OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [haifa-sched.c] - Blame information for rev 710

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* Instruction scheduling pass.
2
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3
   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4
   Free Software Foundation, Inc.
5
   Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6
   and currently maintained by, Jim Wilson (wilson@cygnus.com)
7
 
8
This file is part of GCC.
9
 
10
GCC is free software; you can redistribute it and/or modify it under
11
the terms of the GNU General Public License as published by the Free
12
Software Foundation; either version 3, or (at your option) any later
13
version.
14
 
15
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16
WARRANTY; without even the implied warranty of MERCHANTABILITY or
17
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18
for more details.
19
 
20
You should have received a copy of the GNU General Public License
21
along with GCC; see the file COPYING3.  If not see
22
<http://www.gnu.org/licenses/>.  */
23
 
24
/* Instruction scheduling pass.  This file, along with sched-deps.c,
25
   contains the generic parts.  The actual entry point is found for
26
   the normal instruction scheduling pass is found in sched-rgn.c.
27
 
28
   We compute insn priorities based on data dependencies.  Flow
29
   analysis only creates a fraction of the data-dependencies we must
30
   observe: namely, only those dependencies which the combiner can be
31
   expected to use.  For this pass, we must therefore create the
32
   remaining dependencies we need to observe: register dependencies,
33
   memory dependencies, dependencies to keep function calls in order,
34
   and the dependence between a conditional branch and the setting of
35
   condition codes are all dealt with here.
36
 
37
   The scheduler first traverses the data flow graph, starting with
38
   the last instruction, and proceeding to the first, assigning values
39
   to insn_priority as it goes.  This sorts the instructions
40
   topologically by data dependence.
41
 
42
   Once priorities have been established, we order the insns using
43
   list scheduling.  This works as follows: starting with a list of
44
   all the ready insns, and sorted according to priority number, we
45
   schedule the insn from the end of the list by placing its
46
   predecessors in the list according to their priority order.  We
47
   consider this insn scheduled by setting the pointer to the "end" of
48
   the list to point to the previous insn.  When an insn has no
49
   predecessors, we either queue it until sufficient time has elapsed
50
   or add it to the ready list.  As the instructions are scheduled or
51
   when stalls are introduced, the queue advances and dumps insns into
52
   the ready list.  When all insns down to the lowest priority have
53
   been scheduled, the critical path of the basic block has been made
54
   as short as possible.  The remaining insns are then scheduled in
55
   remaining slots.
56
 
57
   The following list shows the order in which we want to break ties
58
   among insns in the ready list:
59
 
60
   1.  choose insn with the longest path to end of bb, ties
61
   broken by
62
   2.  choose insn with least contribution to register pressure,
63
   ties broken by
64
   3.  prefer in-block upon interblock motion, ties broken by
65
   4.  prefer useful upon speculative motion, ties broken by
66
   5.  choose insn with largest control flow probability, ties
67
   broken by
68
   6.  choose insn with the least dependences upon the previously
69
   scheduled insn, or finally
70
   7   choose the insn which has the most insns dependent on it.
71
   8.  choose insn with lowest UID.
72
 
73
   Memory references complicate matters.  Only if we can be certain
74
   that memory references are not part of the data dependency graph
75
   (via true, anti, or output dependence), can we move operations past
76
   memory references.  To first approximation, reads can be done
77
   independently, while writes introduce dependencies.  Better
78
   approximations will yield fewer dependencies.
79
 
80
   Before reload, an extended analysis of interblock data dependences
81
   is required for interblock scheduling.  This is performed in
82
   compute_block_backward_dependences ().
83
 
84
   Dependencies set up by memory references are treated in exactly the
85
   same way as other dependencies, by using insn backward dependences
86
   INSN_BACK_DEPS.  INSN_BACK_DEPS are translated into forward dependences
87
   INSN_FORW_DEPS the purpose of forward list scheduling.
88
 
89
   Having optimized the critical path, we may have also unduly
90
   extended the lifetimes of some registers.  If an operation requires
91
   that constants be loaded into registers, it is certainly desirable
92
   to load those constants as early as necessary, but no earlier.
93
   I.e., it will not do to load up a bunch of registers at the
94
   beginning of a basic block only to use them at the end, if they
95
   could be loaded later, since this may result in excessive register
96
   utilization.
97
 
98
   Note that since branches are never in basic blocks, but only end
99
   basic blocks, this pass will not move branches.  But that is ok,
100
   since we can use GNU's delayed branch scheduling pass to take care
101
   of this case.
102
 
103
   Also note that no further optimizations based on algebraic
104
   identities are performed, so this pass would be a good one to
105
   perform instruction splitting, such as breaking up a multiply
106
   instruction into shifts and adds where that is profitable.
107
 
108
   Given the memory aliasing analysis that this pass should perform,
109
   it should be possible to remove redundant stores to memory, and to
110
   load values from registers instead of hitting memory.
111
 
112
   Before reload, speculative insns are moved only if a 'proof' exists
113
   that no exception will be caused by this, and if no live registers
114
   exist that inhibit the motion (live registers constraints are not
115
   represented by data dependence edges).
116
 
117
   This pass must update information that subsequent passes expect to
118
   be correct.  Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119
   reg_n_calls_crossed, and reg_live_length.  Also, BB_HEAD, BB_END.
120
 
121
   The information in the line number notes is carefully retained by
122
   this pass.  Notes that refer to the starting and ending of
123
   exception regions are also carefully retained by this pass.  All
124
   other NOTE insns are grouped in their same relative order at the
125
   beginning of basic blocks and regions that have been scheduled.  */
126
 
127
#include "config.h"
128
#include "system.h"
129
#include "coretypes.h"
130
#include "tm.h"
131
#include "diagnostic-core.h"
132
#include "hard-reg-set.h"
133
#include "rtl.h"
134
#include "tm_p.h"
135
#include "regs.h"
136
#include "function.h"
137
#include "flags.h"
138
#include "insn-config.h"
139
#include "insn-attr.h"
140
#include "except.h"
141
#include "recog.h"
142
#include "sched-int.h"
143
#include "target.h"
144
#include "common/common-target.h"
145
#include "output.h"
146
#include "params.h"
147
#include "vecprim.h"
148
#include "dbgcnt.h"
149
#include "cfgloop.h"
150
#include "ira.h"
151
#include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
152
#include "hashtab.h"
153
 
154
#ifdef INSN_SCHEDULING
155
 
156
/* issue_rate is the number of insns that can be scheduled in the same
157
   machine cycle.  It can be defined in the config/mach/mach.h file,
158
   otherwise we set it to 1.  */
159
 
160
int issue_rate;
161
 
162
/* This can be set to true by a backend if the scheduler should not
163
   enable a DCE pass.  */
164
bool sched_no_dce;
165
 
166
/* The current initiation interval used when modulo scheduling.  */
167
static int modulo_ii;
168
 
169
/* The maximum number of stages we are prepared to handle.  */
170
static int modulo_max_stages;
171
 
172
/* The number of insns that exist in each iteration of the loop.  We use this
173
   to detect when we've scheduled all insns from the first iteration.  */
174
static int modulo_n_insns;
175
 
176
/* The current count of insns in the first iteration of the loop that have
177
   already been scheduled.  */
178
static int modulo_insns_scheduled;
179
 
180
/* The maximum uid of insns from the first iteration of the loop.  */
181
static int modulo_iter0_max_uid;
182
 
183
/* The number of times we should attempt to backtrack when modulo scheduling.
184
   Decreased each time we have to backtrack.  */
185
static int modulo_backtracks_left;
186
 
187
/* The stage in which the last insn from the original loop was
188
   scheduled.  */
189
static int modulo_last_stage;
190
 
191
/* sched-verbose controls the amount of debugging output the
192
   scheduler prints.  It is controlled by -fsched-verbose=N:
193
   N>0 and no -DSR : the output is directed to stderr.
194
   N>=10 will direct the printouts to stderr (regardless of -dSR).
195
   N=1: same as -dSR.
196
   N=2: bb's probabilities, detailed ready list info, unit/insn info.
197
   N=3: rtl at abort point, control-flow, regions info.
198
   N=5: dependences info.  */
199
 
200
int sched_verbose = 0;
201
 
202
/* Debugging file.  All printouts are sent to dump, which is always set,
203
   either to stderr, or to the dump listing file (-dRS).  */
204
FILE *sched_dump = 0;
205
 
206
/* This is a placeholder for the scheduler parameters common
207
   to all schedulers.  */
208
struct common_sched_info_def *common_sched_info;
209
 
210
#define INSN_TICK(INSN) (HID (INSN)->tick)
211
#define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
212
#define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
213
#define INTER_TICK(INSN) (HID (INSN)->inter_tick)
214
#define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
215
#define SHADOW_P(INSN) (HID (INSN)->shadow_p)
216
#define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
217
 
218
/* If INSN_TICK of an instruction is equal to INVALID_TICK,
219
   then it should be recalculated from scratch.  */
220
#define INVALID_TICK (-(max_insn_queue_index + 1))
221
/* The minimal value of the INSN_TICK of an instruction.  */
222
#define MIN_TICK (-max_insn_queue_index)
223
 
224
/* List of important notes we must keep around.  This is a pointer to the
225
   last element in the list.  */
226
rtx note_list;
227
 
228
static struct spec_info_def spec_info_var;
229
/* Description of the speculative part of the scheduling.
230
   If NULL - no speculation.  */
231
spec_info_t spec_info = NULL;
232
 
233
/* True, if recovery block was added during scheduling of current block.
234
   Used to determine, if we need to fix INSN_TICKs.  */
235
static bool haifa_recovery_bb_recently_added_p;
236
 
237
/* True, if recovery block was added during this scheduling pass.
238
   Used to determine if we should have empty memory pools of dependencies
239
   after finishing current region.  */
240
bool haifa_recovery_bb_ever_added_p;
241
 
242
/* Counters of different types of speculative instructions.  */
243
static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
244
 
245
/* Array used in {unlink, restore}_bb_notes.  */
246
static rtx *bb_header = 0;
247
 
248
/* Basic block after which recovery blocks will be created.  */
249
static basic_block before_recovery;
250
 
251
/* Basic block just before the EXIT_BLOCK and after recovery, if we have
252
   created it.  */
253
basic_block after_recovery;
254
 
255
/* FALSE if we add bb to another region, so we don't need to initialize it.  */
256
bool adding_bb_to_current_region_p = true;
257
 
258
/* Queues, etc.  */
259
 
260
/* An instruction is ready to be scheduled when all insns preceding it
261
   have already been scheduled.  It is important to ensure that all
262
   insns which use its result will not be executed until its result
263
   has been computed.  An insn is maintained in one of four structures:
264
 
265
   (P) the "Pending" set of insns which cannot be scheduled until
266
   their dependencies have been satisfied.
267
   (Q) the "Queued" set of insns that can be scheduled when sufficient
268
   time has passed.
269
   (R) the "Ready" list of unscheduled, uncommitted insns.
270
   (S) the "Scheduled" list of insns.
271
 
272
   Initially, all insns are either "Pending" or "Ready" depending on
273
   whether their dependencies are satisfied.
274
 
275
   Insns move from the "Ready" list to the "Scheduled" list as they
276
   are committed to the schedule.  As this occurs, the insns in the
277
   "Pending" list have their dependencies satisfied and move to either
278
   the "Ready" list or the "Queued" set depending on whether
279
   sufficient time has passed to make them ready.  As time passes,
280
   insns move from the "Queued" set to the "Ready" list.
281
 
282
   The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
283
   unscheduled insns, i.e., those that are ready, queued, and pending.
284
   The "Queued" set (Q) is implemented by the variable `insn_queue'.
285
   The "Ready" list (R) is implemented by the variables `ready' and
286
   `n_ready'.
287
   The "Scheduled" list (S) is the new insn chain built by this pass.
288
 
289
   The transition (R->S) is implemented in the scheduling loop in
290
   `schedule_block' when the best insn to schedule is chosen.
291
   The transitions (P->R and P->Q) are implemented in `schedule_insn' as
292
   insns move from the ready list to the scheduled list.
293
   The transition (Q->R) is implemented in 'queue_to_insn' as time
294
   passes or stalls are introduced.  */
295
 
296
/* Implement a circular buffer to delay instructions until sufficient
297
   time has passed.  For the new pipeline description interface,
298
   MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
299
   than maximal time of instruction execution computed by genattr.c on
300
   the base maximal time of functional unit reservations and getting a
301
   result.  This is the longest time an insn may be queued.  */
302
 
303
static rtx *insn_queue;
304
static int q_ptr = 0;
305
static int q_size = 0;
306
#define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
307
#define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
308
 
309
#define QUEUE_SCHEDULED (-3)
310
#define QUEUE_NOWHERE   (-2)
311
#define QUEUE_READY     (-1)
312
/* QUEUE_SCHEDULED - INSN is scheduled.
313
   QUEUE_NOWHERE   - INSN isn't scheduled yet and is neither in
314
   queue or ready list.
315
   QUEUE_READY     - INSN is in ready list.
316
   N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles.  */
317
 
318
#define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
319
 
320
/* The following variable value refers for all current and future
321
   reservations of the processor units.  */
322
state_t curr_state;
323
 
324
/* The following variable value is size of memory representing all
325
   current and future reservations of the processor units.  */
326
size_t dfa_state_size;
327
 
328
/* The following array is used to find the best insn from ready when
329
   the automaton pipeline interface is used.  */
330
char *ready_try = NULL;
331
 
332
/* The ready list.  */
333
struct ready_list ready = {NULL, 0, 0, 0, 0};
334
 
335
/* The pointer to the ready list (to be removed).  */
336
static struct ready_list *readyp = &ready;
337
 
338
/* Scheduling clock.  */
339
static int clock_var;
340
 
341
/* Clock at which the previous instruction was issued.  */
342
static int last_clock_var;
343
 
344
/* Set to true if, when queuing a shadow insn, we discover that it would be
345
   scheduled too late.  */
346
static bool must_backtrack;
347
 
348
/* The following variable value is number of essential insns issued on
349
   the current cycle.  An insn is essential one if it changes the
350
   processors state.  */
351
int cycle_issued_insns;
352
 
353
/* This records the actual schedule.  It is built up during the main phase
354
   of schedule_block, and afterwards used to reorder the insns in the RTL.  */
355
static VEC(rtx, heap) *scheduled_insns;
356
 
357
static int may_trap_exp (const_rtx, int);
358
 
359
/* Nonzero iff the address is comprised from at most 1 register.  */
360
#define CONST_BASED_ADDRESS_P(x)                        \
361
  (REG_P (x)                                    \
362
   || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS   \
363
        || (GET_CODE (x) == LO_SUM))                    \
364
       && (CONSTANT_P (XEXP (x, 0))                      \
365
           || CONSTANT_P (XEXP (x, 1)))))
366
 
367
/* Returns a class that insn with GET_DEST(insn)=x may belong to,
368
   as found by analyzing insn's expression.  */
369
 
370
 
371
static int haifa_luid_for_non_insn (rtx x);
372
 
373
/* Haifa version of sched_info hooks common to all headers.  */
374
const struct common_sched_info_def haifa_common_sched_info =
375
  {
376
    NULL, /* fix_recovery_cfg */
377
    NULL, /* add_block */
378
    NULL, /* estimate_number_of_insns */
379
    haifa_luid_for_non_insn, /* luid_for_non_insn */
380
    SCHED_PASS_UNKNOWN /* sched_pass_id */
381
  };
382
 
383
/* Mapping from instruction UID to its Logical UID.  */
384
VEC (int, heap) *sched_luids = NULL;
385
 
386
/* Next LUID to assign to an instruction.  */
387
int sched_max_luid = 1;
388
 
389
/* Haifa Instruction Data.  */
390
VEC (haifa_insn_data_def, heap) *h_i_d = NULL;
391
 
392
void (* sched_init_only_bb) (basic_block, basic_block);
393
 
394
/* Split block function.  Different schedulers might use different functions
395
   to handle their internal data consistent.  */
396
basic_block (* sched_split_block) (basic_block, rtx);
397
 
398
/* Create empty basic block after the specified block.  */
399
basic_block (* sched_create_empty_bb) (basic_block);
400
 
401
static int
402
may_trap_exp (const_rtx x, int is_store)
403
{
404
  enum rtx_code code;
405
 
406
  if (x == 0)
407
    return TRAP_FREE;
408
  code = GET_CODE (x);
409
  if (is_store)
410
    {
411
      if (code == MEM && may_trap_p (x))
412
        return TRAP_RISKY;
413
      else
414
        return TRAP_FREE;
415
    }
416
  if (code == MEM)
417
    {
418
      /* The insn uses memory:  a volatile load.  */
419
      if (MEM_VOLATILE_P (x))
420
        return IRISKY;
421
      /* An exception-free load.  */
422
      if (!may_trap_p (x))
423
        return IFREE;
424
      /* A load with 1 base register, to be further checked.  */
425
      if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
426
        return PFREE_CANDIDATE;
427
      /* No info on the load, to be further checked.  */
428
      return PRISKY_CANDIDATE;
429
    }
430
  else
431
    {
432
      const char *fmt;
433
      int i, insn_class = TRAP_FREE;
434
 
435
      /* Neither store nor load, check if it may cause a trap.  */
436
      if (may_trap_p (x))
437
        return TRAP_RISKY;
438
      /* Recursive step: walk the insn...  */
439
      fmt = GET_RTX_FORMAT (code);
440
      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
441
        {
442
          if (fmt[i] == 'e')
443
            {
444
              int tmp_class = may_trap_exp (XEXP (x, i), is_store);
445
              insn_class = WORST_CLASS (insn_class, tmp_class);
446
            }
447
          else if (fmt[i] == 'E')
448
            {
449
              int j;
450
              for (j = 0; j < XVECLEN (x, i); j++)
451
                {
452
                  int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
453
                  insn_class = WORST_CLASS (insn_class, tmp_class);
454
                  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
455
                    break;
456
                }
457
            }
458
          if (insn_class == TRAP_RISKY || insn_class == IRISKY)
459
            break;
460
        }
461
      return insn_class;
462
    }
463
}
464
 
465
/* Classifies rtx X of an insn for the purpose of verifying that X can be
466
   executed speculatively (and consequently the insn can be moved
467
   speculatively), by examining X, returning:
468
   TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
469
   TRAP_FREE: non-load insn.
470
   IFREE: load from a globally safe location.
471
   IRISKY: volatile load.
472
   PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
473
   being either PFREE or PRISKY.  */
474
 
475
static int
476
haifa_classify_rtx (const_rtx x)
477
{
478
  int tmp_class = TRAP_FREE;
479
  int insn_class = TRAP_FREE;
480
  enum rtx_code code;
481
 
482
  if (GET_CODE (x) == PARALLEL)
483
    {
484
      int i, len = XVECLEN (x, 0);
485
 
486
      for (i = len - 1; i >= 0; i--)
487
        {
488
          tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
489
          insn_class = WORST_CLASS (insn_class, tmp_class);
490
          if (insn_class == TRAP_RISKY || insn_class == IRISKY)
491
            break;
492
        }
493
    }
494
  else
495
    {
496
      code = GET_CODE (x);
497
      switch (code)
498
        {
499
        case CLOBBER:
500
          /* Test if it is a 'store'.  */
501
          tmp_class = may_trap_exp (XEXP (x, 0), 1);
502
          break;
503
        case SET:
504
          /* Test if it is a store.  */
505
          tmp_class = may_trap_exp (SET_DEST (x), 1);
506
          if (tmp_class == TRAP_RISKY)
507
            break;
508
          /* Test if it is a load.  */
509
          tmp_class =
510
            WORST_CLASS (tmp_class,
511
                         may_trap_exp (SET_SRC (x), 0));
512
          break;
513
        case COND_EXEC:
514
          tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
515
          if (tmp_class == TRAP_RISKY)
516
            break;
517
          tmp_class = WORST_CLASS (tmp_class,
518
                                   may_trap_exp (COND_EXEC_TEST (x), 0));
519
          break;
520
        case TRAP_IF:
521
          tmp_class = TRAP_RISKY;
522
          break;
523
        default:;
524
        }
525
      insn_class = tmp_class;
526
    }
527
 
528
  return insn_class;
529
}
530
 
531
int
532
haifa_classify_insn (const_rtx insn)
533
{
534
  return haifa_classify_rtx (PATTERN (insn));
535
}
536
 
537
/* After the scheduler initialization function has been called, this function
538
   can be called to enable modulo scheduling.  II is the initiation interval
539
   we should use, it affects the delays for delay_pairs that were recorded as
540
   separated by a given number of stages.
541
 
542
   MAX_STAGES provides us with a limit
543
   after which we give up scheduling; the caller must have unrolled at least
544
   as many copies of the loop body and recorded delay_pairs for them.
545
 
546
   INSNS is the number of real (non-debug) insns in one iteration of
547
   the loop.  MAX_UID can be used to test whether an insn belongs to
548
   the first iteration of the loop; all of them have a uid lower than
549
   MAX_UID.  */
550
void
551
set_modulo_params (int ii, int max_stages, int insns, int max_uid)
552
{
553
  modulo_ii = ii;
554
  modulo_max_stages = max_stages;
555
  modulo_n_insns = insns;
556
  modulo_iter0_max_uid = max_uid;
557
  modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
558
}
559
 
560
/* A structure to record a pair of insns where the first one is a real
561
   insn that has delay slots, and the second is its delayed shadow.
562
   I1 is scheduled normally and will emit an assembly instruction,
563
   while I2 describes the side effect that takes place at the
564
   transition between cycles CYCLES and (CYCLES + 1) after I1.  */
565
struct delay_pair
566
{
567
  struct delay_pair *next_same_i1;
568
  rtx i1, i2;
569
  int cycles;
570
  /* When doing modulo scheduling, we a delay_pair can also be used to
571
     show that I1 and I2 are the same insn in a different stage.  If that
572
     is the case, STAGES will be nonzero.  */
573
  int stages;
574
};
575
 
576
/* Two hash tables to record delay_pairs, one indexed by I1 and the other
577
   indexed by I2.  */
578
static htab_t delay_htab;
579
static htab_t delay_htab_i2;
580
 
581
/* Called through htab_traverse.  Walk the hashtable using I2 as
582
   index, and delete all elements involving an UID higher than
583
   that pointed to by *DATA.  */
584
static int
585
htab_i2_traverse (void **slot, void *data)
586
{
587
  int maxuid = *(int *)data;
588
  struct delay_pair *p = *(struct delay_pair **)slot;
589
  if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
590
    {
591
      htab_clear_slot (delay_htab_i2, slot);
592
    }
593
  return 1;
594
}
595
 
596
/* Called through htab_traverse.  Walk the hashtable using I2 as
597
   index, and delete all elements involving an UID higher than
598
   that pointed to by *DATA.  */
599
static int
600
htab_i1_traverse (void **slot, void *data)
601
{
602
  int maxuid = *(int *)data;
603
  struct delay_pair **pslot = (struct delay_pair **)slot;
604
  struct delay_pair *p, *first, **pprev;
605
 
606
  if (INSN_UID ((*pslot)->i1) >= maxuid)
607
    {
608
      htab_clear_slot (delay_htab, slot);
609
      return 1;
610
    }
611
  pprev = &first;
612
  for (p = *pslot; p; p = p->next_same_i1)
613
    {
614
      if (INSN_UID (p->i2) < maxuid)
615
        {
616
          *pprev = p;
617
          pprev = &p->next_same_i1;
618
        }
619
    }
620
  *pprev = NULL;
621
  if (first == NULL)
622
    htab_clear_slot (delay_htab, slot);
623
  else
624
    *pslot = first;
625
  return 1;
626
}
627
 
628
/* Discard all delay pairs which involve an insn with an UID higher
629
   than MAX_UID.  */
630
void
631
discard_delay_pairs_above (int max_uid)
632
{
633
  htab_traverse (delay_htab, htab_i1_traverse, &max_uid);
634
  htab_traverse (delay_htab_i2, htab_i2_traverse, &max_uid);
635
}
636
 
637
/* Returns a hash value for X (which really is a delay_pair), based on
638
   hashing just I1.  */
639
static hashval_t
640
delay_hash_i1 (const void *x)
641
{
642
  return htab_hash_pointer (((const struct delay_pair *) x)->i1);
643
}
644
 
645
/* Returns a hash value for X (which really is a delay_pair), based on
646
   hashing just I2.  */
647
static hashval_t
648
delay_hash_i2 (const void *x)
649
{
650
  return htab_hash_pointer (((const struct delay_pair *) x)->i2);
651
}
652
 
653
/* Return nonzero if I1 of pair X is the same as that of pair Y.  */
654
static int
655
delay_i1_eq (const void *x, const void *y)
656
{
657
  return ((const struct delay_pair *) x)->i1 == y;
658
}
659
 
660
/* Return nonzero if I2 of pair X is the same as that of pair Y.  */
661
static int
662
delay_i2_eq (const void *x, const void *y)
663
{
664
  return ((const struct delay_pair *) x)->i2 == y;
665
}
666
 
667
/* This function can be called by a port just before it starts the final
668
   scheduling pass.  It records the fact that an instruction with delay
669
   slots has been split into two insns, I1 and I2.  The first one will be
670
   scheduled normally and initiates the operation.  The second one is a
671
   shadow which must follow a specific number of cycles after I1; its only
672
   purpose is to show the side effect that occurs at that cycle in the RTL.
673
   If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
674
   while I2 retains the original insn type.
675
 
676
   There are two ways in which the number of cycles can be specified,
677
   involving the CYCLES and STAGES arguments to this function.  If STAGES
678
   is zero, we just use the value of CYCLES.  Otherwise, STAGES is a factor
679
   which is multiplied by MODULO_II to give the number of cycles.  This is
680
   only useful if the caller also calls set_modulo_params to enable modulo
681
   scheduling.  */
682
 
683
void
684
record_delay_slot_pair (rtx i1, rtx i2, int cycles, int stages)
685
{
686
  struct delay_pair *p = XNEW (struct delay_pair);
687
  struct delay_pair **slot;
688
 
689
  p->i1 = i1;
690
  p->i2 = i2;
691
  p->cycles = cycles;
692
  p->stages = stages;
693
 
694
  if (!delay_htab)
695
    {
696
      delay_htab = htab_create (10, delay_hash_i1, delay_i1_eq, NULL);
697
      delay_htab_i2 = htab_create (10, delay_hash_i2, delay_i2_eq, free);
698
    }
699
  slot = ((struct delay_pair **)
700
          htab_find_slot_with_hash (delay_htab, i1, htab_hash_pointer (i1),
701
                                    INSERT));
702
  p->next_same_i1 = *slot;
703
  *slot = p;
704
  slot = ((struct delay_pair **)
705
          htab_find_slot_with_hash (delay_htab_i2, i2, htab_hash_pointer (i2),
706
                                    INSERT));
707
  *slot = p;
708
}
709
 
710
/* Examine the delay pair hashtable to see if INSN is a shadow for another,
711
   and return the other insn if so.  Return NULL otherwise.  */
712
rtx
713
real_insn_for_shadow (rtx insn)
714
{
715
  struct delay_pair *pair;
716
 
717
  if (delay_htab == NULL)
718
    return NULL_RTX;
719
 
720
  pair
721
    = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, insn,
722
                                                htab_hash_pointer (insn));
723
  if (!pair || pair->stages > 0)
724
    return NULL_RTX;
725
  return pair->i1;
726
}
727
 
728
/* For a pair P of insns, return the fixed distance in cycles from the first
729
   insn after which the second must be scheduled.  */
730
static int
731
pair_delay (struct delay_pair *p)
732
{
733
  if (p->stages == 0)
734
    return p->cycles;
735
  else
736
    return p->stages * modulo_ii;
737
}
738
 
739
/* Given an insn INSN, add a dependence on its delayed shadow if it
740
   has one.  Also try to find situations where shadows depend on each other
741
   and add dependencies to the real insns to limit the amount of backtracking
742
   needed.  */
743
void
744
add_delay_dependencies (rtx insn)
745
{
746
  struct delay_pair *pair;
747
  sd_iterator_def sd_it;
748
  dep_t dep;
749
 
750
  if (!delay_htab)
751
    return;
752
 
753
  pair
754
    = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, insn,
755
                                                htab_hash_pointer (insn));
756
  if (!pair)
757
    return;
758
  add_dependence (insn, pair->i1, REG_DEP_ANTI);
759
  if (pair->stages)
760
    return;
761
 
762
  FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
763
    {
764
      rtx pro = DEP_PRO (dep);
765
      struct delay_pair *other_pair
766
        = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, pro,
767
                                                    htab_hash_pointer (pro));
768
      if (!other_pair || other_pair->stages)
769
        continue;
770
      if (pair_delay (other_pair) >= pair_delay (pair))
771
        {
772
          if (sched_verbose >= 4)
773
            {
774
              fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
775
                       INSN_UID (other_pair->i1),
776
                       INSN_UID (pair->i1));
777
              fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
778
                       INSN_UID (pair->i1),
779
                       INSN_UID (pair->i2),
780
                       pair_delay (pair));
781
              fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
782
                       INSN_UID (other_pair->i1),
783
                       INSN_UID (other_pair->i2),
784
                       pair_delay (other_pair));
785
            }
786
          add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
787
        }
788
    }
789
}
790
 
791
/* Forward declarations.  */
792
 
793
static int priority (rtx);
794
static int rank_for_schedule (const void *, const void *);
795
static void swap_sort (rtx *, int);
796
static void queue_insn (rtx, int, const char *);
797
static int schedule_insn (rtx);
798
static void adjust_priority (rtx);
799
static void advance_one_cycle (void);
800
static void extend_h_i_d (void);
801
 
802
 
803
/* Notes handling mechanism:
804
   =========================
805
   Generally, NOTES are saved before scheduling and restored after scheduling.
806
   The scheduler distinguishes between two types of notes:
807
 
808
   (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
809
   Before scheduling a region, a pointer to the note is added to the insn
810
   that follows or precedes it.  (This happens as part of the data dependence
811
   computation).  After scheduling an insn, the pointer contained in it is
812
   used for regenerating the corresponding note (in reemit_notes).
813
 
814
   (2) All other notes (e.g. INSN_DELETED):  Before scheduling a block,
815
   these notes are put in a list (in rm_other_notes() and
816
   unlink_other_notes ()).  After scheduling the block, these notes are
817
   inserted at the beginning of the block (in schedule_block()).  */
818
 
819
static void ready_add (struct ready_list *, rtx, bool);
820
static rtx ready_remove_first (struct ready_list *);
821
static rtx ready_remove_first_dispatch (struct ready_list *ready);
822
 
823
static void queue_to_ready (struct ready_list *);
824
static int early_queue_to_ready (state_t, struct ready_list *);
825
 
826
static void debug_ready_list (struct ready_list *);
827
 
828
/* The following functions are used to implement multi-pass scheduling
829
   on the first cycle.  */
830
static rtx ready_remove (struct ready_list *, int);
831
static void ready_remove_insn (rtx);
832
 
833
static void fix_inter_tick (rtx, rtx);
834
static int fix_tick_ready (rtx);
835
static void change_queue_index (rtx, int);
836
 
837
/* The following functions are used to implement scheduling of data/control
838
   speculative instructions.  */
839
 
840
static void extend_h_i_d (void);
841
static void init_h_i_d (rtx);
842
static int haifa_speculate_insn (rtx, ds_t, rtx *);
843
static void generate_recovery_code (rtx);
844
static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
845
static void begin_speculative_block (rtx);
846
static void add_to_speculative_block (rtx);
847
static void init_before_recovery (basic_block *);
848
static void create_check_block_twin (rtx, bool);
849
static void fix_recovery_deps (basic_block);
850
static bool haifa_change_pattern (rtx, rtx);
851
static void dump_new_block_header (int, basic_block, rtx, rtx);
852
static void restore_bb_notes (basic_block);
853
static void fix_jump_move (rtx);
854
static void move_block_after_check (rtx);
855
static void move_succs (VEC(edge,gc) **, basic_block);
856
static void sched_remove_insn (rtx);
857
static void clear_priorities (rtx, rtx_vec_t *);
858
static void calc_priorities (rtx_vec_t);
859
static void add_jump_dependencies (rtx, rtx);
860
 
861
#endif /* INSN_SCHEDULING */
862
 
863
/* Point to state used for the current scheduling pass.  */
864
struct haifa_sched_info *current_sched_info;
865
 
866
#ifndef INSN_SCHEDULING
867
void
868
schedule_insns (void)
869
{
870
}
871
#else
872
 
873
/* Do register pressure sensitive insn scheduling if the flag is set
874
   up.  */
875
bool sched_pressure_p;
876
 
877
/* Map regno -> its pressure class.  The map defined only when
878
   SCHED_PRESSURE_P is true.  */
879
enum reg_class *sched_regno_pressure_class;
880
 
881
/* The current register pressure.  Only elements corresponding pressure
882
   classes are defined.  */
883
static int curr_reg_pressure[N_REG_CLASSES];
884
 
885
/* Saved value of the previous array.  */
886
static int saved_reg_pressure[N_REG_CLASSES];
887
 
888
/* Register living at given scheduling point.  */
889
static bitmap curr_reg_live;
890
 
891
/* Saved value of the previous array.  */
892
static bitmap saved_reg_live;
893
 
894
/* Registers mentioned in the current region.  */
895
static bitmap region_ref_regs;
896
 
897
/* Initiate register pressure relative info for scheduling the current
898
   region.  Currently it is only clearing register mentioned in the
899
   current region.  */
900
void
901
sched_init_region_reg_pressure_info (void)
902
{
903
  bitmap_clear (region_ref_regs);
904
}
905
 
906
/* Update current register pressure related info after birth (if
907
   BIRTH_P) or death of register REGNO.  */
908
static void
909
mark_regno_birth_or_death (int regno, bool birth_p)
910
{
911
  enum reg_class pressure_class;
912
 
913
  pressure_class = sched_regno_pressure_class[regno];
914
  if (regno >= FIRST_PSEUDO_REGISTER)
915
    {
916
      if (pressure_class != NO_REGS)
917
        {
918
          if (birth_p)
919
            {
920
              bitmap_set_bit (curr_reg_live, regno);
921
              curr_reg_pressure[pressure_class]
922
                += (ira_reg_class_max_nregs
923
                    [pressure_class][PSEUDO_REGNO_MODE (regno)]);
924
            }
925
          else
926
            {
927
              bitmap_clear_bit (curr_reg_live, regno);
928
              curr_reg_pressure[pressure_class]
929
                -= (ira_reg_class_max_nregs
930
                    [pressure_class][PSEUDO_REGNO_MODE (regno)]);
931
            }
932
        }
933
    }
934
  else if (pressure_class != NO_REGS
935
           && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
936
    {
937
      if (birth_p)
938
        {
939
          bitmap_set_bit (curr_reg_live, regno);
940
          curr_reg_pressure[pressure_class]++;
941
        }
942
      else
943
        {
944
          bitmap_clear_bit (curr_reg_live, regno);
945
          curr_reg_pressure[pressure_class]--;
946
        }
947
    }
948
}
949
 
950
/* Initiate current register pressure related info from living
951
   registers given by LIVE.  */
952
static void
953
initiate_reg_pressure_info (bitmap live)
954
{
955
  int i;
956
  unsigned int j;
957
  bitmap_iterator bi;
958
 
959
  for (i = 0; i < ira_pressure_classes_num; i++)
960
    curr_reg_pressure[ira_pressure_classes[i]] = 0;
961
  bitmap_clear (curr_reg_live);
962
  EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
963
    if (current_nr_blocks == 1 || bitmap_bit_p (region_ref_regs, j))
964
      mark_regno_birth_or_death (j, true);
965
}
966
 
967
/* Mark registers in X as mentioned in the current region.  */
968
static void
969
setup_ref_regs (rtx x)
970
{
971
  int i, j, regno;
972
  const RTX_CODE code = GET_CODE (x);
973
  const char *fmt;
974
 
975
  if (REG_P (x))
976
    {
977
      regno = REGNO (x);
978
      if (HARD_REGISTER_NUM_P (regno))
979
        bitmap_set_range (region_ref_regs, regno,
980
                          hard_regno_nregs[regno][GET_MODE (x)]);
981
      else
982
        bitmap_set_bit (region_ref_regs, REGNO (x));
983
      return;
984
    }
985
  fmt = GET_RTX_FORMAT (code);
986
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
987
    if (fmt[i] == 'e')
988
      setup_ref_regs (XEXP (x, i));
989
    else if (fmt[i] == 'E')
990
      {
991
        for (j = 0; j < XVECLEN (x, i); j++)
992
          setup_ref_regs (XVECEXP (x, i, j));
993
      }
994
}
995
 
996
/* Initiate current register pressure related info at the start of
997
   basic block BB.  */
998
static void
999
initiate_bb_reg_pressure_info (basic_block bb)
1000
{
1001
  unsigned int i ATTRIBUTE_UNUSED;
1002
  rtx insn;
1003
 
1004
  if (current_nr_blocks > 1)
1005
    FOR_BB_INSNS (bb, insn)
1006
      if (NONDEBUG_INSN_P (insn))
1007
        setup_ref_regs (PATTERN (insn));
1008
  initiate_reg_pressure_info (df_get_live_in (bb));
1009
#ifdef EH_RETURN_DATA_REGNO
1010
  if (bb_has_eh_pred (bb))
1011
    for (i = 0; ; ++i)
1012
      {
1013
        unsigned int regno = EH_RETURN_DATA_REGNO (i);
1014
 
1015
        if (regno == INVALID_REGNUM)
1016
          break;
1017
        if (! bitmap_bit_p (df_get_live_in (bb), regno))
1018
          mark_regno_birth_or_death (regno, true);
1019
      }
1020
#endif
1021
}
1022
 
1023
/* Save current register pressure related info.  */
1024
static void
1025
save_reg_pressure (void)
1026
{
1027
  int i;
1028
 
1029
  for (i = 0; i < ira_pressure_classes_num; i++)
1030
    saved_reg_pressure[ira_pressure_classes[i]]
1031
      = curr_reg_pressure[ira_pressure_classes[i]];
1032
  bitmap_copy (saved_reg_live, curr_reg_live);
1033
}
1034
 
1035
/* Restore saved register pressure related info.  */
1036
static void
1037
restore_reg_pressure (void)
1038
{
1039
  int i;
1040
 
1041
  for (i = 0; i < ira_pressure_classes_num; i++)
1042
    curr_reg_pressure[ira_pressure_classes[i]]
1043
      = saved_reg_pressure[ira_pressure_classes[i]];
1044
  bitmap_copy (curr_reg_live, saved_reg_live);
1045
}
1046
 
1047
/* Return TRUE if the register is dying after its USE.  */
1048
static bool
1049
dying_use_p (struct reg_use_data *use)
1050
{
1051
  struct reg_use_data *next;
1052
 
1053
  for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1054
    if (NONDEBUG_INSN_P (next->insn)
1055
        && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1056
      return false;
1057
  return true;
1058
}
1059
 
1060
/* Print info about the current register pressure and its excess for
1061
   each pressure class.  */
1062
static void
1063
print_curr_reg_pressure (void)
1064
{
1065
  int i;
1066
  enum reg_class cl;
1067
 
1068
  fprintf (sched_dump, ";;\t");
1069
  for (i = 0; i < ira_pressure_classes_num; i++)
1070
    {
1071
      cl = ira_pressure_classes[i];
1072
      gcc_assert (curr_reg_pressure[cl] >= 0);
1073
      fprintf (sched_dump, "  %s:%d(%d)", reg_class_names[cl],
1074
               curr_reg_pressure[cl],
1075
               curr_reg_pressure[cl] - ira_available_class_regs[cl]);
1076
    }
1077
  fprintf (sched_dump, "\n");
1078
}
1079
 
1080
/* Determine if INSN has a condition that is clobbered if a register
1081
   in SET_REGS is modified.  */
1082
static bool
1083
cond_clobbered_p (rtx insn, HARD_REG_SET set_regs)
1084
{
1085
  rtx pat = PATTERN (insn);
1086
  gcc_assert (GET_CODE (pat) == COND_EXEC);
1087
  if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1088
    {
1089
      sd_iterator_def sd_it;
1090
      dep_t dep;
1091
      haifa_change_pattern (insn, ORIG_PAT (insn));
1092
      FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1093
        DEP_STATUS (dep) &= ~DEP_CANCELLED;
1094
      TODO_SPEC (insn) = HARD_DEP;
1095
      if (sched_verbose >= 2)
1096
        fprintf (sched_dump,
1097
                 ";;\t\tdequeue insn %s because of clobbered condition\n",
1098
                 (*current_sched_info->print_insn) (insn, 0));
1099
      return true;
1100
    }
1101
 
1102
  return false;
1103
}
1104
 
1105
/* Look at the remaining dependencies for insn NEXT, and compute and return
1106
   the TODO_SPEC value we should use for it.  This is called after one of
1107
   NEXT's dependencies has been resolved.  */
1108
 
1109
static ds_t
1110
recompute_todo_spec (rtx next)
1111
{
1112
  ds_t new_ds;
1113
  sd_iterator_def sd_it;
1114
  dep_t dep, control_dep = NULL;
1115
  int n_spec = 0;
1116
  int n_control = 0;
1117
  bool first_p = true;
1118
 
1119
  if (sd_lists_empty_p (next, SD_LIST_BACK))
1120
    /* NEXT has all its dependencies resolved.  */
1121
    return 0;
1122
 
1123
  if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1124
    return HARD_DEP;
1125
 
1126
  /* Now we've got NEXT with speculative deps only.
1127
     1. Look at the deps to see what we have to do.
1128
     2. Check if we can do 'todo'.  */
1129
  new_ds = 0;
1130
 
1131
  FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1132
    {
1133
      ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1134
 
1135
      if (DEBUG_INSN_P (DEP_PRO (dep)) && !DEBUG_INSN_P (next))
1136
        continue;
1137
 
1138
      if (ds)
1139
        {
1140
          n_spec++;
1141
          if (first_p)
1142
            {
1143
              first_p = false;
1144
 
1145
              new_ds = ds;
1146
            }
1147
          else
1148
            new_ds = ds_merge (new_ds, ds);
1149
        }
1150
      if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1151
        {
1152
          n_control++;
1153
          control_dep = dep;
1154
          DEP_STATUS (dep) &= ~DEP_CANCELLED;
1155
        }
1156
    }
1157
 
1158
  if (n_control == 1 && n_spec == 0)
1159
    {
1160
      rtx pro, other, new_pat;
1161
      rtx cond = NULL_RTX;
1162
      bool success;
1163
      rtx prev = NULL_RTX;
1164
      int i;
1165
      unsigned regno;
1166
 
1167
      if ((current_sched_info->flags & DO_PREDICATION) == 0
1168
          || (ORIG_PAT (next) != NULL_RTX
1169
              && PREDICATED_PAT (next) == NULL_RTX))
1170
        return HARD_DEP;
1171
 
1172
      pro = DEP_PRO (control_dep);
1173
      other = real_insn_for_shadow (pro);
1174
      if (other != NULL_RTX)
1175
        pro = other;
1176
 
1177
      cond = sched_get_reverse_condition_uncached (pro);
1178
      regno = REGNO (XEXP (cond, 0));
1179
 
1180
      /* Find the last scheduled insn that modifies the condition register.
1181
         We can stop looking once we find the insn we depend on through the
1182
         REG_DEP_CONTROL; if the condition register isn't modified after it,
1183
         we know that it still has the right value.  */
1184
      if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1185
        FOR_EACH_VEC_ELT_REVERSE (rtx, scheduled_insns, i, prev)
1186
          {
1187
            HARD_REG_SET t;
1188
 
1189
            find_all_hard_reg_sets (prev, &t);
1190
            if (TEST_HARD_REG_BIT (t, regno))
1191
              return HARD_DEP;
1192
            if (prev == pro)
1193
              break;
1194
          }
1195
      if (ORIG_PAT (next) == NULL_RTX)
1196
        {
1197
          ORIG_PAT (next) = PATTERN (next);
1198
 
1199
          new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1200
          success = haifa_change_pattern (next, new_pat);
1201
          if (!success)
1202
            return HARD_DEP;
1203
          PREDICATED_PAT (next) = new_pat;
1204
        }
1205
      else if (PATTERN (next) != PREDICATED_PAT (next))
1206
        {
1207
          bool success = haifa_change_pattern (next,
1208
                                               PREDICATED_PAT (next));
1209
          gcc_assert (success);
1210
        }
1211
      DEP_STATUS (control_dep) |= DEP_CANCELLED;
1212
      return DEP_CONTROL;
1213
    }
1214
 
1215
  if (PREDICATED_PAT (next) != NULL_RTX)
1216
    {
1217
      int tick = INSN_TICK (next);
1218
      bool success = haifa_change_pattern (next,
1219
                                           ORIG_PAT (next));
1220
      INSN_TICK (next) = tick;
1221
      gcc_assert (success);
1222
    }
1223
 
1224
  /* We can't handle the case where there are both speculative and control
1225
     dependencies, so we return HARD_DEP in such a case.  Also fail if
1226
     we have speculative dependencies with not enough points, or more than
1227
     one control dependency.  */
1228
  if ((n_spec > 0 && n_control > 0)
1229
      || (n_spec > 0
1230
          /* Too few points?  */
1231
          && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1232
      || (n_control > 1))
1233
    return HARD_DEP;
1234
 
1235
  return new_ds;
1236
}
1237
 
1238
/* Pointer to the last instruction scheduled.  */
1239
static rtx last_scheduled_insn;
1240
 
1241
/* Pointer to the last nondebug instruction scheduled within the
1242
   block, or the prev_head of the scheduling block.  Used by
1243
   rank_for_schedule, so that insns independent of the last scheduled
1244
   insn will be preferred over dependent instructions.  */
1245
static rtx last_nondebug_scheduled_insn;
1246
 
1247
/* Pointer that iterates through the list of unscheduled insns if we
1248
   have a dbg_cnt enabled.  It always points at an insn prior to the
1249
   first unscheduled one.  */
1250
static rtx nonscheduled_insns_begin;
1251
 
1252
/* Cached cost of the instruction.  Use below function to get cost of the
1253
   insn.  -1 here means that the field is not initialized.  */
1254
#define INSN_COST(INSN) (HID (INSN)->cost)
1255
 
1256
/* Compute cost of executing INSN.
1257
   This is the number of cycles between instruction issue and
1258
   instruction results.  */
1259
int
1260
insn_cost (rtx insn)
1261
{
1262
  int cost;
1263
 
1264
  if (sel_sched_p ())
1265
    {
1266
      if (recog_memoized (insn) < 0)
1267
        return 0;
1268
 
1269
      cost = insn_default_latency (insn);
1270
      if (cost < 0)
1271
        cost = 0;
1272
 
1273
      return cost;
1274
    }
1275
 
1276
  cost = INSN_COST (insn);
1277
 
1278
  if (cost < 0)
1279
    {
1280
      /* A USE insn, or something else we don't need to
1281
         understand.  We can't pass these directly to
1282
         result_ready_cost or insn_default_latency because it will
1283
         trigger a fatal error for unrecognizable insns.  */
1284
      if (recog_memoized (insn) < 0)
1285
        {
1286
          INSN_COST (insn) = 0;
1287
          return 0;
1288
        }
1289
      else
1290
        {
1291
          cost = insn_default_latency (insn);
1292
          if (cost < 0)
1293
            cost = 0;
1294
 
1295
          INSN_COST (insn) = cost;
1296
        }
1297
    }
1298
 
1299
  return cost;
1300
}
1301
 
1302
/* Compute cost of dependence LINK.
1303
   This is the number of cycles between instruction issue and
1304
   instruction results.
1305
   ??? We also use this function to call recog_memoized on all insns.  */
1306
int
1307
dep_cost_1 (dep_t link, dw_t dw)
1308
{
1309
  rtx insn = DEP_PRO (link);
1310
  rtx used = DEP_CON (link);
1311
  int cost;
1312
 
1313
  if (DEP_COST (link) != UNKNOWN_DEP_COST)
1314
    return DEP_COST (link);
1315
 
1316
  if (delay_htab)
1317
    {
1318
      struct delay_pair *delay_entry;
1319
      delay_entry
1320
        = (struct delay_pair *)htab_find_with_hash (delay_htab_i2, used,
1321
                                                    htab_hash_pointer (used));
1322
      if (delay_entry)
1323
        {
1324
          if (delay_entry->i1 == insn)
1325
            {
1326
              DEP_COST (link) = pair_delay (delay_entry);
1327
              return DEP_COST (link);
1328
            }
1329
        }
1330
    }
1331
 
1332
  /* A USE insn should never require the value used to be computed.
1333
     This allows the computation of a function's result and parameter
1334
     values to overlap the return and call.  We don't care about the
1335
     dependence cost when only decreasing register pressure.  */
1336
  if (recog_memoized (used) < 0)
1337
    {
1338
      cost = 0;
1339
      recog_memoized (insn);
1340
    }
1341
  else
1342
    {
1343
      enum reg_note dep_type = DEP_TYPE (link);
1344
 
1345
      cost = insn_cost (insn);
1346
 
1347
      if (INSN_CODE (insn) >= 0)
1348
        {
1349
          if (dep_type == REG_DEP_ANTI)
1350
            cost = 0;
1351
          else if (dep_type == REG_DEP_OUTPUT)
1352
            {
1353
              cost = (insn_default_latency (insn)
1354
                      - insn_default_latency (used));
1355
              if (cost <= 0)
1356
                cost = 1;
1357
            }
1358
          else if (bypass_p (insn))
1359
            cost = insn_latency (insn, used);
1360
        }
1361
 
1362
 
1363
      if (targetm.sched.adjust_cost_2)
1364
        cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1365
                                            dw);
1366
      else if (targetm.sched.adjust_cost != NULL)
1367
        {
1368
          /* This variable is used for backward compatibility with the
1369
             targets.  */
1370
          rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
1371
 
1372
          /* Make it self-cycled, so that if some tries to walk over this
1373
             incomplete list he/she will be caught in an endless loop.  */
1374
          XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1375
 
1376
          /* Targets use only REG_NOTE_KIND of the link.  */
1377
          PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1378
 
1379
          cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1380
                                            insn, cost);
1381
 
1382
          free_INSN_LIST_node (dep_cost_rtx_link);
1383
        }
1384
 
1385
      if (cost < 0)
1386
        cost = 0;
1387
    }
1388
 
1389
  DEP_COST (link) = cost;
1390
  return cost;
1391
}
1392
 
1393
/* Compute cost of dependence LINK.
1394
   This is the number of cycles between instruction issue and
1395
   instruction results.  */
1396
int
1397
dep_cost (dep_t link)
1398
{
1399
  return dep_cost_1 (link, 0);
1400
}
1401
 
1402
/* Use this sel-sched.c friendly function in reorder2 instead of increasing
1403
   INSN_PRIORITY explicitly.  */
1404
void
1405
increase_insn_priority (rtx insn, int amount)
1406
{
1407
  if (!sel_sched_p ())
1408
    {
1409
      /* We're dealing with haifa-sched.c INSN_PRIORITY.  */
1410
      if (INSN_PRIORITY_KNOWN (insn))
1411
          INSN_PRIORITY (insn) += amount;
1412
    }
1413
  else
1414
    {
1415
      /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1416
         Use EXPR_PRIORITY instead. */
1417
      sel_add_to_insn_priority (insn, amount);
1418
    }
1419
}
1420
 
1421
/* Return 'true' if DEP should be included in priority calculations.  */
1422
static bool
1423
contributes_to_priority_p (dep_t dep)
1424
{
1425
  if (DEBUG_INSN_P (DEP_CON (dep))
1426
      || DEBUG_INSN_P (DEP_PRO (dep)))
1427
    return false;
1428
 
1429
  /* Critical path is meaningful in block boundaries only.  */
1430
  if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1431
                                                    DEP_PRO (dep)))
1432
    return false;
1433
 
1434
  /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1435
     then speculative instructions will less likely be
1436
     scheduled.  That is because the priority of
1437
     their producers will increase, and, thus, the
1438
     producers will more likely be scheduled, thus,
1439
     resolving the dependence.  */
1440
  if (sched_deps_info->generate_spec_deps
1441
      && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1442
      && (DEP_STATUS (dep) & SPECULATIVE))
1443
    return false;
1444
 
1445
  return true;
1446
}
1447
 
1448
/* Compute the number of nondebug forward deps of an insn.  */
1449
 
1450
static int
1451
dep_list_size (rtx insn)
1452
{
1453
  sd_iterator_def sd_it;
1454
  dep_t dep;
1455
  int dbgcount = 0, nodbgcount = 0;
1456
 
1457
  if (!MAY_HAVE_DEBUG_INSNS)
1458
    return sd_lists_size (insn, SD_LIST_FORW);
1459
 
1460
  FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1461
    {
1462
      if (DEBUG_INSN_P (DEP_CON (dep)))
1463
        dbgcount++;
1464
      else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1465
        nodbgcount++;
1466
    }
1467
 
1468
  gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, SD_LIST_FORW));
1469
 
1470
  return nodbgcount;
1471
}
1472
 
1473
/* Compute the priority number for INSN.  */
1474
static int
1475
priority (rtx insn)
1476
{
1477
  if (! INSN_P (insn))
1478
    return 0;
1479
 
1480
  /* We should not be interested in priority of an already scheduled insn.  */
1481
  gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1482
 
1483
  if (!INSN_PRIORITY_KNOWN (insn))
1484
    {
1485
      int this_priority = -1;
1486
 
1487
      if (dep_list_size (insn) == 0)
1488
        /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1489
           some forward deps but all of them are ignored by
1490
           contributes_to_priority hook.  At the moment we set priority of
1491
           such insn to 0.  */
1492
        this_priority = insn_cost (insn);
1493
      else
1494
        {
1495
          rtx prev_first, twin;
1496
          basic_block rec;
1497
 
1498
          /* For recovery check instructions we calculate priority slightly
1499
             different than that of normal instructions.  Instead of walking
1500
             through INSN_FORW_DEPS (check) list, we walk through
1501
             INSN_FORW_DEPS list of each instruction in the corresponding
1502
             recovery block.  */
1503
 
1504
          /* Selective scheduling does not define RECOVERY_BLOCK macro.  */
1505
          rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1506
          if (!rec || rec == EXIT_BLOCK_PTR)
1507
            {
1508
              prev_first = PREV_INSN (insn);
1509
              twin = insn;
1510
            }
1511
          else
1512
            {
1513
              prev_first = NEXT_INSN (BB_HEAD (rec));
1514
              twin = PREV_INSN (BB_END (rec));
1515
            }
1516
 
1517
          do
1518
            {
1519
              sd_iterator_def sd_it;
1520
              dep_t dep;
1521
 
1522
              FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1523
                {
1524
                  rtx next;
1525
                  int next_priority;
1526
 
1527
                  next = DEP_CON (dep);
1528
 
1529
                  if (BLOCK_FOR_INSN (next) != rec)
1530
                    {
1531
                      int cost;
1532
 
1533
                      if (!contributes_to_priority_p (dep))
1534
                        continue;
1535
 
1536
                      if (twin == insn)
1537
                        cost = dep_cost (dep);
1538
                      else
1539
                        {
1540
                          struct _dep _dep1, *dep1 = &_dep1;
1541
 
1542
                          init_dep (dep1, insn, next, REG_DEP_ANTI);
1543
 
1544
                          cost = dep_cost (dep1);
1545
                        }
1546
 
1547
                      next_priority = cost + priority (next);
1548
 
1549
                      if (next_priority > this_priority)
1550
                        this_priority = next_priority;
1551
                    }
1552
                }
1553
 
1554
              twin = PREV_INSN (twin);
1555
            }
1556
          while (twin != prev_first);
1557
        }
1558
 
1559
      if (this_priority < 0)
1560
        {
1561
          gcc_assert (this_priority == -1);
1562
 
1563
          this_priority = insn_cost (insn);
1564
        }
1565
 
1566
      INSN_PRIORITY (insn) = this_priority;
1567
      INSN_PRIORITY_STATUS (insn) = 1;
1568
    }
1569
 
1570
  return INSN_PRIORITY (insn);
1571
}
1572
 
1573
/* Macros and functions for keeping the priority queue sorted, and
1574
   dealing with queuing and dequeuing of instructions.  */
1575
 
1576
#define SCHED_SORT(READY, N_READY)                                   \
1577
do { if ((N_READY) == 2)                                             \
1578
       swap_sort (READY, N_READY);                                   \
1579
     else if ((N_READY) > 2)                                         \
1580
         qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); }  \
1581
while (0)
1582
 
1583
/* Setup info about the current register pressure impact of scheduling
1584
   INSN at the current scheduling point.  */
1585
static void
1586
setup_insn_reg_pressure_info (rtx insn)
1587
{
1588
  int i, change, before, after, hard_regno;
1589
  int excess_cost_change;
1590
  enum machine_mode mode;
1591
  enum reg_class cl;
1592
  struct reg_pressure_data *pressure_info;
1593
  int *max_reg_pressure;
1594
  struct reg_use_data *use;
1595
  static int death[N_REG_CLASSES];
1596
 
1597
  gcc_checking_assert (!DEBUG_INSN_P (insn));
1598
 
1599
  excess_cost_change = 0;
1600
  for (i = 0; i < ira_pressure_classes_num; i++)
1601
    death[ira_pressure_classes[i]] = 0;
1602
  for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1603
    if (dying_use_p (use))
1604
      {
1605
        cl = sched_regno_pressure_class[use->regno];
1606
        if (use->regno < FIRST_PSEUDO_REGISTER)
1607
          death[cl]++;
1608
        else
1609
          death[cl]
1610
            += ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (use->regno)];
1611
      }
1612
  pressure_info = INSN_REG_PRESSURE (insn);
1613
  max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1614
  gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1615
  for (i = 0; i < ira_pressure_classes_num; i++)
1616
    {
1617
      cl = ira_pressure_classes[i];
1618
      gcc_assert (curr_reg_pressure[cl] >= 0);
1619
      change = (int) pressure_info[i].set_increase - death[cl];
1620
      before = MAX (0, max_reg_pressure[i] - ira_available_class_regs[cl]);
1621
      after = MAX (0, max_reg_pressure[i] + change
1622
                   - ira_available_class_regs[cl]);
1623
      hard_regno = ira_class_hard_regs[cl][0];
1624
      gcc_assert (hard_regno >= 0);
1625
      mode = reg_raw_mode[hard_regno];
1626
      excess_cost_change += ((after - before)
1627
                             * (ira_memory_move_cost[mode][cl][0]
1628
                                + ira_memory_move_cost[mode][cl][1]));
1629
    }
1630
  INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1631
}
1632
 
1633
/* Returns a positive value if x is preferred; returns a negative value if
1634
   y is preferred.  Should never return 0, since that will make the sort
1635
   unstable.  */
1636
 
1637
static int
1638
rank_for_schedule (const void *x, const void *y)
1639
{
1640
  rtx tmp = *(const rtx *) y;
1641
  rtx tmp2 = *(const rtx *) x;
1642
  int tmp_class, tmp2_class;
1643
  int val, priority_val, info_val;
1644
 
1645
  if (MAY_HAVE_DEBUG_INSNS)
1646
    {
1647
      /* Schedule debug insns as early as possible.  */
1648
      if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
1649
        return -1;
1650
      else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
1651
        return 1;
1652
      else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
1653
        return INSN_LUID (tmp) - INSN_LUID (tmp2);
1654
    }
1655
 
1656
  /* The insn in a schedule group should be issued the first.  */
1657
  if (flag_sched_group_heuristic &&
1658
      SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
1659
    return SCHED_GROUP_P (tmp2) ? 1 : -1;
1660
 
1661
  /* Make sure that priority of TMP and TMP2 are initialized.  */
1662
  gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
1663
 
1664
  if (sched_pressure_p)
1665
    {
1666
      int diff;
1667
 
1668
      /* Prefer insn whose scheduling results in the smallest register
1669
         pressure excess.  */
1670
      if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
1671
                   + (INSN_TICK (tmp) > clock_var
1672
                      ? INSN_TICK (tmp) - clock_var : 0)
1673
                   - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
1674
                   - (INSN_TICK (tmp2) > clock_var
1675
                      ? INSN_TICK (tmp2) - clock_var : 0))) != 0)
1676
        return diff;
1677
    }
1678
 
1679
 
1680
  if (sched_pressure_p
1681
      && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
1682
    {
1683
      if (INSN_TICK (tmp) <= clock_var)
1684
        return -1;
1685
      else if (INSN_TICK (tmp2) <= clock_var)
1686
        return 1;
1687
      else
1688
        return INSN_TICK (tmp) - INSN_TICK (tmp2);
1689
    }
1690
 
1691
  /* If we are doing backtracking in this schedule, prefer insns that
1692
     have forward dependencies with negative cost against an insn that
1693
     was already scheduled.  */
1694
  if (current_sched_info->flags & DO_BACKTRACKING)
1695
    {
1696
      priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
1697
      if (priority_val)
1698
        return priority_val;
1699
    }
1700
 
1701
  /* Prefer insn with higher priority.  */
1702
  priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
1703
 
1704
  if (flag_sched_critical_path_heuristic && priority_val)
1705
    return priority_val;
1706
 
1707
  /* Prefer speculative insn with greater dependencies weakness.  */
1708
  if (flag_sched_spec_insn_heuristic && spec_info)
1709
    {
1710
      ds_t ds1, ds2;
1711
      dw_t dw1, dw2;
1712
      int dw;
1713
 
1714
      ds1 = TODO_SPEC (tmp) & SPECULATIVE;
1715
      if (ds1)
1716
        dw1 = ds_weak (ds1);
1717
      else
1718
        dw1 = NO_DEP_WEAK;
1719
 
1720
      ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
1721
      if (ds2)
1722
        dw2 = ds_weak (ds2);
1723
      else
1724
        dw2 = NO_DEP_WEAK;
1725
 
1726
      dw = dw2 - dw1;
1727
      if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
1728
        return dw;
1729
    }
1730
 
1731
  info_val = (*current_sched_info->rank) (tmp, tmp2);
1732
  if(flag_sched_rank_heuristic && info_val)
1733
    return info_val;
1734
 
1735
  /* Compare insns based on their relation to the last scheduled
1736
     non-debug insn.  */
1737
  if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
1738
    {
1739
      dep_t dep1;
1740
      dep_t dep2;
1741
      rtx last = last_nondebug_scheduled_insn;
1742
 
1743
      /* Classify the instructions into three classes:
1744
         1) Data dependent on last schedule insn.
1745
         2) Anti/Output dependent on last scheduled insn.
1746
         3) Independent of last scheduled insn, or has latency of one.
1747
         Choose the insn from the highest numbered class if different.  */
1748
      dep1 = sd_find_dep_between (last, tmp, true);
1749
 
1750
      if (dep1 == NULL || dep_cost (dep1) == 1)
1751
        tmp_class = 3;
1752
      else if (/* Data dependence.  */
1753
               DEP_TYPE (dep1) == REG_DEP_TRUE)
1754
        tmp_class = 1;
1755
      else
1756
        tmp_class = 2;
1757
 
1758
      dep2 = sd_find_dep_between (last, tmp2, true);
1759
 
1760
      if (dep2 == NULL || dep_cost (dep2)  == 1)
1761
        tmp2_class = 3;
1762
      else if (/* Data dependence.  */
1763
               DEP_TYPE (dep2) == REG_DEP_TRUE)
1764
        tmp2_class = 1;
1765
      else
1766
        tmp2_class = 2;
1767
 
1768
      if ((val = tmp2_class - tmp_class))
1769
        return val;
1770
    }
1771
 
1772
  /* Prefer the insn which has more later insns that depend on it.
1773
     This gives the scheduler more freedom when scheduling later
1774
     instructions at the expense of added register pressure.  */
1775
 
1776
  val = (dep_list_size (tmp2) - dep_list_size (tmp));
1777
 
1778
  if (flag_sched_dep_count_heuristic && val != 0)
1779
    return val;
1780
 
1781
  /* If insns are equally good, sort by INSN_LUID (original insn order),
1782
     so that we make the sort stable.  This minimizes instruction movement,
1783
     thus minimizing sched's effect on debugging and cross-jumping.  */
1784
  return INSN_LUID (tmp) - INSN_LUID (tmp2);
1785
}
1786
 
1787
/* Resort the array A in which only element at index N may be out of order.  */
1788
 
1789
HAIFA_INLINE static void
1790
swap_sort (rtx *a, int n)
1791
{
1792
  rtx insn = a[n - 1];
1793
  int i = n - 2;
1794
 
1795
  while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
1796
    {
1797
      a[i + 1] = a[i];
1798
      i -= 1;
1799
    }
1800
  a[i + 1] = insn;
1801
}
1802
 
1803
/* Add INSN to the insn queue so that it can be executed at least
1804
   N_CYCLES after the currently executing insn.  Preserve insns
1805
   chain for debugging purposes.  REASON will be printed in debugging
1806
   output.  */
1807
 
1808
HAIFA_INLINE static void
1809
queue_insn (rtx insn, int n_cycles, const char *reason)
1810
{
1811
  int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
1812
  rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
1813
  int new_tick;
1814
 
1815
  gcc_assert (n_cycles <= max_insn_queue_index);
1816
  gcc_assert (!DEBUG_INSN_P (insn));
1817
 
1818
  insn_queue[next_q] = link;
1819
  q_size += 1;
1820
 
1821
  if (sched_verbose >= 2)
1822
    {
1823
      fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
1824
               (*current_sched_info->print_insn) (insn, 0));
1825
 
1826
      fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
1827
    }
1828
 
1829
  QUEUE_INDEX (insn) = next_q;
1830
 
1831
  if (current_sched_info->flags & DO_BACKTRACKING)
1832
    {
1833
      new_tick = clock_var + n_cycles;
1834
      if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
1835
        INSN_TICK (insn) = new_tick;
1836
 
1837
      if (INSN_EXACT_TICK (insn) != INVALID_TICK
1838
          && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
1839
        {
1840
          must_backtrack = true;
1841
          if (sched_verbose >= 2)
1842
            fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
1843
        }
1844
    }
1845
}
1846
 
1847
/* Remove INSN from queue.  */
1848
static void
1849
queue_remove (rtx insn)
1850
{
1851
  gcc_assert (QUEUE_INDEX (insn) >= 0);
1852
  remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
1853
  q_size--;
1854
  QUEUE_INDEX (insn) = QUEUE_NOWHERE;
1855
}
1856
 
1857
/* Return a pointer to the bottom of the ready list, i.e. the insn
1858
   with the lowest priority.  */
1859
 
1860
rtx *
1861
ready_lastpos (struct ready_list *ready)
1862
{
1863
  gcc_assert (ready->n_ready >= 1);
1864
  return ready->vec + ready->first - ready->n_ready + 1;
1865
}
1866
 
1867
/* Add an element INSN to the ready list so that it ends up with the
1868
   lowest/highest priority depending on FIRST_P.  */
1869
 
1870
HAIFA_INLINE static void
1871
ready_add (struct ready_list *ready, rtx insn, bool first_p)
1872
{
1873
  if (!first_p)
1874
    {
1875
      if (ready->first == ready->n_ready)
1876
        {
1877
          memmove (ready->vec + ready->veclen - ready->n_ready,
1878
                   ready_lastpos (ready),
1879
                   ready->n_ready * sizeof (rtx));
1880
          ready->first = ready->veclen - 1;
1881
        }
1882
      ready->vec[ready->first - ready->n_ready] = insn;
1883
    }
1884
  else
1885
    {
1886
      if (ready->first == ready->veclen - 1)
1887
        {
1888
          if (ready->n_ready)
1889
            /* ready_lastpos() fails when called with (ready->n_ready == 0).  */
1890
            memmove (ready->vec + ready->veclen - ready->n_ready - 1,
1891
                     ready_lastpos (ready),
1892
                     ready->n_ready * sizeof (rtx));
1893
          ready->first = ready->veclen - 2;
1894
        }
1895
      ready->vec[++(ready->first)] = insn;
1896
    }
1897
 
1898
  ready->n_ready++;
1899
  if (DEBUG_INSN_P (insn))
1900
    ready->n_debug++;
1901
 
1902
  gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
1903
  QUEUE_INDEX (insn) = QUEUE_READY;
1904
 
1905
  if (INSN_EXACT_TICK (insn) != INVALID_TICK
1906
      && INSN_EXACT_TICK (insn) < clock_var)
1907
    {
1908
      must_backtrack = true;
1909
    }
1910
}
1911
 
1912
/* Remove the element with the highest priority from the ready list and
1913
   return it.  */
1914
 
1915
HAIFA_INLINE static rtx
1916
ready_remove_first (struct ready_list *ready)
1917
{
1918
  rtx t;
1919
 
1920
  gcc_assert (ready->n_ready);
1921
  t = ready->vec[ready->first--];
1922
  ready->n_ready--;
1923
  if (DEBUG_INSN_P (t))
1924
    ready->n_debug--;
1925
  /* If the queue becomes empty, reset it.  */
1926
  if (ready->n_ready == 0)
1927
    ready->first = ready->veclen - 1;
1928
 
1929
  gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
1930
  QUEUE_INDEX (t) = QUEUE_NOWHERE;
1931
 
1932
  return t;
1933
}
1934
 
1935
/* The following code implements multi-pass scheduling for the first
1936
   cycle.  In other words, we will try to choose ready insn which
1937
   permits to start maximum number of insns on the same cycle.  */
1938
 
1939
/* Return a pointer to the element INDEX from the ready.  INDEX for
1940
   insn with the highest priority is 0, and the lowest priority has
1941
   N_READY - 1.  */
1942
 
1943
rtx
1944
ready_element (struct ready_list *ready, int index)
1945
{
1946
  gcc_assert (ready->n_ready && index < ready->n_ready);
1947
 
1948
  return ready->vec[ready->first - index];
1949
}
1950
 
1951
/* Remove the element INDEX from the ready list and return it.  INDEX
1952
   for insn with the highest priority is 0, and the lowest priority
1953
   has N_READY - 1.  */
1954
 
1955
HAIFA_INLINE static rtx
1956
ready_remove (struct ready_list *ready, int index)
1957
{
1958
  rtx t;
1959
  int i;
1960
 
1961
  if (index == 0)
1962
    return ready_remove_first (ready);
1963
  gcc_assert (ready->n_ready && index < ready->n_ready);
1964
  t = ready->vec[ready->first - index];
1965
  ready->n_ready--;
1966
  if (DEBUG_INSN_P (t))
1967
    ready->n_debug--;
1968
  for (i = index; i < ready->n_ready; i++)
1969
    ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1970
  QUEUE_INDEX (t) = QUEUE_NOWHERE;
1971
  return t;
1972
}
1973
 
1974
/* Remove INSN from the ready list.  */
1975
static void
1976
ready_remove_insn (rtx insn)
1977
{
1978
  int i;
1979
 
1980
  for (i = 0; i < readyp->n_ready; i++)
1981
    if (ready_element (readyp, i) == insn)
1982
      {
1983
        ready_remove (readyp, i);
1984
        return;
1985
      }
1986
  gcc_unreachable ();
1987
}
1988
 
1989
/* Sort the ready list READY by ascending priority, using the SCHED_SORT
1990
   macro.  */
1991
 
1992
void
1993
ready_sort (struct ready_list *ready)
1994
{
1995
  int i;
1996
  rtx *first = ready_lastpos (ready);
1997
 
1998
  if (sched_pressure_p)
1999
    {
2000
      for (i = 0; i < ready->n_ready; i++)
2001
        if (!DEBUG_INSN_P (first[i]))
2002
          setup_insn_reg_pressure_info (first[i]);
2003
    }
2004
  SCHED_SORT (first, ready->n_ready);
2005
}
2006
 
2007
/* PREV is an insn that is ready to execute.  Adjust its priority if that
2008
   will help shorten or lengthen register lifetimes as appropriate.  Also
2009
   provide a hook for the target to tweak itself.  */
2010
 
2011
HAIFA_INLINE static void
2012
adjust_priority (rtx prev)
2013
{
2014
  /* ??? There used to be code here to try and estimate how an insn
2015
     affected register lifetimes, but it did it by looking at REG_DEAD
2016
     notes, which we removed in schedule_region.  Nor did it try to
2017
     take into account register pressure or anything useful like that.
2018
 
2019
     Revisit when we have a machine model to work with and not before.  */
2020
 
2021
  if (targetm.sched.adjust_priority)
2022
    INSN_PRIORITY (prev) =
2023
      targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
2024
}
2025
 
2026
/* Advance DFA state STATE on one cycle.  */
2027
void
2028
advance_state (state_t state)
2029
{
2030
  if (targetm.sched.dfa_pre_advance_cycle)
2031
    targetm.sched.dfa_pre_advance_cycle ();
2032
 
2033
  if (targetm.sched.dfa_pre_cycle_insn)
2034
    state_transition (state,
2035
                      targetm.sched.dfa_pre_cycle_insn ());
2036
 
2037
  state_transition (state, NULL);
2038
 
2039
  if (targetm.sched.dfa_post_cycle_insn)
2040
    state_transition (state,
2041
                      targetm.sched.dfa_post_cycle_insn ());
2042
 
2043
  if (targetm.sched.dfa_post_advance_cycle)
2044
    targetm.sched.dfa_post_advance_cycle ();
2045
}
2046
 
2047
/* Advance time on one cycle.  */
2048
HAIFA_INLINE static void
2049
advance_one_cycle (void)
2050
{
2051
  advance_state (curr_state);
2052
  if (sched_verbose >= 6)
2053
    fprintf (sched_dump, ";;\tAdvanced a state.\n");
2054
}
2055
 
2056
/* Update register pressure after scheduling INSN.  */
2057
static void
2058
update_register_pressure (rtx insn)
2059
{
2060
  struct reg_use_data *use;
2061
  struct reg_set_data *set;
2062
 
2063
  gcc_checking_assert (!DEBUG_INSN_P (insn));
2064
 
2065
  for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2066
    if (dying_use_p (use) && bitmap_bit_p (curr_reg_live, use->regno))
2067
      mark_regno_birth_or_death (use->regno, false);
2068
  for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
2069
    mark_regno_birth_or_death (set->regno, true);
2070
}
2071
 
2072
/* Set up or update (if UPDATE_P) max register pressure (see its
2073
   meaning in sched-int.h::_haifa_insn_data) for all current BB insns
2074
   after insn AFTER.  */
2075
static void
2076
setup_insn_max_reg_pressure (rtx after, bool update_p)
2077
{
2078
  int i, p;
2079
  bool eq_p;
2080
  rtx insn;
2081
  static int max_reg_pressure[N_REG_CLASSES];
2082
 
2083
  save_reg_pressure ();
2084
  for (i = 0; i < ira_pressure_classes_num; i++)
2085
    max_reg_pressure[ira_pressure_classes[i]]
2086
      = curr_reg_pressure[ira_pressure_classes[i]];
2087
  for (insn = NEXT_INSN (after);
2088
       insn != NULL_RTX && ! BARRIER_P (insn)
2089
         && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
2090
       insn = NEXT_INSN (insn))
2091
    if (NONDEBUG_INSN_P (insn))
2092
      {
2093
        eq_p = true;
2094
        for (i = 0; i < ira_pressure_classes_num; i++)
2095
          {
2096
            p = max_reg_pressure[ira_pressure_classes[i]];
2097
            if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
2098
              {
2099
                eq_p = false;
2100
                INSN_MAX_REG_PRESSURE (insn)[i]
2101
                  = max_reg_pressure[ira_pressure_classes[i]];
2102
              }
2103
          }
2104
        if (update_p && eq_p)
2105
          break;
2106
        update_register_pressure (insn);
2107
        for (i = 0; i < ira_pressure_classes_num; i++)
2108
          if (max_reg_pressure[ira_pressure_classes[i]]
2109
              < curr_reg_pressure[ira_pressure_classes[i]])
2110
            max_reg_pressure[ira_pressure_classes[i]]
2111
              = curr_reg_pressure[ira_pressure_classes[i]];
2112
      }
2113
  restore_reg_pressure ();
2114
}
2115
 
2116
/* Update the current register pressure after scheduling INSN.  Update
2117
   also max register pressure for unscheduled insns of the current
2118
   BB.  */
2119
static void
2120
update_reg_and_insn_max_reg_pressure (rtx insn)
2121
{
2122
  int i;
2123
  int before[N_REG_CLASSES];
2124
 
2125
  for (i = 0; i < ira_pressure_classes_num; i++)
2126
    before[i] = curr_reg_pressure[ira_pressure_classes[i]];
2127
  update_register_pressure (insn);
2128
  for (i = 0; i < ira_pressure_classes_num; i++)
2129
    if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
2130
      break;
2131
  if (i < ira_pressure_classes_num)
2132
    setup_insn_max_reg_pressure (insn, true);
2133
}
2134
 
2135
/* Set up register pressure at the beginning of basic block BB whose
2136
   insns starting after insn AFTER.  Set up also max register pressure
2137
   for all insns of the basic block.  */
2138
void
2139
sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
2140
{
2141
  gcc_assert (sched_pressure_p);
2142
  initiate_bb_reg_pressure_info (bb);
2143
  setup_insn_max_reg_pressure (after, false);
2144
}
2145
 
2146
/* If doing predication while scheduling, verify whether INSN, which
2147
   has just been scheduled, clobbers the conditions of any
2148
   instructions that must be predicated in order to break their
2149
   dependencies.  If so, remove them from the queues so that they will
2150
   only be scheduled once their control dependency is resolved.  */
2151
 
2152
static void
2153
check_clobbered_conditions (rtx insn)
2154
{
2155
  HARD_REG_SET t;
2156
  int i;
2157
 
2158
  if ((current_sched_info->flags & DO_PREDICATION) == 0)
2159
    return;
2160
 
2161
  find_all_hard_reg_sets (insn, &t);
2162
 
2163
 restart:
2164
  for (i = 0; i < ready.n_ready; i++)
2165
    {
2166
      rtx x = ready_element (&ready, i);
2167
      if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
2168
        {
2169
          ready_remove_insn (x);
2170
          goto restart;
2171
        }
2172
    }
2173
  for (i = 0; i <= max_insn_queue_index; i++)
2174
    {
2175
      rtx link;
2176
      int q = NEXT_Q_AFTER (q_ptr, i);
2177
 
2178
    restart_queue:
2179
      for (link = insn_queue[q]; link; link = XEXP (link, 1))
2180
        {
2181
          rtx x = XEXP (link, 0);
2182
          if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
2183
            {
2184
              queue_remove (x);
2185
              goto restart_queue;
2186
            }
2187
        }
2188
    }
2189
}
2190
 
2191
/* A structure that holds local state for the loop in schedule_block.  */
2192
struct sched_block_state
2193
{
2194
  /* True if no real insns have been scheduled in the current cycle.  */
2195
  bool first_cycle_insn_p;
2196
  /* True if a shadow insn has been scheduled in the current cycle, which
2197
     means that no more normal insns can be issued.  */
2198
  bool shadows_only_p;
2199
  /* True if we're winding down a modulo schedule, which means that we only
2200
     issue insns with INSN_EXACT_TICK set.  */
2201
  bool modulo_epilogue;
2202
  /* Initialized with the machine's issue rate every cycle, and updated
2203
     by calls to the variable_issue hook.  */
2204
  int can_issue_more;
2205
};
2206
 
2207
/* INSN is the "currently executing insn".  Launch each insn which was
2208
   waiting on INSN.  READY is the ready list which contains the insns
2209
   that are ready to fire.  CLOCK is the current cycle.  The function
2210
   returns necessary cycle advance after issuing the insn (it is not
2211
   zero for insns in a schedule group).  */
2212
 
2213
static int
2214
schedule_insn (rtx insn)
2215
{
2216
  sd_iterator_def sd_it;
2217
  dep_t dep;
2218
  int i;
2219
  int advance = 0;
2220
 
2221
  if (sched_verbose >= 1)
2222
    {
2223
      struct reg_pressure_data *pressure_info;
2224
      char buf[2048];
2225
 
2226
      print_insn (buf, insn, 0);
2227
      buf[40] = 0;
2228
      fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
2229
 
2230
      if (recog_memoized (insn) < 0)
2231
        fprintf (sched_dump, "nothing");
2232
      else
2233
        print_reservation (sched_dump, insn);
2234
      pressure_info = INSN_REG_PRESSURE (insn);
2235
      if (pressure_info != NULL)
2236
        {
2237
          fputc (':', sched_dump);
2238
          for (i = 0; i < ira_pressure_classes_num; i++)
2239
            fprintf (sched_dump, "%s%+d(%d)",
2240
                     reg_class_names[ira_pressure_classes[i]],
2241
                     pressure_info[i].set_increase, pressure_info[i].change);
2242
        }
2243
      fputc ('\n', sched_dump);
2244
    }
2245
 
2246
  if (sched_pressure_p && !DEBUG_INSN_P (insn))
2247
    update_reg_and_insn_max_reg_pressure (insn);
2248
 
2249
  /* Scheduling instruction should have all its dependencies resolved and
2250
     should have been removed from the ready list.  */
2251
  gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
2252
 
2253
  /* Reset debug insns invalidated by moving this insn.  */
2254
  if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
2255
    for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
2256
         sd_iterator_cond (&sd_it, &dep);)
2257
      {
2258
        rtx dbg = DEP_PRO (dep);
2259
        struct reg_use_data *use, *next;
2260
 
2261
        if (DEP_STATUS (dep) & DEP_CANCELLED)
2262
          {
2263
            sd_iterator_next (&sd_it);
2264
            continue;
2265
          }
2266
 
2267
        gcc_assert (DEBUG_INSN_P (dbg));
2268
 
2269
        if (sched_verbose >= 6)
2270
          fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
2271
                   INSN_UID (dbg));
2272
 
2273
        /* ??? Rather than resetting the debug insn, we might be able
2274
           to emit a debug temp before the just-scheduled insn, but
2275
           this would involve checking that the expression at the
2276
           point of the debug insn is equivalent to the expression
2277
           before the just-scheduled insn.  They might not be: the
2278
           expression in the debug insn may depend on other insns not
2279
           yet scheduled that set MEMs, REGs or even other debug
2280
           insns.  It's not clear that attempting to preserve debug
2281
           information in these cases is worth the effort, given how
2282
           uncommon these resets are and the likelihood that the debug
2283
           temps introduced won't survive the schedule change.  */
2284
        INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
2285
        df_insn_rescan (dbg);
2286
 
2287
        /* Unknown location doesn't use any registers.  */
2288
        for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
2289
          {
2290
            struct reg_use_data *prev = use;
2291
 
2292
            /* Remove use from the cyclic next_regno_use chain first.  */
2293
            while (prev->next_regno_use != use)
2294
              prev = prev->next_regno_use;
2295
            prev->next_regno_use = use->next_regno_use;
2296
            next = use->next_insn_use;
2297
            free (use);
2298
          }
2299
        INSN_REG_USE_LIST (dbg) = NULL;
2300
 
2301
        /* We delete rather than resolve these deps, otherwise we
2302
           crash in sched_free_deps(), because forward deps are
2303
           expected to be released before backward deps.  */
2304
        sd_delete_dep (sd_it);
2305
      }
2306
 
2307
  gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
2308
  QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
2309
 
2310
  gcc_assert (INSN_TICK (insn) >= MIN_TICK);
2311
  if (INSN_TICK (insn) > clock_var)
2312
    /* INSN has been prematurely moved from the queue to the ready list.
2313
       This is possible only if following flag is set.  */
2314
    gcc_assert (flag_sched_stalled_insns);
2315
 
2316
  /* ??? Probably, if INSN is scheduled prematurely, we should leave
2317
     INSN_TICK untouched.  This is a machine-dependent issue, actually.  */
2318
  INSN_TICK (insn) = clock_var;
2319
 
2320
  check_clobbered_conditions (insn);
2321
 
2322
  /* Update dependent instructions.  */
2323
  for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
2324
       sd_iterator_cond (&sd_it, &dep);)
2325
    {
2326
      rtx next = DEP_CON (dep);
2327
      bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
2328
 
2329
      /* Resolve the dependence between INSN and NEXT.
2330
         sd_resolve_dep () moves current dep to another list thus
2331
         advancing the iterator.  */
2332
      sd_resolve_dep (sd_it);
2333
 
2334
      if (cancelled)
2335
        {
2336
          if (QUEUE_INDEX (next) != QUEUE_SCHEDULED)
2337
            {
2338
              int tick = INSN_TICK (next);
2339
              gcc_assert (ORIG_PAT (next) != NULL_RTX);
2340
              haifa_change_pattern (next, ORIG_PAT (next));
2341
              INSN_TICK (next) = tick;
2342
              if (sd_lists_empty_p (next, SD_LIST_BACK))
2343
                TODO_SPEC (next) = 0;
2344
              else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
2345
                TODO_SPEC (next) = HARD_DEP;
2346
            }
2347
          continue;
2348
        }
2349
 
2350
      /* Don't bother trying to mark next as ready if insn is a debug
2351
         insn.  If insn is the last hard dependency, it will have
2352
         already been discounted.  */
2353
      if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
2354
        continue;
2355
 
2356
      if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
2357
        {
2358
          int effective_cost;
2359
 
2360
          effective_cost = try_ready (next);
2361
 
2362
          if (effective_cost >= 0
2363
              && SCHED_GROUP_P (next)
2364
              && advance < effective_cost)
2365
            advance = effective_cost;
2366
        }
2367
      else
2368
        /* Check always has only one forward dependence (to the first insn in
2369
           the recovery block), therefore, this will be executed only once.  */
2370
        {
2371
          gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
2372
          fix_recovery_deps (RECOVERY_BLOCK (insn));
2373
        }
2374
    }
2375
 
2376
  /* Annotate the instruction with issue information -- TImode
2377
     indicates that the instruction is expected not to be able
2378
     to issue on the same cycle as the previous insn.  A machine
2379
     may use this information to decide how the instruction should
2380
     be aligned.  */
2381
  if (issue_rate > 1
2382
      && GET_CODE (PATTERN (insn)) != USE
2383
      && GET_CODE (PATTERN (insn)) != CLOBBER
2384
      && !DEBUG_INSN_P (insn))
2385
    {
2386
      if (reload_completed)
2387
        PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
2388
      last_clock_var = clock_var;
2389
    }
2390
 
2391
  return advance;
2392
}
2393
 
2394
/* Functions for handling of notes.  */
2395
 
2396
/* Add note list that ends on FROM_END to the end of TO_ENDP.  */
2397
void
2398
concat_note_lists (rtx from_end, rtx *to_endp)
2399
{
2400
  rtx from_start;
2401
 
2402
  /* It's easy when have nothing to concat.  */
2403
  if (from_end == NULL)
2404
    return;
2405
 
2406
  /* It's also easy when destination is empty.  */
2407
  if (*to_endp == NULL)
2408
    {
2409
      *to_endp = from_end;
2410
      return;
2411
    }
2412
 
2413
  from_start = from_end;
2414
  while (PREV_INSN (from_start) != NULL)
2415
    from_start = PREV_INSN (from_start);
2416
 
2417
  PREV_INSN (from_start) = *to_endp;
2418
  NEXT_INSN (*to_endp) = from_start;
2419
  *to_endp = from_end;
2420
}
2421
 
2422
/* Delete notes between HEAD and TAIL and put them in the chain
2423
   of notes ended by NOTE_LIST.  */
2424
void
2425
remove_notes (rtx head, rtx tail)
2426
{
2427
  rtx next_tail, insn, next;
2428
 
2429
  note_list = 0;
2430
  if (head == tail && !INSN_P (head))
2431
    return;
2432
 
2433
  next_tail = NEXT_INSN (tail);
2434
  for (insn = head; insn != next_tail; insn = next)
2435
    {
2436
      next = NEXT_INSN (insn);
2437
      if (!NOTE_P (insn))
2438
        continue;
2439
 
2440
      switch (NOTE_KIND (insn))
2441
        {
2442
        case NOTE_INSN_BASIC_BLOCK:
2443
          continue;
2444
 
2445
        case NOTE_INSN_EPILOGUE_BEG:
2446
          if (insn != tail)
2447
            {
2448
              remove_insn (insn);
2449
              add_reg_note (next, REG_SAVE_NOTE,
2450
                            GEN_INT (NOTE_INSN_EPILOGUE_BEG));
2451
              break;
2452
            }
2453
          /* FALLTHRU */
2454
 
2455
        default:
2456
          remove_insn (insn);
2457
 
2458
          /* Add the note to list that ends at NOTE_LIST.  */
2459
          PREV_INSN (insn) = note_list;
2460
          NEXT_INSN (insn) = NULL_RTX;
2461
          if (note_list)
2462
            NEXT_INSN (note_list) = insn;
2463
          note_list = insn;
2464
          break;
2465
        }
2466
 
2467
      gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
2468
    }
2469
}
2470
 
2471
/* A structure to record enough data to allow us to backtrack the scheduler to
2472
   a previous state.  */
2473
struct haifa_saved_data
2474
{
2475
  /* Next entry on the list.  */
2476
  struct haifa_saved_data *next;
2477
 
2478
  /* Backtracking is associated with scheduling insns that have delay slots.
2479
     DELAY_PAIR points to the structure that contains the insns involved, and
2480
     the number of cycles between them.  */
2481
  struct delay_pair *delay_pair;
2482
 
2483
  /* Data used by the frontend (e.g. sched-ebb or sched-rgn).  */
2484
  void *fe_saved_data;
2485
  /* Data used by the backend.  */
2486
  void *be_saved_data;
2487
 
2488
  /* Copies of global state.  */
2489
  int clock_var, last_clock_var;
2490
  struct ready_list ready;
2491
  state_t curr_state;
2492
 
2493
  rtx last_scheduled_insn;
2494
  rtx last_nondebug_scheduled_insn;
2495
  int cycle_issued_insns;
2496
 
2497
  /* Copies of state used in the inner loop of schedule_block.  */
2498
  struct sched_block_state sched_block;
2499
 
2500
  /* We don't need to save q_ptr, as its value is arbitrary and we can set it
2501
     to 0 when restoring.  */
2502
  int q_size;
2503
  rtx *insn_queue;
2504
};
2505
 
2506
/* A record, in reverse order, of all scheduled insns which have delay slots
2507
   and may require backtracking.  */
2508
static struct haifa_saved_data *backtrack_queue;
2509
 
2510
/* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
2511
   to SET_P.  */
2512
static void
2513
mark_backtrack_feeds (rtx insn, int set_p)
2514
{
2515
  sd_iterator_def sd_it;
2516
  dep_t dep;
2517
  FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
2518
    {
2519
      FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
2520
    }
2521
}
2522
 
2523
/* Save the current scheduler state so that we can backtrack to it
2524
   later if necessary.  PAIR gives the insns that make it necessary to
2525
   save this point.  SCHED_BLOCK is the local state of schedule_block
2526
   that need to be saved.  */
2527
static void
2528
save_backtrack_point (struct delay_pair *pair,
2529
                      struct sched_block_state sched_block)
2530
{
2531
  int i;
2532
  struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
2533
 
2534
  save->curr_state = xmalloc (dfa_state_size);
2535
  memcpy (save->curr_state, curr_state, dfa_state_size);
2536
 
2537
  save->ready.first = ready.first;
2538
  save->ready.n_ready = ready.n_ready;
2539
  save->ready.n_debug = ready.n_debug;
2540
  save->ready.veclen = ready.veclen;
2541
  save->ready.vec = XNEWVEC (rtx, ready.veclen);
2542
  memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
2543
 
2544
  save->insn_queue = XNEWVEC (rtx, max_insn_queue_index + 1);
2545
  save->q_size = q_size;
2546
  for (i = 0; i <= max_insn_queue_index; i++)
2547
    {
2548
      int q = NEXT_Q_AFTER (q_ptr, i);
2549
      save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
2550
    }
2551
 
2552
  save->clock_var = clock_var;
2553
  save->last_clock_var = last_clock_var;
2554
  save->cycle_issued_insns = cycle_issued_insns;
2555
  save->last_scheduled_insn = last_scheduled_insn;
2556
  save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
2557
 
2558
  save->sched_block = sched_block;
2559
 
2560
  if (current_sched_info->save_state)
2561
    save->fe_saved_data = (*current_sched_info->save_state) ();
2562
 
2563
  if (targetm.sched.alloc_sched_context)
2564
    {
2565
      save->be_saved_data = targetm.sched.alloc_sched_context ();
2566
      targetm.sched.init_sched_context (save->be_saved_data, false);
2567
    }
2568
  else
2569
    save->be_saved_data = NULL;
2570
 
2571
  save->delay_pair = pair;
2572
 
2573
  save->next = backtrack_queue;
2574
  backtrack_queue = save;
2575
 
2576
  while (pair)
2577
    {
2578
      mark_backtrack_feeds (pair->i2, 1);
2579
      INSN_TICK (pair->i2) = INVALID_TICK;
2580
      INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
2581
      SHADOW_P (pair->i2) = pair->stages == 0;
2582
      pair = pair->next_same_i1;
2583
    }
2584
}
2585
 
2586
/* Walk the ready list and all queues. If any insns have unresolved backwards
2587
   dependencies, these must be cancelled deps, broken by predication.  Set or
2588
   clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS.  */
2589
 
2590
static void
2591
toggle_cancelled_flags (bool set)
2592
{
2593
  int i;
2594
  sd_iterator_def sd_it;
2595
  dep_t dep;
2596
 
2597
  if (ready.n_ready > 0)
2598
    {
2599
      rtx *first = ready_lastpos (&ready);
2600
      for (i = 0; i < ready.n_ready; i++)
2601
        FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
2602
          if (!DEBUG_INSN_P (DEP_PRO (dep)))
2603
            {
2604
              if (set)
2605
                DEP_STATUS (dep) |= DEP_CANCELLED;
2606
              else
2607
                DEP_STATUS (dep) &= ~DEP_CANCELLED;
2608
            }
2609
    }
2610
  for (i = 0; i <= max_insn_queue_index; i++)
2611
    {
2612
      int q = NEXT_Q_AFTER (q_ptr, i);
2613
      rtx link;
2614
      for (link = insn_queue[q]; link; link = XEXP (link, 1))
2615
        {
2616
          rtx insn = XEXP (link, 0);
2617
          FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
2618
            if (!DEBUG_INSN_P (DEP_PRO (dep)))
2619
              {
2620
                if (set)
2621
                  DEP_STATUS (dep) |= DEP_CANCELLED;
2622
                else
2623
                  DEP_STATUS (dep) &= ~DEP_CANCELLED;
2624
              }
2625
        }
2626
    }
2627
}
2628
 
2629
/* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
2630
   Restore their dependencies to an unresolved state, and mark them as
2631
   queued nowhere.  */
2632
 
2633
static void
2634
unschedule_insns_until (rtx insn)
2635
{
2636
  VEC (rtx, heap) *recompute_vec;
2637
 
2638
  recompute_vec = VEC_alloc (rtx, heap, 0);
2639
 
2640
  /* Make two passes over the insns to be unscheduled.  First, we clear out
2641
     dependencies and other trivial bookkeeping.  */
2642
  for (;;)
2643
    {
2644
      rtx last;
2645
      sd_iterator_def sd_it;
2646
      dep_t dep;
2647
 
2648
      last = VEC_pop (rtx, scheduled_insns);
2649
 
2650
      /* This will be changed by restore_backtrack_point if the insn is in
2651
         any queue.  */
2652
      QUEUE_INDEX (last) = QUEUE_NOWHERE;
2653
      if (last != insn)
2654
        INSN_TICK (last) = INVALID_TICK;
2655
 
2656
      if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
2657
        modulo_insns_scheduled--;
2658
 
2659
      for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
2660
           sd_iterator_cond (&sd_it, &dep);)
2661
        {
2662
          rtx con = DEP_CON (dep);
2663
          sd_unresolve_dep (sd_it);
2664
          if (!MUST_RECOMPUTE_SPEC_P (con))
2665
            {
2666
              MUST_RECOMPUTE_SPEC_P (con) = 1;
2667
              VEC_safe_push (rtx, heap, recompute_vec, con);
2668
            }
2669
        }
2670
 
2671
      if (last == insn)
2672
        break;
2673
    }
2674
 
2675
  /* A second pass, to update ready and speculation status for insns
2676
     depending on the unscheduled ones.  The first pass must have
2677
     popped the scheduled_insns vector up to the point where we
2678
     restart scheduling, as recompute_todo_spec requires it to be
2679
     up-to-date.  */
2680
  while (!VEC_empty (rtx, recompute_vec))
2681
    {
2682
      rtx con;
2683
 
2684
      con = VEC_pop (rtx, recompute_vec);
2685
      MUST_RECOMPUTE_SPEC_P (con) = 0;
2686
      if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
2687
        {
2688
          TODO_SPEC (con) = HARD_DEP;
2689
          INSN_TICK (con) = INVALID_TICK;
2690
          if (PREDICATED_PAT (con) != NULL_RTX)
2691
            haifa_change_pattern (con, ORIG_PAT (con));
2692
        }
2693
      else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
2694
        TODO_SPEC (con) = recompute_todo_spec (con);
2695
    }
2696
  VEC_free (rtx, heap, recompute_vec);
2697
}
2698
 
2699
/* Restore scheduler state from the topmost entry on the backtracking queue.
2700
   PSCHED_BLOCK_P points to the local data of schedule_block that we must
2701
   overwrite with the saved data.
2702
   The caller must already have called unschedule_insns_until.  */
2703
 
2704
static void
2705
restore_last_backtrack_point (struct sched_block_state *psched_block)
2706
{
2707
  rtx link;
2708
  int i;
2709
  struct haifa_saved_data *save = backtrack_queue;
2710
 
2711
  backtrack_queue = save->next;
2712
 
2713
  if (current_sched_info->restore_state)
2714
    (*current_sched_info->restore_state) (save->fe_saved_data);
2715
 
2716
  if (targetm.sched.alloc_sched_context)
2717
    {
2718
      targetm.sched.set_sched_context (save->be_saved_data);
2719
      targetm.sched.free_sched_context (save->be_saved_data);
2720
    }
2721
 
2722
  /* Clear the QUEUE_INDEX of everything in the ready list or one
2723
     of the queues.  */
2724
  if (ready.n_ready > 0)
2725
    {
2726
      rtx *first = ready_lastpos (&ready);
2727
      for (i = 0; i < ready.n_ready; i++)
2728
        {
2729
          rtx insn = first[i];
2730
          QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2731
          INSN_TICK (insn) = INVALID_TICK;
2732
        }
2733
    }
2734
  for (i = 0; i <= max_insn_queue_index; i++)
2735
    {
2736
      int q = NEXT_Q_AFTER (q_ptr, i);
2737
 
2738
      for (link = insn_queue[q]; link; link = XEXP (link, 1))
2739
        {
2740
          rtx x = XEXP (link, 0);
2741
          QUEUE_INDEX (x) = QUEUE_NOWHERE;
2742
          INSN_TICK (x) = INVALID_TICK;
2743
        }
2744
      free_INSN_LIST_list (&insn_queue[q]);
2745
    }
2746
 
2747
  free (ready.vec);
2748
  ready = save->ready;
2749
 
2750
  if (ready.n_ready > 0)
2751
    {
2752
      rtx *first = ready_lastpos (&ready);
2753
      for (i = 0; i < ready.n_ready; i++)
2754
        {
2755
          rtx insn = first[i];
2756
          QUEUE_INDEX (insn) = QUEUE_READY;
2757
          TODO_SPEC (insn) = recompute_todo_spec (insn);
2758
          INSN_TICK (insn) = save->clock_var;
2759
        }
2760
    }
2761
 
2762
  q_ptr = 0;
2763
  q_size = save->q_size;
2764
  for (i = 0; i <= max_insn_queue_index; i++)
2765
    {
2766
      int q = NEXT_Q_AFTER (q_ptr, i);
2767
 
2768
      insn_queue[q] = save->insn_queue[q];
2769
 
2770
      for (link = insn_queue[q]; link; link = XEXP (link, 1))
2771
        {
2772
          rtx x = XEXP (link, 0);
2773
          QUEUE_INDEX (x) = i;
2774
          TODO_SPEC (x) = recompute_todo_spec (x);
2775
          INSN_TICK (x) = save->clock_var + i;
2776
        }
2777
    }
2778
  free (save->insn_queue);
2779
 
2780
  toggle_cancelled_flags (true);
2781
 
2782
  clock_var = save->clock_var;
2783
  last_clock_var = save->last_clock_var;
2784
  cycle_issued_insns = save->cycle_issued_insns;
2785
  last_scheduled_insn = save->last_scheduled_insn;
2786
  last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
2787
 
2788
  *psched_block = save->sched_block;
2789
 
2790
  memcpy (curr_state, save->curr_state, dfa_state_size);
2791
  free (save->curr_state);
2792
 
2793
  mark_backtrack_feeds (save->delay_pair->i2, 0);
2794
 
2795
  free (save);
2796
 
2797
  for (save = backtrack_queue; save; save = save->next)
2798
    {
2799
      mark_backtrack_feeds (save->delay_pair->i2, 1);
2800
    }
2801
}
2802
 
2803
/* Discard all data associated with the topmost entry in the backtrack
2804
   queue.  If RESET_TICK is false, we just want to free the data.  If true,
2805
   we are doing this because we discovered a reason to backtrack.  In the
2806
   latter case, also reset the INSN_TICK for the shadow insn.  */
2807
static void
2808
free_topmost_backtrack_point (bool reset_tick)
2809
{
2810
  struct haifa_saved_data *save = backtrack_queue;
2811
  int i;
2812
 
2813
  backtrack_queue = save->next;
2814
 
2815
  if (reset_tick)
2816
    {
2817
      struct delay_pair *pair = save->delay_pair;
2818
      while (pair)
2819
        {
2820
          INSN_TICK (pair->i2) = INVALID_TICK;
2821
          INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
2822
          pair = pair->next_same_i1;
2823
        }
2824
    }
2825
  if (targetm.sched.free_sched_context)
2826
    targetm.sched.free_sched_context (save->be_saved_data);
2827
  if (current_sched_info->restore_state)
2828
    free (save->fe_saved_data);
2829
  for (i = 0; i <= max_insn_queue_index; i++)
2830
    free_INSN_LIST_list (&save->insn_queue[i]);
2831
  free (save->insn_queue);
2832
  free (save->curr_state);
2833
  free (save->ready.vec);
2834
  free (save);
2835
}
2836
 
2837
/* Free the entire backtrack queue.  */
2838
static void
2839
free_backtrack_queue (void)
2840
{
2841
  while (backtrack_queue)
2842
    free_topmost_backtrack_point (false);
2843
}
2844
 
2845
/* Compute INSN_TICK_ESTIMATE for INSN.  PROCESSED is a bitmap of
2846
   instructions we've previously encountered, a set bit prevents
2847
   recursion.  BUDGET is a limit on how far ahead we look, it is
2848
   reduced on recursive calls.  Return true if we produced a good
2849
   estimate, or false if we exceeded the budget.  */
2850
static bool
2851
estimate_insn_tick (bitmap processed, rtx insn, int budget)
2852
{
2853
  sd_iterator_def sd_it;
2854
  dep_t dep;
2855
  int earliest = INSN_TICK (insn);
2856
 
2857
  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
2858
    {
2859
      rtx pro = DEP_PRO (dep);
2860
      int t;
2861
 
2862
      if (DEP_STATUS (dep) & DEP_CANCELLED)
2863
        continue;
2864
 
2865
      if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
2866
        gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
2867
      else
2868
        {
2869
          int cost = dep_cost (dep);
2870
          if (cost >= budget)
2871
            return false;
2872
          if (!bitmap_bit_p (processed, INSN_LUID (pro)))
2873
            {
2874
              if (!estimate_insn_tick (processed, pro, budget - cost))
2875
                return false;
2876
            }
2877
          gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
2878
          t = INSN_TICK_ESTIMATE (pro) + cost;
2879
          if (earliest == INVALID_TICK || t > earliest)
2880
            earliest = t;
2881
        }
2882
    }
2883
  bitmap_set_bit (processed, INSN_LUID (insn));
2884
  INSN_TICK_ESTIMATE (insn) = earliest;
2885
  return true;
2886
}
2887
 
2888
/* Examine the pair of insns in P, and estimate (optimistically, assuming
2889
   infinite resources) the cycle in which the delayed shadow can be issued.
2890
   Return the number of cycles that must pass before the real insn can be
2891
   issued in order to meet this constraint.  */
2892
static int
2893
estimate_shadow_tick (struct delay_pair *p)
2894
{
2895
  bitmap_head processed;
2896
  int t;
2897
  bool cutoff;
2898
  bitmap_initialize (&processed, 0);
2899
 
2900
  cutoff = !estimate_insn_tick (&processed, p->i2,
2901
                                max_insn_queue_index + pair_delay (p));
2902
  bitmap_clear (&processed);
2903
  if (cutoff)
2904
    return max_insn_queue_index;
2905
  t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
2906
  if (t > 0)
2907
    return t;
2908
  return 0;
2909
}
2910
 
2911
/* If INSN has no unresolved backwards dependencies, add it to the schedule and
2912
   recursively resolve all its forward dependencies.  */
2913
static void
2914
resolve_dependencies (rtx insn)
2915
{
2916
  sd_iterator_def sd_it;
2917
  dep_t dep;
2918
 
2919
  /* Don't use sd_lists_empty_p; it ignores debug insns.  */
2920
  if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
2921
      || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
2922
    return;
2923
 
2924
  if (sched_verbose >= 4)
2925
    fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
2926
 
2927
  if (QUEUE_INDEX (insn) >= 0)
2928
    queue_remove (insn);
2929
 
2930
  VEC_safe_push (rtx, heap, scheduled_insns, insn);
2931
 
2932
  /* Update dependent instructions.  */
2933
  for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
2934
       sd_iterator_cond (&sd_it, &dep);)
2935
    {
2936
      rtx next = DEP_CON (dep);
2937
 
2938
      if (sched_verbose >= 4)
2939
        fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
2940
                 INSN_UID (next));
2941
 
2942
      /* Resolve the dependence between INSN and NEXT.
2943
         sd_resolve_dep () moves current dep to another list thus
2944
         advancing the iterator.  */
2945
      sd_resolve_dep (sd_it);
2946
 
2947
      if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
2948
        {
2949
          resolve_dependencies (next);
2950
        }
2951
      else
2952
        /* Check always has only one forward dependence (to the first insn in
2953
           the recovery block), therefore, this will be executed only once.  */
2954
        {
2955
          gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
2956
        }
2957
    }
2958
}
2959
 
2960
 
2961
/* Return the head and tail pointers of ebb starting at BEG and ending
2962
   at END.  */
2963
void
2964
get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
2965
{
2966
  rtx beg_head = BB_HEAD (beg);
2967
  rtx beg_tail = BB_END (beg);
2968
  rtx end_head = BB_HEAD (end);
2969
  rtx end_tail = BB_END (end);
2970
 
2971
  /* Don't include any notes or labels at the beginning of the BEG
2972
     basic block, or notes at the end of the END basic blocks.  */
2973
 
2974
  if (LABEL_P (beg_head))
2975
    beg_head = NEXT_INSN (beg_head);
2976
 
2977
  while (beg_head != beg_tail)
2978
    if (NOTE_P (beg_head))
2979
      beg_head = NEXT_INSN (beg_head);
2980
    else if (DEBUG_INSN_P (beg_head))
2981
      {
2982
        rtx note, next;
2983
 
2984
        for (note = NEXT_INSN (beg_head);
2985
             note != beg_tail;
2986
             note = next)
2987
          {
2988
            next = NEXT_INSN (note);
2989
            if (NOTE_P (note))
2990
              {
2991
                if (sched_verbose >= 9)
2992
                  fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
2993
 
2994
                reorder_insns_nobb (note, note, PREV_INSN (beg_head));
2995
 
2996
                if (BLOCK_FOR_INSN (note) != beg)
2997
                  df_insn_change_bb (note, beg);
2998
              }
2999
            else if (!DEBUG_INSN_P (note))
3000
              break;
3001
          }
3002
 
3003
        break;
3004
      }
3005
    else
3006
      break;
3007
 
3008
  *headp = beg_head;
3009
 
3010
  if (beg == end)
3011
    end_head = beg_head;
3012
  else if (LABEL_P (end_head))
3013
    end_head = NEXT_INSN (end_head);
3014
 
3015
  while (end_head != end_tail)
3016
    if (NOTE_P (end_tail))
3017
      end_tail = PREV_INSN (end_tail);
3018
    else if (DEBUG_INSN_P (end_tail))
3019
      {
3020
        rtx note, prev;
3021
 
3022
        for (note = PREV_INSN (end_tail);
3023
             note != end_head;
3024
             note = prev)
3025
          {
3026
            prev = PREV_INSN (note);
3027
            if (NOTE_P (note))
3028
              {
3029
                if (sched_verbose >= 9)
3030
                  fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
3031
 
3032
                reorder_insns_nobb (note, note, end_tail);
3033
 
3034
                if (end_tail == BB_END (end))
3035
                  BB_END (end) = note;
3036
 
3037
                if (BLOCK_FOR_INSN (note) != end)
3038
                  df_insn_change_bb (note, end);
3039
              }
3040
            else if (!DEBUG_INSN_P (note))
3041
              break;
3042
          }
3043
 
3044
        break;
3045
      }
3046
    else
3047
      break;
3048
 
3049
  *tailp = end_tail;
3050
}
3051
 
3052
/* Return nonzero if there are no real insns in the range [ HEAD, TAIL ].  */
3053
 
3054
int
3055
no_real_insns_p (const_rtx head, const_rtx tail)
3056
{
3057
  while (head != NEXT_INSN (tail))
3058
    {
3059
      if (!NOTE_P (head) && !LABEL_P (head))
3060
        return 0;
3061
      head = NEXT_INSN (head);
3062
    }
3063
  return 1;
3064
}
3065
 
3066
/* Restore-other-notes: NOTE_LIST is the end of a chain of notes
3067
   previously found among the insns.  Insert them just before HEAD.  */
3068
rtx
3069
restore_other_notes (rtx head, basic_block head_bb)
3070
{
3071
  if (note_list != 0)
3072
    {
3073
      rtx note_head = note_list;
3074
 
3075
      if (head)
3076
        head_bb = BLOCK_FOR_INSN (head);
3077
      else
3078
        head = NEXT_INSN (bb_note (head_bb));
3079
 
3080
      while (PREV_INSN (note_head))
3081
        {
3082
          set_block_for_insn (note_head, head_bb);
3083
          note_head = PREV_INSN (note_head);
3084
        }
3085
      /* In the above cycle we've missed this note.  */
3086
      set_block_for_insn (note_head, head_bb);
3087
 
3088
      PREV_INSN (note_head) = PREV_INSN (head);
3089
      NEXT_INSN (PREV_INSN (head)) = note_head;
3090
      PREV_INSN (head) = note_list;
3091
      NEXT_INSN (note_list) = head;
3092
 
3093
      if (BLOCK_FOR_INSN (head) != head_bb)
3094
        BB_END (head_bb) = note_list;
3095
 
3096
      head = note_head;
3097
    }
3098
 
3099
  return head;
3100
}
3101
 
3102
/* Move insns that became ready to fire from queue to ready list.  */
3103
 
3104
static void
3105
queue_to_ready (struct ready_list *ready)
3106
{
3107
  rtx insn;
3108
  rtx link;
3109
  rtx skip_insn;
3110
 
3111
  q_ptr = NEXT_Q (q_ptr);
3112
 
3113
  if (dbg_cnt (sched_insn) == false)
3114
    {
3115
      /* If debug counter is activated do not requeue the first
3116
         nonscheduled insn.  */
3117
      skip_insn = nonscheduled_insns_begin;
3118
      do
3119
        {
3120
          skip_insn = next_nonnote_nondebug_insn (skip_insn);
3121
        }
3122
      while (QUEUE_INDEX (skip_insn) == QUEUE_SCHEDULED);
3123
    }
3124
  else
3125
    skip_insn = NULL_RTX;
3126
 
3127
  /* Add all pending insns that can be scheduled without stalls to the
3128
     ready list.  */
3129
  for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
3130
    {
3131
      insn = XEXP (link, 0);
3132
      q_size -= 1;
3133
 
3134
      if (sched_verbose >= 2)
3135
        fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
3136
                 (*current_sched_info->print_insn) (insn, 0));
3137
 
3138
      /* If the ready list is full, delay the insn for 1 cycle.
3139
         See the comment in schedule_block for the rationale.  */
3140
      if (!reload_completed
3141
          && ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
3142
          && !SCHED_GROUP_P (insn)
3143
          && insn != skip_insn)
3144
        queue_insn (insn, 1, "ready full");
3145
      else
3146
        {
3147
          ready_add (ready, insn, false);
3148
          if (sched_verbose >= 2)
3149
            fprintf (sched_dump, "moving to ready without stalls\n");
3150
        }
3151
    }
3152
  free_INSN_LIST_list (&insn_queue[q_ptr]);
3153
 
3154
  /* If there are no ready insns, stall until one is ready and add all
3155
     of the pending insns at that point to the ready list.  */
3156
  if (ready->n_ready == 0)
3157
    {
3158
      int stalls;
3159
 
3160
      for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
3161
        {
3162
          if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
3163
            {
3164
              for (; link; link = XEXP (link, 1))
3165
                {
3166
                  insn = XEXP (link, 0);
3167
                  q_size -= 1;
3168
 
3169
                  if (sched_verbose >= 2)
3170
                    fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
3171
                             (*current_sched_info->print_insn) (insn, 0));
3172
 
3173
                  ready_add (ready, insn, false);
3174
                  if (sched_verbose >= 2)
3175
                    fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
3176
                }
3177
              free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
3178
 
3179
              advance_one_cycle ();
3180
 
3181
              break;
3182
            }
3183
 
3184
          advance_one_cycle ();
3185
        }
3186
 
3187
      q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
3188
      clock_var += stalls;
3189
    }
3190
}
3191
 
3192
/* Used by early_queue_to_ready.  Determines whether it is "ok" to
3193
   prematurely move INSN from the queue to the ready list.  Currently,
3194
   if a target defines the hook 'is_costly_dependence', this function
3195
   uses the hook to check whether there exist any dependences which are
3196
   considered costly by the target, between INSN and other insns that
3197
   have already been scheduled.  Dependences are checked up to Y cycles
3198
   back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
3199
   controlling this value.
3200
   (Other considerations could be taken into account instead (or in
3201
   addition) depending on user flags and target hooks.  */
3202
 
3203
static bool
3204
ok_for_early_queue_removal (rtx insn)
3205
{
3206
  if (targetm.sched.is_costly_dependence)
3207
    {
3208
      rtx prev_insn;
3209
      int n_cycles;
3210
      int i = VEC_length (rtx, scheduled_insns);
3211
      for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
3212
        {
3213
          while (i-- > 0)
3214
            {
3215
              int cost;
3216
 
3217
              prev_insn = VEC_index (rtx, scheduled_insns, i);
3218
 
3219
              if (!NOTE_P (prev_insn))
3220
                {
3221
                  dep_t dep;
3222
 
3223
                  dep = sd_find_dep_between (prev_insn, insn, true);
3224
 
3225
                  if (dep != NULL)
3226
                    {
3227
                      cost = dep_cost (dep);
3228
 
3229
                      if (targetm.sched.is_costly_dependence (dep, cost,
3230
                                flag_sched_stalled_insns_dep - n_cycles))
3231
                        return false;
3232
                    }
3233
                }
3234
 
3235
              if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
3236
                break;
3237
            }
3238
 
3239
          if (i == 0)
3240
            break;
3241
        }
3242
    }
3243
 
3244
  return true;
3245
}
3246
 
3247
 
3248
/* Remove insns from the queue, before they become "ready" with respect
3249
   to FU latency considerations.  */
3250
 
3251
static int
3252
early_queue_to_ready (state_t state, struct ready_list *ready)
3253
{
3254
  rtx insn;
3255
  rtx link;
3256
  rtx next_link;
3257
  rtx prev_link;
3258
  bool move_to_ready;
3259
  int cost;
3260
  state_t temp_state = alloca (dfa_state_size);
3261
  int stalls;
3262
  int insns_removed = 0;
3263
 
3264
  /*
3265
     Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
3266
     function:
3267
 
3268
     X == 0: There is no limit on how many queued insns can be removed
3269
             prematurely.  (flag_sched_stalled_insns = -1).
3270
 
3271
     X >= 1: Only X queued insns can be removed prematurely in each
3272
             invocation.  (flag_sched_stalled_insns = X).
3273
 
3274
     Otherwise: Early queue removal is disabled.
3275
         (flag_sched_stalled_insns = 0)
3276
  */
3277
 
3278
  if (! flag_sched_stalled_insns)
3279
    return 0;
3280
 
3281
  for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
3282
    {
3283
      if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
3284
        {
3285
          if (sched_verbose > 6)
3286
            fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
3287
 
3288
          prev_link = 0;
3289
          while (link)
3290
            {
3291
              next_link = XEXP (link, 1);
3292
              insn = XEXP (link, 0);
3293
              if (insn && sched_verbose > 6)
3294
                print_rtl_single (sched_dump, insn);
3295
 
3296
              memcpy (temp_state, state, dfa_state_size);
3297
              if (recog_memoized (insn) < 0)
3298
                /* non-negative to indicate that it's not ready
3299
                   to avoid infinite Q->R->Q->R... */
3300
                cost = 0;
3301
              else
3302
                cost = state_transition (temp_state, insn);
3303
 
3304
              if (sched_verbose >= 6)
3305
                fprintf (sched_dump, "transition cost = %d\n", cost);
3306
 
3307
              move_to_ready = false;
3308
              if (cost < 0)
3309
                {
3310
                  move_to_ready = ok_for_early_queue_removal (insn);
3311
                  if (move_to_ready == true)
3312
                    {
3313
                      /* move from Q to R */
3314
                      q_size -= 1;
3315
                      ready_add (ready, insn, false);
3316
 
3317
                      if (prev_link)
3318
                        XEXP (prev_link, 1) = next_link;
3319
                      else
3320
                        insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
3321
 
3322
                      free_INSN_LIST_node (link);
3323
 
3324
                      if (sched_verbose >= 2)
3325
                        fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
3326
                                 (*current_sched_info->print_insn) (insn, 0));
3327
 
3328
                      insns_removed++;
3329
                      if (insns_removed == flag_sched_stalled_insns)
3330
                        /* Remove no more than flag_sched_stalled_insns insns
3331
                           from Q at a time.  */
3332
                        return insns_removed;
3333
                    }
3334
                }
3335
 
3336
              if (move_to_ready == false)
3337
                prev_link = link;
3338
 
3339
              link = next_link;
3340
            } /* while link */
3341
        } /* if link */
3342
 
3343
    } /* for stalls.. */
3344
 
3345
  return insns_removed;
3346
}
3347
 
3348
 
3349
/* Print the ready list for debugging purposes.  Callable from debugger.  */
3350
 
3351
static void
3352
debug_ready_list (struct ready_list *ready)
3353
{
3354
  rtx *p;
3355
  int i;
3356
 
3357
  if (ready->n_ready == 0)
3358
    {
3359
      fprintf (sched_dump, "\n");
3360
      return;
3361
    }
3362
 
3363
  p = ready_lastpos (ready);
3364
  for (i = 0; i < ready->n_ready; i++)
3365
    {
3366
      fprintf (sched_dump, "  %s:%d",
3367
               (*current_sched_info->print_insn) (p[i], 0),
3368
               INSN_LUID (p[i]));
3369
      if (sched_pressure_p)
3370
        fprintf (sched_dump, "(cost=%d",
3371
                 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
3372
      if (INSN_TICK (p[i]) > clock_var)
3373
        fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
3374
      if (sched_pressure_p)
3375
        fprintf (sched_dump, ")");
3376
    }
3377
  fprintf (sched_dump, "\n");
3378
}
3379
 
3380
/* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
3381
   NOTEs.  This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
3382
   replaces the epilogue note in the correct basic block.  */
3383
void
3384
reemit_notes (rtx insn)
3385
{
3386
  rtx note, last = insn;
3387
 
3388
  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3389
    {
3390
      if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
3391
        {
3392
          enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
3393
 
3394
          last = emit_note_before (note_type, last);
3395
          remove_note (insn, note);
3396
        }
3397
    }
3398
}
3399
 
3400
/* Move INSN.  Reemit notes if needed.  Update CFG, if needed.  */
3401
static void
3402
move_insn (rtx insn, rtx last, rtx nt)
3403
{
3404
  if (PREV_INSN (insn) != last)
3405
    {
3406
      basic_block bb;
3407
      rtx note;
3408
      int jump_p = 0;
3409
 
3410
      bb = BLOCK_FOR_INSN (insn);
3411
 
3412
      /* BB_HEAD is either LABEL or NOTE.  */
3413
      gcc_assert (BB_HEAD (bb) != insn);
3414
 
3415
      if (BB_END (bb) == insn)
3416
        /* If this is last instruction in BB, move end marker one
3417
           instruction up.  */
3418
        {
3419
          /* Jumps are always placed at the end of basic block.  */
3420
          jump_p = control_flow_insn_p (insn);
3421
 
3422
          gcc_assert (!jump_p
3423
                      || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
3424
                          && IS_SPECULATION_BRANCHY_CHECK_P (insn))
3425
                      || (common_sched_info->sched_pass_id
3426
                          == SCHED_EBB_PASS));
3427
 
3428
          gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
3429
 
3430
          BB_END (bb) = PREV_INSN (insn);
3431
        }
3432
 
3433
      gcc_assert (BB_END (bb) != last);
3434
 
3435
      if (jump_p)
3436
        /* We move the block note along with jump.  */
3437
        {
3438
          gcc_assert (nt);
3439
 
3440
          note = NEXT_INSN (insn);
3441
          while (NOTE_NOT_BB_P (note) && note != nt)
3442
            note = NEXT_INSN (note);
3443
 
3444
          if (note != nt
3445
              && (LABEL_P (note)
3446
                  || BARRIER_P (note)))
3447
            note = NEXT_INSN (note);
3448
 
3449
          gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
3450
        }
3451
      else
3452
        note = insn;
3453
 
3454
      NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
3455
      PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
3456
 
3457
      NEXT_INSN (note) = NEXT_INSN (last);
3458
      PREV_INSN (NEXT_INSN (last)) = note;
3459
 
3460
      NEXT_INSN (last) = insn;
3461
      PREV_INSN (insn) = last;
3462
 
3463
      bb = BLOCK_FOR_INSN (last);
3464
 
3465
      if (jump_p)
3466
        {
3467
          fix_jump_move (insn);
3468
 
3469
          if (BLOCK_FOR_INSN (insn) != bb)
3470
            move_block_after_check (insn);
3471
 
3472
          gcc_assert (BB_END (bb) == last);
3473
        }
3474
 
3475
      df_insn_change_bb (insn, bb);
3476
 
3477
      /* Update BB_END, if needed.  */
3478
      if (BB_END (bb) == last)
3479
        BB_END (bb) = insn;
3480
    }
3481
 
3482
  SCHED_GROUP_P (insn) = 0;
3483
}
3484
 
3485
/* Return true if scheduling INSN will finish current clock cycle.  */
3486
static bool
3487
insn_finishes_cycle_p (rtx insn)
3488
{
3489
  if (SCHED_GROUP_P (insn))
3490
    /* After issuing INSN, rest of the sched_group will be forced to issue
3491
       in order.  Don't make any plans for the rest of cycle.  */
3492
    return true;
3493
 
3494
  /* Finishing the block will, apparently, finish the cycle.  */
3495
  if (current_sched_info->insn_finishes_block_p
3496
      && current_sched_info->insn_finishes_block_p (insn))
3497
    return true;
3498
 
3499
  return false;
3500
}
3501
 
3502
/* Define type for target data used in multipass scheduling.  */
3503
#ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
3504
# define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
3505
#endif
3506
typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
3507
 
3508
/* The following structure describe an entry of the stack of choices.  */
3509
struct choice_entry
3510
{
3511
  /* Ordinal number of the issued insn in the ready queue.  */
3512
  int index;
3513
  /* The number of the rest insns whose issues we should try.  */
3514
  int rest;
3515
  /* The number of issued essential insns.  */
3516
  int n;
3517
  /* State after issuing the insn.  */
3518
  state_t state;
3519
  /* Target-specific data.  */
3520
  first_cycle_multipass_data_t target_data;
3521
};
3522
 
3523
/* The following array is used to implement a stack of choices used in
3524
   function max_issue.  */
3525
static struct choice_entry *choice_stack;
3526
 
3527
/* This holds the value of the target dfa_lookahead hook.  */
3528
int dfa_lookahead;
3529
 
3530
/* The following variable value is maximal number of tries of issuing
3531
   insns for the first cycle multipass insn scheduling.  We define
3532
   this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE).  We would not
3533
   need this constraint if all real insns (with non-negative codes)
3534
   had reservations because in this case the algorithm complexity is
3535
   O(DFA_LOOKAHEAD**ISSUE_RATE).  Unfortunately, the dfa descriptions
3536
   might be incomplete and such insn might occur.  For such
3537
   descriptions, the complexity of algorithm (without the constraint)
3538
   could achieve DFA_LOOKAHEAD ** N , where N is the queue length.  */
3539
static int max_lookahead_tries;
3540
 
3541
/* The following value is value of hook
3542
   `first_cycle_multipass_dfa_lookahead' at the last call of
3543
   `max_issue'.  */
3544
static int cached_first_cycle_multipass_dfa_lookahead = 0;
3545
 
3546
/* The following value is value of `issue_rate' at the last call of
3547
   `sched_init'.  */
3548
static int cached_issue_rate = 0;
3549
 
3550
/* The following function returns maximal (or close to maximal) number
3551
   of insns which can be issued on the same cycle and one of which
3552
   insns is insns with the best rank (the first insn in READY).  To
3553
   make this function tries different samples of ready insns.  READY
3554
   is current queue `ready'.  Global array READY_TRY reflects what
3555
   insns are already issued in this try.  The function stops immediately,
3556
   if it reached the such a solution, that all instruction can be issued.
3557
   INDEX will contain index of the best insn in READY.  The following
3558
   function is used only for first cycle multipass scheduling.
3559
 
3560
   PRIVILEGED_N >= 0
3561
 
3562
   This function expects recognized insns only.  All USEs,
3563
   CLOBBERs, etc must be filtered elsewhere.  */
3564
int
3565
max_issue (struct ready_list *ready, int privileged_n, state_t state,
3566
           bool first_cycle_insn_p, int *index)
3567
{
3568
  int n, i, all, n_ready, best, delay, tries_num;
3569
  int more_issue;
3570
  struct choice_entry *top;
3571
  rtx insn;
3572
 
3573
  n_ready = ready->n_ready;
3574
  gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
3575
              && privileged_n <= n_ready);
3576
 
3577
  /* Init MAX_LOOKAHEAD_TRIES.  */
3578
  if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
3579
    {
3580
      cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
3581
      max_lookahead_tries = 100;
3582
      for (i = 0; i < issue_rate; i++)
3583
        max_lookahead_tries *= dfa_lookahead;
3584
    }
3585
 
3586
  /* Init max_points.  */
3587
  more_issue = issue_rate - cycle_issued_insns;
3588
  gcc_assert (more_issue >= 0);
3589
 
3590
  /* The number of the issued insns in the best solution.  */
3591
  best = 0;
3592
 
3593
  top = choice_stack;
3594
 
3595
  /* Set initial state of the search.  */
3596
  memcpy (top->state, state, dfa_state_size);
3597
  top->rest = dfa_lookahead;
3598
  top->n = 0;
3599
  if (targetm.sched.first_cycle_multipass_begin)
3600
    targetm.sched.first_cycle_multipass_begin (&top->target_data,
3601
                                               ready_try, n_ready,
3602
                                               first_cycle_insn_p);
3603
 
3604
  /* Count the number of the insns to search among.  */
3605
  for (all = i = 0; i < n_ready; i++)
3606
    if (!ready_try [i])
3607
      all++;
3608
 
3609
  /* I is the index of the insn to try next.  */
3610
  i = 0;
3611
  tries_num = 0;
3612
  for (;;)
3613
    {
3614
      if (/* If we've reached a dead end or searched enough of what we have
3615
             been asked...  */
3616
          top->rest == 0
3617
          /* or have nothing else to try...  */
3618
          || i >= n_ready
3619
          /* or should not issue more.  */
3620
          || top->n >= more_issue)
3621
        {
3622
          /* ??? (... || i == n_ready).  */
3623
          gcc_assert (i <= n_ready);
3624
 
3625
          /* We should not issue more than issue_rate instructions.  */
3626
          gcc_assert (top->n <= more_issue);
3627
 
3628
          if (top == choice_stack)
3629
            break;
3630
 
3631
          if (best < top - choice_stack)
3632
            {
3633
              if (privileged_n)
3634
                {
3635
                  n = privileged_n;
3636
                  /* Try to find issued privileged insn.  */
3637
                  while (n && !ready_try[--n])
3638
                    ;
3639
                }
3640
 
3641
              if (/* If all insns are equally good...  */
3642
                  privileged_n == 0
3643
                  /* Or a privileged insn will be issued.  */
3644
                  || ready_try[n])
3645
                /* Then we have a solution.  */
3646
                {
3647
                  best = top - choice_stack;
3648
                  /* This is the index of the insn issued first in this
3649
                     solution.  */
3650
                  *index = choice_stack [1].index;
3651
                  if (top->n == more_issue || best == all)
3652
                    break;
3653
                }
3654
            }
3655
 
3656
          /* Set ready-list index to point to the last insn
3657
             ('i++' below will advance it to the next insn).  */
3658
          i = top->index;
3659
 
3660
          /* Backtrack.  */
3661
          ready_try [i] = 0;
3662
 
3663
          if (targetm.sched.first_cycle_multipass_backtrack)
3664
            targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
3665
                                                           ready_try, n_ready);
3666
 
3667
          top--;
3668
          memcpy (state, top->state, dfa_state_size);
3669
        }
3670
      else if (!ready_try [i])
3671
        {
3672
          tries_num++;
3673
          if (tries_num > max_lookahead_tries)
3674
            break;
3675
          insn = ready_element (ready, i);
3676
          delay = state_transition (state, insn);
3677
          if (delay < 0)
3678
            {
3679
              if (state_dead_lock_p (state)
3680
                  || insn_finishes_cycle_p (insn))
3681
                /* We won't issue any more instructions in the next
3682
                   choice_state.  */
3683
                top->rest = 0;
3684
              else
3685
                top->rest--;
3686
 
3687
              n = top->n;
3688
              if (memcmp (top->state, state, dfa_state_size) != 0)
3689
                n++;
3690
 
3691
              /* Advance to the next choice_entry.  */
3692
              top++;
3693
              /* Initialize it.  */
3694
              top->rest = dfa_lookahead;
3695
              top->index = i;
3696
              top->n = n;
3697
              memcpy (top->state, state, dfa_state_size);
3698
              ready_try [i] = 1;
3699
 
3700
              if (targetm.sched.first_cycle_multipass_issue)
3701
                targetm.sched.first_cycle_multipass_issue (&top->target_data,
3702
                                                           ready_try, n_ready,
3703
                                                           insn,
3704
                                                           &((top - 1)
3705
                                                             ->target_data));
3706
 
3707
              i = -1;
3708
            }
3709
        }
3710
 
3711
      /* Increase ready-list index.  */
3712
      i++;
3713
    }
3714
 
3715
  if (targetm.sched.first_cycle_multipass_end)
3716
    targetm.sched.first_cycle_multipass_end (best != 0
3717
                                             ? &choice_stack[1].target_data
3718
                                             : NULL);
3719
 
3720
  /* Restore the original state of the DFA.  */
3721
  memcpy (state, choice_stack->state, dfa_state_size);
3722
 
3723
  return best;
3724
}
3725
 
3726
/* The following function chooses insn from READY and modifies
3727
   READY.  The following function is used only for first
3728
   cycle multipass scheduling.
3729
   Return:
3730
   -1 if cycle should be advanced,
3731
 
3732
   1 if choose_ready () should be restarted without advancing the cycle.  */
3733
static int
3734
choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
3735
              rtx *insn_ptr)
3736
{
3737
  int lookahead;
3738
 
3739
  if (dbg_cnt (sched_insn) == false)
3740
    {
3741
      rtx insn = nonscheduled_insns_begin;
3742
      do
3743
        {
3744
          insn = next_nonnote_insn (insn);
3745
        }
3746
      while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
3747
 
3748
      if (QUEUE_INDEX (insn) == QUEUE_READY)
3749
        /* INSN is in the ready_list.  */
3750
        {
3751
          nonscheduled_insns_begin = insn;
3752
          ready_remove_insn (insn);
3753
          *insn_ptr = insn;
3754
          return 0;
3755
        }
3756
 
3757
      /* INSN is in the queue.  Advance cycle to move it to the ready list.  */
3758
      return -1;
3759
    }
3760
 
3761
  lookahead = 0;
3762
 
3763
  if (targetm.sched.first_cycle_multipass_dfa_lookahead)
3764
    lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
3765
  if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
3766
      || DEBUG_INSN_P (ready_element (ready, 0)))
3767
    {
3768
      if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
3769
        *insn_ptr = ready_remove_first_dispatch (ready);
3770
      else
3771
        *insn_ptr = ready_remove_first (ready);
3772
 
3773
      return 0;
3774
    }
3775
  else
3776
    {
3777
      /* Try to choose the better insn.  */
3778
      int index = 0, i, n;
3779
      rtx insn;
3780
      int try_data = 1, try_control = 1;
3781
      ds_t ts;
3782
 
3783
      insn = ready_element (ready, 0);
3784
      if (INSN_CODE (insn) < 0)
3785
        {
3786
          *insn_ptr = ready_remove_first (ready);
3787
          return 0;
3788
        }
3789
 
3790
      if (spec_info
3791
          && spec_info->flags & (PREFER_NON_DATA_SPEC
3792
                                 | PREFER_NON_CONTROL_SPEC))
3793
        {
3794
          for (i = 0, n = ready->n_ready; i < n; i++)
3795
            {
3796
              rtx x;
3797
              ds_t s;
3798
 
3799
              x = ready_element (ready, i);
3800
              s = TODO_SPEC (x);
3801
 
3802
              if (spec_info->flags & PREFER_NON_DATA_SPEC
3803
                  && !(s & DATA_SPEC))
3804
                {
3805
                  try_data = 0;
3806
                  if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
3807
                      || !try_control)
3808
                    break;
3809
                }
3810
 
3811
              if (spec_info->flags & PREFER_NON_CONTROL_SPEC
3812
                  && !(s & CONTROL_SPEC))
3813
                {
3814
                  try_control = 0;
3815
                  if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
3816
                    break;
3817
                }
3818
            }
3819
        }
3820
 
3821
      ts = TODO_SPEC (insn);
3822
      if ((ts & SPECULATIVE)
3823
          && (((!try_data && (ts & DATA_SPEC))
3824
               || (!try_control && (ts & CONTROL_SPEC)))
3825
              || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
3826
                  && !targetm.sched
3827
                  .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
3828
        /* Discard speculative instruction that stands first in the ready
3829
           list.  */
3830
        {
3831
          change_queue_index (insn, 1);
3832
          return 1;
3833
        }
3834
 
3835
      ready_try[0] = 0;
3836
 
3837
      for (i = 1; i < ready->n_ready; i++)
3838
        {
3839
          insn = ready_element (ready, i);
3840
 
3841
          ready_try [i]
3842
            = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
3843
               || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
3844
        }
3845
 
3846
      /* Let the target filter the search space.  */
3847
      for (i = 1; i < ready->n_ready; i++)
3848
        if (!ready_try[i])
3849
          {
3850
            insn = ready_element (ready, i);
3851
 
3852
            /* If this insn is recognizable we should have already
3853
               recognized it earlier.
3854
               ??? Not very clear where this is supposed to be done.
3855
               See dep_cost_1.  */
3856
            gcc_checking_assert (INSN_CODE (insn) >= 0
3857
                                 || recog_memoized (insn) < 0);
3858
 
3859
            ready_try [i]
3860
              = (/* INSN_CODE check can be omitted here as it is also done later
3861
                    in max_issue ().  */
3862
                 INSN_CODE (insn) < 0
3863
                 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
3864
                     && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
3865
                     (insn)));
3866
          }
3867
 
3868
      if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
3869
        {
3870
          *insn_ptr = ready_remove_first (ready);
3871
          if (sched_verbose >= 4)
3872
            fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
3873
                     (*current_sched_info->print_insn) (*insn_ptr, 0));
3874
          return 0;
3875
        }
3876
      else
3877
        {
3878
          if (sched_verbose >= 4)
3879
            fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
3880
                     (*current_sched_info->print_insn)
3881
                     (ready_element (ready, index), 0));
3882
 
3883
          *insn_ptr = ready_remove (ready, index);
3884
          return 0;
3885
        }
3886
    }
3887
}
3888
 
3889
/* This function is called when we have successfully scheduled a
3890
   block.  It uses the schedule stored in the scheduled_insns vector
3891
   to rearrange the RTL.  PREV_HEAD is used as the anchor to which we
3892
   append the scheduled insns; TAIL is the insn after the scheduled
3893
   block.  TARGET_BB is the argument passed to schedule_block.  */
3894
 
3895
static void
3896
commit_schedule (rtx prev_head, rtx tail, basic_block *target_bb)
3897
{
3898
  unsigned int i;
3899
  rtx insn;
3900
 
3901
  last_scheduled_insn = prev_head;
3902
  for (i = 0;
3903
       VEC_iterate (rtx, scheduled_insns, i, insn);
3904
       i++)
3905
    {
3906
      if (control_flow_insn_p (last_scheduled_insn)
3907
          || current_sched_info->advance_target_bb (*target_bb, insn))
3908
        {
3909
          *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
3910
 
3911
          if (sched_verbose)
3912
            {
3913
              rtx x;
3914
 
3915
              x = next_real_insn (last_scheduled_insn);
3916
              gcc_assert (x);
3917
              dump_new_block_header (1, *target_bb, x, tail);
3918
            }
3919
 
3920
          last_scheduled_insn = bb_note (*target_bb);
3921
        }
3922
 
3923
      if (current_sched_info->begin_move_insn)
3924
        (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
3925
      move_insn (insn, last_scheduled_insn,
3926
                 current_sched_info->next_tail);
3927
      if (!DEBUG_INSN_P (insn))
3928
        reemit_notes (insn);
3929
      last_scheduled_insn = insn;
3930
    }
3931
 
3932
  VEC_truncate (rtx, scheduled_insns, 0);
3933
}
3934
 
3935
/* Examine all insns on the ready list and queue those which can't be
3936
   issued in this cycle.  TEMP_STATE is temporary scheduler state we
3937
   can use as scratch space.  If FIRST_CYCLE_INSN_P is true, no insns
3938
   have been issued for the current cycle, which means it is valid to
3939
   issue an asm statement.
3940
 
3941
   If SHADOWS_ONLY_P is true, we eliminate all real insns and only
3942
   leave those for which SHADOW_P is true.  If MODULO_EPILOGUE is true,
3943
   we only leave insns which have an INSN_EXACT_TICK.  */
3944
 
3945
static void
3946
prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
3947
                  bool shadows_only_p, bool modulo_epilogue_p)
3948
{
3949
  int i;
3950
  bool sched_group_found = false;
3951
 
3952
 restart:
3953
  for (i = 0; i < ready.n_ready; i++)
3954
    {
3955
      rtx insn = ready_element (&ready, i);
3956
      int cost = 0;
3957
      const char *reason = "resource conflict";
3958
 
3959
      if (DEBUG_INSN_P (insn))
3960
        continue;
3961
 
3962
      if (SCHED_GROUP_P (insn) && !sched_group_found)
3963
        {
3964
          sched_group_found = true;
3965
          if (i > 0)
3966
            goto restart;
3967
        }
3968
 
3969
      if (sched_group_found && !SCHED_GROUP_P (insn))
3970
        {
3971
          cost = 1;
3972
          reason = "not in sched group";
3973
        }
3974
      else if (modulo_epilogue_p && INSN_EXACT_TICK (insn) == INVALID_TICK)
3975
        {
3976
          cost = max_insn_queue_index;
3977
          reason = "not an epilogue insn";
3978
        }
3979
      else if (shadows_only_p && !SHADOW_P (insn))
3980
        {
3981
          cost = 1;
3982
          reason = "not a shadow";
3983
        }
3984
      else if (recog_memoized (insn) < 0)
3985
        {
3986
          if (!first_cycle_insn_p
3987
              && (GET_CODE (PATTERN (insn)) == ASM_INPUT
3988
                  || asm_noperands (PATTERN (insn)) >= 0))
3989
            cost = 1;
3990
          reason = "asm";
3991
        }
3992
      else if (sched_pressure_p)
3993
        cost = 0;
3994
      else
3995
        {
3996
          int delay_cost = 0;
3997
 
3998
          if (delay_htab)
3999
            {
4000
              struct delay_pair *delay_entry;
4001
              delay_entry
4002
                = (struct delay_pair *)htab_find_with_hash (delay_htab, insn,
4003
                                                            htab_hash_pointer (insn));
4004
              while (delay_entry && delay_cost == 0)
4005
                {
4006
                  delay_cost = estimate_shadow_tick (delay_entry);
4007
                  if (delay_cost > max_insn_queue_index)
4008
                    delay_cost = max_insn_queue_index;
4009
                  delay_entry = delay_entry->next_same_i1;
4010
                }
4011
            }
4012
 
4013
          memcpy (temp_state, curr_state, dfa_state_size);
4014
          cost = state_transition (temp_state, insn);
4015
          if (cost < 0)
4016
            cost = 0;
4017
          else if (cost == 0)
4018
            cost = 1;
4019
          if (cost < delay_cost)
4020
            {
4021
              cost = delay_cost;
4022
              reason = "shadow tick";
4023
            }
4024
        }
4025
      if (cost >= 1)
4026
        {
4027
          ready_remove (&ready, i);
4028
          queue_insn (insn, cost, reason);
4029
          goto restart;
4030
        }
4031
    }
4032
}
4033
 
4034
/* Called when we detect that the schedule is impossible.  We examine the
4035
   backtrack queue to find the earliest insn that caused this condition.  */
4036
 
4037
static struct haifa_saved_data *
4038
verify_shadows (void)
4039
{
4040
  struct haifa_saved_data *save, *earliest_fail = NULL;
4041
  for (save = backtrack_queue; save; save = save->next)
4042
    {
4043
      int t;
4044
      struct delay_pair *pair = save->delay_pair;
4045
      rtx i1 = pair->i1;
4046
 
4047
      for (; pair; pair = pair->next_same_i1)
4048
        {
4049
          rtx i2 = pair->i2;
4050
 
4051
          if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
4052
            continue;
4053
 
4054
          t = INSN_TICK (i1) + pair_delay (pair);
4055
          if (t < clock_var)
4056
            {
4057
              if (sched_verbose >= 2)
4058
                fprintf (sched_dump,
4059
                         ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
4060
                         ", not ready\n",
4061
                         INSN_UID (pair->i1), INSN_UID (pair->i2),
4062
                         INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
4063
              earliest_fail = save;
4064
              break;
4065
            }
4066
          if (QUEUE_INDEX (i2) >= 0)
4067
            {
4068
              int queued_for = INSN_TICK (i2);
4069
 
4070
              if (t < queued_for)
4071
                {
4072
                  if (sched_verbose >= 2)
4073
                    fprintf (sched_dump,
4074
                             ";;\t\tfailed delay requirements for %d/%d"
4075
                             " (%d->%d), queued too late\n",
4076
                             INSN_UID (pair->i1), INSN_UID (pair->i2),
4077
                             INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
4078
                  earliest_fail = save;
4079
                  break;
4080
                }
4081
            }
4082
        }
4083
    }
4084
 
4085
  return earliest_fail;
4086
}
4087
 
4088
/* Use forward list scheduling to rearrange insns of block pointed to by
4089
   TARGET_BB, possibly bringing insns from subsequent blocks in the same
4090
   region.  */
4091
 
4092
bool
4093
schedule_block (basic_block *target_bb)
4094
{
4095
  int i;
4096
  bool success = modulo_ii == 0;
4097
  struct sched_block_state ls;
4098
  state_t temp_state = NULL;  /* It is used for multipass scheduling.  */
4099
  int sort_p, advance, start_clock_var;
4100
 
4101
  /* Head/tail info for this block.  */
4102
  rtx prev_head = current_sched_info->prev_head;
4103
  rtx next_tail = current_sched_info->next_tail;
4104
  rtx head = NEXT_INSN (prev_head);
4105
  rtx tail = PREV_INSN (next_tail);
4106
 
4107
  /* We used to have code to avoid getting parameters moved from hard
4108
     argument registers into pseudos.
4109
 
4110
     However, it was removed when it proved to be of marginal benefit
4111
     and caused problems because schedule_block and compute_forward_dependences
4112
     had different notions of what the "head" insn was.  */
4113
 
4114
  gcc_assert (head != tail || INSN_P (head));
4115
 
4116
  haifa_recovery_bb_recently_added_p = false;
4117
 
4118
  backtrack_queue = NULL;
4119
 
4120
  /* Debug info.  */
4121
  if (sched_verbose)
4122
    dump_new_block_header (0, *target_bb, head, tail);
4123
 
4124
  state_reset (curr_state);
4125
 
4126
  /* Clear the ready list.  */
4127
  ready.first = ready.veclen - 1;
4128
  ready.n_ready = 0;
4129
  ready.n_debug = 0;
4130
 
4131
  /* It is used for first cycle multipass scheduling.  */
4132
  temp_state = alloca (dfa_state_size);
4133
 
4134
  if (targetm.sched.init)
4135
    targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
4136
 
4137
  /* We start inserting insns after PREV_HEAD.  */
4138
  last_scheduled_insn = nonscheduled_insns_begin = prev_head;
4139
  last_nondebug_scheduled_insn = NULL_RTX;
4140
 
4141
  gcc_assert ((NOTE_P (last_scheduled_insn)
4142
               || DEBUG_INSN_P (last_scheduled_insn))
4143
              && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
4144
 
4145
  /* Initialize INSN_QUEUE.  Q_SIZE is the total number of insns in the
4146
     queue.  */
4147
  q_ptr = 0;
4148
  q_size = 0;
4149
 
4150
  insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
4151
  memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
4152
 
4153
  /* Start just before the beginning of time.  */
4154
  clock_var = -1;
4155
 
4156
  /* We need queue and ready lists and clock_var be initialized
4157
     in try_ready () (which is called through init_ready_list ()).  */
4158
  (*current_sched_info->init_ready_list) ();
4159
 
4160
  /* The algorithm is O(n^2) in the number of ready insns at any given
4161
     time in the worst case.  Before reload we are more likely to have
4162
     big lists so truncate them to a reasonable size.  */
4163
  if (!reload_completed
4164
      && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
4165
    {
4166
      ready_sort (&ready);
4167
 
4168
      /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
4169
         If there are debug insns, we know they're first.  */
4170
      for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
4171
        if (!SCHED_GROUP_P (ready_element (&ready, i)))
4172
          break;
4173
 
4174
      if (sched_verbose >= 2)
4175
        {
4176
          fprintf (sched_dump,
4177
                   ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
4178
          fprintf (sched_dump,
4179
                   ";;\t\t before reload => truncated to %d insns\n", i);
4180
        }
4181
 
4182
      /* Delay all insns past it for 1 cycle.  If debug counter is
4183
         activated make an exception for the insn right after
4184
         nonscheduled_insns_begin.  */
4185
      {
4186
        rtx skip_insn;
4187
 
4188
        if (dbg_cnt (sched_insn) == false)
4189
          skip_insn = next_nonnote_insn (nonscheduled_insns_begin);
4190
        else
4191
          skip_insn = NULL_RTX;
4192
 
4193
        while (i < ready.n_ready)
4194
          {
4195
            rtx insn;
4196
 
4197
            insn = ready_remove (&ready, i);
4198
 
4199
            if (insn != skip_insn)
4200
              queue_insn (insn, 1, "list truncated");
4201
          }
4202
        if (skip_insn)
4203
          ready_add (&ready, skip_insn, true);
4204
      }
4205
    }
4206
 
4207
  /* Now we can restore basic block notes and maintain precise cfg.  */
4208
  restore_bb_notes (*target_bb);
4209
 
4210
  last_clock_var = -1;
4211
 
4212
  advance = 0;
4213
 
4214
  gcc_assert (VEC_length (rtx, scheduled_insns) == 0);
4215
  sort_p = TRUE;
4216
  must_backtrack = false;
4217
  modulo_insns_scheduled = 0;
4218
 
4219
  ls.modulo_epilogue = false;
4220
 
4221
  /* Loop until all the insns in BB are scheduled.  */
4222
  while ((*current_sched_info->schedule_more_p) ())
4223
    {
4224
      do
4225
        {
4226
          start_clock_var = clock_var;
4227
 
4228
          clock_var++;
4229
 
4230
          advance_one_cycle ();
4231
 
4232
          /* Add to the ready list all pending insns that can be issued now.
4233
             If there are no ready insns, increment clock until one
4234
             is ready and add all pending insns at that point to the ready
4235
             list.  */
4236
          queue_to_ready (&ready);
4237
 
4238
          gcc_assert (ready.n_ready);
4239
 
4240
          if (sched_verbose >= 2)
4241
            {
4242
              fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:  ");
4243
              debug_ready_list (&ready);
4244
            }
4245
          advance -= clock_var - start_clock_var;
4246
        }
4247
      while (advance > 0);
4248
 
4249
      if (ls.modulo_epilogue)
4250
        {
4251
          int stage = clock_var / modulo_ii;
4252
          if (stage > modulo_last_stage * 2 + 2)
4253
            {
4254
              if (sched_verbose >= 2)
4255
                fprintf (sched_dump,
4256
                         ";;\t\tmodulo scheduled succeeded at II %d\n",
4257
                         modulo_ii);
4258
              success = true;
4259
              goto end_schedule;
4260
            }
4261
        }
4262
      else if (modulo_ii > 0)
4263
        {
4264
          int stage = clock_var / modulo_ii;
4265
          if (stage > modulo_max_stages)
4266
            {
4267
              if (sched_verbose >= 2)
4268
                fprintf (sched_dump,
4269
                         ";;\t\tfailing schedule due to excessive stages\n");
4270
              goto end_schedule;
4271
            }
4272
          if (modulo_n_insns == modulo_insns_scheduled
4273
              && stage > modulo_last_stage)
4274
            {
4275
              if (sched_verbose >= 2)
4276
                fprintf (sched_dump,
4277
                         ";;\t\tfound kernel after %d stages, II %d\n",
4278
                         stage, modulo_ii);
4279
              ls.modulo_epilogue = true;
4280
            }
4281
        }
4282
 
4283
      prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
4284
      if (ready.n_ready == 0)
4285
        continue;
4286
      if (must_backtrack)
4287
        goto do_backtrack;
4288
 
4289
      ls.first_cycle_insn_p = true;
4290
      ls.shadows_only_p = false;
4291
      cycle_issued_insns = 0;
4292
      ls.can_issue_more = issue_rate;
4293
      for (;;)
4294
        {
4295
          rtx insn;
4296
          int cost;
4297
          bool asm_p;
4298
 
4299
          if (sort_p && ready.n_ready > 0)
4300
            {
4301
              /* Sort the ready list based on priority.  This must be
4302
                 done every iteration through the loop, as schedule_insn
4303
                 may have readied additional insns that will not be
4304
                 sorted correctly.  */
4305
              ready_sort (&ready);
4306
 
4307
              if (sched_verbose >= 2)
4308
                {
4309
                  fprintf (sched_dump, ";;\t\tReady list after ready_sort:  ");
4310
                  debug_ready_list (&ready);
4311
                }
4312
            }
4313
 
4314
          /* We don't want md sched reorder to even see debug isns, so put
4315
             them out right away.  */
4316
          if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
4317
              && (*current_sched_info->schedule_more_p) ())
4318
            {
4319
              while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
4320
                {
4321
                  rtx insn = ready_remove_first (&ready);
4322
                  gcc_assert (DEBUG_INSN_P (insn));
4323
                  (*current_sched_info->begin_schedule_ready) (insn);
4324
                  VEC_safe_push (rtx, heap, scheduled_insns, insn);
4325
                  last_scheduled_insn = insn;
4326
                  advance = schedule_insn (insn);
4327
                  gcc_assert (advance == 0);
4328
                  if (ready.n_ready > 0)
4329
                    ready_sort (&ready);
4330
                }
4331
            }
4332
 
4333
          if (ls.first_cycle_insn_p && !ready.n_ready)
4334
            break;
4335
 
4336
        resume_after_backtrack:
4337
          /* Allow the target to reorder the list, typically for
4338
             better instruction bundling.  */
4339
          if (sort_p
4340
              && (ready.n_ready == 0
4341
                  || !SCHED_GROUP_P (ready_element (&ready, 0))))
4342
            {
4343
              if (ls.first_cycle_insn_p && targetm.sched.reorder)
4344
                ls.can_issue_more
4345
                  = targetm.sched.reorder (sched_dump, sched_verbose,
4346
                                           ready_lastpos (&ready),
4347
                                           &ready.n_ready, clock_var);
4348
              else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
4349
                ls.can_issue_more
4350
                  = targetm.sched.reorder2 (sched_dump, sched_verbose,
4351
                                            ready.n_ready
4352
                                            ? ready_lastpos (&ready) : NULL,
4353
                                            &ready.n_ready, clock_var);
4354
            }
4355
 
4356
        restart_choose_ready:
4357
          if (sched_verbose >= 2)
4358
            {
4359
              fprintf (sched_dump, ";;\tReady list (t = %3d):  ",
4360
                       clock_var);
4361
              debug_ready_list (&ready);
4362
              if (sched_pressure_p)
4363
                print_curr_reg_pressure ();
4364
            }
4365
 
4366
          if (ready.n_ready == 0
4367
              && ls.can_issue_more
4368
              && reload_completed)
4369
            {
4370
              /* Allow scheduling insns directly from the queue in case
4371
                 there's nothing better to do (ready list is empty) but
4372
                 there are still vacant dispatch slots in the current cycle.  */
4373
              if (sched_verbose >= 6)
4374
                fprintf (sched_dump,";;\t\tSecond chance\n");
4375
              memcpy (temp_state, curr_state, dfa_state_size);
4376
              if (early_queue_to_ready (temp_state, &ready))
4377
                ready_sort (&ready);
4378
            }
4379
 
4380
          if (ready.n_ready == 0
4381
              || !ls.can_issue_more
4382
              || state_dead_lock_p (curr_state)
4383
              || !(*current_sched_info->schedule_more_p) ())
4384
            break;
4385
 
4386
          /* Select and remove the insn from the ready list.  */
4387
          if (sort_p)
4388
            {
4389
              int res;
4390
 
4391
              insn = NULL_RTX;
4392
              res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
4393
 
4394
              if (res < 0)
4395
                /* Finish cycle.  */
4396
                break;
4397
              if (res > 0)
4398
                goto restart_choose_ready;
4399
 
4400
              gcc_assert (insn != NULL_RTX);
4401
            }
4402
          else
4403
            insn = ready_remove_first (&ready);
4404
 
4405
          if (sched_pressure_p && INSN_TICK (insn) > clock_var)
4406
            {
4407
              ready_add (&ready, insn, true);
4408
              advance = 1;
4409
              break;
4410
            }
4411
 
4412
          if (targetm.sched.dfa_new_cycle
4413
              && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4414
                                              insn, last_clock_var,
4415
                                              clock_var, &sort_p))
4416
            /* SORT_P is used by the target to override sorting
4417
               of the ready list.  This is needed when the target
4418
               has modified its internal structures expecting that
4419
               the insn will be issued next.  As we need the insn
4420
               to have the highest priority (so it will be returned by
4421
               the ready_remove_first call above), we invoke
4422
               ready_add (&ready, insn, true).
4423
               But, still, there is one issue: INSN can be later
4424
               discarded by scheduler's front end through
4425
               current_sched_info->can_schedule_ready_p, hence, won't
4426
               be issued next.  */
4427
            {
4428
              ready_add (&ready, insn, true);
4429
              break;
4430
            }
4431
 
4432
          sort_p = TRUE;
4433
 
4434
          if (current_sched_info->can_schedule_ready_p
4435
              && ! (*current_sched_info->can_schedule_ready_p) (insn))
4436
            /* We normally get here only if we don't want to move
4437
               insn from the split block.  */
4438
            {
4439
              TODO_SPEC (insn) = HARD_DEP;
4440
              goto restart_choose_ready;
4441
            }
4442
 
4443
          if (delay_htab)
4444
            {
4445
              /* If this insn is the first part of a delay-slot pair, record a
4446
                 backtrack point.  */
4447
              struct delay_pair *delay_entry;
4448
              delay_entry
4449
                = (struct delay_pair *)htab_find_with_hash (delay_htab, insn,
4450
                                                            htab_hash_pointer (insn));
4451
              if (delay_entry)
4452
                {
4453
                  save_backtrack_point (delay_entry, ls);
4454
                  if (sched_verbose >= 2)
4455
                    fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
4456
                }
4457
            }
4458
 
4459
          /* DECISION is made.  */
4460
 
4461
          if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
4462
            {
4463
              modulo_insns_scheduled++;
4464
              modulo_last_stage = clock_var / modulo_ii;
4465
            }
4466
          if (TODO_SPEC (insn) & SPECULATIVE)
4467
            generate_recovery_code (insn);
4468
 
4469
          if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
4470
            targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
4471
 
4472
          /* Update counters, etc in the scheduler's front end.  */
4473
          (*current_sched_info->begin_schedule_ready) (insn);
4474
          VEC_safe_push (rtx, heap, scheduled_insns, insn);
4475
          gcc_assert (NONDEBUG_INSN_P (insn));
4476
          last_nondebug_scheduled_insn = last_scheduled_insn = insn;
4477
 
4478
          if (recog_memoized (insn) >= 0)
4479
            {
4480
              memcpy (temp_state, curr_state, dfa_state_size);
4481
              cost = state_transition (curr_state, insn);
4482
              if (!sched_pressure_p)
4483
                gcc_assert (cost < 0);
4484
              if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
4485
                cycle_issued_insns++;
4486
              asm_p = false;
4487
            }
4488
          else
4489
            asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
4490
                     || asm_noperands (PATTERN (insn)) >= 0);
4491
 
4492
          if (targetm.sched.variable_issue)
4493
            ls.can_issue_more =
4494
              targetm.sched.variable_issue (sched_dump, sched_verbose,
4495
                                            insn, ls.can_issue_more);
4496
          /* A naked CLOBBER or USE generates no instruction, so do
4497
             not count them against the issue rate.  */
4498
          else if (GET_CODE (PATTERN (insn)) != USE
4499
                   && GET_CODE (PATTERN (insn)) != CLOBBER)
4500
            ls.can_issue_more--;
4501
          advance = schedule_insn (insn);
4502
 
4503
          if (SHADOW_P (insn))
4504
            ls.shadows_only_p = true;
4505
 
4506
          /* After issuing an asm insn we should start a new cycle.  */
4507
          if (advance == 0 && asm_p)
4508
            advance = 1;
4509
 
4510
          if (must_backtrack)
4511
            break;
4512
 
4513
          if (advance != 0)
4514
            break;
4515
 
4516
          ls.first_cycle_insn_p = false;
4517
          if (ready.n_ready > 0)
4518
            prune_ready_list (temp_state, false, ls.shadows_only_p,
4519
                              ls.modulo_epilogue);
4520
        }
4521
 
4522
    do_backtrack:
4523
      if (!must_backtrack)
4524
        for (i = 0; i < ready.n_ready; i++)
4525
          {
4526
            rtx insn = ready_element (&ready, i);
4527
            if (INSN_EXACT_TICK (insn) == clock_var)
4528
              {
4529
                must_backtrack = true;
4530
                clock_var++;
4531
                break;
4532
              }
4533
          }
4534
      if (must_backtrack && modulo_ii > 0)
4535
        {
4536
          if (modulo_backtracks_left == 0)
4537
            goto end_schedule;
4538
          modulo_backtracks_left--;
4539
        }
4540
      while (must_backtrack)
4541
        {
4542
          struct haifa_saved_data *failed;
4543
          rtx failed_insn;
4544
 
4545
          must_backtrack = false;
4546
          failed = verify_shadows ();
4547
          gcc_assert (failed);
4548
 
4549
          failed_insn = failed->delay_pair->i1;
4550
          toggle_cancelled_flags (false);
4551
          unschedule_insns_until (failed_insn);
4552
          while (failed != backtrack_queue)
4553
            free_topmost_backtrack_point (true);
4554
          restore_last_backtrack_point (&ls);
4555
          if (sched_verbose >= 2)
4556
            fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
4557
          /* Delay by at least a cycle.  This could cause additional
4558
             backtracking.  */
4559
          queue_insn (failed_insn, 1, "backtracked");
4560
          advance = 0;
4561
          if (must_backtrack)
4562
            continue;
4563
          if (ready.n_ready > 0)
4564
            goto resume_after_backtrack;
4565
          else
4566
            {
4567
              if (clock_var == 0 && ls.first_cycle_insn_p)
4568
                goto end_schedule;
4569
              advance = 1;
4570
              break;
4571
            }
4572
        }
4573
    }
4574
  if (ls.modulo_epilogue)
4575
    success = true;
4576
 end_schedule:
4577
  if (modulo_ii > 0)
4578
    {
4579
      /* Once again, debug insn suckiness: they can be on the ready list
4580
         even if they have unresolved dependencies.  To make our view
4581
         of the world consistent, remove such "ready" insns.  */
4582
    restart_debug_insn_loop:
4583
      for (i = ready.n_ready - 1; i >= 0; i--)
4584
        {
4585
          rtx x;
4586
 
4587
          x = ready_element (&ready, i);
4588
          if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
4589
              || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
4590
            {
4591
              ready_remove (&ready, i);
4592
              goto restart_debug_insn_loop;
4593
            }
4594
        }
4595
      for (i = ready.n_ready - 1; i >= 0; i--)
4596
        {
4597
          rtx x;
4598
 
4599
          x = ready_element (&ready, i);
4600
          resolve_dependencies (x);
4601
        }
4602
      for (i = 0; i <= max_insn_queue_index; i++)
4603
        {
4604
          rtx link;
4605
          while ((link = insn_queue[i]) != NULL)
4606
            {
4607
              rtx x = XEXP (link, 0);
4608
              insn_queue[i] = XEXP (link, 1);
4609
              QUEUE_INDEX (x) = QUEUE_NOWHERE;
4610
              free_INSN_LIST_node (link);
4611
              resolve_dependencies (x);
4612
            }
4613
        }
4614
    }
4615
 
4616
  /* Debug info.  */
4617
  if (sched_verbose)
4618
    {
4619
      fprintf (sched_dump, ";;\tReady list (final):  ");
4620
      debug_ready_list (&ready);
4621
    }
4622
 
4623
  if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
4624
    /* Sanity check -- queue must be empty now.  Meaningless if region has
4625
       multiple bbs.  */
4626
    gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
4627
  else if (modulo_ii == 0)
4628
    {
4629
      /* We must maintain QUEUE_INDEX between blocks in region.  */
4630
      for (i = ready.n_ready - 1; i >= 0; i--)
4631
        {
4632
          rtx x;
4633
 
4634
          x = ready_element (&ready, i);
4635
          QUEUE_INDEX (x) = QUEUE_NOWHERE;
4636
          TODO_SPEC (x) = HARD_DEP;
4637
        }
4638
 
4639
      if (q_size)
4640
        for (i = 0; i <= max_insn_queue_index; i++)
4641
          {
4642
            rtx link;
4643
            for (link = insn_queue[i]; link; link = XEXP (link, 1))
4644
              {
4645
                rtx x;
4646
 
4647
                x = XEXP (link, 0);
4648
                QUEUE_INDEX (x) = QUEUE_NOWHERE;
4649
                TODO_SPEC (x) = HARD_DEP;
4650
              }
4651
            free_INSN_LIST_list (&insn_queue[i]);
4652
          }
4653
    }
4654
 
4655
  if (success)
4656
    {
4657
      commit_schedule (prev_head, tail, target_bb);
4658
      if (sched_verbose)
4659
        fprintf (sched_dump, ";;   total time = %d\n", clock_var);
4660
    }
4661
  else
4662
    last_scheduled_insn = tail;
4663
 
4664
  VEC_truncate (rtx, scheduled_insns, 0);
4665
 
4666
  if (!current_sched_info->queue_must_finish_empty
4667
      || haifa_recovery_bb_recently_added_p)
4668
    {
4669
      /* INSN_TICK (minimum clock tick at which the insn becomes
4670
         ready) may be not correct for the insn in the subsequent
4671
         blocks of the region.  We should use a correct value of
4672
         `clock_var' or modify INSN_TICK.  It is better to keep
4673
         clock_var value equal to 0 at the start of a basic block.
4674
         Therefore we modify INSN_TICK here.  */
4675
      fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
4676
    }
4677
 
4678
  if (targetm.sched.finish)
4679
    {
4680
      targetm.sched.finish (sched_dump, sched_verbose);
4681
      /* Target might have added some instructions to the scheduled block
4682
         in its md_finish () hook.  These new insns don't have any data
4683
         initialized and to identify them we extend h_i_d so that they'll
4684
         get zero luids.  */
4685
      sched_extend_luids ();
4686
    }
4687
 
4688
  if (sched_verbose)
4689
    fprintf (sched_dump, ";;   new head = %d\n;;   new tail = %d\n\n",
4690
             INSN_UID (head), INSN_UID (tail));
4691
 
4692
  /* Update head/tail boundaries.  */
4693
  head = NEXT_INSN (prev_head);
4694
  tail = last_scheduled_insn;
4695
 
4696
  head = restore_other_notes (head, NULL);
4697
 
4698
  current_sched_info->head = head;
4699
  current_sched_info->tail = tail;
4700
 
4701
  free_backtrack_queue ();
4702
 
4703
  return success;
4704
}
4705
 
4706
/* Set_priorities: compute priority of each insn in the block.  */
4707
 
4708
int
4709
set_priorities (rtx head, rtx tail)
4710
{
4711
  rtx insn;
4712
  int n_insn;
4713
  int sched_max_insns_priority =
4714
        current_sched_info->sched_max_insns_priority;
4715
  rtx prev_head;
4716
 
4717
  if (head == tail && ! INSN_P (head))
4718
    gcc_unreachable ();
4719
 
4720
  n_insn = 0;
4721
 
4722
  prev_head = PREV_INSN (head);
4723
  for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
4724
    {
4725
      if (!INSN_P (insn))
4726
        continue;
4727
 
4728
      n_insn++;
4729
      (void) priority (insn);
4730
 
4731
      gcc_assert (INSN_PRIORITY_KNOWN (insn));
4732
 
4733
      sched_max_insns_priority = MAX (sched_max_insns_priority,
4734
                                      INSN_PRIORITY (insn));
4735
    }
4736
 
4737
  current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
4738
 
4739
  return n_insn;
4740
}
4741
 
4742
/* Set dump and sched_verbose for the desired debugging output.  If no
4743
   dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
4744
   For -fsched-verbose=N, N>=10, print everything to stderr.  */
4745
void
4746
setup_sched_dump (void)
4747
{
4748
  sched_verbose = sched_verbose_param;
4749
  if (sched_verbose_param == 0 && dump_file)
4750
    sched_verbose = 1;
4751
  sched_dump = ((sched_verbose_param >= 10 || !dump_file)
4752
                ? stderr : dump_file);
4753
}
4754
 
4755
/* Initialize some global state for the scheduler.  This function works
4756
   with the common data shared between all the schedulers.  It is called
4757
   from the scheduler specific initialization routine.  */
4758
 
4759
void
4760
sched_init (void)
4761
{
4762
  /* Disable speculative loads in their presence if cc0 defined.  */
4763
#ifdef HAVE_cc0
4764
  flag_schedule_speculative_load = 0;
4765
#endif
4766
 
4767
  if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
4768
    targetm.sched.dispatch_do (NULL_RTX, DISPATCH_INIT);
4769
 
4770
  sched_pressure_p = (flag_sched_pressure && ! reload_completed
4771
                      && common_sched_info->sched_pass_id == SCHED_RGN_PASS);
4772
 
4773
  if (sched_pressure_p)
4774
    ira_setup_eliminable_regset ();
4775
 
4776
  /* Initialize SPEC_INFO.  */
4777
  if (targetm.sched.set_sched_flags)
4778
    {
4779
      spec_info = &spec_info_var;
4780
      targetm.sched.set_sched_flags (spec_info);
4781
 
4782
      if (spec_info->mask != 0)
4783
        {
4784
          spec_info->data_weakness_cutoff =
4785
            (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
4786
          spec_info->control_weakness_cutoff =
4787
            (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
4788
             * REG_BR_PROB_BASE) / 100;
4789
        }
4790
      else
4791
        /* So we won't read anything accidentally.  */
4792
        spec_info = NULL;
4793
 
4794
    }
4795
  else
4796
    /* So we won't read anything accidentally.  */
4797
    spec_info = 0;
4798
 
4799
  /* Initialize issue_rate.  */
4800
  if (targetm.sched.issue_rate)
4801
    issue_rate = targetm.sched.issue_rate ();
4802
  else
4803
    issue_rate = 1;
4804
 
4805
  if (cached_issue_rate != issue_rate)
4806
    {
4807
      cached_issue_rate = issue_rate;
4808
      /* To invalidate max_lookahead_tries:  */
4809
      cached_first_cycle_multipass_dfa_lookahead = 0;
4810
    }
4811
 
4812
  if (targetm.sched.first_cycle_multipass_dfa_lookahead)
4813
    dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
4814
  else
4815
    dfa_lookahead = 0;
4816
 
4817
  if (targetm.sched.init_dfa_pre_cycle_insn)
4818
    targetm.sched.init_dfa_pre_cycle_insn ();
4819
 
4820
  if (targetm.sched.init_dfa_post_cycle_insn)
4821
    targetm.sched.init_dfa_post_cycle_insn ();
4822
 
4823
  dfa_start ();
4824
  dfa_state_size = state_size ();
4825
 
4826
  init_alias_analysis ();
4827
 
4828
  if (!sched_no_dce)
4829
    df_set_flags (DF_LR_RUN_DCE);
4830
  df_note_add_problem ();
4831
 
4832
  /* More problems needed for interloop dep calculation in SMS.  */
4833
  if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
4834
    {
4835
      df_rd_add_problem ();
4836
      df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
4837
    }
4838
 
4839
  df_analyze ();
4840
 
4841
  /* Do not run DCE after reload, as this can kill nops inserted
4842
     by bundling.  */
4843
  if (reload_completed)
4844
    df_clear_flags (DF_LR_RUN_DCE);
4845
 
4846
  regstat_compute_calls_crossed ();
4847
 
4848
  if (targetm.sched.init_global)
4849
    targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
4850
 
4851
  if (sched_pressure_p)
4852
    {
4853
      int i, max_regno = max_reg_num ();
4854
 
4855
      if (sched_dump != NULL)
4856
        /* We need info about pseudos for rtl dumps about pseudo
4857
           classes and costs.  */
4858
        regstat_init_n_sets_and_refs ();
4859
      ira_set_pseudo_classes (sched_verbose ? sched_dump : NULL);
4860
      sched_regno_pressure_class
4861
        = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
4862
      for (i = 0; i < max_regno; i++)
4863
        sched_regno_pressure_class[i]
4864
          = (i < FIRST_PSEUDO_REGISTER
4865
             ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
4866
             : ira_pressure_class_translate[reg_allocno_class (i)]);
4867
      curr_reg_live = BITMAP_ALLOC (NULL);
4868
      saved_reg_live = BITMAP_ALLOC (NULL);
4869
      region_ref_regs = BITMAP_ALLOC (NULL);
4870
    }
4871
 
4872
  curr_state = xmalloc (dfa_state_size);
4873
}
4874
 
4875
static void haifa_init_only_bb (basic_block, basic_block);
4876
 
4877
/* Initialize data structures specific to the Haifa scheduler.  */
4878
void
4879
haifa_sched_init (void)
4880
{
4881
  setup_sched_dump ();
4882
  sched_init ();
4883
 
4884
  scheduled_insns = VEC_alloc (rtx, heap, 0);
4885
 
4886
  if (spec_info != NULL)
4887
    {
4888
      sched_deps_info->use_deps_list = 1;
4889
      sched_deps_info->generate_spec_deps = 1;
4890
    }
4891
 
4892
  /* Initialize luids, dependency caches, target and h_i_d for the
4893
     whole function.  */
4894
  {
4895
    bb_vec_t bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
4896
    basic_block bb;
4897
 
4898
    sched_init_bbs ();
4899
 
4900
    FOR_EACH_BB (bb)
4901
      VEC_quick_push (basic_block, bbs, bb);
4902
    sched_init_luids (bbs);
4903
    sched_deps_init (true);
4904
    sched_extend_target ();
4905
    haifa_init_h_i_d (bbs);
4906
 
4907
    VEC_free (basic_block, heap, bbs);
4908
  }
4909
 
4910
  sched_init_only_bb = haifa_init_only_bb;
4911
  sched_split_block = sched_split_block_1;
4912
  sched_create_empty_bb = sched_create_empty_bb_1;
4913
  haifa_recovery_bb_ever_added_p = false;
4914
 
4915
  nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
4916
  before_recovery = 0;
4917
  after_recovery = 0;
4918
 
4919
  modulo_ii = 0;
4920
}
4921
 
4922
/* Finish work with the data specific to the Haifa scheduler.  */
4923
void
4924
haifa_sched_finish (void)
4925
{
4926
  sched_create_empty_bb = NULL;
4927
  sched_split_block = NULL;
4928
  sched_init_only_bb = NULL;
4929
 
4930
  if (spec_info && spec_info->dump)
4931
    {
4932
      char c = reload_completed ? 'a' : 'b';
4933
 
4934
      fprintf (spec_info->dump,
4935
               ";; %s:\n", current_function_name ());
4936
 
4937
      fprintf (spec_info->dump,
4938
               ";; Procedure %cr-begin-data-spec motions == %d\n",
4939
               c, nr_begin_data);
4940
      fprintf (spec_info->dump,
4941
               ";; Procedure %cr-be-in-data-spec motions == %d\n",
4942
               c, nr_be_in_data);
4943
      fprintf (spec_info->dump,
4944
               ";; Procedure %cr-begin-control-spec motions == %d\n",
4945
               c, nr_begin_control);
4946
      fprintf (spec_info->dump,
4947
               ";; Procedure %cr-be-in-control-spec motions == %d\n",
4948
               c, nr_be_in_control);
4949
    }
4950
 
4951
  VEC_free (rtx, heap, scheduled_insns);
4952
 
4953
  /* Finalize h_i_d, dependency caches, and luids for the whole
4954
     function.  Target will be finalized in md_global_finish ().  */
4955
  sched_deps_finish ();
4956
  sched_finish_luids ();
4957
  current_sched_info = NULL;
4958
  sched_finish ();
4959
}
4960
 
4961
/* Free global data used during insn scheduling.  This function works with
4962
   the common data shared between the schedulers.  */
4963
 
4964
void
4965
sched_finish (void)
4966
{
4967
  haifa_finish_h_i_d ();
4968
  if (sched_pressure_p)
4969
    {
4970
      if (regstat_n_sets_and_refs != NULL)
4971
        regstat_free_n_sets_and_refs ();
4972
      free (sched_regno_pressure_class);
4973
      BITMAP_FREE (region_ref_regs);
4974
      BITMAP_FREE (saved_reg_live);
4975
      BITMAP_FREE (curr_reg_live);
4976
    }
4977
  free (curr_state);
4978
 
4979
  if (targetm.sched.finish_global)
4980
    targetm.sched.finish_global (sched_dump, sched_verbose);
4981
 
4982
  end_alias_analysis ();
4983
 
4984
  regstat_free_calls_crossed ();
4985
 
4986
  dfa_finish ();
4987
}
4988
 
4989
/* Free all delay_pair structures that were recorded.  */
4990
void
4991
free_delay_pairs (void)
4992
{
4993
  if (delay_htab)
4994
    {
4995
      htab_empty (delay_htab);
4996
      htab_empty (delay_htab_i2);
4997
    }
4998
}
4999
 
5000
/* Fix INSN_TICKs of the instructions in the current block as well as
5001
   INSN_TICKs of their dependents.
5002
   HEAD and TAIL are the begin and the end of the current scheduled block.  */
5003
static void
5004
fix_inter_tick (rtx head, rtx tail)
5005
{
5006
  /* Set of instructions with corrected INSN_TICK.  */
5007
  bitmap_head processed;
5008
  /* ??? It is doubtful if we should assume that cycle advance happens on
5009
     basic block boundaries.  Basically insns that are unconditionally ready
5010
     on the start of the block are more preferable then those which have
5011
     a one cycle dependency over insn from the previous block.  */
5012
  int next_clock = clock_var + 1;
5013
 
5014
  bitmap_initialize (&processed, 0);
5015
 
5016
  /* Iterates over scheduled instructions and fix their INSN_TICKs and
5017
     INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
5018
     across different blocks.  */
5019
  for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
5020
    {
5021
      if (INSN_P (head))
5022
        {
5023
          int tick;
5024
          sd_iterator_def sd_it;
5025
          dep_t dep;
5026
 
5027
          tick = INSN_TICK (head);
5028
          gcc_assert (tick >= MIN_TICK);
5029
 
5030
          /* Fix INSN_TICK of instruction from just scheduled block.  */
5031
          if (bitmap_set_bit (&processed, INSN_LUID (head)))
5032
            {
5033
              tick -= next_clock;
5034
 
5035
              if (tick < MIN_TICK)
5036
                tick = MIN_TICK;
5037
 
5038
              INSN_TICK (head) = tick;
5039
            }
5040
 
5041
          FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
5042
            {
5043
              rtx next;
5044
 
5045
              next = DEP_CON (dep);
5046
              tick = INSN_TICK (next);
5047
 
5048
              if (tick != INVALID_TICK
5049
                  /* If NEXT has its INSN_TICK calculated, fix it.
5050
                     If not - it will be properly calculated from
5051
                     scratch later in fix_tick_ready.  */
5052
                  && bitmap_set_bit (&processed, INSN_LUID (next)))
5053
                {
5054
                  tick -= next_clock;
5055
 
5056
                  if (tick < MIN_TICK)
5057
                    tick = MIN_TICK;
5058
 
5059
                  if (tick > INTER_TICK (next))
5060
                    INTER_TICK (next) = tick;
5061
                  else
5062
                    tick = INTER_TICK (next);
5063
 
5064
                  INSN_TICK (next) = tick;
5065
                }
5066
            }
5067
        }
5068
    }
5069
  bitmap_clear (&processed);
5070
}
5071
 
5072
/* Check if NEXT is ready to be added to the ready or queue list.
5073
   If "yes", add it to the proper list.
5074
   Returns:
5075
      -1 - is not ready yet,
5076
 
5077
 
5078
int
5079
try_ready (rtx next)
5080
{
5081
  ds_t old_ts, new_ts;
5082
 
5083
  old_ts = TODO_SPEC (next);
5084
 
5085
  gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL))
5086
              && ((old_ts & HARD_DEP)
5087
                  || (old_ts & SPECULATIVE)
5088
                  || (old_ts & DEP_CONTROL)));
5089
 
5090
  new_ts = recompute_todo_spec (next);
5091
 
5092
  if (new_ts & HARD_DEP)
5093
    gcc_assert (new_ts == old_ts
5094
                && QUEUE_INDEX (next) == QUEUE_NOWHERE);
5095
  else if (current_sched_info->new_ready)
5096
    new_ts = current_sched_info->new_ready (next, new_ts);
5097
 
5098
  /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
5099
     have its original pattern or changed (speculative) one.  This is due
5100
     to changing ebb in region scheduling.
5101
     * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
5102
     has speculative pattern.
5103
 
5104
     We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
5105
     control-speculative NEXT could have been discarded by sched-rgn.c
5106
     (the same case as when discarded by can_schedule_ready_p ()).  */
5107
 
5108
  if ((new_ts & SPECULATIVE)
5109
      /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
5110
         need to change anything.  */
5111
      && new_ts != old_ts)
5112
    {
5113
      int res;
5114
      rtx new_pat;
5115
 
5116
      gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
5117
 
5118
      res = haifa_speculate_insn (next, new_ts, &new_pat);
5119
 
5120
      switch (res)
5121
        {
5122
        case -1:
5123
          /* It would be nice to change DEP_STATUS of all dependences,
5124
             which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
5125
             so we won't reanalyze anything.  */
5126
          new_ts = HARD_DEP;
5127
          break;
5128
 
5129
        case 0:
5130
          /* We follow the rule, that every speculative insn
5131
             has non-null ORIG_PAT.  */
5132
          if (!ORIG_PAT (next))
5133
            ORIG_PAT (next) = PATTERN (next);
5134
          break;
5135
 
5136
        case 1:
5137
          if (!ORIG_PAT (next))
5138
            /* If we gonna to overwrite the original pattern of insn,
5139
               save it.  */
5140
            ORIG_PAT (next) = PATTERN (next);
5141
 
5142
          res = haifa_change_pattern (next, new_pat);
5143
          gcc_assert (res);
5144
          break;
5145
 
5146
        default:
5147
          gcc_unreachable ();
5148
        }
5149
    }
5150
 
5151
  /* We need to restore pattern only if (new_ts == 0), because otherwise it is
5152
     either correct (new_ts & SPECULATIVE),
5153
     or we simply don't care (new_ts & HARD_DEP).  */
5154
 
5155
  gcc_assert (!ORIG_PAT (next)
5156
              || !IS_SPECULATION_BRANCHY_CHECK_P (next));
5157
 
5158
  TODO_SPEC (next) = new_ts;
5159
 
5160
  if (new_ts & HARD_DEP)
5161
    {
5162
      /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
5163
         control-speculative NEXT could have been discarded by sched-rgn.c
5164
         (the same case as when discarded by can_schedule_ready_p ()).  */
5165
      /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
5166
 
5167
      change_queue_index (next, QUEUE_NOWHERE);
5168
 
5169
      return -1;
5170
    }
5171
  else if (!(new_ts & BEGIN_SPEC)
5172
           && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
5173
           && !IS_SPECULATION_CHECK_P (next))
5174
    /* We should change pattern of every previously speculative
5175
       instruction - and we determine if NEXT was speculative by using
5176
       ORIG_PAT field.  Except one case - speculation checks have ORIG_PAT
5177
       pat too, so skip them.  */
5178
    {
5179
      bool success = haifa_change_pattern (next, ORIG_PAT (next));
5180
      gcc_assert (success);
5181
      ORIG_PAT (next) = 0;
5182
    }
5183
 
5184
  if (sched_verbose >= 2)
5185
    {
5186
      fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
5187
               (*current_sched_info->print_insn) (next, 0));
5188
 
5189
      if (spec_info && spec_info->dump)
5190
        {
5191
          if (new_ts & BEGIN_DATA)
5192
            fprintf (spec_info->dump, "; data-spec;");
5193
          if (new_ts & BEGIN_CONTROL)
5194
            fprintf (spec_info->dump, "; control-spec;");
5195
          if (new_ts & BE_IN_CONTROL)
5196
            fprintf (spec_info->dump, "; in-control-spec;");
5197
        }
5198
      if (TODO_SPEC (next) & DEP_CONTROL)
5199
        fprintf (sched_dump, " predicated");
5200
      fprintf (sched_dump, "\n");
5201
    }
5202
 
5203
  adjust_priority (next);
5204
 
5205
  return fix_tick_ready (next);
5206
}
5207
 
5208
/* Calculate INSN_TICK of NEXT and add it to either ready or queue list.  */
5209
static int
5210
fix_tick_ready (rtx next)
5211
{
5212
  int tick, delay;
5213
 
5214
  if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
5215
    {
5216
      int full_p;
5217
      sd_iterator_def sd_it;
5218
      dep_t dep;
5219
 
5220
      tick = INSN_TICK (next);
5221
      /* if tick is not equal to INVALID_TICK, then update
5222
         INSN_TICK of NEXT with the most recent resolved dependence
5223
         cost.  Otherwise, recalculate from scratch.  */
5224
      full_p = (tick == INVALID_TICK);
5225
 
5226
      FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
5227
        {
5228
          rtx pro = DEP_PRO (dep);
5229
          int tick1;
5230
 
5231
          gcc_assert (INSN_TICK (pro) >= MIN_TICK);
5232
 
5233
          tick1 = INSN_TICK (pro) + dep_cost (dep);
5234
          if (tick1 > tick)
5235
            tick = tick1;
5236
 
5237
          if (!full_p)
5238
            break;
5239
        }
5240
    }
5241
  else
5242
    tick = -1;
5243
 
5244
  INSN_TICK (next) = tick;
5245
 
5246
  delay = tick - clock_var;
5247
  if (delay <= 0 || sched_pressure_p)
5248
    delay = QUEUE_READY;
5249
 
5250
  change_queue_index (next, delay);
5251
 
5252
  return delay;
5253
}
5254
 
5255
/* Move NEXT to the proper queue list with (DELAY >= 1),
5256
   or add it to the ready list (DELAY == QUEUE_READY),
5257
   or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE).  */
5258
static void
5259
change_queue_index (rtx next, int delay)
5260
{
5261
  int i = QUEUE_INDEX (next);
5262
 
5263
  gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
5264
              && delay != 0);
5265
  gcc_assert (i != QUEUE_SCHEDULED);
5266
 
5267
  if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
5268
      || (delay < 0 && delay == i))
5269
    /* We have nothing to do.  */
5270
    return;
5271
 
5272
  /* Remove NEXT from wherever it is now.  */
5273
  if (i == QUEUE_READY)
5274
    ready_remove_insn (next);
5275
  else if (i >= 0)
5276
    queue_remove (next);
5277
 
5278
  /* Add it to the proper place.  */
5279
  if (delay == QUEUE_READY)
5280
    ready_add (readyp, next, false);
5281
  else if (delay >= 1)
5282
    queue_insn (next, delay, "change queue index");
5283
 
5284
  if (sched_verbose >= 2)
5285
    {
5286
      fprintf (sched_dump, ";;\t\ttick updated: insn %s",
5287
               (*current_sched_info->print_insn) (next, 0));
5288
 
5289
      if (delay == QUEUE_READY)
5290
        fprintf (sched_dump, " into ready\n");
5291
      else if (delay >= 1)
5292
        fprintf (sched_dump, " into queue with cost=%d\n", delay);
5293
      else
5294
        fprintf (sched_dump, " removed from ready or queue lists\n");
5295
    }
5296
}
5297
 
5298
static int sched_ready_n_insns = -1;
5299
 
5300
/* Initialize per region data structures.  */
5301
void
5302
sched_extend_ready_list (int new_sched_ready_n_insns)
5303
{
5304
  int i;
5305
 
5306
  if (sched_ready_n_insns == -1)
5307
    /* At the first call we need to initialize one more choice_stack
5308
       entry.  */
5309
    {
5310
      i = 0;
5311
      sched_ready_n_insns = 0;
5312
      VEC_reserve (rtx, heap, scheduled_insns, new_sched_ready_n_insns);
5313
    }
5314
  else
5315
    i = sched_ready_n_insns + 1;
5316
 
5317
  ready.veclen = new_sched_ready_n_insns + issue_rate;
5318
  ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
5319
 
5320
  gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
5321
 
5322
  ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
5323
                                  sched_ready_n_insns, sizeof (*ready_try));
5324
 
5325
  /* We allocate +1 element to save initial state in the choice_stack[0]
5326
     entry.  */
5327
  choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
5328
                             new_sched_ready_n_insns + 1);
5329
 
5330
  for (; i <= new_sched_ready_n_insns; i++)
5331
    {
5332
      choice_stack[i].state = xmalloc (dfa_state_size);
5333
 
5334
      if (targetm.sched.first_cycle_multipass_init)
5335
        targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
5336
                                                    .target_data));
5337
    }
5338
 
5339
  sched_ready_n_insns = new_sched_ready_n_insns;
5340
}
5341
 
5342
/* Free per region data structures.  */
5343
void
5344
sched_finish_ready_list (void)
5345
{
5346
  int i;
5347
 
5348
  free (ready.vec);
5349
  ready.vec = NULL;
5350
  ready.veclen = 0;
5351
 
5352
  free (ready_try);
5353
  ready_try = NULL;
5354
 
5355
  for (i = 0; i <= sched_ready_n_insns; i++)
5356
    {
5357
      if (targetm.sched.first_cycle_multipass_fini)
5358
        targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
5359
                                                    .target_data));
5360
 
5361
      free (choice_stack [i].state);
5362
    }
5363
  free (choice_stack);
5364
  choice_stack = NULL;
5365
 
5366
  sched_ready_n_insns = -1;
5367
}
5368
 
5369
static int
5370
haifa_luid_for_non_insn (rtx x)
5371
{
5372
  gcc_assert (NOTE_P (x) || LABEL_P (x));
5373
 
5374
  return 0;
5375
}
5376
 
5377
/* Generates recovery code for INSN.  */
5378
static void
5379
generate_recovery_code (rtx insn)
5380
{
5381
  if (TODO_SPEC (insn) & BEGIN_SPEC)
5382
    begin_speculative_block (insn);
5383
 
5384
  /* Here we have insn with no dependencies to
5385
     instructions other then CHECK_SPEC ones.  */
5386
 
5387
  if (TODO_SPEC (insn) & BE_IN_SPEC)
5388
    add_to_speculative_block (insn);
5389
}
5390
 
5391
/* Helper function.
5392
   Tries to add speculative dependencies of type FS between instructions
5393
   in deps_list L and TWIN.  */
5394
static void
5395
process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
5396
{
5397
  sd_iterator_def sd_it;
5398
  dep_t dep;
5399
 
5400
  FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
5401
    {
5402
      ds_t ds;
5403
      rtx consumer;
5404
 
5405
      consumer = DEP_CON (dep);
5406
 
5407
      ds = DEP_STATUS (dep);
5408
 
5409
      if (/* If we want to create speculative dep.  */
5410
          fs
5411
          /* And we can do that because this is a true dep.  */
5412
          && (ds & DEP_TYPES) == DEP_TRUE)
5413
        {
5414
          gcc_assert (!(ds & BE_IN_SPEC));
5415
 
5416
          if (/* If this dep can be overcome with 'begin speculation'.  */
5417
              ds & BEGIN_SPEC)
5418
            /* Then we have a choice: keep the dep 'begin speculative'
5419
               or transform it into 'be in speculative'.  */
5420
            {
5421
              if (/* In try_ready we assert that if insn once became ready
5422
                     it can be removed from the ready (or queue) list only
5423
                     due to backend decision.  Hence we can't let the
5424
                     probability of the speculative dep to decrease.  */
5425
                  ds_weak (ds) <= ds_weak (fs))
5426
                {
5427
                  ds_t new_ds;
5428
 
5429
                  new_ds = (ds & ~BEGIN_SPEC) | fs;
5430
 
5431
                  if (/* consumer can 'be in speculative'.  */
5432
                      sched_insn_is_legitimate_for_speculation_p (consumer,
5433
                                                                  new_ds))
5434
                    /* Transform it to be in speculative.  */
5435
                    ds = new_ds;
5436
                }
5437
            }
5438
          else
5439
            /* Mark the dep as 'be in speculative'.  */
5440
            ds |= fs;
5441
        }
5442
 
5443
      {
5444
        dep_def _new_dep, *new_dep = &_new_dep;
5445
 
5446
        init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
5447
        sd_add_dep (new_dep, false);
5448
      }
5449
    }
5450
}
5451
 
5452
/* Generates recovery code for BEGIN speculative INSN.  */
5453
static void
5454
begin_speculative_block (rtx insn)
5455
{
5456
  if (TODO_SPEC (insn) & BEGIN_DATA)
5457
    nr_begin_data++;
5458
  if (TODO_SPEC (insn) & BEGIN_CONTROL)
5459
    nr_begin_control++;
5460
 
5461
  create_check_block_twin (insn, false);
5462
 
5463
  TODO_SPEC (insn) &= ~BEGIN_SPEC;
5464
}
5465
 
5466
static void haifa_init_insn (rtx);
5467
 
5468
/* Generates recovery code for BE_IN speculative INSN.  */
5469
static void
5470
add_to_speculative_block (rtx insn)
5471
{
5472
  ds_t ts;
5473
  sd_iterator_def sd_it;
5474
  dep_t dep;
5475
  rtx twins = NULL;
5476
  rtx_vec_t priorities_roots;
5477
 
5478
  ts = TODO_SPEC (insn);
5479
  gcc_assert (!(ts & ~BE_IN_SPEC));
5480
 
5481
  if (ts & BE_IN_DATA)
5482
    nr_be_in_data++;
5483
  if (ts & BE_IN_CONTROL)
5484
    nr_be_in_control++;
5485
 
5486
  TODO_SPEC (insn) &= ~BE_IN_SPEC;
5487
  gcc_assert (!TODO_SPEC (insn));
5488
 
5489
  DONE_SPEC (insn) |= ts;
5490
 
5491
  /* First we convert all simple checks to branchy.  */
5492
  for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
5493
       sd_iterator_cond (&sd_it, &dep);)
5494
    {
5495
      rtx check = DEP_PRO (dep);
5496
 
5497
      if (IS_SPECULATION_SIMPLE_CHECK_P (check))
5498
        {
5499
          create_check_block_twin (check, true);
5500
 
5501
          /* Restart search.  */
5502
          sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
5503
        }
5504
      else
5505
        /* Continue search.  */
5506
        sd_iterator_next (&sd_it);
5507
    }
5508
 
5509
  priorities_roots = NULL;
5510
  clear_priorities (insn, &priorities_roots);
5511
 
5512
  while (1)
5513
    {
5514
      rtx check, twin;
5515
      basic_block rec;
5516
 
5517
      /* Get the first backward dependency of INSN.  */
5518
      sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
5519
      if (!sd_iterator_cond (&sd_it, &dep))
5520
        /* INSN has no backward dependencies left.  */
5521
        break;
5522
 
5523
      gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
5524
                  && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
5525
                  && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
5526
 
5527
      check = DEP_PRO (dep);
5528
 
5529
      gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
5530
                  && QUEUE_INDEX (check) == QUEUE_NOWHERE);
5531
 
5532
      rec = BLOCK_FOR_INSN (check);
5533
 
5534
      twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
5535
      haifa_init_insn (twin);
5536
 
5537
      sd_copy_back_deps (twin, insn, true);
5538
 
5539
      if (sched_verbose && spec_info->dump)
5540
        /* INSN_BB (insn) isn't determined for twin insns yet.
5541
           So we can't use current_sched_info->print_insn.  */
5542
        fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
5543
                 INSN_UID (twin), rec->index);
5544
 
5545
      twins = alloc_INSN_LIST (twin, twins);
5546
 
5547
      /* Add dependences between TWIN and all appropriate
5548
         instructions from REC.  */
5549
      FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
5550
        {
5551
          rtx pro = DEP_PRO (dep);
5552
 
5553
          gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
5554
 
5555
          /* INSN might have dependencies from the instructions from
5556
             several recovery blocks.  At this iteration we process those
5557
             producers that reside in REC.  */
5558
          if (BLOCK_FOR_INSN (pro) == rec)
5559
            {
5560
              dep_def _new_dep, *new_dep = &_new_dep;
5561
 
5562
              init_dep (new_dep, pro, twin, REG_DEP_TRUE);
5563
              sd_add_dep (new_dep, false);
5564
            }
5565
        }
5566
 
5567
      process_insn_forw_deps_be_in_spec (insn, twin, ts);
5568
 
5569
      /* Remove all dependencies between INSN and insns in REC.  */
5570
      for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
5571
           sd_iterator_cond (&sd_it, &dep);)
5572
        {
5573
          rtx pro = DEP_PRO (dep);
5574
 
5575
          if (BLOCK_FOR_INSN (pro) == rec)
5576
            sd_delete_dep (sd_it);
5577
          else
5578
            sd_iterator_next (&sd_it);
5579
        }
5580
    }
5581
 
5582
  /* We couldn't have added the dependencies between INSN and TWINS earlier
5583
     because that would make TWINS appear in the INSN_BACK_DEPS (INSN).  */
5584
  while (twins)
5585
    {
5586
      rtx twin;
5587
 
5588
      twin = XEXP (twins, 0);
5589
 
5590
      {
5591
        dep_def _new_dep, *new_dep = &_new_dep;
5592
 
5593
        init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
5594
        sd_add_dep (new_dep, false);
5595
      }
5596
 
5597
      twin = XEXP (twins, 1);
5598
      free_INSN_LIST_node (twins);
5599
      twins = twin;
5600
    }
5601
 
5602
  calc_priorities (priorities_roots);
5603
  VEC_free (rtx, heap, priorities_roots);
5604
}
5605
 
5606
/* Extends and fills with zeros (only the new part) array pointed to by P.  */
5607
void *
5608
xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
5609
{
5610
  gcc_assert (new_nmemb >= old_nmemb);
5611
  p = XRESIZEVAR (void, p, new_nmemb * size);
5612
  memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
5613
  return p;
5614
}
5615
 
5616
/* Helper function.
5617
   Find fallthru edge from PRED.  */
5618
edge
5619
find_fallthru_edge_from (basic_block pred)
5620
{
5621
  edge e;
5622
  basic_block succ;
5623
 
5624
  succ = pred->next_bb;
5625
  gcc_assert (succ->prev_bb == pred);
5626
 
5627
  if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
5628
    {
5629
      e = find_fallthru_edge (pred->succs);
5630
 
5631
      if (e)
5632
        {
5633
          gcc_assert (e->dest == succ);
5634
          return e;
5635
        }
5636
    }
5637
  else
5638
    {
5639
      e = find_fallthru_edge (succ->preds);
5640
 
5641
      if (e)
5642
        {
5643
          gcc_assert (e->src == pred);
5644
          return e;
5645
        }
5646
    }
5647
 
5648
  return NULL;
5649
}
5650
 
5651
/* Extend per basic block data structures.  */
5652
static void
5653
sched_extend_bb (void)
5654
{
5655
  rtx insn;
5656
 
5657
  /* The following is done to keep current_sched_info->next_tail non null.  */
5658
  insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
5659
  if (NEXT_INSN (insn) == 0
5660
      || (!NOTE_P (insn)
5661
          && !LABEL_P (insn)
5662
          /* Don't emit a NOTE if it would end up before a BARRIER.  */
5663
          && !BARRIER_P (NEXT_INSN (insn))))
5664
    {
5665
      rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
5666
      /* Make insn appear outside BB.  */
5667
      set_block_for_insn (note, NULL);
5668
      BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
5669
    }
5670
}
5671
 
5672
/* Init per basic block data structures.  */
5673
void
5674
sched_init_bbs (void)
5675
{
5676
  sched_extend_bb ();
5677
}
5678
 
5679
/* Initialize BEFORE_RECOVERY variable.  */
5680
static void
5681
init_before_recovery (basic_block *before_recovery_ptr)
5682
{
5683
  basic_block last;
5684
  edge e;
5685
 
5686
  last = EXIT_BLOCK_PTR->prev_bb;
5687
  e = find_fallthru_edge_from (last);
5688
 
5689
  if (e)
5690
    {
5691
      /* We create two basic blocks:
5692
         1. Single instruction block is inserted right after E->SRC
5693
         and has jump to
5694
         2. Empty block right before EXIT_BLOCK.
5695
         Between these two blocks recovery blocks will be emitted.  */
5696
 
5697
      basic_block single, empty;
5698
      rtx x, label;
5699
 
5700
      /* If the fallthrough edge to exit we've found is from the block we've
5701
         created before, don't do anything more.  */
5702
      if (last == after_recovery)
5703
        return;
5704
 
5705
      adding_bb_to_current_region_p = false;
5706
 
5707
      single = sched_create_empty_bb (last);
5708
      empty = sched_create_empty_bb (single);
5709
 
5710
      /* Add new blocks to the root loop.  */
5711
      if (current_loops != NULL)
5712
        {
5713
          add_bb_to_loop (single, VEC_index (loop_p, current_loops->larray, 0));
5714
          add_bb_to_loop (empty, VEC_index (loop_p, current_loops->larray, 0));
5715
        }
5716
 
5717
      single->count = last->count;
5718
      empty->count = last->count;
5719
      single->frequency = last->frequency;
5720
      empty->frequency = last->frequency;
5721
      BB_COPY_PARTITION (single, last);
5722
      BB_COPY_PARTITION (empty, last);
5723
 
5724
      redirect_edge_succ (e, single);
5725
      make_single_succ_edge (single, empty, 0);
5726
      make_single_succ_edge (empty, EXIT_BLOCK_PTR,
5727
                             EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
5728
 
5729
      label = block_label (empty);
5730
      x = emit_jump_insn_after (gen_jump (label), BB_END (single));
5731
      JUMP_LABEL (x) = label;
5732
      LABEL_NUSES (label)++;
5733
      haifa_init_insn (x);
5734
 
5735
      emit_barrier_after (x);
5736
 
5737
      sched_init_only_bb (empty, NULL);
5738
      sched_init_only_bb (single, NULL);
5739
      sched_extend_bb ();
5740
 
5741
      adding_bb_to_current_region_p = true;
5742
      before_recovery = single;
5743
      after_recovery = empty;
5744
 
5745
      if (before_recovery_ptr)
5746
        *before_recovery_ptr = before_recovery;
5747
 
5748
      if (sched_verbose >= 2 && spec_info->dump)
5749
        fprintf (spec_info->dump,
5750
                 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
5751
                 last->index, single->index, empty->index);
5752
    }
5753
  else
5754
    before_recovery = last;
5755
}
5756
 
5757
/* Returns new recovery block.  */
5758
basic_block
5759
sched_create_recovery_block (basic_block *before_recovery_ptr)
5760
{
5761
  rtx label;
5762
  rtx barrier;
5763
  basic_block rec;
5764
 
5765
  haifa_recovery_bb_recently_added_p = true;
5766
  haifa_recovery_bb_ever_added_p = true;
5767
 
5768
  init_before_recovery (before_recovery_ptr);
5769
 
5770
  barrier = get_last_bb_insn (before_recovery);
5771
  gcc_assert (BARRIER_P (barrier));
5772
 
5773
  label = emit_label_after (gen_label_rtx (), barrier);
5774
 
5775
  rec = create_basic_block (label, label, before_recovery);
5776
 
5777
  /* A recovery block always ends with an unconditional jump.  */
5778
  emit_barrier_after (BB_END (rec));
5779
 
5780
  if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
5781
    BB_SET_PARTITION (rec, BB_COLD_PARTITION);
5782
 
5783
  if (sched_verbose && spec_info->dump)
5784
    fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
5785
             rec->index);
5786
 
5787
  return rec;
5788
}
5789
 
5790
/* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
5791
   and emit necessary jumps.  */
5792
void
5793
sched_create_recovery_edges (basic_block first_bb, basic_block rec,
5794
                             basic_block second_bb)
5795
{
5796
  rtx label;
5797
  rtx jump;
5798
  int edge_flags;
5799
 
5800
  /* This is fixing of incoming edge.  */
5801
  /* ??? Which other flags should be specified?  */
5802
  if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
5803
    /* Partition type is the same, if it is "unpartitioned".  */
5804
    edge_flags = EDGE_CROSSING;
5805
  else
5806
    edge_flags = 0;
5807
 
5808
  make_edge (first_bb, rec, edge_flags);
5809
  label = block_label (second_bb);
5810
  jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
5811
  JUMP_LABEL (jump) = label;
5812
  LABEL_NUSES (label)++;
5813
 
5814
  if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
5815
    /* Partition type is the same, if it is "unpartitioned".  */
5816
    {
5817
      /* Rewritten from cfgrtl.c.  */
5818
      if (flag_reorder_blocks_and_partition
5819
          && targetm_common.have_named_sections)
5820
        {
5821
          /* We don't need the same note for the check because
5822
             any_condjump_p (check) == true.  */
5823
          add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
5824
        }
5825
      edge_flags = EDGE_CROSSING;
5826
    }
5827
  else
5828
    edge_flags = 0;
5829
 
5830
  make_single_succ_edge (rec, second_bb, edge_flags);
5831
  if (dom_info_available_p (CDI_DOMINATORS))
5832
    set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
5833
}
5834
 
5835
/* This function creates recovery code for INSN.  If MUTATE_P is nonzero,
5836
   INSN is a simple check, that should be converted to branchy one.  */
5837
static void
5838
create_check_block_twin (rtx insn, bool mutate_p)
5839
{
5840
  basic_block rec;
5841
  rtx label, check, twin;
5842
  ds_t fs;
5843
  sd_iterator_def sd_it;
5844
  dep_t dep;
5845
  dep_def _new_dep, *new_dep = &_new_dep;
5846
  ds_t todo_spec;
5847
 
5848
  gcc_assert (ORIG_PAT (insn) != NULL_RTX);
5849
 
5850
  if (!mutate_p)
5851
    todo_spec = TODO_SPEC (insn);
5852
  else
5853
    {
5854
      gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
5855
                  && (TODO_SPEC (insn) & SPECULATIVE) == 0);
5856
 
5857
      todo_spec = CHECK_SPEC (insn);
5858
    }
5859
 
5860
  todo_spec &= SPECULATIVE;
5861
 
5862
  /* Create recovery block.  */
5863
  if (mutate_p || targetm.sched.needs_block_p (todo_spec))
5864
    {
5865
      rec = sched_create_recovery_block (NULL);
5866
      label = BB_HEAD (rec);
5867
    }
5868
  else
5869
    {
5870
      rec = EXIT_BLOCK_PTR;
5871
      label = NULL_RTX;
5872
    }
5873
 
5874
  /* Emit CHECK.  */
5875
  check = targetm.sched.gen_spec_check (insn, label, todo_spec);
5876
 
5877
  if (rec != EXIT_BLOCK_PTR)
5878
    {
5879
      /* To have mem_reg alive at the beginning of second_bb,
5880
         we emit check BEFORE insn, so insn after splitting
5881
         insn will be at the beginning of second_bb, which will
5882
         provide us with the correct life information.  */
5883
      check = emit_jump_insn_before (check, insn);
5884
      JUMP_LABEL (check) = label;
5885
      LABEL_NUSES (label)++;
5886
    }
5887
  else
5888
    check = emit_insn_before (check, insn);
5889
 
5890
  /* Extend data structures.  */
5891
  haifa_init_insn (check);
5892
 
5893
  /* CHECK is being added to current region.  Extend ready list.  */
5894
  gcc_assert (sched_ready_n_insns != -1);
5895
  sched_extend_ready_list (sched_ready_n_insns + 1);
5896
 
5897
  if (current_sched_info->add_remove_insn)
5898
    current_sched_info->add_remove_insn (insn, 0);
5899
 
5900
  RECOVERY_BLOCK (check) = rec;
5901
 
5902
  if (sched_verbose && spec_info->dump)
5903
    fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
5904
             (*current_sched_info->print_insn) (check, 0));
5905
 
5906
  gcc_assert (ORIG_PAT (insn));
5907
 
5908
  /* Initialize TWIN (twin is a duplicate of original instruction
5909
     in the recovery block).  */
5910
  if (rec != EXIT_BLOCK_PTR)
5911
    {
5912
      sd_iterator_def sd_it;
5913
      dep_t dep;
5914
 
5915
      FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
5916
        if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
5917
          {
5918
            struct _dep _dep2, *dep2 = &_dep2;
5919
 
5920
            init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
5921
 
5922
            sd_add_dep (dep2, true);
5923
          }
5924
 
5925
      twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
5926
      haifa_init_insn (twin);
5927
 
5928
      if (sched_verbose && spec_info->dump)
5929
        /* INSN_BB (insn) isn't determined for twin insns yet.
5930
           So we can't use current_sched_info->print_insn.  */
5931
        fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
5932
                 INSN_UID (twin), rec->index);
5933
    }
5934
  else
5935
    {
5936
      ORIG_PAT (check) = ORIG_PAT (insn);
5937
      HAS_INTERNAL_DEP (check) = 1;
5938
      twin = check;
5939
      /* ??? We probably should change all OUTPUT dependencies to
5940
         (TRUE | OUTPUT).  */
5941
    }
5942
 
5943
  /* Copy all resolved back dependencies of INSN to TWIN.  This will
5944
     provide correct value for INSN_TICK (TWIN).  */
5945
  sd_copy_back_deps (twin, insn, true);
5946
 
5947
  if (rec != EXIT_BLOCK_PTR)
5948
    /* In case of branchy check, fix CFG.  */
5949
    {
5950
      basic_block first_bb, second_bb;
5951
      rtx jump;
5952
 
5953
      first_bb = BLOCK_FOR_INSN (check);
5954
      second_bb = sched_split_block (first_bb, check);
5955
 
5956
      sched_create_recovery_edges (first_bb, rec, second_bb);
5957
 
5958
      sched_init_only_bb (second_bb, first_bb);
5959
      sched_init_only_bb (rec, EXIT_BLOCK_PTR);
5960
 
5961
      jump = BB_END (rec);
5962
      haifa_init_insn (jump);
5963
    }
5964
 
5965
  /* Move backward dependences from INSN to CHECK and
5966
     move forward dependences from INSN to TWIN.  */
5967
 
5968
  /* First, create dependencies between INSN's producers and CHECK & TWIN.  */
5969
  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
5970
    {
5971
      rtx pro = DEP_PRO (dep);
5972
      ds_t ds;
5973
 
5974
      /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
5975
         check --TRUE--> producer  ??? or ANTI ???
5976
         twin  --TRUE--> producer
5977
         twin  --ANTI--> check
5978
 
5979
         If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
5980
         check --ANTI--> producer
5981
         twin  --ANTI--> producer
5982
         twin  --ANTI--> check
5983
 
5984
         If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
5985
         check ~~TRUE~~> producer
5986
         twin  ~~TRUE~~> producer
5987
         twin  --ANTI--> check  */
5988
 
5989
      ds = DEP_STATUS (dep);
5990
 
5991
      if (ds & BEGIN_SPEC)
5992
        {
5993
          gcc_assert (!mutate_p);
5994
          ds &= ~BEGIN_SPEC;
5995
        }
5996
 
5997
      init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
5998
      sd_add_dep (new_dep, false);
5999
 
6000
      if (rec != EXIT_BLOCK_PTR)
6001
        {
6002
          DEP_CON (new_dep) = twin;
6003
          sd_add_dep (new_dep, false);
6004
        }
6005
    }
6006
 
6007
  /* Second, remove backward dependencies of INSN.  */
6008
  for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
6009
       sd_iterator_cond (&sd_it, &dep);)
6010
    {
6011
      if ((DEP_STATUS (dep) & BEGIN_SPEC)
6012
          || mutate_p)
6013
        /* We can delete this dep because we overcome it with
6014
           BEGIN_SPECULATION.  */
6015
        sd_delete_dep (sd_it);
6016
      else
6017
        sd_iterator_next (&sd_it);
6018
    }
6019
 
6020
  /* Future Speculations.  Determine what BE_IN speculations will be like.  */
6021
  fs = 0;
6022
 
6023
  /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
6024
     here.  */
6025
 
6026
  gcc_assert (!DONE_SPEC (insn));
6027
 
6028
  if (!mutate_p)
6029
    {
6030
      ds_t ts = TODO_SPEC (insn);
6031
 
6032
      DONE_SPEC (insn) = ts & BEGIN_SPEC;
6033
      CHECK_SPEC (check) = ts & BEGIN_SPEC;
6034
 
6035
      /* Luckiness of future speculations solely depends upon initial
6036
         BEGIN speculation.  */
6037
      if (ts & BEGIN_DATA)
6038
        fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
6039
      if (ts & BEGIN_CONTROL)
6040
        fs = set_dep_weak (fs, BE_IN_CONTROL,
6041
                           get_dep_weak (ts, BEGIN_CONTROL));
6042
    }
6043
  else
6044
    CHECK_SPEC (check) = CHECK_SPEC (insn);
6045
 
6046
  /* Future speculations: call the helper.  */
6047
  process_insn_forw_deps_be_in_spec (insn, twin, fs);
6048
 
6049
  if (rec != EXIT_BLOCK_PTR)
6050
    {
6051
      /* Which types of dependencies should we use here is,
6052
         generally, machine-dependent question...  But, for now,
6053
         it is not.  */
6054
 
6055
      if (!mutate_p)
6056
        {
6057
          init_dep (new_dep, insn, check, REG_DEP_TRUE);
6058
          sd_add_dep (new_dep, false);
6059
 
6060
          init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
6061
          sd_add_dep (new_dep, false);
6062
        }
6063
      else
6064
        {
6065
          if (spec_info->dump)
6066
            fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
6067
                     (*current_sched_info->print_insn) (insn, 0));
6068
 
6069
          /* Remove all dependencies of the INSN.  */
6070
          {
6071
            sd_it = sd_iterator_start (insn, (SD_LIST_FORW
6072
                                              | SD_LIST_BACK
6073
                                              | SD_LIST_RES_BACK));
6074
            while (sd_iterator_cond (&sd_it, &dep))
6075
              sd_delete_dep (sd_it);
6076
          }
6077
 
6078
          /* If former check (INSN) already was moved to the ready (or queue)
6079
             list, add new check (CHECK) there too.  */
6080
          if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
6081
            try_ready (check);
6082
 
6083
          /* Remove old check from instruction stream and free its
6084
             data.  */
6085
          sched_remove_insn (insn);
6086
        }
6087
 
6088
      init_dep (new_dep, check, twin, REG_DEP_ANTI);
6089
      sd_add_dep (new_dep, false);
6090
    }
6091
  else
6092
    {
6093
      init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
6094
      sd_add_dep (new_dep, false);
6095
    }
6096
 
6097
  if (!mutate_p)
6098
    /* Fix priorities.  If MUTATE_P is nonzero, this is not necessary,
6099
       because it'll be done later in add_to_speculative_block.  */
6100
    {
6101
      rtx_vec_t priorities_roots = NULL;
6102
 
6103
      clear_priorities (twin, &priorities_roots);
6104
      calc_priorities (priorities_roots);
6105
      VEC_free (rtx, heap, priorities_roots);
6106
    }
6107
}
6108
 
6109
/* Removes dependency between instructions in the recovery block REC
6110
   and usual region instructions.  It keeps inner dependences so it
6111
   won't be necessary to recompute them.  */
6112
static void
6113
fix_recovery_deps (basic_block rec)
6114
{
6115
  rtx note, insn, jump, ready_list = 0;
6116
  bitmap_head in_ready;
6117
  rtx link;
6118
 
6119
  bitmap_initialize (&in_ready, 0);
6120
 
6121
  /* NOTE - a basic block note.  */
6122
  note = NEXT_INSN (BB_HEAD (rec));
6123
  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
6124
  insn = BB_END (rec);
6125
  gcc_assert (JUMP_P (insn));
6126
  insn = PREV_INSN (insn);
6127
 
6128
  do
6129
    {
6130
      sd_iterator_def sd_it;
6131
      dep_t dep;
6132
 
6133
      for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
6134
           sd_iterator_cond (&sd_it, &dep);)
6135
        {
6136
          rtx consumer = DEP_CON (dep);
6137
 
6138
          if (BLOCK_FOR_INSN (consumer) != rec)
6139
            {
6140
              sd_delete_dep (sd_it);
6141
 
6142
              if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
6143
                ready_list = alloc_INSN_LIST (consumer, ready_list);
6144
            }
6145
          else
6146
            {
6147
              gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
6148
 
6149
              sd_iterator_next (&sd_it);
6150
            }
6151
        }
6152
 
6153
      insn = PREV_INSN (insn);
6154
    }
6155
  while (insn != note);
6156
 
6157
  bitmap_clear (&in_ready);
6158
 
6159
  /* Try to add instructions to the ready or queue list.  */
6160
  for (link = ready_list; link; link = XEXP (link, 1))
6161
    try_ready (XEXP (link, 0));
6162
  free_INSN_LIST_list (&ready_list);
6163
 
6164
  /* Fixing jump's dependences.  */
6165
  insn = BB_HEAD (rec);
6166
  jump = BB_END (rec);
6167
 
6168
  gcc_assert (LABEL_P (insn));
6169
  insn = NEXT_INSN (insn);
6170
 
6171
  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
6172
  add_jump_dependencies (insn, jump);
6173
}
6174
 
6175
/* Change pattern of INSN to NEW_PAT.  Invalidate cached haifa
6176
   instruction data.  */
6177
static bool
6178
haifa_change_pattern (rtx insn, rtx new_pat)
6179
{
6180
  sd_iterator_def sd_it;
6181
  dep_t dep;
6182
  int t;
6183
 
6184
  t = validate_change (insn, &PATTERN (insn), new_pat, 0);
6185
  if (!t)
6186
    return false;
6187
  dfa_clear_single_insn_cache (insn);
6188
 
6189
  sd_it = sd_iterator_start (insn,
6190
                             SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
6191
  while (sd_iterator_cond (&sd_it, &dep))
6192
    {
6193
      DEP_COST (dep) = UNKNOWN_DEP_COST;
6194
      sd_iterator_next (&sd_it);
6195
    }
6196
 
6197
  /* Invalidate INSN_COST, so it'll be recalculated.  */
6198
  INSN_COST (insn) = -1;
6199
  /* Invalidate INSN_TICK, so it'll be recalculated.  */
6200
  INSN_TICK (insn) = INVALID_TICK;
6201
  return true;
6202
}
6203
 
6204
/* -1 - can't speculate,
6205
 
6206
   current instruction pattern,
6207
   1 - need to change pattern for *NEW_PAT to be speculative.  */
6208
int
6209
sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
6210
{
6211
  gcc_assert (current_sched_info->flags & DO_SPECULATION
6212
              && (request & SPECULATIVE)
6213
              && sched_insn_is_legitimate_for_speculation_p (insn, request));
6214
 
6215
  if ((request & spec_info->mask) != request)
6216
    return -1;
6217
 
6218
  if (request & BE_IN_SPEC
6219
      && !(request & BEGIN_SPEC))
6220
    return 0;
6221
 
6222
  return targetm.sched.speculate_insn (insn, request, new_pat);
6223
}
6224
 
6225
static int
6226
haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
6227
{
6228
  gcc_assert (sched_deps_info->generate_spec_deps
6229
              && !IS_SPECULATION_CHECK_P (insn));
6230
 
6231
  if (HAS_INTERNAL_DEP (insn)
6232
      || SCHED_GROUP_P (insn))
6233
    return -1;
6234
 
6235
  return sched_speculate_insn (insn, request, new_pat);
6236
}
6237
 
6238
/* Print some information about block BB, which starts with HEAD and
6239
   ends with TAIL, before scheduling it.
6240
   I is zero, if scheduler is about to start with the fresh ebb.  */
6241
static void
6242
dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
6243
{
6244
  if (!i)
6245
    fprintf (sched_dump,
6246
             ";;   ======================================================\n");
6247
  else
6248
    fprintf (sched_dump,
6249
             ";;   =====================ADVANCING TO=====================\n");
6250
  fprintf (sched_dump,
6251
           ";;   -- basic block %d from %d to %d -- %s reload\n",
6252
           bb->index, INSN_UID (head), INSN_UID (tail),
6253
           (reload_completed ? "after" : "before"));
6254
  fprintf (sched_dump,
6255
           ";;   ======================================================\n");
6256
  fprintf (sched_dump, "\n");
6257
}
6258
 
6259
/* Unlink basic block notes and labels and saves them, so they
6260
   can be easily restored.  We unlink basic block notes in EBB to
6261
   provide back-compatibility with the previous code, as target backends
6262
   assume, that there'll be only instructions between
6263
   current_sched_info->{head and tail}.  We restore these notes as soon
6264
   as we can.
6265
   FIRST (LAST) is the first (last) basic block in the ebb.
6266
   NB: In usual case (FIRST == LAST) nothing is really done.  */
6267
void
6268
unlink_bb_notes (basic_block first, basic_block last)
6269
{
6270
  /* We DON'T unlink basic block notes of the first block in the ebb.  */
6271
  if (first == last)
6272
    return;
6273
 
6274
  bb_header = XNEWVEC (rtx, last_basic_block);
6275
 
6276
  /* Make a sentinel.  */
6277
  if (last->next_bb != EXIT_BLOCK_PTR)
6278
    bb_header[last->next_bb->index] = 0;
6279
 
6280
  first = first->next_bb;
6281
  do
6282
    {
6283
      rtx prev, label, note, next;
6284
 
6285
      label = BB_HEAD (last);
6286
      if (LABEL_P (label))
6287
        note = NEXT_INSN (label);
6288
      else
6289
        note = label;
6290
      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
6291
 
6292
      prev = PREV_INSN (label);
6293
      next = NEXT_INSN (note);
6294
      gcc_assert (prev && next);
6295
 
6296
      NEXT_INSN (prev) = next;
6297
      PREV_INSN (next) = prev;
6298
 
6299
      bb_header[last->index] = label;
6300
 
6301
      if (last == first)
6302
        break;
6303
 
6304
      last = last->prev_bb;
6305
    }
6306
  while (1);
6307
}
6308
 
6309
/* Restore basic block notes.
6310
   FIRST is the first basic block in the ebb.  */
6311
static void
6312
restore_bb_notes (basic_block first)
6313
{
6314
  if (!bb_header)
6315
    return;
6316
 
6317
  /* We DON'T unlink basic block notes of the first block in the ebb.  */
6318
  first = first->next_bb;
6319
  /* Remember: FIRST is actually a second basic block in the ebb.  */
6320
 
6321
  while (first != EXIT_BLOCK_PTR
6322
         && bb_header[first->index])
6323
    {
6324
      rtx prev, label, note, next;
6325
 
6326
      label = bb_header[first->index];
6327
      prev = PREV_INSN (label);
6328
      next = NEXT_INSN (prev);
6329
 
6330
      if (LABEL_P (label))
6331
        note = NEXT_INSN (label);
6332
      else
6333
        note = label;
6334
      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
6335
 
6336
      bb_header[first->index] = 0;
6337
 
6338
      NEXT_INSN (prev) = label;
6339
      NEXT_INSN (note) = next;
6340
      PREV_INSN (next) = note;
6341
 
6342
      first = first->next_bb;
6343
    }
6344
 
6345
  free (bb_header);
6346
  bb_header = 0;
6347
}
6348
 
6349
/* Helper function.
6350
   Fix CFG after both in- and inter-block movement of
6351
   control_flow_insn_p JUMP.  */
6352
static void
6353
fix_jump_move (rtx jump)
6354
{
6355
  basic_block bb, jump_bb, jump_bb_next;
6356
 
6357
  bb = BLOCK_FOR_INSN (PREV_INSN (jump));
6358
  jump_bb = BLOCK_FOR_INSN (jump);
6359
  jump_bb_next = jump_bb->next_bb;
6360
 
6361
  gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
6362
              || IS_SPECULATION_BRANCHY_CHECK_P (jump));
6363
 
6364
  if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
6365
    /* if jump_bb_next is not empty.  */
6366
    BB_END (jump_bb) = BB_END (jump_bb_next);
6367
 
6368
  if (BB_END (bb) != PREV_INSN (jump))
6369
    /* Then there are instruction after jump that should be placed
6370
       to jump_bb_next.  */
6371
    BB_END (jump_bb_next) = BB_END (bb);
6372
  else
6373
    /* Otherwise jump_bb_next is empty.  */
6374
    BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
6375
 
6376
  /* To make assertion in move_insn happy.  */
6377
  BB_END (bb) = PREV_INSN (jump);
6378
 
6379
  update_bb_for_insn (jump_bb_next);
6380
}
6381
 
6382
/* Fix CFG after interblock movement of control_flow_insn_p JUMP.  */
6383
static void
6384
move_block_after_check (rtx jump)
6385
{
6386
  basic_block bb, jump_bb, jump_bb_next;
6387
  VEC(edge,gc) *t;
6388
 
6389
  bb = BLOCK_FOR_INSN (PREV_INSN (jump));
6390
  jump_bb = BLOCK_FOR_INSN (jump);
6391
  jump_bb_next = jump_bb->next_bb;
6392
 
6393
  update_bb_for_insn (jump_bb);
6394
 
6395
  gcc_assert (IS_SPECULATION_CHECK_P (jump)
6396
              || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
6397
 
6398
  unlink_block (jump_bb_next);
6399
  link_block (jump_bb_next, bb);
6400
 
6401
  t = bb->succs;
6402
  bb->succs = 0;
6403
  move_succs (&(jump_bb->succs), bb);
6404
  move_succs (&(jump_bb_next->succs), jump_bb);
6405
  move_succs (&t, jump_bb_next);
6406
 
6407
  df_mark_solutions_dirty ();
6408
 
6409
  common_sched_info->fix_recovery_cfg
6410
    (bb->index, jump_bb->index, jump_bb_next->index);
6411
}
6412
 
6413
/* Helper function for move_block_after_check.
6414
   This functions attaches edge vector pointed to by SUCCSP to
6415
   block TO.  */
6416
static void
6417
move_succs (VEC(edge,gc) **succsp, basic_block to)
6418
{
6419
  edge e;
6420
  edge_iterator ei;
6421
 
6422
  gcc_assert (to->succs == 0);
6423
 
6424
  to->succs = *succsp;
6425
 
6426
  FOR_EACH_EDGE (e, ei, to->succs)
6427
    e->src = to;
6428
 
6429
  *succsp = 0;
6430
}
6431
 
6432
/* Remove INSN from the instruction stream.
6433
   INSN should have any dependencies.  */
6434
static void
6435
sched_remove_insn (rtx insn)
6436
{
6437
  sd_finish_insn (insn);
6438
 
6439
  change_queue_index (insn, QUEUE_NOWHERE);
6440
  current_sched_info->add_remove_insn (insn, 1);
6441
  remove_insn (insn);
6442
}
6443
 
6444
/* Clear priorities of all instructions, that are forward dependent on INSN.
6445
   Store in vector pointed to by ROOTS_PTR insns on which priority () should
6446
   be invoked to initialize all cleared priorities.  */
6447
static void
6448
clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
6449
{
6450
  sd_iterator_def sd_it;
6451
  dep_t dep;
6452
  bool insn_is_root_p = true;
6453
 
6454
  gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
6455
 
6456
  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
6457
    {
6458
      rtx pro = DEP_PRO (dep);
6459
 
6460
      if (INSN_PRIORITY_STATUS (pro) >= 0
6461
          && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
6462
        {
6463
          /* If DEP doesn't contribute to priority then INSN itself should
6464
             be added to priority roots.  */
6465
          if (contributes_to_priority_p (dep))
6466
            insn_is_root_p = false;
6467
 
6468
          INSN_PRIORITY_STATUS (pro) = -1;
6469
          clear_priorities (pro, roots_ptr);
6470
        }
6471
    }
6472
 
6473
  if (insn_is_root_p)
6474
    VEC_safe_push (rtx, heap, *roots_ptr, insn);
6475
}
6476
 
6477
/* Recompute priorities of instructions, whose priorities might have been
6478
   changed.  ROOTS is a vector of instructions whose priority computation will
6479
   trigger initialization of all cleared priorities.  */
6480
static void
6481
calc_priorities (rtx_vec_t roots)
6482
{
6483
  int i;
6484
  rtx insn;
6485
 
6486
  FOR_EACH_VEC_ELT (rtx, roots, i, insn)
6487
    priority (insn);
6488
}
6489
 
6490
 
6491
/* Add dependences between JUMP and other instructions in the recovery
6492
   block.  INSN is the first insn the recovery block.  */
6493
static void
6494
add_jump_dependencies (rtx insn, rtx jump)
6495
{
6496
  do
6497
    {
6498
      insn = NEXT_INSN (insn);
6499
      if (insn == jump)
6500
        break;
6501
 
6502
      if (dep_list_size (insn) == 0)
6503
        {
6504
          dep_def _new_dep, *new_dep = &_new_dep;
6505
 
6506
          init_dep (new_dep, insn, jump, REG_DEP_ANTI);
6507
          sd_add_dep (new_dep, false);
6508
        }
6509
    }
6510
  while (1);
6511
 
6512
  gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
6513
}
6514
 
6515
/* Extend data structures for logical insn UID.  */
6516
void
6517
sched_extend_luids (void)
6518
{
6519
  int new_luids_max_uid = get_max_uid () + 1;
6520
 
6521
  VEC_safe_grow_cleared (int, heap, sched_luids, new_luids_max_uid);
6522
}
6523
 
6524
/* Initialize LUID for INSN.  */
6525
void
6526
sched_init_insn_luid (rtx insn)
6527
{
6528
  int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
6529
  int luid;
6530
 
6531
  if (i >= 0)
6532
    {
6533
      luid = sched_max_luid;
6534
      sched_max_luid += i;
6535
    }
6536
  else
6537
    luid = -1;
6538
 
6539
  SET_INSN_LUID (insn, luid);
6540
}
6541
 
6542
/* Initialize luids for BBS.
6543
   The hook common_sched_info->luid_for_non_insn () is used to determine
6544
   if notes, labels, etc. need luids.  */
6545
void
6546
sched_init_luids (bb_vec_t bbs)
6547
{
6548
  int i;
6549
  basic_block bb;
6550
 
6551
  sched_extend_luids ();
6552
  FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6553
    {
6554
      rtx insn;
6555
 
6556
      FOR_BB_INSNS (bb, insn)
6557
        sched_init_insn_luid (insn);
6558
    }
6559
}
6560
 
6561
/* Free LUIDs.  */
6562
void
6563
sched_finish_luids (void)
6564
{
6565
  VEC_free (int, heap, sched_luids);
6566
  sched_max_luid = 1;
6567
}
6568
 
6569
/* Return logical uid of INSN.  Helpful while debugging.  */
6570
int
6571
insn_luid (rtx insn)
6572
{
6573
  return INSN_LUID (insn);
6574
}
6575
 
6576
/* Extend per insn data in the target.  */
6577
void
6578
sched_extend_target (void)
6579
{
6580
  if (targetm.sched.h_i_d_extended)
6581
    targetm.sched.h_i_d_extended ();
6582
}
6583
 
6584
/* Extend global scheduler structures (those, that live across calls to
6585
   schedule_block) to include information about just emitted INSN.  */
6586
static void
6587
extend_h_i_d (void)
6588
{
6589
  int reserve = (get_max_uid () + 1
6590
                 - VEC_length (haifa_insn_data_def, h_i_d));
6591
  if (reserve > 0
6592
      && ! VEC_space (haifa_insn_data_def, h_i_d, reserve))
6593
    {
6594
      VEC_safe_grow_cleared (haifa_insn_data_def, heap, h_i_d,
6595
                             3 * get_max_uid () / 2);
6596
      sched_extend_target ();
6597
    }
6598
}
6599
 
6600
/* Initialize h_i_d entry of the INSN with default values.
6601
   Values, that are not explicitly initialized here, hold zero.  */
6602
static void
6603
init_h_i_d (rtx insn)
6604
{
6605
  if (INSN_LUID (insn) > 0)
6606
    {
6607
      INSN_COST (insn) = -1;
6608
      QUEUE_INDEX (insn) = QUEUE_NOWHERE;
6609
      INSN_TICK (insn) = INVALID_TICK;
6610
      INSN_EXACT_TICK (insn) = INVALID_TICK;
6611
      INTER_TICK (insn) = INVALID_TICK;
6612
      TODO_SPEC (insn) = HARD_DEP;
6613
    }
6614
}
6615
 
6616
/* Initialize haifa_insn_data for BBS.  */
6617
void
6618
haifa_init_h_i_d (bb_vec_t bbs)
6619
{
6620
  int i;
6621
  basic_block bb;
6622
 
6623
  extend_h_i_d ();
6624
  FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6625
    {
6626
      rtx insn;
6627
 
6628
      FOR_BB_INSNS (bb, insn)
6629
        init_h_i_d (insn);
6630
    }
6631
}
6632
 
6633
/* Finalize haifa_insn_data.  */
6634
void
6635
haifa_finish_h_i_d (void)
6636
{
6637
  int i;
6638
  haifa_insn_data_t data;
6639
  struct reg_use_data *use, *next;
6640
 
6641
  FOR_EACH_VEC_ELT (haifa_insn_data_def, h_i_d, i, data)
6642
    {
6643
      free (data->reg_pressure);
6644
      for (use = data->reg_use_list; use != NULL; use = next)
6645
        {
6646
          next = use->next_insn_use;
6647
          free (use);
6648
        }
6649
    }
6650
  VEC_free (haifa_insn_data_def, heap, h_i_d);
6651
}
6652
 
6653
/* Init data for the new insn INSN.  */
6654
static void
6655
haifa_init_insn (rtx insn)
6656
{
6657
  gcc_assert (insn != NULL);
6658
 
6659
  sched_extend_luids ();
6660
  sched_init_insn_luid (insn);
6661
  sched_extend_target ();
6662
  sched_deps_init (false);
6663
  extend_h_i_d ();
6664
  init_h_i_d (insn);
6665
 
6666
  if (adding_bb_to_current_region_p)
6667
    {
6668
      sd_init_insn (insn);
6669
 
6670
      /* Extend dependency caches by one element.  */
6671
      extend_dependency_caches (1, false);
6672
    }
6673
  if (sched_pressure_p)
6674
    init_insn_reg_pressure_info (insn);
6675
}
6676
 
6677
/* Init data for the new basic block BB which comes after AFTER.  */
6678
static void
6679
haifa_init_only_bb (basic_block bb, basic_block after)
6680
{
6681
  gcc_assert (bb != NULL);
6682
 
6683
  sched_init_bbs ();
6684
 
6685
  if (common_sched_info->add_block)
6686
    /* This changes only data structures of the front-end.  */
6687
    common_sched_info->add_block (bb, after);
6688
}
6689
 
6690
/* A generic version of sched_split_block ().  */
6691
basic_block
6692
sched_split_block_1 (basic_block first_bb, rtx after)
6693
{
6694
  edge e;
6695
 
6696
  e = split_block (first_bb, after);
6697
  gcc_assert (e->src == first_bb);
6698
 
6699
  /* sched_split_block emits note if *check == BB_END.  Probably it
6700
     is better to rip that note off.  */
6701
 
6702
  return e->dest;
6703
}
6704
 
6705
/* A generic version of sched_create_empty_bb ().  */
6706
basic_block
6707
sched_create_empty_bb_1 (basic_block after)
6708
{
6709
  return create_empty_bb (after);
6710
}
6711
 
6712
/* Insert PAT as an INSN into the schedule and update the necessary data
6713
   structures to account for it. */
6714
rtx
6715
sched_emit_insn (rtx pat)
6716
{
6717
  rtx insn = emit_insn_before (pat, nonscheduled_insns_begin);
6718
  haifa_init_insn (insn);
6719
 
6720
  if (current_sched_info->add_remove_insn)
6721
    current_sched_info->add_remove_insn (insn, 0);
6722
 
6723
  (*current_sched_info->begin_schedule_ready) (insn);
6724
  VEC_safe_push (rtx, heap, scheduled_insns, insn);
6725
 
6726
  last_scheduled_insn = insn;
6727
  return insn;
6728
}
6729
 
6730
/* This function returns a candidate satisfying dispatch constraints from
6731
   the ready list.  */
6732
 
6733
static rtx
6734
ready_remove_first_dispatch (struct ready_list *ready)
6735
{
6736
  int i;
6737
  rtx insn = ready_element (ready, 0);
6738
 
6739
  if (ready->n_ready == 1
6740
      || INSN_CODE (insn) < 0
6741
      || !INSN_P (insn)
6742
      || !active_insn_p (insn)
6743
      || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
6744
    return ready_remove_first (ready);
6745
 
6746
  for (i = 1; i < ready->n_ready; i++)
6747
    {
6748
      insn = ready_element (ready, i);
6749
 
6750
      if (INSN_CODE (insn) < 0
6751
          || !INSN_P (insn)
6752
          || !active_insn_p (insn))
6753
        continue;
6754
 
6755
      if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
6756
        {
6757
          /* Return ith element of ready.  */
6758
          insn = ready_remove (ready, i);
6759
          return insn;
6760
        }
6761
    }
6762
 
6763
  if (targetm.sched.dispatch (NULL_RTX, DISPATCH_VIOLATION))
6764
    return ready_remove_first (ready);
6765
 
6766
  for (i = 1; i < ready->n_ready; i++)
6767
    {
6768
      insn = ready_element (ready, i);
6769
 
6770
      if (INSN_CODE (insn) < 0
6771
          || !INSN_P (insn)
6772
          || !active_insn_p (insn))
6773
        continue;
6774
 
6775
      /* Return i-th element of ready.  */
6776
      if (targetm.sched.dispatch (insn, IS_CMP))
6777
        return ready_remove (ready, i);
6778
    }
6779
 
6780
  return ready_remove_first (ready);
6781
}
6782
 
6783
/* Get number of ready insn in the ready list.  */
6784
 
6785
int
6786
number_in_ready (void)
6787
{
6788
  return ready.n_ready;
6789
}
6790
 
6791
/* Get number of ready's in the ready list.  */
6792
 
6793
rtx
6794
get_ready_element (int i)
6795
{
6796
  return ready_element (&ready, i);
6797
}
6798
 
6799
#endif /* INSN_SCHEDULING */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.