1 |
684 |
jeremybenn |
/* Gimple IR support functions.
|
2 |
|
|
|
3 |
|
|
Copyright 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Aldy Hernandez <aldyh@redhat.com>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "target.h"
|
27 |
|
|
#include "tree.h"
|
28 |
|
|
#include "ggc.h"
|
29 |
|
|
#include "hard-reg-set.h"
|
30 |
|
|
#include "basic-block.h"
|
31 |
|
|
#include "gimple.h"
|
32 |
|
|
#include "diagnostic.h"
|
33 |
|
|
#include "tree-flow.h"
|
34 |
|
|
#include "value-prof.h"
|
35 |
|
|
#include "flags.h"
|
36 |
|
|
#include "alias.h"
|
37 |
|
|
#include "demangle.h"
|
38 |
|
|
#include "langhooks.h"
|
39 |
|
|
|
40 |
|
|
/* Global type table. FIXME lto, it should be possible to re-use some
|
41 |
|
|
of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
|
42 |
|
|
etc), but those assume that types were built with the various
|
43 |
|
|
build_*_type routines which is not the case with the streamer. */
|
44 |
|
|
static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
|
45 |
|
|
htab_t gimple_types;
|
46 |
|
|
static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node)))
|
47 |
|
|
htab_t gimple_canonical_types;
|
48 |
|
|
static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
|
49 |
|
|
htab_t type_hash_cache;
|
50 |
|
|
static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
|
51 |
|
|
htab_t canonical_type_hash_cache;
|
52 |
|
|
|
53 |
|
|
/* All the tuples have their operand vector (if present) at the very bottom
|
54 |
|
|
of the structure. Therefore, the offset required to find the
|
55 |
|
|
operands vector the size of the structure minus the size of the 1
|
56 |
|
|
element tree array at the end (see gimple_ops). */
|
57 |
|
|
#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
|
58 |
|
|
(HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
|
59 |
|
|
EXPORTED_CONST size_t gimple_ops_offset_[] = {
|
60 |
|
|
#include "gsstruct.def"
|
61 |
|
|
};
|
62 |
|
|
#undef DEFGSSTRUCT
|
63 |
|
|
|
64 |
|
|
#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
|
65 |
|
|
static const size_t gsstruct_code_size[] = {
|
66 |
|
|
#include "gsstruct.def"
|
67 |
|
|
};
|
68 |
|
|
#undef DEFGSSTRUCT
|
69 |
|
|
|
70 |
|
|
#define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
|
71 |
|
|
const char *const gimple_code_name[] = {
|
72 |
|
|
#include "gimple.def"
|
73 |
|
|
};
|
74 |
|
|
#undef DEFGSCODE
|
75 |
|
|
|
76 |
|
|
#define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
|
77 |
|
|
EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
|
78 |
|
|
#include "gimple.def"
|
79 |
|
|
};
|
80 |
|
|
#undef DEFGSCODE
|
81 |
|
|
|
82 |
|
|
#ifdef GATHER_STATISTICS
|
83 |
|
|
/* Gimple stats. */
|
84 |
|
|
|
85 |
|
|
int gimple_alloc_counts[(int) gimple_alloc_kind_all];
|
86 |
|
|
int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
|
87 |
|
|
|
88 |
|
|
/* Keep in sync with gimple.h:enum gimple_alloc_kind. */
|
89 |
|
|
static const char * const gimple_alloc_kind_names[] = {
|
90 |
|
|
"assignments",
|
91 |
|
|
"phi nodes",
|
92 |
|
|
"conditionals",
|
93 |
|
|
"sequences",
|
94 |
|
|
"everything else"
|
95 |
|
|
};
|
96 |
|
|
|
97 |
|
|
#endif /* GATHER_STATISTICS */
|
98 |
|
|
|
99 |
|
|
/* A cache of gimple_seq objects. Sequences are created and destroyed
|
100 |
|
|
fairly often during gimplification. */
|
101 |
|
|
static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
|
102 |
|
|
|
103 |
|
|
/* Private API manipulation functions shared only with some
|
104 |
|
|
other files. */
|
105 |
|
|
extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
|
106 |
|
|
extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
|
107 |
|
|
|
108 |
|
|
/* Gimple tuple constructors.
|
109 |
|
|
Note: Any constructor taking a ``gimple_seq'' as a parameter, can
|
110 |
|
|
be passed a NULL to start with an empty sequence. */
|
111 |
|
|
|
112 |
|
|
/* Set the code for statement G to CODE. */
|
113 |
|
|
|
114 |
|
|
static inline void
|
115 |
|
|
gimple_set_code (gimple g, enum gimple_code code)
|
116 |
|
|
{
|
117 |
|
|
g->gsbase.code = code;
|
118 |
|
|
}
|
119 |
|
|
|
120 |
|
|
/* Return the number of bytes needed to hold a GIMPLE statement with
|
121 |
|
|
code CODE. */
|
122 |
|
|
|
123 |
|
|
static inline size_t
|
124 |
|
|
gimple_size (enum gimple_code code)
|
125 |
|
|
{
|
126 |
|
|
return gsstruct_code_size[gss_for_code (code)];
|
127 |
|
|
}
|
128 |
|
|
|
129 |
|
|
/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
|
130 |
|
|
operands. */
|
131 |
|
|
|
132 |
|
|
gimple
|
133 |
|
|
gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
|
134 |
|
|
{
|
135 |
|
|
size_t size;
|
136 |
|
|
gimple stmt;
|
137 |
|
|
|
138 |
|
|
size = gimple_size (code);
|
139 |
|
|
if (num_ops > 0)
|
140 |
|
|
size += sizeof (tree) * (num_ops - 1);
|
141 |
|
|
|
142 |
|
|
#ifdef GATHER_STATISTICS
|
143 |
|
|
{
|
144 |
|
|
enum gimple_alloc_kind kind = gimple_alloc_kind (code);
|
145 |
|
|
gimple_alloc_counts[(int) kind]++;
|
146 |
|
|
gimple_alloc_sizes[(int) kind] += size;
|
147 |
|
|
}
|
148 |
|
|
#endif
|
149 |
|
|
|
150 |
|
|
stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
|
151 |
|
|
gimple_set_code (stmt, code);
|
152 |
|
|
gimple_set_num_ops (stmt, num_ops);
|
153 |
|
|
|
154 |
|
|
/* Do not call gimple_set_modified here as it has other side
|
155 |
|
|
effects and this tuple is still not completely built. */
|
156 |
|
|
stmt->gsbase.modified = 1;
|
157 |
|
|
|
158 |
|
|
return stmt;
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
/* Set SUBCODE to be the code of the expression computed by statement G. */
|
162 |
|
|
|
163 |
|
|
static inline void
|
164 |
|
|
gimple_set_subcode (gimple g, unsigned subcode)
|
165 |
|
|
{
|
166 |
|
|
/* We only have 16 bits for the RHS code. Assert that we are not
|
167 |
|
|
overflowing it. */
|
168 |
|
|
gcc_assert (subcode < (1 << 16));
|
169 |
|
|
g->gsbase.subcode = subcode;
|
170 |
|
|
}
|
171 |
|
|
|
172 |
|
|
|
173 |
|
|
|
174 |
|
|
/* Build a tuple with operands. CODE is the statement to build (which
|
175 |
|
|
must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
|
176 |
|
|
for the new tuple. NUM_OPS is the number of operands to allocate. */
|
177 |
|
|
|
178 |
|
|
#define gimple_build_with_ops(c, s, n) \
|
179 |
|
|
gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
|
180 |
|
|
|
181 |
|
|
static gimple
|
182 |
|
|
gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
|
183 |
|
|
unsigned num_ops MEM_STAT_DECL)
|
184 |
|
|
{
|
185 |
|
|
gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
|
186 |
|
|
gimple_set_subcode (s, subcode);
|
187 |
|
|
|
188 |
|
|
return s;
|
189 |
|
|
}
|
190 |
|
|
|
191 |
|
|
|
192 |
|
|
/* Build a GIMPLE_RETURN statement returning RETVAL. */
|
193 |
|
|
|
194 |
|
|
gimple
|
195 |
|
|
gimple_build_return (tree retval)
|
196 |
|
|
{
|
197 |
|
|
gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
|
198 |
|
|
if (retval)
|
199 |
|
|
gimple_return_set_retval (s, retval);
|
200 |
|
|
return s;
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
/* Reset alias information on call S. */
|
204 |
|
|
|
205 |
|
|
void
|
206 |
|
|
gimple_call_reset_alias_info (gimple s)
|
207 |
|
|
{
|
208 |
|
|
if (gimple_call_flags (s) & ECF_CONST)
|
209 |
|
|
memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
|
210 |
|
|
else
|
211 |
|
|
pt_solution_reset (gimple_call_use_set (s));
|
212 |
|
|
if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
|
213 |
|
|
memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
|
214 |
|
|
else
|
215 |
|
|
pt_solution_reset (gimple_call_clobber_set (s));
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
/* Helper for gimple_build_call, gimple_build_call_valist,
|
219 |
|
|
gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
|
220 |
|
|
components of a GIMPLE_CALL statement to function FN with NARGS
|
221 |
|
|
arguments. */
|
222 |
|
|
|
223 |
|
|
static inline gimple
|
224 |
|
|
gimple_build_call_1 (tree fn, unsigned nargs)
|
225 |
|
|
{
|
226 |
|
|
gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
|
227 |
|
|
if (TREE_CODE (fn) == FUNCTION_DECL)
|
228 |
|
|
fn = build_fold_addr_expr (fn);
|
229 |
|
|
gimple_set_op (s, 1, fn);
|
230 |
|
|
gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
|
231 |
|
|
gimple_call_reset_alias_info (s);
|
232 |
|
|
return s;
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
|
236 |
|
|
/* Build a GIMPLE_CALL statement to function FN with the arguments
|
237 |
|
|
specified in vector ARGS. */
|
238 |
|
|
|
239 |
|
|
gimple
|
240 |
|
|
gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
|
241 |
|
|
{
|
242 |
|
|
unsigned i;
|
243 |
|
|
unsigned nargs = VEC_length (tree, args);
|
244 |
|
|
gimple call = gimple_build_call_1 (fn, nargs);
|
245 |
|
|
|
246 |
|
|
for (i = 0; i < nargs; i++)
|
247 |
|
|
gimple_call_set_arg (call, i, VEC_index (tree, args, i));
|
248 |
|
|
|
249 |
|
|
return call;
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
|
253 |
|
|
/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
|
254 |
|
|
arguments. The ... are the arguments. */
|
255 |
|
|
|
256 |
|
|
gimple
|
257 |
|
|
gimple_build_call (tree fn, unsigned nargs, ...)
|
258 |
|
|
{
|
259 |
|
|
va_list ap;
|
260 |
|
|
gimple call;
|
261 |
|
|
unsigned i;
|
262 |
|
|
|
263 |
|
|
gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
|
264 |
|
|
|
265 |
|
|
call = gimple_build_call_1 (fn, nargs);
|
266 |
|
|
|
267 |
|
|
va_start (ap, nargs);
|
268 |
|
|
for (i = 0; i < nargs; i++)
|
269 |
|
|
gimple_call_set_arg (call, i, va_arg (ap, tree));
|
270 |
|
|
va_end (ap);
|
271 |
|
|
|
272 |
|
|
return call;
|
273 |
|
|
}
|
274 |
|
|
|
275 |
|
|
|
276 |
|
|
/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
|
277 |
|
|
arguments. AP contains the arguments. */
|
278 |
|
|
|
279 |
|
|
gimple
|
280 |
|
|
gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
|
281 |
|
|
{
|
282 |
|
|
gimple call;
|
283 |
|
|
unsigned i;
|
284 |
|
|
|
285 |
|
|
gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
|
286 |
|
|
|
287 |
|
|
call = gimple_build_call_1 (fn, nargs);
|
288 |
|
|
|
289 |
|
|
for (i = 0; i < nargs; i++)
|
290 |
|
|
gimple_call_set_arg (call, i, va_arg (ap, tree));
|
291 |
|
|
|
292 |
|
|
return call;
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
|
296 |
|
|
/* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
|
297 |
|
|
Build the basic components of a GIMPLE_CALL statement to internal
|
298 |
|
|
function FN with NARGS arguments. */
|
299 |
|
|
|
300 |
|
|
static inline gimple
|
301 |
|
|
gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
|
302 |
|
|
{
|
303 |
|
|
gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
|
304 |
|
|
s->gsbase.subcode |= GF_CALL_INTERNAL;
|
305 |
|
|
gimple_call_set_internal_fn (s, fn);
|
306 |
|
|
gimple_call_reset_alias_info (s);
|
307 |
|
|
return s;
|
308 |
|
|
}
|
309 |
|
|
|
310 |
|
|
|
311 |
|
|
/* Build a GIMPLE_CALL statement to internal function FN. NARGS is
|
312 |
|
|
the number of arguments. The ... are the arguments. */
|
313 |
|
|
|
314 |
|
|
gimple
|
315 |
|
|
gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
|
316 |
|
|
{
|
317 |
|
|
va_list ap;
|
318 |
|
|
gimple call;
|
319 |
|
|
unsigned i;
|
320 |
|
|
|
321 |
|
|
call = gimple_build_call_internal_1 (fn, nargs);
|
322 |
|
|
va_start (ap, nargs);
|
323 |
|
|
for (i = 0; i < nargs; i++)
|
324 |
|
|
gimple_call_set_arg (call, i, va_arg (ap, tree));
|
325 |
|
|
va_end (ap);
|
326 |
|
|
|
327 |
|
|
return call;
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
|
331 |
|
|
/* Build a GIMPLE_CALL statement to internal function FN with the arguments
|
332 |
|
|
specified in vector ARGS. */
|
333 |
|
|
|
334 |
|
|
gimple
|
335 |
|
|
gimple_build_call_internal_vec (enum internal_fn fn, VEC(tree, heap) *args)
|
336 |
|
|
{
|
337 |
|
|
unsigned i, nargs;
|
338 |
|
|
gimple call;
|
339 |
|
|
|
340 |
|
|
nargs = VEC_length (tree, args);
|
341 |
|
|
call = gimple_build_call_internal_1 (fn, nargs);
|
342 |
|
|
for (i = 0; i < nargs; i++)
|
343 |
|
|
gimple_call_set_arg (call, i, VEC_index (tree, args, i));
|
344 |
|
|
|
345 |
|
|
return call;
|
346 |
|
|
}
|
347 |
|
|
|
348 |
|
|
|
349 |
|
|
/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
|
350 |
|
|
assumed to be in GIMPLE form already. Minimal checking is done of
|
351 |
|
|
this fact. */
|
352 |
|
|
|
353 |
|
|
gimple
|
354 |
|
|
gimple_build_call_from_tree (tree t)
|
355 |
|
|
{
|
356 |
|
|
unsigned i, nargs;
|
357 |
|
|
gimple call;
|
358 |
|
|
tree fndecl = get_callee_fndecl (t);
|
359 |
|
|
|
360 |
|
|
gcc_assert (TREE_CODE (t) == CALL_EXPR);
|
361 |
|
|
|
362 |
|
|
nargs = call_expr_nargs (t);
|
363 |
|
|
call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
|
364 |
|
|
|
365 |
|
|
for (i = 0; i < nargs; i++)
|
366 |
|
|
gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
|
367 |
|
|
|
368 |
|
|
gimple_set_block (call, TREE_BLOCK (t));
|
369 |
|
|
|
370 |
|
|
/* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
|
371 |
|
|
gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
|
372 |
|
|
gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
|
373 |
|
|
gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
|
374 |
|
|
if (fndecl
|
375 |
|
|
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
376 |
|
|
&& (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
|
377 |
|
|
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
|
378 |
|
|
gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
|
379 |
|
|
else
|
380 |
|
|
gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
|
381 |
|
|
gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
|
382 |
|
|
gimple_call_set_nothrow (call, TREE_NOTHROW (t));
|
383 |
|
|
gimple_set_no_warning (call, TREE_NO_WARNING (t));
|
384 |
|
|
|
385 |
|
|
return call;
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
|
389 |
|
|
/* Extract the operands and code for expression EXPR into *SUBCODE_P,
|
390 |
|
|
*OP1_P, *OP2_P and *OP3_P respectively. */
|
391 |
|
|
|
392 |
|
|
void
|
393 |
|
|
extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
|
394 |
|
|
tree *op2_p, tree *op3_p)
|
395 |
|
|
{
|
396 |
|
|
enum gimple_rhs_class grhs_class;
|
397 |
|
|
|
398 |
|
|
*subcode_p = TREE_CODE (expr);
|
399 |
|
|
grhs_class = get_gimple_rhs_class (*subcode_p);
|
400 |
|
|
|
401 |
|
|
if (grhs_class == GIMPLE_TERNARY_RHS)
|
402 |
|
|
{
|
403 |
|
|
*op1_p = TREE_OPERAND (expr, 0);
|
404 |
|
|
*op2_p = TREE_OPERAND (expr, 1);
|
405 |
|
|
*op3_p = TREE_OPERAND (expr, 2);
|
406 |
|
|
}
|
407 |
|
|
else if (grhs_class == GIMPLE_BINARY_RHS)
|
408 |
|
|
{
|
409 |
|
|
*op1_p = TREE_OPERAND (expr, 0);
|
410 |
|
|
*op2_p = TREE_OPERAND (expr, 1);
|
411 |
|
|
*op3_p = NULL_TREE;
|
412 |
|
|
}
|
413 |
|
|
else if (grhs_class == GIMPLE_UNARY_RHS)
|
414 |
|
|
{
|
415 |
|
|
*op1_p = TREE_OPERAND (expr, 0);
|
416 |
|
|
*op2_p = NULL_TREE;
|
417 |
|
|
*op3_p = NULL_TREE;
|
418 |
|
|
}
|
419 |
|
|
else if (grhs_class == GIMPLE_SINGLE_RHS)
|
420 |
|
|
{
|
421 |
|
|
*op1_p = expr;
|
422 |
|
|
*op2_p = NULL_TREE;
|
423 |
|
|
*op3_p = NULL_TREE;
|
424 |
|
|
}
|
425 |
|
|
else
|
426 |
|
|
gcc_unreachable ();
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
|
430 |
|
|
/* Build a GIMPLE_ASSIGN statement.
|
431 |
|
|
|
432 |
|
|
LHS of the assignment.
|
433 |
|
|
RHS of the assignment which can be unary or binary. */
|
434 |
|
|
|
435 |
|
|
gimple
|
436 |
|
|
gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
|
437 |
|
|
{
|
438 |
|
|
enum tree_code subcode;
|
439 |
|
|
tree op1, op2, op3;
|
440 |
|
|
|
441 |
|
|
extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
|
442 |
|
|
return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
|
443 |
|
|
PASS_MEM_STAT);
|
444 |
|
|
}
|
445 |
|
|
|
446 |
|
|
|
447 |
|
|
/* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
|
448 |
|
|
OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
|
449 |
|
|
GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
|
450 |
|
|
|
451 |
|
|
gimple
|
452 |
|
|
gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
|
453 |
|
|
tree op2, tree op3 MEM_STAT_DECL)
|
454 |
|
|
{
|
455 |
|
|
unsigned num_ops;
|
456 |
|
|
gimple p;
|
457 |
|
|
|
458 |
|
|
/* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
|
459 |
|
|
code). */
|
460 |
|
|
num_ops = get_gimple_rhs_num_ops (subcode) + 1;
|
461 |
|
|
|
462 |
|
|
p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
|
463 |
|
|
PASS_MEM_STAT);
|
464 |
|
|
gimple_assign_set_lhs (p, lhs);
|
465 |
|
|
gimple_assign_set_rhs1 (p, op1);
|
466 |
|
|
if (op2)
|
467 |
|
|
{
|
468 |
|
|
gcc_assert (num_ops > 2);
|
469 |
|
|
gimple_assign_set_rhs2 (p, op2);
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
if (op3)
|
473 |
|
|
{
|
474 |
|
|
gcc_assert (num_ops > 3);
|
475 |
|
|
gimple_assign_set_rhs3 (p, op3);
|
476 |
|
|
}
|
477 |
|
|
|
478 |
|
|
return p;
|
479 |
|
|
}
|
480 |
|
|
|
481 |
|
|
|
482 |
|
|
/* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
|
483 |
|
|
|
484 |
|
|
DST/SRC are the destination and source respectively. You can pass
|
485 |
|
|
ungimplified trees in DST or SRC, in which case they will be
|
486 |
|
|
converted to a gimple operand if necessary.
|
487 |
|
|
|
488 |
|
|
This function returns the newly created GIMPLE_ASSIGN tuple. */
|
489 |
|
|
|
490 |
|
|
gimple
|
491 |
|
|
gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
|
492 |
|
|
{
|
493 |
|
|
tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
|
494 |
|
|
gimplify_and_add (t, seq_p);
|
495 |
|
|
ggc_free (t);
|
496 |
|
|
return gimple_seq_last_stmt (*seq_p);
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
|
500 |
|
|
/* Build a GIMPLE_COND statement.
|
501 |
|
|
|
502 |
|
|
PRED is the condition used to compare LHS and the RHS.
|
503 |
|
|
T_LABEL is the label to jump to if the condition is true.
|
504 |
|
|
F_LABEL is the label to jump to otherwise. */
|
505 |
|
|
|
506 |
|
|
gimple
|
507 |
|
|
gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
|
508 |
|
|
tree t_label, tree f_label)
|
509 |
|
|
{
|
510 |
|
|
gimple p;
|
511 |
|
|
|
512 |
|
|
gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
|
513 |
|
|
p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
|
514 |
|
|
gimple_cond_set_lhs (p, lhs);
|
515 |
|
|
gimple_cond_set_rhs (p, rhs);
|
516 |
|
|
gimple_cond_set_true_label (p, t_label);
|
517 |
|
|
gimple_cond_set_false_label (p, f_label);
|
518 |
|
|
return p;
|
519 |
|
|
}
|
520 |
|
|
|
521 |
|
|
|
522 |
|
|
/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
|
523 |
|
|
|
524 |
|
|
void
|
525 |
|
|
gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
|
526 |
|
|
tree *lhs_p, tree *rhs_p)
|
527 |
|
|
{
|
528 |
|
|
gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
|
529 |
|
|
|| TREE_CODE (cond) == TRUTH_NOT_EXPR
|
530 |
|
|
|| is_gimple_min_invariant (cond)
|
531 |
|
|
|| SSA_VAR_P (cond));
|
532 |
|
|
|
533 |
|
|
extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
|
534 |
|
|
|
535 |
|
|
/* Canonicalize conditionals of the form 'if (!VAL)'. */
|
536 |
|
|
if (*code_p == TRUTH_NOT_EXPR)
|
537 |
|
|
{
|
538 |
|
|
*code_p = EQ_EXPR;
|
539 |
|
|
gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
|
540 |
|
|
*rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
|
541 |
|
|
}
|
542 |
|
|
/* Canonicalize conditionals of the form 'if (VAL)' */
|
543 |
|
|
else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
|
544 |
|
|
{
|
545 |
|
|
*code_p = NE_EXPR;
|
546 |
|
|
gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
|
547 |
|
|
*rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
|
548 |
|
|
}
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
|
552 |
|
|
/* Build a GIMPLE_COND statement from the conditional expression tree
|
553 |
|
|
COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
|
554 |
|
|
|
555 |
|
|
gimple
|
556 |
|
|
gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
|
557 |
|
|
{
|
558 |
|
|
enum tree_code code;
|
559 |
|
|
tree lhs, rhs;
|
560 |
|
|
|
561 |
|
|
gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
|
562 |
|
|
return gimple_build_cond (code, lhs, rhs, t_label, f_label);
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
|
566 |
|
|
boolean expression tree COND. */
|
567 |
|
|
|
568 |
|
|
void
|
569 |
|
|
gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
|
570 |
|
|
{
|
571 |
|
|
enum tree_code code;
|
572 |
|
|
tree lhs, rhs;
|
573 |
|
|
|
574 |
|
|
gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
|
575 |
|
|
gimple_cond_set_condition (stmt, code, lhs, rhs);
|
576 |
|
|
}
|
577 |
|
|
|
578 |
|
|
/* Build a GIMPLE_LABEL statement for LABEL. */
|
579 |
|
|
|
580 |
|
|
gimple
|
581 |
|
|
gimple_build_label (tree label)
|
582 |
|
|
{
|
583 |
|
|
gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
|
584 |
|
|
gimple_label_set_label (p, label);
|
585 |
|
|
return p;
|
586 |
|
|
}
|
587 |
|
|
|
588 |
|
|
/* Build a GIMPLE_GOTO statement to label DEST. */
|
589 |
|
|
|
590 |
|
|
gimple
|
591 |
|
|
gimple_build_goto (tree dest)
|
592 |
|
|
{
|
593 |
|
|
gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
|
594 |
|
|
gimple_goto_set_dest (p, dest);
|
595 |
|
|
return p;
|
596 |
|
|
}
|
597 |
|
|
|
598 |
|
|
|
599 |
|
|
/* Build a GIMPLE_NOP statement. */
|
600 |
|
|
|
601 |
|
|
gimple
|
602 |
|
|
gimple_build_nop (void)
|
603 |
|
|
{
|
604 |
|
|
return gimple_alloc (GIMPLE_NOP, 0);
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
|
608 |
|
|
/* Build a GIMPLE_BIND statement.
|
609 |
|
|
VARS are the variables in BODY.
|
610 |
|
|
BLOCK is the containing block. */
|
611 |
|
|
|
612 |
|
|
gimple
|
613 |
|
|
gimple_build_bind (tree vars, gimple_seq body, tree block)
|
614 |
|
|
{
|
615 |
|
|
gimple p = gimple_alloc (GIMPLE_BIND, 0);
|
616 |
|
|
gimple_bind_set_vars (p, vars);
|
617 |
|
|
if (body)
|
618 |
|
|
gimple_bind_set_body (p, body);
|
619 |
|
|
if (block)
|
620 |
|
|
gimple_bind_set_block (p, block);
|
621 |
|
|
return p;
|
622 |
|
|
}
|
623 |
|
|
|
624 |
|
|
/* Helper function to set the simple fields of a asm stmt.
|
625 |
|
|
|
626 |
|
|
STRING is a pointer to a string that is the asm blocks assembly code.
|
627 |
|
|
NINPUT is the number of register inputs.
|
628 |
|
|
NOUTPUT is the number of register outputs.
|
629 |
|
|
NCLOBBERS is the number of clobbered registers.
|
630 |
|
|
*/
|
631 |
|
|
|
632 |
|
|
static inline gimple
|
633 |
|
|
gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
|
634 |
|
|
unsigned nclobbers, unsigned nlabels)
|
635 |
|
|
{
|
636 |
|
|
gimple p;
|
637 |
|
|
int size = strlen (string);
|
638 |
|
|
|
639 |
|
|
/* ASMs with labels cannot have outputs. This should have been
|
640 |
|
|
enforced by the front end. */
|
641 |
|
|
gcc_assert (nlabels == 0 || noutputs == 0);
|
642 |
|
|
|
643 |
|
|
p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
|
644 |
|
|
ninputs + noutputs + nclobbers + nlabels);
|
645 |
|
|
|
646 |
|
|
p->gimple_asm.ni = ninputs;
|
647 |
|
|
p->gimple_asm.no = noutputs;
|
648 |
|
|
p->gimple_asm.nc = nclobbers;
|
649 |
|
|
p->gimple_asm.nl = nlabels;
|
650 |
|
|
p->gimple_asm.string = ggc_alloc_string (string, size);
|
651 |
|
|
|
652 |
|
|
#ifdef GATHER_STATISTICS
|
653 |
|
|
gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
|
654 |
|
|
#endif
|
655 |
|
|
|
656 |
|
|
return p;
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
/* Build a GIMPLE_ASM statement.
|
660 |
|
|
|
661 |
|
|
STRING is the assembly code.
|
662 |
|
|
NINPUT is the number of register inputs.
|
663 |
|
|
NOUTPUT is the number of register outputs.
|
664 |
|
|
NCLOBBERS is the number of clobbered registers.
|
665 |
|
|
INPUTS is a vector of the input register parameters.
|
666 |
|
|
OUTPUTS is a vector of the output register parameters.
|
667 |
|
|
CLOBBERS is a vector of the clobbered register parameters.
|
668 |
|
|
LABELS is a vector of destination labels. */
|
669 |
|
|
|
670 |
|
|
gimple
|
671 |
|
|
gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
|
672 |
|
|
VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
|
673 |
|
|
VEC(tree,gc)* labels)
|
674 |
|
|
{
|
675 |
|
|
gimple p;
|
676 |
|
|
unsigned i;
|
677 |
|
|
|
678 |
|
|
p = gimple_build_asm_1 (string,
|
679 |
|
|
VEC_length (tree, inputs),
|
680 |
|
|
VEC_length (tree, outputs),
|
681 |
|
|
VEC_length (tree, clobbers),
|
682 |
|
|
VEC_length (tree, labels));
|
683 |
|
|
|
684 |
|
|
for (i = 0; i < VEC_length (tree, inputs); i++)
|
685 |
|
|
gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
|
686 |
|
|
|
687 |
|
|
for (i = 0; i < VEC_length (tree, outputs); i++)
|
688 |
|
|
gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
|
689 |
|
|
|
690 |
|
|
for (i = 0; i < VEC_length (tree, clobbers); i++)
|
691 |
|
|
gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
|
692 |
|
|
|
693 |
|
|
for (i = 0; i < VEC_length (tree, labels); i++)
|
694 |
|
|
gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
|
695 |
|
|
|
696 |
|
|
return p;
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
/* Build a GIMPLE_CATCH statement.
|
700 |
|
|
|
701 |
|
|
TYPES are the catch types.
|
702 |
|
|
HANDLER is the exception handler. */
|
703 |
|
|
|
704 |
|
|
gimple
|
705 |
|
|
gimple_build_catch (tree types, gimple_seq handler)
|
706 |
|
|
{
|
707 |
|
|
gimple p = gimple_alloc (GIMPLE_CATCH, 0);
|
708 |
|
|
gimple_catch_set_types (p, types);
|
709 |
|
|
if (handler)
|
710 |
|
|
gimple_catch_set_handler (p, handler);
|
711 |
|
|
|
712 |
|
|
return p;
|
713 |
|
|
}
|
714 |
|
|
|
715 |
|
|
/* Build a GIMPLE_EH_FILTER statement.
|
716 |
|
|
|
717 |
|
|
TYPES are the filter's types.
|
718 |
|
|
FAILURE is the filter's failure action. */
|
719 |
|
|
|
720 |
|
|
gimple
|
721 |
|
|
gimple_build_eh_filter (tree types, gimple_seq failure)
|
722 |
|
|
{
|
723 |
|
|
gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
|
724 |
|
|
gimple_eh_filter_set_types (p, types);
|
725 |
|
|
if (failure)
|
726 |
|
|
gimple_eh_filter_set_failure (p, failure);
|
727 |
|
|
|
728 |
|
|
return p;
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
/* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
|
732 |
|
|
|
733 |
|
|
gimple
|
734 |
|
|
gimple_build_eh_must_not_throw (tree decl)
|
735 |
|
|
{
|
736 |
|
|
gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
|
737 |
|
|
|
738 |
|
|
gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
|
739 |
|
|
gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
|
740 |
|
|
gimple_eh_must_not_throw_set_fndecl (p, decl);
|
741 |
|
|
|
742 |
|
|
return p;
|
743 |
|
|
}
|
744 |
|
|
|
745 |
|
|
/* Build a GIMPLE_EH_ELSE statement. */
|
746 |
|
|
|
747 |
|
|
gimple
|
748 |
|
|
gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
|
749 |
|
|
{
|
750 |
|
|
gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0);
|
751 |
|
|
gimple_eh_else_set_n_body (p, n_body);
|
752 |
|
|
gimple_eh_else_set_e_body (p, e_body);
|
753 |
|
|
return p;
|
754 |
|
|
}
|
755 |
|
|
|
756 |
|
|
/* Build a GIMPLE_TRY statement.
|
757 |
|
|
|
758 |
|
|
EVAL is the expression to evaluate.
|
759 |
|
|
CLEANUP is the cleanup expression.
|
760 |
|
|
KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
|
761 |
|
|
whether this is a try/catch or a try/finally respectively. */
|
762 |
|
|
|
763 |
|
|
gimple
|
764 |
|
|
gimple_build_try (gimple_seq eval, gimple_seq cleanup,
|
765 |
|
|
enum gimple_try_flags kind)
|
766 |
|
|
{
|
767 |
|
|
gimple p;
|
768 |
|
|
|
769 |
|
|
gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
|
770 |
|
|
p = gimple_alloc (GIMPLE_TRY, 0);
|
771 |
|
|
gimple_set_subcode (p, kind);
|
772 |
|
|
if (eval)
|
773 |
|
|
gimple_try_set_eval (p, eval);
|
774 |
|
|
if (cleanup)
|
775 |
|
|
gimple_try_set_cleanup (p, cleanup);
|
776 |
|
|
|
777 |
|
|
return p;
|
778 |
|
|
}
|
779 |
|
|
|
780 |
|
|
/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
|
781 |
|
|
|
782 |
|
|
CLEANUP is the cleanup expression. */
|
783 |
|
|
|
784 |
|
|
gimple
|
785 |
|
|
gimple_build_wce (gimple_seq cleanup)
|
786 |
|
|
{
|
787 |
|
|
gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
|
788 |
|
|
if (cleanup)
|
789 |
|
|
gimple_wce_set_cleanup (p, cleanup);
|
790 |
|
|
|
791 |
|
|
return p;
|
792 |
|
|
}
|
793 |
|
|
|
794 |
|
|
|
795 |
|
|
/* Build a GIMPLE_RESX statement. */
|
796 |
|
|
|
797 |
|
|
gimple
|
798 |
|
|
gimple_build_resx (int region)
|
799 |
|
|
{
|
800 |
|
|
gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
|
801 |
|
|
p->gimple_eh_ctrl.region = region;
|
802 |
|
|
return p;
|
803 |
|
|
}
|
804 |
|
|
|
805 |
|
|
|
806 |
|
|
/* The helper for constructing a gimple switch statement.
|
807 |
|
|
INDEX is the switch's index.
|
808 |
|
|
NLABELS is the number of labels in the switch excluding the default.
|
809 |
|
|
DEFAULT_LABEL is the default label for the switch statement. */
|
810 |
|
|
|
811 |
|
|
gimple
|
812 |
|
|
gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
|
813 |
|
|
{
|
814 |
|
|
/* nlabels + 1 default label + 1 index. */
|
815 |
|
|
gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
|
816 |
|
|
1 + (default_label != NULL) + nlabels);
|
817 |
|
|
gimple_switch_set_index (p, index);
|
818 |
|
|
if (default_label)
|
819 |
|
|
gimple_switch_set_default_label (p, default_label);
|
820 |
|
|
return p;
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
|
824 |
|
|
/* Build a GIMPLE_SWITCH statement.
|
825 |
|
|
|
826 |
|
|
INDEX is the switch's index.
|
827 |
|
|
NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
|
828 |
|
|
... are the labels excluding the default. */
|
829 |
|
|
|
830 |
|
|
gimple
|
831 |
|
|
gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
|
832 |
|
|
{
|
833 |
|
|
va_list al;
|
834 |
|
|
unsigned i, offset;
|
835 |
|
|
gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
|
836 |
|
|
|
837 |
|
|
/* Store the rest of the labels. */
|
838 |
|
|
va_start (al, default_label);
|
839 |
|
|
offset = (default_label != NULL);
|
840 |
|
|
for (i = 0; i < nlabels; i++)
|
841 |
|
|
gimple_switch_set_label (p, i + offset, va_arg (al, tree));
|
842 |
|
|
va_end (al);
|
843 |
|
|
|
844 |
|
|
return p;
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
|
848 |
|
|
/* Build a GIMPLE_SWITCH statement.
|
849 |
|
|
|
850 |
|
|
INDEX is the switch's index.
|
851 |
|
|
DEFAULT_LABEL is the default label
|
852 |
|
|
ARGS is a vector of labels excluding the default. */
|
853 |
|
|
|
854 |
|
|
gimple
|
855 |
|
|
gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
|
856 |
|
|
{
|
857 |
|
|
unsigned i, offset, nlabels = VEC_length (tree, args);
|
858 |
|
|
gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
|
859 |
|
|
|
860 |
|
|
/* Copy the labels from the vector to the switch statement. */
|
861 |
|
|
offset = (default_label != NULL);
|
862 |
|
|
for (i = 0; i < nlabels; i++)
|
863 |
|
|
gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
|
864 |
|
|
|
865 |
|
|
return p;
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
/* Build a GIMPLE_EH_DISPATCH statement. */
|
869 |
|
|
|
870 |
|
|
gimple
|
871 |
|
|
gimple_build_eh_dispatch (int region)
|
872 |
|
|
{
|
873 |
|
|
gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
|
874 |
|
|
p->gimple_eh_ctrl.region = region;
|
875 |
|
|
return p;
|
876 |
|
|
}
|
877 |
|
|
|
878 |
|
|
/* Build a new GIMPLE_DEBUG_BIND statement.
|
879 |
|
|
|
880 |
|
|
VAR is bound to VALUE; block and location are taken from STMT. */
|
881 |
|
|
|
882 |
|
|
gimple
|
883 |
|
|
gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
|
884 |
|
|
{
|
885 |
|
|
gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
|
886 |
|
|
(unsigned)GIMPLE_DEBUG_BIND, 2
|
887 |
|
|
PASS_MEM_STAT);
|
888 |
|
|
|
889 |
|
|
gimple_debug_bind_set_var (p, var);
|
890 |
|
|
gimple_debug_bind_set_value (p, value);
|
891 |
|
|
if (stmt)
|
892 |
|
|
{
|
893 |
|
|
gimple_set_block (p, gimple_block (stmt));
|
894 |
|
|
gimple_set_location (p, gimple_location (stmt));
|
895 |
|
|
}
|
896 |
|
|
|
897 |
|
|
return p;
|
898 |
|
|
}
|
899 |
|
|
|
900 |
|
|
|
901 |
|
|
/* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
|
902 |
|
|
|
903 |
|
|
VAR is bound to VALUE; block and location are taken from STMT. */
|
904 |
|
|
|
905 |
|
|
gimple
|
906 |
|
|
gimple_build_debug_source_bind_stat (tree var, tree value,
|
907 |
|
|
gimple stmt MEM_STAT_DECL)
|
908 |
|
|
{
|
909 |
|
|
gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
|
910 |
|
|
(unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
|
911 |
|
|
PASS_MEM_STAT);
|
912 |
|
|
|
913 |
|
|
gimple_debug_source_bind_set_var (p, var);
|
914 |
|
|
gimple_debug_source_bind_set_value (p, value);
|
915 |
|
|
if (stmt)
|
916 |
|
|
{
|
917 |
|
|
gimple_set_block (p, gimple_block (stmt));
|
918 |
|
|
gimple_set_location (p, gimple_location (stmt));
|
919 |
|
|
}
|
920 |
|
|
|
921 |
|
|
return p;
|
922 |
|
|
}
|
923 |
|
|
|
924 |
|
|
|
925 |
|
|
/* Build a GIMPLE_OMP_CRITICAL statement.
|
926 |
|
|
|
927 |
|
|
BODY is the sequence of statements for which only one thread can execute.
|
928 |
|
|
NAME is optional identifier for this critical block. */
|
929 |
|
|
|
930 |
|
|
gimple
|
931 |
|
|
gimple_build_omp_critical (gimple_seq body, tree name)
|
932 |
|
|
{
|
933 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
|
934 |
|
|
gimple_omp_critical_set_name (p, name);
|
935 |
|
|
if (body)
|
936 |
|
|
gimple_omp_set_body (p, body);
|
937 |
|
|
|
938 |
|
|
return p;
|
939 |
|
|
}
|
940 |
|
|
|
941 |
|
|
/* Build a GIMPLE_OMP_FOR statement.
|
942 |
|
|
|
943 |
|
|
BODY is sequence of statements inside the for loop.
|
944 |
|
|
CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
|
945 |
|
|
lastprivate, reductions, ordered, schedule, and nowait.
|
946 |
|
|
COLLAPSE is the collapse count.
|
947 |
|
|
PRE_BODY is the sequence of statements that are loop invariant. */
|
948 |
|
|
|
949 |
|
|
gimple
|
950 |
|
|
gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
|
951 |
|
|
gimple_seq pre_body)
|
952 |
|
|
{
|
953 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
|
954 |
|
|
if (body)
|
955 |
|
|
gimple_omp_set_body (p, body);
|
956 |
|
|
gimple_omp_for_set_clauses (p, clauses);
|
957 |
|
|
p->gimple_omp_for.collapse = collapse;
|
958 |
|
|
p->gimple_omp_for.iter
|
959 |
|
|
= ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
|
960 |
|
|
if (pre_body)
|
961 |
|
|
gimple_omp_for_set_pre_body (p, pre_body);
|
962 |
|
|
|
963 |
|
|
return p;
|
964 |
|
|
}
|
965 |
|
|
|
966 |
|
|
|
967 |
|
|
/* Build a GIMPLE_OMP_PARALLEL statement.
|
968 |
|
|
|
969 |
|
|
BODY is sequence of statements which are executed in parallel.
|
970 |
|
|
CLAUSES, are the OMP parallel construct's clauses.
|
971 |
|
|
CHILD_FN is the function created for the parallel threads to execute.
|
972 |
|
|
DATA_ARG are the shared data argument(s). */
|
973 |
|
|
|
974 |
|
|
gimple
|
975 |
|
|
gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
|
976 |
|
|
tree data_arg)
|
977 |
|
|
{
|
978 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
|
979 |
|
|
if (body)
|
980 |
|
|
gimple_omp_set_body (p, body);
|
981 |
|
|
gimple_omp_parallel_set_clauses (p, clauses);
|
982 |
|
|
gimple_omp_parallel_set_child_fn (p, child_fn);
|
983 |
|
|
gimple_omp_parallel_set_data_arg (p, data_arg);
|
984 |
|
|
|
985 |
|
|
return p;
|
986 |
|
|
}
|
987 |
|
|
|
988 |
|
|
|
989 |
|
|
/* Build a GIMPLE_OMP_TASK statement.
|
990 |
|
|
|
991 |
|
|
BODY is sequence of statements which are executed by the explicit task.
|
992 |
|
|
CLAUSES, are the OMP parallel construct's clauses.
|
993 |
|
|
CHILD_FN is the function created for the parallel threads to execute.
|
994 |
|
|
DATA_ARG are the shared data argument(s).
|
995 |
|
|
COPY_FN is the optional function for firstprivate initialization.
|
996 |
|
|
ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
|
997 |
|
|
|
998 |
|
|
gimple
|
999 |
|
|
gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
|
1000 |
|
|
tree data_arg, tree copy_fn, tree arg_size,
|
1001 |
|
|
tree arg_align)
|
1002 |
|
|
{
|
1003 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
|
1004 |
|
|
if (body)
|
1005 |
|
|
gimple_omp_set_body (p, body);
|
1006 |
|
|
gimple_omp_task_set_clauses (p, clauses);
|
1007 |
|
|
gimple_omp_task_set_child_fn (p, child_fn);
|
1008 |
|
|
gimple_omp_task_set_data_arg (p, data_arg);
|
1009 |
|
|
gimple_omp_task_set_copy_fn (p, copy_fn);
|
1010 |
|
|
gimple_omp_task_set_arg_size (p, arg_size);
|
1011 |
|
|
gimple_omp_task_set_arg_align (p, arg_align);
|
1012 |
|
|
|
1013 |
|
|
return p;
|
1014 |
|
|
}
|
1015 |
|
|
|
1016 |
|
|
|
1017 |
|
|
/* Build a GIMPLE_OMP_SECTION statement for a sections statement.
|
1018 |
|
|
|
1019 |
|
|
BODY is the sequence of statements in the section. */
|
1020 |
|
|
|
1021 |
|
|
gimple
|
1022 |
|
|
gimple_build_omp_section (gimple_seq body)
|
1023 |
|
|
{
|
1024 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
|
1025 |
|
|
if (body)
|
1026 |
|
|
gimple_omp_set_body (p, body);
|
1027 |
|
|
|
1028 |
|
|
return p;
|
1029 |
|
|
}
|
1030 |
|
|
|
1031 |
|
|
|
1032 |
|
|
/* Build a GIMPLE_OMP_MASTER statement.
|
1033 |
|
|
|
1034 |
|
|
BODY is the sequence of statements to be executed by just the master. */
|
1035 |
|
|
|
1036 |
|
|
gimple
|
1037 |
|
|
gimple_build_omp_master (gimple_seq body)
|
1038 |
|
|
{
|
1039 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
|
1040 |
|
|
if (body)
|
1041 |
|
|
gimple_omp_set_body (p, body);
|
1042 |
|
|
|
1043 |
|
|
return p;
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
|
1047 |
|
|
/* Build a GIMPLE_OMP_CONTINUE statement.
|
1048 |
|
|
|
1049 |
|
|
CONTROL_DEF is the definition of the control variable.
|
1050 |
|
|
CONTROL_USE is the use of the control variable. */
|
1051 |
|
|
|
1052 |
|
|
gimple
|
1053 |
|
|
gimple_build_omp_continue (tree control_def, tree control_use)
|
1054 |
|
|
{
|
1055 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
|
1056 |
|
|
gimple_omp_continue_set_control_def (p, control_def);
|
1057 |
|
|
gimple_omp_continue_set_control_use (p, control_use);
|
1058 |
|
|
return p;
|
1059 |
|
|
}
|
1060 |
|
|
|
1061 |
|
|
/* Build a GIMPLE_OMP_ORDERED statement.
|
1062 |
|
|
|
1063 |
|
|
BODY is the sequence of statements inside a loop that will executed in
|
1064 |
|
|
sequence. */
|
1065 |
|
|
|
1066 |
|
|
gimple
|
1067 |
|
|
gimple_build_omp_ordered (gimple_seq body)
|
1068 |
|
|
{
|
1069 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
|
1070 |
|
|
if (body)
|
1071 |
|
|
gimple_omp_set_body (p, body);
|
1072 |
|
|
|
1073 |
|
|
return p;
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
|
1077 |
|
|
/* Build a GIMPLE_OMP_RETURN statement.
|
1078 |
|
|
WAIT_P is true if this is a non-waiting return. */
|
1079 |
|
|
|
1080 |
|
|
gimple
|
1081 |
|
|
gimple_build_omp_return (bool wait_p)
|
1082 |
|
|
{
|
1083 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
|
1084 |
|
|
if (wait_p)
|
1085 |
|
|
gimple_omp_return_set_nowait (p);
|
1086 |
|
|
|
1087 |
|
|
return p;
|
1088 |
|
|
}
|
1089 |
|
|
|
1090 |
|
|
|
1091 |
|
|
/* Build a GIMPLE_OMP_SECTIONS statement.
|
1092 |
|
|
|
1093 |
|
|
BODY is a sequence of section statements.
|
1094 |
|
|
CLAUSES are any of the OMP sections contsruct's clauses: private,
|
1095 |
|
|
firstprivate, lastprivate, reduction, and nowait. */
|
1096 |
|
|
|
1097 |
|
|
gimple
|
1098 |
|
|
gimple_build_omp_sections (gimple_seq body, tree clauses)
|
1099 |
|
|
{
|
1100 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
|
1101 |
|
|
if (body)
|
1102 |
|
|
gimple_omp_set_body (p, body);
|
1103 |
|
|
gimple_omp_sections_set_clauses (p, clauses);
|
1104 |
|
|
|
1105 |
|
|
return p;
|
1106 |
|
|
}
|
1107 |
|
|
|
1108 |
|
|
|
1109 |
|
|
/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
|
1110 |
|
|
|
1111 |
|
|
gimple
|
1112 |
|
|
gimple_build_omp_sections_switch (void)
|
1113 |
|
|
{
|
1114 |
|
|
return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
|
1115 |
|
|
}
|
1116 |
|
|
|
1117 |
|
|
|
1118 |
|
|
/* Build a GIMPLE_OMP_SINGLE statement.
|
1119 |
|
|
|
1120 |
|
|
BODY is the sequence of statements that will be executed once.
|
1121 |
|
|
CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
|
1122 |
|
|
copyprivate, nowait. */
|
1123 |
|
|
|
1124 |
|
|
gimple
|
1125 |
|
|
gimple_build_omp_single (gimple_seq body, tree clauses)
|
1126 |
|
|
{
|
1127 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
|
1128 |
|
|
if (body)
|
1129 |
|
|
gimple_omp_set_body (p, body);
|
1130 |
|
|
gimple_omp_single_set_clauses (p, clauses);
|
1131 |
|
|
|
1132 |
|
|
return p;
|
1133 |
|
|
}
|
1134 |
|
|
|
1135 |
|
|
|
1136 |
|
|
/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
|
1137 |
|
|
|
1138 |
|
|
gimple
|
1139 |
|
|
gimple_build_omp_atomic_load (tree lhs, tree rhs)
|
1140 |
|
|
{
|
1141 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
|
1142 |
|
|
gimple_omp_atomic_load_set_lhs (p, lhs);
|
1143 |
|
|
gimple_omp_atomic_load_set_rhs (p, rhs);
|
1144 |
|
|
return p;
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
/* Build a GIMPLE_OMP_ATOMIC_STORE statement.
|
1148 |
|
|
|
1149 |
|
|
VAL is the value we are storing. */
|
1150 |
|
|
|
1151 |
|
|
gimple
|
1152 |
|
|
gimple_build_omp_atomic_store (tree val)
|
1153 |
|
|
{
|
1154 |
|
|
gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
|
1155 |
|
|
gimple_omp_atomic_store_set_val (p, val);
|
1156 |
|
|
return p;
|
1157 |
|
|
}
|
1158 |
|
|
|
1159 |
|
|
/* Build a GIMPLE_TRANSACTION statement. */
|
1160 |
|
|
|
1161 |
|
|
gimple
|
1162 |
|
|
gimple_build_transaction (gimple_seq body, tree label)
|
1163 |
|
|
{
|
1164 |
|
|
gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0);
|
1165 |
|
|
gimple_transaction_set_body (p, body);
|
1166 |
|
|
gimple_transaction_set_label (p, label);
|
1167 |
|
|
return p;
|
1168 |
|
|
}
|
1169 |
|
|
|
1170 |
|
|
/* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
|
1171 |
|
|
predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
|
1172 |
|
|
|
1173 |
|
|
gimple
|
1174 |
|
|
gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
|
1175 |
|
|
{
|
1176 |
|
|
gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
|
1177 |
|
|
/* Ensure all the predictors fit into the lower bits of the subcode. */
|
1178 |
|
|
gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
|
1179 |
|
|
gimple_predict_set_predictor (p, predictor);
|
1180 |
|
|
gimple_predict_set_outcome (p, outcome);
|
1181 |
|
|
return p;
|
1182 |
|
|
}
|
1183 |
|
|
|
1184 |
|
|
#if defined ENABLE_GIMPLE_CHECKING
|
1185 |
|
|
/* Complain of a gimple type mismatch and die. */
|
1186 |
|
|
|
1187 |
|
|
void
|
1188 |
|
|
gimple_check_failed (const_gimple gs, const char *file, int line,
|
1189 |
|
|
const char *function, enum gimple_code code,
|
1190 |
|
|
enum tree_code subcode)
|
1191 |
|
|
{
|
1192 |
|
|
internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
|
1193 |
|
|
gimple_code_name[code],
|
1194 |
|
|
tree_code_name[subcode],
|
1195 |
|
|
gimple_code_name[gimple_code (gs)],
|
1196 |
|
|
gs->gsbase.subcode > 0
|
1197 |
|
|
? tree_code_name[gs->gsbase.subcode]
|
1198 |
|
|
: "",
|
1199 |
|
|
function, trim_filename (file), line);
|
1200 |
|
|
}
|
1201 |
|
|
#endif /* ENABLE_GIMPLE_CHECKING */
|
1202 |
|
|
|
1203 |
|
|
|
1204 |
|
|
/* Allocate a new GIMPLE sequence in GC memory and return it. If
|
1205 |
|
|
there are free sequences in GIMPLE_SEQ_CACHE return one of those
|
1206 |
|
|
instead. */
|
1207 |
|
|
|
1208 |
|
|
gimple_seq
|
1209 |
|
|
gimple_seq_alloc (void)
|
1210 |
|
|
{
|
1211 |
|
|
gimple_seq seq = gimple_seq_cache;
|
1212 |
|
|
if (seq)
|
1213 |
|
|
{
|
1214 |
|
|
gimple_seq_cache = gimple_seq_cache->next_free;
|
1215 |
|
|
gcc_assert (gimple_seq_cache != seq);
|
1216 |
|
|
memset (seq, 0, sizeof (*seq));
|
1217 |
|
|
}
|
1218 |
|
|
else
|
1219 |
|
|
{
|
1220 |
|
|
seq = ggc_alloc_cleared_gimple_seq_d ();
|
1221 |
|
|
#ifdef GATHER_STATISTICS
|
1222 |
|
|
gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
|
1223 |
|
|
gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
|
1224 |
|
|
#endif
|
1225 |
|
|
}
|
1226 |
|
|
|
1227 |
|
|
return seq;
|
1228 |
|
|
}
|
1229 |
|
|
|
1230 |
|
|
/* Return SEQ to the free pool of GIMPLE sequences. */
|
1231 |
|
|
|
1232 |
|
|
void
|
1233 |
|
|
gimple_seq_free (gimple_seq seq)
|
1234 |
|
|
{
|
1235 |
|
|
if (seq == NULL)
|
1236 |
|
|
return;
|
1237 |
|
|
|
1238 |
|
|
gcc_assert (gimple_seq_first (seq) == NULL);
|
1239 |
|
|
gcc_assert (gimple_seq_last (seq) == NULL);
|
1240 |
|
|
|
1241 |
|
|
/* If this triggers, it's a sign that the same list is being freed
|
1242 |
|
|
twice. */
|
1243 |
|
|
gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
|
1244 |
|
|
|
1245 |
|
|
/* Add SEQ to the pool of free sequences. */
|
1246 |
|
|
seq->next_free = gimple_seq_cache;
|
1247 |
|
|
gimple_seq_cache = seq;
|
1248 |
|
|
}
|
1249 |
|
|
|
1250 |
|
|
|
1251 |
|
|
/* Link gimple statement GS to the end of the sequence *SEQ_P. If
|
1252 |
|
|
*SEQ_P is NULL, a new sequence is allocated. */
|
1253 |
|
|
|
1254 |
|
|
void
|
1255 |
|
|
gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
|
1256 |
|
|
{
|
1257 |
|
|
gimple_stmt_iterator si;
|
1258 |
|
|
|
1259 |
|
|
if (gs == NULL)
|
1260 |
|
|
return;
|
1261 |
|
|
|
1262 |
|
|
if (*seq_p == NULL)
|
1263 |
|
|
*seq_p = gimple_seq_alloc ();
|
1264 |
|
|
|
1265 |
|
|
si = gsi_last (*seq_p);
|
1266 |
|
|
gsi_insert_after (&si, gs, GSI_NEW_STMT);
|
1267 |
|
|
}
|
1268 |
|
|
|
1269 |
|
|
|
1270 |
|
|
/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
|
1271 |
|
|
NULL, a new sequence is allocated. */
|
1272 |
|
|
|
1273 |
|
|
void
|
1274 |
|
|
gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
|
1275 |
|
|
{
|
1276 |
|
|
gimple_stmt_iterator si;
|
1277 |
|
|
|
1278 |
|
|
if (src == NULL)
|
1279 |
|
|
return;
|
1280 |
|
|
|
1281 |
|
|
if (*dst_p == NULL)
|
1282 |
|
|
*dst_p = gimple_seq_alloc ();
|
1283 |
|
|
|
1284 |
|
|
si = gsi_last (*dst_p);
|
1285 |
|
|
gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
|
1286 |
|
|
}
|
1287 |
|
|
|
1288 |
|
|
|
1289 |
|
|
/* Helper function of empty_body_p. Return true if STMT is an empty
|
1290 |
|
|
statement. */
|
1291 |
|
|
|
1292 |
|
|
static bool
|
1293 |
|
|
empty_stmt_p (gimple stmt)
|
1294 |
|
|
{
|
1295 |
|
|
if (gimple_code (stmt) == GIMPLE_NOP)
|
1296 |
|
|
return true;
|
1297 |
|
|
if (gimple_code (stmt) == GIMPLE_BIND)
|
1298 |
|
|
return empty_body_p (gimple_bind_body (stmt));
|
1299 |
|
|
return false;
|
1300 |
|
|
}
|
1301 |
|
|
|
1302 |
|
|
|
1303 |
|
|
/* Return true if BODY contains nothing but empty statements. */
|
1304 |
|
|
|
1305 |
|
|
bool
|
1306 |
|
|
empty_body_p (gimple_seq body)
|
1307 |
|
|
{
|
1308 |
|
|
gimple_stmt_iterator i;
|
1309 |
|
|
|
1310 |
|
|
if (gimple_seq_empty_p (body))
|
1311 |
|
|
return true;
|
1312 |
|
|
for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
|
1313 |
|
|
if (!empty_stmt_p (gsi_stmt (i))
|
1314 |
|
|
&& !is_gimple_debug (gsi_stmt (i)))
|
1315 |
|
|
return false;
|
1316 |
|
|
|
1317 |
|
|
return true;
|
1318 |
|
|
}
|
1319 |
|
|
|
1320 |
|
|
|
1321 |
|
|
/* Perform a deep copy of sequence SRC and return the result. */
|
1322 |
|
|
|
1323 |
|
|
gimple_seq
|
1324 |
|
|
gimple_seq_copy (gimple_seq src)
|
1325 |
|
|
{
|
1326 |
|
|
gimple_stmt_iterator gsi;
|
1327 |
|
|
gimple_seq new_seq = gimple_seq_alloc ();
|
1328 |
|
|
gimple stmt;
|
1329 |
|
|
|
1330 |
|
|
for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
|
1331 |
|
|
{
|
1332 |
|
|
stmt = gimple_copy (gsi_stmt (gsi));
|
1333 |
|
|
gimple_seq_add_stmt (&new_seq, stmt);
|
1334 |
|
|
}
|
1335 |
|
|
|
1336 |
|
|
return new_seq;
|
1337 |
|
|
}
|
1338 |
|
|
|
1339 |
|
|
|
1340 |
|
|
/* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
|
1341 |
|
|
on each one. WI is as in walk_gimple_stmt.
|
1342 |
|
|
|
1343 |
|
|
If walk_gimple_stmt returns non-NULL, the walk is stopped, and the
|
1344 |
|
|
value is stored in WI->CALLBACK_RESULT. Also, the statement that
|
1345 |
|
|
produced the value is returned if this statement has not been
|
1346 |
|
|
removed by a callback (wi->removed_stmt). If the statement has
|
1347 |
|
|
been removed, NULL is returned.
|
1348 |
|
|
|
1349 |
|
|
Otherwise, all the statements are walked and NULL returned. */
|
1350 |
|
|
|
1351 |
|
|
gimple
|
1352 |
|
|
walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
|
1353 |
|
|
walk_tree_fn callback_op, struct walk_stmt_info *wi)
|
1354 |
|
|
{
|
1355 |
|
|
gimple_stmt_iterator gsi;
|
1356 |
|
|
|
1357 |
|
|
for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
|
1358 |
|
|
{
|
1359 |
|
|
tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
|
1360 |
|
|
if (ret)
|
1361 |
|
|
{
|
1362 |
|
|
/* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
|
1363 |
|
|
to hold it. */
|
1364 |
|
|
gcc_assert (wi);
|
1365 |
|
|
wi->callback_result = ret;
|
1366 |
|
|
|
1367 |
|
|
return wi->removed_stmt ? NULL : gsi_stmt (gsi);
|
1368 |
|
|
}
|
1369 |
|
|
|
1370 |
|
|
if (!wi->removed_stmt)
|
1371 |
|
|
gsi_next (&gsi);
|
1372 |
|
|
}
|
1373 |
|
|
|
1374 |
|
|
if (wi)
|
1375 |
|
|
wi->callback_result = NULL_TREE;
|
1376 |
|
|
|
1377 |
|
|
return NULL;
|
1378 |
|
|
}
|
1379 |
|
|
|
1380 |
|
|
|
1381 |
|
|
/* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
|
1382 |
|
|
|
1383 |
|
|
static tree
|
1384 |
|
|
walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
|
1385 |
|
|
struct walk_stmt_info *wi)
|
1386 |
|
|
{
|
1387 |
|
|
tree ret, op;
|
1388 |
|
|
unsigned noutputs;
|
1389 |
|
|
const char **oconstraints;
|
1390 |
|
|
unsigned i, n;
|
1391 |
|
|
const char *constraint;
|
1392 |
|
|
bool allows_mem, allows_reg, is_inout;
|
1393 |
|
|
|
1394 |
|
|
noutputs = gimple_asm_noutputs (stmt);
|
1395 |
|
|
oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
|
1396 |
|
|
|
1397 |
|
|
if (wi)
|
1398 |
|
|
wi->is_lhs = true;
|
1399 |
|
|
|
1400 |
|
|
for (i = 0; i < noutputs; i++)
|
1401 |
|
|
{
|
1402 |
|
|
op = gimple_asm_output_op (stmt, i);
|
1403 |
|
|
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
|
1404 |
|
|
oconstraints[i] = constraint;
|
1405 |
|
|
parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
|
1406 |
|
|
&is_inout);
|
1407 |
|
|
if (wi)
|
1408 |
|
|
wi->val_only = (allows_reg || !allows_mem);
|
1409 |
|
|
ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
|
1410 |
|
|
if (ret)
|
1411 |
|
|
return ret;
|
1412 |
|
|
}
|
1413 |
|
|
|
1414 |
|
|
n = gimple_asm_ninputs (stmt);
|
1415 |
|
|
for (i = 0; i < n; i++)
|
1416 |
|
|
{
|
1417 |
|
|
op = gimple_asm_input_op (stmt, i);
|
1418 |
|
|
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
|
1419 |
|
|
parse_input_constraint (&constraint, 0, 0, noutputs, 0,
|
1420 |
|
|
oconstraints, &allows_mem, &allows_reg);
|
1421 |
|
|
if (wi)
|
1422 |
|
|
{
|
1423 |
|
|
wi->val_only = (allows_reg || !allows_mem);
|
1424 |
|
|
/* Although input "m" is not really a LHS, we need a lvalue. */
|
1425 |
|
|
wi->is_lhs = !wi->val_only;
|
1426 |
|
|
}
|
1427 |
|
|
ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
|
1428 |
|
|
if (ret)
|
1429 |
|
|
return ret;
|
1430 |
|
|
}
|
1431 |
|
|
|
1432 |
|
|
if (wi)
|
1433 |
|
|
{
|
1434 |
|
|
wi->is_lhs = false;
|
1435 |
|
|
wi->val_only = true;
|
1436 |
|
|
}
|
1437 |
|
|
|
1438 |
|
|
n = gimple_asm_nlabels (stmt);
|
1439 |
|
|
for (i = 0; i < n; i++)
|
1440 |
|
|
{
|
1441 |
|
|
op = gimple_asm_label_op (stmt, i);
|
1442 |
|
|
ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
|
1443 |
|
|
if (ret)
|
1444 |
|
|
return ret;
|
1445 |
|
|
}
|
1446 |
|
|
|
1447 |
|
|
return NULL_TREE;
|
1448 |
|
|
}
|
1449 |
|
|
|
1450 |
|
|
|
1451 |
|
|
/* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
|
1452 |
|
|
STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
|
1453 |
|
|
|
1454 |
|
|
CALLBACK_OP is called on each operand of STMT via walk_tree.
|
1455 |
|
|
Additional parameters to walk_tree must be stored in WI. For each operand
|
1456 |
|
|
OP, walk_tree is called as:
|
1457 |
|
|
|
1458 |
|
|
walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
|
1459 |
|
|
|
1460 |
|
|
If CALLBACK_OP returns non-NULL for an operand, the remaining
|
1461 |
|
|
operands are not scanned.
|
1462 |
|
|
|
1463 |
|
|
The return value is that returned by the last call to walk_tree, or
|
1464 |
|
|
NULL_TREE if no CALLBACK_OP is specified. */
|
1465 |
|
|
|
1466 |
|
|
tree
|
1467 |
|
|
walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
|
1468 |
|
|
struct walk_stmt_info *wi)
|
1469 |
|
|
{
|
1470 |
|
|
struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
|
1471 |
|
|
unsigned i;
|
1472 |
|
|
tree ret = NULL_TREE;
|
1473 |
|
|
|
1474 |
|
|
switch (gimple_code (stmt))
|
1475 |
|
|
{
|
1476 |
|
|
case GIMPLE_ASSIGN:
|
1477 |
|
|
/* Walk the RHS operands. If the LHS is of a non-renamable type or
|
1478 |
|
|
is a register variable, we may use a COMPONENT_REF on the RHS. */
|
1479 |
|
|
if (wi)
|
1480 |
|
|
{
|
1481 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
1482 |
|
|
wi->val_only
|
1483 |
|
|
= (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
|
1484 |
|
|
|| gimple_assign_rhs_class (stmt) != GIMPLE_SINGLE_RHS;
|
1485 |
|
|
}
|
1486 |
|
|
|
1487 |
|
|
for (i = 1; i < gimple_num_ops (stmt); i++)
|
1488 |
|
|
{
|
1489 |
|
|
ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
|
1490 |
|
|
pset);
|
1491 |
|
|
if (ret)
|
1492 |
|
|
return ret;
|
1493 |
|
|
}
|
1494 |
|
|
|
1495 |
|
|
/* Walk the LHS. If the RHS is appropriate for a memory, we
|
1496 |
|
|
may use a COMPONENT_REF on the LHS. */
|
1497 |
|
|
if (wi)
|
1498 |
|
|
{
|
1499 |
|
|
/* If the RHS has more than 1 operand, it is not appropriate
|
1500 |
|
|
for the memory.
|
1501 |
|
|
??? A lhs always requires an lvalue, checking the val_only flag
|
1502 |
|
|
does not make any sense, so we should be able to avoid computing
|
1503 |
|
|
it here. */
|
1504 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
1505 |
|
|
wi->val_only = !(is_gimple_mem_rhs (rhs1)
|
1506 |
|
|
|| TREE_CODE (rhs1) == CONSTRUCTOR)
|
1507 |
|
|
|| gimple_assign_rhs_class (stmt) != GIMPLE_SINGLE_RHS;
|
1508 |
|
|
wi->is_lhs = true;
|
1509 |
|
|
}
|
1510 |
|
|
|
1511 |
|
|
ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
|
1512 |
|
|
if (ret)
|
1513 |
|
|
return ret;
|
1514 |
|
|
|
1515 |
|
|
if (wi)
|
1516 |
|
|
{
|
1517 |
|
|
wi->val_only = true;
|
1518 |
|
|
wi->is_lhs = false;
|
1519 |
|
|
}
|
1520 |
|
|
break;
|
1521 |
|
|
|
1522 |
|
|
case GIMPLE_CALL:
|
1523 |
|
|
if (wi)
|
1524 |
|
|
{
|
1525 |
|
|
wi->is_lhs = false;
|
1526 |
|
|
wi->val_only = true;
|
1527 |
|
|
}
|
1528 |
|
|
|
1529 |
|
|
ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
|
1530 |
|
|
if (ret)
|
1531 |
|
|
return ret;
|
1532 |
|
|
|
1533 |
|
|
ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
|
1534 |
|
|
if (ret)
|
1535 |
|
|
return ret;
|
1536 |
|
|
|
1537 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); i++)
|
1538 |
|
|
{
|
1539 |
|
|
if (wi)
|
1540 |
|
|
wi->val_only
|
1541 |
|
|
= is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i)));
|
1542 |
|
|
ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
|
1543 |
|
|
pset);
|
1544 |
|
|
if (ret)
|
1545 |
|
|
return ret;
|
1546 |
|
|
}
|
1547 |
|
|
|
1548 |
|
|
if (gimple_call_lhs (stmt))
|
1549 |
|
|
{
|
1550 |
|
|
if (wi)
|
1551 |
|
|
{
|
1552 |
|
|
wi->is_lhs = true;
|
1553 |
|
|
wi->val_only
|
1554 |
|
|
= is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt)));
|
1555 |
|
|
}
|
1556 |
|
|
|
1557 |
|
|
ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
|
1558 |
|
|
if (ret)
|
1559 |
|
|
return ret;
|
1560 |
|
|
}
|
1561 |
|
|
|
1562 |
|
|
if (wi)
|
1563 |
|
|
{
|
1564 |
|
|
wi->is_lhs = false;
|
1565 |
|
|
wi->val_only = true;
|
1566 |
|
|
}
|
1567 |
|
|
break;
|
1568 |
|
|
|
1569 |
|
|
case GIMPLE_CATCH:
|
1570 |
|
|
ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
|
1571 |
|
|
pset);
|
1572 |
|
|
if (ret)
|
1573 |
|
|
return ret;
|
1574 |
|
|
break;
|
1575 |
|
|
|
1576 |
|
|
case GIMPLE_EH_FILTER:
|
1577 |
|
|
ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
|
1578 |
|
|
pset);
|
1579 |
|
|
if (ret)
|
1580 |
|
|
return ret;
|
1581 |
|
|
break;
|
1582 |
|
|
|
1583 |
|
|
case GIMPLE_ASM:
|
1584 |
|
|
ret = walk_gimple_asm (stmt, callback_op, wi);
|
1585 |
|
|
if (ret)
|
1586 |
|
|
return ret;
|
1587 |
|
|
break;
|
1588 |
|
|
|
1589 |
|
|
case GIMPLE_OMP_CONTINUE:
|
1590 |
|
|
ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
|
1591 |
|
|
callback_op, wi, pset);
|
1592 |
|
|
if (ret)
|
1593 |
|
|
return ret;
|
1594 |
|
|
|
1595 |
|
|
ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
|
1596 |
|
|
callback_op, wi, pset);
|
1597 |
|
|
if (ret)
|
1598 |
|
|
return ret;
|
1599 |
|
|
break;
|
1600 |
|
|
|
1601 |
|
|
case GIMPLE_OMP_CRITICAL:
|
1602 |
|
|
ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
|
1603 |
|
|
pset);
|
1604 |
|
|
if (ret)
|
1605 |
|
|
return ret;
|
1606 |
|
|
break;
|
1607 |
|
|
|
1608 |
|
|
case GIMPLE_OMP_FOR:
|
1609 |
|
|
ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
|
1610 |
|
|
pset);
|
1611 |
|
|
if (ret)
|
1612 |
|
|
return ret;
|
1613 |
|
|
for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
|
1614 |
|
|
{
|
1615 |
|
|
ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
|
1616 |
|
|
wi, pset);
|
1617 |
|
|
if (ret)
|
1618 |
|
|
return ret;
|
1619 |
|
|
ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
|
1620 |
|
|
wi, pset);
|
1621 |
|
|
if (ret)
|
1622 |
|
|
return ret;
|
1623 |
|
|
ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
|
1624 |
|
|
wi, pset);
|
1625 |
|
|
if (ret)
|
1626 |
|
|
return ret;
|
1627 |
|
|
ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
|
1628 |
|
|
wi, pset);
|
1629 |
|
|
}
|
1630 |
|
|
if (ret)
|
1631 |
|
|
return ret;
|
1632 |
|
|
break;
|
1633 |
|
|
|
1634 |
|
|
case GIMPLE_OMP_PARALLEL:
|
1635 |
|
|
ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
|
1636 |
|
|
wi, pset);
|
1637 |
|
|
if (ret)
|
1638 |
|
|
return ret;
|
1639 |
|
|
ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
|
1640 |
|
|
wi, pset);
|
1641 |
|
|
if (ret)
|
1642 |
|
|
return ret;
|
1643 |
|
|
ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
|
1644 |
|
|
wi, pset);
|
1645 |
|
|
if (ret)
|
1646 |
|
|
return ret;
|
1647 |
|
|
break;
|
1648 |
|
|
|
1649 |
|
|
case GIMPLE_OMP_TASK:
|
1650 |
|
|
ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
|
1651 |
|
|
wi, pset);
|
1652 |
|
|
if (ret)
|
1653 |
|
|
return ret;
|
1654 |
|
|
ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
|
1655 |
|
|
wi, pset);
|
1656 |
|
|
if (ret)
|
1657 |
|
|
return ret;
|
1658 |
|
|
ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
|
1659 |
|
|
wi, pset);
|
1660 |
|
|
if (ret)
|
1661 |
|
|
return ret;
|
1662 |
|
|
ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
|
1663 |
|
|
wi, pset);
|
1664 |
|
|
if (ret)
|
1665 |
|
|
return ret;
|
1666 |
|
|
ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
|
1667 |
|
|
wi, pset);
|
1668 |
|
|
if (ret)
|
1669 |
|
|
return ret;
|
1670 |
|
|
ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
|
1671 |
|
|
wi, pset);
|
1672 |
|
|
if (ret)
|
1673 |
|
|
return ret;
|
1674 |
|
|
break;
|
1675 |
|
|
|
1676 |
|
|
case GIMPLE_OMP_SECTIONS:
|
1677 |
|
|
ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
|
1678 |
|
|
wi, pset);
|
1679 |
|
|
if (ret)
|
1680 |
|
|
return ret;
|
1681 |
|
|
|
1682 |
|
|
ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
|
1683 |
|
|
wi, pset);
|
1684 |
|
|
if (ret)
|
1685 |
|
|
return ret;
|
1686 |
|
|
|
1687 |
|
|
break;
|
1688 |
|
|
|
1689 |
|
|
case GIMPLE_OMP_SINGLE:
|
1690 |
|
|
ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
|
1691 |
|
|
pset);
|
1692 |
|
|
if (ret)
|
1693 |
|
|
return ret;
|
1694 |
|
|
break;
|
1695 |
|
|
|
1696 |
|
|
case GIMPLE_OMP_ATOMIC_LOAD:
|
1697 |
|
|
ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
|
1698 |
|
|
pset);
|
1699 |
|
|
if (ret)
|
1700 |
|
|
return ret;
|
1701 |
|
|
|
1702 |
|
|
ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
|
1703 |
|
|
pset);
|
1704 |
|
|
if (ret)
|
1705 |
|
|
return ret;
|
1706 |
|
|
break;
|
1707 |
|
|
|
1708 |
|
|
case GIMPLE_OMP_ATOMIC_STORE:
|
1709 |
|
|
ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
|
1710 |
|
|
wi, pset);
|
1711 |
|
|
if (ret)
|
1712 |
|
|
return ret;
|
1713 |
|
|
break;
|
1714 |
|
|
|
1715 |
|
|
case GIMPLE_TRANSACTION:
|
1716 |
|
|
ret = walk_tree (gimple_transaction_label_ptr (stmt), callback_op,
|
1717 |
|
|
wi, pset);
|
1718 |
|
|
if (ret)
|
1719 |
|
|
return ret;
|
1720 |
|
|
break;
|
1721 |
|
|
|
1722 |
|
|
/* Tuples that do not have operands. */
|
1723 |
|
|
case GIMPLE_NOP:
|
1724 |
|
|
case GIMPLE_RESX:
|
1725 |
|
|
case GIMPLE_OMP_RETURN:
|
1726 |
|
|
case GIMPLE_PREDICT:
|
1727 |
|
|
break;
|
1728 |
|
|
|
1729 |
|
|
default:
|
1730 |
|
|
{
|
1731 |
|
|
enum gimple_statement_structure_enum gss;
|
1732 |
|
|
gss = gimple_statement_structure (stmt);
|
1733 |
|
|
if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
|
1734 |
|
|
for (i = 0; i < gimple_num_ops (stmt); i++)
|
1735 |
|
|
{
|
1736 |
|
|
ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
|
1737 |
|
|
if (ret)
|
1738 |
|
|
return ret;
|
1739 |
|
|
}
|
1740 |
|
|
}
|
1741 |
|
|
break;
|
1742 |
|
|
}
|
1743 |
|
|
|
1744 |
|
|
return NULL_TREE;
|
1745 |
|
|
}
|
1746 |
|
|
|
1747 |
|
|
|
1748 |
|
|
/* Walk the current statement in GSI (optionally using traversal state
|
1749 |
|
|
stored in WI). If WI is NULL, no state is kept during traversal.
|
1750 |
|
|
The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
|
1751 |
|
|
that it has handled all the operands of the statement, its return
|
1752 |
|
|
value is returned. Otherwise, the return value from CALLBACK_STMT
|
1753 |
|
|
is discarded and its operands are scanned.
|
1754 |
|
|
|
1755 |
|
|
If CALLBACK_STMT is NULL or it didn't handle the operands,
|
1756 |
|
|
CALLBACK_OP is called on each operand of the statement via
|
1757 |
|
|
walk_gimple_op. If walk_gimple_op returns non-NULL for any
|
1758 |
|
|
operand, the remaining operands are not scanned. In this case, the
|
1759 |
|
|
return value from CALLBACK_OP is returned.
|
1760 |
|
|
|
1761 |
|
|
In any other case, NULL_TREE is returned. */
|
1762 |
|
|
|
1763 |
|
|
tree
|
1764 |
|
|
walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
|
1765 |
|
|
walk_tree_fn callback_op, struct walk_stmt_info *wi)
|
1766 |
|
|
{
|
1767 |
|
|
gimple ret;
|
1768 |
|
|
tree tree_ret;
|
1769 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
1770 |
|
|
|
1771 |
|
|
if (wi)
|
1772 |
|
|
{
|
1773 |
|
|
wi->gsi = *gsi;
|
1774 |
|
|
wi->removed_stmt = false;
|
1775 |
|
|
|
1776 |
|
|
if (wi->want_locations && gimple_has_location (stmt))
|
1777 |
|
|
input_location = gimple_location (stmt);
|
1778 |
|
|
}
|
1779 |
|
|
|
1780 |
|
|
ret = NULL;
|
1781 |
|
|
|
1782 |
|
|
/* Invoke the statement callback. Return if the callback handled
|
1783 |
|
|
all of STMT operands by itself. */
|
1784 |
|
|
if (callback_stmt)
|
1785 |
|
|
{
|
1786 |
|
|
bool handled_ops = false;
|
1787 |
|
|
tree_ret = callback_stmt (gsi, &handled_ops, wi);
|
1788 |
|
|
if (handled_ops)
|
1789 |
|
|
return tree_ret;
|
1790 |
|
|
|
1791 |
|
|
/* If CALLBACK_STMT did not handle operands, it should not have
|
1792 |
|
|
a value to return. */
|
1793 |
|
|
gcc_assert (tree_ret == NULL);
|
1794 |
|
|
|
1795 |
|
|
if (wi && wi->removed_stmt)
|
1796 |
|
|
return NULL;
|
1797 |
|
|
|
1798 |
|
|
/* Re-read stmt in case the callback changed it. */
|
1799 |
|
|
stmt = gsi_stmt (*gsi);
|
1800 |
|
|
}
|
1801 |
|
|
|
1802 |
|
|
/* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
|
1803 |
|
|
if (callback_op)
|
1804 |
|
|
{
|
1805 |
|
|
tree_ret = walk_gimple_op (stmt, callback_op, wi);
|
1806 |
|
|
if (tree_ret)
|
1807 |
|
|
return tree_ret;
|
1808 |
|
|
}
|
1809 |
|
|
|
1810 |
|
|
/* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
|
1811 |
|
|
switch (gimple_code (stmt))
|
1812 |
|
|
{
|
1813 |
|
|
case GIMPLE_BIND:
|
1814 |
|
|
ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
|
1815 |
|
|
callback_op, wi);
|
1816 |
|
|
if (ret)
|
1817 |
|
|
return wi->callback_result;
|
1818 |
|
|
break;
|
1819 |
|
|
|
1820 |
|
|
case GIMPLE_CATCH:
|
1821 |
|
|
ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
|
1822 |
|
|
callback_op, wi);
|
1823 |
|
|
if (ret)
|
1824 |
|
|
return wi->callback_result;
|
1825 |
|
|
break;
|
1826 |
|
|
|
1827 |
|
|
case GIMPLE_EH_FILTER:
|
1828 |
|
|
ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
|
1829 |
|
|
callback_op, wi);
|
1830 |
|
|
if (ret)
|
1831 |
|
|
return wi->callback_result;
|
1832 |
|
|
break;
|
1833 |
|
|
|
1834 |
|
|
case GIMPLE_EH_ELSE:
|
1835 |
|
|
ret = walk_gimple_seq (gimple_eh_else_n_body (stmt),
|
1836 |
|
|
callback_stmt, callback_op, wi);
|
1837 |
|
|
if (ret)
|
1838 |
|
|
return wi->callback_result;
|
1839 |
|
|
ret = walk_gimple_seq (gimple_eh_else_e_body (stmt),
|
1840 |
|
|
callback_stmt, callback_op, wi);
|
1841 |
|
|
if (ret)
|
1842 |
|
|
return wi->callback_result;
|
1843 |
|
|
break;
|
1844 |
|
|
|
1845 |
|
|
case GIMPLE_TRY:
|
1846 |
|
|
ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
|
1847 |
|
|
wi);
|
1848 |
|
|
if (ret)
|
1849 |
|
|
return wi->callback_result;
|
1850 |
|
|
|
1851 |
|
|
ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
|
1852 |
|
|
callback_op, wi);
|
1853 |
|
|
if (ret)
|
1854 |
|
|
return wi->callback_result;
|
1855 |
|
|
break;
|
1856 |
|
|
|
1857 |
|
|
case GIMPLE_OMP_FOR:
|
1858 |
|
|
ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
|
1859 |
|
|
callback_op, wi);
|
1860 |
|
|
if (ret)
|
1861 |
|
|
return wi->callback_result;
|
1862 |
|
|
|
1863 |
|
|
/* FALL THROUGH. */
|
1864 |
|
|
case GIMPLE_OMP_CRITICAL:
|
1865 |
|
|
case GIMPLE_OMP_MASTER:
|
1866 |
|
|
case GIMPLE_OMP_ORDERED:
|
1867 |
|
|
case GIMPLE_OMP_SECTION:
|
1868 |
|
|
case GIMPLE_OMP_PARALLEL:
|
1869 |
|
|
case GIMPLE_OMP_TASK:
|
1870 |
|
|
case GIMPLE_OMP_SECTIONS:
|
1871 |
|
|
case GIMPLE_OMP_SINGLE:
|
1872 |
|
|
ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt,
|
1873 |
|
|
callback_op, wi);
|
1874 |
|
|
if (ret)
|
1875 |
|
|
return wi->callback_result;
|
1876 |
|
|
break;
|
1877 |
|
|
|
1878 |
|
|
case GIMPLE_WITH_CLEANUP_EXPR:
|
1879 |
|
|
ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
|
1880 |
|
|
callback_op, wi);
|
1881 |
|
|
if (ret)
|
1882 |
|
|
return wi->callback_result;
|
1883 |
|
|
break;
|
1884 |
|
|
|
1885 |
|
|
case GIMPLE_TRANSACTION:
|
1886 |
|
|
ret = walk_gimple_seq (gimple_transaction_body (stmt),
|
1887 |
|
|
callback_stmt, callback_op, wi);
|
1888 |
|
|
if (ret)
|
1889 |
|
|
return wi->callback_result;
|
1890 |
|
|
break;
|
1891 |
|
|
|
1892 |
|
|
default:
|
1893 |
|
|
gcc_assert (!gimple_has_substatements (stmt));
|
1894 |
|
|
break;
|
1895 |
|
|
}
|
1896 |
|
|
|
1897 |
|
|
return NULL;
|
1898 |
|
|
}
|
1899 |
|
|
|
1900 |
|
|
|
1901 |
|
|
/* Set sequence SEQ to be the GIMPLE body for function FN. */
|
1902 |
|
|
|
1903 |
|
|
void
|
1904 |
|
|
gimple_set_body (tree fndecl, gimple_seq seq)
|
1905 |
|
|
{
|
1906 |
|
|
struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
|
1907 |
|
|
if (fn == NULL)
|
1908 |
|
|
{
|
1909 |
|
|
/* If FNDECL still does not have a function structure associated
|
1910 |
|
|
with it, then it does not make sense for it to receive a
|
1911 |
|
|
GIMPLE body. */
|
1912 |
|
|
gcc_assert (seq == NULL);
|
1913 |
|
|
}
|
1914 |
|
|
else
|
1915 |
|
|
fn->gimple_body = seq;
|
1916 |
|
|
}
|
1917 |
|
|
|
1918 |
|
|
|
1919 |
|
|
/* Return the body of GIMPLE statements for function FN. After the
|
1920 |
|
|
CFG pass, the function body doesn't exist anymore because it has
|
1921 |
|
|
been split up into basic blocks. In this case, it returns
|
1922 |
|
|
NULL. */
|
1923 |
|
|
|
1924 |
|
|
gimple_seq
|
1925 |
|
|
gimple_body (tree fndecl)
|
1926 |
|
|
{
|
1927 |
|
|
struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
|
1928 |
|
|
return fn ? fn->gimple_body : NULL;
|
1929 |
|
|
}
|
1930 |
|
|
|
1931 |
|
|
/* Return true when FNDECL has Gimple body either in unlowered
|
1932 |
|
|
or CFG form. */
|
1933 |
|
|
bool
|
1934 |
|
|
gimple_has_body_p (tree fndecl)
|
1935 |
|
|
{
|
1936 |
|
|
struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
|
1937 |
|
|
return (gimple_body (fndecl) || (fn && fn->cfg));
|
1938 |
|
|
}
|
1939 |
|
|
|
1940 |
|
|
/* Return true if calls C1 and C2 are known to go to the same function. */
|
1941 |
|
|
|
1942 |
|
|
bool
|
1943 |
|
|
gimple_call_same_target_p (const_gimple c1, const_gimple c2)
|
1944 |
|
|
{
|
1945 |
|
|
if (gimple_call_internal_p (c1))
|
1946 |
|
|
return (gimple_call_internal_p (c2)
|
1947 |
|
|
&& gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
|
1948 |
|
|
else
|
1949 |
|
|
return (gimple_call_fn (c1) == gimple_call_fn (c2)
|
1950 |
|
|
|| (gimple_call_fndecl (c1)
|
1951 |
|
|
&& gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
|
1952 |
|
|
}
|
1953 |
|
|
|
1954 |
|
|
/* Detect flags from a GIMPLE_CALL. This is just like
|
1955 |
|
|
call_expr_flags, but for gimple tuples. */
|
1956 |
|
|
|
1957 |
|
|
int
|
1958 |
|
|
gimple_call_flags (const_gimple stmt)
|
1959 |
|
|
{
|
1960 |
|
|
int flags;
|
1961 |
|
|
tree decl = gimple_call_fndecl (stmt);
|
1962 |
|
|
|
1963 |
|
|
if (decl)
|
1964 |
|
|
flags = flags_from_decl_or_type (decl);
|
1965 |
|
|
else if (gimple_call_internal_p (stmt))
|
1966 |
|
|
flags = internal_fn_flags (gimple_call_internal_fn (stmt));
|
1967 |
|
|
else
|
1968 |
|
|
flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
|
1969 |
|
|
|
1970 |
|
|
if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
|
1971 |
|
|
flags |= ECF_NOTHROW;
|
1972 |
|
|
|
1973 |
|
|
return flags;
|
1974 |
|
|
}
|
1975 |
|
|
|
1976 |
|
|
/* Return the "fn spec" string for call STMT. */
|
1977 |
|
|
|
1978 |
|
|
static tree
|
1979 |
|
|
gimple_call_fnspec (const_gimple stmt)
|
1980 |
|
|
{
|
1981 |
|
|
tree type, attr;
|
1982 |
|
|
|
1983 |
|
|
type = gimple_call_fntype (stmt);
|
1984 |
|
|
if (!type)
|
1985 |
|
|
return NULL_TREE;
|
1986 |
|
|
|
1987 |
|
|
attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
|
1988 |
|
|
if (!attr)
|
1989 |
|
|
return NULL_TREE;
|
1990 |
|
|
|
1991 |
|
|
return TREE_VALUE (TREE_VALUE (attr));
|
1992 |
|
|
}
|
1993 |
|
|
|
1994 |
|
|
/* Detects argument flags for argument number ARG on call STMT. */
|
1995 |
|
|
|
1996 |
|
|
int
|
1997 |
|
|
gimple_call_arg_flags (const_gimple stmt, unsigned arg)
|
1998 |
|
|
{
|
1999 |
|
|
tree attr = gimple_call_fnspec (stmt);
|
2000 |
|
|
|
2001 |
|
|
if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
|
2002 |
|
|
return 0;
|
2003 |
|
|
|
2004 |
|
|
switch (TREE_STRING_POINTER (attr)[1 + arg])
|
2005 |
|
|
{
|
2006 |
|
|
case 'x':
|
2007 |
|
|
case 'X':
|
2008 |
|
|
return EAF_UNUSED;
|
2009 |
|
|
|
2010 |
|
|
case 'R':
|
2011 |
|
|
return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
|
2012 |
|
|
|
2013 |
|
|
case 'r':
|
2014 |
|
|
return EAF_NOCLOBBER | EAF_NOESCAPE;
|
2015 |
|
|
|
2016 |
|
|
case 'W':
|
2017 |
|
|
return EAF_DIRECT | EAF_NOESCAPE;
|
2018 |
|
|
|
2019 |
|
|
case 'w':
|
2020 |
|
|
return EAF_NOESCAPE;
|
2021 |
|
|
|
2022 |
|
|
case '.':
|
2023 |
|
|
default:
|
2024 |
|
|
return 0;
|
2025 |
|
|
}
|
2026 |
|
|
}
|
2027 |
|
|
|
2028 |
|
|
/* Detects return flags for the call STMT. */
|
2029 |
|
|
|
2030 |
|
|
int
|
2031 |
|
|
gimple_call_return_flags (const_gimple stmt)
|
2032 |
|
|
{
|
2033 |
|
|
tree attr;
|
2034 |
|
|
|
2035 |
|
|
if (gimple_call_flags (stmt) & ECF_MALLOC)
|
2036 |
|
|
return ERF_NOALIAS;
|
2037 |
|
|
|
2038 |
|
|
attr = gimple_call_fnspec (stmt);
|
2039 |
|
|
if (!attr || TREE_STRING_LENGTH (attr) < 1)
|
2040 |
|
|
return 0;
|
2041 |
|
|
|
2042 |
|
|
switch (TREE_STRING_POINTER (attr)[0])
|
2043 |
|
|
{
|
2044 |
|
|
case '1':
|
2045 |
|
|
case '2':
|
2046 |
|
|
case '3':
|
2047 |
|
|
case '4':
|
2048 |
|
|
return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
|
2049 |
|
|
|
2050 |
|
|
case 'm':
|
2051 |
|
|
return ERF_NOALIAS;
|
2052 |
|
|
|
2053 |
|
|
case '.':
|
2054 |
|
|
default:
|
2055 |
|
|
return 0;
|
2056 |
|
|
}
|
2057 |
|
|
}
|
2058 |
|
|
|
2059 |
|
|
|
2060 |
|
|
/* Return true if GS is a copy assignment. */
|
2061 |
|
|
|
2062 |
|
|
bool
|
2063 |
|
|
gimple_assign_copy_p (gimple gs)
|
2064 |
|
|
{
|
2065 |
|
|
return (gimple_assign_single_p (gs)
|
2066 |
|
|
&& is_gimple_val (gimple_op (gs, 1)));
|
2067 |
|
|
}
|
2068 |
|
|
|
2069 |
|
|
|
2070 |
|
|
/* Return true if GS is a SSA_NAME copy assignment. */
|
2071 |
|
|
|
2072 |
|
|
bool
|
2073 |
|
|
gimple_assign_ssa_name_copy_p (gimple gs)
|
2074 |
|
|
{
|
2075 |
|
|
return (gimple_assign_single_p (gs)
|
2076 |
|
|
&& TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
|
2077 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
|
2078 |
|
|
}
|
2079 |
|
|
|
2080 |
|
|
|
2081 |
|
|
/* Return true if GS is an assignment with a unary RHS, but the
|
2082 |
|
|
operator has no effect on the assigned value. The logic is adapted
|
2083 |
|
|
from STRIP_NOPS. This predicate is intended to be used in tuplifying
|
2084 |
|
|
instances in which STRIP_NOPS was previously applied to the RHS of
|
2085 |
|
|
an assignment.
|
2086 |
|
|
|
2087 |
|
|
NOTE: In the use cases that led to the creation of this function
|
2088 |
|
|
and of gimple_assign_single_p, it is typical to test for either
|
2089 |
|
|
condition and to proceed in the same manner. In each case, the
|
2090 |
|
|
assigned value is represented by the single RHS operand of the
|
2091 |
|
|
assignment. I suspect there may be cases where gimple_assign_copy_p,
|
2092 |
|
|
gimple_assign_single_p, or equivalent logic is used where a similar
|
2093 |
|
|
treatment of unary NOPs is appropriate. */
|
2094 |
|
|
|
2095 |
|
|
bool
|
2096 |
|
|
gimple_assign_unary_nop_p (gimple gs)
|
2097 |
|
|
{
|
2098 |
|
|
return (is_gimple_assign (gs)
|
2099 |
|
|
&& (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
|
2100 |
|
|
|| gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
|
2101 |
|
|
&& gimple_assign_rhs1 (gs) != error_mark_node
|
2102 |
|
|
&& (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
|
2103 |
|
|
== TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
|
2104 |
|
|
}
|
2105 |
|
|
|
2106 |
|
|
/* Set BB to be the basic block holding G. */
|
2107 |
|
|
|
2108 |
|
|
void
|
2109 |
|
|
gimple_set_bb (gimple stmt, basic_block bb)
|
2110 |
|
|
{
|
2111 |
|
|
stmt->gsbase.bb = bb;
|
2112 |
|
|
|
2113 |
|
|
/* If the statement is a label, add the label to block-to-labels map
|
2114 |
|
|
so that we can speed up edge creation for GIMPLE_GOTOs. */
|
2115 |
|
|
if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
|
2116 |
|
|
{
|
2117 |
|
|
tree t;
|
2118 |
|
|
int uid;
|
2119 |
|
|
|
2120 |
|
|
t = gimple_label_label (stmt);
|
2121 |
|
|
uid = LABEL_DECL_UID (t);
|
2122 |
|
|
if (uid == -1)
|
2123 |
|
|
{
|
2124 |
|
|
unsigned old_len = VEC_length (basic_block, label_to_block_map);
|
2125 |
|
|
LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
|
2126 |
|
|
if (old_len <= (unsigned) uid)
|
2127 |
|
|
{
|
2128 |
|
|
unsigned new_len = 3 * uid / 2 + 1;
|
2129 |
|
|
|
2130 |
|
|
VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
|
2131 |
|
|
new_len);
|
2132 |
|
|
}
|
2133 |
|
|
}
|
2134 |
|
|
|
2135 |
|
|
VEC_replace (basic_block, label_to_block_map, uid, bb);
|
2136 |
|
|
}
|
2137 |
|
|
}
|
2138 |
|
|
|
2139 |
|
|
|
2140 |
|
|
/* Modify the RHS of the assignment pointed-to by GSI using the
|
2141 |
|
|
operands in the expression tree EXPR.
|
2142 |
|
|
|
2143 |
|
|
NOTE: The statement pointed-to by GSI may be reallocated if it
|
2144 |
|
|
did not have enough operand slots.
|
2145 |
|
|
|
2146 |
|
|
This function is useful to convert an existing tree expression into
|
2147 |
|
|
the flat representation used for the RHS of a GIMPLE assignment.
|
2148 |
|
|
It will reallocate memory as needed to expand or shrink the number
|
2149 |
|
|
of operand slots needed to represent EXPR.
|
2150 |
|
|
|
2151 |
|
|
NOTE: If you find yourself building a tree and then calling this
|
2152 |
|
|
function, you are most certainly doing it the slow way. It is much
|
2153 |
|
|
better to build a new assignment or to use the function
|
2154 |
|
|
gimple_assign_set_rhs_with_ops, which does not require an
|
2155 |
|
|
expression tree to be built. */
|
2156 |
|
|
|
2157 |
|
|
void
|
2158 |
|
|
gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
|
2159 |
|
|
{
|
2160 |
|
|
enum tree_code subcode;
|
2161 |
|
|
tree op1, op2, op3;
|
2162 |
|
|
|
2163 |
|
|
extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
|
2164 |
|
|
gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
|
2165 |
|
|
}
|
2166 |
|
|
|
2167 |
|
|
|
2168 |
|
|
/* Set the RHS of assignment statement pointed-to by GSI to CODE with
|
2169 |
|
|
operands OP1, OP2 and OP3.
|
2170 |
|
|
|
2171 |
|
|
NOTE: The statement pointed-to by GSI may be reallocated if it
|
2172 |
|
|
did not have enough operand slots. */
|
2173 |
|
|
|
2174 |
|
|
void
|
2175 |
|
|
gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
|
2176 |
|
|
tree op1, tree op2, tree op3)
|
2177 |
|
|
{
|
2178 |
|
|
unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
|
2179 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
2180 |
|
|
|
2181 |
|
|
/* If the new CODE needs more operands, allocate a new statement. */
|
2182 |
|
|
if (gimple_num_ops (stmt) < new_rhs_ops + 1)
|
2183 |
|
|
{
|
2184 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
2185 |
|
|
gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
|
2186 |
|
|
memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
|
2187 |
|
|
gsi_replace (gsi, new_stmt, true);
|
2188 |
|
|
stmt = new_stmt;
|
2189 |
|
|
|
2190 |
|
|
/* The LHS needs to be reset as this also changes the SSA name
|
2191 |
|
|
on the LHS. */
|
2192 |
|
|
gimple_assign_set_lhs (stmt, lhs);
|
2193 |
|
|
}
|
2194 |
|
|
|
2195 |
|
|
gimple_set_num_ops (stmt, new_rhs_ops + 1);
|
2196 |
|
|
gimple_set_subcode (stmt, code);
|
2197 |
|
|
gimple_assign_set_rhs1 (stmt, op1);
|
2198 |
|
|
if (new_rhs_ops > 1)
|
2199 |
|
|
gimple_assign_set_rhs2 (stmt, op2);
|
2200 |
|
|
if (new_rhs_ops > 2)
|
2201 |
|
|
gimple_assign_set_rhs3 (stmt, op3);
|
2202 |
|
|
}
|
2203 |
|
|
|
2204 |
|
|
|
2205 |
|
|
/* Return the LHS of a statement that performs an assignment,
|
2206 |
|
|
either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
|
2207 |
|
|
for a call to a function that returns no value, or for a
|
2208 |
|
|
statement other than an assignment or a call. */
|
2209 |
|
|
|
2210 |
|
|
tree
|
2211 |
|
|
gimple_get_lhs (const_gimple stmt)
|
2212 |
|
|
{
|
2213 |
|
|
enum gimple_code code = gimple_code (stmt);
|
2214 |
|
|
|
2215 |
|
|
if (code == GIMPLE_ASSIGN)
|
2216 |
|
|
return gimple_assign_lhs (stmt);
|
2217 |
|
|
else if (code == GIMPLE_CALL)
|
2218 |
|
|
return gimple_call_lhs (stmt);
|
2219 |
|
|
else
|
2220 |
|
|
return NULL_TREE;
|
2221 |
|
|
}
|
2222 |
|
|
|
2223 |
|
|
|
2224 |
|
|
/* Set the LHS of a statement that performs an assignment,
|
2225 |
|
|
either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
|
2226 |
|
|
|
2227 |
|
|
void
|
2228 |
|
|
gimple_set_lhs (gimple stmt, tree lhs)
|
2229 |
|
|
{
|
2230 |
|
|
enum gimple_code code = gimple_code (stmt);
|
2231 |
|
|
|
2232 |
|
|
if (code == GIMPLE_ASSIGN)
|
2233 |
|
|
gimple_assign_set_lhs (stmt, lhs);
|
2234 |
|
|
else if (code == GIMPLE_CALL)
|
2235 |
|
|
gimple_call_set_lhs (stmt, lhs);
|
2236 |
|
|
else
|
2237 |
|
|
gcc_unreachable();
|
2238 |
|
|
}
|
2239 |
|
|
|
2240 |
|
|
/* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
|
2241 |
|
|
GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
|
2242 |
|
|
expression with a different value.
|
2243 |
|
|
|
2244 |
|
|
This will update any annotations (say debug bind stmts) referring
|
2245 |
|
|
to the original LHS, so that they use the RHS instead. This is
|
2246 |
|
|
done even if NLHS and LHS are the same, for it is understood that
|
2247 |
|
|
the RHS will be modified afterwards, and NLHS will not be assigned
|
2248 |
|
|
an equivalent value.
|
2249 |
|
|
|
2250 |
|
|
Adjusting any non-annotation uses of the LHS, if needed, is a
|
2251 |
|
|
responsibility of the caller.
|
2252 |
|
|
|
2253 |
|
|
The effect of this call should be pretty much the same as that of
|
2254 |
|
|
inserting a copy of STMT before STMT, and then removing the
|
2255 |
|
|
original stmt, at which time gsi_remove() would have update
|
2256 |
|
|
annotations, but using this function saves all the inserting,
|
2257 |
|
|
copying and removing. */
|
2258 |
|
|
|
2259 |
|
|
void
|
2260 |
|
|
gimple_replace_lhs (gimple stmt, tree nlhs)
|
2261 |
|
|
{
|
2262 |
|
|
if (MAY_HAVE_DEBUG_STMTS)
|
2263 |
|
|
{
|
2264 |
|
|
tree lhs = gimple_get_lhs (stmt);
|
2265 |
|
|
|
2266 |
|
|
gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
|
2267 |
|
|
|
2268 |
|
|
insert_debug_temp_for_var_def (NULL, lhs);
|
2269 |
|
|
}
|
2270 |
|
|
|
2271 |
|
|
gimple_set_lhs (stmt, nlhs);
|
2272 |
|
|
}
|
2273 |
|
|
|
2274 |
|
|
/* Return a deep copy of statement STMT. All the operands from STMT
|
2275 |
|
|
are reallocated and copied using unshare_expr. The DEF, USE, VDEF
|
2276 |
|
|
and VUSE operand arrays are set to empty in the new copy. */
|
2277 |
|
|
|
2278 |
|
|
gimple
|
2279 |
|
|
gimple_copy (gimple stmt)
|
2280 |
|
|
{
|
2281 |
|
|
enum gimple_code code = gimple_code (stmt);
|
2282 |
|
|
unsigned num_ops = gimple_num_ops (stmt);
|
2283 |
|
|
gimple copy = gimple_alloc (code, num_ops);
|
2284 |
|
|
unsigned i;
|
2285 |
|
|
|
2286 |
|
|
/* Shallow copy all the fields from STMT. */
|
2287 |
|
|
memcpy (copy, stmt, gimple_size (code));
|
2288 |
|
|
|
2289 |
|
|
/* If STMT has sub-statements, deep-copy them as well. */
|
2290 |
|
|
if (gimple_has_substatements (stmt))
|
2291 |
|
|
{
|
2292 |
|
|
gimple_seq new_seq;
|
2293 |
|
|
tree t;
|
2294 |
|
|
|
2295 |
|
|
switch (gimple_code (stmt))
|
2296 |
|
|
{
|
2297 |
|
|
case GIMPLE_BIND:
|
2298 |
|
|
new_seq = gimple_seq_copy (gimple_bind_body (stmt));
|
2299 |
|
|
gimple_bind_set_body (copy, new_seq);
|
2300 |
|
|
gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
|
2301 |
|
|
gimple_bind_set_block (copy, gimple_bind_block (stmt));
|
2302 |
|
|
break;
|
2303 |
|
|
|
2304 |
|
|
case GIMPLE_CATCH:
|
2305 |
|
|
new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
|
2306 |
|
|
gimple_catch_set_handler (copy, new_seq);
|
2307 |
|
|
t = unshare_expr (gimple_catch_types (stmt));
|
2308 |
|
|
gimple_catch_set_types (copy, t);
|
2309 |
|
|
break;
|
2310 |
|
|
|
2311 |
|
|
case GIMPLE_EH_FILTER:
|
2312 |
|
|
new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
|
2313 |
|
|
gimple_eh_filter_set_failure (copy, new_seq);
|
2314 |
|
|
t = unshare_expr (gimple_eh_filter_types (stmt));
|
2315 |
|
|
gimple_eh_filter_set_types (copy, t);
|
2316 |
|
|
break;
|
2317 |
|
|
|
2318 |
|
|
case GIMPLE_EH_ELSE:
|
2319 |
|
|
new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt));
|
2320 |
|
|
gimple_eh_else_set_n_body (copy, new_seq);
|
2321 |
|
|
new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt));
|
2322 |
|
|
gimple_eh_else_set_e_body (copy, new_seq);
|
2323 |
|
|
break;
|
2324 |
|
|
|
2325 |
|
|
case GIMPLE_TRY:
|
2326 |
|
|
new_seq = gimple_seq_copy (gimple_try_eval (stmt));
|
2327 |
|
|
gimple_try_set_eval (copy, new_seq);
|
2328 |
|
|
new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
|
2329 |
|
|
gimple_try_set_cleanup (copy, new_seq);
|
2330 |
|
|
break;
|
2331 |
|
|
|
2332 |
|
|
case GIMPLE_OMP_FOR:
|
2333 |
|
|
new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
|
2334 |
|
|
gimple_omp_for_set_pre_body (copy, new_seq);
|
2335 |
|
|
t = unshare_expr (gimple_omp_for_clauses (stmt));
|
2336 |
|
|
gimple_omp_for_set_clauses (copy, t);
|
2337 |
|
|
copy->gimple_omp_for.iter
|
2338 |
|
|
= ggc_alloc_vec_gimple_omp_for_iter
|
2339 |
|
|
(gimple_omp_for_collapse (stmt));
|
2340 |
|
|
for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
|
2341 |
|
|
{
|
2342 |
|
|
gimple_omp_for_set_cond (copy, i,
|
2343 |
|
|
gimple_omp_for_cond (stmt, i));
|
2344 |
|
|
gimple_omp_for_set_index (copy, i,
|
2345 |
|
|
gimple_omp_for_index (stmt, i));
|
2346 |
|
|
t = unshare_expr (gimple_omp_for_initial (stmt, i));
|
2347 |
|
|
gimple_omp_for_set_initial (copy, i, t);
|
2348 |
|
|
t = unshare_expr (gimple_omp_for_final (stmt, i));
|
2349 |
|
|
gimple_omp_for_set_final (copy, i, t);
|
2350 |
|
|
t = unshare_expr (gimple_omp_for_incr (stmt, i));
|
2351 |
|
|
gimple_omp_for_set_incr (copy, i, t);
|
2352 |
|
|
}
|
2353 |
|
|
goto copy_omp_body;
|
2354 |
|
|
|
2355 |
|
|
case GIMPLE_OMP_PARALLEL:
|
2356 |
|
|
t = unshare_expr (gimple_omp_parallel_clauses (stmt));
|
2357 |
|
|
gimple_omp_parallel_set_clauses (copy, t);
|
2358 |
|
|
t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
|
2359 |
|
|
gimple_omp_parallel_set_child_fn (copy, t);
|
2360 |
|
|
t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
|
2361 |
|
|
gimple_omp_parallel_set_data_arg (copy, t);
|
2362 |
|
|
goto copy_omp_body;
|
2363 |
|
|
|
2364 |
|
|
case GIMPLE_OMP_TASK:
|
2365 |
|
|
t = unshare_expr (gimple_omp_task_clauses (stmt));
|
2366 |
|
|
gimple_omp_task_set_clauses (copy, t);
|
2367 |
|
|
t = unshare_expr (gimple_omp_task_child_fn (stmt));
|
2368 |
|
|
gimple_omp_task_set_child_fn (copy, t);
|
2369 |
|
|
t = unshare_expr (gimple_omp_task_data_arg (stmt));
|
2370 |
|
|
gimple_omp_task_set_data_arg (copy, t);
|
2371 |
|
|
t = unshare_expr (gimple_omp_task_copy_fn (stmt));
|
2372 |
|
|
gimple_omp_task_set_copy_fn (copy, t);
|
2373 |
|
|
t = unshare_expr (gimple_omp_task_arg_size (stmt));
|
2374 |
|
|
gimple_omp_task_set_arg_size (copy, t);
|
2375 |
|
|
t = unshare_expr (gimple_omp_task_arg_align (stmt));
|
2376 |
|
|
gimple_omp_task_set_arg_align (copy, t);
|
2377 |
|
|
goto copy_omp_body;
|
2378 |
|
|
|
2379 |
|
|
case GIMPLE_OMP_CRITICAL:
|
2380 |
|
|
t = unshare_expr (gimple_omp_critical_name (stmt));
|
2381 |
|
|
gimple_omp_critical_set_name (copy, t);
|
2382 |
|
|
goto copy_omp_body;
|
2383 |
|
|
|
2384 |
|
|
case GIMPLE_OMP_SECTIONS:
|
2385 |
|
|
t = unshare_expr (gimple_omp_sections_clauses (stmt));
|
2386 |
|
|
gimple_omp_sections_set_clauses (copy, t);
|
2387 |
|
|
t = unshare_expr (gimple_omp_sections_control (stmt));
|
2388 |
|
|
gimple_omp_sections_set_control (copy, t);
|
2389 |
|
|
/* FALLTHRU */
|
2390 |
|
|
|
2391 |
|
|
case GIMPLE_OMP_SINGLE:
|
2392 |
|
|
case GIMPLE_OMP_SECTION:
|
2393 |
|
|
case GIMPLE_OMP_MASTER:
|
2394 |
|
|
case GIMPLE_OMP_ORDERED:
|
2395 |
|
|
copy_omp_body:
|
2396 |
|
|
new_seq = gimple_seq_copy (gimple_omp_body (stmt));
|
2397 |
|
|
gimple_omp_set_body (copy, new_seq);
|
2398 |
|
|
break;
|
2399 |
|
|
|
2400 |
|
|
case GIMPLE_TRANSACTION:
|
2401 |
|
|
new_seq = gimple_seq_copy (gimple_transaction_body (stmt));
|
2402 |
|
|
gimple_transaction_set_body (copy, new_seq);
|
2403 |
|
|
break;
|
2404 |
|
|
|
2405 |
|
|
case GIMPLE_WITH_CLEANUP_EXPR:
|
2406 |
|
|
new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
|
2407 |
|
|
gimple_wce_set_cleanup (copy, new_seq);
|
2408 |
|
|
break;
|
2409 |
|
|
|
2410 |
|
|
default:
|
2411 |
|
|
gcc_unreachable ();
|
2412 |
|
|
}
|
2413 |
|
|
}
|
2414 |
|
|
|
2415 |
|
|
/* Make copy of operands. */
|
2416 |
|
|
if (num_ops > 0)
|
2417 |
|
|
{
|
2418 |
|
|
for (i = 0; i < num_ops; i++)
|
2419 |
|
|
gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
|
2420 |
|
|
|
2421 |
|
|
/* Clear out SSA operand vectors on COPY. */
|
2422 |
|
|
if (gimple_has_ops (stmt))
|
2423 |
|
|
{
|
2424 |
|
|
gimple_set_def_ops (copy, NULL);
|
2425 |
|
|
gimple_set_use_ops (copy, NULL);
|
2426 |
|
|
}
|
2427 |
|
|
|
2428 |
|
|
if (gimple_has_mem_ops (stmt))
|
2429 |
|
|
{
|
2430 |
|
|
gimple_set_vdef (copy, gimple_vdef (stmt));
|
2431 |
|
|
gimple_set_vuse (copy, gimple_vuse (stmt));
|
2432 |
|
|
}
|
2433 |
|
|
|
2434 |
|
|
/* SSA operands need to be updated. */
|
2435 |
|
|
gimple_set_modified (copy, true);
|
2436 |
|
|
}
|
2437 |
|
|
|
2438 |
|
|
return copy;
|
2439 |
|
|
}
|
2440 |
|
|
|
2441 |
|
|
|
2442 |
|
|
/* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
|
2443 |
|
|
a MODIFIED field. */
|
2444 |
|
|
|
2445 |
|
|
void
|
2446 |
|
|
gimple_set_modified (gimple s, bool modifiedp)
|
2447 |
|
|
{
|
2448 |
|
|
if (gimple_has_ops (s))
|
2449 |
|
|
s->gsbase.modified = (unsigned) modifiedp;
|
2450 |
|
|
}
|
2451 |
|
|
|
2452 |
|
|
|
2453 |
|
|
/* Return true if statement S has side-effects. We consider a
|
2454 |
|
|
statement to have side effects if:
|
2455 |
|
|
|
2456 |
|
|
- It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
|
2457 |
|
|
- Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
|
2458 |
|
|
|
2459 |
|
|
bool
|
2460 |
|
|
gimple_has_side_effects (const_gimple s)
|
2461 |
|
|
{
|
2462 |
|
|
if (is_gimple_debug (s))
|
2463 |
|
|
return false;
|
2464 |
|
|
|
2465 |
|
|
/* We don't have to scan the arguments to check for
|
2466 |
|
|
volatile arguments, though, at present, we still
|
2467 |
|
|
do a scan to check for TREE_SIDE_EFFECTS. */
|
2468 |
|
|
if (gimple_has_volatile_ops (s))
|
2469 |
|
|
return true;
|
2470 |
|
|
|
2471 |
|
|
if (gimple_code (s) == GIMPLE_ASM
|
2472 |
|
|
&& gimple_asm_volatile_p (s))
|
2473 |
|
|
return true;
|
2474 |
|
|
|
2475 |
|
|
if (is_gimple_call (s))
|
2476 |
|
|
{
|
2477 |
|
|
int flags = gimple_call_flags (s);
|
2478 |
|
|
|
2479 |
|
|
/* An infinite loop is considered a side effect. */
|
2480 |
|
|
if (!(flags & (ECF_CONST | ECF_PURE))
|
2481 |
|
|
|| (flags & ECF_LOOPING_CONST_OR_PURE))
|
2482 |
|
|
return true;
|
2483 |
|
|
|
2484 |
|
|
return false;
|
2485 |
|
|
}
|
2486 |
|
|
|
2487 |
|
|
return false;
|
2488 |
|
|
}
|
2489 |
|
|
|
2490 |
|
|
/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
|
2491 |
|
|
Return true if S can trap. When INCLUDE_MEM is true, check whether
|
2492 |
|
|
the memory operations could trap. When INCLUDE_STORES is true and
|
2493 |
|
|
S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
|
2494 |
|
|
|
2495 |
|
|
bool
|
2496 |
|
|
gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
|
2497 |
|
|
{
|
2498 |
|
|
tree t, div = NULL_TREE;
|
2499 |
|
|
enum tree_code op;
|
2500 |
|
|
|
2501 |
|
|
if (include_mem)
|
2502 |
|
|
{
|
2503 |
|
|
unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
|
2504 |
|
|
|
2505 |
|
|
for (i = start; i < gimple_num_ops (s); i++)
|
2506 |
|
|
if (tree_could_trap_p (gimple_op (s, i)))
|
2507 |
|
|
return true;
|
2508 |
|
|
}
|
2509 |
|
|
|
2510 |
|
|
switch (gimple_code (s))
|
2511 |
|
|
{
|
2512 |
|
|
case GIMPLE_ASM:
|
2513 |
|
|
return gimple_asm_volatile_p (s);
|
2514 |
|
|
|
2515 |
|
|
case GIMPLE_CALL:
|
2516 |
|
|
t = gimple_call_fndecl (s);
|
2517 |
|
|
/* Assume that calls to weak functions may trap. */
|
2518 |
|
|
if (!t || !DECL_P (t) || DECL_WEAK (t))
|
2519 |
|
|
return true;
|
2520 |
|
|
return false;
|
2521 |
|
|
|
2522 |
|
|
case GIMPLE_ASSIGN:
|
2523 |
|
|
t = gimple_expr_type (s);
|
2524 |
|
|
op = gimple_assign_rhs_code (s);
|
2525 |
|
|
if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
|
2526 |
|
|
div = gimple_assign_rhs2 (s);
|
2527 |
|
|
return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
|
2528 |
|
|
(INTEGRAL_TYPE_P (t)
|
2529 |
|
|
&& TYPE_OVERFLOW_TRAPS (t)),
|
2530 |
|
|
div));
|
2531 |
|
|
|
2532 |
|
|
default:
|
2533 |
|
|
break;
|
2534 |
|
|
}
|
2535 |
|
|
|
2536 |
|
|
return false;
|
2537 |
|
|
}
|
2538 |
|
|
|
2539 |
|
|
/* Return true if statement S can trap. */
|
2540 |
|
|
|
2541 |
|
|
bool
|
2542 |
|
|
gimple_could_trap_p (gimple s)
|
2543 |
|
|
{
|
2544 |
|
|
return gimple_could_trap_p_1 (s, true, true);
|
2545 |
|
|
}
|
2546 |
|
|
|
2547 |
|
|
/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
|
2548 |
|
|
|
2549 |
|
|
bool
|
2550 |
|
|
gimple_assign_rhs_could_trap_p (gimple s)
|
2551 |
|
|
{
|
2552 |
|
|
gcc_assert (is_gimple_assign (s));
|
2553 |
|
|
return gimple_could_trap_p_1 (s, true, false);
|
2554 |
|
|
}
|
2555 |
|
|
|
2556 |
|
|
|
2557 |
|
|
/* Print debugging information for gimple stmts generated. */
|
2558 |
|
|
|
2559 |
|
|
void
|
2560 |
|
|
dump_gimple_statistics (void)
|
2561 |
|
|
{
|
2562 |
|
|
#ifdef GATHER_STATISTICS
|
2563 |
|
|
int i, total_tuples = 0, total_bytes = 0;
|
2564 |
|
|
|
2565 |
|
|
fprintf (stderr, "\nGIMPLE statements\n");
|
2566 |
|
|
fprintf (stderr, "Kind Stmts Bytes\n");
|
2567 |
|
|
fprintf (stderr, "---------------------------------------\n");
|
2568 |
|
|
for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
|
2569 |
|
|
{
|
2570 |
|
|
fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
|
2571 |
|
|
gimple_alloc_counts[i], gimple_alloc_sizes[i]);
|
2572 |
|
|
total_tuples += gimple_alloc_counts[i];
|
2573 |
|
|
total_bytes += gimple_alloc_sizes[i];
|
2574 |
|
|
}
|
2575 |
|
|
fprintf (stderr, "---------------------------------------\n");
|
2576 |
|
|
fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
|
2577 |
|
|
fprintf (stderr, "---------------------------------------\n");
|
2578 |
|
|
#else
|
2579 |
|
|
fprintf (stderr, "No gimple statistics\n");
|
2580 |
|
|
#endif
|
2581 |
|
|
}
|
2582 |
|
|
|
2583 |
|
|
|
2584 |
|
|
/* Return the number of operands needed on the RHS of a GIMPLE
|
2585 |
|
|
assignment for an expression with tree code CODE. */
|
2586 |
|
|
|
2587 |
|
|
unsigned
|
2588 |
|
|
get_gimple_rhs_num_ops (enum tree_code code)
|
2589 |
|
|
{
|
2590 |
|
|
enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
|
2591 |
|
|
|
2592 |
|
|
if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
|
2593 |
|
|
return 1;
|
2594 |
|
|
else if (rhs_class == GIMPLE_BINARY_RHS)
|
2595 |
|
|
return 2;
|
2596 |
|
|
else if (rhs_class == GIMPLE_TERNARY_RHS)
|
2597 |
|
|
return 3;
|
2598 |
|
|
else
|
2599 |
|
|
gcc_unreachable ();
|
2600 |
|
|
}
|
2601 |
|
|
|
2602 |
|
|
#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
|
2603 |
|
|
(unsigned char) \
|
2604 |
|
|
((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
|
2605 |
|
|
: ((TYPE) == tcc_binary \
|
2606 |
|
|
|| (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
|
2607 |
|
|
: ((TYPE) == tcc_constant \
|
2608 |
|
|
|| (TYPE) == tcc_declaration \
|
2609 |
|
|
|| (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
|
2610 |
|
|
: ((SYM) == TRUTH_AND_EXPR \
|
2611 |
|
|
|| (SYM) == TRUTH_OR_EXPR \
|
2612 |
|
|
|| (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
|
2613 |
|
|
: (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
|
2614 |
|
|
: ((SYM) == COND_EXPR \
|
2615 |
|
|
|| (SYM) == WIDEN_MULT_PLUS_EXPR \
|
2616 |
|
|
|| (SYM) == WIDEN_MULT_MINUS_EXPR \
|
2617 |
|
|
|| (SYM) == DOT_PROD_EXPR \
|
2618 |
|
|
|| (SYM) == REALIGN_LOAD_EXPR \
|
2619 |
|
|
|| (SYM) == VEC_COND_EXPR \
|
2620 |
|
|
|| (SYM) == VEC_PERM_EXPR \
|
2621 |
|
|
|| (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
|
2622 |
|
|
: ((SYM) == CONSTRUCTOR \
|
2623 |
|
|
|| (SYM) == OBJ_TYPE_REF \
|
2624 |
|
|
|| (SYM) == ASSERT_EXPR \
|
2625 |
|
|
|| (SYM) == ADDR_EXPR \
|
2626 |
|
|
|| (SYM) == WITH_SIZE_EXPR \
|
2627 |
|
|
|| (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
|
2628 |
|
|
: GIMPLE_INVALID_RHS),
|
2629 |
|
|
#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
|
2630 |
|
|
|
2631 |
|
|
const unsigned char gimple_rhs_class_table[] = {
|
2632 |
|
|
#include "all-tree.def"
|
2633 |
|
|
};
|
2634 |
|
|
|
2635 |
|
|
#undef DEFTREECODE
|
2636 |
|
|
#undef END_OF_BASE_TREE_CODES
|
2637 |
|
|
|
2638 |
|
|
/* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
|
2639 |
|
|
|
2640 |
|
|
/* Validation of GIMPLE expressions. */
|
2641 |
|
|
|
2642 |
|
|
/* Returns true iff T is a valid RHS for an assignment to a renamed
|
2643 |
|
|
user -- or front-end generated artificial -- variable. */
|
2644 |
|
|
|
2645 |
|
|
bool
|
2646 |
|
|
is_gimple_reg_rhs (tree t)
|
2647 |
|
|
{
|
2648 |
|
|
return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
|
2649 |
|
|
}
|
2650 |
|
|
|
2651 |
|
|
/* Returns true iff T is a valid RHS for an assignment to an un-renamed
|
2652 |
|
|
LHS, or for a call argument. */
|
2653 |
|
|
|
2654 |
|
|
bool
|
2655 |
|
|
is_gimple_mem_rhs (tree t)
|
2656 |
|
|
{
|
2657 |
|
|
/* If we're dealing with a renamable type, either source or dest must be
|
2658 |
|
|
a renamed variable. */
|
2659 |
|
|
if (is_gimple_reg_type (TREE_TYPE (t)))
|
2660 |
|
|
return is_gimple_val (t);
|
2661 |
|
|
else
|
2662 |
|
|
return is_gimple_val (t) || is_gimple_lvalue (t);
|
2663 |
|
|
}
|
2664 |
|
|
|
2665 |
|
|
/* Return true if T is a valid LHS for a GIMPLE assignment expression. */
|
2666 |
|
|
|
2667 |
|
|
bool
|
2668 |
|
|
is_gimple_lvalue (tree t)
|
2669 |
|
|
{
|
2670 |
|
|
return (is_gimple_addressable (t)
|
2671 |
|
|
|| TREE_CODE (t) == WITH_SIZE_EXPR
|
2672 |
|
|
/* These are complex lvalues, but don't have addresses, so they
|
2673 |
|
|
go here. */
|
2674 |
|
|
|| TREE_CODE (t) == BIT_FIELD_REF);
|
2675 |
|
|
}
|
2676 |
|
|
|
2677 |
|
|
/* Return true if T is a GIMPLE condition. */
|
2678 |
|
|
|
2679 |
|
|
bool
|
2680 |
|
|
is_gimple_condexpr (tree t)
|
2681 |
|
|
{
|
2682 |
|
|
return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
|
2683 |
|
|
&& !tree_could_throw_p (t)
|
2684 |
|
|
&& is_gimple_val (TREE_OPERAND (t, 0))
|
2685 |
|
|
&& is_gimple_val (TREE_OPERAND (t, 1))));
|
2686 |
|
|
}
|
2687 |
|
|
|
2688 |
|
|
/* Return true if T is something whose address can be taken. */
|
2689 |
|
|
|
2690 |
|
|
bool
|
2691 |
|
|
is_gimple_addressable (tree t)
|
2692 |
|
|
{
|
2693 |
|
|
return (is_gimple_id (t) || handled_component_p (t)
|
2694 |
|
|
|| TREE_CODE (t) == MEM_REF);
|
2695 |
|
|
}
|
2696 |
|
|
|
2697 |
|
|
/* Return true if T is a valid gimple constant. */
|
2698 |
|
|
|
2699 |
|
|
bool
|
2700 |
|
|
is_gimple_constant (const_tree t)
|
2701 |
|
|
{
|
2702 |
|
|
switch (TREE_CODE (t))
|
2703 |
|
|
{
|
2704 |
|
|
case INTEGER_CST:
|
2705 |
|
|
case REAL_CST:
|
2706 |
|
|
case FIXED_CST:
|
2707 |
|
|
case STRING_CST:
|
2708 |
|
|
case COMPLEX_CST:
|
2709 |
|
|
case VECTOR_CST:
|
2710 |
|
|
return true;
|
2711 |
|
|
|
2712 |
|
|
/* Vector constant constructors are gimple invariant. */
|
2713 |
|
|
case CONSTRUCTOR:
|
2714 |
|
|
if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
|
2715 |
|
|
return TREE_CONSTANT (t);
|
2716 |
|
|
else
|
2717 |
|
|
return false;
|
2718 |
|
|
|
2719 |
|
|
default:
|
2720 |
|
|
return false;
|
2721 |
|
|
}
|
2722 |
|
|
}
|
2723 |
|
|
|
2724 |
|
|
/* Return true if T is a gimple address. */
|
2725 |
|
|
|
2726 |
|
|
bool
|
2727 |
|
|
is_gimple_address (const_tree t)
|
2728 |
|
|
{
|
2729 |
|
|
tree op;
|
2730 |
|
|
|
2731 |
|
|
if (TREE_CODE (t) != ADDR_EXPR)
|
2732 |
|
|
return false;
|
2733 |
|
|
|
2734 |
|
|
op = TREE_OPERAND (t, 0);
|
2735 |
|
|
while (handled_component_p (op))
|
2736 |
|
|
{
|
2737 |
|
|
if ((TREE_CODE (op) == ARRAY_REF
|
2738 |
|
|
|| TREE_CODE (op) == ARRAY_RANGE_REF)
|
2739 |
|
|
&& !is_gimple_val (TREE_OPERAND (op, 1)))
|
2740 |
|
|
return false;
|
2741 |
|
|
|
2742 |
|
|
op = TREE_OPERAND (op, 0);
|
2743 |
|
|
}
|
2744 |
|
|
|
2745 |
|
|
if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
|
2746 |
|
|
return true;
|
2747 |
|
|
|
2748 |
|
|
switch (TREE_CODE (op))
|
2749 |
|
|
{
|
2750 |
|
|
case PARM_DECL:
|
2751 |
|
|
case RESULT_DECL:
|
2752 |
|
|
case LABEL_DECL:
|
2753 |
|
|
case FUNCTION_DECL:
|
2754 |
|
|
case VAR_DECL:
|
2755 |
|
|
case CONST_DECL:
|
2756 |
|
|
return true;
|
2757 |
|
|
|
2758 |
|
|
default:
|
2759 |
|
|
return false;
|
2760 |
|
|
}
|
2761 |
|
|
}
|
2762 |
|
|
|
2763 |
|
|
/* Return true if T is a gimple invariant address. */
|
2764 |
|
|
|
2765 |
|
|
bool
|
2766 |
|
|
is_gimple_invariant_address (const_tree t)
|
2767 |
|
|
{
|
2768 |
|
|
const_tree op;
|
2769 |
|
|
|
2770 |
|
|
if (TREE_CODE (t) != ADDR_EXPR)
|
2771 |
|
|
return false;
|
2772 |
|
|
|
2773 |
|
|
op = strip_invariant_refs (TREE_OPERAND (t, 0));
|
2774 |
|
|
if (!op)
|
2775 |
|
|
return false;
|
2776 |
|
|
|
2777 |
|
|
if (TREE_CODE (op) == MEM_REF)
|
2778 |
|
|
{
|
2779 |
|
|
const_tree op0 = TREE_OPERAND (op, 0);
|
2780 |
|
|
return (TREE_CODE (op0) == ADDR_EXPR
|
2781 |
|
|
&& (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
|
2782 |
|
|
|| decl_address_invariant_p (TREE_OPERAND (op0, 0))));
|
2783 |
|
|
}
|
2784 |
|
|
|
2785 |
|
|
return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
|
2786 |
|
|
}
|
2787 |
|
|
|
2788 |
|
|
/* Return true if T is a gimple invariant address at IPA level
|
2789 |
|
|
(so addresses of variables on stack are not allowed). */
|
2790 |
|
|
|
2791 |
|
|
bool
|
2792 |
|
|
is_gimple_ip_invariant_address (const_tree t)
|
2793 |
|
|
{
|
2794 |
|
|
const_tree op;
|
2795 |
|
|
|
2796 |
|
|
if (TREE_CODE (t) != ADDR_EXPR)
|
2797 |
|
|
return false;
|
2798 |
|
|
|
2799 |
|
|
op = strip_invariant_refs (TREE_OPERAND (t, 0));
|
2800 |
|
|
if (!op)
|
2801 |
|
|
return false;
|
2802 |
|
|
|
2803 |
|
|
if (TREE_CODE (op) == MEM_REF)
|
2804 |
|
|
{
|
2805 |
|
|
const_tree op0 = TREE_OPERAND (op, 0);
|
2806 |
|
|
return (TREE_CODE (op0) == ADDR_EXPR
|
2807 |
|
|
&& (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
|
2808 |
|
|
|| decl_address_ip_invariant_p (TREE_OPERAND (op0, 0))));
|
2809 |
|
|
}
|
2810 |
|
|
|
2811 |
|
|
return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op);
|
2812 |
|
|
}
|
2813 |
|
|
|
2814 |
|
|
/* Return true if T is a GIMPLE minimal invariant. It's a restricted
|
2815 |
|
|
form of function invariant. */
|
2816 |
|
|
|
2817 |
|
|
bool
|
2818 |
|
|
is_gimple_min_invariant (const_tree t)
|
2819 |
|
|
{
|
2820 |
|
|
if (TREE_CODE (t) == ADDR_EXPR)
|
2821 |
|
|
return is_gimple_invariant_address (t);
|
2822 |
|
|
|
2823 |
|
|
return is_gimple_constant (t);
|
2824 |
|
|
}
|
2825 |
|
|
|
2826 |
|
|
/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
|
2827 |
|
|
form of gimple minimal invariant. */
|
2828 |
|
|
|
2829 |
|
|
bool
|
2830 |
|
|
is_gimple_ip_invariant (const_tree t)
|
2831 |
|
|
{
|
2832 |
|
|
if (TREE_CODE (t) == ADDR_EXPR)
|
2833 |
|
|
return is_gimple_ip_invariant_address (t);
|
2834 |
|
|
|
2835 |
|
|
return is_gimple_constant (t);
|
2836 |
|
|
}
|
2837 |
|
|
|
2838 |
|
|
/* Return true if T looks like a valid GIMPLE statement. */
|
2839 |
|
|
|
2840 |
|
|
bool
|
2841 |
|
|
is_gimple_stmt (tree t)
|
2842 |
|
|
{
|
2843 |
|
|
const enum tree_code code = TREE_CODE (t);
|
2844 |
|
|
|
2845 |
|
|
switch (code)
|
2846 |
|
|
{
|
2847 |
|
|
case NOP_EXPR:
|
2848 |
|
|
/* The only valid NOP_EXPR is the empty statement. */
|
2849 |
|
|
return IS_EMPTY_STMT (t);
|
2850 |
|
|
|
2851 |
|
|
case BIND_EXPR:
|
2852 |
|
|
case COND_EXPR:
|
2853 |
|
|
/* These are only valid if they're void. */
|
2854 |
|
|
return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
|
2855 |
|
|
|
2856 |
|
|
case SWITCH_EXPR:
|
2857 |
|
|
case GOTO_EXPR:
|
2858 |
|
|
case RETURN_EXPR:
|
2859 |
|
|
case LABEL_EXPR:
|
2860 |
|
|
case CASE_LABEL_EXPR:
|
2861 |
|
|
case TRY_CATCH_EXPR:
|
2862 |
|
|
case TRY_FINALLY_EXPR:
|
2863 |
|
|
case EH_FILTER_EXPR:
|
2864 |
|
|
case CATCH_EXPR:
|
2865 |
|
|
case ASM_EXPR:
|
2866 |
|
|
case STATEMENT_LIST:
|
2867 |
|
|
case OMP_PARALLEL:
|
2868 |
|
|
case OMP_FOR:
|
2869 |
|
|
case OMP_SECTIONS:
|
2870 |
|
|
case OMP_SECTION:
|
2871 |
|
|
case OMP_SINGLE:
|
2872 |
|
|
case OMP_MASTER:
|
2873 |
|
|
case OMP_ORDERED:
|
2874 |
|
|
case OMP_CRITICAL:
|
2875 |
|
|
case OMP_TASK:
|
2876 |
|
|
/* These are always void. */
|
2877 |
|
|
return true;
|
2878 |
|
|
|
2879 |
|
|
case CALL_EXPR:
|
2880 |
|
|
case MODIFY_EXPR:
|
2881 |
|
|
case PREDICT_EXPR:
|
2882 |
|
|
/* These are valid regardless of their type. */
|
2883 |
|
|
return true;
|
2884 |
|
|
|
2885 |
|
|
default:
|
2886 |
|
|
return false;
|
2887 |
|
|
}
|
2888 |
|
|
}
|
2889 |
|
|
|
2890 |
|
|
/* Return true if T is a variable. */
|
2891 |
|
|
|
2892 |
|
|
bool
|
2893 |
|
|
is_gimple_variable (tree t)
|
2894 |
|
|
{
|
2895 |
|
|
return (TREE_CODE (t) == VAR_DECL
|
2896 |
|
|
|| TREE_CODE (t) == PARM_DECL
|
2897 |
|
|
|| TREE_CODE (t) == RESULT_DECL
|
2898 |
|
|
|| TREE_CODE (t) == SSA_NAME);
|
2899 |
|
|
}
|
2900 |
|
|
|
2901 |
|
|
/* Return true if T is a GIMPLE identifier (something with an address). */
|
2902 |
|
|
|
2903 |
|
|
bool
|
2904 |
|
|
is_gimple_id (tree t)
|
2905 |
|
|
{
|
2906 |
|
|
return (is_gimple_variable (t)
|
2907 |
|
|
|| TREE_CODE (t) == FUNCTION_DECL
|
2908 |
|
|
|| TREE_CODE (t) == LABEL_DECL
|
2909 |
|
|
|| TREE_CODE (t) == CONST_DECL
|
2910 |
|
|
/* Allow string constants, since they are addressable. */
|
2911 |
|
|
|| TREE_CODE (t) == STRING_CST);
|
2912 |
|
|
}
|
2913 |
|
|
|
2914 |
|
|
/* Return true if T is a non-aggregate register variable. */
|
2915 |
|
|
|
2916 |
|
|
bool
|
2917 |
|
|
is_gimple_reg (tree t)
|
2918 |
|
|
{
|
2919 |
|
|
if (TREE_CODE (t) == SSA_NAME)
|
2920 |
|
|
t = SSA_NAME_VAR (t);
|
2921 |
|
|
|
2922 |
|
|
if (!is_gimple_variable (t))
|
2923 |
|
|
return false;
|
2924 |
|
|
|
2925 |
|
|
if (!is_gimple_reg_type (TREE_TYPE (t)))
|
2926 |
|
|
return false;
|
2927 |
|
|
|
2928 |
|
|
/* A volatile decl is not acceptable because we can't reuse it as
|
2929 |
|
|
needed. We need to copy it into a temp first. */
|
2930 |
|
|
if (TREE_THIS_VOLATILE (t))
|
2931 |
|
|
return false;
|
2932 |
|
|
|
2933 |
|
|
/* We define "registers" as things that can be renamed as needed,
|
2934 |
|
|
which with our infrastructure does not apply to memory. */
|
2935 |
|
|
if (needs_to_live_in_memory (t))
|
2936 |
|
|
return false;
|
2937 |
|
|
|
2938 |
|
|
/* Hard register variables are an interesting case. For those that
|
2939 |
|
|
are call-clobbered, we don't know where all the calls are, since
|
2940 |
|
|
we don't (want to) take into account which operations will turn
|
2941 |
|
|
into libcalls at the rtl level. For those that are call-saved,
|
2942 |
|
|
we don't currently model the fact that calls may in fact change
|
2943 |
|
|
global hard registers, nor do we examine ASM_CLOBBERS at the tree
|
2944 |
|
|
level, and so miss variable changes that might imply. All around,
|
2945 |
|
|
it seems safest to not do too much optimization with these at the
|
2946 |
|
|
tree level at all. We'll have to rely on the rtl optimizers to
|
2947 |
|
|
clean this up, as there we've got all the appropriate bits exposed. */
|
2948 |
|
|
if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
|
2949 |
|
|
return false;
|
2950 |
|
|
|
2951 |
|
|
/* Complex and vector values must have been put into SSA-like form.
|
2952 |
|
|
That is, no assignments to the individual components. */
|
2953 |
|
|
if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
|
2954 |
|
|
|| TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
|
2955 |
|
|
return DECL_GIMPLE_REG_P (t);
|
2956 |
|
|
|
2957 |
|
|
return true;
|
2958 |
|
|
}
|
2959 |
|
|
|
2960 |
|
|
|
2961 |
|
|
/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
|
2962 |
|
|
|
2963 |
|
|
bool
|
2964 |
|
|
is_gimple_val (tree t)
|
2965 |
|
|
{
|
2966 |
|
|
/* Make loads from volatiles and memory vars explicit. */
|
2967 |
|
|
if (is_gimple_variable (t)
|
2968 |
|
|
&& is_gimple_reg_type (TREE_TYPE (t))
|
2969 |
|
|
&& !is_gimple_reg (t))
|
2970 |
|
|
return false;
|
2971 |
|
|
|
2972 |
|
|
return (is_gimple_variable (t) || is_gimple_min_invariant (t));
|
2973 |
|
|
}
|
2974 |
|
|
|
2975 |
|
|
/* Similarly, but accept hard registers as inputs to asm statements. */
|
2976 |
|
|
|
2977 |
|
|
bool
|
2978 |
|
|
is_gimple_asm_val (tree t)
|
2979 |
|
|
{
|
2980 |
|
|
if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
|
2981 |
|
|
return true;
|
2982 |
|
|
|
2983 |
|
|
return is_gimple_val (t);
|
2984 |
|
|
}
|
2985 |
|
|
|
2986 |
|
|
/* Return true if T is a GIMPLE minimal lvalue. */
|
2987 |
|
|
|
2988 |
|
|
bool
|
2989 |
|
|
is_gimple_min_lval (tree t)
|
2990 |
|
|
{
|
2991 |
|
|
if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
|
2992 |
|
|
return false;
|
2993 |
|
|
return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
|
2994 |
|
|
}
|
2995 |
|
|
|
2996 |
|
|
/* Return true if T is a valid function operand of a CALL_EXPR. */
|
2997 |
|
|
|
2998 |
|
|
bool
|
2999 |
|
|
is_gimple_call_addr (tree t)
|
3000 |
|
|
{
|
3001 |
|
|
return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
|
3002 |
|
|
}
|
3003 |
|
|
|
3004 |
|
|
/* Return true if T is a valid address operand of a MEM_REF. */
|
3005 |
|
|
|
3006 |
|
|
bool
|
3007 |
|
|
is_gimple_mem_ref_addr (tree t)
|
3008 |
|
|
{
|
3009 |
|
|
return (is_gimple_reg (t)
|
3010 |
|
|
|| TREE_CODE (t) == INTEGER_CST
|
3011 |
|
|
|| (TREE_CODE (t) == ADDR_EXPR
|
3012 |
|
|
&& (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
|
3013 |
|
|
|| decl_address_invariant_p (TREE_OPERAND (t, 0)))));
|
3014 |
|
|
}
|
3015 |
|
|
|
3016 |
|
|
|
3017 |
|
|
/* Given a memory reference expression T, return its base address.
|
3018 |
|
|
The base address of a memory reference expression is the main
|
3019 |
|
|
object being referenced. For instance, the base address for
|
3020 |
|
|
'array[i].fld[j]' is 'array'. You can think of this as stripping
|
3021 |
|
|
away the offset part from a memory address.
|
3022 |
|
|
|
3023 |
|
|
This function calls handled_component_p to strip away all the inner
|
3024 |
|
|
parts of the memory reference until it reaches the base object. */
|
3025 |
|
|
|
3026 |
|
|
tree
|
3027 |
|
|
get_base_address (tree t)
|
3028 |
|
|
{
|
3029 |
|
|
while (handled_component_p (t))
|
3030 |
|
|
t = TREE_OPERAND (t, 0);
|
3031 |
|
|
|
3032 |
|
|
if ((TREE_CODE (t) == MEM_REF
|
3033 |
|
|
|| TREE_CODE (t) == TARGET_MEM_REF)
|
3034 |
|
|
&& TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
|
3035 |
|
|
t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
|
3036 |
|
|
|
3037 |
|
|
if (TREE_CODE (t) == SSA_NAME
|
3038 |
|
|
|| DECL_P (t)
|
3039 |
|
|
|| TREE_CODE (t) == STRING_CST
|
3040 |
|
|
|| TREE_CODE (t) == CONSTRUCTOR
|
3041 |
|
|
|| INDIRECT_REF_P (t)
|
3042 |
|
|
|| TREE_CODE (t) == MEM_REF
|
3043 |
|
|
|| TREE_CODE (t) == TARGET_MEM_REF)
|
3044 |
|
|
return t;
|
3045 |
|
|
else
|
3046 |
|
|
return NULL_TREE;
|
3047 |
|
|
}
|
3048 |
|
|
|
3049 |
|
|
void
|
3050 |
|
|
recalculate_side_effects (tree t)
|
3051 |
|
|
{
|
3052 |
|
|
enum tree_code code = TREE_CODE (t);
|
3053 |
|
|
int len = TREE_OPERAND_LENGTH (t);
|
3054 |
|
|
int i;
|
3055 |
|
|
|
3056 |
|
|
switch (TREE_CODE_CLASS (code))
|
3057 |
|
|
{
|
3058 |
|
|
case tcc_expression:
|
3059 |
|
|
switch (code)
|
3060 |
|
|
{
|
3061 |
|
|
case INIT_EXPR:
|
3062 |
|
|
case MODIFY_EXPR:
|
3063 |
|
|
case VA_ARG_EXPR:
|
3064 |
|
|
case PREDECREMENT_EXPR:
|
3065 |
|
|
case PREINCREMENT_EXPR:
|
3066 |
|
|
case POSTDECREMENT_EXPR:
|
3067 |
|
|
case POSTINCREMENT_EXPR:
|
3068 |
|
|
/* All of these have side-effects, no matter what their
|
3069 |
|
|
operands are. */
|
3070 |
|
|
return;
|
3071 |
|
|
|
3072 |
|
|
default:
|
3073 |
|
|
break;
|
3074 |
|
|
}
|
3075 |
|
|
/* Fall through. */
|
3076 |
|
|
|
3077 |
|
|
case tcc_comparison: /* a comparison expression */
|
3078 |
|
|
case tcc_unary: /* a unary arithmetic expression */
|
3079 |
|
|
case tcc_binary: /* a binary arithmetic expression */
|
3080 |
|
|
case tcc_reference: /* a reference */
|
3081 |
|
|
case tcc_vl_exp: /* a function call */
|
3082 |
|
|
TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
|
3083 |
|
|
for (i = 0; i < len; ++i)
|
3084 |
|
|
{
|
3085 |
|
|
tree op = TREE_OPERAND (t, i);
|
3086 |
|
|
if (op && TREE_SIDE_EFFECTS (op))
|
3087 |
|
|
TREE_SIDE_EFFECTS (t) = 1;
|
3088 |
|
|
}
|
3089 |
|
|
break;
|
3090 |
|
|
|
3091 |
|
|
case tcc_constant:
|
3092 |
|
|
/* No side-effects. */
|
3093 |
|
|
return;
|
3094 |
|
|
|
3095 |
|
|
default:
|
3096 |
|
|
gcc_unreachable ();
|
3097 |
|
|
}
|
3098 |
|
|
}
|
3099 |
|
|
|
3100 |
|
|
/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
|
3101 |
|
|
a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
|
3102 |
|
|
we failed to create one. */
|
3103 |
|
|
|
3104 |
|
|
tree
|
3105 |
|
|
canonicalize_cond_expr_cond (tree t)
|
3106 |
|
|
{
|
3107 |
|
|
/* Strip conversions around boolean operations. */
|
3108 |
|
|
if (CONVERT_EXPR_P (t)
|
3109 |
|
|
&& (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
|
3110 |
|
|
|| TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
|
3111 |
|
|
== BOOLEAN_TYPE))
|
3112 |
|
|
t = TREE_OPERAND (t, 0);
|
3113 |
|
|
|
3114 |
|
|
/* For !x use x == 0. */
|
3115 |
|
|
if (TREE_CODE (t) == TRUTH_NOT_EXPR)
|
3116 |
|
|
{
|
3117 |
|
|
tree top0 = TREE_OPERAND (t, 0);
|
3118 |
|
|
t = build2 (EQ_EXPR, TREE_TYPE (t),
|
3119 |
|
|
top0, build_int_cst (TREE_TYPE (top0), 0));
|
3120 |
|
|
}
|
3121 |
|
|
/* For cmp ? 1 : 0 use cmp. */
|
3122 |
|
|
else if (TREE_CODE (t) == COND_EXPR
|
3123 |
|
|
&& COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
|
3124 |
|
|
&& integer_onep (TREE_OPERAND (t, 1))
|
3125 |
|
|
&& integer_zerop (TREE_OPERAND (t, 2)))
|
3126 |
|
|
{
|
3127 |
|
|
tree top0 = TREE_OPERAND (t, 0);
|
3128 |
|
|
t = build2 (TREE_CODE (top0), TREE_TYPE (t),
|
3129 |
|
|
TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
|
3130 |
|
|
}
|
3131 |
|
|
|
3132 |
|
|
if (is_gimple_condexpr (t))
|
3133 |
|
|
return t;
|
3134 |
|
|
|
3135 |
|
|
return NULL_TREE;
|
3136 |
|
|
}
|
3137 |
|
|
|
3138 |
|
|
/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
|
3139 |
|
|
the positions marked by the set ARGS_TO_SKIP. */
|
3140 |
|
|
|
3141 |
|
|
gimple
|
3142 |
|
|
gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
|
3143 |
|
|
{
|
3144 |
|
|
int i;
|
3145 |
|
|
int nargs = gimple_call_num_args (stmt);
|
3146 |
|
|
VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
|
3147 |
|
|
gimple new_stmt;
|
3148 |
|
|
|
3149 |
|
|
for (i = 0; i < nargs; i++)
|
3150 |
|
|
if (!bitmap_bit_p (args_to_skip, i))
|
3151 |
|
|
VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
|
3152 |
|
|
|
3153 |
|
|
if (gimple_call_internal_p (stmt))
|
3154 |
|
|
new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
|
3155 |
|
|
vargs);
|
3156 |
|
|
else
|
3157 |
|
|
new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
|
3158 |
|
|
VEC_free (tree, heap, vargs);
|
3159 |
|
|
if (gimple_call_lhs (stmt))
|
3160 |
|
|
gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
|
3161 |
|
|
|
3162 |
|
|
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
|
3163 |
|
|
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
|
3164 |
|
|
|
3165 |
|
|
gimple_set_block (new_stmt, gimple_block (stmt));
|
3166 |
|
|
if (gimple_has_location (stmt))
|
3167 |
|
|
gimple_set_location (new_stmt, gimple_location (stmt));
|
3168 |
|
|
gimple_call_copy_flags (new_stmt, stmt);
|
3169 |
|
|
gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
|
3170 |
|
|
|
3171 |
|
|
gimple_set_modified (new_stmt, true);
|
3172 |
|
|
|
3173 |
|
|
return new_stmt;
|
3174 |
|
|
}
|
3175 |
|
|
|
3176 |
|
|
|
3177 |
|
|
enum gtc_mode { GTC_MERGE = 0, GTC_DIAG = 1 };
|
3178 |
|
|
|
3179 |
|
|
static hashval_t gimple_type_hash (const void *);
|
3180 |
|
|
|
3181 |
|
|
/* Structure used to maintain a cache of some type pairs compared by
|
3182 |
|
|
gimple_types_compatible_p when comparing aggregate types. There are
|
3183 |
|
|
three possible values for SAME_P:
|
3184 |
|
|
|
3185 |
|
|
-2: The pair (T1, T2) has just been inserted in the table.
|
3186 |
|
|
0: T1 and T2 are different types.
|
3187 |
|
|
1: T1 and T2 are the same type.
|
3188 |
|
|
|
3189 |
|
|
The two elements in the SAME_P array are indexed by the comparison
|
3190 |
|
|
mode gtc_mode. */
|
3191 |
|
|
|
3192 |
|
|
struct type_pair_d
|
3193 |
|
|
{
|
3194 |
|
|
unsigned int uid1;
|
3195 |
|
|
unsigned int uid2;
|
3196 |
|
|
signed char same_p[2];
|
3197 |
|
|
};
|
3198 |
|
|
typedef struct type_pair_d *type_pair_t;
|
3199 |
|
|
DEF_VEC_P(type_pair_t);
|
3200 |
|
|
DEF_VEC_ALLOC_P(type_pair_t,heap);
|
3201 |
|
|
|
3202 |
|
|
#define GIMPLE_TYPE_PAIR_SIZE 16381
|
3203 |
|
|
struct type_pair_d *type_pair_cache;
|
3204 |
|
|
|
3205 |
|
|
|
3206 |
|
|
/* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
|
3207 |
|
|
entry if none existed. */
|
3208 |
|
|
|
3209 |
|
|
static inline type_pair_t
|
3210 |
|
|
lookup_type_pair (tree t1, tree t2)
|
3211 |
|
|
{
|
3212 |
|
|
unsigned int index;
|
3213 |
|
|
unsigned int uid1, uid2;
|
3214 |
|
|
|
3215 |
|
|
if (type_pair_cache == NULL)
|
3216 |
|
|
type_pair_cache = XCNEWVEC (struct type_pair_d, GIMPLE_TYPE_PAIR_SIZE);
|
3217 |
|
|
|
3218 |
|
|
if (TYPE_UID (t1) < TYPE_UID (t2))
|
3219 |
|
|
{
|
3220 |
|
|
uid1 = TYPE_UID (t1);
|
3221 |
|
|
uid2 = TYPE_UID (t2);
|
3222 |
|
|
}
|
3223 |
|
|
else
|
3224 |
|
|
{
|
3225 |
|
|
uid1 = TYPE_UID (t2);
|
3226 |
|
|
uid2 = TYPE_UID (t1);
|
3227 |
|
|
}
|
3228 |
|
|
gcc_checking_assert (uid1 != uid2);
|
3229 |
|
|
|
3230 |
|
|
/* iterative_hash_hashval_t imply an function calls.
|
3231 |
|
|
We know that UIDS are in limited range. */
|
3232 |
|
|
index = ((((unsigned HOST_WIDE_INT)uid1 << HOST_BITS_PER_WIDE_INT / 2) + uid2)
|
3233 |
|
|
% GIMPLE_TYPE_PAIR_SIZE);
|
3234 |
|
|
if (type_pair_cache [index].uid1 == uid1
|
3235 |
|
|
&& type_pair_cache [index].uid2 == uid2)
|
3236 |
|
|
return &type_pair_cache[index];
|
3237 |
|
|
|
3238 |
|
|
type_pair_cache [index].uid1 = uid1;
|
3239 |
|
|
type_pair_cache [index].uid2 = uid2;
|
3240 |
|
|
type_pair_cache [index].same_p[0] = -2;
|
3241 |
|
|
type_pair_cache [index].same_p[1] = -2;
|
3242 |
|
|
|
3243 |
|
|
return &type_pair_cache[index];
|
3244 |
|
|
}
|
3245 |
|
|
|
3246 |
|
|
/* Per pointer state for the SCC finding. The on_sccstack flag
|
3247 |
|
|
is not strictly required, it is true when there is no hash value
|
3248 |
|
|
recorded for the type and false otherwise. But querying that
|
3249 |
|
|
is slower. */
|
3250 |
|
|
|
3251 |
|
|
struct sccs
|
3252 |
|
|
{
|
3253 |
|
|
unsigned int dfsnum;
|
3254 |
|
|
unsigned int low;
|
3255 |
|
|
bool on_sccstack;
|
3256 |
|
|
union {
|
3257 |
|
|
hashval_t hash;
|
3258 |
|
|
signed char same_p;
|
3259 |
|
|
} u;
|
3260 |
|
|
};
|
3261 |
|
|
|
3262 |
|
|
static unsigned int next_dfs_num;
|
3263 |
|
|
static unsigned int gtc_next_dfs_num;
|
3264 |
|
|
|
3265 |
|
|
|
3266 |
|
|
/* GIMPLE type merging cache. A direct-mapped cache based on TYPE_UID. */
|
3267 |
|
|
|
3268 |
|
|
typedef struct GTY(()) gimple_type_leader_entry_s {
|
3269 |
|
|
tree type;
|
3270 |
|
|
tree leader;
|
3271 |
|
|
} gimple_type_leader_entry;
|
3272 |
|
|
|
3273 |
|
|
#define GIMPLE_TYPE_LEADER_SIZE 16381
|
3274 |
|
|
static GTY((deletable, length("GIMPLE_TYPE_LEADER_SIZE")))
|
3275 |
|
|
gimple_type_leader_entry *gimple_type_leader;
|
3276 |
|
|
|
3277 |
|
|
/* Lookup an existing leader for T and return it or NULL_TREE, if
|
3278 |
|
|
there is none in the cache. */
|
3279 |
|
|
|
3280 |
|
|
static inline tree
|
3281 |
|
|
gimple_lookup_type_leader (tree t)
|
3282 |
|
|
{
|
3283 |
|
|
gimple_type_leader_entry *leader;
|
3284 |
|
|
|
3285 |
|
|
if (!gimple_type_leader)
|
3286 |
|
|
return NULL_TREE;
|
3287 |
|
|
|
3288 |
|
|
leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
|
3289 |
|
|
if (leader->type != t)
|
3290 |
|
|
return NULL_TREE;
|
3291 |
|
|
|
3292 |
|
|
return leader->leader;
|
3293 |
|
|
}
|
3294 |
|
|
|
3295 |
|
|
/* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
|
3296 |
|
|
true then if any type has no name return false, otherwise return
|
3297 |
|
|
true if both types have no names. */
|
3298 |
|
|
|
3299 |
|
|
static bool
|
3300 |
|
|
compare_type_names_p (tree t1, tree t2)
|
3301 |
|
|
{
|
3302 |
|
|
tree name1 = TYPE_NAME (t1);
|
3303 |
|
|
tree name2 = TYPE_NAME (t2);
|
3304 |
|
|
|
3305 |
|
|
if ((name1 != NULL_TREE) != (name2 != NULL_TREE))
|
3306 |
|
|
return false;
|
3307 |
|
|
|
3308 |
|
|
if (name1 == NULL_TREE)
|
3309 |
|
|
return true;
|
3310 |
|
|
|
3311 |
|
|
/* Either both should be a TYPE_DECL or both an IDENTIFIER_NODE. */
|
3312 |
|
|
if (TREE_CODE (name1) != TREE_CODE (name2))
|
3313 |
|
|
return false;
|
3314 |
|
|
|
3315 |
|
|
if (TREE_CODE (name1) == TYPE_DECL)
|
3316 |
|
|
name1 = DECL_NAME (name1);
|
3317 |
|
|
gcc_checking_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
|
3318 |
|
|
|
3319 |
|
|
if (TREE_CODE (name2) == TYPE_DECL)
|
3320 |
|
|
name2 = DECL_NAME (name2);
|
3321 |
|
|
gcc_checking_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
|
3322 |
|
|
|
3323 |
|
|
/* Identifiers can be compared with pointer equality rather
|
3324 |
|
|
than a string comparison. */
|
3325 |
|
|
if (name1 == name2)
|
3326 |
|
|
return true;
|
3327 |
|
|
|
3328 |
|
|
return false;
|
3329 |
|
|
}
|
3330 |
|
|
|
3331 |
|
|
/* Return true if the field decls F1 and F2 are at the same offset.
|
3332 |
|
|
|
3333 |
|
|
This is intended to be used on GIMPLE types only. */
|
3334 |
|
|
|
3335 |
|
|
bool
|
3336 |
|
|
gimple_compare_field_offset (tree f1, tree f2)
|
3337 |
|
|
{
|
3338 |
|
|
if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
|
3339 |
|
|
{
|
3340 |
|
|
tree offset1 = DECL_FIELD_OFFSET (f1);
|
3341 |
|
|
tree offset2 = DECL_FIELD_OFFSET (f2);
|
3342 |
|
|
return ((offset1 == offset2
|
3343 |
|
|
/* Once gimplification is done, self-referential offsets are
|
3344 |
|
|
instantiated as operand #2 of the COMPONENT_REF built for
|
3345 |
|
|
each access and reset. Therefore, they are not relevant
|
3346 |
|
|
anymore and fields are interchangeable provided that they
|
3347 |
|
|
represent the same access. */
|
3348 |
|
|
|| (TREE_CODE (offset1) == PLACEHOLDER_EXPR
|
3349 |
|
|
&& TREE_CODE (offset2) == PLACEHOLDER_EXPR
|
3350 |
|
|
&& (DECL_SIZE (f1) == DECL_SIZE (f2)
|
3351 |
|
|
|| (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
|
3352 |
|
|
&& TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
|
3353 |
|
|
|| operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
|
3354 |
|
|
&& DECL_ALIGN (f1) == DECL_ALIGN (f2))
|
3355 |
|
|
|| operand_equal_p (offset1, offset2, 0))
|
3356 |
|
|
&& tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
|
3357 |
|
|
DECL_FIELD_BIT_OFFSET (f2)));
|
3358 |
|
|
}
|
3359 |
|
|
|
3360 |
|
|
/* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
|
3361 |
|
|
should be, so handle differing ones specially by decomposing
|
3362 |
|
|
the offset into a byte and bit offset manually. */
|
3363 |
|
|
if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
|
3364 |
|
|
&& host_integerp (DECL_FIELD_OFFSET (f2), 0))
|
3365 |
|
|
{
|
3366 |
|
|
unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
|
3367 |
|
|
unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
|
3368 |
|
|
bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
|
3369 |
|
|
byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
|
3370 |
|
|
+ bit_offset1 / BITS_PER_UNIT);
|
3371 |
|
|
bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
|
3372 |
|
|
byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
|
3373 |
|
|
+ bit_offset2 / BITS_PER_UNIT);
|
3374 |
|
|
if (byte_offset1 != byte_offset2)
|
3375 |
|
|
return false;
|
3376 |
|
|
return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
|
3377 |
|
|
}
|
3378 |
|
|
|
3379 |
|
|
return false;
|
3380 |
|
|
}
|
3381 |
|
|
|
3382 |
|
|
static bool
|
3383 |
|
|
gimple_types_compatible_p_1 (tree, tree, type_pair_t,
|
3384 |
|
|
VEC(type_pair_t, heap) **,
|
3385 |
|
|
struct pointer_map_t *, struct obstack *);
|
3386 |
|
|
|
3387 |
|
|
/* DFS visit the edge from the callers type pair with state *STATE to
|
3388 |
|
|
the pair T1, T2 while operating in FOR_MERGING_P mode.
|
3389 |
|
|
Update the merging status if it is not part of the SCC containing the
|
3390 |
|
|
callers pair and return it.
|
3391 |
|
|
SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
|
3392 |
|
|
|
3393 |
|
|
static bool
|
3394 |
|
|
gtc_visit (tree t1, tree t2,
|
3395 |
|
|
struct sccs *state,
|
3396 |
|
|
VEC(type_pair_t, heap) **sccstack,
|
3397 |
|
|
struct pointer_map_t *sccstate,
|
3398 |
|
|
struct obstack *sccstate_obstack)
|
3399 |
|
|
{
|
3400 |
|
|
struct sccs *cstate = NULL;
|
3401 |
|
|
type_pair_t p;
|
3402 |
|
|
void **slot;
|
3403 |
|
|
tree leader1, leader2;
|
3404 |
|
|
|
3405 |
|
|
/* Check first for the obvious case of pointer identity. */
|
3406 |
|
|
if (t1 == t2)
|
3407 |
|
|
return true;
|
3408 |
|
|
|
3409 |
|
|
/* Check that we have two types to compare. */
|
3410 |
|
|
if (t1 == NULL_TREE || t2 == NULL_TREE)
|
3411 |
|
|
return false;
|
3412 |
|
|
|
3413 |
|
|
/* Can't be the same type if the types don't have the same code. */
|
3414 |
|
|
if (TREE_CODE (t1) != TREE_CODE (t2))
|
3415 |
|
|
return false;
|
3416 |
|
|
|
3417 |
|
|
/* Can't be the same type if they have different CV qualifiers. */
|
3418 |
|
|
if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
|
3419 |
|
|
return false;
|
3420 |
|
|
|
3421 |
|
|
if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
|
3422 |
|
|
return false;
|
3423 |
|
|
|
3424 |
|
|
/* Void types and nullptr types are always the same. */
|
3425 |
|
|
if (TREE_CODE (t1) == VOID_TYPE
|
3426 |
|
|
|| TREE_CODE (t1) == NULLPTR_TYPE)
|
3427 |
|
|
return true;
|
3428 |
|
|
|
3429 |
|
|
/* Can't be the same type if they have different alignment or mode. */
|
3430 |
|
|
if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
|
3431 |
|
|
|| TYPE_MODE (t1) != TYPE_MODE (t2))
|
3432 |
|
|
return false;
|
3433 |
|
|
|
3434 |
|
|
/* Do some simple checks before doing three hashtable queries. */
|
3435 |
|
|
if (INTEGRAL_TYPE_P (t1)
|
3436 |
|
|
|| SCALAR_FLOAT_TYPE_P (t1)
|
3437 |
|
|
|| FIXED_POINT_TYPE_P (t1)
|
3438 |
|
|
|| TREE_CODE (t1) == VECTOR_TYPE
|
3439 |
|
|
|| TREE_CODE (t1) == COMPLEX_TYPE
|
3440 |
|
|
|| TREE_CODE (t1) == OFFSET_TYPE
|
3441 |
|
|
|| POINTER_TYPE_P (t1))
|
3442 |
|
|
{
|
3443 |
|
|
/* Can't be the same type if they have different sign or precision. */
|
3444 |
|
|
if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
|
3445 |
|
|
|| TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
|
3446 |
|
|
return false;
|
3447 |
|
|
|
3448 |
|
|
if (TREE_CODE (t1) == INTEGER_TYPE
|
3449 |
|
|
&& (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
|
3450 |
|
|
|| TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
|
3451 |
|
|
return false;
|
3452 |
|
|
|
3453 |
|
|
/* That's all we need to check for float and fixed-point types. */
|
3454 |
|
|
if (SCALAR_FLOAT_TYPE_P (t1)
|
3455 |
|
|
|| FIXED_POINT_TYPE_P (t1))
|
3456 |
|
|
return true;
|
3457 |
|
|
|
3458 |
|
|
/* For other types fall thru to more complex checks. */
|
3459 |
|
|
}
|
3460 |
|
|
|
3461 |
|
|
/* If the types have been previously registered and found equal
|
3462 |
|
|
they still are. */
|
3463 |
|
|
leader1 = gimple_lookup_type_leader (t1);
|
3464 |
|
|
leader2 = gimple_lookup_type_leader (t2);
|
3465 |
|
|
if (leader1 == t2
|
3466 |
|
|
|| t1 == leader2
|
3467 |
|
|
|| (leader1 && leader1 == leader2))
|
3468 |
|
|
return true;
|
3469 |
|
|
|
3470 |
|
|
/* If the hash values of t1 and t2 are different the types can't
|
3471 |
|
|
possibly be the same. This helps keeping the type-pair hashtable
|
3472 |
|
|
small, only tracking comparisons for hash collisions. */
|
3473 |
|
|
if (gimple_type_hash (t1) != gimple_type_hash (t2))
|
3474 |
|
|
return false;
|
3475 |
|
|
|
3476 |
|
|
/* Allocate a new cache entry for this comparison. */
|
3477 |
|
|
p = lookup_type_pair (t1, t2);
|
3478 |
|
|
if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
|
3479 |
|
|
{
|
3480 |
|
|
/* We have already decided whether T1 and T2 are the
|
3481 |
|
|
same, return the cached result. */
|
3482 |
|
|
return p->same_p[GTC_MERGE] == 1;
|
3483 |
|
|
}
|
3484 |
|
|
|
3485 |
|
|
if ((slot = pointer_map_contains (sccstate, p)) != NULL)
|
3486 |
|
|
cstate = (struct sccs *)*slot;
|
3487 |
|
|
/* Not yet visited. DFS recurse. */
|
3488 |
|
|
if (!cstate)
|
3489 |
|
|
{
|
3490 |
|
|
gimple_types_compatible_p_1 (t1, t2, p,
|
3491 |
|
|
sccstack, sccstate, sccstate_obstack);
|
3492 |
|
|
cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
|
3493 |
|
|
state->low = MIN (state->low, cstate->low);
|
3494 |
|
|
}
|
3495 |
|
|
/* If the type is still on the SCC stack adjust the parents low. */
|
3496 |
|
|
if (cstate->dfsnum < state->dfsnum
|
3497 |
|
|
&& cstate->on_sccstack)
|
3498 |
|
|
state->low = MIN (cstate->dfsnum, state->low);
|
3499 |
|
|
|
3500 |
|
|
/* Return the current lattice value. We start with an equality
|
3501 |
|
|
assumption so types part of a SCC will be optimistically
|
3502 |
|
|
treated equal unless proven otherwise. */
|
3503 |
|
|
return cstate->u.same_p;
|
3504 |
|
|
}
|
3505 |
|
|
|
3506 |
|
|
/* Worker for gimple_types_compatible.
|
3507 |
|
|
SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
|
3508 |
|
|
|
3509 |
|
|
static bool
|
3510 |
|
|
gimple_types_compatible_p_1 (tree t1, tree t2, type_pair_t p,
|
3511 |
|
|
VEC(type_pair_t, heap) **sccstack,
|
3512 |
|
|
struct pointer_map_t *sccstate,
|
3513 |
|
|
struct obstack *sccstate_obstack)
|
3514 |
|
|
{
|
3515 |
|
|
struct sccs *state;
|
3516 |
|
|
|
3517 |
|
|
gcc_assert (p->same_p[GTC_MERGE] == -2);
|
3518 |
|
|
|
3519 |
|
|
state = XOBNEW (sccstate_obstack, struct sccs);
|
3520 |
|
|
*pointer_map_insert (sccstate, p) = state;
|
3521 |
|
|
|
3522 |
|
|
VEC_safe_push (type_pair_t, heap, *sccstack, p);
|
3523 |
|
|
state->dfsnum = gtc_next_dfs_num++;
|
3524 |
|
|
state->low = state->dfsnum;
|
3525 |
|
|
state->on_sccstack = true;
|
3526 |
|
|
/* Start with an equality assumption. As we DFS recurse into child
|
3527 |
|
|
SCCs this assumption may get revisited. */
|
3528 |
|
|
state->u.same_p = 1;
|
3529 |
|
|
|
3530 |
|
|
/* The struct tags shall compare equal. */
|
3531 |
|
|
if (!compare_type_names_p (t1, t2))
|
3532 |
|
|
goto different_types;
|
3533 |
|
|
|
3534 |
|
|
/* We may not merge typedef types to the same type in different
|
3535 |
|
|
contexts. */
|
3536 |
|
|
if (TYPE_NAME (t1)
|
3537 |
|
|
&& TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
|
3538 |
|
|
&& DECL_CONTEXT (TYPE_NAME (t1))
|
3539 |
|
|
&& TYPE_P (DECL_CONTEXT (TYPE_NAME (t1))))
|
3540 |
|
|
{
|
3541 |
|
|
if (!gtc_visit (DECL_CONTEXT (TYPE_NAME (t1)),
|
3542 |
|
|
DECL_CONTEXT (TYPE_NAME (t2)),
|
3543 |
|
|
state, sccstack, sccstate, sccstate_obstack))
|
3544 |
|
|
goto different_types;
|
3545 |
|
|
}
|
3546 |
|
|
|
3547 |
|
|
/* If their attributes are not the same they can't be the same type. */
|
3548 |
|
|
if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
|
3549 |
|
|
goto different_types;
|
3550 |
|
|
|
3551 |
|
|
/* Do type-specific comparisons. */
|
3552 |
|
|
switch (TREE_CODE (t1))
|
3553 |
|
|
{
|
3554 |
|
|
case VECTOR_TYPE:
|
3555 |
|
|
case COMPLEX_TYPE:
|
3556 |
|
|
if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
|
3557 |
|
|
state, sccstack, sccstate, sccstate_obstack))
|
3558 |
|
|
goto different_types;
|
3559 |
|
|
goto same_types;
|
3560 |
|
|
|
3561 |
|
|
case ARRAY_TYPE:
|
3562 |
|
|
/* Array types are the same if the element types are the same and
|
3563 |
|
|
the number of elements are the same. */
|
3564 |
|
|
if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
|
3565 |
|
|
state, sccstack, sccstate, sccstate_obstack)
|
3566 |
|
|
|| TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
|
3567 |
|
|
|| TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
|
3568 |
|
|
goto different_types;
|
3569 |
|
|
else
|
3570 |
|
|
{
|
3571 |
|
|
tree i1 = TYPE_DOMAIN (t1);
|
3572 |
|
|
tree i2 = TYPE_DOMAIN (t2);
|
3573 |
|
|
|
3574 |
|
|
/* For an incomplete external array, the type domain can be
|
3575 |
|
|
NULL_TREE. Check this condition also. */
|
3576 |
|
|
if (i1 == NULL_TREE && i2 == NULL_TREE)
|
3577 |
|
|
goto same_types;
|
3578 |
|
|
else if (i1 == NULL_TREE || i2 == NULL_TREE)
|
3579 |
|
|
goto different_types;
|
3580 |
|
|
/* If for a complete array type the possibly gimplified sizes
|
3581 |
|
|
are different the types are different. */
|
3582 |
|
|
else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
|
3583 |
|
|
|| (TYPE_SIZE (i1)
|
3584 |
|
|
&& TYPE_SIZE (i2)
|
3585 |
|
|
&& !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
|
3586 |
|
|
goto different_types;
|
3587 |
|
|
else
|
3588 |
|
|
{
|
3589 |
|
|
tree min1 = TYPE_MIN_VALUE (i1);
|
3590 |
|
|
tree min2 = TYPE_MIN_VALUE (i2);
|
3591 |
|
|
tree max1 = TYPE_MAX_VALUE (i1);
|
3592 |
|
|
tree max2 = TYPE_MAX_VALUE (i2);
|
3593 |
|
|
|
3594 |
|
|
/* The minimum/maximum values have to be the same. */
|
3595 |
|
|
if ((min1 == min2
|
3596 |
|
|
|| (min1 && min2
|
3597 |
|
|
&& ((TREE_CODE (min1) == PLACEHOLDER_EXPR
|
3598 |
|
|
&& TREE_CODE (min2) == PLACEHOLDER_EXPR)
|
3599 |
|
|
|| operand_equal_p (min1, min2, 0))))
|
3600 |
|
|
&& (max1 == max2
|
3601 |
|
|
|| (max1 && max2
|
3602 |
|
|
&& ((TREE_CODE (max1) == PLACEHOLDER_EXPR
|
3603 |
|
|
&& TREE_CODE (max2) == PLACEHOLDER_EXPR)
|
3604 |
|
|
|| operand_equal_p (max1, max2, 0)))))
|
3605 |
|
|
goto same_types;
|
3606 |
|
|
else
|
3607 |
|
|
goto different_types;
|
3608 |
|
|
}
|
3609 |
|
|
}
|
3610 |
|
|
|
3611 |
|
|
case METHOD_TYPE:
|
3612 |
|
|
/* Method types should belong to the same class. */
|
3613 |
|
|
if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
|
3614 |
|
|
state, sccstack, sccstate, sccstate_obstack))
|
3615 |
|
|
goto different_types;
|
3616 |
|
|
|
3617 |
|
|
/* Fallthru */
|
3618 |
|
|
|
3619 |
|
|
case FUNCTION_TYPE:
|
3620 |
|
|
/* Function types are the same if the return type and arguments types
|
3621 |
|
|
are the same. */
|
3622 |
|
|
if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
|
3623 |
|
|
state, sccstack, sccstate, sccstate_obstack))
|
3624 |
|
|
goto different_types;
|
3625 |
|
|
|
3626 |
|
|
if (!comp_type_attributes (t1, t2))
|
3627 |
|
|
goto different_types;
|
3628 |
|
|
|
3629 |
|
|
if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
|
3630 |
|
|
goto same_types;
|
3631 |
|
|
else
|
3632 |
|
|
{
|
3633 |
|
|
tree parms1, parms2;
|
3634 |
|
|
|
3635 |
|
|
for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
|
3636 |
|
|
parms1 && parms2;
|
3637 |
|
|
parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
|
3638 |
|
|
{
|
3639 |
|
|
if (!gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2),
|
3640 |
|
|
state, sccstack, sccstate, sccstate_obstack))
|
3641 |
|
|
goto different_types;
|
3642 |
|
|
}
|
3643 |
|
|
|
3644 |
|
|
if (parms1 || parms2)
|
3645 |
|
|
goto different_types;
|
3646 |
|
|
|
3647 |
|
|
goto same_types;
|
3648 |
|
|
}
|
3649 |
|
|
|
3650 |
|
|
case OFFSET_TYPE:
|
3651 |
|
|
{
|
3652 |
|
|
if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
|
3653 |
|
|
state, sccstack, sccstate, sccstate_obstack)
|
3654 |
|
|
|| !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
|
3655 |
|
|
TYPE_OFFSET_BASETYPE (t2),
|
3656 |
|
|
state, sccstack, sccstate, sccstate_obstack))
|
3657 |
|
|
goto different_types;
|
3658 |
|
|
|
3659 |
|
|
goto same_types;
|
3660 |
|
|
}
|
3661 |
|
|
|
3662 |
|
|
case POINTER_TYPE:
|
3663 |
|
|
case REFERENCE_TYPE:
|
3664 |
|
|
{
|
3665 |
|
|
/* If the two pointers have different ref-all attributes,
|
3666 |
|
|
they can't be the same type. */
|
3667 |
|
|
if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
|
3668 |
|
|
goto different_types;
|
3669 |
|
|
|
3670 |
|
|
/* Otherwise, pointer and reference types are the same if the
|
3671 |
|
|
pointed-to types are the same. */
|
3672 |
|
|
if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2),
|
3673 |
|
|
state, sccstack, sccstate, sccstate_obstack))
|
3674 |
|
|
goto same_types;
|
3675 |
|
|
|
3676 |
|
|
goto different_types;
|
3677 |
|
|
}
|
3678 |
|
|
|
3679 |
|
|
case INTEGER_TYPE:
|
3680 |
|
|
case BOOLEAN_TYPE:
|
3681 |
|
|
{
|
3682 |
|
|
tree min1 = TYPE_MIN_VALUE (t1);
|
3683 |
|
|
tree max1 = TYPE_MAX_VALUE (t1);
|
3684 |
|
|
tree min2 = TYPE_MIN_VALUE (t2);
|
3685 |
|
|
tree max2 = TYPE_MAX_VALUE (t2);
|
3686 |
|
|
bool min_equal_p = false;
|
3687 |
|
|
bool max_equal_p = false;
|
3688 |
|
|
|
3689 |
|
|
/* If either type has a minimum value, the other type must
|
3690 |
|
|
have the same. */
|
3691 |
|
|
if (min1 == NULL_TREE && min2 == NULL_TREE)
|
3692 |
|
|
min_equal_p = true;
|
3693 |
|
|
else if (min1 && min2 && operand_equal_p (min1, min2, 0))
|
3694 |
|
|
min_equal_p = true;
|
3695 |
|
|
|
3696 |
|
|
/* Likewise, if either type has a maximum value, the other
|
3697 |
|
|
type must have the same. */
|
3698 |
|
|
if (max1 == NULL_TREE && max2 == NULL_TREE)
|
3699 |
|
|
max_equal_p = true;
|
3700 |
|
|
else if (max1 && max2 && operand_equal_p (max1, max2, 0))
|
3701 |
|
|
max_equal_p = true;
|
3702 |
|
|
|
3703 |
|
|
if (!min_equal_p || !max_equal_p)
|
3704 |
|
|
goto different_types;
|
3705 |
|
|
|
3706 |
|
|
goto same_types;
|
3707 |
|
|
}
|
3708 |
|
|
|
3709 |
|
|
case ENUMERAL_TYPE:
|
3710 |
|
|
{
|
3711 |
|
|
/* FIXME lto, we cannot check bounds on enumeral types because
|
3712 |
|
|
different front ends will produce different values.
|
3713 |
|
|
In C, enumeral types are integers, while in C++ each element
|
3714 |
|
|
will have its own symbolic value. We should decide how enums
|
3715 |
|
|
are to be represented in GIMPLE and have each front end lower
|
3716 |
|
|
to that. */
|
3717 |
|
|
tree v1, v2;
|
3718 |
|
|
|
3719 |
|
|
/* For enumeral types, all the values must be the same. */
|
3720 |
|
|
if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
|
3721 |
|
|
goto same_types;
|
3722 |
|
|
|
3723 |
|
|
for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
|
3724 |
|
|
v1 && v2;
|
3725 |
|
|
v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
|
3726 |
|
|
{
|
3727 |
|
|
tree c1 = TREE_VALUE (v1);
|
3728 |
|
|
tree c2 = TREE_VALUE (v2);
|
3729 |
|
|
|
3730 |
|
|
if (TREE_CODE (c1) == CONST_DECL)
|
3731 |
|
|
c1 = DECL_INITIAL (c1);
|
3732 |
|
|
|
3733 |
|
|
if (TREE_CODE (c2) == CONST_DECL)
|
3734 |
|
|
c2 = DECL_INITIAL (c2);
|
3735 |
|
|
|
3736 |
|
|
if (tree_int_cst_equal (c1, c2) != 1)
|
3737 |
|
|
goto different_types;
|
3738 |
|
|
|
3739 |
|
|
if (TREE_PURPOSE (v1) != TREE_PURPOSE (v2))
|
3740 |
|
|
goto different_types;
|
3741 |
|
|
}
|
3742 |
|
|
|
3743 |
|
|
/* If one enumeration has more values than the other, they
|
3744 |
|
|
are not the same. */
|
3745 |
|
|
if (v1 || v2)
|
3746 |
|
|
goto different_types;
|
3747 |
|
|
|
3748 |
|
|
goto same_types;
|
3749 |
|
|
}
|
3750 |
|
|
|
3751 |
|
|
case RECORD_TYPE:
|
3752 |
|
|
case UNION_TYPE:
|
3753 |
|
|
case QUAL_UNION_TYPE:
|
3754 |
|
|
{
|
3755 |
|
|
tree f1, f2;
|
3756 |
|
|
|
3757 |
|
|
/* For aggregate types, all the fields must be the same. */
|
3758 |
|
|
for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
|
3759 |
|
|
f1 && f2;
|
3760 |
|
|
f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
|
3761 |
|
|
{
|
3762 |
|
|
/* Different field kinds are not compatible. */
|
3763 |
|
|
if (TREE_CODE (f1) != TREE_CODE (f2))
|
3764 |
|
|
goto different_types;
|
3765 |
|
|
/* Field decls must have the same name and offset. */
|
3766 |
|
|
if (TREE_CODE (f1) == FIELD_DECL
|
3767 |
|
|
&& (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
|
3768 |
|
|
|| !gimple_compare_field_offset (f1, f2)))
|
3769 |
|
|
goto different_types;
|
3770 |
|
|
/* All entities should have the same name and type. */
|
3771 |
|
|
if (DECL_NAME (f1) != DECL_NAME (f2)
|
3772 |
|
|
|| !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2),
|
3773 |
|
|
state, sccstack, sccstate, sccstate_obstack))
|
3774 |
|
|
goto different_types;
|
3775 |
|
|
}
|
3776 |
|
|
|
3777 |
|
|
/* If one aggregate has more fields than the other, they
|
3778 |
|
|
are not the same. */
|
3779 |
|
|
if (f1 || f2)
|
3780 |
|
|
goto different_types;
|
3781 |
|
|
|
3782 |
|
|
goto same_types;
|
3783 |
|
|
}
|
3784 |
|
|
|
3785 |
|
|
default:
|
3786 |
|
|
gcc_unreachable ();
|
3787 |
|
|
}
|
3788 |
|
|
|
3789 |
|
|
/* Common exit path for types that are not compatible. */
|
3790 |
|
|
different_types:
|
3791 |
|
|
state->u.same_p = 0;
|
3792 |
|
|
goto pop;
|
3793 |
|
|
|
3794 |
|
|
/* Common exit path for types that are compatible. */
|
3795 |
|
|
same_types:
|
3796 |
|
|
gcc_assert (state->u.same_p == 1);
|
3797 |
|
|
|
3798 |
|
|
pop:
|
3799 |
|
|
if (state->low == state->dfsnum)
|
3800 |
|
|
{
|
3801 |
|
|
type_pair_t x;
|
3802 |
|
|
|
3803 |
|
|
/* Pop off the SCC and set its cache values to the final
|
3804 |
|
|
comparison result. */
|
3805 |
|
|
do
|
3806 |
|
|
{
|
3807 |
|
|
struct sccs *cstate;
|
3808 |
|
|
x = VEC_pop (type_pair_t, *sccstack);
|
3809 |
|
|
cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
|
3810 |
|
|
cstate->on_sccstack = false;
|
3811 |
|
|
x->same_p[GTC_MERGE] = state->u.same_p;
|
3812 |
|
|
}
|
3813 |
|
|
while (x != p);
|
3814 |
|
|
}
|
3815 |
|
|
|
3816 |
|
|
return state->u.same_p;
|
3817 |
|
|
}
|
3818 |
|
|
|
3819 |
|
|
/* Return true iff T1 and T2 are structurally identical. When
|
3820 |
|
|
FOR_MERGING_P is true the an incomplete type and a complete type
|
3821 |
|
|
are considered different, otherwise they are considered compatible. */
|
3822 |
|
|
|
3823 |
|
|
static bool
|
3824 |
|
|
gimple_types_compatible_p (tree t1, tree t2)
|
3825 |
|
|
{
|
3826 |
|
|
VEC(type_pair_t, heap) *sccstack = NULL;
|
3827 |
|
|
struct pointer_map_t *sccstate;
|
3828 |
|
|
struct obstack sccstate_obstack;
|
3829 |
|
|
type_pair_t p = NULL;
|
3830 |
|
|
bool res;
|
3831 |
|
|
tree leader1, leader2;
|
3832 |
|
|
|
3833 |
|
|
/* Before starting to set up the SCC machinery handle simple cases. */
|
3834 |
|
|
|
3835 |
|
|
/* Check first for the obvious case of pointer identity. */
|
3836 |
|
|
if (t1 == t2)
|
3837 |
|
|
return true;
|
3838 |
|
|
|
3839 |
|
|
/* Check that we have two types to compare. */
|
3840 |
|
|
if (t1 == NULL_TREE || t2 == NULL_TREE)
|
3841 |
|
|
return false;
|
3842 |
|
|
|
3843 |
|
|
/* Can't be the same type if the types don't have the same code. */
|
3844 |
|
|
if (TREE_CODE (t1) != TREE_CODE (t2))
|
3845 |
|
|
return false;
|
3846 |
|
|
|
3847 |
|
|
/* Can't be the same type if they have different CV qualifiers. */
|
3848 |
|
|
if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
|
3849 |
|
|
return false;
|
3850 |
|
|
|
3851 |
|
|
if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
|
3852 |
|
|
return false;
|
3853 |
|
|
|
3854 |
|
|
/* Void types and nullptr types are always the same. */
|
3855 |
|
|
if (TREE_CODE (t1) == VOID_TYPE
|
3856 |
|
|
|| TREE_CODE (t1) == NULLPTR_TYPE)
|
3857 |
|
|
return true;
|
3858 |
|
|
|
3859 |
|
|
/* Can't be the same type if they have different alignment or mode. */
|
3860 |
|
|
if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
|
3861 |
|
|
|| TYPE_MODE (t1) != TYPE_MODE (t2))
|
3862 |
|
|
return false;
|
3863 |
|
|
|
3864 |
|
|
/* Do some simple checks before doing three hashtable queries. */
|
3865 |
|
|
if (INTEGRAL_TYPE_P (t1)
|
3866 |
|
|
|| SCALAR_FLOAT_TYPE_P (t1)
|
3867 |
|
|
|| FIXED_POINT_TYPE_P (t1)
|
3868 |
|
|
|| TREE_CODE (t1) == VECTOR_TYPE
|
3869 |
|
|
|| TREE_CODE (t1) == COMPLEX_TYPE
|
3870 |
|
|
|| TREE_CODE (t1) == OFFSET_TYPE
|
3871 |
|
|
|| POINTER_TYPE_P (t1))
|
3872 |
|
|
{
|
3873 |
|
|
/* Can't be the same type if they have different sign or precision. */
|
3874 |
|
|
if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
|
3875 |
|
|
|| TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
|
3876 |
|
|
return false;
|
3877 |
|
|
|
3878 |
|
|
if (TREE_CODE (t1) == INTEGER_TYPE
|
3879 |
|
|
&& (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
|
3880 |
|
|
|| TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
|
3881 |
|
|
return false;
|
3882 |
|
|
|
3883 |
|
|
/* That's all we need to check for float and fixed-point types. */
|
3884 |
|
|
if (SCALAR_FLOAT_TYPE_P (t1)
|
3885 |
|
|
|| FIXED_POINT_TYPE_P (t1))
|
3886 |
|
|
return true;
|
3887 |
|
|
|
3888 |
|
|
/* For other types fall thru to more complex checks. */
|
3889 |
|
|
}
|
3890 |
|
|
|
3891 |
|
|
/* If the types have been previously registered and found equal
|
3892 |
|
|
they still are. */
|
3893 |
|
|
leader1 = gimple_lookup_type_leader (t1);
|
3894 |
|
|
leader2 = gimple_lookup_type_leader (t2);
|
3895 |
|
|
if (leader1 == t2
|
3896 |
|
|
|| t1 == leader2
|
3897 |
|
|
|| (leader1 && leader1 == leader2))
|
3898 |
|
|
return true;
|
3899 |
|
|
|
3900 |
|
|
/* If the hash values of t1 and t2 are different the types can't
|
3901 |
|
|
possibly be the same. This helps keeping the type-pair hashtable
|
3902 |
|
|
small, only tracking comparisons for hash collisions. */
|
3903 |
|
|
if (gimple_type_hash (t1) != gimple_type_hash (t2))
|
3904 |
|
|
return false;
|
3905 |
|
|
|
3906 |
|
|
/* If we've visited this type pair before (in the case of aggregates
|
3907 |
|
|
with self-referential types), and we made a decision, return it. */
|
3908 |
|
|
p = lookup_type_pair (t1, t2);
|
3909 |
|
|
if (p->same_p[GTC_MERGE] == 0 || p->same_p[GTC_MERGE] == 1)
|
3910 |
|
|
{
|
3911 |
|
|
/* We have already decided whether T1 and T2 are the
|
3912 |
|
|
same, return the cached result. */
|
3913 |
|
|
return p->same_p[GTC_MERGE] == 1;
|
3914 |
|
|
}
|
3915 |
|
|
|
3916 |
|
|
/* Now set up the SCC machinery for the comparison. */
|
3917 |
|
|
gtc_next_dfs_num = 1;
|
3918 |
|
|
sccstate = pointer_map_create ();
|
3919 |
|
|
gcc_obstack_init (&sccstate_obstack);
|
3920 |
|
|
res = gimple_types_compatible_p_1 (t1, t2, p,
|
3921 |
|
|
&sccstack, sccstate, &sccstate_obstack);
|
3922 |
|
|
VEC_free (type_pair_t, heap, sccstack);
|
3923 |
|
|
pointer_map_destroy (sccstate);
|
3924 |
|
|
obstack_free (&sccstate_obstack, NULL);
|
3925 |
|
|
|
3926 |
|
|
return res;
|
3927 |
|
|
}
|
3928 |
|
|
|
3929 |
|
|
|
3930 |
|
|
static hashval_t
|
3931 |
|
|
iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
|
3932 |
|
|
struct pointer_map_t *, struct obstack *);
|
3933 |
|
|
|
3934 |
|
|
/* DFS visit the edge from the callers type with state *STATE to T.
|
3935 |
|
|
Update the callers type hash V with the hash for T if it is not part
|
3936 |
|
|
of the SCC containing the callers type and return it.
|
3937 |
|
|
SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
|
3938 |
|
|
|
3939 |
|
|
static hashval_t
|
3940 |
|
|
visit (tree t, struct sccs *state, hashval_t v,
|
3941 |
|
|
VEC (tree, heap) **sccstack,
|
3942 |
|
|
struct pointer_map_t *sccstate,
|
3943 |
|
|
struct obstack *sccstate_obstack)
|
3944 |
|
|
{
|
3945 |
|
|
struct sccs *cstate = NULL;
|
3946 |
|
|
struct tree_int_map m;
|
3947 |
|
|
void **slot;
|
3948 |
|
|
|
3949 |
|
|
/* If there is a hash value recorded for this type then it can't
|
3950 |
|
|
possibly be part of our parent SCC. Simply mix in its hash. */
|
3951 |
|
|
m.base.from = t;
|
3952 |
|
|
if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
|
3953 |
|
|
&& *slot)
|
3954 |
|
|
return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, v);
|
3955 |
|
|
|
3956 |
|
|
if ((slot = pointer_map_contains (sccstate, t)) != NULL)
|
3957 |
|
|
cstate = (struct sccs *)*slot;
|
3958 |
|
|
if (!cstate)
|
3959 |
|
|
{
|
3960 |
|
|
hashval_t tem;
|
3961 |
|
|
/* Not yet visited. DFS recurse. */
|
3962 |
|
|
tem = iterative_hash_gimple_type (t, v,
|
3963 |
|
|
sccstack, sccstate, sccstate_obstack);
|
3964 |
|
|
if (!cstate)
|
3965 |
|
|
cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
|
3966 |
|
|
state->low = MIN (state->low, cstate->low);
|
3967 |
|
|
/* If the type is no longer on the SCC stack and thus is not part
|
3968 |
|
|
of the parents SCC mix in its hash value. Otherwise we will
|
3969 |
|
|
ignore the type for hashing purposes and return the unaltered
|
3970 |
|
|
hash value. */
|
3971 |
|
|
if (!cstate->on_sccstack)
|
3972 |
|
|
return tem;
|
3973 |
|
|
}
|
3974 |
|
|
if (cstate->dfsnum < state->dfsnum
|
3975 |
|
|
&& cstate->on_sccstack)
|
3976 |
|
|
state->low = MIN (cstate->dfsnum, state->low);
|
3977 |
|
|
|
3978 |
|
|
/* We are part of our parents SCC, skip this type during hashing
|
3979 |
|
|
and return the unaltered hash value. */
|
3980 |
|
|
return v;
|
3981 |
|
|
}
|
3982 |
|
|
|
3983 |
|
|
/* Hash NAME with the previous hash value V and return it. */
|
3984 |
|
|
|
3985 |
|
|
static hashval_t
|
3986 |
|
|
iterative_hash_name (tree name, hashval_t v)
|
3987 |
|
|
{
|
3988 |
|
|
if (!name)
|
3989 |
|
|
return v;
|
3990 |
|
|
v = iterative_hash_hashval_t (TREE_CODE (name), v);
|
3991 |
|
|
if (TREE_CODE (name) == TYPE_DECL)
|
3992 |
|
|
name = DECL_NAME (name);
|
3993 |
|
|
if (!name)
|
3994 |
|
|
return v;
|
3995 |
|
|
gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
|
3996 |
|
|
return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
|
3997 |
|
|
}
|
3998 |
|
|
|
3999 |
|
|
/* A type, hashvalue pair for sorting SCC members. */
|
4000 |
|
|
|
4001 |
|
|
struct type_hash_pair {
|
4002 |
|
|
tree type;
|
4003 |
|
|
hashval_t hash;
|
4004 |
|
|
};
|
4005 |
|
|
|
4006 |
|
|
/* Compare two type, hashvalue pairs. */
|
4007 |
|
|
|
4008 |
|
|
static int
|
4009 |
|
|
type_hash_pair_compare (const void *p1_, const void *p2_)
|
4010 |
|
|
{
|
4011 |
|
|
const struct type_hash_pair *p1 = (const struct type_hash_pair *) p1_;
|
4012 |
|
|
const struct type_hash_pair *p2 = (const struct type_hash_pair *) p2_;
|
4013 |
|
|
if (p1->hash < p2->hash)
|
4014 |
|
|
return -1;
|
4015 |
|
|
else if (p1->hash > p2->hash)
|
4016 |
|
|
return 1;
|
4017 |
|
|
return 0;
|
4018 |
|
|
}
|
4019 |
|
|
|
4020 |
|
|
/* Returning a hash value for gimple type TYPE combined with VAL.
|
4021 |
|
|
SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
|
4022 |
|
|
|
4023 |
|
|
To hash a type we end up hashing in types that are reachable.
|
4024 |
|
|
Through pointers we can end up with cycles which messes up the
|
4025 |
|
|
required property that we need to compute the same hash value
|
4026 |
|
|
for structurally equivalent types. To avoid this we have to
|
4027 |
|
|
hash all types in a cycle (the SCC) in a commutative way. The
|
4028 |
|
|
easiest way is to not mix in the hashes of the SCC members at
|
4029 |
|
|
all. To make this work we have to delay setting the hash
|
4030 |
|
|
values of the SCC until it is complete. */
|
4031 |
|
|
|
4032 |
|
|
static hashval_t
|
4033 |
|
|
iterative_hash_gimple_type (tree type, hashval_t val,
|
4034 |
|
|
VEC(tree, heap) **sccstack,
|
4035 |
|
|
struct pointer_map_t *sccstate,
|
4036 |
|
|
struct obstack *sccstate_obstack)
|
4037 |
|
|
{
|
4038 |
|
|
hashval_t v;
|
4039 |
|
|
void **slot;
|
4040 |
|
|
struct sccs *state;
|
4041 |
|
|
|
4042 |
|
|
/* Not visited during this DFS walk. */
|
4043 |
|
|
gcc_checking_assert (!pointer_map_contains (sccstate, type));
|
4044 |
|
|
state = XOBNEW (sccstate_obstack, struct sccs);
|
4045 |
|
|
*pointer_map_insert (sccstate, type) = state;
|
4046 |
|
|
|
4047 |
|
|
VEC_safe_push (tree, heap, *sccstack, type);
|
4048 |
|
|
state->dfsnum = next_dfs_num++;
|
4049 |
|
|
state->low = state->dfsnum;
|
4050 |
|
|
state->on_sccstack = true;
|
4051 |
|
|
|
4052 |
|
|
/* Combine a few common features of types so that types are grouped into
|
4053 |
|
|
smaller sets; when searching for existing matching types to merge,
|
4054 |
|
|
only existing types having the same features as the new type will be
|
4055 |
|
|
checked. */
|
4056 |
|
|
v = iterative_hash_name (TYPE_NAME (type), 0);
|
4057 |
|
|
if (TYPE_NAME (type)
|
4058 |
|
|
&& TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
4059 |
|
|
&& DECL_CONTEXT (TYPE_NAME (type))
|
4060 |
|
|
&& TYPE_P (DECL_CONTEXT (TYPE_NAME (type))))
|
4061 |
|
|
v = visit (DECL_CONTEXT (TYPE_NAME (type)), state, v,
|
4062 |
|
|
sccstack, sccstate, sccstate_obstack);
|
4063 |
|
|
v = iterative_hash_hashval_t (TREE_CODE (type), v);
|
4064 |
|
|
v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
|
4065 |
|
|
v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
|
4066 |
|
|
|
4067 |
|
|
/* Do not hash the types size as this will cause differences in
|
4068 |
|
|
hash values for the complete vs. the incomplete type variant. */
|
4069 |
|
|
|
4070 |
|
|
/* Incorporate common features of numerical types. */
|
4071 |
|
|
if (INTEGRAL_TYPE_P (type)
|
4072 |
|
|
|| SCALAR_FLOAT_TYPE_P (type)
|
4073 |
|
|
|| FIXED_POINT_TYPE_P (type))
|
4074 |
|
|
{
|
4075 |
|
|
v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
|
4076 |
|
|
v = iterative_hash_hashval_t (TYPE_MODE (type), v);
|
4077 |
|
|
v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
|
4078 |
|
|
}
|
4079 |
|
|
|
4080 |
|
|
/* For pointer and reference types, fold in information about the type
|
4081 |
|
|
pointed to. */
|
4082 |
|
|
if (POINTER_TYPE_P (type))
|
4083 |
|
|
v = visit (TREE_TYPE (type), state, v,
|
4084 |
|
|
sccstack, sccstate, sccstate_obstack);
|
4085 |
|
|
|
4086 |
|
|
/* For integer types hash the types min/max values and the string flag. */
|
4087 |
|
|
if (TREE_CODE (type) == INTEGER_TYPE)
|
4088 |
|
|
{
|
4089 |
|
|
/* OMP lowering can introduce error_mark_node in place of
|
4090 |
|
|
random local decls in types. */
|
4091 |
|
|
if (TYPE_MIN_VALUE (type) != error_mark_node)
|
4092 |
|
|
v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
|
4093 |
|
|
if (TYPE_MAX_VALUE (type) != error_mark_node)
|
4094 |
|
|
v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
|
4095 |
|
|
v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
|
4096 |
|
|
}
|
4097 |
|
|
|
4098 |
|
|
/* For array types hash their domain and the string flag. */
|
4099 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE
|
4100 |
|
|
&& TYPE_DOMAIN (type))
|
4101 |
|
|
{
|
4102 |
|
|
v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
|
4103 |
|
|
v = visit (TYPE_DOMAIN (type), state, v,
|
4104 |
|
|
sccstack, sccstate, sccstate_obstack);
|
4105 |
|
|
}
|
4106 |
|
|
|
4107 |
|
|
/* Recurse for aggregates with a single element type. */
|
4108 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE
|
4109 |
|
|
|| TREE_CODE (type) == COMPLEX_TYPE
|
4110 |
|
|
|| TREE_CODE (type) == VECTOR_TYPE)
|
4111 |
|
|
v = visit (TREE_TYPE (type), state, v,
|
4112 |
|
|
sccstack, sccstate, sccstate_obstack);
|
4113 |
|
|
|
4114 |
|
|
/* Incorporate function return and argument types. */
|
4115 |
|
|
if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
|
4116 |
|
|
{
|
4117 |
|
|
unsigned na;
|
4118 |
|
|
tree p;
|
4119 |
|
|
|
4120 |
|
|
/* For method types also incorporate their parent class. */
|
4121 |
|
|
if (TREE_CODE (type) == METHOD_TYPE)
|
4122 |
|
|
v = visit (TYPE_METHOD_BASETYPE (type), state, v,
|
4123 |
|
|
sccstack, sccstate, sccstate_obstack);
|
4124 |
|
|
|
4125 |
|
|
/* Check result and argument types. */
|
4126 |
|
|
v = visit (TREE_TYPE (type), state, v,
|
4127 |
|
|
sccstack, sccstate, sccstate_obstack);
|
4128 |
|
|
for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
|
4129 |
|
|
{
|
4130 |
|
|
v = visit (TREE_VALUE (p), state, v,
|
4131 |
|
|
sccstack, sccstate, sccstate_obstack);
|
4132 |
|
|
na++;
|
4133 |
|
|
}
|
4134 |
|
|
|
4135 |
|
|
v = iterative_hash_hashval_t (na, v);
|
4136 |
|
|
}
|
4137 |
|
|
|
4138 |
|
|
if (RECORD_OR_UNION_TYPE_P (type))
|
4139 |
|
|
{
|
4140 |
|
|
unsigned nf;
|
4141 |
|
|
tree f;
|
4142 |
|
|
|
4143 |
|
|
for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
|
4144 |
|
|
{
|
4145 |
|
|
v = iterative_hash_name (DECL_NAME (f), v);
|
4146 |
|
|
v = visit (TREE_TYPE (f), state, v,
|
4147 |
|
|
sccstack, sccstate, sccstate_obstack);
|
4148 |
|
|
nf++;
|
4149 |
|
|
}
|
4150 |
|
|
|
4151 |
|
|
v = iterative_hash_hashval_t (nf, v);
|
4152 |
|
|
}
|
4153 |
|
|
|
4154 |
|
|
/* Record hash for us. */
|
4155 |
|
|
state->u.hash = v;
|
4156 |
|
|
|
4157 |
|
|
/* See if we found an SCC. */
|
4158 |
|
|
if (state->low == state->dfsnum)
|
4159 |
|
|
{
|
4160 |
|
|
tree x;
|
4161 |
|
|
struct tree_int_map *m;
|
4162 |
|
|
|
4163 |
|
|
/* Pop off the SCC and set its hash values. */
|
4164 |
|
|
x = VEC_pop (tree, *sccstack);
|
4165 |
|
|
/* Optimize SCC size one. */
|
4166 |
|
|
if (x == type)
|
4167 |
|
|
{
|
4168 |
|
|
state->on_sccstack = false;
|
4169 |
|
|
m = ggc_alloc_cleared_tree_int_map ();
|
4170 |
|
|
m->base.from = x;
|
4171 |
|
|
m->to = v;
|
4172 |
|
|
slot = htab_find_slot (type_hash_cache, m, INSERT);
|
4173 |
|
|
gcc_assert (!*slot);
|
4174 |
|
|
*slot = (void *) m;
|
4175 |
|
|
}
|
4176 |
|
|
else
|
4177 |
|
|
{
|
4178 |
|
|
struct sccs *cstate;
|
4179 |
|
|
unsigned first, i, size, j;
|
4180 |
|
|
struct type_hash_pair *pairs;
|
4181 |
|
|
/* Pop off the SCC and build an array of type, hash pairs. */
|
4182 |
|
|
first = VEC_length (tree, *sccstack) - 1;
|
4183 |
|
|
while (VEC_index (tree, *sccstack, first) != type)
|
4184 |
|
|
--first;
|
4185 |
|
|
size = VEC_length (tree, *sccstack) - first + 1;
|
4186 |
|
|
pairs = XALLOCAVEC (struct type_hash_pair, size);
|
4187 |
|
|
i = 0;
|
4188 |
|
|
cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
|
4189 |
|
|
cstate->on_sccstack = false;
|
4190 |
|
|
pairs[i].type = x;
|
4191 |
|
|
pairs[i].hash = cstate->u.hash;
|
4192 |
|
|
do
|
4193 |
|
|
{
|
4194 |
|
|
x = VEC_pop (tree, *sccstack);
|
4195 |
|
|
cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
|
4196 |
|
|
cstate->on_sccstack = false;
|
4197 |
|
|
++i;
|
4198 |
|
|
pairs[i].type = x;
|
4199 |
|
|
pairs[i].hash = cstate->u.hash;
|
4200 |
|
|
}
|
4201 |
|
|
while (x != type);
|
4202 |
|
|
gcc_assert (i + 1 == size);
|
4203 |
|
|
/* Sort the arrays of type, hash pairs so that when we mix in
|
4204 |
|
|
all members of the SCC the hash value becomes independent on
|
4205 |
|
|
the order we visited the SCC. Disregard hashes equal to
|
4206 |
|
|
the hash of the type we mix into because we cannot guarantee
|
4207 |
|
|
a stable sort for those across different TUs. */
|
4208 |
|
|
qsort (pairs, size, sizeof (struct type_hash_pair),
|
4209 |
|
|
type_hash_pair_compare);
|
4210 |
|
|
for (i = 0; i < size; ++i)
|
4211 |
|
|
{
|
4212 |
|
|
hashval_t hash;
|
4213 |
|
|
m = ggc_alloc_cleared_tree_int_map ();
|
4214 |
|
|
m->base.from = pairs[i].type;
|
4215 |
|
|
hash = pairs[i].hash;
|
4216 |
|
|
/* Skip same hashes. */
|
4217 |
|
|
for (j = i + 1; j < size && pairs[j].hash == pairs[i].hash; ++j)
|
4218 |
|
|
;
|
4219 |
|
|
for (; j < size; ++j)
|
4220 |
|
|
hash = iterative_hash_hashval_t (pairs[j].hash, hash);
|
4221 |
|
|
for (j = 0; pairs[j].hash != pairs[i].hash; ++j)
|
4222 |
|
|
hash = iterative_hash_hashval_t (pairs[j].hash, hash);
|
4223 |
|
|
m->to = hash;
|
4224 |
|
|
if (pairs[i].type == type)
|
4225 |
|
|
v = hash;
|
4226 |
|
|
slot = htab_find_slot (type_hash_cache, m, INSERT);
|
4227 |
|
|
gcc_assert (!*slot);
|
4228 |
|
|
*slot = (void *) m;
|
4229 |
|
|
}
|
4230 |
|
|
}
|
4231 |
|
|
}
|
4232 |
|
|
|
4233 |
|
|
return iterative_hash_hashval_t (v, val);
|
4234 |
|
|
}
|
4235 |
|
|
|
4236 |
|
|
|
4237 |
|
|
/* Returns a hash value for P (assumed to be a type). The hash value
|
4238 |
|
|
is computed using some distinguishing features of the type. Note
|
4239 |
|
|
that we cannot use pointer hashing here as we may be dealing with
|
4240 |
|
|
two distinct instances of the same type.
|
4241 |
|
|
|
4242 |
|
|
This function should produce the same hash value for two compatible
|
4243 |
|
|
types according to gimple_types_compatible_p. */
|
4244 |
|
|
|
4245 |
|
|
static hashval_t
|
4246 |
|
|
gimple_type_hash (const void *p)
|
4247 |
|
|
{
|
4248 |
|
|
const_tree t = (const_tree) p;
|
4249 |
|
|
VEC(tree, heap) *sccstack = NULL;
|
4250 |
|
|
struct pointer_map_t *sccstate;
|
4251 |
|
|
struct obstack sccstate_obstack;
|
4252 |
|
|
hashval_t val;
|
4253 |
|
|
void **slot;
|
4254 |
|
|
struct tree_int_map m;
|
4255 |
|
|
|
4256 |
|
|
if (type_hash_cache == NULL)
|
4257 |
|
|
type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
|
4258 |
|
|
tree_int_map_eq, NULL);
|
4259 |
|
|
|
4260 |
|
|
m.base.from = CONST_CAST_TREE (t);
|
4261 |
|
|
if ((slot = htab_find_slot (type_hash_cache, &m, NO_INSERT))
|
4262 |
|
|
&& *slot)
|
4263 |
|
|
return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, 0);
|
4264 |
|
|
|
4265 |
|
|
/* Perform a DFS walk and pre-hash all reachable types. */
|
4266 |
|
|
next_dfs_num = 1;
|
4267 |
|
|
sccstate = pointer_map_create ();
|
4268 |
|
|
gcc_obstack_init (&sccstate_obstack);
|
4269 |
|
|
val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
|
4270 |
|
|
&sccstack, sccstate, &sccstate_obstack);
|
4271 |
|
|
VEC_free (tree, heap, sccstack);
|
4272 |
|
|
pointer_map_destroy (sccstate);
|
4273 |
|
|
obstack_free (&sccstate_obstack, NULL);
|
4274 |
|
|
|
4275 |
|
|
return val;
|
4276 |
|
|
}
|
4277 |
|
|
|
4278 |
|
|
/* Returning a hash value for gimple type TYPE combined with VAL.
|
4279 |
|
|
|
4280 |
|
|
The hash value returned is equal for types considered compatible
|
4281 |
|
|
by gimple_canonical_types_compatible_p. */
|
4282 |
|
|
|
4283 |
|
|
static hashval_t
|
4284 |
|
|
iterative_hash_canonical_type (tree type, hashval_t val)
|
4285 |
|
|
{
|
4286 |
|
|
hashval_t v;
|
4287 |
|
|
void **slot;
|
4288 |
|
|
struct tree_int_map *mp, m;
|
4289 |
|
|
|
4290 |
|
|
m.base.from = type;
|
4291 |
|
|
if ((slot = htab_find_slot (canonical_type_hash_cache, &m, INSERT))
|
4292 |
|
|
&& *slot)
|
4293 |
|
|
return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, val);
|
4294 |
|
|
|
4295 |
|
|
/* Combine a few common features of types so that types are grouped into
|
4296 |
|
|
smaller sets; when searching for existing matching types to merge,
|
4297 |
|
|
only existing types having the same features as the new type will be
|
4298 |
|
|
checked. */
|
4299 |
|
|
v = iterative_hash_hashval_t (TREE_CODE (type), 0);
|
4300 |
|
|
v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
|
4301 |
|
|
v = iterative_hash_hashval_t (TYPE_ALIGN (type), v);
|
4302 |
|
|
v = iterative_hash_hashval_t (TYPE_MODE (type), v);
|
4303 |
|
|
|
4304 |
|
|
/* Incorporate common features of numerical types. */
|
4305 |
|
|
if (INTEGRAL_TYPE_P (type)
|
4306 |
|
|
|| SCALAR_FLOAT_TYPE_P (type)
|
4307 |
|
|
|| FIXED_POINT_TYPE_P (type)
|
4308 |
|
|
|| TREE_CODE (type) == VECTOR_TYPE
|
4309 |
|
|
|| TREE_CODE (type) == COMPLEX_TYPE
|
4310 |
|
|
|| TREE_CODE (type) == OFFSET_TYPE
|
4311 |
|
|
|| POINTER_TYPE_P (type))
|
4312 |
|
|
{
|
4313 |
|
|
v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
|
4314 |
|
|
v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
|
4315 |
|
|
}
|
4316 |
|
|
|
4317 |
|
|
/* For pointer and reference types, fold in information about the type
|
4318 |
|
|
pointed to but do not recurse to the pointed-to type. */
|
4319 |
|
|
if (POINTER_TYPE_P (type))
|
4320 |
|
|
{
|
4321 |
|
|
v = iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type), v);
|
4322 |
|
|
v = iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type)), v);
|
4323 |
|
|
v = iterative_hash_hashval_t (TYPE_RESTRICT (type), v);
|
4324 |
|
|
v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
|
4325 |
|
|
}
|
4326 |
|
|
|
4327 |
|
|
/* For integer types hash the types min/max values and the string flag. */
|
4328 |
|
|
if (TREE_CODE (type) == INTEGER_TYPE)
|
4329 |
|
|
{
|
4330 |
|
|
v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
|
4331 |
|
|
v = iterative_hash_hashval_t (TYPE_IS_SIZETYPE (type), v);
|
4332 |
|
|
}
|
4333 |
|
|
|
4334 |
|
|
/* For array types hash their domain and the string flag. */
|
4335 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE
|
4336 |
|
|
&& TYPE_DOMAIN (type))
|
4337 |
|
|
{
|
4338 |
|
|
v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
|
4339 |
|
|
v = iterative_hash_canonical_type (TYPE_DOMAIN (type), v);
|
4340 |
|
|
}
|
4341 |
|
|
|
4342 |
|
|
/* Recurse for aggregates with a single element type. */
|
4343 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE
|
4344 |
|
|
|| TREE_CODE (type) == COMPLEX_TYPE
|
4345 |
|
|
|| TREE_CODE (type) == VECTOR_TYPE)
|
4346 |
|
|
v = iterative_hash_canonical_type (TREE_TYPE (type), v);
|
4347 |
|
|
|
4348 |
|
|
/* Incorporate function return and argument types. */
|
4349 |
|
|
if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
|
4350 |
|
|
{
|
4351 |
|
|
unsigned na;
|
4352 |
|
|
tree p;
|
4353 |
|
|
|
4354 |
|
|
/* For method types also incorporate their parent class. */
|
4355 |
|
|
if (TREE_CODE (type) == METHOD_TYPE)
|
4356 |
|
|
v = iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type), v);
|
4357 |
|
|
|
4358 |
|
|
v = iterative_hash_canonical_type (TREE_TYPE (type), v);
|
4359 |
|
|
|
4360 |
|
|
for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
|
4361 |
|
|
{
|
4362 |
|
|
v = iterative_hash_canonical_type (TREE_VALUE (p), v);
|
4363 |
|
|
na++;
|
4364 |
|
|
}
|
4365 |
|
|
|
4366 |
|
|
v = iterative_hash_hashval_t (na, v);
|
4367 |
|
|
}
|
4368 |
|
|
|
4369 |
|
|
if (RECORD_OR_UNION_TYPE_P (type))
|
4370 |
|
|
{
|
4371 |
|
|
unsigned nf;
|
4372 |
|
|
tree f;
|
4373 |
|
|
|
4374 |
|
|
for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
|
4375 |
|
|
if (TREE_CODE (f) == FIELD_DECL)
|
4376 |
|
|
{
|
4377 |
|
|
v = iterative_hash_canonical_type (TREE_TYPE (f), v);
|
4378 |
|
|
nf++;
|
4379 |
|
|
}
|
4380 |
|
|
|
4381 |
|
|
v = iterative_hash_hashval_t (nf, v);
|
4382 |
|
|
}
|
4383 |
|
|
|
4384 |
|
|
/* Cache the just computed hash value. */
|
4385 |
|
|
mp = ggc_alloc_cleared_tree_int_map ();
|
4386 |
|
|
mp->base.from = type;
|
4387 |
|
|
mp->to = v;
|
4388 |
|
|
*slot = (void *) mp;
|
4389 |
|
|
|
4390 |
|
|
return iterative_hash_hashval_t (v, val);
|
4391 |
|
|
}
|
4392 |
|
|
|
4393 |
|
|
static hashval_t
|
4394 |
|
|
gimple_canonical_type_hash (const void *p)
|
4395 |
|
|
{
|
4396 |
|
|
if (canonical_type_hash_cache == NULL)
|
4397 |
|
|
canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash,
|
4398 |
|
|
tree_int_map_eq, NULL);
|
4399 |
|
|
|
4400 |
|
|
return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree) p), 0);
|
4401 |
|
|
}
|
4402 |
|
|
|
4403 |
|
|
|
4404 |
|
|
/* Returns nonzero if P1 and P2 are equal. */
|
4405 |
|
|
|
4406 |
|
|
static int
|
4407 |
|
|
gimple_type_eq (const void *p1, const void *p2)
|
4408 |
|
|
{
|
4409 |
|
|
const_tree t1 = (const_tree) p1;
|
4410 |
|
|
const_tree t2 = (const_tree) p2;
|
4411 |
|
|
return gimple_types_compatible_p (CONST_CAST_TREE (t1),
|
4412 |
|
|
CONST_CAST_TREE (t2));
|
4413 |
|
|
}
|
4414 |
|
|
|
4415 |
|
|
|
4416 |
|
|
/* Worker for gimple_register_type.
|
4417 |
|
|
Register type T in the global type table gimple_types.
|
4418 |
|
|
When REGISTERING_MV is false first recurse for the main variant of T. */
|
4419 |
|
|
|
4420 |
|
|
static tree
|
4421 |
|
|
gimple_register_type_1 (tree t, bool registering_mv)
|
4422 |
|
|
{
|
4423 |
|
|
void **slot;
|
4424 |
|
|
gimple_type_leader_entry *leader;
|
4425 |
|
|
|
4426 |
|
|
/* If we registered this type before return the cached result. */
|
4427 |
|
|
leader = &gimple_type_leader[TYPE_UID (t) % GIMPLE_TYPE_LEADER_SIZE];
|
4428 |
|
|
if (leader->type == t)
|
4429 |
|
|
return leader->leader;
|
4430 |
|
|
|
4431 |
|
|
/* Always register the main variant first. This is important so we
|
4432 |
|
|
pick up the non-typedef variants as canonical, otherwise we'll end
|
4433 |
|
|
up taking typedef ids for structure tags during comparison.
|
4434 |
|
|
It also makes sure that main variants will be merged to main variants.
|
4435 |
|
|
As we are operating on a possibly partially fixed up type graph
|
4436 |
|
|
do not bother to recurse more than once, otherwise we may end up
|
4437 |
|
|
walking in circles.
|
4438 |
|
|
If we are registering a main variant it will either remain its
|
4439 |
|
|
own main variant or it will be merged to something else in which
|
4440 |
|
|
case we do not care for the main variant leader. */
|
4441 |
|
|
if (!registering_mv
|
4442 |
|
|
&& TYPE_MAIN_VARIANT (t) != t)
|
4443 |
|
|
gimple_register_type_1 (TYPE_MAIN_VARIANT (t), true);
|
4444 |
|
|
|
4445 |
|
|
/* See if we already have an equivalent type registered. */
|
4446 |
|
|
slot = htab_find_slot (gimple_types, t, INSERT);
|
4447 |
|
|
if (*slot
|
4448 |
|
|
&& *(tree *)slot != t)
|
4449 |
|
|
{
|
4450 |
|
|
tree new_type = (tree) *((tree *) slot);
|
4451 |
|
|
leader->type = t;
|
4452 |
|
|
leader->leader = new_type;
|
4453 |
|
|
return new_type;
|
4454 |
|
|
}
|
4455 |
|
|
|
4456 |
|
|
/* If not, insert it to the cache and the hash. */
|
4457 |
|
|
leader->type = t;
|
4458 |
|
|
leader->leader = t;
|
4459 |
|
|
*slot = (void *) t;
|
4460 |
|
|
return t;
|
4461 |
|
|
}
|
4462 |
|
|
|
4463 |
|
|
/* Register type T in the global type table gimple_types.
|
4464 |
|
|
If another type T', compatible with T, already existed in
|
4465 |
|
|
gimple_types then return T', otherwise return T. This is used by
|
4466 |
|
|
LTO to merge identical types read from different TUs. */
|
4467 |
|
|
|
4468 |
|
|
tree
|
4469 |
|
|
gimple_register_type (tree t)
|
4470 |
|
|
{
|
4471 |
|
|
gcc_assert (TYPE_P (t));
|
4472 |
|
|
|
4473 |
|
|
if (!gimple_type_leader)
|
4474 |
|
|
gimple_type_leader = ggc_alloc_cleared_vec_gimple_type_leader_entry_s
|
4475 |
|
|
(GIMPLE_TYPE_LEADER_SIZE);
|
4476 |
|
|
|
4477 |
|
|
if (gimple_types == NULL)
|
4478 |
|
|
gimple_types = htab_create_ggc (16381, gimple_type_hash, gimple_type_eq, 0);
|
4479 |
|
|
|
4480 |
|
|
return gimple_register_type_1 (t, false);
|
4481 |
|
|
}
|
4482 |
|
|
|
4483 |
|
|
/* The TYPE_CANONICAL merging machinery. It should closely resemble
|
4484 |
|
|
the middle-end types_compatible_p function. It needs to avoid
|
4485 |
|
|
claiming types are different for types that should be treated
|
4486 |
|
|
the same with respect to TBAA. Canonical types are also used
|
4487 |
|
|
for IL consistency checks via the useless_type_conversion_p
|
4488 |
|
|
predicate which does not handle all type kinds itself but falls
|
4489 |
|
|
back to pointer-comparison of TYPE_CANONICAL for aggregates
|
4490 |
|
|
for example. */
|
4491 |
|
|
|
4492 |
|
|
/* Return true iff T1 and T2 are structurally identical for what
|
4493 |
|
|
TBAA is concerned. */
|
4494 |
|
|
|
4495 |
|
|
static bool
|
4496 |
|
|
gimple_canonical_types_compatible_p (tree t1, tree t2)
|
4497 |
|
|
{
|
4498 |
|
|
/* Before starting to set up the SCC machinery handle simple cases. */
|
4499 |
|
|
|
4500 |
|
|
/* Check first for the obvious case of pointer identity. */
|
4501 |
|
|
if (t1 == t2)
|
4502 |
|
|
return true;
|
4503 |
|
|
|
4504 |
|
|
/* Check that we have two types to compare. */
|
4505 |
|
|
if (t1 == NULL_TREE || t2 == NULL_TREE)
|
4506 |
|
|
return false;
|
4507 |
|
|
|
4508 |
|
|
/* If the types have been previously registered and found equal
|
4509 |
|
|
they still are. */
|
4510 |
|
|
if (TYPE_CANONICAL (t1)
|
4511 |
|
|
&& TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
|
4512 |
|
|
return true;
|
4513 |
|
|
|
4514 |
|
|
/* Can't be the same type if the types don't have the same code. */
|
4515 |
|
|
if (TREE_CODE (t1) != TREE_CODE (t2))
|
4516 |
|
|
return false;
|
4517 |
|
|
|
4518 |
|
|
if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2))
|
4519 |
|
|
return false;
|
4520 |
|
|
|
4521 |
|
|
/* Qualifiers do not matter for canonical type comparison purposes. */
|
4522 |
|
|
|
4523 |
|
|
/* Void types and nullptr types are always the same. */
|
4524 |
|
|
if (TREE_CODE (t1) == VOID_TYPE
|
4525 |
|
|
|| TREE_CODE (t1) == NULLPTR_TYPE)
|
4526 |
|
|
return true;
|
4527 |
|
|
|
4528 |
|
|
/* Can't be the same type if they have different alignment, or mode. */
|
4529 |
|
|
if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
|
4530 |
|
|
|| TYPE_MODE (t1) != TYPE_MODE (t2))
|
4531 |
|
|
return false;
|
4532 |
|
|
|
4533 |
|
|
/* Non-aggregate types can be handled cheaply. */
|
4534 |
|
|
if (INTEGRAL_TYPE_P (t1)
|
4535 |
|
|
|| SCALAR_FLOAT_TYPE_P (t1)
|
4536 |
|
|
|| FIXED_POINT_TYPE_P (t1)
|
4537 |
|
|
|| TREE_CODE (t1) == VECTOR_TYPE
|
4538 |
|
|
|| TREE_CODE (t1) == COMPLEX_TYPE
|
4539 |
|
|
|| TREE_CODE (t1) == OFFSET_TYPE
|
4540 |
|
|
|| POINTER_TYPE_P (t1))
|
4541 |
|
|
{
|
4542 |
|
|
/* Can't be the same type if they have different sign or precision. */
|
4543 |
|
|
if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
|
4544 |
|
|
|| TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
|
4545 |
|
|
return false;
|
4546 |
|
|
|
4547 |
|
|
if (TREE_CODE (t1) == INTEGER_TYPE
|
4548 |
|
|
&& (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
|
4549 |
|
|
|| TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
|
4550 |
|
|
return false;
|
4551 |
|
|
|
4552 |
|
|
/* For canonical type comparisons we do not want to build SCCs
|
4553 |
|
|
so we cannot compare pointed-to types. But we can, for now,
|
4554 |
|
|
require the same pointed-to type kind and match what
|
4555 |
|
|
useless_type_conversion_p would do. */
|
4556 |
|
|
if (POINTER_TYPE_P (t1))
|
4557 |
|
|
{
|
4558 |
|
|
/* If the two pointers have different ref-all attributes,
|
4559 |
|
|
they can't be the same type. */
|
4560 |
|
|
if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
|
4561 |
|
|
return false;
|
4562 |
|
|
|
4563 |
|
|
if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
|
4564 |
|
|
!= TYPE_ADDR_SPACE (TREE_TYPE (t2)))
|
4565 |
|
|
return false;
|
4566 |
|
|
|
4567 |
|
|
if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2))
|
4568 |
|
|
return false;
|
4569 |
|
|
|
4570 |
|
|
if (TREE_CODE (TREE_TYPE (t1)) != TREE_CODE (TREE_TYPE (t2)))
|
4571 |
|
|
return false;
|
4572 |
|
|
}
|
4573 |
|
|
|
4574 |
|
|
/* Tail-recurse to components. */
|
4575 |
|
|
if (TREE_CODE (t1) == VECTOR_TYPE
|
4576 |
|
|
|| TREE_CODE (t1) == COMPLEX_TYPE)
|
4577 |
|
|
return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
|
4578 |
|
|
TREE_TYPE (t2));
|
4579 |
|
|
|
4580 |
|
|
return true;
|
4581 |
|
|
}
|
4582 |
|
|
|
4583 |
|
|
/* If their attributes are not the same they can't be the same type. */
|
4584 |
|
|
if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
|
4585 |
|
|
return false;
|
4586 |
|
|
|
4587 |
|
|
/* Do type-specific comparisons. */
|
4588 |
|
|
switch (TREE_CODE (t1))
|
4589 |
|
|
{
|
4590 |
|
|
case ARRAY_TYPE:
|
4591 |
|
|
/* Array types are the same if the element types are the same and
|
4592 |
|
|
the number of elements are the same. */
|
4593 |
|
|
if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))
|
4594 |
|
|
|| TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
|
4595 |
|
|
|| TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
|
4596 |
|
|
return false;
|
4597 |
|
|
else
|
4598 |
|
|
{
|
4599 |
|
|
tree i1 = TYPE_DOMAIN (t1);
|
4600 |
|
|
tree i2 = TYPE_DOMAIN (t2);
|
4601 |
|
|
|
4602 |
|
|
/* For an incomplete external array, the type domain can be
|
4603 |
|
|
NULL_TREE. Check this condition also. */
|
4604 |
|
|
if (i1 == NULL_TREE && i2 == NULL_TREE)
|
4605 |
|
|
return true;
|
4606 |
|
|
else if (i1 == NULL_TREE || i2 == NULL_TREE)
|
4607 |
|
|
return false;
|
4608 |
|
|
/* If for a complete array type the possibly gimplified sizes
|
4609 |
|
|
are different the types are different. */
|
4610 |
|
|
else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
|
4611 |
|
|
|| (TYPE_SIZE (i1)
|
4612 |
|
|
&& TYPE_SIZE (i2)
|
4613 |
|
|
&& !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
|
4614 |
|
|
return false;
|
4615 |
|
|
else
|
4616 |
|
|
{
|
4617 |
|
|
tree min1 = TYPE_MIN_VALUE (i1);
|
4618 |
|
|
tree min2 = TYPE_MIN_VALUE (i2);
|
4619 |
|
|
tree max1 = TYPE_MAX_VALUE (i1);
|
4620 |
|
|
tree max2 = TYPE_MAX_VALUE (i2);
|
4621 |
|
|
|
4622 |
|
|
/* The minimum/maximum values have to be the same. */
|
4623 |
|
|
if ((min1 == min2
|
4624 |
|
|
|| (min1 && min2
|
4625 |
|
|
&& ((TREE_CODE (min1) == PLACEHOLDER_EXPR
|
4626 |
|
|
&& TREE_CODE (min2) == PLACEHOLDER_EXPR)
|
4627 |
|
|
|| operand_equal_p (min1, min2, 0))))
|
4628 |
|
|
&& (max1 == max2
|
4629 |
|
|
|| (max1 && max2
|
4630 |
|
|
&& ((TREE_CODE (max1) == PLACEHOLDER_EXPR
|
4631 |
|
|
&& TREE_CODE (max2) == PLACEHOLDER_EXPR)
|
4632 |
|
|
|| operand_equal_p (max1, max2, 0)))))
|
4633 |
|
|
return true;
|
4634 |
|
|
else
|
4635 |
|
|
return false;
|
4636 |
|
|
}
|
4637 |
|
|
}
|
4638 |
|
|
|
4639 |
|
|
case METHOD_TYPE:
|
4640 |
|
|
/* Method types should belong to the same class. */
|
4641 |
|
|
if (!gimple_canonical_types_compatible_p
|
4642 |
|
|
(TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2)))
|
4643 |
|
|
return false;
|
4644 |
|
|
|
4645 |
|
|
/* Fallthru */
|
4646 |
|
|
|
4647 |
|
|
case FUNCTION_TYPE:
|
4648 |
|
|
/* Function types are the same if the return type and arguments types
|
4649 |
|
|
are the same. */
|
4650 |
|
|
if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
|
4651 |
|
|
return false;
|
4652 |
|
|
|
4653 |
|
|
if (!comp_type_attributes (t1, t2))
|
4654 |
|
|
return false;
|
4655 |
|
|
|
4656 |
|
|
if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
|
4657 |
|
|
return true;
|
4658 |
|
|
else
|
4659 |
|
|
{
|
4660 |
|
|
tree parms1, parms2;
|
4661 |
|
|
|
4662 |
|
|
for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
|
4663 |
|
|
parms1 && parms2;
|
4664 |
|
|
parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
|
4665 |
|
|
{
|
4666 |
|
|
if (!gimple_canonical_types_compatible_p
|
4667 |
|
|
(TREE_VALUE (parms1), TREE_VALUE (parms2)))
|
4668 |
|
|
return false;
|
4669 |
|
|
}
|
4670 |
|
|
|
4671 |
|
|
if (parms1 || parms2)
|
4672 |
|
|
return false;
|
4673 |
|
|
|
4674 |
|
|
return true;
|
4675 |
|
|
}
|
4676 |
|
|
|
4677 |
|
|
case RECORD_TYPE:
|
4678 |
|
|
case UNION_TYPE:
|
4679 |
|
|
case QUAL_UNION_TYPE:
|
4680 |
|
|
{
|
4681 |
|
|
tree f1, f2;
|
4682 |
|
|
|
4683 |
|
|
/* For aggregate types, all the fields must be the same. */
|
4684 |
|
|
for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
|
4685 |
|
|
f1 || f2;
|
4686 |
|
|
f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
|
4687 |
|
|
{
|
4688 |
|
|
/* Skip non-fields. */
|
4689 |
|
|
while (f1 && TREE_CODE (f1) != FIELD_DECL)
|
4690 |
|
|
f1 = TREE_CHAIN (f1);
|
4691 |
|
|
while (f2 && TREE_CODE (f2) != FIELD_DECL)
|
4692 |
|
|
f2 = TREE_CHAIN (f2);
|
4693 |
|
|
if (!f1 || !f2)
|
4694 |
|
|
break;
|
4695 |
|
|
/* The fields must have the same name, offset and type. */
|
4696 |
|
|
if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
|
4697 |
|
|
|| !gimple_compare_field_offset (f1, f2)
|
4698 |
|
|
|| !gimple_canonical_types_compatible_p
|
4699 |
|
|
(TREE_TYPE (f1), TREE_TYPE (f2)))
|
4700 |
|
|
return false;
|
4701 |
|
|
}
|
4702 |
|
|
|
4703 |
|
|
/* If one aggregate has more fields than the other, they
|
4704 |
|
|
are not the same. */
|
4705 |
|
|
if (f1 || f2)
|
4706 |
|
|
return false;
|
4707 |
|
|
|
4708 |
|
|
return true;
|
4709 |
|
|
}
|
4710 |
|
|
|
4711 |
|
|
default:
|
4712 |
|
|
gcc_unreachable ();
|
4713 |
|
|
}
|
4714 |
|
|
}
|
4715 |
|
|
|
4716 |
|
|
|
4717 |
|
|
/* Returns nonzero if P1 and P2 are equal. */
|
4718 |
|
|
|
4719 |
|
|
static int
|
4720 |
|
|
gimple_canonical_type_eq (const void *p1, const void *p2)
|
4721 |
|
|
{
|
4722 |
|
|
const_tree t1 = (const_tree) p1;
|
4723 |
|
|
const_tree t2 = (const_tree) p2;
|
4724 |
|
|
return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1),
|
4725 |
|
|
CONST_CAST_TREE (t2));
|
4726 |
|
|
}
|
4727 |
|
|
|
4728 |
|
|
/* Register type T in the global type table gimple_types.
|
4729 |
|
|
If another type T', compatible with T, already existed in
|
4730 |
|
|
gimple_types then return T', otherwise return T. This is used by
|
4731 |
|
|
LTO to merge identical types read from different TUs.
|
4732 |
|
|
|
4733 |
|
|
??? This merging does not exactly match how the tree.c middle-end
|
4734 |
|
|
functions will assign TYPE_CANONICAL when new types are created
|
4735 |
|
|
during optimization (which at least happens for pointer and array
|
4736 |
|
|
types). */
|
4737 |
|
|
|
4738 |
|
|
tree
|
4739 |
|
|
gimple_register_canonical_type (tree t)
|
4740 |
|
|
{
|
4741 |
|
|
void **slot;
|
4742 |
|
|
|
4743 |
|
|
gcc_assert (TYPE_P (t));
|
4744 |
|
|
|
4745 |
|
|
if (TYPE_CANONICAL (t))
|
4746 |
|
|
return TYPE_CANONICAL (t);
|
4747 |
|
|
|
4748 |
|
|
if (gimple_canonical_types == NULL)
|
4749 |
|
|
gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash,
|
4750 |
|
|
gimple_canonical_type_eq, 0);
|
4751 |
|
|
|
4752 |
|
|
slot = htab_find_slot (gimple_canonical_types, t, INSERT);
|
4753 |
|
|
if (*slot
|
4754 |
|
|
&& *(tree *)slot != t)
|
4755 |
|
|
{
|
4756 |
|
|
tree new_type = (tree) *((tree *) slot);
|
4757 |
|
|
|
4758 |
|
|
TYPE_CANONICAL (t) = new_type;
|
4759 |
|
|
t = new_type;
|
4760 |
|
|
}
|
4761 |
|
|
else
|
4762 |
|
|
{
|
4763 |
|
|
TYPE_CANONICAL (t) = t;
|
4764 |
|
|
*slot = (void *) t;
|
4765 |
|
|
}
|
4766 |
|
|
|
4767 |
|
|
return t;
|
4768 |
|
|
}
|
4769 |
|
|
|
4770 |
|
|
|
4771 |
|
|
/* Show statistics on references to the global type table gimple_types. */
|
4772 |
|
|
|
4773 |
|
|
void
|
4774 |
|
|
print_gimple_types_stats (void)
|
4775 |
|
|
{
|
4776 |
|
|
if (gimple_types)
|
4777 |
|
|
fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
|
4778 |
|
|
"%ld searches, %ld collisions (ratio: %f)\n",
|
4779 |
|
|
(long) htab_size (gimple_types),
|
4780 |
|
|
(long) htab_elements (gimple_types),
|
4781 |
|
|
(long) gimple_types->searches,
|
4782 |
|
|
(long) gimple_types->collisions,
|
4783 |
|
|
htab_collisions (gimple_types));
|
4784 |
|
|
else
|
4785 |
|
|
fprintf (stderr, "GIMPLE type table is empty\n");
|
4786 |
|
|
if (type_hash_cache)
|
4787 |
|
|
fprintf (stderr, "GIMPLE type hash table: size %ld, %ld elements, "
|
4788 |
|
|
"%ld searches, %ld collisions (ratio: %f)\n",
|
4789 |
|
|
(long) htab_size (type_hash_cache),
|
4790 |
|
|
(long) htab_elements (type_hash_cache),
|
4791 |
|
|
(long) type_hash_cache->searches,
|
4792 |
|
|
(long) type_hash_cache->collisions,
|
4793 |
|
|
htab_collisions (type_hash_cache));
|
4794 |
|
|
else
|
4795 |
|
|
fprintf (stderr, "GIMPLE type hash table is empty\n");
|
4796 |
|
|
if (gimple_canonical_types)
|
4797 |
|
|
fprintf (stderr, "GIMPLE canonical type table: size %ld, %ld elements, "
|
4798 |
|
|
"%ld searches, %ld collisions (ratio: %f)\n",
|
4799 |
|
|
(long) htab_size (gimple_canonical_types),
|
4800 |
|
|
(long) htab_elements (gimple_canonical_types),
|
4801 |
|
|
(long) gimple_canonical_types->searches,
|
4802 |
|
|
(long) gimple_canonical_types->collisions,
|
4803 |
|
|
htab_collisions (gimple_canonical_types));
|
4804 |
|
|
else
|
4805 |
|
|
fprintf (stderr, "GIMPLE canonical type table is empty\n");
|
4806 |
|
|
if (canonical_type_hash_cache)
|
4807 |
|
|
fprintf (stderr, "GIMPLE canonical type hash table: size %ld, %ld elements, "
|
4808 |
|
|
"%ld searches, %ld collisions (ratio: %f)\n",
|
4809 |
|
|
(long) htab_size (canonical_type_hash_cache),
|
4810 |
|
|
(long) htab_elements (canonical_type_hash_cache),
|
4811 |
|
|
(long) canonical_type_hash_cache->searches,
|
4812 |
|
|
(long) canonical_type_hash_cache->collisions,
|
4813 |
|
|
htab_collisions (canonical_type_hash_cache));
|
4814 |
|
|
else
|
4815 |
|
|
fprintf (stderr, "GIMPLE canonical type hash table is empty\n");
|
4816 |
|
|
}
|
4817 |
|
|
|
4818 |
|
|
/* Free the gimple type hashtables used for LTO type merging. */
|
4819 |
|
|
|
4820 |
|
|
void
|
4821 |
|
|
free_gimple_type_tables (void)
|
4822 |
|
|
{
|
4823 |
|
|
/* Last chance to print stats for the tables. */
|
4824 |
|
|
if (flag_lto_report)
|
4825 |
|
|
print_gimple_types_stats ();
|
4826 |
|
|
|
4827 |
|
|
if (gimple_types)
|
4828 |
|
|
{
|
4829 |
|
|
htab_delete (gimple_types);
|
4830 |
|
|
gimple_types = NULL;
|
4831 |
|
|
}
|
4832 |
|
|
if (gimple_canonical_types)
|
4833 |
|
|
{
|
4834 |
|
|
htab_delete (gimple_canonical_types);
|
4835 |
|
|
gimple_canonical_types = NULL;
|
4836 |
|
|
}
|
4837 |
|
|
if (type_hash_cache)
|
4838 |
|
|
{
|
4839 |
|
|
htab_delete (type_hash_cache);
|
4840 |
|
|
type_hash_cache = NULL;
|
4841 |
|
|
}
|
4842 |
|
|
if (canonical_type_hash_cache)
|
4843 |
|
|
{
|
4844 |
|
|
htab_delete (canonical_type_hash_cache);
|
4845 |
|
|
canonical_type_hash_cache = NULL;
|
4846 |
|
|
}
|
4847 |
|
|
if (type_pair_cache)
|
4848 |
|
|
{
|
4849 |
|
|
free (type_pair_cache);
|
4850 |
|
|
type_pair_cache = NULL;
|
4851 |
|
|
}
|
4852 |
|
|
gimple_type_leader = NULL;
|
4853 |
|
|
}
|
4854 |
|
|
|
4855 |
|
|
|
4856 |
|
|
/* Return a type the same as TYPE except unsigned or
|
4857 |
|
|
signed according to UNSIGNEDP. */
|
4858 |
|
|
|
4859 |
|
|
static tree
|
4860 |
|
|
gimple_signed_or_unsigned_type (bool unsignedp, tree type)
|
4861 |
|
|
{
|
4862 |
|
|
tree type1;
|
4863 |
|
|
|
4864 |
|
|
type1 = TYPE_MAIN_VARIANT (type);
|
4865 |
|
|
if (type1 == signed_char_type_node
|
4866 |
|
|
|| type1 == char_type_node
|
4867 |
|
|
|| type1 == unsigned_char_type_node)
|
4868 |
|
|
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
4869 |
|
|
if (type1 == integer_type_node || type1 == unsigned_type_node)
|
4870 |
|
|
return unsignedp ? unsigned_type_node : integer_type_node;
|
4871 |
|
|
if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
|
4872 |
|
|
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
4873 |
|
|
if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
|
4874 |
|
|
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
4875 |
|
|
if (type1 == long_long_integer_type_node
|
4876 |
|
|
|| type1 == long_long_unsigned_type_node)
|
4877 |
|
|
return unsignedp
|
4878 |
|
|
? long_long_unsigned_type_node
|
4879 |
|
|
: long_long_integer_type_node;
|
4880 |
|
|
if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
|
4881 |
|
|
return unsignedp
|
4882 |
|
|
? int128_unsigned_type_node
|
4883 |
|
|
: int128_integer_type_node;
|
4884 |
|
|
#if HOST_BITS_PER_WIDE_INT >= 64
|
4885 |
|
|
if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
|
4886 |
|
|
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
|
4887 |
|
|
#endif
|
4888 |
|
|
if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
|
4889 |
|
|
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
|
4890 |
|
|
if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
|
4891 |
|
|
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
|
4892 |
|
|
if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
|
4893 |
|
|
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
|
4894 |
|
|
if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
|
4895 |
|
|
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
|
4896 |
|
|
|
4897 |
|
|
#define GIMPLE_FIXED_TYPES(NAME) \
|
4898 |
|
|
if (type1 == short_ ## NAME ## _type_node \
|
4899 |
|
|
|| type1 == unsigned_short_ ## NAME ## _type_node) \
|
4900 |
|
|
return unsignedp ? unsigned_short_ ## NAME ## _type_node \
|
4901 |
|
|
: short_ ## NAME ## _type_node; \
|
4902 |
|
|
if (type1 == NAME ## _type_node \
|
4903 |
|
|
|| type1 == unsigned_ ## NAME ## _type_node) \
|
4904 |
|
|
return unsignedp ? unsigned_ ## NAME ## _type_node \
|
4905 |
|
|
: NAME ## _type_node; \
|
4906 |
|
|
if (type1 == long_ ## NAME ## _type_node \
|
4907 |
|
|
|| type1 == unsigned_long_ ## NAME ## _type_node) \
|
4908 |
|
|
return unsignedp ? unsigned_long_ ## NAME ## _type_node \
|
4909 |
|
|
: long_ ## NAME ## _type_node; \
|
4910 |
|
|
if (type1 == long_long_ ## NAME ## _type_node \
|
4911 |
|
|
|| type1 == unsigned_long_long_ ## NAME ## _type_node) \
|
4912 |
|
|
return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
|
4913 |
|
|
: long_long_ ## NAME ## _type_node;
|
4914 |
|
|
|
4915 |
|
|
#define GIMPLE_FIXED_MODE_TYPES(NAME) \
|
4916 |
|
|
if (type1 == NAME ## _type_node \
|
4917 |
|
|
|| type1 == u ## NAME ## _type_node) \
|
4918 |
|
|
return unsignedp ? u ## NAME ## _type_node \
|
4919 |
|
|
: NAME ## _type_node;
|
4920 |
|
|
|
4921 |
|
|
#define GIMPLE_FIXED_TYPES_SAT(NAME) \
|
4922 |
|
|
if (type1 == sat_ ## short_ ## NAME ## _type_node \
|
4923 |
|
|
|| type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
|
4924 |
|
|
return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
|
4925 |
|
|
: sat_ ## short_ ## NAME ## _type_node; \
|
4926 |
|
|
if (type1 == sat_ ## NAME ## _type_node \
|
4927 |
|
|
|| type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
|
4928 |
|
|
return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
|
4929 |
|
|
: sat_ ## NAME ## _type_node; \
|
4930 |
|
|
if (type1 == sat_ ## long_ ## NAME ## _type_node \
|
4931 |
|
|
|| type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
|
4932 |
|
|
return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
|
4933 |
|
|
: sat_ ## long_ ## NAME ## _type_node; \
|
4934 |
|
|
if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
|
4935 |
|
|
|| type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
|
4936 |
|
|
return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
|
4937 |
|
|
: sat_ ## long_long_ ## NAME ## _type_node;
|
4938 |
|
|
|
4939 |
|
|
#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
|
4940 |
|
|
if (type1 == sat_ ## NAME ## _type_node \
|
4941 |
|
|
|| type1 == sat_ ## u ## NAME ## _type_node) \
|
4942 |
|
|
return unsignedp ? sat_ ## u ## NAME ## _type_node \
|
4943 |
|
|
: sat_ ## NAME ## _type_node;
|
4944 |
|
|
|
4945 |
|
|
GIMPLE_FIXED_TYPES (fract);
|
4946 |
|
|
GIMPLE_FIXED_TYPES_SAT (fract);
|
4947 |
|
|
GIMPLE_FIXED_TYPES (accum);
|
4948 |
|
|
GIMPLE_FIXED_TYPES_SAT (accum);
|
4949 |
|
|
|
4950 |
|
|
GIMPLE_FIXED_MODE_TYPES (qq);
|
4951 |
|
|
GIMPLE_FIXED_MODE_TYPES (hq);
|
4952 |
|
|
GIMPLE_FIXED_MODE_TYPES (sq);
|
4953 |
|
|
GIMPLE_FIXED_MODE_TYPES (dq);
|
4954 |
|
|
GIMPLE_FIXED_MODE_TYPES (tq);
|
4955 |
|
|
GIMPLE_FIXED_MODE_TYPES_SAT (qq);
|
4956 |
|
|
GIMPLE_FIXED_MODE_TYPES_SAT (hq);
|
4957 |
|
|
GIMPLE_FIXED_MODE_TYPES_SAT (sq);
|
4958 |
|
|
GIMPLE_FIXED_MODE_TYPES_SAT (dq);
|
4959 |
|
|
GIMPLE_FIXED_MODE_TYPES_SAT (tq);
|
4960 |
|
|
GIMPLE_FIXED_MODE_TYPES (ha);
|
4961 |
|
|
GIMPLE_FIXED_MODE_TYPES (sa);
|
4962 |
|
|
GIMPLE_FIXED_MODE_TYPES (da);
|
4963 |
|
|
GIMPLE_FIXED_MODE_TYPES (ta);
|
4964 |
|
|
GIMPLE_FIXED_MODE_TYPES_SAT (ha);
|
4965 |
|
|
GIMPLE_FIXED_MODE_TYPES_SAT (sa);
|
4966 |
|
|
GIMPLE_FIXED_MODE_TYPES_SAT (da);
|
4967 |
|
|
GIMPLE_FIXED_MODE_TYPES_SAT (ta);
|
4968 |
|
|
|
4969 |
|
|
/* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
|
4970 |
|
|
the precision; they have precision set to match their range, but
|
4971 |
|
|
may use a wider mode to match an ABI. If we change modes, we may
|
4972 |
|
|
wind up with bad conversions. For INTEGER_TYPEs in C, must check
|
4973 |
|
|
the precision as well, so as to yield correct results for
|
4974 |
|
|
bit-field types. C++ does not have these separate bit-field
|
4975 |
|
|
types, and producing a signed or unsigned variant of an
|
4976 |
|
|
ENUMERAL_TYPE may cause other problems as well. */
|
4977 |
|
|
if (!INTEGRAL_TYPE_P (type)
|
4978 |
|
|
|| TYPE_UNSIGNED (type) == unsignedp)
|
4979 |
|
|
return type;
|
4980 |
|
|
|
4981 |
|
|
#define TYPE_OK(node) \
|
4982 |
|
|
(TYPE_MODE (type) == TYPE_MODE (node) \
|
4983 |
|
|
&& TYPE_PRECISION (type) == TYPE_PRECISION (node))
|
4984 |
|
|
if (TYPE_OK (signed_char_type_node))
|
4985 |
|
|
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
4986 |
|
|
if (TYPE_OK (integer_type_node))
|
4987 |
|
|
return unsignedp ? unsigned_type_node : integer_type_node;
|
4988 |
|
|
if (TYPE_OK (short_integer_type_node))
|
4989 |
|
|
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
4990 |
|
|
if (TYPE_OK (long_integer_type_node))
|
4991 |
|
|
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
4992 |
|
|
if (TYPE_OK (long_long_integer_type_node))
|
4993 |
|
|
return (unsignedp
|
4994 |
|
|
? long_long_unsigned_type_node
|
4995 |
|
|
: long_long_integer_type_node);
|
4996 |
|
|
if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
|
4997 |
|
|
return (unsignedp
|
4998 |
|
|
? int128_unsigned_type_node
|
4999 |
|
|
: int128_integer_type_node);
|
5000 |
|
|
|
5001 |
|
|
#if HOST_BITS_PER_WIDE_INT >= 64
|
5002 |
|
|
if (TYPE_OK (intTI_type_node))
|
5003 |
|
|
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
|
5004 |
|
|
#endif
|
5005 |
|
|
if (TYPE_OK (intDI_type_node))
|
5006 |
|
|
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
|
5007 |
|
|
if (TYPE_OK (intSI_type_node))
|
5008 |
|
|
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
|
5009 |
|
|
if (TYPE_OK (intHI_type_node))
|
5010 |
|
|
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
|
5011 |
|
|
if (TYPE_OK (intQI_type_node))
|
5012 |
|
|
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
|
5013 |
|
|
|
5014 |
|
|
#undef GIMPLE_FIXED_TYPES
|
5015 |
|
|
#undef GIMPLE_FIXED_MODE_TYPES
|
5016 |
|
|
#undef GIMPLE_FIXED_TYPES_SAT
|
5017 |
|
|
#undef GIMPLE_FIXED_MODE_TYPES_SAT
|
5018 |
|
|
#undef TYPE_OK
|
5019 |
|
|
|
5020 |
|
|
return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
|
5021 |
|
|
}
|
5022 |
|
|
|
5023 |
|
|
|
5024 |
|
|
/* Return an unsigned type the same as TYPE in other respects. */
|
5025 |
|
|
|
5026 |
|
|
tree
|
5027 |
|
|
gimple_unsigned_type (tree type)
|
5028 |
|
|
{
|
5029 |
|
|
return gimple_signed_or_unsigned_type (true, type);
|
5030 |
|
|
}
|
5031 |
|
|
|
5032 |
|
|
|
5033 |
|
|
/* Return a signed type the same as TYPE in other respects. */
|
5034 |
|
|
|
5035 |
|
|
tree
|
5036 |
|
|
gimple_signed_type (tree type)
|
5037 |
|
|
{
|
5038 |
|
|
return gimple_signed_or_unsigned_type (false, type);
|
5039 |
|
|
}
|
5040 |
|
|
|
5041 |
|
|
|
5042 |
|
|
/* Return the typed-based alias set for T, which may be an expression
|
5043 |
|
|
or a type. Return -1 if we don't do anything special. */
|
5044 |
|
|
|
5045 |
|
|
alias_set_type
|
5046 |
|
|
gimple_get_alias_set (tree t)
|
5047 |
|
|
{
|
5048 |
|
|
tree u;
|
5049 |
|
|
|
5050 |
|
|
/* Permit type-punning when accessing a union, provided the access
|
5051 |
|
|
is directly through the union. For example, this code does not
|
5052 |
|
|
permit taking the address of a union member and then storing
|
5053 |
|
|
through it. Even the type-punning allowed here is a GCC
|
5054 |
|
|
extension, albeit a common and useful one; the C standard says
|
5055 |
|
|
that such accesses have implementation-defined behavior. */
|
5056 |
|
|
for (u = t;
|
5057 |
|
|
TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
|
5058 |
|
|
u = TREE_OPERAND (u, 0))
|
5059 |
|
|
if (TREE_CODE (u) == COMPONENT_REF
|
5060 |
|
|
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
|
5061 |
|
|
return 0;
|
5062 |
|
|
|
5063 |
|
|
/* That's all the expressions we handle specially. */
|
5064 |
|
|
if (!TYPE_P (t))
|
5065 |
|
|
return -1;
|
5066 |
|
|
|
5067 |
|
|
/* For convenience, follow the C standard when dealing with
|
5068 |
|
|
character types. Any object may be accessed via an lvalue that
|
5069 |
|
|
has character type. */
|
5070 |
|
|
if (t == char_type_node
|
5071 |
|
|
|| t == signed_char_type_node
|
5072 |
|
|
|| t == unsigned_char_type_node)
|
5073 |
|
|
return 0;
|
5074 |
|
|
|
5075 |
|
|
/* Allow aliasing between signed and unsigned variants of the same
|
5076 |
|
|
type. We treat the signed variant as canonical. */
|
5077 |
|
|
if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
|
5078 |
|
|
{
|
5079 |
|
|
tree t1 = gimple_signed_type (t);
|
5080 |
|
|
|
5081 |
|
|
/* t1 == t can happen for boolean nodes which are always unsigned. */
|
5082 |
|
|
if (t1 != t)
|
5083 |
|
|
return get_alias_set (t1);
|
5084 |
|
|
}
|
5085 |
|
|
|
5086 |
|
|
return -1;
|
5087 |
|
|
}
|
5088 |
|
|
|
5089 |
|
|
|
5090 |
|
|
/* Data structure used to count the number of dereferences to PTR
|
5091 |
|
|
inside an expression. */
|
5092 |
|
|
struct count_ptr_d
|
5093 |
|
|
{
|
5094 |
|
|
tree ptr;
|
5095 |
|
|
unsigned num_stores;
|
5096 |
|
|
unsigned num_loads;
|
5097 |
|
|
};
|
5098 |
|
|
|
5099 |
|
|
/* Helper for count_uses_and_derefs. Called by walk_tree to look for
|
5100 |
|
|
(ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
|
5101 |
|
|
|
5102 |
|
|
static tree
|
5103 |
|
|
count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
|
5104 |
|
|
{
|
5105 |
|
|
struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
|
5106 |
|
|
struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
|
5107 |
|
|
|
5108 |
|
|
/* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
|
5109 |
|
|
pointer 'ptr' is *not* dereferenced, it is simply used to compute
|
5110 |
|
|
the address of 'fld' as 'ptr + offsetof(fld)'. */
|
5111 |
|
|
if (TREE_CODE (*tp) == ADDR_EXPR)
|
5112 |
|
|
{
|
5113 |
|
|
*walk_subtrees = 0;
|
5114 |
|
|
return NULL_TREE;
|
5115 |
|
|
}
|
5116 |
|
|
|
5117 |
|
|
if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
|
5118 |
|
|
{
|
5119 |
|
|
if (wi_p->is_lhs)
|
5120 |
|
|
count_p->num_stores++;
|
5121 |
|
|
else
|
5122 |
|
|
count_p->num_loads++;
|
5123 |
|
|
}
|
5124 |
|
|
|
5125 |
|
|
return NULL_TREE;
|
5126 |
|
|
}
|
5127 |
|
|
|
5128 |
|
|
/* Count the number of direct and indirect uses for pointer PTR in
|
5129 |
|
|
statement STMT. The number of direct uses is stored in
|
5130 |
|
|
*NUM_USES_P. Indirect references are counted separately depending
|
5131 |
|
|
on whether they are store or load operations. The counts are
|
5132 |
|
|
stored in *NUM_STORES_P and *NUM_LOADS_P. */
|
5133 |
|
|
|
5134 |
|
|
void
|
5135 |
|
|
count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
|
5136 |
|
|
unsigned *num_loads_p, unsigned *num_stores_p)
|
5137 |
|
|
{
|
5138 |
|
|
ssa_op_iter i;
|
5139 |
|
|
tree use;
|
5140 |
|
|
|
5141 |
|
|
*num_uses_p = 0;
|
5142 |
|
|
*num_loads_p = 0;
|
5143 |
|
|
*num_stores_p = 0;
|
5144 |
|
|
|
5145 |
|
|
/* Find out the total number of uses of PTR in STMT. */
|
5146 |
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
|
5147 |
|
|
if (use == ptr)
|
5148 |
|
|
(*num_uses_p)++;
|
5149 |
|
|
|
5150 |
|
|
/* Now count the number of indirect references to PTR. This is
|
5151 |
|
|
truly awful, but we don't have much choice. There are no parent
|
5152 |
|
|
pointers inside INDIRECT_REFs, so an expression like
|
5153 |
|
|
'*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
|
5154 |
|
|
find all the indirect and direct uses of x_1 inside. The only
|
5155 |
|
|
shortcut we can take is the fact that GIMPLE only allows
|
5156 |
|
|
INDIRECT_REFs inside the expressions below. */
|
5157 |
|
|
if (is_gimple_assign (stmt)
|
5158 |
|
|
|| gimple_code (stmt) == GIMPLE_RETURN
|
5159 |
|
|
|| gimple_code (stmt) == GIMPLE_ASM
|
5160 |
|
|
|| is_gimple_call (stmt))
|
5161 |
|
|
{
|
5162 |
|
|
struct walk_stmt_info wi;
|
5163 |
|
|
struct count_ptr_d count;
|
5164 |
|
|
|
5165 |
|
|
count.ptr = ptr;
|
5166 |
|
|
count.num_stores = 0;
|
5167 |
|
|
count.num_loads = 0;
|
5168 |
|
|
|
5169 |
|
|
memset (&wi, 0, sizeof (wi));
|
5170 |
|
|
wi.info = &count;
|
5171 |
|
|
walk_gimple_op (stmt, count_ptr_derefs, &wi);
|
5172 |
|
|
|
5173 |
|
|
*num_stores_p = count.num_stores;
|
5174 |
|
|
*num_loads_p = count.num_loads;
|
5175 |
|
|
}
|
5176 |
|
|
|
5177 |
|
|
gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
|
5178 |
|
|
}
|
5179 |
|
|
|
5180 |
|
|
/* From a tree operand OP return the base of a load or store operation
|
5181 |
|
|
or NULL_TREE if OP is not a load or a store. */
|
5182 |
|
|
|
5183 |
|
|
static tree
|
5184 |
|
|
get_base_loadstore (tree op)
|
5185 |
|
|
{
|
5186 |
|
|
while (handled_component_p (op))
|
5187 |
|
|
op = TREE_OPERAND (op, 0);
|
5188 |
|
|
if (DECL_P (op)
|
5189 |
|
|
|| INDIRECT_REF_P (op)
|
5190 |
|
|
|| TREE_CODE (op) == MEM_REF
|
5191 |
|
|
|| TREE_CODE (op) == TARGET_MEM_REF)
|
5192 |
|
|
return op;
|
5193 |
|
|
return NULL_TREE;
|
5194 |
|
|
}
|
5195 |
|
|
|
5196 |
|
|
/* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
|
5197 |
|
|
VISIT_ADDR if non-NULL on loads, store and address-taken operands
|
5198 |
|
|
passing the STMT, the base of the operand and DATA to it. The base
|
5199 |
|
|
will be either a decl, an indirect reference (including TARGET_MEM_REF)
|
5200 |
|
|
or the argument of an address expression.
|
5201 |
|
|
Returns the results of these callbacks or'ed. */
|
5202 |
|
|
|
5203 |
|
|
bool
|
5204 |
|
|
walk_stmt_load_store_addr_ops (gimple stmt, void *data,
|
5205 |
|
|
bool (*visit_load)(gimple, tree, void *),
|
5206 |
|
|
bool (*visit_store)(gimple, tree, void *),
|
5207 |
|
|
bool (*visit_addr)(gimple, tree, void *))
|
5208 |
|
|
{
|
5209 |
|
|
bool ret = false;
|
5210 |
|
|
unsigned i;
|
5211 |
|
|
if (gimple_assign_single_p (stmt))
|
5212 |
|
|
{
|
5213 |
|
|
tree lhs, rhs;
|
5214 |
|
|
if (visit_store)
|
5215 |
|
|
{
|
5216 |
|
|
lhs = get_base_loadstore (gimple_assign_lhs (stmt));
|
5217 |
|
|
if (lhs)
|
5218 |
|
|
ret |= visit_store (stmt, lhs, data);
|
5219 |
|
|
}
|
5220 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
5221 |
|
|
while (handled_component_p (rhs))
|
5222 |
|
|
rhs = TREE_OPERAND (rhs, 0);
|
5223 |
|
|
if (visit_addr)
|
5224 |
|
|
{
|
5225 |
|
|
if (TREE_CODE (rhs) == ADDR_EXPR)
|
5226 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
|
5227 |
|
|
else if (TREE_CODE (rhs) == TARGET_MEM_REF
|
5228 |
|
|
&& TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
|
5229 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
|
5230 |
|
|
else if (TREE_CODE (rhs) == OBJ_TYPE_REF
|
5231 |
|
|
&& TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
|
5232 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
|
5233 |
|
|
0), data);
|
5234 |
|
|
else if (TREE_CODE (rhs) == CONSTRUCTOR)
|
5235 |
|
|
{
|
5236 |
|
|
unsigned int ix;
|
5237 |
|
|
tree val;
|
5238 |
|
|
|
5239 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), ix, val)
|
5240 |
|
|
if (TREE_CODE (val) == ADDR_EXPR)
|
5241 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (val, 0), data);
|
5242 |
|
|
else if (TREE_CODE (val) == OBJ_TYPE_REF
|
5243 |
|
|
&& TREE_CODE (OBJ_TYPE_REF_OBJECT (val)) == ADDR_EXPR)
|
5244 |
|
|
ret |= visit_addr (stmt,
|
5245 |
|
|
TREE_OPERAND (OBJ_TYPE_REF_OBJECT (val),
|
5246 |
|
|
0), data);
|
5247 |
|
|
}
|
5248 |
|
|
lhs = gimple_assign_lhs (stmt);
|
5249 |
|
|
if (TREE_CODE (lhs) == TARGET_MEM_REF
|
5250 |
|
|
&& TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
|
5251 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
|
5252 |
|
|
}
|
5253 |
|
|
if (visit_load)
|
5254 |
|
|
{
|
5255 |
|
|
rhs = get_base_loadstore (rhs);
|
5256 |
|
|
if (rhs)
|
5257 |
|
|
ret |= visit_load (stmt, rhs, data);
|
5258 |
|
|
}
|
5259 |
|
|
}
|
5260 |
|
|
else if (visit_addr
|
5261 |
|
|
&& (is_gimple_assign (stmt)
|
5262 |
|
|
|| gimple_code (stmt) == GIMPLE_COND))
|
5263 |
|
|
{
|
5264 |
|
|
for (i = 0; i < gimple_num_ops (stmt); ++i)
|
5265 |
|
|
{
|
5266 |
|
|
tree op = gimple_op (stmt, i);
|
5267 |
|
|
if (op == NULL_TREE)
|
5268 |
|
|
;
|
5269 |
|
|
else if (TREE_CODE (op) == ADDR_EXPR)
|
5270 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
|
5271 |
|
|
/* COND_EXPR and VCOND_EXPR rhs1 argument is a comparison
|
5272 |
|
|
tree with two operands. */
|
5273 |
|
|
else if (i == 1 && COMPARISON_CLASS_P (op))
|
5274 |
|
|
{
|
5275 |
|
|
if (TREE_CODE (TREE_OPERAND (op, 0)) == ADDR_EXPR)
|
5276 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 0),
|
5277 |
|
|
0), data);
|
5278 |
|
|
if (TREE_CODE (TREE_OPERAND (op, 1)) == ADDR_EXPR)
|
5279 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 1),
|
5280 |
|
|
0), data);
|
5281 |
|
|
}
|
5282 |
|
|
}
|
5283 |
|
|
}
|
5284 |
|
|
else if (is_gimple_call (stmt))
|
5285 |
|
|
{
|
5286 |
|
|
if (visit_store)
|
5287 |
|
|
{
|
5288 |
|
|
tree lhs = gimple_call_lhs (stmt);
|
5289 |
|
|
if (lhs)
|
5290 |
|
|
{
|
5291 |
|
|
lhs = get_base_loadstore (lhs);
|
5292 |
|
|
if (lhs)
|
5293 |
|
|
ret |= visit_store (stmt, lhs, data);
|
5294 |
|
|
}
|
5295 |
|
|
}
|
5296 |
|
|
if (visit_load || visit_addr)
|
5297 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
5298 |
|
|
{
|
5299 |
|
|
tree rhs = gimple_call_arg (stmt, i);
|
5300 |
|
|
if (visit_addr
|
5301 |
|
|
&& TREE_CODE (rhs) == ADDR_EXPR)
|
5302 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
|
5303 |
|
|
else if (visit_load)
|
5304 |
|
|
{
|
5305 |
|
|
rhs = get_base_loadstore (rhs);
|
5306 |
|
|
if (rhs)
|
5307 |
|
|
ret |= visit_load (stmt, rhs, data);
|
5308 |
|
|
}
|
5309 |
|
|
}
|
5310 |
|
|
if (visit_addr
|
5311 |
|
|
&& gimple_call_chain (stmt)
|
5312 |
|
|
&& TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
|
5313 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
|
5314 |
|
|
data);
|
5315 |
|
|
if (visit_addr
|
5316 |
|
|
&& gimple_call_return_slot_opt_p (stmt)
|
5317 |
|
|
&& gimple_call_lhs (stmt) != NULL_TREE
|
5318 |
|
|
&& TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
|
5319 |
|
|
ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
|
5320 |
|
|
}
|
5321 |
|
|
else if (gimple_code (stmt) == GIMPLE_ASM)
|
5322 |
|
|
{
|
5323 |
|
|
unsigned noutputs;
|
5324 |
|
|
const char *constraint;
|
5325 |
|
|
const char **oconstraints;
|
5326 |
|
|
bool allows_mem, allows_reg, is_inout;
|
5327 |
|
|
noutputs = gimple_asm_noutputs (stmt);
|
5328 |
|
|
oconstraints = XALLOCAVEC (const char *, noutputs);
|
5329 |
|
|
if (visit_store || visit_addr)
|
5330 |
|
|
for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
|
5331 |
|
|
{
|
5332 |
|
|
tree link = gimple_asm_output_op (stmt, i);
|
5333 |
|
|
tree op = get_base_loadstore (TREE_VALUE (link));
|
5334 |
|
|
if (op && visit_store)
|
5335 |
|
|
ret |= visit_store (stmt, op, data);
|
5336 |
|
|
if (visit_addr)
|
5337 |
|
|
{
|
5338 |
|
|
constraint = TREE_STRING_POINTER
|
5339 |
|
|
(TREE_VALUE (TREE_PURPOSE (link)));
|
5340 |
|
|
oconstraints[i] = constraint;
|
5341 |
|
|
parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
|
5342 |
|
|
&allows_reg, &is_inout);
|
5343 |
|
|
if (op && !allows_reg && allows_mem)
|
5344 |
|
|
ret |= visit_addr (stmt, op, data);
|
5345 |
|
|
}
|
5346 |
|
|
}
|
5347 |
|
|
if (visit_load || visit_addr)
|
5348 |
|
|
for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
|
5349 |
|
|
{
|
5350 |
|
|
tree link = gimple_asm_input_op (stmt, i);
|
5351 |
|
|
tree op = TREE_VALUE (link);
|
5352 |
|
|
if (visit_addr
|
5353 |
|
|
&& TREE_CODE (op) == ADDR_EXPR)
|
5354 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
|
5355 |
|
|
else if (visit_load || visit_addr)
|
5356 |
|
|
{
|
5357 |
|
|
op = get_base_loadstore (op);
|
5358 |
|
|
if (op)
|
5359 |
|
|
{
|
5360 |
|
|
if (visit_load)
|
5361 |
|
|
ret |= visit_load (stmt, op, data);
|
5362 |
|
|
if (visit_addr)
|
5363 |
|
|
{
|
5364 |
|
|
constraint = TREE_STRING_POINTER
|
5365 |
|
|
(TREE_VALUE (TREE_PURPOSE (link)));
|
5366 |
|
|
parse_input_constraint (&constraint, 0, 0, noutputs,
|
5367 |
|
|
0, oconstraints,
|
5368 |
|
|
&allows_mem, &allows_reg);
|
5369 |
|
|
if (!allows_reg && allows_mem)
|
5370 |
|
|
ret |= visit_addr (stmt, op, data);
|
5371 |
|
|
}
|
5372 |
|
|
}
|
5373 |
|
|
}
|
5374 |
|
|
}
|
5375 |
|
|
}
|
5376 |
|
|
else if (gimple_code (stmt) == GIMPLE_RETURN)
|
5377 |
|
|
{
|
5378 |
|
|
tree op = gimple_return_retval (stmt);
|
5379 |
|
|
if (op)
|
5380 |
|
|
{
|
5381 |
|
|
if (visit_addr
|
5382 |
|
|
&& TREE_CODE (op) == ADDR_EXPR)
|
5383 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
|
5384 |
|
|
else if (visit_load)
|
5385 |
|
|
{
|
5386 |
|
|
op = get_base_loadstore (op);
|
5387 |
|
|
if (op)
|
5388 |
|
|
ret |= visit_load (stmt, op, data);
|
5389 |
|
|
}
|
5390 |
|
|
}
|
5391 |
|
|
}
|
5392 |
|
|
else if (visit_addr
|
5393 |
|
|
&& gimple_code (stmt) == GIMPLE_PHI)
|
5394 |
|
|
{
|
5395 |
|
|
for (i = 0; i < gimple_phi_num_args (stmt); ++i)
|
5396 |
|
|
{
|
5397 |
|
|
tree op = PHI_ARG_DEF (stmt, i);
|
5398 |
|
|
if (TREE_CODE (op) == ADDR_EXPR)
|
5399 |
|
|
ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
|
5400 |
|
|
}
|
5401 |
|
|
}
|
5402 |
|
|
|
5403 |
|
|
return ret;
|
5404 |
|
|
}
|
5405 |
|
|
|
5406 |
|
|
/* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
|
5407 |
|
|
should make a faster clone for this case. */
|
5408 |
|
|
|
5409 |
|
|
bool
|
5410 |
|
|
walk_stmt_load_store_ops (gimple stmt, void *data,
|
5411 |
|
|
bool (*visit_load)(gimple, tree, void *),
|
5412 |
|
|
bool (*visit_store)(gimple, tree, void *))
|
5413 |
|
|
{
|
5414 |
|
|
return walk_stmt_load_store_addr_ops (stmt, data,
|
5415 |
|
|
visit_load, visit_store, NULL);
|
5416 |
|
|
}
|
5417 |
|
|
|
5418 |
|
|
/* Helper for gimple_ior_addresses_taken_1. */
|
5419 |
|
|
|
5420 |
|
|
static bool
|
5421 |
|
|
gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
|
5422 |
|
|
tree addr, void *data)
|
5423 |
|
|
{
|
5424 |
|
|
bitmap addresses_taken = (bitmap)data;
|
5425 |
|
|
addr = get_base_address (addr);
|
5426 |
|
|
if (addr
|
5427 |
|
|
&& DECL_P (addr))
|
5428 |
|
|
{
|
5429 |
|
|
bitmap_set_bit (addresses_taken, DECL_UID (addr));
|
5430 |
|
|
return true;
|
5431 |
|
|
}
|
5432 |
|
|
return false;
|
5433 |
|
|
}
|
5434 |
|
|
|
5435 |
|
|
/* Set the bit for the uid of all decls that have their address taken
|
5436 |
|
|
in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
|
5437 |
|
|
were any in this stmt. */
|
5438 |
|
|
|
5439 |
|
|
bool
|
5440 |
|
|
gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
|
5441 |
|
|
{
|
5442 |
|
|
return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
|
5443 |
|
|
gimple_ior_addresses_taken_1);
|
5444 |
|
|
}
|
5445 |
|
|
|
5446 |
|
|
|
5447 |
|
|
/* Return a printable name for symbol DECL. */
|
5448 |
|
|
|
5449 |
|
|
const char *
|
5450 |
|
|
gimple_decl_printable_name (tree decl, int verbosity)
|
5451 |
|
|
{
|
5452 |
|
|
if (!DECL_NAME (decl))
|
5453 |
|
|
return NULL;
|
5454 |
|
|
|
5455 |
|
|
if (DECL_ASSEMBLER_NAME_SET_P (decl))
|
5456 |
|
|
{
|
5457 |
|
|
const char *str, *mangled_str;
|
5458 |
|
|
int dmgl_opts = DMGL_NO_OPTS;
|
5459 |
|
|
|
5460 |
|
|
if (verbosity >= 2)
|
5461 |
|
|
{
|
5462 |
|
|
dmgl_opts = DMGL_VERBOSE
|
5463 |
|
|
| DMGL_ANSI
|
5464 |
|
|
| DMGL_GNU_V3
|
5465 |
|
|
| DMGL_RET_POSTFIX;
|
5466 |
|
|
if (TREE_CODE (decl) == FUNCTION_DECL)
|
5467 |
|
|
dmgl_opts |= DMGL_PARAMS;
|
5468 |
|
|
}
|
5469 |
|
|
|
5470 |
|
|
mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
|
5471 |
|
|
str = cplus_demangle_v3 (mangled_str, dmgl_opts);
|
5472 |
|
|
return (str) ? str : mangled_str;
|
5473 |
|
|
}
|
5474 |
|
|
|
5475 |
|
|
return IDENTIFIER_POINTER (DECL_NAME (decl));
|
5476 |
|
|
}
|
5477 |
|
|
|
5478 |
|
|
/* Return true when STMT is builtins call to CODE. */
|
5479 |
|
|
|
5480 |
|
|
bool
|
5481 |
|
|
gimple_call_builtin_p (gimple stmt, enum built_in_function code)
|
5482 |
|
|
{
|
5483 |
|
|
tree fndecl;
|
5484 |
|
|
return (is_gimple_call (stmt)
|
5485 |
|
|
&& (fndecl = gimple_call_fndecl (stmt)) != NULL
|
5486 |
|
|
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
5487 |
|
|
&& DECL_FUNCTION_CODE (fndecl) == code);
|
5488 |
|
|
}
|
5489 |
|
|
|
5490 |
|
|
/* Return true if STMT clobbers memory. STMT is required to be a
|
5491 |
|
|
GIMPLE_ASM. */
|
5492 |
|
|
|
5493 |
|
|
bool
|
5494 |
|
|
gimple_asm_clobbers_memory_p (const_gimple stmt)
|
5495 |
|
|
{
|
5496 |
|
|
unsigned i;
|
5497 |
|
|
|
5498 |
|
|
for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
|
5499 |
|
|
{
|
5500 |
|
|
tree op = gimple_asm_clobber_op (stmt, i);
|
5501 |
|
|
if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
|
5502 |
|
|
return true;
|
5503 |
|
|
}
|
5504 |
|
|
|
5505 |
|
|
return false;
|
5506 |
|
|
}
|
5507 |
|
|
#include "gt-gimple.h"
|