| 1 |
684 |
jeremybenn |
/* Inlining decision heuristics.
|
| 2 |
|
|
Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Jan Hubicka
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
/* Analysis used by the inliner and other passes limiting code size growth.
|
| 23 |
|
|
|
| 24 |
|
|
We estimate for each function
|
| 25 |
|
|
- function body size
|
| 26 |
|
|
- average function execution time
|
| 27 |
|
|
- inlining size benefit (that is how much of function body size
|
| 28 |
|
|
and its call sequence is expected to disappear by inlining)
|
| 29 |
|
|
- inlining time benefit
|
| 30 |
|
|
- function frame size
|
| 31 |
|
|
For each call
|
| 32 |
|
|
- call statement size and time
|
| 33 |
|
|
|
| 34 |
|
|
inlinie_summary datastructures store above information locally (i.e.
|
| 35 |
|
|
parameters of the function itself) and globally (i.e. parameters of
|
| 36 |
|
|
the function created by applying all the inline decisions already
|
| 37 |
|
|
present in the callgraph).
|
| 38 |
|
|
|
| 39 |
|
|
We provide accestor to the inline_summary datastructure and
|
| 40 |
|
|
basic logic updating the parameters when inlining is performed.
|
| 41 |
|
|
|
| 42 |
|
|
The summaries are context sensitive. Context means
|
| 43 |
|
|
1) partial assignment of known constant values of operands
|
| 44 |
|
|
2) whether function is inlined into the call or not.
|
| 45 |
|
|
It is easy to add more variants. To represent function size and time
|
| 46 |
|
|
that depends on context (i.e. it is known to be optimized away when
|
| 47 |
|
|
context is known either by inlining or from IP-CP and clonning),
|
| 48 |
|
|
we use predicates. Predicates are logical formulas in
|
| 49 |
|
|
conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
|
| 50 |
|
|
specifying what conditions must be true. Conditions are simple test
|
| 51 |
|
|
of the form described above.
|
| 52 |
|
|
|
| 53 |
|
|
In order to make predicate (possibly) true, all of its clauses must
|
| 54 |
|
|
be (possibly) true. To make clause (possibly) true, one of conditions
|
| 55 |
|
|
it mentions must be (possibly) true. There are fixed bounds on
|
| 56 |
|
|
number of clauses and conditions and all the manipulation functions
|
| 57 |
|
|
are conservative in positive direction. I.e. we may lose precision
|
| 58 |
|
|
by thinking that predicate may be true even when it is not.
|
| 59 |
|
|
|
| 60 |
|
|
estimate_edge_size and estimate_edge_growth can be used to query
|
| 61 |
|
|
function size/time in the given context. inline_merge_summary merges
|
| 62 |
|
|
properties of caller and callee after inlining.
|
| 63 |
|
|
|
| 64 |
|
|
Finally pass_inline_parameters is exported. This is used to drive
|
| 65 |
|
|
computation of function parameters used by the early inliner. IPA
|
| 66 |
|
|
inlined performs analysis via its analyze_function method. */
|
| 67 |
|
|
|
| 68 |
|
|
#include "config.h"
|
| 69 |
|
|
#include "system.h"
|
| 70 |
|
|
#include "coretypes.h"
|
| 71 |
|
|
#include "tm.h"
|
| 72 |
|
|
#include "tree.h"
|
| 73 |
|
|
#include "tree-inline.h"
|
| 74 |
|
|
#include "langhooks.h"
|
| 75 |
|
|
#include "flags.h"
|
| 76 |
|
|
#include "cgraph.h"
|
| 77 |
|
|
#include "diagnostic.h"
|
| 78 |
|
|
#include "gimple-pretty-print.h"
|
| 79 |
|
|
#include "timevar.h"
|
| 80 |
|
|
#include "params.h"
|
| 81 |
|
|
#include "tree-pass.h"
|
| 82 |
|
|
#include "coverage.h"
|
| 83 |
|
|
#include "ggc.h"
|
| 84 |
|
|
#include "tree-flow.h"
|
| 85 |
|
|
#include "ipa-prop.h"
|
| 86 |
|
|
#include "lto-streamer.h"
|
| 87 |
|
|
#include "data-streamer.h"
|
| 88 |
|
|
#include "tree-streamer.h"
|
| 89 |
|
|
#include "ipa-inline.h"
|
| 90 |
|
|
#include "alloc-pool.h"
|
| 91 |
|
|
|
| 92 |
|
|
/* Estimate runtime of function can easilly run into huge numbers with many
|
| 93 |
|
|
nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
|
| 94 |
|
|
integer. For anything larger we use gcov_type. */
|
| 95 |
|
|
#define MAX_TIME 500000
|
| 96 |
|
|
|
| 97 |
|
|
/* Number of bits in integer, but we really want to be stable across different
|
| 98 |
|
|
hosts. */
|
| 99 |
|
|
#define NUM_CONDITIONS 32
|
| 100 |
|
|
|
| 101 |
|
|
enum predicate_conditions
|
| 102 |
|
|
{
|
| 103 |
|
|
predicate_false_condition = 0,
|
| 104 |
|
|
predicate_not_inlined_condition = 1,
|
| 105 |
|
|
predicate_first_dynamic_condition = 2
|
| 106 |
|
|
};
|
| 107 |
|
|
|
| 108 |
|
|
/* Special condition code we use to represent test that operand is compile time
|
| 109 |
|
|
constant. */
|
| 110 |
|
|
#define IS_NOT_CONSTANT ERROR_MARK
|
| 111 |
|
|
/* Special condition code we use to represent test that operand is not changed
|
| 112 |
|
|
across invocation of the function. When operand IS_NOT_CONSTANT it is always
|
| 113 |
|
|
CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
|
| 114 |
|
|
of executions even when they are not compile time constants. */
|
| 115 |
|
|
#define CHANGED IDENTIFIER_NODE
|
| 116 |
|
|
|
| 117 |
|
|
/* Holders of ipa cgraph hooks: */
|
| 118 |
|
|
static struct cgraph_node_hook_list *function_insertion_hook_holder;
|
| 119 |
|
|
static struct cgraph_node_hook_list *node_removal_hook_holder;
|
| 120 |
|
|
static struct cgraph_2node_hook_list *node_duplication_hook_holder;
|
| 121 |
|
|
static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
|
| 122 |
|
|
static struct cgraph_edge_hook_list *edge_removal_hook_holder;
|
| 123 |
|
|
static void inline_node_removal_hook (struct cgraph_node *, void *);
|
| 124 |
|
|
static void inline_node_duplication_hook (struct cgraph_node *,
|
| 125 |
|
|
struct cgraph_node *, void *);
|
| 126 |
|
|
static void inline_edge_removal_hook (struct cgraph_edge *, void *);
|
| 127 |
|
|
static void inline_edge_duplication_hook (struct cgraph_edge *,
|
| 128 |
|
|
struct cgraph_edge *,
|
| 129 |
|
|
void *);
|
| 130 |
|
|
|
| 131 |
|
|
/* VECtor holding inline summaries.
|
| 132 |
|
|
In GGC memory because conditions might point to constant trees. */
|
| 133 |
|
|
VEC(inline_summary_t,gc) *inline_summary_vec;
|
| 134 |
|
|
VEC(inline_edge_summary_t,heap) *inline_edge_summary_vec;
|
| 135 |
|
|
|
| 136 |
|
|
/* Cached node/edge growths. */
|
| 137 |
|
|
VEC(int,heap) *node_growth_cache;
|
| 138 |
|
|
VEC(edge_growth_cache_entry,heap) *edge_growth_cache;
|
| 139 |
|
|
|
| 140 |
|
|
/* Edge predicates goes here. */
|
| 141 |
|
|
static alloc_pool edge_predicate_pool;
|
| 142 |
|
|
|
| 143 |
|
|
/* Return true predicate (tautology).
|
| 144 |
|
|
We represent it by empty list of clauses. */
|
| 145 |
|
|
|
| 146 |
|
|
static inline struct predicate
|
| 147 |
|
|
true_predicate (void)
|
| 148 |
|
|
{
|
| 149 |
|
|
struct predicate p;
|
| 150 |
|
|
p.clause[0]=0;
|
| 151 |
|
|
return p;
|
| 152 |
|
|
}
|
| 153 |
|
|
|
| 154 |
|
|
|
| 155 |
|
|
/* Return predicate testing single condition number COND. */
|
| 156 |
|
|
|
| 157 |
|
|
static inline struct predicate
|
| 158 |
|
|
single_cond_predicate (int cond)
|
| 159 |
|
|
{
|
| 160 |
|
|
struct predicate p;
|
| 161 |
|
|
p.clause[0]=1 << cond;
|
| 162 |
|
|
p.clause[1]=0;
|
| 163 |
|
|
return p;
|
| 164 |
|
|
}
|
| 165 |
|
|
|
| 166 |
|
|
|
| 167 |
|
|
/* Return false predicate. First clause require false condition. */
|
| 168 |
|
|
|
| 169 |
|
|
static inline struct predicate
|
| 170 |
|
|
false_predicate (void)
|
| 171 |
|
|
{
|
| 172 |
|
|
return single_cond_predicate (predicate_false_condition);
|
| 173 |
|
|
}
|
| 174 |
|
|
|
| 175 |
|
|
|
| 176 |
|
|
/* Return true if P is (false). */
|
| 177 |
|
|
|
| 178 |
|
|
static inline bool
|
| 179 |
|
|
true_predicate_p (struct predicate *p)
|
| 180 |
|
|
{
|
| 181 |
|
|
return !p->clause[0];
|
| 182 |
|
|
}
|
| 183 |
|
|
|
| 184 |
|
|
|
| 185 |
|
|
/* Return true if P is (false). */
|
| 186 |
|
|
|
| 187 |
|
|
static inline bool
|
| 188 |
|
|
false_predicate_p (struct predicate *p)
|
| 189 |
|
|
{
|
| 190 |
|
|
if (p->clause[0] == (1 << predicate_false_condition))
|
| 191 |
|
|
{
|
| 192 |
|
|
gcc_checking_assert (!p->clause[1]
|
| 193 |
|
|
&& p->clause[0] == 1 << predicate_false_condition);
|
| 194 |
|
|
return true;
|
| 195 |
|
|
}
|
| 196 |
|
|
return false;
|
| 197 |
|
|
}
|
| 198 |
|
|
|
| 199 |
|
|
|
| 200 |
|
|
/* Return predicate that is set true when function is not inlined. */
|
| 201 |
|
|
static inline struct predicate
|
| 202 |
|
|
not_inlined_predicate (void)
|
| 203 |
|
|
{
|
| 204 |
|
|
return single_cond_predicate (predicate_not_inlined_condition);
|
| 205 |
|
|
}
|
| 206 |
|
|
|
| 207 |
|
|
|
| 208 |
|
|
/* Add condition to condition list CONDS. */
|
| 209 |
|
|
|
| 210 |
|
|
static struct predicate
|
| 211 |
|
|
add_condition (struct inline_summary *summary, int operand_num,
|
| 212 |
|
|
enum tree_code code, tree val)
|
| 213 |
|
|
{
|
| 214 |
|
|
int i;
|
| 215 |
|
|
struct condition *c;
|
| 216 |
|
|
struct condition new_cond;
|
| 217 |
|
|
|
| 218 |
|
|
for (i = 0; VEC_iterate (condition, summary->conds, i, c); i++)
|
| 219 |
|
|
{
|
| 220 |
|
|
if (c->operand_num == operand_num
|
| 221 |
|
|
&& c->code == code
|
| 222 |
|
|
&& c->val == val)
|
| 223 |
|
|
return single_cond_predicate (i + predicate_first_dynamic_condition);
|
| 224 |
|
|
}
|
| 225 |
|
|
/* Too many conditions. Give up and return constant true. */
|
| 226 |
|
|
if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
|
| 227 |
|
|
return true_predicate ();
|
| 228 |
|
|
|
| 229 |
|
|
new_cond.operand_num = operand_num;
|
| 230 |
|
|
new_cond.code = code;
|
| 231 |
|
|
new_cond.val = val;
|
| 232 |
|
|
VEC_safe_push (condition, gc, summary->conds, &new_cond);
|
| 233 |
|
|
return single_cond_predicate (i + predicate_first_dynamic_condition);
|
| 234 |
|
|
}
|
| 235 |
|
|
|
| 236 |
|
|
|
| 237 |
|
|
/* Add clause CLAUSE into the predicate P. */
|
| 238 |
|
|
|
| 239 |
|
|
static inline void
|
| 240 |
|
|
add_clause (conditions conditions, struct predicate *p, clause_t clause)
|
| 241 |
|
|
{
|
| 242 |
|
|
int i;
|
| 243 |
|
|
int i2;
|
| 244 |
|
|
int insert_here = -1;
|
| 245 |
|
|
int c1, c2;
|
| 246 |
|
|
|
| 247 |
|
|
/* True clause. */
|
| 248 |
|
|
if (!clause)
|
| 249 |
|
|
return;
|
| 250 |
|
|
|
| 251 |
|
|
/* False clause makes the whole predicate false. Kill the other variants. */
|
| 252 |
|
|
if (clause == (1 << predicate_false_condition))
|
| 253 |
|
|
{
|
| 254 |
|
|
p->clause[0] = (1 << predicate_false_condition);
|
| 255 |
|
|
p->clause[1] = 0;
|
| 256 |
|
|
return;
|
| 257 |
|
|
}
|
| 258 |
|
|
if (false_predicate_p (p))
|
| 259 |
|
|
return;
|
| 260 |
|
|
|
| 261 |
|
|
/* No one should be sily enough to add false into nontrivial clauses. */
|
| 262 |
|
|
gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
|
| 263 |
|
|
|
| 264 |
|
|
/* Look where to insert the clause. At the same time prune out
|
| 265 |
|
|
clauses of P that are implied by the new clause and thus
|
| 266 |
|
|
redundant. */
|
| 267 |
|
|
for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
|
| 268 |
|
|
{
|
| 269 |
|
|
p->clause[i2] = p->clause[i];
|
| 270 |
|
|
|
| 271 |
|
|
if (!p->clause[i])
|
| 272 |
|
|
break;
|
| 273 |
|
|
|
| 274 |
|
|
/* If p->clause[i] implies clause, there is nothing to add. */
|
| 275 |
|
|
if ((p->clause[i] & clause) == p->clause[i])
|
| 276 |
|
|
{
|
| 277 |
|
|
/* We had nothing to add, none of clauses should've become
|
| 278 |
|
|
redundant. */
|
| 279 |
|
|
gcc_checking_assert (i == i2);
|
| 280 |
|
|
return;
|
| 281 |
|
|
}
|
| 282 |
|
|
|
| 283 |
|
|
if (p->clause[i] < clause && insert_here < 0)
|
| 284 |
|
|
insert_here = i2;
|
| 285 |
|
|
|
| 286 |
|
|
/* If clause implies p->clause[i], then p->clause[i] becomes redundant.
|
| 287 |
|
|
Otherwise the p->clause[i] has to stay. */
|
| 288 |
|
|
if ((p->clause[i] & clause) != clause)
|
| 289 |
|
|
i2++;
|
| 290 |
|
|
}
|
| 291 |
|
|
|
| 292 |
|
|
/* Look for clauses that are obviously true. I.e.
|
| 293 |
|
|
op0 == 5 || op0 != 5. */
|
| 294 |
|
|
for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
|
| 295 |
|
|
{
|
| 296 |
|
|
condition *cc1;
|
| 297 |
|
|
if (!(clause & (1 << c1)))
|
| 298 |
|
|
continue;
|
| 299 |
|
|
cc1 = VEC_index (condition,
|
| 300 |
|
|
conditions,
|
| 301 |
|
|
c1 - predicate_first_dynamic_condition);
|
| 302 |
|
|
/* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
|
| 303 |
|
|
and thus there is no point for looking for them. */
|
| 304 |
|
|
if (cc1->code == CHANGED
|
| 305 |
|
|
|| cc1->code == IS_NOT_CONSTANT)
|
| 306 |
|
|
continue;
|
| 307 |
|
|
for (c2 = c1 + 1; c2 <= NUM_CONDITIONS; c2++)
|
| 308 |
|
|
if (clause & (1 << c2))
|
| 309 |
|
|
{
|
| 310 |
|
|
condition *cc1 = VEC_index (condition,
|
| 311 |
|
|
conditions,
|
| 312 |
|
|
c1 - predicate_first_dynamic_condition);
|
| 313 |
|
|
condition *cc2 = VEC_index (condition,
|
| 314 |
|
|
conditions,
|
| 315 |
|
|
c2 - predicate_first_dynamic_condition);
|
| 316 |
|
|
if (cc1->operand_num == cc2->operand_num
|
| 317 |
|
|
&& cc1->val == cc2->val
|
| 318 |
|
|
&& cc2->code != IS_NOT_CONSTANT
|
| 319 |
|
|
&& cc2->code != CHANGED
|
| 320 |
|
|
&& cc1->code == invert_tree_comparison
|
| 321 |
|
|
(cc2->code,
|
| 322 |
|
|
HONOR_NANS (TYPE_MODE (TREE_TYPE (cc1->val)))))
|
| 323 |
|
|
return;
|
| 324 |
|
|
}
|
| 325 |
|
|
}
|
| 326 |
|
|
|
| 327 |
|
|
|
| 328 |
|
|
/* We run out of variants. Be conservative in positive direction. */
|
| 329 |
|
|
if (i2 == MAX_CLAUSES)
|
| 330 |
|
|
return;
|
| 331 |
|
|
/* Keep clauses in decreasing order. This makes equivalence testing easy. */
|
| 332 |
|
|
p->clause[i2 + 1] = 0;
|
| 333 |
|
|
if (insert_here >= 0)
|
| 334 |
|
|
for (;i2 > insert_here; i2--)
|
| 335 |
|
|
p->clause[i2] = p->clause[i2 - 1];
|
| 336 |
|
|
else
|
| 337 |
|
|
insert_here = i2;
|
| 338 |
|
|
p->clause[insert_here] = clause;
|
| 339 |
|
|
}
|
| 340 |
|
|
|
| 341 |
|
|
|
| 342 |
|
|
/* Return P & P2. */
|
| 343 |
|
|
|
| 344 |
|
|
static struct predicate
|
| 345 |
|
|
and_predicates (conditions conditions,
|
| 346 |
|
|
struct predicate *p, struct predicate *p2)
|
| 347 |
|
|
{
|
| 348 |
|
|
struct predicate out = *p;
|
| 349 |
|
|
int i;
|
| 350 |
|
|
|
| 351 |
|
|
/* Avoid busy work. */
|
| 352 |
|
|
if (false_predicate_p (p2) || true_predicate_p (p))
|
| 353 |
|
|
return *p2;
|
| 354 |
|
|
if (false_predicate_p (p) || true_predicate_p (p2))
|
| 355 |
|
|
return *p;
|
| 356 |
|
|
|
| 357 |
|
|
/* See how far predicates match. */
|
| 358 |
|
|
for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
|
| 359 |
|
|
{
|
| 360 |
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
| 361 |
|
|
}
|
| 362 |
|
|
|
| 363 |
|
|
/* Combine the predicates rest. */
|
| 364 |
|
|
for (; p2->clause[i]; i++)
|
| 365 |
|
|
{
|
| 366 |
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
| 367 |
|
|
add_clause (conditions, &out, p2->clause[i]);
|
| 368 |
|
|
}
|
| 369 |
|
|
return out;
|
| 370 |
|
|
}
|
| 371 |
|
|
|
| 372 |
|
|
|
| 373 |
|
|
/* Return true if predicates are obviously equal. */
|
| 374 |
|
|
|
| 375 |
|
|
static inline bool
|
| 376 |
|
|
predicates_equal_p (struct predicate *p, struct predicate *p2)
|
| 377 |
|
|
{
|
| 378 |
|
|
int i;
|
| 379 |
|
|
for (i = 0; p->clause[i]; i++)
|
| 380 |
|
|
{
|
| 381 |
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
| 382 |
|
|
gcc_checking_assert (p->clause [i] > p->clause[i + 1]);
|
| 383 |
|
|
gcc_checking_assert (!p2->clause[i]
|
| 384 |
|
|
|| p2->clause [i] > p2->clause[i + 1]);
|
| 385 |
|
|
if (p->clause[i] != p2->clause[i])
|
| 386 |
|
|
return false;
|
| 387 |
|
|
}
|
| 388 |
|
|
return !p2->clause[i];
|
| 389 |
|
|
}
|
| 390 |
|
|
|
| 391 |
|
|
|
| 392 |
|
|
/* Return P | P2. */
|
| 393 |
|
|
|
| 394 |
|
|
static struct predicate
|
| 395 |
|
|
or_predicates (conditions conditions, struct predicate *p, struct predicate *p2)
|
| 396 |
|
|
{
|
| 397 |
|
|
struct predicate out = true_predicate ();
|
| 398 |
|
|
int i,j;
|
| 399 |
|
|
|
| 400 |
|
|
/* Avoid busy work. */
|
| 401 |
|
|
if (false_predicate_p (p2) || true_predicate_p (p))
|
| 402 |
|
|
return *p;
|
| 403 |
|
|
if (false_predicate_p (p) || true_predicate_p (p2))
|
| 404 |
|
|
return *p2;
|
| 405 |
|
|
if (predicates_equal_p (p, p2))
|
| 406 |
|
|
return *p;
|
| 407 |
|
|
|
| 408 |
|
|
/* OK, combine the predicates. */
|
| 409 |
|
|
for (i = 0; p->clause[i]; i++)
|
| 410 |
|
|
for (j = 0; p2->clause[j]; j++)
|
| 411 |
|
|
{
|
| 412 |
|
|
gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
|
| 413 |
|
|
add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
|
| 414 |
|
|
}
|
| 415 |
|
|
return out;
|
| 416 |
|
|
}
|
| 417 |
|
|
|
| 418 |
|
|
|
| 419 |
|
|
/* Having partial truth assignment in POSSIBLE_TRUTHS, return false
|
| 420 |
|
|
if predicate P is known to be false. */
|
| 421 |
|
|
|
| 422 |
|
|
static bool
|
| 423 |
|
|
evaluate_predicate (struct predicate *p, clause_t possible_truths)
|
| 424 |
|
|
{
|
| 425 |
|
|
int i;
|
| 426 |
|
|
|
| 427 |
|
|
/* True remains true. */
|
| 428 |
|
|
if (true_predicate_p (p))
|
| 429 |
|
|
return true;
|
| 430 |
|
|
|
| 431 |
|
|
gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
|
| 432 |
|
|
|
| 433 |
|
|
/* See if we can find clause we can disprove. */
|
| 434 |
|
|
for (i = 0; p->clause[i]; i++)
|
| 435 |
|
|
{
|
| 436 |
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
| 437 |
|
|
if (!(p->clause[i] & possible_truths))
|
| 438 |
|
|
return false;
|
| 439 |
|
|
}
|
| 440 |
|
|
return true;
|
| 441 |
|
|
}
|
| 442 |
|
|
|
| 443 |
|
|
/* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
|
| 444 |
|
|
instruction will be recomputed per invocation of the inlined call. */
|
| 445 |
|
|
|
| 446 |
|
|
static int
|
| 447 |
|
|
predicate_probability (conditions conds,
|
| 448 |
|
|
struct predicate *p, clause_t possible_truths,
|
| 449 |
|
|
VEC (inline_param_summary_t, heap) *inline_param_summary)
|
| 450 |
|
|
{
|
| 451 |
|
|
int i;
|
| 452 |
|
|
int combined_prob = REG_BR_PROB_BASE;
|
| 453 |
|
|
|
| 454 |
|
|
/* True remains true. */
|
| 455 |
|
|
if (true_predicate_p (p))
|
| 456 |
|
|
return REG_BR_PROB_BASE;
|
| 457 |
|
|
|
| 458 |
|
|
if (false_predicate_p (p))
|
| 459 |
|
|
return 0;
|
| 460 |
|
|
|
| 461 |
|
|
gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
|
| 462 |
|
|
|
| 463 |
|
|
/* See if we can find clause we can disprove. */
|
| 464 |
|
|
for (i = 0; p->clause[i]; i++)
|
| 465 |
|
|
{
|
| 466 |
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
| 467 |
|
|
if (!(p->clause[i] & possible_truths))
|
| 468 |
|
|
return 0;
|
| 469 |
|
|
else
|
| 470 |
|
|
{
|
| 471 |
|
|
int this_prob = 0;
|
| 472 |
|
|
int i2;
|
| 473 |
|
|
if (!inline_param_summary)
|
| 474 |
|
|
return REG_BR_PROB_BASE;
|
| 475 |
|
|
for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
|
| 476 |
|
|
if ((p->clause[i] & possible_truths) & (1 << i2))
|
| 477 |
|
|
{
|
| 478 |
|
|
if (i2 >= predicate_first_dynamic_condition)
|
| 479 |
|
|
{
|
| 480 |
|
|
condition *c = VEC_index
|
| 481 |
|
|
(condition, conds,
|
| 482 |
|
|
i2 - predicate_first_dynamic_condition);
|
| 483 |
|
|
if (c->code == CHANGED
|
| 484 |
|
|
&& (c->operand_num
|
| 485 |
|
|
< (int) VEC_length (inline_param_summary_t,
|
| 486 |
|
|
inline_param_summary)))
|
| 487 |
|
|
{
|
| 488 |
|
|
int iprob = VEC_index (inline_param_summary_t,
|
| 489 |
|
|
inline_param_summary,
|
| 490 |
|
|
c->operand_num)->change_prob;
|
| 491 |
|
|
this_prob = MAX (this_prob, iprob);
|
| 492 |
|
|
}
|
| 493 |
|
|
else
|
| 494 |
|
|
this_prob = REG_BR_PROB_BASE;
|
| 495 |
|
|
}
|
| 496 |
|
|
else
|
| 497 |
|
|
this_prob = REG_BR_PROB_BASE;
|
| 498 |
|
|
}
|
| 499 |
|
|
combined_prob = MIN (this_prob, combined_prob);
|
| 500 |
|
|
if (!combined_prob)
|
| 501 |
|
|
return 0;
|
| 502 |
|
|
}
|
| 503 |
|
|
}
|
| 504 |
|
|
return combined_prob;
|
| 505 |
|
|
}
|
| 506 |
|
|
|
| 507 |
|
|
|
| 508 |
|
|
/* Dump conditional COND. */
|
| 509 |
|
|
|
| 510 |
|
|
static void
|
| 511 |
|
|
dump_condition (FILE *f, conditions conditions, int cond)
|
| 512 |
|
|
{
|
| 513 |
|
|
condition *c;
|
| 514 |
|
|
if (cond == predicate_false_condition)
|
| 515 |
|
|
fprintf (f, "false");
|
| 516 |
|
|
else if (cond == predicate_not_inlined_condition)
|
| 517 |
|
|
fprintf (f, "not inlined");
|
| 518 |
|
|
else
|
| 519 |
|
|
{
|
| 520 |
|
|
c = VEC_index (condition, conditions,
|
| 521 |
|
|
cond - predicate_first_dynamic_condition);
|
| 522 |
|
|
fprintf (f, "op%i", c->operand_num);
|
| 523 |
|
|
if (c->code == IS_NOT_CONSTANT)
|
| 524 |
|
|
{
|
| 525 |
|
|
fprintf (f, " not constant");
|
| 526 |
|
|
return;
|
| 527 |
|
|
}
|
| 528 |
|
|
if (c->code == CHANGED)
|
| 529 |
|
|
{
|
| 530 |
|
|
fprintf (f, " changed");
|
| 531 |
|
|
return;
|
| 532 |
|
|
}
|
| 533 |
|
|
fprintf (f, " %s ", op_symbol_code (c->code));
|
| 534 |
|
|
print_generic_expr (f, c->val, 1);
|
| 535 |
|
|
}
|
| 536 |
|
|
}
|
| 537 |
|
|
|
| 538 |
|
|
|
| 539 |
|
|
/* Dump clause CLAUSE. */
|
| 540 |
|
|
|
| 541 |
|
|
static void
|
| 542 |
|
|
dump_clause (FILE *f, conditions conds, clause_t clause)
|
| 543 |
|
|
{
|
| 544 |
|
|
int i;
|
| 545 |
|
|
bool found = false;
|
| 546 |
|
|
fprintf (f, "(");
|
| 547 |
|
|
if (!clause)
|
| 548 |
|
|
fprintf (f, "true");
|
| 549 |
|
|
for (i = 0; i < NUM_CONDITIONS; i++)
|
| 550 |
|
|
if (clause & (1 << i))
|
| 551 |
|
|
{
|
| 552 |
|
|
if (found)
|
| 553 |
|
|
fprintf (f, " || ");
|
| 554 |
|
|
found = true;
|
| 555 |
|
|
dump_condition (f, conds, i);
|
| 556 |
|
|
}
|
| 557 |
|
|
fprintf (f, ")");
|
| 558 |
|
|
}
|
| 559 |
|
|
|
| 560 |
|
|
|
| 561 |
|
|
/* Dump predicate PREDICATE. */
|
| 562 |
|
|
|
| 563 |
|
|
static void
|
| 564 |
|
|
dump_predicate (FILE *f, conditions conds, struct predicate *pred)
|
| 565 |
|
|
{
|
| 566 |
|
|
int i;
|
| 567 |
|
|
if (true_predicate_p (pred))
|
| 568 |
|
|
dump_clause (f, conds, 0);
|
| 569 |
|
|
else
|
| 570 |
|
|
for (i = 0; pred->clause[i]; i++)
|
| 571 |
|
|
{
|
| 572 |
|
|
if (i)
|
| 573 |
|
|
fprintf (f, " && ");
|
| 574 |
|
|
dump_clause (f, conds, pred->clause[i]);
|
| 575 |
|
|
}
|
| 576 |
|
|
fprintf (f, "\n");
|
| 577 |
|
|
}
|
| 578 |
|
|
|
| 579 |
|
|
|
| 580 |
|
|
/* Record SIZE and TIME under condition PRED into the inline summary. */
|
| 581 |
|
|
|
| 582 |
|
|
static void
|
| 583 |
|
|
account_size_time (struct inline_summary *summary, int size, int time,
|
| 584 |
|
|
struct predicate *pred)
|
| 585 |
|
|
{
|
| 586 |
|
|
size_time_entry *e;
|
| 587 |
|
|
bool found = false;
|
| 588 |
|
|
int i;
|
| 589 |
|
|
|
| 590 |
|
|
if (false_predicate_p (pred))
|
| 591 |
|
|
return;
|
| 592 |
|
|
|
| 593 |
|
|
/* We need to create initial empty unconitional clause, but otherwie
|
| 594 |
|
|
we don't need to account empty times and sizes. */
|
| 595 |
|
|
if (!size && !time && summary->entry)
|
| 596 |
|
|
return;
|
| 597 |
|
|
|
| 598 |
|
|
/* Watch overflow that might result from insane profiles. */
|
| 599 |
|
|
if (time > MAX_TIME * INLINE_TIME_SCALE)
|
| 600 |
|
|
time = MAX_TIME * INLINE_TIME_SCALE;
|
| 601 |
|
|
gcc_assert (time >= 0);
|
| 602 |
|
|
|
| 603 |
|
|
for (i = 0; VEC_iterate (size_time_entry, summary->entry, i, e); i++)
|
| 604 |
|
|
if (predicates_equal_p (&e->predicate, pred))
|
| 605 |
|
|
{
|
| 606 |
|
|
found = true;
|
| 607 |
|
|
break;
|
| 608 |
|
|
}
|
| 609 |
|
|
if (i == 32)
|
| 610 |
|
|
{
|
| 611 |
|
|
i = 0;
|
| 612 |
|
|
found = true;
|
| 613 |
|
|
e = VEC_index (size_time_entry, summary->entry, 0);
|
| 614 |
|
|
gcc_assert (!e->predicate.clause[0]);
|
| 615 |
|
|
}
|
| 616 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
|
| 617 |
|
|
{
|
| 618 |
|
|
fprintf (dump_file, "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
|
| 619 |
|
|
((double)size) / INLINE_SIZE_SCALE,
|
| 620 |
|
|
((double)time) / INLINE_TIME_SCALE,
|
| 621 |
|
|
found ? "" : "new ");
|
| 622 |
|
|
dump_predicate (dump_file, summary->conds, pred);
|
| 623 |
|
|
}
|
| 624 |
|
|
if (!found)
|
| 625 |
|
|
{
|
| 626 |
|
|
struct size_time_entry new_entry;
|
| 627 |
|
|
new_entry.size = size;
|
| 628 |
|
|
new_entry.time = time;
|
| 629 |
|
|
new_entry.predicate = *pred;
|
| 630 |
|
|
VEC_safe_push (size_time_entry, gc, summary->entry, &new_entry);
|
| 631 |
|
|
}
|
| 632 |
|
|
else
|
| 633 |
|
|
{
|
| 634 |
|
|
e->size += size;
|
| 635 |
|
|
e->time += time;
|
| 636 |
|
|
if (e->time > MAX_TIME * INLINE_TIME_SCALE)
|
| 637 |
|
|
e->time = MAX_TIME * INLINE_TIME_SCALE;
|
| 638 |
|
|
}
|
| 639 |
|
|
}
|
| 640 |
|
|
|
| 641 |
|
|
/* Set predicate for edge E. */
|
| 642 |
|
|
|
| 643 |
|
|
static void
|
| 644 |
|
|
edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
|
| 645 |
|
|
{
|
| 646 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
| 647 |
|
|
if (predicate && !true_predicate_p (predicate))
|
| 648 |
|
|
{
|
| 649 |
|
|
if (!es->predicate)
|
| 650 |
|
|
es->predicate = (struct predicate *)pool_alloc (edge_predicate_pool);
|
| 651 |
|
|
*es->predicate = *predicate;
|
| 652 |
|
|
}
|
| 653 |
|
|
else
|
| 654 |
|
|
{
|
| 655 |
|
|
if (es->predicate)
|
| 656 |
|
|
pool_free (edge_predicate_pool, es->predicate);
|
| 657 |
|
|
es->predicate = NULL;
|
| 658 |
|
|
}
|
| 659 |
|
|
}
|
| 660 |
|
|
|
| 661 |
|
|
|
| 662 |
|
|
/* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
|
| 663 |
|
|
Return clause of possible truths. When INLINE_P is true, assume that
|
| 664 |
|
|
we are inlining.
|
| 665 |
|
|
|
| 666 |
|
|
ERROR_MARK means compile time invariant. */
|
| 667 |
|
|
|
| 668 |
|
|
static clause_t
|
| 669 |
|
|
evaluate_conditions_for_known_args (struct cgraph_node *node,
|
| 670 |
|
|
bool inline_p,
|
| 671 |
|
|
VEC (tree, heap) *known_vals)
|
| 672 |
|
|
{
|
| 673 |
|
|
clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
|
| 674 |
|
|
struct inline_summary *info = inline_summary (node);
|
| 675 |
|
|
int i;
|
| 676 |
|
|
struct condition *c;
|
| 677 |
|
|
|
| 678 |
|
|
for (i = 0; VEC_iterate (condition, info->conds, i, c); i++)
|
| 679 |
|
|
{
|
| 680 |
|
|
tree val;
|
| 681 |
|
|
tree res;
|
| 682 |
|
|
|
| 683 |
|
|
/* We allow call stmt to have fewer arguments than the callee
|
| 684 |
|
|
function (especially for K&R style programs). So bound
|
| 685 |
|
|
check here. */
|
| 686 |
|
|
if (c->operand_num < (int)VEC_length (tree, known_vals))
|
| 687 |
|
|
val = VEC_index (tree, known_vals, c->operand_num);
|
| 688 |
|
|
else
|
| 689 |
|
|
val = NULL;
|
| 690 |
|
|
|
| 691 |
|
|
if (val == error_mark_node && c->code != CHANGED)
|
| 692 |
|
|
val = NULL;
|
| 693 |
|
|
|
| 694 |
|
|
if (!val)
|
| 695 |
|
|
{
|
| 696 |
|
|
clause |= 1 << (i + predicate_first_dynamic_condition);
|
| 697 |
|
|
continue;
|
| 698 |
|
|
}
|
| 699 |
|
|
if (c->code == IS_NOT_CONSTANT || c->code == CHANGED)
|
| 700 |
|
|
continue;
|
| 701 |
|
|
res = fold_binary_to_constant (c->code, boolean_type_node, val, c->val);
|
| 702 |
|
|
if (res
|
| 703 |
|
|
&& integer_zerop (res))
|
| 704 |
|
|
continue;
|
| 705 |
|
|
clause |= 1 << (i + predicate_first_dynamic_condition);
|
| 706 |
|
|
}
|
| 707 |
|
|
return clause;
|
| 708 |
|
|
}
|
| 709 |
|
|
|
| 710 |
|
|
|
| 711 |
|
|
/* Work out what conditions might be true at invocation of E. */
|
| 712 |
|
|
|
| 713 |
|
|
static void
|
| 714 |
|
|
evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
|
| 715 |
|
|
clause_t *clause_ptr,
|
| 716 |
|
|
VEC (tree, heap) **known_vals_ptr,
|
| 717 |
|
|
VEC (tree, heap) **known_binfos_ptr)
|
| 718 |
|
|
{
|
| 719 |
|
|
struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
|
| 720 |
|
|
struct inline_summary *info = inline_summary (callee);
|
| 721 |
|
|
VEC (tree, heap) *known_vals = NULL;
|
| 722 |
|
|
|
| 723 |
|
|
if (clause_ptr)
|
| 724 |
|
|
*clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
|
| 725 |
|
|
if (known_vals_ptr)
|
| 726 |
|
|
*known_vals_ptr = NULL;
|
| 727 |
|
|
if (known_binfos_ptr)
|
| 728 |
|
|
*known_binfos_ptr = NULL;
|
| 729 |
|
|
|
| 730 |
|
|
if (ipa_node_params_vector
|
| 731 |
|
|
&& !e->call_stmt_cannot_inline_p
|
| 732 |
|
|
&& ((clause_ptr && info->conds) || known_vals_ptr || known_binfos_ptr))
|
| 733 |
|
|
{
|
| 734 |
|
|
struct ipa_node_params *parms_info;
|
| 735 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
| 736 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
| 737 |
|
|
int i, count = ipa_get_cs_argument_count (args);
|
| 738 |
|
|
|
| 739 |
|
|
if (e->caller->global.inlined_to)
|
| 740 |
|
|
parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
|
| 741 |
|
|
else
|
| 742 |
|
|
parms_info = IPA_NODE_REF (e->caller);
|
| 743 |
|
|
|
| 744 |
|
|
if (count && (info->conds || known_vals_ptr))
|
| 745 |
|
|
VEC_safe_grow_cleared (tree, heap, known_vals, count);
|
| 746 |
|
|
if (count && known_binfos_ptr)
|
| 747 |
|
|
VEC_safe_grow_cleared (tree, heap, *known_binfos_ptr, count);
|
| 748 |
|
|
|
| 749 |
|
|
for (i = 0; i < count; i++)
|
| 750 |
|
|
{
|
| 751 |
|
|
tree cst = ipa_value_from_jfunc (parms_info,
|
| 752 |
|
|
ipa_get_ith_jump_func (args, i));
|
| 753 |
|
|
if (cst)
|
| 754 |
|
|
{
|
| 755 |
|
|
if (known_vals && TREE_CODE (cst) != TREE_BINFO)
|
| 756 |
|
|
VEC_replace (tree, known_vals, i, cst);
|
| 757 |
|
|
else if (known_binfos_ptr != NULL && TREE_CODE (cst) == TREE_BINFO)
|
| 758 |
|
|
VEC_replace (tree, *known_binfos_ptr, i, cst);
|
| 759 |
|
|
}
|
| 760 |
|
|
else if (inline_p
|
| 761 |
|
|
&& !VEC_index (inline_param_summary_t,
|
| 762 |
|
|
es->param,
|
| 763 |
|
|
i)->change_prob)
|
| 764 |
|
|
VEC_replace (tree, known_vals, i, error_mark_node);
|
| 765 |
|
|
}
|
| 766 |
|
|
}
|
| 767 |
|
|
|
| 768 |
|
|
if (clause_ptr)
|
| 769 |
|
|
*clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
|
| 770 |
|
|
known_vals);
|
| 771 |
|
|
|
| 772 |
|
|
if (known_vals_ptr)
|
| 773 |
|
|
*known_vals_ptr = known_vals;
|
| 774 |
|
|
else
|
| 775 |
|
|
VEC_free (tree, heap, known_vals);
|
| 776 |
|
|
}
|
| 777 |
|
|
|
| 778 |
|
|
|
| 779 |
|
|
/* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
|
| 780 |
|
|
|
| 781 |
|
|
static void
|
| 782 |
|
|
inline_summary_alloc (void)
|
| 783 |
|
|
{
|
| 784 |
|
|
if (!node_removal_hook_holder)
|
| 785 |
|
|
node_removal_hook_holder =
|
| 786 |
|
|
cgraph_add_node_removal_hook (&inline_node_removal_hook, NULL);
|
| 787 |
|
|
if (!edge_removal_hook_holder)
|
| 788 |
|
|
edge_removal_hook_holder =
|
| 789 |
|
|
cgraph_add_edge_removal_hook (&inline_edge_removal_hook, NULL);
|
| 790 |
|
|
if (!node_duplication_hook_holder)
|
| 791 |
|
|
node_duplication_hook_holder =
|
| 792 |
|
|
cgraph_add_node_duplication_hook (&inline_node_duplication_hook, NULL);
|
| 793 |
|
|
if (!edge_duplication_hook_holder)
|
| 794 |
|
|
edge_duplication_hook_holder =
|
| 795 |
|
|
cgraph_add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
|
| 796 |
|
|
|
| 797 |
|
|
if (VEC_length (inline_summary_t, inline_summary_vec)
|
| 798 |
|
|
<= (unsigned) cgraph_max_uid)
|
| 799 |
|
|
VEC_safe_grow_cleared (inline_summary_t, gc,
|
| 800 |
|
|
inline_summary_vec, cgraph_max_uid + 1);
|
| 801 |
|
|
if (VEC_length (inline_edge_summary_t, inline_edge_summary_vec)
|
| 802 |
|
|
<= (unsigned) cgraph_edge_max_uid)
|
| 803 |
|
|
VEC_safe_grow_cleared (inline_edge_summary_t, heap,
|
| 804 |
|
|
inline_edge_summary_vec, cgraph_edge_max_uid + 1);
|
| 805 |
|
|
if (!edge_predicate_pool)
|
| 806 |
|
|
edge_predicate_pool = create_alloc_pool ("edge predicates",
|
| 807 |
|
|
sizeof (struct predicate),
|
| 808 |
|
|
10);
|
| 809 |
|
|
}
|
| 810 |
|
|
|
| 811 |
|
|
/* We are called multiple time for given function; clear
|
| 812 |
|
|
data from previous run so they are not cumulated. */
|
| 813 |
|
|
|
| 814 |
|
|
static void
|
| 815 |
|
|
reset_inline_edge_summary (struct cgraph_edge *e)
|
| 816 |
|
|
{
|
| 817 |
|
|
if (e->uid
|
| 818 |
|
|
< (int)VEC_length (inline_edge_summary_t, inline_edge_summary_vec))
|
| 819 |
|
|
{
|
| 820 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
| 821 |
|
|
|
| 822 |
|
|
es->call_stmt_size = es->call_stmt_time =0;
|
| 823 |
|
|
if (es->predicate)
|
| 824 |
|
|
pool_free (edge_predicate_pool, es->predicate);
|
| 825 |
|
|
es->predicate = NULL;
|
| 826 |
|
|
VEC_free (inline_param_summary_t, heap, es->param);
|
| 827 |
|
|
}
|
| 828 |
|
|
}
|
| 829 |
|
|
|
| 830 |
|
|
/* We are called multiple time for given function; clear
|
| 831 |
|
|
data from previous run so they are not cumulated. */
|
| 832 |
|
|
|
| 833 |
|
|
static void
|
| 834 |
|
|
reset_inline_summary (struct cgraph_node *node)
|
| 835 |
|
|
{
|
| 836 |
|
|
struct inline_summary *info = inline_summary (node);
|
| 837 |
|
|
struct cgraph_edge *e;
|
| 838 |
|
|
|
| 839 |
|
|
info->self_size = info->self_time = 0;
|
| 840 |
|
|
info->estimated_stack_size = 0;
|
| 841 |
|
|
info->estimated_self_stack_size = 0;
|
| 842 |
|
|
info->stack_frame_offset = 0;
|
| 843 |
|
|
info->size = 0;
|
| 844 |
|
|
info->time = 0;
|
| 845 |
|
|
VEC_free (condition, gc, info->conds);
|
| 846 |
|
|
VEC_free (size_time_entry,gc, info->entry);
|
| 847 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
| 848 |
|
|
reset_inline_edge_summary (e);
|
| 849 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
| 850 |
|
|
reset_inline_edge_summary (e);
|
| 851 |
|
|
}
|
| 852 |
|
|
|
| 853 |
|
|
/* Hook that is called by cgraph.c when a node is removed. */
|
| 854 |
|
|
|
| 855 |
|
|
static void
|
| 856 |
|
|
inline_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
| 857 |
|
|
{
|
| 858 |
|
|
struct inline_summary *info;
|
| 859 |
|
|
if (VEC_length (inline_summary_t, inline_summary_vec)
|
| 860 |
|
|
<= (unsigned)node->uid)
|
| 861 |
|
|
return;
|
| 862 |
|
|
info = inline_summary (node);
|
| 863 |
|
|
reset_inline_summary (node);
|
| 864 |
|
|
memset (info, 0, sizeof (inline_summary_t));
|
| 865 |
|
|
}
|
| 866 |
|
|
|
| 867 |
|
|
|
| 868 |
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
| 869 |
|
|
|
| 870 |
|
|
static void
|
| 871 |
|
|
inline_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
|
| 872 |
|
|
ATTRIBUTE_UNUSED void *data)
|
| 873 |
|
|
{
|
| 874 |
|
|
struct inline_summary *info;
|
| 875 |
|
|
inline_summary_alloc ();
|
| 876 |
|
|
info = inline_summary (dst);
|
| 877 |
|
|
memcpy (info, inline_summary (src),
|
| 878 |
|
|
sizeof (struct inline_summary));
|
| 879 |
|
|
/* TODO: as an optimization, we may avoid copying conditions
|
| 880 |
|
|
that are known to be false or true. */
|
| 881 |
|
|
info->conds = VEC_copy (condition, gc, info->conds);
|
| 882 |
|
|
|
| 883 |
|
|
/* When there are any replacements in the function body, see if we can figure
|
| 884 |
|
|
out that something was optimized out. */
|
| 885 |
|
|
if (ipa_node_params_vector && dst->clone.tree_map)
|
| 886 |
|
|
{
|
| 887 |
|
|
VEC(size_time_entry,gc) *entry = info->entry;
|
| 888 |
|
|
/* Use SRC parm info since it may not be copied yet. */
|
| 889 |
|
|
struct ipa_node_params *parms_info = IPA_NODE_REF (src);
|
| 890 |
|
|
VEC (tree, heap) *known_vals = NULL;
|
| 891 |
|
|
int count = ipa_get_param_count (parms_info);
|
| 892 |
|
|
int i,j;
|
| 893 |
|
|
clause_t possible_truths;
|
| 894 |
|
|
struct predicate true_pred = true_predicate ();
|
| 895 |
|
|
size_time_entry *e;
|
| 896 |
|
|
int optimized_out_size = 0;
|
| 897 |
|
|
gcov_type optimized_out_time = 0;
|
| 898 |
|
|
bool inlined_to_p = false;
|
| 899 |
|
|
struct cgraph_edge *edge;
|
| 900 |
|
|
|
| 901 |
|
|
info->entry = 0;
|
| 902 |
|
|
VEC_safe_grow_cleared (tree, heap, known_vals, count);
|
| 903 |
|
|
for (i = 0; i < count; i++)
|
| 904 |
|
|
{
|
| 905 |
|
|
tree t = ipa_get_param (parms_info, i);
|
| 906 |
|
|
struct ipa_replace_map *r;
|
| 907 |
|
|
|
| 908 |
|
|
for (j = 0;
|
| 909 |
|
|
VEC_iterate (ipa_replace_map_p, dst->clone.tree_map, j, r);
|
| 910 |
|
|
j++)
|
| 911 |
|
|
{
|
| 912 |
|
|
if (r->old_tree == t
|
| 913 |
|
|
&& r->replace_p
|
| 914 |
|
|
&& !r->ref_p)
|
| 915 |
|
|
{
|
| 916 |
|
|
VEC_replace (tree, known_vals, i, r->new_tree);
|
| 917 |
|
|
break;
|
| 918 |
|
|
}
|
| 919 |
|
|
}
|
| 920 |
|
|
}
|
| 921 |
|
|
possible_truths = evaluate_conditions_for_known_args (dst,
|
| 922 |
|
|
false, known_vals);
|
| 923 |
|
|
VEC_free (tree, heap, known_vals);
|
| 924 |
|
|
|
| 925 |
|
|
account_size_time (info, 0, 0, &true_pred);
|
| 926 |
|
|
|
| 927 |
|
|
/* Remap size_time vectors.
|
| 928 |
|
|
Simplify the predicate by prunning out alternatives that are known
|
| 929 |
|
|
to be false.
|
| 930 |
|
|
TODO: as on optimization, we can also eliminate conditions known
|
| 931 |
|
|
to be true. */
|
| 932 |
|
|
for (i = 0; VEC_iterate (size_time_entry, entry, i, e); i++)
|
| 933 |
|
|
{
|
| 934 |
|
|
struct predicate new_predicate = true_predicate ();
|
| 935 |
|
|
for (j = 0; e->predicate.clause[j]; j++)
|
| 936 |
|
|
if (!(possible_truths & e->predicate.clause[j]))
|
| 937 |
|
|
{
|
| 938 |
|
|
new_predicate = false_predicate ();
|
| 939 |
|
|
break;
|
| 940 |
|
|
}
|
| 941 |
|
|
else
|
| 942 |
|
|
add_clause (info->conds, &new_predicate,
|
| 943 |
|
|
possible_truths & e->predicate.clause[j]);
|
| 944 |
|
|
if (false_predicate_p (&new_predicate))
|
| 945 |
|
|
{
|
| 946 |
|
|
optimized_out_size += e->size;
|
| 947 |
|
|
optimized_out_time += e->time;
|
| 948 |
|
|
}
|
| 949 |
|
|
else
|
| 950 |
|
|
account_size_time (info, e->size, e->time, &new_predicate);
|
| 951 |
|
|
}
|
| 952 |
|
|
|
| 953 |
|
|
/* Remap edge predicates with the same simplification as above.
|
| 954 |
|
|
Also copy constantness arrays. */
|
| 955 |
|
|
for (edge = dst->callees; edge; edge = edge->next_callee)
|
| 956 |
|
|
{
|
| 957 |
|
|
struct predicate new_predicate = true_predicate ();
|
| 958 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
| 959 |
|
|
|
| 960 |
|
|
if (!edge->inline_failed)
|
| 961 |
|
|
inlined_to_p = true;
|
| 962 |
|
|
if (!es->predicate)
|
| 963 |
|
|
continue;
|
| 964 |
|
|
for (j = 0; es->predicate->clause[j]; j++)
|
| 965 |
|
|
if (!(possible_truths & es->predicate->clause[j]))
|
| 966 |
|
|
{
|
| 967 |
|
|
new_predicate = false_predicate ();
|
| 968 |
|
|
break;
|
| 969 |
|
|
}
|
| 970 |
|
|
else
|
| 971 |
|
|
add_clause (info->conds, &new_predicate,
|
| 972 |
|
|
possible_truths & es->predicate->clause[j]);
|
| 973 |
|
|
if (false_predicate_p (&new_predicate)
|
| 974 |
|
|
&& !false_predicate_p (es->predicate))
|
| 975 |
|
|
{
|
| 976 |
|
|
optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
|
| 977 |
|
|
optimized_out_time += (es->call_stmt_time
|
| 978 |
|
|
* (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE)
|
| 979 |
|
|
* edge->frequency);
|
| 980 |
|
|
edge->frequency = 0;
|
| 981 |
|
|
}
|
| 982 |
|
|
*es->predicate = new_predicate;
|
| 983 |
|
|
}
|
| 984 |
|
|
|
| 985 |
|
|
/* Remap indirect edge predicates with the same simplificaiton as above.
|
| 986 |
|
|
Also copy constantness arrays. */
|
| 987 |
|
|
for (edge = dst->indirect_calls; edge; edge = edge->next_callee)
|
| 988 |
|
|
{
|
| 989 |
|
|
struct predicate new_predicate = true_predicate ();
|
| 990 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
| 991 |
|
|
|
| 992 |
|
|
if (!edge->inline_failed)
|
| 993 |
|
|
inlined_to_p = true;
|
| 994 |
|
|
if (!es->predicate)
|
| 995 |
|
|
continue;
|
| 996 |
|
|
for (j = 0; es->predicate->clause[j]; j++)
|
| 997 |
|
|
if (!(possible_truths & es->predicate->clause[j]))
|
| 998 |
|
|
{
|
| 999 |
|
|
new_predicate = false_predicate ();
|
| 1000 |
|
|
break;
|
| 1001 |
|
|
}
|
| 1002 |
|
|
else
|
| 1003 |
|
|
add_clause (info->conds, &new_predicate,
|
| 1004 |
|
|
possible_truths & es->predicate->clause[j]);
|
| 1005 |
|
|
if (false_predicate_p (&new_predicate)
|
| 1006 |
|
|
&& !false_predicate_p (es->predicate))
|
| 1007 |
|
|
{
|
| 1008 |
|
|
optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
|
| 1009 |
|
|
optimized_out_time += (es->call_stmt_time
|
| 1010 |
|
|
* (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE)
|
| 1011 |
|
|
* edge->frequency);
|
| 1012 |
|
|
edge->frequency = 0;
|
| 1013 |
|
|
}
|
| 1014 |
|
|
*es->predicate = new_predicate;
|
| 1015 |
|
|
}
|
| 1016 |
|
|
|
| 1017 |
|
|
/* If inliner or someone after inliner will ever start producing
|
| 1018 |
|
|
non-trivial clones, we will get trouble with lack of information
|
| 1019 |
|
|
about updating self sizes, because size vectors already contains
|
| 1020 |
|
|
sizes of the calees. */
|
| 1021 |
|
|
gcc_assert (!inlined_to_p
|
| 1022 |
|
|
|| (!optimized_out_size && !optimized_out_time));
|
| 1023 |
|
|
|
| 1024 |
|
|
info->size -= optimized_out_size / INLINE_SIZE_SCALE;
|
| 1025 |
|
|
info->self_size -= optimized_out_size / INLINE_SIZE_SCALE;
|
| 1026 |
|
|
gcc_assert (info->size > 0);
|
| 1027 |
|
|
gcc_assert (info->self_size > 0);
|
| 1028 |
|
|
|
| 1029 |
|
|
optimized_out_time /= INLINE_TIME_SCALE;
|
| 1030 |
|
|
if (optimized_out_time > MAX_TIME)
|
| 1031 |
|
|
optimized_out_time = MAX_TIME;
|
| 1032 |
|
|
info->time -= optimized_out_time;
|
| 1033 |
|
|
info->self_time -= optimized_out_time;
|
| 1034 |
|
|
if (info->time < 0)
|
| 1035 |
|
|
info->time = 0;
|
| 1036 |
|
|
if (info->self_time < 0)
|
| 1037 |
|
|
info->self_time = 0;
|
| 1038 |
|
|
}
|
| 1039 |
|
|
else
|
| 1040 |
|
|
info->entry = VEC_copy (size_time_entry, gc, info->entry);
|
| 1041 |
|
|
}
|
| 1042 |
|
|
|
| 1043 |
|
|
|
| 1044 |
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
| 1045 |
|
|
|
| 1046 |
|
|
static void
|
| 1047 |
|
|
inline_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
|
| 1048 |
|
|
ATTRIBUTE_UNUSED void *data)
|
| 1049 |
|
|
{
|
| 1050 |
|
|
struct inline_edge_summary *info;
|
| 1051 |
|
|
struct inline_edge_summary *srcinfo;
|
| 1052 |
|
|
inline_summary_alloc ();
|
| 1053 |
|
|
info = inline_edge_summary (dst);
|
| 1054 |
|
|
srcinfo = inline_edge_summary (src);
|
| 1055 |
|
|
memcpy (info, srcinfo,
|
| 1056 |
|
|
sizeof (struct inline_edge_summary));
|
| 1057 |
|
|
info->predicate = NULL;
|
| 1058 |
|
|
edge_set_predicate (dst, srcinfo->predicate);
|
| 1059 |
|
|
info->param = VEC_copy (inline_param_summary_t, heap, srcinfo->param);
|
| 1060 |
|
|
}
|
| 1061 |
|
|
|
| 1062 |
|
|
|
| 1063 |
|
|
/* Keep edge cache consistent across edge removal. */
|
| 1064 |
|
|
|
| 1065 |
|
|
static void
|
| 1066 |
|
|
inline_edge_removal_hook (struct cgraph_edge *edge, void *data ATTRIBUTE_UNUSED)
|
| 1067 |
|
|
{
|
| 1068 |
|
|
if (edge_growth_cache)
|
| 1069 |
|
|
reset_edge_growth_cache (edge);
|
| 1070 |
|
|
reset_inline_edge_summary (edge);
|
| 1071 |
|
|
}
|
| 1072 |
|
|
|
| 1073 |
|
|
|
| 1074 |
|
|
/* Initialize growth caches. */
|
| 1075 |
|
|
|
| 1076 |
|
|
void
|
| 1077 |
|
|
initialize_growth_caches (void)
|
| 1078 |
|
|
{
|
| 1079 |
|
|
if (cgraph_edge_max_uid)
|
| 1080 |
|
|
VEC_safe_grow_cleared (edge_growth_cache_entry, heap, edge_growth_cache,
|
| 1081 |
|
|
cgraph_edge_max_uid);
|
| 1082 |
|
|
if (cgraph_max_uid)
|
| 1083 |
|
|
VEC_safe_grow_cleared (int, heap, node_growth_cache, cgraph_max_uid);
|
| 1084 |
|
|
}
|
| 1085 |
|
|
|
| 1086 |
|
|
|
| 1087 |
|
|
/* Free growth caches. */
|
| 1088 |
|
|
|
| 1089 |
|
|
void
|
| 1090 |
|
|
free_growth_caches (void)
|
| 1091 |
|
|
{
|
| 1092 |
|
|
VEC_free (edge_growth_cache_entry, heap, edge_growth_cache);
|
| 1093 |
|
|
edge_growth_cache = 0;
|
| 1094 |
|
|
VEC_free (int, heap, node_growth_cache);
|
| 1095 |
|
|
node_growth_cache = 0;
|
| 1096 |
|
|
}
|
| 1097 |
|
|
|
| 1098 |
|
|
|
| 1099 |
|
|
/* Dump edge summaries associated to NODE and recursively to all clones.
|
| 1100 |
|
|
Indent by INDENT. */
|
| 1101 |
|
|
|
| 1102 |
|
|
static void
|
| 1103 |
|
|
dump_inline_edge_summary (FILE * f, int indent, struct cgraph_node *node,
|
| 1104 |
|
|
struct inline_summary *info)
|
| 1105 |
|
|
{
|
| 1106 |
|
|
struct cgraph_edge *edge;
|
| 1107 |
|
|
for (edge = node->callees; edge; edge = edge->next_callee)
|
| 1108 |
|
|
{
|
| 1109 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
| 1110 |
|
|
struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee, NULL);
|
| 1111 |
|
|
int i;
|
| 1112 |
|
|
|
| 1113 |
|
|
fprintf (f, "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i time: %2i callee size:%2i stack:%2i",
|
| 1114 |
|
|
indent, "", cgraph_node_name (callee),
|
| 1115 |
|
|
callee->uid,
|
| 1116 |
|
|
!edge->inline_failed ? "inlined"
|
| 1117 |
|
|
: cgraph_inline_failed_string (edge->inline_failed),
|
| 1118 |
|
|
indent, "",
|
| 1119 |
|
|
es->loop_depth,
|
| 1120 |
|
|
edge->frequency,
|
| 1121 |
|
|
es->call_stmt_size,
|
| 1122 |
|
|
es->call_stmt_time,
|
| 1123 |
|
|
(int)inline_summary (callee)->size / INLINE_SIZE_SCALE,
|
| 1124 |
|
|
(int)inline_summary (callee)->estimated_stack_size);
|
| 1125 |
|
|
|
| 1126 |
|
|
if (es->predicate)
|
| 1127 |
|
|
{
|
| 1128 |
|
|
fprintf (f, " predicate: ");
|
| 1129 |
|
|
dump_predicate (f, info->conds, es->predicate);
|
| 1130 |
|
|
}
|
| 1131 |
|
|
else
|
| 1132 |
|
|
fprintf (f, "\n");
|
| 1133 |
|
|
if (es->param)
|
| 1134 |
|
|
for (i = 0; i < (int)VEC_length (inline_param_summary_t, es->param);
|
| 1135 |
|
|
i++)
|
| 1136 |
|
|
{
|
| 1137 |
|
|
int prob = VEC_index (inline_param_summary_t,
|
| 1138 |
|
|
es->param, i)->change_prob;
|
| 1139 |
|
|
|
| 1140 |
|
|
if (!prob)
|
| 1141 |
|
|
fprintf (f, "%*s op%i is compile time invariant\n",
|
| 1142 |
|
|
indent + 2, "", i);
|
| 1143 |
|
|
else if (prob != REG_BR_PROB_BASE)
|
| 1144 |
|
|
fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
|
| 1145 |
|
|
prob * 100.0 / REG_BR_PROB_BASE);
|
| 1146 |
|
|
}
|
| 1147 |
|
|
if (!edge->inline_failed)
|
| 1148 |
|
|
{
|
| 1149 |
|
|
fprintf (f, "%*sStack frame offset %i, callee self size %i,"
|
| 1150 |
|
|
" callee size %i\n",
|
| 1151 |
|
|
indent+2, "",
|
| 1152 |
|
|
(int)inline_summary (callee)->stack_frame_offset,
|
| 1153 |
|
|
(int)inline_summary (callee)->estimated_self_stack_size,
|
| 1154 |
|
|
(int)inline_summary (callee)->estimated_stack_size);
|
| 1155 |
|
|
dump_inline_edge_summary (f, indent+2, callee, info);
|
| 1156 |
|
|
}
|
| 1157 |
|
|
}
|
| 1158 |
|
|
for (edge = node->indirect_calls; edge; edge = edge->next_callee)
|
| 1159 |
|
|
{
|
| 1160 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
| 1161 |
|
|
fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
|
| 1162 |
|
|
" time: %2i",
|
| 1163 |
|
|
indent, "",
|
| 1164 |
|
|
es->loop_depth,
|
| 1165 |
|
|
edge->frequency,
|
| 1166 |
|
|
es->call_stmt_size,
|
| 1167 |
|
|
es->call_stmt_time);
|
| 1168 |
|
|
if (es->predicate)
|
| 1169 |
|
|
{
|
| 1170 |
|
|
fprintf (f, "predicate: ");
|
| 1171 |
|
|
dump_predicate (f, info->conds, es->predicate);
|
| 1172 |
|
|
}
|
| 1173 |
|
|
else
|
| 1174 |
|
|
fprintf (f, "\n");
|
| 1175 |
|
|
}
|
| 1176 |
|
|
}
|
| 1177 |
|
|
|
| 1178 |
|
|
|
| 1179 |
|
|
void
|
| 1180 |
|
|
dump_inline_summary (FILE * f, struct cgraph_node *node)
|
| 1181 |
|
|
{
|
| 1182 |
|
|
if (node->analyzed)
|
| 1183 |
|
|
{
|
| 1184 |
|
|
struct inline_summary *s = inline_summary (node);
|
| 1185 |
|
|
size_time_entry *e;
|
| 1186 |
|
|
int i;
|
| 1187 |
|
|
fprintf (f, "Inline summary for %s/%i", cgraph_node_name (node),
|
| 1188 |
|
|
node->uid);
|
| 1189 |
|
|
if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
|
| 1190 |
|
|
fprintf (f, " always_inline");
|
| 1191 |
|
|
if (s->inlinable)
|
| 1192 |
|
|
fprintf (f, " inlinable");
|
| 1193 |
|
|
fprintf (f, "\n self time: %i\n",
|
| 1194 |
|
|
s->self_time);
|
| 1195 |
|
|
fprintf (f, " global time: %i\n", s->time);
|
| 1196 |
|
|
fprintf (f, " self size: %i\n",
|
| 1197 |
|
|
s->self_size);
|
| 1198 |
|
|
fprintf (f, " global size: %i\n", s->size);
|
| 1199 |
|
|
fprintf (f, " self stack: %i\n",
|
| 1200 |
|
|
(int) s->estimated_self_stack_size);
|
| 1201 |
|
|
fprintf (f, " global stack: %i\n",
|
| 1202 |
|
|
(int) s->estimated_stack_size);
|
| 1203 |
|
|
for (i = 0;
|
| 1204 |
|
|
VEC_iterate (size_time_entry, s->entry, i, e);
|
| 1205 |
|
|
i++)
|
| 1206 |
|
|
{
|
| 1207 |
|
|
fprintf (f, " size:%f, time:%f, predicate:",
|
| 1208 |
|
|
(double) e->size / INLINE_SIZE_SCALE,
|
| 1209 |
|
|
(double) e->time / INLINE_TIME_SCALE);
|
| 1210 |
|
|
dump_predicate (f, s->conds, &e->predicate);
|
| 1211 |
|
|
}
|
| 1212 |
|
|
fprintf (f, " calls:\n");
|
| 1213 |
|
|
dump_inline_edge_summary (f, 4, node, s);
|
| 1214 |
|
|
fprintf (f, "\n");
|
| 1215 |
|
|
}
|
| 1216 |
|
|
}
|
| 1217 |
|
|
|
| 1218 |
|
|
DEBUG_FUNCTION void
|
| 1219 |
|
|
debug_inline_summary (struct cgraph_node *node)
|
| 1220 |
|
|
{
|
| 1221 |
|
|
dump_inline_summary (stderr, node);
|
| 1222 |
|
|
}
|
| 1223 |
|
|
|
| 1224 |
|
|
void
|
| 1225 |
|
|
dump_inline_summaries (FILE *f)
|
| 1226 |
|
|
{
|
| 1227 |
|
|
struct cgraph_node *node;
|
| 1228 |
|
|
|
| 1229 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
| 1230 |
|
|
if (node->analyzed && !node->global.inlined_to)
|
| 1231 |
|
|
dump_inline_summary (f, node);
|
| 1232 |
|
|
}
|
| 1233 |
|
|
|
| 1234 |
|
|
/* Give initial reasons why inlining would fail on EDGE. This gets either
|
| 1235 |
|
|
nullified or usually overwritten by more precise reasons later. */
|
| 1236 |
|
|
|
| 1237 |
|
|
void
|
| 1238 |
|
|
initialize_inline_failed (struct cgraph_edge *e)
|
| 1239 |
|
|
{
|
| 1240 |
|
|
struct cgraph_node *callee = e->callee;
|
| 1241 |
|
|
|
| 1242 |
|
|
if (e->indirect_unknown_callee)
|
| 1243 |
|
|
e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
|
| 1244 |
|
|
else if (!callee->analyzed)
|
| 1245 |
|
|
e->inline_failed = CIF_BODY_NOT_AVAILABLE;
|
| 1246 |
|
|
else if (callee->local.redefined_extern_inline)
|
| 1247 |
|
|
e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
|
| 1248 |
|
|
else if (e->call_stmt_cannot_inline_p)
|
| 1249 |
|
|
e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
|
| 1250 |
|
|
else
|
| 1251 |
|
|
e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
|
| 1252 |
|
|
}
|
| 1253 |
|
|
|
| 1254 |
|
|
/* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
|
| 1255 |
|
|
boolean variable pointed to by DATA. */
|
| 1256 |
|
|
|
| 1257 |
|
|
static bool
|
| 1258 |
|
|
mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
|
| 1259 |
|
|
void *data)
|
| 1260 |
|
|
{
|
| 1261 |
|
|
bool *b = (bool *) data;
|
| 1262 |
|
|
*b = true;
|
| 1263 |
|
|
return true;
|
| 1264 |
|
|
}
|
| 1265 |
|
|
|
| 1266 |
|
|
/* If OP reffers to value of function parameter, return
|
| 1267 |
|
|
the corresponding parameter. */
|
| 1268 |
|
|
|
| 1269 |
|
|
static tree
|
| 1270 |
|
|
unmodified_parm (gimple stmt, tree op)
|
| 1271 |
|
|
{
|
| 1272 |
|
|
/* SSA_NAME referring to parm default def? */
|
| 1273 |
|
|
if (TREE_CODE (op) == SSA_NAME
|
| 1274 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (op)
|
| 1275 |
|
|
&& TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
|
| 1276 |
|
|
return SSA_NAME_VAR (op);
|
| 1277 |
|
|
/* Non-SSA parm reference? */
|
| 1278 |
|
|
if (TREE_CODE (op) == PARM_DECL)
|
| 1279 |
|
|
{
|
| 1280 |
|
|
bool modified = false;
|
| 1281 |
|
|
|
| 1282 |
|
|
ao_ref refd;
|
| 1283 |
|
|
ao_ref_init (&refd, op);
|
| 1284 |
|
|
walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
|
| 1285 |
|
|
NULL);
|
| 1286 |
|
|
if (!modified)
|
| 1287 |
|
|
return op;
|
| 1288 |
|
|
}
|
| 1289 |
|
|
/* Assignment from a parameter? */
|
| 1290 |
|
|
if (TREE_CODE (op) == SSA_NAME
|
| 1291 |
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (op)
|
| 1292 |
|
|
&& gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
|
| 1293 |
|
|
return unmodified_parm (SSA_NAME_DEF_STMT (op),
|
| 1294 |
|
|
gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)));
|
| 1295 |
|
|
return NULL;
|
| 1296 |
|
|
}
|
| 1297 |
|
|
|
| 1298 |
|
|
/* See if statement might disappear after inlining.
|
| 1299 |
|
|
|
| 1300 |
|
|
1 - half of statements goes away
|
| 1301 |
|
|
2 - for sure it is eliminated.
|
| 1302 |
|
|
We are not terribly sophisticated, basically looking for simple abstraction
|
| 1303 |
|
|
penalty wrappers. */
|
| 1304 |
|
|
|
| 1305 |
|
|
static int
|
| 1306 |
|
|
eliminated_by_inlining_prob (gimple stmt)
|
| 1307 |
|
|
{
|
| 1308 |
|
|
enum gimple_code code = gimple_code (stmt);
|
| 1309 |
|
|
|
| 1310 |
|
|
if (!optimize)
|
| 1311 |
|
|
return 0;
|
| 1312 |
|
|
|
| 1313 |
|
|
switch (code)
|
| 1314 |
|
|
{
|
| 1315 |
|
|
case GIMPLE_RETURN:
|
| 1316 |
|
|
return 2;
|
| 1317 |
|
|
case GIMPLE_ASSIGN:
|
| 1318 |
|
|
if (gimple_num_ops (stmt) != 2)
|
| 1319 |
|
|
return 0;
|
| 1320 |
|
|
|
| 1321 |
|
|
/* Casts of parameters, loads from parameters passed by reference
|
| 1322 |
|
|
and stores to return value or parameters are often free after
|
| 1323 |
|
|
inlining dua to SRA and further combining.
|
| 1324 |
|
|
Assume that half of statements goes away. */
|
| 1325 |
|
|
if (gimple_assign_rhs_code (stmt) == CONVERT_EXPR
|
| 1326 |
|
|
|| gimple_assign_rhs_code (stmt) == NOP_EXPR
|
| 1327 |
|
|
|| gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR
|
| 1328 |
|
|
|| gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
|
| 1329 |
|
|
{
|
| 1330 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 1331 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
| 1332 |
|
|
tree inner_rhs = get_base_address (rhs);
|
| 1333 |
|
|
tree inner_lhs = get_base_address (lhs);
|
| 1334 |
|
|
bool rhs_free = false;
|
| 1335 |
|
|
bool lhs_free = false;
|
| 1336 |
|
|
|
| 1337 |
|
|
if (!inner_rhs)
|
| 1338 |
|
|
inner_rhs = rhs;
|
| 1339 |
|
|
if (!inner_lhs)
|
| 1340 |
|
|
inner_lhs = lhs;
|
| 1341 |
|
|
|
| 1342 |
|
|
/* Reads of parameter are expected to be free. */
|
| 1343 |
|
|
if (unmodified_parm (stmt, inner_rhs))
|
| 1344 |
|
|
rhs_free = true;
|
| 1345 |
|
|
|
| 1346 |
|
|
/* When parameter is not SSA register because its address is taken
|
| 1347 |
|
|
and it is just copied into one, the statement will be completely
|
| 1348 |
|
|
free after inlining (we will copy propagate backward). */
|
| 1349 |
|
|
if (rhs_free && is_gimple_reg (lhs))
|
| 1350 |
|
|
return 2;
|
| 1351 |
|
|
|
| 1352 |
|
|
/* Reads of parameters passed by reference
|
| 1353 |
|
|
expected to be free (i.e. optimized out after inlining). */
|
| 1354 |
|
|
if (TREE_CODE(inner_rhs) == MEM_REF
|
| 1355 |
|
|
&& unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0)))
|
| 1356 |
|
|
rhs_free = true;
|
| 1357 |
|
|
|
| 1358 |
|
|
/* Copying parameter passed by reference into gimple register is
|
| 1359 |
|
|
probably also going to copy propagate, but we can't be quite
|
| 1360 |
|
|
sure. */
|
| 1361 |
|
|
if (rhs_free && is_gimple_reg (lhs))
|
| 1362 |
|
|
lhs_free = true;
|
| 1363 |
|
|
|
| 1364 |
|
|
/* Writes to parameters, parameters passed by value and return value
|
| 1365 |
|
|
(either dirrectly or passed via invisible reference) are free.
|
| 1366 |
|
|
|
| 1367 |
|
|
TODO: We ought to handle testcase like
|
| 1368 |
|
|
struct a {int a,b;};
|
| 1369 |
|
|
struct a
|
| 1370 |
|
|
retrurnsturct (void)
|
| 1371 |
|
|
{
|
| 1372 |
|
|
struct a a ={1,2};
|
| 1373 |
|
|
return a;
|
| 1374 |
|
|
}
|
| 1375 |
|
|
|
| 1376 |
|
|
This translate into:
|
| 1377 |
|
|
|
| 1378 |
|
|
retrurnsturct ()
|
| 1379 |
|
|
{
|
| 1380 |
|
|
int a$b;
|
| 1381 |
|
|
int a$a;
|
| 1382 |
|
|
struct a a;
|
| 1383 |
|
|
struct a D.2739;
|
| 1384 |
|
|
|
| 1385 |
|
|
<bb 2>:
|
| 1386 |
|
|
D.2739.a = 1;
|
| 1387 |
|
|
D.2739.b = 2;
|
| 1388 |
|
|
return D.2739;
|
| 1389 |
|
|
|
| 1390 |
|
|
}
|
| 1391 |
|
|
For that we either need to copy ipa-split logic detecting writes
|
| 1392 |
|
|
to return value. */
|
| 1393 |
|
|
if (TREE_CODE (inner_lhs) == PARM_DECL
|
| 1394 |
|
|
|| TREE_CODE (inner_lhs) == RESULT_DECL
|
| 1395 |
|
|
|| (TREE_CODE(inner_lhs) == MEM_REF
|
| 1396 |
|
|
&& (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0))
|
| 1397 |
|
|
|| (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
|
| 1398 |
|
|
&& TREE_CODE (SSA_NAME_VAR
|
| 1399 |
|
|
(TREE_OPERAND (inner_lhs, 0)))
|
| 1400 |
|
|
== RESULT_DECL))))
|
| 1401 |
|
|
lhs_free = true;
|
| 1402 |
|
|
if (lhs_free
|
| 1403 |
|
|
&& (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
|
| 1404 |
|
|
rhs_free = true;
|
| 1405 |
|
|
if (lhs_free && rhs_free)
|
| 1406 |
|
|
return 1;
|
| 1407 |
|
|
}
|
| 1408 |
|
|
return 0;
|
| 1409 |
|
|
default:
|
| 1410 |
|
|
return 0;
|
| 1411 |
|
|
}
|
| 1412 |
|
|
}
|
| 1413 |
|
|
|
| 1414 |
|
|
|
| 1415 |
|
|
/* If BB ends by a conditional we can turn into predicates, attach corresponding
|
| 1416 |
|
|
predicates to the CFG edges. */
|
| 1417 |
|
|
|
| 1418 |
|
|
static void
|
| 1419 |
|
|
set_cond_stmt_execution_predicate (struct ipa_node_params *info,
|
| 1420 |
|
|
struct inline_summary *summary,
|
| 1421 |
|
|
basic_block bb)
|
| 1422 |
|
|
{
|
| 1423 |
|
|
gimple last;
|
| 1424 |
|
|
tree op;
|
| 1425 |
|
|
int index;
|
| 1426 |
|
|
enum tree_code code, inverted_code;
|
| 1427 |
|
|
edge e;
|
| 1428 |
|
|
edge_iterator ei;
|
| 1429 |
|
|
gimple set_stmt;
|
| 1430 |
|
|
tree op2;
|
| 1431 |
|
|
tree parm;
|
| 1432 |
|
|
tree base;
|
| 1433 |
|
|
|
| 1434 |
|
|
last = last_stmt (bb);
|
| 1435 |
|
|
if (!last
|
| 1436 |
|
|
|| gimple_code (last) != GIMPLE_COND)
|
| 1437 |
|
|
return;
|
| 1438 |
|
|
if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
|
| 1439 |
|
|
return;
|
| 1440 |
|
|
op = gimple_cond_lhs (last);
|
| 1441 |
|
|
/* TODO: handle conditionals like
|
| 1442 |
|
|
var = op0 < 4;
|
| 1443 |
|
|
if (var != 0). */
|
| 1444 |
|
|
parm = unmodified_parm (last, op);
|
| 1445 |
|
|
if (parm)
|
| 1446 |
|
|
{
|
| 1447 |
|
|
index = ipa_get_param_decl_index (info, parm);
|
| 1448 |
|
|
if (index == -1)
|
| 1449 |
|
|
return;
|
| 1450 |
|
|
code = gimple_cond_code (last);
|
| 1451 |
|
|
inverted_code
|
| 1452 |
|
|
= invert_tree_comparison (code,
|
| 1453 |
|
|
HONOR_NANS (TYPE_MODE (TREE_TYPE (op))));
|
| 1454 |
|
|
|
| 1455 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 1456 |
|
|
{
|
| 1457 |
|
|
struct predicate p = add_condition (summary,
|
| 1458 |
|
|
index,
|
| 1459 |
|
|
e->flags & EDGE_TRUE_VALUE
|
| 1460 |
|
|
? code : inverted_code,
|
| 1461 |
|
|
gimple_cond_rhs (last));
|
| 1462 |
|
|
e->aux = pool_alloc (edge_predicate_pool);
|
| 1463 |
|
|
*(struct predicate *)e->aux = p;
|
| 1464 |
|
|
}
|
| 1465 |
|
|
}
|
| 1466 |
|
|
|
| 1467 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
| 1468 |
|
|
return;
|
| 1469 |
|
|
/* Special case
|
| 1470 |
|
|
if (builtin_constant_p (op))
|
| 1471 |
|
|
constant_code
|
| 1472 |
|
|
else
|
| 1473 |
|
|
nonconstant_code.
|
| 1474 |
|
|
Here we can predicate nonconstant_code. We can't
|
| 1475 |
|
|
really handle constant_code since we have no predicate
|
| 1476 |
|
|
for this and also the constant code is not known to be
|
| 1477 |
|
|
optimized away when inliner doen't see operand is constant.
|
| 1478 |
|
|
Other optimizers might think otherwise. */
|
| 1479 |
|
|
set_stmt = SSA_NAME_DEF_STMT (op);
|
| 1480 |
|
|
if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
|
| 1481 |
|
|
|| gimple_call_num_args (set_stmt) != 1)
|
| 1482 |
|
|
return;
|
| 1483 |
|
|
op2 = gimple_call_arg (set_stmt, 0);
|
| 1484 |
|
|
base = get_base_address (op2);
|
| 1485 |
|
|
parm = unmodified_parm (set_stmt, base ? base : op2);
|
| 1486 |
|
|
if (!parm)
|
| 1487 |
|
|
return;
|
| 1488 |
|
|
index = ipa_get_param_decl_index (info, parm);
|
| 1489 |
|
|
if (index == -1)
|
| 1490 |
|
|
return;
|
| 1491 |
|
|
if (gimple_cond_code (last) != NE_EXPR
|
| 1492 |
|
|
|| !integer_zerop (gimple_cond_rhs (last)))
|
| 1493 |
|
|
return;
|
| 1494 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 1495 |
|
|
if (e->flags & EDGE_FALSE_VALUE)
|
| 1496 |
|
|
{
|
| 1497 |
|
|
struct predicate p = add_condition (summary,
|
| 1498 |
|
|
index,
|
| 1499 |
|
|
IS_NOT_CONSTANT,
|
| 1500 |
|
|
NULL);
|
| 1501 |
|
|
e->aux = pool_alloc (edge_predicate_pool);
|
| 1502 |
|
|
*(struct predicate *)e->aux = p;
|
| 1503 |
|
|
}
|
| 1504 |
|
|
}
|
| 1505 |
|
|
|
| 1506 |
|
|
|
| 1507 |
|
|
/* If BB ends by a switch we can turn into predicates, attach corresponding
|
| 1508 |
|
|
predicates to the CFG edges. */
|
| 1509 |
|
|
|
| 1510 |
|
|
static void
|
| 1511 |
|
|
set_switch_stmt_execution_predicate (struct ipa_node_params *info,
|
| 1512 |
|
|
struct inline_summary *summary,
|
| 1513 |
|
|
basic_block bb)
|
| 1514 |
|
|
{
|
| 1515 |
|
|
gimple last;
|
| 1516 |
|
|
tree op;
|
| 1517 |
|
|
int index;
|
| 1518 |
|
|
edge e;
|
| 1519 |
|
|
edge_iterator ei;
|
| 1520 |
|
|
size_t n;
|
| 1521 |
|
|
size_t case_idx;
|
| 1522 |
|
|
tree parm;
|
| 1523 |
|
|
|
| 1524 |
|
|
last = last_stmt (bb);
|
| 1525 |
|
|
if (!last
|
| 1526 |
|
|
|| gimple_code (last) != GIMPLE_SWITCH)
|
| 1527 |
|
|
return;
|
| 1528 |
|
|
op = gimple_switch_index (last);
|
| 1529 |
|
|
parm = unmodified_parm (last, op);
|
| 1530 |
|
|
if (!parm)
|
| 1531 |
|
|
return;
|
| 1532 |
|
|
index = ipa_get_param_decl_index (info, parm);
|
| 1533 |
|
|
if (index == -1)
|
| 1534 |
|
|
return;
|
| 1535 |
|
|
|
| 1536 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 1537 |
|
|
{
|
| 1538 |
|
|
e->aux = pool_alloc (edge_predicate_pool);
|
| 1539 |
|
|
*(struct predicate *)e->aux = false_predicate ();
|
| 1540 |
|
|
}
|
| 1541 |
|
|
n = gimple_switch_num_labels(last);
|
| 1542 |
|
|
for (case_idx = 0; case_idx < n; ++case_idx)
|
| 1543 |
|
|
{
|
| 1544 |
|
|
tree cl = gimple_switch_label (last, case_idx);
|
| 1545 |
|
|
tree min, max;
|
| 1546 |
|
|
struct predicate p;
|
| 1547 |
|
|
|
| 1548 |
|
|
e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
|
| 1549 |
|
|
min = CASE_LOW (cl);
|
| 1550 |
|
|
max = CASE_HIGH (cl);
|
| 1551 |
|
|
|
| 1552 |
|
|
/* For default we might want to construct predicate that none
|
| 1553 |
|
|
of cases is met, but it is bit hard to do not having negations
|
| 1554 |
|
|
of conditionals handy. */
|
| 1555 |
|
|
if (!min && !max)
|
| 1556 |
|
|
p = true_predicate ();
|
| 1557 |
|
|
else if (!max)
|
| 1558 |
|
|
p = add_condition (summary, index,
|
| 1559 |
|
|
EQ_EXPR,
|
| 1560 |
|
|
min);
|
| 1561 |
|
|
else
|
| 1562 |
|
|
{
|
| 1563 |
|
|
struct predicate p1, p2;
|
| 1564 |
|
|
p1 = add_condition (summary, index,
|
| 1565 |
|
|
GE_EXPR,
|
| 1566 |
|
|
min);
|
| 1567 |
|
|
p2 = add_condition (summary, index,
|
| 1568 |
|
|
LE_EXPR,
|
| 1569 |
|
|
max);
|
| 1570 |
|
|
p = and_predicates (summary->conds, &p1, &p2);
|
| 1571 |
|
|
}
|
| 1572 |
|
|
*(struct predicate *)e->aux
|
| 1573 |
|
|
= or_predicates (summary->conds, &p, (struct predicate *)e->aux);
|
| 1574 |
|
|
}
|
| 1575 |
|
|
}
|
| 1576 |
|
|
|
| 1577 |
|
|
|
| 1578 |
|
|
/* For each BB in NODE attach to its AUX pointer predicate under
|
| 1579 |
|
|
which it is executable. */
|
| 1580 |
|
|
|
| 1581 |
|
|
static void
|
| 1582 |
|
|
compute_bb_predicates (struct cgraph_node *node,
|
| 1583 |
|
|
struct ipa_node_params *parms_info,
|
| 1584 |
|
|
struct inline_summary *summary)
|
| 1585 |
|
|
{
|
| 1586 |
|
|
struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
|
| 1587 |
|
|
bool done = false;
|
| 1588 |
|
|
basic_block bb;
|
| 1589 |
|
|
|
| 1590 |
|
|
FOR_EACH_BB_FN (bb, my_function)
|
| 1591 |
|
|
{
|
| 1592 |
|
|
set_cond_stmt_execution_predicate (parms_info, summary, bb);
|
| 1593 |
|
|
set_switch_stmt_execution_predicate (parms_info, summary, bb);
|
| 1594 |
|
|
}
|
| 1595 |
|
|
|
| 1596 |
|
|
/* Entry block is always executable. */
|
| 1597 |
|
|
ENTRY_BLOCK_PTR_FOR_FUNCTION (my_function)->aux
|
| 1598 |
|
|
= pool_alloc (edge_predicate_pool);
|
| 1599 |
|
|
*(struct predicate *)ENTRY_BLOCK_PTR_FOR_FUNCTION (my_function)->aux
|
| 1600 |
|
|
= true_predicate ();
|
| 1601 |
|
|
|
| 1602 |
|
|
/* A simple dataflow propagation of predicates forward in the CFG.
|
| 1603 |
|
|
TODO: work in reverse postorder. */
|
| 1604 |
|
|
while (!done)
|
| 1605 |
|
|
{
|
| 1606 |
|
|
done = true;
|
| 1607 |
|
|
FOR_EACH_BB_FN (bb, my_function)
|
| 1608 |
|
|
{
|
| 1609 |
|
|
struct predicate p = false_predicate ();
|
| 1610 |
|
|
edge e;
|
| 1611 |
|
|
edge_iterator ei;
|
| 1612 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 1613 |
|
|
{
|
| 1614 |
|
|
if (e->src->aux)
|
| 1615 |
|
|
{
|
| 1616 |
|
|
struct predicate this_bb_predicate
|
| 1617 |
|
|
= *(struct predicate *)e->src->aux;
|
| 1618 |
|
|
if (e->aux)
|
| 1619 |
|
|
this_bb_predicate
|
| 1620 |
|
|
= and_predicates (summary->conds, &this_bb_predicate,
|
| 1621 |
|
|
(struct predicate *)e->aux);
|
| 1622 |
|
|
p = or_predicates (summary->conds, &p, &this_bb_predicate);
|
| 1623 |
|
|
if (true_predicate_p (&p))
|
| 1624 |
|
|
break;
|
| 1625 |
|
|
}
|
| 1626 |
|
|
}
|
| 1627 |
|
|
if (false_predicate_p (&p))
|
| 1628 |
|
|
gcc_assert (!bb->aux);
|
| 1629 |
|
|
else
|
| 1630 |
|
|
{
|
| 1631 |
|
|
if (!bb->aux)
|
| 1632 |
|
|
{
|
| 1633 |
|
|
done = false;
|
| 1634 |
|
|
bb->aux = pool_alloc (edge_predicate_pool);
|
| 1635 |
|
|
*((struct predicate *)bb->aux) = p;
|
| 1636 |
|
|
}
|
| 1637 |
|
|
else if (!predicates_equal_p (&p, (struct predicate *)bb->aux))
|
| 1638 |
|
|
{
|
| 1639 |
|
|
done = false;
|
| 1640 |
|
|
*((struct predicate *)bb->aux) = p;
|
| 1641 |
|
|
}
|
| 1642 |
|
|
}
|
| 1643 |
|
|
}
|
| 1644 |
|
|
}
|
| 1645 |
|
|
}
|
| 1646 |
|
|
|
| 1647 |
|
|
|
| 1648 |
|
|
/* We keep info about constantness of SSA names. */
|
| 1649 |
|
|
|
| 1650 |
|
|
typedef struct predicate predicate_t;
|
| 1651 |
|
|
DEF_VEC_O (predicate_t);
|
| 1652 |
|
|
DEF_VEC_ALLOC_O (predicate_t, heap);
|
| 1653 |
|
|
|
| 1654 |
|
|
|
| 1655 |
|
|
/* Return predicate specifying when the STMT might have result that is not
|
| 1656 |
|
|
a compile time constant. */
|
| 1657 |
|
|
|
| 1658 |
|
|
static struct predicate
|
| 1659 |
|
|
will_be_nonconstant_predicate (struct ipa_node_params *info,
|
| 1660 |
|
|
struct inline_summary *summary,
|
| 1661 |
|
|
gimple stmt,
|
| 1662 |
|
|
VEC (predicate_t, heap) *nonconstant_names)
|
| 1663 |
|
|
|
| 1664 |
|
|
{
|
| 1665 |
|
|
struct predicate p = true_predicate ();
|
| 1666 |
|
|
ssa_op_iter iter;
|
| 1667 |
|
|
tree use;
|
| 1668 |
|
|
struct predicate op_non_const;
|
| 1669 |
|
|
bool is_load;
|
| 1670 |
|
|
|
| 1671 |
|
|
/* What statments might be optimized away
|
| 1672 |
|
|
when their arguments are constant
|
| 1673 |
|
|
TODO: also trivial builtins.
|
| 1674 |
|
|
builtin_constant_p is already handled later. */
|
| 1675 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN
|
| 1676 |
|
|
&& gimple_code (stmt) != GIMPLE_COND
|
| 1677 |
|
|
&& gimple_code (stmt) != GIMPLE_SWITCH)
|
| 1678 |
|
|
return p;
|
| 1679 |
|
|
|
| 1680 |
|
|
/* Stores will stay anyway. */
|
| 1681 |
|
|
if (gimple_vdef (stmt))
|
| 1682 |
|
|
return p;
|
| 1683 |
|
|
|
| 1684 |
|
|
is_load = gimple_vuse (stmt) != NULL;
|
| 1685 |
|
|
|
| 1686 |
|
|
/* Loads can be optimized when the value is known. */
|
| 1687 |
|
|
if (is_load)
|
| 1688 |
|
|
{
|
| 1689 |
|
|
tree op = gimple_assign_rhs1 (stmt);
|
| 1690 |
|
|
tree base = get_base_address (op);
|
| 1691 |
|
|
tree parm;
|
| 1692 |
|
|
|
| 1693 |
|
|
gcc_assert (gimple_assign_single_p (stmt));
|
| 1694 |
|
|
if (!base)
|
| 1695 |
|
|
return p;
|
| 1696 |
|
|
parm = unmodified_parm (stmt, base);
|
| 1697 |
|
|
if (!parm )
|
| 1698 |
|
|
return p;
|
| 1699 |
|
|
if (ipa_get_param_decl_index (info, parm) < 0)
|
| 1700 |
|
|
return p;
|
| 1701 |
|
|
}
|
| 1702 |
|
|
|
| 1703 |
|
|
/* See if we understand all operands before we start
|
| 1704 |
|
|
adding conditionals. */
|
| 1705 |
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
| 1706 |
|
|
{
|
| 1707 |
|
|
tree parm = unmodified_parm (stmt, use);
|
| 1708 |
|
|
/* For arguments we can build a condition. */
|
| 1709 |
|
|
if (parm && ipa_get_param_decl_index (info, parm) >= 0)
|
| 1710 |
|
|
continue;
|
| 1711 |
|
|
if (TREE_CODE (use) != SSA_NAME)
|
| 1712 |
|
|
return p;
|
| 1713 |
|
|
/* If we know when operand is constant,
|
| 1714 |
|
|
we still can say something useful. */
|
| 1715 |
|
|
if (!true_predicate_p (VEC_index (predicate_t, nonconstant_names,
|
| 1716 |
|
|
SSA_NAME_VERSION (use))))
|
| 1717 |
|
|
continue;
|
| 1718 |
|
|
return p;
|
| 1719 |
|
|
}
|
| 1720 |
|
|
op_non_const = false_predicate ();
|
| 1721 |
|
|
if (is_load)
|
| 1722 |
|
|
{
|
| 1723 |
|
|
tree parm = unmodified_parm
|
| 1724 |
|
|
(stmt, get_base_address (gimple_assign_rhs1 (stmt)));
|
| 1725 |
|
|
p = add_condition (summary,
|
| 1726 |
|
|
ipa_get_param_decl_index (info, parm),
|
| 1727 |
|
|
CHANGED, NULL);
|
| 1728 |
|
|
op_non_const = or_predicates (summary->conds, &p, &op_non_const);
|
| 1729 |
|
|
}
|
| 1730 |
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
| 1731 |
|
|
{
|
| 1732 |
|
|
tree parm = unmodified_parm (stmt, use);
|
| 1733 |
|
|
if (parm && ipa_get_param_decl_index (info, parm) >= 0)
|
| 1734 |
|
|
p = add_condition (summary,
|
| 1735 |
|
|
ipa_get_param_decl_index (info, parm),
|
| 1736 |
|
|
CHANGED, NULL);
|
| 1737 |
|
|
else
|
| 1738 |
|
|
p = *VEC_index (predicate_t, nonconstant_names,
|
| 1739 |
|
|
SSA_NAME_VERSION (use));
|
| 1740 |
|
|
op_non_const = or_predicates (summary->conds, &p, &op_non_const);
|
| 1741 |
|
|
}
|
| 1742 |
|
|
if (gimple_code (stmt) == GIMPLE_ASSIGN
|
| 1743 |
|
|
&& TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
|
| 1744 |
|
|
VEC_replace (predicate_t, nonconstant_names,
|
| 1745 |
|
|
SSA_NAME_VERSION (gimple_assign_lhs (stmt)), &op_non_const);
|
| 1746 |
|
|
return op_non_const;
|
| 1747 |
|
|
}
|
| 1748 |
|
|
|
| 1749 |
|
|
struct record_modified_bb_info
|
| 1750 |
|
|
{
|
| 1751 |
|
|
bitmap bb_set;
|
| 1752 |
|
|
gimple stmt;
|
| 1753 |
|
|
};
|
| 1754 |
|
|
|
| 1755 |
|
|
/* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
|
| 1756 |
|
|
set except for info->stmt. */
|
| 1757 |
|
|
|
| 1758 |
|
|
static bool
|
| 1759 |
|
|
record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef,
|
| 1760 |
|
|
void *data)
|
| 1761 |
|
|
{
|
| 1762 |
|
|
struct record_modified_bb_info *info = (struct record_modified_bb_info *) data;
|
| 1763 |
|
|
if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
|
| 1764 |
|
|
return false;
|
| 1765 |
|
|
bitmap_set_bit (info->bb_set,
|
| 1766 |
|
|
SSA_NAME_IS_DEFAULT_DEF (vdef)
|
| 1767 |
|
|
? ENTRY_BLOCK_PTR->index : gimple_bb (SSA_NAME_DEF_STMT (vdef))->index);
|
| 1768 |
|
|
return false;
|
| 1769 |
|
|
}
|
| 1770 |
|
|
|
| 1771 |
|
|
/* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
|
| 1772 |
|
|
will change since last invocation of STMT.
|
| 1773 |
|
|
|
| 1774 |
|
|
Value 0 is reserved for compile time invariants.
|
| 1775 |
|
|
For common parameters it is REG_BR_PROB_BASE. For loop invariants it
|
| 1776 |
|
|
ought to be REG_BR_PROB_BASE / estimated_iters. */
|
| 1777 |
|
|
|
| 1778 |
|
|
static int
|
| 1779 |
|
|
param_change_prob (gimple stmt, int i)
|
| 1780 |
|
|
{
|
| 1781 |
|
|
tree op = gimple_call_arg (stmt, i);
|
| 1782 |
|
|
basic_block bb = gimple_bb (stmt);
|
| 1783 |
|
|
tree base;
|
| 1784 |
|
|
|
| 1785 |
|
|
if (is_gimple_min_invariant (op))
|
| 1786 |
|
|
return 0;
|
| 1787 |
|
|
/* We would have to do non-trivial analysis to really work out what
|
| 1788 |
|
|
is the probability of value to change (i.e. when init statement
|
| 1789 |
|
|
is in a sibling loop of the call).
|
| 1790 |
|
|
|
| 1791 |
|
|
We do an conservative estimate: when call is executed N times more often
|
| 1792 |
|
|
than the statement defining value, we take the frequency 1/N. */
|
| 1793 |
|
|
if (TREE_CODE (op) == SSA_NAME)
|
| 1794 |
|
|
{
|
| 1795 |
|
|
int init_freq;
|
| 1796 |
|
|
|
| 1797 |
|
|
if (!bb->frequency)
|
| 1798 |
|
|
return REG_BR_PROB_BASE;
|
| 1799 |
|
|
|
| 1800 |
|
|
if (SSA_NAME_IS_DEFAULT_DEF (op))
|
| 1801 |
|
|
init_freq = ENTRY_BLOCK_PTR->frequency;
|
| 1802 |
|
|
else
|
| 1803 |
|
|
init_freq = gimple_bb (SSA_NAME_DEF_STMT (op))->frequency;
|
| 1804 |
|
|
|
| 1805 |
|
|
if (!init_freq)
|
| 1806 |
|
|
init_freq = 1;
|
| 1807 |
|
|
if (init_freq < bb->frequency)
|
| 1808 |
|
|
return MAX ((init_freq * REG_BR_PROB_BASE +
|
| 1809 |
|
|
bb->frequency / 2) / bb->frequency, 1);
|
| 1810 |
|
|
else
|
| 1811 |
|
|
return REG_BR_PROB_BASE;
|
| 1812 |
|
|
}
|
| 1813 |
|
|
|
| 1814 |
|
|
base = get_base_address (op);
|
| 1815 |
|
|
if (base)
|
| 1816 |
|
|
{
|
| 1817 |
|
|
ao_ref refd;
|
| 1818 |
|
|
int max;
|
| 1819 |
|
|
struct record_modified_bb_info info;
|
| 1820 |
|
|
bitmap_iterator bi;
|
| 1821 |
|
|
unsigned index;
|
| 1822 |
|
|
|
| 1823 |
|
|
if (const_value_known_p (base))
|
| 1824 |
|
|
return 0;
|
| 1825 |
|
|
if (!bb->frequency)
|
| 1826 |
|
|
return REG_BR_PROB_BASE;
|
| 1827 |
|
|
ao_ref_init (&refd, op);
|
| 1828 |
|
|
info.stmt = stmt;
|
| 1829 |
|
|
info.bb_set = BITMAP_ALLOC (NULL);
|
| 1830 |
|
|
walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
|
| 1831 |
|
|
NULL);
|
| 1832 |
|
|
if (bitmap_bit_p (info.bb_set, bb->index))
|
| 1833 |
|
|
{
|
| 1834 |
|
|
BITMAP_FREE (info.bb_set);
|
| 1835 |
|
|
return REG_BR_PROB_BASE;
|
| 1836 |
|
|
}
|
| 1837 |
|
|
|
| 1838 |
|
|
/* Assume that every memory is initialized at entry.
|
| 1839 |
|
|
TODO: Can we easilly determine if value is always defined
|
| 1840 |
|
|
and thus we may skip entry block? */
|
| 1841 |
|
|
if (ENTRY_BLOCK_PTR->frequency)
|
| 1842 |
|
|
max = ENTRY_BLOCK_PTR->frequency;
|
| 1843 |
|
|
else
|
| 1844 |
|
|
max = 1;
|
| 1845 |
|
|
|
| 1846 |
|
|
EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
|
| 1847 |
|
|
max = MIN (max, BASIC_BLOCK (index)->frequency);
|
| 1848 |
|
|
|
| 1849 |
|
|
BITMAP_FREE (info.bb_set);
|
| 1850 |
|
|
if (max < bb->frequency)
|
| 1851 |
|
|
return MAX ((max * REG_BR_PROB_BASE +
|
| 1852 |
|
|
bb->frequency / 2) / bb->frequency, 1);
|
| 1853 |
|
|
else
|
| 1854 |
|
|
return REG_BR_PROB_BASE;
|
| 1855 |
|
|
}
|
| 1856 |
|
|
return REG_BR_PROB_BASE;
|
| 1857 |
|
|
}
|
| 1858 |
|
|
|
| 1859 |
|
|
|
| 1860 |
|
|
/* Compute function body size parameters for NODE.
|
| 1861 |
|
|
When EARLY is true, we compute only simple summaries without
|
| 1862 |
|
|
non-trivial predicates to drive the early inliner. */
|
| 1863 |
|
|
|
| 1864 |
|
|
static void
|
| 1865 |
|
|
estimate_function_body_sizes (struct cgraph_node *node, bool early)
|
| 1866 |
|
|
{
|
| 1867 |
|
|
gcov_type time = 0;
|
| 1868 |
|
|
/* Estimate static overhead for function prologue/epilogue and alignment. */
|
| 1869 |
|
|
int size = 2;
|
| 1870 |
|
|
/* Benefits are scaled by probability of elimination that is in range
|
| 1871 |
|
|
<0,2>. */
|
| 1872 |
|
|
basic_block bb;
|
| 1873 |
|
|
gimple_stmt_iterator bsi;
|
| 1874 |
|
|
struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
|
| 1875 |
|
|
int freq;
|
| 1876 |
|
|
struct inline_summary *info = inline_summary (node);
|
| 1877 |
|
|
struct predicate bb_predicate;
|
| 1878 |
|
|
struct ipa_node_params *parms_info = NULL;
|
| 1879 |
|
|
VEC (predicate_t, heap) *nonconstant_names = NULL;
|
| 1880 |
|
|
|
| 1881 |
|
|
if (ipa_node_params_vector && !early && optimize)
|
| 1882 |
|
|
{
|
| 1883 |
|
|
parms_info = IPA_NODE_REF (node);
|
| 1884 |
|
|
VEC_safe_grow_cleared (predicate_t, heap, nonconstant_names,
|
| 1885 |
|
|
VEC_length (tree, SSANAMES (my_function)));
|
| 1886 |
|
|
}
|
| 1887 |
|
|
|
| 1888 |
|
|
info->conds = 0;
|
| 1889 |
|
|
info->entry = 0;
|
| 1890 |
|
|
|
| 1891 |
|
|
|
| 1892 |
|
|
if (dump_file)
|
| 1893 |
|
|
fprintf (dump_file, "\nAnalyzing function body size: %s\n",
|
| 1894 |
|
|
cgraph_node_name (node));
|
| 1895 |
|
|
|
| 1896 |
|
|
/* When we run into maximal number of entries, we assign everything to the
|
| 1897 |
|
|
constant truth case. Be sure to have it in list. */
|
| 1898 |
|
|
bb_predicate = true_predicate ();
|
| 1899 |
|
|
account_size_time (info, 0, 0, &bb_predicate);
|
| 1900 |
|
|
|
| 1901 |
|
|
bb_predicate = not_inlined_predicate ();
|
| 1902 |
|
|
account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
|
| 1903 |
|
|
|
| 1904 |
|
|
gcc_assert (my_function && my_function->cfg);
|
| 1905 |
|
|
if (parms_info)
|
| 1906 |
|
|
compute_bb_predicates (node, parms_info, info);
|
| 1907 |
|
|
FOR_EACH_BB_FN (bb, my_function)
|
| 1908 |
|
|
{
|
| 1909 |
|
|
freq = compute_call_stmt_bb_frequency (node->decl, bb);
|
| 1910 |
|
|
|
| 1911 |
|
|
/* TODO: Obviously predicates can be propagated down across CFG. */
|
| 1912 |
|
|
if (parms_info)
|
| 1913 |
|
|
{
|
| 1914 |
|
|
if (bb->aux)
|
| 1915 |
|
|
bb_predicate = *(struct predicate *)bb->aux;
|
| 1916 |
|
|
else
|
| 1917 |
|
|
bb_predicate = false_predicate ();
|
| 1918 |
|
|
}
|
| 1919 |
|
|
else
|
| 1920 |
|
|
bb_predicate = true_predicate ();
|
| 1921 |
|
|
|
| 1922 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1923 |
|
|
{
|
| 1924 |
|
|
fprintf (dump_file, "\n BB %i predicate:", bb->index);
|
| 1925 |
|
|
dump_predicate (dump_file, info->conds, &bb_predicate);
|
| 1926 |
|
|
}
|
| 1927 |
|
|
|
| 1928 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 1929 |
|
|
{
|
| 1930 |
|
|
gimple stmt = gsi_stmt (bsi);
|
| 1931 |
|
|
int this_size = estimate_num_insns (stmt, &eni_size_weights);
|
| 1932 |
|
|
int this_time = estimate_num_insns (stmt, &eni_time_weights);
|
| 1933 |
|
|
int prob;
|
| 1934 |
|
|
struct predicate will_be_nonconstant;
|
| 1935 |
|
|
|
| 1936 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1937 |
|
|
{
|
| 1938 |
|
|
fprintf (dump_file, " ");
|
| 1939 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 1940 |
|
|
fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
|
| 1941 |
|
|
((double)freq)/CGRAPH_FREQ_BASE, this_size, this_time);
|
| 1942 |
|
|
}
|
| 1943 |
|
|
|
| 1944 |
|
|
if (is_gimple_call (stmt))
|
| 1945 |
|
|
{
|
| 1946 |
|
|
struct cgraph_edge *edge = cgraph_edge (node, stmt);
|
| 1947 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
| 1948 |
|
|
|
| 1949 |
|
|
/* Special case: results of BUILT_IN_CONSTANT_P will be always
|
| 1950 |
|
|
resolved as constant. We however don't want to optimize
|
| 1951 |
|
|
out the cgraph edges. */
|
| 1952 |
|
|
if (nonconstant_names
|
| 1953 |
|
|
&& gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
|
| 1954 |
|
|
&& gimple_call_lhs (stmt)
|
| 1955 |
|
|
&& TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
|
| 1956 |
|
|
{
|
| 1957 |
|
|
struct predicate false_p = false_predicate ();
|
| 1958 |
|
|
VEC_replace (predicate_t, nonconstant_names,
|
| 1959 |
|
|
SSA_NAME_VERSION (gimple_call_lhs (stmt)),
|
| 1960 |
|
|
&false_p);
|
| 1961 |
|
|
}
|
| 1962 |
|
|
if (ipa_node_params_vector)
|
| 1963 |
|
|
{
|
| 1964 |
|
|
int count = gimple_call_num_args (stmt);
|
| 1965 |
|
|
int i;
|
| 1966 |
|
|
|
| 1967 |
|
|
if (count)
|
| 1968 |
|
|
VEC_safe_grow_cleared (inline_param_summary_t, heap,
|
| 1969 |
|
|
es->param, count);
|
| 1970 |
|
|
for (i = 0; i < count; i++)
|
| 1971 |
|
|
{
|
| 1972 |
|
|
int prob = param_change_prob (stmt, i);
|
| 1973 |
|
|
gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
|
| 1974 |
|
|
VEC_index (inline_param_summary_t,
|
| 1975 |
|
|
es->param, i)->change_prob = prob;
|
| 1976 |
|
|
}
|
| 1977 |
|
|
}
|
| 1978 |
|
|
|
| 1979 |
|
|
es->call_stmt_size = this_size;
|
| 1980 |
|
|
es->call_stmt_time = this_time;
|
| 1981 |
|
|
es->loop_depth = bb->loop_depth;
|
| 1982 |
|
|
edge_set_predicate (edge, &bb_predicate);
|
| 1983 |
|
|
}
|
| 1984 |
|
|
|
| 1985 |
|
|
/* TODO: When conditional jump or swithc is known to be constant, but
|
| 1986 |
|
|
we did not translate it into the predicates, we really can account
|
| 1987 |
|
|
just maximum of the possible paths. */
|
| 1988 |
|
|
if (parms_info)
|
| 1989 |
|
|
will_be_nonconstant
|
| 1990 |
|
|
= will_be_nonconstant_predicate (parms_info, info,
|
| 1991 |
|
|
stmt, nonconstant_names);
|
| 1992 |
|
|
if (this_time || this_size)
|
| 1993 |
|
|
{
|
| 1994 |
|
|
struct predicate p;
|
| 1995 |
|
|
|
| 1996 |
|
|
this_time *= freq;
|
| 1997 |
|
|
time += this_time;
|
| 1998 |
|
|
size += this_size;
|
| 1999 |
|
|
|
| 2000 |
|
|
prob = eliminated_by_inlining_prob (stmt);
|
| 2001 |
|
|
if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
|
| 2002 |
|
|
fprintf (dump_file, "\t\t50%% will be eliminated by inlining\n");
|
| 2003 |
|
|
if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
|
| 2004 |
|
|
fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
|
| 2005 |
|
|
|
| 2006 |
|
|
if (parms_info)
|
| 2007 |
|
|
p = and_predicates (info->conds, &bb_predicate,
|
| 2008 |
|
|
&will_be_nonconstant);
|
| 2009 |
|
|
else
|
| 2010 |
|
|
p = true_predicate ();
|
| 2011 |
|
|
|
| 2012 |
|
|
/* We account everything but the calls. Calls have their own
|
| 2013 |
|
|
size/time info attached to cgraph edges. This is neccesary
|
| 2014 |
|
|
in order to make the cost disappear after inlining. */
|
| 2015 |
|
|
if (!is_gimple_call (stmt))
|
| 2016 |
|
|
{
|
| 2017 |
|
|
if (prob)
|
| 2018 |
|
|
{
|
| 2019 |
|
|
struct predicate ip = not_inlined_predicate ();
|
| 2020 |
|
|
ip = and_predicates (info->conds, &ip, &p);
|
| 2021 |
|
|
account_size_time (info, this_size * prob,
|
| 2022 |
|
|
this_time * prob, &ip);
|
| 2023 |
|
|
}
|
| 2024 |
|
|
if (prob != 2)
|
| 2025 |
|
|
account_size_time (info, this_size * (2 - prob),
|
| 2026 |
|
|
this_time * (2 - prob), &p);
|
| 2027 |
|
|
}
|
| 2028 |
|
|
|
| 2029 |
|
|
gcc_assert (time >= 0);
|
| 2030 |
|
|
gcc_assert (size >= 0);
|
| 2031 |
|
|
}
|
| 2032 |
|
|
}
|
| 2033 |
|
|
}
|
| 2034 |
|
|
FOR_ALL_BB_FN (bb, my_function)
|
| 2035 |
|
|
{
|
| 2036 |
|
|
edge e;
|
| 2037 |
|
|
edge_iterator ei;
|
| 2038 |
|
|
|
| 2039 |
|
|
if (bb->aux)
|
| 2040 |
|
|
pool_free (edge_predicate_pool, bb->aux);
|
| 2041 |
|
|
bb->aux = NULL;
|
| 2042 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 2043 |
|
|
{
|
| 2044 |
|
|
if (e->aux)
|
| 2045 |
|
|
pool_free (edge_predicate_pool, e->aux);
|
| 2046 |
|
|
e->aux = NULL;
|
| 2047 |
|
|
}
|
| 2048 |
|
|
}
|
| 2049 |
|
|
time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
|
| 2050 |
|
|
if (time > MAX_TIME)
|
| 2051 |
|
|
time = MAX_TIME;
|
| 2052 |
|
|
inline_summary (node)->self_time = time;
|
| 2053 |
|
|
inline_summary (node)->self_size = size;
|
| 2054 |
|
|
VEC_free (predicate_t, heap, nonconstant_names);
|
| 2055 |
|
|
if (dump_file)
|
| 2056 |
|
|
{
|
| 2057 |
|
|
fprintf (dump_file, "\n");
|
| 2058 |
|
|
dump_inline_summary (dump_file, node);
|
| 2059 |
|
|
}
|
| 2060 |
|
|
}
|
| 2061 |
|
|
|
| 2062 |
|
|
|
| 2063 |
|
|
/* Compute parameters of functions used by inliner.
|
| 2064 |
|
|
EARLY is true when we compute parameters for the early inliner */
|
| 2065 |
|
|
|
| 2066 |
|
|
void
|
| 2067 |
|
|
compute_inline_parameters (struct cgraph_node *node, bool early)
|
| 2068 |
|
|
{
|
| 2069 |
|
|
HOST_WIDE_INT self_stack_size;
|
| 2070 |
|
|
struct cgraph_edge *e;
|
| 2071 |
|
|
struct inline_summary *info;
|
| 2072 |
|
|
tree old_decl = current_function_decl;
|
| 2073 |
|
|
|
| 2074 |
|
|
gcc_assert (!node->global.inlined_to);
|
| 2075 |
|
|
|
| 2076 |
|
|
inline_summary_alloc ();
|
| 2077 |
|
|
|
| 2078 |
|
|
info = inline_summary (node);
|
| 2079 |
|
|
reset_inline_summary (node);
|
| 2080 |
|
|
|
| 2081 |
|
|
/* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
|
| 2082 |
|
|
Once this happen, we will need to more curefully predict call
|
| 2083 |
|
|
statement size. */
|
| 2084 |
|
|
if (node->thunk.thunk_p)
|
| 2085 |
|
|
{
|
| 2086 |
|
|
struct inline_edge_summary *es = inline_edge_summary (node->callees);
|
| 2087 |
|
|
struct predicate t = true_predicate ();
|
| 2088 |
|
|
|
| 2089 |
|
|
info->inlinable = 0;
|
| 2090 |
|
|
node->callees->call_stmt_cannot_inline_p = true;
|
| 2091 |
|
|
node->local.can_change_signature = false;
|
| 2092 |
|
|
es->call_stmt_time = 1;
|
| 2093 |
|
|
es->call_stmt_size = 1;
|
| 2094 |
|
|
account_size_time (info, 0, 0, &t);
|
| 2095 |
|
|
return;
|
| 2096 |
|
|
}
|
| 2097 |
|
|
|
| 2098 |
|
|
/* Even is_gimple_min_invariant rely on current_function_decl. */
|
| 2099 |
|
|
current_function_decl = node->decl;
|
| 2100 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
| 2101 |
|
|
|
| 2102 |
|
|
/* Estimate the stack size for the function if we're optimizing. */
|
| 2103 |
|
|
self_stack_size = optimize ? estimated_stack_frame_size (node) : 0;
|
| 2104 |
|
|
info->estimated_self_stack_size = self_stack_size;
|
| 2105 |
|
|
info->estimated_stack_size = self_stack_size;
|
| 2106 |
|
|
info->stack_frame_offset = 0;
|
| 2107 |
|
|
|
| 2108 |
|
|
/* Can this function be inlined at all? */
|
| 2109 |
|
|
info->inlinable = tree_inlinable_function_p (node->decl);
|
| 2110 |
|
|
|
| 2111 |
|
|
/* Type attributes can use parameter indices to describe them. */
|
| 2112 |
|
|
if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
|
| 2113 |
|
|
node->local.can_change_signature = false;
|
| 2114 |
|
|
else
|
| 2115 |
|
|
{
|
| 2116 |
|
|
/* Otherwise, inlinable functions always can change signature. */
|
| 2117 |
|
|
if (info->inlinable)
|
| 2118 |
|
|
node->local.can_change_signature = true;
|
| 2119 |
|
|
else
|
| 2120 |
|
|
{
|
| 2121 |
|
|
/* Functions calling builtin_apply can not change signature. */
|
| 2122 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
| 2123 |
|
|
{
|
| 2124 |
|
|
tree cdecl = e->callee->decl;
|
| 2125 |
|
|
if (DECL_BUILT_IN (cdecl)
|
| 2126 |
|
|
&& DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
|
| 2127 |
|
|
&& (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
|
| 2128 |
|
|
|| DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
|
| 2129 |
|
|
break;
|
| 2130 |
|
|
}
|
| 2131 |
|
|
node->local.can_change_signature = !e;
|
| 2132 |
|
|
}
|
| 2133 |
|
|
}
|
| 2134 |
|
|
estimate_function_body_sizes (node, early);
|
| 2135 |
|
|
|
| 2136 |
|
|
/* Inlining characteristics are maintained by the cgraph_mark_inline. */
|
| 2137 |
|
|
info->time = info->self_time;
|
| 2138 |
|
|
info->size = info->self_size;
|
| 2139 |
|
|
info->stack_frame_offset = 0;
|
| 2140 |
|
|
info->estimated_stack_size = info->estimated_self_stack_size;
|
| 2141 |
|
|
current_function_decl = old_decl;
|
| 2142 |
|
|
pop_cfun ();
|
| 2143 |
|
|
}
|
| 2144 |
|
|
|
| 2145 |
|
|
|
| 2146 |
|
|
/* Compute parameters of functions used by inliner using
|
| 2147 |
|
|
current_function_decl. */
|
| 2148 |
|
|
|
| 2149 |
|
|
static unsigned int
|
| 2150 |
|
|
compute_inline_parameters_for_current (void)
|
| 2151 |
|
|
{
|
| 2152 |
|
|
compute_inline_parameters (cgraph_get_node (current_function_decl), true);
|
| 2153 |
|
|
return 0;
|
| 2154 |
|
|
}
|
| 2155 |
|
|
|
| 2156 |
|
|
struct gimple_opt_pass pass_inline_parameters =
|
| 2157 |
|
|
{
|
| 2158 |
|
|
{
|
| 2159 |
|
|
GIMPLE_PASS,
|
| 2160 |
|
|
"inline_param", /* name */
|
| 2161 |
|
|
NULL, /* gate */
|
| 2162 |
|
|
compute_inline_parameters_for_current,/* execute */
|
| 2163 |
|
|
NULL, /* sub */
|
| 2164 |
|
|
NULL, /* next */
|
| 2165 |
|
|
0, /* static_pass_number */
|
| 2166 |
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
| 2167 |
|
|
0, /* properties_required */
|
| 2168 |
|
|
0, /* properties_provided */
|
| 2169 |
|
|
0, /* properties_destroyed */
|
| 2170 |
|
|
0, /* todo_flags_start */
|
| 2171 |
|
|
|
| 2172 |
|
|
}
|
| 2173 |
|
|
};
|
| 2174 |
|
|
|
| 2175 |
|
|
|
| 2176 |
|
|
/* Increase SIZE and TIME for size and time needed to handle edge E. */
|
| 2177 |
|
|
|
| 2178 |
|
|
static void
|
| 2179 |
|
|
estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *time,
|
| 2180 |
|
|
int prob)
|
| 2181 |
|
|
{
|
| 2182 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
| 2183 |
|
|
*size += es->call_stmt_size * INLINE_SIZE_SCALE;
|
| 2184 |
|
|
*time += (es->call_stmt_time * prob / REG_BR_PROB_BASE
|
| 2185 |
|
|
* e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE));
|
| 2186 |
|
|
if (*time > MAX_TIME * INLINE_TIME_SCALE)
|
| 2187 |
|
|
*time = MAX_TIME * INLINE_TIME_SCALE;
|
| 2188 |
|
|
}
|
| 2189 |
|
|
|
| 2190 |
|
|
|
| 2191 |
|
|
/* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS and
|
| 2192 |
|
|
KNOWN_BINFOS. */
|
| 2193 |
|
|
|
| 2194 |
|
|
static void
|
| 2195 |
|
|
estimate_edge_devirt_benefit (struct cgraph_edge *ie,
|
| 2196 |
|
|
int *size, int *time, int prob,
|
| 2197 |
|
|
VEC (tree, heap) *known_vals,
|
| 2198 |
|
|
VEC (tree, heap) *known_binfos)
|
| 2199 |
|
|
{
|
| 2200 |
|
|
tree target;
|
| 2201 |
|
|
int time_diff, size_diff;
|
| 2202 |
|
|
|
| 2203 |
|
|
if (!known_vals && !known_binfos)
|
| 2204 |
|
|
return;
|
| 2205 |
|
|
|
| 2206 |
|
|
target = ipa_get_indirect_edge_target (ie, known_vals, known_binfos);
|
| 2207 |
|
|
if (!target)
|
| 2208 |
|
|
return;
|
| 2209 |
|
|
|
| 2210 |
|
|
/* Account for difference in cost between indirect and direct calls. */
|
| 2211 |
|
|
size_diff = ((eni_size_weights.indirect_call_cost - eni_size_weights.call_cost)
|
| 2212 |
|
|
* INLINE_SIZE_SCALE);
|
| 2213 |
|
|
*size -= size_diff;
|
| 2214 |
|
|
time_diff = ((eni_time_weights.indirect_call_cost - eni_time_weights.call_cost)
|
| 2215 |
|
|
* INLINE_TIME_SCALE * prob / REG_BR_PROB_BASE);
|
| 2216 |
|
|
*time -= time_diff;
|
| 2217 |
|
|
|
| 2218 |
|
|
/* TODO: This code is trying to benefit indirect calls that will be inlined later.
|
| 2219 |
|
|
The logic however do not belong into local size/time estimates and can not be
|
| 2220 |
|
|
done here, or the accounting of changes will get wrong and we result with
|
| 2221 |
|
|
negative function body sizes. We need to introduce infrastructure for independent
|
| 2222 |
|
|
benefits to the inliner. */
|
| 2223 |
|
|
#if 0
|
| 2224 |
|
|
struct cgraph_node *callee;
|
| 2225 |
|
|
struct inline_summary *isummary;
|
| 2226 |
|
|
int edge_size, edge_time, time_diff, size_diff;
|
| 2227 |
|
|
|
| 2228 |
|
|
callee = cgraph_get_node (target);
|
| 2229 |
|
|
if (!callee || !callee->analyzed)
|
| 2230 |
|
|
return;
|
| 2231 |
|
|
isummary = inline_summary (callee);
|
| 2232 |
|
|
if (!isummary->inlinable)
|
| 2233 |
|
|
return;
|
| 2234 |
|
|
|
| 2235 |
|
|
estimate_edge_size_and_time (ie, &edge_size, &edge_time, prob);
|
| 2236 |
|
|
|
| 2237 |
|
|
/* Count benefit only from functions that definitely will be inlined
|
| 2238 |
|
|
if additional context from NODE's caller were available.
|
| 2239 |
|
|
|
| 2240 |
|
|
We just account overall size change by inlining. TODO:
|
| 2241 |
|
|
we really need to add sort of benefit metrics for these kind of
|
| 2242 |
|
|
cases. */
|
| 2243 |
|
|
if (edge_size - size_diff >= isummary->size * INLINE_SIZE_SCALE)
|
| 2244 |
|
|
{
|
| 2245 |
|
|
/* Subtract size and time that we added for edge IE. */
|
| 2246 |
|
|
*size -= edge_size - size_diff;
|
| 2247 |
|
|
|
| 2248 |
|
|
/* Account inlined call. */
|
| 2249 |
|
|
*size += isummary->size * INLINE_SIZE_SCALE;
|
| 2250 |
|
|
}
|
| 2251 |
|
|
#endif
|
| 2252 |
|
|
}
|
| 2253 |
|
|
|
| 2254 |
|
|
|
| 2255 |
|
|
/* Increase SIZE and TIME for size and time needed to handle all calls in NODE.
|
| 2256 |
|
|
POSSIBLE_TRUTHS, KNOWN_VALS and KNOWN_BINFOS describe context of the call
|
| 2257 |
|
|
site. */
|
| 2258 |
|
|
|
| 2259 |
|
|
static void
|
| 2260 |
|
|
estimate_calls_size_and_time (struct cgraph_node *node, int *size, int *time,
|
| 2261 |
|
|
clause_t possible_truths,
|
| 2262 |
|
|
VEC (tree, heap) *known_vals,
|
| 2263 |
|
|
VEC (tree, heap) *known_binfos)
|
| 2264 |
|
|
{
|
| 2265 |
|
|
struct cgraph_edge *e;
|
| 2266 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
| 2267 |
|
|
{
|
| 2268 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
| 2269 |
|
|
if (!es->predicate || evaluate_predicate (es->predicate, possible_truths))
|
| 2270 |
|
|
{
|
| 2271 |
|
|
if (e->inline_failed)
|
| 2272 |
|
|
{
|
| 2273 |
|
|
/* Predicates of calls shall not use NOT_CHANGED codes,
|
| 2274 |
|
|
sowe do not need to compute probabilities. */
|
| 2275 |
|
|
estimate_edge_size_and_time (e, size, time, REG_BR_PROB_BASE);
|
| 2276 |
|
|
}
|
| 2277 |
|
|
else
|
| 2278 |
|
|
estimate_calls_size_and_time (e->callee, size, time,
|
| 2279 |
|
|
possible_truths,
|
| 2280 |
|
|
known_vals, known_binfos);
|
| 2281 |
|
|
}
|
| 2282 |
|
|
}
|
| 2283 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
| 2284 |
|
|
{
|
| 2285 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
| 2286 |
|
|
if (!es->predicate || evaluate_predicate (es->predicate, possible_truths))
|
| 2287 |
|
|
{
|
| 2288 |
|
|
estimate_edge_size_and_time (e, size, time, REG_BR_PROB_BASE);
|
| 2289 |
|
|
estimate_edge_devirt_benefit (e, size, time, REG_BR_PROB_BASE,
|
| 2290 |
|
|
known_vals, known_binfos);
|
| 2291 |
|
|
}
|
| 2292 |
|
|
}
|
| 2293 |
|
|
}
|
| 2294 |
|
|
|
| 2295 |
|
|
|
| 2296 |
|
|
/* Estimate size and time needed to execute NODE assuming
|
| 2297 |
|
|
POSSIBLE_TRUTHS clause, and KNOWN_VALS and KNOWN_BINFOS information
|
| 2298 |
|
|
about NODE's arguments. */
|
| 2299 |
|
|
|
| 2300 |
|
|
static void
|
| 2301 |
|
|
estimate_node_size_and_time (struct cgraph_node *node,
|
| 2302 |
|
|
clause_t possible_truths,
|
| 2303 |
|
|
VEC (tree, heap) *known_vals,
|
| 2304 |
|
|
VEC (tree, heap) *known_binfos,
|
| 2305 |
|
|
int *ret_size, int *ret_time,
|
| 2306 |
|
|
VEC (inline_param_summary_t, heap)
|
| 2307 |
|
|
*inline_param_summary)
|
| 2308 |
|
|
{
|
| 2309 |
|
|
struct inline_summary *info = inline_summary (node);
|
| 2310 |
|
|
size_time_entry *e;
|
| 2311 |
|
|
int size = 0, time = 0;
|
| 2312 |
|
|
int i;
|
| 2313 |
|
|
|
| 2314 |
|
|
if (dump_file
|
| 2315 |
|
|
&& (dump_flags & TDF_DETAILS))
|
| 2316 |
|
|
{
|
| 2317 |
|
|
bool found = false;
|
| 2318 |
|
|
fprintf (dump_file, " Estimating body: %s/%i\n"
|
| 2319 |
|
|
" Known to be false: ",
|
| 2320 |
|
|
cgraph_node_name (node),
|
| 2321 |
|
|
node->uid);
|
| 2322 |
|
|
|
| 2323 |
|
|
for (i = predicate_not_inlined_condition;
|
| 2324 |
|
|
i < (predicate_first_dynamic_condition
|
| 2325 |
|
|
+ (int)VEC_length (condition, info->conds)); i++)
|
| 2326 |
|
|
if (!(possible_truths & (1 << i)))
|
| 2327 |
|
|
{
|
| 2328 |
|
|
if (found)
|
| 2329 |
|
|
fprintf (dump_file, ", ");
|
| 2330 |
|
|
found = true;
|
| 2331 |
|
|
dump_condition (dump_file, info->conds, i);
|
| 2332 |
|
|
}
|
| 2333 |
|
|
}
|
| 2334 |
|
|
|
| 2335 |
|
|
for (i = 0; VEC_iterate (size_time_entry, info->entry, i, e); i++)
|
| 2336 |
|
|
if (evaluate_predicate (&e->predicate, possible_truths))
|
| 2337 |
|
|
{
|
| 2338 |
|
|
size += e->size;
|
| 2339 |
|
|
if (!inline_param_summary)
|
| 2340 |
|
|
time += e->time;
|
| 2341 |
|
|
else
|
| 2342 |
|
|
{
|
| 2343 |
|
|
int prob = predicate_probability (info->conds,
|
| 2344 |
|
|
&e->predicate,
|
| 2345 |
|
|
possible_truths,
|
| 2346 |
|
|
inline_param_summary);
|
| 2347 |
|
|
time += e->time * prob / REG_BR_PROB_BASE;
|
| 2348 |
|
|
}
|
| 2349 |
|
|
|
| 2350 |
|
|
}
|
| 2351 |
|
|
|
| 2352 |
|
|
if (time > MAX_TIME * INLINE_TIME_SCALE)
|
| 2353 |
|
|
time = MAX_TIME * INLINE_TIME_SCALE;
|
| 2354 |
|
|
|
| 2355 |
|
|
estimate_calls_size_and_time (node, &size, &time, possible_truths,
|
| 2356 |
|
|
known_vals, known_binfos);
|
| 2357 |
|
|
time = (time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
|
| 2358 |
|
|
size = (size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
|
| 2359 |
|
|
|
| 2360 |
|
|
|
| 2361 |
|
|
if (dump_file
|
| 2362 |
|
|
&& (dump_flags & TDF_DETAILS))
|
| 2363 |
|
|
fprintf (dump_file, "\n size:%i time:%i\n", size, time);
|
| 2364 |
|
|
if (ret_time)
|
| 2365 |
|
|
*ret_time = time;
|
| 2366 |
|
|
if (ret_size)
|
| 2367 |
|
|
*ret_size = size;
|
| 2368 |
|
|
return;
|
| 2369 |
|
|
}
|
| 2370 |
|
|
|
| 2371 |
|
|
|
| 2372 |
|
|
/* Estimate size and time needed to execute callee of EDGE assuming that
|
| 2373 |
|
|
parameters known to be constant at caller of EDGE are propagated.
|
| 2374 |
|
|
KNOWN_VALS and KNOWN_BINFOS are vectors of assumed known constant values
|
| 2375 |
|
|
and types for parameters. */
|
| 2376 |
|
|
|
| 2377 |
|
|
void
|
| 2378 |
|
|
estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
|
| 2379 |
|
|
VEC (tree, heap) *known_vals,
|
| 2380 |
|
|
VEC (tree, heap) *known_binfos,
|
| 2381 |
|
|
int *ret_size, int *ret_time)
|
| 2382 |
|
|
{
|
| 2383 |
|
|
clause_t clause;
|
| 2384 |
|
|
|
| 2385 |
|
|
clause = evaluate_conditions_for_known_args (node, false, known_vals);
|
| 2386 |
|
|
estimate_node_size_and_time (node, clause, known_vals, known_binfos,
|
| 2387 |
|
|
ret_size, ret_time,
|
| 2388 |
|
|
NULL);
|
| 2389 |
|
|
}
|
| 2390 |
|
|
|
| 2391 |
|
|
|
| 2392 |
|
|
/* Translate all conditions from callee representation into caller
|
| 2393 |
|
|
representation and symbolically evaluate predicate P into new predicate.
|
| 2394 |
|
|
|
| 2395 |
|
|
INFO is inline_summary of function we are adding predicate into,
|
| 2396 |
|
|
CALLEE_INFO is summary of function predicate P is from. OPERAND_MAP is
|
| 2397 |
|
|
array giving callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is
|
| 2398 |
|
|
clausule of all callee conditions that may be true in caller context.
|
| 2399 |
|
|
TOPLEV_PREDICATE is predicate under which callee is executed. */
|
| 2400 |
|
|
|
| 2401 |
|
|
static struct predicate
|
| 2402 |
|
|
remap_predicate (struct inline_summary *info,
|
| 2403 |
|
|
struct inline_summary *callee_info,
|
| 2404 |
|
|
struct predicate *p,
|
| 2405 |
|
|
VEC (int, heap) *operand_map,
|
| 2406 |
|
|
clause_t possible_truths,
|
| 2407 |
|
|
struct predicate *toplev_predicate)
|
| 2408 |
|
|
{
|
| 2409 |
|
|
int i;
|
| 2410 |
|
|
struct predicate out = true_predicate ();
|
| 2411 |
|
|
|
| 2412 |
|
|
/* True predicate is easy. */
|
| 2413 |
|
|
if (true_predicate_p (p))
|
| 2414 |
|
|
return *toplev_predicate;
|
| 2415 |
|
|
for (i = 0; p->clause[i]; i++)
|
| 2416 |
|
|
{
|
| 2417 |
|
|
clause_t clause = p->clause[i];
|
| 2418 |
|
|
int cond;
|
| 2419 |
|
|
struct predicate clause_predicate = false_predicate ();
|
| 2420 |
|
|
|
| 2421 |
|
|
gcc_assert (i < MAX_CLAUSES);
|
| 2422 |
|
|
|
| 2423 |
|
|
for (cond = 0; cond < NUM_CONDITIONS; cond ++)
|
| 2424 |
|
|
/* Do we have condition we can't disprove? */
|
| 2425 |
|
|
if (clause & possible_truths & (1 << cond))
|
| 2426 |
|
|
{
|
| 2427 |
|
|
struct predicate cond_predicate;
|
| 2428 |
|
|
/* Work out if the condition can translate to predicate in the
|
| 2429 |
|
|
inlined function. */
|
| 2430 |
|
|
if (cond >= predicate_first_dynamic_condition)
|
| 2431 |
|
|
{
|
| 2432 |
|
|
struct condition *c;
|
| 2433 |
|
|
|
| 2434 |
|
|
c = VEC_index (condition, callee_info->conds,
|
| 2435 |
|
|
cond - predicate_first_dynamic_condition);
|
| 2436 |
|
|
/* See if we can remap condition operand to caller's operand.
|
| 2437 |
|
|
Otherwise give up. */
|
| 2438 |
|
|
if (!operand_map
|
| 2439 |
|
|
|| (int)VEC_length (int, operand_map) <= c->operand_num
|
| 2440 |
|
|
|| VEC_index (int, operand_map, c->operand_num) == -1)
|
| 2441 |
|
|
cond_predicate = true_predicate ();
|
| 2442 |
|
|
else
|
| 2443 |
|
|
cond_predicate = add_condition (info,
|
| 2444 |
|
|
VEC_index (int, operand_map,
|
| 2445 |
|
|
c->operand_num),
|
| 2446 |
|
|
c->code, c->val);
|
| 2447 |
|
|
}
|
| 2448 |
|
|
/* Fixed conditions remains same, construct single
|
| 2449 |
|
|
condition predicate. */
|
| 2450 |
|
|
else
|
| 2451 |
|
|
{
|
| 2452 |
|
|
cond_predicate.clause[0] = 1 << cond;
|
| 2453 |
|
|
cond_predicate.clause[1] = 0;
|
| 2454 |
|
|
}
|
| 2455 |
|
|
clause_predicate = or_predicates (info->conds, &clause_predicate,
|
| 2456 |
|
|
&cond_predicate);
|
| 2457 |
|
|
}
|
| 2458 |
|
|
out = and_predicates (info->conds, &out, &clause_predicate);
|
| 2459 |
|
|
}
|
| 2460 |
|
|
return and_predicates (info->conds, &out, toplev_predicate);
|
| 2461 |
|
|
}
|
| 2462 |
|
|
|
| 2463 |
|
|
|
| 2464 |
|
|
/* Update summary information of inline clones after inlining.
|
| 2465 |
|
|
Compute peak stack usage. */
|
| 2466 |
|
|
|
| 2467 |
|
|
static void
|
| 2468 |
|
|
inline_update_callee_summaries (struct cgraph_node *node,
|
| 2469 |
|
|
int depth)
|
| 2470 |
|
|
{
|
| 2471 |
|
|
struct cgraph_edge *e;
|
| 2472 |
|
|
struct inline_summary *callee_info = inline_summary (node);
|
| 2473 |
|
|
struct inline_summary *caller_info = inline_summary (node->callers->caller);
|
| 2474 |
|
|
HOST_WIDE_INT peak;
|
| 2475 |
|
|
|
| 2476 |
|
|
callee_info->stack_frame_offset
|
| 2477 |
|
|
= caller_info->stack_frame_offset
|
| 2478 |
|
|
+ caller_info->estimated_self_stack_size;
|
| 2479 |
|
|
peak = callee_info->stack_frame_offset
|
| 2480 |
|
|
+ callee_info->estimated_self_stack_size;
|
| 2481 |
|
|
if (inline_summary (node->global.inlined_to)->estimated_stack_size
|
| 2482 |
|
|
< peak)
|
| 2483 |
|
|
inline_summary (node->global.inlined_to)->estimated_stack_size = peak;
|
| 2484 |
|
|
cgraph_propagate_frequency (node);
|
| 2485 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
| 2486 |
|
|
{
|
| 2487 |
|
|
if (!e->inline_failed)
|
| 2488 |
|
|
inline_update_callee_summaries (e->callee, depth);
|
| 2489 |
|
|
inline_edge_summary (e)->loop_depth += depth;
|
| 2490 |
|
|
}
|
| 2491 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
| 2492 |
|
|
inline_edge_summary (e)->loop_depth += depth;
|
| 2493 |
|
|
}
|
| 2494 |
|
|
|
| 2495 |
|
|
/* Update change_prob of EDGE after INLINED_EDGE has been inlined.
|
| 2496 |
|
|
When functoin A is inlined in B and A calls C with parameter that
|
| 2497 |
|
|
changes with probability PROB1 and C is known to be passthroug
|
| 2498 |
|
|
of argument if B that change with probability PROB2, the probability
|
| 2499 |
|
|
of change is now PROB1*PROB2. */
|
| 2500 |
|
|
|
| 2501 |
|
|
static void
|
| 2502 |
|
|
remap_edge_change_prob (struct cgraph_edge *inlined_edge,
|
| 2503 |
|
|
struct cgraph_edge *edge)
|
| 2504 |
|
|
{
|
| 2505 |
|
|
if (ipa_node_params_vector)
|
| 2506 |
|
|
{
|
| 2507 |
|
|
int i;
|
| 2508 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (edge);
|
| 2509 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
| 2510 |
|
|
struct inline_edge_summary *inlined_es
|
| 2511 |
|
|
= inline_edge_summary (inlined_edge);
|
| 2512 |
|
|
|
| 2513 |
|
|
for (i = 0; i < ipa_get_cs_argument_count (args); i++)
|
| 2514 |
|
|
{
|
| 2515 |
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
|
| 2516 |
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH
|
| 2517 |
|
|
&& (jfunc->value.pass_through.formal_id
|
| 2518 |
|
|
< (int) VEC_length (inline_param_summary_t,
|
| 2519 |
|
|
inlined_es->param)))
|
| 2520 |
|
|
{
|
| 2521 |
|
|
int prob1 = VEC_index (inline_param_summary_t,
|
| 2522 |
|
|
es->param, i)->change_prob;
|
| 2523 |
|
|
int prob2 = VEC_index
|
| 2524 |
|
|
(inline_param_summary_t,
|
| 2525 |
|
|
inlined_es->param,
|
| 2526 |
|
|
jfunc->value.pass_through.formal_id)->change_prob;
|
| 2527 |
|
|
int prob = ((prob1 * prob2 + REG_BR_PROB_BASE / 2)
|
| 2528 |
|
|
/ REG_BR_PROB_BASE);
|
| 2529 |
|
|
|
| 2530 |
|
|
if (prob1 && prob2 && !prob)
|
| 2531 |
|
|
prob = 1;
|
| 2532 |
|
|
|
| 2533 |
|
|
VEC_index (inline_param_summary_t,
|
| 2534 |
|
|
es->param, i)->change_prob = prob;
|
| 2535 |
|
|
}
|
| 2536 |
|
|
}
|
| 2537 |
|
|
}
|
| 2538 |
|
|
}
|
| 2539 |
|
|
|
| 2540 |
|
|
/* Update edge summaries of NODE after INLINED_EDGE has been inlined.
|
| 2541 |
|
|
|
| 2542 |
|
|
Remap predicates of callees of NODE. Rest of arguments match
|
| 2543 |
|
|
remap_predicate.
|
| 2544 |
|
|
|
| 2545 |
|
|
Also update change probabilities. */
|
| 2546 |
|
|
|
| 2547 |
|
|
static void
|
| 2548 |
|
|
remap_edge_summaries (struct cgraph_edge *inlined_edge,
|
| 2549 |
|
|
struct cgraph_node *node,
|
| 2550 |
|
|
struct inline_summary *info,
|
| 2551 |
|
|
struct inline_summary *callee_info,
|
| 2552 |
|
|
VEC (int, heap) *operand_map,
|
| 2553 |
|
|
clause_t possible_truths,
|
| 2554 |
|
|
struct predicate *toplev_predicate)
|
| 2555 |
|
|
{
|
| 2556 |
|
|
struct cgraph_edge *e;
|
| 2557 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
| 2558 |
|
|
{
|
| 2559 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
| 2560 |
|
|
struct predicate p;
|
| 2561 |
|
|
|
| 2562 |
|
|
if (e->inline_failed)
|
| 2563 |
|
|
{
|
| 2564 |
|
|
remap_edge_change_prob (inlined_edge, e);
|
| 2565 |
|
|
|
| 2566 |
|
|
if (es->predicate)
|
| 2567 |
|
|
{
|
| 2568 |
|
|
p = remap_predicate (info, callee_info,
|
| 2569 |
|
|
es->predicate, operand_map, possible_truths,
|
| 2570 |
|
|
toplev_predicate);
|
| 2571 |
|
|
edge_set_predicate (e, &p);
|
| 2572 |
|
|
/* TODO: We should remove the edge for code that will be
|
| 2573 |
|
|
optimized out, but we need to keep verifiers and tree-inline
|
| 2574 |
|
|
happy. Make it cold for now. */
|
| 2575 |
|
|
if (false_predicate_p (&p))
|
| 2576 |
|
|
{
|
| 2577 |
|
|
e->count = 0;
|
| 2578 |
|
|
e->frequency = 0;
|
| 2579 |
|
|
}
|
| 2580 |
|
|
}
|
| 2581 |
|
|
else
|
| 2582 |
|
|
edge_set_predicate (e, toplev_predicate);
|
| 2583 |
|
|
}
|
| 2584 |
|
|
else
|
| 2585 |
|
|
remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
|
| 2586 |
|
|
operand_map, possible_truths, toplev_predicate);
|
| 2587 |
|
|
}
|
| 2588 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
| 2589 |
|
|
{
|
| 2590 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
| 2591 |
|
|
struct predicate p;
|
| 2592 |
|
|
|
| 2593 |
|
|
remap_edge_change_prob (inlined_edge, e);
|
| 2594 |
|
|
if (es->predicate)
|
| 2595 |
|
|
{
|
| 2596 |
|
|
p = remap_predicate (info, callee_info,
|
| 2597 |
|
|
es->predicate, operand_map, possible_truths,
|
| 2598 |
|
|
toplev_predicate);
|
| 2599 |
|
|
edge_set_predicate (e, &p);
|
| 2600 |
|
|
/* TODO: We should remove the edge for code that will be optimized
|
| 2601 |
|
|
out, but we need to keep verifiers and tree-inline happy.
|
| 2602 |
|
|
Make it cold for now. */
|
| 2603 |
|
|
if (false_predicate_p (&p))
|
| 2604 |
|
|
{
|
| 2605 |
|
|
e->count = 0;
|
| 2606 |
|
|
e->frequency = 0;
|
| 2607 |
|
|
}
|
| 2608 |
|
|
}
|
| 2609 |
|
|
else
|
| 2610 |
|
|
edge_set_predicate (e, toplev_predicate);
|
| 2611 |
|
|
}
|
| 2612 |
|
|
}
|
| 2613 |
|
|
|
| 2614 |
|
|
|
| 2615 |
|
|
/* We inlined EDGE. Update summary of the function we inlined into. */
|
| 2616 |
|
|
|
| 2617 |
|
|
void
|
| 2618 |
|
|
inline_merge_summary (struct cgraph_edge *edge)
|
| 2619 |
|
|
{
|
| 2620 |
|
|
struct inline_summary *callee_info = inline_summary (edge->callee);
|
| 2621 |
|
|
struct cgraph_node *to = (edge->caller->global.inlined_to
|
| 2622 |
|
|
? edge->caller->global.inlined_to : edge->caller);
|
| 2623 |
|
|
struct inline_summary *info = inline_summary (to);
|
| 2624 |
|
|
clause_t clause = 0; /* not_inline is known to be false. */
|
| 2625 |
|
|
size_time_entry *e;
|
| 2626 |
|
|
VEC (int, heap) *operand_map = NULL;
|
| 2627 |
|
|
int i;
|
| 2628 |
|
|
struct predicate toplev_predicate;
|
| 2629 |
|
|
struct predicate true_p = true_predicate ();
|
| 2630 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
| 2631 |
|
|
|
| 2632 |
|
|
if (es->predicate)
|
| 2633 |
|
|
toplev_predicate = *es->predicate;
|
| 2634 |
|
|
else
|
| 2635 |
|
|
toplev_predicate = true_predicate ();
|
| 2636 |
|
|
|
| 2637 |
|
|
if (ipa_node_params_vector && callee_info->conds)
|
| 2638 |
|
|
{
|
| 2639 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (edge);
|
| 2640 |
|
|
int count = ipa_get_cs_argument_count (args);
|
| 2641 |
|
|
int i;
|
| 2642 |
|
|
|
| 2643 |
|
|
evaluate_properties_for_edge (edge, true, &clause, NULL, NULL);
|
| 2644 |
|
|
if (count)
|
| 2645 |
|
|
VEC_safe_grow_cleared (int, heap, operand_map, count);
|
| 2646 |
|
|
for (i = 0; i < count; i++)
|
| 2647 |
|
|
{
|
| 2648 |
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
|
| 2649 |
|
|
int map = -1;
|
| 2650 |
|
|
/* TODO: handle non-NOPs when merging. */
|
| 2651 |
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH
|
| 2652 |
|
|
&& jfunc->value.pass_through.operation == NOP_EXPR)
|
| 2653 |
|
|
map = jfunc->value.pass_through.formal_id;
|
| 2654 |
|
|
VEC_replace (int, operand_map, i, map);
|
| 2655 |
|
|
gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
|
| 2656 |
|
|
}
|
| 2657 |
|
|
}
|
| 2658 |
|
|
for (i = 0; VEC_iterate (size_time_entry, callee_info->entry, i, e); i++)
|
| 2659 |
|
|
{
|
| 2660 |
|
|
struct predicate p = remap_predicate (info, callee_info,
|
| 2661 |
|
|
&e->predicate, operand_map, clause,
|
| 2662 |
|
|
&toplev_predicate);
|
| 2663 |
|
|
if (!false_predicate_p (&p))
|
| 2664 |
|
|
{
|
| 2665 |
|
|
gcov_type add_time = ((gcov_type)e->time * edge->frequency
|
| 2666 |
|
|
+ CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
|
| 2667 |
|
|
int prob = predicate_probability (callee_info->conds,
|
| 2668 |
|
|
&e->predicate,
|
| 2669 |
|
|
clause, es->param);
|
| 2670 |
|
|
add_time = add_time * prob / REG_BR_PROB_BASE;
|
| 2671 |
|
|
if (add_time > MAX_TIME * INLINE_TIME_SCALE)
|
| 2672 |
|
|
add_time = MAX_TIME * INLINE_TIME_SCALE;
|
| 2673 |
|
|
if (prob != REG_BR_PROB_BASE
|
| 2674 |
|
|
&& dump_file && (dump_flags & TDF_DETAILS))
|
| 2675 |
|
|
{
|
| 2676 |
|
|
fprintf (dump_file, "\t\tScaling time by probability:%f\n",
|
| 2677 |
|
|
(double)prob / REG_BR_PROB_BASE);
|
| 2678 |
|
|
}
|
| 2679 |
|
|
account_size_time (info, e->size, add_time, &p);
|
| 2680 |
|
|
}
|
| 2681 |
|
|
}
|
| 2682 |
|
|
remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
|
| 2683 |
|
|
clause, &toplev_predicate);
|
| 2684 |
|
|
info->size = 0;
|
| 2685 |
|
|
info->time = 0;
|
| 2686 |
|
|
for (i = 0; VEC_iterate (size_time_entry, info->entry, i, e); i++)
|
| 2687 |
|
|
info->size += e->size, info->time += e->time;
|
| 2688 |
|
|
estimate_calls_size_and_time (to, &info->size, &info->time,
|
| 2689 |
|
|
~(clause_t)(1 << predicate_false_condition),
|
| 2690 |
|
|
NULL, NULL);
|
| 2691 |
|
|
|
| 2692 |
|
|
inline_update_callee_summaries (edge->callee,
|
| 2693 |
|
|
inline_edge_summary (edge)->loop_depth);
|
| 2694 |
|
|
|
| 2695 |
|
|
/* We do not maintain predicates of inlined edges, free it. */
|
| 2696 |
|
|
edge_set_predicate (edge, &true_p);
|
| 2697 |
|
|
/* Similarly remove param summaries. */
|
| 2698 |
|
|
VEC_free (inline_param_summary_t, heap, es->param);
|
| 2699 |
|
|
|
| 2700 |
|
|
info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
|
| 2701 |
|
|
info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
|
| 2702 |
|
|
}
|
| 2703 |
|
|
|
| 2704 |
|
|
|
| 2705 |
|
|
/* Estimate the time cost for the caller when inlining EDGE.
|
| 2706 |
|
|
Only to be called via estimate_edge_time, that handles the
|
| 2707 |
|
|
caching mechanism.
|
| 2708 |
|
|
|
| 2709 |
|
|
When caching, also update the cache entry. Compute both time and
|
| 2710 |
|
|
size, since we always need both metrics eventually. */
|
| 2711 |
|
|
|
| 2712 |
|
|
int
|
| 2713 |
|
|
do_estimate_edge_time (struct cgraph_edge *edge)
|
| 2714 |
|
|
{
|
| 2715 |
|
|
int time;
|
| 2716 |
|
|
int size;
|
| 2717 |
|
|
gcov_type ret;
|
| 2718 |
|
|
struct cgraph_node *callee;
|
| 2719 |
|
|
clause_t clause;
|
| 2720 |
|
|
VEC (tree, heap) *known_vals;
|
| 2721 |
|
|
VEC (tree, heap) *known_binfos;
|
| 2722 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
| 2723 |
|
|
|
| 2724 |
|
|
callee = cgraph_function_or_thunk_node (edge->callee, NULL);
|
| 2725 |
|
|
|
| 2726 |
|
|
gcc_checking_assert (edge->inline_failed);
|
| 2727 |
|
|
evaluate_properties_for_edge (edge, true,
|
| 2728 |
|
|
&clause, &known_vals, &known_binfos);
|
| 2729 |
|
|
estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
|
| 2730 |
|
|
&size, &time, es->param);
|
| 2731 |
|
|
VEC_free (tree, heap, known_vals);
|
| 2732 |
|
|
VEC_free (tree, heap, known_binfos);
|
| 2733 |
|
|
|
| 2734 |
|
|
ret = (((gcov_type)time
|
| 2735 |
|
|
- es->call_stmt_time) * edge->frequency
|
| 2736 |
|
|
+ CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
|
| 2737 |
|
|
|
| 2738 |
|
|
/* When caching, update the cache entry. */
|
| 2739 |
|
|
if (edge_growth_cache)
|
| 2740 |
|
|
{
|
| 2741 |
|
|
int ret_size;
|
| 2742 |
|
|
if ((int)VEC_length (edge_growth_cache_entry, edge_growth_cache)
|
| 2743 |
|
|
<= edge->uid)
|
| 2744 |
|
|
VEC_safe_grow_cleared (edge_growth_cache_entry, heap, edge_growth_cache,
|
| 2745 |
|
|
cgraph_edge_max_uid);
|
| 2746 |
|
|
VEC_index (edge_growth_cache_entry, edge_growth_cache, edge->uid)->time
|
| 2747 |
|
|
= ret + (ret >= 0);
|
| 2748 |
|
|
|
| 2749 |
|
|
ret_size = size - es->call_stmt_size;
|
| 2750 |
|
|
gcc_checking_assert (es->call_stmt_size);
|
| 2751 |
|
|
VEC_index (edge_growth_cache_entry, edge_growth_cache, edge->uid)->size
|
| 2752 |
|
|
= ret_size + (ret_size >= 0);
|
| 2753 |
|
|
}
|
| 2754 |
|
|
return ret;
|
| 2755 |
|
|
}
|
| 2756 |
|
|
|
| 2757 |
|
|
|
| 2758 |
|
|
/* Estimate the growth of the caller when inlining EDGE.
|
| 2759 |
|
|
Only to be called via estimate_edge_size. */
|
| 2760 |
|
|
|
| 2761 |
|
|
int
|
| 2762 |
|
|
do_estimate_edge_growth (struct cgraph_edge *edge)
|
| 2763 |
|
|
{
|
| 2764 |
|
|
int size;
|
| 2765 |
|
|
struct cgraph_node *callee;
|
| 2766 |
|
|
clause_t clause;
|
| 2767 |
|
|
VEC (tree, heap) *known_vals;
|
| 2768 |
|
|
VEC (tree, heap) *known_binfos;
|
| 2769 |
|
|
|
| 2770 |
|
|
/* When we do caching, use do_estimate_edge_time to populate the entry. */
|
| 2771 |
|
|
|
| 2772 |
|
|
if (edge_growth_cache)
|
| 2773 |
|
|
{
|
| 2774 |
|
|
do_estimate_edge_time (edge);
|
| 2775 |
|
|
size = VEC_index (edge_growth_cache_entry,
|
| 2776 |
|
|
edge_growth_cache,
|
| 2777 |
|
|
edge->uid)->size;
|
| 2778 |
|
|
gcc_checking_assert (size);
|
| 2779 |
|
|
return size - (size > 0);
|
| 2780 |
|
|
}
|
| 2781 |
|
|
|
| 2782 |
|
|
callee = cgraph_function_or_thunk_node (edge->callee, NULL);
|
| 2783 |
|
|
|
| 2784 |
|
|
/* Early inliner runs without caching, go ahead and do the dirty work. */
|
| 2785 |
|
|
gcc_checking_assert (edge->inline_failed);
|
| 2786 |
|
|
evaluate_properties_for_edge (edge, true,
|
| 2787 |
|
|
&clause, &known_vals, &known_binfos);
|
| 2788 |
|
|
estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
|
| 2789 |
|
|
&size, NULL, NULL);
|
| 2790 |
|
|
VEC_free (tree, heap, known_vals);
|
| 2791 |
|
|
VEC_free (tree, heap, known_binfos);
|
| 2792 |
|
|
gcc_checking_assert (inline_edge_summary (edge)->call_stmt_size);
|
| 2793 |
|
|
return size - inline_edge_summary (edge)->call_stmt_size;
|
| 2794 |
|
|
}
|
| 2795 |
|
|
|
| 2796 |
|
|
|
| 2797 |
|
|
/* Estimate self time of the function NODE after inlining EDGE. */
|
| 2798 |
|
|
|
| 2799 |
|
|
int
|
| 2800 |
|
|
estimate_time_after_inlining (struct cgraph_node *node,
|
| 2801 |
|
|
struct cgraph_edge *edge)
|
| 2802 |
|
|
{
|
| 2803 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
| 2804 |
|
|
if (!es->predicate || !false_predicate_p (es->predicate))
|
| 2805 |
|
|
{
|
| 2806 |
|
|
gcov_type time = inline_summary (node)->time + estimate_edge_time (edge);
|
| 2807 |
|
|
if (time < 0)
|
| 2808 |
|
|
time = 0;
|
| 2809 |
|
|
if (time > MAX_TIME)
|
| 2810 |
|
|
time = MAX_TIME;
|
| 2811 |
|
|
return time;
|
| 2812 |
|
|
}
|
| 2813 |
|
|
return inline_summary (node)->time;
|
| 2814 |
|
|
}
|
| 2815 |
|
|
|
| 2816 |
|
|
|
| 2817 |
|
|
/* Estimate the size of NODE after inlining EDGE which should be an
|
| 2818 |
|
|
edge to either NODE or a call inlined into NODE. */
|
| 2819 |
|
|
|
| 2820 |
|
|
int
|
| 2821 |
|
|
estimate_size_after_inlining (struct cgraph_node *node,
|
| 2822 |
|
|
struct cgraph_edge *edge)
|
| 2823 |
|
|
{
|
| 2824 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
| 2825 |
|
|
if (!es->predicate || !false_predicate_p (es->predicate))
|
| 2826 |
|
|
{
|
| 2827 |
|
|
int size = inline_summary (node)->size + estimate_edge_growth (edge);
|
| 2828 |
|
|
gcc_assert (size >= 0);
|
| 2829 |
|
|
return size;
|
| 2830 |
|
|
}
|
| 2831 |
|
|
return inline_summary (node)->size;
|
| 2832 |
|
|
}
|
| 2833 |
|
|
|
| 2834 |
|
|
|
| 2835 |
|
|
struct growth_data
|
| 2836 |
|
|
{
|
| 2837 |
|
|
bool self_recursive;
|
| 2838 |
|
|
int growth;
|
| 2839 |
|
|
};
|
| 2840 |
|
|
|
| 2841 |
|
|
|
| 2842 |
|
|
/* Worker for do_estimate_growth. Collect growth for all callers. */
|
| 2843 |
|
|
|
| 2844 |
|
|
static bool
|
| 2845 |
|
|
do_estimate_growth_1 (struct cgraph_node *node, void *data)
|
| 2846 |
|
|
{
|
| 2847 |
|
|
struct cgraph_edge *e;
|
| 2848 |
|
|
struct growth_data *d = (struct growth_data *) data;
|
| 2849 |
|
|
|
| 2850 |
|
|
for (e = node->callers; e; e = e->next_caller)
|
| 2851 |
|
|
{
|
| 2852 |
|
|
gcc_checking_assert (e->inline_failed);
|
| 2853 |
|
|
|
| 2854 |
|
|
if (e->caller == node
|
| 2855 |
|
|
|| (e->caller->global.inlined_to
|
| 2856 |
|
|
&& e->caller->global.inlined_to == node))
|
| 2857 |
|
|
d->self_recursive = true;
|
| 2858 |
|
|
d->growth += estimate_edge_growth (e);
|
| 2859 |
|
|
}
|
| 2860 |
|
|
return false;
|
| 2861 |
|
|
}
|
| 2862 |
|
|
|
| 2863 |
|
|
|
| 2864 |
|
|
/* Estimate the growth caused by inlining NODE into all callees. */
|
| 2865 |
|
|
|
| 2866 |
|
|
int
|
| 2867 |
|
|
do_estimate_growth (struct cgraph_node *node)
|
| 2868 |
|
|
{
|
| 2869 |
|
|
struct growth_data d = {0, false};
|
| 2870 |
|
|
struct inline_summary *info = inline_summary (node);
|
| 2871 |
|
|
|
| 2872 |
|
|
cgraph_for_node_and_aliases (node, do_estimate_growth_1, &d, true);
|
| 2873 |
|
|
|
| 2874 |
|
|
/* For self recursive functions the growth estimation really should be
|
| 2875 |
|
|
infinity. We don't want to return very large values because the growth
|
| 2876 |
|
|
plays various roles in badness computation fractions. Be sure to not
|
| 2877 |
|
|
return zero or negative growths. */
|
| 2878 |
|
|
if (d.self_recursive)
|
| 2879 |
|
|
d.growth = d.growth < info->size ? info->size : d.growth;
|
| 2880 |
|
|
else
|
| 2881 |
|
|
{
|
| 2882 |
|
|
if (!DECL_EXTERNAL (node->decl)
|
| 2883 |
|
|
&& cgraph_will_be_removed_from_program_if_no_direct_calls (node))
|
| 2884 |
|
|
d.growth -= info->size;
|
| 2885 |
|
|
/* COMDAT functions are very often not shared across multiple units
|
| 2886 |
|
|
since they come from various template instantiations.
|
| 2887 |
|
|
Take this into account. */
|
| 2888 |
|
|
else if (DECL_COMDAT (node->decl)
|
| 2889 |
|
|
&& cgraph_can_remove_if_no_direct_calls_p (node))
|
| 2890 |
|
|
d.growth -= (info->size
|
| 2891 |
|
|
* (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
|
| 2892 |
|
|
+ 50) / 100;
|
| 2893 |
|
|
}
|
| 2894 |
|
|
|
| 2895 |
|
|
if (node_growth_cache)
|
| 2896 |
|
|
{
|
| 2897 |
|
|
if ((int)VEC_length (int, node_growth_cache) <= node->uid)
|
| 2898 |
|
|
VEC_safe_grow_cleared (int, heap, node_growth_cache, cgraph_max_uid);
|
| 2899 |
|
|
VEC_replace (int, node_growth_cache, node->uid,
|
| 2900 |
|
|
d.growth + (d.growth >= 0));
|
| 2901 |
|
|
}
|
| 2902 |
|
|
return d.growth;
|
| 2903 |
|
|
}
|
| 2904 |
|
|
|
| 2905 |
|
|
|
| 2906 |
|
|
/* This function performs intraprocedural analysis in NODE that is required to
|
| 2907 |
|
|
inline indirect calls. */
|
| 2908 |
|
|
|
| 2909 |
|
|
static void
|
| 2910 |
|
|
inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
|
| 2911 |
|
|
{
|
| 2912 |
|
|
ipa_analyze_node (node);
|
| 2913 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 2914 |
|
|
{
|
| 2915 |
|
|
ipa_print_node_params (dump_file, node);
|
| 2916 |
|
|
ipa_print_node_jump_functions (dump_file, node);
|
| 2917 |
|
|
}
|
| 2918 |
|
|
}
|
| 2919 |
|
|
|
| 2920 |
|
|
|
| 2921 |
|
|
/* Note function body size. */
|
| 2922 |
|
|
|
| 2923 |
|
|
static void
|
| 2924 |
|
|
inline_analyze_function (struct cgraph_node *node)
|
| 2925 |
|
|
{
|
| 2926 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
| 2927 |
|
|
current_function_decl = node->decl;
|
| 2928 |
|
|
|
| 2929 |
|
|
if (dump_file)
|
| 2930 |
|
|
fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
|
| 2931 |
|
|
cgraph_node_name (node), node->uid);
|
| 2932 |
|
|
if (optimize && !node->thunk.thunk_p)
|
| 2933 |
|
|
inline_indirect_intraprocedural_analysis (node);
|
| 2934 |
|
|
compute_inline_parameters (node, false);
|
| 2935 |
|
|
|
| 2936 |
|
|
current_function_decl = NULL;
|
| 2937 |
|
|
pop_cfun ();
|
| 2938 |
|
|
}
|
| 2939 |
|
|
|
| 2940 |
|
|
|
| 2941 |
|
|
/* Called when new function is inserted to callgraph late. */
|
| 2942 |
|
|
|
| 2943 |
|
|
static void
|
| 2944 |
|
|
add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
| 2945 |
|
|
{
|
| 2946 |
|
|
inline_analyze_function (node);
|
| 2947 |
|
|
}
|
| 2948 |
|
|
|
| 2949 |
|
|
|
| 2950 |
|
|
/* Note function body size. */
|
| 2951 |
|
|
|
| 2952 |
|
|
void
|
| 2953 |
|
|
inline_generate_summary (void)
|
| 2954 |
|
|
{
|
| 2955 |
|
|
struct cgraph_node *node;
|
| 2956 |
|
|
|
| 2957 |
|
|
function_insertion_hook_holder =
|
| 2958 |
|
|
cgraph_add_function_insertion_hook (&add_new_function, NULL);
|
| 2959 |
|
|
|
| 2960 |
|
|
ipa_register_cgraph_hooks ();
|
| 2961 |
|
|
inline_free_summary ();
|
| 2962 |
|
|
|
| 2963 |
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
| 2964 |
|
|
if (!node->alias)
|
| 2965 |
|
|
inline_analyze_function (node);
|
| 2966 |
|
|
}
|
| 2967 |
|
|
|
| 2968 |
|
|
|
| 2969 |
|
|
/* Read predicate from IB. */
|
| 2970 |
|
|
|
| 2971 |
|
|
static struct predicate
|
| 2972 |
|
|
read_predicate (struct lto_input_block *ib)
|
| 2973 |
|
|
{
|
| 2974 |
|
|
struct predicate out;
|
| 2975 |
|
|
clause_t clause;
|
| 2976 |
|
|
int k = 0;
|
| 2977 |
|
|
|
| 2978 |
|
|
do
|
| 2979 |
|
|
{
|
| 2980 |
|
|
gcc_assert (k <= MAX_CLAUSES);
|
| 2981 |
|
|
clause = out.clause[k++] = streamer_read_uhwi (ib);
|
| 2982 |
|
|
}
|
| 2983 |
|
|
while (clause);
|
| 2984 |
|
|
|
| 2985 |
|
|
/* Zero-initialize the remaining clauses in OUT. */
|
| 2986 |
|
|
while (k <= MAX_CLAUSES)
|
| 2987 |
|
|
out.clause[k++] = 0;
|
| 2988 |
|
|
|
| 2989 |
|
|
return out;
|
| 2990 |
|
|
}
|
| 2991 |
|
|
|
| 2992 |
|
|
|
| 2993 |
|
|
/* Write inline summary for edge E to OB. */
|
| 2994 |
|
|
|
| 2995 |
|
|
static void
|
| 2996 |
|
|
read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
|
| 2997 |
|
|
{
|
| 2998 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
| 2999 |
|
|
struct predicate p;
|
| 3000 |
|
|
int length, i;
|
| 3001 |
|
|
|
| 3002 |
|
|
es->call_stmt_size = streamer_read_uhwi (ib);
|
| 3003 |
|
|
es->call_stmt_time = streamer_read_uhwi (ib);
|
| 3004 |
|
|
es->loop_depth = streamer_read_uhwi (ib);
|
| 3005 |
|
|
p = read_predicate (ib);
|
| 3006 |
|
|
edge_set_predicate (e, &p);
|
| 3007 |
|
|
length = streamer_read_uhwi (ib);
|
| 3008 |
|
|
if (length)
|
| 3009 |
|
|
{
|
| 3010 |
|
|
VEC_safe_grow_cleared (inline_param_summary_t, heap, es->param, length);
|
| 3011 |
|
|
for (i = 0; i < length; i++)
|
| 3012 |
|
|
VEC_index (inline_param_summary_t, es->param, i)->change_prob
|
| 3013 |
|
|
= streamer_read_uhwi (ib);
|
| 3014 |
|
|
}
|
| 3015 |
|
|
}
|
| 3016 |
|
|
|
| 3017 |
|
|
|
| 3018 |
|
|
/* Stream in inline summaries from the section. */
|
| 3019 |
|
|
|
| 3020 |
|
|
static void
|
| 3021 |
|
|
inline_read_section (struct lto_file_decl_data *file_data, const char *data,
|
| 3022 |
|
|
size_t len)
|
| 3023 |
|
|
{
|
| 3024 |
|
|
const struct lto_function_header *header =
|
| 3025 |
|
|
(const struct lto_function_header *) data;
|
| 3026 |
|
|
const int cfg_offset = sizeof (struct lto_function_header);
|
| 3027 |
|
|
const int main_offset = cfg_offset + header->cfg_size;
|
| 3028 |
|
|
const int string_offset = main_offset + header->main_size;
|
| 3029 |
|
|
struct data_in *data_in;
|
| 3030 |
|
|
struct lto_input_block ib;
|
| 3031 |
|
|
unsigned int i, count2, j;
|
| 3032 |
|
|
unsigned int f_count;
|
| 3033 |
|
|
|
| 3034 |
|
|
LTO_INIT_INPUT_BLOCK (ib, (const char *) data + main_offset, 0,
|
| 3035 |
|
|
header->main_size);
|
| 3036 |
|
|
|
| 3037 |
|
|
data_in =
|
| 3038 |
|
|
lto_data_in_create (file_data, (const char *) data + string_offset,
|
| 3039 |
|
|
header->string_size, NULL);
|
| 3040 |
|
|
f_count = streamer_read_uhwi (&ib);
|
| 3041 |
|
|
for (i = 0; i < f_count; i++)
|
| 3042 |
|
|
{
|
| 3043 |
|
|
unsigned int index;
|
| 3044 |
|
|
struct cgraph_node *node;
|
| 3045 |
|
|
struct inline_summary *info;
|
| 3046 |
|
|
lto_cgraph_encoder_t encoder;
|
| 3047 |
|
|
struct bitpack_d bp;
|
| 3048 |
|
|
struct cgraph_edge *e;
|
| 3049 |
|
|
|
| 3050 |
|
|
index = streamer_read_uhwi (&ib);
|
| 3051 |
|
|
encoder = file_data->cgraph_node_encoder;
|
| 3052 |
|
|
node = lto_cgraph_encoder_deref (encoder, index);
|
| 3053 |
|
|
info = inline_summary (node);
|
| 3054 |
|
|
|
| 3055 |
|
|
info->estimated_stack_size
|
| 3056 |
|
|
= info->estimated_self_stack_size = streamer_read_uhwi (&ib);
|
| 3057 |
|
|
info->size = info->self_size = streamer_read_uhwi (&ib);
|
| 3058 |
|
|
info->time = info->self_time = streamer_read_uhwi (&ib);
|
| 3059 |
|
|
|
| 3060 |
|
|
bp = streamer_read_bitpack (&ib);
|
| 3061 |
|
|
info->inlinable = bp_unpack_value (&bp, 1);
|
| 3062 |
|
|
|
| 3063 |
|
|
count2 = streamer_read_uhwi (&ib);
|
| 3064 |
|
|
gcc_assert (!info->conds);
|
| 3065 |
|
|
for (j = 0; j < count2; j++)
|
| 3066 |
|
|
{
|
| 3067 |
|
|
struct condition c;
|
| 3068 |
|
|
c.operand_num = streamer_read_uhwi (&ib);
|
| 3069 |
|
|
c.code = (enum tree_code) streamer_read_uhwi (&ib);
|
| 3070 |
|
|
c.val = stream_read_tree (&ib, data_in);
|
| 3071 |
|
|
VEC_safe_push (condition, gc, info->conds, &c);
|
| 3072 |
|
|
}
|
| 3073 |
|
|
count2 = streamer_read_uhwi (&ib);
|
| 3074 |
|
|
gcc_assert (!info->entry);
|
| 3075 |
|
|
for (j = 0; j < count2; j++)
|
| 3076 |
|
|
{
|
| 3077 |
|
|
struct size_time_entry e;
|
| 3078 |
|
|
|
| 3079 |
|
|
e.size = streamer_read_uhwi (&ib);
|
| 3080 |
|
|
e.time = streamer_read_uhwi (&ib);
|
| 3081 |
|
|
e.predicate = read_predicate (&ib);
|
| 3082 |
|
|
|
| 3083 |
|
|
VEC_safe_push (size_time_entry, gc, info->entry, &e);
|
| 3084 |
|
|
}
|
| 3085 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
| 3086 |
|
|
read_inline_edge_summary (&ib, e);
|
| 3087 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
| 3088 |
|
|
read_inline_edge_summary (&ib, e);
|
| 3089 |
|
|
}
|
| 3090 |
|
|
|
| 3091 |
|
|
lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
|
| 3092 |
|
|
len);
|
| 3093 |
|
|
lto_data_in_delete (data_in);
|
| 3094 |
|
|
}
|
| 3095 |
|
|
|
| 3096 |
|
|
|
| 3097 |
|
|
/* Read inline summary. Jump functions are shared among ipa-cp
|
| 3098 |
|
|
and inliner, so when ipa-cp is active, we don't need to write them
|
| 3099 |
|
|
twice. */
|
| 3100 |
|
|
|
| 3101 |
|
|
void
|
| 3102 |
|
|
inline_read_summary (void)
|
| 3103 |
|
|
{
|
| 3104 |
|
|
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
|
| 3105 |
|
|
struct lto_file_decl_data *file_data;
|
| 3106 |
|
|
unsigned int j = 0;
|
| 3107 |
|
|
|
| 3108 |
|
|
inline_summary_alloc ();
|
| 3109 |
|
|
|
| 3110 |
|
|
while ((file_data = file_data_vec[j++]))
|
| 3111 |
|
|
{
|
| 3112 |
|
|
size_t len;
|
| 3113 |
|
|
const char *data = lto_get_section_data (file_data,
|
| 3114 |
|
|
LTO_section_inline_summary,
|
| 3115 |
|
|
NULL, &len);
|
| 3116 |
|
|
if (data)
|
| 3117 |
|
|
inline_read_section (file_data, data, len);
|
| 3118 |
|
|
else
|
| 3119 |
|
|
/* Fatal error here. We do not want to support compiling ltrans units
|
| 3120 |
|
|
with different version of compiler or different flags than the WPA
|
| 3121 |
|
|
unit, so this should never happen. */
|
| 3122 |
|
|
fatal_error ("ipa inline summary is missing in input file");
|
| 3123 |
|
|
}
|
| 3124 |
|
|
if (optimize)
|
| 3125 |
|
|
{
|
| 3126 |
|
|
ipa_register_cgraph_hooks ();
|
| 3127 |
|
|
if (!flag_ipa_cp)
|
| 3128 |
|
|
ipa_prop_read_jump_functions ();
|
| 3129 |
|
|
}
|
| 3130 |
|
|
function_insertion_hook_holder =
|
| 3131 |
|
|
cgraph_add_function_insertion_hook (&add_new_function, NULL);
|
| 3132 |
|
|
}
|
| 3133 |
|
|
|
| 3134 |
|
|
|
| 3135 |
|
|
/* Write predicate P to OB. */
|
| 3136 |
|
|
|
| 3137 |
|
|
static void
|
| 3138 |
|
|
write_predicate (struct output_block *ob, struct predicate *p)
|
| 3139 |
|
|
{
|
| 3140 |
|
|
int j;
|
| 3141 |
|
|
if (p)
|
| 3142 |
|
|
for (j = 0; p->clause[j]; j++)
|
| 3143 |
|
|
{
|
| 3144 |
|
|
gcc_assert (j < MAX_CLAUSES);
|
| 3145 |
|
|
streamer_write_uhwi (ob, p->clause[j]);
|
| 3146 |
|
|
}
|
| 3147 |
|
|
streamer_write_uhwi (ob, 0);
|
| 3148 |
|
|
}
|
| 3149 |
|
|
|
| 3150 |
|
|
|
| 3151 |
|
|
/* Write inline summary for edge E to OB. */
|
| 3152 |
|
|
|
| 3153 |
|
|
static void
|
| 3154 |
|
|
write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
|
| 3155 |
|
|
{
|
| 3156 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
| 3157 |
|
|
int i;
|
| 3158 |
|
|
|
| 3159 |
|
|
streamer_write_uhwi (ob, es->call_stmt_size);
|
| 3160 |
|
|
streamer_write_uhwi (ob, es->call_stmt_time);
|
| 3161 |
|
|
streamer_write_uhwi (ob, es->loop_depth);
|
| 3162 |
|
|
write_predicate (ob, es->predicate);
|
| 3163 |
|
|
streamer_write_uhwi (ob, VEC_length (inline_param_summary_t, es->param));
|
| 3164 |
|
|
for (i = 0; i < (int)VEC_length (inline_param_summary_t, es->param); i++)
|
| 3165 |
|
|
streamer_write_uhwi (ob, VEC_index (inline_param_summary_t,
|
| 3166 |
|
|
es->param, i)->change_prob);
|
| 3167 |
|
|
}
|
| 3168 |
|
|
|
| 3169 |
|
|
|
| 3170 |
|
|
/* Write inline summary for node in SET.
|
| 3171 |
|
|
Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
|
| 3172 |
|
|
active, we don't need to write them twice. */
|
| 3173 |
|
|
|
| 3174 |
|
|
void
|
| 3175 |
|
|
inline_write_summary (cgraph_node_set set,
|
| 3176 |
|
|
varpool_node_set vset ATTRIBUTE_UNUSED)
|
| 3177 |
|
|
{
|
| 3178 |
|
|
struct cgraph_node *node;
|
| 3179 |
|
|
struct output_block *ob = create_output_block (LTO_section_inline_summary);
|
| 3180 |
|
|
lto_cgraph_encoder_t encoder = ob->decl_state->cgraph_node_encoder;
|
| 3181 |
|
|
unsigned int count = 0;
|
| 3182 |
|
|
int i;
|
| 3183 |
|
|
|
| 3184 |
|
|
for (i = 0; i < lto_cgraph_encoder_size (encoder); i++)
|
| 3185 |
|
|
if (lto_cgraph_encoder_deref (encoder, i)->analyzed)
|
| 3186 |
|
|
count++;
|
| 3187 |
|
|
streamer_write_uhwi (ob, count);
|
| 3188 |
|
|
|
| 3189 |
|
|
for (i = 0; i < lto_cgraph_encoder_size (encoder); i++)
|
| 3190 |
|
|
{
|
| 3191 |
|
|
node = lto_cgraph_encoder_deref (encoder, i);
|
| 3192 |
|
|
if (node->analyzed)
|
| 3193 |
|
|
{
|
| 3194 |
|
|
struct inline_summary *info = inline_summary (node);
|
| 3195 |
|
|
struct bitpack_d bp;
|
| 3196 |
|
|
struct cgraph_edge *edge;
|
| 3197 |
|
|
int i;
|
| 3198 |
|
|
size_time_entry *e;
|
| 3199 |
|
|
struct condition *c;
|
| 3200 |
|
|
|
| 3201 |
|
|
streamer_write_uhwi (ob, lto_cgraph_encoder_encode (encoder, node));
|
| 3202 |
|
|
streamer_write_hwi (ob, info->estimated_self_stack_size);
|
| 3203 |
|
|
streamer_write_hwi (ob, info->self_size);
|
| 3204 |
|
|
streamer_write_hwi (ob, info->self_time);
|
| 3205 |
|
|
bp = bitpack_create (ob->main_stream);
|
| 3206 |
|
|
bp_pack_value (&bp, info->inlinable, 1);
|
| 3207 |
|
|
streamer_write_bitpack (&bp);
|
| 3208 |
|
|
streamer_write_uhwi (ob, VEC_length (condition, info->conds));
|
| 3209 |
|
|
for (i = 0; VEC_iterate (condition, info->conds, i, c); i++)
|
| 3210 |
|
|
{
|
| 3211 |
|
|
streamer_write_uhwi (ob, c->operand_num);
|
| 3212 |
|
|
streamer_write_uhwi (ob, c->code);
|
| 3213 |
|
|
stream_write_tree (ob, c->val, true);
|
| 3214 |
|
|
}
|
| 3215 |
|
|
streamer_write_uhwi (ob, VEC_length (size_time_entry, info->entry));
|
| 3216 |
|
|
for (i = 0;
|
| 3217 |
|
|
VEC_iterate (size_time_entry, info->entry, i, e);
|
| 3218 |
|
|
i++)
|
| 3219 |
|
|
{
|
| 3220 |
|
|
streamer_write_uhwi (ob, e->size);
|
| 3221 |
|
|
streamer_write_uhwi (ob, e->time);
|
| 3222 |
|
|
write_predicate (ob, &e->predicate);
|
| 3223 |
|
|
}
|
| 3224 |
|
|
for (edge = node->callees; edge; edge = edge->next_callee)
|
| 3225 |
|
|
write_inline_edge_summary (ob, edge);
|
| 3226 |
|
|
for (edge = node->indirect_calls; edge; edge = edge->next_callee)
|
| 3227 |
|
|
write_inline_edge_summary (ob, edge);
|
| 3228 |
|
|
}
|
| 3229 |
|
|
}
|
| 3230 |
|
|
streamer_write_char_stream (ob->main_stream, 0);
|
| 3231 |
|
|
produce_asm (ob, NULL);
|
| 3232 |
|
|
destroy_output_block (ob);
|
| 3233 |
|
|
|
| 3234 |
|
|
if (optimize && !flag_ipa_cp)
|
| 3235 |
|
|
ipa_prop_write_jump_functions (set);
|
| 3236 |
|
|
}
|
| 3237 |
|
|
|
| 3238 |
|
|
|
| 3239 |
|
|
/* Release inline summary. */
|
| 3240 |
|
|
|
| 3241 |
|
|
void
|
| 3242 |
|
|
inline_free_summary (void)
|
| 3243 |
|
|
{
|
| 3244 |
|
|
struct cgraph_node *node;
|
| 3245 |
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
| 3246 |
|
|
reset_inline_summary (node);
|
| 3247 |
|
|
if (function_insertion_hook_holder)
|
| 3248 |
|
|
cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
|
| 3249 |
|
|
function_insertion_hook_holder = NULL;
|
| 3250 |
|
|
if (node_removal_hook_holder)
|
| 3251 |
|
|
cgraph_remove_node_removal_hook (node_removal_hook_holder);
|
| 3252 |
|
|
node_removal_hook_holder = NULL;
|
| 3253 |
|
|
if (edge_removal_hook_holder)
|
| 3254 |
|
|
cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
|
| 3255 |
|
|
edge_removal_hook_holder = NULL;
|
| 3256 |
|
|
if (node_duplication_hook_holder)
|
| 3257 |
|
|
cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
|
| 3258 |
|
|
node_duplication_hook_holder = NULL;
|
| 3259 |
|
|
if (edge_duplication_hook_holder)
|
| 3260 |
|
|
cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
|
| 3261 |
|
|
edge_duplication_hook_holder = NULL;
|
| 3262 |
|
|
VEC_free (inline_summary_t, gc, inline_summary_vec);
|
| 3263 |
|
|
inline_summary_vec = NULL;
|
| 3264 |
|
|
VEC_free (inline_edge_summary_t, heap, inline_edge_summary_vec);
|
| 3265 |
|
|
inline_edge_summary_vec = NULL;
|
| 3266 |
|
|
if (edge_predicate_pool)
|
| 3267 |
|
|
free_alloc_pool (edge_predicate_pool);
|
| 3268 |
|
|
edge_predicate_pool = 0;
|
| 3269 |
|
|
}
|