OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [graphite-poly.h] - Blame information for rev 737

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* Graphite polyhedral representation.
2
   Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3
   Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4
   Tobias Grosser <grosser@fim.uni-passau.de>.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify
9
it under the terms of the GNU General Public License as published by
10
the Free Software Foundation; either version 3, or (at your option)
11
any later version.
12
 
13
GCC is distributed in the hope that it will be useful,
14
but WITHOUT ANY WARRANTY; without even the implied warranty of
15
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
GNU General Public License for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
#ifndef GCC_GRAPHITE_POLY_H
23
#define GCC_GRAPHITE_POLY_H
24
 
25
typedef struct poly_dr *poly_dr_p;
26
DEF_VEC_P(poly_dr_p);
27
DEF_VEC_ALLOC_P (poly_dr_p, heap);
28
 
29
typedef struct poly_bb *poly_bb_p;
30
DEF_VEC_P(poly_bb_p);
31
DEF_VEC_ALLOC_P (poly_bb_p, heap);
32
 
33
typedef struct scop *scop_p;
34
DEF_VEC_P(scop_p);
35
DEF_VEC_ALLOC_P (scop_p, heap);
36
 
37
typedef ppl_dimension_type graphite_dim_t;
38
 
39
static inline graphite_dim_t pbb_dim_iter_domain (const struct poly_bb *);
40
static inline graphite_dim_t pbb_nb_params (const struct poly_bb *);
41
static inline graphite_dim_t scop_nb_params (scop_p);
42
 
43
/* A data reference can write or read some memory or we
44
   just know it may write some memory.  */
45
enum poly_dr_type
46
{
47
  PDR_READ,
48
  /* PDR_MAY_READs are represented using PDR_READS.  This does not
49
     limit the expressiveness.  */
50
  PDR_WRITE,
51
  PDR_MAY_WRITE
52
};
53
 
54
struct poly_dr
55
{
56
  /* An identifier for this PDR.  */
57
  int id;
58
 
59
  /* The number of data refs identical to this one in the PBB.  */
60
  int nb_refs;
61
 
62
  /* A pointer to compiler's data reference description.  */
63
  void *compiler_dr;
64
 
65
  /* A pointer to the PBB that contains this data reference.  */
66
  poly_bb_p pbb;
67
 
68
  enum poly_dr_type type;
69
 
70
  /* The access polyhedron contains the polyhedral space this data
71
     reference will access.
72
 
73
     The polyhedron contains these dimensions:
74
 
75
     - The alias set (a):
76
     Every memory access is classified in at least one alias set.
77
 
78
     - The subscripts (s_0, ..., s_n):
79
     The memory is accessed using zero or more subscript dimensions.
80
 
81
     - The iteration domain (variables and parameters)
82
 
83
     Do not hardcode the dimensions.  Use the following accessor functions:
84
     - pdr_alias_set_dim
85
     - pdr_subscript_dim
86
     - pdr_iterator_dim
87
     - pdr_parameter_dim
88
 
89
     Example:
90
 
91
     | int A[1335][123];
92
     | int *p = malloc ();
93
     |
94
     | k = ...
95
     | for i
96
     |   {
97
     |     if (unknown_function ())
98
     |       p = A;
99
     |       ... = p[?][?];
100
     |     for j
101
     |       A[i][j+k] = m;
102
     |   }
103
 
104
     The data access A[i][j+k] in alias set "5" is described like this:
105
 
106
     | i   j   k   a  s0  s1   1
107
     | 0   0   0   1   0   0  -5     =  0
108
     |-1   0   0   0   1   0   0     =  0
109
     | 0  -1  -1   0   0   1   0     =  0
110
     | 0   0   0   0   1   0   0     >= 0  # The last four lines describe the
111
     | 0   0   0   0   0   1   0     >= 0  # array size.
112
     | 0   0   0   0  -1   0 1335    >= 0
113
     | 0   0   0   0   0  -1 123     >= 0
114
 
115
     The pointer "*p" in alias set "5" and "7" is described as a union of
116
     polyhedron:
117
 
118
 
119
     | i   k   a  s0   1
120
     | 0   0   1   0  -5   =  0
121
     | 0   0   0   1   0   >= 0
122
 
123
     "or"
124
 
125
     | i   k   a  s0   1
126
     | 0   0   1   0  -7   =  0
127
     | 0   0   0   1   0   >= 0
128
 
129
     "*p" accesses all of the object allocated with 'malloc'.
130
 
131
     The scalar data access "m" is represented as an array with zero subscript
132
     dimensions.
133
 
134
     | i   j   k   a   1
135
     | 0   0   0  -1   15  = 0
136
 
137
     The difference between the graphite internal format for access data and
138
     the OpenSop format is in the order of columns.
139
     Instead of having:
140
 
141
     | i   j   k   a  s0  s1   1
142
     | 0   0   0   1   0   0  -5     =  0
143
     |-1   0   0   0   1   0   0     =  0
144
     | 0  -1  -1   0   0   1   0     =  0
145
     | 0   0   0   0   1   0   0     >= 0  # The last four lines describe the
146
     | 0   0   0   0   0   1   0     >= 0  # array size.
147
     | 0   0   0   0  -1   0 1335    >= 0
148
     | 0   0   0   0   0  -1 123     >= 0
149
 
150
     In OpenScop we have:
151
 
152
     | a  s0  s1   i   j   k   1
153
     | 1   0   0   0   0   0  -5     =  0
154
     | 0   1   0  -1   0   0   0     =  0
155
     | 0   0   1   0  -1  -1   0     =  0
156
     | 0   1   0   0   0   0   0     >= 0  # The last four lines describe the
157
     | 0   0   1   0   0   0   0     >= 0  # array size.
158
     | 0  -1   0   0   0   0 1335    >= 0
159
     | 0   0  -1   0   0   0 123     >= 0
160
 
161
     The OpenScop access function is printed as follows:
162
 
163
     | 1  # The number of disjunct components in a union of access functions.
164
     | R C O I L P  # Described bellow.
165
     | a  s0  s1   i   j   k   1
166
     | 1   0   0   0   0   0  -5     =  0
167
     | 0   1   0  -1   0   0   0     =  0
168
     | 0   0   1   0  -1  -1   0     =  0
169
     | 0   1   0   0   0   0   0     >= 0  # The last four lines describe the
170
     | 0   0   1   0   0   0   0     >= 0  # array size.
171
     | 0  -1   0   0   0   0 1335    >= 0
172
     | 0   0  -1   0   0   0 123     >= 0
173
 
174
     Where:
175
     - R: Number of rows.
176
     - C: Number of columns.
177
     - O: Number of output dimensions = alias set + number of subscripts.
178
     - I: Number of input dimensions (iterators).
179
     - L: Number of local (existentially quantified) dimensions.
180
     - P: Number of parameters.
181
 
182
     In the example, the vector "R C O I L P" is "7 7 3 2 0 1".  */
183
  ppl_Pointset_Powerset_C_Polyhedron_t accesses;
184
 
185
  /* Data reference's base object set number, we must assure 2 pdrs are in the
186
     same base object set before dependency checking.  */
187
  int dr_base_object_set;
188
 
189
  /* The number of subscripts.  */
190
  graphite_dim_t nb_subscripts;
191
};
192
 
193
#define PDR_ID(PDR) (PDR->id)
194
#define PDR_NB_REFS(PDR) (PDR->nb_refs)
195
#define PDR_CDR(PDR) (PDR->compiler_dr)
196
#define PDR_PBB(PDR) (PDR->pbb)
197
#define PDR_TYPE(PDR) (PDR->type)
198
#define PDR_ACCESSES(PDR) (PDR->accesses)
199
#define PDR_BASE_OBJECT_SET(PDR) (PDR->dr_base_object_set)
200
#define PDR_NB_SUBSCRIPTS(PDR) (PDR->nb_subscripts)
201
 
202
void new_poly_dr (poly_bb_p, int, ppl_Pointset_Powerset_C_Polyhedron_t,
203
                  enum poly_dr_type, void *, graphite_dim_t);
204
void free_poly_dr (poly_dr_p);
205
void debug_pdr (poly_dr_p, int);
206
void print_pdr (FILE *, poly_dr_p, int);
207
static inline scop_p pdr_scop (poly_dr_p pdr);
208
 
209
/* The dimension of the PDR_ACCESSES polyhedron of PDR.  */
210
 
211
static inline ppl_dimension_type
212
pdr_dim (poly_dr_p pdr)
213
{
214
  ppl_dimension_type dim;
215
  ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PDR_ACCESSES (pdr),
216
                                                      &dim);
217
  return dim;
218
}
219
 
220
/* The dimension of the iteration domain of the scop of PDR.  */
221
 
222
static inline ppl_dimension_type
223
pdr_dim_iter_domain (poly_dr_p pdr)
224
{
225
  return pbb_dim_iter_domain (PDR_PBB (pdr));
226
}
227
 
228
/* The number of parameters of the scop of PDR.  */
229
 
230
static inline ppl_dimension_type
231
pdr_nb_params (poly_dr_p pdr)
232
{
233
  return scop_nb_params (pdr_scop (pdr));
234
}
235
 
236
/* The dimension of the alias set in PDR.  */
237
 
238
static inline ppl_dimension_type
239
pdr_alias_set_dim (poly_dr_p pdr)
240
{
241
  poly_bb_p pbb = PDR_PBB (pdr);
242
 
243
  return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
244
}
245
 
246
/* The dimension in PDR containing subscript S.  */
247
 
248
static inline ppl_dimension_type
249
pdr_subscript_dim (poly_dr_p pdr, graphite_dim_t s)
250
{
251
  poly_bb_p pbb = PDR_PBB (pdr);
252
 
253
  return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb) + 1 + s;
254
}
255
 
256
/* The dimension in PDR containing the loop iterator ITER.  */
257
 
258
static inline ppl_dimension_type
259
pdr_iterator_dim (poly_dr_p pdr ATTRIBUTE_UNUSED, graphite_dim_t iter)
260
{
261
  return iter;
262
}
263
 
264
/* The dimension in PDR containing parameter PARAM.  */
265
 
266
static inline ppl_dimension_type
267
pdr_parameter_dim (poly_dr_p pdr, graphite_dim_t param)
268
{
269
  poly_bb_p pbb = PDR_PBB (pdr);
270
 
271
  return pbb_dim_iter_domain (pbb) + param;
272
}
273
 
274
/* Returns true when PDR is a "read".  */
275
 
276
static inline bool
277
pdr_read_p (poly_dr_p pdr)
278
{
279
  return PDR_TYPE (pdr) == PDR_READ;
280
}
281
 
282
/* Returns true when PDR is a "write".  */
283
 
284
static inline bool
285
pdr_write_p (poly_dr_p pdr)
286
{
287
  return PDR_TYPE (pdr) == PDR_WRITE;
288
}
289
 
290
/* Returns true when PDR is a "may write".  */
291
 
292
static inline bool
293
pdr_may_write_p (poly_dr_p pdr)
294
{
295
  return PDR_TYPE (pdr) == PDR_MAY_WRITE;
296
}
297
 
298
/* Return true when PDR1 and PDR2 are similar data accesses: they have
299
   the same base array, and the same access functions.  */
300
 
301
static inline bool
302
same_pdr_p (poly_dr_p pdr1, poly_dr_p pdr2)
303
{
304
  return PDR_NB_SUBSCRIPTS (pdr1) == PDR_NB_SUBSCRIPTS (pdr2)
305
    && PDR_BASE_OBJECT_SET (pdr1) == PDR_BASE_OBJECT_SET (pdr2);
306
}
307
 
308
typedef struct poly_scattering *poly_scattering_p;
309
 
310
struct poly_scattering
311
{
312
  /* The scattering function containing the transformations: the
313
     layout of this polyhedron is: T|I|G with T the transform
314
     scattering, I the iteration domain, G the context parameters.  */
315
  ppl_Polyhedron_t scattering;
316
 
317
  /* The number of local variables.  */
318
  int nb_local_variables;
319
 
320
  /* The number of scattering dimensions.  */
321
  int nb_scattering;
322
};
323
 
324
/* POLY_BB represents a blackbox in the polyhedral model.  */
325
 
326
struct poly_bb
327
{
328
  /* Pointer to a basic block or a statement in the compiler.  */
329
  void *black_box;
330
 
331
  /* Pointer to the SCOP containing this PBB.  */
332
  scop_p scop;
333
 
334
  /* The iteration domain of this bb.  The layout of this polyhedron
335
     is I|G with I the iteration domain, G the context parameters.
336
 
337
     Example:
338
 
339
     for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++)
340
       for (j = 2; j <= 2*i + 5; j++)
341
         for (k = 0; k <= 5; k++)
342
           S (i,j,k)
343
 
344
     Loop iterators: i, j, k
345
     Parameters: a, b
346
 
347
     | i >=  a -  7b +  8
348
     | i <= 3a + 13b + 20
349
     | j >= 2
350
     | j <= 2i + 5
351
     | k >= 0
352
     | k <= 5
353
 
354
     The number of variables in the DOMAIN may change and is not
355
     related to the number of loops in the original code.  */
356
  ppl_Pointset_Powerset_C_Polyhedron_t domain;
357
 
358
  /* The data references we access.  */
359
  VEC (poly_dr_p, heap) *drs;
360
 
361
  /* The original scattering.  */
362
  poly_scattering_p original;
363
 
364
  /* The transformed scattering.  */
365
  poly_scattering_p transformed;
366
 
367
  /* A copy of the transformed scattering.  */
368
  poly_scattering_p saved;
369
 
370
  /* True when the PDR duplicates have already been removed.  */
371
  bool pdr_duplicates_removed;
372
 
373
  /* True when this PBB contains only a reduction statement.  */
374
  bool is_reduction;
375
};
376
 
377
#define PBB_BLACK_BOX(PBB) ((gimple_bb_p) PBB->black_box)
378
#define PBB_SCOP(PBB) (PBB->scop)
379
#define PBB_DOMAIN(PBB) (PBB->domain)
380
#define PBB_DRS(PBB) (PBB->drs)
381
#define PBB_ORIGINAL(PBB) (PBB->original)
382
#define PBB_ORIGINAL_SCATTERING(PBB) (PBB->original->scattering)
383
#define PBB_TRANSFORMED(PBB) (PBB->transformed)
384
#define PBB_TRANSFORMED_SCATTERING(PBB) (PBB->transformed->scattering)
385
#define PBB_SAVED(PBB) (PBB->saved)
386
#define PBB_NB_LOCAL_VARIABLES(PBB) (PBB->transformed->nb_local_variables)
387
#define PBB_NB_SCATTERING_TRANSFORM(PBB) (PBB->transformed->nb_scattering)
388
#define PBB_PDR_DUPLICATES_REMOVED(PBB) (PBB->pdr_duplicates_removed)
389
#define PBB_IS_REDUCTION(PBB) (PBB->is_reduction)
390
 
391
extern poly_bb_p new_poly_bb (scop_p, void *);
392
extern void free_poly_bb (poly_bb_p);
393
extern void debug_loop_vec (poly_bb_p);
394
extern void schedule_to_scattering (poly_bb_p, int);
395
extern void print_pbb_domain (FILE *, poly_bb_p, int);
396
extern void print_pbb (FILE *, poly_bb_p, int);
397
extern void print_scop_context (FILE *, scop_p, int);
398
extern void print_scop (FILE *, scop_p, int);
399
extern void print_cloog (FILE *, scop_p, int);
400
extern void debug_pbb_domain (poly_bb_p, int);
401
extern void debug_pbb (poly_bb_p, int);
402
extern void print_pdrs (FILE *, poly_bb_p, int);
403
extern void debug_pdrs (poly_bb_p, int);
404
extern void debug_scop_context (scop_p, int);
405
extern void debug_scop (scop_p, int);
406
extern void debug_cloog (scop_p, int);
407
extern void print_scop_params (FILE *, scop_p, int);
408
extern void debug_scop_params (scop_p, int);
409
extern void print_iteration_domain (FILE *, poly_bb_p, int);
410
extern void print_iteration_domains (FILE *, scop_p, int);
411
extern void debug_iteration_domain (poly_bb_p, int);
412
extern void debug_iteration_domains (scop_p, int);
413
extern int scop_do_interchange (scop_p);
414
extern int scop_do_strip_mine (scop_p, int);
415
extern bool scop_do_block (scop_p);
416
extern bool flatten_all_loops (scop_p);
417
extern void pbb_number_of_iterations_at_time (poly_bb_p, graphite_dim_t, mpz_t);
418
extern void pbb_remove_duplicate_pdrs (poly_bb_p);
419
 
420
/* Return the number of write data references in PBB.  */
421
 
422
static inline int
423
number_of_write_pdrs (poly_bb_p pbb)
424
{
425
  int res = 0;
426
  int i;
427
  poly_dr_p pdr;
428
 
429
  for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
430
    if (PDR_TYPE (pdr) == PDR_WRITE)
431
      res++;
432
 
433
  return res;
434
}
435
 
436
/* Returns a gimple_bb from BB.  */
437
 
438
static inline gimple_bb_p
439
gbb_from_bb (basic_block bb)
440
{
441
  return (gimple_bb_p) bb->aux;
442
}
443
 
444
/* The poly_bb of the BB.  */
445
 
446
static inline poly_bb_p
447
pbb_from_bb (basic_block bb)
448
{
449
  return GBB_PBB (gbb_from_bb (bb));
450
}
451
 
452
/* The basic block of the PBB.  */
453
 
454
static inline basic_block
455
pbb_bb (poly_bb_p pbb)
456
{
457
  return GBB_BB (PBB_BLACK_BOX (pbb));
458
}
459
 
460
/* The index of the PBB.  */
461
 
462
static inline int
463
pbb_index (poly_bb_p pbb)
464
{
465
  return pbb_bb (pbb)->index;
466
}
467
 
468
/* The loop of the PBB.  */
469
 
470
static inline loop_p
471
pbb_loop (poly_bb_p pbb)
472
{
473
  return gbb_loop (PBB_BLACK_BOX (pbb));
474
}
475
 
476
/* The scop that contains the PDR.  */
477
 
478
static inline scop_p
479
pdr_scop (poly_dr_p pdr)
480
{
481
  return PBB_SCOP (PDR_PBB (pdr));
482
}
483
 
484
/* Set black box of PBB to BLACKBOX.  */
485
 
486
static inline void
487
pbb_set_black_box (poly_bb_p pbb, void *black_box)
488
{
489
  pbb->black_box = black_box;
490
}
491
 
492
/* The number of loops around PBB: the dimension of the iteration
493
   domain.  */
494
 
495
static inline graphite_dim_t
496
pbb_dim_iter_domain (const struct poly_bb *pbb)
497
{
498
  scop_p scop = PBB_SCOP (pbb);
499
  ppl_dimension_type dim;
500
 
501
  ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb), &dim);
502
  return dim - scop_nb_params (scop);
503
}
504
 
505
/* The number of params defined in PBB.  */
506
 
507
static inline graphite_dim_t
508
pbb_nb_params (const struct poly_bb *pbb)
509
{
510
  scop_p scop = PBB_SCOP (pbb);
511
 
512
  return scop_nb_params (scop);
513
}
514
 
515
/* The number of scattering dimensions in the SCATTERING polyhedron
516
   of a PBB for a given SCOP.  */
517
 
518
static inline graphite_dim_t
519
pbb_nb_scattering_orig (const struct poly_bb *pbb)
520
{
521
  return 2 * pbb_dim_iter_domain (pbb) + 1;
522
}
523
 
524
/* The number of scattering dimensions in PBB.  */
525
 
526
static inline graphite_dim_t
527
pbb_nb_scattering_transform (const struct poly_bb *pbb)
528
{
529
  return PBB_NB_SCATTERING_TRANSFORM (pbb);
530
}
531
 
532
/* The number of dynamic scattering dimensions in PBB.  */
533
 
534
static inline graphite_dim_t
535
pbb_nb_dynamic_scattering_transform (const struct poly_bb *pbb)
536
{
537
  /* This function requires the 2d + 1 scattering format to be
538
     invariant during all transformations.  */
539
  gcc_assert (PBB_NB_SCATTERING_TRANSFORM (pbb) % 2);
540
  return PBB_NB_SCATTERING_TRANSFORM (pbb) / 2;
541
}
542
 
543
/* Returns the number of local variables used in the transformed
544
   scattering polyhedron of PBB.  */
545
 
546
static inline graphite_dim_t
547
pbb_nb_local_vars (const struct poly_bb *pbb)
548
{
549
  /* For now we do not have any local variables, as we do not do strip
550
     mining for example.  */
551
  return PBB_NB_LOCAL_VARIABLES (pbb);
552
}
553
 
554
/* The dimension in the domain of PBB containing the iterator ITER.  */
555
 
556
static inline ppl_dimension_type
557
pbb_iterator_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t iter)
558
{
559
  return iter;
560
}
561
 
562
/* The dimension in the domain of PBB containing the iterator ITER.  */
563
 
564
static inline ppl_dimension_type
565
pbb_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
566
{
567
  return param
568
    + pbb_dim_iter_domain (pbb);
569
}
570
 
571
/* The dimension in the original scattering polyhedron of PBB
572
   containing the scattering iterator SCATTER.  */
573
 
574
static inline ppl_dimension_type
575
psco_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
576
{
577
  gcc_assert (scatter < pbb_nb_scattering_orig (pbb));
578
  return scatter;
579
}
580
 
581
/* The dimension in the transformed scattering polyhedron of PBB
582
   containing the scattering iterator SCATTER.  */
583
 
584
static inline ppl_dimension_type
585
psct_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
586
{
587
  gcc_assert (scatter <= pbb_nb_scattering_transform (pbb));
588
  return scatter;
589
}
590
 
591
ppl_dimension_type psct_scattering_dim_for_loop_depth (poly_bb_p,
592
                                                       graphite_dim_t);
593
 
594
/* The dimension in the transformed scattering polyhedron of PBB of
595
   the local variable LV.  */
596
 
597
static inline ppl_dimension_type
598
psct_local_var_dim (poly_bb_p pbb, graphite_dim_t lv)
599
{
600
  gcc_assert (lv <= pbb_nb_local_vars (pbb));
601
  return lv + pbb_nb_scattering_transform (pbb);
602
}
603
 
604
/* The dimension in the original scattering polyhedron of PBB
605
   containing the loop iterator ITER.  */
606
 
607
static inline ppl_dimension_type
608
psco_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
609
{
610
  gcc_assert (iter < pbb_dim_iter_domain (pbb));
611
  return iter + pbb_nb_scattering_orig (pbb);
612
}
613
 
614
/* The dimension in the transformed scattering polyhedron of PBB
615
   containing the loop iterator ITER.  */
616
 
617
static inline ppl_dimension_type
618
psct_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
619
{
620
  gcc_assert (iter < pbb_dim_iter_domain (pbb));
621
  return iter
622
    + pbb_nb_scattering_transform (pbb)
623
    + pbb_nb_local_vars (pbb);
624
}
625
 
626
/* The dimension in the original scattering polyhedron of PBB
627
   containing parameter PARAM.  */
628
 
629
static inline ppl_dimension_type
630
psco_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
631
{
632
  gcc_assert (param < pbb_nb_params (pbb));
633
  return param
634
    + pbb_nb_scattering_orig (pbb)
635
    + pbb_dim_iter_domain (pbb);
636
}
637
 
638
/* The dimension in the transformed scattering polyhedron of PBB
639
   containing parameter PARAM.  */
640
 
641
static inline ppl_dimension_type
642
psct_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
643
{
644
  gcc_assert (param < pbb_nb_params (pbb));
645
  return param
646
    + pbb_nb_scattering_transform (pbb)
647
    + pbb_nb_local_vars (pbb)
648
    + pbb_dim_iter_domain (pbb);
649
}
650
 
651
/* The scattering dimension of PBB corresponding to the dynamic level
652
   LEVEL.  */
653
 
654
static inline ppl_dimension_type
655
psct_dynamic_dim (poly_bb_p pbb, graphite_dim_t level)
656
{
657
  graphite_dim_t result = 1 + 2 * level;
658
 
659
  gcc_assert (result < pbb_nb_scattering_transform (pbb));
660
  return result;
661
}
662
 
663
/* The scattering dimension of PBB corresponding to the static
664
   sequence of the loop level LEVEL.  */
665
 
666
static inline ppl_dimension_type
667
psct_static_dim (poly_bb_p pbb, graphite_dim_t level)
668
{
669
  graphite_dim_t result = 2 * level;
670
 
671
  gcc_assert (result < pbb_nb_scattering_transform (pbb));
672
  return result;
673
}
674
 
675
/* Adds to the transformed scattering polyhedron of PBB a new local
676
   variable and returns its index.  */
677
 
678
static inline graphite_dim_t
679
psct_add_local_variable (poly_bb_p pbb)
680
{
681
  graphite_dim_t nlv = pbb_nb_local_vars (pbb);
682
  ppl_dimension_type lv_column = psct_local_var_dim (pbb, nlv);
683
  ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), lv_column, 1);
684
  PBB_NB_LOCAL_VARIABLES (pbb) += 1;
685
  return nlv;
686
}
687
 
688
/* Adds a dimension to the transformed scattering polyhedron of PBB at
689
   INDEX.  */
690
 
691
static inline void
692
psct_add_scattering_dimension (poly_bb_p pbb, ppl_dimension_type index)
693
{
694
  gcc_assert (index < pbb_nb_scattering_transform (pbb));
695
 
696
  ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), index, 1);
697
  PBB_NB_SCATTERING_TRANSFORM (pbb) += 1;
698
}
699
 
700
typedef struct lst *lst_p;
701
DEF_VEC_P(lst_p);
702
DEF_VEC_ALLOC_P (lst_p, heap);
703
 
704
/* Loops and Statements Tree.  */
705
struct lst {
706
 
707
  /* LOOP_P is true when an LST node is a loop.  */
708
  bool loop_p;
709
 
710
  /* A pointer to the loop that contains this node.  */
711
  lst_p loop_father;
712
 
713
  /* The sum of all the memory strides for an LST loop.  */
714
  mpz_t memory_strides;
715
 
716
  /* Loop nodes contain a sequence SEQ of LST nodes, statements
717
     contain a pointer to their polyhedral representation PBB.  */
718
  union {
719
    poly_bb_p pbb;
720
    VEC (lst_p, heap) *seq;
721
  } node;
722
};
723
 
724
#define LST_LOOP_P(LST) ((LST)->loop_p)
725
#define LST_LOOP_FATHER(LST) ((LST)->loop_father)
726
#define LST_PBB(LST) ((LST)->node.pbb)
727
#define LST_SEQ(LST) ((LST)->node.seq)
728
#define LST_LOOP_MEMORY_STRIDES(LST) ((LST)->memory_strides)
729
 
730
void scop_to_lst (scop_p);
731
void print_lst (FILE *, lst_p, int);
732
void debug_lst (lst_p);
733
void dot_lst (lst_p);
734
 
735
/* Creates a new LST loop with SEQ.  */
736
 
737
static inline lst_p
738
new_lst_loop (VEC (lst_p, heap) *seq)
739
{
740
  lst_p lst = XNEW (struct lst);
741
  int i;
742
  lst_p l;
743
 
744
  LST_LOOP_P (lst) = true;
745
  LST_SEQ (lst) = seq;
746
  LST_LOOP_FATHER (lst) = NULL;
747
  mpz_init (LST_LOOP_MEMORY_STRIDES (lst));
748
  mpz_set_si (LST_LOOP_MEMORY_STRIDES (lst), -1);
749
 
750
  for (i = 0; VEC_iterate (lst_p, seq, i, l); i++)
751
    LST_LOOP_FATHER (l) = lst;
752
 
753
  return lst;
754
}
755
 
756
/* Creates a new LST statement with PBB.  */
757
 
758
static inline lst_p
759
new_lst_stmt (poly_bb_p pbb)
760
{
761
  lst_p lst = XNEW (struct lst);
762
 
763
  LST_LOOP_P (lst) = false;
764
  LST_PBB (lst) = pbb;
765
  LST_LOOP_FATHER (lst) = NULL;
766
  return lst;
767
}
768
 
769
/* Frees the memory used by LST.  */
770
 
771
static inline void
772
free_lst (lst_p lst)
773
{
774
  if (!lst)
775
    return;
776
 
777
  if (LST_LOOP_P (lst))
778
    {
779
      int i;
780
      lst_p l;
781
 
782
      for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
783
        free_lst (l);
784
 
785
      mpz_clear (LST_LOOP_MEMORY_STRIDES (lst));
786
      VEC_free (lst_p, heap, LST_SEQ (lst));
787
    }
788
 
789
  free (lst);
790
}
791
 
792
/* Returns a copy of LST.  */
793
 
794
static inline lst_p
795
copy_lst (lst_p lst)
796
{
797
  if (!lst)
798
    return NULL;
799
 
800
  if (LST_LOOP_P (lst))
801
    {
802
      int i;
803
      lst_p l;
804
      VEC (lst_p, heap) *seq = VEC_alloc (lst_p, heap, 5);
805
 
806
      for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
807
        VEC_safe_push (lst_p, heap, seq, copy_lst (l));
808
 
809
      return new_lst_loop (seq);
810
    }
811
 
812
  return new_lst_stmt (LST_PBB (lst));
813
}
814
 
815
/* Adds a new loop under the loop LST.  */
816
 
817
static inline void
818
lst_add_loop_under_loop (lst_p lst)
819
{
820
  VEC (lst_p, heap) *seq = VEC_alloc (lst_p, heap, 1);
821
  lst_p l = new_lst_loop (LST_SEQ (lst));
822
 
823
  gcc_assert (LST_LOOP_P (lst));
824
 
825
  LST_LOOP_FATHER (l) = lst;
826
  VEC_quick_push (lst_p, seq, l);
827
  LST_SEQ (lst) = seq;
828
}
829
 
830
/* Returns the loop depth of LST.  */
831
 
832
static inline int
833
lst_depth (lst_p lst)
834
{
835
  if (!lst)
836
    return -2;
837
 
838
  /* The depth of the outermost "fake" loop is -1.  This outermost
839
     loop does not have a loop father and it is just a container, as
840
     in the loop representation of GCC.  */
841
  if (!LST_LOOP_FATHER (lst))
842
    return -1;
843
 
844
  return lst_depth (LST_LOOP_FATHER (lst)) + 1;
845
}
846
 
847
/* Returns the Dewey number for LST.  */
848
 
849
static inline int
850
lst_dewey_number (lst_p lst)
851
{
852
  int i;
853
  lst_p l;
854
 
855
  if (!lst)
856
    return -1;
857
 
858
  if (!LST_LOOP_FATHER (lst))
859
    return 0;
860
 
861
  FOR_EACH_VEC_ELT (lst_p, LST_SEQ (LST_LOOP_FATHER (lst)), i, l)
862
    if (l == lst)
863
      return i;
864
 
865
  return -1;
866
}
867
 
868
/* Returns the Dewey number of LST at depth DEPTH.  */
869
 
870
static inline int
871
lst_dewey_number_at_depth (lst_p lst, int depth)
872
{
873
  gcc_assert (lst && depth >= 0 && lst_depth (lst) <= depth);
874
 
875
  if (lst_depth (lst) == depth)
876
    return lst_dewey_number (lst);
877
 
878
  return lst_dewey_number_at_depth (LST_LOOP_FATHER (lst), depth);
879
}
880
 
881
/* Returns the predecessor of LST in the sequence of its loop father.
882
   Returns NULL if LST is the first statement in the sequence.  */
883
 
884
static inline lst_p
885
lst_pred (lst_p lst)
886
{
887
  int dewey;
888
  lst_p father;
889
 
890
  if (!lst || !LST_LOOP_FATHER (lst))
891
    return NULL;
892
 
893
  dewey = lst_dewey_number (lst);
894
  if (dewey == 0)
895
    return NULL;
896
 
897
  father = LST_LOOP_FATHER (lst);
898
  return VEC_index (lst_p, LST_SEQ (father), dewey - 1);
899
}
900
 
901
/* Returns the successor of LST in the sequence of its loop father.
902
   Returns NULL if there is none.  */
903
 
904
static inline lst_p
905
lst_succ (lst_p lst)
906
{
907
  int dewey;
908
  lst_p father;
909
 
910
  if (!lst || !LST_LOOP_FATHER (lst))
911
    return NULL;
912
 
913
  dewey = lst_dewey_number (lst);
914
  father = LST_LOOP_FATHER (lst);
915
 
916
  if (VEC_length (lst_p, LST_SEQ (father)) == (unsigned) dewey + 1)
917
    return NULL;
918
 
919
  return VEC_index (lst_p, LST_SEQ (father), dewey + 1);
920
}
921
 
922
 
923
/* Return the LST node corresponding to PBB.  */
924
 
925
static inline lst_p
926
lst_find_pbb (lst_p lst, poly_bb_p pbb)
927
{
928
  int i;
929
  lst_p l;
930
 
931
  if (!lst)
932
    return NULL;
933
 
934
  if (!LST_LOOP_P (lst))
935
    return (pbb == LST_PBB (lst)) ? lst : NULL;
936
 
937
  for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
938
    {
939
      lst_p res = lst_find_pbb (l, pbb);
940
      if (res)
941
        return res;
942
    }
943
 
944
  return NULL;
945
}
946
 
947
/* Return the LST node corresponding to the loop around STMT at depth
948
   LOOP_DEPTH.  */
949
 
950
static inline lst_p
951
find_lst_loop (lst_p stmt, int loop_depth)
952
{
953
  lst_p loop = LST_LOOP_FATHER (stmt);
954
 
955
  gcc_assert (loop_depth >= 0);
956
 
957
  while (loop_depth < lst_depth (loop))
958
    loop = LST_LOOP_FATHER (loop);
959
 
960
  return loop;
961
}
962
 
963
/* Return the first LST representing a PBB statement in LST.  */
964
 
965
static inline lst_p
966
lst_find_first_pbb (lst_p lst)
967
{
968
  int i;
969
  lst_p l;
970
 
971
  if (!lst)
972
    return NULL;
973
 
974
  if (!LST_LOOP_P (lst))
975
    return lst;
976
 
977
  for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
978
    {
979
      lst_p res = lst_find_first_pbb (l);
980
      if (res)
981
        return res;
982
    }
983
 
984
  return NULL;
985
}
986
 
987
/* Returns true when LST is a loop that does not contain
988
   statements.  */
989
 
990
static inline bool
991
lst_empty_p (lst_p lst)
992
{
993
  return !lst_find_first_pbb (lst);
994
}
995
 
996
/* Return the last LST representing a PBB statement in LST.  */
997
 
998
static inline lst_p
999
lst_find_last_pbb (lst_p lst)
1000
{
1001
  int i;
1002
  lst_p l, res = NULL;
1003
 
1004
  if (!lst)
1005
    return NULL;
1006
 
1007
  if (!LST_LOOP_P (lst))
1008
    return lst;
1009
 
1010
  for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
1011
    {
1012
      lst_p last = lst_find_last_pbb (l);
1013
 
1014
      if (last)
1015
        res = last;
1016
    }
1017
 
1018
  gcc_assert (res);
1019
  return res;
1020
}
1021
 
1022
/* Returns true if LOOP contains LST, in other words, if LST is nested
1023
   in LOOP.  */
1024
 
1025
static inline bool
1026
lst_contains_p (lst_p loop, lst_p lst)
1027
{
1028
  if (!loop || !lst || !LST_LOOP_P (loop))
1029
    return false;
1030
 
1031
  if (loop == lst)
1032
    return true;
1033
 
1034
  return lst_contains_p (loop, LST_LOOP_FATHER (lst));
1035
}
1036
 
1037
/* Returns true if LOOP contains PBB, in other words, if PBB is nested
1038
   in LOOP.  */
1039
 
1040
static inline bool
1041
lst_contains_pbb (lst_p loop, poly_bb_p pbb)
1042
{
1043
  return lst_find_pbb (loop, pbb) ? true : false;
1044
}
1045
 
1046
/* Creates a loop nest of depth NB_LOOPS containing LST.  */
1047
 
1048
static inline lst_p
1049
lst_create_nest (int nb_loops, lst_p lst)
1050
{
1051
  lst_p res, loop;
1052
  VEC (lst_p, heap) *seq;
1053
 
1054
  if (nb_loops == 0)
1055
    return lst;
1056
 
1057
  seq = VEC_alloc (lst_p, heap, 1);
1058
  loop = lst_create_nest (nb_loops - 1, lst);
1059
  VEC_quick_push (lst_p, seq, loop);
1060
  res = new_lst_loop (seq);
1061
  LST_LOOP_FATHER (loop) = res;
1062
 
1063
  return res;
1064
}
1065
 
1066
/* Removes LST from the sequence of statements of its loop father.  */
1067
 
1068
static inline void
1069
lst_remove_from_sequence (lst_p lst)
1070
{
1071
  lst_p father = LST_LOOP_FATHER (lst);
1072
  int dewey = lst_dewey_number (lst);
1073
 
1074
  gcc_assert (lst && father && dewey >= 0);
1075
 
1076
  VEC_ordered_remove (lst_p, LST_SEQ (father), dewey);
1077
  LST_LOOP_FATHER (lst) = NULL;
1078
}
1079
 
1080
/* Removes the loop LST and inline its body in the father loop.  */
1081
 
1082
static inline void
1083
lst_remove_loop_and_inline_stmts_in_loop_father (lst_p lst)
1084
{
1085
  lst_p l, father = LST_LOOP_FATHER (lst);
1086
  int i, dewey = lst_dewey_number (lst);
1087
 
1088
  gcc_assert (lst && father && dewey >= 0);
1089
 
1090
  VEC_ordered_remove (lst_p, LST_SEQ (father), dewey);
1091
  LST_LOOP_FATHER (lst) = NULL;
1092
 
1093
  FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
1094
    {
1095
      VEC_safe_insert (lst_p, heap, LST_SEQ (father), dewey + i, l);
1096
      LST_LOOP_FATHER (l) = father;
1097
    }
1098
}
1099
 
1100
/* Sets NITER to the upper bound approximation of the number of
1101
   iterations of loop LST.  */
1102
 
1103
static inline void
1104
lst_niter_for_loop (lst_p lst, mpz_t niter)
1105
{
1106
  int depth = lst_depth (lst);
1107
  poly_bb_p pbb = LST_PBB (lst_find_first_pbb (lst));
1108
 
1109
  gcc_assert (LST_LOOP_P (lst));
1110
  pbb_number_of_iterations_at_time (pbb, psct_dynamic_dim (pbb, depth), niter);
1111
}
1112
 
1113
/* Updates the scattering of PBB to be at the DEWEY number in the loop
1114
   at depth LEVEL.  */
1115
 
1116
static inline void
1117
pbb_update_scattering (poly_bb_p pbb, graphite_dim_t level, int dewey)
1118
{
1119
  ppl_Polyhedron_t ph = PBB_TRANSFORMED_SCATTERING (pbb);
1120
  ppl_dimension_type sched = psct_static_dim (pbb, level);
1121
  ppl_dimension_type ds[1];
1122
  ppl_Constraint_t new_cstr;
1123
  ppl_Linear_Expression_t expr;
1124
  ppl_dimension_type dim;
1125
 
1126
  ppl_Polyhedron_space_dimension (ph, &dim);
1127
  ds[0] = sched;
1128
  ppl_Polyhedron_remove_space_dimensions (ph, ds, 1);
1129
  ppl_insert_dimensions (ph, sched, 1);
1130
 
1131
  ppl_new_Linear_Expression_with_dimension (&expr, dim);
1132
  ppl_set_coef (expr, sched, -1);
1133
  ppl_set_inhomogeneous (expr, dewey);
1134
  ppl_new_Constraint (&new_cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
1135
  ppl_delete_Linear_Expression (expr);
1136
  ppl_Polyhedron_add_constraint (ph, new_cstr);
1137
  ppl_delete_Constraint (new_cstr);
1138
}
1139
 
1140
/* Updates the scattering of all the PBBs under LST to be at the DEWEY
1141
   number in the loop at depth LEVEL.  */
1142
 
1143
static inline void
1144
lst_update_scattering_under (lst_p lst, int level, int dewey)
1145
{
1146
  int i;
1147
  lst_p l;
1148
 
1149
  gcc_assert (lst && level >= 0 && dewey >= 0);
1150
 
1151
  if (LST_LOOP_P (lst))
1152
    for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
1153
      lst_update_scattering_under (l, level, dewey);
1154
  else
1155
    pbb_update_scattering (LST_PBB (lst), level, dewey);
1156
}
1157
 
1158
/* Updates the all the scattering levels of all the PBBs under
1159
   LST.  */
1160
 
1161
static inline void
1162
lst_update_scattering (lst_p lst)
1163
{
1164
  int i;
1165
  lst_p l;
1166
 
1167
  if (!lst)
1168
    return;
1169
 
1170
  if (LST_LOOP_FATHER (lst))
1171
    {
1172
      lst_p father = LST_LOOP_FATHER (lst);
1173
      int dewey = lst_dewey_number (lst);
1174
      int level = lst_depth (lst);
1175
 
1176
      gcc_assert (lst && father && dewey >= 0 && level >= 0);
1177
 
1178
      for (i = dewey; VEC_iterate (lst_p, LST_SEQ (father), i, l); i++)
1179
        lst_update_scattering_under (l, level, i);
1180
    }
1181
 
1182
  if (LST_LOOP_P (lst))
1183
    for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
1184
      lst_update_scattering (l);
1185
}
1186
 
1187
/* Inserts LST1 before LST2 if BEFORE is true; inserts LST1 after LST2
1188
   if BEFORE is false.  */
1189
 
1190
static inline void
1191
lst_insert_in_sequence (lst_p lst1, lst_p lst2, bool before)
1192
{
1193
  lst_p father;
1194
  int dewey;
1195
 
1196
  /* Do not insert empty loops.  */
1197
  if (!lst1 || lst_empty_p (lst1))
1198
    return;
1199
 
1200
  father = LST_LOOP_FATHER (lst2);
1201
  dewey = lst_dewey_number (lst2);
1202
 
1203
  gcc_assert (lst2 && father && dewey >= 0);
1204
 
1205
  VEC_safe_insert (lst_p, heap, LST_SEQ (father), before ? dewey : dewey + 1,
1206
                   lst1);
1207
  LST_LOOP_FATHER (lst1) = father;
1208
}
1209
 
1210
/* Replaces LST1 with LST2.  */
1211
 
1212
static inline void
1213
lst_replace (lst_p lst1, lst_p lst2)
1214
{
1215
  lst_p father;
1216
  int dewey;
1217
 
1218
  if (!lst2 || lst_empty_p (lst2))
1219
    return;
1220
 
1221
  father = LST_LOOP_FATHER (lst1);
1222
  dewey = lst_dewey_number (lst1);
1223
  LST_LOOP_FATHER (lst2) = father;
1224
  VEC_replace (lst_p, LST_SEQ (father), dewey, lst2);
1225
}
1226
 
1227
/* Returns a copy of ROOT where LST has been replaced by a copy of the
1228
   LSTs A B C in this sequence.  */
1229
 
1230
static inline lst_p
1231
lst_substitute_3 (lst_p root, lst_p lst, lst_p a, lst_p b, lst_p c)
1232
{
1233
  int i;
1234
  lst_p l;
1235
  VEC (lst_p, heap) *seq;
1236
 
1237
  if (!root)
1238
    return NULL;
1239
 
1240
  gcc_assert (lst && root != lst);
1241
 
1242
  if (!LST_LOOP_P (root))
1243
    return new_lst_stmt (LST_PBB (root));
1244
 
1245
  seq = VEC_alloc (lst_p, heap, 5);
1246
 
1247
  for (i = 0; VEC_iterate (lst_p, LST_SEQ (root), i, l); i++)
1248
    if (l != lst)
1249
      VEC_safe_push (lst_p, heap, seq, lst_substitute_3 (l, lst, a, b, c));
1250
    else
1251
      {
1252
        if (!lst_empty_p (a))
1253
          VEC_safe_push (lst_p, heap, seq, copy_lst (a));
1254
        if (!lst_empty_p (b))
1255
          VEC_safe_push (lst_p, heap, seq, copy_lst (b));
1256
        if (!lst_empty_p (c))
1257
          VEC_safe_push (lst_p, heap, seq, copy_lst (c));
1258
      }
1259
 
1260
  return new_lst_loop (seq);
1261
}
1262
 
1263
/* Moves LST before LOOP if BEFORE is true, and after the LOOP if
1264
   BEFORE is false.  */
1265
 
1266
static inline void
1267
lst_distribute_lst (lst_p loop, lst_p lst, bool before)
1268
{
1269
  int loop_depth = lst_depth (loop);
1270
  int depth = lst_depth (lst);
1271
  int nb_loops = depth - loop_depth;
1272
 
1273
  gcc_assert (lst && loop && LST_LOOP_P (loop) && nb_loops > 0);
1274
 
1275
  lst_remove_from_sequence (lst);
1276
  lst_insert_in_sequence (lst_create_nest (nb_loops, lst), loop, before);
1277
}
1278
 
1279
/* Removes from LOOP all the statements before/after and including PBB
1280
   if BEFORE is true/false.  Returns the negation of BEFORE when the
1281
   statement PBB has been found.  */
1282
 
1283
static inline bool
1284
lst_remove_all_before_including_pbb (lst_p loop, poly_bb_p pbb, bool before)
1285
{
1286
  int i;
1287
  lst_p l;
1288
 
1289
  if (!loop || !LST_LOOP_P (loop))
1290
    return before;
1291
 
1292
  for (i = 0; VEC_iterate (lst_p, LST_SEQ (loop), i, l);)
1293
    if (LST_LOOP_P (l))
1294
      {
1295
        before = lst_remove_all_before_including_pbb (l, pbb, before);
1296
 
1297
        if (VEC_length (lst_p, LST_SEQ (l)) == 0)
1298
          {
1299
            VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1300
            free_lst (l);
1301
          }
1302
        else
1303
          i++;
1304
      }
1305
    else
1306
      {
1307
        if (before)
1308
          {
1309
            if (LST_PBB (l) == pbb)
1310
              before = false;
1311
 
1312
            VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1313
            free_lst (l);
1314
          }
1315
        else if (LST_PBB (l) == pbb)
1316
          {
1317
            before = true;
1318
            VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1319
            free_lst (l);
1320
          }
1321
        else
1322
          i++;
1323
      }
1324
 
1325
  return before;
1326
}
1327
 
1328
/* Removes from LOOP all the statements before/after and excluding PBB
1329
   if BEFORE is true/false; Returns the negation of BEFORE when the
1330
   statement PBB has been found.  */
1331
 
1332
static inline bool
1333
lst_remove_all_before_excluding_pbb (lst_p loop, poly_bb_p pbb, bool before)
1334
{
1335
  int i;
1336
  lst_p l;
1337
 
1338
  if (!loop || !LST_LOOP_P (loop))
1339
    return before;
1340
 
1341
  for (i = 0; VEC_iterate (lst_p, LST_SEQ (loop), i, l);)
1342
    if (LST_LOOP_P (l))
1343
      {
1344
        before = lst_remove_all_before_excluding_pbb (l, pbb, before);
1345
 
1346
        if (VEC_length (lst_p, LST_SEQ (l)) == 0)
1347
          {
1348
            VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1349
            free_lst (l);
1350
            continue;
1351
          }
1352
 
1353
        i++;
1354
      }
1355
    else
1356
      {
1357
        if (before && LST_PBB (l) != pbb)
1358
          {
1359
            VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1360
            free_lst (l);
1361
            continue;
1362
          }
1363
 
1364
        i++;
1365
 
1366
        if (LST_PBB (l) == pbb)
1367
          before = before ? false : true;
1368
      }
1369
 
1370
  return before;
1371
}
1372
 
1373
/* A SCOP is a Static Control Part of the program, simple enough to be
1374
   represented in polyhedral form.  */
1375
struct scop
1376
{
1377
  /* A SCOP is defined as a SESE region.  */
1378
  void *region;
1379
 
1380
  /* Number of parameters in SCoP.  */
1381
  graphite_dim_t nb_params;
1382
 
1383
  /* All the basic blocks in this scop that contain memory references
1384
     and that will be represented as statements in the polyhedral
1385
     representation.  */
1386
  VEC (poly_bb_p, heap) *bbs;
1387
 
1388
  /* Original, transformed and saved schedules.  */
1389
  lst_p original_schedule, transformed_schedule, saved_schedule;
1390
 
1391
  /* The context describes known restrictions concerning the parameters
1392
     and relations in between the parameters.
1393
 
1394
  void f (int8_t a, uint_16_t b) {
1395
    c = 2 a + b;
1396
    ...
1397
  }
1398
 
1399
  Here we can add these restrictions to the context:
1400
 
1401
  -128 >= a >= 127
1402
 
1403
     c = 2a + b  */
1404
  ppl_Pointset_Powerset_C_Polyhedron_t context;
1405
 
1406
  /* A hashtable of the data dependence relations for the original
1407
     scattering.  */
1408
  htab_t original_pddrs;
1409
 
1410
  /* True when the scop has been converted to its polyhedral
1411
     representation.  */
1412
  bool poly_scop_p;
1413
};
1414
 
1415
#define SCOP_BBS(S) (S->bbs)
1416
#define SCOP_REGION(S) ((sese) S->region)
1417
#define SCOP_CONTEXT(S) (S->context)
1418
#define SCOP_ORIGINAL_PDDRS(S) (S->original_pddrs)
1419
#define SCOP_ORIGINAL_SCHEDULE(S) (S->original_schedule)
1420
#define SCOP_TRANSFORMED_SCHEDULE(S) (S->transformed_schedule)
1421
#define SCOP_SAVED_SCHEDULE(S) (S->saved_schedule)
1422
#define POLY_SCOP_P(S) (S->poly_scop_p)
1423
 
1424
extern scop_p new_scop (void *);
1425
extern void free_scop (scop_p);
1426
extern void free_scops (VEC (scop_p, heap) *);
1427
extern void print_generated_program (FILE *, scop_p);
1428
extern void debug_generated_program (scop_p);
1429
extern void print_scattering_function (FILE *, poly_bb_p, int);
1430
extern void print_scattering_functions (FILE *, scop_p, int);
1431
extern void debug_scattering_function (poly_bb_p, int);
1432
extern void debug_scattering_functions (scop_p, int);
1433
extern int scop_max_loop_depth (scop_p);
1434
extern int unify_scattering_dimensions (scop_p);
1435
extern bool apply_poly_transforms (scop_p);
1436
extern bool graphite_legal_transform (scop_p);
1437
extern void cloog_checksum (scop_p);
1438
 
1439
/* Set the region of SCOP to REGION.  */
1440
 
1441
static inline void
1442
scop_set_region (scop_p scop, void *region)
1443
{
1444
  scop->region = region;
1445
}
1446
 
1447
/* Returns the number of parameters for SCOP.  */
1448
 
1449
static inline graphite_dim_t
1450
scop_nb_params (scop_p scop)
1451
{
1452
  return scop->nb_params;
1453
}
1454
 
1455
/* Set the number of params of SCOP to NB_PARAMS.  */
1456
 
1457
static inline void
1458
scop_set_nb_params (scop_p scop, graphite_dim_t nb_params)
1459
{
1460
  scop->nb_params = nb_params;
1461
}
1462
 
1463
/* Allocates a new empty poly_scattering structure.  */
1464
 
1465
static inline poly_scattering_p
1466
poly_scattering_new (void)
1467
{
1468
  poly_scattering_p res = XNEW (struct poly_scattering);
1469
 
1470
  res->scattering = NULL;
1471
  res->nb_local_variables = 0;
1472
  res->nb_scattering = 0;
1473
  return res;
1474
}
1475
 
1476
/* Free a poly_scattering structure.  */
1477
 
1478
static inline void
1479
poly_scattering_free (poly_scattering_p s)
1480
{
1481
  ppl_delete_Polyhedron (s->scattering);
1482
  free (s);
1483
}
1484
 
1485
/* Copies S and return a new scattering.  */
1486
 
1487
static inline poly_scattering_p
1488
poly_scattering_copy (poly_scattering_p s)
1489
{
1490
  poly_scattering_p res = poly_scattering_new ();
1491
 
1492
  ppl_new_C_Polyhedron_from_C_Polyhedron (&(res->scattering), s->scattering);
1493
  res->nb_local_variables = s->nb_local_variables;
1494
  res->nb_scattering = s->nb_scattering;
1495
  return res;
1496
}
1497
 
1498
/* Saves the transformed scattering of PBB.  */
1499
 
1500
static inline void
1501
store_scattering_pbb (poly_bb_p pbb)
1502
{
1503
  gcc_assert (PBB_TRANSFORMED (pbb));
1504
 
1505
  if (PBB_SAVED (pbb))
1506
    poly_scattering_free (PBB_SAVED (pbb));
1507
 
1508
  PBB_SAVED (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
1509
}
1510
 
1511
/* Stores the SCOP_TRANSFORMED_SCHEDULE to SCOP_SAVED_SCHEDULE.  */
1512
 
1513
static inline void
1514
store_lst_schedule (scop_p scop)
1515
{
1516
  if (SCOP_SAVED_SCHEDULE (scop))
1517
    free_lst (SCOP_SAVED_SCHEDULE (scop));
1518
 
1519
  SCOP_SAVED_SCHEDULE (scop) = copy_lst (SCOP_TRANSFORMED_SCHEDULE (scop));
1520
}
1521
 
1522
/* Restores the SCOP_TRANSFORMED_SCHEDULE from SCOP_SAVED_SCHEDULE.  */
1523
 
1524
static inline void
1525
restore_lst_schedule (scop_p scop)
1526
{
1527
  if (SCOP_TRANSFORMED_SCHEDULE (scop))
1528
    free_lst (SCOP_TRANSFORMED_SCHEDULE (scop));
1529
 
1530
  SCOP_TRANSFORMED_SCHEDULE (scop) = copy_lst (SCOP_SAVED_SCHEDULE (scop));
1531
}
1532
 
1533
/* Saves the scattering for all the pbbs in the SCOP.  */
1534
 
1535
static inline void
1536
store_scattering (scop_p scop)
1537
{
1538
  int i;
1539
  poly_bb_p pbb;
1540
 
1541
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1542
    store_scattering_pbb (pbb);
1543
 
1544
  store_lst_schedule (scop);
1545
}
1546
 
1547
/* Restores the scattering of PBB.  */
1548
 
1549
static inline void
1550
restore_scattering_pbb (poly_bb_p pbb)
1551
{
1552
  gcc_assert (PBB_SAVED (pbb));
1553
 
1554
  poly_scattering_free (PBB_TRANSFORMED (pbb));
1555
  PBB_TRANSFORMED (pbb) = poly_scattering_copy (PBB_SAVED (pbb));
1556
}
1557
 
1558
/* Restores the scattering for all the pbbs in the SCOP.  */
1559
 
1560
static inline void
1561
restore_scattering (scop_p scop)
1562
{
1563
  int i;
1564
  poly_bb_p pbb;
1565
 
1566
  for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1567
    restore_scattering_pbb (pbb);
1568
 
1569
  restore_lst_schedule (scop);
1570
}
1571
 
1572
/* For a given PBB, add to RES the scop context, the iteration domain,
1573
   the original scattering when ORIGINAL_P is true, otherwise add the
1574
   transformed scattering.  */
1575
 
1576
static inline void
1577
combine_context_id_scat (ppl_Pointset_Powerset_C_Polyhedron_t *res,
1578
                         poly_bb_p pbb, bool original_p)
1579
{
1580
  ppl_Pointset_Powerset_C_Polyhedron_t context;
1581
  ppl_Pointset_Powerset_C_Polyhedron_t id;
1582
 
1583
  ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1584
    (res, original_p ?
1585
     PBB_ORIGINAL_SCATTERING (pbb) : PBB_TRANSFORMED_SCATTERING (pbb));
1586
 
1587
  ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
1588
    (&context, SCOP_CONTEXT (PBB_SCOP (pbb)));
1589
 
1590
  ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
1591
    (&id, PBB_DOMAIN (pbb));
1592
 
1593
  /* Extend the context and the iteration domain to the dimension of
1594
     the scattering: T|I|G.  */
1595
  {
1596
    ppl_dimension_type gdim, tdim, idim;
1597
 
1598
    ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*res, &tdim);
1599
    ppl_Pointset_Powerset_C_Polyhedron_space_dimension (context, &gdim);
1600
    ppl_Pointset_Powerset_C_Polyhedron_space_dimension (id, &idim);
1601
 
1602
    if (tdim > gdim)
1603
      ppl_insert_dimensions_pointset (context, 0, tdim - gdim);
1604
 
1605
    if (tdim > idim)
1606
      ppl_insert_dimensions_pointset (id, 0, tdim - idim);
1607
  }
1608
 
1609
  /* Add the context and the iteration domain to the result.  */
1610
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (*res, context);
1611
  ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (*res, id);
1612
 
1613
  ppl_delete_Pointset_Powerset_C_Polyhedron (context);
1614
  ppl_delete_Pointset_Powerset_C_Polyhedron (id);
1615
}
1616
 
1617
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.