|
struct small_page_entry *page, *next_page;
|
2486 |
|
|
struct large_page_entry *large_page, *next_large_page;
|
2487 |
|
|
|
2488 |
|
|
zone->allocated = 0;
|
2489 |
|
|
|
2490 |
|
|
/* Clear the zone's free chunk list. */
|
2491 |
|
|
memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
|
2492 |
|
|
zone->high_free_bin = 0;
|
2493 |
|
|
zone->cached_free = NULL;
|
2494 |
|
|
zone->cached_free_size = 0;
|
2495 |
|
|
|
2496 |
|
|
/* Move all the small pages onto the free list. */
|
2497 |
|
|
for (page = zone->pages; page != NULL; page = next_page)
|
2498 |
|
|
{
|
2499 |
|
|
next_page = page->next;
|
2500 |
|
|
memset (page->alloc_bits, 0,
|
2501 |
|
|
G.small_page_overhead - PAGE_OVERHEAD);
|
2502 |
|
|
free_small_page (page);
|
2503 |
|
|
}
|
2504 |
|
|
|
2505 |
|
|
/* Discard all the large pages. */
|
2506 |
|
|
for (large_page = zone->large_pages; large_page != NULL;
|
2507 |
|
|
large_page = next_large_page)
|
2508 |
|
|
{
|
2509 |
|
|
next_large_page = large_page->next;
|
2510 |
|
|
free_large_page (large_page);
|
2511 |
|
|
}
|
2512 |
|
|
|
2513 |
|
|
zone->pages = NULL;
|
2514 |
|
|
zone->large_pages = NULL;
|
2515 |
|
|
}
|
2516 |
|
|
|
2517 |
|
|
/* Allocate the dummy page entry for the PCH, and set all pages
|
2518 |
|
|
mapped into the PCH to reference it. */
|
2519 |
|
|
pch_page = XCNEW (struct page_entry);
|
2520 |
|
|
pch_page->page = pch_zone.page;
|
2521 |
|
|
pch_page->pch_p = true;
|
2522 |
|
|
|
2523 |
|
|
for (p = pch_zone.page; p < pch_zone.end; p += GGC_PAGE_SIZE)
|
2524 |
|
|
set_page_table_entry (p, pch_page);
|
2525 |
|
|
}
|