1 |
684 |
jeremybenn |
/* Interprocedural constant propagation
|
2 |
|
|
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
Contributed by Razya Ladelsky <RAZYA@il.ibm.com> and Martin Jambor
|
6 |
|
|
<mjambor@suse.cz>
|
7 |
|
|
|
8 |
|
|
This file is part of GCC.
|
9 |
|
|
|
10 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
11 |
|
|
the terms of the GNU General Public License as published by the Free
|
12 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
13 |
|
|
version.
|
14 |
|
|
|
15 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
16 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
17 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
18 |
|
|
for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with GCC; see the file COPYING3. If not see
|
22 |
|
|
<http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
/* Interprocedural constant propagation (IPA-CP).
|
25 |
|
|
|
26 |
|
|
The goal of this transformation is to
|
27 |
|
|
|
28 |
|
|
1) discover functions which are always invoked with some arguments with the
|
29 |
|
|
same known constant values and modify the functions so that the
|
30 |
|
|
subsequent optimizations can take advantage of the knowledge, and
|
31 |
|
|
|
32 |
|
|
2) partial specialization - create specialized versions of functions
|
33 |
|
|
transformed in this way if some parameters are known constants only in
|
34 |
|
|
certain contexts but the estimated tradeoff between speedup and cost size
|
35 |
|
|
is deemed good.
|
36 |
|
|
|
37 |
|
|
The algorithm also propagates types and attempts to perform type based
|
38 |
|
|
devirtualization. Types are propagated much like constants.
|
39 |
|
|
|
40 |
|
|
The algorithm basically consists of three stages. In the first, functions
|
41 |
|
|
are analyzed one at a time and jump functions are constructed for all known
|
42 |
|
|
call-sites. In the second phase, the pass propagates information from the
|
43 |
|
|
jump functions across the call to reveal what values are available at what
|
44 |
|
|
call sites, performs estimations of effects of known values on functions and
|
45 |
|
|
their callees, and finally decides what specialized extra versions should be
|
46 |
|
|
created. In the third, the special versions materialize and appropriate
|
47 |
|
|
calls are redirected.
|
48 |
|
|
|
49 |
|
|
The algorithm used is to a certain extent based on "Interprocedural Constant
|
50 |
|
|
Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
|
51 |
|
|
Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
|
52 |
|
|
Cooper, Mary W. Hall, and Ken Kennedy.
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
First stage - intraprocedural analysis
|
56 |
|
|
=======================================
|
57 |
|
|
|
58 |
|
|
This phase computes jump_function and modification flags.
|
59 |
|
|
|
60 |
|
|
A jump function for a call-site represents the values passed as an actual
|
61 |
|
|
arguments of a given call-site. In principle, there are three types of
|
62 |
|
|
values:
|
63 |
|
|
|
64 |
|
|
Pass through - the caller's formal parameter is passed as an actual
|
65 |
|
|
argument, plus an operation on it can be performed.
|
66 |
|
|
Constant - a constant is passed as an actual argument.
|
67 |
|
|
Unknown - neither of the above.
|
68 |
|
|
|
69 |
|
|
All jump function types are described in detail in ipa-prop.h, together with
|
70 |
|
|
the data structures that represent them and methods of accessing them.
|
71 |
|
|
|
72 |
|
|
ipcp_generate_summary() is the main function of the first stage.
|
73 |
|
|
|
74 |
|
|
Second stage - interprocedural analysis
|
75 |
|
|
========================================
|
76 |
|
|
|
77 |
|
|
This stage is itself divided into two phases. In the first, we propagate
|
78 |
|
|
known values over the call graph, in the second, we make cloning decisions.
|
79 |
|
|
It uses a different algorithm than the original Callahan's paper.
|
80 |
|
|
|
81 |
|
|
First, we traverse the functions topologically from callers to callees and,
|
82 |
|
|
for each strongly connected component (SCC), we propagate constants
|
83 |
|
|
according to previously computed jump functions. We also record what known
|
84 |
|
|
values depend on other known values and estimate local effects. Finally, we
|
85 |
|
|
propagate cumulative information about these effects from dependant values
|
86 |
|
|
to those on which they depend.
|
87 |
|
|
|
88 |
|
|
Second, we again traverse the call graph in the same topological order and
|
89 |
|
|
make clones for functions which we know are called with the same values in
|
90 |
|
|
all contexts and decide about extra specialized clones of functions just for
|
91 |
|
|
some contexts - these decisions are based on both local estimates and
|
92 |
|
|
cumulative estimates propagated from callees.
|
93 |
|
|
|
94 |
|
|
ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
|
95 |
|
|
third stage.
|
96 |
|
|
|
97 |
|
|
Third phase - materialization of clones, call statement updates.
|
98 |
|
|
============================================
|
99 |
|
|
|
100 |
|
|
This stage is currently performed by call graph code (mainly in cgraphunit.c
|
101 |
|
|
and tree-inline.c) according to instructions inserted to the call graph by
|
102 |
|
|
the second stage. */
|
103 |
|
|
|
104 |
|
|
#include "config.h"
|
105 |
|
|
#include "system.h"
|
106 |
|
|
#include "coretypes.h"
|
107 |
|
|
#include "tree.h"
|
108 |
|
|
#include "target.h"
|
109 |
|
|
#include "gimple.h"
|
110 |
|
|
#include "cgraph.h"
|
111 |
|
|
#include "ipa-prop.h"
|
112 |
|
|
#include "tree-flow.h"
|
113 |
|
|
#include "tree-pass.h"
|
114 |
|
|
#include "flags.h"
|
115 |
|
|
#include "timevar.h"
|
116 |
|
|
#include "diagnostic.h"
|
117 |
|
|
#include "tree-pretty-print.h"
|
118 |
|
|
#include "tree-dump.h"
|
119 |
|
|
#include "tree-inline.h"
|
120 |
|
|
#include "fibheap.h"
|
121 |
|
|
#include "params.h"
|
122 |
|
|
#include "ipa-inline.h"
|
123 |
|
|
#include "ipa-utils.h"
|
124 |
|
|
|
125 |
|
|
struct ipcp_value;
|
126 |
|
|
|
127 |
|
|
/* Describes a particular source for an IPA-CP value. */
|
128 |
|
|
|
129 |
|
|
struct ipcp_value_source
|
130 |
|
|
{
|
131 |
|
|
/* The incoming edge that brought the value. */
|
132 |
|
|
struct cgraph_edge *cs;
|
133 |
|
|
/* If the jump function that resulted into his value was a pass-through or an
|
134 |
|
|
ancestor, this is the ipcp_value of the caller from which the described
|
135 |
|
|
value has been derived. Otherwise it is NULL. */
|
136 |
|
|
struct ipcp_value *val;
|
137 |
|
|
/* Next pointer in a linked list of sources of a value. */
|
138 |
|
|
struct ipcp_value_source *next;
|
139 |
|
|
/* If the jump function that resulted into his value was a pass-through or an
|
140 |
|
|
ancestor, this is the index of the parameter of the caller the jump
|
141 |
|
|
function references. */
|
142 |
|
|
int index;
|
143 |
|
|
};
|
144 |
|
|
|
145 |
|
|
/* Describes one particular value stored in struct ipcp_lattice. */
|
146 |
|
|
|
147 |
|
|
struct ipcp_value
|
148 |
|
|
{
|
149 |
|
|
/* The actual value for the given parameter. This is either an IPA invariant
|
150 |
|
|
or a TREE_BINFO describing a type that can be used for
|
151 |
|
|
devirtualization. */
|
152 |
|
|
tree value;
|
153 |
|
|
/* The list of sources from which this value originates. */
|
154 |
|
|
struct ipcp_value_source *sources;
|
155 |
|
|
/* Next pointers in a linked list of all values in a lattice. */
|
156 |
|
|
struct ipcp_value *next;
|
157 |
|
|
/* Next pointers in a linked list of values in a strongly connected component
|
158 |
|
|
of values. */
|
159 |
|
|
struct ipcp_value *scc_next;
|
160 |
|
|
/* Next pointers in a linked list of SCCs of values sorted topologically
|
161 |
|
|
according their sources. */
|
162 |
|
|
struct ipcp_value *topo_next;
|
163 |
|
|
/* A specialized node created for this value, NULL if none has been (so far)
|
164 |
|
|
created. */
|
165 |
|
|
struct cgraph_node *spec_node;
|
166 |
|
|
/* Depth first search number and low link for topological sorting of
|
167 |
|
|
values. */
|
168 |
|
|
int dfs, low_link;
|
169 |
|
|
/* Time benefit and size cost that specializing the function for this value
|
170 |
|
|
would bring about in this function alone. */
|
171 |
|
|
int local_time_benefit, local_size_cost;
|
172 |
|
|
/* Time benefit and size cost that specializing the function for this value
|
173 |
|
|
can bring about in it's callees (transitively). */
|
174 |
|
|
int prop_time_benefit, prop_size_cost;
|
175 |
|
|
/* True if this valye is currently on the topo-sort stack. */
|
176 |
|
|
bool on_stack;
|
177 |
|
|
};
|
178 |
|
|
|
179 |
|
|
/* Allocation pools for values and their sources in ipa-cp. */
|
180 |
|
|
|
181 |
|
|
alloc_pool ipcp_values_pool;
|
182 |
|
|
alloc_pool ipcp_sources_pool;
|
183 |
|
|
|
184 |
|
|
/* Lattice describing potential values of a formal parameter of a function and
|
185 |
|
|
some of their other properties. TOP is represented by a lattice with zero
|
186 |
|
|
values and with contains_variable and bottom flags cleared. BOTTOM is
|
187 |
|
|
represented by a lattice with the bottom flag set. In that case, values and
|
188 |
|
|
contains_variable flag should be disregarded. */
|
189 |
|
|
|
190 |
|
|
struct ipcp_lattice
|
191 |
|
|
{
|
192 |
|
|
/* The list of known values and types in this lattice. Note that values are
|
193 |
|
|
not deallocated if a lattice is set to bottom because there may be value
|
194 |
|
|
sources referencing them. */
|
195 |
|
|
struct ipcp_value *values;
|
196 |
|
|
/* Number of known values and types in this lattice. */
|
197 |
|
|
int values_count;
|
198 |
|
|
/* The lattice contains a variable component (in addition to values). */
|
199 |
|
|
bool contains_variable;
|
200 |
|
|
/* The value of the lattice is bottom (i.e. variable and unusable for any
|
201 |
|
|
propagation). */
|
202 |
|
|
bool bottom;
|
203 |
|
|
/* There is a virtual call based on this parameter. */
|
204 |
|
|
bool virt_call;
|
205 |
|
|
};
|
206 |
|
|
|
207 |
|
|
/* Maximal count found in program. */
|
208 |
|
|
|
209 |
|
|
static gcov_type max_count;
|
210 |
|
|
|
211 |
|
|
/* Original overall size of the program. */
|
212 |
|
|
|
213 |
|
|
static long overall_size, max_new_size;
|
214 |
|
|
|
215 |
|
|
/* Head of the linked list of topologically sorted values. */
|
216 |
|
|
|
217 |
|
|
static struct ipcp_value *values_topo;
|
218 |
|
|
|
219 |
|
|
/* Return the lattice corresponding to the Ith formal parameter of the function
|
220 |
|
|
described by INFO. */
|
221 |
|
|
static inline struct ipcp_lattice *
|
222 |
|
|
ipa_get_lattice (struct ipa_node_params *info, int i)
|
223 |
|
|
{
|
224 |
|
|
gcc_assert (i >= 0 && i < ipa_get_param_count (info));
|
225 |
|
|
gcc_checking_assert (!info->ipcp_orig_node);
|
226 |
|
|
gcc_checking_assert (info->lattices);
|
227 |
|
|
return &(info->lattices[i]);
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
/* Return whether LAT is a lattice with a single constant and without an
|
231 |
|
|
undefined value. */
|
232 |
|
|
|
233 |
|
|
static inline bool
|
234 |
|
|
ipa_lat_is_single_const (struct ipcp_lattice *lat)
|
235 |
|
|
{
|
236 |
|
|
if (lat->bottom
|
237 |
|
|
|| lat->contains_variable
|
238 |
|
|
|| lat->values_count != 1)
|
239 |
|
|
return false;
|
240 |
|
|
else
|
241 |
|
|
return true;
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
/* Return true iff the CS is an edge within a strongly connected component as
|
245 |
|
|
computed by ipa_reduced_postorder. */
|
246 |
|
|
|
247 |
|
|
static inline bool
|
248 |
|
|
edge_within_scc (struct cgraph_edge *cs)
|
249 |
|
|
{
|
250 |
|
|
struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->aux;
|
251 |
|
|
struct ipa_dfs_info *callee_dfs;
|
252 |
|
|
struct cgraph_node *callee = cgraph_function_node (cs->callee, NULL);
|
253 |
|
|
|
254 |
|
|
callee_dfs = (struct ipa_dfs_info *) callee->aux;
|
255 |
|
|
return (caller_dfs
|
256 |
|
|
&& callee_dfs
|
257 |
|
|
&& caller_dfs->scc_no == callee_dfs->scc_no);
|
258 |
|
|
}
|
259 |
|
|
|
260 |
|
|
/* Print V which is extracted from a value in a lattice to F. */
|
261 |
|
|
|
262 |
|
|
static void
|
263 |
|
|
print_ipcp_constant_value (FILE * f, tree v)
|
264 |
|
|
{
|
265 |
|
|
if (TREE_CODE (v) == TREE_BINFO)
|
266 |
|
|
{
|
267 |
|
|
fprintf (f, "BINFO ");
|
268 |
|
|
print_generic_expr (f, BINFO_TYPE (v), 0);
|
269 |
|
|
}
|
270 |
|
|
else if (TREE_CODE (v) == ADDR_EXPR
|
271 |
|
|
&& TREE_CODE (TREE_OPERAND (v, 0)) == CONST_DECL)
|
272 |
|
|
{
|
273 |
|
|
fprintf (f, "& ");
|
274 |
|
|
print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (v, 0)), 0);
|
275 |
|
|
}
|
276 |
|
|
else
|
277 |
|
|
print_generic_expr (f, v, 0);
|
278 |
|
|
}
|
279 |
|
|
|
280 |
|
|
/* Print all ipcp_lattices of all functions to F. */
|
281 |
|
|
|
282 |
|
|
static void
|
283 |
|
|
print_all_lattices (FILE * f, bool dump_sources, bool dump_benefits)
|
284 |
|
|
{
|
285 |
|
|
struct cgraph_node *node;
|
286 |
|
|
int i, count;
|
287 |
|
|
|
288 |
|
|
fprintf (f, "\nLattices:\n");
|
289 |
|
|
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
|
290 |
|
|
{
|
291 |
|
|
struct ipa_node_params *info;
|
292 |
|
|
|
293 |
|
|
info = IPA_NODE_REF (node);
|
294 |
|
|
fprintf (f, " Node: %s/%i:\n", cgraph_node_name (node), node->uid);
|
295 |
|
|
count = ipa_get_param_count (info);
|
296 |
|
|
for (i = 0; i < count; i++)
|
297 |
|
|
{
|
298 |
|
|
struct ipcp_lattice *lat = ipa_get_lattice (info, i);
|
299 |
|
|
struct ipcp_value *val;
|
300 |
|
|
bool prev = false;
|
301 |
|
|
|
302 |
|
|
fprintf (f, " param [%d]: ", i);
|
303 |
|
|
if (lat->bottom)
|
304 |
|
|
{
|
305 |
|
|
fprintf (f, "BOTTOM\n");
|
306 |
|
|
continue;
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
if (!lat->values_count && !lat->contains_variable)
|
310 |
|
|
{
|
311 |
|
|
fprintf (f, "TOP\n");
|
312 |
|
|
continue;
|
313 |
|
|
}
|
314 |
|
|
|
315 |
|
|
if (lat->contains_variable)
|
316 |
|
|
{
|
317 |
|
|
fprintf (f, "VARIABLE");
|
318 |
|
|
prev = true;
|
319 |
|
|
if (dump_benefits)
|
320 |
|
|
fprintf (f, "\n");
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
for (val = lat->values; val; val = val->next)
|
324 |
|
|
{
|
325 |
|
|
if (dump_benefits && prev)
|
326 |
|
|
fprintf (f, " ");
|
327 |
|
|
else if (!dump_benefits && prev)
|
328 |
|
|
fprintf (f, ", ");
|
329 |
|
|
else
|
330 |
|
|
prev = true;
|
331 |
|
|
|
332 |
|
|
print_ipcp_constant_value (f, val->value);
|
333 |
|
|
|
334 |
|
|
if (dump_sources)
|
335 |
|
|
{
|
336 |
|
|
struct ipcp_value_source *s;
|
337 |
|
|
|
338 |
|
|
fprintf (f, " [from:");
|
339 |
|
|
for (s = val->sources; s; s = s->next)
|
340 |
|
|
fprintf (f, " %i(%i)", s->cs->caller->uid,s->cs->frequency);
|
341 |
|
|
fprintf (f, "]");
|
342 |
|
|
}
|
343 |
|
|
|
344 |
|
|
if (dump_benefits)
|
345 |
|
|
fprintf (f, " [loc_time: %i, loc_size: %i, "
|
346 |
|
|
"prop_time: %i, prop_size: %i]\n",
|
347 |
|
|
val->local_time_benefit, val->local_size_cost,
|
348 |
|
|
val->prop_time_benefit, val->prop_size_cost);
|
349 |
|
|
}
|
350 |
|
|
if (!dump_benefits)
|
351 |
|
|
fprintf (f, "\n");
|
352 |
|
|
}
|
353 |
|
|
}
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
/* Determine whether it is at all technically possible to create clones of NODE
|
357 |
|
|
and store this information in the ipa_node_params structure associated
|
358 |
|
|
with NODE. */
|
359 |
|
|
|
360 |
|
|
static void
|
361 |
|
|
determine_versionability (struct cgraph_node *node)
|
362 |
|
|
{
|
363 |
|
|
const char *reason = NULL;
|
364 |
|
|
|
365 |
|
|
/* There are a number of generic reasons functions cannot be versioned. We
|
366 |
|
|
also cannot remove parameters if there are type attributes such as fnspec
|
367 |
|
|
present. */
|
368 |
|
|
if (node->alias || node->thunk.thunk_p)
|
369 |
|
|
reason = "alias or thunk";
|
370 |
|
|
else if (!node->local.versionable)
|
371 |
|
|
reason = "not a tree_versionable_function";
|
372 |
|
|
else if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
|
373 |
|
|
reason = "insufficient body availability";
|
374 |
|
|
|
375 |
|
|
if (reason && dump_file && !node->alias && !node->thunk.thunk_p)
|
376 |
|
|
fprintf (dump_file, "Function %s/%i is not versionable, reason: %s.\n",
|
377 |
|
|
cgraph_node_name (node), node->uid, reason);
|
378 |
|
|
|
379 |
|
|
node->local.versionable = (reason == NULL);
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
/* Return true if it is at all technically possible to create clones of a
|
383 |
|
|
NODE. */
|
384 |
|
|
|
385 |
|
|
static bool
|
386 |
|
|
ipcp_versionable_function_p (struct cgraph_node *node)
|
387 |
|
|
{
|
388 |
|
|
return node->local.versionable;
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
/* Structure holding accumulated information about callers of a node. */
|
392 |
|
|
|
393 |
|
|
struct caller_statistics
|
394 |
|
|
{
|
395 |
|
|
gcov_type count_sum;
|
396 |
|
|
int n_calls, n_hot_calls, freq_sum;
|
397 |
|
|
};
|
398 |
|
|
|
399 |
|
|
/* Initialize fields of STAT to zeroes. */
|
400 |
|
|
|
401 |
|
|
static inline void
|
402 |
|
|
init_caller_stats (struct caller_statistics *stats)
|
403 |
|
|
{
|
404 |
|
|
stats->count_sum = 0;
|
405 |
|
|
stats->n_calls = 0;
|
406 |
|
|
stats->n_hot_calls = 0;
|
407 |
|
|
stats->freq_sum = 0;
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
/* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
|
411 |
|
|
non-thunk incoming edges to NODE. */
|
412 |
|
|
|
413 |
|
|
static bool
|
414 |
|
|
gather_caller_stats (struct cgraph_node *node, void *data)
|
415 |
|
|
{
|
416 |
|
|
struct caller_statistics *stats = (struct caller_statistics *) data;
|
417 |
|
|
struct cgraph_edge *cs;
|
418 |
|
|
|
419 |
|
|
for (cs = node->callers; cs; cs = cs->next_caller)
|
420 |
|
|
if (cs->caller->thunk.thunk_p)
|
421 |
|
|
cgraph_for_node_and_aliases (cs->caller, gather_caller_stats,
|
422 |
|
|
stats, false);
|
423 |
|
|
else
|
424 |
|
|
{
|
425 |
|
|
stats->count_sum += cs->count;
|
426 |
|
|
stats->freq_sum += cs->frequency;
|
427 |
|
|
stats->n_calls++;
|
428 |
|
|
if (cgraph_maybe_hot_edge_p (cs))
|
429 |
|
|
stats->n_hot_calls ++;
|
430 |
|
|
}
|
431 |
|
|
return false;
|
432 |
|
|
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
/* Return true if this NODE is viable candidate for cloning. */
|
436 |
|
|
|
437 |
|
|
static bool
|
438 |
|
|
ipcp_cloning_candidate_p (struct cgraph_node *node)
|
439 |
|
|
{
|
440 |
|
|
struct caller_statistics stats;
|
441 |
|
|
|
442 |
|
|
gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
|
443 |
|
|
|
444 |
|
|
if (!flag_ipa_cp_clone)
|
445 |
|
|
{
|
446 |
|
|
if (dump_file)
|
447 |
|
|
fprintf (dump_file, "Not considering %s for cloning; "
|
448 |
|
|
"-fipa-cp-clone disabled.\n",
|
449 |
|
|
cgraph_node_name (node));
|
450 |
|
|
return false;
|
451 |
|
|
}
|
452 |
|
|
|
453 |
|
|
if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
|
454 |
|
|
{
|
455 |
|
|
if (dump_file)
|
456 |
|
|
fprintf (dump_file, "Not considering %s for cloning; "
|
457 |
|
|
"optimizing it for size.\n",
|
458 |
|
|
cgraph_node_name (node));
|
459 |
|
|
return false;
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
init_caller_stats (&stats);
|
463 |
|
|
cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
|
464 |
|
|
|
465 |
|
|
if (inline_summary (node)->self_size < stats.n_calls)
|
466 |
|
|
{
|
467 |
|
|
if (dump_file)
|
468 |
|
|
fprintf (dump_file, "Considering %s for cloning; code might shrink.\n",
|
469 |
|
|
cgraph_node_name (node));
|
470 |
|
|
return true;
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
/* When profile is available and function is hot, propagate into it even if
|
474 |
|
|
calls seems cold; constant propagation can improve function's speed
|
475 |
|
|
significantly. */
|
476 |
|
|
if (max_count)
|
477 |
|
|
{
|
478 |
|
|
if (stats.count_sum > node->count * 90 / 100)
|
479 |
|
|
{
|
480 |
|
|
if (dump_file)
|
481 |
|
|
fprintf (dump_file, "Considering %s for cloning; "
|
482 |
|
|
"usually called directly.\n",
|
483 |
|
|
cgraph_node_name (node));
|
484 |
|
|
return true;
|
485 |
|
|
}
|
486 |
|
|
}
|
487 |
|
|
if (!stats.n_hot_calls)
|
488 |
|
|
{
|
489 |
|
|
if (dump_file)
|
490 |
|
|
fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
|
491 |
|
|
cgraph_node_name (node));
|
492 |
|
|
return false;
|
493 |
|
|
}
|
494 |
|
|
if (dump_file)
|
495 |
|
|
fprintf (dump_file, "Considering %s for cloning.\n",
|
496 |
|
|
cgraph_node_name (node));
|
497 |
|
|
return true;
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
/* Arrays representing a topological ordering of call graph nodes and a stack
|
501 |
|
|
of noes used during constant propagation. */
|
502 |
|
|
|
503 |
|
|
struct topo_info
|
504 |
|
|
{
|
505 |
|
|
struct cgraph_node **order;
|
506 |
|
|
struct cgraph_node **stack;
|
507 |
|
|
int nnodes, stack_top;
|
508 |
|
|
};
|
509 |
|
|
|
510 |
|
|
/* Allocate the arrays in TOPO and topologically sort the nodes into order. */
|
511 |
|
|
|
512 |
|
|
static void
|
513 |
|
|
build_toporder_info (struct topo_info *topo)
|
514 |
|
|
{
|
515 |
|
|
topo->order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
|
516 |
|
|
topo->stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
|
517 |
|
|
topo->stack_top = 0;
|
518 |
|
|
topo->nnodes = ipa_reduced_postorder (topo->order, true, true, NULL);
|
519 |
|
|
}
|
520 |
|
|
|
521 |
|
|
/* Free information about strongly connected components and the arrays in
|
522 |
|
|
TOPO. */
|
523 |
|
|
|
524 |
|
|
static void
|
525 |
|
|
free_toporder_info (struct topo_info *topo)
|
526 |
|
|
{
|
527 |
|
|
ipa_free_postorder_info ();
|
528 |
|
|
free (topo->order);
|
529 |
|
|
free (topo->stack);
|
530 |
|
|
}
|
531 |
|
|
|
532 |
|
|
/* Add NODE to the stack in TOPO, unless it is already there. */
|
533 |
|
|
|
534 |
|
|
static inline void
|
535 |
|
|
push_node_to_stack (struct topo_info *topo, struct cgraph_node *node)
|
536 |
|
|
{
|
537 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
538 |
|
|
if (info->node_enqueued)
|
539 |
|
|
return;
|
540 |
|
|
info->node_enqueued = 1;
|
541 |
|
|
topo->stack[topo->stack_top++] = node;
|
542 |
|
|
}
|
543 |
|
|
|
544 |
|
|
/* Pop a node from the stack in TOPO and return it or return NULL if the stack
|
545 |
|
|
is empty. */
|
546 |
|
|
|
547 |
|
|
static struct cgraph_node *
|
548 |
|
|
pop_node_from_stack (struct topo_info *topo)
|
549 |
|
|
{
|
550 |
|
|
if (topo->stack_top)
|
551 |
|
|
{
|
552 |
|
|
struct cgraph_node *node;
|
553 |
|
|
topo->stack_top--;
|
554 |
|
|
node = topo->stack[topo->stack_top];
|
555 |
|
|
IPA_NODE_REF (node)->node_enqueued = 0;
|
556 |
|
|
return node;
|
557 |
|
|
}
|
558 |
|
|
else
|
559 |
|
|
return NULL;
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
/* Set lattice LAT to bottom and return true if it previously was not set as
|
563 |
|
|
such. */
|
564 |
|
|
|
565 |
|
|
static inline bool
|
566 |
|
|
set_lattice_to_bottom (struct ipcp_lattice *lat)
|
567 |
|
|
{
|
568 |
|
|
bool ret = !lat->bottom;
|
569 |
|
|
lat->bottom = true;
|
570 |
|
|
return ret;
|
571 |
|
|
}
|
572 |
|
|
|
573 |
|
|
/* Mark lattice as containing an unknown value and return true if it previously
|
574 |
|
|
was not marked as such. */
|
575 |
|
|
|
576 |
|
|
static inline bool
|
577 |
|
|
set_lattice_contains_variable (struct ipcp_lattice *lat)
|
578 |
|
|
{
|
579 |
|
|
bool ret = !lat->contains_variable;
|
580 |
|
|
lat->contains_variable = true;
|
581 |
|
|
return ret;
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
/* Initialize ipcp_lattices. */
|
585 |
|
|
|
586 |
|
|
static void
|
587 |
|
|
initialize_node_lattices (struct cgraph_node *node)
|
588 |
|
|
{
|
589 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
590 |
|
|
struct cgraph_edge *ie;
|
591 |
|
|
bool disable = false, variable = false;
|
592 |
|
|
int i;
|
593 |
|
|
|
594 |
|
|
gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
|
595 |
|
|
if (!node->local.local)
|
596 |
|
|
{
|
597 |
|
|
/* When cloning is allowed, we can assume that externally visible
|
598 |
|
|
functions are not called. We will compensate this by cloning
|
599 |
|
|
later. */
|
600 |
|
|
if (ipcp_versionable_function_p (node)
|
601 |
|
|
&& ipcp_cloning_candidate_p (node))
|
602 |
|
|
variable = true;
|
603 |
|
|
else
|
604 |
|
|
disable = true;
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
if (disable || variable)
|
608 |
|
|
{
|
609 |
|
|
for (i = 0; i < ipa_get_param_count (info) ; i++)
|
610 |
|
|
{
|
611 |
|
|
struct ipcp_lattice *lat = ipa_get_lattice (info, i);
|
612 |
|
|
if (disable)
|
613 |
|
|
set_lattice_to_bottom (lat);
|
614 |
|
|
else
|
615 |
|
|
set_lattice_contains_variable (lat);
|
616 |
|
|
}
|
617 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS)
|
618 |
|
|
&& node->alias && node->thunk.thunk_p)
|
619 |
|
|
fprintf (dump_file, "Marking all lattices of %s/%i as %s\n",
|
620 |
|
|
cgraph_node_name (node), node->uid,
|
621 |
|
|
disable ? "BOTTOM" : "VARIABLE");
|
622 |
|
|
}
|
623 |
|
|
|
624 |
|
|
for (ie = node->indirect_calls; ie; ie = ie->next_callee)
|
625 |
|
|
if (ie->indirect_info->polymorphic)
|
626 |
|
|
{
|
627 |
|
|
gcc_checking_assert (ie->indirect_info->param_index >= 0);
|
628 |
|
|
ipa_get_lattice (info, ie->indirect_info->param_index)->virt_call = 1;
|
629 |
|
|
}
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
/* Return the result of a (possibly arithmetic) pass through jump function
|
633 |
|
|
JFUNC on the constant value INPUT. Return NULL_TREE if that cannot be
|
634 |
|
|
determined or itself is considered an interprocedural invariant. */
|
635 |
|
|
|
636 |
|
|
static tree
|
637 |
|
|
ipa_get_jf_pass_through_result (struct ipa_jump_func *jfunc, tree input)
|
638 |
|
|
{
|
639 |
|
|
tree restype, res;
|
640 |
|
|
|
641 |
|
|
gcc_checking_assert (is_gimple_ip_invariant (input));
|
642 |
|
|
if (jfunc->value.pass_through.operation == NOP_EXPR)
|
643 |
|
|
return input;
|
644 |
|
|
|
645 |
|
|
if (TREE_CODE_CLASS (jfunc->value.pass_through.operation)
|
646 |
|
|
== tcc_comparison)
|
647 |
|
|
restype = boolean_type_node;
|
648 |
|
|
else
|
649 |
|
|
restype = TREE_TYPE (input);
|
650 |
|
|
res = fold_binary (jfunc->value.pass_through.operation, restype,
|
651 |
|
|
input, jfunc->value.pass_through.operand);
|
652 |
|
|
|
653 |
|
|
if (res && !is_gimple_ip_invariant (res))
|
654 |
|
|
return NULL_TREE;
|
655 |
|
|
|
656 |
|
|
return res;
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
/* Return the result of an ancestor jump function JFUNC on the constant value
|
660 |
|
|
INPUT. Return NULL_TREE if that cannot be determined. */
|
661 |
|
|
|
662 |
|
|
static tree
|
663 |
|
|
ipa_get_jf_ancestor_result (struct ipa_jump_func *jfunc, tree input)
|
664 |
|
|
{
|
665 |
|
|
if (TREE_CODE (input) == ADDR_EXPR)
|
666 |
|
|
{
|
667 |
|
|
tree t = TREE_OPERAND (input, 0);
|
668 |
|
|
t = build_ref_for_offset (EXPR_LOCATION (t), t,
|
669 |
|
|
jfunc->value.ancestor.offset,
|
670 |
|
|
jfunc->value.ancestor.type, NULL, false);
|
671 |
|
|
return build_fold_addr_expr (t);
|
672 |
|
|
}
|
673 |
|
|
else
|
674 |
|
|
return NULL_TREE;
|
675 |
|
|
}
|
676 |
|
|
|
677 |
|
|
/* Extract the acual BINFO being described by JFUNC which must be a known type
|
678 |
|
|
jump function. */
|
679 |
|
|
|
680 |
|
|
static tree
|
681 |
|
|
ipa_value_from_known_type_jfunc (struct ipa_jump_func *jfunc)
|
682 |
|
|
{
|
683 |
|
|
tree base_binfo = TYPE_BINFO (jfunc->value.known_type.base_type);
|
684 |
|
|
if (!base_binfo)
|
685 |
|
|
return NULL_TREE;
|
686 |
|
|
return get_binfo_at_offset (base_binfo,
|
687 |
|
|
jfunc->value.known_type.offset,
|
688 |
|
|
jfunc->value.known_type.component_type);
|
689 |
|
|
}
|
690 |
|
|
|
691 |
|
|
/* Determine whether JFUNC evaluates to a known value (that is either a
|
692 |
|
|
constant or a binfo) and if so, return it. Otherwise return NULL. INFO
|
693 |
|
|
describes the caller node so that pass-through jump functions can be
|
694 |
|
|
evaluated. */
|
695 |
|
|
|
696 |
|
|
tree
|
697 |
|
|
ipa_value_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
|
698 |
|
|
{
|
699 |
|
|
if (jfunc->type == IPA_JF_CONST)
|
700 |
|
|
return jfunc->value.constant;
|
701 |
|
|
else if (jfunc->type == IPA_JF_KNOWN_TYPE)
|
702 |
|
|
return ipa_value_from_known_type_jfunc (jfunc);
|
703 |
|
|
else if (jfunc->type == IPA_JF_PASS_THROUGH
|
704 |
|
|
|| jfunc->type == IPA_JF_ANCESTOR)
|
705 |
|
|
{
|
706 |
|
|
tree input;
|
707 |
|
|
int idx;
|
708 |
|
|
|
709 |
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH)
|
710 |
|
|
idx = jfunc->value.pass_through.formal_id;
|
711 |
|
|
else
|
712 |
|
|
idx = jfunc->value.ancestor.formal_id;
|
713 |
|
|
|
714 |
|
|
if (info->ipcp_orig_node)
|
715 |
|
|
input = VEC_index (tree, info->known_vals, idx);
|
716 |
|
|
else
|
717 |
|
|
{
|
718 |
|
|
struct ipcp_lattice *lat;
|
719 |
|
|
|
720 |
|
|
if (!info->lattices)
|
721 |
|
|
{
|
722 |
|
|
gcc_checking_assert (!flag_ipa_cp);
|
723 |
|
|
return NULL_TREE;
|
724 |
|
|
}
|
725 |
|
|
lat = ipa_get_lattice (info, idx);
|
726 |
|
|
if (!ipa_lat_is_single_const (lat))
|
727 |
|
|
return NULL_TREE;
|
728 |
|
|
input = lat->values->value;
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
if (!input)
|
732 |
|
|
return NULL_TREE;
|
733 |
|
|
|
734 |
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH)
|
735 |
|
|
{
|
736 |
|
|
if (jfunc->value.pass_through.operation == NOP_EXPR)
|
737 |
|
|
return input;
|
738 |
|
|
else if (TREE_CODE (input) == TREE_BINFO)
|
739 |
|
|
return NULL_TREE;
|
740 |
|
|
else
|
741 |
|
|
return ipa_get_jf_pass_through_result (jfunc, input);
|
742 |
|
|
}
|
743 |
|
|
else
|
744 |
|
|
{
|
745 |
|
|
if (TREE_CODE (input) == TREE_BINFO)
|
746 |
|
|
return get_binfo_at_offset (input, jfunc->value.ancestor.offset,
|
747 |
|
|
jfunc->value.ancestor.type);
|
748 |
|
|
else
|
749 |
|
|
return ipa_get_jf_ancestor_result (jfunc, input);
|
750 |
|
|
}
|
751 |
|
|
}
|
752 |
|
|
else
|
753 |
|
|
return NULL_TREE;
|
754 |
|
|
}
|
755 |
|
|
|
756 |
|
|
|
757 |
|
|
/* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
|
758 |
|
|
bottom, not containing a variable component and without any known value at
|
759 |
|
|
the same time. */
|
760 |
|
|
|
761 |
|
|
DEBUG_FUNCTION void
|
762 |
|
|
ipcp_verify_propagated_values (void)
|
763 |
|
|
{
|
764 |
|
|
struct cgraph_node *node;
|
765 |
|
|
|
766 |
|
|
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
|
767 |
|
|
{
|
768 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
769 |
|
|
int i, count = ipa_get_param_count (info);
|
770 |
|
|
|
771 |
|
|
for (i = 0; i < count; i++)
|
772 |
|
|
{
|
773 |
|
|
struct ipcp_lattice *lat = ipa_get_lattice (info, i);
|
774 |
|
|
|
775 |
|
|
if (!lat->bottom
|
776 |
|
|
&& !lat->contains_variable
|
777 |
|
|
&& lat->values_count == 0)
|
778 |
|
|
{
|
779 |
|
|
if (dump_file)
|
780 |
|
|
{
|
781 |
|
|
fprintf (dump_file, "\nIPA lattices after constant "
|
782 |
|
|
"propagation:\n");
|
783 |
|
|
print_all_lattices (dump_file, true, false);
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
gcc_unreachable ();
|
787 |
|
|
}
|
788 |
|
|
}
|
789 |
|
|
}
|
790 |
|
|
}
|
791 |
|
|
|
792 |
|
|
/* Return true iff X and Y should be considered equal values by IPA-CP. */
|
793 |
|
|
|
794 |
|
|
static bool
|
795 |
|
|
values_equal_for_ipcp_p (tree x, tree y)
|
796 |
|
|
{
|
797 |
|
|
gcc_checking_assert (x != NULL_TREE && y != NULL_TREE);
|
798 |
|
|
|
799 |
|
|
if (x == y)
|
800 |
|
|
return true;
|
801 |
|
|
|
802 |
|
|
if (TREE_CODE (x) == TREE_BINFO || TREE_CODE (y) == TREE_BINFO)
|
803 |
|
|
return false;
|
804 |
|
|
|
805 |
|
|
if (TREE_CODE (x) == ADDR_EXPR
|
806 |
|
|
&& TREE_CODE (y) == ADDR_EXPR
|
807 |
|
|
&& TREE_CODE (TREE_OPERAND (x, 0)) == CONST_DECL
|
808 |
|
|
&& TREE_CODE (TREE_OPERAND (y, 0)) == CONST_DECL)
|
809 |
|
|
return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x, 0)),
|
810 |
|
|
DECL_INITIAL (TREE_OPERAND (y, 0)), 0);
|
811 |
|
|
else
|
812 |
|
|
return operand_equal_p (x, y, 0);
|
813 |
|
|
}
|
814 |
|
|
|
815 |
|
|
/* Add a new value source to VAL, marking that a value comes from edge CS and
|
816 |
|
|
(if the underlying jump function is a pass-through or an ancestor one) from
|
817 |
|
|
a caller value SRC_VAL of a caller parameter described by SRC_INDEX. */
|
818 |
|
|
|
819 |
|
|
static void
|
820 |
|
|
add_value_source (struct ipcp_value *val, struct cgraph_edge *cs,
|
821 |
|
|
struct ipcp_value *src_val, int src_idx)
|
822 |
|
|
{
|
823 |
|
|
struct ipcp_value_source *src;
|
824 |
|
|
|
825 |
|
|
src = (struct ipcp_value_source *) pool_alloc (ipcp_sources_pool);
|
826 |
|
|
src->cs = cs;
|
827 |
|
|
src->val = src_val;
|
828 |
|
|
src->index = src_idx;
|
829 |
|
|
|
830 |
|
|
src->next = val->sources;
|
831 |
|
|
val->sources = src;
|
832 |
|
|
}
|
833 |
|
|
|
834 |
|
|
|
835 |
|
|
/* Try to add NEWVAL to LAT, potentially creating a new struct ipcp_value for
|
836 |
|
|
it. CS, SRC_VAL and SRC_INDEX are meant for add_value_source and have the
|
837 |
|
|
same meaning. */
|
838 |
|
|
|
839 |
|
|
static bool
|
840 |
|
|
add_value_to_lattice (struct ipcp_lattice *lat, tree newval,
|
841 |
|
|
struct cgraph_edge *cs, struct ipcp_value *src_val,
|
842 |
|
|
int src_idx)
|
843 |
|
|
{
|
844 |
|
|
struct ipcp_value *val;
|
845 |
|
|
|
846 |
|
|
if (lat->bottom)
|
847 |
|
|
return false;
|
848 |
|
|
|
849 |
|
|
|
850 |
|
|
for (val = lat->values; val; val = val->next)
|
851 |
|
|
if (values_equal_for_ipcp_p (val->value, newval))
|
852 |
|
|
{
|
853 |
|
|
if (edge_within_scc (cs))
|
854 |
|
|
{
|
855 |
|
|
struct ipcp_value_source *s;
|
856 |
|
|
for (s = val->sources; s ; s = s->next)
|
857 |
|
|
if (s->cs == cs)
|
858 |
|
|
break;
|
859 |
|
|
if (s)
|
860 |
|
|
return false;
|
861 |
|
|
}
|
862 |
|
|
|
863 |
|
|
add_value_source (val, cs, src_val, src_idx);
|
864 |
|
|
return false;
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
if (lat->values_count == PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE))
|
868 |
|
|
{
|
869 |
|
|
/* We can only free sources, not the values themselves, because sources
|
870 |
|
|
of other values in this this SCC might point to them. */
|
871 |
|
|
for (val = lat->values; val; val = val->next)
|
872 |
|
|
{
|
873 |
|
|
while (val->sources)
|
874 |
|
|
{
|
875 |
|
|
struct ipcp_value_source *src = val->sources;
|
876 |
|
|
val->sources = src->next;
|
877 |
|
|
pool_free (ipcp_sources_pool, src);
|
878 |
|
|
}
|
879 |
|
|
}
|
880 |
|
|
|
881 |
|
|
lat->values = NULL;
|
882 |
|
|
return set_lattice_to_bottom (lat);
|
883 |
|
|
}
|
884 |
|
|
|
885 |
|
|
lat->values_count++;
|
886 |
|
|
val = (struct ipcp_value *) pool_alloc (ipcp_values_pool);
|
887 |
|
|
memset (val, 0, sizeof (*val));
|
888 |
|
|
|
889 |
|
|
add_value_source (val, cs, src_val, src_idx);
|
890 |
|
|
val->value = newval;
|
891 |
|
|
val->next = lat->values;
|
892 |
|
|
lat->values = val;
|
893 |
|
|
return true;
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
/* Propagate values through a pass-through jump function JFUNC associated with
|
897 |
|
|
edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
|
898 |
|
|
is the index of the source parameter. */
|
899 |
|
|
|
900 |
|
|
static bool
|
901 |
|
|
propagate_vals_accross_pass_through (struct cgraph_edge *cs,
|
902 |
|
|
struct ipa_jump_func *jfunc,
|
903 |
|
|
struct ipcp_lattice *src_lat,
|
904 |
|
|
struct ipcp_lattice *dest_lat,
|
905 |
|
|
int src_idx)
|
906 |
|
|
{
|
907 |
|
|
struct ipcp_value *src_val;
|
908 |
|
|
bool ret = false;
|
909 |
|
|
|
910 |
|
|
if (jfunc->value.pass_through.operation == NOP_EXPR)
|
911 |
|
|
for (src_val = src_lat->values; src_val; src_val = src_val->next)
|
912 |
|
|
ret |= add_value_to_lattice (dest_lat, src_val->value, cs,
|
913 |
|
|
src_val, src_idx);
|
914 |
|
|
/* Do not create new values when propagating within an SCC because if there
|
915 |
|
|
arithmetic functions with circular dependencies, there is infinite number
|
916 |
|
|
of them and we would just make lattices bottom. */
|
917 |
|
|
else if (edge_within_scc (cs))
|
918 |
|
|
ret = set_lattice_contains_variable (dest_lat);
|
919 |
|
|
else
|
920 |
|
|
for (src_val = src_lat->values; src_val; src_val = src_val->next)
|
921 |
|
|
{
|
922 |
|
|
tree cstval = src_val->value;
|
923 |
|
|
|
924 |
|
|
if (TREE_CODE (cstval) == TREE_BINFO)
|
925 |
|
|
{
|
926 |
|
|
ret |= set_lattice_contains_variable (dest_lat);
|
927 |
|
|
continue;
|
928 |
|
|
}
|
929 |
|
|
cstval = ipa_get_jf_pass_through_result (jfunc, cstval);
|
930 |
|
|
|
931 |
|
|
if (cstval)
|
932 |
|
|
ret |= add_value_to_lattice (dest_lat, cstval, cs, src_val, src_idx);
|
933 |
|
|
else
|
934 |
|
|
ret |= set_lattice_contains_variable (dest_lat);
|
935 |
|
|
}
|
936 |
|
|
|
937 |
|
|
return ret;
|
938 |
|
|
}
|
939 |
|
|
|
940 |
|
|
/* Propagate values through an ancestor jump function JFUNC associated with
|
941 |
|
|
edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
|
942 |
|
|
is the index of the source parameter. */
|
943 |
|
|
|
944 |
|
|
static bool
|
945 |
|
|
propagate_vals_accross_ancestor (struct cgraph_edge *cs,
|
946 |
|
|
struct ipa_jump_func *jfunc,
|
947 |
|
|
struct ipcp_lattice *src_lat,
|
948 |
|
|
struct ipcp_lattice *dest_lat,
|
949 |
|
|
int src_idx)
|
950 |
|
|
{
|
951 |
|
|
struct ipcp_value *src_val;
|
952 |
|
|
bool ret = false;
|
953 |
|
|
|
954 |
|
|
if (edge_within_scc (cs))
|
955 |
|
|
return set_lattice_contains_variable (dest_lat);
|
956 |
|
|
|
957 |
|
|
for (src_val = src_lat->values; src_val; src_val = src_val->next)
|
958 |
|
|
{
|
959 |
|
|
tree t = src_val->value;
|
960 |
|
|
|
961 |
|
|
if (TREE_CODE (t) == TREE_BINFO)
|
962 |
|
|
t = get_binfo_at_offset (t, jfunc->value.ancestor.offset,
|
963 |
|
|
jfunc->value.ancestor.type);
|
964 |
|
|
else
|
965 |
|
|
t = ipa_get_jf_ancestor_result (jfunc, t);
|
966 |
|
|
|
967 |
|
|
if (t)
|
968 |
|
|
ret |= add_value_to_lattice (dest_lat, t, cs, src_val, src_idx);
|
969 |
|
|
else
|
970 |
|
|
ret |= set_lattice_contains_variable (dest_lat);
|
971 |
|
|
}
|
972 |
|
|
|
973 |
|
|
return ret;
|
974 |
|
|
}
|
975 |
|
|
|
976 |
|
|
/* Propagate values across jump function JFUNC that is associated with edge CS
|
977 |
|
|
and put the values into DEST_LAT. */
|
978 |
|
|
|
979 |
|
|
static bool
|
980 |
|
|
propagate_accross_jump_function (struct cgraph_edge *cs,
|
981 |
|
|
struct ipa_jump_func *jfunc,
|
982 |
|
|
struct ipcp_lattice *dest_lat)
|
983 |
|
|
{
|
984 |
|
|
if (dest_lat->bottom)
|
985 |
|
|
return false;
|
986 |
|
|
|
987 |
|
|
if (jfunc->type == IPA_JF_CONST
|
988 |
|
|
|| jfunc->type == IPA_JF_KNOWN_TYPE)
|
989 |
|
|
{
|
990 |
|
|
tree val;
|
991 |
|
|
|
992 |
|
|
if (jfunc->type == IPA_JF_KNOWN_TYPE)
|
993 |
|
|
{
|
994 |
|
|
val = ipa_value_from_known_type_jfunc (jfunc);
|
995 |
|
|
if (!val)
|
996 |
|
|
return set_lattice_contains_variable (dest_lat);
|
997 |
|
|
}
|
998 |
|
|
else
|
999 |
|
|
val = jfunc->value.constant;
|
1000 |
|
|
return add_value_to_lattice (dest_lat, val, cs, NULL, 0);
|
1001 |
|
|
}
|
1002 |
|
|
else if (jfunc->type == IPA_JF_PASS_THROUGH
|
1003 |
|
|
|| jfunc->type == IPA_JF_ANCESTOR)
|
1004 |
|
|
{
|
1005 |
|
|
struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
|
1006 |
|
|
struct ipcp_lattice *src_lat;
|
1007 |
|
|
int src_idx;
|
1008 |
|
|
bool ret;
|
1009 |
|
|
|
1010 |
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH)
|
1011 |
|
|
src_idx = jfunc->value.pass_through.formal_id;
|
1012 |
|
|
else
|
1013 |
|
|
src_idx = jfunc->value.ancestor.formal_id;
|
1014 |
|
|
|
1015 |
|
|
src_lat = ipa_get_lattice (caller_info, src_idx);
|
1016 |
|
|
if (src_lat->bottom)
|
1017 |
|
|
return set_lattice_contains_variable (dest_lat);
|
1018 |
|
|
|
1019 |
|
|
/* If we would need to clone the caller and cannot, do not propagate. */
|
1020 |
|
|
if (!ipcp_versionable_function_p (cs->caller)
|
1021 |
|
|
&& (src_lat->contains_variable
|
1022 |
|
|
|| (src_lat->values_count > 1)))
|
1023 |
|
|
return set_lattice_contains_variable (dest_lat);
|
1024 |
|
|
|
1025 |
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH)
|
1026 |
|
|
ret = propagate_vals_accross_pass_through (cs, jfunc, src_lat,
|
1027 |
|
|
dest_lat, src_idx);
|
1028 |
|
|
else
|
1029 |
|
|
ret = propagate_vals_accross_ancestor (cs, jfunc, src_lat, dest_lat,
|
1030 |
|
|
src_idx);
|
1031 |
|
|
|
1032 |
|
|
if (src_lat->contains_variable)
|
1033 |
|
|
ret |= set_lattice_contains_variable (dest_lat);
|
1034 |
|
|
|
1035 |
|
|
return ret;
|
1036 |
|
|
}
|
1037 |
|
|
|
1038 |
|
|
/* TODO: We currently do not handle member method pointers in IPA-CP (we only
|
1039 |
|
|
use it for indirect inlining), we should propagate them too. */
|
1040 |
|
|
return set_lattice_contains_variable (dest_lat);
|
1041 |
|
|
}
|
1042 |
|
|
|
1043 |
|
|
/* Propagate constants from the caller to the callee of CS. INFO describes the
|
1044 |
|
|
caller. */
|
1045 |
|
|
|
1046 |
|
|
static bool
|
1047 |
|
|
propagate_constants_accross_call (struct cgraph_edge *cs)
|
1048 |
|
|
{
|
1049 |
|
|
struct ipa_node_params *callee_info;
|
1050 |
|
|
enum availability availability;
|
1051 |
|
|
struct cgraph_node *callee, *alias_or_thunk;
|
1052 |
|
|
struct ipa_edge_args *args;
|
1053 |
|
|
bool ret = false;
|
1054 |
|
|
int i, args_count, parms_count;
|
1055 |
|
|
|
1056 |
|
|
callee = cgraph_function_node (cs->callee, &availability);
|
1057 |
|
|
if (!callee->analyzed)
|
1058 |
|
|
return false;
|
1059 |
|
|
gcc_checking_assert (cgraph_function_with_gimple_body_p (callee));
|
1060 |
|
|
callee_info = IPA_NODE_REF (callee);
|
1061 |
|
|
|
1062 |
|
|
args = IPA_EDGE_REF (cs);
|
1063 |
|
|
args_count = ipa_get_cs_argument_count (args);
|
1064 |
|
|
parms_count = ipa_get_param_count (callee_info);
|
1065 |
|
|
|
1066 |
|
|
/* If this call goes through a thunk we must not propagate to the first (0th)
|
1067 |
|
|
parameter. However, we might need to uncover a thunk from below a series
|
1068 |
|
|
of aliases first. */
|
1069 |
|
|
alias_or_thunk = cs->callee;
|
1070 |
|
|
while (alias_or_thunk->alias)
|
1071 |
|
|
alias_or_thunk = cgraph_alias_aliased_node (alias_or_thunk);
|
1072 |
|
|
if (alias_or_thunk->thunk.thunk_p)
|
1073 |
|
|
{
|
1074 |
|
|
ret |= set_lattice_contains_variable (ipa_get_lattice (callee_info, 0));
|
1075 |
|
|
i = 1;
|
1076 |
|
|
}
|
1077 |
|
|
else
|
1078 |
|
|
i = 0;
|
1079 |
|
|
|
1080 |
|
|
for (; (i < args_count) && (i < parms_count); i++)
|
1081 |
|
|
{
|
1082 |
|
|
struct ipa_jump_func *jump_func = ipa_get_ith_jump_func (args, i);
|
1083 |
|
|
struct ipcp_lattice *dest_lat = ipa_get_lattice (callee_info, i);
|
1084 |
|
|
|
1085 |
|
|
if (availability == AVAIL_OVERWRITABLE)
|
1086 |
|
|
ret |= set_lattice_contains_variable (dest_lat);
|
1087 |
|
|
else
|
1088 |
|
|
ret |= propagate_accross_jump_function (cs, jump_func, dest_lat);
|
1089 |
|
|
}
|
1090 |
|
|
for (; i < parms_count; i++)
|
1091 |
|
|
ret |= set_lattice_contains_variable (ipa_get_lattice (callee_info, i));
|
1092 |
|
|
|
1093 |
|
|
return ret;
|
1094 |
|
|
}
|
1095 |
|
|
|
1096 |
|
|
/* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
|
1097 |
|
|
(which can contain both constants and binfos) or KNOWN_BINFOS (which can be
|
1098 |
|
|
NULL) return the destination. */
|
1099 |
|
|
|
1100 |
|
|
tree
|
1101 |
|
|
ipa_get_indirect_edge_target (struct cgraph_edge *ie,
|
1102 |
|
|
VEC (tree, heap) *known_vals,
|
1103 |
|
|
VEC (tree, heap) *known_binfos)
|
1104 |
|
|
{
|
1105 |
|
|
int param_index = ie->indirect_info->param_index;
|
1106 |
|
|
HOST_WIDE_INT token, anc_offset;
|
1107 |
|
|
tree otr_type;
|
1108 |
|
|
tree t;
|
1109 |
|
|
|
1110 |
|
|
if (param_index == -1)
|
1111 |
|
|
return NULL_TREE;
|
1112 |
|
|
|
1113 |
|
|
if (!ie->indirect_info->polymorphic)
|
1114 |
|
|
{
|
1115 |
|
|
tree t = (VEC_length (tree, known_vals) > (unsigned int) param_index
|
1116 |
|
|
? VEC_index (tree, known_vals, param_index) : NULL);
|
1117 |
|
|
if (t &&
|
1118 |
|
|
TREE_CODE (t) == ADDR_EXPR
|
1119 |
|
|
&& TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL)
|
1120 |
|
|
return TREE_OPERAND (t, 0);
|
1121 |
|
|
else
|
1122 |
|
|
return NULL_TREE;
|
1123 |
|
|
}
|
1124 |
|
|
|
1125 |
|
|
token = ie->indirect_info->otr_token;
|
1126 |
|
|
anc_offset = ie->indirect_info->anc_offset;
|
1127 |
|
|
otr_type = ie->indirect_info->otr_type;
|
1128 |
|
|
|
1129 |
|
|
t = VEC_index (tree, known_vals, param_index);
|
1130 |
|
|
if (!t && known_binfos
|
1131 |
|
|
&& VEC_length (tree, known_binfos) > (unsigned int) param_index)
|
1132 |
|
|
t = VEC_index (tree, known_binfos, param_index);
|
1133 |
|
|
if (!t)
|
1134 |
|
|
return NULL_TREE;
|
1135 |
|
|
|
1136 |
|
|
if (TREE_CODE (t) != TREE_BINFO)
|
1137 |
|
|
{
|
1138 |
|
|
tree binfo;
|
1139 |
|
|
binfo = gimple_extract_devirt_binfo_from_cst (t);
|
1140 |
|
|
if (!binfo)
|
1141 |
|
|
return NULL_TREE;
|
1142 |
|
|
binfo = get_binfo_at_offset (binfo, anc_offset, otr_type);
|
1143 |
|
|
if (!binfo)
|
1144 |
|
|
return NULL_TREE;
|
1145 |
|
|
return gimple_get_virt_method_for_binfo (token, binfo);
|
1146 |
|
|
}
|
1147 |
|
|
else
|
1148 |
|
|
{
|
1149 |
|
|
tree binfo;
|
1150 |
|
|
|
1151 |
|
|
binfo = get_binfo_at_offset (t, anc_offset, otr_type);
|
1152 |
|
|
if (!binfo)
|
1153 |
|
|
return NULL_TREE;
|
1154 |
|
|
return gimple_get_virt_method_for_binfo (token, binfo);
|
1155 |
|
|
}
|
1156 |
|
|
}
|
1157 |
|
|
|
1158 |
|
|
/* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS
|
1159 |
|
|
and KNOWN_BINFOS. */
|
1160 |
|
|
|
1161 |
|
|
static int
|
1162 |
|
|
devirtualization_time_bonus (struct cgraph_node *node,
|
1163 |
|
|
VEC (tree, heap) *known_csts,
|
1164 |
|
|
VEC (tree, heap) *known_binfos)
|
1165 |
|
|
{
|
1166 |
|
|
struct cgraph_edge *ie;
|
1167 |
|
|
int res = 0;
|
1168 |
|
|
|
1169 |
|
|
for (ie = node->indirect_calls; ie; ie = ie->next_callee)
|
1170 |
|
|
{
|
1171 |
|
|
struct cgraph_node *callee;
|
1172 |
|
|
struct inline_summary *isummary;
|
1173 |
|
|
tree target;
|
1174 |
|
|
|
1175 |
|
|
target = ipa_get_indirect_edge_target (ie, known_csts, known_binfos);
|
1176 |
|
|
if (!target)
|
1177 |
|
|
continue;
|
1178 |
|
|
|
1179 |
|
|
/* Only bare minimum benefit for clearly un-inlineable targets. */
|
1180 |
|
|
res += 1;
|
1181 |
|
|
callee = cgraph_get_node (target);
|
1182 |
|
|
if (!callee || !callee->analyzed)
|
1183 |
|
|
continue;
|
1184 |
|
|
isummary = inline_summary (callee);
|
1185 |
|
|
if (!isummary->inlinable)
|
1186 |
|
|
continue;
|
1187 |
|
|
|
1188 |
|
|
/* FIXME: The values below need re-considering and perhaps also
|
1189 |
|
|
integrating into the cost metrics, at lest in some very basic way. */
|
1190 |
|
|
if (isummary->size <= MAX_INLINE_INSNS_AUTO / 4)
|
1191 |
|
|
res += 31;
|
1192 |
|
|
else if (isummary->size <= MAX_INLINE_INSNS_AUTO / 2)
|
1193 |
|
|
res += 15;
|
1194 |
|
|
else if (isummary->size <= MAX_INLINE_INSNS_AUTO
|
1195 |
|
|
|| DECL_DECLARED_INLINE_P (callee->decl))
|
1196 |
|
|
res += 7;
|
1197 |
|
|
}
|
1198 |
|
|
|
1199 |
|
|
return res;
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
/* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
|
1203 |
|
|
and SIZE_COST and with the sum of frequencies of incoming edges to the
|
1204 |
|
|
potential new clone in FREQUENCIES. */
|
1205 |
|
|
|
1206 |
|
|
static bool
|
1207 |
|
|
good_cloning_opportunity_p (struct cgraph_node *node, int time_benefit,
|
1208 |
|
|
int freq_sum, gcov_type count_sum, int size_cost)
|
1209 |
|
|
{
|
1210 |
|
|
if (time_benefit == 0
|
1211 |
|
|
|| !flag_ipa_cp_clone
|
1212 |
|
|
|| !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
|
1213 |
|
|
return false;
|
1214 |
|
|
|
1215 |
|
|
gcc_assert (size_cost > 0);
|
1216 |
|
|
|
1217 |
|
|
if (max_count)
|
1218 |
|
|
{
|
1219 |
|
|
int factor = (count_sum * 1000) / max_count;
|
1220 |
|
|
HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * factor)
|
1221 |
|
|
/ size_cost);
|
1222 |
|
|
|
1223 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1224 |
|
|
fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
|
1225 |
|
|
"size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC
|
1226 |
|
|
") -> evaluation: " HOST_WIDEST_INT_PRINT_DEC
|
1227 |
|
|
", threshold: %i\n",
|
1228 |
|
|
time_benefit, size_cost, (HOST_WIDE_INT) count_sum,
|
1229 |
|
|
evaluation, 500);
|
1230 |
|
|
|
1231 |
|
|
return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
|
1232 |
|
|
}
|
1233 |
|
|
else
|
1234 |
|
|
{
|
1235 |
|
|
HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * freq_sum)
|
1236 |
|
|
/ size_cost);
|
1237 |
|
|
|
1238 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1239 |
|
|
fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
|
1240 |
|
|
"size: %i, freq_sum: %i) -> evaluation: "
|
1241 |
|
|
HOST_WIDEST_INT_PRINT_DEC ", threshold: %i\n",
|
1242 |
|
|
time_benefit, size_cost, freq_sum, evaluation,
|
1243 |
|
|
CGRAPH_FREQ_BASE /2);
|
1244 |
|
|
|
1245 |
|
|
return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
|
1246 |
|
|
}
|
1247 |
|
|
}
|
1248 |
|
|
|
1249 |
|
|
|
1250 |
|
|
/* Allocate KNOWN_CSTS and KNOWN_BINFOS and populate them with values of
|
1251 |
|
|
parameters that are known independent of the context. INFO describes the
|
1252 |
|
|
function. If REMOVABLE_PARAMS_COST is non-NULL, the movement cost of all
|
1253 |
|
|
removable parameters will be stored in it. */
|
1254 |
|
|
|
1255 |
|
|
static bool
|
1256 |
|
|
gather_context_independent_values (struct ipa_node_params *info,
|
1257 |
|
|
VEC (tree, heap) **known_csts,
|
1258 |
|
|
VEC (tree, heap) **known_binfos,
|
1259 |
|
|
int *removable_params_cost)
|
1260 |
|
|
{
|
1261 |
|
|
int i, count = ipa_get_param_count (info);
|
1262 |
|
|
bool ret = false;
|
1263 |
|
|
|
1264 |
|
|
*known_csts = NULL;
|
1265 |
|
|
*known_binfos = NULL;
|
1266 |
|
|
VEC_safe_grow_cleared (tree, heap, *known_csts, count);
|
1267 |
|
|
VEC_safe_grow_cleared (tree, heap, *known_binfos, count);
|
1268 |
|
|
|
1269 |
|
|
if (removable_params_cost)
|
1270 |
|
|
*removable_params_cost = 0;
|
1271 |
|
|
|
1272 |
|
|
for (i = 0; i < count ; i++)
|
1273 |
|
|
{
|
1274 |
|
|
struct ipcp_lattice *lat = ipa_get_lattice (info, i);
|
1275 |
|
|
|
1276 |
|
|
if (ipa_lat_is_single_const (lat))
|
1277 |
|
|
{
|
1278 |
|
|
struct ipcp_value *val = lat->values;
|
1279 |
|
|
if (TREE_CODE (val->value) != TREE_BINFO)
|
1280 |
|
|
{
|
1281 |
|
|
VEC_replace (tree, *known_csts, i, val->value);
|
1282 |
|
|
if (removable_params_cost)
|
1283 |
|
|
*removable_params_cost
|
1284 |
|
|
+= estimate_move_cost (TREE_TYPE (val->value));
|
1285 |
|
|
ret = true;
|
1286 |
|
|
}
|
1287 |
|
|
else if (lat->virt_call)
|
1288 |
|
|
{
|
1289 |
|
|
VEC_replace (tree, *known_binfos, i, val->value);
|
1290 |
|
|
ret = true;
|
1291 |
|
|
}
|
1292 |
|
|
else if (removable_params_cost
|
1293 |
|
|
&& !ipa_is_param_used (info, i))
|
1294 |
|
|
*removable_params_cost
|
1295 |
|
|
+= estimate_move_cost (TREE_TYPE (ipa_get_param (info, i)));
|
1296 |
|
|
}
|
1297 |
|
|
else if (removable_params_cost
|
1298 |
|
|
&& !ipa_is_param_used (info, i))
|
1299 |
|
|
*removable_params_cost
|
1300 |
|
|
+= estimate_move_cost (TREE_TYPE (ipa_get_param (info, i)));
|
1301 |
|
|
}
|
1302 |
|
|
|
1303 |
|
|
return ret;
|
1304 |
|
|
}
|
1305 |
|
|
|
1306 |
|
|
/* Iterate over known values of parameters of NODE and estimate the local
|
1307 |
|
|
effects in terms of time and size they have. */
|
1308 |
|
|
|
1309 |
|
|
static void
|
1310 |
|
|
estimate_local_effects (struct cgraph_node *node)
|
1311 |
|
|
{
|
1312 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
1313 |
|
|
int i, count = ipa_get_param_count (info);
|
1314 |
|
|
VEC (tree, heap) *known_csts, *known_binfos;
|
1315 |
|
|
bool always_const;
|
1316 |
|
|
int base_time = inline_summary (node)->time;
|
1317 |
|
|
int removable_params_cost;
|
1318 |
|
|
|
1319 |
|
|
if (!count || !ipcp_versionable_function_p (node))
|
1320 |
|
|
return;
|
1321 |
|
|
|
1322 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1323 |
|
|
fprintf (dump_file, "\nEstimating effects for %s/%i, base_time: %i.\n",
|
1324 |
|
|
cgraph_node_name (node), node->uid, base_time);
|
1325 |
|
|
|
1326 |
|
|
always_const = gather_context_independent_values (info, &known_csts,
|
1327 |
|
|
&known_binfos,
|
1328 |
|
|
&removable_params_cost);
|
1329 |
|
|
if (always_const)
|
1330 |
|
|
{
|
1331 |
|
|
struct caller_statistics stats;
|
1332 |
|
|
int time, size;
|
1333 |
|
|
|
1334 |
|
|
init_caller_stats (&stats);
|
1335 |
|
|
cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
|
1336 |
|
|
estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
|
1337 |
|
|
&size, &time);
|
1338 |
|
|
time -= devirtualization_time_bonus (node, known_csts, known_binfos);
|
1339 |
|
|
time -= removable_params_cost;
|
1340 |
|
|
size -= stats.n_calls * removable_params_cost;
|
1341 |
|
|
|
1342 |
|
|
if (dump_file)
|
1343 |
|
|
fprintf (dump_file, " - context independent values, size: %i, "
|
1344 |
|
|
"time_benefit: %i\n", size, base_time - time);
|
1345 |
|
|
|
1346 |
|
|
if (size <= 0
|
1347 |
|
|
|| cgraph_will_be_removed_from_program_if_no_direct_calls (node))
|
1348 |
|
|
{
|
1349 |
|
|
info->clone_for_all_contexts = true;
|
1350 |
|
|
base_time = time;
|
1351 |
|
|
|
1352 |
|
|
if (dump_file)
|
1353 |
|
|
fprintf (dump_file, " Decided to specialize for all "
|
1354 |
|
|
"known contexts, code not going to grow.\n");
|
1355 |
|
|
}
|
1356 |
|
|
else if (good_cloning_opportunity_p (node, base_time - time,
|
1357 |
|
|
stats.freq_sum, stats.count_sum,
|
1358 |
|
|
size))
|
1359 |
|
|
{
|
1360 |
|
|
if (size + overall_size <= max_new_size)
|
1361 |
|
|
{
|
1362 |
|
|
info->clone_for_all_contexts = true;
|
1363 |
|
|
base_time = time;
|
1364 |
|
|
overall_size += size;
|
1365 |
|
|
|
1366 |
|
|
if (dump_file)
|
1367 |
|
|
fprintf (dump_file, " Decided to specialize for all "
|
1368 |
|
|
"known contexts, growth deemed beneficial.\n");
|
1369 |
|
|
}
|
1370 |
|
|
else if (dump_file && (dump_flags & TDF_DETAILS))
|
1371 |
|
|
fprintf (dump_file, " Not cloning for all contexts because "
|
1372 |
|
|
"max_new_size would be reached with %li.\n",
|
1373 |
|
|
size + overall_size);
|
1374 |
|
|
}
|
1375 |
|
|
}
|
1376 |
|
|
|
1377 |
|
|
for (i = 0; i < count ; i++)
|
1378 |
|
|
{
|
1379 |
|
|
struct ipcp_lattice *lat = ipa_get_lattice (info, i);
|
1380 |
|
|
struct ipcp_value *val;
|
1381 |
|
|
int emc;
|
1382 |
|
|
|
1383 |
|
|
if (lat->bottom
|
1384 |
|
|
|| !lat->values
|
1385 |
|
|
|| VEC_index (tree, known_csts, i)
|
1386 |
|
|
|| VEC_index (tree, known_binfos, i))
|
1387 |
|
|
continue;
|
1388 |
|
|
|
1389 |
|
|
for (val = lat->values; val; val = val->next)
|
1390 |
|
|
{
|
1391 |
|
|
int time, size, time_benefit;
|
1392 |
|
|
|
1393 |
|
|
if (TREE_CODE (val->value) != TREE_BINFO)
|
1394 |
|
|
{
|
1395 |
|
|
VEC_replace (tree, known_csts, i, val->value);
|
1396 |
|
|
VEC_replace (tree, known_binfos, i, NULL_TREE);
|
1397 |
|
|
emc = estimate_move_cost (TREE_TYPE (val->value));
|
1398 |
|
|
}
|
1399 |
|
|
else if (lat->virt_call)
|
1400 |
|
|
{
|
1401 |
|
|
VEC_replace (tree, known_csts, i, NULL_TREE);
|
1402 |
|
|
VEC_replace (tree, known_binfos, i, val->value);
|
1403 |
|
|
emc = 0;
|
1404 |
|
|
}
|
1405 |
|
|
else
|
1406 |
|
|
continue;
|
1407 |
|
|
|
1408 |
|
|
estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
|
1409 |
|
|
&size, &time);
|
1410 |
|
|
time_benefit = base_time - time
|
1411 |
|
|
+ devirtualization_time_bonus (node, known_csts, known_binfos)
|
1412 |
|
|
+ removable_params_cost + emc;
|
1413 |
|
|
|
1414 |
|
|
gcc_checking_assert (size >=0);
|
1415 |
|
|
/* The inliner-heuristics based estimates may think that in certain
|
1416 |
|
|
contexts some functions do not have any size at all but we want
|
1417 |
|
|
all specializations to have at least a tiny cost, not least not to
|
1418 |
|
|
divide by zero. */
|
1419 |
|
|
if (size == 0)
|
1420 |
|
|
size = 1;
|
1421 |
|
|
|
1422 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1423 |
|
|
{
|
1424 |
|
|
fprintf (dump_file, " - estimates for value ");
|
1425 |
|
|
print_ipcp_constant_value (dump_file, val->value);
|
1426 |
|
|
fprintf (dump_file, " for parameter ");
|
1427 |
|
|
print_generic_expr (dump_file, ipa_get_param (info, i), 0);
|
1428 |
|
|
fprintf (dump_file, ": time_benefit: %i, size: %i\n",
|
1429 |
|
|
time_benefit, size);
|
1430 |
|
|
}
|
1431 |
|
|
|
1432 |
|
|
val->local_time_benefit = time_benefit;
|
1433 |
|
|
val->local_size_cost = size;
|
1434 |
|
|
}
|
1435 |
|
|
}
|
1436 |
|
|
|
1437 |
|
|
VEC_free (tree, heap, known_csts);
|
1438 |
|
|
VEC_free (tree, heap, known_binfos);
|
1439 |
|
|
}
|
1440 |
|
|
|
1441 |
|
|
|
1442 |
|
|
/* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
|
1443 |
|
|
topological sort of values. */
|
1444 |
|
|
|
1445 |
|
|
static void
|
1446 |
|
|
add_val_to_toposort (struct ipcp_value *cur_val)
|
1447 |
|
|
{
|
1448 |
|
|
static int dfs_counter = 0;
|
1449 |
|
|
static struct ipcp_value *stack;
|
1450 |
|
|
struct ipcp_value_source *src;
|
1451 |
|
|
|
1452 |
|
|
if (cur_val->dfs)
|
1453 |
|
|
return;
|
1454 |
|
|
|
1455 |
|
|
dfs_counter++;
|
1456 |
|
|
cur_val->dfs = dfs_counter;
|
1457 |
|
|
cur_val->low_link = dfs_counter;
|
1458 |
|
|
|
1459 |
|
|
cur_val->topo_next = stack;
|
1460 |
|
|
stack = cur_val;
|
1461 |
|
|
cur_val->on_stack = true;
|
1462 |
|
|
|
1463 |
|
|
for (src = cur_val->sources; src; src = src->next)
|
1464 |
|
|
if (src->val)
|
1465 |
|
|
{
|
1466 |
|
|
if (src->val->dfs == 0)
|
1467 |
|
|
{
|
1468 |
|
|
add_val_to_toposort (src->val);
|
1469 |
|
|
if (src->val->low_link < cur_val->low_link)
|
1470 |
|
|
cur_val->low_link = src->val->low_link;
|
1471 |
|
|
}
|
1472 |
|
|
else if (src->val->on_stack
|
1473 |
|
|
&& src->val->dfs < cur_val->low_link)
|
1474 |
|
|
cur_val->low_link = src->val->dfs;
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
if (cur_val->dfs == cur_val->low_link)
|
1478 |
|
|
{
|
1479 |
|
|
struct ipcp_value *v, *scc_list = NULL;
|
1480 |
|
|
|
1481 |
|
|
do
|
1482 |
|
|
{
|
1483 |
|
|
v = stack;
|
1484 |
|
|
stack = v->topo_next;
|
1485 |
|
|
v->on_stack = false;
|
1486 |
|
|
|
1487 |
|
|
v->scc_next = scc_list;
|
1488 |
|
|
scc_list = v;
|
1489 |
|
|
}
|
1490 |
|
|
while (v != cur_val);
|
1491 |
|
|
|
1492 |
|
|
cur_val->topo_next = values_topo;
|
1493 |
|
|
values_topo = cur_val;
|
1494 |
|
|
}
|
1495 |
|
|
}
|
1496 |
|
|
|
1497 |
|
|
/* Add all values in lattices associated with NODE to the topological sort if
|
1498 |
|
|
they are not there yet. */
|
1499 |
|
|
|
1500 |
|
|
static void
|
1501 |
|
|
add_all_node_vals_to_toposort (struct cgraph_node *node)
|
1502 |
|
|
{
|
1503 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
1504 |
|
|
int i, count = ipa_get_param_count (info);
|
1505 |
|
|
|
1506 |
|
|
for (i = 0; i < count ; i++)
|
1507 |
|
|
{
|
1508 |
|
|
struct ipcp_lattice *lat = ipa_get_lattice (info, i);
|
1509 |
|
|
struct ipcp_value *val;
|
1510 |
|
|
|
1511 |
|
|
if (lat->bottom || !lat->values)
|
1512 |
|
|
continue;
|
1513 |
|
|
for (val = lat->values; val; val = val->next)
|
1514 |
|
|
add_val_to_toposort (val);
|
1515 |
|
|
}
|
1516 |
|
|
}
|
1517 |
|
|
|
1518 |
|
|
/* One pass of constants propagation along the call graph edges, from callers
|
1519 |
|
|
to callees (requires topological ordering in TOPO), iterate over strongly
|
1520 |
|
|
connected components. */
|
1521 |
|
|
|
1522 |
|
|
static void
|
1523 |
|
|
propagate_constants_topo (struct topo_info *topo)
|
1524 |
|
|
{
|
1525 |
|
|
int i;
|
1526 |
|
|
|
1527 |
|
|
for (i = topo->nnodes - 1; i >= 0; i--)
|
1528 |
|
|
{
|
1529 |
|
|
struct cgraph_node *v, *node = topo->order[i];
|
1530 |
|
|
struct ipa_dfs_info *node_dfs_info;
|
1531 |
|
|
|
1532 |
|
|
if (!cgraph_function_with_gimple_body_p (node))
|
1533 |
|
|
continue;
|
1534 |
|
|
|
1535 |
|
|
node_dfs_info = (struct ipa_dfs_info *) node->aux;
|
1536 |
|
|
/* First, iteratively propagate within the strongly connected component
|
1537 |
|
|
until all lattices stabilize. */
|
1538 |
|
|
v = node_dfs_info->next_cycle;
|
1539 |
|
|
while (v)
|
1540 |
|
|
{
|
1541 |
|
|
push_node_to_stack (topo, v);
|
1542 |
|
|
v = ((struct ipa_dfs_info *) v->aux)->next_cycle;
|
1543 |
|
|
}
|
1544 |
|
|
|
1545 |
|
|
v = node;
|
1546 |
|
|
while (v)
|
1547 |
|
|
{
|
1548 |
|
|
struct cgraph_edge *cs;
|
1549 |
|
|
|
1550 |
|
|
for (cs = v->callees; cs; cs = cs->next_callee)
|
1551 |
|
|
if (edge_within_scc (cs)
|
1552 |
|
|
&& propagate_constants_accross_call (cs))
|
1553 |
|
|
push_node_to_stack (topo, cs->callee);
|
1554 |
|
|
v = pop_node_from_stack (topo);
|
1555 |
|
|
}
|
1556 |
|
|
|
1557 |
|
|
/* Afterwards, propagate along edges leading out of the SCC, calculates
|
1558 |
|
|
the local effects of the discovered constants and all valid values to
|
1559 |
|
|
their topological sort. */
|
1560 |
|
|
v = node;
|
1561 |
|
|
while (v)
|
1562 |
|
|
{
|
1563 |
|
|
struct cgraph_edge *cs;
|
1564 |
|
|
|
1565 |
|
|
estimate_local_effects (v);
|
1566 |
|
|
add_all_node_vals_to_toposort (v);
|
1567 |
|
|
for (cs = v->callees; cs; cs = cs->next_callee)
|
1568 |
|
|
if (!edge_within_scc (cs))
|
1569 |
|
|
propagate_constants_accross_call (cs);
|
1570 |
|
|
|
1571 |
|
|
v = ((struct ipa_dfs_info *) v->aux)->next_cycle;
|
1572 |
|
|
}
|
1573 |
|
|
}
|
1574 |
|
|
}
|
1575 |
|
|
|
1576 |
|
|
|
1577 |
|
|
/* Return the sum of A and B if none of them is bigger than INT_MAX/2, return
|
1578 |
|
|
the bigger one if otherwise. */
|
1579 |
|
|
|
1580 |
|
|
static int
|
1581 |
|
|
safe_add (int a, int b)
|
1582 |
|
|
{
|
1583 |
|
|
if (a > INT_MAX/2 || b > INT_MAX/2)
|
1584 |
|
|
return a > b ? a : b;
|
1585 |
|
|
else
|
1586 |
|
|
return a + b;
|
1587 |
|
|
}
|
1588 |
|
|
|
1589 |
|
|
|
1590 |
|
|
/* Propagate the estimated effects of individual values along the topological
|
1591 |
|
|
from the dependant values to those they depend on. */
|
1592 |
|
|
|
1593 |
|
|
static void
|
1594 |
|
|
propagate_effects (void)
|
1595 |
|
|
{
|
1596 |
|
|
struct ipcp_value *base;
|
1597 |
|
|
|
1598 |
|
|
for (base = values_topo; base; base = base->topo_next)
|
1599 |
|
|
{
|
1600 |
|
|
struct ipcp_value_source *src;
|
1601 |
|
|
struct ipcp_value *val;
|
1602 |
|
|
int time = 0, size = 0;
|
1603 |
|
|
|
1604 |
|
|
for (val = base; val; val = val->scc_next)
|
1605 |
|
|
{
|
1606 |
|
|
time = safe_add (time,
|
1607 |
|
|
val->local_time_benefit + val->prop_time_benefit);
|
1608 |
|
|
size = safe_add (size, val->local_size_cost + val->prop_size_cost);
|
1609 |
|
|
}
|
1610 |
|
|
|
1611 |
|
|
for (val = base; val; val = val->scc_next)
|
1612 |
|
|
for (src = val->sources; src; src = src->next)
|
1613 |
|
|
if (src->val
|
1614 |
|
|
&& cgraph_maybe_hot_edge_p (src->cs))
|
1615 |
|
|
{
|
1616 |
|
|
src->val->prop_time_benefit = safe_add (time,
|
1617 |
|
|
src->val->prop_time_benefit);
|
1618 |
|
|
src->val->prop_size_cost = safe_add (size,
|
1619 |
|
|
src->val->prop_size_cost);
|
1620 |
|
|
}
|
1621 |
|
|
}
|
1622 |
|
|
}
|
1623 |
|
|
|
1624 |
|
|
|
1625 |
|
|
/* Propagate constants, binfos and their effects from the summaries
|
1626 |
|
|
interprocedurally. */
|
1627 |
|
|
|
1628 |
|
|
static void
|
1629 |
|
|
ipcp_propagate_stage (struct topo_info *topo)
|
1630 |
|
|
{
|
1631 |
|
|
struct cgraph_node *node;
|
1632 |
|
|
|
1633 |
|
|
if (dump_file)
|
1634 |
|
|
fprintf (dump_file, "\n Propagating constants:\n\n");
|
1635 |
|
|
|
1636 |
|
|
if (in_lto_p)
|
1637 |
|
|
ipa_update_after_lto_read ();
|
1638 |
|
|
|
1639 |
|
|
|
1640 |
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
1641 |
|
|
{
|
1642 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
1643 |
|
|
|
1644 |
|
|
determine_versionability (node);
|
1645 |
|
|
if (cgraph_function_with_gimple_body_p (node))
|
1646 |
|
|
{
|
1647 |
|
|
info->lattices = XCNEWVEC (struct ipcp_lattice,
|
1648 |
|
|
ipa_get_param_count (info));
|
1649 |
|
|
initialize_node_lattices (node);
|
1650 |
|
|
}
|
1651 |
|
|
if (node->count > max_count)
|
1652 |
|
|
max_count = node->count;
|
1653 |
|
|
overall_size += inline_summary (node)->self_size;
|
1654 |
|
|
}
|
1655 |
|
|
|
1656 |
|
|
max_new_size = overall_size;
|
1657 |
|
|
if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
|
1658 |
|
|
max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
|
1659 |
|
|
max_new_size += max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
|
1660 |
|
|
|
1661 |
|
|
if (dump_file)
|
1662 |
|
|
fprintf (dump_file, "\noverall_size: %li, max_new_size: %li\n",
|
1663 |
|
|
overall_size, max_new_size);
|
1664 |
|
|
|
1665 |
|
|
propagate_constants_topo (topo);
|
1666 |
|
|
#ifdef ENABLE_CHECKING
|
1667 |
|
|
ipcp_verify_propagated_values ();
|
1668 |
|
|
#endif
|
1669 |
|
|
propagate_effects ();
|
1670 |
|
|
|
1671 |
|
|
if (dump_file)
|
1672 |
|
|
{
|
1673 |
|
|
fprintf (dump_file, "\nIPA lattices after all propagation:\n");
|
1674 |
|
|
print_all_lattices (dump_file, (dump_flags & TDF_DETAILS), true);
|
1675 |
|
|
}
|
1676 |
|
|
}
|
1677 |
|
|
|
1678 |
|
|
/* Discover newly direct outgoing edges from NODE which is a new clone with
|
1679 |
|
|
known KNOWN_VALS and make them direct. */
|
1680 |
|
|
|
1681 |
|
|
static void
|
1682 |
|
|
ipcp_discover_new_direct_edges (struct cgraph_node *node,
|
1683 |
|
|
VEC (tree, heap) *known_vals)
|
1684 |
|
|
{
|
1685 |
|
|
struct cgraph_edge *ie, *next_ie;
|
1686 |
|
|
|
1687 |
|
|
for (ie = node->indirect_calls; ie; ie = next_ie)
|
1688 |
|
|
{
|
1689 |
|
|
tree target;
|
1690 |
|
|
|
1691 |
|
|
next_ie = ie->next_callee;
|
1692 |
|
|
target = ipa_get_indirect_edge_target (ie, known_vals, NULL);
|
1693 |
|
|
if (target)
|
1694 |
|
|
ipa_make_edge_direct_to_target (ie, target);
|
1695 |
|
|
}
|
1696 |
|
|
}
|
1697 |
|
|
|
1698 |
|
|
/* Vector of pointers which for linked lists of clones of an original crgaph
|
1699 |
|
|
edge. */
|
1700 |
|
|
|
1701 |
|
|
static VEC (cgraph_edge_p, heap) *next_edge_clone;
|
1702 |
|
|
|
1703 |
|
|
static inline void
|
1704 |
|
|
grow_next_edge_clone_vector (void)
|
1705 |
|
|
{
|
1706 |
|
|
if (VEC_length (cgraph_edge_p, next_edge_clone)
|
1707 |
|
|
<= (unsigned) cgraph_edge_max_uid)
|
1708 |
|
|
VEC_safe_grow_cleared (cgraph_edge_p, heap, next_edge_clone,
|
1709 |
|
|
cgraph_edge_max_uid + 1);
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
/* Edge duplication hook to grow the appropriate linked list in
|
1713 |
|
|
next_edge_clone. */
|
1714 |
|
|
|
1715 |
|
|
static void
|
1716 |
|
|
ipcp_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
|
1717 |
|
|
__attribute__((unused)) void *data)
|
1718 |
|
|
{
|
1719 |
|
|
grow_next_edge_clone_vector ();
|
1720 |
|
|
VEC_replace (cgraph_edge_p, next_edge_clone, dst->uid,
|
1721 |
|
|
VEC_index (cgraph_edge_p, next_edge_clone, src->uid));
|
1722 |
|
|
VEC_replace (cgraph_edge_p, next_edge_clone, src->uid, dst);
|
1723 |
|
|
}
|
1724 |
|
|
|
1725 |
|
|
/* Get the next clone in the linked list of clones of an edge. */
|
1726 |
|
|
|
1727 |
|
|
static inline struct cgraph_edge *
|
1728 |
|
|
get_next_cgraph_edge_clone (struct cgraph_edge *cs)
|
1729 |
|
|
{
|
1730 |
|
|
return VEC_index (cgraph_edge_p, next_edge_clone, cs->uid);
|
1731 |
|
|
}
|
1732 |
|
|
|
1733 |
|
|
/* Return true if edge CS does bring about the value described by SRC. */
|
1734 |
|
|
|
1735 |
|
|
static bool
|
1736 |
|
|
cgraph_edge_brings_value_p (struct cgraph_edge *cs,
|
1737 |
|
|
struct ipcp_value_source *src)
|
1738 |
|
|
{
|
1739 |
|
|
struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
|
1740 |
|
|
|
1741 |
|
|
if (IPA_NODE_REF (cs->callee)->ipcp_orig_node
|
1742 |
|
|
|| caller_info->node_dead)
|
1743 |
|
|
return false;
|
1744 |
|
|
if (!src->val)
|
1745 |
|
|
return true;
|
1746 |
|
|
|
1747 |
|
|
if (caller_info->ipcp_orig_node)
|
1748 |
|
|
{
|
1749 |
|
|
tree t = VEC_index (tree, caller_info->known_vals, src->index);
|
1750 |
|
|
return (t != NULL_TREE
|
1751 |
|
|
&& values_equal_for_ipcp_p (src->val->value, t));
|
1752 |
|
|
}
|
1753 |
|
|
else
|
1754 |
|
|
{
|
1755 |
|
|
struct ipcp_lattice *lat = ipa_get_lattice (caller_info, src->index);
|
1756 |
|
|
if (ipa_lat_is_single_const (lat)
|
1757 |
|
|
&& values_equal_for_ipcp_p (src->val->value, lat->values->value))
|
1758 |
|
|
return true;
|
1759 |
|
|
else
|
1760 |
|
|
return false;
|
1761 |
|
|
}
|
1762 |
|
|
}
|
1763 |
|
|
|
1764 |
|
|
/* Given VAL, iterate over all its sources and if they still hold, add their
|
1765 |
|
|
edge frequency and their number into *FREQUENCY and *CALLER_COUNT
|
1766 |
|
|
respectively. */
|
1767 |
|
|
|
1768 |
|
|
static bool
|
1769 |
|
|
get_info_about_necessary_edges (struct ipcp_value *val, int *freq_sum,
|
1770 |
|
|
gcov_type *count_sum, int *caller_count)
|
1771 |
|
|
{
|
1772 |
|
|
struct ipcp_value_source *src;
|
1773 |
|
|
int freq = 0, count = 0;
|
1774 |
|
|
gcov_type cnt = 0;
|
1775 |
|
|
bool hot = false;
|
1776 |
|
|
|
1777 |
|
|
for (src = val->sources; src; src = src->next)
|
1778 |
|
|
{
|
1779 |
|
|
struct cgraph_edge *cs = src->cs;
|
1780 |
|
|
while (cs)
|
1781 |
|
|
{
|
1782 |
|
|
if (cgraph_edge_brings_value_p (cs, src))
|
1783 |
|
|
{
|
1784 |
|
|
count++;
|
1785 |
|
|
freq += cs->frequency;
|
1786 |
|
|
cnt += cs->count;
|
1787 |
|
|
hot |= cgraph_maybe_hot_edge_p (cs);
|
1788 |
|
|
}
|
1789 |
|
|
cs = get_next_cgraph_edge_clone (cs);
|
1790 |
|
|
}
|
1791 |
|
|
}
|
1792 |
|
|
|
1793 |
|
|
*freq_sum = freq;
|
1794 |
|
|
*count_sum = cnt;
|
1795 |
|
|
*caller_count = count;
|
1796 |
|
|
return hot;
|
1797 |
|
|
}
|
1798 |
|
|
|
1799 |
|
|
/* Return a vector of incoming edges that do bring value VAL. It is assumed
|
1800 |
|
|
their number is known and equal to CALLER_COUNT. */
|
1801 |
|
|
|
1802 |
|
|
static VEC (cgraph_edge_p,heap) *
|
1803 |
|
|
gather_edges_for_value (struct ipcp_value *val, int caller_count)
|
1804 |
|
|
{
|
1805 |
|
|
struct ipcp_value_source *src;
|
1806 |
|
|
VEC (cgraph_edge_p,heap) *ret;
|
1807 |
|
|
|
1808 |
|
|
ret = VEC_alloc (cgraph_edge_p, heap, caller_count);
|
1809 |
|
|
for (src = val->sources; src; src = src->next)
|
1810 |
|
|
{
|
1811 |
|
|
struct cgraph_edge *cs = src->cs;
|
1812 |
|
|
while (cs)
|
1813 |
|
|
{
|
1814 |
|
|
if (cgraph_edge_brings_value_p (cs, src))
|
1815 |
|
|
VEC_quick_push (cgraph_edge_p, ret, cs);
|
1816 |
|
|
cs = get_next_cgraph_edge_clone (cs);
|
1817 |
|
|
}
|
1818 |
|
|
}
|
1819 |
|
|
|
1820 |
|
|
return ret;
|
1821 |
|
|
}
|
1822 |
|
|
|
1823 |
|
|
/* Construct a replacement map for a know VALUE for a formal parameter PARAM.
|
1824 |
|
|
Return it or NULL if for some reason it cannot be created. */
|
1825 |
|
|
|
1826 |
|
|
static struct ipa_replace_map *
|
1827 |
|
|
get_replacement_map (tree value, tree parm)
|
1828 |
|
|
{
|
1829 |
|
|
tree req_type = TREE_TYPE (parm);
|
1830 |
|
|
struct ipa_replace_map *replace_map;
|
1831 |
|
|
|
1832 |
|
|
if (!useless_type_conversion_p (req_type, TREE_TYPE (value)))
|
1833 |
|
|
{
|
1834 |
|
|
if (fold_convertible_p (req_type, value))
|
1835 |
|
|
value = fold_build1 (NOP_EXPR, req_type, value);
|
1836 |
|
|
else if (TYPE_SIZE (req_type) == TYPE_SIZE (TREE_TYPE (value)))
|
1837 |
|
|
value = fold_build1 (VIEW_CONVERT_EXPR, req_type, value);
|
1838 |
|
|
else
|
1839 |
|
|
{
|
1840 |
|
|
if (dump_file)
|
1841 |
|
|
{
|
1842 |
|
|
fprintf (dump_file, " const ");
|
1843 |
|
|
print_generic_expr (dump_file, value, 0);
|
1844 |
|
|
fprintf (dump_file, " can't be converted to param ");
|
1845 |
|
|
print_generic_expr (dump_file, parm, 0);
|
1846 |
|
|
fprintf (dump_file, "\n");
|
1847 |
|
|
}
|
1848 |
|
|
return NULL;
|
1849 |
|
|
}
|
1850 |
|
|
}
|
1851 |
|
|
|
1852 |
|
|
replace_map = ggc_alloc_ipa_replace_map ();
|
1853 |
|
|
if (dump_file)
|
1854 |
|
|
{
|
1855 |
|
|
fprintf (dump_file, " replacing param ");
|
1856 |
|
|
print_generic_expr (dump_file, parm, 0);
|
1857 |
|
|
fprintf (dump_file, " with const ");
|
1858 |
|
|
print_generic_expr (dump_file, value, 0);
|
1859 |
|
|
fprintf (dump_file, "\n");
|
1860 |
|
|
}
|
1861 |
|
|
replace_map->old_tree = parm;
|
1862 |
|
|
replace_map->new_tree = value;
|
1863 |
|
|
replace_map->replace_p = true;
|
1864 |
|
|
replace_map->ref_p = false;
|
1865 |
|
|
|
1866 |
|
|
return replace_map;
|
1867 |
|
|
}
|
1868 |
|
|
|
1869 |
|
|
/* Dump new profiling counts */
|
1870 |
|
|
|
1871 |
|
|
static void
|
1872 |
|
|
dump_profile_updates (struct cgraph_node *orig_node,
|
1873 |
|
|
struct cgraph_node *new_node)
|
1874 |
|
|
{
|
1875 |
|
|
struct cgraph_edge *cs;
|
1876 |
|
|
|
1877 |
|
|
fprintf (dump_file, " setting count of the specialized node to "
|
1878 |
|
|
HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) new_node->count);
|
1879 |
|
|
for (cs = new_node->callees; cs ; cs = cs->next_callee)
|
1880 |
|
|
fprintf (dump_file, " edge to %s has count "
|
1881 |
|
|
HOST_WIDE_INT_PRINT_DEC "\n",
|
1882 |
|
|
cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
|
1883 |
|
|
|
1884 |
|
|
fprintf (dump_file, " setting count of the original node to "
|
1885 |
|
|
HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) orig_node->count);
|
1886 |
|
|
for (cs = orig_node->callees; cs ; cs = cs->next_callee)
|
1887 |
|
|
fprintf (dump_file, " edge to %s is left with "
|
1888 |
|
|
HOST_WIDE_INT_PRINT_DEC "\n",
|
1889 |
|
|
cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
|
1890 |
|
|
}
|
1891 |
|
|
|
1892 |
|
|
/* After a specialized NEW_NODE version of ORIG_NODE has been created, update
|
1893 |
|
|
their profile information to reflect this. */
|
1894 |
|
|
|
1895 |
|
|
static void
|
1896 |
|
|
update_profiling_info (struct cgraph_node *orig_node,
|
1897 |
|
|
struct cgraph_node *new_node)
|
1898 |
|
|
{
|
1899 |
|
|
struct cgraph_edge *cs;
|
1900 |
|
|
struct caller_statistics stats;
|
1901 |
|
|
gcov_type new_sum, orig_sum;
|
1902 |
|
|
gcov_type remainder, orig_node_count = orig_node->count;
|
1903 |
|
|
|
1904 |
|
|
if (orig_node_count == 0)
|
1905 |
|
|
return;
|
1906 |
|
|
|
1907 |
|
|
init_caller_stats (&stats);
|
1908 |
|
|
cgraph_for_node_and_aliases (orig_node, gather_caller_stats, &stats, false);
|
1909 |
|
|
orig_sum = stats.count_sum;
|
1910 |
|
|
init_caller_stats (&stats);
|
1911 |
|
|
cgraph_for_node_and_aliases (new_node, gather_caller_stats, &stats, false);
|
1912 |
|
|
new_sum = stats.count_sum;
|
1913 |
|
|
|
1914 |
|
|
if (orig_node_count < orig_sum + new_sum)
|
1915 |
|
|
{
|
1916 |
|
|
if (dump_file)
|
1917 |
|
|
fprintf (dump_file, " Problem: node %s/%i has too low count "
|
1918 |
|
|
HOST_WIDE_INT_PRINT_DEC " while the sum of incoming "
|
1919 |
|
|
"counts is " HOST_WIDE_INT_PRINT_DEC "\n",
|
1920 |
|
|
cgraph_node_name (orig_node), orig_node->uid,
|
1921 |
|
|
(HOST_WIDE_INT) orig_node_count,
|
1922 |
|
|
(HOST_WIDE_INT) (orig_sum + new_sum));
|
1923 |
|
|
|
1924 |
|
|
orig_node_count = (orig_sum + new_sum) * 12 / 10;
|
1925 |
|
|
if (dump_file)
|
1926 |
|
|
fprintf (dump_file, " proceeding by pretending it was "
|
1927 |
|
|
HOST_WIDE_INT_PRINT_DEC "\n",
|
1928 |
|
|
(HOST_WIDE_INT) orig_node_count);
|
1929 |
|
|
}
|
1930 |
|
|
|
1931 |
|
|
new_node->count = new_sum;
|
1932 |
|
|
remainder = orig_node_count - new_sum;
|
1933 |
|
|
orig_node->count = remainder;
|
1934 |
|
|
|
1935 |
|
|
for (cs = new_node->callees; cs ; cs = cs->next_callee)
|
1936 |
|
|
if (cs->frequency)
|
1937 |
|
|
cs->count = cs->count * (new_sum * REG_BR_PROB_BASE
|
1938 |
|
|
/ orig_node_count) / REG_BR_PROB_BASE;
|
1939 |
|
|
else
|
1940 |
|
|
cs->count = 0;
|
1941 |
|
|
|
1942 |
|
|
for (cs = orig_node->callees; cs ; cs = cs->next_callee)
|
1943 |
|
|
cs->count = cs->count * (remainder * REG_BR_PROB_BASE
|
1944 |
|
|
/ orig_node_count) / REG_BR_PROB_BASE;
|
1945 |
|
|
|
1946 |
|
|
if (dump_file)
|
1947 |
|
|
dump_profile_updates (orig_node, new_node);
|
1948 |
|
|
}
|
1949 |
|
|
|
1950 |
|
|
/* Update the respective profile of specialized NEW_NODE and the original
|
1951 |
|
|
ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
|
1952 |
|
|
have been redirected to the specialized version. */
|
1953 |
|
|
|
1954 |
|
|
static void
|
1955 |
|
|
update_specialized_profile (struct cgraph_node *new_node,
|
1956 |
|
|
struct cgraph_node *orig_node,
|
1957 |
|
|
gcov_type redirected_sum)
|
1958 |
|
|
{
|
1959 |
|
|
struct cgraph_edge *cs;
|
1960 |
|
|
gcov_type new_node_count, orig_node_count = orig_node->count;
|
1961 |
|
|
|
1962 |
|
|
if (dump_file)
|
1963 |
|
|
fprintf (dump_file, " the sum of counts of redirected edges is "
|
1964 |
|
|
HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) redirected_sum);
|
1965 |
|
|
if (orig_node_count == 0)
|
1966 |
|
|
return;
|
1967 |
|
|
|
1968 |
|
|
gcc_assert (orig_node_count >= redirected_sum);
|
1969 |
|
|
|
1970 |
|
|
new_node_count = new_node->count;
|
1971 |
|
|
new_node->count += redirected_sum;
|
1972 |
|
|
orig_node->count -= redirected_sum;
|
1973 |
|
|
|
1974 |
|
|
for (cs = new_node->callees; cs ; cs = cs->next_callee)
|
1975 |
|
|
if (cs->frequency)
|
1976 |
|
|
cs->count += cs->count * redirected_sum / new_node_count;
|
1977 |
|
|
else
|
1978 |
|
|
cs->count = 0;
|
1979 |
|
|
|
1980 |
|
|
for (cs = orig_node->callees; cs ; cs = cs->next_callee)
|
1981 |
|
|
{
|
1982 |
|
|
gcov_type dec = cs->count * (redirected_sum * REG_BR_PROB_BASE
|
1983 |
|
|
/ orig_node_count) / REG_BR_PROB_BASE;
|
1984 |
|
|
if (dec < cs->count)
|
1985 |
|
|
cs->count -= dec;
|
1986 |
|
|
else
|
1987 |
|
|
cs->count = 0;
|
1988 |
|
|
}
|
1989 |
|
|
|
1990 |
|
|
if (dump_file)
|
1991 |
|
|
dump_profile_updates (orig_node, new_node);
|
1992 |
|
|
}
|
1993 |
|
|
|
1994 |
|
|
/* Create a specialized version of NODE with known constants and types of
|
1995 |
|
|
parameters in KNOWN_VALS and redirect all edges in CALLERS to it. */
|
1996 |
|
|
|
1997 |
|
|
static struct cgraph_node *
|
1998 |
|
|
create_specialized_node (struct cgraph_node *node,
|
1999 |
|
|
VEC (tree, heap) *known_vals,
|
2000 |
|
|
VEC (cgraph_edge_p,heap) *callers)
|
2001 |
|
|
{
|
2002 |
|
|
struct ipa_node_params *new_info, *info = IPA_NODE_REF (node);
|
2003 |
|
|
VEC (ipa_replace_map_p,gc)* replace_trees = NULL;
|
2004 |
|
|
struct cgraph_node *new_node;
|
2005 |
|
|
int i, count = ipa_get_param_count (info);
|
2006 |
|
|
bitmap args_to_skip;
|
2007 |
|
|
|
2008 |
|
|
gcc_assert (!info->ipcp_orig_node);
|
2009 |
|
|
|
2010 |
|
|
if (node->local.can_change_signature)
|
2011 |
|
|
{
|
2012 |
|
|
args_to_skip = BITMAP_GGC_ALLOC ();
|
2013 |
|
|
for (i = 0; i < count; i++)
|
2014 |
|
|
{
|
2015 |
|
|
tree t = VEC_index (tree, known_vals, i);
|
2016 |
|
|
|
2017 |
|
|
if ((t && TREE_CODE (t) != TREE_BINFO)
|
2018 |
|
|
|| !ipa_is_param_used (info, i))
|
2019 |
|
|
bitmap_set_bit (args_to_skip, i);
|
2020 |
|
|
}
|
2021 |
|
|
}
|
2022 |
|
|
else
|
2023 |
|
|
{
|
2024 |
|
|
args_to_skip = NULL;
|
2025 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2026 |
|
|
fprintf (dump_file, " cannot change function signature\n");
|
2027 |
|
|
}
|
2028 |
|
|
|
2029 |
|
|
for (i = 0; i < count ; i++)
|
2030 |
|
|
{
|
2031 |
|
|
tree t = VEC_index (tree, known_vals, i);
|
2032 |
|
|
if (t && TREE_CODE (t) != TREE_BINFO)
|
2033 |
|
|
{
|
2034 |
|
|
struct ipa_replace_map *replace_map;
|
2035 |
|
|
|
2036 |
|
|
replace_map = get_replacement_map (t, ipa_get_param (info, i));
|
2037 |
|
|
if (replace_map)
|
2038 |
|
|
VEC_safe_push (ipa_replace_map_p, gc, replace_trees, replace_map);
|
2039 |
|
|
}
|
2040 |
|
|
}
|
2041 |
|
|
|
2042 |
|
|
new_node = cgraph_create_virtual_clone (node, callers, replace_trees,
|
2043 |
|
|
args_to_skip, "constprop");
|
2044 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2045 |
|
|
fprintf (dump_file, " the new node is %s/%i.\n",
|
2046 |
|
|
cgraph_node_name (new_node), new_node->uid);
|
2047 |
|
|
gcc_checking_assert (ipa_node_params_vector
|
2048 |
|
|
&& (VEC_length (ipa_node_params_t,
|
2049 |
|
|
ipa_node_params_vector)
|
2050 |
|
|
> (unsigned) cgraph_max_uid));
|
2051 |
|
|
update_profiling_info (node, new_node);
|
2052 |
|
|
new_info = IPA_NODE_REF (new_node);
|
2053 |
|
|
new_info->ipcp_orig_node = node;
|
2054 |
|
|
new_info->known_vals = known_vals;
|
2055 |
|
|
|
2056 |
|
|
ipcp_discover_new_direct_edges (new_node, known_vals);
|
2057 |
|
|
|
2058 |
|
|
VEC_free (cgraph_edge_p, heap, callers);
|
2059 |
|
|
return new_node;
|
2060 |
|
|
}
|
2061 |
|
|
|
2062 |
|
|
/* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
|
2063 |
|
|
KNOWN_VALS with constants and types that are also known for all of the
|
2064 |
|
|
CALLERS. */
|
2065 |
|
|
|
2066 |
|
|
static void
|
2067 |
|
|
find_more_values_for_callers_subset (struct cgraph_node *node,
|
2068 |
|
|
VEC (tree, heap) *known_vals,
|
2069 |
|
|
VEC (cgraph_edge_p,heap) *callers)
|
2070 |
|
|
{
|
2071 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
2072 |
|
|
int i, count = ipa_get_param_count (info);
|
2073 |
|
|
|
2074 |
|
|
for (i = 0; i < count ; i++)
|
2075 |
|
|
{
|
2076 |
|
|
struct cgraph_edge *cs;
|
2077 |
|
|
tree newval = NULL_TREE;
|
2078 |
|
|
int j;
|
2079 |
|
|
|
2080 |
|
|
if (ipa_get_lattice (info, i)->bottom
|
2081 |
|
|
|| VEC_index (tree, known_vals, i))
|
2082 |
|
|
continue;
|
2083 |
|
|
|
2084 |
|
|
FOR_EACH_VEC_ELT (cgraph_edge_p, callers, j, cs)
|
2085 |
|
|
{
|
2086 |
|
|
struct ipa_jump_func *jump_func;
|
2087 |
|
|
tree t;
|
2088 |
|
|
|
2089 |
|
|
if (i >= ipa_get_cs_argument_count (IPA_EDGE_REF (cs)))
|
2090 |
|
|
{
|
2091 |
|
|
newval = NULL_TREE;
|
2092 |
|
|
break;
|
2093 |
|
|
}
|
2094 |
|
|
jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
|
2095 |
|
|
t = ipa_value_from_jfunc (IPA_NODE_REF (cs->caller), jump_func);
|
2096 |
|
|
if (!t
|
2097 |
|
|
|| (newval
|
2098 |
|
|
&& !values_equal_for_ipcp_p (t, newval)))
|
2099 |
|
|
{
|
2100 |
|
|
newval = NULL_TREE;
|
2101 |
|
|
break;
|
2102 |
|
|
}
|
2103 |
|
|
else
|
2104 |
|
|
newval = t;
|
2105 |
|
|
}
|
2106 |
|
|
|
2107 |
|
|
if (newval)
|
2108 |
|
|
{
|
2109 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2110 |
|
|
{
|
2111 |
|
|
fprintf (dump_file, " adding an extra known value ");
|
2112 |
|
|
print_ipcp_constant_value (dump_file, newval);
|
2113 |
|
|
fprintf (dump_file, " for parameter ");
|
2114 |
|
|
print_generic_expr (dump_file, ipa_get_param (info, i), 0);
|
2115 |
|
|
fprintf (dump_file, "\n");
|
2116 |
|
|
}
|
2117 |
|
|
|
2118 |
|
|
VEC_replace (tree, known_vals, i, newval);
|
2119 |
|
|
}
|
2120 |
|
|
}
|
2121 |
|
|
}
|
2122 |
|
|
|
2123 |
|
|
/* Given an original NODE and a VAL for which we have already created a
|
2124 |
|
|
specialized clone, look whether there are incoming edges that still lead
|
2125 |
|
|
into the old node but now also bring the requested value and also conform to
|
2126 |
|
|
all other criteria such that they can be redirected the the special node.
|
2127 |
|
|
This function can therefore redirect the final edge in a SCC. */
|
2128 |
|
|
|
2129 |
|
|
static void
|
2130 |
|
|
perhaps_add_new_callers (struct cgraph_node *node, struct ipcp_value *val)
|
2131 |
|
|
{
|
2132 |
|
|
struct ipa_node_params *dest_info = IPA_NODE_REF (val->spec_node);
|
2133 |
|
|
struct ipcp_value_source *src;
|
2134 |
|
|
int count = ipa_get_param_count (dest_info);
|
2135 |
|
|
gcov_type redirected_sum = 0;
|
2136 |
|
|
|
2137 |
|
|
for (src = val->sources; src; src = src->next)
|
2138 |
|
|
{
|
2139 |
|
|
struct cgraph_edge *cs = src->cs;
|
2140 |
|
|
while (cs)
|
2141 |
|
|
{
|
2142 |
|
|
enum availability availability;
|
2143 |
|
|
bool insufficient = false;
|
2144 |
|
|
|
2145 |
|
|
if (cgraph_function_node (cs->callee, &availability) == node
|
2146 |
|
|
&& availability > AVAIL_OVERWRITABLE
|
2147 |
|
|
&& cgraph_edge_brings_value_p (cs, src))
|
2148 |
|
|
{
|
2149 |
|
|
struct ipa_node_params *caller_info;
|
2150 |
|
|
struct ipa_edge_args *args;
|
2151 |
|
|
int i;
|
2152 |
|
|
|
2153 |
|
|
caller_info = IPA_NODE_REF (cs->caller);
|
2154 |
|
|
args = IPA_EDGE_REF (cs);
|
2155 |
|
|
for (i = 0; i < count; i++)
|
2156 |
|
|
{
|
2157 |
|
|
struct ipa_jump_func *jump_func;
|
2158 |
|
|
tree val, t;
|
2159 |
|
|
|
2160 |
|
|
val = VEC_index (tree, dest_info->known_vals, i);
|
2161 |
|
|
if (!val)
|
2162 |
|
|
continue;
|
2163 |
|
|
|
2164 |
|
|
if (i >= ipa_get_cs_argument_count (args))
|
2165 |
|
|
{
|
2166 |
|
|
insufficient = true;
|
2167 |
|
|
break;
|
2168 |
|
|
}
|
2169 |
|
|
jump_func = ipa_get_ith_jump_func (args, i);
|
2170 |
|
|
t = ipa_value_from_jfunc (caller_info, jump_func);
|
2171 |
|
|
if (!t || !values_equal_for_ipcp_p (val, t))
|
2172 |
|
|
{
|
2173 |
|
|
insufficient = true;
|
2174 |
|
|
break;
|
2175 |
|
|
}
|
2176 |
|
|
}
|
2177 |
|
|
|
2178 |
|
|
if (!insufficient)
|
2179 |
|
|
{
|
2180 |
|
|
if (dump_file)
|
2181 |
|
|
fprintf (dump_file, " - adding an extra caller %s/%i"
|
2182 |
|
|
" of %s/%i\n",
|
2183 |
|
|
cgraph_node_name (cs->caller), cs->caller->uid,
|
2184 |
|
|
cgraph_node_name (val->spec_node),
|
2185 |
|
|
val->spec_node->uid);
|
2186 |
|
|
|
2187 |
|
|
cgraph_redirect_edge_callee (cs, val->spec_node);
|
2188 |
|
|
redirected_sum += cs->count;
|
2189 |
|
|
}
|
2190 |
|
|
}
|
2191 |
|
|
cs = get_next_cgraph_edge_clone (cs);
|
2192 |
|
|
}
|
2193 |
|
|
}
|
2194 |
|
|
|
2195 |
|
|
if (redirected_sum)
|
2196 |
|
|
update_specialized_profile (val->spec_node, node, redirected_sum);
|
2197 |
|
|
}
|
2198 |
|
|
|
2199 |
|
|
|
2200 |
|
|
/* Copy KNOWN_BINFOS to KNOWN_VALS. */
|
2201 |
|
|
|
2202 |
|
|
static void
|
2203 |
|
|
move_binfos_to_values (VEC (tree, heap) *known_vals,
|
2204 |
|
|
VEC (tree, heap) *known_binfos)
|
2205 |
|
|
{
|
2206 |
|
|
tree t;
|
2207 |
|
|
int i;
|
2208 |
|
|
|
2209 |
|
|
for (i = 0; VEC_iterate (tree, known_binfos, i, t); i++)
|
2210 |
|
|
if (t)
|
2211 |
|
|
VEC_replace (tree, known_vals, i, t);
|
2212 |
|
|
}
|
2213 |
|
|
|
2214 |
|
|
|
2215 |
|
|
/* Decide whether and what specialized clones of NODE should be created. */
|
2216 |
|
|
|
2217 |
|
|
static bool
|
2218 |
|
|
decide_whether_version_node (struct cgraph_node *node)
|
2219 |
|
|
{
|
2220 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
2221 |
|
|
int i, count = ipa_get_param_count (info);
|
2222 |
|
|
VEC (tree, heap) *known_csts, *known_binfos;
|
2223 |
|
|
bool ret = false;
|
2224 |
|
|
|
2225 |
|
|
if (count == 0)
|
2226 |
|
|
return false;
|
2227 |
|
|
|
2228 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2229 |
|
|
fprintf (dump_file, "\nEvaluating opportunities for %s/%i.\n",
|
2230 |
|
|
cgraph_node_name (node), node->uid);
|
2231 |
|
|
|
2232 |
|
|
gather_context_independent_values (info, &known_csts, &known_binfos,
|
2233 |
|
|
NULL);
|
2234 |
|
|
|
2235 |
|
|
for (i = 0; i < count ; i++)
|
2236 |
|
|
{
|
2237 |
|
|
struct ipcp_lattice *lat = ipa_get_lattice (info, i);
|
2238 |
|
|
struct ipcp_value *val;
|
2239 |
|
|
|
2240 |
|
|
if (lat->bottom
|
2241 |
|
|
|| VEC_index (tree, known_csts, i)
|
2242 |
|
|
|| VEC_index (tree, known_binfos, i))
|
2243 |
|
|
continue;
|
2244 |
|
|
|
2245 |
|
|
for (val = lat->values; val; val = val->next)
|
2246 |
|
|
{
|
2247 |
|
|
int freq_sum, caller_count;
|
2248 |
|
|
gcov_type count_sum;
|
2249 |
|
|
VEC (cgraph_edge_p, heap) *callers;
|
2250 |
|
|
VEC (tree, heap) *kv;
|
2251 |
|
|
|
2252 |
|
|
if (val->spec_node)
|
2253 |
|
|
{
|
2254 |
|
|
perhaps_add_new_callers (node, val);
|
2255 |
|
|
continue;
|
2256 |
|
|
}
|
2257 |
|
|
else if (val->local_size_cost + overall_size > max_new_size)
|
2258 |
|
|
{
|
2259 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2260 |
|
|
fprintf (dump_file, " Ignoring candidate value because "
|
2261 |
|
|
"max_new_size would be reached with %li.\n",
|
2262 |
|
|
val->local_size_cost + overall_size);
|
2263 |
|
|
continue;
|
2264 |
|
|
}
|
2265 |
|
|
else if (!get_info_about_necessary_edges (val, &freq_sum, &count_sum,
|
2266 |
|
|
&caller_count))
|
2267 |
|
|
continue;
|
2268 |
|
|
|
2269 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2270 |
|
|
{
|
2271 |
|
|
fprintf (dump_file, " - considering value ");
|
2272 |
|
|
print_ipcp_constant_value (dump_file, val->value);
|
2273 |
|
|
fprintf (dump_file, " for parameter ");
|
2274 |
|
|
print_generic_expr (dump_file, ipa_get_param (info, i), 0);
|
2275 |
|
|
fprintf (dump_file, " (caller_count: %i)\n", caller_count);
|
2276 |
|
|
}
|
2277 |
|
|
|
2278 |
|
|
|
2279 |
|
|
if (!good_cloning_opportunity_p (node, val->local_time_benefit,
|
2280 |
|
|
freq_sum, count_sum,
|
2281 |
|
|
val->local_size_cost)
|
2282 |
|
|
&& !good_cloning_opportunity_p (node,
|
2283 |
|
|
val->local_time_benefit
|
2284 |
|
|
+ val->prop_time_benefit,
|
2285 |
|
|
freq_sum, count_sum,
|
2286 |
|
|
val->local_size_cost
|
2287 |
|
|
+ val->prop_size_cost))
|
2288 |
|
|
continue;
|
2289 |
|
|
|
2290 |
|
|
if (dump_file)
|
2291 |
|
|
fprintf (dump_file, " Creating a specialized node of %s/%i.\n",
|
2292 |
|
|
cgraph_node_name (node), node->uid);
|
2293 |
|
|
|
2294 |
|
|
callers = gather_edges_for_value (val, caller_count);
|
2295 |
|
|
kv = VEC_copy (tree, heap, known_csts);
|
2296 |
|
|
move_binfos_to_values (kv, known_binfos);
|
2297 |
|
|
VEC_replace (tree, kv, i, val->value);
|
2298 |
|
|
find_more_values_for_callers_subset (node, kv, callers);
|
2299 |
|
|
val->spec_node = create_specialized_node (node, kv, callers);
|
2300 |
|
|
overall_size += val->local_size_cost;
|
2301 |
|
|
info = IPA_NODE_REF (node);
|
2302 |
|
|
|
2303 |
|
|
/* TODO: If for some lattice there is only one other known value
|
2304 |
|
|
left, make a special node for it too. */
|
2305 |
|
|
ret = true;
|
2306 |
|
|
|
2307 |
|
|
VEC_replace (tree, kv, i, val->value);
|
2308 |
|
|
}
|
2309 |
|
|
}
|
2310 |
|
|
|
2311 |
|
|
if (info->clone_for_all_contexts)
|
2312 |
|
|
{
|
2313 |
|
|
VEC (cgraph_edge_p, heap) *callers;
|
2314 |
|
|
|
2315 |
|
|
if (dump_file)
|
2316 |
|
|
fprintf (dump_file, " - Creating a specialized node of %s/%i "
|
2317 |
|
|
"for all known contexts.\n", cgraph_node_name (node),
|
2318 |
|
|
node->uid);
|
2319 |
|
|
|
2320 |
|
|
callers = collect_callers_of_node (node);
|
2321 |
|
|
move_binfos_to_values (known_csts, known_binfos);
|
2322 |
|
|
create_specialized_node (node, known_csts, callers);
|
2323 |
|
|
info = IPA_NODE_REF (node);
|
2324 |
|
|
info->clone_for_all_contexts = false;
|
2325 |
|
|
ret = true;
|
2326 |
|
|
}
|
2327 |
|
|
else
|
2328 |
|
|
VEC_free (tree, heap, known_csts);
|
2329 |
|
|
|
2330 |
|
|
VEC_free (tree, heap, known_binfos);
|
2331 |
|
|
return ret;
|
2332 |
|
|
}
|
2333 |
|
|
|
2334 |
|
|
/* Transitively mark all callees of NODE within the same SCC as not dead. */
|
2335 |
|
|
|
2336 |
|
|
static void
|
2337 |
|
|
spread_undeadness (struct cgraph_node *node)
|
2338 |
|
|
{
|
2339 |
|
|
struct cgraph_edge *cs;
|
2340 |
|
|
|
2341 |
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
2342 |
|
|
if (edge_within_scc (cs))
|
2343 |
|
|
{
|
2344 |
|
|
struct cgraph_node *callee;
|
2345 |
|
|
struct ipa_node_params *info;
|
2346 |
|
|
|
2347 |
|
|
callee = cgraph_function_node (cs->callee, NULL);
|
2348 |
|
|
info = IPA_NODE_REF (callee);
|
2349 |
|
|
|
2350 |
|
|
if (info->node_dead)
|
2351 |
|
|
{
|
2352 |
|
|
info->node_dead = 0;
|
2353 |
|
|
spread_undeadness (callee);
|
2354 |
|
|
}
|
2355 |
|
|
}
|
2356 |
|
|
}
|
2357 |
|
|
|
2358 |
|
|
/* Return true if NODE has a caller from outside of its SCC that is not
|
2359 |
|
|
dead. Worker callback for cgraph_for_node_and_aliases. */
|
2360 |
|
|
|
2361 |
|
|
static bool
|
2362 |
|
|
has_undead_caller_from_outside_scc_p (struct cgraph_node *node,
|
2363 |
|
|
void *data ATTRIBUTE_UNUSED)
|
2364 |
|
|
{
|
2365 |
|
|
struct cgraph_edge *cs;
|
2366 |
|
|
|
2367 |
|
|
for (cs = node->callers; cs; cs = cs->next_caller)
|
2368 |
|
|
if (cs->caller->thunk.thunk_p
|
2369 |
|
|
&& cgraph_for_node_and_aliases (cs->caller,
|
2370 |
|
|
has_undead_caller_from_outside_scc_p,
|
2371 |
|
|
NULL, true))
|
2372 |
|
|
return true;
|
2373 |
|
|
else if (!edge_within_scc (cs)
|
2374 |
|
|
&& !IPA_NODE_REF (cs->caller)->node_dead)
|
2375 |
|
|
return true;
|
2376 |
|
|
return false;
|
2377 |
|
|
}
|
2378 |
|
|
|
2379 |
|
|
|
2380 |
|
|
/* Identify nodes within the same SCC as NODE which are no longer needed
|
2381 |
|
|
because of new clones and will be removed as unreachable. */
|
2382 |
|
|
|
2383 |
|
|
static void
|
2384 |
|
|
identify_dead_nodes (struct cgraph_node *node)
|
2385 |
|
|
{
|
2386 |
|
|
struct cgraph_node *v;
|
2387 |
|
|
for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
|
2388 |
|
|
if (cgraph_will_be_removed_from_program_if_no_direct_calls (v)
|
2389 |
|
|
&& !cgraph_for_node_and_aliases (v,
|
2390 |
|
|
has_undead_caller_from_outside_scc_p,
|
2391 |
|
|
NULL, true))
|
2392 |
|
|
IPA_NODE_REF (v)->node_dead = 1;
|
2393 |
|
|
|
2394 |
|
|
for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
|
2395 |
|
|
if (!IPA_NODE_REF (v)->node_dead)
|
2396 |
|
|
spread_undeadness (v);
|
2397 |
|
|
|
2398 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2399 |
|
|
{
|
2400 |
|
|
for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
|
2401 |
|
|
if (IPA_NODE_REF (v)->node_dead)
|
2402 |
|
|
fprintf (dump_file, " Marking node as dead: %s/%i.\n",
|
2403 |
|
|
cgraph_node_name (v), v->uid);
|
2404 |
|
|
}
|
2405 |
|
|
}
|
2406 |
|
|
|
2407 |
|
|
/* The decision stage. Iterate over the topological order of call graph nodes
|
2408 |
|
|
TOPO and make specialized clones if deemed beneficial. */
|
2409 |
|
|
|
2410 |
|
|
static void
|
2411 |
|
|
ipcp_decision_stage (struct topo_info *topo)
|
2412 |
|
|
{
|
2413 |
|
|
int i;
|
2414 |
|
|
|
2415 |
|
|
if (dump_file)
|
2416 |
|
|
fprintf (dump_file, "\nIPA decision stage:\n\n");
|
2417 |
|
|
|
2418 |
|
|
for (i = topo->nnodes - 1; i >= 0; i--)
|
2419 |
|
|
{
|
2420 |
|
|
struct cgraph_node *node = topo->order[i];
|
2421 |
|
|
bool change = false, iterate = true;
|
2422 |
|
|
|
2423 |
|
|
while (iterate)
|
2424 |
|
|
{
|
2425 |
|
|
struct cgraph_node *v;
|
2426 |
|
|
iterate = false;
|
2427 |
|
|
for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
|
2428 |
|
|
if (cgraph_function_with_gimple_body_p (v)
|
2429 |
|
|
&& ipcp_versionable_function_p (v))
|
2430 |
|
|
iterate |= decide_whether_version_node (v);
|
2431 |
|
|
|
2432 |
|
|
change |= iterate;
|
2433 |
|
|
}
|
2434 |
|
|
if (change)
|
2435 |
|
|
identify_dead_nodes (node);
|
2436 |
|
|
}
|
2437 |
|
|
}
|
2438 |
|
|
|
2439 |
|
|
/* The IPCP driver. */
|
2440 |
|
|
|
2441 |
|
|
static unsigned int
|
2442 |
|
|
ipcp_driver (void)
|
2443 |
|
|
{
|
2444 |
|
|
struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
|
2445 |
|
|
struct topo_info topo;
|
2446 |
|
|
|
2447 |
|
|
cgraph_remove_unreachable_nodes (true,dump_file);
|
2448 |
|
|
ipa_check_create_node_params ();
|
2449 |
|
|
ipa_check_create_edge_args ();
|
2450 |
|
|
grow_next_edge_clone_vector ();
|
2451 |
|
|
edge_duplication_hook_holder =
|
2452 |
|
|
cgraph_add_edge_duplication_hook (&ipcp_edge_duplication_hook, NULL);
|
2453 |
|
|
ipcp_values_pool = create_alloc_pool ("IPA-CP values",
|
2454 |
|
|
sizeof (struct ipcp_value), 32);
|
2455 |
|
|
ipcp_sources_pool = create_alloc_pool ("IPA-CP value sources",
|
2456 |
|
|
sizeof (struct ipcp_value_source), 64);
|
2457 |
|
|
if (dump_file)
|
2458 |
|
|
{
|
2459 |
|
|
fprintf (dump_file, "\nIPA structures before propagation:\n");
|
2460 |
|
|
if (dump_flags & TDF_DETAILS)
|
2461 |
|
|
ipa_print_all_params (dump_file);
|
2462 |
|
|
ipa_print_all_jump_functions (dump_file);
|
2463 |
|
|
}
|
2464 |
|
|
|
2465 |
|
|
/* Topological sort. */
|
2466 |
|
|
build_toporder_info (&topo);
|
2467 |
|
|
/* Do the interprocedural propagation. */
|
2468 |
|
|
ipcp_propagate_stage (&topo);
|
2469 |
|
|
/* Decide what constant propagation and cloning should be performed. */
|
2470 |
|
|
ipcp_decision_stage (&topo);
|
2471 |
|
|
|
2472 |
|
|
/* Free all IPCP structures. */
|
2473 |
|
|
free_toporder_info (&topo);
|
2474 |
|
|
VEC_free (cgraph_edge_p, heap, next_edge_clone);
|
2475 |
|
|
cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
|
2476 |
|
|
ipa_free_all_structures_after_ipa_cp ();
|
2477 |
|
|
if (dump_file)
|
2478 |
|
|
fprintf (dump_file, "\nIPA constant propagation end\n");
|
2479 |
|
|
return 0;
|
2480 |
|
|
}
|
2481 |
|
|
|
2482 |
|
|
/* Initialization and computation of IPCP data structures. This is the initial
|
2483 |
|
|
intraprocedural analysis of functions, which gathers information to be
|
2484 |
|
|
propagated later on. */
|
2485 |
|
|
|
2486 |
|
|
static void
|
2487 |
|
|
ipcp_generate_summary (void)
|
2488 |
|
|
{
|
2489 |
|
|
struct cgraph_node *node;
|
2490 |
|
|
|
2491 |
|
|
if (dump_file)
|
2492 |
|
|
fprintf (dump_file, "\nIPA constant propagation start:\n");
|
2493 |
|
|
ipa_register_cgraph_hooks ();
|
2494 |
|
|
|
2495 |
|
|
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
|
2496 |
|
|
{
|
2497 |
|
|
/* Unreachable nodes should have been eliminated before ipcp. */
|
2498 |
|
|
gcc_assert (node->needed || node->reachable);
|
2499 |
|
|
node->local.versionable = tree_versionable_function_p (node->decl);
|
2500 |
|
|
ipa_analyze_node (node);
|
2501 |
|
|
}
|
2502 |
|
|
}
|
2503 |
|
|
|
2504 |
|
|
/* Write ipcp summary for nodes in SET. */
|
2505 |
|
|
|
2506 |
|
|
static void
|
2507 |
|
|
ipcp_write_summary (cgraph_node_set set,
|
2508 |
|
|
varpool_node_set vset ATTRIBUTE_UNUSED)
|
2509 |
|
|
{
|
2510 |
|
|
ipa_prop_write_jump_functions (set);
|
2511 |
|
|
}
|
2512 |
|
|
|
2513 |
|
|
/* Read ipcp summary. */
|
2514 |
|
|
|
2515 |
|
|
static void
|
2516 |
|
|
ipcp_read_summary (void)
|
2517 |
|
|
{
|
2518 |
|
|
ipa_prop_read_jump_functions ();
|
2519 |
|
|
}
|
2520 |
|
|
|
2521 |
|
|
/* Gate for IPCP optimization. */
|
2522 |
|
|
|
2523 |
|
|
static bool
|
2524 |
|
|
cgraph_gate_cp (void)
|
2525 |
|
|
{
|
2526 |
|
|
/* FIXME: We should remove the optimize check after we ensure we never run
|
2527 |
|
|
IPA passes when not optimizing. */
|
2528 |
|
|
return flag_ipa_cp && optimize;
|
2529 |
|
|
}
|
2530 |
|
|
|
2531 |
|
|
struct ipa_opt_pass_d pass_ipa_cp =
|
2532 |
|
|
{
|
2533 |
|
|
{
|
2534 |
|
|
IPA_PASS,
|
2535 |
|
|
"cp", /* name */
|
2536 |
|
|
cgraph_gate_cp, /* gate */
|
2537 |
|
|
ipcp_driver, /* execute */
|
2538 |
|
|
NULL, /* sub */
|
2539 |
|
|
NULL, /* next */
|
2540 |
|
|
0, /* static_pass_number */
|
2541 |
|
|
TV_IPA_CONSTANT_PROP, /* tv_id */
|
2542 |
|
|
0, /* properties_required */
|
2543 |
|
|
0, /* properties_provided */
|
2544 |
|
|
0, /* properties_destroyed */
|
2545 |
|
|
0, /* todo_flags_start */
|
2546 |
|
|
TODO_dump_cgraph |
|
2547 |
|
|
TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
|
2548 |
|
|
},
|
2549 |
|
|
ipcp_generate_summary, /* generate_summary */
|
2550 |
|
|
ipcp_write_summary, /* write_summary */
|
2551 |
|
|
ipcp_read_summary, /* read_summary */
|
2552 |
|
|
NULL, /* write_optimization_summary */
|
2553 |
|
|
NULL, /* read_optimization_summary */
|
2554 |
|
|
NULL, /* stmt_fixup */
|
2555 |
|
|
0, /* TODOs */
|
2556 |
|
|
NULL, /* function_transform */
|
2557 |
|
|
NULL, /* variable_transform */
|
2558 |
|
|
};
|