OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [gcc/] [hwint.c] - Blame information for rev 834

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 684 jeremybenn
/* Operations on HOST_WIDE_INT.
2
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4
   Free Software Foundation, Inc.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
#include "config.h"
23
#include "system.h"
24
#include "diagnostic-core.h"
25
 
26
#if GCC_VERSION < 3004
27
 
28
/* The functions clz_hwi, ctz_hwi, ffs_hwi, floor_log2 and exact_log2
29
   are defined as inline functions in hwint.h if GCC_VERSION >= 3004.
30
   The definitions here are used for older versions of GCC and non-GCC
31
   bootstrap compilers.  */
32
 
33
/* Given X, an unsigned number, return the largest int Y such that 2**Y <= X.
34
   If X is 0, return -1.  */
35
 
36
int
37
floor_log2 (unsigned HOST_WIDE_INT x)
38
{
39
  int t = 0;
40
 
41
  if (x == 0)
42
    return -1;
43
 
44
  if (HOST_BITS_PER_WIDE_INT > 64)
45
    if (x >= (unsigned HOST_WIDE_INT) 1 << (t + 64))
46
      t += 64;
47
  if (HOST_BITS_PER_WIDE_INT > 32)
48
    if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 32))
49
      t += 32;
50
  if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 16))
51
    t += 16;
52
  if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 8))
53
    t += 8;
54
  if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 4))
55
    t += 4;
56
  if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 2))
57
    t += 2;
58
  if (x >= ((unsigned HOST_WIDE_INT) 1) << (t + 1))
59
    t += 1;
60
 
61
  return t;
62
}
63
 
64
/* Return the logarithm of X, base 2, considering X unsigned,
65
   if X is a power of 2.  Otherwise, returns -1.  */
66
 
67
int
68
exact_log2 (unsigned HOST_WIDE_INT x)
69
{
70
  if (x != (x & -x))
71
    return -1;
72
  return floor_log2 (x);
73
}
74
 
75
/* Given X, an unsigned number, return the number of least significant bits
76
   that are zero.  When X == 0, the result is the word size.  */
77
 
78
int
79
ctz_hwi (unsigned HOST_WIDE_INT x)
80
{
81
  return x ? floor_log2 (x & -x) : HOST_BITS_PER_WIDE_INT;
82
}
83
 
84
/* Similarly for most significant bits.  */
85
 
86
int
87
clz_hwi (unsigned HOST_WIDE_INT x)
88
{
89
  return HOST_BITS_PER_WIDE_INT - 1 - floor_log2(x);
90
}
91
 
92
/* Similar to ctz_hwi, except that the least significant bit is numbered
93
   starting from 1, and X == 0 yields 0.  */
94
 
95
int
96
ffs_hwi (unsigned HOST_WIDE_INT x)
97
{
98
  return 1 + floor_log2 (x & -x);
99
}
100
 
101
#endif /* GCC_VERSION < 3004 */
102
 
103
/* Compute the absolute value of X.  */
104
 
105
HOST_WIDE_INT
106
abs_hwi (HOST_WIDE_INT x)
107
{
108
  gcc_checking_assert (x != HOST_WIDE_INT_MIN);
109
  return x >= 0 ? x : -x;
110
}
111
 
112
/* Compute the absolute value of X as an unsigned type.  */
113
 
114
unsigned HOST_WIDE_INT
115
absu_hwi (HOST_WIDE_INT x)
116
{
117
  return x >= 0 ? (unsigned HOST_WIDE_INT)x : -(unsigned HOST_WIDE_INT)x;
118
}
119
 
120
/* Compute the greatest common divisor of two numbers A and B using
121
   Euclid's algorithm.  */
122
 
123
HOST_WIDE_INT
124
gcd (HOST_WIDE_INT a, HOST_WIDE_INT b)
125
{
126
  HOST_WIDE_INT x, y, z;
127
 
128
  x = abs_hwi (a);
129
  y = abs_hwi (b);
130
 
131
  while (x > 0)
132
    {
133
      z = y % x;
134
      y = x;
135
      x = z;
136
    }
137
 
138
  return y;
139
}
140
 
141
/* For X and Y positive integers, return X multiplied by Y and check
142
   that the result does not overflow.  */
143
 
144
HOST_WIDE_INT
145
pos_mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
146
{
147
  if (x != 0)
148
    gcc_checking_assert ((HOST_WIDE_INT_MAX) / x >= y);
149
 
150
  return x * y;
151
}
152
 
153
/* Return X multiplied by Y and check that the result does not
154
   overflow.  */
155
 
156
HOST_WIDE_INT
157
mul_hwi (HOST_WIDE_INT x, HOST_WIDE_INT y)
158
{
159
  gcc_checking_assert (x != HOST_WIDE_INT_MIN
160
                       && y != HOST_WIDE_INT_MIN);
161
 
162
  if (x >= 0)
163
    {
164
      if (y >= 0)
165
        return pos_mul_hwi (x, y);
166
 
167
      return -pos_mul_hwi (x, -y);
168
    }
169
 
170
  if (y >= 0)
171
    return -pos_mul_hwi (-x, y);
172
 
173
  return pos_mul_hwi (-x, -y);
174
}
175
 
176
/* Compute the least common multiple of two numbers A and B .  */
177
 
178
HOST_WIDE_INT
179
least_common_multiple (HOST_WIDE_INT a, HOST_WIDE_INT b)
180
{
181
  return mul_hwi (abs_hwi (a) / gcd (a, b), abs_hwi (b));
182
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.