OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [graphite-dependences.c] - Blame information for rev 833

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* Data dependence analysis for Graphite.
2
   Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3
   Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4
   Konrad Trifunovic <konrad.trifunovic@inria.fr>.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify
9
it under the terms of the GNU General Public License as published by
10
the Free Software Foundation; either version 3, or (at your option)
11
any later version.
12
 
13
GCC is distributed in the hope that it will be useful,
14
but WITHOUT ANY WARRANTY; without even the implied warranty of
15
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
GNU General Public License for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
#include "config.h"
23
#include "system.h"
24
#include "coretypes.h"
25
#include "tree-flow.h"
26
#include "tree-dump.h"
27
#include "cfgloop.h"
28
#include "tree-chrec.h"
29
#include "tree-data-ref.h"
30
#include "tree-scalar-evolution.h"
31
#include "sese.h"
32
 
33
#ifdef HAVE_cloog
34
#include "ppl_c.h"
35
#include "graphite-ppl.h"
36
#include "graphite-poly.h"
37
#include "graphite-dependences.h"
38
#include "graphite-cloog-util.h"
39
 
40
/* Comparison function for poly_ddr hash table.  */
41
 
42
int
43
eq_poly_ddr_p (const void *pddr1, const void *pddr2)
44
{
45
  const struct poly_ddr *p1 = (const struct poly_ddr *) pddr1;
46
  const struct poly_ddr *p2 = (const struct poly_ddr *) pddr2;
47
 
48
  return (PDDR_SOURCE (p1) == PDDR_SOURCE (p2)
49
          && PDDR_SINK (p1) == PDDR_SINK (p2));
50
}
51
 
52
/* Hash function for poly_ddr hashtable.  */
53
 
54
hashval_t
55
hash_poly_ddr_p (const void *pddr)
56
{
57
  const struct poly_ddr *p = (const struct poly_ddr *) pddr;
58
 
59
  return (hashval_t) ((long) PDDR_SOURCE (p) + (long) PDDR_SINK (p));
60
}
61
 
62
/* Returns true when PDDR has no dependence.  */
63
 
64
static bool
65
pddr_is_empty (poly_ddr_p pddr)
66
{
67
  if (!pddr)
68
    return true;
69
 
70
  gcc_assert (PDDR_KIND (pddr) != unknown_dependence);
71
 
72
  return PDDR_KIND (pddr) == no_dependence ? true : false;
73
}
74
 
75
/* Prints to FILE the layout of the dependence polyhedron of PDDR:
76
 
77
   T1|I1|T2|I2|S1|S2|G
78
 
79
   with
80
   | T1 and T2 the scattering dimensions for PDDR_SOURCE and PDDR_SINK
81
   | I1 and I2 the iteration domains
82
   | S1 and S2 the subscripts
83
   | G the global parameters.  */
84
 
85
static void
86
print_dependence_polyhedron_layout (FILE *file, poly_ddr_p pddr)
87
{
88
  poly_dr_p pdr1 = PDDR_SOURCE (pddr);
89
  poly_dr_p pdr2 = PDDR_SINK (pddr);
90
  poly_bb_p pbb1 = PDR_PBB (pdr1);
91
  poly_bb_p pbb2 = PDR_PBB (pdr2);
92
 
93
  graphite_dim_t i;
94
  graphite_dim_t tdim1 = PDDR_ORIGINAL_SCATTERING_P (pddr) ?
95
    pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
96
  graphite_dim_t tdim2 = PDDR_ORIGINAL_SCATTERING_P (pddr) ?
97
    pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
98
  graphite_dim_t idim1 = pbb_dim_iter_domain (pbb1);
99
  graphite_dim_t idim2 = pbb_dim_iter_domain (pbb2);
100
  graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
101
  graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
102
  graphite_dim_t gdim = scop_nb_params (PBB_SCOP (pbb1));
103
 
104
  fprintf (file, "#  eq");
105
 
106
  for (i = 0; i < tdim1; i++)
107
    fprintf (file, "   t1_%d", (int) i);
108
  for (i = 0; i < idim1; i++)
109
    fprintf (file, "   i1_%d", (int) i);
110
  for (i = 0; i < tdim2; i++)
111
    fprintf (file, "   t2_%d", (int) i);
112
  for (i = 0; i < idim2; i++)
113
    fprintf (file, "   i2_%d", (int) i);
114
  for (i = 0; i < sdim1; i++)
115
    fprintf (file, "   s1_%d", (int) i);
116
  for (i = 0; i < sdim2; i++)
117
    fprintf (file, "   s2_%d", (int) i);
118
  for (i = 0; i < gdim; i++)
119
    fprintf (file, "    g_%d", (int) i);
120
 
121
  fprintf (file, "    cst\n");
122
}
123
 
124
/* Prints to FILE the poly_ddr_p PDDR.  */
125
 
126
void
127
print_pddr (FILE *file, poly_ddr_p pddr)
128
{
129
  fprintf (file, "pddr (kind: ");
130
 
131
  if (PDDR_KIND (pddr) == unknown_dependence)
132
    fprintf (file, "unknown_dependence");
133
  else if (PDDR_KIND (pddr) == no_dependence)
134
    fprintf (file, "no_dependence");
135
  else if (PDDR_KIND (pddr) == has_dependence)
136
    fprintf (file, "has_dependence");
137
 
138
  fprintf (file, "\n  source ");
139
  print_pdr (file, PDDR_SOURCE (pddr), 2);
140
 
141
  fprintf (file, "\n  sink ");
142
  print_pdr (file, PDDR_SINK (pddr), 2);
143
 
144
  if (PDDR_KIND (pddr) == has_dependence)
145
    {
146
      fprintf (file, "\n  dependence polyhedron (\n");
147
      print_dependence_polyhedron_layout (file, pddr);
148
      ppl_print_powerset_matrix (file, PDDR_DDP (pddr));
149
      ppl_io_fprint_Pointset_Powerset_C_Polyhedron (file, PDDR_DDP (pddr));
150
      fprintf (file, ")\n");
151
    }
152
 
153
  fprintf (file, ")\n");
154
}
155
 
156
/* Prints to STDERR the poly_ddr_p PDDR.  */
157
 
158
DEBUG_FUNCTION void
159
debug_pddr (poly_ddr_p pddr)
160
{
161
  print_pddr (stderr, pddr);
162
}
163
 
164
 
165
/* Remove all the dimensions except alias information at dimension
166
   ALIAS_DIM.  */
167
 
168
static void
169
build_alias_set_powerset (ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset,
170
                          ppl_dimension_type alias_dim)
171
{
172
  ppl_dimension_type *ds;
173
  ppl_dimension_type access_dim;
174
  unsigned i, pos;
175
 
176
  ppl_Pointset_Powerset_C_Polyhedron_space_dimension (alias_powerset,
177
                                                      &access_dim);
178
  ds = XNEWVEC (ppl_dimension_type, access_dim - 1);
179
  gcc_assert (alias_dim < access_dim);
180
 
181
  for (pos = 0, i = 0; i < access_dim; i++)
182
    if (i != alias_dim)
183
      ds[pos++] = i;
184
 
185
  ppl_Pointset_Powerset_C_Polyhedron_remove_space_dimensions (alias_powerset,
186
                                                              ds,
187
                                                              access_dim - 1);
188
  free (ds);
189
}
190
 
191
/* Return true when PDR1 and PDR2 may alias.  */
192
 
193
static bool
194
poly_drs_may_alias_p (poly_dr_p pdr1, poly_dr_p pdr2)
195
{
196
  ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset1, alias_powerset2;
197
  ppl_Pointset_Powerset_C_Polyhedron_t accesses1 = PDR_ACCESSES (pdr1);
198
  ppl_Pointset_Powerset_C_Polyhedron_t accesses2 = PDR_ACCESSES (pdr2);
199
  ppl_dimension_type alias_dim1 = pdr_alias_set_dim (pdr1);
200
  ppl_dimension_type alias_dim2 = pdr_alias_set_dim (pdr2);
201
  int empty_p;
202
 
203
  ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
204
    (&alias_powerset1, accesses1);
205
  ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
206
    (&alias_powerset2, accesses2);
207
 
208
  build_alias_set_powerset (alias_powerset1, alias_dim1);
209
  build_alias_set_powerset (alias_powerset2, alias_dim2);
210
 
211
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
212
    (alias_powerset1, alias_powerset2);
213
 
214
  empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (alias_powerset1);
215
 
216
  ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset1);
217
  ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset2);
218
 
219
  return !empty_p;
220
}
221
 
222
/* Swap [cut0, ..., cut1] to the end of DR: "a CUT0 b CUT1 c" is
223
   transformed into "a CUT0 c CUT1' b"
224
 
225
   Add NB0 zeros before "a":  "00...0 a CUT0 c CUT1' b"
226
   Add NB1 zeros between "a" and "c":  "00...0 a 00...0 c CUT1' b"
227
   Add DIM - NB0 - NB1 - PDIM zeros between "c" and "b":
228
   "00...0 a 00...0 c 00...0 b".  */
229
 
230
static ppl_Pointset_Powerset_C_Polyhedron_t
231
map_dr_into_dep_poly (graphite_dim_t dim,
232
                      ppl_Pointset_Powerset_C_Polyhedron_t dr,
233
                      graphite_dim_t cut0, graphite_dim_t cut1,
234
                      graphite_dim_t nb0, graphite_dim_t nb1)
235
{
236
  ppl_dimension_type pdim;
237
  ppl_dimension_type *map;
238
  ppl_Pointset_Powerset_C_Polyhedron_t res;
239
  ppl_dimension_type i;
240
 
241
  ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
242
    (&res, dr);
243
  ppl_Pointset_Powerset_C_Polyhedron_space_dimension (res, &pdim);
244
 
245
  map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, pdim);
246
 
247
  /* First mapping: move 'g' vector to right position.  */
248
  for (i = 0; i < cut0; i++)
249
    map[i] = i;
250
 
251
  for (i = cut0; i < cut1; i++)
252
    map[i] = pdim - cut1 + i;
253
 
254
  for (i = cut1; i < pdim; i++)
255
    map[i] = cut0 + i - cut1;
256
 
257
  ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (res, map, pdim);
258
  free (map);
259
 
260
  /* After swapping 's' and 'g' vectors, we have to update a new cut.  */
261
  cut1 = pdim - cut1 + cut0;
262
 
263
  ppl_insert_dimensions_pointset (res, 0, nb0);
264
  ppl_insert_dimensions_pointset (res, nb0 + cut0, nb1);
265
  ppl_insert_dimensions_pointset (res, nb0 + nb1 + cut1,
266
                                  dim - nb0 - nb1 - pdim);
267
 
268
  return res;
269
}
270
 
271
/* Builds subscript equality constraints.  */
272
 
273
static ppl_Pointset_Powerset_C_Polyhedron_t
274
dr_equality_constraints (graphite_dim_t dim,
275
                         graphite_dim_t pos, graphite_dim_t nb_subscripts)
276
{
277
  ppl_Polyhedron_t eqs;
278
  ppl_Pointset_Powerset_C_Polyhedron_t res;
279
  graphite_dim_t i;
280
 
281
  ppl_new_C_Polyhedron_from_space_dimension (&eqs, dim, 0);
282
 
283
  for (i = 0; i < nb_subscripts; i++)
284
    {
285
      ppl_Constraint_t cstr
286
        = ppl_build_relation (dim, pos + i, pos + i + nb_subscripts,
287
                              0, PPL_CONSTRAINT_TYPE_EQUAL);
288
      ppl_Polyhedron_add_constraint (eqs, cstr);
289
      ppl_delete_Constraint (cstr);
290
    }
291
 
292
  ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, eqs);
293
  ppl_delete_Polyhedron (eqs);
294
  return res;
295
}
296
 
297
/* Builds scheduling inequality constraints: when DIRECTION is
298
   1 builds a GE constraint,
299
 
300
   -1 builds a LE constraint.
301
   DIM is the dimension of the scheduling space.
302
   POS and POS + OFFSET are the dimensions that are related.  */
303
 
304
static ppl_Pointset_Powerset_C_Polyhedron_t
305
build_pairwise_scheduling (graphite_dim_t dim,
306
                           graphite_dim_t pos,
307
                           graphite_dim_t offset,
308
                           int direction)
309
{
310
  ppl_Pointset_Powerset_C_Polyhedron_t res;
311
  ppl_Polyhedron_t equalities;
312
  ppl_Constraint_t cstr;
313
  graphite_dim_t a = pos;
314
  graphite_dim_t b = pos + offset;
315
 
316
  ppl_new_C_Polyhedron_from_space_dimension (&equalities, dim, 0);
317
 
318
  switch (direction)
319
    {
320
    case 1:
321
      /* Builds "a + 1 <= b.  */
322
      cstr = ppl_build_relation (dim, a, b, 1,
323
                                 PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
324
      break;
325
 
326
    case 0:
327
      /* Builds "a = b.  */
328
      cstr = ppl_build_relation (dim, a, b, 0,
329
                                 PPL_CONSTRAINT_TYPE_EQUAL);
330
      break;
331
 
332
    case -1:
333
      /* Builds "a >= b + 1.  */
334
      cstr = ppl_build_relation (dim, a, b, -1,
335
                                 PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
336
      break;
337
 
338
    default:
339
      gcc_unreachable ();
340
    }
341
 
342
  ppl_Polyhedron_add_constraint (equalities, cstr);
343
  ppl_delete_Constraint (cstr);
344
 
345
  ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, equalities);
346
  ppl_delete_Polyhedron (equalities);
347
  return res;
348
}
349
 
350
/* Add to a non empty polyhedron BAG the precedence constraints for
351
   the lexicographical comparison of time vectors in BAG following the
352
   lexicographical order.  DIM is the dimension of the polyhedron BAG.
353
   TDIM is the number of loops common to the two statements that are
354
   compared lexicographically, i.e. the number of loops containing
355
   both statements.  OFFSET is the number of dimensions needed to
356
   represent the first statement, i.e. dimT1 + dimI1 in the layout of
357
   the BAG polyhedron: T1|I1|T2|I2|S1|S2|G.  When DIRECTION is set to
358
   1, compute the direct dependence from PDR1 to PDR2, and when
359
   DIRECTION is -1, compute the reversed dependence relation, from
360
   PDR2 to PDR1.  */
361
 
362
static ppl_Pointset_Powerset_C_Polyhedron_t
363
build_lexicographical_constraint (ppl_Pointset_Powerset_C_Polyhedron_t bag,
364
                                  graphite_dim_t dim,
365
                                  graphite_dim_t tdim,
366
                                  graphite_dim_t offset,
367
                                  int direction)
368
{
369
  graphite_dim_t i;
370
  ppl_Pointset_Powerset_C_Polyhedron_t res, lex;
371
 
372
  ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 1);
373
 
374
  lex = build_pairwise_scheduling (dim, 0, offset, direction);
375
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (lex, bag);
376
 
377
  if (!ppl_powerset_is_empty (lex))
378
    ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (res, lex);
379
 
380
  ppl_delete_Pointset_Powerset_C_Polyhedron (lex);
381
 
382
  for (i = 0; i < tdim - 1; i++)
383
    {
384
      ppl_Pointset_Powerset_C_Polyhedron_t sceq;
385
 
386
      sceq = build_pairwise_scheduling (dim, i, offset, 0);
387
      ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (bag, sceq);
388
      ppl_delete_Pointset_Powerset_C_Polyhedron (sceq);
389
 
390
      if (ppl_powerset_is_empty (bag))
391
        break;
392
 
393
      lex = build_pairwise_scheduling (dim, i + 1, offset, direction);
394
      ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (lex, bag);
395
 
396
      if (!ppl_powerset_is_empty (lex))
397
        ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (res, lex);
398
 
399
      ppl_delete_Pointset_Powerset_C_Polyhedron (lex);
400
    }
401
 
402
  return res;
403
}
404
 
405
/* Build the dependence polyhedron for data references PDR1 and PDR2.
406
   The layout of the dependence polyhedron is:
407
 
408
   T1|I1|T2|I2|S1|S2|G
409
 
410
   with
411
   | T1 and T2 the scattering dimensions for PDR1 and PDR2
412
   | I1 and I2 the iteration domains
413
   | S1 and S2 the subscripts
414
   | G the global parameters.
415
 
416
   When DIRECTION is set to 1, compute the direct dependence from PDR1
417
   to PDR2, and when DIRECTION is -1, compute the reversed dependence
418
   relation, from PDR2 to PDR1.  */
419
 
420
static ppl_Pointset_Powerset_C_Polyhedron_t
421
dependence_polyhedron (poly_dr_p pdr1, poly_dr_p pdr2,
422
                       int direction, bool original_scattering_p)
423
{
424
  poly_bb_p pbb1 = PDR_PBB (pdr1);
425
  poly_bb_p pbb2 = PDR_PBB (pdr2);
426
  scop_p scop = PBB_SCOP (pbb1);
427
  graphite_dim_t tdim1 = original_scattering_p ?
428
    pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
429
  graphite_dim_t tdim2 = original_scattering_p ?
430
    pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
431
  graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1);
432
  graphite_dim_t ddim2 = pbb_dim_iter_domain (pbb2);
433
  graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
434
  graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
435
  graphite_dim_t gdim = scop_nb_params (scop);
436
  graphite_dim_t dim1 = pdr_dim (pdr1);
437
  graphite_dim_t dim2 = pdr_dim (pdr2);
438
  graphite_dim_t dim = tdim1 + tdim2 + dim1 + dim2 - gdim;
439
  ppl_Pointset_Powerset_C_Polyhedron_t res;
440
  ppl_Pointset_Powerset_C_Polyhedron_t idr1, idr2;
441
  ppl_Pointset_Powerset_C_Polyhedron_t sc1, sc2, dreq;
442
  ppl_Pointset_Powerset_C_Polyhedron_t lex;
443
 
444
  gcc_assert (PBB_SCOP (pbb1) == PBB_SCOP (pbb2));
445
 
446
  combine_context_id_scat (&sc1, pbb1, original_scattering_p);
447
  combine_context_id_scat (&sc2, pbb2, original_scattering_p);
448
 
449
  ppl_insert_dimensions_pointset (sc1, tdim1 + ddim1,
450
                                  tdim2 + ddim2 + sdim1 + sdim2);
451
 
452
  ppl_insert_dimensions_pointset (sc2, 0, tdim1 + ddim1);
453
  ppl_insert_dimensions_pointset (sc2, tdim1 + ddim1 + tdim2 + ddim2,
454
                                  sdim1 + sdim2);
455
 
456
  idr1 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr1), ddim1, ddim1 + gdim,
457
                               tdim1, tdim2 + ddim2);
458
  idr2 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr2), ddim2, ddim2 + gdim,
459
                               tdim1 + ddim1 + tdim2, sdim1);
460
 
461
  /* Now add the subscript equalities.  */
462
  dreq = dr_equality_constraints (dim, tdim1 + ddim1 + tdim2 + ddim2, sdim1);
463
 
464
  ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 0);
465
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, sc1);
466
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, sc2);
467
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr1);
468
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr2);
469
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, dreq);
470
  ppl_delete_Pointset_Powerset_C_Polyhedron (sc1);
471
  ppl_delete_Pointset_Powerset_C_Polyhedron (sc2);
472
  ppl_delete_Pointset_Powerset_C_Polyhedron (idr1);
473
  ppl_delete_Pointset_Powerset_C_Polyhedron (idr2);
474
  ppl_delete_Pointset_Powerset_C_Polyhedron (dreq);
475
 
476
  if (ppl_powerset_is_empty (res))
477
    return NULL;
478
 
479
  lex = build_lexicographical_constraint (res, dim, MIN (tdim1, tdim2),
480
                                          tdim1 + ddim1, direction);
481
  ppl_delete_Pointset_Powerset_C_Polyhedron (res);
482
 
483
  return lex;
484
}
485
 
486
/* Build the dependence polyhedron for data references PDR1 and PDR2.
487
   If possible use already cached information.
488
 
489
   When DIRECTION is set to 1, compute the direct dependence from PDR1
490
   to PDR2, and when DIRECTION is -1, compute the reversed dependence
491
   relation, from PDR2 to PDR1.  */
492
 
493
static poly_ddr_p
494
new_poly_ddr (poly_dr_p pdr1, poly_dr_p pdr2,
495
              int direction, bool original_scattering_p)
496
{
497
  PTR *x = NULL;
498
  poly_ddr_p res;
499
  bool may_alias;
500
 
501
  /* Return the PDDR from the cache if it already has been computed.  */
502
  if (original_scattering_p)
503
    {
504
      struct poly_ddr tmp;
505
      scop_p scop = PBB_SCOP (PDR_PBB (pdr1));
506
 
507
      tmp.source = pdr1;
508
      tmp.sink = pdr2;
509
      x = htab_find_slot (SCOP_ORIGINAL_PDDRS (scop),
510
                          &tmp, INSERT);
511
 
512
      if (x && *x)
513
        return (poly_ddr_p) *x;
514
    }
515
 
516
  res = XNEW (struct poly_ddr);
517
  PDDR_SOURCE (res) = pdr1;
518
  PDDR_SINK (res) = pdr2;
519
  PDDR_DDP (res) = NULL;
520
  PDDR_ORIGINAL_SCATTERING_P (res) = original_scattering_p;
521
  PDDR_KIND (res) = unknown_dependence;
522
 
523
  may_alias = poly_drs_may_alias_p (pdr1, pdr2);
524
 
525
  if (!(pdr_read_p (pdr1) && pdr_read_p (pdr2))
526
      && PDR_BASE_OBJECT_SET (pdr1) != PDR_BASE_OBJECT_SET (pdr2)
527
      && may_alias)
528
    PDDR_KIND (res) = unknown_dependence;
529
 
530
  else if (!(pdr_read_p (pdr1) && pdr_read_p (pdr2))
531
           && same_pdr_p (pdr1, pdr2)
532
           && may_alias)
533
    {
534
      PDDR_DDP (res) = dependence_polyhedron (pdr1, pdr2, direction,
535
                                              original_scattering_p);
536
      if (PDDR_DDP (res))
537
        PDDR_KIND (res) = has_dependence;
538
      else
539
        PDDR_KIND (res) = no_dependence;
540
    }
541
  else
542
    PDDR_KIND (res) = no_dependence;
543
 
544
  if (original_scattering_p)
545
    *x = res;
546
 
547
  return res;
548
}
549
 
550
/* Free the data dependence relation poly_ddr_p P.  */
551
 
552
void
553
free_poly_ddr (void *p)
554
{
555
  poly_ddr_p pddr = (poly_ddr_p) p;
556
  ppl_delete_Pointset_Powerset_C_Polyhedron (PDDR_DDP (pddr));
557
  free (pddr);
558
}
559
 
560
/* Return true when the data dependence relation between the data
561
   references PDR1 belonging to PBB1 and PDR2 is part of a
562
   reduction.  */
563
 
564
static inline bool
565
reduction_dr_1 (poly_bb_p pbb1, poly_dr_p pdr1, poly_dr_p pdr2)
566
{
567
  int i;
568
  poly_dr_p pdr;
569
 
570
  FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), i, pdr)
571
    if (PDR_TYPE (pdr) == PDR_WRITE
572
        && same_pdr_p (pdr, pdr1) && same_pdr_p (pdr, pdr2))
573
      return true;
574
 
575
  return false;
576
}
577
 
578
/* Return true when the data dependence relation between the data
579
   references PDR1 belonging to PBB1 and PDR2 belonging to PBB2 is
580
   part of a reduction.  */
581
 
582
static inline bool
583
reduction_dr_p (poly_dr_p pdr1, poly_dr_p pdr2)
584
{
585
  poly_bb_p pbb1 = PDR_PBB (pdr1);
586
  poly_bb_p pbb2 = PDR_PBB (pdr2);
587
 
588
  if (PBB_IS_REDUCTION (pbb1))
589
    return reduction_dr_1 (pbb1, pdr1, pdr2);
590
 
591
  if (PBB_IS_REDUCTION (pbb2))
592
    return reduction_dr_1 (pbb2, pdr2, pdr1);
593
 
594
  return false;
595
}
596
 
597
/* Returns true when the PBB_TRANSFORMED_SCATTERING functions of PBB1
598
   and PBB2 respect the data dependences of PBB_ORIGINAL_SCATTERING
599
   functions.  */
600
 
601
static bool
602
graphite_legal_transform_dr (poly_dr_p pdr1, poly_dr_p pdr2)
603
{
604
  ppl_Pointset_Powerset_C_Polyhedron_t po, pt;
605
  graphite_dim_t ddim1, otdim1, otdim2, ttdim1, ttdim2;
606
  ppl_Pointset_Powerset_C_Polyhedron_t po_temp;
607
  ppl_dimension_type pdim;
608
  bool is_empty_p;
609
  poly_ddr_p opddr, tpddr;
610
  poly_bb_p pbb1, pbb2;
611
 
612
  if (reduction_dr_p (pdr1, pdr2))
613
    return true;
614
 
615
  /* We build the reverse dependence relation for the transformed
616
     scattering, such that when we intersect it with the original PO,
617
     we get an empty intersection when the transform is legal:
618
     i.e. the transform should reverse no dependences, and so PT, the
619
     reversed transformed PDDR, should have no constraint from PO.  */
620
  opddr = new_poly_ddr (pdr1, pdr2, 1, true);
621
 
622
  if (PDDR_KIND (opddr) == unknown_dependence)
623
    return false;
624
 
625
    /* There are no dependences between PDR1 and PDR2 in the original
626
       version of the program, or after the transform, so the
627
       transform is legal.  */
628
  if (pddr_is_empty (opddr))
629
    return true;
630
 
631
  tpddr = new_poly_ddr (pdr1, pdr2, -1, false);
632
 
633
  if (PDDR_KIND (tpddr) == unknown_dependence)
634
    {
635
      free_poly_ddr (tpddr);
636
      return false;
637
    }
638
 
639
  if (pddr_is_empty (tpddr))
640
    {
641
      free_poly_ddr (tpddr);
642
      return true;
643
    }
644
 
645
  po = PDDR_DDP (opddr);
646
  pt = PDDR_DDP (tpddr);
647
 
648
  /* Copy PO into PO_TEMP, such that PO is not destroyed.  PO is
649
     stored in a cache and should not be modified or freed.  */
650
  ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &pdim);
651
  ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&po_temp,
652
                                                               pdim, 0);
653
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po_temp, po);
654
 
655
  /* Extend PO and PT to have the same dimensions.  */
656
  pbb1 = PDR_PBB (pdr1);
657
  pbb2 = PDR_PBB (pdr2);
658
  ddim1 = pbb_dim_iter_domain (pbb1);
659
  otdim1 = pbb_nb_scattering_orig (pbb1);
660
  otdim2 = pbb_nb_scattering_orig (pbb2);
661
  ttdim1 = pbb_nb_scattering_transform (pbb1);
662
  ttdim2 = pbb_nb_scattering_transform (pbb2);
663
  ppl_insert_dimensions_pointset (po_temp, otdim1, ttdim1);
664
  ppl_insert_dimensions_pointset (po_temp, otdim1 + ttdim1 + ddim1 + otdim2,
665
                                  ttdim2);
666
  ppl_insert_dimensions_pointset (pt, 0, otdim1);
667
  ppl_insert_dimensions_pointset (pt, otdim1 + ttdim1 + ddim1, otdim2);
668
 
669
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po_temp, pt);
670
  is_empty_p = ppl_powerset_is_empty (po_temp);
671
 
672
  ppl_delete_Pointset_Powerset_C_Polyhedron (po_temp);
673
  free_poly_ddr (tpddr);
674
 
675
  if (dump_file && (dump_flags & TDF_DETAILS))
676
    fprintf (dump_file, "\nloop carries dependency.\n");
677
 
678
  return is_empty_p;
679
}
680
 
681
/* Return true when the data dependence relation for PBB1 and PBB2 is
682
   part of a reduction.  */
683
 
684
static inline bool
685
reduction_ddr_p (poly_bb_p pbb1, poly_bb_p pbb2)
686
{
687
  return pbb1 == pbb2 && PBB_IS_REDUCTION (pbb1);
688
}
689
 
690
/* Iterates over the data references of PBB1 and PBB2 and detect
691
   whether the transformed schedule is correct.  */
692
 
693
static bool
694
graphite_legal_transform_bb (poly_bb_p pbb1, poly_bb_p pbb2)
695
{
696
  int i, j;
697
  poly_dr_p pdr1, pdr2;
698
 
699
  if (!PBB_PDR_DUPLICATES_REMOVED (pbb1))
700
    pbb_remove_duplicate_pdrs (pbb1);
701
 
702
  if (!PBB_PDR_DUPLICATES_REMOVED (pbb2))
703
    pbb_remove_duplicate_pdrs (pbb2);
704
 
705
  if (reduction_ddr_p (pbb1, pbb2))
706
    return true;
707
 
708
  FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), i, pdr1)
709
    FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), j, pdr2)
710
      if (!graphite_legal_transform_dr (pdr1, pdr2))
711
        return false;
712
 
713
  return true;
714
}
715
 
716
/* Iterates over the SCOP and detect whether the transformed schedule
717
   is correct.  */
718
 
719
bool
720
graphite_legal_transform (scop_p scop)
721
{
722
  int i, j;
723
  poly_bb_p pbb1, pbb2;
724
 
725
  timevar_push (TV_GRAPHITE_DATA_DEPS);
726
 
727
  FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
728
    FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
729
      if (!graphite_legal_transform_bb (pbb1, pbb2))
730
        {
731
          timevar_pop (TV_GRAPHITE_DATA_DEPS);
732
          return false;
733
        }
734
 
735
  timevar_pop (TV_GRAPHITE_DATA_DEPS);
736
  return true;
737
}
738
 
739
/* Returns TRUE when the dependence polyhedron between PDR1 and
740
   PDR2 represents a loop carried dependence at level LEVEL.  */
741
 
742
static bool
743
graphite_carried_dependence_level_k (poly_dr_p pdr1, poly_dr_p pdr2,
744
                                     int level)
745
{
746
  ppl_Pointset_Powerset_C_Polyhedron_t po;
747
  ppl_Pointset_Powerset_C_Polyhedron_t eqpp;
748
  poly_bb_p pbb = PDR_PBB (pdr1);
749
  graphite_dim_t tdim1 = pbb_nb_scattering_transform (pbb);
750
  graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb);
751
  ppl_dimension_type dim;
752
  bool empty_p;
753
  poly_ddr_p pddr = new_poly_ddr (pdr1, pdr2, 1, false);
754
  graphite_dim_t pos;
755
 
756
  if (PDDR_KIND (pddr) == unknown_dependence)
757
    {
758
      free_poly_ddr (pddr);
759
      return true;
760
    }
761
 
762
  if (pddr_is_empty (pddr))
763
    {
764
      free_poly_ddr (pddr);
765
      return false;
766
    }
767
 
768
  po = PDDR_DDP (pddr);
769
  ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &dim);
770
  pos = psct_dynamic_dim (pbb, level);
771
  eqpp = build_pairwise_scheduling (dim, pos, tdim1 + ddim1, 1);
772
 
773
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (eqpp, po);
774
  empty_p = ppl_powerset_is_empty (eqpp);
775
 
776
  ppl_delete_Pointset_Powerset_C_Polyhedron (eqpp);
777
  free_poly_ddr (pddr);
778
 
779
  return !empty_p;
780
}
781
 
782
/* Check data dependency between PBB1 and PBB2 at level LEVEL.  */
783
 
784
bool
785
dependency_between_pbbs_p (poly_bb_p pbb1, poly_bb_p pbb2, int level)
786
{
787
  int i, j;
788
  poly_dr_p pdr1, pdr2;
789
 
790
  timevar_push (TV_GRAPHITE_DATA_DEPS);
791
 
792
  FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), i, pdr1)
793
    FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), j, pdr2)
794
      if (graphite_carried_dependence_level_k (pdr1, pdr2, level))
795
        {
796
          timevar_pop (TV_GRAPHITE_DATA_DEPS);
797
          return true;
798
        }
799
 
800
  timevar_pop (TV_GRAPHITE_DATA_DEPS);
801
  return false;
802
}
803
 
804
/* When ORIG is true, pretty print to FILE all the original data
805
   dependences of SCoP in DOT format, otherwise print the transformed
806
   data deps.  */
807
 
808
static void
809
dot_deps_stmt_2 (FILE *file, scop_p scop, bool orig)
810
{
811
  int i, j, k, l;
812
  poly_bb_p pbb1, pbb2;
813
  poly_dr_p pdr1, pdr2;
814
 
815
  FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
816
    FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
817
      {
818
        FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), k, pdr1)
819
          FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), l, pdr2)
820
            {
821
              poly_ddr_p pddr = new_poly_ddr (pdr1, pdr2, 1, orig);
822
 
823
              if (!pddr_is_empty (pddr))
824
                {
825
                  fprintf (file, orig ? "OS%d -> OS%d\n" : "TS%d -> TS%d\n",
826
                           pbb_index (pbb1), pbb_index (pbb2));
827
 
828
                  free_poly_ddr (pddr);
829
                  goto done;
830
                }
831
 
832
              free_poly_ddr (pddr);
833
            }
834
      done:;
835
      }
836
}
837
 
838
/* Pretty print to FILE all the data dependences of SCoP in DOT
839
   format.  */
840
 
841
static void
842
dot_deps_stmt_1 (FILE *file, scop_p scop)
843
{
844
  fputs ("digraph all {\n", file);
845
 
846
  dot_deps_stmt_2 (file, scop, true);
847
  dot_deps_stmt_2 (file, scop, false);
848
 
849
  fputs ("}\n\n", file);
850
}
851
 
852
/* When ORIG is true, pretty print to FILE all the original data
853
   dependences of SCoP in DOT format, otherwise print the transformed
854
   data deps.  */
855
 
856
static void
857
dot_deps_2 (FILE *file, scop_p scop, bool orig)
858
{
859
  int i, j, k, l;
860
  poly_bb_p pbb1, pbb2;
861
  poly_dr_p pdr1, pdr2;
862
 
863
  FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
864
    FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
865
      FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), k, pdr1)
866
        FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), l, pdr2)
867
          {
868
            poly_ddr_p pddr = new_poly_ddr (pdr1, pdr2, 1, orig);
869
 
870
            if (!pddr_is_empty (pddr))
871
              fprintf (file, orig
872
                       ? "OS%d_D%d -> OS%d_D%d\n" : "TS%d_D%d -> TS%d_D%d\n",
873
                       pbb_index (pbb1), PDR_ID (pdr1),
874
                       pbb_index (pbb2), PDR_ID (pdr2));
875
 
876
            free_poly_ddr (pddr);
877
          }
878
}
879
 
880
/* Pretty print to FILE all the data dependences of SCoP in DOT
881
   format.  */
882
 
883
static void
884
dot_deps_1 (FILE *file, scop_p scop)
885
{
886
  fputs ("digraph all {\n", file);
887
 
888
  dot_deps_2 (file, scop, true);
889
  dot_deps_2 (file, scop, false);
890
 
891
  fputs ("}\n\n", file);
892
}
893
 
894
/* Display all the data dependences in SCoP using dotty.  */
895
 
896
DEBUG_FUNCTION void
897
dot_deps (scop_p scop)
898
{
899
  /* When debugging, enable the following code.  This cannot be used
900
     in production compilers because it calls "system".  */
901
#if 0
902
  FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
903
  gcc_assert (stream);
904
 
905
  dot_deps_1 (stream, scop);
906
  fclose (stream);
907
 
908
  system ("dotty /tmp/scopdeps.dot &");
909
#else
910
  dot_deps_1 (stderr, scop);
911
#endif
912
}
913
 
914
/* Display all the statement dependences in SCoP using dotty.  */
915
 
916
DEBUG_FUNCTION void
917
dot_deps_stmt (scop_p scop)
918
{
919
  /* When debugging, enable the following code.  This cannot be used
920
     in production compilers because it calls "system".  */
921
#if 0
922
  FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
923
  gcc_assert (stream);
924
 
925
  dot_deps_stmt_1 (stream, scop);
926
  fclose (stream);
927
 
928
  system ("dotty /tmp/scopdeps.dot &");
929
#else
930
  dot_deps_stmt_1 (stderr, scop);
931
#endif
932
}
933
 
934
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.