| 1 |
684 |
jeremybenn |
/* Statement simplification on GIMPLE.
|
| 2 |
|
|
Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc.
|
| 3 |
|
|
Split out from tree-ssa-ccp.c.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 8 |
|
|
under the terms of the GNU General Public License as published by the
|
| 9 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
| 10 |
|
|
later version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "tree.h"
|
| 26 |
|
|
#include "flags.h"
|
| 27 |
|
|
#include "function.h"
|
| 28 |
|
|
#include "tree-dump.h"
|
| 29 |
|
|
#include "tree-flow.h"
|
| 30 |
|
|
#include "tree-pass.h"
|
| 31 |
|
|
#include "tree-ssa-propagate.h"
|
| 32 |
|
|
#include "target.h"
|
| 33 |
|
|
#include "gimple-fold.h"
|
| 34 |
|
|
|
| 35 |
|
|
/* Return true when DECL can be referenced from current unit.
|
| 36 |
|
|
We can get declarations that are not possible to reference for
|
| 37 |
|
|
various reasons:
|
| 38 |
|
|
|
| 39 |
|
|
1) When analyzing C++ virtual tables.
|
| 40 |
|
|
C++ virtual tables do have known constructors even
|
| 41 |
|
|
when they are keyed to other compilation unit.
|
| 42 |
|
|
Those tables can contain pointers to methods and vars
|
| 43 |
|
|
in other units. Those methods have both STATIC and EXTERNAL
|
| 44 |
|
|
set.
|
| 45 |
|
|
2) In WHOPR mode devirtualization might lead to reference
|
| 46 |
|
|
to method that was partitioned elsehwere.
|
| 47 |
|
|
In this case we have static VAR_DECL or FUNCTION_DECL
|
| 48 |
|
|
that has no corresponding callgraph/varpool node
|
| 49 |
|
|
declaring the body.
|
| 50 |
|
|
3) COMDAT functions referred by external vtables that
|
| 51 |
|
|
we devirtualize only during final copmilation stage.
|
| 52 |
|
|
At this time we already decided that we will not output
|
| 53 |
|
|
the function body and thus we can't reference the symbol
|
| 54 |
|
|
directly. */
|
| 55 |
|
|
|
| 56 |
|
|
static bool
|
| 57 |
|
|
can_refer_decl_in_current_unit_p (tree decl)
|
| 58 |
|
|
{
|
| 59 |
|
|
struct varpool_node *vnode;
|
| 60 |
|
|
struct cgraph_node *node;
|
| 61 |
|
|
|
| 62 |
|
|
if (!TREE_STATIC (decl) && !DECL_EXTERNAL (decl))
|
| 63 |
|
|
return true;
|
| 64 |
|
|
/* External flag is set, so we deal with C++ reference
|
| 65 |
|
|
to static object from other file. */
|
| 66 |
|
|
if (DECL_EXTERNAL (decl) && TREE_STATIC (decl)
|
| 67 |
|
|
&& TREE_CODE (decl) == VAR_DECL)
|
| 68 |
|
|
{
|
| 69 |
|
|
/* Just be sure it is not big in frontend setting
|
| 70 |
|
|
flags incorrectly. Those variables should never
|
| 71 |
|
|
be finalized. */
|
| 72 |
|
|
gcc_checking_assert (!(vnode = varpool_get_node (decl))
|
| 73 |
|
|
|| !vnode->finalized);
|
| 74 |
|
|
return false;
|
| 75 |
|
|
}
|
| 76 |
|
|
/* When function is public, we always can introduce new reference.
|
| 77 |
|
|
Exception are the COMDAT functions where introducing a direct
|
| 78 |
|
|
reference imply need to include function body in the curren tunit. */
|
| 79 |
|
|
if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl))
|
| 80 |
|
|
return true;
|
| 81 |
|
|
/* We are not at ltrans stage; so don't worry about WHOPR.
|
| 82 |
|
|
Also when still gimplifying all referred comdat functions will be
|
| 83 |
|
|
produced.
|
| 84 |
|
|
??? as observed in PR20991 for already optimized out comdat virtual functions
|
| 85 |
|
|
we may not neccesarily give up because the copy will be output elsewhere when
|
| 86 |
|
|
corresponding vtable is output. */
|
| 87 |
|
|
if (!flag_ltrans && (!DECL_COMDAT (decl) || !cgraph_function_flags_ready))
|
| 88 |
|
|
return true;
|
| 89 |
|
|
/* If we already output the function body, we are safe. */
|
| 90 |
|
|
if (TREE_ASM_WRITTEN (decl))
|
| 91 |
|
|
return true;
|
| 92 |
|
|
if (TREE_CODE (decl) == FUNCTION_DECL)
|
| 93 |
|
|
{
|
| 94 |
|
|
node = cgraph_get_node (decl);
|
| 95 |
|
|
/* Check that we still have function body and that we didn't took
|
| 96 |
|
|
the decision to eliminate offline copy of the function yet.
|
| 97 |
|
|
The second is important when devirtualization happens during final
|
| 98 |
|
|
compilation stage when making a new reference no longer makes callee
|
| 99 |
|
|
to be compiled. */
|
| 100 |
|
|
if (!node || !node->analyzed || node->global.inlined_to)
|
| 101 |
|
|
return false;
|
| 102 |
|
|
}
|
| 103 |
|
|
else if (TREE_CODE (decl) == VAR_DECL)
|
| 104 |
|
|
{
|
| 105 |
|
|
vnode = varpool_get_node (decl);
|
| 106 |
|
|
if (!vnode || !vnode->finalized)
|
| 107 |
|
|
return false;
|
| 108 |
|
|
}
|
| 109 |
|
|
return true;
|
| 110 |
|
|
}
|
| 111 |
|
|
|
| 112 |
|
|
/* CVAL is value taken from DECL_INITIAL of variable. Try to transform it into
|
| 113 |
|
|
acceptable form for is_gimple_min_invariant. */
|
| 114 |
|
|
|
| 115 |
|
|
tree
|
| 116 |
|
|
canonicalize_constructor_val (tree cval)
|
| 117 |
|
|
{
|
| 118 |
|
|
STRIP_NOPS (cval);
|
| 119 |
|
|
if (TREE_CODE (cval) == POINTER_PLUS_EXPR
|
| 120 |
|
|
&& TREE_CODE (TREE_OPERAND (cval, 1)) == INTEGER_CST)
|
| 121 |
|
|
{
|
| 122 |
|
|
tree ptr = TREE_OPERAND (cval, 0);
|
| 123 |
|
|
if (is_gimple_min_invariant (ptr))
|
| 124 |
|
|
cval = build1_loc (EXPR_LOCATION (cval),
|
| 125 |
|
|
ADDR_EXPR, TREE_TYPE (ptr),
|
| 126 |
|
|
fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (ptr)),
|
| 127 |
|
|
ptr,
|
| 128 |
|
|
fold_convert (ptr_type_node,
|
| 129 |
|
|
TREE_OPERAND (cval, 1))));
|
| 130 |
|
|
}
|
| 131 |
|
|
if (TREE_CODE (cval) == ADDR_EXPR)
|
| 132 |
|
|
{
|
| 133 |
|
|
tree base = get_base_address (TREE_OPERAND (cval, 0));
|
| 134 |
|
|
|
| 135 |
|
|
if (base
|
| 136 |
|
|
&& (TREE_CODE (base) == VAR_DECL
|
| 137 |
|
|
|| TREE_CODE (base) == FUNCTION_DECL)
|
| 138 |
|
|
&& !can_refer_decl_in_current_unit_p (base))
|
| 139 |
|
|
return NULL_TREE;
|
| 140 |
|
|
if (base && TREE_CODE (base) == VAR_DECL)
|
| 141 |
|
|
{
|
| 142 |
|
|
TREE_ADDRESSABLE (base) = 1;
|
| 143 |
|
|
if (cfun && gimple_referenced_vars (cfun))
|
| 144 |
|
|
add_referenced_var (base);
|
| 145 |
|
|
}
|
| 146 |
|
|
/* Fixup types in global initializers. */
|
| 147 |
|
|
if (TREE_TYPE (TREE_TYPE (cval)) != TREE_TYPE (TREE_OPERAND (cval, 0)))
|
| 148 |
|
|
cval = build_fold_addr_expr (TREE_OPERAND (cval, 0));
|
| 149 |
|
|
}
|
| 150 |
|
|
return cval;
|
| 151 |
|
|
}
|
| 152 |
|
|
|
| 153 |
|
|
/* If SYM is a constant variable with known value, return the value.
|
| 154 |
|
|
NULL_TREE is returned otherwise. */
|
| 155 |
|
|
|
| 156 |
|
|
tree
|
| 157 |
|
|
get_symbol_constant_value (tree sym)
|
| 158 |
|
|
{
|
| 159 |
|
|
if (const_value_known_p (sym))
|
| 160 |
|
|
{
|
| 161 |
|
|
tree val = DECL_INITIAL (sym);
|
| 162 |
|
|
if (val)
|
| 163 |
|
|
{
|
| 164 |
|
|
val = canonicalize_constructor_val (val);
|
| 165 |
|
|
if (val && is_gimple_min_invariant (val))
|
| 166 |
|
|
return val;
|
| 167 |
|
|
else
|
| 168 |
|
|
return NULL_TREE;
|
| 169 |
|
|
}
|
| 170 |
|
|
/* Variables declared 'const' without an initializer
|
| 171 |
|
|
have zero as the initializer if they may not be
|
| 172 |
|
|
overridden at link or run time. */
|
| 173 |
|
|
if (!val
|
| 174 |
|
|
&& (INTEGRAL_TYPE_P (TREE_TYPE (sym))
|
| 175 |
|
|
|| SCALAR_FLOAT_TYPE_P (TREE_TYPE (sym))))
|
| 176 |
|
|
return build_zero_cst (TREE_TYPE (sym));
|
| 177 |
|
|
}
|
| 178 |
|
|
|
| 179 |
|
|
return NULL_TREE;
|
| 180 |
|
|
}
|
| 181 |
|
|
|
| 182 |
|
|
|
| 183 |
|
|
|
| 184 |
|
|
/* Subroutine of fold_stmt. We perform several simplifications of the
|
| 185 |
|
|
memory reference tree EXPR and make sure to re-gimplify them properly
|
| 186 |
|
|
after propagation of constant addresses. IS_LHS is true if the
|
| 187 |
|
|
reference is supposed to be an lvalue. */
|
| 188 |
|
|
|
| 189 |
|
|
static tree
|
| 190 |
|
|
maybe_fold_reference (tree expr, bool is_lhs)
|
| 191 |
|
|
{
|
| 192 |
|
|
tree *t = &expr;
|
| 193 |
|
|
tree result;
|
| 194 |
|
|
|
| 195 |
|
|
if ((TREE_CODE (expr) == VIEW_CONVERT_EXPR
|
| 196 |
|
|
|| TREE_CODE (expr) == REALPART_EXPR
|
| 197 |
|
|
|| TREE_CODE (expr) == IMAGPART_EXPR)
|
| 198 |
|
|
&& CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
|
| 199 |
|
|
return fold_unary_loc (EXPR_LOCATION (expr),
|
| 200 |
|
|
TREE_CODE (expr),
|
| 201 |
|
|
TREE_TYPE (expr),
|
| 202 |
|
|
TREE_OPERAND (expr, 0));
|
| 203 |
|
|
else if (TREE_CODE (expr) == BIT_FIELD_REF
|
| 204 |
|
|
&& CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
|
| 205 |
|
|
return fold_ternary_loc (EXPR_LOCATION (expr),
|
| 206 |
|
|
TREE_CODE (expr),
|
| 207 |
|
|
TREE_TYPE (expr),
|
| 208 |
|
|
TREE_OPERAND (expr, 0),
|
| 209 |
|
|
TREE_OPERAND (expr, 1),
|
| 210 |
|
|
TREE_OPERAND (expr, 2));
|
| 211 |
|
|
|
| 212 |
|
|
while (handled_component_p (*t))
|
| 213 |
|
|
t = &TREE_OPERAND (*t, 0);
|
| 214 |
|
|
|
| 215 |
|
|
/* Canonicalize MEM_REFs invariant address operand. Do this first
|
| 216 |
|
|
to avoid feeding non-canonical MEM_REFs elsewhere. */
|
| 217 |
|
|
if (TREE_CODE (*t) == MEM_REF
|
| 218 |
|
|
&& !is_gimple_mem_ref_addr (TREE_OPERAND (*t, 0)))
|
| 219 |
|
|
{
|
| 220 |
|
|
bool volatile_p = TREE_THIS_VOLATILE (*t);
|
| 221 |
|
|
tree tem = fold_binary (MEM_REF, TREE_TYPE (*t),
|
| 222 |
|
|
TREE_OPERAND (*t, 0),
|
| 223 |
|
|
TREE_OPERAND (*t, 1));
|
| 224 |
|
|
if (tem)
|
| 225 |
|
|
{
|
| 226 |
|
|
TREE_THIS_VOLATILE (tem) = volatile_p;
|
| 227 |
|
|
*t = tem;
|
| 228 |
|
|
tem = maybe_fold_reference (expr, is_lhs);
|
| 229 |
|
|
if (tem)
|
| 230 |
|
|
return tem;
|
| 231 |
|
|
return expr;
|
| 232 |
|
|
}
|
| 233 |
|
|
}
|
| 234 |
|
|
|
| 235 |
|
|
if (!is_lhs
|
| 236 |
|
|
&& (result = fold_const_aggregate_ref (expr))
|
| 237 |
|
|
&& is_gimple_min_invariant (result))
|
| 238 |
|
|
return result;
|
| 239 |
|
|
|
| 240 |
|
|
/* Fold back MEM_REFs to reference trees. */
|
| 241 |
|
|
if (TREE_CODE (*t) == MEM_REF
|
| 242 |
|
|
&& TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR
|
| 243 |
|
|
&& integer_zerop (TREE_OPERAND (*t, 1))
|
| 244 |
|
|
&& (TREE_THIS_VOLATILE (*t)
|
| 245 |
|
|
== TREE_THIS_VOLATILE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0)))
|
| 246 |
|
|
&& !TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (TREE_OPERAND (*t, 1)))
|
| 247 |
|
|
&& (TYPE_MAIN_VARIANT (TREE_TYPE (*t))
|
| 248 |
|
|
== TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (TREE_OPERAND (*t, 1)))))
|
| 249 |
|
|
/* We have to look out here to not drop a required conversion
|
| 250 |
|
|
from the rhs to the lhs if is_lhs, but we don't have the
|
| 251 |
|
|
rhs here to verify that. Thus require strict type
|
| 252 |
|
|
compatibility. */
|
| 253 |
|
|
&& types_compatible_p (TREE_TYPE (*t),
|
| 254 |
|
|
TREE_TYPE (TREE_OPERAND
|
| 255 |
|
|
(TREE_OPERAND (*t, 0), 0))))
|
| 256 |
|
|
{
|
| 257 |
|
|
tree tem;
|
| 258 |
|
|
*t = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
|
| 259 |
|
|
tem = maybe_fold_reference (expr, is_lhs);
|
| 260 |
|
|
if (tem)
|
| 261 |
|
|
return tem;
|
| 262 |
|
|
return expr;
|
| 263 |
|
|
}
|
| 264 |
|
|
else if (TREE_CODE (*t) == TARGET_MEM_REF)
|
| 265 |
|
|
{
|
| 266 |
|
|
tree tem = maybe_fold_tmr (*t);
|
| 267 |
|
|
if (tem)
|
| 268 |
|
|
{
|
| 269 |
|
|
*t = tem;
|
| 270 |
|
|
tem = maybe_fold_reference (expr, is_lhs);
|
| 271 |
|
|
if (tem)
|
| 272 |
|
|
return tem;
|
| 273 |
|
|
return expr;
|
| 274 |
|
|
}
|
| 275 |
|
|
}
|
| 276 |
|
|
|
| 277 |
|
|
return NULL_TREE;
|
| 278 |
|
|
}
|
| 279 |
|
|
|
| 280 |
|
|
|
| 281 |
|
|
/* Attempt to fold an assignment statement pointed-to by SI. Returns a
|
| 282 |
|
|
replacement rhs for the statement or NULL_TREE if no simplification
|
| 283 |
|
|
could be made. It is assumed that the operands have been previously
|
| 284 |
|
|
folded. */
|
| 285 |
|
|
|
| 286 |
|
|
static tree
|
| 287 |
|
|
fold_gimple_assign (gimple_stmt_iterator *si)
|
| 288 |
|
|
{
|
| 289 |
|
|
gimple stmt = gsi_stmt (*si);
|
| 290 |
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
| 291 |
|
|
location_t loc = gimple_location (stmt);
|
| 292 |
|
|
|
| 293 |
|
|
tree result = NULL_TREE;
|
| 294 |
|
|
|
| 295 |
|
|
switch (get_gimple_rhs_class (subcode))
|
| 296 |
|
|
{
|
| 297 |
|
|
case GIMPLE_SINGLE_RHS:
|
| 298 |
|
|
{
|
| 299 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 300 |
|
|
|
| 301 |
|
|
if (REFERENCE_CLASS_P (rhs))
|
| 302 |
|
|
return maybe_fold_reference (rhs, false);
|
| 303 |
|
|
|
| 304 |
|
|
else if (TREE_CODE (rhs) == ADDR_EXPR)
|
| 305 |
|
|
{
|
| 306 |
|
|
tree ref = TREE_OPERAND (rhs, 0);
|
| 307 |
|
|
tree tem = maybe_fold_reference (ref, true);
|
| 308 |
|
|
if (tem
|
| 309 |
|
|
&& TREE_CODE (tem) == MEM_REF
|
| 310 |
|
|
&& integer_zerop (TREE_OPERAND (tem, 1)))
|
| 311 |
|
|
result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (tem, 0));
|
| 312 |
|
|
else if (tem)
|
| 313 |
|
|
result = fold_convert (TREE_TYPE (rhs),
|
| 314 |
|
|
build_fold_addr_expr_loc (loc, tem));
|
| 315 |
|
|
else if (TREE_CODE (ref) == MEM_REF
|
| 316 |
|
|
&& integer_zerop (TREE_OPERAND (ref, 1)))
|
| 317 |
|
|
result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (ref, 0));
|
| 318 |
|
|
}
|
| 319 |
|
|
|
| 320 |
|
|
else if (TREE_CODE (rhs) == CONSTRUCTOR
|
| 321 |
|
|
&& TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
|
| 322 |
|
|
&& (CONSTRUCTOR_NELTS (rhs)
|
| 323 |
|
|
== TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
|
| 324 |
|
|
{
|
| 325 |
|
|
/* Fold a constant vector CONSTRUCTOR to VECTOR_CST. */
|
| 326 |
|
|
unsigned i;
|
| 327 |
|
|
tree val;
|
| 328 |
|
|
|
| 329 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
|
| 330 |
|
|
if (TREE_CODE (val) != INTEGER_CST
|
| 331 |
|
|
&& TREE_CODE (val) != REAL_CST
|
| 332 |
|
|
&& TREE_CODE (val) != FIXED_CST)
|
| 333 |
|
|
return NULL_TREE;
|
| 334 |
|
|
|
| 335 |
|
|
return build_vector_from_ctor (TREE_TYPE (rhs),
|
| 336 |
|
|
CONSTRUCTOR_ELTS (rhs));
|
| 337 |
|
|
}
|
| 338 |
|
|
|
| 339 |
|
|
else if (DECL_P (rhs))
|
| 340 |
|
|
return unshare_expr (get_symbol_constant_value (rhs));
|
| 341 |
|
|
|
| 342 |
|
|
/* If we couldn't fold the RHS, hand over to the generic
|
| 343 |
|
|
fold routines. */
|
| 344 |
|
|
if (result == NULL_TREE)
|
| 345 |
|
|
result = fold (rhs);
|
| 346 |
|
|
|
| 347 |
|
|
/* Strip away useless type conversions. Both the NON_LVALUE_EXPR
|
| 348 |
|
|
that may have been added by fold, and "useless" type
|
| 349 |
|
|
conversions that might now be apparent due to propagation. */
|
| 350 |
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
| 351 |
|
|
|
| 352 |
|
|
if (result != rhs && valid_gimple_rhs_p (result))
|
| 353 |
|
|
return result;
|
| 354 |
|
|
|
| 355 |
|
|
return NULL_TREE;
|
| 356 |
|
|
}
|
| 357 |
|
|
break;
|
| 358 |
|
|
|
| 359 |
|
|
case GIMPLE_UNARY_RHS:
|
| 360 |
|
|
{
|
| 361 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 362 |
|
|
|
| 363 |
|
|
result = fold_unary_loc (loc, subcode, gimple_expr_type (stmt), rhs);
|
| 364 |
|
|
if (result)
|
| 365 |
|
|
{
|
| 366 |
|
|
/* If the operation was a conversion do _not_ mark a
|
| 367 |
|
|
resulting constant with TREE_OVERFLOW if the original
|
| 368 |
|
|
constant was not. These conversions have implementation
|
| 369 |
|
|
defined behavior and retaining the TREE_OVERFLOW flag
|
| 370 |
|
|
here would confuse later passes such as VRP. */
|
| 371 |
|
|
if (CONVERT_EXPR_CODE_P (subcode)
|
| 372 |
|
|
&& TREE_CODE (result) == INTEGER_CST
|
| 373 |
|
|
&& TREE_CODE (rhs) == INTEGER_CST)
|
| 374 |
|
|
TREE_OVERFLOW (result) = TREE_OVERFLOW (rhs);
|
| 375 |
|
|
|
| 376 |
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
| 377 |
|
|
if (valid_gimple_rhs_p (result))
|
| 378 |
|
|
return result;
|
| 379 |
|
|
}
|
| 380 |
|
|
}
|
| 381 |
|
|
break;
|
| 382 |
|
|
|
| 383 |
|
|
case GIMPLE_BINARY_RHS:
|
| 384 |
|
|
/* Try to canonicalize for boolean-typed X the comparisons
|
| 385 |
|
|
X == 0, X == 1, X != 0, and X != 1. */
|
| 386 |
|
|
if (gimple_assign_rhs_code (stmt) == EQ_EXPR
|
| 387 |
|
|
|| gimple_assign_rhs_code (stmt) == NE_EXPR)
|
| 388 |
|
|
{
|
| 389 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
| 390 |
|
|
tree op1 = gimple_assign_rhs1 (stmt);
|
| 391 |
|
|
tree op2 = gimple_assign_rhs2 (stmt);
|
| 392 |
|
|
tree type = TREE_TYPE (op1);
|
| 393 |
|
|
|
| 394 |
|
|
/* Check whether the comparison operands are of the same boolean
|
| 395 |
|
|
type as the result type is.
|
| 396 |
|
|
Check that second operand is an integer-constant with value
|
| 397 |
|
|
one or zero. */
|
| 398 |
|
|
if (TREE_CODE (op2) == INTEGER_CST
|
| 399 |
|
|
&& (integer_zerop (op2) || integer_onep (op2))
|
| 400 |
|
|
&& useless_type_conversion_p (TREE_TYPE (lhs), type))
|
| 401 |
|
|
{
|
| 402 |
|
|
enum tree_code cmp_code = gimple_assign_rhs_code (stmt);
|
| 403 |
|
|
bool is_logical_not = false;
|
| 404 |
|
|
|
| 405 |
|
|
/* X == 0 and X != 1 is a logical-not.of X
|
| 406 |
|
|
X == 1 and X != 0 is X */
|
| 407 |
|
|
if ((cmp_code == EQ_EXPR && integer_zerop (op2))
|
| 408 |
|
|
|| (cmp_code == NE_EXPR && integer_onep (op2)))
|
| 409 |
|
|
is_logical_not = true;
|
| 410 |
|
|
|
| 411 |
|
|
if (is_logical_not == false)
|
| 412 |
|
|
result = op1;
|
| 413 |
|
|
/* Only for one-bit precision typed X the transformation
|
| 414 |
|
|
!X -> ~X is valied. */
|
| 415 |
|
|
else if (TYPE_PRECISION (type) == 1)
|
| 416 |
|
|
result = build1_loc (gimple_location (stmt), BIT_NOT_EXPR,
|
| 417 |
|
|
type, op1);
|
| 418 |
|
|
/* Otherwise we use !X -> X ^ 1. */
|
| 419 |
|
|
else
|
| 420 |
|
|
result = build2_loc (gimple_location (stmt), BIT_XOR_EXPR,
|
| 421 |
|
|
type, op1, build_int_cst (type, 1));
|
| 422 |
|
|
|
| 423 |
|
|
}
|
| 424 |
|
|
}
|
| 425 |
|
|
|
| 426 |
|
|
if (!result)
|
| 427 |
|
|
result = fold_binary_loc (loc, subcode,
|
| 428 |
|
|
TREE_TYPE (gimple_assign_lhs (stmt)),
|
| 429 |
|
|
gimple_assign_rhs1 (stmt),
|
| 430 |
|
|
gimple_assign_rhs2 (stmt));
|
| 431 |
|
|
|
| 432 |
|
|
if (result)
|
| 433 |
|
|
{
|
| 434 |
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
| 435 |
|
|
if (valid_gimple_rhs_p (result))
|
| 436 |
|
|
return result;
|
| 437 |
|
|
}
|
| 438 |
|
|
break;
|
| 439 |
|
|
|
| 440 |
|
|
case GIMPLE_TERNARY_RHS:
|
| 441 |
|
|
/* Try to fold a conditional expression. */
|
| 442 |
|
|
if (gimple_assign_rhs_code (stmt) == COND_EXPR)
|
| 443 |
|
|
{
|
| 444 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
| 445 |
|
|
tree tem;
|
| 446 |
|
|
bool set = false;
|
| 447 |
|
|
location_t cond_loc = gimple_location (stmt);
|
| 448 |
|
|
|
| 449 |
|
|
if (COMPARISON_CLASS_P (op0))
|
| 450 |
|
|
{
|
| 451 |
|
|
fold_defer_overflow_warnings ();
|
| 452 |
|
|
tem = fold_binary_loc (cond_loc,
|
| 453 |
|
|
TREE_CODE (op0), TREE_TYPE (op0),
|
| 454 |
|
|
TREE_OPERAND (op0, 0),
|
| 455 |
|
|
TREE_OPERAND (op0, 1));
|
| 456 |
|
|
/* This is actually a conditional expression, not a GIMPLE
|
| 457 |
|
|
conditional statement, however, the valid_gimple_rhs_p
|
| 458 |
|
|
test still applies. */
|
| 459 |
|
|
set = (tem && is_gimple_condexpr (tem)
|
| 460 |
|
|
&& valid_gimple_rhs_p (tem));
|
| 461 |
|
|
fold_undefer_overflow_warnings (set, stmt, 0);
|
| 462 |
|
|
}
|
| 463 |
|
|
else if (is_gimple_min_invariant (op0))
|
| 464 |
|
|
{
|
| 465 |
|
|
tem = op0;
|
| 466 |
|
|
set = true;
|
| 467 |
|
|
}
|
| 468 |
|
|
else
|
| 469 |
|
|
return NULL_TREE;
|
| 470 |
|
|
|
| 471 |
|
|
if (set)
|
| 472 |
|
|
result = fold_build3_loc (cond_loc, COND_EXPR,
|
| 473 |
|
|
TREE_TYPE (gimple_assign_lhs (stmt)), tem,
|
| 474 |
|
|
gimple_assign_rhs2 (stmt),
|
| 475 |
|
|
gimple_assign_rhs3 (stmt));
|
| 476 |
|
|
}
|
| 477 |
|
|
|
| 478 |
|
|
if (!result)
|
| 479 |
|
|
result = fold_ternary_loc (loc, subcode,
|
| 480 |
|
|
TREE_TYPE (gimple_assign_lhs (stmt)),
|
| 481 |
|
|
gimple_assign_rhs1 (stmt),
|
| 482 |
|
|
gimple_assign_rhs2 (stmt),
|
| 483 |
|
|
gimple_assign_rhs3 (stmt));
|
| 484 |
|
|
|
| 485 |
|
|
if (result)
|
| 486 |
|
|
{
|
| 487 |
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
| 488 |
|
|
if (valid_gimple_rhs_p (result))
|
| 489 |
|
|
return result;
|
| 490 |
|
|
}
|
| 491 |
|
|
break;
|
| 492 |
|
|
|
| 493 |
|
|
case GIMPLE_INVALID_RHS:
|
| 494 |
|
|
gcc_unreachable ();
|
| 495 |
|
|
}
|
| 496 |
|
|
|
| 497 |
|
|
return NULL_TREE;
|
| 498 |
|
|
}
|
| 499 |
|
|
|
| 500 |
|
|
/* Attempt to fold a conditional statement. Return true if any changes were
|
| 501 |
|
|
made. We only attempt to fold the condition expression, and do not perform
|
| 502 |
|
|
any transformation that would require alteration of the cfg. It is
|
| 503 |
|
|
assumed that the operands have been previously folded. */
|
| 504 |
|
|
|
| 505 |
|
|
static bool
|
| 506 |
|
|
fold_gimple_cond (gimple stmt)
|
| 507 |
|
|
{
|
| 508 |
|
|
tree result = fold_binary_loc (gimple_location (stmt),
|
| 509 |
|
|
gimple_cond_code (stmt),
|
| 510 |
|
|
boolean_type_node,
|
| 511 |
|
|
gimple_cond_lhs (stmt),
|
| 512 |
|
|
gimple_cond_rhs (stmt));
|
| 513 |
|
|
|
| 514 |
|
|
if (result)
|
| 515 |
|
|
{
|
| 516 |
|
|
STRIP_USELESS_TYPE_CONVERSION (result);
|
| 517 |
|
|
if (is_gimple_condexpr (result) && valid_gimple_rhs_p (result))
|
| 518 |
|
|
{
|
| 519 |
|
|
gimple_cond_set_condition_from_tree (stmt, result);
|
| 520 |
|
|
return true;
|
| 521 |
|
|
}
|
| 522 |
|
|
}
|
| 523 |
|
|
|
| 524 |
|
|
return false;
|
| 525 |
|
|
}
|
| 526 |
|
|
|
| 527 |
|
|
/* Convert EXPR into a GIMPLE value suitable for substitution on the
|
| 528 |
|
|
RHS of an assignment. Insert the necessary statements before
|
| 529 |
|
|
iterator *SI_P. The statement at *SI_P, which must be a GIMPLE_CALL
|
| 530 |
|
|
is replaced. If the call is expected to produces a result, then it
|
| 531 |
|
|
is replaced by an assignment of the new RHS to the result variable.
|
| 532 |
|
|
If the result is to be ignored, then the call is replaced by a
|
| 533 |
|
|
GIMPLE_NOP. A proper VDEF chain is retained by making the first
|
| 534 |
|
|
VUSE and the last VDEF of the whole sequence be the same as the replaced
|
| 535 |
|
|
statement and using new SSA names for stores in between. */
|
| 536 |
|
|
|
| 537 |
|
|
void
|
| 538 |
|
|
gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
|
| 539 |
|
|
{
|
| 540 |
|
|
tree lhs;
|
| 541 |
|
|
gimple stmt, new_stmt;
|
| 542 |
|
|
gimple_stmt_iterator i;
|
| 543 |
|
|
gimple_seq stmts = gimple_seq_alloc();
|
| 544 |
|
|
struct gimplify_ctx gctx;
|
| 545 |
|
|
gimple last;
|
| 546 |
|
|
gimple laststore;
|
| 547 |
|
|
tree reaching_vuse;
|
| 548 |
|
|
|
| 549 |
|
|
stmt = gsi_stmt (*si_p);
|
| 550 |
|
|
|
| 551 |
|
|
gcc_assert (is_gimple_call (stmt));
|
| 552 |
|
|
|
| 553 |
|
|
push_gimplify_context (&gctx);
|
| 554 |
|
|
gctx.into_ssa = gimple_in_ssa_p (cfun);
|
| 555 |
|
|
|
| 556 |
|
|
lhs = gimple_call_lhs (stmt);
|
| 557 |
|
|
if (lhs == NULL_TREE)
|
| 558 |
|
|
{
|
| 559 |
|
|
gimplify_and_add (expr, &stmts);
|
| 560 |
|
|
/* We can end up with folding a memcpy of an empty class assignment
|
| 561 |
|
|
which gets optimized away by C++ gimplification. */
|
| 562 |
|
|
if (gimple_seq_empty_p (stmts))
|
| 563 |
|
|
{
|
| 564 |
|
|
pop_gimplify_context (NULL);
|
| 565 |
|
|
if (gimple_in_ssa_p (cfun))
|
| 566 |
|
|
{
|
| 567 |
|
|
unlink_stmt_vdef (stmt);
|
| 568 |
|
|
release_defs (stmt);
|
| 569 |
|
|
}
|
| 570 |
|
|
gsi_remove (si_p, true);
|
| 571 |
|
|
return;
|
| 572 |
|
|
}
|
| 573 |
|
|
}
|
| 574 |
|
|
else
|
| 575 |
|
|
{
|
| 576 |
|
|
tree tmp = get_initialized_tmp_var (expr, &stmts, NULL);
|
| 577 |
|
|
new_stmt = gimple_build_assign (lhs, tmp);
|
| 578 |
|
|
i = gsi_last (stmts);
|
| 579 |
|
|
gsi_insert_after_without_update (&i, new_stmt,
|
| 580 |
|
|
GSI_CONTINUE_LINKING);
|
| 581 |
|
|
}
|
| 582 |
|
|
|
| 583 |
|
|
pop_gimplify_context (NULL);
|
| 584 |
|
|
|
| 585 |
|
|
if (gimple_has_location (stmt))
|
| 586 |
|
|
annotate_all_with_location (stmts, gimple_location (stmt));
|
| 587 |
|
|
|
| 588 |
|
|
/* First iterate over the replacement statements backward, assigning
|
| 589 |
|
|
virtual operands to their defining statements. */
|
| 590 |
|
|
laststore = NULL;
|
| 591 |
|
|
for (i = gsi_last (stmts); !gsi_end_p (i); gsi_prev (&i))
|
| 592 |
|
|
{
|
| 593 |
|
|
new_stmt = gsi_stmt (i);
|
| 594 |
|
|
if ((gimple_assign_single_p (new_stmt)
|
| 595 |
|
|
&& !is_gimple_reg (gimple_assign_lhs (new_stmt)))
|
| 596 |
|
|
|| (is_gimple_call (new_stmt)
|
| 597 |
|
|
&& (gimple_call_flags (new_stmt)
|
| 598 |
|
|
& (ECF_NOVOPS | ECF_PURE | ECF_CONST | ECF_NORETURN)) == 0))
|
| 599 |
|
|
{
|
| 600 |
|
|
tree vdef;
|
| 601 |
|
|
if (!laststore)
|
| 602 |
|
|
vdef = gimple_vdef (stmt);
|
| 603 |
|
|
else
|
| 604 |
|
|
vdef = make_ssa_name (gimple_vop (cfun), new_stmt);
|
| 605 |
|
|
gimple_set_vdef (new_stmt, vdef);
|
| 606 |
|
|
if (vdef && TREE_CODE (vdef) == SSA_NAME)
|
| 607 |
|
|
SSA_NAME_DEF_STMT (vdef) = new_stmt;
|
| 608 |
|
|
laststore = new_stmt;
|
| 609 |
|
|
}
|
| 610 |
|
|
}
|
| 611 |
|
|
|
| 612 |
|
|
/* Second iterate over the statements forward, assigning virtual
|
| 613 |
|
|
operands to their uses. */
|
| 614 |
|
|
last = NULL;
|
| 615 |
|
|
reaching_vuse = gimple_vuse (stmt);
|
| 616 |
|
|
for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
|
| 617 |
|
|
{
|
| 618 |
|
|
/* Do not insert the last stmt in this loop but remember it
|
| 619 |
|
|
for replacing the original statement. */
|
| 620 |
|
|
if (last)
|
| 621 |
|
|
{
|
| 622 |
|
|
gsi_insert_before (si_p, last, GSI_NEW_STMT);
|
| 623 |
|
|
gsi_next (si_p);
|
| 624 |
|
|
}
|
| 625 |
|
|
new_stmt = gsi_stmt (i);
|
| 626 |
|
|
/* The replacement can expose previously unreferenced variables. */
|
| 627 |
|
|
if (gimple_in_ssa_p (cfun))
|
| 628 |
|
|
find_new_referenced_vars (new_stmt);
|
| 629 |
|
|
/* If the new statement possibly has a VUSE, update it with exact SSA
|
| 630 |
|
|
name we know will reach this one. */
|
| 631 |
|
|
if (gimple_has_mem_ops (new_stmt))
|
| 632 |
|
|
gimple_set_vuse (new_stmt, reaching_vuse);
|
| 633 |
|
|
gimple_set_modified (new_stmt, true);
|
| 634 |
|
|
if (gimple_vdef (new_stmt))
|
| 635 |
|
|
reaching_vuse = gimple_vdef (new_stmt);
|
| 636 |
|
|
last = new_stmt;
|
| 637 |
|
|
}
|
| 638 |
|
|
|
| 639 |
|
|
/* If the new sequence does not do a store release the virtual
|
| 640 |
|
|
definition of the original statement. */
|
| 641 |
|
|
if (reaching_vuse
|
| 642 |
|
|
&& reaching_vuse == gimple_vuse (stmt))
|
| 643 |
|
|
{
|
| 644 |
|
|
tree vdef = gimple_vdef (stmt);
|
| 645 |
|
|
if (vdef
|
| 646 |
|
|
&& TREE_CODE (vdef) == SSA_NAME)
|
| 647 |
|
|
{
|
| 648 |
|
|
unlink_stmt_vdef (stmt);
|
| 649 |
|
|
release_ssa_name (vdef);
|
| 650 |
|
|
}
|
| 651 |
|
|
}
|
| 652 |
|
|
|
| 653 |
|
|
/* Finally replace rhe original statement with the last. */
|
| 654 |
|
|
gsi_replace (si_p, last, false);
|
| 655 |
|
|
}
|
| 656 |
|
|
|
| 657 |
|
|
/* Return the string length, maximum string length or maximum value of
|
| 658 |
|
|
ARG in LENGTH.
|
| 659 |
|
|
If ARG is an SSA name variable, follow its use-def chains. If LENGTH
|
| 660 |
|
|
is not NULL and, for TYPE == 0, its value is not equal to the length
|
| 661 |
|
|
we determine or if we are unable to determine the length or value,
|
| 662 |
|
|
return false. VISITED is a bitmap of visited variables.
|
| 663 |
|
|
TYPE is 0 if string length should be returned, 1 for maximum string
|
| 664 |
|
|
length and 2 for maximum value ARG can have. */
|
| 665 |
|
|
|
| 666 |
|
|
static bool
|
| 667 |
|
|
get_maxval_strlen (tree arg, tree *length, bitmap visited, int type)
|
| 668 |
|
|
{
|
| 669 |
|
|
tree var, val;
|
| 670 |
|
|
gimple def_stmt;
|
| 671 |
|
|
|
| 672 |
|
|
if (TREE_CODE (arg) != SSA_NAME)
|
| 673 |
|
|
{
|
| 674 |
|
|
if (TREE_CODE (arg) == COND_EXPR)
|
| 675 |
|
|
return get_maxval_strlen (COND_EXPR_THEN (arg), length, visited, type)
|
| 676 |
|
|
&& get_maxval_strlen (COND_EXPR_ELSE (arg), length, visited, type);
|
| 677 |
|
|
/* We can end up with &(*iftmp_1)[0] here as well, so handle it. */
|
| 678 |
|
|
else if (TREE_CODE (arg) == ADDR_EXPR
|
| 679 |
|
|
&& TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF
|
| 680 |
|
|
&& integer_zerop (TREE_OPERAND (TREE_OPERAND (arg, 0), 1)))
|
| 681 |
|
|
{
|
| 682 |
|
|
tree aop0 = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
|
| 683 |
|
|
if (TREE_CODE (aop0) == INDIRECT_REF
|
| 684 |
|
|
&& TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME)
|
| 685 |
|
|
return get_maxval_strlen (TREE_OPERAND (aop0, 0),
|
| 686 |
|
|
length, visited, type);
|
| 687 |
|
|
}
|
| 688 |
|
|
|
| 689 |
|
|
if (type == 2)
|
| 690 |
|
|
{
|
| 691 |
|
|
val = arg;
|
| 692 |
|
|
if (TREE_CODE (val) != INTEGER_CST
|
| 693 |
|
|
|| tree_int_cst_sgn (val) < 0)
|
| 694 |
|
|
return false;
|
| 695 |
|
|
}
|
| 696 |
|
|
else
|
| 697 |
|
|
val = c_strlen (arg, 1);
|
| 698 |
|
|
if (!val)
|
| 699 |
|
|
return false;
|
| 700 |
|
|
|
| 701 |
|
|
if (*length)
|
| 702 |
|
|
{
|
| 703 |
|
|
if (type > 0)
|
| 704 |
|
|
{
|
| 705 |
|
|
if (TREE_CODE (*length) != INTEGER_CST
|
| 706 |
|
|
|| TREE_CODE (val) != INTEGER_CST)
|
| 707 |
|
|
return false;
|
| 708 |
|
|
|
| 709 |
|
|
if (tree_int_cst_lt (*length, val))
|
| 710 |
|
|
*length = val;
|
| 711 |
|
|
return true;
|
| 712 |
|
|
}
|
| 713 |
|
|
else if (simple_cst_equal (val, *length) != 1)
|
| 714 |
|
|
return false;
|
| 715 |
|
|
}
|
| 716 |
|
|
|
| 717 |
|
|
*length = val;
|
| 718 |
|
|
return true;
|
| 719 |
|
|
}
|
| 720 |
|
|
|
| 721 |
|
|
/* If we were already here, break the infinite cycle. */
|
| 722 |
|
|
if (!bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
|
| 723 |
|
|
return true;
|
| 724 |
|
|
|
| 725 |
|
|
var = arg;
|
| 726 |
|
|
def_stmt = SSA_NAME_DEF_STMT (var);
|
| 727 |
|
|
|
| 728 |
|
|
switch (gimple_code (def_stmt))
|
| 729 |
|
|
{
|
| 730 |
|
|
case GIMPLE_ASSIGN:
|
| 731 |
|
|
/* The RHS of the statement defining VAR must either have a
|
| 732 |
|
|
constant length or come from another SSA_NAME with a constant
|
| 733 |
|
|
length. */
|
| 734 |
|
|
if (gimple_assign_single_p (def_stmt)
|
| 735 |
|
|
|| gimple_assign_unary_nop_p (def_stmt))
|
| 736 |
|
|
{
|
| 737 |
|
|
tree rhs = gimple_assign_rhs1 (def_stmt);
|
| 738 |
|
|
return get_maxval_strlen (rhs, length, visited, type);
|
| 739 |
|
|
}
|
| 740 |
|
|
return false;
|
| 741 |
|
|
|
| 742 |
|
|
case GIMPLE_PHI:
|
| 743 |
|
|
{
|
| 744 |
|
|
/* All the arguments of the PHI node must have the same constant
|
| 745 |
|
|
length. */
|
| 746 |
|
|
unsigned i;
|
| 747 |
|
|
|
| 748 |
|
|
for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
|
| 749 |
|
|
{
|
| 750 |
|
|
tree arg = gimple_phi_arg (def_stmt, i)->def;
|
| 751 |
|
|
|
| 752 |
|
|
/* If this PHI has itself as an argument, we cannot
|
| 753 |
|
|
determine the string length of this argument. However,
|
| 754 |
|
|
if we can find a constant string length for the other
|
| 755 |
|
|
PHI args then we can still be sure that this is a
|
| 756 |
|
|
constant string length. So be optimistic and just
|
| 757 |
|
|
continue with the next argument. */
|
| 758 |
|
|
if (arg == gimple_phi_result (def_stmt))
|
| 759 |
|
|
continue;
|
| 760 |
|
|
|
| 761 |
|
|
if (!get_maxval_strlen (arg, length, visited, type))
|
| 762 |
|
|
return false;
|
| 763 |
|
|
}
|
| 764 |
|
|
}
|
| 765 |
|
|
return true;
|
| 766 |
|
|
|
| 767 |
|
|
default:
|
| 768 |
|
|
return false;
|
| 769 |
|
|
}
|
| 770 |
|
|
}
|
| 771 |
|
|
|
| 772 |
|
|
|
| 773 |
|
|
/* Fold builtin call in statement STMT. Returns a simplified tree.
|
| 774 |
|
|
We may return a non-constant expression, including another call
|
| 775 |
|
|
to a different function and with different arguments, e.g.,
|
| 776 |
|
|
substituting memcpy for strcpy when the string length is known.
|
| 777 |
|
|
Note that some builtins expand into inline code that may not
|
| 778 |
|
|
be valid in GIMPLE. Callers must take care. */
|
| 779 |
|
|
|
| 780 |
|
|
tree
|
| 781 |
|
|
gimple_fold_builtin (gimple stmt)
|
| 782 |
|
|
{
|
| 783 |
|
|
tree result, val[3];
|
| 784 |
|
|
tree callee, a;
|
| 785 |
|
|
int arg_idx, type;
|
| 786 |
|
|
bitmap visited;
|
| 787 |
|
|
bool ignore;
|
| 788 |
|
|
int nargs;
|
| 789 |
|
|
location_t loc = gimple_location (stmt);
|
| 790 |
|
|
|
| 791 |
|
|
gcc_assert (is_gimple_call (stmt));
|
| 792 |
|
|
|
| 793 |
|
|
ignore = (gimple_call_lhs (stmt) == NULL);
|
| 794 |
|
|
|
| 795 |
|
|
/* First try the generic builtin folder. If that succeeds, return the
|
| 796 |
|
|
result directly. */
|
| 797 |
|
|
result = fold_call_stmt (stmt, ignore);
|
| 798 |
|
|
if (result)
|
| 799 |
|
|
{
|
| 800 |
|
|
if (ignore)
|
| 801 |
|
|
STRIP_NOPS (result);
|
| 802 |
|
|
return result;
|
| 803 |
|
|
}
|
| 804 |
|
|
|
| 805 |
|
|
/* Ignore MD builtins. */
|
| 806 |
|
|
callee = gimple_call_fndecl (stmt);
|
| 807 |
|
|
if (DECL_BUILT_IN_CLASS (callee) == BUILT_IN_MD)
|
| 808 |
|
|
return NULL_TREE;
|
| 809 |
|
|
|
| 810 |
|
|
/* Give up for always_inline inline builtins until they are
|
| 811 |
|
|
inlined. */
|
| 812 |
|
|
if (avoid_folding_inline_builtin (callee))
|
| 813 |
|
|
return NULL_TREE;
|
| 814 |
|
|
|
| 815 |
|
|
/* If the builtin could not be folded, and it has no argument list,
|
| 816 |
|
|
we're done. */
|
| 817 |
|
|
nargs = gimple_call_num_args (stmt);
|
| 818 |
|
|
if (nargs == 0)
|
| 819 |
|
|
return NULL_TREE;
|
| 820 |
|
|
|
| 821 |
|
|
/* Limit the work only for builtins we know how to simplify. */
|
| 822 |
|
|
switch (DECL_FUNCTION_CODE (callee))
|
| 823 |
|
|
{
|
| 824 |
|
|
case BUILT_IN_STRLEN:
|
| 825 |
|
|
case BUILT_IN_FPUTS:
|
| 826 |
|
|
case BUILT_IN_FPUTS_UNLOCKED:
|
| 827 |
|
|
arg_idx = 0;
|
| 828 |
|
|
type = 0;
|
| 829 |
|
|
break;
|
| 830 |
|
|
case BUILT_IN_STRCPY:
|
| 831 |
|
|
case BUILT_IN_STRNCPY:
|
| 832 |
|
|
arg_idx = 1;
|
| 833 |
|
|
type = 0;
|
| 834 |
|
|
break;
|
| 835 |
|
|
case BUILT_IN_MEMCPY_CHK:
|
| 836 |
|
|
case BUILT_IN_MEMPCPY_CHK:
|
| 837 |
|
|
case BUILT_IN_MEMMOVE_CHK:
|
| 838 |
|
|
case BUILT_IN_MEMSET_CHK:
|
| 839 |
|
|
case BUILT_IN_STRNCPY_CHK:
|
| 840 |
|
|
case BUILT_IN_STPNCPY_CHK:
|
| 841 |
|
|
arg_idx = 2;
|
| 842 |
|
|
type = 2;
|
| 843 |
|
|
break;
|
| 844 |
|
|
case BUILT_IN_STRCPY_CHK:
|
| 845 |
|
|
case BUILT_IN_STPCPY_CHK:
|
| 846 |
|
|
arg_idx = 1;
|
| 847 |
|
|
type = 1;
|
| 848 |
|
|
break;
|
| 849 |
|
|
case BUILT_IN_SNPRINTF_CHK:
|
| 850 |
|
|
case BUILT_IN_VSNPRINTF_CHK:
|
| 851 |
|
|
arg_idx = 1;
|
| 852 |
|
|
type = 2;
|
| 853 |
|
|
break;
|
| 854 |
|
|
default:
|
| 855 |
|
|
return NULL_TREE;
|
| 856 |
|
|
}
|
| 857 |
|
|
|
| 858 |
|
|
if (arg_idx >= nargs)
|
| 859 |
|
|
return NULL_TREE;
|
| 860 |
|
|
|
| 861 |
|
|
/* Try to use the dataflow information gathered by the CCP process. */
|
| 862 |
|
|
visited = BITMAP_ALLOC (NULL);
|
| 863 |
|
|
bitmap_clear (visited);
|
| 864 |
|
|
|
| 865 |
|
|
memset (val, 0, sizeof (val));
|
| 866 |
|
|
a = gimple_call_arg (stmt, arg_idx);
|
| 867 |
|
|
if (!get_maxval_strlen (a, &val[arg_idx], visited, type))
|
| 868 |
|
|
val[arg_idx] = NULL_TREE;
|
| 869 |
|
|
|
| 870 |
|
|
BITMAP_FREE (visited);
|
| 871 |
|
|
|
| 872 |
|
|
result = NULL_TREE;
|
| 873 |
|
|
switch (DECL_FUNCTION_CODE (callee))
|
| 874 |
|
|
{
|
| 875 |
|
|
case BUILT_IN_STRLEN:
|
| 876 |
|
|
if (val[0] && nargs == 1)
|
| 877 |
|
|
{
|
| 878 |
|
|
tree new_val =
|
| 879 |
|
|
fold_convert (TREE_TYPE (gimple_call_lhs (stmt)), val[0]);
|
| 880 |
|
|
|
| 881 |
|
|
/* If the result is not a valid gimple value, or not a cast
|
| 882 |
|
|
of a valid gimple value, then we cannot use the result. */
|
| 883 |
|
|
if (is_gimple_val (new_val)
|
| 884 |
|
|
|| (CONVERT_EXPR_P (new_val)
|
| 885 |
|
|
&& is_gimple_val (TREE_OPERAND (new_val, 0))))
|
| 886 |
|
|
return new_val;
|
| 887 |
|
|
}
|
| 888 |
|
|
break;
|
| 889 |
|
|
|
| 890 |
|
|
case BUILT_IN_STRCPY:
|
| 891 |
|
|
if (val[1] && is_gimple_val (val[1]) && nargs == 2)
|
| 892 |
|
|
result = fold_builtin_strcpy (loc, callee,
|
| 893 |
|
|
gimple_call_arg (stmt, 0),
|
| 894 |
|
|
gimple_call_arg (stmt, 1),
|
| 895 |
|
|
val[1]);
|
| 896 |
|
|
break;
|
| 897 |
|
|
|
| 898 |
|
|
case BUILT_IN_STRNCPY:
|
| 899 |
|
|
if (val[1] && is_gimple_val (val[1]) && nargs == 3)
|
| 900 |
|
|
result = fold_builtin_strncpy (loc, callee,
|
| 901 |
|
|
gimple_call_arg (stmt, 0),
|
| 902 |
|
|
gimple_call_arg (stmt, 1),
|
| 903 |
|
|
gimple_call_arg (stmt, 2),
|
| 904 |
|
|
val[1]);
|
| 905 |
|
|
break;
|
| 906 |
|
|
|
| 907 |
|
|
case BUILT_IN_FPUTS:
|
| 908 |
|
|
if (nargs == 2)
|
| 909 |
|
|
result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
|
| 910 |
|
|
gimple_call_arg (stmt, 1),
|
| 911 |
|
|
ignore, false, val[0]);
|
| 912 |
|
|
break;
|
| 913 |
|
|
|
| 914 |
|
|
case BUILT_IN_FPUTS_UNLOCKED:
|
| 915 |
|
|
if (nargs == 2)
|
| 916 |
|
|
result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
|
| 917 |
|
|
gimple_call_arg (stmt, 1),
|
| 918 |
|
|
ignore, true, val[0]);
|
| 919 |
|
|
break;
|
| 920 |
|
|
|
| 921 |
|
|
case BUILT_IN_MEMCPY_CHK:
|
| 922 |
|
|
case BUILT_IN_MEMPCPY_CHK:
|
| 923 |
|
|
case BUILT_IN_MEMMOVE_CHK:
|
| 924 |
|
|
case BUILT_IN_MEMSET_CHK:
|
| 925 |
|
|
if (val[2] && is_gimple_val (val[2]) && nargs == 4)
|
| 926 |
|
|
result = fold_builtin_memory_chk (loc, callee,
|
| 927 |
|
|
gimple_call_arg (stmt, 0),
|
| 928 |
|
|
gimple_call_arg (stmt, 1),
|
| 929 |
|
|
gimple_call_arg (stmt, 2),
|
| 930 |
|
|
gimple_call_arg (stmt, 3),
|
| 931 |
|
|
val[2], ignore,
|
| 932 |
|
|
DECL_FUNCTION_CODE (callee));
|
| 933 |
|
|
break;
|
| 934 |
|
|
|
| 935 |
|
|
case BUILT_IN_STRCPY_CHK:
|
| 936 |
|
|
case BUILT_IN_STPCPY_CHK:
|
| 937 |
|
|
if (val[1] && is_gimple_val (val[1]) && nargs == 3)
|
| 938 |
|
|
result = fold_builtin_stxcpy_chk (loc, callee,
|
| 939 |
|
|
gimple_call_arg (stmt, 0),
|
| 940 |
|
|
gimple_call_arg (stmt, 1),
|
| 941 |
|
|
gimple_call_arg (stmt, 2),
|
| 942 |
|
|
val[1], ignore,
|
| 943 |
|
|
DECL_FUNCTION_CODE (callee));
|
| 944 |
|
|
break;
|
| 945 |
|
|
|
| 946 |
|
|
case BUILT_IN_STRNCPY_CHK:
|
| 947 |
|
|
case BUILT_IN_STPNCPY_CHK:
|
| 948 |
|
|
if (val[2] && is_gimple_val (val[2]) && nargs == 4)
|
| 949 |
|
|
result = fold_builtin_stxncpy_chk (loc, gimple_call_arg (stmt, 0),
|
| 950 |
|
|
gimple_call_arg (stmt, 1),
|
| 951 |
|
|
gimple_call_arg (stmt, 2),
|
| 952 |
|
|
gimple_call_arg (stmt, 3),
|
| 953 |
|
|
val[2], ignore,
|
| 954 |
|
|
DECL_FUNCTION_CODE (callee));
|
| 955 |
|
|
break;
|
| 956 |
|
|
|
| 957 |
|
|
case BUILT_IN_SNPRINTF_CHK:
|
| 958 |
|
|
case BUILT_IN_VSNPRINTF_CHK:
|
| 959 |
|
|
if (val[1] && is_gimple_val (val[1]))
|
| 960 |
|
|
result = gimple_fold_builtin_snprintf_chk (stmt, val[1],
|
| 961 |
|
|
DECL_FUNCTION_CODE (callee));
|
| 962 |
|
|
break;
|
| 963 |
|
|
|
| 964 |
|
|
default:
|
| 965 |
|
|
gcc_unreachable ();
|
| 966 |
|
|
}
|
| 967 |
|
|
|
| 968 |
|
|
if (result && ignore)
|
| 969 |
|
|
result = fold_ignored_result (result);
|
| 970 |
|
|
return result;
|
| 971 |
|
|
}
|
| 972 |
|
|
|
| 973 |
|
|
/* Generate code adjusting the first parameter of a call statement determined
|
| 974 |
|
|
by GSI by DELTA. */
|
| 975 |
|
|
|
| 976 |
|
|
void
|
| 977 |
|
|
gimple_adjust_this_by_delta (gimple_stmt_iterator *gsi, tree delta)
|
| 978 |
|
|
{
|
| 979 |
|
|
gimple call_stmt = gsi_stmt (*gsi);
|
| 980 |
|
|
tree parm, tmp;
|
| 981 |
|
|
gimple new_stmt;
|
| 982 |
|
|
|
| 983 |
|
|
delta = convert_to_ptrofftype (delta);
|
| 984 |
|
|
gcc_assert (gimple_call_num_args (call_stmt) >= 1);
|
| 985 |
|
|
parm = gimple_call_arg (call_stmt, 0);
|
| 986 |
|
|
gcc_assert (POINTER_TYPE_P (TREE_TYPE (parm)));
|
| 987 |
|
|
tmp = create_tmp_var (TREE_TYPE (parm), NULL);
|
| 988 |
|
|
add_referenced_var (tmp);
|
| 989 |
|
|
|
| 990 |
|
|
tmp = make_ssa_name (tmp, NULL);
|
| 991 |
|
|
new_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, tmp, parm, delta);
|
| 992 |
|
|
SSA_NAME_DEF_STMT (tmp) = new_stmt;
|
| 993 |
|
|
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
|
| 994 |
|
|
gimple_call_set_arg (call_stmt, 0, tmp);
|
| 995 |
|
|
}
|
| 996 |
|
|
|
| 997 |
|
|
/* Return a binfo to be used for devirtualization of calls based on an object
|
| 998 |
|
|
represented by a declaration (i.e. a global or automatically allocated one)
|
| 999 |
|
|
or NULL if it cannot be found or is not safe. CST is expected to be an
|
| 1000 |
|
|
ADDR_EXPR of such object or the function will return NULL. Currently it is
|
| 1001 |
|
|
safe to use such binfo only if it has no base binfo (i.e. no ancestors). */
|
| 1002 |
|
|
|
| 1003 |
|
|
tree
|
| 1004 |
|
|
gimple_extract_devirt_binfo_from_cst (tree cst)
|
| 1005 |
|
|
{
|
| 1006 |
|
|
HOST_WIDE_INT offset, size, max_size;
|
| 1007 |
|
|
tree base, type, expected_type, binfo;
|
| 1008 |
|
|
bool last_artificial = false;
|
| 1009 |
|
|
|
| 1010 |
|
|
if (!flag_devirtualize
|
| 1011 |
|
|
|| TREE_CODE (cst) != ADDR_EXPR
|
| 1012 |
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (cst))) != RECORD_TYPE)
|
| 1013 |
|
|
return NULL_TREE;
|
| 1014 |
|
|
|
| 1015 |
|
|
cst = TREE_OPERAND (cst, 0);
|
| 1016 |
|
|
expected_type = TREE_TYPE (cst);
|
| 1017 |
|
|
base = get_ref_base_and_extent (cst, &offset, &size, &max_size);
|
| 1018 |
|
|
type = TREE_TYPE (base);
|
| 1019 |
|
|
if (!DECL_P (base)
|
| 1020 |
|
|
|| max_size == -1
|
| 1021 |
|
|
|| max_size != size
|
| 1022 |
|
|
|| TREE_CODE (type) != RECORD_TYPE)
|
| 1023 |
|
|
return NULL_TREE;
|
| 1024 |
|
|
|
| 1025 |
|
|
/* Find the sub-object the constant actually refers to and mark whether it is
|
| 1026 |
|
|
an artificial one (as opposed to a user-defined one). */
|
| 1027 |
|
|
while (true)
|
| 1028 |
|
|
{
|
| 1029 |
|
|
HOST_WIDE_INT pos, size;
|
| 1030 |
|
|
tree fld;
|
| 1031 |
|
|
|
| 1032 |
|
|
if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
|
| 1033 |
|
|
break;
|
| 1034 |
|
|
if (offset < 0)
|
| 1035 |
|
|
return NULL_TREE;
|
| 1036 |
|
|
|
| 1037 |
|
|
for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
|
| 1038 |
|
|
{
|
| 1039 |
|
|
if (TREE_CODE (fld) != FIELD_DECL)
|
| 1040 |
|
|
continue;
|
| 1041 |
|
|
|
| 1042 |
|
|
pos = int_bit_position (fld);
|
| 1043 |
|
|
size = tree_low_cst (DECL_SIZE (fld), 1);
|
| 1044 |
|
|
if (pos <= offset && (pos + size) > offset)
|
| 1045 |
|
|
break;
|
| 1046 |
|
|
}
|
| 1047 |
|
|
if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
|
| 1048 |
|
|
return NULL_TREE;
|
| 1049 |
|
|
|
| 1050 |
|
|
last_artificial = DECL_ARTIFICIAL (fld);
|
| 1051 |
|
|
type = TREE_TYPE (fld);
|
| 1052 |
|
|
offset -= pos;
|
| 1053 |
|
|
}
|
| 1054 |
|
|
/* Artifical sub-objects are ancestors, we do not want to use them for
|
| 1055 |
|
|
devirtualization, at least not here. */
|
| 1056 |
|
|
if (last_artificial)
|
| 1057 |
|
|
return NULL_TREE;
|
| 1058 |
|
|
binfo = TYPE_BINFO (type);
|
| 1059 |
|
|
if (!binfo || BINFO_N_BASE_BINFOS (binfo) > 0)
|
| 1060 |
|
|
return NULL_TREE;
|
| 1061 |
|
|
else
|
| 1062 |
|
|
return binfo;
|
| 1063 |
|
|
}
|
| 1064 |
|
|
|
| 1065 |
|
|
/* Attempt to fold a call statement referenced by the statement iterator GSI.
|
| 1066 |
|
|
The statement may be replaced by another statement, e.g., if the call
|
| 1067 |
|
|
simplifies to a constant value. Return true if any changes were made.
|
| 1068 |
|
|
It is assumed that the operands have been previously folded. */
|
| 1069 |
|
|
|
| 1070 |
|
|
static bool
|
| 1071 |
|
|
gimple_fold_call (gimple_stmt_iterator *gsi, bool inplace)
|
| 1072 |
|
|
{
|
| 1073 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 1074 |
|
|
tree callee;
|
| 1075 |
|
|
bool changed = false;
|
| 1076 |
|
|
unsigned i;
|
| 1077 |
|
|
|
| 1078 |
|
|
/* Fold *& in call arguments. */
|
| 1079 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
| 1080 |
|
|
if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i)))
|
| 1081 |
|
|
{
|
| 1082 |
|
|
tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false);
|
| 1083 |
|
|
if (tmp)
|
| 1084 |
|
|
{
|
| 1085 |
|
|
gimple_call_set_arg (stmt, i, tmp);
|
| 1086 |
|
|
changed = true;
|
| 1087 |
|
|
}
|
| 1088 |
|
|
}
|
| 1089 |
|
|
|
| 1090 |
|
|
/* Check for virtual calls that became direct calls. */
|
| 1091 |
|
|
callee = gimple_call_fn (stmt);
|
| 1092 |
|
|
if (callee && TREE_CODE (callee) == OBJ_TYPE_REF)
|
| 1093 |
|
|
{
|
| 1094 |
|
|
if (gimple_call_addr_fndecl (OBJ_TYPE_REF_EXPR (callee)) != NULL_TREE)
|
| 1095 |
|
|
{
|
| 1096 |
|
|
gimple_call_set_fn (stmt, OBJ_TYPE_REF_EXPR (callee));
|
| 1097 |
|
|
changed = true;
|
| 1098 |
|
|
}
|
| 1099 |
|
|
else
|
| 1100 |
|
|
{
|
| 1101 |
|
|
tree obj = OBJ_TYPE_REF_OBJECT (callee);
|
| 1102 |
|
|
tree binfo = gimple_extract_devirt_binfo_from_cst (obj);
|
| 1103 |
|
|
if (binfo)
|
| 1104 |
|
|
{
|
| 1105 |
|
|
HOST_WIDE_INT token
|
| 1106 |
|
|
= TREE_INT_CST_LOW (OBJ_TYPE_REF_TOKEN (callee));
|
| 1107 |
|
|
tree fndecl = gimple_get_virt_method_for_binfo (token, binfo);
|
| 1108 |
|
|
if (fndecl)
|
| 1109 |
|
|
{
|
| 1110 |
|
|
gimple_call_set_fndecl (stmt, fndecl);
|
| 1111 |
|
|
changed = true;
|
| 1112 |
|
|
}
|
| 1113 |
|
|
}
|
| 1114 |
|
|
}
|
| 1115 |
|
|
}
|
| 1116 |
|
|
|
| 1117 |
|
|
if (inplace)
|
| 1118 |
|
|
return changed;
|
| 1119 |
|
|
|
| 1120 |
|
|
/* Check for builtins that CCP can handle using information not
|
| 1121 |
|
|
available in the generic fold routines. */
|
| 1122 |
|
|
callee = gimple_call_fndecl (stmt);
|
| 1123 |
|
|
if (callee && DECL_BUILT_IN (callee))
|
| 1124 |
|
|
{
|
| 1125 |
|
|
tree result = gimple_fold_builtin (stmt);
|
| 1126 |
|
|
if (result)
|
| 1127 |
|
|
{
|
| 1128 |
|
|
if (!update_call_from_tree (gsi, result))
|
| 1129 |
|
|
gimplify_and_update_call_from_tree (gsi, result);
|
| 1130 |
|
|
changed = true;
|
| 1131 |
|
|
}
|
| 1132 |
|
|
}
|
| 1133 |
|
|
|
| 1134 |
|
|
return changed;
|
| 1135 |
|
|
}
|
| 1136 |
|
|
|
| 1137 |
|
|
/* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument
|
| 1138 |
|
|
distinguishes both cases. */
|
| 1139 |
|
|
|
| 1140 |
|
|
static bool
|
| 1141 |
|
|
fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace)
|
| 1142 |
|
|
{
|
| 1143 |
|
|
bool changed = false;
|
| 1144 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 1145 |
|
|
unsigned i;
|
| 1146 |
|
|
gimple_stmt_iterator gsinext = *gsi;
|
| 1147 |
|
|
gimple next_stmt;
|
| 1148 |
|
|
|
| 1149 |
|
|
gsi_next (&gsinext);
|
| 1150 |
|
|
next_stmt = gsi_end_p (gsinext) ? NULL : gsi_stmt (gsinext);
|
| 1151 |
|
|
|
| 1152 |
|
|
/* Fold the main computation performed by the statement. */
|
| 1153 |
|
|
switch (gimple_code (stmt))
|
| 1154 |
|
|
{
|
| 1155 |
|
|
case GIMPLE_ASSIGN:
|
| 1156 |
|
|
{
|
| 1157 |
|
|
unsigned old_num_ops = gimple_num_ops (stmt);
|
| 1158 |
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
| 1159 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
| 1160 |
|
|
tree new_rhs;
|
| 1161 |
|
|
/* First canonicalize operand order. This avoids building new
|
| 1162 |
|
|
trees if this is the only thing fold would later do. */
|
| 1163 |
|
|
if ((commutative_tree_code (subcode)
|
| 1164 |
|
|
|| commutative_ternary_tree_code (subcode))
|
| 1165 |
|
|
&& tree_swap_operands_p (gimple_assign_rhs1 (stmt),
|
| 1166 |
|
|
gimple_assign_rhs2 (stmt), false))
|
| 1167 |
|
|
{
|
| 1168 |
|
|
tree tem = gimple_assign_rhs1 (stmt);
|
| 1169 |
|
|
gimple_assign_set_rhs1 (stmt, gimple_assign_rhs2 (stmt));
|
| 1170 |
|
|
gimple_assign_set_rhs2 (stmt, tem);
|
| 1171 |
|
|
changed = true;
|
| 1172 |
|
|
}
|
| 1173 |
|
|
new_rhs = fold_gimple_assign (gsi);
|
| 1174 |
|
|
if (new_rhs
|
| 1175 |
|
|
&& !useless_type_conversion_p (TREE_TYPE (lhs),
|
| 1176 |
|
|
TREE_TYPE (new_rhs)))
|
| 1177 |
|
|
new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
|
| 1178 |
|
|
if (new_rhs
|
| 1179 |
|
|
&& (!inplace
|
| 1180 |
|
|
|| get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops))
|
| 1181 |
|
|
{
|
| 1182 |
|
|
gimple_assign_set_rhs_from_tree (gsi, new_rhs);
|
| 1183 |
|
|
changed = true;
|
| 1184 |
|
|
}
|
| 1185 |
|
|
break;
|
| 1186 |
|
|
}
|
| 1187 |
|
|
|
| 1188 |
|
|
case GIMPLE_COND:
|
| 1189 |
|
|
changed |= fold_gimple_cond (stmt);
|
| 1190 |
|
|
break;
|
| 1191 |
|
|
|
| 1192 |
|
|
case GIMPLE_CALL:
|
| 1193 |
|
|
changed |= gimple_fold_call (gsi, inplace);
|
| 1194 |
|
|
break;
|
| 1195 |
|
|
|
| 1196 |
|
|
case GIMPLE_ASM:
|
| 1197 |
|
|
/* Fold *& in asm operands. */
|
| 1198 |
|
|
{
|
| 1199 |
|
|
size_t noutputs;
|
| 1200 |
|
|
const char **oconstraints;
|
| 1201 |
|
|
const char *constraint;
|
| 1202 |
|
|
bool allows_mem, allows_reg;
|
| 1203 |
|
|
|
| 1204 |
|
|
noutputs = gimple_asm_noutputs (stmt);
|
| 1205 |
|
|
oconstraints = XALLOCAVEC (const char *, noutputs);
|
| 1206 |
|
|
|
| 1207 |
|
|
for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
|
| 1208 |
|
|
{
|
| 1209 |
|
|
tree link = gimple_asm_output_op (stmt, i);
|
| 1210 |
|
|
tree op = TREE_VALUE (link);
|
| 1211 |
|
|
oconstraints[i]
|
| 1212 |
|
|
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
| 1213 |
|
|
if (REFERENCE_CLASS_P (op)
|
| 1214 |
|
|
&& (op = maybe_fold_reference (op, true)) != NULL_TREE)
|
| 1215 |
|
|
{
|
| 1216 |
|
|
TREE_VALUE (link) = op;
|
| 1217 |
|
|
changed = true;
|
| 1218 |
|
|
}
|
| 1219 |
|
|
}
|
| 1220 |
|
|
for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
|
| 1221 |
|
|
{
|
| 1222 |
|
|
tree link = gimple_asm_input_op (stmt, i);
|
| 1223 |
|
|
tree op = TREE_VALUE (link);
|
| 1224 |
|
|
constraint
|
| 1225 |
|
|
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
| 1226 |
|
|
parse_input_constraint (&constraint, 0, 0, noutputs, 0,
|
| 1227 |
|
|
oconstraints, &allows_mem, &allows_reg);
|
| 1228 |
|
|
if (REFERENCE_CLASS_P (op)
|
| 1229 |
|
|
&& (op = maybe_fold_reference (op, !allows_reg && allows_mem))
|
| 1230 |
|
|
!= NULL_TREE)
|
| 1231 |
|
|
{
|
| 1232 |
|
|
TREE_VALUE (link) = op;
|
| 1233 |
|
|
changed = true;
|
| 1234 |
|
|
}
|
| 1235 |
|
|
}
|
| 1236 |
|
|
}
|
| 1237 |
|
|
break;
|
| 1238 |
|
|
|
| 1239 |
|
|
case GIMPLE_DEBUG:
|
| 1240 |
|
|
if (gimple_debug_bind_p (stmt))
|
| 1241 |
|
|
{
|
| 1242 |
|
|
tree val = gimple_debug_bind_get_value (stmt);
|
| 1243 |
|
|
if (val
|
| 1244 |
|
|
&& REFERENCE_CLASS_P (val))
|
| 1245 |
|
|
{
|
| 1246 |
|
|
tree tem = maybe_fold_reference (val, false);
|
| 1247 |
|
|
if (tem)
|
| 1248 |
|
|
{
|
| 1249 |
|
|
gimple_debug_bind_set_value (stmt, tem);
|
| 1250 |
|
|
changed = true;
|
| 1251 |
|
|
}
|
| 1252 |
|
|
}
|
| 1253 |
|
|
else if (val
|
| 1254 |
|
|
&& TREE_CODE (val) == ADDR_EXPR)
|
| 1255 |
|
|
{
|
| 1256 |
|
|
tree ref = TREE_OPERAND (val, 0);
|
| 1257 |
|
|
tree tem = maybe_fold_reference (ref, false);
|
| 1258 |
|
|
if (tem)
|
| 1259 |
|
|
{
|
| 1260 |
|
|
tem = build_fold_addr_expr_with_type (tem, TREE_TYPE (val));
|
| 1261 |
|
|
gimple_debug_bind_set_value (stmt, tem);
|
| 1262 |
|
|
changed = true;
|
| 1263 |
|
|
}
|
| 1264 |
|
|
}
|
| 1265 |
|
|
}
|
| 1266 |
|
|
break;
|
| 1267 |
|
|
|
| 1268 |
|
|
default:;
|
| 1269 |
|
|
}
|
| 1270 |
|
|
|
| 1271 |
|
|
/* If stmt folds into nothing and it was the last stmt in a bb,
|
| 1272 |
|
|
don't call gsi_stmt. */
|
| 1273 |
|
|
if (gsi_end_p (*gsi))
|
| 1274 |
|
|
{
|
| 1275 |
|
|
gcc_assert (next_stmt == NULL);
|
| 1276 |
|
|
return changed;
|
| 1277 |
|
|
}
|
| 1278 |
|
|
|
| 1279 |
|
|
stmt = gsi_stmt (*gsi);
|
| 1280 |
|
|
|
| 1281 |
|
|
/* Fold *& on the lhs. Don't do this if stmt folded into nothing,
|
| 1282 |
|
|
as we'd changing the next stmt. */
|
| 1283 |
|
|
if (gimple_has_lhs (stmt) && stmt != next_stmt)
|
| 1284 |
|
|
{
|
| 1285 |
|
|
tree lhs = gimple_get_lhs (stmt);
|
| 1286 |
|
|
if (lhs && REFERENCE_CLASS_P (lhs))
|
| 1287 |
|
|
{
|
| 1288 |
|
|
tree new_lhs = maybe_fold_reference (lhs, true);
|
| 1289 |
|
|
if (new_lhs)
|
| 1290 |
|
|
{
|
| 1291 |
|
|
gimple_set_lhs (stmt, new_lhs);
|
| 1292 |
|
|
changed = true;
|
| 1293 |
|
|
}
|
| 1294 |
|
|
}
|
| 1295 |
|
|
}
|
| 1296 |
|
|
|
| 1297 |
|
|
return changed;
|
| 1298 |
|
|
}
|
| 1299 |
|
|
|
| 1300 |
|
|
/* Fold the statement pointed to by GSI. In some cases, this function may
|
| 1301 |
|
|
replace the whole statement with a new one. Returns true iff folding
|
| 1302 |
|
|
makes any changes.
|
| 1303 |
|
|
The statement pointed to by GSI should be in valid gimple form but may
|
| 1304 |
|
|
be in unfolded state as resulting from for example constant propagation
|
| 1305 |
|
|
which can produce *&x = 0. */
|
| 1306 |
|
|
|
| 1307 |
|
|
bool
|
| 1308 |
|
|
fold_stmt (gimple_stmt_iterator *gsi)
|
| 1309 |
|
|
{
|
| 1310 |
|
|
return fold_stmt_1 (gsi, false);
|
| 1311 |
|
|
}
|
| 1312 |
|
|
|
| 1313 |
|
|
/* Perform the minimal folding on statement *GSI. Only operations like
|
| 1314 |
|
|
*&x created by constant propagation are handled. The statement cannot
|
| 1315 |
|
|
be replaced with a new one. Return true if the statement was
|
| 1316 |
|
|
changed, false otherwise.
|
| 1317 |
|
|
The statement *GSI should be in valid gimple form but may
|
| 1318 |
|
|
be in unfolded state as resulting from for example constant propagation
|
| 1319 |
|
|
which can produce *&x = 0. */
|
| 1320 |
|
|
|
| 1321 |
|
|
bool
|
| 1322 |
|
|
fold_stmt_inplace (gimple_stmt_iterator *gsi)
|
| 1323 |
|
|
{
|
| 1324 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 1325 |
|
|
bool changed = fold_stmt_1 (gsi, true);
|
| 1326 |
|
|
gcc_assert (gsi_stmt (*gsi) == stmt);
|
| 1327 |
|
|
return changed;
|
| 1328 |
|
|
}
|
| 1329 |
|
|
|
| 1330 |
|
|
/* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE
|
| 1331 |
|
|
if EXPR is null or we don't know how.
|
| 1332 |
|
|
If non-null, the result always has boolean type. */
|
| 1333 |
|
|
|
| 1334 |
|
|
static tree
|
| 1335 |
|
|
canonicalize_bool (tree expr, bool invert)
|
| 1336 |
|
|
{
|
| 1337 |
|
|
if (!expr)
|
| 1338 |
|
|
return NULL_TREE;
|
| 1339 |
|
|
else if (invert)
|
| 1340 |
|
|
{
|
| 1341 |
|
|
if (integer_nonzerop (expr))
|
| 1342 |
|
|
return boolean_false_node;
|
| 1343 |
|
|
else if (integer_zerop (expr))
|
| 1344 |
|
|
return boolean_true_node;
|
| 1345 |
|
|
else if (TREE_CODE (expr) == SSA_NAME)
|
| 1346 |
|
|
return fold_build2 (EQ_EXPR, boolean_type_node, expr,
|
| 1347 |
|
|
build_int_cst (TREE_TYPE (expr), 0));
|
| 1348 |
|
|
else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
|
| 1349 |
|
|
return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false),
|
| 1350 |
|
|
boolean_type_node,
|
| 1351 |
|
|
TREE_OPERAND (expr, 0),
|
| 1352 |
|
|
TREE_OPERAND (expr, 1));
|
| 1353 |
|
|
else
|
| 1354 |
|
|
return NULL_TREE;
|
| 1355 |
|
|
}
|
| 1356 |
|
|
else
|
| 1357 |
|
|
{
|
| 1358 |
|
|
if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
|
| 1359 |
|
|
return expr;
|
| 1360 |
|
|
if (integer_nonzerop (expr))
|
| 1361 |
|
|
return boolean_true_node;
|
| 1362 |
|
|
else if (integer_zerop (expr))
|
| 1363 |
|
|
return boolean_false_node;
|
| 1364 |
|
|
else if (TREE_CODE (expr) == SSA_NAME)
|
| 1365 |
|
|
return fold_build2 (NE_EXPR, boolean_type_node, expr,
|
| 1366 |
|
|
build_int_cst (TREE_TYPE (expr), 0));
|
| 1367 |
|
|
else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
|
| 1368 |
|
|
return fold_build2 (TREE_CODE (expr),
|
| 1369 |
|
|
boolean_type_node,
|
| 1370 |
|
|
TREE_OPERAND (expr, 0),
|
| 1371 |
|
|
TREE_OPERAND (expr, 1));
|
| 1372 |
|
|
else
|
| 1373 |
|
|
return NULL_TREE;
|
| 1374 |
|
|
}
|
| 1375 |
|
|
}
|
| 1376 |
|
|
|
| 1377 |
|
|
/* Check to see if a boolean expression EXPR is logically equivalent to the
|
| 1378 |
|
|
comparison (OP1 CODE OP2). Check for various identities involving
|
| 1379 |
|
|
SSA_NAMEs. */
|
| 1380 |
|
|
|
| 1381 |
|
|
static bool
|
| 1382 |
|
|
same_bool_comparison_p (const_tree expr, enum tree_code code,
|
| 1383 |
|
|
const_tree op1, const_tree op2)
|
| 1384 |
|
|
{
|
| 1385 |
|
|
gimple s;
|
| 1386 |
|
|
|
| 1387 |
|
|
/* The obvious case. */
|
| 1388 |
|
|
if (TREE_CODE (expr) == code
|
| 1389 |
|
|
&& operand_equal_p (TREE_OPERAND (expr, 0), op1, 0)
|
| 1390 |
|
|
&& operand_equal_p (TREE_OPERAND (expr, 1), op2, 0))
|
| 1391 |
|
|
return true;
|
| 1392 |
|
|
|
| 1393 |
|
|
/* Check for comparing (name, name != 0) and the case where expr
|
| 1394 |
|
|
is an SSA_NAME with a definition matching the comparison. */
|
| 1395 |
|
|
if (TREE_CODE (expr) == SSA_NAME
|
| 1396 |
|
|
&& TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
|
| 1397 |
|
|
{
|
| 1398 |
|
|
if (operand_equal_p (expr, op1, 0))
|
| 1399 |
|
|
return ((code == NE_EXPR && integer_zerop (op2))
|
| 1400 |
|
|
|| (code == EQ_EXPR && integer_nonzerop (op2)));
|
| 1401 |
|
|
s = SSA_NAME_DEF_STMT (expr);
|
| 1402 |
|
|
if (is_gimple_assign (s)
|
| 1403 |
|
|
&& gimple_assign_rhs_code (s) == code
|
| 1404 |
|
|
&& operand_equal_p (gimple_assign_rhs1 (s), op1, 0)
|
| 1405 |
|
|
&& operand_equal_p (gimple_assign_rhs2 (s), op2, 0))
|
| 1406 |
|
|
return true;
|
| 1407 |
|
|
}
|
| 1408 |
|
|
|
| 1409 |
|
|
/* If op1 is of the form (name != 0) or (name == 0), and the definition
|
| 1410 |
|
|
of name is a comparison, recurse. */
|
| 1411 |
|
|
if (TREE_CODE (op1) == SSA_NAME
|
| 1412 |
|
|
&& TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE)
|
| 1413 |
|
|
{
|
| 1414 |
|
|
s = SSA_NAME_DEF_STMT (op1);
|
| 1415 |
|
|
if (is_gimple_assign (s)
|
| 1416 |
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
|
| 1417 |
|
|
{
|
| 1418 |
|
|
enum tree_code c = gimple_assign_rhs_code (s);
|
| 1419 |
|
|
if ((c == NE_EXPR && integer_zerop (op2))
|
| 1420 |
|
|
|| (c == EQ_EXPR && integer_nonzerop (op2)))
|
| 1421 |
|
|
return same_bool_comparison_p (expr, c,
|
| 1422 |
|
|
gimple_assign_rhs1 (s),
|
| 1423 |
|
|
gimple_assign_rhs2 (s));
|
| 1424 |
|
|
if ((c == EQ_EXPR && integer_zerop (op2))
|
| 1425 |
|
|
|| (c == NE_EXPR && integer_nonzerop (op2)))
|
| 1426 |
|
|
return same_bool_comparison_p (expr,
|
| 1427 |
|
|
invert_tree_comparison (c, false),
|
| 1428 |
|
|
gimple_assign_rhs1 (s),
|
| 1429 |
|
|
gimple_assign_rhs2 (s));
|
| 1430 |
|
|
}
|
| 1431 |
|
|
}
|
| 1432 |
|
|
return false;
|
| 1433 |
|
|
}
|
| 1434 |
|
|
|
| 1435 |
|
|
/* Check to see if two boolean expressions OP1 and OP2 are logically
|
| 1436 |
|
|
equivalent. */
|
| 1437 |
|
|
|
| 1438 |
|
|
static bool
|
| 1439 |
|
|
same_bool_result_p (const_tree op1, const_tree op2)
|
| 1440 |
|
|
{
|
| 1441 |
|
|
/* Simple cases first. */
|
| 1442 |
|
|
if (operand_equal_p (op1, op2, 0))
|
| 1443 |
|
|
return true;
|
| 1444 |
|
|
|
| 1445 |
|
|
/* Check the cases where at least one of the operands is a comparison.
|
| 1446 |
|
|
These are a bit smarter than operand_equal_p in that they apply some
|
| 1447 |
|
|
identifies on SSA_NAMEs. */
|
| 1448 |
|
|
if (TREE_CODE_CLASS (TREE_CODE (op2)) == tcc_comparison
|
| 1449 |
|
|
&& same_bool_comparison_p (op1, TREE_CODE (op2),
|
| 1450 |
|
|
TREE_OPERAND (op2, 0),
|
| 1451 |
|
|
TREE_OPERAND (op2, 1)))
|
| 1452 |
|
|
return true;
|
| 1453 |
|
|
if (TREE_CODE_CLASS (TREE_CODE (op1)) == tcc_comparison
|
| 1454 |
|
|
&& same_bool_comparison_p (op2, TREE_CODE (op1),
|
| 1455 |
|
|
TREE_OPERAND (op1, 0),
|
| 1456 |
|
|
TREE_OPERAND (op1, 1)))
|
| 1457 |
|
|
return true;
|
| 1458 |
|
|
|
| 1459 |
|
|
/* Default case. */
|
| 1460 |
|
|
return false;
|
| 1461 |
|
|
}
|
| 1462 |
|
|
|
| 1463 |
|
|
/* Forward declarations for some mutually recursive functions. */
|
| 1464 |
|
|
|
| 1465 |
|
|
static tree
|
| 1466 |
|
|
and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
|
| 1467 |
|
|
enum tree_code code2, tree op2a, tree op2b);
|
| 1468 |
|
|
static tree
|
| 1469 |
|
|
and_var_with_comparison (tree var, bool invert,
|
| 1470 |
|
|
enum tree_code code2, tree op2a, tree op2b);
|
| 1471 |
|
|
static tree
|
| 1472 |
|
|
and_var_with_comparison_1 (gimple stmt,
|
| 1473 |
|
|
enum tree_code code2, tree op2a, tree op2b);
|
| 1474 |
|
|
static tree
|
| 1475 |
|
|
or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
|
| 1476 |
|
|
enum tree_code code2, tree op2a, tree op2b);
|
| 1477 |
|
|
static tree
|
| 1478 |
|
|
or_var_with_comparison (tree var, bool invert,
|
| 1479 |
|
|
enum tree_code code2, tree op2a, tree op2b);
|
| 1480 |
|
|
static tree
|
| 1481 |
|
|
or_var_with_comparison_1 (gimple stmt,
|
| 1482 |
|
|
enum tree_code code2, tree op2a, tree op2b);
|
| 1483 |
|
|
|
| 1484 |
|
|
/* Helper function for and_comparisons_1: try to simplify the AND of the
|
| 1485 |
|
|
ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
|
| 1486 |
|
|
If INVERT is true, invert the value of the VAR before doing the AND.
|
| 1487 |
|
|
Return NULL_EXPR if we can't simplify this to a single expression. */
|
| 1488 |
|
|
|
| 1489 |
|
|
static tree
|
| 1490 |
|
|
and_var_with_comparison (tree var, bool invert,
|
| 1491 |
|
|
enum tree_code code2, tree op2a, tree op2b)
|
| 1492 |
|
|
{
|
| 1493 |
|
|
tree t;
|
| 1494 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (var);
|
| 1495 |
|
|
|
| 1496 |
|
|
/* We can only deal with variables whose definitions are assignments. */
|
| 1497 |
|
|
if (!is_gimple_assign (stmt))
|
| 1498 |
|
|
return NULL_TREE;
|
| 1499 |
|
|
|
| 1500 |
|
|
/* If we have an inverted comparison, apply DeMorgan's law and rewrite
|
| 1501 |
|
|
!var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b))
|
| 1502 |
|
|
Then we only have to consider the simpler non-inverted cases. */
|
| 1503 |
|
|
if (invert)
|
| 1504 |
|
|
t = or_var_with_comparison_1 (stmt,
|
| 1505 |
|
|
invert_tree_comparison (code2, false),
|
| 1506 |
|
|
op2a, op2b);
|
| 1507 |
|
|
else
|
| 1508 |
|
|
t = and_var_with_comparison_1 (stmt, code2, op2a, op2b);
|
| 1509 |
|
|
return canonicalize_bool (t, invert);
|
| 1510 |
|
|
}
|
| 1511 |
|
|
|
| 1512 |
|
|
/* Try to simplify the AND of the ssa variable defined by the assignment
|
| 1513 |
|
|
STMT with the comparison specified by (OP2A CODE2 OP2B).
|
| 1514 |
|
|
Return NULL_EXPR if we can't simplify this to a single expression. */
|
| 1515 |
|
|
|
| 1516 |
|
|
static tree
|
| 1517 |
|
|
and_var_with_comparison_1 (gimple stmt,
|
| 1518 |
|
|
enum tree_code code2, tree op2a, tree op2b)
|
| 1519 |
|
|
{
|
| 1520 |
|
|
tree var = gimple_assign_lhs (stmt);
|
| 1521 |
|
|
tree true_test_var = NULL_TREE;
|
| 1522 |
|
|
tree false_test_var = NULL_TREE;
|
| 1523 |
|
|
enum tree_code innercode = gimple_assign_rhs_code (stmt);
|
| 1524 |
|
|
|
| 1525 |
|
|
/* Check for identities like (var AND (var == 0)) => false. */
|
| 1526 |
|
|
if (TREE_CODE (op2a) == SSA_NAME
|
| 1527 |
|
|
&& TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
|
| 1528 |
|
|
{
|
| 1529 |
|
|
if ((code2 == NE_EXPR && integer_zerop (op2b))
|
| 1530 |
|
|
|| (code2 == EQ_EXPR && integer_nonzerop (op2b)))
|
| 1531 |
|
|
{
|
| 1532 |
|
|
true_test_var = op2a;
|
| 1533 |
|
|
if (var == true_test_var)
|
| 1534 |
|
|
return var;
|
| 1535 |
|
|
}
|
| 1536 |
|
|
else if ((code2 == EQ_EXPR && integer_zerop (op2b))
|
| 1537 |
|
|
|| (code2 == NE_EXPR && integer_nonzerop (op2b)))
|
| 1538 |
|
|
{
|
| 1539 |
|
|
false_test_var = op2a;
|
| 1540 |
|
|
if (var == false_test_var)
|
| 1541 |
|
|
return boolean_false_node;
|
| 1542 |
|
|
}
|
| 1543 |
|
|
}
|
| 1544 |
|
|
|
| 1545 |
|
|
/* If the definition is a comparison, recurse on it. */
|
| 1546 |
|
|
if (TREE_CODE_CLASS (innercode) == tcc_comparison)
|
| 1547 |
|
|
{
|
| 1548 |
|
|
tree t = and_comparisons_1 (innercode,
|
| 1549 |
|
|
gimple_assign_rhs1 (stmt),
|
| 1550 |
|
|
gimple_assign_rhs2 (stmt),
|
| 1551 |
|
|
code2,
|
| 1552 |
|
|
op2a,
|
| 1553 |
|
|
op2b);
|
| 1554 |
|
|
if (t)
|
| 1555 |
|
|
return t;
|
| 1556 |
|
|
}
|
| 1557 |
|
|
|
| 1558 |
|
|
/* If the definition is an AND or OR expression, we may be able to
|
| 1559 |
|
|
simplify by reassociating. */
|
| 1560 |
|
|
if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
|
| 1561 |
|
|
&& (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
|
| 1562 |
|
|
{
|
| 1563 |
|
|
tree inner1 = gimple_assign_rhs1 (stmt);
|
| 1564 |
|
|
tree inner2 = gimple_assign_rhs2 (stmt);
|
| 1565 |
|
|
gimple s;
|
| 1566 |
|
|
tree t;
|
| 1567 |
|
|
tree partial = NULL_TREE;
|
| 1568 |
|
|
bool is_and = (innercode == BIT_AND_EXPR);
|
| 1569 |
|
|
|
| 1570 |
|
|
/* Check for boolean identities that don't require recursive examination
|
| 1571 |
|
|
of inner1/inner2:
|
| 1572 |
|
|
inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var
|
| 1573 |
|
|
inner1 AND (inner1 OR inner2) => inner1
|
| 1574 |
|
|
!inner1 AND (inner1 AND inner2) => false
|
| 1575 |
|
|
!inner1 AND (inner1 OR inner2) => !inner1 AND inner2
|
| 1576 |
|
|
Likewise for similar cases involving inner2. */
|
| 1577 |
|
|
if (inner1 == true_test_var)
|
| 1578 |
|
|
return (is_and ? var : inner1);
|
| 1579 |
|
|
else if (inner2 == true_test_var)
|
| 1580 |
|
|
return (is_and ? var : inner2);
|
| 1581 |
|
|
else if (inner1 == false_test_var)
|
| 1582 |
|
|
return (is_and
|
| 1583 |
|
|
? boolean_false_node
|
| 1584 |
|
|
: and_var_with_comparison (inner2, false, code2, op2a, op2b));
|
| 1585 |
|
|
else if (inner2 == false_test_var)
|
| 1586 |
|
|
return (is_and
|
| 1587 |
|
|
? boolean_false_node
|
| 1588 |
|
|
: and_var_with_comparison (inner1, false, code2, op2a, op2b));
|
| 1589 |
|
|
|
| 1590 |
|
|
/* Next, redistribute/reassociate the AND across the inner tests.
|
| 1591 |
|
|
Compute the first partial result, (inner1 AND (op2a code op2b)) */
|
| 1592 |
|
|
if (TREE_CODE (inner1) == SSA_NAME
|
| 1593 |
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
|
| 1594 |
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
|
| 1595 |
|
|
&& (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
|
| 1596 |
|
|
gimple_assign_rhs1 (s),
|
| 1597 |
|
|
gimple_assign_rhs2 (s),
|
| 1598 |
|
|
code2, op2a, op2b)))
|
| 1599 |
|
|
{
|
| 1600 |
|
|
/* Handle the AND case, where we are reassociating:
|
| 1601 |
|
|
(inner1 AND inner2) AND (op2a code2 op2b)
|
| 1602 |
|
|
=> (t AND inner2)
|
| 1603 |
|
|
If the partial result t is a constant, we win. Otherwise
|
| 1604 |
|
|
continue on to try reassociating with the other inner test. */
|
| 1605 |
|
|
if (is_and)
|
| 1606 |
|
|
{
|
| 1607 |
|
|
if (integer_onep (t))
|
| 1608 |
|
|
return inner2;
|
| 1609 |
|
|
else if (integer_zerop (t))
|
| 1610 |
|
|
return boolean_false_node;
|
| 1611 |
|
|
}
|
| 1612 |
|
|
|
| 1613 |
|
|
/* Handle the OR case, where we are redistributing:
|
| 1614 |
|
|
(inner1 OR inner2) AND (op2a code2 op2b)
|
| 1615 |
|
|
=> (t OR (inner2 AND (op2a code2 op2b))) */
|
| 1616 |
|
|
else if (integer_onep (t))
|
| 1617 |
|
|
return boolean_true_node;
|
| 1618 |
|
|
|
| 1619 |
|
|
/* Save partial result for later. */
|
| 1620 |
|
|
partial = t;
|
| 1621 |
|
|
}
|
| 1622 |
|
|
|
| 1623 |
|
|
/* Compute the second partial result, (inner2 AND (op2a code op2b)) */
|
| 1624 |
|
|
if (TREE_CODE (inner2) == SSA_NAME
|
| 1625 |
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
|
| 1626 |
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
|
| 1627 |
|
|
&& (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
|
| 1628 |
|
|
gimple_assign_rhs1 (s),
|
| 1629 |
|
|
gimple_assign_rhs2 (s),
|
| 1630 |
|
|
code2, op2a, op2b)))
|
| 1631 |
|
|
{
|
| 1632 |
|
|
/* Handle the AND case, where we are reassociating:
|
| 1633 |
|
|
(inner1 AND inner2) AND (op2a code2 op2b)
|
| 1634 |
|
|
=> (inner1 AND t) */
|
| 1635 |
|
|
if (is_and)
|
| 1636 |
|
|
{
|
| 1637 |
|
|
if (integer_onep (t))
|
| 1638 |
|
|
return inner1;
|
| 1639 |
|
|
else if (integer_zerop (t))
|
| 1640 |
|
|
return boolean_false_node;
|
| 1641 |
|
|
/* If both are the same, we can apply the identity
|
| 1642 |
|
|
(x AND x) == x. */
|
| 1643 |
|
|
else if (partial && same_bool_result_p (t, partial))
|
| 1644 |
|
|
return t;
|
| 1645 |
|
|
}
|
| 1646 |
|
|
|
| 1647 |
|
|
/* Handle the OR case. where we are redistributing:
|
| 1648 |
|
|
(inner1 OR inner2) AND (op2a code2 op2b)
|
| 1649 |
|
|
=> (t OR (inner1 AND (op2a code2 op2b)))
|
| 1650 |
|
|
=> (t OR partial) */
|
| 1651 |
|
|
else
|
| 1652 |
|
|
{
|
| 1653 |
|
|
if (integer_onep (t))
|
| 1654 |
|
|
return boolean_true_node;
|
| 1655 |
|
|
else if (partial)
|
| 1656 |
|
|
{
|
| 1657 |
|
|
/* We already got a simplification for the other
|
| 1658 |
|
|
operand to the redistributed OR expression. The
|
| 1659 |
|
|
interesting case is when at least one is false.
|
| 1660 |
|
|
Or, if both are the same, we can apply the identity
|
| 1661 |
|
|
(x OR x) == x. */
|
| 1662 |
|
|
if (integer_zerop (partial))
|
| 1663 |
|
|
return t;
|
| 1664 |
|
|
else if (integer_zerop (t))
|
| 1665 |
|
|
return partial;
|
| 1666 |
|
|
else if (same_bool_result_p (t, partial))
|
| 1667 |
|
|
return t;
|
| 1668 |
|
|
}
|
| 1669 |
|
|
}
|
| 1670 |
|
|
}
|
| 1671 |
|
|
}
|
| 1672 |
|
|
return NULL_TREE;
|
| 1673 |
|
|
}
|
| 1674 |
|
|
|
| 1675 |
|
|
/* Try to simplify the AND of two comparisons defined by
|
| 1676 |
|
|
(OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
|
| 1677 |
|
|
If this can be done without constructing an intermediate value,
|
| 1678 |
|
|
return the resulting tree; otherwise NULL_TREE is returned.
|
| 1679 |
|
|
This function is deliberately asymmetric as it recurses on SSA_DEFs
|
| 1680 |
|
|
in the first comparison but not the second. */
|
| 1681 |
|
|
|
| 1682 |
|
|
static tree
|
| 1683 |
|
|
and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
|
| 1684 |
|
|
enum tree_code code2, tree op2a, tree op2b)
|
| 1685 |
|
|
{
|
| 1686 |
|
|
/* First check for ((x CODE1 y) AND (x CODE2 y)). */
|
| 1687 |
|
|
if (operand_equal_p (op1a, op2a, 0)
|
| 1688 |
|
|
&& operand_equal_p (op1b, op2b, 0))
|
| 1689 |
|
|
{
|
| 1690 |
|
|
/* Result will be either NULL_TREE, or a combined comparison. */
|
| 1691 |
|
|
tree t = combine_comparisons (UNKNOWN_LOCATION,
|
| 1692 |
|
|
TRUTH_ANDIF_EXPR, code1, code2,
|
| 1693 |
|
|
boolean_type_node, op1a, op1b);
|
| 1694 |
|
|
if (t)
|
| 1695 |
|
|
return t;
|
| 1696 |
|
|
}
|
| 1697 |
|
|
|
| 1698 |
|
|
/* Likewise the swapped case of the above. */
|
| 1699 |
|
|
if (operand_equal_p (op1a, op2b, 0)
|
| 1700 |
|
|
&& operand_equal_p (op1b, op2a, 0))
|
| 1701 |
|
|
{
|
| 1702 |
|
|
/* Result will be either NULL_TREE, or a combined comparison. */
|
| 1703 |
|
|
tree t = combine_comparisons (UNKNOWN_LOCATION,
|
| 1704 |
|
|
TRUTH_ANDIF_EXPR, code1,
|
| 1705 |
|
|
swap_tree_comparison (code2),
|
| 1706 |
|
|
boolean_type_node, op1a, op1b);
|
| 1707 |
|
|
if (t)
|
| 1708 |
|
|
return t;
|
| 1709 |
|
|
}
|
| 1710 |
|
|
|
| 1711 |
|
|
/* If both comparisons are of the same value against constants, we might
|
| 1712 |
|
|
be able to merge them. */
|
| 1713 |
|
|
if (operand_equal_p (op1a, op2a, 0)
|
| 1714 |
|
|
&& TREE_CODE (op1b) == INTEGER_CST
|
| 1715 |
|
|
&& TREE_CODE (op2b) == INTEGER_CST)
|
| 1716 |
|
|
{
|
| 1717 |
|
|
int cmp = tree_int_cst_compare (op1b, op2b);
|
| 1718 |
|
|
|
| 1719 |
|
|
/* If we have (op1a == op1b), we should either be able to
|
| 1720 |
|
|
return that or FALSE, depending on whether the constant op1b
|
| 1721 |
|
|
also satisfies the other comparison against op2b. */
|
| 1722 |
|
|
if (code1 == EQ_EXPR)
|
| 1723 |
|
|
{
|
| 1724 |
|
|
bool done = true;
|
| 1725 |
|
|
bool val;
|
| 1726 |
|
|
switch (code2)
|
| 1727 |
|
|
{
|
| 1728 |
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
| 1729 |
|
|
case NE_EXPR: val = (cmp != 0); break;
|
| 1730 |
|
|
case LT_EXPR: val = (cmp < 0); break;
|
| 1731 |
|
|
case GT_EXPR: val = (cmp > 0); break;
|
| 1732 |
|
|
case LE_EXPR: val = (cmp <= 0); break;
|
| 1733 |
|
|
case GE_EXPR: val = (cmp >= 0); break;
|
| 1734 |
|
|
default: done = false;
|
| 1735 |
|
|
}
|
| 1736 |
|
|
if (done)
|
| 1737 |
|
|
{
|
| 1738 |
|
|
if (val)
|
| 1739 |
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
| 1740 |
|
|
else
|
| 1741 |
|
|
return boolean_false_node;
|
| 1742 |
|
|
}
|
| 1743 |
|
|
}
|
| 1744 |
|
|
/* Likewise if the second comparison is an == comparison. */
|
| 1745 |
|
|
else if (code2 == EQ_EXPR)
|
| 1746 |
|
|
{
|
| 1747 |
|
|
bool done = true;
|
| 1748 |
|
|
bool val;
|
| 1749 |
|
|
switch (code1)
|
| 1750 |
|
|
{
|
| 1751 |
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
| 1752 |
|
|
case NE_EXPR: val = (cmp != 0); break;
|
| 1753 |
|
|
case LT_EXPR: val = (cmp > 0); break;
|
| 1754 |
|
|
case GT_EXPR: val = (cmp < 0); break;
|
| 1755 |
|
|
case LE_EXPR: val = (cmp >= 0); break;
|
| 1756 |
|
|
case GE_EXPR: val = (cmp <= 0); break;
|
| 1757 |
|
|
default: done = false;
|
| 1758 |
|
|
}
|
| 1759 |
|
|
if (done)
|
| 1760 |
|
|
{
|
| 1761 |
|
|
if (val)
|
| 1762 |
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
| 1763 |
|
|
else
|
| 1764 |
|
|
return boolean_false_node;
|
| 1765 |
|
|
}
|
| 1766 |
|
|
}
|
| 1767 |
|
|
|
| 1768 |
|
|
/* Same business with inequality tests. */
|
| 1769 |
|
|
else if (code1 == NE_EXPR)
|
| 1770 |
|
|
{
|
| 1771 |
|
|
bool val;
|
| 1772 |
|
|
switch (code2)
|
| 1773 |
|
|
{
|
| 1774 |
|
|
case EQ_EXPR: val = (cmp != 0); break;
|
| 1775 |
|
|
case NE_EXPR: val = (cmp == 0); break;
|
| 1776 |
|
|
case LT_EXPR: val = (cmp >= 0); break;
|
| 1777 |
|
|
case GT_EXPR: val = (cmp <= 0); break;
|
| 1778 |
|
|
case LE_EXPR: val = (cmp > 0); break;
|
| 1779 |
|
|
case GE_EXPR: val = (cmp < 0); break;
|
| 1780 |
|
|
default:
|
| 1781 |
|
|
val = false;
|
| 1782 |
|
|
}
|
| 1783 |
|
|
if (val)
|
| 1784 |
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
| 1785 |
|
|
}
|
| 1786 |
|
|
else if (code2 == NE_EXPR)
|
| 1787 |
|
|
{
|
| 1788 |
|
|
bool val;
|
| 1789 |
|
|
switch (code1)
|
| 1790 |
|
|
{
|
| 1791 |
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
| 1792 |
|
|
case NE_EXPR: val = (cmp != 0); break;
|
| 1793 |
|
|
case LT_EXPR: val = (cmp <= 0); break;
|
| 1794 |
|
|
case GT_EXPR: val = (cmp >= 0); break;
|
| 1795 |
|
|
case LE_EXPR: val = (cmp < 0); break;
|
| 1796 |
|
|
case GE_EXPR: val = (cmp > 0); break;
|
| 1797 |
|
|
default:
|
| 1798 |
|
|
val = false;
|
| 1799 |
|
|
}
|
| 1800 |
|
|
if (val)
|
| 1801 |
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
| 1802 |
|
|
}
|
| 1803 |
|
|
|
| 1804 |
|
|
/* Chose the more restrictive of two < or <= comparisons. */
|
| 1805 |
|
|
else if ((code1 == LT_EXPR || code1 == LE_EXPR)
|
| 1806 |
|
|
&& (code2 == LT_EXPR || code2 == LE_EXPR))
|
| 1807 |
|
|
{
|
| 1808 |
|
|
if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
|
| 1809 |
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
| 1810 |
|
|
else
|
| 1811 |
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
| 1812 |
|
|
}
|
| 1813 |
|
|
|
| 1814 |
|
|
/* Likewise chose the more restrictive of two > or >= comparisons. */
|
| 1815 |
|
|
else if ((code1 == GT_EXPR || code1 == GE_EXPR)
|
| 1816 |
|
|
&& (code2 == GT_EXPR || code2 == GE_EXPR))
|
| 1817 |
|
|
{
|
| 1818 |
|
|
if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
|
| 1819 |
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
| 1820 |
|
|
else
|
| 1821 |
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
| 1822 |
|
|
}
|
| 1823 |
|
|
|
| 1824 |
|
|
/* Check for singleton ranges. */
|
| 1825 |
|
|
else if (cmp == 0
|
| 1826 |
|
|
&& ((code1 == LE_EXPR && code2 == GE_EXPR)
|
| 1827 |
|
|
|| (code1 == GE_EXPR && code2 == LE_EXPR)))
|
| 1828 |
|
|
return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b);
|
| 1829 |
|
|
|
| 1830 |
|
|
/* Check for disjoint ranges. */
|
| 1831 |
|
|
else if (cmp <= 0
|
| 1832 |
|
|
&& (code1 == LT_EXPR || code1 == LE_EXPR)
|
| 1833 |
|
|
&& (code2 == GT_EXPR || code2 == GE_EXPR))
|
| 1834 |
|
|
return boolean_false_node;
|
| 1835 |
|
|
else if (cmp >= 0
|
| 1836 |
|
|
&& (code1 == GT_EXPR || code1 == GE_EXPR)
|
| 1837 |
|
|
&& (code2 == LT_EXPR || code2 == LE_EXPR))
|
| 1838 |
|
|
return boolean_false_node;
|
| 1839 |
|
|
}
|
| 1840 |
|
|
|
| 1841 |
|
|
/* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
|
| 1842 |
|
|
NAME's definition is a truth value. See if there are any simplifications
|
| 1843 |
|
|
that can be done against the NAME's definition. */
|
| 1844 |
|
|
if (TREE_CODE (op1a) == SSA_NAME
|
| 1845 |
|
|
&& (code1 == NE_EXPR || code1 == EQ_EXPR)
|
| 1846 |
|
|
&& (integer_zerop (op1b) || integer_onep (op1b)))
|
| 1847 |
|
|
{
|
| 1848 |
|
|
bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
|
| 1849 |
|
|
|| (code1 == NE_EXPR && integer_onep (op1b)));
|
| 1850 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (op1a);
|
| 1851 |
|
|
switch (gimple_code (stmt))
|
| 1852 |
|
|
{
|
| 1853 |
|
|
case GIMPLE_ASSIGN:
|
| 1854 |
|
|
/* Try to simplify by copy-propagating the definition. */
|
| 1855 |
|
|
return and_var_with_comparison (op1a, invert, code2, op2a, op2b);
|
| 1856 |
|
|
|
| 1857 |
|
|
case GIMPLE_PHI:
|
| 1858 |
|
|
/* If every argument to the PHI produces the same result when
|
| 1859 |
|
|
ANDed with the second comparison, we win.
|
| 1860 |
|
|
Do not do this unless the type is bool since we need a bool
|
| 1861 |
|
|
result here anyway. */
|
| 1862 |
|
|
if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
|
| 1863 |
|
|
{
|
| 1864 |
|
|
tree result = NULL_TREE;
|
| 1865 |
|
|
unsigned i;
|
| 1866 |
|
|
for (i = 0; i < gimple_phi_num_args (stmt); i++)
|
| 1867 |
|
|
{
|
| 1868 |
|
|
tree arg = gimple_phi_arg_def (stmt, i);
|
| 1869 |
|
|
|
| 1870 |
|
|
/* If this PHI has itself as an argument, ignore it.
|
| 1871 |
|
|
If all the other args produce the same result,
|
| 1872 |
|
|
we're still OK. */
|
| 1873 |
|
|
if (arg == gimple_phi_result (stmt))
|
| 1874 |
|
|
continue;
|
| 1875 |
|
|
else if (TREE_CODE (arg) == INTEGER_CST)
|
| 1876 |
|
|
{
|
| 1877 |
|
|
if (invert ? integer_nonzerop (arg) : integer_zerop (arg))
|
| 1878 |
|
|
{
|
| 1879 |
|
|
if (!result)
|
| 1880 |
|
|
result = boolean_false_node;
|
| 1881 |
|
|
else if (!integer_zerop (result))
|
| 1882 |
|
|
return NULL_TREE;
|
| 1883 |
|
|
}
|
| 1884 |
|
|
else if (!result)
|
| 1885 |
|
|
result = fold_build2 (code2, boolean_type_node,
|
| 1886 |
|
|
op2a, op2b);
|
| 1887 |
|
|
else if (!same_bool_comparison_p (result,
|
| 1888 |
|
|
code2, op2a, op2b))
|
| 1889 |
|
|
return NULL_TREE;
|
| 1890 |
|
|
}
|
| 1891 |
|
|
else if (TREE_CODE (arg) == SSA_NAME
|
| 1892 |
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (arg))
|
| 1893 |
|
|
{
|
| 1894 |
|
|
tree temp;
|
| 1895 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (arg);
|
| 1896 |
|
|
/* In simple cases we can look through PHI nodes,
|
| 1897 |
|
|
but we have to be careful with loops.
|
| 1898 |
|
|
See PR49073. */
|
| 1899 |
|
|
if (! dom_info_available_p (CDI_DOMINATORS)
|
| 1900 |
|
|
|| gimple_bb (def_stmt) == gimple_bb (stmt)
|
| 1901 |
|
|
|| dominated_by_p (CDI_DOMINATORS,
|
| 1902 |
|
|
gimple_bb (def_stmt),
|
| 1903 |
|
|
gimple_bb (stmt)))
|
| 1904 |
|
|
return NULL_TREE;
|
| 1905 |
|
|
temp = and_var_with_comparison (arg, invert, code2,
|
| 1906 |
|
|
op2a, op2b);
|
| 1907 |
|
|
if (!temp)
|
| 1908 |
|
|
return NULL_TREE;
|
| 1909 |
|
|
else if (!result)
|
| 1910 |
|
|
result = temp;
|
| 1911 |
|
|
else if (!same_bool_result_p (result, temp))
|
| 1912 |
|
|
return NULL_TREE;
|
| 1913 |
|
|
}
|
| 1914 |
|
|
else
|
| 1915 |
|
|
return NULL_TREE;
|
| 1916 |
|
|
}
|
| 1917 |
|
|
return result;
|
| 1918 |
|
|
}
|
| 1919 |
|
|
|
| 1920 |
|
|
default:
|
| 1921 |
|
|
break;
|
| 1922 |
|
|
}
|
| 1923 |
|
|
}
|
| 1924 |
|
|
return NULL_TREE;
|
| 1925 |
|
|
}
|
| 1926 |
|
|
|
| 1927 |
|
|
/* Try to simplify the AND of two comparisons, specified by
|
| 1928 |
|
|
(OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
|
| 1929 |
|
|
If this can be simplified to a single expression (without requiring
|
| 1930 |
|
|
introducing more SSA variables to hold intermediate values),
|
| 1931 |
|
|
return the resulting tree. Otherwise return NULL_TREE.
|
| 1932 |
|
|
If the result expression is non-null, it has boolean type. */
|
| 1933 |
|
|
|
| 1934 |
|
|
tree
|
| 1935 |
|
|
maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b,
|
| 1936 |
|
|
enum tree_code code2, tree op2a, tree op2b)
|
| 1937 |
|
|
{
|
| 1938 |
|
|
tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
|
| 1939 |
|
|
if (t)
|
| 1940 |
|
|
return t;
|
| 1941 |
|
|
else
|
| 1942 |
|
|
return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
|
| 1943 |
|
|
}
|
| 1944 |
|
|
|
| 1945 |
|
|
/* Helper function for or_comparisons_1: try to simplify the OR of the
|
| 1946 |
|
|
ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
|
| 1947 |
|
|
If INVERT is true, invert the value of VAR before doing the OR.
|
| 1948 |
|
|
Return NULL_EXPR if we can't simplify this to a single expression. */
|
| 1949 |
|
|
|
| 1950 |
|
|
static tree
|
| 1951 |
|
|
or_var_with_comparison (tree var, bool invert,
|
| 1952 |
|
|
enum tree_code code2, tree op2a, tree op2b)
|
| 1953 |
|
|
{
|
| 1954 |
|
|
tree t;
|
| 1955 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (var);
|
| 1956 |
|
|
|
| 1957 |
|
|
/* We can only deal with variables whose definitions are assignments. */
|
| 1958 |
|
|
if (!is_gimple_assign (stmt))
|
| 1959 |
|
|
return NULL_TREE;
|
| 1960 |
|
|
|
| 1961 |
|
|
/* If we have an inverted comparison, apply DeMorgan's law and rewrite
|
| 1962 |
|
|
!var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b))
|
| 1963 |
|
|
Then we only have to consider the simpler non-inverted cases. */
|
| 1964 |
|
|
if (invert)
|
| 1965 |
|
|
t = and_var_with_comparison_1 (stmt,
|
| 1966 |
|
|
invert_tree_comparison (code2, false),
|
| 1967 |
|
|
op2a, op2b);
|
| 1968 |
|
|
else
|
| 1969 |
|
|
t = or_var_with_comparison_1 (stmt, code2, op2a, op2b);
|
| 1970 |
|
|
return canonicalize_bool (t, invert);
|
| 1971 |
|
|
}
|
| 1972 |
|
|
|
| 1973 |
|
|
/* Try to simplify the OR of the ssa variable defined by the assignment
|
| 1974 |
|
|
STMT with the comparison specified by (OP2A CODE2 OP2B).
|
| 1975 |
|
|
Return NULL_EXPR if we can't simplify this to a single expression. */
|
| 1976 |
|
|
|
| 1977 |
|
|
static tree
|
| 1978 |
|
|
or_var_with_comparison_1 (gimple stmt,
|
| 1979 |
|
|
enum tree_code code2, tree op2a, tree op2b)
|
| 1980 |
|
|
{
|
| 1981 |
|
|
tree var = gimple_assign_lhs (stmt);
|
| 1982 |
|
|
tree true_test_var = NULL_TREE;
|
| 1983 |
|
|
tree false_test_var = NULL_TREE;
|
| 1984 |
|
|
enum tree_code innercode = gimple_assign_rhs_code (stmt);
|
| 1985 |
|
|
|
| 1986 |
|
|
/* Check for identities like (var OR (var != 0)) => true . */
|
| 1987 |
|
|
if (TREE_CODE (op2a) == SSA_NAME
|
| 1988 |
|
|
&& TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
|
| 1989 |
|
|
{
|
| 1990 |
|
|
if ((code2 == NE_EXPR && integer_zerop (op2b))
|
| 1991 |
|
|
|| (code2 == EQ_EXPR && integer_nonzerop (op2b)))
|
| 1992 |
|
|
{
|
| 1993 |
|
|
true_test_var = op2a;
|
| 1994 |
|
|
if (var == true_test_var)
|
| 1995 |
|
|
return var;
|
| 1996 |
|
|
}
|
| 1997 |
|
|
else if ((code2 == EQ_EXPR && integer_zerop (op2b))
|
| 1998 |
|
|
|| (code2 == NE_EXPR && integer_nonzerop (op2b)))
|
| 1999 |
|
|
{
|
| 2000 |
|
|
false_test_var = op2a;
|
| 2001 |
|
|
if (var == false_test_var)
|
| 2002 |
|
|
return boolean_true_node;
|
| 2003 |
|
|
}
|
| 2004 |
|
|
}
|
| 2005 |
|
|
|
| 2006 |
|
|
/* If the definition is a comparison, recurse on it. */
|
| 2007 |
|
|
if (TREE_CODE_CLASS (innercode) == tcc_comparison)
|
| 2008 |
|
|
{
|
| 2009 |
|
|
tree t = or_comparisons_1 (innercode,
|
| 2010 |
|
|
gimple_assign_rhs1 (stmt),
|
| 2011 |
|
|
gimple_assign_rhs2 (stmt),
|
| 2012 |
|
|
code2,
|
| 2013 |
|
|
op2a,
|
| 2014 |
|
|
op2b);
|
| 2015 |
|
|
if (t)
|
| 2016 |
|
|
return t;
|
| 2017 |
|
|
}
|
| 2018 |
|
|
|
| 2019 |
|
|
/* If the definition is an AND or OR expression, we may be able to
|
| 2020 |
|
|
simplify by reassociating. */
|
| 2021 |
|
|
if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
|
| 2022 |
|
|
&& (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
|
| 2023 |
|
|
{
|
| 2024 |
|
|
tree inner1 = gimple_assign_rhs1 (stmt);
|
| 2025 |
|
|
tree inner2 = gimple_assign_rhs2 (stmt);
|
| 2026 |
|
|
gimple s;
|
| 2027 |
|
|
tree t;
|
| 2028 |
|
|
tree partial = NULL_TREE;
|
| 2029 |
|
|
bool is_or = (innercode == BIT_IOR_EXPR);
|
| 2030 |
|
|
|
| 2031 |
|
|
/* Check for boolean identities that don't require recursive examination
|
| 2032 |
|
|
of inner1/inner2:
|
| 2033 |
|
|
inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var
|
| 2034 |
|
|
inner1 OR (inner1 AND inner2) => inner1
|
| 2035 |
|
|
!inner1 OR (inner1 OR inner2) => true
|
| 2036 |
|
|
!inner1 OR (inner1 AND inner2) => !inner1 OR inner2
|
| 2037 |
|
|
*/
|
| 2038 |
|
|
if (inner1 == true_test_var)
|
| 2039 |
|
|
return (is_or ? var : inner1);
|
| 2040 |
|
|
else if (inner2 == true_test_var)
|
| 2041 |
|
|
return (is_or ? var : inner2);
|
| 2042 |
|
|
else if (inner1 == false_test_var)
|
| 2043 |
|
|
return (is_or
|
| 2044 |
|
|
? boolean_true_node
|
| 2045 |
|
|
: or_var_with_comparison (inner2, false, code2, op2a, op2b));
|
| 2046 |
|
|
else if (inner2 == false_test_var)
|
| 2047 |
|
|
return (is_or
|
| 2048 |
|
|
? boolean_true_node
|
| 2049 |
|
|
: or_var_with_comparison (inner1, false, code2, op2a, op2b));
|
| 2050 |
|
|
|
| 2051 |
|
|
/* Next, redistribute/reassociate the OR across the inner tests.
|
| 2052 |
|
|
Compute the first partial result, (inner1 OR (op2a code op2b)) */
|
| 2053 |
|
|
if (TREE_CODE (inner1) == SSA_NAME
|
| 2054 |
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
|
| 2055 |
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
|
| 2056 |
|
|
&& (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
|
| 2057 |
|
|
gimple_assign_rhs1 (s),
|
| 2058 |
|
|
gimple_assign_rhs2 (s),
|
| 2059 |
|
|
code2, op2a, op2b)))
|
| 2060 |
|
|
{
|
| 2061 |
|
|
/* Handle the OR case, where we are reassociating:
|
| 2062 |
|
|
(inner1 OR inner2) OR (op2a code2 op2b)
|
| 2063 |
|
|
=> (t OR inner2)
|
| 2064 |
|
|
If the partial result t is a constant, we win. Otherwise
|
| 2065 |
|
|
continue on to try reassociating with the other inner test. */
|
| 2066 |
|
|
if (is_or)
|
| 2067 |
|
|
{
|
| 2068 |
|
|
if (integer_onep (t))
|
| 2069 |
|
|
return boolean_true_node;
|
| 2070 |
|
|
else if (integer_zerop (t))
|
| 2071 |
|
|
return inner2;
|
| 2072 |
|
|
}
|
| 2073 |
|
|
|
| 2074 |
|
|
/* Handle the AND case, where we are redistributing:
|
| 2075 |
|
|
(inner1 AND inner2) OR (op2a code2 op2b)
|
| 2076 |
|
|
=> (t AND (inner2 OR (op2a code op2b))) */
|
| 2077 |
|
|
else if (integer_zerop (t))
|
| 2078 |
|
|
return boolean_false_node;
|
| 2079 |
|
|
|
| 2080 |
|
|
/* Save partial result for later. */
|
| 2081 |
|
|
partial = t;
|
| 2082 |
|
|
}
|
| 2083 |
|
|
|
| 2084 |
|
|
/* Compute the second partial result, (inner2 OR (op2a code op2b)) */
|
| 2085 |
|
|
if (TREE_CODE (inner2) == SSA_NAME
|
| 2086 |
|
|
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
|
| 2087 |
|
|
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
|
| 2088 |
|
|
&& (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
|
| 2089 |
|
|
gimple_assign_rhs1 (s),
|
| 2090 |
|
|
gimple_assign_rhs2 (s),
|
| 2091 |
|
|
code2, op2a, op2b)))
|
| 2092 |
|
|
{
|
| 2093 |
|
|
/* Handle the OR case, where we are reassociating:
|
| 2094 |
|
|
(inner1 OR inner2) OR (op2a code2 op2b)
|
| 2095 |
|
|
=> (inner1 OR t)
|
| 2096 |
|
|
=> (t OR partial) */
|
| 2097 |
|
|
if (is_or)
|
| 2098 |
|
|
{
|
| 2099 |
|
|
if (integer_zerop (t))
|
| 2100 |
|
|
return inner1;
|
| 2101 |
|
|
else if (integer_onep (t))
|
| 2102 |
|
|
return boolean_true_node;
|
| 2103 |
|
|
/* If both are the same, we can apply the identity
|
| 2104 |
|
|
(x OR x) == x. */
|
| 2105 |
|
|
else if (partial && same_bool_result_p (t, partial))
|
| 2106 |
|
|
return t;
|
| 2107 |
|
|
}
|
| 2108 |
|
|
|
| 2109 |
|
|
/* Handle the AND case, where we are redistributing:
|
| 2110 |
|
|
(inner1 AND inner2) OR (op2a code2 op2b)
|
| 2111 |
|
|
=> (t AND (inner1 OR (op2a code2 op2b)))
|
| 2112 |
|
|
=> (t AND partial) */
|
| 2113 |
|
|
else
|
| 2114 |
|
|
{
|
| 2115 |
|
|
if (integer_zerop (t))
|
| 2116 |
|
|
return boolean_false_node;
|
| 2117 |
|
|
else if (partial)
|
| 2118 |
|
|
{
|
| 2119 |
|
|
/* We already got a simplification for the other
|
| 2120 |
|
|
operand to the redistributed AND expression. The
|
| 2121 |
|
|
interesting case is when at least one is true.
|
| 2122 |
|
|
Or, if both are the same, we can apply the identity
|
| 2123 |
|
|
(x AND x) == x. */
|
| 2124 |
|
|
if (integer_onep (partial))
|
| 2125 |
|
|
return t;
|
| 2126 |
|
|
else if (integer_onep (t))
|
| 2127 |
|
|
return partial;
|
| 2128 |
|
|
else if (same_bool_result_p (t, partial))
|
| 2129 |
|
|
return t;
|
| 2130 |
|
|
}
|
| 2131 |
|
|
}
|
| 2132 |
|
|
}
|
| 2133 |
|
|
}
|
| 2134 |
|
|
return NULL_TREE;
|
| 2135 |
|
|
}
|
| 2136 |
|
|
|
| 2137 |
|
|
/* Try to simplify the OR of two comparisons defined by
|
| 2138 |
|
|
(OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
|
| 2139 |
|
|
If this can be done without constructing an intermediate value,
|
| 2140 |
|
|
return the resulting tree; otherwise NULL_TREE is returned.
|
| 2141 |
|
|
This function is deliberately asymmetric as it recurses on SSA_DEFs
|
| 2142 |
|
|
in the first comparison but not the second. */
|
| 2143 |
|
|
|
| 2144 |
|
|
static tree
|
| 2145 |
|
|
or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
|
| 2146 |
|
|
enum tree_code code2, tree op2a, tree op2b)
|
| 2147 |
|
|
{
|
| 2148 |
|
|
/* First check for ((x CODE1 y) OR (x CODE2 y)). */
|
| 2149 |
|
|
if (operand_equal_p (op1a, op2a, 0)
|
| 2150 |
|
|
&& operand_equal_p (op1b, op2b, 0))
|
| 2151 |
|
|
{
|
| 2152 |
|
|
/* Result will be either NULL_TREE, or a combined comparison. */
|
| 2153 |
|
|
tree t = combine_comparisons (UNKNOWN_LOCATION,
|
| 2154 |
|
|
TRUTH_ORIF_EXPR, code1, code2,
|
| 2155 |
|
|
boolean_type_node, op1a, op1b);
|
| 2156 |
|
|
if (t)
|
| 2157 |
|
|
return t;
|
| 2158 |
|
|
}
|
| 2159 |
|
|
|
| 2160 |
|
|
/* Likewise the swapped case of the above. */
|
| 2161 |
|
|
if (operand_equal_p (op1a, op2b, 0)
|
| 2162 |
|
|
&& operand_equal_p (op1b, op2a, 0))
|
| 2163 |
|
|
{
|
| 2164 |
|
|
/* Result will be either NULL_TREE, or a combined comparison. */
|
| 2165 |
|
|
tree t = combine_comparisons (UNKNOWN_LOCATION,
|
| 2166 |
|
|
TRUTH_ORIF_EXPR, code1,
|
| 2167 |
|
|
swap_tree_comparison (code2),
|
| 2168 |
|
|
boolean_type_node, op1a, op1b);
|
| 2169 |
|
|
if (t)
|
| 2170 |
|
|
return t;
|
| 2171 |
|
|
}
|
| 2172 |
|
|
|
| 2173 |
|
|
/* If both comparisons are of the same value against constants, we might
|
| 2174 |
|
|
be able to merge them. */
|
| 2175 |
|
|
if (operand_equal_p (op1a, op2a, 0)
|
| 2176 |
|
|
&& TREE_CODE (op1b) == INTEGER_CST
|
| 2177 |
|
|
&& TREE_CODE (op2b) == INTEGER_CST)
|
| 2178 |
|
|
{
|
| 2179 |
|
|
int cmp = tree_int_cst_compare (op1b, op2b);
|
| 2180 |
|
|
|
| 2181 |
|
|
/* If we have (op1a != op1b), we should either be able to
|
| 2182 |
|
|
return that or TRUE, depending on whether the constant op1b
|
| 2183 |
|
|
also satisfies the other comparison against op2b. */
|
| 2184 |
|
|
if (code1 == NE_EXPR)
|
| 2185 |
|
|
{
|
| 2186 |
|
|
bool done = true;
|
| 2187 |
|
|
bool val;
|
| 2188 |
|
|
switch (code2)
|
| 2189 |
|
|
{
|
| 2190 |
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
| 2191 |
|
|
case NE_EXPR: val = (cmp != 0); break;
|
| 2192 |
|
|
case LT_EXPR: val = (cmp < 0); break;
|
| 2193 |
|
|
case GT_EXPR: val = (cmp > 0); break;
|
| 2194 |
|
|
case LE_EXPR: val = (cmp <= 0); break;
|
| 2195 |
|
|
case GE_EXPR: val = (cmp >= 0); break;
|
| 2196 |
|
|
default: done = false;
|
| 2197 |
|
|
}
|
| 2198 |
|
|
if (done)
|
| 2199 |
|
|
{
|
| 2200 |
|
|
if (val)
|
| 2201 |
|
|
return boolean_true_node;
|
| 2202 |
|
|
else
|
| 2203 |
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
| 2204 |
|
|
}
|
| 2205 |
|
|
}
|
| 2206 |
|
|
/* Likewise if the second comparison is a != comparison. */
|
| 2207 |
|
|
else if (code2 == NE_EXPR)
|
| 2208 |
|
|
{
|
| 2209 |
|
|
bool done = true;
|
| 2210 |
|
|
bool val;
|
| 2211 |
|
|
switch (code1)
|
| 2212 |
|
|
{
|
| 2213 |
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
| 2214 |
|
|
case NE_EXPR: val = (cmp != 0); break;
|
| 2215 |
|
|
case LT_EXPR: val = (cmp > 0); break;
|
| 2216 |
|
|
case GT_EXPR: val = (cmp < 0); break;
|
| 2217 |
|
|
case LE_EXPR: val = (cmp >= 0); break;
|
| 2218 |
|
|
case GE_EXPR: val = (cmp <= 0); break;
|
| 2219 |
|
|
default: done = false;
|
| 2220 |
|
|
}
|
| 2221 |
|
|
if (done)
|
| 2222 |
|
|
{
|
| 2223 |
|
|
if (val)
|
| 2224 |
|
|
return boolean_true_node;
|
| 2225 |
|
|
else
|
| 2226 |
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
| 2227 |
|
|
}
|
| 2228 |
|
|
}
|
| 2229 |
|
|
|
| 2230 |
|
|
/* See if an equality test is redundant with the other comparison. */
|
| 2231 |
|
|
else if (code1 == EQ_EXPR)
|
| 2232 |
|
|
{
|
| 2233 |
|
|
bool val;
|
| 2234 |
|
|
switch (code2)
|
| 2235 |
|
|
{
|
| 2236 |
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
| 2237 |
|
|
case NE_EXPR: val = (cmp != 0); break;
|
| 2238 |
|
|
case LT_EXPR: val = (cmp < 0); break;
|
| 2239 |
|
|
case GT_EXPR: val = (cmp > 0); break;
|
| 2240 |
|
|
case LE_EXPR: val = (cmp <= 0); break;
|
| 2241 |
|
|
case GE_EXPR: val = (cmp >= 0); break;
|
| 2242 |
|
|
default:
|
| 2243 |
|
|
val = false;
|
| 2244 |
|
|
}
|
| 2245 |
|
|
if (val)
|
| 2246 |
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
| 2247 |
|
|
}
|
| 2248 |
|
|
else if (code2 == EQ_EXPR)
|
| 2249 |
|
|
{
|
| 2250 |
|
|
bool val;
|
| 2251 |
|
|
switch (code1)
|
| 2252 |
|
|
{
|
| 2253 |
|
|
case EQ_EXPR: val = (cmp == 0); break;
|
| 2254 |
|
|
case NE_EXPR: val = (cmp != 0); break;
|
| 2255 |
|
|
case LT_EXPR: val = (cmp > 0); break;
|
| 2256 |
|
|
case GT_EXPR: val = (cmp < 0); break;
|
| 2257 |
|
|
case LE_EXPR: val = (cmp >= 0); break;
|
| 2258 |
|
|
case GE_EXPR: val = (cmp <= 0); break;
|
| 2259 |
|
|
default:
|
| 2260 |
|
|
val = false;
|
| 2261 |
|
|
}
|
| 2262 |
|
|
if (val)
|
| 2263 |
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
| 2264 |
|
|
}
|
| 2265 |
|
|
|
| 2266 |
|
|
/* Chose the less restrictive of two < or <= comparisons. */
|
| 2267 |
|
|
else if ((code1 == LT_EXPR || code1 == LE_EXPR)
|
| 2268 |
|
|
&& (code2 == LT_EXPR || code2 == LE_EXPR))
|
| 2269 |
|
|
{
|
| 2270 |
|
|
if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
|
| 2271 |
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
| 2272 |
|
|
else
|
| 2273 |
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
| 2274 |
|
|
}
|
| 2275 |
|
|
|
| 2276 |
|
|
/* Likewise chose the less restrictive of two > or >= comparisons. */
|
| 2277 |
|
|
else if ((code1 == GT_EXPR || code1 == GE_EXPR)
|
| 2278 |
|
|
&& (code2 == GT_EXPR || code2 == GE_EXPR))
|
| 2279 |
|
|
{
|
| 2280 |
|
|
if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
|
| 2281 |
|
|
return fold_build2 (code2, boolean_type_node, op2a, op2b);
|
| 2282 |
|
|
else
|
| 2283 |
|
|
return fold_build2 (code1, boolean_type_node, op1a, op1b);
|
| 2284 |
|
|
}
|
| 2285 |
|
|
|
| 2286 |
|
|
/* Check for singleton ranges. */
|
| 2287 |
|
|
else if (cmp == 0
|
| 2288 |
|
|
&& ((code1 == LT_EXPR && code2 == GT_EXPR)
|
| 2289 |
|
|
|| (code1 == GT_EXPR && code2 == LT_EXPR)))
|
| 2290 |
|
|
return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b);
|
| 2291 |
|
|
|
| 2292 |
|
|
/* Check for less/greater pairs that don't restrict the range at all. */
|
| 2293 |
|
|
else if (cmp >= 0
|
| 2294 |
|
|
&& (code1 == LT_EXPR || code1 == LE_EXPR)
|
| 2295 |
|
|
&& (code2 == GT_EXPR || code2 == GE_EXPR))
|
| 2296 |
|
|
return boolean_true_node;
|
| 2297 |
|
|
else if (cmp <= 0
|
| 2298 |
|
|
&& (code1 == GT_EXPR || code1 == GE_EXPR)
|
| 2299 |
|
|
&& (code2 == LT_EXPR || code2 == LE_EXPR))
|
| 2300 |
|
|
return boolean_true_node;
|
| 2301 |
|
|
}
|
| 2302 |
|
|
|
| 2303 |
|
|
/* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
|
| 2304 |
|
|
NAME's definition is a truth value. See if there are any simplifications
|
| 2305 |
|
|
that can be done against the NAME's definition. */
|
| 2306 |
|
|
if (TREE_CODE (op1a) == SSA_NAME
|
| 2307 |
|
|
&& (code1 == NE_EXPR || code1 == EQ_EXPR)
|
| 2308 |
|
|
&& (integer_zerop (op1b) || integer_onep (op1b)))
|
| 2309 |
|
|
{
|
| 2310 |
|
|
bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
|
| 2311 |
|
|
|| (code1 == NE_EXPR && integer_onep (op1b)));
|
| 2312 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (op1a);
|
| 2313 |
|
|
switch (gimple_code (stmt))
|
| 2314 |
|
|
{
|
| 2315 |
|
|
case GIMPLE_ASSIGN:
|
| 2316 |
|
|
/* Try to simplify by copy-propagating the definition. */
|
| 2317 |
|
|
return or_var_with_comparison (op1a, invert, code2, op2a, op2b);
|
| 2318 |
|
|
|
| 2319 |
|
|
case GIMPLE_PHI:
|
| 2320 |
|
|
/* If every argument to the PHI produces the same result when
|
| 2321 |
|
|
ORed with the second comparison, we win.
|
| 2322 |
|
|
Do not do this unless the type is bool since we need a bool
|
| 2323 |
|
|
result here anyway. */
|
| 2324 |
|
|
if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
|
| 2325 |
|
|
{
|
| 2326 |
|
|
tree result = NULL_TREE;
|
| 2327 |
|
|
unsigned i;
|
| 2328 |
|
|
for (i = 0; i < gimple_phi_num_args (stmt); i++)
|
| 2329 |
|
|
{
|
| 2330 |
|
|
tree arg = gimple_phi_arg_def (stmt, i);
|
| 2331 |
|
|
|
| 2332 |
|
|
/* If this PHI has itself as an argument, ignore it.
|
| 2333 |
|
|
If all the other args produce the same result,
|
| 2334 |
|
|
we're still OK. */
|
| 2335 |
|
|
if (arg == gimple_phi_result (stmt))
|
| 2336 |
|
|
continue;
|
| 2337 |
|
|
else if (TREE_CODE (arg) == INTEGER_CST)
|
| 2338 |
|
|
{
|
| 2339 |
|
|
if (invert ? integer_zerop (arg) : integer_nonzerop (arg))
|
| 2340 |
|
|
{
|
| 2341 |
|
|
if (!result)
|
| 2342 |
|
|
result = boolean_true_node;
|
| 2343 |
|
|
else if (!integer_onep (result))
|
| 2344 |
|
|
return NULL_TREE;
|
| 2345 |
|
|
}
|
| 2346 |
|
|
else if (!result)
|
| 2347 |
|
|
result = fold_build2 (code2, boolean_type_node,
|
| 2348 |
|
|
op2a, op2b);
|
| 2349 |
|
|
else if (!same_bool_comparison_p (result,
|
| 2350 |
|
|
code2, op2a, op2b))
|
| 2351 |
|
|
return NULL_TREE;
|
| 2352 |
|
|
}
|
| 2353 |
|
|
else if (TREE_CODE (arg) == SSA_NAME
|
| 2354 |
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (arg))
|
| 2355 |
|
|
{
|
| 2356 |
|
|
tree temp;
|
| 2357 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (arg);
|
| 2358 |
|
|
/* In simple cases we can look through PHI nodes,
|
| 2359 |
|
|
but we have to be careful with loops.
|
| 2360 |
|
|
See PR49073. */
|
| 2361 |
|
|
if (! dom_info_available_p (CDI_DOMINATORS)
|
| 2362 |
|
|
|| gimple_bb (def_stmt) == gimple_bb (stmt)
|
| 2363 |
|
|
|| dominated_by_p (CDI_DOMINATORS,
|
| 2364 |
|
|
gimple_bb (def_stmt),
|
| 2365 |
|
|
gimple_bb (stmt)))
|
| 2366 |
|
|
return NULL_TREE;
|
| 2367 |
|
|
temp = or_var_with_comparison (arg, invert, code2,
|
| 2368 |
|
|
op2a, op2b);
|
| 2369 |
|
|
if (!temp)
|
| 2370 |
|
|
return NULL_TREE;
|
| 2371 |
|
|
else if (!result)
|
| 2372 |
|
|
result = temp;
|
| 2373 |
|
|
else if (!same_bool_result_p (result, temp))
|
| 2374 |
|
|
return NULL_TREE;
|
| 2375 |
|
|
}
|
| 2376 |
|
|
else
|
| 2377 |
|
|
return NULL_TREE;
|
| 2378 |
|
|
}
|
| 2379 |
|
|
return result;
|
| 2380 |
|
|
}
|
| 2381 |
|
|
|
| 2382 |
|
|
default:
|
| 2383 |
|
|
break;
|
| 2384 |
|
|
}
|
| 2385 |
|
|
}
|
| 2386 |
|
|
return NULL_TREE;
|
| 2387 |
|
|
}
|
| 2388 |
|
|
|
| 2389 |
|
|
/* Try to simplify the OR of two comparisons, specified by
|
| 2390 |
|
|
(OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
|
| 2391 |
|
|
If this can be simplified to a single expression (without requiring
|
| 2392 |
|
|
introducing more SSA variables to hold intermediate values),
|
| 2393 |
|
|
return the resulting tree. Otherwise return NULL_TREE.
|
| 2394 |
|
|
If the result expression is non-null, it has boolean type. */
|
| 2395 |
|
|
|
| 2396 |
|
|
tree
|
| 2397 |
|
|
maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b,
|
| 2398 |
|
|
enum tree_code code2, tree op2a, tree op2b)
|
| 2399 |
|
|
{
|
| 2400 |
|
|
tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
|
| 2401 |
|
|
if (t)
|
| 2402 |
|
|
return t;
|
| 2403 |
|
|
else
|
| 2404 |
|
|
return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
|
| 2405 |
|
|
}
|
| 2406 |
|
|
|
| 2407 |
|
|
|
| 2408 |
|
|
/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
|
| 2409 |
|
|
|
| 2410 |
|
|
Either NULL_TREE, a simplified but non-constant or a constant
|
| 2411 |
|
|
is returned.
|
| 2412 |
|
|
|
| 2413 |
|
|
??? This should go into a gimple-fold-inline.h file to be eventually
|
| 2414 |
|
|
privatized with the single valueize function used in the various TUs
|
| 2415 |
|
|
to avoid the indirect function call overhead. */
|
| 2416 |
|
|
|
| 2417 |
|
|
tree
|
| 2418 |
|
|
gimple_fold_stmt_to_constant_1 (gimple stmt, tree (*valueize) (tree))
|
| 2419 |
|
|
{
|
| 2420 |
|
|
location_t loc = gimple_location (stmt);
|
| 2421 |
|
|
switch (gimple_code (stmt))
|
| 2422 |
|
|
{
|
| 2423 |
|
|
case GIMPLE_ASSIGN:
|
| 2424 |
|
|
{
|
| 2425 |
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
| 2426 |
|
|
|
| 2427 |
|
|
switch (get_gimple_rhs_class (subcode))
|
| 2428 |
|
|
{
|
| 2429 |
|
|
case GIMPLE_SINGLE_RHS:
|
| 2430 |
|
|
{
|
| 2431 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 2432 |
|
|
enum tree_code_class kind = TREE_CODE_CLASS (subcode);
|
| 2433 |
|
|
|
| 2434 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
| 2435 |
|
|
{
|
| 2436 |
|
|
/* If the RHS is an SSA_NAME, return its known constant value,
|
| 2437 |
|
|
if any. */
|
| 2438 |
|
|
return (*valueize) (rhs);
|
| 2439 |
|
|
}
|
| 2440 |
|
|
/* Handle propagating invariant addresses into address
|
| 2441 |
|
|
operations. */
|
| 2442 |
|
|
else if (TREE_CODE (rhs) == ADDR_EXPR
|
| 2443 |
|
|
&& !is_gimple_min_invariant (rhs))
|
| 2444 |
|
|
{
|
| 2445 |
|
|
HOST_WIDE_INT offset;
|
| 2446 |
|
|
tree base;
|
| 2447 |
|
|
base = get_addr_base_and_unit_offset_1 (TREE_OPERAND (rhs, 0),
|
| 2448 |
|
|
&offset,
|
| 2449 |
|
|
valueize);
|
| 2450 |
|
|
if (base
|
| 2451 |
|
|
&& (CONSTANT_CLASS_P (base)
|
| 2452 |
|
|
|| decl_address_invariant_p (base)))
|
| 2453 |
|
|
return build_invariant_address (TREE_TYPE (rhs),
|
| 2454 |
|
|
base, offset);
|
| 2455 |
|
|
}
|
| 2456 |
|
|
else if (TREE_CODE (rhs) == CONSTRUCTOR
|
| 2457 |
|
|
&& TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
|
| 2458 |
|
|
&& (CONSTRUCTOR_NELTS (rhs)
|
| 2459 |
|
|
== TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
|
| 2460 |
|
|
{
|
| 2461 |
|
|
unsigned i;
|
| 2462 |
|
|
tree val, list;
|
| 2463 |
|
|
|
| 2464 |
|
|
list = NULL_TREE;
|
| 2465 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
|
| 2466 |
|
|
{
|
| 2467 |
|
|
val = (*valueize) (val);
|
| 2468 |
|
|
if (TREE_CODE (val) == INTEGER_CST
|
| 2469 |
|
|
|| TREE_CODE (val) == REAL_CST
|
| 2470 |
|
|
|| TREE_CODE (val) == FIXED_CST)
|
| 2471 |
|
|
list = tree_cons (NULL_TREE, val, list);
|
| 2472 |
|
|
else
|
| 2473 |
|
|
return NULL_TREE;
|
| 2474 |
|
|
}
|
| 2475 |
|
|
|
| 2476 |
|
|
return build_vector (TREE_TYPE (rhs), nreverse (list));
|
| 2477 |
|
|
}
|
| 2478 |
|
|
|
| 2479 |
|
|
if (kind == tcc_reference)
|
| 2480 |
|
|
{
|
| 2481 |
|
|
if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
|
| 2482 |
|
|
|| TREE_CODE (rhs) == REALPART_EXPR
|
| 2483 |
|
|
|| TREE_CODE (rhs) == IMAGPART_EXPR)
|
| 2484 |
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
| 2485 |
|
|
{
|
| 2486 |
|
|
tree val = (*valueize) (TREE_OPERAND (rhs, 0));
|
| 2487 |
|
|
return fold_unary_loc (EXPR_LOCATION (rhs),
|
| 2488 |
|
|
TREE_CODE (rhs),
|
| 2489 |
|
|
TREE_TYPE (rhs), val);
|
| 2490 |
|
|
}
|
| 2491 |
|
|
else if (TREE_CODE (rhs) == BIT_FIELD_REF
|
| 2492 |
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
| 2493 |
|
|
{
|
| 2494 |
|
|
tree val = (*valueize) (TREE_OPERAND (rhs, 0));
|
| 2495 |
|
|
return fold_ternary_loc (EXPR_LOCATION (rhs),
|
| 2496 |
|
|
TREE_CODE (rhs),
|
| 2497 |
|
|
TREE_TYPE (rhs), val,
|
| 2498 |
|
|
TREE_OPERAND (rhs, 1),
|
| 2499 |
|
|
TREE_OPERAND (rhs, 2));
|
| 2500 |
|
|
}
|
| 2501 |
|
|
else if (TREE_CODE (rhs) == MEM_REF
|
| 2502 |
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
|
| 2503 |
|
|
{
|
| 2504 |
|
|
tree val = (*valueize) (TREE_OPERAND (rhs, 0));
|
| 2505 |
|
|
if (TREE_CODE (val) == ADDR_EXPR
|
| 2506 |
|
|
&& is_gimple_min_invariant (val))
|
| 2507 |
|
|
{
|
| 2508 |
|
|
tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs),
|
| 2509 |
|
|
unshare_expr (val),
|
| 2510 |
|
|
TREE_OPERAND (rhs, 1));
|
| 2511 |
|
|
if (tem)
|
| 2512 |
|
|
rhs = tem;
|
| 2513 |
|
|
}
|
| 2514 |
|
|
}
|
| 2515 |
|
|
return fold_const_aggregate_ref_1 (rhs, valueize);
|
| 2516 |
|
|
}
|
| 2517 |
|
|
else if (kind == tcc_declaration)
|
| 2518 |
|
|
return get_symbol_constant_value (rhs);
|
| 2519 |
|
|
return rhs;
|
| 2520 |
|
|
}
|
| 2521 |
|
|
|
| 2522 |
|
|
case GIMPLE_UNARY_RHS:
|
| 2523 |
|
|
{
|
| 2524 |
|
|
/* Handle unary operators that can appear in GIMPLE form.
|
| 2525 |
|
|
Note that we know the single operand must be a constant,
|
| 2526 |
|
|
so this should almost always return a simplified RHS. */
|
| 2527 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
| 2528 |
|
|
tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
|
| 2529 |
|
|
|
| 2530 |
|
|
/* Conversions are useless for CCP purposes if they are
|
| 2531 |
|
|
value-preserving. Thus the restrictions that
|
| 2532 |
|
|
useless_type_conversion_p places for restrict qualification
|
| 2533 |
|
|
of pointer types should not apply here.
|
| 2534 |
|
|
Substitution later will only substitute to allowed places. */
|
| 2535 |
|
|
if (CONVERT_EXPR_CODE_P (subcode)
|
| 2536 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (lhs))
|
| 2537 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (op0))
|
| 2538 |
|
|
&& TYPE_ADDR_SPACE (TREE_TYPE (lhs))
|
| 2539 |
|
|
== TYPE_ADDR_SPACE (TREE_TYPE (op0))
|
| 2540 |
|
|
&& TYPE_MODE (TREE_TYPE (lhs))
|
| 2541 |
|
|
== TYPE_MODE (TREE_TYPE (op0)))
|
| 2542 |
|
|
return op0;
|
| 2543 |
|
|
|
| 2544 |
|
|
return
|
| 2545 |
|
|
fold_unary_ignore_overflow_loc (loc, subcode,
|
| 2546 |
|
|
gimple_expr_type (stmt), op0);
|
| 2547 |
|
|
}
|
| 2548 |
|
|
|
| 2549 |
|
|
case GIMPLE_BINARY_RHS:
|
| 2550 |
|
|
{
|
| 2551 |
|
|
/* Handle binary operators that can appear in GIMPLE form. */
|
| 2552 |
|
|
tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
|
| 2553 |
|
|
tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
|
| 2554 |
|
|
|
| 2555 |
|
|
/* Translate &x + CST into an invariant form suitable for
|
| 2556 |
|
|
further propagation. */
|
| 2557 |
|
|
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
|
| 2558 |
|
|
&& TREE_CODE (op0) == ADDR_EXPR
|
| 2559 |
|
|
&& TREE_CODE (op1) == INTEGER_CST)
|
| 2560 |
|
|
{
|
| 2561 |
|
|
tree off = fold_convert (ptr_type_node, op1);
|
| 2562 |
|
|
return build_fold_addr_expr_loc
|
| 2563 |
|
|
(loc,
|
| 2564 |
|
|
fold_build2 (MEM_REF,
|
| 2565 |
|
|
TREE_TYPE (TREE_TYPE (op0)),
|
| 2566 |
|
|
unshare_expr (op0), off));
|
| 2567 |
|
|
}
|
| 2568 |
|
|
|
| 2569 |
|
|
return fold_binary_loc (loc, subcode,
|
| 2570 |
|
|
gimple_expr_type (stmt), op0, op1);
|
| 2571 |
|
|
}
|
| 2572 |
|
|
|
| 2573 |
|
|
case GIMPLE_TERNARY_RHS:
|
| 2574 |
|
|
{
|
| 2575 |
|
|
/* Handle ternary operators that can appear in GIMPLE form. */
|
| 2576 |
|
|
tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
|
| 2577 |
|
|
tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
|
| 2578 |
|
|
tree op2 = (*valueize) (gimple_assign_rhs3 (stmt));
|
| 2579 |
|
|
|
| 2580 |
|
|
/* Fold embedded expressions in ternary codes. */
|
| 2581 |
|
|
if ((subcode == COND_EXPR
|
| 2582 |
|
|
|| subcode == VEC_COND_EXPR)
|
| 2583 |
|
|
&& COMPARISON_CLASS_P (op0))
|
| 2584 |
|
|
{
|
| 2585 |
|
|
tree op00 = (*valueize) (TREE_OPERAND (op0, 0));
|
| 2586 |
|
|
tree op01 = (*valueize) (TREE_OPERAND (op0, 1));
|
| 2587 |
|
|
tree tem = fold_binary_loc (loc, TREE_CODE (op0),
|
| 2588 |
|
|
TREE_TYPE (op0), op00, op01);
|
| 2589 |
|
|
if (tem)
|
| 2590 |
|
|
op0 = tem;
|
| 2591 |
|
|
}
|
| 2592 |
|
|
|
| 2593 |
|
|
return fold_ternary_loc (loc, subcode,
|
| 2594 |
|
|
gimple_expr_type (stmt), op0, op1, op2);
|
| 2595 |
|
|
}
|
| 2596 |
|
|
|
| 2597 |
|
|
default:
|
| 2598 |
|
|
gcc_unreachable ();
|
| 2599 |
|
|
}
|
| 2600 |
|
|
}
|
| 2601 |
|
|
|
| 2602 |
|
|
case GIMPLE_CALL:
|
| 2603 |
|
|
{
|
| 2604 |
|
|
tree fn;
|
| 2605 |
|
|
|
| 2606 |
|
|
if (gimple_call_internal_p (stmt))
|
| 2607 |
|
|
/* No folding yet for these functions. */
|
| 2608 |
|
|
return NULL_TREE;
|
| 2609 |
|
|
|
| 2610 |
|
|
fn = (*valueize) (gimple_call_fn (stmt));
|
| 2611 |
|
|
if (TREE_CODE (fn) == ADDR_EXPR
|
| 2612 |
|
|
&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
|
| 2613 |
|
|
&& DECL_BUILT_IN (TREE_OPERAND (fn, 0)))
|
| 2614 |
|
|
{
|
| 2615 |
|
|
tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
|
| 2616 |
|
|
tree call, retval;
|
| 2617 |
|
|
unsigned i;
|
| 2618 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
| 2619 |
|
|
args[i] = (*valueize) (gimple_call_arg (stmt, i));
|
| 2620 |
|
|
call = build_call_array_loc (loc,
|
| 2621 |
|
|
gimple_call_return_type (stmt),
|
| 2622 |
|
|
fn, gimple_call_num_args (stmt), args);
|
| 2623 |
|
|
retval = fold_call_expr (EXPR_LOCATION (call), call, false);
|
| 2624 |
|
|
if (retval)
|
| 2625 |
|
|
/* fold_call_expr wraps the result inside a NOP_EXPR. */
|
| 2626 |
|
|
STRIP_NOPS (retval);
|
| 2627 |
|
|
return retval;
|
| 2628 |
|
|
}
|
| 2629 |
|
|
return NULL_TREE;
|
| 2630 |
|
|
}
|
| 2631 |
|
|
|
| 2632 |
|
|
default:
|
| 2633 |
|
|
return NULL_TREE;
|
| 2634 |
|
|
}
|
| 2635 |
|
|
}
|
| 2636 |
|
|
|
| 2637 |
|
|
/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
|
| 2638 |
|
|
Returns NULL_TREE if folding to a constant is not possible, otherwise
|
| 2639 |
|
|
returns a constant according to is_gimple_min_invariant. */
|
| 2640 |
|
|
|
| 2641 |
|
|
tree
|
| 2642 |
|
|
gimple_fold_stmt_to_constant (gimple stmt, tree (*valueize) (tree))
|
| 2643 |
|
|
{
|
| 2644 |
|
|
tree res = gimple_fold_stmt_to_constant_1 (stmt, valueize);
|
| 2645 |
|
|
if (res && is_gimple_min_invariant (res))
|
| 2646 |
|
|
return res;
|
| 2647 |
|
|
return NULL_TREE;
|
| 2648 |
|
|
}
|
| 2649 |
|
|
|
| 2650 |
|
|
|
| 2651 |
|
|
/* The following set of functions are supposed to fold references using
|
| 2652 |
|
|
their constant initializers. */
|
| 2653 |
|
|
|
| 2654 |
|
|
static tree fold_ctor_reference (tree type, tree ctor,
|
| 2655 |
|
|
unsigned HOST_WIDE_INT offset,
|
| 2656 |
|
|
unsigned HOST_WIDE_INT size);
|
| 2657 |
|
|
|
| 2658 |
|
|
/* See if we can find constructor defining value of BASE.
|
| 2659 |
|
|
When we know the consructor with constant offset (such as
|
| 2660 |
|
|
base is array[40] and we do know constructor of array), then
|
| 2661 |
|
|
BIT_OFFSET is adjusted accordingly.
|
| 2662 |
|
|
|
| 2663 |
|
|
As a special case, return error_mark_node when constructor
|
| 2664 |
|
|
is not explicitly available, but it is known to be zero
|
| 2665 |
|
|
such as 'static const int a;'. */
|
| 2666 |
|
|
static tree
|
| 2667 |
|
|
get_base_constructor (tree base, HOST_WIDE_INT *bit_offset,
|
| 2668 |
|
|
tree (*valueize)(tree))
|
| 2669 |
|
|
{
|
| 2670 |
|
|
HOST_WIDE_INT bit_offset2, size, max_size;
|
| 2671 |
|
|
if (TREE_CODE (base) == MEM_REF)
|
| 2672 |
|
|
{
|
| 2673 |
|
|
if (!integer_zerop (TREE_OPERAND (base, 1)))
|
| 2674 |
|
|
{
|
| 2675 |
|
|
if (!host_integerp (TREE_OPERAND (base, 1), 0))
|
| 2676 |
|
|
return NULL_TREE;
|
| 2677 |
|
|
*bit_offset += (mem_ref_offset (base).low
|
| 2678 |
|
|
* BITS_PER_UNIT);
|
| 2679 |
|
|
}
|
| 2680 |
|
|
|
| 2681 |
|
|
if (valueize
|
| 2682 |
|
|
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
|
| 2683 |
|
|
base = valueize (TREE_OPERAND (base, 0));
|
| 2684 |
|
|
if (!base || TREE_CODE (base) != ADDR_EXPR)
|
| 2685 |
|
|
return NULL_TREE;
|
| 2686 |
|
|
base = TREE_OPERAND (base, 0);
|
| 2687 |
|
|
}
|
| 2688 |
|
|
|
| 2689 |
|
|
/* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
|
| 2690 |
|
|
DECL_INITIAL. If BASE is a nested reference into another
|
| 2691 |
|
|
ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
|
| 2692 |
|
|
the inner reference. */
|
| 2693 |
|
|
switch (TREE_CODE (base))
|
| 2694 |
|
|
{
|
| 2695 |
|
|
case VAR_DECL:
|
| 2696 |
|
|
if (!const_value_known_p (base))
|
| 2697 |
|
|
return NULL_TREE;
|
| 2698 |
|
|
|
| 2699 |
|
|
/* Fallthru. */
|
| 2700 |
|
|
case CONST_DECL:
|
| 2701 |
|
|
if (!DECL_INITIAL (base)
|
| 2702 |
|
|
&& (TREE_STATIC (base) || DECL_EXTERNAL (base)))
|
| 2703 |
|
|
return error_mark_node;
|
| 2704 |
|
|
return DECL_INITIAL (base);
|
| 2705 |
|
|
|
| 2706 |
|
|
case ARRAY_REF:
|
| 2707 |
|
|
case COMPONENT_REF:
|
| 2708 |
|
|
base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size);
|
| 2709 |
|
|
if (max_size == -1 || size != max_size)
|
| 2710 |
|
|
return NULL_TREE;
|
| 2711 |
|
|
*bit_offset += bit_offset2;
|
| 2712 |
|
|
return get_base_constructor (base, bit_offset, valueize);
|
| 2713 |
|
|
|
| 2714 |
|
|
case STRING_CST:
|
| 2715 |
|
|
case CONSTRUCTOR:
|
| 2716 |
|
|
return base;
|
| 2717 |
|
|
|
| 2718 |
|
|
default:
|
| 2719 |
|
|
return NULL_TREE;
|
| 2720 |
|
|
}
|
| 2721 |
|
|
}
|
| 2722 |
|
|
|
| 2723 |
|
|
/* CTOR is STRING_CST. Fold reference of type TYPE and size SIZE
|
| 2724 |
|
|
to the memory at bit OFFSET.
|
| 2725 |
|
|
|
| 2726 |
|
|
We do only simple job of folding byte accesses. */
|
| 2727 |
|
|
|
| 2728 |
|
|
static tree
|
| 2729 |
|
|
fold_string_cst_ctor_reference (tree type, tree ctor,
|
| 2730 |
|
|
unsigned HOST_WIDE_INT offset,
|
| 2731 |
|
|
unsigned HOST_WIDE_INT size)
|
| 2732 |
|
|
{
|
| 2733 |
|
|
if (INTEGRAL_TYPE_P (type)
|
| 2734 |
|
|
&& (TYPE_MODE (type)
|
| 2735 |
|
|
== TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
|
| 2736 |
|
|
&& (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
|
| 2737 |
|
|
== MODE_INT)
|
| 2738 |
|
|
&& GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == 1
|
| 2739 |
|
|
&& size == BITS_PER_UNIT
|
| 2740 |
|
|
&& !(offset % BITS_PER_UNIT))
|
| 2741 |
|
|
{
|
| 2742 |
|
|
offset /= BITS_PER_UNIT;
|
| 2743 |
|
|
if (offset < (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (ctor))
|
| 2744 |
|
|
return build_int_cst_type (type, (TREE_STRING_POINTER (ctor)
|
| 2745 |
|
|
[offset]));
|
| 2746 |
|
|
/* Folding
|
| 2747 |
|
|
const char a[20]="hello";
|
| 2748 |
|
|
return a[10];
|
| 2749 |
|
|
|
| 2750 |
|
|
might lead to offset greater than string length. In this case we
|
| 2751 |
|
|
know value is either initialized to 0 or out of bounds. Return 0
|
| 2752 |
|
|
in both cases. */
|
| 2753 |
|
|
return build_zero_cst (type);
|
| 2754 |
|
|
}
|
| 2755 |
|
|
return NULL_TREE;
|
| 2756 |
|
|
}
|
| 2757 |
|
|
|
| 2758 |
|
|
/* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size
|
| 2759 |
|
|
SIZE to the memory at bit OFFSET. */
|
| 2760 |
|
|
|
| 2761 |
|
|
static tree
|
| 2762 |
|
|
fold_array_ctor_reference (tree type, tree ctor,
|
| 2763 |
|
|
unsigned HOST_WIDE_INT offset,
|
| 2764 |
|
|
unsigned HOST_WIDE_INT size)
|
| 2765 |
|
|
{
|
| 2766 |
|
|
unsigned HOST_WIDE_INT cnt;
|
| 2767 |
|
|
tree cfield, cval;
|
| 2768 |
|
|
double_int low_bound, elt_size;
|
| 2769 |
|
|
double_int index, max_index;
|
| 2770 |
|
|
double_int access_index;
|
| 2771 |
|
|
tree domain_type = NULL_TREE;
|
| 2772 |
|
|
HOST_WIDE_INT inner_offset;
|
| 2773 |
|
|
|
| 2774 |
|
|
/* Compute low bound and elt size. */
|
| 2775 |
|
|
if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
|
| 2776 |
|
|
domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
|
| 2777 |
|
|
if (domain_type && TYPE_MIN_VALUE (domain_type))
|
| 2778 |
|
|
{
|
| 2779 |
|
|
/* Static constructors for variably sized objects makes no sense. */
|
| 2780 |
|
|
gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
|
| 2781 |
|
|
low_bound = tree_to_double_int (TYPE_MIN_VALUE (domain_type));
|
| 2782 |
|
|
}
|
| 2783 |
|
|
else
|
| 2784 |
|
|
low_bound = double_int_zero;
|
| 2785 |
|
|
/* Static constructors for variably sized objects makes no sense. */
|
| 2786 |
|
|
gcc_assert (TREE_CODE(TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))))
|
| 2787 |
|
|
== INTEGER_CST);
|
| 2788 |
|
|
elt_size =
|
| 2789 |
|
|
tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))));
|
| 2790 |
|
|
|
| 2791 |
|
|
|
| 2792 |
|
|
/* We can handle only constantly sized accesses that are known to not
|
| 2793 |
|
|
be larger than size of array element. */
|
| 2794 |
|
|
if (!TYPE_SIZE_UNIT (type)
|
| 2795 |
|
|
|| TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
|
| 2796 |
|
|
|| double_int_cmp (elt_size,
|
| 2797 |
|
|
tree_to_double_int (TYPE_SIZE_UNIT (type)), 0) < 0)
|
| 2798 |
|
|
return NULL_TREE;
|
| 2799 |
|
|
|
| 2800 |
|
|
/* Compute the array index we look for. */
|
| 2801 |
|
|
access_index = double_int_udiv (uhwi_to_double_int (offset / BITS_PER_UNIT),
|
| 2802 |
|
|
elt_size, TRUNC_DIV_EXPR);
|
| 2803 |
|
|
access_index = double_int_add (access_index, low_bound);
|
| 2804 |
|
|
|
| 2805 |
|
|
/* And offset within the access. */
|
| 2806 |
|
|
inner_offset = offset % (double_int_to_uhwi (elt_size) * BITS_PER_UNIT);
|
| 2807 |
|
|
|
| 2808 |
|
|
/* See if the array field is large enough to span whole access. We do not
|
| 2809 |
|
|
care to fold accesses spanning multiple array indexes. */
|
| 2810 |
|
|
if (inner_offset + size > double_int_to_uhwi (elt_size) * BITS_PER_UNIT)
|
| 2811 |
|
|
return NULL_TREE;
|
| 2812 |
|
|
|
| 2813 |
|
|
index = double_int_sub (low_bound, double_int_one);
|
| 2814 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
|
| 2815 |
|
|
{
|
| 2816 |
|
|
/* Array constructor might explicitely set index, or specify range
|
| 2817 |
|
|
or leave index NULL meaning that it is next index after previous
|
| 2818 |
|
|
one. */
|
| 2819 |
|
|
if (cfield)
|
| 2820 |
|
|
{
|
| 2821 |
|
|
if (TREE_CODE (cfield) == INTEGER_CST)
|
| 2822 |
|
|
max_index = index = tree_to_double_int (cfield);
|
| 2823 |
|
|
else
|
| 2824 |
|
|
{
|
| 2825 |
|
|
gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
|
| 2826 |
|
|
index = tree_to_double_int (TREE_OPERAND (cfield, 0));
|
| 2827 |
|
|
max_index = tree_to_double_int (TREE_OPERAND (cfield, 1));
|
| 2828 |
|
|
}
|
| 2829 |
|
|
}
|
| 2830 |
|
|
else
|
| 2831 |
|
|
max_index = index = double_int_add (index, double_int_one);
|
| 2832 |
|
|
|
| 2833 |
|
|
/* Do we have match? */
|
| 2834 |
|
|
if (double_int_cmp (access_index, index, 1) >= 0
|
| 2835 |
|
|
&& double_int_cmp (access_index, max_index, 1) <= 0)
|
| 2836 |
|
|
return fold_ctor_reference (type, cval, inner_offset, size);
|
| 2837 |
|
|
}
|
| 2838 |
|
|
/* When memory is not explicitely mentioned in constructor,
|
| 2839 |
|
|
it is 0 (or out of range). */
|
| 2840 |
|
|
return build_zero_cst (type);
|
| 2841 |
|
|
}
|
| 2842 |
|
|
|
| 2843 |
|
|
/* CTOR is CONSTRUCTOR of an aggregate or vector.
|
| 2844 |
|
|
Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */
|
| 2845 |
|
|
|
| 2846 |
|
|
static tree
|
| 2847 |
|
|
fold_nonarray_ctor_reference (tree type, tree ctor,
|
| 2848 |
|
|
unsigned HOST_WIDE_INT offset,
|
| 2849 |
|
|
unsigned HOST_WIDE_INT size)
|
| 2850 |
|
|
{
|
| 2851 |
|
|
unsigned HOST_WIDE_INT cnt;
|
| 2852 |
|
|
tree cfield, cval;
|
| 2853 |
|
|
|
| 2854 |
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield,
|
| 2855 |
|
|
cval)
|
| 2856 |
|
|
{
|
| 2857 |
|
|
tree byte_offset = DECL_FIELD_OFFSET (cfield);
|
| 2858 |
|
|
tree field_offset = DECL_FIELD_BIT_OFFSET (cfield);
|
| 2859 |
|
|
tree field_size = DECL_SIZE (cfield);
|
| 2860 |
|
|
double_int bitoffset;
|
| 2861 |
|
|
double_int byte_offset_cst = tree_to_double_int (byte_offset);
|
| 2862 |
|
|
double_int bits_per_unit_cst = uhwi_to_double_int (BITS_PER_UNIT);
|
| 2863 |
|
|
double_int bitoffset_end, access_end;
|
| 2864 |
|
|
|
| 2865 |
|
|
/* Variable sized objects in static constructors makes no sense,
|
| 2866 |
|
|
but field_size can be NULL for flexible array members. */
|
| 2867 |
|
|
gcc_assert (TREE_CODE (field_offset) == INTEGER_CST
|
| 2868 |
|
|
&& TREE_CODE (byte_offset) == INTEGER_CST
|
| 2869 |
|
|
&& (field_size != NULL_TREE
|
| 2870 |
|
|
? TREE_CODE (field_size) == INTEGER_CST
|
| 2871 |
|
|
: TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE));
|
| 2872 |
|
|
|
| 2873 |
|
|
/* Compute bit offset of the field. */
|
| 2874 |
|
|
bitoffset = double_int_add (tree_to_double_int (field_offset),
|
| 2875 |
|
|
double_int_mul (byte_offset_cst,
|
| 2876 |
|
|
bits_per_unit_cst));
|
| 2877 |
|
|
/* Compute bit offset where the field ends. */
|
| 2878 |
|
|
if (field_size != NULL_TREE)
|
| 2879 |
|
|
bitoffset_end = double_int_add (bitoffset,
|
| 2880 |
|
|
tree_to_double_int (field_size));
|
| 2881 |
|
|
else
|
| 2882 |
|
|
bitoffset_end = double_int_zero;
|
| 2883 |
|
|
|
| 2884 |
|
|
access_end = double_int_add (uhwi_to_double_int (offset),
|
| 2885 |
|
|
uhwi_to_double_int (size));
|
| 2886 |
|
|
|
| 2887 |
|
|
/* Is there any overlap between [OFFSET, OFFSET+SIZE) and
|
| 2888 |
|
|
[BITOFFSET, BITOFFSET_END)? */
|
| 2889 |
|
|
if (double_int_cmp (access_end, bitoffset, 0) > 0
|
| 2890 |
|
|
&& (field_size == NULL_TREE
|
| 2891 |
|
|
|| double_int_cmp (uhwi_to_double_int (offset),
|
| 2892 |
|
|
bitoffset_end, 0) < 0))
|
| 2893 |
|
|
{
|
| 2894 |
|
|
double_int inner_offset = double_int_sub (uhwi_to_double_int (offset),
|
| 2895 |
|
|
bitoffset);
|
| 2896 |
|
|
/* We do have overlap. Now see if field is large enough to
|
| 2897 |
|
|
cover the access. Give up for accesses spanning multiple
|
| 2898 |
|
|
fields. */
|
| 2899 |
|
|
if (double_int_cmp (access_end, bitoffset_end, 0) > 0)
|
| 2900 |
|
|
return NULL_TREE;
|
| 2901 |
|
|
if (double_int_cmp (uhwi_to_double_int (offset), bitoffset, 0) < 0)
|
| 2902 |
|
|
return NULL_TREE;
|
| 2903 |
|
|
return fold_ctor_reference (type, cval,
|
| 2904 |
|
|
double_int_to_uhwi (inner_offset), size);
|
| 2905 |
|
|
}
|
| 2906 |
|
|
}
|
| 2907 |
|
|
/* When memory is not explicitely mentioned in constructor, it is 0. */
|
| 2908 |
|
|
return build_zero_cst (type);
|
| 2909 |
|
|
}
|
| 2910 |
|
|
|
| 2911 |
|
|
/* CTOR is value initializing memory, fold reference of type TYPE and size SIZE
|
| 2912 |
|
|
to the memory at bit OFFSET. */
|
| 2913 |
|
|
|
| 2914 |
|
|
static tree
|
| 2915 |
|
|
fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
|
| 2916 |
|
|
unsigned HOST_WIDE_INT size)
|
| 2917 |
|
|
{
|
| 2918 |
|
|
tree ret;
|
| 2919 |
|
|
|
| 2920 |
|
|
/* We found the field with exact match. */
|
| 2921 |
|
|
if (useless_type_conversion_p (type, TREE_TYPE (ctor))
|
| 2922 |
|
|
&& !offset)
|
| 2923 |
|
|
return canonicalize_constructor_val (ctor);
|
| 2924 |
|
|
|
| 2925 |
|
|
/* We are at the end of walk, see if we can view convert the
|
| 2926 |
|
|
result. */
|
| 2927 |
|
|
if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset
|
| 2928 |
|
|
/* VIEW_CONVERT_EXPR is defined only for matching sizes. */
|
| 2929 |
|
|
&& operand_equal_p (TYPE_SIZE (type),
|
| 2930 |
|
|
TYPE_SIZE (TREE_TYPE (ctor)), 0))
|
| 2931 |
|
|
{
|
| 2932 |
|
|
ret = canonicalize_constructor_val (ctor);
|
| 2933 |
|
|
ret = fold_unary (VIEW_CONVERT_EXPR, type, ret);
|
| 2934 |
|
|
if (ret)
|
| 2935 |
|
|
STRIP_NOPS (ret);
|
| 2936 |
|
|
return ret;
|
| 2937 |
|
|
}
|
| 2938 |
|
|
if (TREE_CODE (ctor) == STRING_CST)
|
| 2939 |
|
|
return fold_string_cst_ctor_reference (type, ctor, offset, size);
|
| 2940 |
|
|
if (TREE_CODE (ctor) == CONSTRUCTOR)
|
| 2941 |
|
|
{
|
| 2942 |
|
|
|
| 2943 |
|
|
if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE
|
| 2944 |
|
|
|| TREE_CODE (TREE_TYPE (ctor)) == VECTOR_TYPE)
|
| 2945 |
|
|
return fold_array_ctor_reference (type, ctor, offset, size);
|
| 2946 |
|
|
else
|
| 2947 |
|
|
return fold_nonarray_ctor_reference (type, ctor, offset, size);
|
| 2948 |
|
|
}
|
| 2949 |
|
|
|
| 2950 |
|
|
return NULL_TREE;
|
| 2951 |
|
|
}
|
| 2952 |
|
|
|
| 2953 |
|
|
/* Return the tree representing the element referenced by T if T is an
|
| 2954 |
|
|
ARRAY_REF or COMPONENT_REF into constant aggregates valuezing SSA
|
| 2955 |
|
|
names using VALUEIZE. Return NULL_TREE otherwise. */
|
| 2956 |
|
|
|
| 2957 |
|
|
tree
|
| 2958 |
|
|
fold_const_aggregate_ref_1 (tree t, tree (*valueize) (tree))
|
| 2959 |
|
|
{
|
| 2960 |
|
|
tree ctor, idx, base;
|
| 2961 |
|
|
HOST_WIDE_INT offset, size, max_size;
|
| 2962 |
|
|
tree tem;
|
| 2963 |
|
|
|
| 2964 |
|
|
if (TREE_THIS_VOLATILE (t))
|
| 2965 |
|
|
return NULL_TREE;
|
| 2966 |
|
|
|
| 2967 |
|
|
if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration)
|
| 2968 |
|
|
return get_symbol_constant_value (t);
|
| 2969 |
|
|
|
| 2970 |
|
|
tem = fold_read_from_constant_string (t);
|
| 2971 |
|
|
if (tem)
|
| 2972 |
|
|
return tem;
|
| 2973 |
|
|
|
| 2974 |
|
|
switch (TREE_CODE (t))
|
| 2975 |
|
|
{
|
| 2976 |
|
|
case ARRAY_REF:
|
| 2977 |
|
|
case ARRAY_RANGE_REF:
|
| 2978 |
|
|
/* Constant indexes are handled well by get_base_constructor.
|
| 2979 |
|
|
Only special case variable offsets.
|
| 2980 |
|
|
FIXME: This code can't handle nested references with variable indexes
|
| 2981 |
|
|
(they will be handled only by iteration of ccp). Perhaps we can bring
|
| 2982 |
|
|
get_ref_base_and_extent here and make it use a valueize callback. */
|
| 2983 |
|
|
if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME
|
| 2984 |
|
|
&& valueize
|
| 2985 |
|
|
&& (idx = (*valueize) (TREE_OPERAND (t, 1)))
|
| 2986 |
|
|
&& host_integerp (idx, 0))
|
| 2987 |
|
|
{
|
| 2988 |
|
|
tree low_bound, unit_size;
|
| 2989 |
|
|
|
| 2990 |
|
|
/* If the resulting bit-offset is constant, track it. */
|
| 2991 |
|
|
if ((low_bound = array_ref_low_bound (t),
|
| 2992 |
|
|
host_integerp (low_bound, 0))
|
| 2993 |
|
|
&& (unit_size = array_ref_element_size (t),
|
| 2994 |
|
|
host_integerp (unit_size, 1)))
|
| 2995 |
|
|
{
|
| 2996 |
|
|
offset = TREE_INT_CST_LOW (idx);
|
| 2997 |
|
|
offset -= TREE_INT_CST_LOW (low_bound);
|
| 2998 |
|
|
offset *= TREE_INT_CST_LOW (unit_size);
|
| 2999 |
|
|
offset *= BITS_PER_UNIT;
|
| 3000 |
|
|
|
| 3001 |
|
|
base = TREE_OPERAND (t, 0);
|
| 3002 |
|
|
ctor = get_base_constructor (base, &offset, valueize);
|
| 3003 |
|
|
/* Empty constructor. Always fold to 0. */
|
| 3004 |
|
|
if (ctor == error_mark_node)
|
| 3005 |
|
|
return build_zero_cst (TREE_TYPE (t));
|
| 3006 |
|
|
/* Out of bound array access. Value is undefined,
|
| 3007 |
|
|
but don't fold. */
|
| 3008 |
|
|
if (offset < 0)
|
| 3009 |
|
|
return NULL_TREE;
|
| 3010 |
|
|
/* We can not determine ctor. */
|
| 3011 |
|
|
if (!ctor)
|
| 3012 |
|
|
return NULL_TREE;
|
| 3013 |
|
|
return fold_ctor_reference (TREE_TYPE (t), ctor, offset,
|
| 3014 |
|
|
TREE_INT_CST_LOW (unit_size)
|
| 3015 |
|
|
* BITS_PER_UNIT);
|
| 3016 |
|
|
}
|
| 3017 |
|
|
}
|
| 3018 |
|
|
/* Fallthru. */
|
| 3019 |
|
|
|
| 3020 |
|
|
case COMPONENT_REF:
|
| 3021 |
|
|
case BIT_FIELD_REF:
|
| 3022 |
|
|
case TARGET_MEM_REF:
|
| 3023 |
|
|
case MEM_REF:
|
| 3024 |
|
|
base = get_ref_base_and_extent (t, &offset, &size, &max_size);
|
| 3025 |
|
|
ctor = get_base_constructor (base, &offset, valueize);
|
| 3026 |
|
|
|
| 3027 |
|
|
/* Empty constructor. Always fold to 0. */
|
| 3028 |
|
|
if (ctor == error_mark_node)
|
| 3029 |
|
|
return build_zero_cst (TREE_TYPE (t));
|
| 3030 |
|
|
/* We do not know precise address. */
|
| 3031 |
|
|
if (max_size == -1 || max_size != size)
|
| 3032 |
|
|
return NULL_TREE;
|
| 3033 |
|
|
/* We can not determine ctor. */
|
| 3034 |
|
|
if (!ctor)
|
| 3035 |
|
|
return NULL_TREE;
|
| 3036 |
|
|
|
| 3037 |
|
|
/* Out of bound array access. Value is undefined, but don't fold. */
|
| 3038 |
|
|
if (offset < 0)
|
| 3039 |
|
|
return NULL_TREE;
|
| 3040 |
|
|
|
| 3041 |
|
|
return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size);
|
| 3042 |
|
|
|
| 3043 |
|
|
case REALPART_EXPR:
|
| 3044 |
|
|
case IMAGPART_EXPR:
|
| 3045 |
|
|
{
|
| 3046 |
|
|
tree c = fold_const_aggregate_ref_1 (TREE_OPERAND (t, 0), valueize);
|
| 3047 |
|
|
if (c && TREE_CODE (c) == COMPLEX_CST)
|
| 3048 |
|
|
return fold_build1_loc (EXPR_LOCATION (t),
|
| 3049 |
|
|
TREE_CODE (t), TREE_TYPE (t), c);
|
| 3050 |
|
|
break;
|
| 3051 |
|
|
}
|
| 3052 |
|
|
|
| 3053 |
|
|
default:
|
| 3054 |
|
|
break;
|
| 3055 |
|
|
}
|
| 3056 |
|
|
|
| 3057 |
|
|
return NULL_TREE;
|
| 3058 |
|
|
}
|
| 3059 |
|
|
|
| 3060 |
|
|
tree
|
| 3061 |
|
|
fold_const_aggregate_ref (tree t)
|
| 3062 |
|
|
{
|
| 3063 |
|
|
return fold_const_aggregate_ref_1 (t, NULL);
|
| 3064 |
|
|
}
|
| 3065 |
|
|
|
| 3066 |
|
|
/* Return a declaration of a function which an OBJ_TYPE_REF references. TOKEN
|
| 3067 |
|
|
is integer form of OBJ_TYPE_REF_TOKEN of the reference expression.
|
| 3068 |
|
|
KNOWN_BINFO carries the binfo describing the true type of
|
| 3069 |
|
|
OBJ_TYPE_REF_OBJECT(REF). */
|
| 3070 |
|
|
|
| 3071 |
|
|
tree
|
| 3072 |
|
|
gimple_get_virt_method_for_binfo (HOST_WIDE_INT token, tree known_binfo)
|
| 3073 |
|
|
{
|
| 3074 |
|
|
unsigned HOST_WIDE_INT offset, size;
|
| 3075 |
|
|
tree v, fn;
|
| 3076 |
|
|
|
| 3077 |
|
|
v = BINFO_VTABLE (known_binfo);
|
| 3078 |
|
|
/* If there is no virtual methods table, leave the OBJ_TYPE_REF alone. */
|
| 3079 |
|
|
if (!v)
|
| 3080 |
|
|
return NULL_TREE;
|
| 3081 |
|
|
|
| 3082 |
|
|
if (TREE_CODE (v) == POINTER_PLUS_EXPR)
|
| 3083 |
|
|
{
|
| 3084 |
|
|
offset = tree_low_cst (TREE_OPERAND (v, 1), 1) * BITS_PER_UNIT;
|
| 3085 |
|
|
v = TREE_OPERAND (v, 0);
|
| 3086 |
|
|
}
|
| 3087 |
|
|
else
|
| 3088 |
|
|
offset = 0;
|
| 3089 |
|
|
|
| 3090 |
|
|
if (TREE_CODE (v) != ADDR_EXPR)
|
| 3091 |
|
|
return NULL_TREE;
|
| 3092 |
|
|
v = TREE_OPERAND (v, 0);
|
| 3093 |
|
|
|
| 3094 |
|
|
if (TREE_CODE (v) != VAR_DECL
|
| 3095 |
|
|
|| !DECL_VIRTUAL_P (v)
|
| 3096 |
|
|
|| !DECL_INITIAL (v)
|
| 3097 |
|
|
|| DECL_INITIAL (v) == error_mark_node)
|
| 3098 |
|
|
return NULL_TREE;
|
| 3099 |
|
|
gcc_checking_assert (TREE_CODE (TREE_TYPE (v)) == ARRAY_TYPE);
|
| 3100 |
|
|
size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (v))), 1);
|
| 3101 |
|
|
offset += token * size;
|
| 3102 |
|
|
fn = fold_ctor_reference (TREE_TYPE (TREE_TYPE (v)), DECL_INITIAL (v),
|
| 3103 |
|
|
offset, size);
|
| 3104 |
|
|
if (!fn)
|
| 3105 |
|
|
return NULL_TREE;
|
| 3106 |
|
|
gcc_assert (TREE_CODE (fn) == ADDR_EXPR
|
| 3107 |
|
|
|| TREE_CODE (fn) == FDESC_EXPR);
|
| 3108 |
|
|
fn = TREE_OPERAND (fn, 0);
|
| 3109 |
|
|
gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
|
| 3110 |
|
|
|
| 3111 |
|
|
/* When cgraph node is missing and function is not public, we cannot
|
| 3112 |
|
|
devirtualize. This can happen in WHOPR when the actual method
|
| 3113 |
|
|
ends up in other partition, because we found devirtualization
|
| 3114 |
|
|
possibility too late. */
|
| 3115 |
|
|
if (!can_refer_decl_in_current_unit_p (fn))
|
| 3116 |
|
|
return NULL_TREE;
|
| 3117 |
|
|
|
| 3118 |
|
|
return fn;
|
| 3119 |
|
|
}
|
| 3120 |
|
|
|
| 3121 |
|
|
/* Return true iff VAL is a gimple expression that is known to be
|
| 3122 |
|
|
non-negative. Restricted to floating-point inputs. */
|
| 3123 |
|
|
|
| 3124 |
|
|
bool
|
| 3125 |
|
|
gimple_val_nonnegative_real_p (tree val)
|
| 3126 |
|
|
{
|
| 3127 |
|
|
gimple def_stmt;
|
| 3128 |
|
|
|
| 3129 |
|
|
gcc_assert (val && SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)));
|
| 3130 |
|
|
|
| 3131 |
|
|
/* Use existing logic for non-gimple trees. */
|
| 3132 |
|
|
if (tree_expr_nonnegative_p (val))
|
| 3133 |
|
|
return true;
|
| 3134 |
|
|
|
| 3135 |
|
|
if (TREE_CODE (val) != SSA_NAME)
|
| 3136 |
|
|
return false;
|
| 3137 |
|
|
|
| 3138 |
|
|
/* Currently we look only at the immediately defining statement
|
| 3139 |
|
|
to make this determination, since recursion on defining
|
| 3140 |
|
|
statements of operands can lead to quadratic behavior in the
|
| 3141 |
|
|
worst case. This is expected to catch almost all occurrences
|
| 3142 |
|
|
in practice. It would be possible to implement limited-depth
|
| 3143 |
|
|
recursion if important cases are lost. Alternatively, passes
|
| 3144 |
|
|
that need this information (such as the pow/powi lowering code
|
| 3145 |
|
|
in the cse_sincos pass) could be revised to provide it through
|
| 3146 |
|
|
dataflow propagation. */
|
| 3147 |
|
|
|
| 3148 |
|
|
def_stmt = SSA_NAME_DEF_STMT (val);
|
| 3149 |
|
|
|
| 3150 |
|
|
if (is_gimple_assign (def_stmt))
|
| 3151 |
|
|
{
|
| 3152 |
|
|
tree op0, op1;
|
| 3153 |
|
|
|
| 3154 |
|
|
/* See fold-const.c:tree_expr_nonnegative_p for additional
|
| 3155 |
|
|
cases that could be handled with recursion. */
|
| 3156 |
|
|
|
| 3157 |
|
|
switch (gimple_assign_rhs_code (def_stmt))
|
| 3158 |
|
|
{
|
| 3159 |
|
|
case ABS_EXPR:
|
| 3160 |
|
|
/* Always true for floating-point operands. */
|
| 3161 |
|
|
return true;
|
| 3162 |
|
|
|
| 3163 |
|
|
case MULT_EXPR:
|
| 3164 |
|
|
/* True if the two operands are identical (since we are
|
| 3165 |
|
|
restricted to floating-point inputs). */
|
| 3166 |
|
|
op0 = gimple_assign_rhs1 (def_stmt);
|
| 3167 |
|
|
op1 = gimple_assign_rhs2 (def_stmt);
|
| 3168 |
|
|
|
| 3169 |
|
|
if (op0 == op1
|
| 3170 |
|
|
|| operand_equal_p (op0, op1, 0))
|
| 3171 |
|
|
return true;
|
| 3172 |
|
|
|
| 3173 |
|
|
default:
|
| 3174 |
|
|
return false;
|
| 3175 |
|
|
}
|
| 3176 |
|
|
}
|
| 3177 |
|
|
else if (is_gimple_call (def_stmt))
|
| 3178 |
|
|
{
|
| 3179 |
|
|
tree fndecl = gimple_call_fndecl (def_stmt);
|
| 3180 |
|
|
if (fndecl
|
| 3181 |
|
|
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
| 3182 |
|
|
{
|
| 3183 |
|
|
tree arg1;
|
| 3184 |
|
|
|
| 3185 |
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
| 3186 |
|
|
{
|
| 3187 |
|
|
CASE_FLT_FN (BUILT_IN_ACOS):
|
| 3188 |
|
|
CASE_FLT_FN (BUILT_IN_ACOSH):
|
| 3189 |
|
|
CASE_FLT_FN (BUILT_IN_CABS):
|
| 3190 |
|
|
CASE_FLT_FN (BUILT_IN_COSH):
|
| 3191 |
|
|
CASE_FLT_FN (BUILT_IN_ERFC):
|
| 3192 |
|
|
CASE_FLT_FN (BUILT_IN_EXP):
|
| 3193 |
|
|
CASE_FLT_FN (BUILT_IN_EXP10):
|
| 3194 |
|
|
CASE_FLT_FN (BUILT_IN_EXP2):
|
| 3195 |
|
|
CASE_FLT_FN (BUILT_IN_FABS):
|
| 3196 |
|
|
CASE_FLT_FN (BUILT_IN_FDIM):
|
| 3197 |
|
|
CASE_FLT_FN (BUILT_IN_HYPOT):
|
| 3198 |
|
|
CASE_FLT_FN (BUILT_IN_POW10):
|
| 3199 |
|
|
return true;
|
| 3200 |
|
|
|
| 3201 |
|
|
CASE_FLT_FN (BUILT_IN_SQRT):
|
| 3202 |
|
|
/* sqrt(-0.0) is -0.0, and sqrt is not defined over other
|
| 3203 |
|
|
nonnegative inputs. */
|
| 3204 |
|
|
if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (val))))
|
| 3205 |
|
|
return true;
|
| 3206 |
|
|
|
| 3207 |
|
|
break;
|
| 3208 |
|
|
|
| 3209 |
|
|
CASE_FLT_FN (BUILT_IN_POWI):
|
| 3210 |
|
|
/* True if the second argument is an even integer. */
|
| 3211 |
|
|
arg1 = gimple_call_arg (def_stmt, 1);
|
| 3212 |
|
|
|
| 3213 |
|
|
if (TREE_CODE (arg1) == INTEGER_CST
|
| 3214 |
|
|
&& (TREE_INT_CST_LOW (arg1) & 1) == 0)
|
| 3215 |
|
|
return true;
|
| 3216 |
|
|
|
| 3217 |
|
|
break;
|
| 3218 |
|
|
|
| 3219 |
|
|
CASE_FLT_FN (BUILT_IN_POW):
|
| 3220 |
|
|
/* True if the second argument is an even integer-valued
|
| 3221 |
|
|
real. */
|
| 3222 |
|
|
arg1 = gimple_call_arg (def_stmt, 1);
|
| 3223 |
|
|
|
| 3224 |
|
|
if (TREE_CODE (arg1) == REAL_CST)
|
| 3225 |
|
|
{
|
| 3226 |
|
|
REAL_VALUE_TYPE c;
|
| 3227 |
|
|
HOST_WIDE_INT n;
|
| 3228 |
|
|
|
| 3229 |
|
|
c = TREE_REAL_CST (arg1);
|
| 3230 |
|
|
n = real_to_integer (&c);
|
| 3231 |
|
|
|
| 3232 |
|
|
if ((n & 1) == 0)
|
| 3233 |
|
|
{
|
| 3234 |
|
|
REAL_VALUE_TYPE cint;
|
| 3235 |
|
|
real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
|
| 3236 |
|
|
if (real_identical (&c, &cint))
|
| 3237 |
|
|
return true;
|
| 3238 |
|
|
}
|
| 3239 |
|
|
}
|
| 3240 |
|
|
|
| 3241 |
|
|
break;
|
| 3242 |
|
|
|
| 3243 |
|
|
default:
|
| 3244 |
|
|
return false;
|
| 3245 |
|
|
}
|
| 3246 |
|
|
}
|
| 3247 |
|
|
}
|
| 3248 |
|
|
|
| 3249 |
|
|
return false;
|
| 3250 |
|
|
}
|