| 1 |
684 |
jeremybenn |
/* Conversion of SESE regions to Polyhedra.
|
| 2 |
|
|
Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
|
| 3 |
|
|
Contributed by Sebastian Pop <sebastian.pop@amd.com>.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 8 |
|
|
it under the terms of the GNU General Public License as published by
|
| 9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 10 |
|
|
any later version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
GNU General Public License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tree-flow.h"
|
| 25 |
|
|
#include "tree-dump.h"
|
| 26 |
|
|
#include "cfgloop.h"
|
| 27 |
|
|
#include "tree-chrec.h"
|
| 28 |
|
|
#include "tree-data-ref.h"
|
| 29 |
|
|
#include "tree-scalar-evolution.h"
|
| 30 |
|
|
#include "domwalk.h"
|
| 31 |
|
|
#include "sese.h"
|
| 32 |
|
|
|
| 33 |
|
|
#ifdef HAVE_cloog
|
| 34 |
|
|
#include "ppl_c.h"
|
| 35 |
|
|
#include "graphite-ppl.h"
|
| 36 |
|
|
#include "graphite-poly.h"
|
| 37 |
|
|
#include "graphite-sese-to-poly.h"
|
| 38 |
|
|
|
| 39 |
|
|
/* Returns the index of the PHI argument defined in the outermost
|
| 40 |
|
|
loop. */
|
| 41 |
|
|
|
| 42 |
|
|
static size_t
|
| 43 |
|
|
phi_arg_in_outermost_loop (gimple phi)
|
| 44 |
|
|
{
|
| 45 |
|
|
loop_p loop = gimple_bb (phi)->loop_father;
|
| 46 |
|
|
size_t i, res = 0;
|
| 47 |
|
|
|
| 48 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 49 |
|
|
if (!flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
|
| 50 |
|
|
{
|
| 51 |
|
|
loop = gimple_phi_arg_edge (phi, i)->src->loop_father;
|
| 52 |
|
|
res = i;
|
| 53 |
|
|
}
|
| 54 |
|
|
|
| 55 |
|
|
return res;
|
| 56 |
|
|
}
|
| 57 |
|
|
|
| 58 |
|
|
/* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
|
| 59 |
|
|
PSI by inserting on the loop ENTRY edge assignment "RES = INIT". */
|
| 60 |
|
|
|
| 61 |
|
|
static void
|
| 62 |
|
|
remove_simple_copy_phi (gimple_stmt_iterator *psi)
|
| 63 |
|
|
{
|
| 64 |
|
|
gimple phi = gsi_stmt (*psi);
|
| 65 |
|
|
tree res = gimple_phi_result (phi);
|
| 66 |
|
|
size_t entry = phi_arg_in_outermost_loop (phi);
|
| 67 |
|
|
tree init = gimple_phi_arg_def (phi, entry);
|
| 68 |
|
|
gimple stmt = gimple_build_assign (res, init);
|
| 69 |
|
|
edge e = gimple_phi_arg_edge (phi, entry);
|
| 70 |
|
|
|
| 71 |
|
|
remove_phi_node (psi, false);
|
| 72 |
|
|
gsi_insert_on_edge_immediate (e, stmt);
|
| 73 |
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
| 74 |
|
|
}
|
| 75 |
|
|
|
| 76 |
|
|
/* Removes an invariant phi node at position PSI by inserting on the
|
| 77 |
|
|
loop ENTRY edge the assignment RES = INIT. */
|
| 78 |
|
|
|
| 79 |
|
|
static void
|
| 80 |
|
|
remove_invariant_phi (sese region, gimple_stmt_iterator *psi)
|
| 81 |
|
|
{
|
| 82 |
|
|
gimple phi = gsi_stmt (*psi);
|
| 83 |
|
|
loop_p loop = loop_containing_stmt (phi);
|
| 84 |
|
|
tree res = gimple_phi_result (phi);
|
| 85 |
|
|
tree scev = scalar_evolution_in_region (region, loop, res);
|
| 86 |
|
|
size_t entry = phi_arg_in_outermost_loop (phi);
|
| 87 |
|
|
edge e = gimple_phi_arg_edge (phi, entry);
|
| 88 |
|
|
tree var;
|
| 89 |
|
|
gimple stmt;
|
| 90 |
|
|
gimple_seq stmts;
|
| 91 |
|
|
gimple_stmt_iterator gsi;
|
| 92 |
|
|
|
| 93 |
|
|
if (tree_contains_chrecs (scev, NULL))
|
| 94 |
|
|
scev = gimple_phi_arg_def (phi, entry);
|
| 95 |
|
|
|
| 96 |
|
|
var = force_gimple_operand (scev, &stmts, true, NULL_TREE);
|
| 97 |
|
|
stmt = gimple_build_assign (res, var);
|
| 98 |
|
|
remove_phi_node (psi, false);
|
| 99 |
|
|
|
| 100 |
|
|
if (!stmts)
|
| 101 |
|
|
stmts = gimple_seq_alloc ();
|
| 102 |
|
|
|
| 103 |
|
|
gsi = gsi_last (stmts);
|
| 104 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
| 105 |
|
|
gsi_insert_seq_on_edge (e, stmts);
|
| 106 |
|
|
gsi_commit_edge_inserts ();
|
| 107 |
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
| 108 |
|
|
}
|
| 109 |
|
|
|
| 110 |
|
|
/* Returns true when the phi node at PSI is of the form "a = phi (a, x)". */
|
| 111 |
|
|
|
| 112 |
|
|
static inline bool
|
| 113 |
|
|
simple_copy_phi_p (gimple phi)
|
| 114 |
|
|
{
|
| 115 |
|
|
tree res;
|
| 116 |
|
|
|
| 117 |
|
|
if (gimple_phi_num_args (phi) != 2)
|
| 118 |
|
|
return false;
|
| 119 |
|
|
|
| 120 |
|
|
res = gimple_phi_result (phi);
|
| 121 |
|
|
return (res == gimple_phi_arg_def (phi, 0)
|
| 122 |
|
|
|| res == gimple_phi_arg_def (phi, 1));
|
| 123 |
|
|
}
|
| 124 |
|
|
|
| 125 |
|
|
/* Returns true when the phi node at position PSI is a reduction phi
|
| 126 |
|
|
node in REGION. Otherwise moves the pointer PSI to the next phi to
|
| 127 |
|
|
be considered. */
|
| 128 |
|
|
|
| 129 |
|
|
static bool
|
| 130 |
|
|
reduction_phi_p (sese region, gimple_stmt_iterator *psi)
|
| 131 |
|
|
{
|
| 132 |
|
|
loop_p loop;
|
| 133 |
|
|
gimple phi = gsi_stmt (*psi);
|
| 134 |
|
|
tree res = gimple_phi_result (phi);
|
| 135 |
|
|
|
| 136 |
|
|
loop = loop_containing_stmt (phi);
|
| 137 |
|
|
|
| 138 |
|
|
if (simple_copy_phi_p (phi))
|
| 139 |
|
|
{
|
| 140 |
|
|
/* PRE introduces phi nodes like these, for an example,
|
| 141 |
|
|
see id-5.f in the fortran graphite testsuite:
|
| 142 |
|
|
|
| 143 |
|
|
# prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
|
| 144 |
|
|
*/
|
| 145 |
|
|
remove_simple_copy_phi (psi);
|
| 146 |
|
|
return false;
|
| 147 |
|
|
}
|
| 148 |
|
|
|
| 149 |
|
|
if (scev_analyzable_p (res, region))
|
| 150 |
|
|
{
|
| 151 |
|
|
tree scev = scalar_evolution_in_region (region, loop, res);
|
| 152 |
|
|
|
| 153 |
|
|
if (evolution_function_is_invariant_p (scev, loop->num))
|
| 154 |
|
|
remove_invariant_phi (region, psi);
|
| 155 |
|
|
else
|
| 156 |
|
|
gsi_next (psi);
|
| 157 |
|
|
|
| 158 |
|
|
return false;
|
| 159 |
|
|
}
|
| 160 |
|
|
|
| 161 |
|
|
/* All the other cases are considered reductions. */
|
| 162 |
|
|
return true;
|
| 163 |
|
|
}
|
| 164 |
|
|
|
| 165 |
|
|
/* Store the GRAPHITE representation of BB. */
|
| 166 |
|
|
|
| 167 |
|
|
static gimple_bb_p
|
| 168 |
|
|
new_gimple_bb (basic_block bb, VEC (data_reference_p, heap) *drs)
|
| 169 |
|
|
{
|
| 170 |
|
|
struct gimple_bb *gbb;
|
| 171 |
|
|
|
| 172 |
|
|
gbb = XNEW (struct gimple_bb);
|
| 173 |
|
|
bb->aux = gbb;
|
| 174 |
|
|
GBB_BB (gbb) = bb;
|
| 175 |
|
|
GBB_DATA_REFS (gbb) = drs;
|
| 176 |
|
|
GBB_CONDITIONS (gbb) = NULL;
|
| 177 |
|
|
GBB_CONDITION_CASES (gbb) = NULL;
|
| 178 |
|
|
|
| 179 |
|
|
return gbb;
|
| 180 |
|
|
}
|
| 181 |
|
|
|
| 182 |
|
|
static void
|
| 183 |
|
|
free_data_refs_aux (VEC (data_reference_p, heap) *datarefs)
|
| 184 |
|
|
{
|
| 185 |
|
|
unsigned int i;
|
| 186 |
|
|
struct data_reference *dr;
|
| 187 |
|
|
|
| 188 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
|
| 189 |
|
|
if (dr->aux)
|
| 190 |
|
|
{
|
| 191 |
|
|
base_alias_pair *bap = (base_alias_pair *)(dr->aux);
|
| 192 |
|
|
|
| 193 |
|
|
free (bap->alias_set);
|
| 194 |
|
|
|
| 195 |
|
|
free (bap);
|
| 196 |
|
|
dr->aux = NULL;
|
| 197 |
|
|
}
|
| 198 |
|
|
}
|
| 199 |
|
|
/* Frees GBB. */
|
| 200 |
|
|
|
| 201 |
|
|
static void
|
| 202 |
|
|
free_gimple_bb (struct gimple_bb *gbb)
|
| 203 |
|
|
{
|
| 204 |
|
|
free_data_refs_aux (GBB_DATA_REFS (gbb));
|
| 205 |
|
|
free_data_refs (GBB_DATA_REFS (gbb));
|
| 206 |
|
|
|
| 207 |
|
|
VEC_free (gimple, heap, GBB_CONDITIONS (gbb));
|
| 208 |
|
|
VEC_free (gimple, heap, GBB_CONDITION_CASES (gbb));
|
| 209 |
|
|
GBB_BB (gbb)->aux = 0;
|
| 210 |
|
|
XDELETE (gbb);
|
| 211 |
|
|
}
|
| 212 |
|
|
|
| 213 |
|
|
/* Deletes all gimple bbs in SCOP. */
|
| 214 |
|
|
|
| 215 |
|
|
static void
|
| 216 |
|
|
remove_gbbs_in_scop (scop_p scop)
|
| 217 |
|
|
{
|
| 218 |
|
|
int i;
|
| 219 |
|
|
poly_bb_p pbb;
|
| 220 |
|
|
|
| 221 |
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
| 222 |
|
|
free_gimple_bb (PBB_BLACK_BOX (pbb));
|
| 223 |
|
|
}
|
| 224 |
|
|
|
| 225 |
|
|
/* Deletes all scops in SCOPS. */
|
| 226 |
|
|
|
| 227 |
|
|
void
|
| 228 |
|
|
free_scops (VEC (scop_p, heap) *scops)
|
| 229 |
|
|
{
|
| 230 |
|
|
int i;
|
| 231 |
|
|
scop_p scop;
|
| 232 |
|
|
|
| 233 |
|
|
FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
|
| 234 |
|
|
{
|
| 235 |
|
|
remove_gbbs_in_scop (scop);
|
| 236 |
|
|
free_sese (SCOP_REGION (scop));
|
| 237 |
|
|
free_scop (scop);
|
| 238 |
|
|
}
|
| 239 |
|
|
|
| 240 |
|
|
VEC_free (scop_p, heap, scops);
|
| 241 |
|
|
}
|
| 242 |
|
|
|
| 243 |
|
|
/* Same as outermost_loop_in_sese, returns the outermost loop
|
| 244 |
|
|
containing BB in REGION, but makes sure that the returned loop
|
| 245 |
|
|
belongs to the REGION, and so this returns the first loop in the
|
| 246 |
|
|
REGION when the loop containing BB does not belong to REGION. */
|
| 247 |
|
|
|
| 248 |
|
|
static loop_p
|
| 249 |
|
|
outermost_loop_in_sese_1 (sese region, basic_block bb)
|
| 250 |
|
|
{
|
| 251 |
|
|
loop_p nest = outermost_loop_in_sese (region, bb);
|
| 252 |
|
|
|
| 253 |
|
|
if (loop_in_sese_p (nest, region))
|
| 254 |
|
|
return nest;
|
| 255 |
|
|
|
| 256 |
|
|
/* When the basic block BB does not belong to a loop in the region,
|
| 257 |
|
|
return the first loop in the region. */
|
| 258 |
|
|
nest = nest->inner;
|
| 259 |
|
|
while (nest)
|
| 260 |
|
|
if (loop_in_sese_p (nest, region))
|
| 261 |
|
|
break;
|
| 262 |
|
|
else
|
| 263 |
|
|
nest = nest->next;
|
| 264 |
|
|
|
| 265 |
|
|
gcc_assert (nest);
|
| 266 |
|
|
return nest;
|
| 267 |
|
|
}
|
| 268 |
|
|
|
| 269 |
|
|
/* Generates a polyhedral black box only if the bb contains interesting
|
| 270 |
|
|
information. */
|
| 271 |
|
|
|
| 272 |
|
|
static gimple_bb_p
|
| 273 |
|
|
try_generate_gimple_bb (scop_p scop, basic_block bb)
|
| 274 |
|
|
{
|
| 275 |
|
|
VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
|
| 276 |
|
|
sese region = SCOP_REGION (scop);
|
| 277 |
|
|
loop_p nest = outermost_loop_in_sese_1 (region, bb);
|
| 278 |
|
|
gimple_stmt_iterator gsi;
|
| 279 |
|
|
|
| 280 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 281 |
|
|
{
|
| 282 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 283 |
|
|
loop_p loop;
|
| 284 |
|
|
|
| 285 |
|
|
if (is_gimple_debug (stmt))
|
| 286 |
|
|
continue;
|
| 287 |
|
|
|
| 288 |
|
|
loop = loop_containing_stmt (stmt);
|
| 289 |
|
|
if (!loop_in_sese_p (loop, region))
|
| 290 |
|
|
loop = nest;
|
| 291 |
|
|
|
| 292 |
|
|
graphite_find_data_references_in_stmt (nest, loop, stmt, &drs);
|
| 293 |
|
|
}
|
| 294 |
|
|
|
| 295 |
|
|
return new_gimple_bb (bb, drs);
|
| 296 |
|
|
}
|
| 297 |
|
|
|
| 298 |
|
|
/* Returns true if all predecessors of BB, that are not dominated by BB, are
|
| 299 |
|
|
marked in MAP. The predecessors dominated by BB are loop latches and will
|
| 300 |
|
|
be handled after BB. */
|
| 301 |
|
|
|
| 302 |
|
|
static bool
|
| 303 |
|
|
all_non_dominated_preds_marked_p (basic_block bb, sbitmap map)
|
| 304 |
|
|
{
|
| 305 |
|
|
edge e;
|
| 306 |
|
|
edge_iterator ei;
|
| 307 |
|
|
|
| 308 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 309 |
|
|
if (!TEST_BIT (map, e->src->index)
|
| 310 |
|
|
&& !dominated_by_p (CDI_DOMINATORS, e->src, bb))
|
| 311 |
|
|
return false;
|
| 312 |
|
|
|
| 313 |
|
|
return true;
|
| 314 |
|
|
}
|
| 315 |
|
|
|
| 316 |
|
|
/* Compare the depth of two basic_block's P1 and P2. */
|
| 317 |
|
|
|
| 318 |
|
|
static int
|
| 319 |
|
|
compare_bb_depths (const void *p1, const void *p2)
|
| 320 |
|
|
{
|
| 321 |
|
|
const_basic_block const bb1 = *(const_basic_block const*)p1;
|
| 322 |
|
|
const_basic_block const bb2 = *(const_basic_block const*)p2;
|
| 323 |
|
|
int d1 = loop_depth (bb1->loop_father);
|
| 324 |
|
|
int d2 = loop_depth (bb2->loop_father);
|
| 325 |
|
|
|
| 326 |
|
|
if (d1 < d2)
|
| 327 |
|
|
return 1;
|
| 328 |
|
|
|
| 329 |
|
|
if (d1 > d2)
|
| 330 |
|
|
return -1;
|
| 331 |
|
|
|
| 332 |
|
|
return 0;
|
| 333 |
|
|
}
|
| 334 |
|
|
|
| 335 |
|
|
/* Sort the basic blocks from DOM such that the first are the ones at
|
| 336 |
|
|
a deepest loop level. */
|
| 337 |
|
|
|
| 338 |
|
|
static void
|
| 339 |
|
|
graphite_sort_dominated_info (VEC (basic_block, heap) *dom)
|
| 340 |
|
|
{
|
| 341 |
|
|
VEC_qsort (basic_block, dom, compare_bb_depths);
|
| 342 |
|
|
}
|
| 343 |
|
|
|
| 344 |
|
|
/* Recursive helper function for build_scops_bbs. */
|
| 345 |
|
|
|
| 346 |
|
|
static void
|
| 347 |
|
|
build_scop_bbs_1 (scop_p scop, sbitmap visited, basic_block bb)
|
| 348 |
|
|
{
|
| 349 |
|
|
sese region = SCOP_REGION (scop);
|
| 350 |
|
|
VEC (basic_block, heap) *dom;
|
| 351 |
|
|
poly_bb_p pbb;
|
| 352 |
|
|
|
| 353 |
|
|
if (TEST_BIT (visited, bb->index)
|
| 354 |
|
|
|| !bb_in_sese_p (bb, region))
|
| 355 |
|
|
return;
|
| 356 |
|
|
|
| 357 |
|
|
pbb = new_poly_bb (scop, try_generate_gimple_bb (scop, bb));
|
| 358 |
|
|
VEC_safe_push (poly_bb_p, heap, SCOP_BBS (scop), pbb);
|
| 359 |
|
|
SET_BIT (visited, bb->index);
|
| 360 |
|
|
|
| 361 |
|
|
dom = get_dominated_by (CDI_DOMINATORS, bb);
|
| 362 |
|
|
|
| 363 |
|
|
if (dom == NULL)
|
| 364 |
|
|
return;
|
| 365 |
|
|
|
| 366 |
|
|
graphite_sort_dominated_info (dom);
|
| 367 |
|
|
|
| 368 |
|
|
while (!VEC_empty (basic_block, dom))
|
| 369 |
|
|
{
|
| 370 |
|
|
int i;
|
| 371 |
|
|
basic_block dom_bb;
|
| 372 |
|
|
|
| 373 |
|
|
FOR_EACH_VEC_ELT (basic_block, dom, i, dom_bb)
|
| 374 |
|
|
if (all_non_dominated_preds_marked_p (dom_bb, visited))
|
| 375 |
|
|
{
|
| 376 |
|
|
build_scop_bbs_1 (scop, visited, dom_bb);
|
| 377 |
|
|
VEC_unordered_remove (basic_block, dom, i);
|
| 378 |
|
|
break;
|
| 379 |
|
|
}
|
| 380 |
|
|
}
|
| 381 |
|
|
|
| 382 |
|
|
VEC_free (basic_block, heap, dom);
|
| 383 |
|
|
}
|
| 384 |
|
|
|
| 385 |
|
|
/* Gather the basic blocks belonging to the SCOP. */
|
| 386 |
|
|
|
| 387 |
|
|
static void
|
| 388 |
|
|
build_scop_bbs (scop_p scop)
|
| 389 |
|
|
{
|
| 390 |
|
|
sbitmap visited = sbitmap_alloc (last_basic_block);
|
| 391 |
|
|
sese region = SCOP_REGION (scop);
|
| 392 |
|
|
|
| 393 |
|
|
sbitmap_zero (visited);
|
| 394 |
|
|
build_scop_bbs_1 (scop, visited, SESE_ENTRY_BB (region));
|
| 395 |
|
|
sbitmap_free (visited);
|
| 396 |
|
|
}
|
| 397 |
|
|
|
| 398 |
|
|
/* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
|
| 399 |
|
|
We generate SCATTERING_DIMENSIONS scattering dimensions.
|
| 400 |
|
|
|
| 401 |
|
|
CLooG 0.15.0 and previous versions require, that all
|
| 402 |
|
|
scattering functions of one CloogProgram have the same number of
|
| 403 |
|
|
scattering dimensions, therefore we allow to specify it. This
|
| 404 |
|
|
should be removed in future versions of CLooG.
|
| 405 |
|
|
|
| 406 |
|
|
The scattering polyhedron consists of these dimensions: scattering,
|
| 407 |
|
|
loop_iterators, parameters.
|
| 408 |
|
|
|
| 409 |
|
|
Example:
|
| 410 |
|
|
|
| 411 |
|
|
| scattering_dimensions = 5
|
| 412 |
|
|
| used_scattering_dimensions = 3
|
| 413 |
|
|
| nb_iterators = 1
|
| 414 |
|
|
| scop_nb_params = 2
|
| 415 |
|
|
|
|
| 416 |
|
|
| Schedule:
|
| 417 |
|
|
| i
|
| 418 |
|
|
| 4 5
|
| 419 |
|
|
|
|
| 420 |
|
|
| Scattering polyhedron:
|
| 421 |
|
|
|
|
| 422 |
|
|
| scattering: {s1, s2, s3, s4, s5}
|
| 423 |
|
|
| loop_iterators: {i}
|
| 424 |
|
|
| parameters: {p1, p2}
|
| 425 |
|
|
|
|
| 426 |
|
|
| s1 s2 s3 s4 s5 i p1 p2 1
|
| 427 |
|
|
| 1 0 0 0 0 0 0 0 -4 = 0
|
| 428 |
|
|
| 0 1 0 0 0 -1 0 0 0 = 0
|
| 429 |
|
|
| 0 0 1 0 0 0 0 0 -5 = 0 */
|
| 430 |
|
|
|
| 431 |
|
|
static void
|
| 432 |
|
|
build_pbb_scattering_polyhedrons (ppl_Linear_Expression_t static_schedule,
|
| 433 |
|
|
poly_bb_p pbb, int scattering_dimensions)
|
| 434 |
|
|
{
|
| 435 |
|
|
int i;
|
| 436 |
|
|
scop_p scop = PBB_SCOP (pbb);
|
| 437 |
|
|
int nb_iterators = pbb_dim_iter_domain (pbb);
|
| 438 |
|
|
int used_scattering_dimensions = nb_iterators * 2 + 1;
|
| 439 |
|
|
int nb_params = scop_nb_params (scop);
|
| 440 |
|
|
ppl_Coefficient_t c;
|
| 441 |
|
|
ppl_dimension_type dim = scattering_dimensions + nb_iterators + nb_params;
|
| 442 |
|
|
mpz_t v;
|
| 443 |
|
|
|
| 444 |
|
|
gcc_assert (scattering_dimensions >= used_scattering_dimensions);
|
| 445 |
|
|
|
| 446 |
|
|
mpz_init (v);
|
| 447 |
|
|
ppl_new_Coefficient (&c);
|
| 448 |
|
|
PBB_TRANSFORMED (pbb) = poly_scattering_new ();
|
| 449 |
|
|
ppl_new_C_Polyhedron_from_space_dimension
|
| 450 |
|
|
(&PBB_TRANSFORMED_SCATTERING (pbb), dim, 0);
|
| 451 |
|
|
|
| 452 |
|
|
PBB_NB_SCATTERING_TRANSFORM (pbb) = scattering_dimensions;
|
| 453 |
|
|
|
| 454 |
|
|
for (i = 0; i < scattering_dimensions; i++)
|
| 455 |
|
|
{
|
| 456 |
|
|
ppl_Constraint_t cstr;
|
| 457 |
|
|
ppl_Linear_Expression_t expr;
|
| 458 |
|
|
|
| 459 |
|
|
ppl_new_Linear_Expression_with_dimension (&expr, dim);
|
| 460 |
|
|
mpz_set_si (v, 1);
|
| 461 |
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
| 462 |
|
|
ppl_Linear_Expression_add_to_coefficient (expr, i, c);
|
| 463 |
|
|
|
| 464 |
|
|
/* Textual order inside this loop. */
|
| 465 |
|
|
if ((i % 2) == 0)
|
| 466 |
|
|
{
|
| 467 |
|
|
ppl_Linear_Expression_coefficient (static_schedule, i / 2, c);
|
| 468 |
|
|
ppl_Coefficient_to_mpz_t (c, v);
|
| 469 |
|
|
mpz_neg (v, v);
|
| 470 |
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
| 471 |
|
|
ppl_Linear_Expression_add_to_inhomogeneous (expr, c);
|
| 472 |
|
|
}
|
| 473 |
|
|
|
| 474 |
|
|
/* Iterations of this loop. */
|
| 475 |
|
|
else /* if ((i % 2) == 1) */
|
| 476 |
|
|
{
|
| 477 |
|
|
int loop = (i - 1) / 2;
|
| 478 |
|
|
|
| 479 |
|
|
mpz_set_si (v, -1);
|
| 480 |
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
| 481 |
|
|
ppl_Linear_Expression_add_to_coefficient
|
| 482 |
|
|
(expr, scattering_dimensions + loop, c);
|
| 483 |
|
|
}
|
| 484 |
|
|
|
| 485 |
|
|
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
|
| 486 |
|
|
ppl_Polyhedron_add_constraint (PBB_TRANSFORMED_SCATTERING (pbb), cstr);
|
| 487 |
|
|
ppl_delete_Linear_Expression (expr);
|
| 488 |
|
|
ppl_delete_Constraint (cstr);
|
| 489 |
|
|
}
|
| 490 |
|
|
|
| 491 |
|
|
mpz_clear (v);
|
| 492 |
|
|
ppl_delete_Coefficient (c);
|
| 493 |
|
|
|
| 494 |
|
|
PBB_ORIGINAL (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
|
| 495 |
|
|
}
|
| 496 |
|
|
|
| 497 |
|
|
/* Build for BB the static schedule.
|
| 498 |
|
|
|
| 499 |
|
|
The static schedule is a Dewey numbering of the abstract syntax
|
| 500 |
|
|
tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
|
| 501 |
|
|
|
| 502 |
|
|
The following example informally defines the static schedule:
|
| 503 |
|
|
|
| 504 |
|
|
A
|
| 505 |
|
|
for (i: ...)
|
| 506 |
|
|
{
|
| 507 |
|
|
for (j: ...)
|
| 508 |
|
|
{
|
| 509 |
|
|
B
|
| 510 |
|
|
C
|
| 511 |
|
|
}
|
| 512 |
|
|
|
| 513 |
|
|
for (k: ...)
|
| 514 |
|
|
{
|
| 515 |
|
|
D
|
| 516 |
|
|
E
|
| 517 |
|
|
}
|
| 518 |
|
|
}
|
| 519 |
|
|
F
|
| 520 |
|
|
|
| 521 |
|
|
Static schedules for A to F:
|
| 522 |
|
|
|
| 523 |
|
|
DEPTH
|
| 524 |
|
|
|
| 525 |
|
|
A 0
|
| 526 |
|
|
B 1 0 0
|
| 527 |
|
|
C 1 0 1
|
| 528 |
|
|
D 1 1 0
|
| 529 |
|
|
E 1 1 1
|
| 530 |
|
|
F 2
|
| 531 |
|
|
*/
|
| 532 |
|
|
|
| 533 |
|
|
static void
|
| 534 |
|
|
build_scop_scattering (scop_p scop)
|
| 535 |
|
|
{
|
| 536 |
|
|
int i;
|
| 537 |
|
|
poly_bb_p pbb;
|
| 538 |
|
|
gimple_bb_p previous_gbb = NULL;
|
| 539 |
|
|
ppl_Linear_Expression_t static_schedule;
|
| 540 |
|
|
ppl_Coefficient_t c;
|
| 541 |
|
|
mpz_t v;
|
| 542 |
|
|
|
| 543 |
|
|
mpz_init (v);
|
| 544 |
|
|
ppl_new_Coefficient (&c);
|
| 545 |
|
|
ppl_new_Linear_Expression (&static_schedule);
|
| 546 |
|
|
|
| 547 |
|
|
/* We have to start schedules at 0 on the first component and
|
| 548 |
|
|
because we cannot compare_prefix_loops against a previous loop,
|
| 549 |
|
|
prefix will be equal to zero, and that index will be
|
| 550 |
|
|
incremented before copying. */
|
| 551 |
|
|
mpz_set_si (v, -1);
|
| 552 |
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
| 553 |
|
|
ppl_Linear_Expression_add_to_coefficient (static_schedule, 0, c);
|
| 554 |
|
|
|
| 555 |
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
| 556 |
|
|
{
|
| 557 |
|
|
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
|
| 558 |
|
|
ppl_Linear_Expression_t common;
|
| 559 |
|
|
int prefix;
|
| 560 |
|
|
int nb_scat_dims = pbb_dim_iter_domain (pbb) * 2 + 1;
|
| 561 |
|
|
|
| 562 |
|
|
if (previous_gbb)
|
| 563 |
|
|
prefix = nb_common_loops (SCOP_REGION (scop), previous_gbb, gbb);
|
| 564 |
|
|
else
|
| 565 |
|
|
prefix = 0;
|
| 566 |
|
|
|
| 567 |
|
|
previous_gbb = gbb;
|
| 568 |
|
|
ppl_new_Linear_Expression_with_dimension (&common, prefix + 1);
|
| 569 |
|
|
ppl_assign_Linear_Expression_from_Linear_Expression (common,
|
| 570 |
|
|
static_schedule);
|
| 571 |
|
|
|
| 572 |
|
|
mpz_set_si (v, 1);
|
| 573 |
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
| 574 |
|
|
ppl_Linear_Expression_add_to_coefficient (common, prefix, c);
|
| 575 |
|
|
ppl_assign_Linear_Expression_from_Linear_Expression (static_schedule,
|
| 576 |
|
|
common);
|
| 577 |
|
|
|
| 578 |
|
|
build_pbb_scattering_polyhedrons (common, pbb, nb_scat_dims);
|
| 579 |
|
|
|
| 580 |
|
|
ppl_delete_Linear_Expression (common);
|
| 581 |
|
|
}
|
| 582 |
|
|
|
| 583 |
|
|
mpz_clear (v);
|
| 584 |
|
|
ppl_delete_Coefficient (c);
|
| 585 |
|
|
ppl_delete_Linear_Expression (static_schedule);
|
| 586 |
|
|
}
|
| 587 |
|
|
|
| 588 |
|
|
/* Add the value K to the dimension D of the linear expression EXPR. */
|
| 589 |
|
|
|
| 590 |
|
|
static void
|
| 591 |
|
|
add_value_to_dim (ppl_dimension_type d, ppl_Linear_Expression_t expr,
|
| 592 |
|
|
mpz_t k)
|
| 593 |
|
|
{
|
| 594 |
|
|
mpz_t val;
|
| 595 |
|
|
ppl_Coefficient_t coef;
|
| 596 |
|
|
|
| 597 |
|
|
ppl_new_Coefficient (&coef);
|
| 598 |
|
|
ppl_Linear_Expression_coefficient (expr, d, coef);
|
| 599 |
|
|
mpz_init (val);
|
| 600 |
|
|
ppl_Coefficient_to_mpz_t (coef, val);
|
| 601 |
|
|
|
| 602 |
|
|
mpz_add (val, val, k);
|
| 603 |
|
|
|
| 604 |
|
|
ppl_assign_Coefficient_from_mpz_t (coef, val);
|
| 605 |
|
|
ppl_Linear_Expression_add_to_coefficient (expr, d, coef);
|
| 606 |
|
|
mpz_clear (val);
|
| 607 |
|
|
ppl_delete_Coefficient (coef);
|
| 608 |
|
|
}
|
| 609 |
|
|
|
| 610 |
|
|
/* In the context of scop S, scan E, the right hand side of a scalar
|
| 611 |
|
|
evolution function in loop VAR, and translate it to a linear
|
| 612 |
|
|
expression EXPR. */
|
| 613 |
|
|
|
| 614 |
|
|
static void
|
| 615 |
|
|
scan_tree_for_params_right_scev (sese s, tree e, int var,
|
| 616 |
|
|
ppl_Linear_Expression_t expr)
|
| 617 |
|
|
{
|
| 618 |
|
|
if (expr)
|
| 619 |
|
|
{
|
| 620 |
|
|
loop_p loop = get_loop (var);
|
| 621 |
|
|
ppl_dimension_type l = sese_loop_depth (s, loop) - 1;
|
| 622 |
|
|
mpz_t val;
|
| 623 |
|
|
|
| 624 |
|
|
/* Scalar evolutions should happen in the sese region. */
|
| 625 |
|
|
gcc_assert (sese_loop_depth (s, loop) > 0);
|
| 626 |
|
|
|
| 627 |
|
|
/* We can not deal with parametric strides like:
|
| 628 |
|
|
|
| 629 |
|
|
| p = parameter;
|
| 630 |
|
|
|
|
| 631 |
|
|
| for i:
|
| 632 |
|
|
| a [i * p] = ... */
|
| 633 |
|
|
gcc_assert (TREE_CODE (e) == INTEGER_CST);
|
| 634 |
|
|
|
| 635 |
|
|
mpz_init (val);
|
| 636 |
|
|
tree_int_to_gmp (e, val);
|
| 637 |
|
|
add_value_to_dim (l, expr, val);
|
| 638 |
|
|
mpz_clear (val);
|
| 639 |
|
|
}
|
| 640 |
|
|
}
|
| 641 |
|
|
|
| 642 |
|
|
/* Scan the integer constant CST, and add it to the inhomogeneous part of the
|
| 643 |
|
|
linear expression EXPR. K is the multiplier of the constant. */
|
| 644 |
|
|
|
| 645 |
|
|
static void
|
| 646 |
|
|
scan_tree_for_params_int (tree cst, ppl_Linear_Expression_t expr, mpz_t k)
|
| 647 |
|
|
{
|
| 648 |
|
|
mpz_t val;
|
| 649 |
|
|
ppl_Coefficient_t coef;
|
| 650 |
|
|
tree type = TREE_TYPE (cst);
|
| 651 |
|
|
|
| 652 |
|
|
mpz_init (val);
|
| 653 |
|
|
|
| 654 |
|
|
/* Necessary to not get "-1 = 2^n - 1". */
|
| 655 |
|
|
mpz_set_double_int (val, double_int_sext (tree_to_double_int (cst),
|
| 656 |
|
|
TYPE_PRECISION (type)), false);
|
| 657 |
|
|
|
| 658 |
|
|
mpz_mul (val, val, k);
|
| 659 |
|
|
ppl_new_Coefficient (&coef);
|
| 660 |
|
|
ppl_assign_Coefficient_from_mpz_t (coef, val);
|
| 661 |
|
|
ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
|
| 662 |
|
|
mpz_clear (val);
|
| 663 |
|
|
ppl_delete_Coefficient (coef);
|
| 664 |
|
|
}
|
| 665 |
|
|
|
| 666 |
|
|
/* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
|
| 667 |
|
|
Otherwise returns -1. */
|
| 668 |
|
|
|
| 669 |
|
|
static inline int
|
| 670 |
|
|
parameter_index_in_region_1 (tree name, sese region)
|
| 671 |
|
|
{
|
| 672 |
|
|
int i;
|
| 673 |
|
|
tree p;
|
| 674 |
|
|
|
| 675 |
|
|
gcc_assert (TREE_CODE (name) == SSA_NAME);
|
| 676 |
|
|
|
| 677 |
|
|
FOR_EACH_VEC_ELT (tree, SESE_PARAMS (region), i, p)
|
| 678 |
|
|
if (p == name)
|
| 679 |
|
|
return i;
|
| 680 |
|
|
|
| 681 |
|
|
return -1;
|
| 682 |
|
|
}
|
| 683 |
|
|
|
| 684 |
|
|
/* When the parameter NAME is in REGION, returns its index in
|
| 685 |
|
|
SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
|
| 686 |
|
|
and returns the index of NAME. */
|
| 687 |
|
|
|
| 688 |
|
|
static int
|
| 689 |
|
|
parameter_index_in_region (tree name, sese region)
|
| 690 |
|
|
{
|
| 691 |
|
|
int i;
|
| 692 |
|
|
|
| 693 |
|
|
gcc_assert (TREE_CODE (name) == SSA_NAME);
|
| 694 |
|
|
|
| 695 |
|
|
i = parameter_index_in_region_1 (name, region);
|
| 696 |
|
|
if (i != -1)
|
| 697 |
|
|
return i;
|
| 698 |
|
|
|
| 699 |
|
|
gcc_assert (SESE_ADD_PARAMS (region));
|
| 700 |
|
|
|
| 701 |
|
|
i = VEC_length (tree, SESE_PARAMS (region));
|
| 702 |
|
|
VEC_safe_push (tree, heap, SESE_PARAMS (region), name);
|
| 703 |
|
|
return i;
|
| 704 |
|
|
}
|
| 705 |
|
|
|
| 706 |
|
|
/* In the context of sese S, scan the expression E and translate it to
|
| 707 |
|
|
a linear expression C. When parsing a symbolic multiplication, K
|
| 708 |
|
|
represents the constant multiplier of an expression containing
|
| 709 |
|
|
parameters. */
|
| 710 |
|
|
|
| 711 |
|
|
static void
|
| 712 |
|
|
scan_tree_for_params (sese s, tree e, ppl_Linear_Expression_t c,
|
| 713 |
|
|
mpz_t k)
|
| 714 |
|
|
{
|
| 715 |
|
|
if (e == chrec_dont_know)
|
| 716 |
|
|
return;
|
| 717 |
|
|
|
| 718 |
|
|
switch (TREE_CODE (e))
|
| 719 |
|
|
{
|
| 720 |
|
|
case POLYNOMIAL_CHREC:
|
| 721 |
|
|
scan_tree_for_params_right_scev (s, CHREC_RIGHT (e),
|
| 722 |
|
|
CHREC_VARIABLE (e), c);
|
| 723 |
|
|
scan_tree_for_params (s, CHREC_LEFT (e), c, k);
|
| 724 |
|
|
break;
|
| 725 |
|
|
|
| 726 |
|
|
case MULT_EXPR:
|
| 727 |
|
|
if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
|
| 728 |
|
|
{
|
| 729 |
|
|
if (c)
|
| 730 |
|
|
{
|
| 731 |
|
|
mpz_t val;
|
| 732 |
|
|
gcc_assert (host_integerp (TREE_OPERAND (e, 1), 0));
|
| 733 |
|
|
mpz_init (val);
|
| 734 |
|
|
tree_int_to_gmp (TREE_OPERAND (e, 1), val);
|
| 735 |
|
|
mpz_mul (val, val, k);
|
| 736 |
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, val);
|
| 737 |
|
|
mpz_clear (val);
|
| 738 |
|
|
}
|
| 739 |
|
|
else
|
| 740 |
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
|
| 741 |
|
|
}
|
| 742 |
|
|
else
|
| 743 |
|
|
{
|
| 744 |
|
|
if (c)
|
| 745 |
|
|
{
|
| 746 |
|
|
mpz_t val;
|
| 747 |
|
|
gcc_assert (host_integerp (TREE_OPERAND (e, 0), 0));
|
| 748 |
|
|
mpz_init (val);
|
| 749 |
|
|
tree_int_to_gmp (TREE_OPERAND (e, 0), val);
|
| 750 |
|
|
mpz_mul (val, val, k);
|
| 751 |
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 1), c, val);
|
| 752 |
|
|
mpz_clear (val);
|
| 753 |
|
|
}
|
| 754 |
|
|
else
|
| 755 |
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
|
| 756 |
|
|
}
|
| 757 |
|
|
break;
|
| 758 |
|
|
|
| 759 |
|
|
case PLUS_EXPR:
|
| 760 |
|
|
case POINTER_PLUS_EXPR:
|
| 761 |
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
|
| 762 |
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
|
| 763 |
|
|
break;
|
| 764 |
|
|
|
| 765 |
|
|
case MINUS_EXPR:
|
| 766 |
|
|
{
|
| 767 |
|
|
ppl_Linear_Expression_t tmp_expr = NULL;
|
| 768 |
|
|
|
| 769 |
|
|
if (c)
|
| 770 |
|
|
{
|
| 771 |
|
|
ppl_dimension_type dim;
|
| 772 |
|
|
ppl_Linear_Expression_space_dimension (c, &dim);
|
| 773 |
|
|
ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
|
| 774 |
|
|
}
|
| 775 |
|
|
|
| 776 |
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
|
| 777 |
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 1), tmp_expr, k);
|
| 778 |
|
|
|
| 779 |
|
|
if (c)
|
| 780 |
|
|
{
|
| 781 |
|
|
ppl_subtract_Linear_Expression_from_Linear_Expression (c,
|
| 782 |
|
|
tmp_expr);
|
| 783 |
|
|
ppl_delete_Linear_Expression (tmp_expr);
|
| 784 |
|
|
}
|
| 785 |
|
|
|
| 786 |
|
|
break;
|
| 787 |
|
|
}
|
| 788 |
|
|
|
| 789 |
|
|
case NEGATE_EXPR:
|
| 790 |
|
|
{
|
| 791 |
|
|
ppl_Linear_Expression_t tmp_expr = NULL;
|
| 792 |
|
|
|
| 793 |
|
|
if (c)
|
| 794 |
|
|
{
|
| 795 |
|
|
ppl_dimension_type dim;
|
| 796 |
|
|
ppl_Linear_Expression_space_dimension (c, &dim);
|
| 797 |
|
|
ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
|
| 798 |
|
|
}
|
| 799 |
|
|
|
| 800 |
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
|
| 801 |
|
|
|
| 802 |
|
|
if (c)
|
| 803 |
|
|
{
|
| 804 |
|
|
ppl_subtract_Linear_Expression_from_Linear_Expression (c,
|
| 805 |
|
|
tmp_expr);
|
| 806 |
|
|
ppl_delete_Linear_Expression (tmp_expr);
|
| 807 |
|
|
}
|
| 808 |
|
|
|
| 809 |
|
|
break;
|
| 810 |
|
|
}
|
| 811 |
|
|
|
| 812 |
|
|
case BIT_NOT_EXPR:
|
| 813 |
|
|
{
|
| 814 |
|
|
ppl_Linear_Expression_t tmp_expr = NULL;
|
| 815 |
|
|
|
| 816 |
|
|
if (c)
|
| 817 |
|
|
{
|
| 818 |
|
|
ppl_dimension_type dim;
|
| 819 |
|
|
ppl_Linear_Expression_space_dimension (c, &dim);
|
| 820 |
|
|
ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
|
| 821 |
|
|
}
|
| 822 |
|
|
|
| 823 |
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
|
| 824 |
|
|
|
| 825 |
|
|
if (c)
|
| 826 |
|
|
{
|
| 827 |
|
|
ppl_Coefficient_t coef;
|
| 828 |
|
|
mpz_t minus_one;
|
| 829 |
|
|
|
| 830 |
|
|
ppl_subtract_Linear_Expression_from_Linear_Expression (c,
|
| 831 |
|
|
tmp_expr);
|
| 832 |
|
|
ppl_delete_Linear_Expression (tmp_expr);
|
| 833 |
|
|
mpz_init (minus_one);
|
| 834 |
|
|
mpz_set_si (minus_one, -1);
|
| 835 |
|
|
ppl_new_Coefficient_from_mpz_t (&coef, minus_one);
|
| 836 |
|
|
ppl_Linear_Expression_add_to_inhomogeneous (c, coef);
|
| 837 |
|
|
mpz_clear (minus_one);
|
| 838 |
|
|
ppl_delete_Coefficient (coef);
|
| 839 |
|
|
}
|
| 840 |
|
|
|
| 841 |
|
|
break;
|
| 842 |
|
|
}
|
| 843 |
|
|
|
| 844 |
|
|
case SSA_NAME:
|
| 845 |
|
|
{
|
| 846 |
|
|
ppl_dimension_type p = parameter_index_in_region (e, s);
|
| 847 |
|
|
|
| 848 |
|
|
if (c)
|
| 849 |
|
|
{
|
| 850 |
|
|
ppl_dimension_type dim;
|
| 851 |
|
|
ppl_Linear_Expression_space_dimension (c, &dim);
|
| 852 |
|
|
p += dim - sese_nb_params (s);
|
| 853 |
|
|
add_value_to_dim (p, c, k);
|
| 854 |
|
|
}
|
| 855 |
|
|
break;
|
| 856 |
|
|
}
|
| 857 |
|
|
|
| 858 |
|
|
case INTEGER_CST:
|
| 859 |
|
|
if (c)
|
| 860 |
|
|
scan_tree_for_params_int (e, c, k);
|
| 861 |
|
|
break;
|
| 862 |
|
|
|
| 863 |
|
|
CASE_CONVERT:
|
| 864 |
|
|
case NON_LVALUE_EXPR:
|
| 865 |
|
|
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
|
| 866 |
|
|
break;
|
| 867 |
|
|
|
| 868 |
|
|
case ADDR_EXPR:
|
| 869 |
|
|
break;
|
| 870 |
|
|
|
| 871 |
|
|
default:
|
| 872 |
|
|
gcc_unreachable ();
|
| 873 |
|
|
break;
|
| 874 |
|
|
}
|
| 875 |
|
|
}
|
| 876 |
|
|
|
| 877 |
|
|
/* Find parameters with respect to REGION in BB. We are looking in memory
|
| 878 |
|
|
access functions, conditions and loop bounds. */
|
| 879 |
|
|
|
| 880 |
|
|
static void
|
| 881 |
|
|
find_params_in_bb (sese region, gimple_bb_p gbb)
|
| 882 |
|
|
{
|
| 883 |
|
|
int i;
|
| 884 |
|
|
unsigned j;
|
| 885 |
|
|
data_reference_p dr;
|
| 886 |
|
|
gimple stmt;
|
| 887 |
|
|
loop_p loop = GBB_BB (gbb)->loop_father;
|
| 888 |
|
|
mpz_t one;
|
| 889 |
|
|
|
| 890 |
|
|
mpz_init (one);
|
| 891 |
|
|
mpz_set_si (one, 1);
|
| 892 |
|
|
|
| 893 |
|
|
/* Find parameters in the access functions of data references. */
|
| 894 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, GBB_DATA_REFS (gbb), i, dr)
|
| 895 |
|
|
for (j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
|
| 896 |
|
|
scan_tree_for_params (region, DR_ACCESS_FN (dr, j), NULL, one);
|
| 897 |
|
|
|
| 898 |
|
|
/* Find parameters in conditional statements. */
|
| 899 |
|
|
FOR_EACH_VEC_ELT (gimple, GBB_CONDITIONS (gbb), i, stmt)
|
| 900 |
|
|
{
|
| 901 |
|
|
tree lhs = scalar_evolution_in_region (region, loop,
|
| 902 |
|
|
gimple_cond_lhs (stmt));
|
| 903 |
|
|
tree rhs = scalar_evolution_in_region (region, loop,
|
| 904 |
|
|
gimple_cond_rhs (stmt));
|
| 905 |
|
|
|
| 906 |
|
|
scan_tree_for_params (region, lhs, NULL, one);
|
| 907 |
|
|
scan_tree_for_params (region, rhs, NULL, one);
|
| 908 |
|
|
}
|
| 909 |
|
|
|
| 910 |
|
|
mpz_clear (one);
|
| 911 |
|
|
}
|
| 912 |
|
|
|
| 913 |
|
|
/* Record the parameters used in the SCOP. A variable is a parameter
|
| 914 |
|
|
in a scop if it does not vary during the execution of that scop. */
|
| 915 |
|
|
|
| 916 |
|
|
static void
|
| 917 |
|
|
find_scop_parameters (scop_p scop)
|
| 918 |
|
|
{
|
| 919 |
|
|
poly_bb_p pbb;
|
| 920 |
|
|
unsigned i;
|
| 921 |
|
|
sese region = SCOP_REGION (scop);
|
| 922 |
|
|
struct loop *loop;
|
| 923 |
|
|
mpz_t one;
|
| 924 |
|
|
|
| 925 |
|
|
mpz_init (one);
|
| 926 |
|
|
mpz_set_si (one, 1);
|
| 927 |
|
|
|
| 928 |
|
|
/* Find the parameters used in the loop bounds. */
|
| 929 |
|
|
FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), i, loop)
|
| 930 |
|
|
{
|
| 931 |
|
|
tree nb_iters = number_of_latch_executions (loop);
|
| 932 |
|
|
|
| 933 |
|
|
if (!chrec_contains_symbols (nb_iters))
|
| 934 |
|
|
continue;
|
| 935 |
|
|
|
| 936 |
|
|
nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
|
| 937 |
|
|
scan_tree_for_params (region, nb_iters, NULL, one);
|
| 938 |
|
|
}
|
| 939 |
|
|
|
| 940 |
|
|
mpz_clear (one);
|
| 941 |
|
|
|
| 942 |
|
|
/* Find the parameters used in data accesses. */
|
| 943 |
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
| 944 |
|
|
find_params_in_bb (region, PBB_BLACK_BOX (pbb));
|
| 945 |
|
|
|
| 946 |
|
|
scop_set_nb_params (scop, sese_nb_params (region));
|
| 947 |
|
|
SESE_ADD_PARAMS (region) = false;
|
| 948 |
|
|
|
| 949 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension
|
| 950 |
|
|
(&SCOP_CONTEXT (scop), scop_nb_params (scop), 0);
|
| 951 |
|
|
}
|
| 952 |
|
|
|
| 953 |
|
|
/* Insert in the SCOP context constraints from the estimation of the
|
| 954 |
|
|
number of iterations. UB_EXPR is a linear expression describing
|
| 955 |
|
|
the number of iterations in a loop. This expression is bounded by
|
| 956 |
|
|
the estimation NIT. */
|
| 957 |
|
|
|
| 958 |
|
|
static void
|
| 959 |
|
|
add_upper_bounds_from_estimated_nit (scop_p scop, double_int nit,
|
| 960 |
|
|
ppl_dimension_type dim,
|
| 961 |
|
|
ppl_Linear_Expression_t ub_expr)
|
| 962 |
|
|
{
|
| 963 |
|
|
mpz_t val;
|
| 964 |
|
|
ppl_Linear_Expression_t nb_iters_le;
|
| 965 |
|
|
ppl_Polyhedron_t pol;
|
| 966 |
|
|
ppl_Coefficient_t coef;
|
| 967 |
|
|
ppl_Constraint_t ub;
|
| 968 |
|
|
|
| 969 |
|
|
ppl_new_C_Polyhedron_from_space_dimension (&pol, dim, 0);
|
| 970 |
|
|
ppl_new_Linear_Expression_from_Linear_Expression (&nb_iters_le,
|
| 971 |
|
|
ub_expr);
|
| 972 |
|
|
|
| 973 |
|
|
/* Construct the negated number of last iteration in VAL. */
|
| 974 |
|
|
mpz_init (val);
|
| 975 |
|
|
mpz_set_double_int (val, nit, false);
|
| 976 |
|
|
mpz_sub_ui (val, val, 1);
|
| 977 |
|
|
mpz_neg (val, val);
|
| 978 |
|
|
|
| 979 |
|
|
/* NB_ITERS_LE holds the number of last iteration in
|
| 980 |
|
|
parametrical form. Subtract estimated number of last
|
| 981 |
|
|
iteration and assert that result is not positive. */
|
| 982 |
|
|
ppl_new_Coefficient_from_mpz_t (&coef, val);
|
| 983 |
|
|
ppl_Linear_Expression_add_to_inhomogeneous (nb_iters_le, coef);
|
| 984 |
|
|
ppl_delete_Coefficient (coef);
|
| 985 |
|
|
ppl_new_Constraint (&ub, nb_iters_le,
|
| 986 |
|
|
PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
|
| 987 |
|
|
ppl_Polyhedron_add_constraint (pol, ub);
|
| 988 |
|
|
|
| 989 |
|
|
/* Remove all but last GDIM dimensions from POL to obtain
|
| 990 |
|
|
only the constraints on the parameters. */
|
| 991 |
|
|
{
|
| 992 |
|
|
graphite_dim_t gdim = scop_nb_params (scop);
|
| 993 |
|
|
ppl_dimension_type *dims = XNEWVEC (ppl_dimension_type, dim - gdim);
|
| 994 |
|
|
graphite_dim_t i;
|
| 995 |
|
|
|
| 996 |
|
|
for (i = 0; i < dim - gdim; i++)
|
| 997 |
|
|
dims[i] = i;
|
| 998 |
|
|
|
| 999 |
|
|
ppl_Polyhedron_remove_space_dimensions (pol, dims, dim - gdim);
|
| 1000 |
|
|
XDELETEVEC (dims);
|
| 1001 |
|
|
}
|
| 1002 |
|
|
|
| 1003 |
|
|
/* Add the constraints on the parameters to the SCoP context. */
|
| 1004 |
|
|
{
|
| 1005 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t constraints_ps;
|
| 1006 |
|
|
|
| 1007 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
|
| 1008 |
|
|
(&constraints_ps, pol);
|
| 1009 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
|
| 1010 |
|
|
(SCOP_CONTEXT (scop), constraints_ps);
|
| 1011 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (constraints_ps);
|
| 1012 |
|
|
}
|
| 1013 |
|
|
|
| 1014 |
|
|
ppl_delete_Polyhedron (pol);
|
| 1015 |
|
|
ppl_delete_Linear_Expression (nb_iters_le);
|
| 1016 |
|
|
ppl_delete_Constraint (ub);
|
| 1017 |
|
|
mpz_clear (val);
|
| 1018 |
|
|
}
|
| 1019 |
|
|
|
| 1020 |
|
|
/* Builds the constraint polyhedra for LOOP in SCOP. OUTER_PH gives
|
| 1021 |
|
|
the constraints for the surrounding loops. */
|
| 1022 |
|
|
|
| 1023 |
|
|
static void
|
| 1024 |
|
|
build_loop_iteration_domains (scop_p scop, struct loop *loop,
|
| 1025 |
|
|
ppl_Polyhedron_t outer_ph, int nb,
|
| 1026 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t *domains)
|
| 1027 |
|
|
{
|
| 1028 |
|
|
int i;
|
| 1029 |
|
|
ppl_Polyhedron_t ph;
|
| 1030 |
|
|
tree nb_iters = number_of_latch_executions (loop);
|
| 1031 |
|
|
ppl_dimension_type dim = nb + 1 + scop_nb_params (scop);
|
| 1032 |
|
|
sese region = SCOP_REGION (scop);
|
| 1033 |
|
|
|
| 1034 |
|
|
{
|
| 1035 |
|
|
ppl_const_Constraint_System_t pcs;
|
| 1036 |
|
|
ppl_dimension_type *map
|
| 1037 |
|
|
= (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
|
| 1038 |
|
|
|
| 1039 |
|
|
ppl_new_C_Polyhedron_from_space_dimension (&ph, dim, 0);
|
| 1040 |
|
|
ppl_Polyhedron_get_constraints (outer_ph, &pcs);
|
| 1041 |
|
|
ppl_Polyhedron_add_constraints (ph, pcs);
|
| 1042 |
|
|
|
| 1043 |
|
|
for (i = 0; i < (int) nb; i++)
|
| 1044 |
|
|
map[i] = i;
|
| 1045 |
|
|
for (i = (int) nb; i < (int) dim - 1; i++)
|
| 1046 |
|
|
map[i] = i + 1;
|
| 1047 |
|
|
map[dim - 1] = nb;
|
| 1048 |
|
|
|
| 1049 |
|
|
ppl_Polyhedron_map_space_dimensions (ph, map, dim);
|
| 1050 |
|
|
free (map);
|
| 1051 |
|
|
}
|
| 1052 |
|
|
|
| 1053 |
|
|
/* 0 <= loop_i */
|
| 1054 |
|
|
{
|
| 1055 |
|
|
ppl_Constraint_t lb;
|
| 1056 |
|
|
ppl_Linear_Expression_t lb_expr;
|
| 1057 |
|
|
|
| 1058 |
|
|
ppl_new_Linear_Expression_with_dimension (&lb_expr, dim);
|
| 1059 |
|
|
ppl_set_coef (lb_expr, nb, 1);
|
| 1060 |
|
|
ppl_new_Constraint (&lb, lb_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
| 1061 |
|
|
ppl_delete_Linear_Expression (lb_expr);
|
| 1062 |
|
|
ppl_Polyhedron_add_constraint (ph, lb);
|
| 1063 |
|
|
ppl_delete_Constraint (lb);
|
| 1064 |
|
|
}
|
| 1065 |
|
|
|
| 1066 |
|
|
if (TREE_CODE (nb_iters) == INTEGER_CST)
|
| 1067 |
|
|
{
|
| 1068 |
|
|
ppl_Constraint_t ub;
|
| 1069 |
|
|
ppl_Linear_Expression_t ub_expr;
|
| 1070 |
|
|
|
| 1071 |
|
|
ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
|
| 1072 |
|
|
|
| 1073 |
|
|
/* loop_i <= cst_nb_iters */
|
| 1074 |
|
|
ppl_set_coef (ub_expr, nb, -1);
|
| 1075 |
|
|
ppl_set_inhomogeneous_tree (ub_expr, nb_iters);
|
| 1076 |
|
|
ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
| 1077 |
|
|
ppl_Polyhedron_add_constraint (ph, ub);
|
| 1078 |
|
|
ppl_delete_Linear_Expression (ub_expr);
|
| 1079 |
|
|
ppl_delete_Constraint (ub);
|
| 1080 |
|
|
}
|
| 1081 |
|
|
else if (!chrec_contains_undetermined (nb_iters))
|
| 1082 |
|
|
{
|
| 1083 |
|
|
mpz_t one;
|
| 1084 |
|
|
ppl_Constraint_t ub;
|
| 1085 |
|
|
ppl_Linear_Expression_t ub_expr;
|
| 1086 |
|
|
double_int nit;
|
| 1087 |
|
|
|
| 1088 |
|
|
mpz_init (one);
|
| 1089 |
|
|
mpz_set_si (one, 1);
|
| 1090 |
|
|
ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
|
| 1091 |
|
|
nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
|
| 1092 |
|
|
scan_tree_for_params (SCOP_REGION (scop), nb_iters, ub_expr, one);
|
| 1093 |
|
|
mpz_clear (one);
|
| 1094 |
|
|
|
| 1095 |
|
|
if (max_stmt_executions (loop, true, &nit))
|
| 1096 |
|
|
add_upper_bounds_from_estimated_nit (scop, nit, dim, ub_expr);
|
| 1097 |
|
|
|
| 1098 |
|
|
/* loop_i <= expr_nb_iters */
|
| 1099 |
|
|
ppl_set_coef (ub_expr, nb, -1);
|
| 1100 |
|
|
ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
| 1101 |
|
|
ppl_Polyhedron_add_constraint (ph, ub);
|
| 1102 |
|
|
ppl_delete_Linear_Expression (ub_expr);
|
| 1103 |
|
|
ppl_delete_Constraint (ub);
|
| 1104 |
|
|
}
|
| 1105 |
|
|
else
|
| 1106 |
|
|
gcc_unreachable ();
|
| 1107 |
|
|
|
| 1108 |
|
|
if (loop->inner && loop_in_sese_p (loop->inner, region))
|
| 1109 |
|
|
build_loop_iteration_domains (scop, loop->inner, ph, nb + 1, domains);
|
| 1110 |
|
|
|
| 1111 |
|
|
if (nb != 0
|
| 1112 |
|
|
&& loop->next
|
| 1113 |
|
|
&& loop_in_sese_p (loop->next, region))
|
| 1114 |
|
|
build_loop_iteration_domains (scop, loop->next, outer_ph, nb, domains);
|
| 1115 |
|
|
|
| 1116 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
|
| 1117 |
|
|
(&domains[loop->num], ph);
|
| 1118 |
|
|
|
| 1119 |
|
|
ppl_delete_Polyhedron (ph);
|
| 1120 |
|
|
}
|
| 1121 |
|
|
|
| 1122 |
|
|
/* Returns a linear expression for tree T evaluated in PBB. */
|
| 1123 |
|
|
|
| 1124 |
|
|
static ppl_Linear_Expression_t
|
| 1125 |
|
|
create_linear_expr_from_tree (poly_bb_p pbb, tree t)
|
| 1126 |
|
|
{
|
| 1127 |
|
|
mpz_t one;
|
| 1128 |
|
|
ppl_Linear_Expression_t res;
|
| 1129 |
|
|
ppl_dimension_type dim;
|
| 1130 |
|
|
sese region = SCOP_REGION (PBB_SCOP (pbb));
|
| 1131 |
|
|
loop_p loop = pbb_loop (pbb);
|
| 1132 |
|
|
|
| 1133 |
|
|
dim = pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
|
| 1134 |
|
|
ppl_new_Linear_Expression_with_dimension (&res, dim);
|
| 1135 |
|
|
|
| 1136 |
|
|
t = scalar_evolution_in_region (region, loop, t);
|
| 1137 |
|
|
gcc_assert (!automatically_generated_chrec_p (t));
|
| 1138 |
|
|
|
| 1139 |
|
|
mpz_init (one);
|
| 1140 |
|
|
mpz_set_si (one, 1);
|
| 1141 |
|
|
scan_tree_for_params (region, t, res, one);
|
| 1142 |
|
|
mpz_clear (one);
|
| 1143 |
|
|
|
| 1144 |
|
|
return res;
|
| 1145 |
|
|
}
|
| 1146 |
|
|
|
| 1147 |
|
|
/* Returns the ppl constraint type from the gimple tree code CODE. */
|
| 1148 |
|
|
|
| 1149 |
|
|
static enum ppl_enum_Constraint_Type
|
| 1150 |
|
|
ppl_constraint_type_from_tree_code (enum tree_code code)
|
| 1151 |
|
|
{
|
| 1152 |
|
|
switch (code)
|
| 1153 |
|
|
{
|
| 1154 |
|
|
/* We do not support LT and GT to be able to work with C_Polyhedron.
|
| 1155 |
|
|
As we work on integer polyhedron "a < b" can be expressed by
|
| 1156 |
|
|
"a + 1 <= b". */
|
| 1157 |
|
|
case LT_EXPR:
|
| 1158 |
|
|
case GT_EXPR:
|
| 1159 |
|
|
gcc_unreachable ();
|
| 1160 |
|
|
|
| 1161 |
|
|
case LE_EXPR:
|
| 1162 |
|
|
return PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL;
|
| 1163 |
|
|
|
| 1164 |
|
|
case GE_EXPR:
|
| 1165 |
|
|
return PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL;
|
| 1166 |
|
|
|
| 1167 |
|
|
case EQ_EXPR:
|
| 1168 |
|
|
return PPL_CONSTRAINT_TYPE_EQUAL;
|
| 1169 |
|
|
|
| 1170 |
|
|
default:
|
| 1171 |
|
|
gcc_unreachable ();
|
| 1172 |
|
|
}
|
| 1173 |
|
|
}
|
| 1174 |
|
|
|
| 1175 |
|
|
/* Add conditional statement STMT to PS. It is evaluated in PBB and
|
| 1176 |
|
|
CODE is used as the comparison operator. This allows us to invert the
|
| 1177 |
|
|
condition or to handle inequalities. */
|
| 1178 |
|
|
|
| 1179 |
|
|
static void
|
| 1180 |
|
|
add_condition_to_domain (ppl_Pointset_Powerset_C_Polyhedron_t ps, gimple stmt,
|
| 1181 |
|
|
poly_bb_p pbb, enum tree_code code)
|
| 1182 |
|
|
{
|
| 1183 |
|
|
mpz_t v;
|
| 1184 |
|
|
ppl_Coefficient_t c;
|
| 1185 |
|
|
ppl_Linear_Expression_t left, right;
|
| 1186 |
|
|
ppl_Constraint_t cstr;
|
| 1187 |
|
|
enum ppl_enum_Constraint_Type type;
|
| 1188 |
|
|
|
| 1189 |
|
|
left = create_linear_expr_from_tree (pbb, gimple_cond_lhs (stmt));
|
| 1190 |
|
|
right = create_linear_expr_from_tree (pbb, gimple_cond_rhs (stmt));
|
| 1191 |
|
|
|
| 1192 |
|
|
/* If we have < or > expressions convert them to <= or >= by adding 1 to
|
| 1193 |
|
|
the left or the right side of the expression. */
|
| 1194 |
|
|
if (code == LT_EXPR)
|
| 1195 |
|
|
{
|
| 1196 |
|
|
mpz_init (v);
|
| 1197 |
|
|
mpz_set_si (v, 1);
|
| 1198 |
|
|
ppl_new_Coefficient (&c);
|
| 1199 |
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
| 1200 |
|
|
ppl_Linear_Expression_add_to_inhomogeneous (left, c);
|
| 1201 |
|
|
ppl_delete_Coefficient (c);
|
| 1202 |
|
|
mpz_clear (v);
|
| 1203 |
|
|
|
| 1204 |
|
|
code = LE_EXPR;
|
| 1205 |
|
|
}
|
| 1206 |
|
|
else if (code == GT_EXPR)
|
| 1207 |
|
|
{
|
| 1208 |
|
|
mpz_init (v);
|
| 1209 |
|
|
mpz_set_si (v, 1);
|
| 1210 |
|
|
ppl_new_Coefficient (&c);
|
| 1211 |
|
|
ppl_assign_Coefficient_from_mpz_t (c, v);
|
| 1212 |
|
|
ppl_Linear_Expression_add_to_inhomogeneous (right, c);
|
| 1213 |
|
|
ppl_delete_Coefficient (c);
|
| 1214 |
|
|
mpz_clear (v);
|
| 1215 |
|
|
|
| 1216 |
|
|
code = GE_EXPR;
|
| 1217 |
|
|
}
|
| 1218 |
|
|
|
| 1219 |
|
|
type = ppl_constraint_type_from_tree_code (code);
|
| 1220 |
|
|
|
| 1221 |
|
|
ppl_subtract_Linear_Expression_from_Linear_Expression (left, right);
|
| 1222 |
|
|
|
| 1223 |
|
|
ppl_new_Constraint (&cstr, left, type);
|
| 1224 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_add_constraint (ps, cstr);
|
| 1225 |
|
|
|
| 1226 |
|
|
ppl_delete_Constraint (cstr);
|
| 1227 |
|
|
ppl_delete_Linear_Expression (left);
|
| 1228 |
|
|
ppl_delete_Linear_Expression (right);
|
| 1229 |
|
|
}
|
| 1230 |
|
|
|
| 1231 |
|
|
/* Add conditional statement STMT to pbb. CODE is used as the comparision
|
| 1232 |
|
|
operator. This allows us to invert the condition or to handle
|
| 1233 |
|
|
inequalities. */
|
| 1234 |
|
|
|
| 1235 |
|
|
static void
|
| 1236 |
|
|
add_condition_to_pbb (poly_bb_p pbb, gimple stmt, enum tree_code code)
|
| 1237 |
|
|
{
|
| 1238 |
|
|
if (code == NE_EXPR)
|
| 1239 |
|
|
{
|
| 1240 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t left = PBB_DOMAIN (pbb);
|
| 1241 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t right;
|
| 1242 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
|
| 1243 |
|
|
(&right, left);
|
| 1244 |
|
|
add_condition_to_domain (left, stmt, pbb, LT_EXPR);
|
| 1245 |
|
|
add_condition_to_domain (right, stmt, pbb, GT_EXPR);
|
| 1246 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (left, right);
|
| 1247 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (right);
|
| 1248 |
|
|
}
|
| 1249 |
|
|
else
|
| 1250 |
|
|
add_condition_to_domain (PBB_DOMAIN (pbb), stmt, pbb, code);
|
| 1251 |
|
|
}
|
| 1252 |
|
|
|
| 1253 |
|
|
/* Add conditions to the domain of PBB. */
|
| 1254 |
|
|
|
| 1255 |
|
|
static void
|
| 1256 |
|
|
add_conditions_to_domain (poly_bb_p pbb)
|
| 1257 |
|
|
{
|
| 1258 |
|
|
unsigned int i;
|
| 1259 |
|
|
gimple stmt;
|
| 1260 |
|
|
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
|
| 1261 |
|
|
|
| 1262 |
|
|
if (VEC_empty (gimple, GBB_CONDITIONS (gbb)))
|
| 1263 |
|
|
return;
|
| 1264 |
|
|
|
| 1265 |
|
|
FOR_EACH_VEC_ELT (gimple, GBB_CONDITIONS (gbb), i, stmt)
|
| 1266 |
|
|
switch (gimple_code (stmt))
|
| 1267 |
|
|
{
|
| 1268 |
|
|
case GIMPLE_COND:
|
| 1269 |
|
|
{
|
| 1270 |
|
|
enum tree_code code = gimple_cond_code (stmt);
|
| 1271 |
|
|
|
| 1272 |
|
|
/* The conditions for ELSE-branches are inverted. */
|
| 1273 |
|
|
if (!VEC_index (gimple, GBB_CONDITION_CASES (gbb), i))
|
| 1274 |
|
|
code = invert_tree_comparison (code, false);
|
| 1275 |
|
|
|
| 1276 |
|
|
add_condition_to_pbb (pbb, stmt, code);
|
| 1277 |
|
|
break;
|
| 1278 |
|
|
}
|
| 1279 |
|
|
|
| 1280 |
|
|
case GIMPLE_SWITCH:
|
| 1281 |
|
|
/* Switch statements are not supported right now - fall throught. */
|
| 1282 |
|
|
|
| 1283 |
|
|
default:
|
| 1284 |
|
|
gcc_unreachable ();
|
| 1285 |
|
|
break;
|
| 1286 |
|
|
}
|
| 1287 |
|
|
}
|
| 1288 |
|
|
|
| 1289 |
|
|
/* Traverses all the GBBs of the SCOP and add their constraints to the
|
| 1290 |
|
|
iteration domains. */
|
| 1291 |
|
|
|
| 1292 |
|
|
static void
|
| 1293 |
|
|
add_conditions_to_constraints (scop_p scop)
|
| 1294 |
|
|
{
|
| 1295 |
|
|
int i;
|
| 1296 |
|
|
poly_bb_p pbb;
|
| 1297 |
|
|
|
| 1298 |
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
| 1299 |
|
|
add_conditions_to_domain (pbb);
|
| 1300 |
|
|
}
|
| 1301 |
|
|
|
| 1302 |
|
|
/* Structure used to pass data to dom_walk. */
|
| 1303 |
|
|
|
| 1304 |
|
|
struct bsc
|
| 1305 |
|
|
{
|
| 1306 |
|
|
VEC (gimple, heap) **conditions, **cases;
|
| 1307 |
|
|
sese region;
|
| 1308 |
|
|
};
|
| 1309 |
|
|
|
| 1310 |
|
|
/* Returns a COND_EXPR statement when BB has a single predecessor, the
|
| 1311 |
|
|
edge between BB and its predecessor is not a loop exit edge, and
|
| 1312 |
|
|
the last statement of the single predecessor is a COND_EXPR. */
|
| 1313 |
|
|
|
| 1314 |
|
|
static gimple
|
| 1315 |
|
|
single_pred_cond_non_loop_exit (basic_block bb)
|
| 1316 |
|
|
{
|
| 1317 |
|
|
if (single_pred_p (bb))
|
| 1318 |
|
|
{
|
| 1319 |
|
|
edge e = single_pred_edge (bb);
|
| 1320 |
|
|
basic_block pred = e->src;
|
| 1321 |
|
|
gimple stmt;
|
| 1322 |
|
|
|
| 1323 |
|
|
if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
|
| 1324 |
|
|
return NULL;
|
| 1325 |
|
|
|
| 1326 |
|
|
stmt = last_stmt (pred);
|
| 1327 |
|
|
|
| 1328 |
|
|
if (stmt && gimple_code (stmt) == GIMPLE_COND)
|
| 1329 |
|
|
return stmt;
|
| 1330 |
|
|
}
|
| 1331 |
|
|
|
| 1332 |
|
|
return NULL;
|
| 1333 |
|
|
}
|
| 1334 |
|
|
|
| 1335 |
|
|
/* Call-back for dom_walk executed before visiting the dominated
|
| 1336 |
|
|
blocks. */
|
| 1337 |
|
|
|
| 1338 |
|
|
static void
|
| 1339 |
|
|
build_sese_conditions_before (struct dom_walk_data *dw_data,
|
| 1340 |
|
|
basic_block bb)
|
| 1341 |
|
|
{
|
| 1342 |
|
|
struct bsc *data = (struct bsc *) dw_data->global_data;
|
| 1343 |
|
|
VEC (gimple, heap) **conditions = data->conditions;
|
| 1344 |
|
|
VEC (gimple, heap) **cases = data->cases;
|
| 1345 |
|
|
gimple_bb_p gbb;
|
| 1346 |
|
|
gimple stmt;
|
| 1347 |
|
|
|
| 1348 |
|
|
if (!bb_in_sese_p (bb, data->region))
|
| 1349 |
|
|
return;
|
| 1350 |
|
|
|
| 1351 |
|
|
stmt = single_pred_cond_non_loop_exit (bb);
|
| 1352 |
|
|
|
| 1353 |
|
|
if (stmt)
|
| 1354 |
|
|
{
|
| 1355 |
|
|
edge e = single_pred_edge (bb);
|
| 1356 |
|
|
|
| 1357 |
|
|
VEC_safe_push (gimple, heap, *conditions, stmt);
|
| 1358 |
|
|
|
| 1359 |
|
|
if (e->flags & EDGE_TRUE_VALUE)
|
| 1360 |
|
|
VEC_safe_push (gimple, heap, *cases, stmt);
|
| 1361 |
|
|
else
|
| 1362 |
|
|
VEC_safe_push (gimple, heap, *cases, NULL);
|
| 1363 |
|
|
}
|
| 1364 |
|
|
|
| 1365 |
|
|
gbb = gbb_from_bb (bb);
|
| 1366 |
|
|
|
| 1367 |
|
|
if (gbb)
|
| 1368 |
|
|
{
|
| 1369 |
|
|
GBB_CONDITIONS (gbb) = VEC_copy (gimple, heap, *conditions);
|
| 1370 |
|
|
GBB_CONDITION_CASES (gbb) = VEC_copy (gimple, heap, *cases);
|
| 1371 |
|
|
}
|
| 1372 |
|
|
}
|
| 1373 |
|
|
|
| 1374 |
|
|
/* Call-back for dom_walk executed after visiting the dominated
|
| 1375 |
|
|
blocks. */
|
| 1376 |
|
|
|
| 1377 |
|
|
static void
|
| 1378 |
|
|
build_sese_conditions_after (struct dom_walk_data *dw_data,
|
| 1379 |
|
|
basic_block bb)
|
| 1380 |
|
|
{
|
| 1381 |
|
|
struct bsc *data = (struct bsc *) dw_data->global_data;
|
| 1382 |
|
|
VEC (gimple, heap) **conditions = data->conditions;
|
| 1383 |
|
|
VEC (gimple, heap) **cases = data->cases;
|
| 1384 |
|
|
|
| 1385 |
|
|
if (!bb_in_sese_p (bb, data->region))
|
| 1386 |
|
|
return;
|
| 1387 |
|
|
|
| 1388 |
|
|
if (single_pred_cond_non_loop_exit (bb))
|
| 1389 |
|
|
{
|
| 1390 |
|
|
VEC_pop (gimple, *conditions);
|
| 1391 |
|
|
VEC_pop (gimple, *cases);
|
| 1392 |
|
|
}
|
| 1393 |
|
|
}
|
| 1394 |
|
|
|
| 1395 |
|
|
/* Record all conditions in REGION. */
|
| 1396 |
|
|
|
| 1397 |
|
|
static void
|
| 1398 |
|
|
build_sese_conditions (sese region)
|
| 1399 |
|
|
{
|
| 1400 |
|
|
struct dom_walk_data walk_data;
|
| 1401 |
|
|
VEC (gimple, heap) *conditions = VEC_alloc (gimple, heap, 3);
|
| 1402 |
|
|
VEC (gimple, heap) *cases = VEC_alloc (gimple, heap, 3);
|
| 1403 |
|
|
struct bsc data;
|
| 1404 |
|
|
|
| 1405 |
|
|
data.conditions = &conditions;
|
| 1406 |
|
|
data.cases = &cases;
|
| 1407 |
|
|
data.region = region;
|
| 1408 |
|
|
|
| 1409 |
|
|
walk_data.dom_direction = CDI_DOMINATORS;
|
| 1410 |
|
|
walk_data.initialize_block_local_data = NULL;
|
| 1411 |
|
|
walk_data.before_dom_children = build_sese_conditions_before;
|
| 1412 |
|
|
walk_data.after_dom_children = build_sese_conditions_after;
|
| 1413 |
|
|
walk_data.global_data = &data;
|
| 1414 |
|
|
walk_data.block_local_data_size = 0;
|
| 1415 |
|
|
|
| 1416 |
|
|
init_walk_dominator_tree (&walk_data);
|
| 1417 |
|
|
walk_dominator_tree (&walk_data, SESE_ENTRY_BB (region));
|
| 1418 |
|
|
fini_walk_dominator_tree (&walk_data);
|
| 1419 |
|
|
|
| 1420 |
|
|
VEC_free (gimple, heap, conditions);
|
| 1421 |
|
|
VEC_free (gimple, heap, cases);
|
| 1422 |
|
|
}
|
| 1423 |
|
|
|
| 1424 |
|
|
/* Add constraints on the possible values of parameter P from the type
|
| 1425 |
|
|
of P. */
|
| 1426 |
|
|
|
| 1427 |
|
|
static void
|
| 1428 |
|
|
add_param_constraints (scop_p scop, ppl_Polyhedron_t context, graphite_dim_t p)
|
| 1429 |
|
|
{
|
| 1430 |
|
|
ppl_Constraint_t cstr;
|
| 1431 |
|
|
ppl_Linear_Expression_t le;
|
| 1432 |
|
|
tree parameter = VEC_index (tree, SESE_PARAMS (SCOP_REGION (scop)), p);
|
| 1433 |
|
|
tree type = TREE_TYPE (parameter);
|
| 1434 |
|
|
tree lb = NULL_TREE;
|
| 1435 |
|
|
tree ub = NULL_TREE;
|
| 1436 |
|
|
|
| 1437 |
|
|
if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
|
| 1438 |
|
|
lb = lower_bound_in_type (type, type);
|
| 1439 |
|
|
else
|
| 1440 |
|
|
lb = TYPE_MIN_VALUE (type);
|
| 1441 |
|
|
|
| 1442 |
|
|
if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
|
| 1443 |
|
|
ub = upper_bound_in_type (type, type);
|
| 1444 |
|
|
else
|
| 1445 |
|
|
ub = TYPE_MAX_VALUE (type);
|
| 1446 |
|
|
|
| 1447 |
|
|
if (lb)
|
| 1448 |
|
|
{
|
| 1449 |
|
|
ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
|
| 1450 |
|
|
ppl_set_coef (le, p, -1);
|
| 1451 |
|
|
ppl_set_inhomogeneous_tree (le, lb);
|
| 1452 |
|
|
ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
|
| 1453 |
|
|
ppl_Polyhedron_add_constraint (context, cstr);
|
| 1454 |
|
|
ppl_delete_Linear_Expression (le);
|
| 1455 |
|
|
ppl_delete_Constraint (cstr);
|
| 1456 |
|
|
}
|
| 1457 |
|
|
|
| 1458 |
|
|
if (ub)
|
| 1459 |
|
|
{
|
| 1460 |
|
|
ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
|
| 1461 |
|
|
ppl_set_coef (le, p, -1);
|
| 1462 |
|
|
ppl_set_inhomogeneous_tree (le, ub);
|
| 1463 |
|
|
ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
| 1464 |
|
|
ppl_Polyhedron_add_constraint (context, cstr);
|
| 1465 |
|
|
ppl_delete_Linear_Expression (le);
|
| 1466 |
|
|
ppl_delete_Constraint (cstr);
|
| 1467 |
|
|
}
|
| 1468 |
|
|
}
|
| 1469 |
|
|
|
| 1470 |
|
|
/* Build the context of the SCOP. The context usually contains extra
|
| 1471 |
|
|
constraints that are added to the iteration domains that constrain
|
| 1472 |
|
|
some parameters. */
|
| 1473 |
|
|
|
| 1474 |
|
|
static void
|
| 1475 |
|
|
build_scop_context (scop_p scop)
|
| 1476 |
|
|
{
|
| 1477 |
|
|
ppl_Polyhedron_t context;
|
| 1478 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t ps;
|
| 1479 |
|
|
graphite_dim_t p, n = scop_nb_params (scop);
|
| 1480 |
|
|
|
| 1481 |
|
|
ppl_new_C_Polyhedron_from_space_dimension (&context, n, 0);
|
| 1482 |
|
|
|
| 1483 |
|
|
for (p = 0; p < n; p++)
|
| 1484 |
|
|
add_param_constraints (scop, context, p);
|
| 1485 |
|
|
|
| 1486 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
|
| 1487 |
|
|
(&ps, context);
|
| 1488 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
|
| 1489 |
|
|
(SCOP_CONTEXT (scop), ps);
|
| 1490 |
|
|
|
| 1491 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
|
| 1492 |
|
|
ppl_delete_Polyhedron (context);
|
| 1493 |
|
|
}
|
| 1494 |
|
|
|
| 1495 |
|
|
/* Build the iteration domains: the loops belonging to the current
|
| 1496 |
|
|
SCOP, and that vary for the execution of the current basic block.
|
| 1497 |
|
|
Returns false if there is no loop in SCOP. */
|
| 1498 |
|
|
|
| 1499 |
|
|
static void
|
| 1500 |
|
|
build_scop_iteration_domain (scop_p scop)
|
| 1501 |
|
|
{
|
| 1502 |
|
|
struct loop *loop;
|
| 1503 |
|
|
sese region = SCOP_REGION (scop);
|
| 1504 |
|
|
int i;
|
| 1505 |
|
|
ppl_Polyhedron_t ph;
|
| 1506 |
|
|
poly_bb_p pbb;
|
| 1507 |
|
|
int nb_loops = number_of_loops ();
|
| 1508 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t *domains
|
| 1509 |
|
|
= XNEWVEC (ppl_Pointset_Powerset_C_Polyhedron_t, nb_loops);
|
| 1510 |
|
|
|
| 1511 |
|
|
for (i = 0; i < nb_loops; i++)
|
| 1512 |
|
|
domains[i] = NULL;
|
| 1513 |
|
|
|
| 1514 |
|
|
ppl_new_C_Polyhedron_from_space_dimension (&ph, scop_nb_params (scop), 0);
|
| 1515 |
|
|
|
| 1516 |
|
|
FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), i, loop)
|
| 1517 |
|
|
if (!loop_in_sese_p (loop_outer (loop), region))
|
| 1518 |
|
|
build_loop_iteration_domains (scop, loop, ph, 0, domains);
|
| 1519 |
|
|
|
| 1520 |
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
| 1521 |
|
|
if (domains[gbb_loop (PBB_BLACK_BOX (pbb))->num])
|
| 1522 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
|
| 1523 |
|
|
(&PBB_DOMAIN (pbb), (ppl_const_Pointset_Powerset_C_Polyhedron_t)
|
| 1524 |
|
|
domains[gbb_loop (PBB_BLACK_BOX (pbb))->num]);
|
| 1525 |
|
|
else
|
| 1526 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
|
| 1527 |
|
|
(&PBB_DOMAIN (pbb), ph);
|
| 1528 |
|
|
|
| 1529 |
|
|
for (i = 0; i < nb_loops; i++)
|
| 1530 |
|
|
if (domains[i])
|
| 1531 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (domains[i]);
|
| 1532 |
|
|
|
| 1533 |
|
|
ppl_delete_Polyhedron (ph);
|
| 1534 |
|
|
free (domains);
|
| 1535 |
|
|
}
|
| 1536 |
|
|
|
| 1537 |
|
|
/* Add a constrain to the ACCESSES polyhedron for the alias set of
|
| 1538 |
|
|
data reference DR. ACCESSP_NB_DIMS is the dimension of the
|
| 1539 |
|
|
ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
|
| 1540 |
|
|
domain. */
|
| 1541 |
|
|
|
| 1542 |
|
|
static void
|
| 1543 |
|
|
pdr_add_alias_set (ppl_Polyhedron_t accesses, data_reference_p dr,
|
| 1544 |
|
|
ppl_dimension_type accessp_nb_dims,
|
| 1545 |
|
|
ppl_dimension_type dom_nb_dims)
|
| 1546 |
|
|
{
|
| 1547 |
|
|
ppl_Linear_Expression_t alias;
|
| 1548 |
|
|
ppl_Constraint_t cstr;
|
| 1549 |
|
|
int alias_set_num = 0;
|
| 1550 |
|
|
base_alias_pair *bap = (base_alias_pair *)(dr->aux);
|
| 1551 |
|
|
|
| 1552 |
|
|
if (bap && bap->alias_set)
|
| 1553 |
|
|
alias_set_num = *(bap->alias_set);
|
| 1554 |
|
|
|
| 1555 |
|
|
ppl_new_Linear_Expression_with_dimension (&alias, accessp_nb_dims);
|
| 1556 |
|
|
|
| 1557 |
|
|
ppl_set_coef (alias, dom_nb_dims, 1);
|
| 1558 |
|
|
ppl_set_inhomogeneous (alias, -alias_set_num);
|
| 1559 |
|
|
ppl_new_Constraint (&cstr, alias, PPL_CONSTRAINT_TYPE_EQUAL);
|
| 1560 |
|
|
ppl_Polyhedron_add_constraint (accesses, cstr);
|
| 1561 |
|
|
|
| 1562 |
|
|
ppl_delete_Linear_Expression (alias);
|
| 1563 |
|
|
ppl_delete_Constraint (cstr);
|
| 1564 |
|
|
}
|
| 1565 |
|
|
|
| 1566 |
|
|
/* Add to ACCESSES polyhedron equalities defining the access functions
|
| 1567 |
|
|
to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
|
| 1568 |
|
|
polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
|
| 1569 |
|
|
PBB is the poly_bb_p that contains the data reference DR. */
|
| 1570 |
|
|
|
| 1571 |
|
|
static void
|
| 1572 |
|
|
pdr_add_memory_accesses (ppl_Polyhedron_t accesses, data_reference_p dr,
|
| 1573 |
|
|
ppl_dimension_type accessp_nb_dims,
|
| 1574 |
|
|
ppl_dimension_type dom_nb_dims,
|
| 1575 |
|
|
poly_bb_p pbb)
|
| 1576 |
|
|
{
|
| 1577 |
|
|
int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
|
| 1578 |
|
|
mpz_t v;
|
| 1579 |
|
|
scop_p scop = PBB_SCOP (pbb);
|
| 1580 |
|
|
sese region = SCOP_REGION (scop);
|
| 1581 |
|
|
|
| 1582 |
|
|
mpz_init (v);
|
| 1583 |
|
|
|
| 1584 |
|
|
for (i = 0; i < nb_subscripts; i++)
|
| 1585 |
|
|
{
|
| 1586 |
|
|
ppl_Linear_Expression_t fn, access;
|
| 1587 |
|
|
ppl_Constraint_t cstr;
|
| 1588 |
|
|
ppl_dimension_type subscript = dom_nb_dims + 1 + i;
|
| 1589 |
|
|
tree afn = DR_ACCESS_FN (dr, nb_subscripts - 1 - i);
|
| 1590 |
|
|
|
| 1591 |
|
|
ppl_new_Linear_Expression_with_dimension (&fn, dom_nb_dims);
|
| 1592 |
|
|
ppl_new_Linear_Expression_with_dimension (&access, accessp_nb_dims);
|
| 1593 |
|
|
|
| 1594 |
|
|
mpz_set_si (v, 1);
|
| 1595 |
|
|
scan_tree_for_params (region, afn, fn, v);
|
| 1596 |
|
|
ppl_assign_Linear_Expression_from_Linear_Expression (access, fn);
|
| 1597 |
|
|
|
| 1598 |
|
|
ppl_set_coef (access, subscript, -1);
|
| 1599 |
|
|
ppl_new_Constraint (&cstr, access, PPL_CONSTRAINT_TYPE_EQUAL);
|
| 1600 |
|
|
ppl_Polyhedron_add_constraint (accesses, cstr);
|
| 1601 |
|
|
|
| 1602 |
|
|
ppl_delete_Linear_Expression (fn);
|
| 1603 |
|
|
ppl_delete_Linear_Expression (access);
|
| 1604 |
|
|
ppl_delete_Constraint (cstr);
|
| 1605 |
|
|
}
|
| 1606 |
|
|
|
| 1607 |
|
|
mpz_clear (v);
|
| 1608 |
|
|
}
|
| 1609 |
|
|
|
| 1610 |
|
|
/* Add constrains representing the size of the accessed data to the
|
| 1611 |
|
|
ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
|
| 1612 |
|
|
ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
|
| 1613 |
|
|
domain. */
|
| 1614 |
|
|
|
| 1615 |
|
|
static void
|
| 1616 |
|
|
pdr_add_data_dimensions (ppl_Polyhedron_t accesses, data_reference_p dr,
|
| 1617 |
|
|
ppl_dimension_type accessp_nb_dims,
|
| 1618 |
|
|
ppl_dimension_type dom_nb_dims)
|
| 1619 |
|
|
{
|
| 1620 |
|
|
tree ref = DR_REF (dr);
|
| 1621 |
|
|
int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
|
| 1622 |
|
|
|
| 1623 |
|
|
for (i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
|
| 1624 |
|
|
{
|
| 1625 |
|
|
ppl_Linear_Expression_t expr;
|
| 1626 |
|
|
ppl_Constraint_t cstr;
|
| 1627 |
|
|
ppl_dimension_type subscript = dom_nb_dims + 1 + i;
|
| 1628 |
|
|
tree low, high;
|
| 1629 |
|
|
|
| 1630 |
|
|
if (TREE_CODE (ref) != ARRAY_REF)
|
| 1631 |
|
|
break;
|
| 1632 |
|
|
|
| 1633 |
|
|
low = array_ref_low_bound (ref);
|
| 1634 |
|
|
|
| 1635 |
|
|
/* subscript - low >= 0 */
|
| 1636 |
|
|
if (host_integerp (low, 0))
|
| 1637 |
|
|
{
|
| 1638 |
|
|
tree minus_low;
|
| 1639 |
|
|
|
| 1640 |
|
|
ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
|
| 1641 |
|
|
ppl_set_coef (expr, subscript, 1);
|
| 1642 |
|
|
|
| 1643 |
|
|
minus_low = fold_build1 (NEGATE_EXPR, TREE_TYPE (low), low);
|
| 1644 |
|
|
ppl_set_inhomogeneous_tree (expr, minus_low);
|
| 1645 |
|
|
|
| 1646 |
|
|
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
| 1647 |
|
|
ppl_Polyhedron_add_constraint (accesses, cstr);
|
| 1648 |
|
|
ppl_delete_Linear_Expression (expr);
|
| 1649 |
|
|
ppl_delete_Constraint (cstr);
|
| 1650 |
|
|
}
|
| 1651 |
|
|
|
| 1652 |
|
|
high = array_ref_up_bound (ref);
|
| 1653 |
|
|
|
| 1654 |
|
|
/* high - subscript >= 0 */
|
| 1655 |
|
|
if (high && host_integerp (high, 0)
|
| 1656 |
|
|
/* 1-element arrays at end of structures may extend over
|
| 1657 |
|
|
their declared size. */
|
| 1658 |
|
|
&& !(array_at_struct_end_p (ref)
|
| 1659 |
|
|
&& operand_equal_p (low, high, 0)))
|
| 1660 |
|
|
{
|
| 1661 |
|
|
ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
|
| 1662 |
|
|
ppl_set_coef (expr, subscript, -1);
|
| 1663 |
|
|
|
| 1664 |
|
|
ppl_set_inhomogeneous_tree (expr, high);
|
| 1665 |
|
|
|
| 1666 |
|
|
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
| 1667 |
|
|
ppl_Polyhedron_add_constraint (accesses, cstr);
|
| 1668 |
|
|
ppl_delete_Linear_Expression (expr);
|
| 1669 |
|
|
ppl_delete_Constraint (cstr);
|
| 1670 |
|
|
}
|
| 1671 |
|
|
}
|
| 1672 |
|
|
}
|
| 1673 |
|
|
|
| 1674 |
|
|
/* Build data accesses for DR in PBB. */
|
| 1675 |
|
|
|
| 1676 |
|
|
static void
|
| 1677 |
|
|
build_poly_dr (data_reference_p dr, poly_bb_p pbb)
|
| 1678 |
|
|
{
|
| 1679 |
|
|
ppl_Polyhedron_t accesses;
|
| 1680 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t accesses_ps;
|
| 1681 |
|
|
ppl_dimension_type dom_nb_dims;
|
| 1682 |
|
|
ppl_dimension_type accessp_nb_dims;
|
| 1683 |
|
|
int dr_base_object_set;
|
| 1684 |
|
|
|
| 1685 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb),
|
| 1686 |
|
|
&dom_nb_dims);
|
| 1687 |
|
|
accessp_nb_dims = dom_nb_dims + 1 + DR_NUM_DIMENSIONS (dr);
|
| 1688 |
|
|
|
| 1689 |
|
|
ppl_new_C_Polyhedron_from_space_dimension (&accesses, accessp_nb_dims, 0);
|
| 1690 |
|
|
|
| 1691 |
|
|
pdr_add_alias_set (accesses, dr, accessp_nb_dims, dom_nb_dims);
|
| 1692 |
|
|
pdr_add_memory_accesses (accesses, dr, accessp_nb_dims, dom_nb_dims, pbb);
|
| 1693 |
|
|
pdr_add_data_dimensions (accesses, dr, accessp_nb_dims, dom_nb_dims);
|
| 1694 |
|
|
|
| 1695 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&accesses_ps,
|
| 1696 |
|
|
accesses);
|
| 1697 |
|
|
ppl_delete_Polyhedron (accesses);
|
| 1698 |
|
|
|
| 1699 |
|
|
gcc_assert (dr->aux);
|
| 1700 |
|
|
dr_base_object_set = ((base_alias_pair *)(dr->aux))->base_obj_set;
|
| 1701 |
|
|
|
| 1702 |
|
|
new_poly_dr (pbb, dr_base_object_set, accesses_ps,
|
| 1703 |
|
|
DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
|
| 1704 |
|
|
dr, DR_NUM_DIMENSIONS (dr));
|
| 1705 |
|
|
}
|
| 1706 |
|
|
|
| 1707 |
|
|
/* Write to FILE the alias graph of data references in DIMACS format. */
|
| 1708 |
|
|
|
| 1709 |
|
|
static inline bool
|
| 1710 |
|
|
write_alias_graph_to_ascii_dimacs (FILE *file, char *comment,
|
| 1711 |
|
|
VEC (data_reference_p, heap) *drs)
|
| 1712 |
|
|
{
|
| 1713 |
|
|
int num_vertex = VEC_length (data_reference_p, drs);
|
| 1714 |
|
|
int edge_num = 0;
|
| 1715 |
|
|
data_reference_p dr1, dr2;
|
| 1716 |
|
|
int i, j;
|
| 1717 |
|
|
|
| 1718 |
|
|
if (num_vertex == 0)
|
| 1719 |
|
|
return true;
|
| 1720 |
|
|
|
| 1721 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
| 1722 |
|
|
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
|
| 1723 |
|
|
if (dr_may_alias_p (dr1, dr2, true))
|
| 1724 |
|
|
edge_num++;
|
| 1725 |
|
|
|
| 1726 |
|
|
fprintf (file, "$\n");
|
| 1727 |
|
|
|
| 1728 |
|
|
if (comment)
|
| 1729 |
|
|
fprintf (file, "c %s\n", comment);
|
| 1730 |
|
|
|
| 1731 |
|
|
fprintf (file, "p edge %d %d\n", num_vertex, edge_num);
|
| 1732 |
|
|
|
| 1733 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
| 1734 |
|
|
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
|
| 1735 |
|
|
if (dr_may_alias_p (dr1, dr2, true))
|
| 1736 |
|
|
fprintf (file, "e %d %d\n", i + 1, j + 1);
|
| 1737 |
|
|
|
| 1738 |
|
|
return true;
|
| 1739 |
|
|
}
|
| 1740 |
|
|
|
| 1741 |
|
|
/* Write to FILE the alias graph of data references in DOT format. */
|
| 1742 |
|
|
|
| 1743 |
|
|
static inline bool
|
| 1744 |
|
|
write_alias_graph_to_ascii_dot (FILE *file, char *comment,
|
| 1745 |
|
|
VEC (data_reference_p, heap) *drs)
|
| 1746 |
|
|
{
|
| 1747 |
|
|
int num_vertex = VEC_length (data_reference_p, drs);
|
| 1748 |
|
|
data_reference_p dr1, dr2;
|
| 1749 |
|
|
int i, j;
|
| 1750 |
|
|
|
| 1751 |
|
|
if (num_vertex == 0)
|
| 1752 |
|
|
return true;
|
| 1753 |
|
|
|
| 1754 |
|
|
fprintf (file, "$\n");
|
| 1755 |
|
|
|
| 1756 |
|
|
if (comment)
|
| 1757 |
|
|
fprintf (file, "c %s\n", comment);
|
| 1758 |
|
|
|
| 1759 |
|
|
/* First print all the vertices. */
|
| 1760 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
| 1761 |
|
|
fprintf (file, "n%d;\n", i);
|
| 1762 |
|
|
|
| 1763 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
| 1764 |
|
|
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
|
| 1765 |
|
|
if (dr_may_alias_p (dr1, dr2, true))
|
| 1766 |
|
|
fprintf (file, "n%d n%d\n", i, j);
|
| 1767 |
|
|
|
| 1768 |
|
|
return true;
|
| 1769 |
|
|
}
|
| 1770 |
|
|
|
| 1771 |
|
|
/* Write to FILE the alias graph of data references in ECC format. */
|
| 1772 |
|
|
|
| 1773 |
|
|
static inline bool
|
| 1774 |
|
|
write_alias_graph_to_ascii_ecc (FILE *file, char *comment,
|
| 1775 |
|
|
VEC (data_reference_p, heap) *drs)
|
| 1776 |
|
|
{
|
| 1777 |
|
|
int num_vertex = VEC_length (data_reference_p, drs);
|
| 1778 |
|
|
data_reference_p dr1, dr2;
|
| 1779 |
|
|
int i, j;
|
| 1780 |
|
|
|
| 1781 |
|
|
if (num_vertex == 0)
|
| 1782 |
|
|
return true;
|
| 1783 |
|
|
|
| 1784 |
|
|
fprintf (file, "$\n");
|
| 1785 |
|
|
|
| 1786 |
|
|
if (comment)
|
| 1787 |
|
|
fprintf (file, "c %s\n", comment);
|
| 1788 |
|
|
|
| 1789 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
| 1790 |
|
|
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
|
| 1791 |
|
|
if (dr_may_alias_p (dr1, dr2, true))
|
| 1792 |
|
|
fprintf (file, "%d %d\n", i, j);
|
| 1793 |
|
|
|
| 1794 |
|
|
return true;
|
| 1795 |
|
|
}
|
| 1796 |
|
|
|
| 1797 |
|
|
/* Check if DR1 and DR2 are in the same object set. */
|
| 1798 |
|
|
|
| 1799 |
|
|
static bool
|
| 1800 |
|
|
dr_same_base_object_p (const struct data_reference *dr1,
|
| 1801 |
|
|
const struct data_reference *dr2)
|
| 1802 |
|
|
{
|
| 1803 |
|
|
return operand_equal_p (DR_BASE_OBJECT (dr1), DR_BASE_OBJECT (dr2), 0);
|
| 1804 |
|
|
}
|
| 1805 |
|
|
|
| 1806 |
|
|
/* Uses DFS component number as representative of alias-sets. Also tests for
|
| 1807 |
|
|
optimality by verifying if every connected component is a clique. Returns
|
| 1808 |
|
|
true (1) if the above test is true, and false (0) otherwise. */
|
| 1809 |
|
|
|
| 1810 |
|
|
static int
|
| 1811 |
|
|
build_alias_set_optimal_p (VEC (data_reference_p, heap) *drs)
|
| 1812 |
|
|
{
|
| 1813 |
|
|
int num_vertices = VEC_length (data_reference_p, drs);
|
| 1814 |
|
|
struct graph *g = new_graph (num_vertices);
|
| 1815 |
|
|
data_reference_p dr1, dr2;
|
| 1816 |
|
|
int i, j;
|
| 1817 |
|
|
int num_connected_components;
|
| 1818 |
|
|
int v_indx1, v_indx2, num_vertices_in_component;
|
| 1819 |
|
|
int *all_vertices;
|
| 1820 |
|
|
int *vertices;
|
| 1821 |
|
|
struct graph_edge *e;
|
| 1822 |
|
|
int this_component_is_clique;
|
| 1823 |
|
|
int all_components_are_cliques = 1;
|
| 1824 |
|
|
|
| 1825 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
| 1826 |
|
|
for (j = i+1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
|
| 1827 |
|
|
if (dr_may_alias_p (dr1, dr2, true))
|
| 1828 |
|
|
{
|
| 1829 |
|
|
add_edge (g, i, j);
|
| 1830 |
|
|
add_edge (g, j, i);
|
| 1831 |
|
|
}
|
| 1832 |
|
|
|
| 1833 |
|
|
all_vertices = XNEWVEC (int, num_vertices);
|
| 1834 |
|
|
vertices = XNEWVEC (int, num_vertices);
|
| 1835 |
|
|
for (i = 0; i < num_vertices; i++)
|
| 1836 |
|
|
all_vertices[i] = i;
|
| 1837 |
|
|
|
| 1838 |
|
|
num_connected_components = graphds_dfs (g, all_vertices, num_vertices,
|
| 1839 |
|
|
NULL, true, NULL);
|
| 1840 |
|
|
for (i = 0; i < g->n_vertices; i++)
|
| 1841 |
|
|
{
|
| 1842 |
|
|
data_reference_p dr = VEC_index (data_reference_p, drs, i);
|
| 1843 |
|
|
base_alias_pair *bap;
|
| 1844 |
|
|
|
| 1845 |
|
|
gcc_assert (dr->aux);
|
| 1846 |
|
|
bap = (base_alias_pair *)(dr->aux);
|
| 1847 |
|
|
|
| 1848 |
|
|
bap->alias_set = XNEW (int);
|
| 1849 |
|
|
*(bap->alias_set) = g->vertices[i].component + 1;
|
| 1850 |
|
|
}
|
| 1851 |
|
|
|
| 1852 |
|
|
/* Verify if the DFS numbering results in optimal solution. */
|
| 1853 |
|
|
for (i = 0; i < num_connected_components; i++)
|
| 1854 |
|
|
{
|
| 1855 |
|
|
num_vertices_in_component = 0;
|
| 1856 |
|
|
/* Get all vertices whose DFS component number is the same as i. */
|
| 1857 |
|
|
for (j = 0; j < num_vertices; j++)
|
| 1858 |
|
|
if (g->vertices[j].component == i)
|
| 1859 |
|
|
vertices[num_vertices_in_component++] = j;
|
| 1860 |
|
|
|
| 1861 |
|
|
/* Now test if the vertices in 'vertices' form a clique, by testing
|
| 1862 |
|
|
for edges among each pair. */
|
| 1863 |
|
|
this_component_is_clique = 1;
|
| 1864 |
|
|
for (v_indx1 = 0; v_indx1 < num_vertices_in_component; v_indx1++)
|
| 1865 |
|
|
{
|
| 1866 |
|
|
for (v_indx2 = v_indx1+1; v_indx2 < num_vertices_in_component; v_indx2++)
|
| 1867 |
|
|
{
|
| 1868 |
|
|
/* Check if the two vertices are connected by iterating
|
| 1869 |
|
|
through all the edges which have one of these are source. */
|
| 1870 |
|
|
e = g->vertices[vertices[v_indx2]].pred;
|
| 1871 |
|
|
while (e)
|
| 1872 |
|
|
{
|
| 1873 |
|
|
if (e->src == vertices[v_indx1])
|
| 1874 |
|
|
break;
|
| 1875 |
|
|
e = e->pred_next;
|
| 1876 |
|
|
}
|
| 1877 |
|
|
if (!e)
|
| 1878 |
|
|
{
|
| 1879 |
|
|
this_component_is_clique = 0;
|
| 1880 |
|
|
break;
|
| 1881 |
|
|
}
|
| 1882 |
|
|
}
|
| 1883 |
|
|
if (!this_component_is_clique)
|
| 1884 |
|
|
all_components_are_cliques = 0;
|
| 1885 |
|
|
}
|
| 1886 |
|
|
}
|
| 1887 |
|
|
|
| 1888 |
|
|
free (all_vertices);
|
| 1889 |
|
|
free (vertices);
|
| 1890 |
|
|
free_graph (g);
|
| 1891 |
|
|
return all_components_are_cliques;
|
| 1892 |
|
|
}
|
| 1893 |
|
|
|
| 1894 |
|
|
/* Group each data reference in DRS with its base object set num. */
|
| 1895 |
|
|
|
| 1896 |
|
|
static void
|
| 1897 |
|
|
build_base_obj_set_for_drs (VEC (data_reference_p, heap) *drs)
|
| 1898 |
|
|
{
|
| 1899 |
|
|
int num_vertex = VEC_length (data_reference_p, drs);
|
| 1900 |
|
|
struct graph *g = new_graph (num_vertex);
|
| 1901 |
|
|
data_reference_p dr1, dr2;
|
| 1902 |
|
|
int i, j;
|
| 1903 |
|
|
int *queue;
|
| 1904 |
|
|
|
| 1905 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
|
| 1906 |
|
|
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
|
| 1907 |
|
|
if (dr_same_base_object_p (dr1, dr2))
|
| 1908 |
|
|
{
|
| 1909 |
|
|
add_edge (g, i, j);
|
| 1910 |
|
|
add_edge (g, j, i);
|
| 1911 |
|
|
}
|
| 1912 |
|
|
|
| 1913 |
|
|
queue = XNEWVEC (int, num_vertex);
|
| 1914 |
|
|
for (i = 0; i < num_vertex; i++)
|
| 1915 |
|
|
queue[i] = i;
|
| 1916 |
|
|
|
| 1917 |
|
|
graphds_dfs (g, queue, num_vertex, NULL, true, NULL);
|
| 1918 |
|
|
|
| 1919 |
|
|
for (i = 0; i < g->n_vertices; i++)
|
| 1920 |
|
|
{
|
| 1921 |
|
|
data_reference_p dr = VEC_index (data_reference_p, drs, i);
|
| 1922 |
|
|
base_alias_pair *bap;
|
| 1923 |
|
|
|
| 1924 |
|
|
gcc_assert (dr->aux);
|
| 1925 |
|
|
bap = (base_alias_pair *)(dr->aux);
|
| 1926 |
|
|
|
| 1927 |
|
|
bap->base_obj_set = g->vertices[i].component + 1;
|
| 1928 |
|
|
}
|
| 1929 |
|
|
|
| 1930 |
|
|
free (queue);
|
| 1931 |
|
|
free_graph (g);
|
| 1932 |
|
|
}
|
| 1933 |
|
|
|
| 1934 |
|
|
/* Build the data references for PBB. */
|
| 1935 |
|
|
|
| 1936 |
|
|
static void
|
| 1937 |
|
|
build_pbb_drs (poly_bb_p pbb)
|
| 1938 |
|
|
{
|
| 1939 |
|
|
int j;
|
| 1940 |
|
|
data_reference_p dr;
|
| 1941 |
|
|
VEC (data_reference_p, heap) *gbb_drs = GBB_DATA_REFS (PBB_BLACK_BOX (pbb));
|
| 1942 |
|
|
|
| 1943 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, gbb_drs, j, dr)
|
| 1944 |
|
|
build_poly_dr (dr, pbb);
|
| 1945 |
|
|
}
|
| 1946 |
|
|
|
| 1947 |
|
|
/* Dump to file the alias graphs for the data references in DRS. */
|
| 1948 |
|
|
|
| 1949 |
|
|
static void
|
| 1950 |
|
|
dump_alias_graphs (VEC (data_reference_p, heap) *drs)
|
| 1951 |
|
|
{
|
| 1952 |
|
|
char comment[100];
|
| 1953 |
|
|
FILE *file_dimacs, *file_ecc, *file_dot;
|
| 1954 |
|
|
|
| 1955 |
|
|
file_dimacs = fopen ("/tmp/dr_alias_graph_dimacs", "ab");
|
| 1956 |
|
|
if (file_dimacs)
|
| 1957 |
|
|
{
|
| 1958 |
|
|
snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
|
| 1959 |
|
|
current_function_name ());
|
| 1960 |
|
|
write_alias_graph_to_ascii_dimacs (file_dimacs, comment, drs);
|
| 1961 |
|
|
fclose (file_dimacs);
|
| 1962 |
|
|
}
|
| 1963 |
|
|
|
| 1964 |
|
|
file_ecc = fopen ("/tmp/dr_alias_graph_ecc", "ab");
|
| 1965 |
|
|
if (file_ecc)
|
| 1966 |
|
|
{
|
| 1967 |
|
|
snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
|
| 1968 |
|
|
current_function_name ());
|
| 1969 |
|
|
write_alias_graph_to_ascii_ecc (file_ecc, comment, drs);
|
| 1970 |
|
|
fclose (file_ecc);
|
| 1971 |
|
|
}
|
| 1972 |
|
|
|
| 1973 |
|
|
file_dot = fopen ("/tmp/dr_alias_graph_dot", "ab");
|
| 1974 |
|
|
if (file_dot)
|
| 1975 |
|
|
{
|
| 1976 |
|
|
snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
|
| 1977 |
|
|
current_function_name ());
|
| 1978 |
|
|
write_alias_graph_to_ascii_dot (file_dot, comment, drs);
|
| 1979 |
|
|
fclose (file_dot);
|
| 1980 |
|
|
}
|
| 1981 |
|
|
}
|
| 1982 |
|
|
|
| 1983 |
|
|
/* Build data references in SCOP. */
|
| 1984 |
|
|
|
| 1985 |
|
|
static void
|
| 1986 |
|
|
build_scop_drs (scop_p scop)
|
| 1987 |
|
|
{
|
| 1988 |
|
|
int i, j;
|
| 1989 |
|
|
poly_bb_p pbb;
|
| 1990 |
|
|
data_reference_p dr;
|
| 1991 |
|
|
VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
|
| 1992 |
|
|
|
| 1993 |
|
|
/* Remove all the PBBs that do not have data references: these basic
|
| 1994 |
|
|
blocks are not handled in the polyhedral representation. */
|
| 1995 |
|
|
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
|
| 1996 |
|
|
if (VEC_empty (data_reference_p, GBB_DATA_REFS (PBB_BLACK_BOX (pbb))))
|
| 1997 |
|
|
{
|
| 1998 |
|
|
free_gimple_bb (PBB_BLACK_BOX (pbb));
|
| 1999 |
|
|
VEC_ordered_remove (poly_bb_p, SCOP_BBS (scop), i);
|
| 2000 |
|
|
i--;
|
| 2001 |
|
|
}
|
| 2002 |
|
|
|
| 2003 |
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
| 2004 |
|
|
for (j = 0; VEC_iterate (data_reference_p,
|
| 2005 |
|
|
GBB_DATA_REFS (PBB_BLACK_BOX (pbb)), j, dr); j++)
|
| 2006 |
|
|
VEC_safe_push (data_reference_p, heap, drs, dr);
|
| 2007 |
|
|
|
| 2008 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr)
|
| 2009 |
|
|
dr->aux = XNEW (base_alias_pair);
|
| 2010 |
|
|
|
| 2011 |
|
|
if (!build_alias_set_optimal_p (drs))
|
| 2012 |
|
|
{
|
| 2013 |
|
|
/* TODO: Add support when building alias set is not optimal. */
|
| 2014 |
|
|
;
|
| 2015 |
|
|
}
|
| 2016 |
|
|
|
| 2017 |
|
|
build_base_obj_set_for_drs (drs);
|
| 2018 |
|
|
|
| 2019 |
|
|
/* When debugging, enable the following code. This cannot be used
|
| 2020 |
|
|
in production compilers. */
|
| 2021 |
|
|
if (0)
|
| 2022 |
|
|
dump_alias_graphs (drs);
|
| 2023 |
|
|
|
| 2024 |
|
|
VEC_free (data_reference_p, heap, drs);
|
| 2025 |
|
|
|
| 2026 |
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
| 2027 |
|
|
build_pbb_drs (pbb);
|
| 2028 |
|
|
}
|
| 2029 |
|
|
|
| 2030 |
|
|
/* Return a gsi at the position of the phi node STMT. */
|
| 2031 |
|
|
|
| 2032 |
|
|
static gimple_stmt_iterator
|
| 2033 |
|
|
gsi_for_phi_node (gimple stmt)
|
| 2034 |
|
|
{
|
| 2035 |
|
|
gimple_stmt_iterator psi;
|
| 2036 |
|
|
basic_block bb = gimple_bb (stmt);
|
| 2037 |
|
|
|
| 2038 |
|
|
for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
|
| 2039 |
|
|
if (stmt == gsi_stmt (psi))
|
| 2040 |
|
|
return psi;
|
| 2041 |
|
|
|
| 2042 |
|
|
gcc_unreachable ();
|
| 2043 |
|
|
return psi;
|
| 2044 |
|
|
}
|
| 2045 |
|
|
|
| 2046 |
|
|
/* Analyze all the data references of STMTS and add them to the
|
| 2047 |
|
|
GBB_DATA_REFS vector of BB. */
|
| 2048 |
|
|
|
| 2049 |
|
|
static void
|
| 2050 |
|
|
analyze_drs_in_stmts (scop_p scop, basic_block bb, VEC (gimple, heap) *stmts)
|
| 2051 |
|
|
{
|
| 2052 |
|
|
loop_p nest;
|
| 2053 |
|
|
gimple_bb_p gbb;
|
| 2054 |
|
|
gimple stmt;
|
| 2055 |
|
|
int i;
|
| 2056 |
|
|
sese region = SCOP_REGION (scop);
|
| 2057 |
|
|
|
| 2058 |
|
|
if (!bb_in_sese_p (bb, region))
|
| 2059 |
|
|
return;
|
| 2060 |
|
|
|
| 2061 |
|
|
nest = outermost_loop_in_sese_1 (region, bb);
|
| 2062 |
|
|
gbb = gbb_from_bb (bb);
|
| 2063 |
|
|
|
| 2064 |
|
|
FOR_EACH_VEC_ELT (gimple, stmts, i, stmt)
|
| 2065 |
|
|
{
|
| 2066 |
|
|
loop_p loop;
|
| 2067 |
|
|
|
| 2068 |
|
|
if (is_gimple_debug (stmt))
|
| 2069 |
|
|
continue;
|
| 2070 |
|
|
|
| 2071 |
|
|
loop = loop_containing_stmt (stmt);
|
| 2072 |
|
|
if (!loop_in_sese_p (loop, region))
|
| 2073 |
|
|
loop = nest;
|
| 2074 |
|
|
|
| 2075 |
|
|
graphite_find_data_references_in_stmt (nest, loop, stmt,
|
| 2076 |
|
|
&GBB_DATA_REFS (gbb));
|
| 2077 |
|
|
}
|
| 2078 |
|
|
}
|
| 2079 |
|
|
|
| 2080 |
|
|
/* Insert STMT at the end of the STMTS sequence and then insert the
|
| 2081 |
|
|
statements from STMTS at INSERT_GSI and call analyze_drs_in_stmts
|
| 2082 |
|
|
on STMTS. */
|
| 2083 |
|
|
|
| 2084 |
|
|
static void
|
| 2085 |
|
|
insert_stmts (scop_p scop, gimple stmt, gimple_seq stmts,
|
| 2086 |
|
|
gimple_stmt_iterator insert_gsi)
|
| 2087 |
|
|
{
|
| 2088 |
|
|
gimple_stmt_iterator gsi;
|
| 2089 |
|
|
VEC (gimple, heap) *x = VEC_alloc (gimple, heap, 3);
|
| 2090 |
|
|
|
| 2091 |
|
|
if (!stmts)
|
| 2092 |
|
|
stmts = gimple_seq_alloc ();
|
| 2093 |
|
|
|
| 2094 |
|
|
gsi = gsi_last (stmts);
|
| 2095 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
| 2096 |
|
|
for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 2097 |
|
|
VEC_safe_push (gimple, heap, x, gsi_stmt (gsi));
|
| 2098 |
|
|
|
| 2099 |
|
|
gsi_insert_seq_before (&insert_gsi, stmts, GSI_SAME_STMT);
|
| 2100 |
|
|
analyze_drs_in_stmts (scop, gsi_bb (insert_gsi), x);
|
| 2101 |
|
|
VEC_free (gimple, heap, x);
|
| 2102 |
|
|
}
|
| 2103 |
|
|
|
| 2104 |
|
|
/* Insert the assignment "RES := EXPR" just after AFTER_STMT. */
|
| 2105 |
|
|
|
| 2106 |
|
|
static void
|
| 2107 |
|
|
insert_out_of_ssa_copy (scop_p scop, tree res, tree expr, gimple after_stmt)
|
| 2108 |
|
|
{
|
| 2109 |
|
|
gimple_seq stmts;
|
| 2110 |
|
|
gimple_stmt_iterator si;
|
| 2111 |
|
|
gimple_stmt_iterator gsi;
|
| 2112 |
|
|
tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
|
| 2113 |
|
|
gimple stmt = gimple_build_assign (res, var);
|
| 2114 |
|
|
VEC (gimple, heap) *x = VEC_alloc (gimple, heap, 3);
|
| 2115 |
|
|
|
| 2116 |
|
|
if (!stmts)
|
| 2117 |
|
|
stmts = gimple_seq_alloc ();
|
| 2118 |
|
|
si = gsi_last (stmts);
|
| 2119 |
|
|
gsi_insert_after (&si, stmt, GSI_NEW_STMT);
|
| 2120 |
|
|
for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 2121 |
|
|
VEC_safe_push (gimple, heap, x, gsi_stmt (gsi));
|
| 2122 |
|
|
|
| 2123 |
|
|
if (gimple_code (after_stmt) == GIMPLE_PHI)
|
| 2124 |
|
|
{
|
| 2125 |
|
|
gsi = gsi_after_labels (gimple_bb (after_stmt));
|
| 2126 |
|
|
gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
|
| 2127 |
|
|
}
|
| 2128 |
|
|
else
|
| 2129 |
|
|
{
|
| 2130 |
|
|
gsi = gsi_for_stmt (after_stmt);
|
| 2131 |
|
|
gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
|
| 2132 |
|
|
}
|
| 2133 |
|
|
|
| 2134 |
|
|
analyze_drs_in_stmts (scop, gimple_bb (after_stmt), x);
|
| 2135 |
|
|
VEC_free (gimple, heap, x);
|
| 2136 |
|
|
}
|
| 2137 |
|
|
|
| 2138 |
|
|
/* Creates a poly_bb_p for basic_block BB from the existing PBB. */
|
| 2139 |
|
|
|
| 2140 |
|
|
static void
|
| 2141 |
|
|
new_pbb_from_pbb (scop_p scop, poly_bb_p pbb, basic_block bb)
|
| 2142 |
|
|
{
|
| 2143 |
|
|
VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
|
| 2144 |
|
|
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
|
| 2145 |
|
|
gimple_bb_p gbb1 = new_gimple_bb (bb, drs);
|
| 2146 |
|
|
poly_bb_p pbb1 = new_poly_bb (scop, gbb1);
|
| 2147 |
|
|
int index, n = VEC_length (poly_bb_p, SCOP_BBS (scop));
|
| 2148 |
|
|
|
| 2149 |
|
|
/* The INDEX of PBB in SCOP_BBS. */
|
| 2150 |
|
|
for (index = 0; index < n; index++)
|
| 2151 |
|
|
if (VEC_index (poly_bb_p, SCOP_BBS (scop), index) == pbb)
|
| 2152 |
|
|
break;
|
| 2153 |
|
|
|
| 2154 |
|
|
if (PBB_DOMAIN (pbb))
|
| 2155 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
|
| 2156 |
|
|
(&PBB_DOMAIN (pbb1), PBB_DOMAIN (pbb));
|
| 2157 |
|
|
|
| 2158 |
|
|
GBB_PBB (gbb1) = pbb1;
|
| 2159 |
|
|
GBB_CONDITIONS (gbb1) = VEC_copy (gimple, heap, GBB_CONDITIONS (gbb));
|
| 2160 |
|
|
GBB_CONDITION_CASES (gbb1) = VEC_copy (gimple, heap, GBB_CONDITION_CASES (gbb));
|
| 2161 |
|
|
VEC_safe_insert (poly_bb_p, heap, SCOP_BBS (scop), index + 1, pbb1);
|
| 2162 |
|
|
}
|
| 2163 |
|
|
|
| 2164 |
|
|
/* Insert on edge E the assignment "RES := EXPR". */
|
| 2165 |
|
|
|
| 2166 |
|
|
static void
|
| 2167 |
|
|
insert_out_of_ssa_copy_on_edge (scop_p scop, edge e, tree res, tree expr)
|
| 2168 |
|
|
{
|
| 2169 |
|
|
gimple_stmt_iterator gsi;
|
| 2170 |
|
|
gimple_seq stmts;
|
| 2171 |
|
|
tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
|
| 2172 |
|
|
gimple stmt = gimple_build_assign (res, var);
|
| 2173 |
|
|
basic_block bb;
|
| 2174 |
|
|
VEC (gimple, heap) *x = VEC_alloc (gimple, heap, 3);
|
| 2175 |
|
|
|
| 2176 |
|
|
if (!stmts)
|
| 2177 |
|
|
stmts = gimple_seq_alloc ();
|
| 2178 |
|
|
|
| 2179 |
|
|
gsi = gsi_last (stmts);
|
| 2180 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
| 2181 |
|
|
for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 2182 |
|
|
VEC_safe_push (gimple, heap, x, gsi_stmt (gsi));
|
| 2183 |
|
|
|
| 2184 |
|
|
gsi_insert_seq_on_edge (e, stmts);
|
| 2185 |
|
|
gsi_commit_edge_inserts ();
|
| 2186 |
|
|
bb = gimple_bb (stmt);
|
| 2187 |
|
|
|
| 2188 |
|
|
if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
|
| 2189 |
|
|
return;
|
| 2190 |
|
|
|
| 2191 |
|
|
if (!gbb_from_bb (bb))
|
| 2192 |
|
|
new_pbb_from_pbb (scop, pbb_from_bb (e->src), bb);
|
| 2193 |
|
|
|
| 2194 |
|
|
analyze_drs_in_stmts (scop, bb, x);
|
| 2195 |
|
|
VEC_free (gimple, heap, x);
|
| 2196 |
|
|
}
|
| 2197 |
|
|
|
| 2198 |
|
|
/* Creates a zero dimension array of the same type as VAR. */
|
| 2199 |
|
|
|
| 2200 |
|
|
static tree
|
| 2201 |
|
|
create_zero_dim_array (tree var, const char *base_name)
|
| 2202 |
|
|
{
|
| 2203 |
|
|
tree index_type = build_index_type (integer_zero_node);
|
| 2204 |
|
|
tree elt_type = TREE_TYPE (var);
|
| 2205 |
|
|
tree array_type = build_array_type (elt_type, index_type);
|
| 2206 |
|
|
tree base = create_tmp_var (array_type, base_name);
|
| 2207 |
|
|
|
| 2208 |
|
|
add_referenced_var (base);
|
| 2209 |
|
|
|
| 2210 |
|
|
return build4 (ARRAY_REF, elt_type, base, integer_zero_node, NULL_TREE,
|
| 2211 |
|
|
NULL_TREE);
|
| 2212 |
|
|
}
|
| 2213 |
|
|
|
| 2214 |
|
|
/* Returns true when PHI is a loop close phi node. */
|
| 2215 |
|
|
|
| 2216 |
|
|
static bool
|
| 2217 |
|
|
scalar_close_phi_node_p (gimple phi)
|
| 2218 |
|
|
{
|
| 2219 |
|
|
if (gimple_code (phi) != GIMPLE_PHI
|
| 2220 |
|
|
|| !is_gimple_reg (gimple_phi_result (phi)))
|
| 2221 |
|
|
return false;
|
| 2222 |
|
|
|
| 2223 |
|
|
/* Note that loop close phi nodes should have a single argument
|
| 2224 |
|
|
because we translated the representation into a canonical form
|
| 2225 |
|
|
before Graphite: see canonicalize_loop_closed_ssa_form. */
|
| 2226 |
|
|
return (gimple_phi_num_args (phi) == 1);
|
| 2227 |
|
|
}
|
| 2228 |
|
|
|
| 2229 |
|
|
/* For a definition DEF in REGION, propagates the expression EXPR in
|
| 2230 |
|
|
all the uses of DEF outside REGION. */
|
| 2231 |
|
|
|
| 2232 |
|
|
static void
|
| 2233 |
|
|
propagate_expr_outside_region (tree def, tree expr, sese region)
|
| 2234 |
|
|
{
|
| 2235 |
|
|
imm_use_iterator imm_iter;
|
| 2236 |
|
|
gimple use_stmt;
|
| 2237 |
|
|
gimple_seq stmts;
|
| 2238 |
|
|
bool replaced_once = false;
|
| 2239 |
|
|
|
| 2240 |
|
|
gcc_assert (TREE_CODE (def) == SSA_NAME);
|
| 2241 |
|
|
|
| 2242 |
|
|
expr = force_gimple_operand (unshare_expr (expr), &stmts, true,
|
| 2243 |
|
|
NULL_TREE);
|
| 2244 |
|
|
|
| 2245 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
|
| 2246 |
|
|
if (!is_gimple_debug (use_stmt)
|
| 2247 |
|
|
&& !bb_in_sese_p (gimple_bb (use_stmt), region))
|
| 2248 |
|
|
{
|
| 2249 |
|
|
ssa_op_iter iter;
|
| 2250 |
|
|
use_operand_p use_p;
|
| 2251 |
|
|
|
| 2252 |
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, use_stmt, iter, SSA_OP_ALL_USES)
|
| 2253 |
|
|
if (operand_equal_p (def, USE_FROM_PTR (use_p), 0)
|
| 2254 |
|
|
&& (replaced_once = true))
|
| 2255 |
|
|
replace_exp (use_p, expr);
|
| 2256 |
|
|
|
| 2257 |
|
|
update_stmt (use_stmt);
|
| 2258 |
|
|
}
|
| 2259 |
|
|
|
| 2260 |
|
|
if (replaced_once)
|
| 2261 |
|
|
{
|
| 2262 |
|
|
gsi_insert_seq_on_edge (SESE_ENTRY (region), stmts);
|
| 2263 |
|
|
gsi_commit_edge_inserts ();
|
| 2264 |
|
|
}
|
| 2265 |
|
|
}
|
| 2266 |
|
|
|
| 2267 |
|
|
/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
|
| 2268 |
|
|
dimension array for it. */
|
| 2269 |
|
|
|
| 2270 |
|
|
static void
|
| 2271 |
|
|
rewrite_close_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
|
| 2272 |
|
|
{
|
| 2273 |
|
|
sese region = SCOP_REGION (scop);
|
| 2274 |
|
|
gimple phi = gsi_stmt (*psi);
|
| 2275 |
|
|
tree res = gimple_phi_result (phi);
|
| 2276 |
|
|
tree var = SSA_NAME_VAR (res);
|
| 2277 |
|
|
basic_block bb = gimple_bb (phi);
|
| 2278 |
|
|
gimple_stmt_iterator gsi = gsi_after_labels (bb);
|
| 2279 |
|
|
tree arg = gimple_phi_arg_def (phi, 0);
|
| 2280 |
|
|
gimple stmt;
|
| 2281 |
|
|
|
| 2282 |
|
|
/* Note that loop close phi nodes should have a single argument
|
| 2283 |
|
|
because we translated the representation into a canonical form
|
| 2284 |
|
|
before Graphite: see canonicalize_loop_closed_ssa_form. */
|
| 2285 |
|
|
gcc_assert (gimple_phi_num_args (phi) == 1);
|
| 2286 |
|
|
|
| 2287 |
|
|
/* The phi node can be a non close phi node, when its argument is
|
| 2288 |
|
|
invariant, or a default definition. */
|
| 2289 |
|
|
if (is_gimple_min_invariant (arg)
|
| 2290 |
|
|
|| SSA_NAME_IS_DEFAULT_DEF (arg))
|
| 2291 |
|
|
{
|
| 2292 |
|
|
propagate_expr_outside_region (res, arg, region);
|
| 2293 |
|
|
gsi_next (psi);
|
| 2294 |
|
|
return;
|
| 2295 |
|
|
}
|
| 2296 |
|
|
|
| 2297 |
|
|
else if (gimple_bb (SSA_NAME_DEF_STMT (arg))->loop_father == bb->loop_father)
|
| 2298 |
|
|
{
|
| 2299 |
|
|
propagate_expr_outside_region (res, arg, region);
|
| 2300 |
|
|
stmt = gimple_build_assign (res, arg);
|
| 2301 |
|
|
remove_phi_node (psi, false);
|
| 2302 |
|
|
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
| 2303 |
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
| 2304 |
|
|
return;
|
| 2305 |
|
|
}
|
| 2306 |
|
|
|
| 2307 |
|
|
/* If res is scev analyzable and is not a scalar value, it is safe
|
| 2308 |
|
|
to ignore the close phi node: it will be code generated in the
|
| 2309 |
|
|
out of Graphite pass. */
|
| 2310 |
|
|
else if (scev_analyzable_p (res, region))
|
| 2311 |
|
|
{
|
| 2312 |
|
|
loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (res));
|
| 2313 |
|
|
tree scev;
|
| 2314 |
|
|
|
| 2315 |
|
|
if (!loop_in_sese_p (loop, region))
|
| 2316 |
|
|
{
|
| 2317 |
|
|
loop = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
|
| 2318 |
|
|
scev = scalar_evolution_in_region (region, loop, arg);
|
| 2319 |
|
|
scev = compute_overall_effect_of_inner_loop (loop, scev);
|
| 2320 |
|
|
}
|
| 2321 |
|
|
else
|
| 2322 |
|
|
scev = scalar_evolution_in_region (region, loop, res);
|
| 2323 |
|
|
|
| 2324 |
|
|
if (tree_does_not_contain_chrecs (scev))
|
| 2325 |
|
|
propagate_expr_outside_region (res, scev, region);
|
| 2326 |
|
|
|
| 2327 |
|
|
gsi_next (psi);
|
| 2328 |
|
|
return;
|
| 2329 |
|
|
}
|
| 2330 |
|
|
else
|
| 2331 |
|
|
{
|
| 2332 |
|
|
tree zero_dim_array = create_zero_dim_array (var, "Close_Phi");
|
| 2333 |
|
|
|
| 2334 |
|
|
stmt = gimple_build_assign (res, zero_dim_array);
|
| 2335 |
|
|
|
| 2336 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
| 2337 |
|
|
insert_out_of_ssa_copy (scop, zero_dim_array, arg,
|
| 2338 |
|
|
SSA_NAME_DEF_STMT (arg));
|
| 2339 |
|
|
else
|
| 2340 |
|
|
insert_out_of_ssa_copy_on_edge (scop, single_pred_edge (bb),
|
| 2341 |
|
|
zero_dim_array, arg);
|
| 2342 |
|
|
}
|
| 2343 |
|
|
|
| 2344 |
|
|
remove_phi_node (psi, false);
|
| 2345 |
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
| 2346 |
|
|
|
| 2347 |
|
|
insert_stmts (scop, stmt, NULL, gsi_after_labels (bb));
|
| 2348 |
|
|
}
|
| 2349 |
|
|
|
| 2350 |
|
|
/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
|
| 2351 |
|
|
dimension array for it. */
|
| 2352 |
|
|
|
| 2353 |
|
|
static void
|
| 2354 |
|
|
rewrite_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
|
| 2355 |
|
|
{
|
| 2356 |
|
|
size_t i;
|
| 2357 |
|
|
gimple phi = gsi_stmt (*psi);
|
| 2358 |
|
|
basic_block bb = gimple_bb (phi);
|
| 2359 |
|
|
tree res = gimple_phi_result (phi);
|
| 2360 |
|
|
tree var = SSA_NAME_VAR (res);
|
| 2361 |
|
|
tree zero_dim_array = create_zero_dim_array (var, "phi_out_of_ssa");
|
| 2362 |
|
|
gimple stmt;
|
| 2363 |
|
|
gimple_seq stmts;
|
| 2364 |
|
|
|
| 2365 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 2366 |
|
|
{
|
| 2367 |
|
|
tree arg = gimple_phi_arg_def (phi, i);
|
| 2368 |
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
| 2369 |
|
|
|
| 2370 |
|
|
/* Avoid the insertion of code in the loop latch to please the
|
| 2371 |
|
|
pattern matching of the vectorizer. */
|
| 2372 |
|
|
if (TREE_CODE (arg) == SSA_NAME
|
| 2373 |
|
|
&& e->src == bb->loop_father->latch)
|
| 2374 |
|
|
insert_out_of_ssa_copy (scop, zero_dim_array, arg,
|
| 2375 |
|
|
SSA_NAME_DEF_STMT (arg));
|
| 2376 |
|
|
else
|
| 2377 |
|
|
insert_out_of_ssa_copy_on_edge (scop, e, zero_dim_array, arg);
|
| 2378 |
|
|
}
|
| 2379 |
|
|
|
| 2380 |
|
|
var = force_gimple_operand (zero_dim_array, &stmts, true, NULL_TREE);
|
| 2381 |
|
|
|
| 2382 |
|
|
stmt = gimple_build_assign (res, var);
|
| 2383 |
|
|
remove_phi_node (psi, false);
|
| 2384 |
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
| 2385 |
|
|
|
| 2386 |
|
|
insert_stmts (scop, stmt, stmts, gsi_after_labels (bb));
|
| 2387 |
|
|
}
|
| 2388 |
|
|
|
| 2389 |
|
|
/* Rewrite the degenerate phi node at position PSI from the degenerate
|
| 2390 |
|
|
form "x = phi (y, y, ..., y)" to "x = y". */
|
| 2391 |
|
|
|
| 2392 |
|
|
static void
|
| 2393 |
|
|
rewrite_degenerate_phi (gimple_stmt_iterator *psi)
|
| 2394 |
|
|
{
|
| 2395 |
|
|
tree rhs;
|
| 2396 |
|
|
gimple stmt;
|
| 2397 |
|
|
gimple_stmt_iterator gsi;
|
| 2398 |
|
|
gimple phi = gsi_stmt (*psi);
|
| 2399 |
|
|
tree res = gimple_phi_result (phi);
|
| 2400 |
|
|
basic_block bb;
|
| 2401 |
|
|
|
| 2402 |
|
|
bb = gimple_bb (phi);
|
| 2403 |
|
|
rhs = degenerate_phi_result (phi);
|
| 2404 |
|
|
gcc_assert (rhs);
|
| 2405 |
|
|
|
| 2406 |
|
|
stmt = gimple_build_assign (res, rhs);
|
| 2407 |
|
|
remove_phi_node (psi, false);
|
| 2408 |
|
|
SSA_NAME_DEF_STMT (res) = stmt;
|
| 2409 |
|
|
|
| 2410 |
|
|
gsi = gsi_after_labels (bb);
|
| 2411 |
|
|
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
| 2412 |
|
|
}
|
| 2413 |
|
|
|
| 2414 |
|
|
/* Rewrite out of SSA all the reduction phi nodes of SCOP. */
|
| 2415 |
|
|
|
| 2416 |
|
|
static void
|
| 2417 |
|
|
rewrite_reductions_out_of_ssa (scop_p scop)
|
| 2418 |
|
|
{
|
| 2419 |
|
|
basic_block bb;
|
| 2420 |
|
|
gimple_stmt_iterator psi;
|
| 2421 |
|
|
sese region = SCOP_REGION (scop);
|
| 2422 |
|
|
|
| 2423 |
|
|
FOR_EACH_BB (bb)
|
| 2424 |
|
|
if (bb_in_sese_p (bb, region))
|
| 2425 |
|
|
for (psi = gsi_start_phis (bb); !gsi_end_p (psi);)
|
| 2426 |
|
|
{
|
| 2427 |
|
|
gimple phi = gsi_stmt (psi);
|
| 2428 |
|
|
|
| 2429 |
|
|
if (!is_gimple_reg (gimple_phi_result (phi)))
|
| 2430 |
|
|
{
|
| 2431 |
|
|
gsi_next (&psi);
|
| 2432 |
|
|
continue;
|
| 2433 |
|
|
}
|
| 2434 |
|
|
|
| 2435 |
|
|
if (gimple_phi_num_args (phi) > 1
|
| 2436 |
|
|
&& degenerate_phi_result (phi))
|
| 2437 |
|
|
rewrite_degenerate_phi (&psi);
|
| 2438 |
|
|
|
| 2439 |
|
|
else if (scalar_close_phi_node_p (phi))
|
| 2440 |
|
|
rewrite_close_phi_out_of_ssa (scop, &psi);
|
| 2441 |
|
|
|
| 2442 |
|
|
else if (reduction_phi_p (region, &psi))
|
| 2443 |
|
|
rewrite_phi_out_of_ssa (scop, &psi);
|
| 2444 |
|
|
}
|
| 2445 |
|
|
|
| 2446 |
|
|
update_ssa (TODO_update_ssa);
|
| 2447 |
|
|
#ifdef ENABLE_CHECKING
|
| 2448 |
|
|
verify_loop_closed_ssa (true);
|
| 2449 |
|
|
#endif
|
| 2450 |
|
|
}
|
| 2451 |
|
|
|
| 2452 |
|
|
/* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
|
| 2453 |
|
|
read from ZERO_DIM_ARRAY. */
|
| 2454 |
|
|
|
| 2455 |
|
|
static void
|
| 2456 |
|
|
rewrite_cross_bb_scalar_dependence (scop_p scop, tree zero_dim_array,
|
| 2457 |
|
|
tree def, gimple use_stmt)
|
| 2458 |
|
|
{
|
| 2459 |
|
|
tree var = SSA_NAME_VAR (def);
|
| 2460 |
|
|
gimple name_stmt = gimple_build_assign (var, zero_dim_array);
|
| 2461 |
|
|
tree name = make_ssa_name (var, name_stmt);
|
| 2462 |
|
|
ssa_op_iter iter;
|
| 2463 |
|
|
use_operand_p use_p;
|
| 2464 |
|
|
|
| 2465 |
|
|
gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
|
| 2466 |
|
|
|
| 2467 |
|
|
gimple_assign_set_lhs (name_stmt, name);
|
| 2468 |
|
|
insert_stmts (scop, name_stmt, NULL, gsi_for_stmt (use_stmt));
|
| 2469 |
|
|
|
| 2470 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, iter, SSA_OP_ALL_USES)
|
| 2471 |
|
|
if (operand_equal_p (def, USE_FROM_PTR (use_p), 0))
|
| 2472 |
|
|
replace_exp (use_p, name);
|
| 2473 |
|
|
|
| 2474 |
|
|
update_stmt (use_stmt);
|
| 2475 |
|
|
}
|
| 2476 |
|
|
|
| 2477 |
|
|
/* For every definition DEF in the SCOP that is used outside the scop,
|
| 2478 |
|
|
insert a closing-scop definition in the basic block just after this
|
| 2479 |
|
|
SCOP. */
|
| 2480 |
|
|
|
| 2481 |
|
|
static void
|
| 2482 |
|
|
handle_scalar_deps_crossing_scop_limits (scop_p scop, tree def, gimple stmt)
|
| 2483 |
|
|
{
|
| 2484 |
|
|
tree var = create_tmp_reg (TREE_TYPE (def), NULL);
|
| 2485 |
|
|
tree new_name = make_ssa_name (var, stmt);
|
| 2486 |
|
|
bool needs_copy = false;
|
| 2487 |
|
|
use_operand_p use_p;
|
| 2488 |
|
|
imm_use_iterator imm_iter;
|
| 2489 |
|
|
gimple use_stmt;
|
| 2490 |
|
|
sese region = SCOP_REGION (scop);
|
| 2491 |
|
|
|
| 2492 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
|
| 2493 |
|
|
{
|
| 2494 |
|
|
if (!bb_in_sese_p (gimple_bb (use_stmt), region))
|
| 2495 |
|
|
{
|
| 2496 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
| 2497 |
|
|
{
|
| 2498 |
|
|
SET_USE (use_p, new_name);
|
| 2499 |
|
|
}
|
| 2500 |
|
|
update_stmt (use_stmt);
|
| 2501 |
|
|
needs_copy = true;
|
| 2502 |
|
|
}
|
| 2503 |
|
|
}
|
| 2504 |
|
|
|
| 2505 |
|
|
/* Insert in the empty BB just after the scop a use of DEF such
|
| 2506 |
|
|
that the rewrite of cross_bb_scalar_dependences won't insert
|
| 2507 |
|
|
arrays everywhere else. */
|
| 2508 |
|
|
if (needs_copy)
|
| 2509 |
|
|
{
|
| 2510 |
|
|
gimple assign = gimple_build_assign (new_name, def);
|
| 2511 |
|
|
gimple_stmt_iterator psi = gsi_after_labels (SESE_EXIT (region)->dest);
|
| 2512 |
|
|
|
| 2513 |
|
|
add_referenced_var (var);
|
| 2514 |
|
|
SSA_NAME_DEF_STMT (new_name) = assign;
|
| 2515 |
|
|
update_stmt (assign);
|
| 2516 |
|
|
gsi_insert_before (&psi, assign, GSI_SAME_STMT);
|
| 2517 |
|
|
}
|
| 2518 |
|
|
}
|
| 2519 |
|
|
|
| 2520 |
|
|
/* Rewrite the scalar dependences crossing the boundary of the BB
|
| 2521 |
|
|
containing STMT with an array. Return true when something has been
|
| 2522 |
|
|
changed. */
|
| 2523 |
|
|
|
| 2524 |
|
|
static bool
|
| 2525 |
|
|
rewrite_cross_bb_scalar_deps (scop_p scop, gimple_stmt_iterator *gsi)
|
| 2526 |
|
|
{
|
| 2527 |
|
|
sese region = SCOP_REGION (scop);
|
| 2528 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 2529 |
|
|
imm_use_iterator imm_iter;
|
| 2530 |
|
|
tree def;
|
| 2531 |
|
|
basic_block def_bb;
|
| 2532 |
|
|
tree zero_dim_array = NULL_TREE;
|
| 2533 |
|
|
gimple use_stmt;
|
| 2534 |
|
|
bool res = false;
|
| 2535 |
|
|
|
| 2536 |
|
|
switch (gimple_code (stmt))
|
| 2537 |
|
|
{
|
| 2538 |
|
|
case GIMPLE_ASSIGN:
|
| 2539 |
|
|
def = gimple_assign_lhs (stmt);
|
| 2540 |
|
|
break;
|
| 2541 |
|
|
|
| 2542 |
|
|
case GIMPLE_CALL:
|
| 2543 |
|
|
def = gimple_call_lhs (stmt);
|
| 2544 |
|
|
break;
|
| 2545 |
|
|
|
| 2546 |
|
|
default:
|
| 2547 |
|
|
return false;
|
| 2548 |
|
|
}
|
| 2549 |
|
|
|
| 2550 |
|
|
if (!def
|
| 2551 |
|
|
|| !is_gimple_reg (def))
|
| 2552 |
|
|
return false;
|
| 2553 |
|
|
|
| 2554 |
|
|
if (scev_analyzable_p (def, region))
|
| 2555 |
|
|
{
|
| 2556 |
|
|
loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
|
| 2557 |
|
|
tree scev = scalar_evolution_in_region (region, loop, def);
|
| 2558 |
|
|
|
| 2559 |
|
|
if (tree_contains_chrecs (scev, NULL))
|
| 2560 |
|
|
return false;
|
| 2561 |
|
|
|
| 2562 |
|
|
propagate_expr_outside_region (def, scev, region);
|
| 2563 |
|
|
return true;
|
| 2564 |
|
|
}
|
| 2565 |
|
|
|
| 2566 |
|
|
def_bb = gimple_bb (stmt);
|
| 2567 |
|
|
|
| 2568 |
|
|
handle_scalar_deps_crossing_scop_limits (scop, def, stmt);
|
| 2569 |
|
|
|
| 2570 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
|
| 2571 |
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI
|
| 2572 |
|
|
&& (res = true))
|
| 2573 |
|
|
{
|
| 2574 |
|
|
gimple_stmt_iterator psi = gsi_for_stmt (use_stmt);
|
| 2575 |
|
|
|
| 2576 |
|
|
if (scalar_close_phi_node_p (gsi_stmt (psi)))
|
| 2577 |
|
|
rewrite_close_phi_out_of_ssa (scop, &psi);
|
| 2578 |
|
|
else
|
| 2579 |
|
|
rewrite_phi_out_of_ssa (scop, &psi);
|
| 2580 |
|
|
}
|
| 2581 |
|
|
|
| 2582 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
|
| 2583 |
|
|
if (gimple_code (use_stmt) != GIMPLE_PHI
|
| 2584 |
|
|
&& def_bb != gimple_bb (use_stmt)
|
| 2585 |
|
|
&& !is_gimple_debug (use_stmt)
|
| 2586 |
|
|
&& (res = true))
|
| 2587 |
|
|
{
|
| 2588 |
|
|
if (!zero_dim_array)
|
| 2589 |
|
|
{
|
| 2590 |
|
|
zero_dim_array = create_zero_dim_array
|
| 2591 |
|
|
(SSA_NAME_VAR (def), "Cross_BB_scalar_dependence");
|
| 2592 |
|
|
insert_out_of_ssa_copy (scop, zero_dim_array, def,
|
| 2593 |
|
|
SSA_NAME_DEF_STMT (def));
|
| 2594 |
|
|
gsi_next (gsi);
|
| 2595 |
|
|
}
|
| 2596 |
|
|
|
| 2597 |
|
|
rewrite_cross_bb_scalar_dependence (scop, zero_dim_array,
|
| 2598 |
|
|
def, use_stmt);
|
| 2599 |
|
|
}
|
| 2600 |
|
|
|
| 2601 |
|
|
return res;
|
| 2602 |
|
|
}
|
| 2603 |
|
|
|
| 2604 |
|
|
/* Rewrite out of SSA all the reduction phi nodes of SCOP. */
|
| 2605 |
|
|
|
| 2606 |
|
|
static void
|
| 2607 |
|
|
rewrite_cross_bb_scalar_deps_out_of_ssa (scop_p scop)
|
| 2608 |
|
|
{
|
| 2609 |
|
|
basic_block bb;
|
| 2610 |
|
|
gimple_stmt_iterator psi;
|
| 2611 |
|
|
sese region = SCOP_REGION (scop);
|
| 2612 |
|
|
bool changed = false;
|
| 2613 |
|
|
|
| 2614 |
|
|
/* Create an extra empty BB after the scop. */
|
| 2615 |
|
|
split_edge (SESE_EXIT (region));
|
| 2616 |
|
|
|
| 2617 |
|
|
FOR_EACH_BB (bb)
|
| 2618 |
|
|
if (bb_in_sese_p (bb, region))
|
| 2619 |
|
|
for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
|
| 2620 |
|
|
changed |= rewrite_cross_bb_scalar_deps (scop, &psi);
|
| 2621 |
|
|
|
| 2622 |
|
|
if (changed)
|
| 2623 |
|
|
{
|
| 2624 |
|
|
scev_reset_htab ();
|
| 2625 |
|
|
update_ssa (TODO_update_ssa);
|
| 2626 |
|
|
#ifdef ENABLE_CHECKING
|
| 2627 |
|
|
verify_loop_closed_ssa (true);
|
| 2628 |
|
|
#endif
|
| 2629 |
|
|
}
|
| 2630 |
|
|
}
|
| 2631 |
|
|
|
| 2632 |
|
|
/* Returns the number of pbbs that are in loops contained in SCOP. */
|
| 2633 |
|
|
|
| 2634 |
|
|
static int
|
| 2635 |
|
|
nb_pbbs_in_loops (scop_p scop)
|
| 2636 |
|
|
{
|
| 2637 |
|
|
int i;
|
| 2638 |
|
|
poly_bb_p pbb;
|
| 2639 |
|
|
int res = 0;
|
| 2640 |
|
|
|
| 2641 |
|
|
FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
|
| 2642 |
|
|
if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), SCOP_REGION (scop)))
|
| 2643 |
|
|
res++;
|
| 2644 |
|
|
|
| 2645 |
|
|
return res;
|
| 2646 |
|
|
}
|
| 2647 |
|
|
|
| 2648 |
|
|
/* Return the number of data references in BB that write in
|
| 2649 |
|
|
memory. */
|
| 2650 |
|
|
|
| 2651 |
|
|
static int
|
| 2652 |
|
|
nb_data_writes_in_bb (basic_block bb)
|
| 2653 |
|
|
{
|
| 2654 |
|
|
int res = 0;
|
| 2655 |
|
|
gimple_stmt_iterator gsi;
|
| 2656 |
|
|
|
| 2657 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 2658 |
|
|
if (gimple_vdef (gsi_stmt (gsi)))
|
| 2659 |
|
|
res++;
|
| 2660 |
|
|
|
| 2661 |
|
|
return res;
|
| 2662 |
|
|
}
|
| 2663 |
|
|
|
| 2664 |
|
|
/* Splits at STMT the basic block BB represented as PBB in the
|
| 2665 |
|
|
polyhedral form. */
|
| 2666 |
|
|
|
| 2667 |
|
|
static edge
|
| 2668 |
|
|
split_pbb (scop_p scop, poly_bb_p pbb, basic_block bb, gimple stmt)
|
| 2669 |
|
|
{
|
| 2670 |
|
|
edge e1 = split_block (bb, stmt);
|
| 2671 |
|
|
new_pbb_from_pbb (scop, pbb, e1->dest);
|
| 2672 |
|
|
return e1;
|
| 2673 |
|
|
}
|
| 2674 |
|
|
|
| 2675 |
|
|
/* Splits STMT out of its current BB. This is done for reduction
|
| 2676 |
|
|
statements for which we want to ignore data dependences. */
|
| 2677 |
|
|
|
| 2678 |
|
|
static basic_block
|
| 2679 |
|
|
split_reduction_stmt (scop_p scop, gimple stmt)
|
| 2680 |
|
|
{
|
| 2681 |
|
|
basic_block bb = gimple_bb (stmt);
|
| 2682 |
|
|
poly_bb_p pbb = pbb_from_bb (bb);
|
| 2683 |
|
|
gimple_bb_p gbb = gbb_from_bb (bb);
|
| 2684 |
|
|
edge e1;
|
| 2685 |
|
|
int i;
|
| 2686 |
|
|
data_reference_p dr;
|
| 2687 |
|
|
|
| 2688 |
|
|
/* Do not split basic blocks with no writes to memory: the reduction
|
| 2689 |
|
|
will be the only write to memory. */
|
| 2690 |
|
|
if (nb_data_writes_in_bb (bb) == 0
|
| 2691 |
|
|
/* Or if we have already marked BB as a reduction. */
|
| 2692 |
|
|
|| PBB_IS_REDUCTION (pbb_from_bb (bb)))
|
| 2693 |
|
|
return bb;
|
| 2694 |
|
|
|
| 2695 |
|
|
e1 = split_pbb (scop, pbb, bb, stmt);
|
| 2696 |
|
|
|
| 2697 |
|
|
/* Split once more only when the reduction stmt is not the only one
|
| 2698 |
|
|
left in the original BB. */
|
| 2699 |
|
|
if (!gsi_one_before_end_p (gsi_start_nondebug_bb (bb)))
|
| 2700 |
|
|
{
|
| 2701 |
|
|
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
| 2702 |
|
|
gsi_prev (&gsi);
|
| 2703 |
|
|
e1 = split_pbb (scop, pbb, bb, gsi_stmt (gsi));
|
| 2704 |
|
|
}
|
| 2705 |
|
|
|
| 2706 |
|
|
/* A part of the data references will end in a different basic block
|
| 2707 |
|
|
after the split: move the DRs from the original GBB to the newly
|
| 2708 |
|
|
created GBB1. */
|
| 2709 |
|
|
FOR_EACH_VEC_ELT (data_reference_p, GBB_DATA_REFS (gbb), i, dr)
|
| 2710 |
|
|
{
|
| 2711 |
|
|
basic_block bb1 = gimple_bb (DR_STMT (dr));
|
| 2712 |
|
|
|
| 2713 |
|
|
if (bb1 != bb)
|
| 2714 |
|
|
{
|
| 2715 |
|
|
gimple_bb_p gbb1 = gbb_from_bb (bb1);
|
| 2716 |
|
|
VEC_safe_push (data_reference_p, heap, GBB_DATA_REFS (gbb1), dr);
|
| 2717 |
|
|
VEC_ordered_remove (data_reference_p, GBB_DATA_REFS (gbb), i);
|
| 2718 |
|
|
i--;
|
| 2719 |
|
|
}
|
| 2720 |
|
|
}
|
| 2721 |
|
|
|
| 2722 |
|
|
return e1->dest;
|
| 2723 |
|
|
}
|
| 2724 |
|
|
|
| 2725 |
|
|
/* Return true when stmt is a reduction operation. */
|
| 2726 |
|
|
|
| 2727 |
|
|
static inline bool
|
| 2728 |
|
|
is_reduction_operation_p (gimple stmt)
|
| 2729 |
|
|
{
|
| 2730 |
|
|
enum tree_code code;
|
| 2731 |
|
|
|
| 2732 |
|
|
gcc_assert (is_gimple_assign (stmt));
|
| 2733 |
|
|
code = gimple_assign_rhs_code (stmt);
|
| 2734 |
|
|
|
| 2735 |
|
|
return flag_associative_math
|
| 2736 |
|
|
&& commutative_tree_code (code)
|
| 2737 |
|
|
&& associative_tree_code (code);
|
| 2738 |
|
|
}
|
| 2739 |
|
|
|
| 2740 |
|
|
/* Returns true when PHI contains an argument ARG. */
|
| 2741 |
|
|
|
| 2742 |
|
|
static bool
|
| 2743 |
|
|
phi_contains_arg (gimple phi, tree arg)
|
| 2744 |
|
|
{
|
| 2745 |
|
|
size_t i;
|
| 2746 |
|
|
|
| 2747 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 2748 |
|
|
if (operand_equal_p (arg, gimple_phi_arg_def (phi, i), 0))
|
| 2749 |
|
|
return true;
|
| 2750 |
|
|
|
| 2751 |
|
|
return false;
|
| 2752 |
|
|
}
|
| 2753 |
|
|
|
| 2754 |
|
|
/* Return a loop phi node that corresponds to a reduction containing LHS. */
|
| 2755 |
|
|
|
| 2756 |
|
|
static gimple
|
| 2757 |
|
|
follow_ssa_with_commutative_ops (tree arg, tree lhs)
|
| 2758 |
|
|
{
|
| 2759 |
|
|
gimple stmt;
|
| 2760 |
|
|
|
| 2761 |
|
|
if (TREE_CODE (arg) != SSA_NAME)
|
| 2762 |
|
|
return NULL;
|
| 2763 |
|
|
|
| 2764 |
|
|
stmt = SSA_NAME_DEF_STMT (arg);
|
| 2765 |
|
|
|
| 2766 |
|
|
if (gimple_code (stmt) == GIMPLE_NOP
|
| 2767 |
|
|
|| gimple_code (stmt) == GIMPLE_CALL)
|
| 2768 |
|
|
return NULL;
|
| 2769 |
|
|
|
| 2770 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 2771 |
|
|
{
|
| 2772 |
|
|
if (phi_contains_arg (stmt, lhs))
|
| 2773 |
|
|
return stmt;
|
| 2774 |
|
|
return NULL;
|
| 2775 |
|
|
}
|
| 2776 |
|
|
|
| 2777 |
|
|
if (!is_gimple_assign (stmt))
|
| 2778 |
|
|
return NULL;
|
| 2779 |
|
|
|
| 2780 |
|
|
if (gimple_num_ops (stmt) == 2)
|
| 2781 |
|
|
return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
|
| 2782 |
|
|
|
| 2783 |
|
|
if (is_reduction_operation_p (stmt))
|
| 2784 |
|
|
{
|
| 2785 |
|
|
gimple res = follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
|
| 2786 |
|
|
|
| 2787 |
|
|
return res ? res :
|
| 2788 |
|
|
follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt), lhs);
|
| 2789 |
|
|
}
|
| 2790 |
|
|
|
| 2791 |
|
|
return NULL;
|
| 2792 |
|
|
}
|
| 2793 |
|
|
|
| 2794 |
|
|
/* Detect commutative and associative scalar reductions starting at
|
| 2795 |
|
|
the STMT. Return the phi node of the reduction cycle, or NULL. */
|
| 2796 |
|
|
|
| 2797 |
|
|
static gimple
|
| 2798 |
|
|
detect_commutative_reduction_arg (tree lhs, gimple stmt, tree arg,
|
| 2799 |
|
|
VEC (gimple, heap) **in,
|
| 2800 |
|
|
VEC (gimple, heap) **out)
|
| 2801 |
|
|
{
|
| 2802 |
|
|
gimple phi = follow_ssa_with_commutative_ops (arg, lhs);
|
| 2803 |
|
|
|
| 2804 |
|
|
if (!phi)
|
| 2805 |
|
|
return NULL;
|
| 2806 |
|
|
|
| 2807 |
|
|
VEC_safe_push (gimple, heap, *in, stmt);
|
| 2808 |
|
|
VEC_safe_push (gimple, heap, *out, stmt);
|
| 2809 |
|
|
return phi;
|
| 2810 |
|
|
}
|
| 2811 |
|
|
|
| 2812 |
|
|
/* Detect commutative and associative scalar reductions starting at
|
| 2813 |
|
|
STMT. Return the phi node of the reduction cycle, or NULL. */
|
| 2814 |
|
|
|
| 2815 |
|
|
static gimple
|
| 2816 |
|
|
detect_commutative_reduction_assign (gimple stmt, VEC (gimple, heap) **in,
|
| 2817 |
|
|
VEC (gimple, heap) **out)
|
| 2818 |
|
|
{
|
| 2819 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
| 2820 |
|
|
|
| 2821 |
|
|
if (gimple_num_ops (stmt) == 2)
|
| 2822 |
|
|
return detect_commutative_reduction_arg (lhs, stmt,
|
| 2823 |
|
|
gimple_assign_rhs1 (stmt),
|
| 2824 |
|
|
in, out);
|
| 2825 |
|
|
|
| 2826 |
|
|
if (is_reduction_operation_p (stmt))
|
| 2827 |
|
|
{
|
| 2828 |
|
|
gimple res = detect_commutative_reduction_arg (lhs, stmt,
|
| 2829 |
|
|
gimple_assign_rhs1 (stmt),
|
| 2830 |
|
|
in, out);
|
| 2831 |
|
|
return res ? res
|
| 2832 |
|
|
: detect_commutative_reduction_arg (lhs, stmt,
|
| 2833 |
|
|
gimple_assign_rhs2 (stmt),
|
| 2834 |
|
|
in, out);
|
| 2835 |
|
|
}
|
| 2836 |
|
|
|
| 2837 |
|
|
return NULL;
|
| 2838 |
|
|
}
|
| 2839 |
|
|
|
| 2840 |
|
|
/* Return a loop phi node that corresponds to a reduction containing LHS. */
|
| 2841 |
|
|
|
| 2842 |
|
|
static gimple
|
| 2843 |
|
|
follow_inital_value_to_phi (tree arg, tree lhs)
|
| 2844 |
|
|
{
|
| 2845 |
|
|
gimple stmt;
|
| 2846 |
|
|
|
| 2847 |
|
|
if (!arg || TREE_CODE (arg) != SSA_NAME)
|
| 2848 |
|
|
return NULL;
|
| 2849 |
|
|
|
| 2850 |
|
|
stmt = SSA_NAME_DEF_STMT (arg);
|
| 2851 |
|
|
|
| 2852 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI
|
| 2853 |
|
|
&& phi_contains_arg (stmt, lhs))
|
| 2854 |
|
|
return stmt;
|
| 2855 |
|
|
|
| 2856 |
|
|
return NULL;
|
| 2857 |
|
|
}
|
| 2858 |
|
|
|
| 2859 |
|
|
|
| 2860 |
|
|
/* Return the argument of the loop PHI that is the inital value coming
|
| 2861 |
|
|
from outside the loop. */
|
| 2862 |
|
|
|
| 2863 |
|
|
static edge
|
| 2864 |
|
|
edge_initial_value_for_loop_phi (gimple phi)
|
| 2865 |
|
|
{
|
| 2866 |
|
|
size_t i;
|
| 2867 |
|
|
|
| 2868 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 2869 |
|
|
{
|
| 2870 |
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
| 2871 |
|
|
|
| 2872 |
|
|
if (loop_depth (e->src->loop_father)
|
| 2873 |
|
|
< loop_depth (e->dest->loop_father))
|
| 2874 |
|
|
return e;
|
| 2875 |
|
|
}
|
| 2876 |
|
|
|
| 2877 |
|
|
return NULL;
|
| 2878 |
|
|
}
|
| 2879 |
|
|
|
| 2880 |
|
|
/* Return the argument of the loop PHI that is the inital value coming
|
| 2881 |
|
|
from outside the loop. */
|
| 2882 |
|
|
|
| 2883 |
|
|
static tree
|
| 2884 |
|
|
initial_value_for_loop_phi (gimple phi)
|
| 2885 |
|
|
{
|
| 2886 |
|
|
size_t i;
|
| 2887 |
|
|
|
| 2888 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 2889 |
|
|
{
|
| 2890 |
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
| 2891 |
|
|
|
| 2892 |
|
|
if (loop_depth (e->src->loop_father)
|
| 2893 |
|
|
< loop_depth (e->dest->loop_father))
|
| 2894 |
|
|
return gimple_phi_arg_def (phi, i);
|
| 2895 |
|
|
}
|
| 2896 |
|
|
|
| 2897 |
|
|
return NULL_TREE;
|
| 2898 |
|
|
}
|
| 2899 |
|
|
|
| 2900 |
|
|
/* Returns true when DEF is used outside the reduction cycle of
|
| 2901 |
|
|
LOOP_PHI. */
|
| 2902 |
|
|
|
| 2903 |
|
|
static bool
|
| 2904 |
|
|
used_outside_reduction (tree def, gimple loop_phi)
|
| 2905 |
|
|
{
|
| 2906 |
|
|
use_operand_p use_p;
|
| 2907 |
|
|
imm_use_iterator imm_iter;
|
| 2908 |
|
|
loop_p loop = loop_containing_stmt (loop_phi);
|
| 2909 |
|
|
|
| 2910 |
|
|
/* In LOOP, DEF should be used only in LOOP_PHI. */
|
| 2911 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
|
| 2912 |
|
|
{
|
| 2913 |
|
|
gimple stmt = USE_STMT (use_p);
|
| 2914 |
|
|
|
| 2915 |
|
|
if (stmt != loop_phi
|
| 2916 |
|
|
&& !is_gimple_debug (stmt)
|
| 2917 |
|
|
&& flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
|
| 2918 |
|
|
return true;
|
| 2919 |
|
|
}
|
| 2920 |
|
|
|
| 2921 |
|
|
return false;
|
| 2922 |
|
|
}
|
| 2923 |
|
|
|
| 2924 |
|
|
/* Detect commutative and associative scalar reductions belonging to
|
| 2925 |
|
|
the SCOP starting at the loop closed phi node STMT. Return the phi
|
| 2926 |
|
|
node of the reduction cycle, or NULL. */
|
| 2927 |
|
|
|
| 2928 |
|
|
static gimple
|
| 2929 |
|
|
detect_commutative_reduction (scop_p scop, gimple stmt, VEC (gimple, heap) **in,
|
| 2930 |
|
|
VEC (gimple, heap) **out)
|
| 2931 |
|
|
{
|
| 2932 |
|
|
if (scalar_close_phi_node_p (stmt))
|
| 2933 |
|
|
{
|
| 2934 |
|
|
gimple def, loop_phi, phi, close_phi = stmt;
|
| 2935 |
|
|
tree init, lhs, arg = gimple_phi_arg_def (close_phi, 0);
|
| 2936 |
|
|
|
| 2937 |
|
|
if (TREE_CODE (arg) != SSA_NAME)
|
| 2938 |
|
|
return NULL;
|
| 2939 |
|
|
|
| 2940 |
|
|
/* Note that loop close phi nodes should have a single argument
|
| 2941 |
|
|
because we translated the representation into a canonical form
|
| 2942 |
|
|
before Graphite: see canonicalize_loop_closed_ssa_form. */
|
| 2943 |
|
|
gcc_assert (gimple_phi_num_args (close_phi) == 1);
|
| 2944 |
|
|
|
| 2945 |
|
|
def = SSA_NAME_DEF_STMT (arg);
|
| 2946 |
|
|
if (!stmt_in_sese_p (def, SCOP_REGION (scop))
|
| 2947 |
|
|
|| !(loop_phi = detect_commutative_reduction (scop, def, in, out)))
|
| 2948 |
|
|
return NULL;
|
| 2949 |
|
|
|
| 2950 |
|
|
lhs = gimple_phi_result (close_phi);
|
| 2951 |
|
|
init = initial_value_for_loop_phi (loop_phi);
|
| 2952 |
|
|
phi = follow_inital_value_to_phi (init, lhs);
|
| 2953 |
|
|
|
| 2954 |
|
|
if (phi && (used_outside_reduction (lhs, phi)
|
| 2955 |
|
|
|| !has_single_use (gimple_phi_result (phi))))
|
| 2956 |
|
|
return NULL;
|
| 2957 |
|
|
|
| 2958 |
|
|
VEC_safe_push (gimple, heap, *in, loop_phi);
|
| 2959 |
|
|
VEC_safe_push (gimple, heap, *out, close_phi);
|
| 2960 |
|
|
return phi;
|
| 2961 |
|
|
}
|
| 2962 |
|
|
|
| 2963 |
|
|
if (gimple_code (stmt) == GIMPLE_ASSIGN)
|
| 2964 |
|
|
return detect_commutative_reduction_assign (stmt, in, out);
|
| 2965 |
|
|
|
| 2966 |
|
|
return NULL;
|
| 2967 |
|
|
}
|
| 2968 |
|
|
|
| 2969 |
|
|
/* Translate the scalar reduction statement STMT to an array RED
|
| 2970 |
|
|
knowing that its recursive phi node is LOOP_PHI. */
|
| 2971 |
|
|
|
| 2972 |
|
|
static void
|
| 2973 |
|
|
translate_scalar_reduction_to_array_for_stmt (scop_p scop, tree red,
|
| 2974 |
|
|
gimple stmt, gimple loop_phi)
|
| 2975 |
|
|
{
|
| 2976 |
|
|
tree res = gimple_phi_result (loop_phi);
|
| 2977 |
|
|
gimple assign = gimple_build_assign (res, unshare_expr (red));
|
| 2978 |
|
|
gimple_stmt_iterator gsi;
|
| 2979 |
|
|
|
| 2980 |
|
|
insert_stmts (scop, assign, NULL, gsi_after_labels (gimple_bb (loop_phi)));
|
| 2981 |
|
|
|
| 2982 |
|
|
assign = gimple_build_assign (unshare_expr (red), gimple_assign_lhs (stmt));
|
| 2983 |
|
|
gsi = gsi_for_stmt (stmt);
|
| 2984 |
|
|
gsi_next (&gsi);
|
| 2985 |
|
|
insert_stmts (scop, assign, NULL, gsi);
|
| 2986 |
|
|
}
|
| 2987 |
|
|
|
| 2988 |
|
|
/* Removes the PHI node and resets all the debug stmts that are using
|
| 2989 |
|
|
the PHI_RESULT. */
|
| 2990 |
|
|
|
| 2991 |
|
|
static void
|
| 2992 |
|
|
remove_phi (gimple phi)
|
| 2993 |
|
|
{
|
| 2994 |
|
|
imm_use_iterator imm_iter;
|
| 2995 |
|
|
tree def;
|
| 2996 |
|
|
use_operand_p use_p;
|
| 2997 |
|
|
gimple_stmt_iterator gsi;
|
| 2998 |
|
|
VEC (gimple, heap) *update = VEC_alloc (gimple, heap, 3);
|
| 2999 |
|
|
unsigned int i;
|
| 3000 |
|
|
gimple stmt;
|
| 3001 |
|
|
|
| 3002 |
|
|
def = PHI_RESULT (phi);
|
| 3003 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
|
| 3004 |
|
|
{
|
| 3005 |
|
|
stmt = USE_STMT (use_p);
|
| 3006 |
|
|
|
| 3007 |
|
|
if (is_gimple_debug (stmt))
|
| 3008 |
|
|
{
|
| 3009 |
|
|
gimple_debug_bind_reset_value (stmt);
|
| 3010 |
|
|
VEC_safe_push (gimple, heap, update, stmt);
|
| 3011 |
|
|
}
|
| 3012 |
|
|
}
|
| 3013 |
|
|
|
| 3014 |
|
|
FOR_EACH_VEC_ELT (gimple, update, i, stmt)
|
| 3015 |
|
|
update_stmt (stmt);
|
| 3016 |
|
|
|
| 3017 |
|
|
VEC_free (gimple, heap, update);
|
| 3018 |
|
|
|
| 3019 |
|
|
gsi = gsi_for_phi_node (phi);
|
| 3020 |
|
|
remove_phi_node (&gsi, false);
|
| 3021 |
|
|
}
|
| 3022 |
|
|
|
| 3023 |
|
|
/* Helper function for for_each_index. For each INDEX of the data
|
| 3024 |
|
|
reference REF, returns true when its indices are valid in the loop
|
| 3025 |
|
|
nest LOOP passed in as DATA. */
|
| 3026 |
|
|
|
| 3027 |
|
|
static bool
|
| 3028 |
|
|
dr_indices_valid_in_loop (tree ref ATTRIBUTE_UNUSED, tree *index, void *data)
|
| 3029 |
|
|
{
|
| 3030 |
|
|
loop_p loop;
|
| 3031 |
|
|
basic_block header, def_bb;
|
| 3032 |
|
|
gimple stmt;
|
| 3033 |
|
|
|
| 3034 |
|
|
if (TREE_CODE (*index) != SSA_NAME)
|
| 3035 |
|
|
return true;
|
| 3036 |
|
|
|
| 3037 |
|
|
loop = *((loop_p *) data);
|
| 3038 |
|
|
header = loop->header;
|
| 3039 |
|
|
stmt = SSA_NAME_DEF_STMT (*index);
|
| 3040 |
|
|
|
| 3041 |
|
|
if (!stmt)
|
| 3042 |
|
|
return true;
|
| 3043 |
|
|
|
| 3044 |
|
|
def_bb = gimple_bb (stmt);
|
| 3045 |
|
|
|
| 3046 |
|
|
if (!def_bb)
|
| 3047 |
|
|
return true;
|
| 3048 |
|
|
|
| 3049 |
|
|
return dominated_by_p (CDI_DOMINATORS, header, def_bb);
|
| 3050 |
|
|
}
|
| 3051 |
|
|
|
| 3052 |
|
|
/* When the result of a CLOSE_PHI is written to a memory location,
|
| 3053 |
|
|
return a pointer to that memory reference, otherwise return
|
| 3054 |
|
|
NULL_TREE. */
|
| 3055 |
|
|
|
| 3056 |
|
|
static tree
|
| 3057 |
|
|
close_phi_written_to_memory (gimple close_phi)
|
| 3058 |
|
|
{
|
| 3059 |
|
|
imm_use_iterator imm_iter;
|
| 3060 |
|
|
use_operand_p use_p;
|
| 3061 |
|
|
gimple stmt;
|
| 3062 |
|
|
tree res, def = gimple_phi_result (close_phi);
|
| 3063 |
|
|
|
| 3064 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
|
| 3065 |
|
|
if ((stmt = USE_STMT (use_p))
|
| 3066 |
|
|
&& gimple_code (stmt) == GIMPLE_ASSIGN
|
| 3067 |
|
|
&& (res = gimple_assign_lhs (stmt)))
|
| 3068 |
|
|
{
|
| 3069 |
|
|
switch (TREE_CODE (res))
|
| 3070 |
|
|
{
|
| 3071 |
|
|
case VAR_DECL:
|
| 3072 |
|
|
case PARM_DECL:
|
| 3073 |
|
|
case RESULT_DECL:
|
| 3074 |
|
|
return res;
|
| 3075 |
|
|
|
| 3076 |
|
|
case ARRAY_REF:
|
| 3077 |
|
|
case MEM_REF:
|
| 3078 |
|
|
{
|
| 3079 |
|
|
tree arg = gimple_phi_arg_def (close_phi, 0);
|
| 3080 |
|
|
loop_p nest = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
|
| 3081 |
|
|
|
| 3082 |
|
|
/* FIXME: this restriction is for id-{24,25}.f and
|
| 3083 |
|
|
could be handled by duplicating the computation of
|
| 3084 |
|
|
array indices before the loop of the close_phi. */
|
| 3085 |
|
|
if (for_each_index (&res, dr_indices_valid_in_loop, &nest))
|
| 3086 |
|
|
return res;
|
| 3087 |
|
|
}
|
| 3088 |
|
|
/* Fallthru. */
|
| 3089 |
|
|
|
| 3090 |
|
|
default:
|
| 3091 |
|
|
continue;
|
| 3092 |
|
|
}
|
| 3093 |
|
|
}
|
| 3094 |
|
|
return NULL_TREE;
|
| 3095 |
|
|
}
|
| 3096 |
|
|
|
| 3097 |
|
|
/* Rewrite out of SSA the reduction described by the loop phi nodes
|
| 3098 |
|
|
IN, and the close phi nodes OUT. IN and OUT are structured by loop
|
| 3099 |
|
|
levels like this:
|
| 3100 |
|
|
|
| 3101 |
|
|
IN: stmt, loop_n, ..., loop_0
|
| 3102 |
|
|
OUT: stmt, close_n, ..., close_0
|
| 3103 |
|
|
|
| 3104 |
|
|
the first element is the reduction statement, and the next elements
|
| 3105 |
|
|
are the loop and close phi nodes of each of the outer loops. */
|
| 3106 |
|
|
|
| 3107 |
|
|
static void
|
| 3108 |
|
|
translate_scalar_reduction_to_array (scop_p scop,
|
| 3109 |
|
|
VEC (gimple, heap) *in,
|
| 3110 |
|
|
VEC (gimple, heap) *out)
|
| 3111 |
|
|
{
|
| 3112 |
|
|
gimple loop_phi;
|
| 3113 |
|
|
unsigned int i = VEC_length (gimple, out) - 1;
|
| 3114 |
|
|
tree red = close_phi_written_to_memory (VEC_index (gimple, out, i));
|
| 3115 |
|
|
|
| 3116 |
|
|
FOR_EACH_VEC_ELT (gimple, in, i, loop_phi)
|
| 3117 |
|
|
{
|
| 3118 |
|
|
gimple close_phi = VEC_index (gimple, out, i);
|
| 3119 |
|
|
|
| 3120 |
|
|
if (i == 0)
|
| 3121 |
|
|
{
|
| 3122 |
|
|
gimple stmt = loop_phi;
|
| 3123 |
|
|
basic_block bb = split_reduction_stmt (scop, stmt);
|
| 3124 |
|
|
poly_bb_p pbb = pbb_from_bb (bb);
|
| 3125 |
|
|
PBB_IS_REDUCTION (pbb) = true;
|
| 3126 |
|
|
gcc_assert (close_phi == loop_phi);
|
| 3127 |
|
|
|
| 3128 |
|
|
if (!red)
|
| 3129 |
|
|
red = create_zero_dim_array
|
| 3130 |
|
|
(gimple_assign_lhs (stmt), "Commutative_Associative_Reduction");
|
| 3131 |
|
|
|
| 3132 |
|
|
translate_scalar_reduction_to_array_for_stmt
|
| 3133 |
|
|
(scop, red, stmt, VEC_index (gimple, in, 1));
|
| 3134 |
|
|
continue;
|
| 3135 |
|
|
}
|
| 3136 |
|
|
|
| 3137 |
|
|
if (i == VEC_length (gimple, in) - 1)
|
| 3138 |
|
|
{
|
| 3139 |
|
|
insert_out_of_ssa_copy (scop, gimple_phi_result (close_phi),
|
| 3140 |
|
|
unshare_expr (red), close_phi);
|
| 3141 |
|
|
insert_out_of_ssa_copy_on_edge
|
| 3142 |
|
|
(scop, edge_initial_value_for_loop_phi (loop_phi),
|
| 3143 |
|
|
unshare_expr (red), initial_value_for_loop_phi (loop_phi));
|
| 3144 |
|
|
}
|
| 3145 |
|
|
|
| 3146 |
|
|
remove_phi (loop_phi);
|
| 3147 |
|
|
remove_phi (close_phi);
|
| 3148 |
|
|
}
|
| 3149 |
|
|
}
|
| 3150 |
|
|
|
| 3151 |
|
|
/* Rewrites out of SSA a commutative reduction at CLOSE_PHI. Returns
|
| 3152 |
|
|
true when something has been changed. */
|
| 3153 |
|
|
|
| 3154 |
|
|
static bool
|
| 3155 |
|
|
rewrite_commutative_reductions_out_of_ssa_close_phi (scop_p scop,
|
| 3156 |
|
|
gimple close_phi)
|
| 3157 |
|
|
{
|
| 3158 |
|
|
bool res;
|
| 3159 |
|
|
VEC (gimple, heap) *in = VEC_alloc (gimple, heap, 10);
|
| 3160 |
|
|
VEC (gimple, heap) *out = VEC_alloc (gimple, heap, 10);
|
| 3161 |
|
|
|
| 3162 |
|
|
detect_commutative_reduction (scop, close_phi, &in, &out);
|
| 3163 |
|
|
res = VEC_length (gimple, in) > 1;
|
| 3164 |
|
|
if (res)
|
| 3165 |
|
|
translate_scalar_reduction_to_array (scop, in, out);
|
| 3166 |
|
|
|
| 3167 |
|
|
VEC_free (gimple, heap, in);
|
| 3168 |
|
|
VEC_free (gimple, heap, out);
|
| 3169 |
|
|
return res;
|
| 3170 |
|
|
}
|
| 3171 |
|
|
|
| 3172 |
|
|
/* Rewrites all the commutative reductions from LOOP out of SSA.
|
| 3173 |
|
|
Returns true when something has been changed. */
|
| 3174 |
|
|
|
| 3175 |
|
|
static bool
|
| 3176 |
|
|
rewrite_commutative_reductions_out_of_ssa_loop (scop_p scop,
|
| 3177 |
|
|
loop_p loop)
|
| 3178 |
|
|
{
|
| 3179 |
|
|
gimple_stmt_iterator gsi;
|
| 3180 |
|
|
edge exit = single_exit (loop);
|
| 3181 |
|
|
tree res;
|
| 3182 |
|
|
bool changed = false;
|
| 3183 |
|
|
|
| 3184 |
|
|
if (!exit)
|
| 3185 |
|
|
return false;
|
| 3186 |
|
|
|
| 3187 |
|
|
for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 3188 |
|
|
if ((res = gimple_phi_result (gsi_stmt (gsi)))
|
| 3189 |
|
|
&& is_gimple_reg (res)
|
| 3190 |
|
|
&& !scev_analyzable_p (res, SCOP_REGION (scop)))
|
| 3191 |
|
|
changed |= rewrite_commutative_reductions_out_of_ssa_close_phi
|
| 3192 |
|
|
(scop, gsi_stmt (gsi));
|
| 3193 |
|
|
|
| 3194 |
|
|
return changed;
|
| 3195 |
|
|
}
|
| 3196 |
|
|
|
| 3197 |
|
|
/* Rewrites all the commutative reductions from SCOP out of SSA. */
|
| 3198 |
|
|
|
| 3199 |
|
|
static void
|
| 3200 |
|
|
rewrite_commutative_reductions_out_of_ssa (scop_p scop)
|
| 3201 |
|
|
{
|
| 3202 |
|
|
loop_iterator li;
|
| 3203 |
|
|
loop_p loop;
|
| 3204 |
|
|
bool changed = false;
|
| 3205 |
|
|
sese region = SCOP_REGION (scop);
|
| 3206 |
|
|
|
| 3207 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
| 3208 |
|
|
if (loop_in_sese_p (loop, region))
|
| 3209 |
|
|
changed |= rewrite_commutative_reductions_out_of_ssa_loop (scop, loop);
|
| 3210 |
|
|
|
| 3211 |
|
|
if (changed)
|
| 3212 |
|
|
{
|
| 3213 |
|
|
scev_reset_htab ();
|
| 3214 |
|
|
gsi_commit_edge_inserts ();
|
| 3215 |
|
|
update_ssa (TODO_update_ssa);
|
| 3216 |
|
|
#ifdef ENABLE_CHECKING
|
| 3217 |
|
|
verify_loop_closed_ssa (true);
|
| 3218 |
|
|
#endif
|
| 3219 |
|
|
}
|
| 3220 |
|
|
}
|
| 3221 |
|
|
|
| 3222 |
|
|
/* Can all ivs be represented by a signed integer?
|
| 3223 |
|
|
As CLooG might generate negative values in its expressions, signed loop ivs
|
| 3224 |
|
|
are required in the backend. */
|
| 3225 |
|
|
|
| 3226 |
|
|
static bool
|
| 3227 |
|
|
scop_ivs_can_be_represented (scop_p scop)
|
| 3228 |
|
|
{
|
| 3229 |
|
|
loop_iterator li;
|
| 3230 |
|
|
loop_p loop;
|
| 3231 |
|
|
gimple_stmt_iterator psi;
|
| 3232 |
|
|
|
| 3233 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
| 3234 |
|
|
{
|
| 3235 |
|
|
if (!loop_in_sese_p (loop, SCOP_REGION (scop)))
|
| 3236 |
|
|
continue;
|
| 3237 |
|
|
|
| 3238 |
|
|
for (psi = gsi_start_phis (loop->header);
|
| 3239 |
|
|
!gsi_end_p (psi); gsi_next (&psi))
|
| 3240 |
|
|
{
|
| 3241 |
|
|
gimple phi = gsi_stmt (psi);
|
| 3242 |
|
|
tree res = PHI_RESULT (phi);
|
| 3243 |
|
|
tree type = TREE_TYPE (res);
|
| 3244 |
|
|
|
| 3245 |
|
|
if (TYPE_UNSIGNED (type)
|
| 3246 |
|
|
&& TYPE_PRECISION (type) >= TYPE_PRECISION (long_long_integer_type_node))
|
| 3247 |
|
|
return false;
|
| 3248 |
|
|
}
|
| 3249 |
|
|
}
|
| 3250 |
|
|
|
| 3251 |
|
|
return true;
|
| 3252 |
|
|
}
|
| 3253 |
|
|
|
| 3254 |
|
|
/* Builds the polyhedral representation for a SESE region. */
|
| 3255 |
|
|
|
| 3256 |
|
|
void
|
| 3257 |
|
|
build_poly_scop (scop_p scop)
|
| 3258 |
|
|
{
|
| 3259 |
|
|
sese region = SCOP_REGION (scop);
|
| 3260 |
|
|
graphite_dim_t max_dim;
|
| 3261 |
|
|
|
| 3262 |
|
|
build_scop_bbs (scop);
|
| 3263 |
|
|
|
| 3264 |
|
|
/* FIXME: This restriction is needed to avoid a problem in CLooG.
|
| 3265 |
|
|
Once CLooG is fixed, remove this guard. Anyways, it makes no
|
| 3266 |
|
|
sense to optimize a scop containing only PBBs that do not belong
|
| 3267 |
|
|
to any loops. */
|
| 3268 |
|
|
if (nb_pbbs_in_loops (scop) == 0)
|
| 3269 |
|
|
return;
|
| 3270 |
|
|
|
| 3271 |
|
|
if (!scop_ivs_can_be_represented (scop))
|
| 3272 |
|
|
return;
|
| 3273 |
|
|
|
| 3274 |
|
|
if (flag_associative_math)
|
| 3275 |
|
|
rewrite_commutative_reductions_out_of_ssa (scop);
|
| 3276 |
|
|
|
| 3277 |
|
|
build_sese_loop_nests (region);
|
| 3278 |
|
|
build_sese_conditions (region);
|
| 3279 |
|
|
find_scop_parameters (scop);
|
| 3280 |
|
|
|
| 3281 |
|
|
max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
|
| 3282 |
|
|
if (scop_nb_params (scop) > max_dim)
|
| 3283 |
|
|
return;
|
| 3284 |
|
|
|
| 3285 |
|
|
build_scop_iteration_domain (scop);
|
| 3286 |
|
|
build_scop_context (scop);
|
| 3287 |
|
|
add_conditions_to_constraints (scop);
|
| 3288 |
|
|
|
| 3289 |
|
|
/* Rewrite out of SSA only after having translated the
|
| 3290 |
|
|
representation to the polyhedral representation to avoid scev
|
| 3291 |
|
|
analysis failures. That means that these functions will insert
|
| 3292 |
|
|
new data references that they create in the right place. */
|
| 3293 |
|
|
rewrite_reductions_out_of_ssa (scop);
|
| 3294 |
|
|
rewrite_cross_bb_scalar_deps_out_of_ssa (scop);
|
| 3295 |
|
|
|
| 3296 |
|
|
build_scop_drs (scop);
|
| 3297 |
|
|
scop_to_lst (scop);
|
| 3298 |
|
|
build_scop_scattering (scop);
|
| 3299 |
|
|
|
| 3300 |
|
|
/* This SCoP has been translated to the polyhedral
|
| 3301 |
|
|
representation. */
|
| 3302 |
|
|
POLY_SCOP_P (scop) = true;
|
| 3303 |
|
|
}
|
| 3304 |
|
|
#endif
|