OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [ggc-zone.c] - Blame information for rev 820

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* "Bag-of-pages" zone garbage collector for the GNU compiler.
2
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008,
3
   2010 Free Software Foundation, Inc.
4
 
5
   Contributed by Richard Henderson (rth@redhat.com) and Daniel Berlin
6
   (dberlin@dberlin.org).  Rewritten by Daniel Jacobowitz
7
   <dan@codesourcery.com>.
8
 
9
This file is part of GCC.
10
 
11
GCC is free software; you can redistribute it and/or modify it under
12
the terms of the GNU General Public License as published by the Free
13
Software Foundation; either version 3, or (at your option) any later
14
version.
15
 
16
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17
WARRANTY; without even the implied warranty of MERCHANTABILITY or
18
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19
for more details.
20
 
21
You should have received a copy of the GNU General Public License
22
along with GCC; see the file COPYING3.  If not see
23
<http://www.gnu.org/licenses/>.  */
24
 
25
#include "config.h"
26
#include "system.h"
27
#include "coretypes.h"
28
#include "tm.h"
29
#include "tree.h"
30
#include "rtl.h"
31
#include "tm_p.h"
32
#include "diagnostic-core.h"
33
#include "flags.h"
34
#include "ggc.h"
35
#include "ggc-internal.h"
36
#include "timevar.h"
37
#include "params.h"
38
#include "bitmap.h"
39
#include "plugin.h"
40
 
41
/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
42
   file open.  Prefer either to valloc.  */
43
#ifdef HAVE_MMAP_ANON
44
# undef HAVE_MMAP_DEV_ZERO
45
# define USING_MMAP
46
#endif
47
 
48
#ifdef HAVE_MMAP_DEV_ZERO
49
# define USING_MMAP
50
#endif
51
 
52
#ifndef USING_MMAP
53
#error Zone collector requires mmap
54
#endif
55
 
56
#if (GCC_VERSION < 3001)
57
#define prefetch(X) ((void) X)
58
#define prefetchw(X) ((void) X)
59
#else
60
#define prefetch(X) __builtin_prefetch (X)
61
#define prefetchw(X) __builtin_prefetch (X, 1, 3)
62
#endif
63
 
64
/* FUTURE NOTES:
65
 
66
   If we track inter-zone pointers, we can mark single zones at a
67
   time.
68
 
69
   If we have a zone where we guarantee no inter-zone pointers, we
70
   could mark that zone separately.
71
 
72
   The garbage zone should not be marked, and we should return 1 in
73
   ggc_set_mark for any object in the garbage zone, which cuts off
74
   marking quickly.  */
75
 
76
/* Strategy:
77
 
78
   This garbage-collecting allocator segregates objects into zones.
79
   It also segregates objects into "large" and "small" bins.  Large
80
   objects are greater than page size.
81
 
82
   Pages for small objects are broken up into chunks.  The page has
83
   a bitmap which marks the start position of each chunk (whether
84
   allocated or free).  Free chunks are on one of the zone's free
85
   lists and contain a pointer to the next free chunk.  Chunks in
86
   most of the free lists have a fixed size determined by the
87
   free list.  Chunks in the "other" sized free list have their size
88
   stored right after their chain pointer.
89
 
90
   Empty pages (of all sizes) are kept on a single page cache list,
91
   and are considered first when new pages are required; they are
92
   deallocated at the start of the next collection if they haven't
93
   been recycled by then.  The free page list is currently per-zone.  */
94
 
95
/* Define GGC_DEBUG_LEVEL to print debugging information.
96
     0: No debugging output.
97
     1: GC statistics only.
98
     2: Page-entry allocations/deallocations as well.
99
     3: Object allocations as well.
100
     4: Object marks as well.  */
101
#define GGC_DEBUG_LEVEL (0)
102
 
103
#ifndef HOST_BITS_PER_PTR
104
#define HOST_BITS_PER_PTR  HOST_BITS_PER_LONG
105
#endif
106
 
107
/* This structure manages small free chunks.  The SIZE field is only
108
   initialized if the chunk is in the "other" sized free list.  Large
109
   chunks are allocated one at a time to their own page, and so don't
110
   come in here.  */
111
 
112
struct alloc_chunk {
113
  struct alloc_chunk *next_free;
114
  unsigned int size;
115
};
116
 
117
/* The size of the fixed-size portion of a small page descriptor.  */
118
#define PAGE_OVERHEAD   (offsetof (struct small_page_entry, alloc_bits))
119
 
120
/* The collector's idea of the page size.  This must be a power of two
121
   no larger than the system page size, because pages must be aligned
122
   to this amount and are tracked at this granularity in the page
123
   table.  We choose a size at compile time for efficiency.
124
 
125
   We could make a better guess at compile time if PAGE_SIZE is a
126
   constant in system headers, and PAGE_SHIFT is defined...  */
127
#define GGC_PAGE_SIZE   4096
128
#define GGC_PAGE_MASK   (GGC_PAGE_SIZE - 1)
129
#define GGC_PAGE_SHIFT  12
130
 
131
#if 0
132
/* Alternative definitions which use the runtime page size.  */
133
#define GGC_PAGE_SIZE   G.pagesize
134
#define GGC_PAGE_MASK   G.page_mask
135
#define GGC_PAGE_SHIFT  G.lg_pagesize
136
#endif
137
 
138
/* The size of a small page managed by the garbage collector.  This
139
   must currently be GGC_PAGE_SIZE, but with a few changes could
140
   be any multiple of it to reduce certain kinds of overhead.  */
141
#define SMALL_PAGE_SIZE GGC_PAGE_SIZE
142
 
143
/* Free bin information.  These numbers may be in need of re-tuning.
144
   In general, decreasing the number of free bins would seem to
145
   increase the time it takes to allocate... */
146
 
147
/* FIXME: We can't use anything but MAX_ALIGNMENT for the bin size
148
   today.  */
149
 
150
#define NUM_FREE_BINS           64
151
#define FREE_BIN_DELTA          MAX_ALIGNMENT
152
#define SIZE_BIN_DOWN(SIZE)     ((SIZE) / FREE_BIN_DELTA)
153
 
154
/* Allocation and marking parameters.  */
155
 
156
/* The smallest allocatable unit to keep track of.  */
157
#define BYTES_PER_ALLOC_BIT     MAX_ALIGNMENT
158
 
159
/* The smallest markable unit.  If we require each allocated object
160
   to contain at least two allocatable units, we can use half as many
161
   bits for the mark bitmap.  But this adds considerable complexity
162
   to sweeping.  */
163
#define BYTES_PER_MARK_BIT      BYTES_PER_ALLOC_BIT
164
 
165
#define BYTES_PER_MARK_WORD     (8 * BYTES_PER_MARK_BIT * sizeof (mark_type))
166
 
167
/* We use this structure to determine the alignment required for
168
   allocations.
169
 
170
   There are several things wrong with this estimation of alignment.
171
 
172
   The maximum alignment for a structure is often less than the
173
   maximum alignment for a basic data type; for instance, on some
174
   targets long long must be aligned to sizeof (int) in a structure
175
   and sizeof (long long) in a variable.  i386-linux is one example;
176
   Darwin is another (sometimes, depending on the compiler in use).
177
 
178
   Also, long double is not included.  Nothing in GCC uses long
179
   double, so we assume that this is OK.  On powerpc-darwin, adding
180
   long double would bring the maximum alignment up to 16 bytes,
181
   and until we need long double (or to vectorize compiler operations)
182
   that's painfully wasteful.  This will need to change, some day.  */
183
 
184
struct max_alignment {
185
  char c;
186
  union {
187
    HOST_WIDEST_INT i;
188
    double d;
189
  } u;
190
};
191
 
192
/* The biggest alignment required.  */
193
 
194
#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
195
 
196
/* Compute the smallest multiple of F that is >= X.  */
197
 
198
#define ROUND_UP(x, f) (CEIL (x, f) * (f))
199
 
200
/* Types to use for the allocation and mark bitmaps.  It might be
201
   a good idea to add ffsl to libiberty and use unsigned long
202
   instead; that could speed us up where long is wider than int.  */
203
 
204
typedef unsigned int alloc_type;
205
typedef unsigned int mark_type;
206
#define alloc_ffs(x) ffs(x)
207
 
208
/* A page_entry records the status of an allocation page.  This is the
209
   common data between all three kinds of pages - small, large, and
210
   PCH.  */
211
typedef struct page_entry
212
{
213
  /* The address at which the memory is allocated.  */
214
  char *page;
215
 
216
  /* The zone that this page entry belongs to.  */
217
  struct alloc_zone *zone;
218
 
219
#ifdef GATHER_STATISTICS
220
  /* How many collections we've survived.  */
221
  size_t survived;
222
#endif
223
 
224
  /* Does this page contain small objects, or one large object?  */
225
  bool large_p;
226
 
227
  /* Is this page part of the loaded PCH?  */
228
  bool pch_p;
229
} page_entry;
230
 
231
/* Additional data needed for small pages.  */
232
struct small_page_entry
233
{
234
  struct page_entry common;
235
 
236
  /* The next small page entry, or NULL if this is the last.  */
237
  struct small_page_entry *next;
238
 
239
  /* If currently marking this zone, a pointer to the mark bits
240
     for this page.  If we aren't currently marking this zone,
241
     this pointer may be stale (pointing to freed memory).  */
242
  mark_type *mark_bits;
243
 
244
  /* The allocation bitmap.  This array extends far enough to have
245
     one bit for every BYTES_PER_ALLOC_BIT bytes in the page.  */
246
  alloc_type alloc_bits[1];
247
};
248
 
249
/* Additional data needed for large pages.  */
250
struct large_page_entry
251
{
252
  struct page_entry common;
253
 
254
  /* The next large page entry, or NULL if this is the last.  */
255
  struct large_page_entry *next;
256
 
257
  /* The number of bytes allocated, not including the page entry.  */
258
  size_t bytes;
259
 
260
  /* The previous page in the list, so that we can unlink this one.  */
261
  struct large_page_entry *prev;
262
 
263
  /* During marking, is this object marked?  */
264
  bool mark_p;
265
};
266
 
267
/* A two-level tree is used to look up the page-entry for a given
268
   pointer.  Two chunks of the pointer's bits are extracted to index
269
   the first and second levels of the tree, as follows:
270
 
271
                                   HOST_PAGE_SIZE_BITS
272
                           32           |      |
273
       msb +----------------+----+------+------+ lsb
274
                            |    |      |
275
                         PAGE_L1_BITS   |
276
                                 |      |
277
                               PAGE_L2_BITS
278
 
279
   The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
280
   pages are aligned on system page boundaries.  The next most
281
   significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
282
   index values in the lookup table, respectively.
283
 
284
   For 32-bit architectures and the settings below, there are no
285
   leftover bits.  For architectures with wider pointers, the lookup
286
   tree points to a list of pages, which must be scanned to find the
287
   correct one.  */
288
 
289
#define PAGE_L1_BITS    (8)
290
#define PAGE_L2_BITS    (32 - PAGE_L1_BITS - GGC_PAGE_SHIFT)
291
#define PAGE_L1_SIZE    ((size_t) 1 << PAGE_L1_BITS)
292
#define PAGE_L2_SIZE    ((size_t) 1 << PAGE_L2_BITS)
293
 
294
#define LOOKUP_L1(p) \
295
  (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
296
 
297
#define LOOKUP_L2(p) \
298
  (((size_t) (p) >> GGC_PAGE_SHIFT) & ((1 << PAGE_L2_BITS) - 1))
299
 
300
#if HOST_BITS_PER_PTR <= 32
301
 
302
/* On 32-bit hosts, we use a two level page table, as pictured above.  */
303
typedef page_entry **page_table[PAGE_L1_SIZE];
304
 
305
#else
306
 
307
/* On 64-bit hosts, we use the same two level page tables plus a linked
308
   list that disambiguates the top 32-bits.  There will almost always be
309
   exactly one entry in the list.  */
310
typedef struct page_table_chain
311
{
312
  struct page_table_chain *next;
313
  size_t high_bits;
314
  page_entry **table[PAGE_L1_SIZE];
315
} *page_table;
316
 
317
#endif
318
 
319
/* The global variables.  */
320
static struct globals
321
{
322
  /* The linked list of zones.  */
323
  struct alloc_zone *zones;
324
 
325
  /* Lookup table for associating allocation pages with object addresses.  */
326
  page_table lookup;
327
 
328
  /* The system's page size, and related constants.  */
329
  size_t pagesize;
330
  size_t lg_pagesize;
331
  size_t page_mask;
332
 
333
  /* The size to allocate for a small page entry.  This includes
334
     the size of the structure and the size of the allocation
335
     bitmap.  */
336
  size_t small_page_overhead;
337
 
338
#if defined (HAVE_MMAP_DEV_ZERO)
339
  /* A file descriptor open to /dev/zero for reading.  */
340
  int dev_zero_fd;
341
#endif
342
 
343
  /* Allocate pages in chunks of this size, to throttle calls to memory
344
     allocation routines.  The first page is used, the rest go onto the
345
     free list.  */
346
  size_t quire_size;
347
 
348
  /* The file descriptor for debugging output.  */
349
  FILE *debug_file;
350
} G;
351
 
352
/* A zone allocation structure.  There is one of these for every
353
   distinct allocation zone.  */
354
struct alloc_zone
355
{
356
  /* The most recent free chunk is saved here, instead of in the linked
357
     free list, to decrease list manipulation.  It is most likely that we
358
     will want this one.  */
359
  char *cached_free;
360
  size_t cached_free_size;
361
 
362
  /* Linked lists of free storage.  Slots 1 ... NUM_FREE_BINS have chunks of size
363
     FREE_BIN_DELTA.  All other chunks are in slot 0.  */
364
  struct alloc_chunk *free_chunks[NUM_FREE_BINS + 1];
365
 
366
  /* The highest bin index which might be non-empty.  It may turn out
367
     to be empty, in which case we have to search downwards.  */
368
  size_t high_free_bin;
369
 
370
  /* Bytes currently allocated in this zone.  */
371
  size_t allocated;
372
 
373
  /* Linked list of the small pages in this zone.  */
374
  struct small_page_entry *pages;
375
 
376
  /* Doubly linked list of large pages in this zone.  */
377
  struct large_page_entry *large_pages;
378
 
379
  /* If we are currently marking this zone, a pointer to the mark bits.  */
380
  mark_type *mark_bits;
381
 
382
  /* Name of the zone.  */
383
  const char *name;
384
 
385
  /* The number of small pages currently allocated in this zone.  */
386
  size_t n_small_pages;
387
 
388
  /* Bytes allocated at the end of the last collection.  */
389
  size_t allocated_last_gc;
390
 
391
  /* Total amount of memory mapped.  */
392
  size_t bytes_mapped;
393
 
394
  /* A cache of free system pages.  */
395
  struct small_page_entry *free_pages;
396
 
397
  /* Next zone in the linked list of zones.  */
398
  struct alloc_zone *next_zone;
399
 
400
  /* True if this zone was collected during this collection.  */
401
  bool was_collected;
402
 
403
  /* True if this zone should be destroyed after the next collection.  */
404
  bool dead;
405
 
406
#ifdef GATHER_STATISTICS
407
  struct
408
  {
409
    /* Total GC-allocated memory.  */
410
    unsigned long long total_allocated;
411
    /* Total overhead for GC-allocated memory.  */
412
    unsigned long long total_overhead;
413
 
414
    /* Total allocations and overhead for sizes less than 32, 64 and 128.
415
       These sizes are interesting because they are typical cache line
416
       sizes.  */
417
 
418
    unsigned long long total_allocated_under32;
419
    unsigned long long total_overhead_under32;
420
 
421
    unsigned long long total_allocated_under64;
422
    unsigned long long total_overhead_under64;
423
 
424
    unsigned long long total_allocated_under128;
425
    unsigned long long total_overhead_under128;
426
  } stats;
427
#endif
428
} main_zone;
429
 
430
/* Some default zones.  */
431
struct alloc_zone rtl_zone;
432
struct alloc_zone tree_zone;
433
struct alloc_zone tree_id_zone;
434
 
435
/* The PCH zone does not need a normal zone structure, and it does
436
   not live on the linked list of zones.  */
437
struct pch_zone
438
{
439
  /* The start of the PCH zone.  NULL if there is none.  */
440
  char *page;
441
 
442
  /* The end of the PCH zone.  NULL if there is none.  */
443
  char *end;
444
 
445
  /* The size of the PCH zone.  0 if there is none.  */
446
  size_t bytes;
447
 
448
  /* The allocation bitmap for the PCH zone.  */
449
  alloc_type *alloc_bits;
450
 
451
  /* If we are currently marking, the mark bitmap for the PCH zone.
452
     When it is first read in, we could avoid marking the PCH,
453
     because it will not contain any pointers to GC memory outside
454
     of the PCH; however, the PCH is currently mapped as writable,
455
     so we must mark it in case new pointers are added.  */
456
  mark_type *mark_bits;
457
} pch_zone;
458
 
459
#ifdef USING_MMAP
460
static char *alloc_anon (char *, size_t, struct alloc_zone *);
461
#endif
462
static struct small_page_entry * alloc_small_page (struct alloc_zone *);
463
static struct large_page_entry * alloc_large_page (size_t, struct alloc_zone *);
464
static void free_chunk (char *, size_t, struct alloc_zone *);
465
static void free_small_page (struct small_page_entry *);
466
static void free_large_page (struct large_page_entry *);
467
static void release_pages (struct alloc_zone *);
468
static void sweep_pages (struct alloc_zone *);
469
static bool ggc_collect_1 (struct alloc_zone *, bool);
470
static void new_ggc_zone_1 (struct alloc_zone *, const char *);
471
 
472
/* Traverse the page table and find the entry for a page.
473
   Die (probably) if the object wasn't allocated via GC.  */
474
 
475
static inline page_entry *
476
lookup_page_table_entry (const void *p)
477
{
478
  page_entry ***base;
479
  size_t L1, L2;
480
 
481
#if HOST_BITS_PER_PTR <= 32
482
  base = &G.lookup[0];
483
#else
484
  page_table table = G.lookup;
485
  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
486
  while (table->high_bits != high_bits)
487
    table = table->next;
488
  base = &table->table[0];
489
#endif
490
 
491
  /* Extract the level 1 and 2 indices.  */
492
  L1 = LOOKUP_L1 (p);
493
  L2 = LOOKUP_L2 (p);
494
 
495
  return base[L1][L2];
496
}
497
 
498
/* Traverse the page table and find the entry for a page.
499
   Return NULL if the object wasn't allocated via the GC.  */
500
 
501
static inline page_entry *
502
lookup_page_table_if_allocated (const void *p)
503
{
504
  page_entry ***base;
505
  size_t L1, L2;
506
 
507
#if HOST_BITS_PER_PTR <= 32
508
  base = &G.lookup[0];
509
#else
510
  page_table table = G.lookup;
511
  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
512
  while (1)
513
    {
514
      if (table == NULL)
515
        return NULL;
516
      if (table->high_bits == high_bits)
517
        break;
518
      table = table->next;
519
    }
520
  base = &table->table[0];
521
#endif
522
 
523
  /* Extract the level 1 and 2 indices.  */
524
  L1 = LOOKUP_L1 (p);
525
  if (! base[L1])
526
    return NULL;
527
 
528
  L2 = LOOKUP_L2 (p);
529
  if (L2 >= PAGE_L2_SIZE)
530
    return NULL;
531
  /* We might have a page entry which does not correspond exactly to a
532
     system page.  */
533
  if (base[L1][L2] && (const char *) p < base[L1][L2]->page)
534
    return NULL;
535
 
536
  return base[L1][L2];
537
}
538
 
539
/* Set the page table entry for the page that starts at P.  If ENTRY
540
   is NULL, clear the entry.  */
541
 
542
static void
543
set_page_table_entry (void *p, page_entry *entry)
544
{
545
  page_entry ***base;
546
  size_t L1, L2;
547
 
548
#if HOST_BITS_PER_PTR <= 32
549
  base = &G.lookup[0];
550
#else
551
  page_table table;
552
  size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
553
  for (table = G.lookup; table; table = table->next)
554
    if (table->high_bits == high_bits)
555
      goto found;
556
 
557
  /* Not found -- allocate a new table.  */
558
  table = XCNEW (struct page_table_chain);
559
  table->next = G.lookup;
560
  table->high_bits = high_bits;
561
  G.lookup = table;
562
found:
563
  base = &table->table[0];
564
#endif
565
 
566
  /* Extract the level 1 and 2 indices.  */
567
  L1 = LOOKUP_L1 (p);
568
  L2 = LOOKUP_L2 (p);
569
 
570
  if (base[L1] == NULL)
571
    base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
572
 
573
  base[L1][L2] = entry;
574
}
575
 
576
/* Find the page table entry associated with OBJECT.  */
577
 
578
static inline struct page_entry *
579
zone_get_object_page (const void *object)
580
{
581
  return lookup_page_table_entry (object);
582
}
583
 
584
/* Find which element of the alloc_bits array OBJECT should be
585
   recorded in.  */
586
static inline unsigned int
587
zone_get_object_alloc_word (const void *object)
588
{
589
  return (((size_t) object & (GGC_PAGE_SIZE - 1))
590
          / (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
591
}
592
 
593
/* Find which bit of the appropriate word in the alloc_bits array
594
   OBJECT should be recorded in.  */
595
static inline unsigned int
596
zone_get_object_alloc_bit (const void *object)
597
{
598
  return (((size_t) object / BYTES_PER_ALLOC_BIT)
599
          % (8 * sizeof (alloc_type)));
600
}
601
 
602
/* Find which element of the mark_bits array OBJECT should be recorded
603
   in.  */
604
static inline unsigned int
605
zone_get_object_mark_word (const void *object)
606
{
607
  return (((size_t) object & (GGC_PAGE_SIZE - 1))
608
          / (8 * sizeof (mark_type) * BYTES_PER_MARK_BIT));
609
}
610
 
611
/* Find which bit of the appropriate word in the mark_bits array
612
   OBJECT should be recorded in.  */
613
static inline unsigned int
614
zone_get_object_mark_bit (const void *object)
615
{
616
  return (((size_t) object / BYTES_PER_MARK_BIT)
617
          % (8 * sizeof (mark_type)));
618
}
619
 
620
/* Set the allocation bit corresponding to OBJECT in its page's
621
   bitmap.  Used to split this object from the preceding one.  */
622
static inline void
623
zone_set_object_alloc_bit (const void *object)
624
{
625
  struct small_page_entry *page
626
    = (struct small_page_entry *) zone_get_object_page (object);
627
  unsigned int start_word = zone_get_object_alloc_word (object);
628
  unsigned int start_bit = zone_get_object_alloc_bit (object);
629
 
630
  page->alloc_bits[start_word] |= 1L << start_bit;
631
}
632
 
633
/* Clear the allocation bit corresponding to OBJECT in PAGE's
634
   bitmap.  Used to coalesce this object with the preceding
635
   one.  */
636
static inline void
637
zone_clear_object_alloc_bit (struct small_page_entry *page,
638
                             const void *object)
639
{
640
  unsigned int start_word = zone_get_object_alloc_word (object);
641
  unsigned int start_bit = zone_get_object_alloc_bit (object);
642
 
643
  /* Would xor be quicker?  */
644
  page->alloc_bits[start_word] &= ~(1L << start_bit);
645
}
646
 
647
/* Find the size of the object which starts at START_WORD and
648
   START_BIT in ALLOC_BITS, which is at most MAX_SIZE bytes.
649
   Helper function for ggc_get_size and zone_find_object_size.  */
650
 
651
static inline size_t
652
zone_object_size_1 (alloc_type *alloc_bits,
653
                    size_t start_word, size_t start_bit,
654
                    size_t max_size)
655
{
656
  size_t size;
657
  alloc_type alloc_word;
658
  int indx;
659
 
660
  /* Load the first word.  */
661
  alloc_word = alloc_bits[start_word++];
662
 
663
  /* If that was the last bit in this word, we'll want to continue
664
     with the next word.  Otherwise, handle the rest of this word.  */
665
  if (start_bit)
666
    {
667
      indx = alloc_ffs (alloc_word >> start_bit);
668
      if (indx)
669
        /* indx is 1-based.  We started at the bit after the object's
670
           start, but we also ended at the bit after the object's end.
671
           It cancels out.  */
672
        return indx * BYTES_PER_ALLOC_BIT;
673
 
674
      /* The extra 1 accounts for the starting unit, before start_bit.  */
675
      size = (sizeof (alloc_type) * 8 - start_bit + 1) * BYTES_PER_ALLOC_BIT;
676
 
677
      if (size >= max_size)
678
        return max_size;
679
 
680
      alloc_word = alloc_bits[start_word++];
681
    }
682
  else
683
    size = BYTES_PER_ALLOC_BIT;
684
 
685
  while (alloc_word == 0)
686
    {
687
      size += sizeof (alloc_type) * 8 * BYTES_PER_ALLOC_BIT;
688
      if (size >= max_size)
689
        return max_size;
690
      alloc_word = alloc_bits[start_word++];
691
    }
692
 
693
  indx = alloc_ffs (alloc_word);
694
  return size + (indx - 1) * BYTES_PER_ALLOC_BIT;
695
}
696
 
697
/* Find the size of OBJECT on small page PAGE.  */
698
 
699
static inline size_t
700
zone_find_object_size (struct small_page_entry *page,
701
                       const void *object)
702
{
703
  const char *object_midptr = (const char *) object + BYTES_PER_ALLOC_BIT;
704
  unsigned int start_word = zone_get_object_alloc_word (object_midptr);
705
  unsigned int start_bit = zone_get_object_alloc_bit (object_midptr);
706
  size_t max_size = (page->common.page + SMALL_PAGE_SIZE
707
                     - (const char *) object);
708
 
709
  return zone_object_size_1 (page->alloc_bits, start_word, start_bit,
710
                             max_size);
711
}
712
 
713
/* highest_bit assumes that alloc_type is 32 bits.  */
714
extern char check_alloc_type_size[(sizeof (alloc_type) == 4) ? 1 : -1];
715
 
716
/* Find the highest set bit in VALUE.  Returns the bit number of that
717
   bit, using the same values as ffs.  */
718
static inline alloc_type
719
highest_bit (alloc_type value)
720
{
721
  /* This also assumes that alloc_type is unsigned.  */
722
  value |= value >> 1;
723
  value |= value >> 2;
724
  value |= value >> 4;
725
  value |= value >> 8;
726
  value |= value >> 16;
727
  value = value ^ (value >> 1);
728
  return alloc_ffs (value);
729
}
730
 
731
/* Find the offset from the start of an object to P, which may point
732
   into the interior of the object.  */
733
 
734
static unsigned long
735
zone_find_object_offset (alloc_type *alloc_bits, size_t start_word,
736
                         size_t start_bit)
737
{
738
  unsigned int offset_in_bits;
739
  alloc_type alloc_word = alloc_bits[start_word];
740
 
741
  /* Mask off any bits after the initial bit, but make sure to include
742
     the initial bit in the result.  Note that START_BIT is
743
     0-based.  */
744
  if (start_bit < 8 * sizeof (alloc_type) - 1)
745
    alloc_word &= (1 << (start_bit + 1)) - 1;
746
  offset_in_bits = start_bit;
747
 
748
  /* Search for the start of the object.  */
749
  while (alloc_word == 0 && start_word > 0)
750
    {
751
      alloc_word = alloc_bits[--start_word];
752
      offset_in_bits += 8 * sizeof (alloc_type);
753
    }
754
  /* We must always find a set bit.  */
755
  gcc_assert (alloc_word != 0);
756
  /* Note that the result of highest_bit is 1-based.  */
757
  offset_in_bits -= highest_bit (alloc_word) - 1;
758
 
759
  return BYTES_PER_ALLOC_BIT * offset_in_bits;
760
}
761
 
762
/* Allocate the mark bits for every zone, and set the pointers on each
763
   page.  */
764
static void
765
zone_allocate_marks (void)
766
{
767
  struct alloc_zone *zone;
768
 
769
  for (zone = G.zones; zone; zone = zone->next_zone)
770
    {
771
      struct small_page_entry *page;
772
      mark_type *cur_marks;
773
      size_t mark_words, mark_words_per_page;
774
#ifdef ENABLE_CHECKING
775
      size_t n = 0;
776
#endif
777
 
778
      mark_words_per_page
779
        = (GGC_PAGE_SIZE + BYTES_PER_MARK_WORD - 1) / BYTES_PER_MARK_WORD;
780
      mark_words = zone->n_small_pages * mark_words_per_page;
781
      zone->mark_bits = (mark_type *) xcalloc (sizeof (mark_type),
782
                                                   mark_words);
783
      cur_marks = zone->mark_bits;
784
      for (page = zone->pages; page; page = page->next)
785
        {
786
          page->mark_bits = cur_marks;
787
          cur_marks += mark_words_per_page;
788
#ifdef ENABLE_CHECKING
789
          n++;
790
#endif
791
        }
792
      gcc_checking_assert (n == zone->n_small_pages);
793
    }
794
 
795
  /* We don't collect the PCH zone, but we do have to mark it
796
     (for now).  */
797
  if (pch_zone.bytes)
798
    pch_zone.mark_bits
799
      = (mark_type *) xcalloc (sizeof (mark_type),
800
                               CEIL (pch_zone.bytes, BYTES_PER_MARK_WORD));
801
}
802
 
803
/* After marking and sweeping, release the memory used for mark bits.  */
804
static void
805
zone_free_marks (void)
806
{
807
  struct alloc_zone *zone;
808
 
809
  for (zone = G.zones; zone; zone = zone->next_zone)
810
    if (zone->mark_bits)
811
      {
812
        free (zone->mark_bits);
813
        zone->mark_bits = NULL;
814
      }
815
 
816
  if (pch_zone.bytes)
817
    {
818
      free (pch_zone.mark_bits);
819
      pch_zone.mark_bits = NULL;
820
    }
821
}
822
 
823
#ifdef USING_MMAP
824
/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
825
   (if non-null).  The ifdef structure here is intended to cause a
826
   compile error unless exactly one of the HAVE_* is defined.  */
827
 
828
static inline char *
829
alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, struct alloc_zone *zone)
830
{
831
#ifdef HAVE_MMAP_ANON
832
  char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
833
                              MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
834
#endif
835
#ifdef HAVE_MMAP_DEV_ZERO
836
  char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
837
                              MAP_PRIVATE, G.dev_zero_fd, 0);
838
#endif
839
 
840
  if (page == (char *) MAP_FAILED)
841
    {
842
      perror ("virtual memory exhausted");
843
      exit (FATAL_EXIT_CODE);
844
    }
845
 
846
  /* Remember that we allocated this memory.  */
847
  zone->bytes_mapped += size;
848
 
849
  /* Pretend we don't have access to the allocated pages.  We'll enable
850
     access to smaller pieces of the area in ggc_internal_alloc.  Discard the
851
     handle to avoid handle leak.  */
852
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
853
 
854
  return page;
855
}
856
#endif
857
 
858
/* Allocate a new page for allocating small objects in ZONE, and
859
   return an entry for it.  */
860
 
861
static struct small_page_entry *
862
alloc_small_page (struct alloc_zone *zone)
863
{
864
  struct small_page_entry *entry;
865
 
866
  /* Check the list of free pages for one we can use.  */
867
  entry = zone->free_pages;
868
  if (entry != NULL)
869
    {
870
      /* Recycle the allocated memory from this page ...  */
871
      zone->free_pages = entry->next;
872
    }
873
  else
874
    {
875
      /* We want just one page.  Allocate a bunch of them and put the
876
         extras on the freelist.  (Can only do this optimization with
877
         mmap for backing store.)  */
878
      struct small_page_entry *e, *f = zone->free_pages;
879
      int i;
880
      char *page;
881
 
882
      page = alloc_anon (NULL, GGC_PAGE_SIZE * G.quire_size, zone);
883
 
884
      /* This loop counts down so that the chain will be in ascending
885
         memory order.  */
886
      for (i = G.quire_size - 1; i >= 1; i--)
887
        {
888
          e = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
889
          e->common.page = page + (i << GGC_PAGE_SHIFT);
890
          e->common.zone = zone;
891
          e->next = f;
892
          f = e;
893
          set_page_table_entry (e->common.page, &e->common);
894
        }
895
 
896
      zone->free_pages = f;
897
 
898
      entry = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
899
      entry->common.page = page;
900
      entry->common.zone = zone;
901
      set_page_table_entry (page, &entry->common);
902
    }
903
 
904
  zone->n_small_pages++;
905
 
906
  if (GGC_DEBUG_LEVEL >= 2)
907
    fprintf (G.debug_file,
908
             "Allocating %s page at %p, data %p-%p\n",
909
             entry->common.zone->name, (PTR) entry, entry->common.page,
910
             entry->common.page + SMALL_PAGE_SIZE - 1);
911
 
912
  return entry;
913
}
914
 
915
/* Allocate a large page of size SIZE in ZONE.  */
916
 
917
static struct large_page_entry *
918
alloc_large_page (size_t size, struct alloc_zone *zone)
919
{
920
  struct large_page_entry *entry;
921
  char *page;
922
  size_t needed_size;
923
 
924
  needed_size = size + sizeof (struct large_page_entry);
925
  page = XNEWVAR (char, needed_size);
926
 
927
  entry = (struct large_page_entry *) page;
928
 
929
  entry->next = NULL;
930
  entry->common.page = page + sizeof (struct large_page_entry);
931
  entry->common.large_p = true;
932
  entry->common.pch_p = false;
933
  entry->common.zone = zone;
934
#ifdef GATHER_STATISTICS
935
  entry->common.survived = 0;
936
#endif
937
  entry->mark_p = false;
938
  entry->bytes = size;
939
  entry->prev = NULL;
940
 
941
  set_page_table_entry (entry->common.page, &entry->common);
942
 
943
  if (GGC_DEBUG_LEVEL >= 2)
944
    fprintf (G.debug_file,
945
             "Allocating %s large page at %p, data %p-%p\n",
946
             entry->common.zone->name, (PTR) entry, entry->common.page,
947
             entry->common.page + SMALL_PAGE_SIZE - 1);
948
 
949
  return entry;
950
}
951
 
952
 
953
/* For a page that is no longer needed, put it on the free page list.  */
954
 
955
static inline void
956
free_small_page (struct small_page_entry *entry)
957
{
958
  if (GGC_DEBUG_LEVEL >= 2)
959
    fprintf (G.debug_file,
960
             "Deallocating %s page at %p, data %p-%p\n",
961
             entry->common.zone->name, (PTR) entry,
962
             entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);
963
 
964
  gcc_assert (!entry->common.large_p);
965
 
966
  /* Mark the page as inaccessible.  Discard the handle to
967
     avoid handle leak.  */
968
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->common.page,
969
                                                SMALL_PAGE_SIZE));
970
 
971
  entry->next = entry->common.zone->free_pages;
972
  entry->common.zone->free_pages = entry;
973
  entry->common.zone->n_small_pages--;
974
}
975
 
976
/* Release a large page that is no longer needed.  */
977
 
978
static inline void
979
free_large_page (struct large_page_entry *entry)
980
{
981
  if (GGC_DEBUG_LEVEL >= 2)
982
    fprintf (G.debug_file,
983
             "Deallocating %s page at %p, data %p-%p\n",
984
             entry->common.zone->name, (PTR) entry,
985
             entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);
986
 
987
  gcc_assert (entry->common.large_p);
988
 
989
  set_page_table_entry (entry->common.page, NULL);
990
  free (entry);
991
}
992
 
993
/* Release the free page cache to the system.  */
994
 
995
static void
996
release_pages (struct alloc_zone *zone)
997
{
998
#ifdef USING_MMAP
999
  struct small_page_entry *p, *next;
1000
  char *start;
1001
  size_t len;
1002
 
1003
  /* Gather up adjacent pages so they are unmapped together.  */
1004
  p = zone->free_pages;
1005
 
1006
  while (p)
1007
    {
1008
      start = p->common.page;
1009
      next = p->next;
1010
      len = SMALL_PAGE_SIZE;
1011
      set_page_table_entry (p->common.page, NULL);
1012
      p = next;
1013
 
1014
      while (p && p->common.page == start + len)
1015
        {
1016
          next = p->next;
1017
          len += SMALL_PAGE_SIZE;
1018
          set_page_table_entry (p->common.page, NULL);
1019
          p = next;
1020
        }
1021
 
1022
      munmap (start, len);
1023
      zone->bytes_mapped -= len;
1024
    }
1025
 
1026
  zone->free_pages = NULL;
1027
#endif
1028
}
1029
 
1030
/* Place the block at PTR of size SIZE on the free list for ZONE.  */
1031
 
1032
static inline void
1033
free_chunk (char *ptr, size_t size, struct alloc_zone *zone)
1034
{
1035
  struct alloc_chunk *chunk = (struct alloc_chunk *) ptr;
1036
  size_t bin = 0;
1037
 
1038
  bin = SIZE_BIN_DOWN (size);
1039
  gcc_assert (bin != 0);
1040
  if (bin > NUM_FREE_BINS)
1041
    {
1042
      bin = 0;
1043
      VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (chunk,
1044
                                                     sizeof (struct
1045
                                                             alloc_chunk)));
1046
      chunk->size = size;
1047
      chunk->next_free = zone->free_chunks[bin];
1048
      VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (ptr
1049
                                                    + sizeof (struct
1050
                                                              alloc_chunk),
1051
                                                    size
1052
                                                    - sizeof (struct
1053
                                                              alloc_chunk)));
1054
    }
1055
  else
1056
    {
1057
      VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (chunk,
1058
                                                     sizeof (struct
1059
                                                             alloc_chunk *)));
1060
      chunk->next_free = zone->free_chunks[bin];
1061
      VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (ptr
1062
                                                    + sizeof (struct
1063
                                                              alloc_chunk *),
1064
                                                    size
1065
                                                    - sizeof (struct
1066
                                                              alloc_chunk *)));
1067
    }
1068
 
1069
  zone->free_chunks[bin] = chunk;
1070
  if (bin > zone->high_free_bin)
1071
    zone->high_free_bin = bin;
1072
  if (GGC_DEBUG_LEVEL >= 3)
1073
    fprintf (G.debug_file, "Deallocating object, chunk=%p\n", (void *)chunk);
1074
}
1075
 
1076
/* For a given size of memory requested for allocation, return the
1077
   actual size that is going to be allocated.  */
1078
 
1079
size_t
1080
ggc_round_alloc_size (size_t requested_size)
1081
{
1082
  size_t size;
1083
 
1084
  /* Make sure that zero-sized allocations get a unique and freeable
1085
     pointer.  */
1086
  if (requested_size == 0)
1087
    size = MAX_ALIGNMENT;
1088
  else
1089
    size = (requested_size + MAX_ALIGNMENT - 1) & -MAX_ALIGNMENT;
1090
 
1091
  return size;
1092
}
1093
 
1094
/* Allocate a chunk of memory of at least ORIG_SIZE bytes, in ZONE.  */
1095
 
1096
void *
1097
ggc_internal_alloc_zone_stat (size_t orig_size, struct alloc_zone *zone
1098
                              MEM_STAT_DECL)
1099
{
1100
  size_t bin;
1101
  size_t csize;
1102
  struct small_page_entry *entry;
1103
  struct alloc_chunk *chunk, **pp;
1104
  void *result;
1105
  size_t size = ggc_round_alloc_size (orig_size);
1106
 
1107
  /* Try to allocate the object from several different sources.  Each
1108
     of these cases is responsible for setting RESULT and SIZE to
1109
     describe the allocated block, before jumping to FOUND.  If a
1110
     chunk is split, the allocate bit for the new chunk should also be
1111
     set.
1112
 
1113
     Large objects are handled specially.  However, they'll just fail
1114
     the next couple of conditions, so we can wait to check for them
1115
     below.  The large object case is relatively rare (< 1%), so this
1116
     is a win.  */
1117
 
1118
  /* First try to split the last chunk we allocated.  For best
1119
     fragmentation behavior it would be better to look for a
1120
     free bin of the appropriate size for a small object.  However,
1121
     we're unlikely (1% - 7%) to find one, and this gives better
1122
     locality behavior anyway.  This case handles the lion's share
1123
     of all calls to this function.  */
1124
  if (size <= zone->cached_free_size)
1125
    {
1126
      result = zone->cached_free;
1127
 
1128
      zone->cached_free_size -= size;
1129
      if (zone->cached_free_size)
1130
        {
1131
          zone->cached_free += size;
1132
          zone_set_object_alloc_bit (zone->cached_free);
1133
        }
1134
 
1135
      goto found;
1136
    }
1137
 
1138
  /* Next, try to find a free bin of the exactly correct size.  */
1139
 
1140
  /* We want to round SIZE up, rather than down, but we know it's
1141
     already aligned to at least FREE_BIN_DELTA, so we can just
1142
     shift.  */
1143
  bin = SIZE_BIN_DOWN (size);
1144
 
1145
  if (bin <= NUM_FREE_BINS
1146
      && (chunk = zone->free_chunks[bin]) != NULL)
1147
    {
1148
      /* We have a chunk of the right size.  Pull it off the free list
1149
         and use it.  */
1150
 
1151
      zone->free_chunks[bin] = chunk->next_free;
1152
 
1153
      /* NOTE: SIZE is only guaranteed to be right if MAX_ALIGNMENT
1154
         == FREE_BIN_DELTA.  */
1155
      result = chunk;
1156
 
1157
      /* The allocation bits are already set correctly.  HIGH_FREE_BIN
1158
         may now be wrong, if this was the last chunk in the high bin.
1159
         Rather than fixing it up now, wait until we need to search
1160
         the free bins.  */
1161
 
1162
      goto found;
1163
    }
1164
 
1165
  /* Next, if there wasn't a chunk of the ideal size, look for a chunk
1166
     to split.  We can find one in the too-big bin, or in the largest
1167
     sized bin with a chunk in it.  Try the largest normal-sized bin
1168
     first.  */
1169
 
1170
  if (zone->high_free_bin > bin)
1171
    {
1172
      /* Find the highest numbered free bin.  It will be at or below
1173
         the watermark.  */
1174
      while (zone->high_free_bin > bin
1175
             && zone->free_chunks[zone->high_free_bin] == NULL)
1176
        zone->high_free_bin--;
1177
 
1178
      if (zone->high_free_bin > bin)
1179
        {
1180
          size_t tbin = zone->high_free_bin;
1181
          chunk = zone->free_chunks[tbin];
1182
 
1183
          /* Remove the chunk from its previous bin.  */
1184
          zone->free_chunks[tbin] = chunk->next_free;
1185
 
1186
          result = (char *) chunk;
1187
 
1188
          /* Save the rest of the chunk for future allocation.  */
1189
          if (zone->cached_free_size)
1190
            free_chunk (zone->cached_free, zone->cached_free_size, zone);
1191
 
1192
          chunk = (struct alloc_chunk *) ((char *) result + size);
1193
          zone->cached_free = (char *) chunk;
1194
          zone->cached_free_size = (tbin - bin) * FREE_BIN_DELTA;
1195
 
1196
          /* Mark the new free chunk as an object, so that we can
1197
             find the size of the newly allocated object.  */
1198
          zone_set_object_alloc_bit (chunk);
1199
 
1200
          /* HIGH_FREE_BIN may now be wrong, if this was the last
1201
             chunk in the high bin.  Rather than fixing it up now,
1202
             wait until we need to search the free bins.  */
1203
 
1204
          goto found;
1205
        }
1206
    }
1207
 
1208
  /* Failing that, look through the "other" bucket for a chunk
1209
     that is large enough.  */
1210
  pp = &(zone->free_chunks[0]);
1211
  chunk = *pp;
1212
  while (chunk && chunk->size < size)
1213
    {
1214
      pp = &chunk->next_free;
1215
      chunk = *pp;
1216
    }
1217
 
1218
  if (chunk)
1219
    {
1220
      /* Remove the chunk from its previous bin.  */
1221
      *pp = chunk->next_free;
1222
 
1223
      result = (char *) chunk;
1224
 
1225
      /* Save the rest of the chunk for future allocation, if there's any
1226
         left over.  */
1227
      csize = chunk->size;
1228
      if (csize > size)
1229
        {
1230
          if (zone->cached_free_size)
1231
            free_chunk (zone->cached_free, zone->cached_free_size, zone);
1232
 
1233
          chunk = (struct alloc_chunk *) ((char *) result + size);
1234
          zone->cached_free = (char *) chunk;
1235
          zone->cached_free_size = csize - size;
1236
 
1237
          /* Mark the new free chunk as an object.  */
1238
          zone_set_object_alloc_bit (chunk);
1239
        }
1240
 
1241
      goto found;
1242
    }
1243
 
1244
  /* Handle large allocations.  We could choose any threshold between
1245
     GGC_PAGE_SIZE - sizeof (struct large_page_entry) and
1246
     GGC_PAGE_SIZE.  It can't be smaller, because then it wouldn't
1247
     be guaranteed to have a unique entry in the lookup table.  Large
1248
     allocations will always fall through to here.  */
1249
  if (size > GGC_PAGE_SIZE)
1250
    {
1251
      struct large_page_entry *entry = alloc_large_page (size, zone);
1252
 
1253
#ifdef GATHER_STATISTICS
1254
      entry->common.survived = 0;
1255
#endif
1256
 
1257
      entry->next = zone->large_pages;
1258
      if (zone->large_pages)
1259
        zone->large_pages->prev = entry;
1260
      zone->large_pages = entry;
1261
 
1262
      result = entry->common.page;
1263
 
1264
      goto found;
1265
    }
1266
 
1267
  /* Failing everything above, allocate a new small page.  */
1268
 
1269
  entry = alloc_small_page (zone);
1270
  entry->next = zone->pages;
1271
  zone->pages = entry;
1272
 
1273
  /* Mark the first chunk in the new page.  */
1274
  entry->alloc_bits[0] = 1;
1275
 
1276
  result = entry->common.page;
1277
  if (size < SMALL_PAGE_SIZE)
1278
    {
1279
      if (zone->cached_free_size)
1280
        free_chunk (zone->cached_free, zone->cached_free_size, zone);
1281
 
1282
      zone->cached_free = (char *) result + size;
1283
      zone->cached_free_size = SMALL_PAGE_SIZE - size;
1284
 
1285
      /* Mark the new free chunk as an object.  */
1286
      zone_set_object_alloc_bit (zone->cached_free);
1287
    }
1288
 
1289
 found:
1290
 
1291
  /* We could save TYPE in the chunk, but we don't use that for
1292
     anything yet.  If we wanted to, we could do it by adding it
1293
     either before the beginning of the chunk or after its end,
1294
     and adjusting the size and pointer appropriately.  */
1295
 
1296
  /* We'll probably write to this after we return.  */
1297
  prefetchw (result);
1298
 
1299
#ifdef ENABLE_GC_CHECKING
1300
  /* `Poison' the entire allocated object.  */
1301
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1302
  memset (result, 0xaf, size);
1303
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (result + orig_size,
1304
                                                size - orig_size));
1305
#endif
1306
 
1307
  /* Tell Valgrind that the memory is there, but its content isn't
1308
     defined.  The bytes at the end of the object are still marked
1309
     unaccessible.  */
1310
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, orig_size));
1311
 
1312
  /* Keep track of how many bytes are being allocated.  This
1313
     information is used in deciding when to collect.  */
1314
  zone->allocated += size;
1315
 
1316
  timevar_ggc_mem_total += size;
1317
 
1318
#ifdef GATHER_STATISTICS
1319
  ggc_record_overhead (orig_size, size - orig_size, result PASS_MEM_STAT);
1320
 
1321
  {
1322
    size_t object_size = size;
1323
    size_t overhead = object_size - orig_size;
1324
 
1325
    zone->stats.total_overhead += overhead;
1326
    zone->stats.total_allocated += object_size;
1327
 
1328
    if (orig_size <= 32)
1329
      {
1330
        zone->stats.total_overhead_under32 += overhead;
1331
        zone->stats.total_allocated_under32 += object_size;
1332
      }
1333
    if (orig_size <= 64)
1334
      {
1335
        zone->stats.total_overhead_under64 += overhead;
1336
        zone->stats.total_allocated_under64 += object_size;
1337
      }
1338
    if (orig_size <= 128)
1339
      {
1340
        zone->stats.total_overhead_under128 += overhead;
1341
        zone->stats.total_allocated_under128 += object_size;
1342
      }
1343
  }
1344
#endif
1345
 
1346
  if (GGC_DEBUG_LEVEL >= 3)
1347
    fprintf (G.debug_file, "Allocating object, size=%lu at %p\n",
1348
             (unsigned long) size, result);
1349
 
1350
  return result;
1351
}
1352
 
1353
#define ggc_internal_alloc_zone_pass_stat(s,z)          \
1354
    ggc_internal_alloc_zone_stat (s,z PASS_MEM_STAT)
1355
 
1356
void *
1357
ggc_internal_cleared_alloc_zone_stat (size_t orig_size,
1358
                                      struct alloc_zone *zone MEM_STAT_DECL)
1359
{
1360
  void * result = ggc_internal_alloc_zone_pass_stat (orig_size, zone);
1361
  memset (result, 0, orig_size);
1362
  return result;
1363
}
1364
 
1365
 
1366
/* Allocate a SIZE of chunk memory of GTE type, into an appropriate zone
1367
   for that type.  */
1368
 
1369
void *
1370
ggc_alloc_typed_stat (enum gt_types_enum gte, size_t size
1371
                      MEM_STAT_DECL)
1372
{
1373
  switch (gte)
1374
    {
1375
    case gt_ggc_e_14lang_tree_node:
1376
      return ggc_internal_alloc_zone_pass_stat (size, &tree_zone);
1377
 
1378
    case gt_ggc_e_7rtx_def:
1379
      return ggc_internal_alloc_zone_pass_stat (size, &rtl_zone);
1380
 
1381
    case gt_ggc_e_9rtvec_def:
1382
      return ggc_internal_alloc_zone_pass_stat (size, &rtl_zone);
1383
 
1384
    default:
1385
      return ggc_internal_alloc_zone_pass_stat (size, &main_zone);
1386
    }
1387
}
1388
 
1389
/* Normal GC allocation simply allocates into the main zone.  */
1390
 
1391
void *
1392
ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
1393
{
1394
  return ggc_internal_alloc_zone_pass_stat (size, &main_zone);
1395
}
1396
 
1397
/* Poison the chunk.  */
1398
#ifdef ENABLE_GC_CHECKING
1399
#define poison_region(PTR, SIZE)                                      \
1400
  do {                                                                \
1401
    VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED ((PTR), (SIZE)));   \
1402
    memset ((PTR), 0xa5, (SIZE));                                     \
1403
    VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((PTR), (SIZE)));    \
1404
  } while (0)
1405
#else
1406
#define poison_region(PTR, SIZE)
1407
#endif
1408
 
1409
/* Free the object at P.  */
1410
 
1411
void
1412
ggc_free (void *p)
1413
{
1414
  struct page_entry *page;
1415
 
1416
#ifdef GATHER_STATISTICS
1417
  ggc_free_overhead (p);
1418
#endif
1419
 
1420
  poison_region (p, ggc_get_size (p));
1421
 
1422
  page = zone_get_object_page (p);
1423
 
1424
  if (page->large_p)
1425
    {
1426
      struct large_page_entry *large_page
1427
        = (struct large_page_entry *) page;
1428
 
1429
      /* Remove the page from the linked list.  */
1430
      if (large_page->prev)
1431
        large_page->prev->next = large_page->next;
1432
      else
1433
        {
1434
          gcc_assert (large_page->common.zone->large_pages == large_page);
1435
          large_page->common.zone->large_pages = large_page->next;
1436
        }
1437
      if (large_page->next)
1438
        large_page->next->prev = large_page->prev;
1439
 
1440
      large_page->common.zone->allocated -= large_page->bytes;
1441
 
1442
      /* Release the memory associated with this object.  */
1443
      free_large_page (large_page);
1444
    }
1445
  else if (page->pch_p)
1446
    /* Don't do anything.  We won't allocate a new object from the
1447
       PCH zone so there's no point in releasing anything.  */
1448
    ;
1449
  else
1450
    {
1451
      size_t size = ggc_get_size (p);
1452
 
1453
      page->zone->allocated -= size;
1454
 
1455
      /* Add the chunk to the free list.  We don't bother with coalescing,
1456
         since we are likely to want a chunk of this size again.  */
1457
      free_chunk ((char *)p, size, page->zone);
1458
    }
1459
}
1460
 
1461
/* Mark function for strings.  */
1462
 
1463
void
1464
gt_ggc_m_S (const void *p)
1465
{
1466
  page_entry *entry;
1467
  unsigned long offset;
1468
 
1469
  if (!p)
1470
    return;
1471
 
1472
  /* Look up the page on which the object is alloced.  .  */
1473
  entry = lookup_page_table_if_allocated (p);
1474
  if (! entry)
1475
    return;
1476
 
1477
  if (entry->pch_p)
1478
    {
1479
      size_t alloc_word, alloc_bit, t;
1480
      t = ((const char *) p - pch_zone.page) / BYTES_PER_ALLOC_BIT;
1481
      alloc_word = t / (8 * sizeof (alloc_type));
1482
      alloc_bit = t % (8 * sizeof (alloc_type));
1483
      offset = zone_find_object_offset (pch_zone.alloc_bits, alloc_word,
1484
                                        alloc_bit);
1485
    }
1486
  else if (entry->large_p)
1487
    {
1488
      struct large_page_entry *le = (struct large_page_entry *) entry;
1489
      offset = ((const char *) p) - entry->page;
1490
      gcc_assert (offset < le->bytes);
1491
    }
1492
  else
1493
    {
1494
      struct small_page_entry *se = (struct small_page_entry *) entry;
1495
      unsigned int start_word = zone_get_object_alloc_word (p);
1496
      unsigned int start_bit = zone_get_object_alloc_bit (p);
1497
      offset = zone_find_object_offset (se->alloc_bits, start_word, start_bit);
1498
 
1499
      /* On some platforms a char* will not necessarily line up on an
1500
         allocation boundary, so we have to update the offset to
1501
         account for the leftover bytes.  */
1502
      offset += (size_t) p % BYTES_PER_ALLOC_BIT;
1503
    }
1504
 
1505
  if (offset)
1506
    {
1507
      /* Here we've seen a char* which does not point to the beginning
1508
         of an allocated object.  We assume it points to the middle of
1509
         a STRING_CST.  */
1510
      gcc_assert (offset == offsetof (struct tree_string, str));
1511
      p = ((const char *) p) - offset;
1512
      gt_ggc_mx_lang_tree_node (CONST_CAST(void *, p));
1513
      return;
1514
    }
1515
 
1516
  /* Inefficient, but also unlikely to matter.  */
1517
  ggc_set_mark (p);
1518
}
1519
 
1520
/* If P is not marked, mark it and return false.  Otherwise return true.
1521
   P must have been allocated by the GC allocator; it mustn't point to
1522
   static objects, stack variables, or memory allocated with malloc.  */
1523
 
1524
int
1525
ggc_set_mark (const void *p)
1526
{
1527
  struct page_entry *page;
1528
  const char *ptr = (const char *) p;
1529
 
1530
  page = zone_get_object_page (p);
1531
 
1532
  if (page->pch_p)
1533
    {
1534
      size_t mark_word, mark_bit, offset;
1535
      offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
1536
      mark_word = offset / (8 * sizeof (mark_type));
1537
      mark_bit = offset % (8 * sizeof (mark_type));
1538
 
1539
      if (pch_zone.mark_bits[mark_word] & (1 << mark_bit))
1540
        return 1;
1541
      pch_zone.mark_bits[mark_word] |= (1 << mark_bit);
1542
    }
1543
  else if (page->large_p)
1544
    {
1545
      struct large_page_entry *large_page
1546
        = (struct large_page_entry *) page;
1547
 
1548
      if (large_page->mark_p)
1549
        return 1;
1550
      large_page->mark_p = true;
1551
    }
1552
  else
1553
    {
1554
      struct small_page_entry *small_page
1555
        = (struct small_page_entry *) page;
1556
 
1557
      if (small_page->mark_bits[zone_get_object_mark_word (p)]
1558
          & (1 << zone_get_object_mark_bit (p)))
1559
        return 1;
1560
      small_page->mark_bits[zone_get_object_mark_word (p)]
1561
        |= (1 << zone_get_object_mark_bit (p));
1562
    }
1563
 
1564
  if (GGC_DEBUG_LEVEL >= 4)
1565
    fprintf (G.debug_file, "Marking %p\n", p);
1566
 
1567
  return 0;
1568
}
1569
 
1570
/* Return 1 if P has been marked, zero otherwise.
1571
   P must have been allocated by the GC allocator; it mustn't point to
1572
   static objects, stack variables, or memory allocated with malloc.  */
1573
 
1574
int
1575
ggc_marked_p (const void *p)
1576
{
1577
  struct page_entry *page;
1578
  const char *ptr = (const char *) p;
1579
 
1580
  page = zone_get_object_page (p);
1581
 
1582
  if (page->pch_p)
1583
    {
1584
      size_t mark_word, mark_bit, offset;
1585
      offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
1586
      mark_word = offset / (8 * sizeof (mark_type));
1587
      mark_bit = offset % (8 * sizeof (mark_type));
1588
 
1589
      return (pch_zone.mark_bits[mark_word] & (1 << mark_bit)) != 0;
1590
    }
1591
 
1592
  if (page->large_p)
1593
    {
1594
      struct large_page_entry *large_page
1595
        = (struct large_page_entry *) page;
1596
 
1597
      return large_page->mark_p;
1598
    }
1599
  else
1600
    {
1601
      struct small_page_entry *small_page
1602
        = (struct small_page_entry *) page;
1603
 
1604
      return 0 != (small_page->mark_bits[zone_get_object_mark_word (p)]
1605
                   & (1 << zone_get_object_mark_bit (p)));
1606
    }
1607
}
1608
 
1609
/* Return the size of the gc-able object P.  */
1610
 
1611
size_t
1612
ggc_get_size (const void *p)
1613
{
1614
  struct page_entry *page;
1615
  const char *ptr = (const char *) p;
1616
 
1617
  page = zone_get_object_page (p);
1618
 
1619
  if (page->pch_p)
1620
    {
1621
      size_t alloc_word, alloc_bit, offset, max_size;
1622
      offset = (ptr - pch_zone.page) / BYTES_PER_ALLOC_BIT + 1;
1623
      alloc_word = offset / (8 * sizeof (alloc_type));
1624
      alloc_bit = offset % (8 * sizeof (alloc_type));
1625
      max_size = pch_zone.bytes - (ptr - pch_zone.page);
1626
      return zone_object_size_1 (pch_zone.alloc_bits, alloc_word, alloc_bit,
1627
                                 max_size);
1628
    }
1629
 
1630
  if (page->large_p)
1631
    return ((struct large_page_entry *)page)->bytes;
1632
  else
1633
    return zone_find_object_size ((struct small_page_entry *) page, p);
1634
}
1635
 
1636
/* Initialize the ggc-zone-mmap allocator.  */
1637
void
1638
init_ggc (void)
1639
{
1640
  /* The allocation size must be greater than BYTES_PER_MARK_BIT, and
1641
     a multiple of both BYTES_PER_ALLOC_BIT and FREE_BIN_DELTA, for
1642
     the current assumptions to hold.  */
1643
 
1644
  gcc_assert (FREE_BIN_DELTA == MAX_ALIGNMENT);
1645
 
1646
  /* Set up the main zone by hand.  */
1647
  main_zone.name = "Main zone";
1648
  G.zones = &main_zone;
1649
 
1650
  /* Allocate the default zones.  */
1651
  new_ggc_zone_1 (&rtl_zone, "RTL zone");
1652
  new_ggc_zone_1 (&tree_zone, "Tree zone");
1653
  new_ggc_zone_1 (&tree_id_zone, "Tree identifier zone");
1654
 
1655
  G.pagesize = getpagesize();
1656
  G.lg_pagesize = exact_log2 (G.pagesize);
1657
  G.page_mask = ~(G.pagesize - 1);
1658
 
1659
  /* Require the system page size to be a multiple of GGC_PAGE_SIZE.  */
1660
  gcc_assert ((G.pagesize & (GGC_PAGE_SIZE - 1)) == 0);
1661
 
1662
  /* Allocate 16 system pages at a time.  */
1663
  G.quire_size = 16 * G.pagesize / GGC_PAGE_SIZE;
1664
 
1665
  /* Calculate the size of the allocation bitmap and other overhead.  */
1666
  /* Right now we allocate bits for the page header and bitmap.  These
1667
     are wasted, but a little tricky to eliminate.  */
1668
  G.small_page_overhead
1669
    = PAGE_OVERHEAD + (GGC_PAGE_SIZE / BYTES_PER_ALLOC_BIT / 8);
1670
  /* G.small_page_overhead = ROUND_UP (G.small_page_overhead, MAX_ALIGNMENT); */
1671
 
1672
#ifdef HAVE_MMAP_DEV_ZERO
1673
  G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1674
  gcc_assert (G.dev_zero_fd != -1);
1675
#endif
1676
 
1677
#if 0
1678
  G.debug_file = fopen ("ggc-mmap.debug", "w");
1679
  setlinebuf (G.debug_file);
1680
#else
1681
  G.debug_file = stdout;
1682
#endif
1683
 
1684
#ifdef USING_MMAP
1685
  /* StunOS has an amazing off-by-one error for the first mmap allocation
1686
     after fiddling with RLIMIT_STACK.  The result, as hard as it is to
1687
     believe, is an unaligned page allocation, which would cause us to
1688
     hork badly if we tried to use it.  */
1689
  {
1690
    char *p = alloc_anon (NULL, G.pagesize, &main_zone);
1691
    struct small_page_entry *e;
1692
    if ((size_t)p & (G.pagesize - 1))
1693
      {
1694
        /* How losing.  Discard this one and try another.  If we still
1695
           can't get something useful, give up.  */
1696
 
1697
        p = alloc_anon (NULL, G.pagesize, &main_zone);
1698
        gcc_assert (!((size_t)p & (G.pagesize - 1)));
1699
      }
1700
 
1701
    if (GGC_PAGE_SIZE == G.pagesize)
1702
      {
1703
        /* We have a good page, might as well hold onto it...  */
1704
        e = XCNEWVAR (struct small_page_entry, G.small_page_overhead);
1705
        e->common.page = p;
1706
        e->common.zone = &main_zone;
1707
        e->next = main_zone.free_pages;
1708
        set_page_table_entry (e->common.page, &e->common);
1709
        main_zone.free_pages = e;
1710
      }
1711
    else
1712
      {
1713
        munmap (p, G.pagesize);
1714
      }
1715
  }
1716
#endif
1717
}
1718
 
1719
/* Start a new GGC zone.  */
1720
 
1721
static void
1722
new_ggc_zone_1 (struct alloc_zone *new_zone, const char * name)
1723
{
1724
  new_zone->name = name;
1725
  new_zone->next_zone = G.zones->next_zone;
1726
  G.zones->next_zone = new_zone;
1727
}
1728
 
1729
/* Free all empty pages and objects within a page for a given zone  */
1730
 
1731
static void
1732
sweep_pages (struct alloc_zone *zone)
1733
{
1734
  struct large_page_entry **lpp, *lp, *lnext;
1735
  struct small_page_entry **spp, *sp, *snext;
1736
  char *last_free;
1737
  size_t allocated = 0;
1738
  bool nomarksinpage;
1739
 
1740
  /* First, reset the free_chunks lists, since we are going to
1741
     re-free free chunks in hopes of coalescing them into large chunks.  */
1742
  memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
1743
  zone->high_free_bin = 0;
1744
  zone->cached_free = NULL;
1745
  zone->cached_free_size = 0;
1746
 
1747
  /* Large pages are all or none affairs. Either they are completely
1748
     empty, or they are completely full.  */
1749
  lpp = &zone->large_pages;
1750
  for (lp = zone->large_pages; lp != NULL; lp = lnext)
1751
    {
1752
      gcc_assert (lp->common.large_p);
1753
 
1754
      lnext = lp->next;
1755
 
1756
#ifdef GATHER_STATISTICS
1757
      /* This page has now survived another collection.  */
1758
      lp->common.survived++;
1759
#endif
1760
 
1761
      if (lp->mark_p)
1762
        {
1763
          lp->mark_p = false;
1764
          allocated += lp->bytes;
1765
          lpp = &lp->next;
1766
        }
1767
      else
1768
        {
1769
          *lpp = lnext;
1770
#ifdef ENABLE_GC_CHECKING
1771
          /* Poison the page.  */
1772
          memset (lp->common.page, 0xb5, SMALL_PAGE_SIZE);
1773
#endif
1774
          if (lp->prev)
1775
            lp->prev->next = lp->next;
1776
          if (lp->next)
1777
            lp->next->prev = lp->prev;
1778
          free_large_page (lp);
1779
        }
1780
    }
1781
 
1782
  spp = &zone->pages;
1783
  for (sp = zone->pages; sp != NULL; sp = snext)
1784
    {
1785
      char *object, *last_object;
1786
      char *end;
1787
      alloc_type *alloc_word_p;
1788
      mark_type *mark_word_p;
1789
 
1790
      gcc_assert (!sp->common.large_p);
1791
 
1792
      snext = sp->next;
1793
 
1794
#ifdef GATHER_STATISTICS
1795
      /* This page has now survived another collection.  */
1796
      sp->common.survived++;
1797
#endif
1798
 
1799
      /* Step through all chunks, consolidate those that are free and
1800
         insert them into the free lists.  Note that consolidation
1801
         slows down collection slightly.  */
1802
 
1803
      last_object = object = sp->common.page;
1804
      end = sp->common.page + SMALL_PAGE_SIZE;
1805
      last_free = NULL;
1806
      nomarksinpage = true;
1807
      mark_word_p = sp->mark_bits;
1808
      alloc_word_p = sp->alloc_bits;
1809
 
1810
      gcc_assert (BYTES_PER_ALLOC_BIT == BYTES_PER_MARK_BIT);
1811
 
1812
      object = sp->common.page;
1813
      do
1814
        {
1815
          unsigned int i, n;
1816
          alloc_type alloc_word;
1817
          mark_type mark_word;
1818
 
1819
          alloc_word = *alloc_word_p++;
1820
          mark_word = *mark_word_p++;
1821
 
1822
          if (mark_word)
1823
            nomarksinpage = false;
1824
 
1825
          /* There ought to be some way to do this without looping...  */
1826
          i = 0;
1827
          while ((n = alloc_ffs (alloc_word)) != 0)
1828
            {
1829
              /* Extend the current state for n - 1 bits.  We can't
1830
                 shift alloc_word by n, even though it isn't used in the
1831
                 loop, in case only the highest bit was set.  */
1832
              alloc_word >>= n - 1;
1833
              mark_word >>= n - 1;
1834
              object += BYTES_PER_MARK_BIT * (n - 1);
1835
 
1836
              if (mark_word & 1)
1837
                {
1838
                  if (last_free)
1839
                    {
1840
                      VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (last_free,
1841
                                                                     object
1842
                                                                     - last_free));
1843
                      poison_region (last_free, object - last_free);
1844
                      free_chunk (last_free, object - last_free, zone);
1845
                      last_free = NULL;
1846
                    }
1847
                  else
1848
                    allocated += object - last_object;
1849
                  last_object = object;
1850
                }
1851
              else
1852
                {
1853
                  if (last_free == NULL)
1854
                    {
1855
                      last_free = object;
1856
                      allocated += object - last_object;
1857
                    }
1858
                  else
1859
                    zone_clear_object_alloc_bit (sp, object);
1860
                }
1861
 
1862
              /* Shift to just after the alloc bit we handled.  */
1863
              alloc_word >>= 1;
1864
              mark_word >>= 1;
1865
              object += BYTES_PER_MARK_BIT;
1866
 
1867
              i += n;
1868
            }
1869
 
1870
          object += BYTES_PER_MARK_BIT * (8 * sizeof (alloc_type) - i);
1871
        }
1872
      while (object < end);
1873
 
1874
      if (nomarksinpage)
1875
        {
1876
          *spp = snext;
1877
#ifdef ENABLE_GC_CHECKING
1878
          VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (sp->common.page,
1879
                                                         SMALL_PAGE_SIZE));
1880
          /* Poison the page.  */
1881
          memset (sp->common.page, 0xb5, SMALL_PAGE_SIZE);
1882
#endif
1883
          free_small_page (sp);
1884
          continue;
1885
        }
1886
      else if (last_free)
1887
        {
1888
          VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (last_free,
1889
                                                         object - last_free));
1890
          poison_region (last_free, object - last_free);
1891
          free_chunk (last_free, object - last_free, zone);
1892
        }
1893
      else
1894
        allocated += object - last_object;
1895
 
1896
      spp = &sp->next;
1897
    }
1898
 
1899
  zone->allocated = allocated;
1900
}
1901
 
1902
/* mark-and-sweep routine for collecting a single zone.  NEED_MARKING
1903
   is true if we need to mark before sweeping, false if some other
1904
   zone collection has already performed marking for us.  Returns true
1905
   if we collected, false otherwise.  */
1906
 
1907
static bool
1908
ggc_collect_1 (struct alloc_zone *zone, bool need_marking)
1909
{
1910
#if 0
1911
  /* */
1912
  {
1913
    int i;
1914
    for (i = 0; i < NUM_FREE_BINS + 1; i++)
1915
      {
1916
        struct alloc_chunk *chunk;
1917
        int n, tot;
1918
 
1919
        n = 0;
1920
        tot = 0;
1921
        chunk = zone->free_chunks[i];
1922
        while (chunk)
1923
          {
1924
            n++;
1925
            tot += chunk->size;
1926
            chunk = chunk->next_free;
1927
          }
1928
        fprintf (stderr, "Bin %d: %d free chunks (%d bytes)\n",
1929
                 i, n, tot);
1930
      }
1931
  }
1932
  /* */
1933
#endif
1934
 
1935
  if (!quiet_flag)
1936
    fprintf (stderr, " {%s GC %luk -> ",
1937
             zone->name, (unsigned long) zone->allocated / 1024);
1938
 
1939
  /* Zero the total allocated bytes.  This will be recalculated in the
1940
     sweep phase.  */
1941
  zone->allocated = 0;
1942
 
1943
  /* Release the pages we freed the last time we collected, but didn't
1944
     reuse in the interim.  */
1945
  release_pages (zone);
1946
 
1947
  if (need_marking)
1948
    {
1949
      zone_allocate_marks ();
1950
      ggc_mark_roots ();
1951
#ifdef GATHER_STATISTICS
1952
      ggc_prune_overhead_list ();
1953
#endif
1954
    }
1955
 
1956
  sweep_pages (zone);
1957
  zone->was_collected = true;
1958
  zone->allocated_last_gc = zone->allocated;
1959
 
1960
  if (!quiet_flag)
1961
    fprintf (stderr, "%luk}", (unsigned long) zone->allocated / 1024);
1962
  return true;
1963
}
1964
 
1965
#ifdef GATHER_STATISTICS
1966
/* Calculate the average page survival rate in terms of number of
1967
   collections.  */
1968
 
1969
static float
1970
calculate_average_page_survival (struct alloc_zone *zone)
1971
{
1972
  float count = 0.0;
1973
  float survival = 0.0;
1974
  struct small_page_entry *p;
1975
  struct large_page_entry *lp;
1976
  for (p = zone->pages; p; p = p->next)
1977
    {
1978
      count += 1.0;
1979
      survival += p->common.survived;
1980
    }
1981
  for (lp = zone->large_pages; lp; lp = lp->next)
1982
    {
1983
      count += 1.0;
1984
      survival += lp->common.survived;
1985
    }
1986
  return survival/count;
1987
}
1988
#endif
1989
 
1990
/* Top level collection routine.  */
1991
 
1992
void
1993
ggc_collect (void)
1994
{
1995
  struct alloc_zone *zone;
1996
  bool marked = false;
1997
 
1998
  timevar_push (TV_GC);
1999
 
2000
  if (!ggc_force_collect)
2001
    {
2002
      float allocated_last_gc = 0, allocated = 0, min_expand;
2003
 
2004
      for (zone = G.zones; zone; zone = zone->next_zone)
2005
        {
2006
          allocated_last_gc += zone->allocated_last_gc;
2007
          allocated += zone->allocated;
2008
        }
2009
 
2010
      allocated_last_gc =
2011
        MAX (allocated_last_gc,
2012
             (size_t) PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2013
      min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2014
 
2015
      if (allocated < allocated_last_gc + min_expand)
2016
        {
2017
          timevar_pop (TV_GC);
2018
          return;
2019
        }
2020
    }
2021
 
2022
  invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2023
 
2024
  /* Start by possibly collecting the main zone.  */
2025
  main_zone.was_collected = false;
2026
  marked |= ggc_collect_1 (&main_zone, true);
2027
 
2028
  /* In order to keep the number of collections down, we don't
2029
     collect other zones unless we are collecting the main zone.  This
2030
     gives us roughly the same number of collections as we used to
2031
     have with the old gc.  The number of collection is important
2032
     because our main slowdown (according to profiling) is now in
2033
     marking.  So if we mark twice as often as we used to, we'll be
2034
     twice as slow.  Hopefully we'll avoid this cost when we mark
2035
     zone-at-a-time.  */
2036
  /* NOTE drow/2004-07-28: We now always collect the main zone, but
2037
     keep this code in case the heuristics are further refined.  */
2038
 
2039
  if (main_zone.was_collected)
2040
    {
2041
      struct alloc_zone *zone;
2042
 
2043
      for (zone = main_zone.next_zone; zone; zone = zone->next_zone)
2044
        {
2045
          zone->was_collected = false;
2046
          marked |= ggc_collect_1 (zone, !marked);
2047
        }
2048
    }
2049
 
2050
#ifdef GATHER_STATISTICS
2051
  /* Print page survival stats, if someone wants them.  */
2052
  if (GGC_DEBUG_LEVEL >= 2)
2053
    {
2054
      for (zone = G.zones; zone; zone = zone->next_zone)
2055
        {
2056
          if (zone->was_collected)
2057
            {
2058
              float f = calculate_average_page_survival (zone);
2059
              printf ("Average page survival in zone `%s' is %f\n",
2060
                      zone->name, f);
2061
            }
2062
        }
2063
    }
2064
#endif
2065
 
2066
  if (marked)
2067
    zone_free_marks ();
2068
 
2069
  /* Free dead zones.  */
2070
  for (zone = G.zones; zone && zone->next_zone; zone = zone->next_zone)
2071
    {
2072
      if (zone->next_zone->dead)
2073
        {
2074
          struct alloc_zone *dead_zone = zone->next_zone;
2075
 
2076
          printf ("Zone `%s' is dead and will be freed.\n", dead_zone->name);
2077
 
2078
          /* The zone must be empty.  */
2079
          gcc_assert (!dead_zone->allocated);
2080
 
2081
          /* Unchain the dead zone, release all its pages and free it.  */
2082
          zone->next_zone = zone->next_zone->next_zone;
2083
          release_pages (dead_zone);
2084
          free (dead_zone);
2085
        }
2086
    }
2087
 
2088
  invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2089
 
2090
  timevar_pop (TV_GC);
2091
}
2092
 
2093
/* Print allocation statistics.  */
2094
#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2095
                  ? (x) \
2096
                  : ((x) < 1024*1024*10 \
2097
                     ? (x) / 1024 \
2098
                     : (x) / (1024*1024))))
2099
#define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2100
 
2101
void
2102
ggc_print_statistics (void)
2103
{
2104
  struct alloc_zone *zone;
2105
  struct ggc_statistics stats;
2106
  size_t total_overhead = 0, total_allocated = 0, total_bytes_mapped = 0;
2107
  size_t pte_overhead, i;
2108
 
2109
  /* Clear the statistics.  */
2110
  memset (&stats, 0, sizeof (stats));
2111
 
2112
  /* Make sure collection will really occur.  */
2113
  ggc_force_collect = true;
2114
 
2115
  /* Collect and print the statistics common across collectors.  */
2116
  ggc_print_common_statistics (stderr, &stats);
2117
 
2118
  ggc_force_collect = false;
2119
 
2120
  /* Release free pages so that we will not count the bytes allocated
2121
     there as part of the total allocated memory.  */
2122
  for (zone = G.zones; zone; zone = zone->next_zone)
2123
    release_pages (zone);
2124
 
2125
  /* Collect some information about the various sizes of
2126
     allocation.  */
2127
  fprintf (stderr,
2128
           "Memory still allocated at the end of the compilation process\n");
2129
 
2130
  fprintf (stderr, "%20s %10s  %10s  %10s\n",
2131
           "Zone", "Allocated", "Used", "Overhead");
2132
  for (zone = G.zones; zone; zone = zone->next_zone)
2133
    {
2134
      struct large_page_entry *large_page;
2135
      size_t overhead, allocated, in_use;
2136
 
2137
      /* Skip empty zones.  */
2138
      if (!zone->pages && !zone->large_pages)
2139
        continue;
2140
 
2141
      allocated = in_use = 0;
2142
 
2143
      overhead = sizeof (struct alloc_zone);
2144
 
2145
      for (large_page = zone->large_pages; large_page != NULL;
2146
           large_page = large_page->next)
2147
        {
2148
          allocated += large_page->bytes;
2149
          in_use += large_page->bytes;
2150
          overhead += sizeof (struct large_page_entry);
2151
        }
2152
 
2153
      /* There's no easy way to walk through the small pages finding
2154
         used and unused objects.  Instead, add all the pages, and
2155
         subtract out the free list.  */
2156
 
2157
      allocated += GGC_PAGE_SIZE * zone->n_small_pages;
2158
      in_use += GGC_PAGE_SIZE * zone->n_small_pages;
2159
      overhead += G.small_page_overhead * zone->n_small_pages;
2160
 
2161
      for (i = 0; i <= NUM_FREE_BINS; i++)
2162
        {
2163
          struct alloc_chunk *chunk = zone->free_chunks[i];
2164
          while (chunk)
2165
            {
2166
              in_use -= ggc_get_size (chunk);
2167
              chunk = chunk->next_free;
2168
            }
2169
        }
2170
 
2171
      fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n",
2172
               zone->name,
2173
               SCALE (allocated), LABEL (allocated),
2174
               SCALE (in_use), LABEL (in_use),
2175
               SCALE (overhead), LABEL (overhead));
2176
 
2177
      gcc_assert (in_use == zone->allocated);
2178
 
2179
      total_overhead += overhead;
2180
      total_allocated += zone->allocated;
2181
      total_bytes_mapped += zone->bytes_mapped;
2182
    }
2183
 
2184
  /* Count the size of the page table as best we can.  */
2185
#if HOST_BITS_PER_PTR <= 32
2186
  pte_overhead = sizeof (G.lookup);
2187
  for (i = 0; i < PAGE_L1_SIZE; i++)
2188
    if (G.lookup[i])
2189
      pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
2190
#else
2191
  {
2192
    page_table table = G.lookup;
2193
    pte_overhead = 0;
2194
    while (table)
2195
      {
2196
        pte_overhead += sizeof (*table);
2197
        for (i = 0; i < PAGE_L1_SIZE; i++)
2198
          if (table->table[i])
2199
            pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
2200
        table = table->next;
2201
      }
2202
  }
2203
#endif
2204
  fprintf (stderr, "%20s %11s %11s %10lu%c\n", "Page Table",
2205
           "", "", SCALE (pte_overhead), LABEL (pte_overhead));
2206
  total_overhead += pte_overhead;
2207
 
2208
  fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n", "Total",
2209
           SCALE (total_bytes_mapped), LABEL (total_bytes_mapped),
2210
           SCALE (total_allocated), LABEL(total_allocated),
2211
           SCALE (total_overhead), LABEL (total_overhead));
2212
 
2213
#ifdef GATHER_STATISTICS
2214
  {
2215
    unsigned long long all_overhead = 0, all_allocated = 0;
2216
    unsigned long long all_overhead_under32 = 0, all_allocated_under32 = 0;
2217
    unsigned long long all_overhead_under64 = 0, all_allocated_under64 = 0;
2218
    unsigned long long all_overhead_under128 = 0, all_allocated_under128 = 0;
2219
 
2220
    fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2221
 
2222
    for (zone = G.zones; zone; zone = zone->next_zone)
2223
      {
2224
        all_overhead += zone->stats.total_overhead;
2225
        all_allocated += zone->stats.total_allocated;
2226
 
2227
        all_allocated_under32 += zone->stats.total_allocated_under32;
2228
        all_overhead_under32 += zone->stats.total_overhead_under32;
2229
 
2230
        all_allocated_under64 += zone->stats.total_allocated_under64;
2231
        all_overhead_under64 += zone->stats.total_overhead_under64;
2232
 
2233
        all_allocated_under128 += zone->stats.total_allocated_under128;
2234
        all_overhead_under128 += zone->stats.total_overhead_under128;
2235
 
2236
        fprintf (stderr, "%20s:                  %10lld\n",
2237
                 zone->name, zone->stats.total_allocated);
2238
      }
2239
 
2240
    fprintf (stderr, "\n");
2241
 
2242
    fprintf (stderr, "Total Overhead:                        %10lld\n",
2243
             all_overhead);
2244
    fprintf (stderr, "Total Allocated:                       %10lld\n",
2245
             all_allocated);
2246
 
2247
    fprintf (stderr, "Total Overhead  under  32B:            %10lld\n",
2248
             all_overhead_under32);
2249
    fprintf (stderr, "Total Allocated under  32B:            %10lld\n",
2250
             all_allocated_under32);
2251
    fprintf (stderr, "Total Overhead  under  64B:            %10lld\n",
2252
             all_overhead_under64);
2253
    fprintf (stderr, "Total Allocated under  64B:            %10lld\n",
2254
             all_allocated_under64);
2255
    fprintf (stderr, "Total Overhead  under 128B:            %10lld\n",
2256
             all_overhead_under128);
2257
    fprintf (stderr, "Total Allocated under 128B:            %10lld\n",
2258
             all_allocated_under128);
2259
  }
2260
#endif
2261
}
2262
 
2263
/* Precompiled header support.  */
2264
 
2265
/* For precompiled headers, we sort objects based on their type.  We
2266
   also sort various objects into their own buckets; currently this
2267
   covers strings and IDENTIFIER_NODE trees.  The choices of how
2268
   to sort buckets have not yet been tuned.  */
2269
 
2270
#define NUM_PCH_BUCKETS         (gt_types_enum_last + 3)
2271
 
2272
#define OTHER_BUCKET            (gt_types_enum_last + 0)
2273
#define IDENTIFIER_BUCKET       (gt_types_enum_last + 1)
2274
#define STRING_BUCKET           (gt_types_enum_last + 2)
2275
 
2276
struct ggc_pch_ondisk
2277
{
2278
  size_t total;
2279
  size_t type_totals[NUM_PCH_BUCKETS];
2280
};
2281
 
2282
struct ggc_pch_data
2283
{
2284
  struct ggc_pch_ondisk d;
2285
  size_t base;
2286
  size_t orig_base;
2287
  size_t alloc_size;
2288
  alloc_type *alloc_bits;
2289
  size_t type_bases[NUM_PCH_BUCKETS];
2290
  size_t start_offset;
2291
};
2292
 
2293
/* Initialize the PCH data structure.  */
2294
 
2295
struct ggc_pch_data *
2296
init_ggc_pch (void)
2297
{
2298
  return XCNEW (struct ggc_pch_data);
2299
}
2300
 
2301
/* Return which of the page-aligned buckets the object at X, with type
2302
   TYPE, should be sorted into in the PCH.  Strings will have
2303
   IS_STRING set and TYPE will be gt_types_enum_last.  Other objects
2304
   of unknown type will also have TYPE equal to gt_types_enum_last.  */
2305
 
2306
static int
2307
pch_bucket (void *x, enum gt_types_enum type,
2308
            bool is_string)
2309
{
2310
  /* Sort identifiers into their own bucket, to improve locality
2311
     when searching the identifier hash table.  */
2312
  if (type == gt_ggc_e_14lang_tree_node
2313
      && TREE_CODE ((tree) x) == IDENTIFIER_NODE)
2314
    return IDENTIFIER_BUCKET;
2315
  else if (type == gt_types_enum_last)
2316
    {
2317
      if (is_string)
2318
        return STRING_BUCKET;
2319
      return OTHER_BUCKET;
2320
    }
2321
  return type;
2322
}
2323
 
2324
/* Add the size of object X to the size of the PCH data.  */
2325
 
2326
void
2327
ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2328
                      size_t size, bool is_string, enum gt_types_enum type)
2329
{
2330
  /* NOTE: Right now we don't need to align up the size of any objects.
2331
     Strings can be unaligned, and everything else is allocated to a
2332
     MAX_ALIGNMENT boundary already.  */
2333
 
2334
  d->d.type_totals[pch_bucket (x, type, is_string)] += size;
2335
}
2336
 
2337
/* Return the total size of the PCH data.  */
2338
 
2339
size_t
2340
ggc_pch_total_size (struct ggc_pch_data *d)
2341
{
2342
  int i;
2343
  size_t alloc_size, total_size;
2344
 
2345
  total_size = 0;
2346
  for (i = 0; i < NUM_PCH_BUCKETS; i++)
2347
    {
2348
      d->d.type_totals[i] = ROUND_UP (d->d.type_totals[i], GGC_PAGE_SIZE);
2349
      total_size += d->d.type_totals[i];
2350
    }
2351
  d->d.total = total_size;
2352
 
2353
  /* Include the size of the allocation bitmap.  */
2354
  alloc_size = CEIL (d->d.total, BYTES_PER_ALLOC_BIT * 8);
2355
  alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
2356
  d->alloc_size = alloc_size;
2357
 
2358
  return d->d.total + alloc_size;
2359
}
2360
 
2361
/* Set the base address for the objects in the PCH file.  */
2362
 
2363
void
2364
ggc_pch_this_base (struct ggc_pch_data *d, void *base_)
2365
{
2366
  int i;
2367
  size_t base = (size_t) base_;
2368
 
2369
  d->base = d->orig_base = base;
2370
  for (i = 0; i < NUM_PCH_BUCKETS; i++)
2371
    {
2372
      d->type_bases[i] = base;
2373
      base += d->d.type_totals[i];
2374
    }
2375
 
2376
  if (d->alloc_bits == NULL)
2377
    d->alloc_bits = XCNEWVAR (alloc_type, d->alloc_size);
2378
}
2379
 
2380
/* Allocate a place for object X of size SIZE in the PCH file.  */
2381
 
2382
char *
2383
ggc_pch_alloc_object (struct ggc_pch_data *d, void *x,
2384
                      size_t size, bool is_string,
2385
                      enum gt_types_enum type)
2386
{
2387
  size_t alloc_word, alloc_bit;
2388
  char *result;
2389
  int bucket = pch_bucket (x, type, is_string);
2390
 
2391
  /* Record the start of the object in the allocation bitmap.  We
2392
     can't assert that the allocation bit is previously clear, because
2393
     strings may violate the invariant that they are at least
2394
     BYTES_PER_ALLOC_BIT long.  This is harmless - ggc_get_size
2395
     should not be called for strings.  */
2396
  alloc_word = ((d->type_bases[bucket] - d->orig_base)
2397
                / (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
2398
  alloc_bit = ((d->type_bases[bucket] - d->orig_base)
2399
               / BYTES_PER_ALLOC_BIT) % (8 * sizeof (alloc_type));
2400
  d->alloc_bits[alloc_word] |= 1L << alloc_bit;
2401
 
2402
  /* Place the object at the current pointer for this bucket.  */
2403
  result = (char *) d->type_bases[bucket];
2404
  d->type_bases[bucket] += size;
2405
  return result;
2406
}
2407
 
2408
/* Prepare to write out the PCH data to file F.  */
2409
 
2410
void
2411
ggc_pch_prepare_write (struct ggc_pch_data *d,
2412
                       FILE *f)
2413
{
2414
  /* We seek around a lot while writing.  Record where the end
2415
     of the padding in the PCH file is, so that we can
2416
     locate each object's offset.  */
2417
  d->start_offset = ftell (f);
2418
}
2419
 
2420
/* Write out object X of SIZE to file F.  */
2421
 
2422
void
2423
ggc_pch_write_object (struct ggc_pch_data *d,
2424
                      FILE *f, void *x, void *newx,
2425
                      size_t size, bool is_string ATTRIBUTE_UNUSED)
2426
{
2427
  if (fseek (f, (size_t) newx - d->orig_base + d->start_offset, SEEK_SET) != 0)
2428
    fatal_error ("can%'t seek PCH file: %m");
2429
 
2430
  if (fwrite (x, size, 1, f) != 1)
2431
    fatal_error ("can%'t write PCH file: %m");
2432
}
2433
 
2434
void
2435
ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2436
{
2437
  /* Write out the allocation bitmap.  */
2438
  if (fseek (f, d->start_offset + d->d.total, SEEK_SET) != 0)
2439
    fatal_error ("can%'t seek PCH file: %m");
2440
 
2441
  if (fwrite (d->alloc_bits, d->alloc_size, 1, f) != 1)
2442
    fatal_error ("can%'t write PCH file: %m");
2443
 
2444
  /* Done with the PCH, so write out our footer.  */
2445
  if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2446
    fatal_error ("can%'t write PCH file: %m");
2447
 
2448
  free (d->alloc_bits);
2449
  free (d);
2450
}
2451
 
2452
/* The PCH file from F has been mapped at ADDR.  Read in any
2453
   additional data from the file and set up the GC state.  */
2454
 
2455
void
2456
ggc_pch_read (FILE *f, void *addr)
2457
{
2458
  struct ggc_pch_ondisk d;
2459
  size_t alloc_size;
2460
  struct alloc_zone *zone;
2461
  struct page_entry *pch_page;
2462
  char *p;
2463
 
2464
  if (fread (&d, sizeof (d), 1, f) != 1)
2465
    fatal_error ("can%'t read PCH file: %m");
2466
 
2467
  alloc_size = CEIL (d.total, BYTES_PER_ALLOC_BIT * 8);
2468
  alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
2469
 
2470
  pch_zone.bytes = d.total;
2471
  pch_zone.alloc_bits = (alloc_type *) ((char *) addr + pch_zone.bytes);
2472
  pch_zone.page = (char *) addr;
2473
  pch_zone.end = (char *) pch_zone.alloc_bits;
2474
 
2475
  /* We've just read in a PCH file.  So, every object that used to be
2476
     allocated is now free.  */
2477
#ifdef GATHER_STATISTICS
2478
  zone_allocate_marks ();
2479
  ggc_prune_overhead_list ();
2480
  zone_free_marks ();
2481
#endif
2482
 
2483
  for (zone = G.zones; zone; zone = zone->next_zone)
2484
    {
2485
      struct small_page_entry *page, *next_page;
2486
      struct large_page_entry *large_page, *next_large_page;
2487
 
2488
      zone->allocated = 0;
2489
 
2490
      /* Clear the zone's free chunk list.  */
2491
      memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
2492
      zone->high_free_bin = 0;
2493
      zone->cached_free = NULL;
2494
      zone->cached_free_size = 0;
2495
 
2496
      /* Move all the small pages onto the free list.  */
2497
      for (page = zone->pages; page != NULL; page = next_page)
2498
        {
2499
          next_page = page->next;
2500
          memset (page->alloc_bits, 0,
2501
                  G.small_page_overhead - PAGE_OVERHEAD);
2502
          free_small_page (page);
2503
        }
2504
 
2505
      /* Discard all the large pages.  */
2506
      for (large_page = zone->large_pages; large_page != NULL;
2507
           large_page = next_large_page)
2508
        {
2509
          next_large_page = large_page->next;
2510
          free_large_page (large_page);
2511
        }
2512
 
2513
      zone->pages = NULL;
2514
      zone->large_pages = NULL;
2515
    }
2516
 
2517
  /* Allocate the dummy page entry for the PCH, and set all pages
2518
     mapped into the PCH to reference it.  */
2519
  pch_page = XCNEW (struct page_entry);
2520
  pch_page->page = pch_zone.page;
2521
  pch_page->pch_p = true;
2522
 
2523
  for (p = pch_zone.page; p < pch_zone.end; p += GGC_PAGE_SIZE)
2524
    set_page_table_entry (p, pch_page);
2525
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.