OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [graphite-flattening.c] - Blame information for rev 695

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* Loop flattening for Graphite.
2
   Copyright (C) 2010 Free Software Foundation, Inc.
3
   Contributed by Sebastian Pop <sebastian.pop@amd.com>.
4
 
5
This file is part of GCC.
6
 
7
GCC is free software; you can redistribute it and/or modify
8
it under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 3, or (at your option)
10
any later version.
11
 
12
GCC is distributed in the hope that it will be useful,
13
but WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
GNU General Public License for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING3.  If not see
19
<http://www.gnu.org/licenses/>.  */
20
 
21
#include "config.h"
22
#include "system.h"
23
#include "coretypes.h"
24
#include "tree-flow.h"
25
#include "tree-dump.h"
26
#include "cfgloop.h"
27
#include "tree-chrec.h"
28
#include "tree-data-ref.h"
29
#include "tree-scalar-evolution.h"
30
#include "sese.h"
31
 
32
#ifdef HAVE_cloog
33
#include "ppl_c.h"
34
#include "graphite-ppl.h"
35
#include "graphite-poly.h"
36
 
37
/* The loop flattening pass transforms loop nests into a single loop,
38
   removing the loop nesting structure.  The auto-vectorization can
39
   then apply on the full loop body, without needing the outer-loop
40
   vectorization.
41
 
42
   The loop flattening pass that has been described in a very Fortran
43
   specific way in the 1992 paper by Reinhard von Hanxleden and Ken
44
   Kennedy: "Relaxing SIMD Control Flow Constraints using Loop
45
   Transformations" available from
46
   http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.5033
47
 
48
   The canonical example is as follows: suppose that we have a loop
49
   nest with known iteration counts
50
 
51
   | for (i = 1; i <= 6; i++)
52
   |   for (j = 1; j <= 6; j++)
53
   |     S1(i,j);
54
 
55
   The loop flattening is performed by linearizing the iteration space
56
   using the function "f (x) = 6 * i + j".  In this case, CLooG would
57
   produce this code:
58
 
59
   | for (c1=7;c1<=42;c1++) {
60
   |   i = floord(c1-1,6);
61
   |   S1(i,c1-6*i);
62
   | }
63
 
64
   There are several limitations for loop flattening that are linked
65
   to the expressivity of the polyhedral model.  One has to take an
66
   upper bound approximation to deal with the parametric case of loop
67
   flattening.  For example, in the loop nest:
68
 
69
   | for (i = 1; i <= N; i++)
70
   |   for (j = 1; j <= M; j++)
71
   |     S1(i,j);
72
 
73
   One would like to flatten this loop using a linearization function
74
   like this "f (x) = M * i + j".  However CLooG's schedules are not
75
   expressive enough to deal with this case, and so the parameter M
76
   has to be replaced by an integer upper bound approximation.  If we
77
   further know in the context of the scop that "M <= 6", then it is
78
   possible to linearize the loop with "f (x) = 6 * i + j".  In this
79
   case, CLooG would produce this code:
80
 
81
   | for (c1=7;c1<=6*M+N;c1++) {
82
   |   i = ceild(c1-N,6);
83
   |   if (i <= floord(c1-1,6)) {
84
   |     S1(i,c1-6*i);
85
   |   }
86
   | }
87
 
88
   For an arbitrarily complex loop nest the algorithm proceeds in two
89
   steps.  First, the LST is flattened by removing the loops structure
90
   and by inserting the statements in the order they appear in
91
   depth-first order.  Then, the scattering of each statement is
92
   transformed accordingly.
93
 
94
   Supposing that the original program is represented by the following
95
   LST:
96
 
97
   | (loop_1
98
   |  stmt_1
99
   |  (loop_2 stmt_3
100
   |   (loop_3 stmt_4)
101
   |   (loop_4 stmt_5 stmt_6)
102
   |   stmt_7
103
   |  )
104
   |  stmt_2
105
   | )
106
 
107
   Loop flattening traverses the LST in depth-first order, and
108
   flattens pairs of loops successively by projecting the inner loops
109
   in the iteration domain of the outer loops:
110
 
111
   lst_project_loop (loop_2, loop_3, stride)
112
 
113
   | (loop_1
114
   |  stmt_1
115
   |  (loop_2 stmt_3 stmt_4
116
   |   (loop_4 stmt_5 stmt_6)
117
   |   stmt_7
118
   |  )
119
   |  stmt_2
120
   | )
121
 
122
   lst_project_loop (loop_2, loop_4, stride)
123
 
124
   | (loop_1
125
   |  stmt_1
126
   |  (loop_2 stmt_3 stmt_4 stmt_5 stmt_6 stmt_7)
127
   |  stmt_2
128
   | )
129
 
130
   lst_project_loop (loop_1, loop_2, stride)
131
 
132
   | (loop_1
133
   |  stmt_1 stmt_3 stmt_4 stmt_5 stmt_6 stmt_7 stmt_2
134
   | )
135
 
136
   At each step, the iteration domain of the outer loop is enlarged to
137
   contain enough points to iterate over the inner loop domain.  */
138
 
139
/* Initializes RES to the number of iterations of the linearized loop
140
   LST.  RES is the cardinal of the iteration domain of LST.  */
141
 
142
static void
143
lst_linearized_niter (lst_p lst, mpz_t res)
144
{
145
  int i;
146
  lst_p l;
147
  mpz_t n;
148
 
149
  mpz_init (n);
150
  mpz_set_si (res, 0);
151
 
152
  FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
153
    if (LST_LOOP_P (l))
154
      {
155
        lst_linearized_niter (l, n);
156
        mpz_add (res, res, n);
157
      }
158
 
159
  if (LST_LOOP_P (lst))
160
    {
161
      lst_niter_for_loop (lst, n);
162
 
163
      if (mpz_cmp_si (res, 0) != 0)
164
        mpz_mul (res, res, n);
165
      else
166
        mpz_set (res, n);
167
    }
168
 
169
  mpz_clear (n);
170
}
171
 
172
/* Applies the translation "f (x) = x + OFFSET" to the loop containing
173
   STMT.  */
174
 
175
static void
176
lst_offset (lst_p stmt, mpz_t offset)
177
{
178
  lst_p inner = LST_LOOP_FATHER (stmt);
179
  poly_bb_p pbb = LST_PBB (stmt);
180
  ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
181
  int inner_depth = lst_depth (inner);
182
  ppl_dimension_type inner_dim = psct_dynamic_dim (pbb, inner_depth);
183
  ppl_Linear_Expression_t expr;
184
  ppl_dimension_type dim;
185
  ppl_Coefficient_t one;
186
  mpz_t x;
187
 
188
  mpz_init (x);
189
  mpz_set_si (x, 1);
190
  ppl_new_Coefficient (&one);
191
  ppl_assign_Coefficient_from_mpz_t (one, x);
192
 
193
  ppl_Polyhedron_space_dimension (poly, &dim);
194
  ppl_new_Linear_Expression_with_dimension (&expr, dim);
195
 
196
  ppl_set_coef (expr, inner_dim, 1);
197
  ppl_set_inhomogeneous_gmp (expr, offset);
198
  ppl_Polyhedron_affine_image (poly, inner_dim, expr, one);
199
  ppl_delete_Linear_Expression (expr);
200
  ppl_delete_Coefficient (one);
201
}
202
 
203
/* Scale by FACTOR the loop LST containing STMT.  */
204
 
205
static void
206
lst_scale (lst_p lst, lst_p stmt, mpz_t factor)
207
{
208
  mpz_t x;
209
  ppl_Coefficient_t one;
210
  int outer_depth = lst_depth (lst);
211
  poly_bb_p pbb = LST_PBB (stmt);
212
  ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
213
  ppl_dimension_type outer_dim = psct_dynamic_dim (pbb, outer_depth);
214
  ppl_Linear_Expression_t expr;
215
  ppl_dimension_type dim;
216
 
217
  mpz_init (x);
218
  mpz_set_si (x, 1);
219
  ppl_new_Coefficient (&one);
220
  ppl_assign_Coefficient_from_mpz_t (one, x);
221
 
222
  ppl_Polyhedron_space_dimension (poly, &dim);
223
  ppl_new_Linear_Expression_with_dimension (&expr, dim);
224
 
225
  /* outer_dim = factor * outer_dim.  */
226
  ppl_set_coef_gmp (expr, outer_dim, factor);
227
  ppl_Polyhedron_affine_image (poly, outer_dim, expr, one);
228
  ppl_delete_Linear_Expression (expr);
229
 
230
  mpz_clear (x);
231
  ppl_delete_Coefficient (one);
232
}
233
 
234
/* Project the INNER loop into the iteration domain of the OUTER loop.
235
   STRIDE is the number of iterations between two iterations of the
236
   outer loop.  */
237
 
238
static void
239
lst_project_loop (lst_p outer, lst_p inner, mpz_t stride)
240
{
241
  int i;
242
  lst_p stmt;
243
  mpz_t x;
244
  ppl_Coefficient_t one;
245
  int outer_depth = lst_depth (outer);
246
  int inner_depth = lst_depth (inner);
247
 
248
  mpz_init (x);
249
  mpz_set_si (x, 1);
250
  ppl_new_Coefficient (&one);
251
  ppl_assign_Coefficient_from_mpz_t (one, x);
252
 
253
  FOR_EACH_VEC_ELT (lst_p, LST_SEQ (inner), i, stmt)
254
    {
255
      poly_bb_p pbb = LST_PBB (stmt);
256
      ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
257
      ppl_dimension_type outer_dim = psct_dynamic_dim (pbb, outer_depth);
258
      ppl_dimension_type inner_dim = psct_dynamic_dim (pbb, inner_depth);
259
      ppl_Linear_Expression_t expr;
260
      ppl_dimension_type dim;
261
      ppl_dimension_type *ds;
262
 
263
      /* There should be no loops under INNER.  */
264
      gcc_assert (!LST_LOOP_P (stmt));
265
      ppl_Polyhedron_space_dimension (poly, &dim);
266
      ppl_new_Linear_Expression_with_dimension (&expr, dim);
267
 
268
      /* outer_dim = outer_dim * stride + inner_dim.  */
269
      ppl_set_coef (expr, inner_dim, 1);
270
      ppl_set_coef_gmp (expr, outer_dim, stride);
271
      ppl_Polyhedron_affine_image (poly, outer_dim, expr, one);
272
      ppl_delete_Linear_Expression (expr);
273
 
274
      /* Project on inner_dim.  */
275
      ppl_new_Linear_Expression_with_dimension (&expr, dim - 1);
276
      ppl_Polyhedron_affine_image (poly, inner_dim, expr, one);
277
      ppl_delete_Linear_Expression (expr);
278
 
279
      /* Remove inner loop and the static schedule of its body.  */
280
      /* FIXME: As long as we use PPL we are not able to remove the old
281
         scattering dimensions.  The reason is that these dimensions are not
282
         entirely unused.  They are not necessary as part of the scheduling
283
         vector, as the earlier dimensions already unambiguously define the
284
         execution time, however they may still be needed to carry modulo
285
         constraints as introduced e.g. by strip mining.  The correct solution
286
         would be to project these dimensions out of the scattering polyhedra.
287
         In case they are still required to carry modulo constraints they should be kept
288
         internally as existentially quantified dimensions.  PPL does only support
289
         projection of rational polyhedra, however in this case we need an integer
290
         projection. With isl this will be trivial to implement.  For now we just
291
         leave the dimensions. This is a little ugly, but should be correct.  */
292
      if (0) {
293
        ds = XNEWVEC (ppl_dimension_type, 2);
294
        ds[0] = inner_dim;
295
        ds[1] = inner_dim + 1;
296
        ppl_Polyhedron_remove_space_dimensions (poly, ds, 2);
297
        PBB_NB_SCATTERING_TRANSFORM (pbb) -= 2;
298
        free (ds);
299
      }
300
    }
301
 
302
  mpz_clear (x);
303
  ppl_delete_Coefficient (one);
304
}
305
 
306
/* Flattens the loop nest LST.  Return true when something changed.
307
   OFFSET is used to compute the number of iterations of the outermost
308
   loop before the current LST is executed.  */
309
 
310
static bool
311
lst_flatten_loop (lst_p lst, mpz_t init_offset)
312
{
313
  int i;
314
  lst_p l;
315
  bool res = false;
316
  mpz_t n, one, offset, stride;
317
 
318
  mpz_init (n);
319
  mpz_init (one);
320
  mpz_init (offset);
321
  mpz_init (stride);
322
  mpz_set (offset, init_offset);
323
  mpz_set_si (one, 1);
324
 
325
  lst_linearized_niter (lst, stride);
326
  lst_niter_for_loop (lst, n);
327
  mpz_tdiv_q (stride, stride, n);
328
 
329
  FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
330
    if (LST_LOOP_P (l))
331
      {
332
        res = true;
333
 
334
        lst_flatten_loop (l, offset);
335
        lst_niter_for_loop (l, n);
336
 
337
        lst_project_loop (lst, l, stride);
338
 
339
        /* The offset is the number of iterations minus 1, as we want
340
           to execute the next statements at the same iteration as the
341
           last iteration of the loop.  */
342
        mpz_sub (n, n, one);
343
        mpz_add (offset, offset, n);
344
      }
345
    else
346
      {
347
        lst_scale (lst, l, stride);
348
        if (mpz_cmp_si (offset, 0) != 0)
349
          lst_offset (l, offset);
350
      }
351
 
352
  FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
353
    if (LST_LOOP_P (l))
354
      lst_remove_loop_and_inline_stmts_in_loop_father (l);
355
 
356
  mpz_clear (n);
357
  mpz_clear (one);
358
  mpz_clear (offset);
359
  mpz_clear (stride);
360
  return res;
361
}
362
 
363
/* Remove all but the first 3 dimensions of the scattering:
364
   - dim0: the static schedule for the loop
365
   - dim1: the dynamic schedule of the loop
366
   - dim2: the static schedule for the loop body.  */
367
 
368
static void
369
remove_unused_scattering_dimensions (lst_p lst)
370
{
371
  int i;
372
  lst_p stmt;
373
  mpz_t x;
374
  ppl_Coefficient_t one;
375
 
376
  mpz_init (x);
377
  mpz_set_si (x, 1);
378
  ppl_new_Coefficient (&one);
379
  ppl_assign_Coefficient_from_mpz_t (one, x);
380
 
381
  FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, stmt)
382
    {
383
      poly_bb_p pbb = LST_PBB (stmt);
384
      ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
385
      int j, nb_dims_to_remove = PBB_NB_SCATTERING_TRANSFORM (pbb) - 3;
386
      ppl_dimension_type *ds;
387
 
388
      /* There should be no loops inside LST after flattening.  */
389
      gcc_assert (!LST_LOOP_P (stmt));
390
 
391
      if (!nb_dims_to_remove)
392
        continue;
393
 
394
      ds = XNEWVEC (ppl_dimension_type, nb_dims_to_remove);
395
      for (j = 0; j < nb_dims_to_remove; j++)
396
        ds[j] = j + 3;
397
 
398
      ppl_Polyhedron_remove_space_dimensions (poly, ds, nb_dims_to_remove);
399
      PBB_NB_SCATTERING_TRANSFORM (pbb) -= nb_dims_to_remove;
400
      free (ds);
401
    }
402
 
403
  mpz_clear (x);
404
  ppl_delete_Coefficient (one);
405
}
406
 
407
/* Flattens all the loop nests of LST.  Return true when something
408
   changed.  */
409
 
410
static bool
411
lst_do_flatten (lst_p lst)
412
{
413
  int i;
414
  lst_p l;
415
  bool res = false;
416
  mpz_t zero;
417
 
418
  if (!lst
419
      || !LST_LOOP_P (lst))
420
    return false;
421
 
422
  mpz_init (zero);
423
  mpz_set_si (zero, 0);
424
 
425
  FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
426
    if (LST_LOOP_P (l))
427
      {
428
        res |= lst_flatten_loop (l, zero);
429
 
430
        /* FIXME: As long as we use PPL we are not able to remove the old
431
           scattering dimensions.  The reason is that these dimensions are not
432
           entirely unused.  They are not necessary as part of the scheduling
433
           vector, as the earlier dimensions already unambiguously define the
434
           execution time, however they may still be needed to carry modulo
435
           constraints as introduced e.g. by strip mining.  The correct solution
436
           would be to project these dimensions out of the scattering polyhedra.
437
           In case they are still required to carry modulo constraints they should be kept
438
           internally as existentially quantified dimensions.  PPL does only support
439
           projection of rational polyhedra, however in this case we need an integer
440
           projection. With isl this will be trivial to implement.  For now we just
441
           leave the dimensions. This is a little ugly, but should be correct.  */
442
        if (0)
443
          remove_unused_scattering_dimensions (l);
444
      }
445
 
446
  lst_update_scattering (lst);
447
  mpz_clear (zero);
448
  return res;
449
}
450
 
451
/* Flatten all the loop nests in SCOP.  Returns true when something
452
   changed.  */
453
 
454
bool
455
flatten_all_loops (scop_p scop)
456
{
457
  return lst_do_flatten (SCOP_TRANSFORMED_SCHEDULE (scop));
458
}
459
 
460
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.