1 |
684 |
jeremybenn |
/* Inlining decision heuristics.
|
2 |
|
|
Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Jan Hubicka
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* Analysis used by the inliner and other passes limiting code size growth.
|
23 |
|
|
|
24 |
|
|
We estimate for each function
|
25 |
|
|
- function body size
|
26 |
|
|
- average function execution time
|
27 |
|
|
- inlining size benefit (that is how much of function body size
|
28 |
|
|
and its call sequence is expected to disappear by inlining)
|
29 |
|
|
- inlining time benefit
|
30 |
|
|
- function frame size
|
31 |
|
|
For each call
|
32 |
|
|
- call statement size and time
|
33 |
|
|
|
34 |
|
|
inlinie_summary datastructures store above information locally (i.e.
|
35 |
|
|
parameters of the function itself) and globally (i.e. parameters of
|
36 |
|
|
the function created by applying all the inline decisions already
|
37 |
|
|
present in the callgraph).
|
38 |
|
|
|
39 |
|
|
We provide accestor to the inline_summary datastructure and
|
40 |
|
|
basic logic updating the parameters when inlining is performed.
|
41 |
|
|
|
42 |
|
|
The summaries are context sensitive. Context means
|
43 |
|
|
1) partial assignment of known constant values of operands
|
44 |
|
|
2) whether function is inlined into the call or not.
|
45 |
|
|
It is easy to add more variants. To represent function size and time
|
46 |
|
|
that depends on context (i.e. it is known to be optimized away when
|
47 |
|
|
context is known either by inlining or from IP-CP and clonning),
|
48 |
|
|
we use predicates. Predicates are logical formulas in
|
49 |
|
|
conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
|
50 |
|
|
specifying what conditions must be true. Conditions are simple test
|
51 |
|
|
of the form described above.
|
52 |
|
|
|
53 |
|
|
In order to make predicate (possibly) true, all of its clauses must
|
54 |
|
|
be (possibly) true. To make clause (possibly) true, one of conditions
|
55 |
|
|
it mentions must be (possibly) true. There are fixed bounds on
|
56 |
|
|
number of clauses and conditions and all the manipulation functions
|
57 |
|
|
are conservative in positive direction. I.e. we may lose precision
|
58 |
|
|
by thinking that predicate may be true even when it is not.
|
59 |
|
|
|
60 |
|
|
estimate_edge_size and estimate_edge_growth can be used to query
|
61 |
|
|
function size/time in the given context. inline_merge_summary merges
|
62 |
|
|
properties of caller and callee after inlining.
|
63 |
|
|
|
64 |
|
|
Finally pass_inline_parameters is exported. This is used to drive
|
65 |
|
|
computation of function parameters used by the early inliner. IPA
|
66 |
|
|
inlined performs analysis via its analyze_function method. */
|
67 |
|
|
|
68 |
|
|
#include "config.h"
|
69 |
|
|
#include "system.h"
|
70 |
|
|
#include "coretypes.h"
|
71 |
|
|
#include "tm.h"
|
72 |
|
|
#include "tree.h"
|
73 |
|
|
#include "tree-inline.h"
|
74 |
|
|
#include "langhooks.h"
|
75 |
|
|
#include "flags.h"
|
76 |
|
|
#include "cgraph.h"
|
77 |
|
|
#include "diagnostic.h"
|
78 |
|
|
#include "gimple-pretty-print.h"
|
79 |
|
|
#include "timevar.h"
|
80 |
|
|
#include "params.h"
|
81 |
|
|
#include "tree-pass.h"
|
82 |
|
|
#include "coverage.h"
|
83 |
|
|
#include "ggc.h"
|
84 |
|
|
#include "tree-flow.h"
|
85 |
|
|
#include "ipa-prop.h"
|
86 |
|
|
#include "lto-streamer.h"
|
87 |
|
|
#include "data-streamer.h"
|
88 |
|
|
#include "tree-streamer.h"
|
89 |
|
|
#include "ipa-inline.h"
|
90 |
|
|
#include "alloc-pool.h"
|
91 |
|
|
|
92 |
|
|
/* Estimate runtime of function can easilly run into huge numbers with many
|
93 |
|
|
nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
|
94 |
|
|
integer. For anything larger we use gcov_type. */
|
95 |
|
|
#define MAX_TIME 500000
|
96 |
|
|
|
97 |
|
|
/* Number of bits in integer, but we really want to be stable across different
|
98 |
|
|
hosts. */
|
99 |
|
|
#define NUM_CONDITIONS 32
|
100 |
|
|
|
101 |
|
|
enum predicate_conditions
|
102 |
|
|
{
|
103 |
|
|
predicate_false_condition = 0,
|
104 |
|
|
predicate_not_inlined_condition = 1,
|
105 |
|
|
predicate_first_dynamic_condition = 2
|
106 |
|
|
};
|
107 |
|
|
|
108 |
|
|
/* Special condition code we use to represent test that operand is compile time
|
109 |
|
|
constant. */
|
110 |
|
|
#define IS_NOT_CONSTANT ERROR_MARK
|
111 |
|
|
/* Special condition code we use to represent test that operand is not changed
|
112 |
|
|
across invocation of the function. When operand IS_NOT_CONSTANT it is always
|
113 |
|
|
CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
|
114 |
|
|
of executions even when they are not compile time constants. */
|
115 |
|
|
#define CHANGED IDENTIFIER_NODE
|
116 |
|
|
|
117 |
|
|
/* Holders of ipa cgraph hooks: */
|
118 |
|
|
static struct cgraph_node_hook_list *function_insertion_hook_holder;
|
119 |
|
|
static struct cgraph_node_hook_list *node_removal_hook_holder;
|
120 |
|
|
static struct cgraph_2node_hook_list *node_duplication_hook_holder;
|
121 |
|
|
static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
|
122 |
|
|
static struct cgraph_edge_hook_list *edge_removal_hook_holder;
|
123 |
|
|
static void inline_node_removal_hook (struct cgraph_node *, void *);
|
124 |
|
|
static void inline_node_duplication_hook (struct cgraph_node *,
|
125 |
|
|
struct cgraph_node *, void *);
|
126 |
|
|
static void inline_edge_removal_hook (struct cgraph_edge *, void *);
|
127 |
|
|
static void inline_edge_duplication_hook (struct cgraph_edge *,
|
128 |
|
|
struct cgraph_edge *,
|
129 |
|
|
void *);
|
130 |
|
|
|
131 |
|
|
/* VECtor holding inline summaries.
|
132 |
|
|
In GGC memory because conditions might point to constant trees. */
|
133 |
|
|
VEC(inline_summary_t,gc) *inline_summary_vec;
|
134 |
|
|
VEC(inline_edge_summary_t,heap) *inline_edge_summary_vec;
|
135 |
|
|
|
136 |
|
|
/* Cached node/edge growths. */
|
137 |
|
|
VEC(int,heap) *node_growth_cache;
|
138 |
|
|
VEC(edge_growth_cache_entry,heap) *edge_growth_cache;
|
139 |
|
|
|
140 |
|
|
/* Edge predicates goes here. */
|
141 |
|
|
static alloc_pool edge_predicate_pool;
|
142 |
|
|
|
143 |
|
|
/* Return true predicate (tautology).
|
144 |
|
|
We represent it by empty list of clauses. */
|
145 |
|
|
|
146 |
|
|
static inline struct predicate
|
147 |
|
|
true_predicate (void)
|
148 |
|
|
{
|
149 |
|
|
struct predicate p;
|
150 |
|
|
p.clause[0]=0;
|
151 |
|
|
return p;
|
152 |
|
|
}
|
153 |
|
|
|
154 |
|
|
|
155 |
|
|
/* Return predicate testing single condition number COND. */
|
156 |
|
|
|
157 |
|
|
static inline struct predicate
|
158 |
|
|
single_cond_predicate (int cond)
|
159 |
|
|
{
|
160 |
|
|
struct predicate p;
|
161 |
|
|
p.clause[0]=1 << cond;
|
162 |
|
|
p.clause[1]=0;
|
163 |
|
|
return p;
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
|
167 |
|
|
/* Return false predicate. First clause require false condition. */
|
168 |
|
|
|
169 |
|
|
static inline struct predicate
|
170 |
|
|
false_predicate (void)
|
171 |
|
|
{
|
172 |
|
|
return single_cond_predicate (predicate_false_condition);
|
173 |
|
|
}
|
174 |
|
|
|
175 |
|
|
|
176 |
|
|
/* Return true if P is (false). */
|
177 |
|
|
|
178 |
|
|
static inline bool
|
179 |
|
|
true_predicate_p (struct predicate *p)
|
180 |
|
|
{
|
181 |
|
|
return !p->clause[0];
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
|
185 |
|
|
/* Return true if P is (false). */
|
186 |
|
|
|
187 |
|
|
static inline bool
|
188 |
|
|
false_predicate_p (struct predicate *p)
|
189 |
|
|
{
|
190 |
|
|
if (p->clause[0] == (1 << predicate_false_condition))
|
191 |
|
|
{
|
192 |
|
|
gcc_checking_assert (!p->clause[1]
|
193 |
|
|
&& p->clause[0] == 1 << predicate_false_condition);
|
194 |
|
|
return true;
|
195 |
|
|
}
|
196 |
|
|
return false;
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
|
200 |
|
|
/* Return predicate that is set true when function is not inlined. */
|
201 |
|
|
static inline struct predicate
|
202 |
|
|
not_inlined_predicate (void)
|
203 |
|
|
{
|
204 |
|
|
return single_cond_predicate (predicate_not_inlined_condition);
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
|
208 |
|
|
/* Add condition to condition list CONDS. */
|
209 |
|
|
|
210 |
|
|
static struct predicate
|
211 |
|
|
add_condition (struct inline_summary *summary, int operand_num,
|
212 |
|
|
enum tree_code code, tree val)
|
213 |
|
|
{
|
214 |
|
|
int i;
|
215 |
|
|
struct condition *c;
|
216 |
|
|
struct condition new_cond;
|
217 |
|
|
|
218 |
|
|
for (i = 0; VEC_iterate (condition, summary->conds, i, c); i++)
|
219 |
|
|
{
|
220 |
|
|
if (c->operand_num == operand_num
|
221 |
|
|
&& c->code == code
|
222 |
|
|
&& c->val == val)
|
223 |
|
|
return single_cond_predicate (i + predicate_first_dynamic_condition);
|
224 |
|
|
}
|
225 |
|
|
/* Too many conditions. Give up and return constant true. */
|
226 |
|
|
if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
|
227 |
|
|
return true_predicate ();
|
228 |
|
|
|
229 |
|
|
new_cond.operand_num = operand_num;
|
230 |
|
|
new_cond.code = code;
|
231 |
|
|
new_cond.val = val;
|
232 |
|
|
VEC_safe_push (condition, gc, summary->conds, &new_cond);
|
233 |
|
|
return single_cond_predicate (i + predicate_first_dynamic_condition);
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
|
237 |
|
|
/* Add clause CLAUSE into the predicate P. */
|
238 |
|
|
|
239 |
|
|
static inline void
|
240 |
|
|
add_clause (conditions conditions, struct predicate *p, clause_t clause)
|
241 |
|
|
{
|
242 |
|
|
int i;
|
243 |
|
|
int i2;
|
244 |
|
|
int insert_here = -1;
|
245 |
|
|
int c1, c2;
|
246 |
|
|
|
247 |
|
|
/* True clause. */
|
248 |
|
|
if (!clause)
|
249 |
|
|
return;
|
250 |
|
|
|
251 |
|
|
/* False clause makes the whole predicate false. Kill the other variants. */
|
252 |
|
|
if (clause == (1 << predicate_false_condition))
|
253 |
|
|
{
|
254 |
|
|
p->clause[0] = (1 << predicate_false_condition);
|
255 |
|
|
p->clause[1] = 0;
|
256 |
|
|
return;
|
257 |
|
|
}
|
258 |
|
|
if (false_predicate_p (p))
|
259 |
|
|
return;
|
260 |
|
|
|
261 |
|
|
/* No one should be sily enough to add false into nontrivial clauses. */
|
262 |
|
|
gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
|
263 |
|
|
|
264 |
|
|
/* Look where to insert the clause. At the same time prune out
|
265 |
|
|
clauses of P that are implied by the new clause and thus
|
266 |
|
|
redundant. */
|
267 |
|
|
for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
|
268 |
|
|
{
|
269 |
|
|
p->clause[i2] = p->clause[i];
|
270 |
|
|
|
271 |
|
|
if (!p->clause[i])
|
272 |
|
|
break;
|
273 |
|
|
|
274 |
|
|
/* If p->clause[i] implies clause, there is nothing to add. */
|
275 |
|
|
if ((p->clause[i] & clause) == p->clause[i])
|
276 |
|
|
{
|
277 |
|
|
/* We had nothing to add, none of clauses should've become
|
278 |
|
|
redundant. */
|
279 |
|
|
gcc_checking_assert (i == i2);
|
280 |
|
|
return;
|
281 |
|
|
}
|
282 |
|
|
|
283 |
|
|
if (p->clause[i] < clause && insert_here < 0)
|
284 |
|
|
insert_here = i2;
|
285 |
|
|
|
286 |
|
|
/* If clause implies p->clause[i], then p->clause[i] becomes redundant.
|
287 |
|
|
Otherwise the p->clause[i] has to stay. */
|
288 |
|
|
if ((p->clause[i] & clause) != clause)
|
289 |
|
|
i2++;
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
/* Look for clauses that are obviously true. I.e.
|
293 |
|
|
op0 == 5 || op0 != 5. */
|
294 |
|
|
for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
|
295 |
|
|
{
|
296 |
|
|
condition *cc1;
|
297 |
|
|
if (!(clause & (1 << c1)))
|
298 |
|
|
continue;
|
299 |
|
|
cc1 = VEC_index (condition,
|
300 |
|
|
conditions,
|
301 |
|
|
c1 - predicate_first_dynamic_condition);
|
302 |
|
|
/* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
|
303 |
|
|
and thus there is no point for looking for them. */
|
304 |
|
|
if (cc1->code == CHANGED
|
305 |
|
|
|| cc1->code == IS_NOT_CONSTANT)
|
306 |
|
|
continue;
|
307 |
|
|
for (c2 = c1 + 1; c2 <= NUM_CONDITIONS; c2++)
|
308 |
|
|
if (clause & (1 << c2))
|
309 |
|
|
{
|
310 |
|
|
condition *cc1 = VEC_index (condition,
|
311 |
|
|
conditions,
|
312 |
|
|
c1 - predicate_first_dynamic_condition);
|
313 |
|
|
condition *cc2 = VEC_index (condition,
|
314 |
|
|
conditions,
|
315 |
|
|
c2 - predicate_first_dynamic_condition);
|
316 |
|
|
if (cc1->operand_num == cc2->operand_num
|
317 |
|
|
&& cc1->val == cc2->val
|
318 |
|
|
&& cc2->code != IS_NOT_CONSTANT
|
319 |
|
|
&& cc2->code != CHANGED
|
320 |
|
|
&& cc1->code == invert_tree_comparison
|
321 |
|
|
(cc2->code,
|
322 |
|
|
HONOR_NANS (TYPE_MODE (TREE_TYPE (cc1->val)))))
|
323 |
|
|
return;
|
324 |
|
|
}
|
325 |
|
|
}
|
326 |
|
|
|
327 |
|
|
|
328 |
|
|
/* We run out of variants. Be conservative in positive direction. */
|
329 |
|
|
if (i2 == MAX_CLAUSES)
|
330 |
|
|
return;
|
331 |
|
|
/* Keep clauses in decreasing order. This makes equivalence testing easy. */
|
332 |
|
|
p->clause[i2 + 1] = 0;
|
333 |
|
|
if (insert_here >= 0)
|
334 |
|
|
for (;i2 > insert_here; i2--)
|
335 |
|
|
p->clause[i2] = p->clause[i2 - 1];
|
336 |
|
|
else
|
337 |
|
|
insert_here = i2;
|
338 |
|
|
p->clause[insert_here] = clause;
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
|
342 |
|
|
/* Return P & P2. */
|
343 |
|
|
|
344 |
|
|
static struct predicate
|
345 |
|
|
and_predicates (conditions conditions,
|
346 |
|
|
struct predicate *p, struct predicate *p2)
|
347 |
|
|
{
|
348 |
|
|
struct predicate out = *p;
|
349 |
|
|
int i;
|
350 |
|
|
|
351 |
|
|
/* Avoid busy work. */
|
352 |
|
|
if (false_predicate_p (p2) || true_predicate_p (p))
|
353 |
|
|
return *p2;
|
354 |
|
|
if (false_predicate_p (p) || true_predicate_p (p2))
|
355 |
|
|
return *p;
|
356 |
|
|
|
357 |
|
|
/* See how far predicates match. */
|
358 |
|
|
for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
|
359 |
|
|
{
|
360 |
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
361 |
|
|
}
|
362 |
|
|
|
363 |
|
|
/* Combine the predicates rest. */
|
364 |
|
|
for (; p2->clause[i]; i++)
|
365 |
|
|
{
|
366 |
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
367 |
|
|
add_clause (conditions, &out, p2->clause[i]);
|
368 |
|
|
}
|
369 |
|
|
return out;
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
|
373 |
|
|
/* Return true if predicates are obviously equal. */
|
374 |
|
|
|
375 |
|
|
static inline bool
|
376 |
|
|
predicates_equal_p (struct predicate *p, struct predicate *p2)
|
377 |
|
|
{
|
378 |
|
|
int i;
|
379 |
|
|
for (i = 0; p->clause[i]; i++)
|
380 |
|
|
{
|
381 |
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
382 |
|
|
gcc_checking_assert (p->clause [i] > p->clause[i + 1]);
|
383 |
|
|
gcc_checking_assert (!p2->clause[i]
|
384 |
|
|
|| p2->clause [i] > p2->clause[i + 1]);
|
385 |
|
|
if (p->clause[i] != p2->clause[i])
|
386 |
|
|
return false;
|
387 |
|
|
}
|
388 |
|
|
return !p2->clause[i];
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
|
392 |
|
|
/* Return P | P2. */
|
393 |
|
|
|
394 |
|
|
static struct predicate
|
395 |
|
|
or_predicates (conditions conditions, struct predicate *p, struct predicate *p2)
|
396 |
|
|
{
|
397 |
|
|
struct predicate out = true_predicate ();
|
398 |
|
|
int i,j;
|
399 |
|
|
|
400 |
|
|
/* Avoid busy work. */
|
401 |
|
|
if (false_predicate_p (p2) || true_predicate_p (p))
|
402 |
|
|
return *p;
|
403 |
|
|
if (false_predicate_p (p) || true_predicate_p (p2))
|
404 |
|
|
return *p2;
|
405 |
|
|
if (predicates_equal_p (p, p2))
|
406 |
|
|
return *p;
|
407 |
|
|
|
408 |
|
|
/* OK, combine the predicates. */
|
409 |
|
|
for (i = 0; p->clause[i]; i++)
|
410 |
|
|
for (j = 0; p2->clause[j]; j++)
|
411 |
|
|
{
|
412 |
|
|
gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
|
413 |
|
|
add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
|
414 |
|
|
}
|
415 |
|
|
return out;
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
|
419 |
|
|
/* Having partial truth assignment in POSSIBLE_TRUTHS, return false
|
420 |
|
|
if predicate P is known to be false. */
|
421 |
|
|
|
422 |
|
|
static bool
|
423 |
|
|
evaluate_predicate (struct predicate *p, clause_t possible_truths)
|
424 |
|
|
{
|
425 |
|
|
int i;
|
426 |
|
|
|
427 |
|
|
/* True remains true. */
|
428 |
|
|
if (true_predicate_p (p))
|
429 |
|
|
return true;
|
430 |
|
|
|
431 |
|
|
gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
|
432 |
|
|
|
433 |
|
|
/* See if we can find clause we can disprove. */
|
434 |
|
|
for (i = 0; p->clause[i]; i++)
|
435 |
|
|
{
|
436 |
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
437 |
|
|
if (!(p->clause[i] & possible_truths))
|
438 |
|
|
return false;
|
439 |
|
|
}
|
440 |
|
|
return true;
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
/* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
|
444 |
|
|
instruction will be recomputed per invocation of the inlined call. */
|
445 |
|
|
|
446 |
|
|
static int
|
447 |
|
|
predicate_probability (conditions conds,
|
448 |
|
|
struct predicate *p, clause_t possible_truths,
|
449 |
|
|
VEC (inline_param_summary_t, heap) *inline_param_summary)
|
450 |
|
|
{
|
451 |
|
|
int i;
|
452 |
|
|
int combined_prob = REG_BR_PROB_BASE;
|
453 |
|
|
|
454 |
|
|
/* True remains true. */
|
455 |
|
|
if (true_predicate_p (p))
|
456 |
|
|
return REG_BR_PROB_BASE;
|
457 |
|
|
|
458 |
|
|
if (false_predicate_p (p))
|
459 |
|
|
return 0;
|
460 |
|
|
|
461 |
|
|
gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
|
462 |
|
|
|
463 |
|
|
/* See if we can find clause we can disprove. */
|
464 |
|
|
for (i = 0; p->clause[i]; i++)
|
465 |
|
|
{
|
466 |
|
|
gcc_checking_assert (i < MAX_CLAUSES);
|
467 |
|
|
if (!(p->clause[i] & possible_truths))
|
468 |
|
|
return 0;
|
469 |
|
|
else
|
470 |
|
|
{
|
471 |
|
|
int this_prob = 0;
|
472 |
|
|
int i2;
|
473 |
|
|
if (!inline_param_summary)
|
474 |
|
|
return REG_BR_PROB_BASE;
|
475 |
|
|
for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
|
476 |
|
|
if ((p->clause[i] & possible_truths) & (1 << i2))
|
477 |
|
|
{
|
478 |
|
|
if (i2 >= predicate_first_dynamic_condition)
|
479 |
|
|
{
|
480 |
|
|
condition *c = VEC_index
|
481 |
|
|
(condition, conds,
|
482 |
|
|
i2 - predicate_first_dynamic_condition);
|
483 |
|
|
if (c->code == CHANGED
|
484 |
|
|
&& (c->operand_num
|
485 |
|
|
< (int) VEC_length (inline_param_summary_t,
|
486 |
|
|
inline_param_summary)))
|
487 |
|
|
{
|
488 |
|
|
int iprob = VEC_index (inline_param_summary_t,
|
489 |
|
|
inline_param_summary,
|
490 |
|
|
c->operand_num)->change_prob;
|
491 |
|
|
this_prob = MAX (this_prob, iprob);
|
492 |
|
|
}
|
493 |
|
|
else
|
494 |
|
|
this_prob = REG_BR_PROB_BASE;
|
495 |
|
|
}
|
496 |
|
|
else
|
497 |
|
|
this_prob = REG_BR_PROB_BASE;
|
498 |
|
|
}
|
499 |
|
|
combined_prob = MIN (this_prob, combined_prob);
|
500 |
|
|
if (!combined_prob)
|
501 |
|
|
return 0;
|
502 |
|
|
}
|
503 |
|
|
}
|
504 |
|
|
return combined_prob;
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
|
508 |
|
|
/* Dump conditional COND. */
|
509 |
|
|
|
510 |
|
|
static void
|
511 |
|
|
dump_condition (FILE *f, conditions conditions, int cond)
|
512 |
|
|
{
|
513 |
|
|
condition *c;
|
514 |
|
|
if (cond == predicate_false_condition)
|
515 |
|
|
fprintf (f, "false");
|
516 |
|
|
else if (cond == predicate_not_inlined_condition)
|
517 |
|
|
fprintf (f, "not inlined");
|
518 |
|
|
else
|
519 |
|
|
{
|
520 |
|
|
c = VEC_index (condition, conditions,
|
521 |
|
|
cond - predicate_first_dynamic_condition);
|
522 |
|
|
fprintf (f, "op%i", c->operand_num);
|
523 |
|
|
if (c->code == IS_NOT_CONSTANT)
|
524 |
|
|
{
|
525 |
|
|
fprintf (f, " not constant");
|
526 |
|
|
return;
|
527 |
|
|
}
|
528 |
|
|
if (c->code == CHANGED)
|
529 |
|
|
{
|
530 |
|
|
fprintf (f, " changed");
|
531 |
|
|
return;
|
532 |
|
|
}
|
533 |
|
|
fprintf (f, " %s ", op_symbol_code (c->code));
|
534 |
|
|
print_generic_expr (f, c->val, 1);
|
535 |
|
|
}
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
|
539 |
|
|
/* Dump clause CLAUSE. */
|
540 |
|
|
|
541 |
|
|
static void
|
542 |
|
|
dump_clause (FILE *f, conditions conds, clause_t clause)
|
543 |
|
|
{
|
544 |
|
|
int i;
|
545 |
|
|
bool found = false;
|
546 |
|
|
fprintf (f, "(");
|
547 |
|
|
if (!clause)
|
548 |
|
|
fprintf (f, "true");
|
549 |
|
|
for (i = 0; i < NUM_CONDITIONS; i++)
|
550 |
|
|
if (clause & (1 << i))
|
551 |
|
|
{
|
552 |
|
|
if (found)
|
553 |
|
|
fprintf (f, " || ");
|
554 |
|
|
found = true;
|
555 |
|
|
dump_condition (f, conds, i);
|
556 |
|
|
}
|
557 |
|
|
fprintf (f, ")");
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
|
561 |
|
|
/* Dump predicate PREDICATE. */
|
562 |
|
|
|
563 |
|
|
static void
|
564 |
|
|
dump_predicate (FILE *f, conditions conds, struct predicate *pred)
|
565 |
|
|
{
|
566 |
|
|
int i;
|
567 |
|
|
if (true_predicate_p (pred))
|
568 |
|
|
dump_clause (f, conds, 0);
|
569 |
|
|
else
|
570 |
|
|
for (i = 0; pred->clause[i]; i++)
|
571 |
|
|
{
|
572 |
|
|
if (i)
|
573 |
|
|
fprintf (f, " && ");
|
574 |
|
|
dump_clause (f, conds, pred->clause[i]);
|
575 |
|
|
}
|
576 |
|
|
fprintf (f, "\n");
|
577 |
|
|
}
|
578 |
|
|
|
579 |
|
|
|
580 |
|
|
/* Record SIZE and TIME under condition PRED into the inline summary. */
|
581 |
|
|
|
582 |
|
|
static void
|
583 |
|
|
account_size_time (struct inline_summary *summary, int size, int time,
|
584 |
|
|
struct predicate *pred)
|
585 |
|
|
{
|
586 |
|
|
size_time_entry *e;
|
587 |
|
|
bool found = false;
|
588 |
|
|
int i;
|
589 |
|
|
|
590 |
|
|
if (false_predicate_p (pred))
|
591 |
|
|
return;
|
592 |
|
|
|
593 |
|
|
/* We need to create initial empty unconitional clause, but otherwie
|
594 |
|
|
we don't need to account empty times and sizes. */
|
595 |
|
|
if (!size && !time && summary->entry)
|
596 |
|
|
return;
|
597 |
|
|
|
598 |
|
|
/* Watch overflow that might result from insane profiles. */
|
599 |
|
|
if (time > MAX_TIME * INLINE_TIME_SCALE)
|
600 |
|
|
time = MAX_TIME * INLINE_TIME_SCALE;
|
601 |
|
|
gcc_assert (time >= 0);
|
602 |
|
|
|
603 |
|
|
for (i = 0; VEC_iterate (size_time_entry, summary->entry, i, e); i++)
|
604 |
|
|
if (predicates_equal_p (&e->predicate, pred))
|
605 |
|
|
{
|
606 |
|
|
found = true;
|
607 |
|
|
break;
|
608 |
|
|
}
|
609 |
|
|
if (i == 32)
|
610 |
|
|
{
|
611 |
|
|
i = 0;
|
612 |
|
|
found = true;
|
613 |
|
|
e = VEC_index (size_time_entry, summary->entry, 0);
|
614 |
|
|
gcc_assert (!e->predicate.clause[0]);
|
615 |
|
|
}
|
616 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
|
617 |
|
|
{
|
618 |
|
|
fprintf (dump_file, "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
|
619 |
|
|
((double)size) / INLINE_SIZE_SCALE,
|
620 |
|
|
((double)time) / INLINE_TIME_SCALE,
|
621 |
|
|
found ? "" : "new ");
|
622 |
|
|
dump_predicate (dump_file, summary->conds, pred);
|
623 |
|
|
}
|
624 |
|
|
if (!found)
|
625 |
|
|
{
|
626 |
|
|
struct size_time_entry new_entry;
|
627 |
|
|
new_entry.size = size;
|
628 |
|
|
new_entry.time = time;
|
629 |
|
|
new_entry.predicate = *pred;
|
630 |
|
|
VEC_safe_push (size_time_entry, gc, summary->entry, &new_entry);
|
631 |
|
|
}
|
632 |
|
|
else
|
633 |
|
|
{
|
634 |
|
|
e->size += size;
|
635 |
|
|
e->time += time;
|
636 |
|
|
if (e->time > MAX_TIME * INLINE_TIME_SCALE)
|
637 |
|
|
e->time = MAX_TIME * INLINE_TIME_SCALE;
|
638 |
|
|
}
|
639 |
|
|
}
|
640 |
|
|
|
641 |
|
|
/* Set predicate for edge E. */
|
642 |
|
|
|
643 |
|
|
static void
|
644 |
|
|
edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
|
645 |
|
|
{
|
646 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
647 |
|
|
if (predicate && !true_predicate_p (predicate))
|
648 |
|
|
{
|
649 |
|
|
if (!es->predicate)
|
650 |
|
|
es->predicate = (struct predicate *)pool_alloc (edge_predicate_pool);
|
651 |
|
|
*es->predicate = *predicate;
|
652 |
|
|
}
|
653 |
|
|
else
|
654 |
|
|
{
|
655 |
|
|
if (es->predicate)
|
656 |
|
|
pool_free (edge_predicate_pool, es->predicate);
|
657 |
|
|
es->predicate = NULL;
|
658 |
|
|
}
|
659 |
|
|
}
|
660 |
|
|
|
661 |
|
|
|
662 |
|
|
/* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
|
663 |
|
|
Return clause of possible truths. When INLINE_P is true, assume that
|
664 |
|
|
we are inlining.
|
665 |
|
|
|
666 |
|
|
ERROR_MARK means compile time invariant. */
|
667 |
|
|
|
668 |
|
|
static clause_t
|
669 |
|
|
evaluate_conditions_for_known_args (struct cgraph_node *node,
|
670 |
|
|
bool inline_p,
|
671 |
|
|
VEC (tree, heap) *known_vals)
|
672 |
|
|
{
|
673 |
|
|
clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
|
674 |
|
|
struct inline_summary *info = inline_summary (node);
|
675 |
|
|
int i;
|
676 |
|
|
struct condition *c;
|
677 |
|
|
|
678 |
|
|
for (i = 0; VEC_iterate (condition, info->conds, i, c); i++)
|
679 |
|
|
{
|
680 |
|
|
tree val;
|
681 |
|
|
tree res;
|
682 |
|
|
|
683 |
|
|
/* We allow call stmt to have fewer arguments than the callee
|
684 |
|
|
function (especially for K&R style programs). So bound
|
685 |
|
|
check here. */
|
686 |
|
|
if (c->operand_num < (int)VEC_length (tree, known_vals))
|
687 |
|
|
val = VEC_index (tree, known_vals, c->operand_num);
|
688 |
|
|
else
|
689 |
|
|
val = NULL;
|
690 |
|
|
|
691 |
|
|
if (val == error_mark_node && c->code != CHANGED)
|
692 |
|
|
val = NULL;
|
693 |
|
|
|
694 |
|
|
if (!val)
|
695 |
|
|
{
|
696 |
|
|
clause |= 1 << (i + predicate_first_dynamic_condition);
|
697 |
|
|
continue;
|
698 |
|
|
}
|
699 |
|
|
if (c->code == IS_NOT_CONSTANT || c->code == CHANGED)
|
700 |
|
|
continue;
|
701 |
|
|
res = fold_binary_to_constant (c->code, boolean_type_node, val, c->val);
|
702 |
|
|
if (res
|
703 |
|
|
&& integer_zerop (res))
|
704 |
|
|
continue;
|
705 |
|
|
clause |= 1 << (i + predicate_first_dynamic_condition);
|
706 |
|
|
}
|
707 |
|
|
return clause;
|
708 |
|
|
}
|
709 |
|
|
|
710 |
|
|
|
711 |
|
|
/* Work out what conditions might be true at invocation of E. */
|
712 |
|
|
|
713 |
|
|
static void
|
714 |
|
|
evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
|
715 |
|
|
clause_t *clause_ptr,
|
716 |
|
|
VEC (tree, heap) **known_vals_ptr,
|
717 |
|
|
VEC (tree, heap) **known_binfos_ptr)
|
718 |
|
|
{
|
719 |
|
|
struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
|
720 |
|
|
struct inline_summary *info = inline_summary (callee);
|
721 |
|
|
VEC (tree, heap) *known_vals = NULL;
|
722 |
|
|
|
723 |
|
|
if (clause_ptr)
|
724 |
|
|
*clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
|
725 |
|
|
if (known_vals_ptr)
|
726 |
|
|
*known_vals_ptr = NULL;
|
727 |
|
|
if (known_binfos_ptr)
|
728 |
|
|
*known_binfos_ptr = NULL;
|
729 |
|
|
|
730 |
|
|
if (ipa_node_params_vector
|
731 |
|
|
&& !e->call_stmt_cannot_inline_p
|
732 |
|
|
&& ((clause_ptr && info->conds) || known_vals_ptr || known_binfos_ptr))
|
733 |
|
|
{
|
734 |
|
|
struct ipa_node_params *parms_info;
|
735 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
736 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
737 |
|
|
int i, count = ipa_get_cs_argument_count (args);
|
738 |
|
|
|
739 |
|
|
if (e->caller->global.inlined_to)
|
740 |
|
|
parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
|
741 |
|
|
else
|
742 |
|
|
parms_info = IPA_NODE_REF (e->caller);
|
743 |
|
|
|
744 |
|
|
if (count && (info->conds || known_vals_ptr))
|
745 |
|
|
VEC_safe_grow_cleared (tree, heap, known_vals, count);
|
746 |
|
|
if (count && known_binfos_ptr)
|
747 |
|
|
VEC_safe_grow_cleared (tree, heap, *known_binfos_ptr, count);
|
748 |
|
|
|
749 |
|
|
for (i = 0; i < count; i++)
|
750 |
|
|
{
|
751 |
|
|
tree cst = ipa_value_from_jfunc (parms_info,
|
752 |
|
|
ipa_get_ith_jump_func (args, i));
|
753 |
|
|
if (cst)
|
754 |
|
|
{
|
755 |
|
|
if (known_vals && TREE_CODE (cst) != TREE_BINFO)
|
756 |
|
|
VEC_replace (tree, known_vals, i, cst);
|
757 |
|
|
else if (known_binfos_ptr != NULL && TREE_CODE (cst) == TREE_BINFO)
|
758 |
|
|
VEC_replace (tree, *known_binfos_ptr, i, cst);
|
759 |
|
|
}
|
760 |
|
|
else if (inline_p
|
761 |
|
|
&& !VEC_index (inline_param_summary_t,
|
762 |
|
|
es->param,
|
763 |
|
|
i)->change_prob)
|
764 |
|
|
VEC_replace (tree, known_vals, i, error_mark_node);
|
765 |
|
|
}
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
if (clause_ptr)
|
769 |
|
|
*clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
|
770 |
|
|
known_vals);
|
771 |
|
|
|
772 |
|
|
if (known_vals_ptr)
|
773 |
|
|
*known_vals_ptr = known_vals;
|
774 |
|
|
else
|
775 |
|
|
VEC_free (tree, heap, known_vals);
|
776 |
|
|
}
|
777 |
|
|
|
778 |
|
|
|
779 |
|
|
/* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
|
780 |
|
|
|
781 |
|
|
static void
|
782 |
|
|
inline_summary_alloc (void)
|
783 |
|
|
{
|
784 |
|
|
if (!node_removal_hook_holder)
|
785 |
|
|
node_removal_hook_holder =
|
786 |
|
|
cgraph_add_node_removal_hook (&inline_node_removal_hook, NULL);
|
787 |
|
|
if (!edge_removal_hook_holder)
|
788 |
|
|
edge_removal_hook_holder =
|
789 |
|
|
cgraph_add_edge_removal_hook (&inline_edge_removal_hook, NULL);
|
790 |
|
|
if (!node_duplication_hook_holder)
|
791 |
|
|
node_duplication_hook_holder =
|
792 |
|
|
cgraph_add_node_duplication_hook (&inline_node_duplication_hook, NULL);
|
793 |
|
|
if (!edge_duplication_hook_holder)
|
794 |
|
|
edge_duplication_hook_holder =
|
795 |
|
|
cgraph_add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
|
796 |
|
|
|
797 |
|
|
if (VEC_length (inline_summary_t, inline_summary_vec)
|
798 |
|
|
<= (unsigned) cgraph_max_uid)
|
799 |
|
|
VEC_safe_grow_cleared (inline_summary_t, gc,
|
800 |
|
|
inline_summary_vec, cgraph_max_uid + 1);
|
801 |
|
|
if (VEC_length (inline_edge_summary_t, inline_edge_summary_vec)
|
802 |
|
|
<= (unsigned) cgraph_edge_max_uid)
|
803 |
|
|
VEC_safe_grow_cleared (inline_edge_summary_t, heap,
|
804 |
|
|
inline_edge_summary_vec, cgraph_edge_max_uid + 1);
|
805 |
|
|
if (!edge_predicate_pool)
|
806 |
|
|
edge_predicate_pool = create_alloc_pool ("edge predicates",
|
807 |
|
|
sizeof (struct predicate),
|
808 |
|
|
10);
|
809 |
|
|
}
|
810 |
|
|
|
811 |
|
|
/* We are called multiple time for given function; clear
|
812 |
|
|
data from previous run so they are not cumulated. */
|
813 |
|
|
|
814 |
|
|
static void
|
815 |
|
|
reset_inline_edge_summary (struct cgraph_edge *e)
|
816 |
|
|
{
|
817 |
|
|
if (e->uid
|
818 |
|
|
< (int)VEC_length (inline_edge_summary_t, inline_edge_summary_vec))
|
819 |
|
|
{
|
820 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
821 |
|
|
|
822 |
|
|
es->call_stmt_size = es->call_stmt_time =0;
|
823 |
|
|
if (es->predicate)
|
824 |
|
|
pool_free (edge_predicate_pool, es->predicate);
|
825 |
|
|
es->predicate = NULL;
|
826 |
|
|
VEC_free (inline_param_summary_t, heap, es->param);
|
827 |
|
|
}
|
828 |
|
|
}
|
829 |
|
|
|
830 |
|
|
/* We are called multiple time for given function; clear
|
831 |
|
|
data from previous run so they are not cumulated. */
|
832 |
|
|
|
833 |
|
|
static void
|
834 |
|
|
reset_inline_summary (struct cgraph_node *node)
|
835 |
|
|
{
|
836 |
|
|
struct inline_summary *info = inline_summary (node);
|
837 |
|
|
struct cgraph_edge *e;
|
838 |
|
|
|
839 |
|
|
info->self_size = info->self_time = 0;
|
840 |
|
|
info->estimated_stack_size = 0;
|
841 |
|
|
info->estimated_self_stack_size = 0;
|
842 |
|
|
info->stack_frame_offset = 0;
|
843 |
|
|
info->size = 0;
|
844 |
|
|
info->time = 0;
|
845 |
|
|
VEC_free (condition, gc, info->conds);
|
846 |
|
|
VEC_free (size_time_entry,gc, info->entry);
|
847 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
848 |
|
|
reset_inline_edge_summary (e);
|
849 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
850 |
|
|
reset_inline_edge_summary (e);
|
851 |
|
|
}
|
852 |
|
|
|
853 |
|
|
/* Hook that is called by cgraph.c when a node is removed. */
|
854 |
|
|
|
855 |
|
|
static void
|
856 |
|
|
inline_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
857 |
|
|
{
|
858 |
|
|
struct inline_summary *info;
|
859 |
|
|
if (VEC_length (inline_summary_t, inline_summary_vec)
|
860 |
|
|
<= (unsigned)node->uid)
|
861 |
|
|
return;
|
862 |
|
|
info = inline_summary (node);
|
863 |
|
|
reset_inline_summary (node);
|
864 |
|
|
memset (info, 0, sizeof (inline_summary_t));
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
|
868 |
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
869 |
|
|
|
870 |
|
|
static void
|
871 |
|
|
inline_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
|
872 |
|
|
ATTRIBUTE_UNUSED void *data)
|
873 |
|
|
{
|
874 |
|
|
struct inline_summary *info;
|
875 |
|
|
inline_summary_alloc ();
|
876 |
|
|
info = inline_summary (dst);
|
877 |
|
|
memcpy (info, inline_summary (src),
|
878 |
|
|
sizeof (struct inline_summary));
|
879 |
|
|
/* TODO: as an optimization, we may avoid copying conditions
|
880 |
|
|
that are known to be false or true. */
|
881 |
|
|
info->conds = VEC_copy (condition, gc, info->conds);
|
882 |
|
|
|
883 |
|
|
/* When there are any replacements in the function body, see if we can figure
|
884 |
|
|
out that something was optimized out. */
|
885 |
|
|
if (ipa_node_params_vector && dst->clone.tree_map)
|
886 |
|
|
{
|
887 |
|
|
VEC(size_time_entry,gc) *entry = info->entry;
|
888 |
|
|
/* Use SRC parm info since it may not be copied yet. */
|
889 |
|
|
struct ipa_node_params *parms_info = IPA_NODE_REF (src);
|
890 |
|
|
VEC (tree, heap) *known_vals = NULL;
|
891 |
|
|
int count = ipa_get_param_count (parms_info);
|
892 |
|
|
int i,j;
|
893 |
|
|
clause_t possible_truths;
|
894 |
|
|
struct predicate true_pred = true_predicate ();
|
895 |
|
|
size_time_entry *e;
|
896 |
|
|
int optimized_out_size = 0;
|
897 |
|
|
gcov_type optimized_out_time = 0;
|
898 |
|
|
bool inlined_to_p = false;
|
899 |
|
|
struct cgraph_edge *edge;
|
900 |
|
|
|
901 |
|
|
info->entry = 0;
|
902 |
|
|
VEC_safe_grow_cleared (tree, heap, known_vals, count);
|
903 |
|
|
for (i = 0; i < count; i++)
|
904 |
|
|
{
|
905 |
|
|
tree t = ipa_get_param (parms_info, i);
|
906 |
|
|
struct ipa_replace_map *r;
|
907 |
|
|
|
908 |
|
|
for (j = 0;
|
909 |
|
|
VEC_iterate (ipa_replace_map_p, dst->clone.tree_map, j, r);
|
910 |
|
|
j++)
|
911 |
|
|
{
|
912 |
|
|
if (r->old_tree == t
|
913 |
|
|
&& r->replace_p
|
914 |
|
|
&& !r->ref_p)
|
915 |
|
|
{
|
916 |
|
|
VEC_replace (tree, known_vals, i, r->new_tree);
|
917 |
|
|
break;
|
918 |
|
|
}
|
919 |
|
|
}
|
920 |
|
|
}
|
921 |
|
|
possible_truths = evaluate_conditions_for_known_args (dst,
|
922 |
|
|
false, known_vals);
|
923 |
|
|
VEC_free (tree, heap, known_vals);
|
924 |
|
|
|
925 |
|
|
account_size_time (info, 0, 0, &true_pred);
|
926 |
|
|
|
927 |
|
|
/* Remap size_time vectors.
|
928 |
|
|
Simplify the predicate by prunning out alternatives that are known
|
929 |
|
|
to be false.
|
930 |
|
|
TODO: as on optimization, we can also eliminate conditions known
|
931 |
|
|
to be true. */
|
932 |
|
|
for (i = 0; VEC_iterate (size_time_entry, entry, i, e); i++)
|
933 |
|
|
{
|
934 |
|
|
struct predicate new_predicate = true_predicate ();
|
935 |
|
|
for (j = 0; e->predicate.clause[j]; j++)
|
936 |
|
|
if (!(possible_truths & e->predicate.clause[j]))
|
937 |
|
|
{
|
938 |
|
|
new_predicate = false_predicate ();
|
939 |
|
|
break;
|
940 |
|
|
}
|
941 |
|
|
else
|
942 |
|
|
add_clause (info->conds, &new_predicate,
|
943 |
|
|
possible_truths & e->predicate.clause[j]);
|
944 |
|
|
if (false_predicate_p (&new_predicate))
|
945 |
|
|
{
|
946 |
|
|
optimized_out_size += e->size;
|
947 |
|
|
optimized_out_time += e->time;
|
948 |
|
|
}
|
949 |
|
|
else
|
950 |
|
|
account_size_time (info, e->size, e->time, &new_predicate);
|
951 |
|
|
}
|
952 |
|
|
|
953 |
|
|
/* Remap edge predicates with the same simplification as above.
|
954 |
|
|
Also copy constantness arrays. */
|
955 |
|
|
for (edge = dst->callees; edge; edge = edge->next_callee)
|
956 |
|
|
{
|
957 |
|
|
struct predicate new_predicate = true_predicate ();
|
958 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
959 |
|
|
|
960 |
|
|
if (!edge->inline_failed)
|
961 |
|
|
inlined_to_p = true;
|
962 |
|
|
if (!es->predicate)
|
963 |
|
|
continue;
|
964 |
|
|
for (j = 0; es->predicate->clause[j]; j++)
|
965 |
|
|
if (!(possible_truths & es->predicate->clause[j]))
|
966 |
|
|
{
|
967 |
|
|
new_predicate = false_predicate ();
|
968 |
|
|
break;
|
969 |
|
|
}
|
970 |
|
|
else
|
971 |
|
|
add_clause (info->conds, &new_predicate,
|
972 |
|
|
possible_truths & es->predicate->clause[j]);
|
973 |
|
|
if (false_predicate_p (&new_predicate)
|
974 |
|
|
&& !false_predicate_p (es->predicate))
|
975 |
|
|
{
|
976 |
|
|
optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
|
977 |
|
|
optimized_out_time += (es->call_stmt_time
|
978 |
|
|
* (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE)
|
979 |
|
|
* edge->frequency);
|
980 |
|
|
edge->frequency = 0;
|
981 |
|
|
}
|
982 |
|
|
*es->predicate = new_predicate;
|
983 |
|
|
}
|
984 |
|
|
|
985 |
|
|
/* Remap indirect edge predicates with the same simplificaiton as above.
|
986 |
|
|
Also copy constantness arrays. */
|
987 |
|
|
for (edge = dst->indirect_calls; edge; edge = edge->next_callee)
|
988 |
|
|
{
|
989 |
|
|
struct predicate new_predicate = true_predicate ();
|
990 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
991 |
|
|
|
992 |
|
|
if (!edge->inline_failed)
|
993 |
|
|
inlined_to_p = true;
|
994 |
|
|
if (!es->predicate)
|
995 |
|
|
continue;
|
996 |
|
|
for (j = 0; es->predicate->clause[j]; j++)
|
997 |
|
|
if (!(possible_truths & es->predicate->clause[j]))
|
998 |
|
|
{
|
999 |
|
|
new_predicate = false_predicate ();
|
1000 |
|
|
break;
|
1001 |
|
|
}
|
1002 |
|
|
else
|
1003 |
|
|
add_clause (info->conds, &new_predicate,
|
1004 |
|
|
possible_truths & es->predicate->clause[j]);
|
1005 |
|
|
if (false_predicate_p (&new_predicate)
|
1006 |
|
|
&& !false_predicate_p (es->predicate))
|
1007 |
|
|
{
|
1008 |
|
|
optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
|
1009 |
|
|
optimized_out_time += (es->call_stmt_time
|
1010 |
|
|
* (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE)
|
1011 |
|
|
* edge->frequency);
|
1012 |
|
|
edge->frequency = 0;
|
1013 |
|
|
}
|
1014 |
|
|
*es->predicate = new_predicate;
|
1015 |
|
|
}
|
1016 |
|
|
|
1017 |
|
|
/* If inliner or someone after inliner will ever start producing
|
1018 |
|
|
non-trivial clones, we will get trouble with lack of information
|
1019 |
|
|
about updating self sizes, because size vectors already contains
|
1020 |
|
|
sizes of the calees. */
|
1021 |
|
|
gcc_assert (!inlined_to_p
|
1022 |
|
|
|| (!optimized_out_size && !optimized_out_time));
|
1023 |
|
|
|
1024 |
|
|
info->size -= optimized_out_size / INLINE_SIZE_SCALE;
|
1025 |
|
|
info->self_size -= optimized_out_size / INLINE_SIZE_SCALE;
|
1026 |
|
|
gcc_assert (info->size > 0);
|
1027 |
|
|
gcc_assert (info->self_size > 0);
|
1028 |
|
|
|
1029 |
|
|
optimized_out_time /= INLINE_TIME_SCALE;
|
1030 |
|
|
if (optimized_out_time > MAX_TIME)
|
1031 |
|
|
optimized_out_time = MAX_TIME;
|
1032 |
|
|
info->time -= optimized_out_time;
|
1033 |
|
|
info->self_time -= optimized_out_time;
|
1034 |
|
|
if (info->time < 0)
|
1035 |
|
|
info->time = 0;
|
1036 |
|
|
if (info->self_time < 0)
|
1037 |
|
|
info->self_time = 0;
|
1038 |
|
|
}
|
1039 |
|
|
else
|
1040 |
|
|
info->entry = VEC_copy (size_time_entry, gc, info->entry);
|
1041 |
|
|
}
|
1042 |
|
|
|
1043 |
|
|
|
1044 |
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
1045 |
|
|
|
1046 |
|
|
static void
|
1047 |
|
|
inline_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
|
1048 |
|
|
ATTRIBUTE_UNUSED void *data)
|
1049 |
|
|
{
|
1050 |
|
|
struct inline_edge_summary *info;
|
1051 |
|
|
struct inline_edge_summary *srcinfo;
|
1052 |
|
|
inline_summary_alloc ();
|
1053 |
|
|
info = inline_edge_summary (dst);
|
1054 |
|
|
srcinfo = inline_edge_summary (src);
|
1055 |
|
|
memcpy (info, srcinfo,
|
1056 |
|
|
sizeof (struct inline_edge_summary));
|
1057 |
|
|
info->predicate = NULL;
|
1058 |
|
|
edge_set_predicate (dst, srcinfo->predicate);
|
1059 |
|
|
info->param = VEC_copy (inline_param_summary_t, heap, srcinfo->param);
|
1060 |
|
|
}
|
1061 |
|
|
|
1062 |
|
|
|
1063 |
|
|
/* Keep edge cache consistent across edge removal. */
|
1064 |
|
|
|
1065 |
|
|
static void
|
1066 |
|
|
inline_edge_removal_hook (struct cgraph_edge *edge, void *data ATTRIBUTE_UNUSED)
|
1067 |
|
|
{
|
1068 |
|
|
if (edge_growth_cache)
|
1069 |
|
|
reset_edge_growth_cache (edge);
|
1070 |
|
|
reset_inline_edge_summary (edge);
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
|
1074 |
|
|
/* Initialize growth caches. */
|
1075 |
|
|
|
1076 |
|
|
void
|
1077 |
|
|
initialize_growth_caches (void)
|
1078 |
|
|
{
|
1079 |
|
|
if (cgraph_edge_max_uid)
|
1080 |
|
|
VEC_safe_grow_cleared (edge_growth_cache_entry, heap, edge_growth_cache,
|
1081 |
|
|
cgraph_edge_max_uid);
|
1082 |
|
|
if (cgraph_max_uid)
|
1083 |
|
|
VEC_safe_grow_cleared (int, heap, node_growth_cache, cgraph_max_uid);
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
|
1087 |
|
|
/* Free growth caches. */
|
1088 |
|
|
|
1089 |
|
|
void
|
1090 |
|
|
free_growth_caches (void)
|
1091 |
|
|
{
|
1092 |
|
|
VEC_free (edge_growth_cache_entry, heap, edge_growth_cache);
|
1093 |
|
|
edge_growth_cache = 0;
|
1094 |
|
|
VEC_free (int, heap, node_growth_cache);
|
1095 |
|
|
node_growth_cache = 0;
|
1096 |
|
|
}
|
1097 |
|
|
|
1098 |
|
|
|
1099 |
|
|
/* Dump edge summaries associated to NODE and recursively to all clones.
|
1100 |
|
|
Indent by INDENT. */
|
1101 |
|
|
|
1102 |
|
|
static void
|
1103 |
|
|
dump_inline_edge_summary (FILE * f, int indent, struct cgraph_node *node,
|
1104 |
|
|
struct inline_summary *info)
|
1105 |
|
|
{
|
1106 |
|
|
struct cgraph_edge *edge;
|
1107 |
|
|
for (edge = node->callees; edge; edge = edge->next_callee)
|
1108 |
|
|
{
|
1109 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
1110 |
|
|
struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee, NULL);
|
1111 |
|
|
int i;
|
1112 |
|
|
|
1113 |
|
|
fprintf (f, "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i time: %2i callee size:%2i stack:%2i",
|
1114 |
|
|
indent, "", cgraph_node_name (callee),
|
1115 |
|
|
callee->uid,
|
1116 |
|
|
!edge->inline_failed ? "inlined"
|
1117 |
|
|
: cgraph_inline_failed_string (edge->inline_failed),
|
1118 |
|
|
indent, "",
|
1119 |
|
|
es->loop_depth,
|
1120 |
|
|
edge->frequency,
|
1121 |
|
|
es->call_stmt_size,
|
1122 |
|
|
es->call_stmt_time,
|
1123 |
|
|
(int)inline_summary (callee)->size / INLINE_SIZE_SCALE,
|
1124 |
|
|
(int)inline_summary (callee)->estimated_stack_size);
|
1125 |
|
|
|
1126 |
|
|
if (es->predicate)
|
1127 |
|
|
{
|
1128 |
|
|
fprintf (f, " predicate: ");
|
1129 |
|
|
dump_predicate (f, info->conds, es->predicate);
|
1130 |
|
|
}
|
1131 |
|
|
else
|
1132 |
|
|
fprintf (f, "\n");
|
1133 |
|
|
if (es->param)
|
1134 |
|
|
for (i = 0; i < (int)VEC_length (inline_param_summary_t, es->param);
|
1135 |
|
|
i++)
|
1136 |
|
|
{
|
1137 |
|
|
int prob = VEC_index (inline_param_summary_t,
|
1138 |
|
|
es->param, i)->change_prob;
|
1139 |
|
|
|
1140 |
|
|
if (!prob)
|
1141 |
|
|
fprintf (f, "%*s op%i is compile time invariant\n",
|
1142 |
|
|
indent + 2, "", i);
|
1143 |
|
|
else if (prob != REG_BR_PROB_BASE)
|
1144 |
|
|
fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
|
1145 |
|
|
prob * 100.0 / REG_BR_PROB_BASE);
|
1146 |
|
|
}
|
1147 |
|
|
if (!edge->inline_failed)
|
1148 |
|
|
{
|
1149 |
|
|
fprintf (f, "%*sStack frame offset %i, callee self size %i,"
|
1150 |
|
|
" callee size %i\n",
|
1151 |
|
|
indent+2, "",
|
1152 |
|
|
(int)inline_summary (callee)->stack_frame_offset,
|
1153 |
|
|
(int)inline_summary (callee)->estimated_self_stack_size,
|
1154 |
|
|
(int)inline_summary (callee)->estimated_stack_size);
|
1155 |
|
|
dump_inline_edge_summary (f, indent+2, callee, info);
|
1156 |
|
|
}
|
1157 |
|
|
}
|
1158 |
|
|
for (edge = node->indirect_calls; edge; edge = edge->next_callee)
|
1159 |
|
|
{
|
1160 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
1161 |
|
|
fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
|
1162 |
|
|
" time: %2i",
|
1163 |
|
|
indent, "",
|
1164 |
|
|
es->loop_depth,
|
1165 |
|
|
edge->frequency,
|
1166 |
|
|
es->call_stmt_size,
|
1167 |
|
|
es->call_stmt_time);
|
1168 |
|
|
if (es->predicate)
|
1169 |
|
|
{
|
1170 |
|
|
fprintf (f, "predicate: ");
|
1171 |
|
|
dump_predicate (f, info->conds, es->predicate);
|
1172 |
|
|
}
|
1173 |
|
|
else
|
1174 |
|
|
fprintf (f, "\n");
|
1175 |
|
|
}
|
1176 |
|
|
}
|
1177 |
|
|
|
1178 |
|
|
|
1179 |
|
|
void
|
1180 |
|
|
dump_inline_summary (FILE * f, struct cgraph_node *node)
|
1181 |
|
|
{
|
1182 |
|
|
if (node->analyzed)
|
1183 |
|
|
{
|
1184 |
|
|
struct inline_summary *s = inline_summary (node);
|
1185 |
|
|
size_time_entry *e;
|
1186 |
|
|
int i;
|
1187 |
|
|
fprintf (f, "Inline summary for %s/%i", cgraph_node_name (node),
|
1188 |
|
|
node->uid);
|
1189 |
|
|
if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
|
1190 |
|
|
fprintf (f, " always_inline");
|
1191 |
|
|
if (s->inlinable)
|
1192 |
|
|
fprintf (f, " inlinable");
|
1193 |
|
|
fprintf (f, "\n self time: %i\n",
|
1194 |
|
|
s->self_time);
|
1195 |
|
|
fprintf (f, " global time: %i\n", s->time);
|
1196 |
|
|
fprintf (f, " self size: %i\n",
|
1197 |
|
|
s->self_size);
|
1198 |
|
|
fprintf (f, " global size: %i\n", s->size);
|
1199 |
|
|
fprintf (f, " self stack: %i\n",
|
1200 |
|
|
(int) s->estimated_self_stack_size);
|
1201 |
|
|
fprintf (f, " global stack: %i\n",
|
1202 |
|
|
(int) s->estimated_stack_size);
|
1203 |
|
|
for (i = 0;
|
1204 |
|
|
VEC_iterate (size_time_entry, s->entry, i, e);
|
1205 |
|
|
i++)
|
1206 |
|
|
{
|
1207 |
|
|
fprintf (f, " size:%f, time:%f, predicate:",
|
1208 |
|
|
(double) e->size / INLINE_SIZE_SCALE,
|
1209 |
|
|
(double) e->time / INLINE_TIME_SCALE);
|
1210 |
|
|
dump_predicate (f, s->conds, &e->predicate);
|
1211 |
|
|
}
|
1212 |
|
|
fprintf (f, " calls:\n");
|
1213 |
|
|
dump_inline_edge_summary (f, 4, node, s);
|
1214 |
|
|
fprintf (f, "\n");
|
1215 |
|
|
}
|
1216 |
|
|
}
|
1217 |
|
|
|
1218 |
|
|
DEBUG_FUNCTION void
|
1219 |
|
|
debug_inline_summary (struct cgraph_node *node)
|
1220 |
|
|
{
|
1221 |
|
|
dump_inline_summary (stderr, node);
|
1222 |
|
|
}
|
1223 |
|
|
|
1224 |
|
|
void
|
1225 |
|
|
dump_inline_summaries (FILE *f)
|
1226 |
|
|
{
|
1227 |
|
|
struct cgraph_node *node;
|
1228 |
|
|
|
1229 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
1230 |
|
|
if (node->analyzed && !node->global.inlined_to)
|
1231 |
|
|
dump_inline_summary (f, node);
|
1232 |
|
|
}
|
1233 |
|
|
|
1234 |
|
|
/* Give initial reasons why inlining would fail on EDGE. This gets either
|
1235 |
|
|
nullified or usually overwritten by more precise reasons later. */
|
1236 |
|
|
|
1237 |
|
|
void
|
1238 |
|
|
initialize_inline_failed (struct cgraph_edge *e)
|
1239 |
|
|
{
|
1240 |
|
|
struct cgraph_node *callee = e->callee;
|
1241 |
|
|
|
1242 |
|
|
if (e->indirect_unknown_callee)
|
1243 |
|
|
e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
|
1244 |
|
|
else if (!callee->analyzed)
|
1245 |
|
|
e->inline_failed = CIF_BODY_NOT_AVAILABLE;
|
1246 |
|
|
else if (callee->local.redefined_extern_inline)
|
1247 |
|
|
e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
|
1248 |
|
|
else if (e->call_stmt_cannot_inline_p)
|
1249 |
|
|
e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
|
1250 |
|
|
else
|
1251 |
|
|
e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
|
1252 |
|
|
}
|
1253 |
|
|
|
1254 |
|
|
/* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
|
1255 |
|
|
boolean variable pointed to by DATA. */
|
1256 |
|
|
|
1257 |
|
|
static bool
|
1258 |
|
|
mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
|
1259 |
|
|
void *data)
|
1260 |
|
|
{
|
1261 |
|
|
bool *b = (bool *) data;
|
1262 |
|
|
*b = true;
|
1263 |
|
|
return true;
|
1264 |
|
|
}
|
1265 |
|
|
|
1266 |
|
|
/* If OP reffers to value of function parameter, return
|
1267 |
|
|
the corresponding parameter. */
|
1268 |
|
|
|
1269 |
|
|
static tree
|
1270 |
|
|
unmodified_parm (gimple stmt, tree op)
|
1271 |
|
|
{
|
1272 |
|
|
/* SSA_NAME referring to parm default def? */
|
1273 |
|
|
if (TREE_CODE (op) == SSA_NAME
|
1274 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (op)
|
1275 |
|
|
&& TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
|
1276 |
|
|
return SSA_NAME_VAR (op);
|
1277 |
|
|
/* Non-SSA parm reference? */
|
1278 |
|
|
if (TREE_CODE (op) == PARM_DECL)
|
1279 |
|
|
{
|
1280 |
|
|
bool modified = false;
|
1281 |
|
|
|
1282 |
|
|
ao_ref refd;
|
1283 |
|
|
ao_ref_init (&refd, op);
|
1284 |
|
|
walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
|
1285 |
|
|
NULL);
|
1286 |
|
|
if (!modified)
|
1287 |
|
|
return op;
|
1288 |
|
|
}
|
1289 |
|
|
/* Assignment from a parameter? */
|
1290 |
|
|
if (TREE_CODE (op) == SSA_NAME
|
1291 |
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (op)
|
1292 |
|
|
&& gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
|
1293 |
|
|
return unmodified_parm (SSA_NAME_DEF_STMT (op),
|
1294 |
|
|
gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)));
|
1295 |
|
|
return NULL;
|
1296 |
|
|
}
|
1297 |
|
|
|
1298 |
|
|
/* See if statement might disappear after inlining.
|
1299 |
|
|
|
1300 |
|
|
1 - half of statements goes away
|
1301 |
|
|
2 - for sure it is eliminated.
|
1302 |
|
|
We are not terribly sophisticated, basically looking for simple abstraction
|
1303 |
|
|
penalty wrappers. */
|
1304 |
|
|
|
1305 |
|
|
static int
|
1306 |
|
|
eliminated_by_inlining_prob (gimple stmt)
|
1307 |
|
|
{
|
1308 |
|
|
enum gimple_code code = gimple_code (stmt);
|
1309 |
|
|
|
1310 |
|
|
if (!optimize)
|
1311 |
|
|
return 0;
|
1312 |
|
|
|
1313 |
|
|
switch (code)
|
1314 |
|
|
{
|
1315 |
|
|
case GIMPLE_RETURN:
|
1316 |
|
|
return 2;
|
1317 |
|
|
case GIMPLE_ASSIGN:
|
1318 |
|
|
if (gimple_num_ops (stmt) != 2)
|
1319 |
|
|
return 0;
|
1320 |
|
|
|
1321 |
|
|
/* Casts of parameters, loads from parameters passed by reference
|
1322 |
|
|
and stores to return value or parameters are often free after
|
1323 |
|
|
inlining dua to SRA and further combining.
|
1324 |
|
|
Assume that half of statements goes away. */
|
1325 |
|
|
if (gimple_assign_rhs_code (stmt) == CONVERT_EXPR
|
1326 |
|
|
|| gimple_assign_rhs_code (stmt) == NOP_EXPR
|
1327 |
|
|
|| gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR
|
1328 |
|
|
|| gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
|
1329 |
|
|
{
|
1330 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
1331 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
1332 |
|
|
tree inner_rhs = get_base_address (rhs);
|
1333 |
|
|
tree inner_lhs = get_base_address (lhs);
|
1334 |
|
|
bool rhs_free = false;
|
1335 |
|
|
bool lhs_free = false;
|
1336 |
|
|
|
1337 |
|
|
if (!inner_rhs)
|
1338 |
|
|
inner_rhs = rhs;
|
1339 |
|
|
if (!inner_lhs)
|
1340 |
|
|
inner_lhs = lhs;
|
1341 |
|
|
|
1342 |
|
|
/* Reads of parameter are expected to be free. */
|
1343 |
|
|
if (unmodified_parm (stmt, inner_rhs))
|
1344 |
|
|
rhs_free = true;
|
1345 |
|
|
|
1346 |
|
|
/* When parameter is not SSA register because its address is taken
|
1347 |
|
|
and it is just copied into one, the statement will be completely
|
1348 |
|
|
free after inlining (we will copy propagate backward). */
|
1349 |
|
|
if (rhs_free && is_gimple_reg (lhs))
|
1350 |
|
|
return 2;
|
1351 |
|
|
|
1352 |
|
|
/* Reads of parameters passed by reference
|
1353 |
|
|
expected to be free (i.e. optimized out after inlining). */
|
1354 |
|
|
if (TREE_CODE(inner_rhs) == MEM_REF
|
1355 |
|
|
&& unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0)))
|
1356 |
|
|
rhs_free = true;
|
1357 |
|
|
|
1358 |
|
|
/* Copying parameter passed by reference into gimple register is
|
1359 |
|
|
probably also going to copy propagate, but we can't be quite
|
1360 |
|
|
sure. */
|
1361 |
|
|
if (rhs_free && is_gimple_reg (lhs))
|
1362 |
|
|
lhs_free = true;
|
1363 |
|
|
|
1364 |
|
|
/* Writes to parameters, parameters passed by value and return value
|
1365 |
|
|
(either dirrectly or passed via invisible reference) are free.
|
1366 |
|
|
|
1367 |
|
|
TODO: We ought to handle testcase like
|
1368 |
|
|
struct a {int a,b;};
|
1369 |
|
|
struct a
|
1370 |
|
|
retrurnsturct (void)
|
1371 |
|
|
{
|
1372 |
|
|
struct a a ={1,2};
|
1373 |
|
|
return a;
|
1374 |
|
|
}
|
1375 |
|
|
|
1376 |
|
|
This translate into:
|
1377 |
|
|
|
1378 |
|
|
retrurnsturct ()
|
1379 |
|
|
{
|
1380 |
|
|
int a$b;
|
1381 |
|
|
int a$a;
|
1382 |
|
|
struct a a;
|
1383 |
|
|
struct a D.2739;
|
1384 |
|
|
|
1385 |
|
|
<bb 2>:
|
1386 |
|
|
D.2739.a = 1;
|
1387 |
|
|
D.2739.b = 2;
|
1388 |
|
|
return D.2739;
|
1389 |
|
|
|
1390 |
|
|
}
|
1391 |
|
|
For that we either need to copy ipa-split logic detecting writes
|
1392 |
|
|
to return value. */
|
1393 |
|
|
if (TREE_CODE (inner_lhs) == PARM_DECL
|
1394 |
|
|
|| TREE_CODE (inner_lhs) == RESULT_DECL
|
1395 |
|
|
|| (TREE_CODE(inner_lhs) == MEM_REF
|
1396 |
|
|
&& (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0))
|
1397 |
|
|
|| (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
|
1398 |
|
|
&& TREE_CODE (SSA_NAME_VAR
|
1399 |
|
|
(TREE_OPERAND (inner_lhs, 0)))
|
1400 |
|
|
== RESULT_DECL))))
|
1401 |
|
|
lhs_free = true;
|
1402 |
|
|
if (lhs_free
|
1403 |
|
|
&& (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
|
1404 |
|
|
rhs_free = true;
|
1405 |
|
|
if (lhs_free && rhs_free)
|
1406 |
|
|
return 1;
|
1407 |
|
|
}
|
1408 |
|
|
return 0;
|
1409 |
|
|
default:
|
1410 |
|
|
return 0;
|
1411 |
|
|
}
|
1412 |
|
|
}
|
1413 |
|
|
|
1414 |
|
|
|
1415 |
|
|
/* If BB ends by a conditional we can turn into predicates, attach corresponding
|
1416 |
|
|
predicates to the CFG edges. */
|
1417 |
|
|
|
1418 |
|
|
static void
|
1419 |
|
|
set_cond_stmt_execution_predicate (struct ipa_node_params *info,
|
1420 |
|
|
struct inline_summary *summary,
|
1421 |
|
|
basic_block bb)
|
1422 |
|
|
{
|
1423 |
|
|
gimple last;
|
1424 |
|
|
tree op;
|
1425 |
|
|
int index;
|
1426 |
|
|
enum tree_code code, inverted_code;
|
1427 |
|
|
edge e;
|
1428 |
|
|
edge_iterator ei;
|
1429 |
|
|
gimple set_stmt;
|
1430 |
|
|
tree op2;
|
1431 |
|
|
tree parm;
|
1432 |
|
|
tree base;
|
1433 |
|
|
|
1434 |
|
|
last = last_stmt (bb);
|
1435 |
|
|
if (!last
|
1436 |
|
|
|| gimple_code (last) != GIMPLE_COND)
|
1437 |
|
|
return;
|
1438 |
|
|
if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
|
1439 |
|
|
return;
|
1440 |
|
|
op = gimple_cond_lhs (last);
|
1441 |
|
|
/* TODO: handle conditionals like
|
1442 |
|
|
var = op0 < 4;
|
1443 |
|
|
if (var != 0). */
|
1444 |
|
|
parm = unmodified_parm (last, op);
|
1445 |
|
|
if (parm)
|
1446 |
|
|
{
|
1447 |
|
|
index = ipa_get_param_decl_index (info, parm);
|
1448 |
|
|
if (index == -1)
|
1449 |
|
|
return;
|
1450 |
|
|
code = gimple_cond_code (last);
|
1451 |
|
|
inverted_code
|
1452 |
|
|
= invert_tree_comparison (code,
|
1453 |
|
|
HONOR_NANS (TYPE_MODE (TREE_TYPE (op))));
|
1454 |
|
|
|
1455 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1456 |
|
|
{
|
1457 |
|
|
struct predicate p = add_condition (summary,
|
1458 |
|
|
index,
|
1459 |
|
|
e->flags & EDGE_TRUE_VALUE
|
1460 |
|
|
? code : inverted_code,
|
1461 |
|
|
gimple_cond_rhs (last));
|
1462 |
|
|
e->aux = pool_alloc (edge_predicate_pool);
|
1463 |
|
|
*(struct predicate *)e->aux = p;
|
1464 |
|
|
}
|
1465 |
|
|
}
|
1466 |
|
|
|
1467 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
1468 |
|
|
return;
|
1469 |
|
|
/* Special case
|
1470 |
|
|
if (builtin_constant_p (op))
|
1471 |
|
|
constant_code
|
1472 |
|
|
else
|
1473 |
|
|
nonconstant_code.
|
1474 |
|
|
Here we can predicate nonconstant_code. We can't
|
1475 |
|
|
really handle constant_code since we have no predicate
|
1476 |
|
|
for this and also the constant code is not known to be
|
1477 |
|
|
optimized away when inliner doen't see operand is constant.
|
1478 |
|
|
Other optimizers might think otherwise. */
|
1479 |
|
|
set_stmt = SSA_NAME_DEF_STMT (op);
|
1480 |
|
|
if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
|
1481 |
|
|
|| gimple_call_num_args (set_stmt) != 1)
|
1482 |
|
|
return;
|
1483 |
|
|
op2 = gimple_call_arg (set_stmt, 0);
|
1484 |
|
|
base = get_base_address (op2);
|
1485 |
|
|
parm = unmodified_parm (set_stmt, base ? base : op2);
|
1486 |
|
|
if (!parm)
|
1487 |
|
|
return;
|
1488 |
|
|
index = ipa_get_param_decl_index (info, parm);
|
1489 |
|
|
if (index == -1)
|
1490 |
|
|
return;
|
1491 |
|
|
if (gimple_cond_code (last) != NE_EXPR
|
1492 |
|
|
|| !integer_zerop (gimple_cond_rhs (last)))
|
1493 |
|
|
return;
|
1494 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1495 |
|
|
if (e->flags & EDGE_FALSE_VALUE)
|
1496 |
|
|
{
|
1497 |
|
|
struct predicate p = add_condition (summary,
|
1498 |
|
|
index,
|
1499 |
|
|
IS_NOT_CONSTANT,
|
1500 |
|
|
NULL);
|
1501 |
|
|
e->aux = pool_alloc (edge_predicate_pool);
|
1502 |
|
|
*(struct predicate *)e->aux = p;
|
1503 |
|
|
}
|
1504 |
|
|
}
|
1505 |
|
|
|
1506 |
|
|
|
1507 |
|
|
/* If BB ends by a switch we can turn into predicates, attach corresponding
|
1508 |
|
|
predicates to the CFG edges. */
|
1509 |
|
|
|
1510 |
|
|
static void
|
1511 |
|
|
set_switch_stmt_execution_predicate (struct ipa_node_params *info,
|
1512 |
|
|
struct inline_summary *summary,
|
1513 |
|
|
basic_block bb)
|
1514 |
|
|
{
|
1515 |
|
|
gimple last;
|
1516 |
|
|
tree op;
|
1517 |
|
|
int index;
|
1518 |
|
|
edge e;
|
1519 |
|
|
edge_iterator ei;
|
1520 |
|
|
size_t n;
|
1521 |
|
|
size_t case_idx;
|
1522 |
|
|
tree parm;
|
1523 |
|
|
|
1524 |
|
|
last = last_stmt (bb);
|
1525 |
|
|
if (!last
|
1526 |
|
|
|| gimple_code (last) != GIMPLE_SWITCH)
|
1527 |
|
|
return;
|
1528 |
|
|
op = gimple_switch_index (last);
|
1529 |
|
|
parm = unmodified_parm (last, op);
|
1530 |
|
|
if (!parm)
|
1531 |
|
|
return;
|
1532 |
|
|
index = ipa_get_param_decl_index (info, parm);
|
1533 |
|
|
if (index == -1)
|
1534 |
|
|
return;
|
1535 |
|
|
|
1536 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1537 |
|
|
{
|
1538 |
|
|
e->aux = pool_alloc (edge_predicate_pool);
|
1539 |
|
|
*(struct predicate *)e->aux = false_predicate ();
|
1540 |
|
|
}
|
1541 |
|
|
n = gimple_switch_num_labels(last);
|
1542 |
|
|
for (case_idx = 0; case_idx < n; ++case_idx)
|
1543 |
|
|
{
|
1544 |
|
|
tree cl = gimple_switch_label (last, case_idx);
|
1545 |
|
|
tree min, max;
|
1546 |
|
|
struct predicate p;
|
1547 |
|
|
|
1548 |
|
|
e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
|
1549 |
|
|
min = CASE_LOW (cl);
|
1550 |
|
|
max = CASE_HIGH (cl);
|
1551 |
|
|
|
1552 |
|
|
/* For default we might want to construct predicate that none
|
1553 |
|
|
of cases is met, but it is bit hard to do not having negations
|
1554 |
|
|
of conditionals handy. */
|
1555 |
|
|
if (!min && !max)
|
1556 |
|
|
p = true_predicate ();
|
1557 |
|
|
else if (!max)
|
1558 |
|
|
p = add_condition (summary, index,
|
1559 |
|
|
EQ_EXPR,
|
1560 |
|
|
min);
|
1561 |
|
|
else
|
1562 |
|
|
{
|
1563 |
|
|
struct predicate p1, p2;
|
1564 |
|
|
p1 = add_condition (summary, index,
|
1565 |
|
|
GE_EXPR,
|
1566 |
|
|
min);
|
1567 |
|
|
p2 = add_condition (summary, index,
|
1568 |
|
|
LE_EXPR,
|
1569 |
|
|
max);
|
1570 |
|
|
p = and_predicates (summary->conds, &p1, &p2);
|
1571 |
|
|
}
|
1572 |
|
|
*(struct predicate *)e->aux
|
1573 |
|
|
= or_predicates (summary->conds, &p, (struct predicate *)e->aux);
|
1574 |
|
|
}
|
1575 |
|
|
}
|
1576 |
|
|
|
1577 |
|
|
|
1578 |
|
|
/* For each BB in NODE attach to its AUX pointer predicate under
|
1579 |
|
|
which it is executable. */
|
1580 |
|
|
|
1581 |
|
|
static void
|
1582 |
|
|
compute_bb_predicates (struct cgraph_node *node,
|
1583 |
|
|
struct ipa_node_params *parms_info,
|
1584 |
|
|
struct inline_summary *summary)
|
1585 |
|
|
{
|
1586 |
|
|
struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
|
1587 |
|
|
bool done = false;
|
1588 |
|
|
basic_block bb;
|
1589 |
|
|
|
1590 |
|
|
FOR_EACH_BB_FN (bb, my_function)
|
1591 |
|
|
{
|
1592 |
|
|
set_cond_stmt_execution_predicate (parms_info, summary, bb);
|
1593 |
|
|
set_switch_stmt_execution_predicate (parms_info, summary, bb);
|
1594 |
|
|
}
|
1595 |
|
|
|
1596 |
|
|
/* Entry block is always executable. */
|
1597 |
|
|
ENTRY_BLOCK_PTR_FOR_FUNCTION (my_function)->aux
|
1598 |
|
|
= pool_alloc (edge_predicate_pool);
|
1599 |
|
|
*(struct predicate *)ENTRY_BLOCK_PTR_FOR_FUNCTION (my_function)->aux
|
1600 |
|
|
= true_predicate ();
|
1601 |
|
|
|
1602 |
|
|
/* A simple dataflow propagation of predicates forward in the CFG.
|
1603 |
|
|
TODO: work in reverse postorder. */
|
1604 |
|
|
while (!done)
|
1605 |
|
|
{
|
1606 |
|
|
done = true;
|
1607 |
|
|
FOR_EACH_BB_FN (bb, my_function)
|
1608 |
|
|
{
|
1609 |
|
|
struct predicate p = false_predicate ();
|
1610 |
|
|
edge e;
|
1611 |
|
|
edge_iterator ei;
|
1612 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1613 |
|
|
{
|
1614 |
|
|
if (e->src->aux)
|
1615 |
|
|
{
|
1616 |
|
|
struct predicate this_bb_predicate
|
1617 |
|
|
= *(struct predicate *)e->src->aux;
|
1618 |
|
|
if (e->aux)
|
1619 |
|
|
this_bb_predicate
|
1620 |
|
|
= and_predicates (summary->conds, &this_bb_predicate,
|
1621 |
|
|
(struct predicate *)e->aux);
|
1622 |
|
|
p = or_predicates (summary->conds, &p, &this_bb_predicate);
|
1623 |
|
|
if (true_predicate_p (&p))
|
1624 |
|
|
break;
|
1625 |
|
|
}
|
1626 |
|
|
}
|
1627 |
|
|
if (false_predicate_p (&p))
|
1628 |
|
|
gcc_assert (!bb->aux);
|
1629 |
|
|
else
|
1630 |
|
|
{
|
1631 |
|
|
if (!bb->aux)
|
1632 |
|
|
{
|
1633 |
|
|
done = false;
|
1634 |
|
|
bb->aux = pool_alloc (edge_predicate_pool);
|
1635 |
|
|
*((struct predicate *)bb->aux) = p;
|
1636 |
|
|
}
|
1637 |
|
|
else if (!predicates_equal_p (&p, (struct predicate *)bb->aux))
|
1638 |
|
|
{
|
1639 |
|
|
done = false;
|
1640 |
|
|
*((struct predicate *)bb->aux) = p;
|
1641 |
|
|
}
|
1642 |
|
|
}
|
1643 |
|
|
}
|
1644 |
|
|
}
|
1645 |
|
|
}
|
1646 |
|
|
|
1647 |
|
|
|
1648 |
|
|
/* We keep info about constantness of SSA names. */
|
1649 |
|
|
|
1650 |
|
|
typedef struct predicate predicate_t;
|
1651 |
|
|
DEF_VEC_O (predicate_t);
|
1652 |
|
|
DEF_VEC_ALLOC_O (predicate_t, heap);
|
1653 |
|
|
|
1654 |
|
|
|
1655 |
|
|
/* Return predicate specifying when the STMT might have result that is not
|
1656 |
|
|
a compile time constant. */
|
1657 |
|
|
|
1658 |
|
|
static struct predicate
|
1659 |
|
|
will_be_nonconstant_predicate (struct ipa_node_params *info,
|
1660 |
|
|
struct inline_summary *summary,
|
1661 |
|
|
gimple stmt,
|
1662 |
|
|
VEC (predicate_t, heap) *nonconstant_names)
|
1663 |
|
|
|
1664 |
|
|
{
|
1665 |
|
|
struct predicate p = true_predicate ();
|
1666 |
|
|
ssa_op_iter iter;
|
1667 |
|
|
tree use;
|
1668 |
|
|
struct predicate op_non_const;
|
1669 |
|
|
bool is_load;
|
1670 |
|
|
|
1671 |
|
|
/* What statments might be optimized away
|
1672 |
|
|
when their arguments are constant
|
1673 |
|
|
TODO: also trivial builtins.
|
1674 |
|
|
builtin_constant_p is already handled later. */
|
1675 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN
|
1676 |
|
|
&& gimple_code (stmt) != GIMPLE_COND
|
1677 |
|
|
&& gimple_code (stmt) != GIMPLE_SWITCH)
|
1678 |
|
|
return p;
|
1679 |
|
|
|
1680 |
|
|
/* Stores will stay anyway. */
|
1681 |
|
|
if (gimple_vdef (stmt))
|
1682 |
|
|
return p;
|
1683 |
|
|
|
1684 |
|
|
is_load = gimple_vuse (stmt) != NULL;
|
1685 |
|
|
|
1686 |
|
|
/* Loads can be optimized when the value is known. */
|
1687 |
|
|
if (is_load)
|
1688 |
|
|
{
|
1689 |
|
|
tree op = gimple_assign_rhs1 (stmt);
|
1690 |
|
|
tree base = get_base_address (op);
|
1691 |
|
|
tree parm;
|
1692 |
|
|
|
1693 |
|
|
gcc_assert (gimple_assign_single_p (stmt));
|
1694 |
|
|
if (!base)
|
1695 |
|
|
return p;
|
1696 |
|
|
parm = unmodified_parm (stmt, base);
|
1697 |
|
|
if (!parm )
|
1698 |
|
|
return p;
|
1699 |
|
|
if (ipa_get_param_decl_index (info, parm) < 0)
|
1700 |
|
|
return p;
|
1701 |
|
|
}
|
1702 |
|
|
|
1703 |
|
|
/* See if we understand all operands before we start
|
1704 |
|
|
adding conditionals. */
|
1705 |
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
1706 |
|
|
{
|
1707 |
|
|
tree parm = unmodified_parm (stmt, use);
|
1708 |
|
|
/* For arguments we can build a condition. */
|
1709 |
|
|
if (parm && ipa_get_param_decl_index (info, parm) >= 0)
|
1710 |
|
|
continue;
|
1711 |
|
|
if (TREE_CODE (use) != SSA_NAME)
|
1712 |
|
|
return p;
|
1713 |
|
|
/* If we know when operand is constant,
|
1714 |
|
|
we still can say something useful. */
|
1715 |
|
|
if (!true_predicate_p (VEC_index (predicate_t, nonconstant_names,
|
1716 |
|
|
SSA_NAME_VERSION (use))))
|
1717 |
|
|
continue;
|
1718 |
|
|
return p;
|
1719 |
|
|
}
|
1720 |
|
|
op_non_const = false_predicate ();
|
1721 |
|
|
if (is_load)
|
1722 |
|
|
{
|
1723 |
|
|
tree parm = unmodified_parm
|
1724 |
|
|
(stmt, get_base_address (gimple_assign_rhs1 (stmt)));
|
1725 |
|
|
p = add_condition (summary,
|
1726 |
|
|
ipa_get_param_decl_index (info, parm),
|
1727 |
|
|
CHANGED, NULL);
|
1728 |
|
|
op_non_const = or_predicates (summary->conds, &p, &op_non_const);
|
1729 |
|
|
}
|
1730 |
|
|
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
1731 |
|
|
{
|
1732 |
|
|
tree parm = unmodified_parm (stmt, use);
|
1733 |
|
|
if (parm && ipa_get_param_decl_index (info, parm) >= 0)
|
1734 |
|
|
p = add_condition (summary,
|
1735 |
|
|
ipa_get_param_decl_index (info, parm),
|
1736 |
|
|
CHANGED, NULL);
|
1737 |
|
|
else
|
1738 |
|
|
p = *VEC_index (predicate_t, nonconstant_names,
|
1739 |
|
|
SSA_NAME_VERSION (use));
|
1740 |
|
|
op_non_const = or_predicates (summary->conds, &p, &op_non_const);
|
1741 |
|
|
}
|
1742 |
|
|
if (gimple_code (stmt) == GIMPLE_ASSIGN
|
1743 |
|
|
&& TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
|
1744 |
|
|
VEC_replace (predicate_t, nonconstant_names,
|
1745 |
|
|
SSA_NAME_VERSION (gimple_assign_lhs (stmt)), &op_non_const);
|
1746 |
|
|
return op_non_const;
|
1747 |
|
|
}
|
1748 |
|
|
|
1749 |
|
|
struct record_modified_bb_info
|
1750 |
|
|
{
|
1751 |
|
|
bitmap bb_set;
|
1752 |
|
|
gimple stmt;
|
1753 |
|
|
};
|
1754 |
|
|
|
1755 |
|
|
/* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
|
1756 |
|
|
set except for info->stmt. */
|
1757 |
|
|
|
1758 |
|
|
static bool
|
1759 |
|
|
record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef,
|
1760 |
|
|
void *data)
|
1761 |
|
|
{
|
1762 |
|
|
struct record_modified_bb_info *info = (struct record_modified_bb_info *) data;
|
1763 |
|
|
if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
|
1764 |
|
|
return false;
|
1765 |
|
|
bitmap_set_bit (info->bb_set,
|
1766 |
|
|
SSA_NAME_IS_DEFAULT_DEF (vdef)
|
1767 |
|
|
? ENTRY_BLOCK_PTR->index : gimple_bb (SSA_NAME_DEF_STMT (vdef))->index);
|
1768 |
|
|
return false;
|
1769 |
|
|
}
|
1770 |
|
|
|
1771 |
|
|
/* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
|
1772 |
|
|
will change since last invocation of STMT.
|
1773 |
|
|
|
1774 |
|
|
Value 0 is reserved for compile time invariants.
|
1775 |
|
|
For common parameters it is REG_BR_PROB_BASE. For loop invariants it
|
1776 |
|
|
ought to be REG_BR_PROB_BASE / estimated_iters. */
|
1777 |
|
|
|
1778 |
|
|
static int
|
1779 |
|
|
param_change_prob (gimple stmt, int i)
|
1780 |
|
|
{
|
1781 |
|
|
tree op = gimple_call_arg (stmt, i);
|
1782 |
|
|
basic_block bb = gimple_bb (stmt);
|
1783 |
|
|
tree base;
|
1784 |
|
|
|
1785 |
|
|
if (is_gimple_min_invariant (op))
|
1786 |
|
|
return 0;
|
1787 |
|
|
/* We would have to do non-trivial analysis to really work out what
|
1788 |
|
|
is the probability of value to change (i.e. when init statement
|
1789 |
|
|
is in a sibling loop of the call).
|
1790 |
|
|
|
1791 |
|
|
We do an conservative estimate: when call is executed N times more often
|
1792 |
|
|
than the statement defining value, we take the frequency 1/N. */
|
1793 |
|
|
if (TREE_CODE (op) == SSA_NAME)
|
1794 |
|
|
{
|
1795 |
|
|
int init_freq;
|
1796 |
|
|
|
1797 |
|
|
if (!bb->frequency)
|
1798 |
|
|
return REG_BR_PROB_BASE;
|
1799 |
|
|
|
1800 |
|
|
if (SSA_NAME_IS_DEFAULT_DEF (op))
|
1801 |
|
|
init_freq = ENTRY_BLOCK_PTR->frequency;
|
1802 |
|
|
else
|
1803 |
|
|
init_freq = gimple_bb (SSA_NAME_DEF_STMT (op))->frequency;
|
1804 |
|
|
|
1805 |
|
|
if (!init_freq)
|
1806 |
|
|
init_freq = 1;
|
1807 |
|
|
if (init_freq < bb->frequency)
|
1808 |
|
|
return MAX ((init_freq * REG_BR_PROB_BASE +
|
1809 |
|
|
bb->frequency / 2) / bb->frequency, 1);
|
1810 |
|
|
else
|
1811 |
|
|
return REG_BR_PROB_BASE;
|
1812 |
|
|
}
|
1813 |
|
|
|
1814 |
|
|
base = get_base_address (op);
|
1815 |
|
|
if (base)
|
1816 |
|
|
{
|
1817 |
|
|
ao_ref refd;
|
1818 |
|
|
int max;
|
1819 |
|
|
struct record_modified_bb_info info;
|
1820 |
|
|
bitmap_iterator bi;
|
1821 |
|
|
unsigned index;
|
1822 |
|
|
|
1823 |
|
|
if (const_value_known_p (base))
|
1824 |
|
|
return 0;
|
1825 |
|
|
if (!bb->frequency)
|
1826 |
|
|
return REG_BR_PROB_BASE;
|
1827 |
|
|
ao_ref_init (&refd, op);
|
1828 |
|
|
info.stmt = stmt;
|
1829 |
|
|
info.bb_set = BITMAP_ALLOC (NULL);
|
1830 |
|
|
walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
|
1831 |
|
|
NULL);
|
1832 |
|
|
if (bitmap_bit_p (info.bb_set, bb->index))
|
1833 |
|
|
{
|
1834 |
|
|
BITMAP_FREE (info.bb_set);
|
1835 |
|
|
return REG_BR_PROB_BASE;
|
1836 |
|
|
}
|
1837 |
|
|
|
1838 |
|
|
/* Assume that every memory is initialized at entry.
|
1839 |
|
|
TODO: Can we easilly determine if value is always defined
|
1840 |
|
|
and thus we may skip entry block? */
|
1841 |
|
|
if (ENTRY_BLOCK_PTR->frequency)
|
1842 |
|
|
max = ENTRY_BLOCK_PTR->frequency;
|
1843 |
|
|
else
|
1844 |
|
|
max = 1;
|
1845 |
|
|
|
1846 |
|
|
EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
|
1847 |
|
|
max = MIN (max, BASIC_BLOCK (index)->frequency);
|
1848 |
|
|
|
1849 |
|
|
BITMAP_FREE (info.bb_set);
|
1850 |
|
|
if (max < bb->frequency)
|
1851 |
|
|
return MAX ((max * REG_BR_PROB_BASE +
|
1852 |
|
|
bb->frequency / 2) / bb->frequency, 1);
|
1853 |
|
|
else
|
1854 |
|
|
return REG_BR_PROB_BASE;
|
1855 |
|
|
}
|
1856 |
|
|
return REG_BR_PROB_BASE;
|
1857 |
|
|
}
|
1858 |
|
|
|
1859 |
|
|
|
1860 |
|
|
/* Compute function body size parameters for NODE.
|
1861 |
|
|
When EARLY is true, we compute only simple summaries without
|
1862 |
|
|
non-trivial predicates to drive the early inliner. */
|
1863 |
|
|
|
1864 |
|
|
static void
|
1865 |
|
|
estimate_function_body_sizes (struct cgraph_node *node, bool early)
|
1866 |
|
|
{
|
1867 |
|
|
gcov_type time = 0;
|
1868 |
|
|
/* Estimate static overhead for function prologue/epilogue and alignment. */
|
1869 |
|
|
int size = 2;
|
1870 |
|
|
/* Benefits are scaled by probability of elimination that is in range
|
1871 |
|
|
<0,2>. */
|
1872 |
|
|
basic_block bb;
|
1873 |
|
|
gimple_stmt_iterator bsi;
|
1874 |
|
|
struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
|
1875 |
|
|
int freq;
|
1876 |
|
|
struct inline_summary *info = inline_summary (node);
|
1877 |
|
|
struct predicate bb_predicate;
|
1878 |
|
|
struct ipa_node_params *parms_info = NULL;
|
1879 |
|
|
VEC (predicate_t, heap) *nonconstant_names = NULL;
|
1880 |
|
|
|
1881 |
|
|
if (ipa_node_params_vector && !early && optimize)
|
1882 |
|
|
{
|
1883 |
|
|
parms_info = IPA_NODE_REF (node);
|
1884 |
|
|
VEC_safe_grow_cleared (predicate_t, heap, nonconstant_names,
|
1885 |
|
|
VEC_length (tree, SSANAMES (my_function)));
|
1886 |
|
|
}
|
1887 |
|
|
|
1888 |
|
|
info->conds = 0;
|
1889 |
|
|
info->entry = 0;
|
1890 |
|
|
|
1891 |
|
|
|
1892 |
|
|
if (dump_file)
|
1893 |
|
|
fprintf (dump_file, "\nAnalyzing function body size: %s\n",
|
1894 |
|
|
cgraph_node_name (node));
|
1895 |
|
|
|
1896 |
|
|
/* When we run into maximal number of entries, we assign everything to the
|
1897 |
|
|
constant truth case. Be sure to have it in list. */
|
1898 |
|
|
bb_predicate = true_predicate ();
|
1899 |
|
|
account_size_time (info, 0, 0, &bb_predicate);
|
1900 |
|
|
|
1901 |
|
|
bb_predicate = not_inlined_predicate ();
|
1902 |
|
|
account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
|
1903 |
|
|
|
1904 |
|
|
gcc_assert (my_function && my_function->cfg);
|
1905 |
|
|
if (parms_info)
|
1906 |
|
|
compute_bb_predicates (node, parms_info, info);
|
1907 |
|
|
FOR_EACH_BB_FN (bb, my_function)
|
1908 |
|
|
{
|
1909 |
|
|
freq = compute_call_stmt_bb_frequency (node->decl, bb);
|
1910 |
|
|
|
1911 |
|
|
/* TODO: Obviously predicates can be propagated down across CFG. */
|
1912 |
|
|
if (parms_info)
|
1913 |
|
|
{
|
1914 |
|
|
if (bb->aux)
|
1915 |
|
|
bb_predicate = *(struct predicate *)bb->aux;
|
1916 |
|
|
else
|
1917 |
|
|
bb_predicate = false_predicate ();
|
1918 |
|
|
}
|
1919 |
|
|
else
|
1920 |
|
|
bb_predicate = true_predicate ();
|
1921 |
|
|
|
1922 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1923 |
|
|
{
|
1924 |
|
|
fprintf (dump_file, "\n BB %i predicate:", bb->index);
|
1925 |
|
|
dump_predicate (dump_file, info->conds, &bb_predicate);
|
1926 |
|
|
}
|
1927 |
|
|
|
1928 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
1929 |
|
|
{
|
1930 |
|
|
gimple stmt = gsi_stmt (bsi);
|
1931 |
|
|
int this_size = estimate_num_insns (stmt, &eni_size_weights);
|
1932 |
|
|
int this_time = estimate_num_insns (stmt, &eni_time_weights);
|
1933 |
|
|
int prob;
|
1934 |
|
|
struct predicate will_be_nonconstant;
|
1935 |
|
|
|
1936 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1937 |
|
|
{
|
1938 |
|
|
fprintf (dump_file, " ");
|
1939 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1940 |
|
|
fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
|
1941 |
|
|
((double)freq)/CGRAPH_FREQ_BASE, this_size, this_time);
|
1942 |
|
|
}
|
1943 |
|
|
|
1944 |
|
|
if (is_gimple_call (stmt))
|
1945 |
|
|
{
|
1946 |
|
|
struct cgraph_edge *edge = cgraph_edge (node, stmt);
|
1947 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
1948 |
|
|
|
1949 |
|
|
/* Special case: results of BUILT_IN_CONSTANT_P will be always
|
1950 |
|
|
resolved as constant. We however don't want to optimize
|
1951 |
|
|
out the cgraph edges. */
|
1952 |
|
|
if (nonconstant_names
|
1953 |
|
|
&& gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
|
1954 |
|
|
&& gimple_call_lhs (stmt)
|
1955 |
|
|
&& TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
|
1956 |
|
|
{
|
1957 |
|
|
struct predicate false_p = false_predicate ();
|
1958 |
|
|
VEC_replace (predicate_t, nonconstant_names,
|
1959 |
|
|
SSA_NAME_VERSION (gimple_call_lhs (stmt)),
|
1960 |
|
|
&false_p);
|
1961 |
|
|
}
|
1962 |
|
|
if (ipa_node_params_vector)
|
1963 |
|
|
{
|
1964 |
|
|
int count = gimple_call_num_args (stmt);
|
1965 |
|
|
int i;
|
1966 |
|
|
|
1967 |
|
|
if (count)
|
1968 |
|
|
VEC_safe_grow_cleared (inline_param_summary_t, heap,
|
1969 |
|
|
es->param, count);
|
1970 |
|
|
for (i = 0; i < count; i++)
|
1971 |
|
|
{
|
1972 |
|
|
int prob = param_change_prob (stmt, i);
|
1973 |
|
|
gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
|
1974 |
|
|
VEC_index (inline_param_summary_t,
|
1975 |
|
|
es->param, i)->change_prob = prob;
|
1976 |
|
|
}
|
1977 |
|
|
}
|
1978 |
|
|
|
1979 |
|
|
es->call_stmt_size = this_size;
|
1980 |
|
|
es->call_stmt_time = this_time;
|
1981 |
|
|
es->loop_depth = bb->loop_depth;
|
1982 |
|
|
edge_set_predicate (edge, &bb_predicate);
|
1983 |
|
|
}
|
1984 |
|
|
|
1985 |
|
|
/* TODO: When conditional jump or swithc is known to be constant, but
|
1986 |
|
|
we did not translate it into the predicates, we really can account
|
1987 |
|
|
just maximum of the possible paths. */
|
1988 |
|
|
if (parms_info)
|
1989 |
|
|
will_be_nonconstant
|
1990 |
|
|
= will_be_nonconstant_predicate (parms_info, info,
|
1991 |
|
|
stmt, nonconstant_names);
|
1992 |
|
|
if (this_time || this_size)
|
1993 |
|
|
{
|
1994 |
|
|
struct predicate p;
|
1995 |
|
|
|
1996 |
|
|
this_time *= freq;
|
1997 |
|
|
time += this_time;
|
1998 |
|
|
size += this_size;
|
1999 |
|
|
|
2000 |
|
|
prob = eliminated_by_inlining_prob (stmt);
|
2001 |
|
|
if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
|
2002 |
|
|
fprintf (dump_file, "\t\t50%% will be eliminated by inlining\n");
|
2003 |
|
|
if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
|
2004 |
|
|
fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
|
2005 |
|
|
|
2006 |
|
|
if (parms_info)
|
2007 |
|
|
p = and_predicates (info->conds, &bb_predicate,
|
2008 |
|
|
&will_be_nonconstant);
|
2009 |
|
|
else
|
2010 |
|
|
p = true_predicate ();
|
2011 |
|
|
|
2012 |
|
|
/* We account everything but the calls. Calls have their own
|
2013 |
|
|
size/time info attached to cgraph edges. This is neccesary
|
2014 |
|
|
in order to make the cost disappear after inlining. */
|
2015 |
|
|
if (!is_gimple_call (stmt))
|
2016 |
|
|
{
|
2017 |
|
|
if (prob)
|
2018 |
|
|
{
|
2019 |
|
|
struct predicate ip = not_inlined_predicate ();
|
2020 |
|
|
ip = and_predicates (info->conds, &ip, &p);
|
2021 |
|
|
account_size_time (info, this_size * prob,
|
2022 |
|
|
this_time * prob, &ip);
|
2023 |
|
|
}
|
2024 |
|
|
if (prob != 2)
|
2025 |
|
|
account_size_time (info, this_size * (2 - prob),
|
2026 |
|
|
this_time * (2 - prob), &p);
|
2027 |
|
|
}
|
2028 |
|
|
|
2029 |
|
|
gcc_assert (time >= 0);
|
2030 |
|
|
gcc_assert (size >= 0);
|
2031 |
|
|
}
|
2032 |
|
|
}
|
2033 |
|
|
}
|
2034 |
|
|
FOR_ALL_BB_FN (bb, my_function)
|
2035 |
|
|
{
|
2036 |
|
|
edge e;
|
2037 |
|
|
edge_iterator ei;
|
2038 |
|
|
|
2039 |
|
|
if (bb->aux)
|
2040 |
|
|
pool_free (edge_predicate_pool, bb->aux);
|
2041 |
|
|
bb->aux = NULL;
|
2042 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2043 |
|
|
{
|
2044 |
|
|
if (e->aux)
|
2045 |
|
|
pool_free (edge_predicate_pool, e->aux);
|
2046 |
|
|
e->aux = NULL;
|
2047 |
|
|
}
|
2048 |
|
|
}
|
2049 |
|
|
time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
|
2050 |
|
|
if (time > MAX_TIME)
|
2051 |
|
|
time = MAX_TIME;
|
2052 |
|
|
inline_summary (node)->self_time = time;
|
2053 |
|
|
inline_summary (node)->self_size = size;
|
2054 |
|
|
VEC_free (predicate_t, heap, nonconstant_names);
|
2055 |
|
|
if (dump_file)
|
2056 |
|
|
{
|
2057 |
|
|
fprintf (dump_file, "\n");
|
2058 |
|
|
dump_inline_summary (dump_file, node);
|
2059 |
|
|
}
|
2060 |
|
|
}
|
2061 |
|
|
|
2062 |
|
|
|
2063 |
|
|
/* Compute parameters of functions used by inliner.
|
2064 |
|
|
EARLY is true when we compute parameters for the early inliner */
|
2065 |
|
|
|
2066 |
|
|
void
|
2067 |
|
|
compute_inline_parameters (struct cgraph_node *node, bool early)
|
2068 |
|
|
{
|
2069 |
|
|
HOST_WIDE_INT self_stack_size;
|
2070 |
|
|
struct cgraph_edge *e;
|
2071 |
|
|
struct inline_summary *info;
|
2072 |
|
|
tree old_decl = current_function_decl;
|
2073 |
|
|
|
2074 |
|
|
gcc_assert (!node->global.inlined_to);
|
2075 |
|
|
|
2076 |
|
|
inline_summary_alloc ();
|
2077 |
|
|
|
2078 |
|
|
info = inline_summary (node);
|
2079 |
|
|
reset_inline_summary (node);
|
2080 |
|
|
|
2081 |
|
|
/* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
|
2082 |
|
|
Once this happen, we will need to more curefully predict call
|
2083 |
|
|
statement size. */
|
2084 |
|
|
if (node->thunk.thunk_p)
|
2085 |
|
|
{
|
2086 |
|
|
struct inline_edge_summary *es = inline_edge_summary (node->callees);
|
2087 |
|
|
struct predicate t = true_predicate ();
|
2088 |
|
|
|
2089 |
|
|
info->inlinable = 0;
|
2090 |
|
|
node->callees->call_stmt_cannot_inline_p = true;
|
2091 |
|
|
node->local.can_change_signature = false;
|
2092 |
|
|
es->call_stmt_time = 1;
|
2093 |
|
|
es->call_stmt_size = 1;
|
2094 |
|
|
account_size_time (info, 0, 0, &t);
|
2095 |
|
|
return;
|
2096 |
|
|
}
|
2097 |
|
|
|
2098 |
|
|
/* Even is_gimple_min_invariant rely on current_function_decl. */
|
2099 |
|
|
current_function_decl = node->decl;
|
2100 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
2101 |
|
|
|
2102 |
|
|
/* Estimate the stack size for the function if we're optimizing. */
|
2103 |
|
|
self_stack_size = optimize ? estimated_stack_frame_size (node) : 0;
|
2104 |
|
|
info->estimated_self_stack_size = self_stack_size;
|
2105 |
|
|
info->estimated_stack_size = self_stack_size;
|
2106 |
|
|
info->stack_frame_offset = 0;
|
2107 |
|
|
|
2108 |
|
|
/* Can this function be inlined at all? */
|
2109 |
|
|
info->inlinable = tree_inlinable_function_p (node->decl);
|
2110 |
|
|
|
2111 |
|
|
/* Type attributes can use parameter indices to describe them. */
|
2112 |
|
|
if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
|
2113 |
|
|
node->local.can_change_signature = false;
|
2114 |
|
|
else
|
2115 |
|
|
{
|
2116 |
|
|
/* Otherwise, inlinable functions always can change signature. */
|
2117 |
|
|
if (info->inlinable)
|
2118 |
|
|
node->local.can_change_signature = true;
|
2119 |
|
|
else
|
2120 |
|
|
{
|
2121 |
|
|
/* Functions calling builtin_apply can not change signature. */
|
2122 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
2123 |
|
|
{
|
2124 |
|
|
tree cdecl = e->callee->decl;
|
2125 |
|
|
if (DECL_BUILT_IN (cdecl)
|
2126 |
|
|
&& DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
|
2127 |
|
|
&& (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
|
2128 |
|
|
|| DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
|
2129 |
|
|
break;
|
2130 |
|
|
}
|
2131 |
|
|
node->local.can_change_signature = !e;
|
2132 |
|
|
}
|
2133 |
|
|
}
|
2134 |
|
|
estimate_function_body_sizes (node, early);
|
2135 |
|
|
|
2136 |
|
|
/* Inlining characteristics are maintained by the cgraph_mark_inline. */
|
2137 |
|
|
info->time = info->self_time;
|
2138 |
|
|
info->size = info->self_size;
|
2139 |
|
|
info->stack_frame_offset = 0;
|
2140 |
|
|
info->estimated_stack_size = info->estimated_self_stack_size;
|
2141 |
|
|
current_function_decl = old_decl;
|
2142 |
|
|
pop_cfun ();
|
2143 |
|
|
}
|
2144 |
|
|
|
2145 |
|
|
|
2146 |
|
|
/* Compute parameters of functions used by inliner using
|
2147 |
|
|
current_function_decl. */
|
2148 |
|
|
|
2149 |
|
|
static unsigned int
|
2150 |
|
|
compute_inline_parameters_for_current (void)
|
2151 |
|
|
{
|
2152 |
|
|
compute_inline_parameters (cgraph_get_node (current_function_decl), true);
|
2153 |
|
|
return 0;
|
2154 |
|
|
}
|
2155 |
|
|
|
2156 |
|
|
struct gimple_opt_pass pass_inline_parameters =
|
2157 |
|
|
{
|
2158 |
|
|
{
|
2159 |
|
|
GIMPLE_PASS,
|
2160 |
|
|
"inline_param", /* name */
|
2161 |
|
|
NULL, /* gate */
|
2162 |
|
|
compute_inline_parameters_for_current,/* execute */
|
2163 |
|
|
NULL, /* sub */
|
2164 |
|
|
NULL, /* next */
|
2165 |
|
|
0, /* static_pass_number */
|
2166 |
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
2167 |
|
|
0, /* properties_required */
|
2168 |
|
|
0, /* properties_provided */
|
2169 |
|
|
0, /* properties_destroyed */
|
2170 |
|
|
0, /* todo_flags_start */
|
2171 |
|
|
|
2172 |
|
|
}
|
2173 |
|
|
};
|
2174 |
|
|
|
2175 |
|
|
|
2176 |
|
|
/* Increase SIZE and TIME for size and time needed to handle edge E. */
|
2177 |
|
|
|
2178 |
|
|
static void
|
2179 |
|
|
estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *time,
|
2180 |
|
|
int prob)
|
2181 |
|
|
{
|
2182 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
2183 |
|
|
*size += es->call_stmt_size * INLINE_SIZE_SCALE;
|
2184 |
|
|
*time += (es->call_stmt_time * prob / REG_BR_PROB_BASE
|
2185 |
|
|
* e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE));
|
2186 |
|
|
if (*time > MAX_TIME * INLINE_TIME_SCALE)
|
2187 |
|
|
*time = MAX_TIME * INLINE_TIME_SCALE;
|
2188 |
|
|
}
|
2189 |
|
|
|
2190 |
|
|
|
2191 |
|
|
/* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS and
|
2192 |
|
|
KNOWN_BINFOS. */
|
2193 |
|
|
|
2194 |
|
|
static void
|
2195 |
|
|
estimate_edge_devirt_benefit (struct cgraph_edge *ie,
|
2196 |
|
|
int *size, int *time, int prob,
|
2197 |
|
|
VEC (tree, heap) *known_vals,
|
2198 |
|
|
VEC (tree, heap) *known_binfos)
|
2199 |
|
|
{
|
2200 |
|
|
tree target;
|
2201 |
|
|
int time_diff, size_diff;
|
2202 |
|
|
|
2203 |
|
|
if (!known_vals && !known_binfos)
|
2204 |
|
|
return;
|
2205 |
|
|
|
2206 |
|
|
target = ipa_get_indirect_edge_target (ie, known_vals, known_binfos);
|
2207 |
|
|
if (!target)
|
2208 |
|
|
return;
|
2209 |
|
|
|
2210 |
|
|
/* Account for difference in cost between indirect and direct calls. */
|
2211 |
|
|
size_diff = ((eni_size_weights.indirect_call_cost - eni_size_weights.call_cost)
|
2212 |
|
|
* INLINE_SIZE_SCALE);
|
2213 |
|
|
*size -= size_diff;
|
2214 |
|
|
time_diff = ((eni_time_weights.indirect_call_cost - eni_time_weights.call_cost)
|
2215 |
|
|
* INLINE_TIME_SCALE * prob / REG_BR_PROB_BASE);
|
2216 |
|
|
*time -= time_diff;
|
2217 |
|
|
|
2218 |
|
|
/* TODO: This code is trying to benefit indirect calls that will be inlined later.
|
2219 |
|
|
The logic however do not belong into local size/time estimates and can not be
|
2220 |
|
|
done here, or the accounting of changes will get wrong and we result with
|
2221 |
|
|
negative function body sizes. We need to introduce infrastructure for independent
|
2222 |
|
|
benefits to the inliner. */
|
2223 |
|
|
#if 0
|
2224 |
|
|
struct cgraph_node *callee;
|
2225 |
|
|
struct inline_summary *isummary;
|
2226 |
|
|
int edge_size, edge_time, time_diff, size_diff;
|
2227 |
|
|
|
2228 |
|
|
callee = cgraph_get_node (target);
|
2229 |
|
|
if (!callee || !callee->analyzed)
|
2230 |
|
|
return;
|
2231 |
|
|
isummary = inline_summary (callee);
|
2232 |
|
|
if (!isummary->inlinable)
|
2233 |
|
|
return;
|
2234 |
|
|
|
2235 |
|
|
estimate_edge_size_and_time (ie, &edge_size, &edge_time, prob);
|
2236 |
|
|
|
2237 |
|
|
/* Count benefit only from functions that definitely will be inlined
|
2238 |
|
|
if additional context from NODE's caller were available.
|
2239 |
|
|
|
2240 |
|
|
We just account overall size change by inlining. TODO:
|
2241 |
|
|
we really need to add sort of benefit metrics for these kind of
|
2242 |
|
|
cases. */
|
2243 |
|
|
if (edge_size - size_diff >= isummary->size * INLINE_SIZE_SCALE)
|
2244 |
|
|
{
|
2245 |
|
|
/* Subtract size and time that we added for edge IE. */
|
2246 |
|
|
*size -= edge_size - size_diff;
|
2247 |
|
|
|
2248 |
|
|
/* Account inlined call. */
|
2249 |
|
|
*size += isummary->size * INLINE_SIZE_SCALE;
|
2250 |
|
|
}
|
2251 |
|
|
#endif
|
2252 |
|
|
}
|
2253 |
|
|
|
2254 |
|
|
|
2255 |
|
|
/* Increase SIZE and TIME for size and time needed to handle all calls in NODE.
|
2256 |
|
|
POSSIBLE_TRUTHS, KNOWN_VALS and KNOWN_BINFOS describe context of the call
|
2257 |
|
|
site. */
|
2258 |
|
|
|
2259 |
|
|
static void
|
2260 |
|
|
estimate_calls_size_and_time (struct cgraph_node *node, int *size, int *time,
|
2261 |
|
|
clause_t possible_truths,
|
2262 |
|
|
VEC (tree, heap) *known_vals,
|
2263 |
|
|
VEC (tree, heap) *known_binfos)
|
2264 |
|
|
{
|
2265 |
|
|
struct cgraph_edge *e;
|
2266 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
2267 |
|
|
{
|
2268 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
2269 |
|
|
if (!es->predicate || evaluate_predicate (es->predicate, possible_truths))
|
2270 |
|
|
{
|
2271 |
|
|
if (e->inline_failed)
|
2272 |
|
|
{
|
2273 |
|
|
/* Predicates of calls shall not use NOT_CHANGED codes,
|
2274 |
|
|
sowe do not need to compute probabilities. */
|
2275 |
|
|
estimate_edge_size_and_time (e, size, time, REG_BR_PROB_BASE);
|
2276 |
|
|
}
|
2277 |
|
|
else
|
2278 |
|
|
estimate_calls_size_and_time (e->callee, size, time,
|
2279 |
|
|
possible_truths,
|
2280 |
|
|
known_vals, known_binfos);
|
2281 |
|
|
}
|
2282 |
|
|
}
|
2283 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
2284 |
|
|
{
|
2285 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
2286 |
|
|
if (!es->predicate || evaluate_predicate (es->predicate, possible_truths))
|
2287 |
|
|
{
|
2288 |
|
|
estimate_edge_size_and_time (e, size, time, REG_BR_PROB_BASE);
|
2289 |
|
|
estimate_edge_devirt_benefit (e, size, time, REG_BR_PROB_BASE,
|
2290 |
|
|
known_vals, known_binfos);
|
2291 |
|
|
}
|
2292 |
|
|
}
|
2293 |
|
|
}
|
2294 |
|
|
|
2295 |
|
|
|
2296 |
|
|
/* Estimate size and time needed to execute NODE assuming
|
2297 |
|
|
POSSIBLE_TRUTHS clause, and KNOWN_VALS and KNOWN_BINFOS information
|
2298 |
|
|
about NODE's arguments. */
|
2299 |
|
|
|
2300 |
|
|
static void
|
2301 |
|
|
estimate_node_size_and_time (struct cgraph_node *node,
|
2302 |
|
|
clause_t possible_truths,
|
2303 |
|
|
VEC (tree, heap) *known_vals,
|
2304 |
|
|
VEC (tree, heap) *known_binfos,
|
2305 |
|
|
int *ret_size, int *ret_time,
|
2306 |
|
|
VEC (inline_param_summary_t, heap)
|
2307 |
|
|
*inline_param_summary)
|
2308 |
|
|
{
|
2309 |
|
|
struct inline_summary *info = inline_summary (node);
|
2310 |
|
|
size_time_entry *e;
|
2311 |
|
|
int size = 0, time = 0;
|
2312 |
|
|
int i;
|
2313 |
|
|
|
2314 |
|
|
if (dump_file
|
2315 |
|
|
&& (dump_flags & TDF_DETAILS))
|
2316 |
|
|
{
|
2317 |
|
|
bool found = false;
|
2318 |
|
|
fprintf (dump_file, " Estimating body: %s/%i\n"
|
2319 |
|
|
" Known to be false: ",
|
2320 |
|
|
cgraph_node_name (node),
|
2321 |
|
|
node->uid);
|
2322 |
|
|
|
2323 |
|
|
for (i = predicate_not_inlined_condition;
|
2324 |
|
|
i < (predicate_first_dynamic_condition
|
2325 |
|
|
+ (int)VEC_length (condition, info->conds)); i++)
|
2326 |
|
|
if (!(possible_truths & (1 << i)))
|
2327 |
|
|
{
|
2328 |
|
|
if (found)
|
2329 |
|
|
fprintf (dump_file, ", ");
|
2330 |
|
|
found = true;
|
2331 |
|
|
dump_condition (dump_file, info->conds, i);
|
2332 |
|
|
}
|
2333 |
|
|
}
|
2334 |
|
|
|
2335 |
|
|
for (i = 0; VEC_iterate (size_time_entry, info->entry, i, e); i++)
|
2336 |
|
|
if (evaluate_predicate (&e->predicate, possible_truths))
|
2337 |
|
|
{
|
2338 |
|
|
size += e->size;
|
2339 |
|
|
if (!inline_param_summary)
|
2340 |
|
|
time += e->time;
|
2341 |
|
|
else
|
2342 |
|
|
{
|
2343 |
|
|
int prob = predicate_probability (info->conds,
|
2344 |
|
|
&e->predicate,
|
2345 |
|
|
possible_truths,
|
2346 |
|
|
inline_param_summary);
|
2347 |
|
|
time += e->time * prob / REG_BR_PROB_BASE;
|
2348 |
|
|
}
|
2349 |
|
|
|
2350 |
|
|
}
|
2351 |
|
|
|
2352 |
|
|
if (time > MAX_TIME * INLINE_TIME_SCALE)
|
2353 |
|
|
time = MAX_TIME * INLINE_TIME_SCALE;
|
2354 |
|
|
|
2355 |
|
|
estimate_calls_size_and_time (node, &size, &time, possible_truths,
|
2356 |
|
|
known_vals, known_binfos);
|
2357 |
|
|
time = (time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
|
2358 |
|
|
size = (size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
|
2359 |
|
|
|
2360 |
|
|
|
2361 |
|
|
if (dump_file
|
2362 |
|
|
&& (dump_flags & TDF_DETAILS))
|
2363 |
|
|
fprintf (dump_file, "\n size:%i time:%i\n", size, time);
|
2364 |
|
|
if (ret_time)
|
2365 |
|
|
*ret_time = time;
|
2366 |
|
|
if (ret_size)
|
2367 |
|
|
*ret_size = size;
|
2368 |
|
|
return;
|
2369 |
|
|
}
|
2370 |
|
|
|
2371 |
|
|
|
2372 |
|
|
/* Estimate size and time needed to execute callee of EDGE assuming that
|
2373 |
|
|
parameters known to be constant at caller of EDGE are propagated.
|
2374 |
|
|
KNOWN_VALS and KNOWN_BINFOS are vectors of assumed known constant values
|
2375 |
|
|
and types for parameters. */
|
2376 |
|
|
|
2377 |
|
|
void
|
2378 |
|
|
estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
|
2379 |
|
|
VEC (tree, heap) *known_vals,
|
2380 |
|
|
VEC (tree, heap) *known_binfos,
|
2381 |
|
|
int *ret_size, int *ret_time)
|
2382 |
|
|
{
|
2383 |
|
|
clause_t clause;
|
2384 |
|
|
|
2385 |
|
|
clause = evaluate_conditions_for_known_args (node, false, known_vals);
|
2386 |
|
|
estimate_node_size_and_time (node, clause, known_vals, known_binfos,
|
2387 |
|
|
ret_size, ret_time,
|
2388 |
|
|
NULL);
|
2389 |
|
|
}
|
2390 |
|
|
|
2391 |
|
|
|
2392 |
|
|
/* Translate all conditions from callee representation into caller
|
2393 |
|
|
representation and symbolically evaluate predicate P into new predicate.
|
2394 |
|
|
|
2395 |
|
|
INFO is inline_summary of function we are adding predicate into,
|
2396 |
|
|
CALLEE_INFO is summary of function predicate P is from. OPERAND_MAP is
|
2397 |
|
|
array giving callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is
|
2398 |
|
|
clausule of all callee conditions that may be true in caller context.
|
2399 |
|
|
TOPLEV_PREDICATE is predicate under which callee is executed. */
|
2400 |
|
|
|
2401 |
|
|
static struct predicate
|
2402 |
|
|
remap_predicate (struct inline_summary *info,
|
2403 |
|
|
struct inline_summary *callee_info,
|
2404 |
|
|
struct predicate *p,
|
2405 |
|
|
VEC (int, heap) *operand_map,
|
2406 |
|
|
clause_t possible_truths,
|
2407 |
|
|
struct predicate *toplev_predicate)
|
2408 |
|
|
{
|
2409 |
|
|
int i;
|
2410 |
|
|
struct predicate out = true_predicate ();
|
2411 |
|
|
|
2412 |
|
|
/* True predicate is easy. */
|
2413 |
|
|
if (true_predicate_p (p))
|
2414 |
|
|
return *toplev_predicate;
|
2415 |
|
|
for (i = 0; p->clause[i]; i++)
|
2416 |
|
|
{
|
2417 |
|
|
clause_t clause = p->clause[i];
|
2418 |
|
|
int cond;
|
2419 |
|
|
struct predicate clause_predicate = false_predicate ();
|
2420 |
|
|
|
2421 |
|
|
gcc_assert (i < MAX_CLAUSES);
|
2422 |
|
|
|
2423 |
|
|
for (cond = 0; cond < NUM_CONDITIONS; cond ++)
|
2424 |
|
|
/* Do we have condition we can't disprove? */
|
2425 |
|
|
if (clause & possible_truths & (1 << cond))
|
2426 |
|
|
{
|
2427 |
|
|
struct predicate cond_predicate;
|
2428 |
|
|
/* Work out if the condition can translate to predicate in the
|
2429 |
|
|
inlined function. */
|
2430 |
|
|
if (cond >= predicate_first_dynamic_condition)
|
2431 |
|
|
{
|
2432 |
|
|
struct condition *c;
|
2433 |
|
|
|
2434 |
|
|
c = VEC_index (condition, callee_info->conds,
|
2435 |
|
|
cond - predicate_first_dynamic_condition);
|
2436 |
|
|
/* See if we can remap condition operand to caller's operand.
|
2437 |
|
|
Otherwise give up. */
|
2438 |
|
|
if (!operand_map
|
2439 |
|
|
|| (int)VEC_length (int, operand_map) <= c->operand_num
|
2440 |
|
|
|| VEC_index (int, operand_map, c->operand_num) == -1)
|
2441 |
|
|
cond_predicate = true_predicate ();
|
2442 |
|
|
else
|
2443 |
|
|
cond_predicate = add_condition (info,
|
2444 |
|
|
VEC_index (int, operand_map,
|
2445 |
|
|
c->operand_num),
|
2446 |
|
|
c->code, c->val);
|
2447 |
|
|
}
|
2448 |
|
|
/* Fixed conditions remains same, construct single
|
2449 |
|
|
condition predicate. */
|
2450 |
|
|
else
|
2451 |
|
|
{
|
2452 |
|
|
cond_predicate.clause[0] = 1 << cond;
|
2453 |
|
|
cond_predicate.clause[1] = 0;
|
2454 |
|
|
}
|
2455 |
|
|
clause_predicate = or_predicates (info->conds, &clause_predicate,
|
2456 |
|
|
&cond_predicate);
|
2457 |
|
|
}
|
2458 |
|
|
out = and_predicates (info->conds, &out, &clause_predicate);
|
2459 |
|
|
}
|
2460 |
|
|
return and_predicates (info->conds, &out, toplev_predicate);
|
2461 |
|
|
}
|
2462 |
|
|
|
2463 |
|
|
|
2464 |
|
|
/* Update summary information of inline clones after inlining.
|
2465 |
|
|
Compute peak stack usage. */
|
2466 |
|
|
|
2467 |
|
|
static void
|
2468 |
|
|
inline_update_callee_summaries (struct cgraph_node *node,
|
2469 |
|
|
int depth)
|
2470 |
|
|
{
|
2471 |
|
|
struct cgraph_edge *e;
|
2472 |
|
|
struct inline_summary *callee_info = inline_summary (node);
|
2473 |
|
|
struct inline_summary *caller_info = inline_summary (node->callers->caller);
|
2474 |
|
|
HOST_WIDE_INT peak;
|
2475 |
|
|
|
2476 |
|
|
callee_info->stack_frame_offset
|
2477 |
|
|
= caller_info->stack_frame_offset
|
2478 |
|
|
+ caller_info->estimated_self_stack_size;
|
2479 |
|
|
peak = callee_info->stack_frame_offset
|
2480 |
|
|
+ callee_info->estimated_self_stack_size;
|
2481 |
|
|
if (inline_summary (node->global.inlined_to)->estimated_stack_size
|
2482 |
|
|
< peak)
|
2483 |
|
|
inline_summary (node->global.inlined_to)->estimated_stack_size = peak;
|
2484 |
|
|
cgraph_propagate_frequency (node);
|
2485 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
2486 |
|
|
{
|
2487 |
|
|
if (!e->inline_failed)
|
2488 |
|
|
inline_update_callee_summaries (e->callee, depth);
|
2489 |
|
|
inline_edge_summary (e)->loop_depth += depth;
|
2490 |
|
|
}
|
2491 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
2492 |
|
|
inline_edge_summary (e)->loop_depth += depth;
|
2493 |
|
|
}
|
2494 |
|
|
|
2495 |
|
|
/* Update change_prob of EDGE after INLINED_EDGE has been inlined.
|
2496 |
|
|
When functoin A is inlined in B and A calls C with parameter that
|
2497 |
|
|
changes with probability PROB1 and C is known to be passthroug
|
2498 |
|
|
of argument if B that change with probability PROB2, the probability
|
2499 |
|
|
of change is now PROB1*PROB2. */
|
2500 |
|
|
|
2501 |
|
|
static void
|
2502 |
|
|
remap_edge_change_prob (struct cgraph_edge *inlined_edge,
|
2503 |
|
|
struct cgraph_edge *edge)
|
2504 |
|
|
{
|
2505 |
|
|
if (ipa_node_params_vector)
|
2506 |
|
|
{
|
2507 |
|
|
int i;
|
2508 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (edge);
|
2509 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
2510 |
|
|
struct inline_edge_summary *inlined_es
|
2511 |
|
|
= inline_edge_summary (inlined_edge);
|
2512 |
|
|
|
2513 |
|
|
for (i = 0; i < ipa_get_cs_argument_count (args); i++)
|
2514 |
|
|
{
|
2515 |
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
|
2516 |
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH
|
2517 |
|
|
&& (jfunc->value.pass_through.formal_id
|
2518 |
|
|
< (int) VEC_length (inline_param_summary_t,
|
2519 |
|
|
inlined_es->param)))
|
2520 |
|
|
{
|
2521 |
|
|
int prob1 = VEC_index (inline_param_summary_t,
|
2522 |
|
|
es->param, i)->change_prob;
|
2523 |
|
|
int prob2 = VEC_index
|
2524 |
|
|
(inline_param_summary_t,
|
2525 |
|
|
inlined_es->param,
|
2526 |
|
|
jfunc->value.pass_through.formal_id)->change_prob;
|
2527 |
|
|
int prob = ((prob1 * prob2 + REG_BR_PROB_BASE / 2)
|
2528 |
|
|
/ REG_BR_PROB_BASE);
|
2529 |
|
|
|
2530 |
|
|
if (prob1 && prob2 && !prob)
|
2531 |
|
|
prob = 1;
|
2532 |
|
|
|
2533 |
|
|
VEC_index (inline_param_summary_t,
|
2534 |
|
|
es->param, i)->change_prob = prob;
|
2535 |
|
|
}
|
2536 |
|
|
}
|
2537 |
|
|
}
|
2538 |
|
|
}
|
2539 |
|
|
|
2540 |
|
|
/* Update edge summaries of NODE after INLINED_EDGE has been inlined.
|
2541 |
|
|
|
2542 |
|
|
Remap predicates of callees of NODE. Rest of arguments match
|
2543 |
|
|
remap_predicate.
|
2544 |
|
|
|
2545 |
|
|
Also update change probabilities. */
|
2546 |
|
|
|
2547 |
|
|
static void
|
2548 |
|
|
remap_edge_summaries (struct cgraph_edge *inlined_edge,
|
2549 |
|
|
struct cgraph_node *node,
|
2550 |
|
|
struct inline_summary *info,
|
2551 |
|
|
struct inline_summary *callee_info,
|
2552 |
|
|
VEC (int, heap) *operand_map,
|
2553 |
|
|
clause_t possible_truths,
|
2554 |
|
|
struct predicate *toplev_predicate)
|
2555 |
|
|
{
|
2556 |
|
|
struct cgraph_edge *e;
|
2557 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
2558 |
|
|
{
|
2559 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
2560 |
|
|
struct predicate p;
|
2561 |
|
|
|
2562 |
|
|
if (e->inline_failed)
|
2563 |
|
|
{
|
2564 |
|
|
remap_edge_change_prob (inlined_edge, e);
|
2565 |
|
|
|
2566 |
|
|
if (es->predicate)
|
2567 |
|
|
{
|
2568 |
|
|
p = remap_predicate (info, callee_info,
|
2569 |
|
|
es->predicate, operand_map, possible_truths,
|
2570 |
|
|
toplev_predicate);
|
2571 |
|
|
edge_set_predicate (e, &p);
|
2572 |
|
|
/* TODO: We should remove the edge for code that will be
|
2573 |
|
|
optimized out, but we need to keep verifiers and tree-inline
|
2574 |
|
|
happy. Make it cold for now. */
|
2575 |
|
|
if (false_predicate_p (&p))
|
2576 |
|
|
{
|
2577 |
|
|
e->count = 0;
|
2578 |
|
|
e->frequency = 0;
|
2579 |
|
|
}
|
2580 |
|
|
}
|
2581 |
|
|
else
|
2582 |
|
|
edge_set_predicate (e, toplev_predicate);
|
2583 |
|
|
}
|
2584 |
|
|
else
|
2585 |
|
|
remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
|
2586 |
|
|
operand_map, possible_truths, toplev_predicate);
|
2587 |
|
|
}
|
2588 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
2589 |
|
|
{
|
2590 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
2591 |
|
|
struct predicate p;
|
2592 |
|
|
|
2593 |
|
|
remap_edge_change_prob (inlined_edge, e);
|
2594 |
|
|
if (es->predicate)
|
2595 |
|
|
{
|
2596 |
|
|
p = remap_predicate (info, callee_info,
|
2597 |
|
|
es->predicate, operand_map, possible_truths,
|
2598 |
|
|
toplev_predicate);
|
2599 |
|
|
edge_set_predicate (e, &p);
|
2600 |
|
|
/* TODO: We should remove the edge for code that will be optimized
|
2601 |
|
|
out, but we need to keep verifiers and tree-inline happy.
|
2602 |
|
|
Make it cold for now. */
|
2603 |
|
|
if (false_predicate_p (&p))
|
2604 |
|
|
{
|
2605 |
|
|
e->count = 0;
|
2606 |
|
|
e->frequency = 0;
|
2607 |
|
|
}
|
2608 |
|
|
}
|
2609 |
|
|
else
|
2610 |
|
|
edge_set_predicate (e, toplev_predicate);
|
2611 |
|
|
}
|
2612 |
|
|
}
|
2613 |
|
|
|
2614 |
|
|
|
2615 |
|
|
/* We inlined EDGE. Update summary of the function we inlined into. */
|
2616 |
|
|
|
2617 |
|
|
void
|
2618 |
|
|
inline_merge_summary (struct cgraph_edge *edge)
|
2619 |
|
|
{
|
2620 |
|
|
struct inline_summary *callee_info = inline_summary (edge->callee);
|
2621 |
|
|
struct cgraph_node *to = (edge->caller->global.inlined_to
|
2622 |
|
|
? edge->caller->global.inlined_to : edge->caller);
|
2623 |
|
|
struct inline_summary *info = inline_summary (to);
|
2624 |
|
|
clause_t clause = 0; /* not_inline is known to be false. */
|
2625 |
|
|
size_time_entry *e;
|
2626 |
|
|
VEC (int, heap) *operand_map = NULL;
|
2627 |
|
|
int i;
|
2628 |
|
|
struct predicate toplev_predicate;
|
2629 |
|
|
struct predicate true_p = true_predicate ();
|
2630 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
2631 |
|
|
|
2632 |
|
|
if (es->predicate)
|
2633 |
|
|
toplev_predicate = *es->predicate;
|
2634 |
|
|
else
|
2635 |
|
|
toplev_predicate = true_predicate ();
|
2636 |
|
|
|
2637 |
|
|
if (ipa_node_params_vector && callee_info->conds)
|
2638 |
|
|
{
|
2639 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (edge);
|
2640 |
|
|
int count = ipa_get_cs_argument_count (args);
|
2641 |
|
|
int i;
|
2642 |
|
|
|
2643 |
|
|
evaluate_properties_for_edge (edge, true, &clause, NULL, NULL);
|
2644 |
|
|
if (count)
|
2645 |
|
|
VEC_safe_grow_cleared (int, heap, operand_map, count);
|
2646 |
|
|
for (i = 0; i < count; i++)
|
2647 |
|
|
{
|
2648 |
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
|
2649 |
|
|
int map = -1;
|
2650 |
|
|
/* TODO: handle non-NOPs when merging. */
|
2651 |
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH
|
2652 |
|
|
&& jfunc->value.pass_through.operation == NOP_EXPR)
|
2653 |
|
|
map = jfunc->value.pass_through.formal_id;
|
2654 |
|
|
VEC_replace (int, operand_map, i, map);
|
2655 |
|
|
gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
|
2656 |
|
|
}
|
2657 |
|
|
}
|
2658 |
|
|
for (i = 0; VEC_iterate (size_time_entry, callee_info->entry, i, e); i++)
|
2659 |
|
|
{
|
2660 |
|
|
struct predicate p = remap_predicate (info, callee_info,
|
2661 |
|
|
&e->predicate, operand_map, clause,
|
2662 |
|
|
&toplev_predicate);
|
2663 |
|
|
if (!false_predicate_p (&p))
|
2664 |
|
|
{
|
2665 |
|
|
gcov_type add_time = ((gcov_type)e->time * edge->frequency
|
2666 |
|
|
+ CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
|
2667 |
|
|
int prob = predicate_probability (callee_info->conds,
|
2668 |
|
|
&e->predicate,
|
2669 |
|
|
clause, es->param);
|
2670 |
|
|
add_time = add_time * prob / REG_BR_PROB_BASE;
|
2671 |
|
|
if (add_time > MAX_TIME * INLINE_TIME_SCALE)
|
2672 |
|
|
add_time = MAX_TIME * INLINE_TIME_SCALE;
|
2673 |
|
|
if (prob != REG_BR_PROB_BASE
|
2674 |
|
|
&& dump_file && (dump_flags & TDF_DETAILS))
|
2675 |
|
|
{
|
2676 |
|
|
fprintf (dump_file, "\t\tScaling time by probability:%f\n",
|
2677 |
|
|
(double)prob / REG_BR_PROB_BASE);
|
2678 |
|
|
}
|
2679 |
|
|
account_size_time (info, e->size, add_time, &p);
|
2680 |
|
|
}
|
2681 |
|
|
}
|
2682 |
|
|
remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
|
2683 |
|
|
clause, &toplev_predicate);
|
2684 |
|
|
info->size = 0;
|
2685 |
|
|
info->time = 0;
|
2686 |
|
|
for (i = 0; VEC_iterate (size_time_entry, info->entry, i, e); i++)
|
2687 |
|
|
info->size += e->size, info->time += e->time;
|
2688 |
|
|
estimate_calls_size_and_time (to, &info->size, &info->time,
|
2689 |
|
|
~(clause_t)(1 << predicate_false_condition),
|
2690 |
|
|
NULL, NULL);
|
2691 |
|
|
|
2692 |
|
|
inline_update_callee_summaries (edge->callee,
|
2693 |
|
|
inline_edge_summary (edge)->loop_depth);
|
2694 |
|
|
|
2695 |
|
|
/* We do not maintain predicates of inlined edges, free it. */
|
2696 |
|
|
edge_set_predicate (edge, &true_p);
|
2697 |
|
|
/* Similarly remove param summaries. */
|
2698 |
|
|
VEC_free (inline_param_summary_t, heap, es->param);
|
2699 |
|
|
|
2700 |
|
|
info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
|
2701 |
|
|
info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
|
2702 |
|
|
}
|
2703 |
|
|
|
2704 |
|
|
|
2705 |
|
|
/* Estimate the time cost for the caller when inlining EDGE.
|
2706 |
|
|
Only to be called via estimate_edge_time, that handles the
|
2707 |
|
|
caching mechanism.
|
2708 |
|
|
|
2709 |
|
|
When caching, also update the cache entry. Compute both time and
|
2710 |
|
|
size, since we always need both metrics eventually. */
|
2711 |
|
|
|
2712 |
|
|
int
|
2713 |
|
|
do_estimate_edge_time (struct cgraph_edge *edge)
|
2714 |
|
|
{
|
2715 |
|
|
int time;
|
2716 |
|
|
int size;
|
2717 |
|
|
gcov_type ret;
|
2718 |
|
|
struct cgraph_node *callee;
|
2719 |
|
|
clause_t clause;
|
2720 |
|
|
VEC (tree, heap) *known_vals;
|
2721 |
|
|
VEC (tree, heap) *known_binfos;
|
2722 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
2723 |
|
|
|
2724 |
|
|
callee = cgraph_function_or_thunk_node (edge->callee, NULL);
|
2725 |
|
|
|
2726 |
|
|
gcc_checking_assert (edge->inline_failed);
|
2727 |
|
|
evaluate_properties_for_edge (edge, true,
|
2728 |
|
|
&clause, &known_vals, &known_binfos);
|
2729 |
|
|
estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
|
2730 |
|
|
&size, &time, es->param);
|
2731 |
|
|
VEC_free (tree, heap, known_vals);
|
2732 |
|
|
VEC_free (tree, heap, known_binfos);
|
2733 |
|
|
|
2734 |
|
|
ret = (((gcov_type)time
|
2735 |
|
|
- es->call_stmt_time) * edge->frequency
|
2736 |
|
|
+ CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
|
2737 |
|
|
|
2738 |
|
|
/* When caching, update the cache entry. */
|
2739 |
|
|
if (edge_growth_cache)
|
2740 |
|
|
{
|
2741 |
|
|
int ret_size;
|
2742 |
|
|
if ((int)VEC_length (edge_growth_cache_entry, edge_growth_cache)
|
2743 |
|
|
<= edge->uid)
|
2744 |
|
|
VEC_safe_grow_cleared (edge_growth_cache_entry, heap, edge_growth_cache,
|
2745 |
|
|
cgraph_edge_max_uid);
|
2746 |
|
|
VEC_index (edge_growth_cache_entry, edge_growth_cache, edge->uid)->time
|
2747 |
|
|
= ret + (ret >= 0);
|
2748 |
|
|
|
2749 |
|
|
ret_size = size - es->call_stmt_size;
|
2750 |
|
|
gcc_checking_assert (es->call_stmt_size);
|
2751 |
|
|
VEC_index (edge_growth_cache_entry, edge_growth_cache, edge->uid)->size
|
2752 |
|
|
= ret_size + (ret_size >= 0);
|
2753 |
|
|
}
|
2754 |
|
|
return ret;
|
2755 |
|
|
}
|
2756 |
|
|
|
2757 |
|
|
|
2758 |
|
|
/* Estimate the growth of the caller when inlining EDGE.
|
2759 |
|
|
Only to be called via estimate_edge_size. */
|
2760 |
|
|
|
2761 |
|
|
int
|
2762 |
|
|
do_estimate_edge_growth (struct cgraph_edge *edge)
|
2763 |
|
|
{
|
2764 |
|
|
int size;
|
2765 |
|
|
struct cgraph_node *callee;
|
2766 |
|
|
clause_t clause;
|
2767 |
|
|
VEC (tree, heap) *known_vals;
|
2768 |
|
|
VEC (tree, heap) *known_binfos;
|
2769 |
|
|
|
2770 |
|
|
/* When we do caching, use do_estimate_edge_time to populate the entry. */
|
2771 |
|
|
|
2772 |
|
|
if (edge_growth_cache)
|
2773 |
|
|
{
|
2774 |
|
|
do_estimate_edge_time (edge);
|
2775 |
|
|
size = VEC_index (edge_growth_cache_entry,
|
2776 |
|
|
edge_growth_cache,
|
2777 |
|
|
edge->uid)->size;
|
2778 |
|
|
gcc_checking_assert (size);
|
2779 |
|
|
return size - (size > 0);
|
2780 |
|
|
}
|
2781 |
|
|
|
2782 |
|
|
callee = cgraph_function_or_thunk_node (edge->callee, NULL);
|
2783 |
|
|
|
2784 |
|
|
/* Early inliner runs without caching, go ahead and do the dirty work. */
|
2785 |
|
|
gcc_checking_assert (edge->inline_failed);
|
2786 |
|
|
evaluate_properties_for_edge (edge, true,
|
2787 |
|
|
&clause, &known_vals, &known_binfos);
|
2788 |
|
|
estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
|
2789 |
|
|
&size, NULL, NULL);
|
2790 |
|
|
VEC_free (tree, heap, known_vals);
|
2791 |
|
|
VEC_free (tree, heap, known_binfos);
|
2792 |
|
|
gcc_checking_assert (inline_edge_summary (edge)->call_stmt_size);
|
2793 |
|
|
return size - inline_edge_summary (edge)->call_stmt_size;
|
2794 |
|
|
}
|
2795 |
|
|
|
2796 |
|
|
|
2797 |
|
|
/* Estimate self time of the function NODE after inlining EDGE. */
|
2798 |
|
|
|
2799 |
|
|
int
|
2800 |
|
|
estimate_time_after_inlining (struct cgraph_node *node,
|
2801 |
|
|
struct cgraph_edge *edge)
|
2802 |
|
|
{
|
2803 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
2804 |
|
|
if (!es->predicate || !false_predicate_p (es->predicate))
|
2805 |
|
|
{
|
2806 |
|
|
gcov_type time = inline_summary (node)->time + estimate_edge_time (edge);
|
2807 |
|
|
if (time < 0)
|
2808 |
|
|
time = 0;
|
2809 |
|
|
if (time > MAX_TIME)
|
2810 |
|
|
time = MAX_TIME;
|
2811 |
|
|
return time;
|
2812 |
|
|
}
|
2813 |
|
|
return inline_summary (node)->time;
|
2814 |
|
|
}
|
2815 |
|
|
|
2816 |
|
|
|
2817 |
|
|
/* Estimate the size of NODE after inlining EDGE which should be an
|
2818 |
|
|
edge to either NODE or a call inlined into NODE. */
|
2819 |
|
|
|
2820 |
|
|
int
|
2821 |
|
|
estimate_size_after_inlining (struct cgraph_node *node,
|
2822 |
|
|
struct cgraph_edge *edge)
|
2823 |
|
|
{
|
2824 |
|
|
struct inline_edge_summary *es = inline_edge_summary (edge);
|
2825 |
|
|
if (!es->predicate || !false_predicate_p (es->predicate))
|
2826 |
|
|
{
|
2827 |
|
|
int size = inline_summary (node)->size + estimate_edge_growth (edge);
|
2828 |
|
|
gcc_assert (size >= 0);
|
2829 |
|
|
return size;
|
2830 |
|
|
}
|
2831 |
|
|
return inline_summary (node)->size;
|
2832 |
|
|
}
|
2833 |
|
|
|
2834 |
|
|
|
2835 |
|
|
struct growth_data
|
2836 |
|
|
{
|
2837 |
|
|
bool self_recursive;
|
2838 |
|
|
int growth;
|
2839 |
|
|
};
|
2840 |
|
|
|
2841 |
|
|
|
2842 |
|
|
/* Worker for do_estimate_growth. Collect growth for all callers. */
|
2843 |
|
|
|
2844 |
|
|
static bool
|
2845 |
|
|
do_estimate_growth_1 (struct cgraph_node *node, void *data)
|
2846 |
|
|
{
|
2847 |
|
|
struct cgraph_edge *e;
|
2848 |
|
|
struct growth_data *d = (struct growth_data *) data;
|
2849 |
|
|
|
2850 |
|
|
for (e = node->callers; e; e = e->next_caller)
|
2851 |
|
|
{
|
2852 |
|
|
gcc_checking_assert (e->inline_failed);
|
2853 |
|
|
|
2854 |
|
|
if (e->caller == node
|
2855 |
|
|
|| (e->caller->global.inlined_to
|
2856 |
|
|
&& e->caller->global.inlined_to == node))
|
2857 |
|
|
d->self_recursive = true;
|
2858 |
|
|
d->growth += estimate_edge_growth (e);
|
2859 |
|
|
}
|
2860 |
|
|
return false;
|
2861 |
|
|
}
|
2862 |
|
|
|
2863 |
|
|
|
2864 |
|
|
/* Estimate the growth caused by inlining NODE into all callees. */
|
2865 |
|
|
|
2866 |
|
|
int
|
2867 |
|
|
do_estimate_growth (struct cgraph_node *node)
|
2868 |
|
|
{
|
2869 |
|
|
struct growth_data d = {0, false};
|
2870 |
|
|
struct inline_summary *info = inline_summary (node);
|
2871 |
|
|
|
2872 |
|
|
cgraph_for_node_and_aliases (node, do_estimate_growth_1, &d, true);
|
2873 |
|
|
|
2874 |
|
|
/* For self recursive functions the growth estimation really should be
|
2875 |
|
|
infinity. We don't want to return very large values because the growth
|
2876 |
|
|
plays various roles in badness computation fractions. Be sure to not
|
2877 |
|
|
return zero or negative growths. */
|
2878 |
|
|
if (d.self_recursive)
|
2879 |
|
|
d.growth = d.growth < info->size ? info->size : d.growth;
|
2880 |
|
|
else
|
2881 |
|
|
{
|
2882 |
|
|
if (!DECL_EXTERNAL (node->decl)
|
2883 |
|
|
&& cgraph_will_be_removed_from_program_if_no_direct_calls (node))
|
2884 |
|
|
d.growth -= info->size;
|
2885 |
|
|
/* COMDAT functions are very often not shared across multiple units
|
2886 |
|
|
since they come from various template instantiations.
|
2887 |
|
|
Take this into account. */
|
2888 |
|
|
else if (DECL_COMDAT (node->decl)
|
2889 |
|
|
&& cgraph_can_remove_if_no_direct_calls_p (node))
|
2890 |
|
|
d.growth -= (info->size
|
2891 |
|
|
* (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
|
2892 |
|
|
+ 50) / 100;
|
2893 |
|
|
}
|
2894 |
|
|
|
2895 |
|
|
if (node_growth_cache)
|
2896 |
|
|
{
|
2897 |
|
|
if ((int)VEC_length (int, node_growth_cache) <= node->uid)
|
2898 |
|
|
VEC_safe_grow_cleared (int, heap, node_growth_cache, cgraph_max_uid);
|
2899 |
|
|
VEC_replace (int, node_growth_cache, node->uid,
|
2900 |
|
|
d.growth + (d.growth >= 0));
|
2901 |
|
|
}
|
2902 |
|
|
return d.growth;
|
2903 |
|
|
}
|
2904 |
|
|
|
2905 |
|
|
|
2906 |
|
|
/* This function performs intraprocedural analysis in NODE that is required to
|
2907 |
|
|
inline indirect calls. */
|
2908 |
|
|
|
2909 |
|
|
static void
|
2910 |
|
|
inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
|
2911 |
|
|
{
|
2912 |
|
|
ipa_analyze_node (node);
|
2913 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2914 |
|
|
{
|
2915 |
|
|
ipa_print_node_params (dump_file, node);
|
2916 |
|
|
ipa_print_node_jump_functions (dump_file, node);
|
2917 |
|
|
}
|
2918 |
|
|
}
|
2919 |
|
|
|
2920 |
|
|
|
2921 |
|
|
/* Note function body size. */
|
2922 |
|
|
|
2923 |
|
|
static void
|
2924 |
|
|
inline_analyze_function (struct cgraph_node *node)
|
2925 |
|
|
{
|
2926 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
2927 |
|
|
current_function_decl = node->decl;
|
2928 |
|
|
|
2929 |
|
|
if (dump_file)
|
2930 |
|
|
fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
|
2931 |
|
|
cgraph_node_name (node), node->uid);
|
2932 |
|
|
if (optimize && !node->thunk.thunk_p)
|
2933 |
|
|
inline_indirect_intraprocedural_analysis (node);
|
2934 |
|
|
compute_inline_parameters (node, false);
|
2935 |
|
|
|
2936 |
|
|
current_function_decl = NULL;
|
2937 |
|
|
pop_cfun ();
|
2938 |
|
|
}
|
2939 |
|
|
|
2940 |
|
|
|
2941 |
|
|
/* Called when new function is inserted to callgraph late. */
|
2942 |
|
|
|
2943 |
|
|
static void
|
2944 |
|
|
add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
2945 |
|
|
{
|
2946 |
|
|
inline_analyze_function (node);
|
2947 |
|
|
}
|
2948 |
|
|
|
2949 |
|
|
|
2950 |
|
|
/* Note function body size. */
|
2951 |
|
|
|
2952 |
|
|
void
|
2953 |
|
|
inline_generate_summary (void)
|
2954 |
|
|
{
|
2955 |
|
|
struct cgraph_node *node;
|
2956 |
|
|
|
2957 |
|
|
function_insertion_hook_holder =
|
2958 |
|
|
cgraph_add_function_insertion_hook (&add_new_function, NULL);
|
2959 |
|
|
|
2960 |
|
|
ipa_register_cgraph_hooks ();
|
2961 |
|
|
inline_free_summary ();
|
2962 |
|
|
|
2963 |
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
2964 |
|
|
if (!node->alias)
|
2965 |
|
|
inline_analyze_function (node);
|
2966 |
|
|
}
|
2967 |
|
|
|
2968 |
|
|
|
2969 |
|
|
/* Read predicate from IB. */
|
2970 |
|
|
|
2971 |
|
|
static struct predicate
|
2972 |
|
|
read_predicate (struct lto_input_block *ib)
|
2973 |
|
|
{
|
2974 |
|
|
struct predicate out;
|
2975 |
|
|
clause_t clause;
|
2976 |
|
|
int k = 0;
|
2977 |
|
|
|
2978 |
|
|
do
|
2979 |
|
|
{
|
2980 |
|
|
gcc_assert (k <= MAX_CLAUSES);
|
2981 |
|
|
clause = out.clause[k++] = streamer_read_uhwi (ib);
|
2982 |
|
|
}
|
2983 |
|
|
while (clause);
|
2984 |
|
|
|
2985 |
|
|
/* Zero-initialize the remaining clauses in OUT. */
|
2986 |
|
|
while (k <= MAX_CLAUSES)
|
2987 |
|
|
out.clause[k++] = 0;
|
2988 |
|
|
|
2989 |
|
|
return out;
|
2990 |
|
|
}
|
2991 |
|
|
|
2992 |
|
|
|
2993 |
|
|
/* Write inline summary for edge E to OB. */
|
2994 |
|
|
|
2995 |
|
|
static void
|
2996 |
|
|
read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
|
2997 |
|
|
{
|
2998 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
2999 |
|
|
struct predicate p;
|
3000 |
|
|
int length, i;
|
3001 |
|
|
|
3002 |
|
|
es->call_stmt_size = streamer_read_uhwi (ib);
|
3003 |
|
|
es->call_stmt_time = streamer_read_uhwi (ib);
|
3004 |
|
|
es->loop_depth = streamer_read_uhwi (ib);
|
3005 |
|
|
p = read_predicate (ib);
|
3006 |
|
|
edge_set_predicate (e, &p);
|
3007 |
|
|
length = streamer_read_uhwi (ib);
|
3008 |
|
|
if (length)
|
3009 |
|
|
{
|
3010 |
|
|
VEC_safe_grow_cleared (inline_param_summary_t, heap, es->param, length);
|
3011 |
|
|
for (i = 0; i < length; i++)
|
3012 |
|
|
VEC_index (inline_param_summary_t, es->param, i)->change_prob
|
3013 |
|
|
= streamer_read_uhwi (ib);
|
3014 |
|
|
}
|
3015 |
|
|
}
|
3016 |
|
|
|
3017 |
|
|
|
3018 |
|
|
/* Stream in inline summaries from the section. */
|
3019 |
|
|
|
3020 |
|
|
static void
|
3021 |
|
|
inline_read_section (struct lto_file_decl_data *file_data, const char *data,
|
3022 |
|
|
size_t len)
|
3023 |
|
|
{
|
3024 |
|
|
const struct lto_function_header *header =
|
3025 |
|
|
(const struct lto_function_header *) data;
|
3026 |
|
|
const int cfg_offset = sizeof (struct lto_function_header);
|
3027 |
|
|
const int main_offset = cfg_offset + header->cfg_size;
|
3028 |
|
|
const int string_offset = main_offset + header->main_size;
|
3029 |
|
|
struct data_in *data_in;
|
3030 |
|
|
struct lto_input_block ib;
|
3031 |
|
|
unsigned int i, count2, j;
|
3032 |
|
|
unsigned int f_count;
|
3033 |
|
|
|
3034 |
|
|
LTO_INIT_INPUT_BLOCK (ib, (const char *) data + main_offset, 0,
|
3035 |
|
|
header->main_size);
|
3036 |
|
|
|
3037 |
|
|
data_in =
|
3038 |
|
|
lto_data_in_create (file_data, (const char *) data + string_offset,
|
3039 |
|
|
header->string_size, NULL);
|
3040 |
|
|
f_count = streamer_read_uhwi (&ib);
|
3041 |
|
|
for (i = 0; i < f_count; i++)
|
3042 |
|
|
{
|
3043 |
|
|
unsigned int index;
|
3044 |
|
|
struct cgraph_node *node;
|
3045 |
|
|
struct inline_summary *info;
|
3046 |
|
|
lto_cgraph_encoder_t encoder;
|
3047 |
|
|
struct bitpack_d bp;
|
3048 |
|
|
struct cgraph_edge *e;
|
3049 |
|
|
|
3050 |
|
|
index = streamer_read_uhwi (&ib);
|
3051 |
|
|
encoder = file_data->cgraph_node_encoder;
|
3052 |
|
|
node = lto_cgraph_encoder_deref (encoder, index);
|
3053 |
|
|
info = inline_summary (node);
|
3054 |
|
|
|
3055 |
|
|
info->estimated_stack_size
|
3056 |
|
|
= info->estimated_self_stack_size = streamer_read_uhwi (&ib);
|
3057 |
|
|
info->size = info->self_size = streamer_read_uhwi (&ib);
|
3058 |
|
|
info->time = info->self_time = streamer_read_uhwi (&ib);
|
3059 |
|
|
|
3060 |
|
|
bp = streamer_read_bitpack (&ib);
|
3061 |
|
|
info->inlinable = bp_unpack_value (&bp, 1);
|
3062 |
|
|
|
3063 |
|
|
count2 = streamer_read_uhwi (&ib);
|
3064 |
|
|
gcc_assert (!info->conds);
|
3065 |
|
|
for (j = 0; j < count2; j++)
|
3066 |
|
|
{
|
3067 |
|
|
struct condition c;
|
3068 |
|
|
c.operand_num = streamer_read_uhwi (&ib);
|
3069 |
|
|
c.code = (enum tree_code) streamer_read_uhwi (&ib);
|
3070 |
|
|
c.val = stream_read_tree (&ib, data_in);
|
3071 |
|
|
VEC_safe_push (condition, gc, info->conds, &c);
|
3072 |
|
|
}
|
3073 |
|
|
count2 = streamer_read_uhwi (&ib);
|
3074 |
|
|
gcc_assert (!info->entry);
|
3075 |
|
|
for (j = 0; j < count2; j++)
|
3076 |
|
|
{
|
3077 |
|
|
struct size_time_entry e;
|
3078 |
|
|
|
3079 |
|
|
e.size = streamer_read_uhwi (&ib);
|
3080 |
|
|
e.time = streamer_read_uhwi (&ib);
|
3081 |
|
|
e.predicate = read_predicate (&ib);
|
3082 |
|
|
|
3083 |
|
|
VEC_safe_push (size_time_entry, gc, info->entry, &e);
|
3084 |
|
|
}
|
3085 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
3086 |
|
|
read_inline_edge_summary (&ib, e);
|
3087 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
3088 |
|
|
read_inline_edge_summary (&ib, e);
|
3089 |
|
|
}
|
3090 |
|
|
|
3091 |
|
|
lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
|
3092 |
|
|
len);
|
3093 |
|
|
lto_data_in_delete (data_in);
|
3094 |
|
|
}
|
3095 |
|
|
|
3096 |
|
|
|
3097 |
|
|
/* Read inline summary. Jump functions are shared among ipa-cp
|
3098 |
|
|
and inliner, so when ipa-cp is active, we don't need to write them
|
3099 |
|
|
twice. */
|
3100 |
|
|
|
3101 |
|
|
void
|
3102 |
|
|
inline_read_summary (void)
|
3103 |
|
|
{
|
3104 |
|
|
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
|
3105 |
|
|
struct lto_file_decl_data *file_data;
|
3106 |
|
|
unsigned int j = 0;
|
3107 |
|
|
|
3108 |
|
|
inline_summary_alloc ();
|
3109 |
|
|
|
3110 |
|
|
while ((file_data = file_data_vec[j++]))
|
3111 |
|
|
{
|
3112 |
|
|
size_t len;
|
3113 |
|
|
const char *data = lto_get_section_data (file_data,
|
3114 |
|
|
LTO_section_inline_summary,
|
3115 |
|
|
NULL, &len);
|
3116 |
|
|
if (data)
|
3117 |
|
|
inline_read_section (file_data, data, len);
|
3118 |
|
|
else
|
3119 |
|
|
/* Fatal error here. We do not want to support compiling ltrans units
|
3120 |
|
|
with different version of compiler or different flags than the WPA
|
3121 |
|
|
unit, so this should never happen. */
|
3122 |
|
|
fatal_error ("ipa inline summary is missing in input file");
|
3123 |
|
|
}
|
3124 |
|
|
if (optimize)
|
3125 |
|
|
{
|
3126 |
|
|
ipa_register_cgraph_hooks ();
|
3127 |
|
|
if (!flag_ipa_cp)
|
3128 |
|
|
ipa_prop_read_jump_functions ();
|
3129 |
|
|
}
|
3130 |
|
|
function_insertion_hook_holder =
|
3131 |
|
|
cgraph_add_function_insertion_hook (&add_new_function, NULL);
|
3132 |
|
|
}
|
3133 |
|
|
|
3134 |
|
|
|
3135 |
|
|
/* Write predicate P to OB. */
|
3136 |
|
|
|
3137 |
|
|
static void
|
3138 |
|
|
write_predicate (struct output_block *ob, struct predicate *p)
|
3139 |
|
|
{
|
3140 |
|
|
int j;
|
3141 |
|
|
if (p)
|
3142 |
|
|
for (j = 0; p->clause[j]; j++)
|
3143 |
|
|
{
|
3144 |
|
|
gcc_assert (j < MAX_CLAUSES);
|
3145 |
|
|
streamer_write_uhwi (ob, p->clause[j]);
|
3146 |
|
|
}
|
3147 |
|
|
streamer_write_uhwi (ob, 0);
|
3148 |
|
|
}
|
3149 |
|
|
|
3150 |
|
|
|
3151 |
|
|
/* Write inline summary for edge E to OB. */
|
3152 |
|
|
|
3153 |
|
|
static void
|
3154 |
|
|
write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
|
3155 |
|
|
{
|
3156 |
|
|
struct inline_edge_summary *es = inline_edge_summary (e);
|
3157 |
|
|
int i;
|
3158 |
|
|
|
3159 |
|
|
streamer_write_uhwi (ob, es->call_stmt_size);
|
3160 |
|
|
streamer_write_uhwi (ob, es->call_stmt_time);
|
3161 |
|
|
streamer_write_uhwi (ob, es->loop_depth);
|
3162 |
|
|
write_predicate (ob, es->predicate);
|
3163 |
|
|
streamer_write_uhwi (ob, VEC_length (inline_param_summary_t, es->param));
|
3164 |
|
|
for (i = 0; i < (int)VEC_length (inline_param_summary_t, es->param); i++)
|
3165 |
|
|
streamer_write_uhwi (ob, VEC_index (inline_param_summary_t,
|
3166 |
|
|
es->param, i)->change_prob);
|
3167 |
|
|
}
|
3168 |
|
|
|
3169 |
|
|
|
3170 |
|
|
/* Write inline summary for node in SET.
|
3171 |
|
|
Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
|
3172 |
|
|
active, we don't need to write them twice. */
|
3173 |
|
|
|
3174 |
|
|
void
|
3175 |
|
|
inline_write_summary (cgraph_node_set set,
|
3176 |
|
|
varpool_node_set vset ATTRIBUTE_UNUSED)
|
3177 |
|
|
{
|
3178 |
|
|
struct cgraph_node *node;
|
3179 |
|
|
struct output_block *ob = create_output_block (LTO_section_inline_summary);
|
3180 |
|
|
lto_cgraph_encoder_t encoder = ob->decl_state->cgraph_node_encoder;
|
3181 |
|
|
unsigned int count = 0;
|
3182 |
|
|
int i;
|
3183 |
|
|
|
3184 |
|
|
for (i = 0; i < lto_cgraph_encoder_size (encoder); i++)
|
3185 |
|
|
if (lto_cgraph_encoder_deref (encoder, i)->analyzed)
|
3186 |
|
|
count++;
|
3187 |
|
|
streamer_write_uhwi (ob, count);
|
3188 |
|
|
|
3189 |
|
|
for (i = 0; i < lto_cgraph_encoder_size (encoder); i++)
|
3190 |
|
|
{
|
3191 |
|
|
node = lto_cgraph_encoder_deref (encoder, i);
|
3192 |
|
|
if (node->analyzed)
|
3193 |
|
|
{
|
3194 |
|
|
struct inline_summary *info = inline_summary (node);
|
3195 |
|
|
struct bitpack_d bp;
|
3196 |
|
|
struct cgraph_edge *edge;
|
3197 |
|
|
int i;
|
3198 |
|
|
size_time_entry *e;
|
3199 |
|
|
struct condition *c;
|
3200 |
|
|
|
3201 |
|
|
streamer_write_uhwi (ob, lto_cgraph_encoder_encode (encoder, node));
|
3202 |
|
|
streamer_write_hwi (ob, info->estimated_self_stack_size);
|
3203 |
|
|
streamer_write_hwi (ob, info->self_size);
|
3204 |
|
|
streamer_write_hwi (ob, info->self_time);
|
3205 |
|
|
bp = bitpack_create (ob->main_stream);
|
3206 |
|
|
bp_pack_value (&bp, info->inlinable, 1);
|
3207 |
|
|
streamer_write_bitpack (&bp);
|
3208 |
|
|
streamer_write_uhwi (ob, VEC_length (condition, info->conds));
|
3209 |
|
|
for (i = 0; VEC_iterate (condition, info->conds, i, c); i++)
|
3210 |
|
|
{
|
3211 |
|
|
streamer_write_uhwi (ob, c->operand_num);
|
3212 |
|
|
streamer_write_uhwi (ob, c->code);
|
3213 |
|
|
stream_write_tree (ob, c->val, true);
|
3214 |
|
|
}
|
3215 |
|
|
streamer_write_uhwi (ob, VEC_length (size_time_entry, info->entry));
|
3216 |
|
|
for (i = 0;
|
3217 |
|
|
VEC_iterate (size_time_entry, info->entry, i, e);
|
3218 |
|
|
i++)
|
3219 |
|
|
{
|
3220 |
|
|
streamer_write_uhwi (ob, e->size);
|
3221 |
|
|
streamer_write_uhwi (ob, e->time);
|
3222 |
|
|
write_predicate (ob, &e->predicate);
|
3223 |
|
|
}
|
3224 |
|
|
for (edge = node->callees; edge; edge = edge->next_callee)
|
3225 |
|
|
write_inline_edge_summary (ob, edge);
|
3226 |
|
|
for (edge = node->indirect_calls; edge; edge = edge->next_callee)
|
3227 |
|
|
write_inline_edge_summary (ob, edge);
|
3228 |
|
|
}
|
3229 |
|
|
}
|
3230 |
|
|
streamer_write_char_stream (ob->main_stream, 0);
|
3231 |
|
|
produce_asm (ob, NULL);
|
3232 |
|
|
destroy_output_block (ob);
|
3233 |
|
|
|
3234 |
|
|
if (optimize && !flag_ipa_cp)
|
3235 |
|
|
ipa_prop_write_jump_functions (set);
|
3236 |
|
|
}
|
3237 |
|
|
|
3238 |
|
|
|
3239 |
|
|
/* Release inline summary. */
|
3240 |
|
|
|
3241 |
|
|
void
|
3242 |
|
|
inline_free_summary (void)
|
3243 |
|
|
{
|
3244 |
|
|
struct cgraph_node *node;
|
3245 |
|
|
FOR_EACH_DEFINED_FUNCTION (node)
|
3246 |
|
|
reset_inline_summary (node);
|
3247 |
|
|
if (function_insertion_hook_holder)
|
3248 |
|
|
cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
|
3249 |
|
|
function_insertion_hook_holder = NULL;
|
3250 |
|
|
if (node_removal_hook_holder)
|
3251 |
|
|
cgraph_remove_node_removal_hook (node_removal_hook_holder);
|
3252 |
|
|
node_removal_hook_holder = NULL;
|
3253 |
|
|
if (edge_removal_hook_holder)
|
3254 |
|
|
cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
|
3255 |
|
|
edge_removal_hook_holder = NULL;
|
3256 |
|
|
if (node_duplication_hook_holder)
|
3257 |
|
|
cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
|
3258 |
|
|
node_duplication_hook_holder = NULL;
|
3259 |
|
|
if (edge_duplication_hook_holder)
|
3260 |
|
|
cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
|
3261 |
|
|
edge_duplication_hook_holder = NULL;
|
3262 |
|
|
VEC_free (inline_summary_t, gc, inline_summary_vec);
|
3263 |
|
|
inline_summary_vec = NULL;
|
3264 |
|
|
VEC_free (inline_edge_summary_t, heap, inline_edge_summary_vec);
|
3265 |
|
|
inline_edge_summary_vec = NULL;
|
3266 |
|
|
if (edge_predicate_pool)
|
3267 |
|
|
free_alloc_pool (edge_predicate_pool);
|
3268 |
|
|
edge_predicate_pool = 0;
|
3269 |
|
|
}
|