1 |
684 |
jeremybenn |
/* Inlining decision heuristics.
|
2 |
|
|
Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Jan Hubicka
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* Representation of inline parameters that do depend on context function is
|
23 |
|
|
inlined into (i.e. known constant values of function parameters.
|
24 |
|
|
|
25 |
|
|
Conditions that are interesting for function body are collected into CONDS
|
26 |
|
|
vector. They are of simple for function_param OP VAL, where VAL is
|
27 |
|
|
IPA invariant. The conditions are then refered by predicates. */
|
28 |
|
|
|
29 |
|
|
typedef struct GTY(()) condition
|
30 |
|
|
{
|
31 |
|
|
tree val;
|
32 |
|
|
int operand_num;
|
33 |
|
|
enum tree_code code;
|
34 |
|
|
} condition;
|
35 |
|
|
|
36 |
|
|
DEF_VEC_O (condition);
|
37 |
|
|
DEF_VEC_ALLOC_O (condition, gc);
|
38 |
|
|
|
39 |
|
|
typedef VEC(condition,gc) *conditions;
|
40 |
|
|
|
41 |
|
|
/* Representation of predicates i.e. formulas using conditions defined
|
42 |
|
|
above. Predicates are simple logical formulas in conjunctive-disjunctive
|
43 |
|
|
form.
|
44 |
|
|
|
45 |
|
|
Predicate is array of clauses terminated by 0. Every clause must be true
|
46 |
|
|
in order to make predicate true.
|
47 |
|
|
Clauses are represented as bitmaps of conditions. One of conditions
|
48 |
|
|
must be true in order for clause to be true. */
|
49 |
|
|
|
50 |
|
|
#define MAX_CLAUSES 8
|
51 |
|
|
typedef unsigned int clause_t;
|
52 |
|
|
struct GTY(()) predicate
|
53 |
|
|
{
|
54 |
|
|
clause_t clause[MAX_CLAUSES + 1];
|
55 |
|
|
};
|
56 |
|
|
|
57 |
|
|
/* Represnetation of function body size and time depending on the inline
|
58 |
|
|
context. We keep simple array of record, every containing of predicate
|
59 |
|
|
and time/size to account.
|
60 |
|
|
|
61 |
|
|
We keep values scaled up, so fractional sizes and times can be
|
62 |
|
|
accounted. */
|
63 |
|
|
#define INLINE_SIZE_SCALE 2
|
64 |
|
|
#define INLINE_TIME_SCALE (CGRAPH_FREQ_BASE * 2)
|
65 |
|
|
typedef struct GTY(()) size_time_entry
|
66 |
|
|
{
|
67 |
|
|
struct predicate predicate;
|
68 |
|
|
int size;
|
69 |
|
|
int time;
|
70 |
|
|
} size_time_entry;
|
71 |
|
|
DEF_VEC_O (size_time_entry);
|
72 |
|
|
DEF_VEC_ALLOC_O (size_time_entry, gc);
|
73 |
|
|
|
74 |
|
|
/* Function inlining information. */
|
75 |
|
|
struct GTY(()) inline_summary
|
76 |
|
|
{
|
77 |
|
|
/* Information about the function body itself. */
|
78 |
|
|
|
79 |
|
|
/* Estimated stack frame consumption by the function. */
|
80 |
|
|
HOST_WIDE_INT estimated_self_stack_size;
|
81 |
|
|
/* Size of the function body. */
|
82 |
|
|
int self_size;
|
83 |
|
|
/* Time of the function body. */
|
84 |
|
|
int self_time;
|
85 |
|
|
|
86 |
|
|
/* False when there something makes inlining impossible (such as va_arg). */
|
87 |
|
|
unsigned inlinable : 1;
|
88 |
|
|
|
89 |
|
|
/* Information about function that will result after applying all the
|
90 |
|
|
inline decisions present in the callgraph. Generally kept up to
|
91 |
|
|
date only for functions that are not inline clones. */
|
92 |
|
|
|
93 |
|
|
/* Estimated stack frame consumption by the function. */
|
94 |
|
|
HOST_WIDE_INT estimated_stack_size;
|
95 |
|
|
/* Expected offset of the stack frame of inlined function. */
|
96 |
|
|
HOST_WIDE_INT stack_frame_offset;
|
97 |
|
|
/* Estimated size of the function after inlining. */
|
98 |
|
|
int time;
|
99 |
|
|
int size;
|
100 |
|
|
|
101 |
|
|
/* Conditional size/time information. The summaries are being
|
102 |
|
|
merged during inlining. */
|
103 |
|
|
conditions conds;
|
104 |
|
|
VEC(size_time_entry,gc) *entry;
|
105 |
|
|
};
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
typedef struct inline_summary inline_summary_t;
|
109 |
|
|
DEF_VEC_O(inline_summary_t);
|
110 |
|
|
DEF_VEC_ALLOC_O(inline_summary_t,gc);
|
111 |
|
|
extern GTY(()) VEC(inline_summary_t,gc) *inline_summary_vec;
|
112 |
|
|
|
113 |
|
|
/* Information kept about parameter of call site. */
|
114 |
|
|
struct inline_param_summary
|
115 |
|
|
{
|
116 |
|
|
/* REG_BR_PROB_BASE based probability that parameter will change in between
|
117 |
|
|
two invocation of the calls.
|
118 |
|
|
I.e. loop invariant parameters
|
119 |
|
|
REG_BR_PROB_BASE/estimated_iterations and regular
|
120 |
|
|
parameters REG_BR_PROB_BASE.
|
121 |
|
|
|
122 |
|
|
Value 0 is reserved for compile time invariants. */
|
123 |
|
|
int change_prob;
|
124 |
|
|
};
|
125 |
|
|
typedef struct inline_param_summary inline_param_summary_t;
|
126 |
|
|
DEF_VEC_O(inline_param_summary_t);
|
127 |
|
|
DEF_VEC_ALLOC_O(inline_param_summary_t,heap);
|
128 |
|
|
|
129 |
|
|
/* Information kept about callgraph edges. */
|
130 |
|
|
struct inline_edge_summary
|
131 |
|
|
{
|
132 |
|
|
/* Estimated size and time of the call statement. */
|
133 |
|
|
int call_stmt_size;
|
134 |
|
|
int call_stmt_time;
|
135 |
|
|
/* Depth of loop nest, 0 means no nesting. */
|
136 |
|
|
unsigned short int loop_depth;
|
137 |
|
|
struct predicate *predicate;
|
138 |
|
|
/* Array indexed by parameters.
|
139 |
|
|
|
140 |
|
|
that parameter is constant. */
|
141 |
|
|
VEC (inline_param_summary_t, heap) *param;
|
142 |
|
|
};
|
143 |
|
|
|
144 |
|
|
typedef struct inline_edge_summary inline_edge_summary_t;
|
145 |
|
|
DEF_VEC_O(inline_edge_summary_t);
|
146 |
|
|
DEF_VEC_ALLOC_O(inline_edge_summary_t,heap);
|
147 |
|
|
extern VEC(inline_edge_summary_t,heap) *inline_edge_summary_vec;
|
148 |
|
|
|
149 |
|
|
typedef struct edge_growth_cache_entry
|
150 |
|
|
{
|
151 |
|
|
int time, size;
|
152 |
|
|
} edge_growth_cache_entry;
|
153 |
|
|
DEF_VEC_O(edge_growth_cache_entry);
|
154 |
|
|
DEF_VEC_ALLOC_O(edge_growth_cache_entry,heap);
|
155 |
|
|
|
156 |
|
|
extern VEC(int,heap) *node_growth_cache;
|
157 |
|
|
extern VEC(edge_growth_cache_entry,heap) *edge_growth_cache;
|
158 |
|
|
|
159 |
|
|
/* In ipa-inline-analysis.c */
|
160 |
|
|
void debug_inline_summary (struct cgraph_node *);
|
161 |
|
|
void dump_inline_summaries (FILE *f);
|
162 |
|
|
void dump_inline_summary (FILE * f, struct cgraph_node *node);
|
163 |
|
|
void inline_generate_summary (void);
|
164 |
|
|
void inline_read_summary (void);
|
165 |
|
|
void inline_write_summary (cgraph_node_set, varpool_node_set);
|
166 |
|
|
void inline_free_summary (void);
|
167 |
|
|
void initialize_inline_failed (struct cgraph_edge *);
|
168 |
|
|
int estimate_time_after_inlining (struct cgraph_node *, struct cgraph_edge *);
|
169 |
|
|
int estimate_size_after_inlining (struct cgraph_node *, struct cgraph_edge *);
|
170 |
|
|
void estimate_ipcp_clone_size_and_time (struct cgraph_node *,
|
171 |
|
|
VEC (tree, heap) *known_vals,
|
172 |
|
|
VEC (tree, heap) *known_binfos,
|
173 |
|
|
int *, int *);
|
174 |
|
|
int do_estimate_growth (struct cgraph_node *);
|
175 |
|
|
void inline_merge_summary (struct cgraph_edge *edge);
|
176 |
|
|
int do_estimate_edge_growth (struct cgraph_edge *edge);
|
177 |
|
|
int do_estimate_edge_time (struct cgraph_edge *edge);
|
178 |
|
|
void initialize_growth_caches (void);
|
179 |
|
|
void free_growth_caches (void);
|
180 |
|
|
void compute_inline_parameters (struct cgraph_node *, bool);
|
181 |
|
|
|
182 |
|
|
/* In ipa-inline-transform.c */
|
183 |
|
|
bool inline_call (struct cgraph_edge *, bool, VEC (cgraph_edge_p, heap) **, int *);
|
184 |
|
|
unsigned int inline_transform (struct cgraph_node *);
|
185 |
|
|
void clone_inlined_nodes (struct cgraph_edge *e, bool, bool, int *);
|
186 |
|
|
|
187 |
|
|
extern int ncalls_inlined;
|
188 |
|
|
extern int nfunctions_inlined;
|
189 |
|
|
|
190 |
|
|
static inline struct inline_summary *
|
191 |
|
|
inline_summary (struct cgraph_node *node)
|
192 |
|
|
{
|
193 |
|
|
return VEC_index (inline_summary_t, inline_summary_vec, node->uid);
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
static inline struct inline_edge_summary *
|
197 |
|
|
inline_edge_summary (struct cgraph_edge *edge)
|
198 |
|
|
{
|
199 |
|
|
return VEC_index (inline_edge_summary_t,
|
200 |
|
|
inline_edge_summary_vec, edge->uid);
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
/* Return estimated unit growth after inlning all calls to NODE.
|
204 |
|
|
Quick accesors to the inline growth caches.
|
205 |
|
|
For convenience we keep zero 0 as unknown. Because growth
|
206 |
|
|
can be both positive and negative, we simply increase positive
|
207 |
|
|
growths by 1. */
|
208 |
|
|
static inline int
|
209 |
|
|
estimate_growth (struct cgraph_node *node)
|
210 |
|
|
{
|
211 |
|
|
int ret;
|
212 |
|
|
if ((int)VEC_length (int, node_growth_cache) <= node->uid
|
213 |
|
|
|| !(ret = VEC_index (int, node_growth_cache, node->uid)))
|
214 |
|
|
return do_estimate_growth (node);
|
215 |
|
|
return ret - (ret > 0);
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
|
219 |
|
|
/* Return estimated callee growth after inlining EDGE. */
|
220 |
|
|
|
221 |
|
|
static inline int
|
222 |
|
|
estimate_edge_growth (struct cgraph_edge *edge)
|
223 |
|
|
{
|
224 |
|
|
int ret;
|
225 |
|
|
if ((int)VEC_length (edge_growth_cache_entry, edge_growth_cache) <= edge->uid
|
226 |
|
|
|| !(ret = VEC_index (edge_growth_cache_entry,
|
227 |
|
|
edge_growth_cache,
|
228 |
|
|
edge->uid)->size))
|
229 |
|
|
return do_estimate_edge_growth (edge);
|
230 |
|
|
return ret - (ret > 0);
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
|
234 |
|
|
/* Return estimated callee runtime increase after inlning
|
235 |
|
|
EDGE. */
|
236 |
|
|
|
237 |
|
|
static inline int
|
238 |
|
|
estimate_edge_time (struct cgraph_edge *edge)
|
239 |
|
|
{
|
240 |
|
|
int ret;
|
241 |
|
|
if ((int)VEC_length (edge_growth_cache_entry, edge_growth_cache) <= edge->uid
|
242 |
|
|
|| !(ret = VEC_index (edge_growth_cache_entry,
|
243 |
|
|
edge_growth_cache,
|
244 |
|
|
edge->uid)->time))
|
245 |
|
|
return do_estimate_edge_time (edge);
|
246 |
|
|
return ret - (ret > 0);
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
|
250 |
|
|
/* Reset cached value for NODE. */
|
251 |
|
|
|
252 |
|
|
static inline void
|
253 |
|
|
reset_node_growth_cache (struct cgraph_node *node)
|
254 |
|
|
{
|
255 |
|
|
if ((int)VEC_length (int, node_growth_cache) > node->uid)
|
256 |
|
|
VEC_replace (int, node_growth_cache, node->uid, 0);
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
/* Reset cached value for EDGE. */
|
260 |
|
|
|
261 |
|
|
static inline void
|
262 |
|
|
reset_edge_growth_cache (struct cgraph_edge *edge)
|
263 |
|
|
{
|
264 |
|
|
if ((int)VEC_length (edge_growth_cache_entry, edge_growth_cache) > edge->uid)
|
265 |
|
|
{
|
266 |
|
|
struct edge_growth_cache_entry zero = {0, 0};
|
267 |
|
|
VEC_replace (edge_growth_cache_entry, edge_growth_cache, edge->uid, &zero);
|
268 |
|
|
}
|
269 |
|
|
}
|