1 |
684 |
jeremybenn |
/* Interprocedural analyses.
|
2 |
|
|
Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011, 2012
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tree.h"
|
25 |
|
|
#include "langhooks.h"
|
26 |
|
|
#include "ggc.h"
|
27 |
|
|
#include "target.h"
|
28 |
|
|
#include "cgraph.h"
|
29 |
|
|
#include "ipa-prop.h"
|
30 |
|
|
#include "tree-flow.h"
|
31 |
|
|
#include "tree-pass.h"
|
32 |
|
|
#include "tree-inline.h"
|
33 |
|
|
#include "gimple.h"
|
34 |
|
|
#include "flags.h"
|
35 |
|
|
#include "timevar.h"
|
36 |
|
|
#include "flags.h"
|
37 |
|
|
#include "diagnostic.h"
|
38 |
|
|
#include "tree-pretty-print.h"
|
39 |
|
|
#include "gimple-pretty-print.h"
|
40 |
|
|
#include "lto-streamer.h"
|
41 |
|
|
#include "data-streamer.h"
|
42 |
|
|
#include "tree-streamer.h"
|
43 |
|
|
|
44 |
|
|
|
45 |
|
|
/* Intermediate information about a parameter that is only useful during the
|
46 |
|
|
run of ipa_analyze_node and is not kept afterwards. */
|
47 |
|
|
|
48 |
|
|
struct param_analysis_info
|
49 |
|
|
{
|
50 |
|
|
bool modified;
|
51 |
|
|
bitmap visited_statements;
|
52 |
|
|
};
|
53 |
|
|
|
54 |
|
|
/* Vector where the parameter infos are actually stored. */
|
55 |
|
|
VEC (ipa_node_params_t, heap) *ipa_node_params_vector;
|
56 |
|
|
/* Vector where the parameter infos are actually stored. */
|
57 |
|
|
VEC (ipa_edge_args_t, gc) *ipa_edge_args_vector;
|
58 |
|
|
|
59 |
|
|
/* Holders of ipa cgraph hooks: */
|
60 |
|
|
static struct cgraph_edge_hook_list *edge_removal_hook_holder;
|
61 |
|
|
static struct cgraph_node_hook_list *node_removal_hook_holder;
|
62 |
|
|
static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
|
63 |
|
|
static struct cgraph_2node_hook_list *node_duplication_hook_holder;
|
64 |
|
|
static struct cgraph_node_hook_list *function_insertion_hook_holder;
|
65 |
|
|
|
66 |
|
|
/* Return index of the formal whose tree is PTREE in function which corresponds
|
67 |
|
|
to INFO. */
|
68 |
|
|
|
69 |
|
|
int
|
70 |
|
|
ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
|
71 |
|
|
{
|
72 |
|
|
int i, count;
|
73 |
|
|
|
74 |
|
|
count = ipa_get_param_count (info);
|
75 |
|
|
for (i = 0; i < count; i++)
|
76 |
|
|
if (ipa_get_param (info, i) == ptree)
|
77 |
|
|
return i;
|
78 |
|
|
|
79 |
|
|
return -1;
|
80 |
|
|
}
|
81 |
|
|
|
82 |
|
|
/* Populate the param_decl field in parameter descriptors of INFO that
|
83 |
|
|
corresponds to NODE. */
|
84 |
|
|
|
85 |
|
|
static void
|
86 |
|
|
ipa_populate_param_decls (struct cgraph_node *node,
|
87 |
|
|
struct ipa_node_params *info)
|
88 |
|
|
{
|
89 |
|
|
tree fndecl;
|
90 |
|
|
tree fnargs;
|
91 |
|
|
tree parm;
|
92 |
|
|
int param_num;
|
93 |
|
|
|
94 |
|
|
fndecl = node->decl;
|
95 |
|
|
fnargs = DECL_ARGUMENTS (fndecl);
|
96 |
|
|
param_num = 0;
|
97 |
|
|
for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
|
98 |
|
|
{
|
99 |
|
|
VEC_index (ipa_param_descriptor_t,
|
100 |
|
|
info->descriptors, param_num)->decl = parm;
|
101 |
|
|
param_num++;
|
102 |
|
|
}
|
103 |
|
|
}
|
104 |
|
|
|
105 |
|
|
/* Return how many formal parameters FNDECL has. */
|
106 |
|
|
|
107 |
|
|
static inline int
|
108 |
|
|
count_formal_params (tree fndecl)
|
109 |
|
|
{
|
110 |
|
|
tree parm;
|
111 |
|
|
int count = 0;
|
112 |
|
|
|
113 |
|
|
for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
|
114 |
|
|
count++;
|
115 |
|
|
|
116 |
|
|
return count;
|
117 |
|
|
}
|
118 |
|
|
|
119 |
|
|
/* Initialize the ipa_node_params structure associated with NODE by counting
|
120 |
|
|
the function parameters, creating the descriptors and populating their
|
121 |
|
|
param_decls. */
|
122 |
|
|
|
123 |
|
|
void
|
124 |
|
|
ipa_initialize_node_params (struct cgraph_node *node)
|
125 |
|
|
{
|
126 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
127 |
|
|
|
128 |
|
|
if (!info->descriptors)
|
129 |
|
|
{
|
130 |
|
|
int param_count;
|
131 |
|
|
|
132 |
|
|
param_count = count_formal_params (node->decl);
|
133 |
|
|
if (param_count)
|
134 |
|
|
{
|
135 |
|
|
VEC_safe_grow_cleared (ipa_param_descriptor_t, heap,
|
136 |
|
|
info->descriptors, param_count);
|
137 |
|
|
ipa_populate_param_decls (node, info);
|
138 |
|
|
}
|
139 |
|
|
}
|
140 |
|
|
}
|
141 |
|
|
|
142 |
|
|
/* Print the jump functions associated with call graph edge CS to file F. */
|
143 |
|
|
|
144 |
|
|
static void
|
145 |
|
|
ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
|
146 |
|
|
{
|
147 |
|
|
int i, count;
|
148 |
|
|
|
149 |
|
|
count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
|
150 |
|
|
for (i = 0; i < count; i++)
|
151 |
|
|
{
|
152 |
|
|
struct ipa_jump_func *jump_func;
|
153 |
|
|
enum jump_func_type type;
|
154 |
|
|
|
155 |
|
|
jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
|
156 |
|
|
type = jump_func->type;
|
157 |
|
|
|
158 |
|
|
fprintf (f, " param %d: ", i);
|
159 |
|
|
if (type == IPA_JF_UNKNOWN)
|
160 |
|
|
fprintf (f, "UNKNOWN\n");
|
161 |
|
|
else if (type == IPA_JF_KNOWN_TYPE)
|
162 |
|
|
{
|
163 |
|
|
fprintf (f, "KNOWN TYPE: base ");
|
164 |
|
|
print_generic_expr (f, jump_func->value.known_type.base_type, 0);
|
165 |
|
|
fprintf (f, ", offset "HOST_WIDE_INT_PRINT_DEC", component ",
|
166 |
|
|
jump_func->value.known_type.offset);
|
167 |
|
|
print_generic_expr (f, jump_func->value.known_type.component_type, 0);
|
168 |
|
|
fprintf (f, "\n");
|
169 |
|
|
}
|
170 |
|
|
else if (type == IPA_JF_CONST)
|
171 |
|
|
{
|
172 |
|
|
tree val = jump_func->value.constant;
|
173 |
|
|
fprintf (f, "CONST: ");
|
174 |
|
|
print_generic_expr (f, val, 0);
|
175 |
|
|
if (TREE_CODE (val) == ADDR_EXPR
|
176 |
|
|
&& TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
|
177 |
|
|
{
|
178 |
|
|
fprintf (f, " -> ");
|
179 |
|
|
print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)),
|
180 |
|
|
0);
|
181 |
|
|
}
|
182 |
|
|
fprintf (f, "\n");
|
183 |
|
|
}
|
184 |
|
|
else if (type == IPA_JF_CONST_MEMBER_PTR)
|
185 |
|
|
{
|
186 |
|
|
fprintf (f, "CONST MEMBER PTR: ");
|
187 |
|
|
print_generic_expr (f, jump_func->value.member_cst.pfn, 0);
|
188 |
|
|
fprintf (f, ", ");
|
189 |
|
|
print_generic_expr (f, jump_func->value.member_cst.delta, 0);
|
190 |
|
|
fprintf (f, "\n");
|
191 |
|
|
}
|
192 |
|
|
else if (type == IPA_JF_PASS_THROUGH)
|
193 |
|
|
{
|
194 |
|
|
fprintf (f, "PASS THROUGH: ");
|
195 |
|
|
fprintf (f, "%d, op %s ",
|
196 |
|
|
jump_func->value.pass_through.formal_id,
|
197 |
|
|
tree_code_name[(int)
|
198 |
|
|
jump_func->value.pass_through.operation]);
|
199 |
|
|
if (jump_func->value.pass_through.operation != NOP_EXPR)
|
200 |
|
|
print_generic_expr (f,
|
201 |
|
|
jump_func->value.pass_through.operand, 0);
|
202 |
|
|
fprintf (f, "\n");
|
203 |
|
|
}
|
204 |
|
|
else if (type == IPA_JF_ANCESTOR)
|
205 |
|
|
{
|
206 |
|
|
fprintf (f, "ANCESTOR: ");
|
207 |
|
|
fprintf (f, "%d, offset "HOST_WIDE_INT_PRINT_DEC", ",
|
208 |
|
|
jump_func->value.ancestor.formal_id,
|
209 |
|
|
jump_func->value.ancestor.offset);
|
210 |
|
|
print_generic_expr (f, jump_func->value.ancestor.type, 0);
|
211 |
|
|
fprintf (f, "\n");
|
212 |
|
|
}
|
213 |
|
|
}
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
|
217 |
|
|
/* Print the jump functions of all arguments on all call graph edges going from
|
218 |
|
|
NODE to file F. */
|
219 |
|
|
|
220 |
|
|
void
|
221 |
|
|
ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
|
222 |
|
|
{
|
223 |
|
|
struct cgraph_edge *cs;
|
224 |
|
|
int i;
|
225 |
|
|
|
226 |
|
|
fprintf (f, " Jump functions of caller %s:\n", cgraph_node_name (node));
|
227 |
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
228 |
|
|
{
|
229 |
|
|
if (!ipa_edge_args_info_available_for_edge_p (cs))
|
230 |
|
|
continue;
|
231 |
|
|
|
232 |
|
|
fprintf (f, " callsite %s/%i -> %s/%i : \n",
|
233 |
|
|
cgraph_node_name (node), node->uid,
|
234 |
|
|
cgraph_node_name (cs->callee), cs->callee->uid);
|
235 |
|
|
ipa_print_node_jump_functions_for_edge (f, cs);
|
236 |
|
|
}
|
237 |
|
|
|
238 |
|
|
for (cs = node->indirect_calls, i = 0; cs; cs = cs->next_callee, i++)
|
239 |
|
|
{
|
240 |
|
|
if (!ipa_edge_args_info_available_for_edge_p (cs))
|
241 |
|
|
continue;
|
242 |
|
|
|
243 |
|
|
if (cs->call_stmt)
|
244 |
|
|
{
|
245 |
|
|
fprintf (f, " indirect callsite %d for stmt ", i);
|
246 |
|
|
print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
|
247 |
|
|
}
|
248 |
|
|
else
|
249 |
|
|
fprintf (f, " indirect callsite %d :\n", i);
|
250 |
|
|
ipa_print_node_jump_functions_for_edge (f, cs);
|
251 |
|
|
|
252 |
|
|
}
|
253 |
|
|
}
|
254 |
|
|
|
255 |
|
|
/* Print ipa_jump_func data structures of all nodes in the call graph to F. */
|
256 |
|
|
|
257 |
|
|
void
|
258 |
|
|
ipa_print_all_jump_functions (FILE *f)
|
259 |
|
|
{
|
260 |
|
|
struct cgraph_node *node;
|
261 |
|
|
|
262 |
|
|
fprintf (f, "\nJump functions:\n");
|
263 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
264 |
|
|
{
|
265 |
|
|
ipa_print_node_jump_functions (f, node);
|
266 |
|
|
}
|
267 |
|
|
}
|
268 |
|
|
|
269 |
|
|
/* Structure to be passed in between detect_type_change and
|
270 |
|
|
check_stmt_for_type_change. */
|
271 |
|
|
|
272 |
|
|
struct type_change_info
|
273 |
|
|
{
|
274 |
|
|
/* Offset into the object where there is the virtual method pointer we are
|
275 |
|
|
looking for. */
|
276 |
|
|
HOST_WIDE_INT offset;
|
277 |
|
|
/* The declaration or SSA_NAME pointer of the base that we are checking for
|
278 |
|
|
type change. */
|
279 |
|
|
tree object;
|
280 |
|
|
/* If we actually can tell the type that the object has changed to, it is
|
281 |
|
|
stored in this field. Otherwise it remains NULL_TREE. */
|
282 |
|
|
tree known_current_type;
|
283 |
|
|
/* Set to true if dynamic type change has been detected. */
|
284 |
|
|
bool type_maybe_changed;
|
285 |
|
|
/* Set to true if multiple types have been encountered. known_current_type
|
286 |
|
|
must be disregarded in that case. */
|
287 |
|
|
bool multiple_types_encountered;
|
288 |
|
|
};
|
289 |
|
|
|
290 |
|
|
/* Return true if STMT can modify a virtual method table pointer.
|
291 |
|
|
|
292 |
|
|
This function makes special assumptions about both constructors and
|
293 |
|
|
destructors which are all the functions that are allowed to alter the VMT
|
294 |
|
|
pointers. It assumes that destructors begin with assignment into all VMT
|
295 |
|
|
pointers and that constructors essentially look in the following way:
|
296 |
|
|
|
297 |
|
|
1) The very first thing they do is that they call constructors of ancestor
|
298 |
|
|
sub-objects that have them.
|
299 |
|
|
|
300 |
|
|
2) Then VMT pointers of this and all its ancestors is set to new values
|
301 |
|
|
corresponding to the type corresponding to the constructor.
|
302 |
|
|
|
303 |
|
|
3) Only afterwards, other stuff such as constructor of member sub-objects
|
304 |
|
|
and the code written by the user is run. Only this may include calling
|
305 |
|
|
virtual functions, directly or indirectly.
|
306 |
|
|
|
307 |
|
|
There is no way to call a constructor of an ancestor sub-object in any
|
308 |
|
|
other way.
|
309 |
|
|
|
310 |
|
|
This means that we do not have to care whether constructors get the correct
|
311 |
|
|
type information because they will always change it (in fact, if we define
|
312 |
|
|
the type to be given by the VMT pointer, it is undefined).
|
313 |
|
|
|
314 |
|
|
The most important fact to derive from the above is that if, for some
|
315 |
|
|
statement in the section 3, we try to detect whether the dynamic type has
|
316 |
|
|
changed, we can safely ignore all calls as we examine the function body
|
317 |
|
|
backwards until we reach statements in section 2 because these calls cannot
|
318 |
|
|
be ancestor constructors or destructors (if the input is not bogus) and so
|
319 |
|
|
do not change the dynamic type (this holds true only for automatically
|
320 |
|
|
allocated objects but at the moment we devirtualize only these). We then
|
321 |
|
|
must detect that statements in section 2 change the dynamic type and can try
|
322 |
|
|
to derive the new type. That is enough and we can stop, we will never see
|
323 |
|
|
the calls into constructors of sub-objects in this code. Therefore we can
|
324 |
|
|
safely ignore all call statements that we traverse.
|
325 |
|
|
*/
|
326 |
|
|
|
327 |
|
|
static bool
|
328 |
|
|
stmt_may_be_vtbl_ptr_store (gimple stmt)
|
329 |
|
|
{
|
330 |
|
|
if (is_gimple_call (stmt))
|
331 |
|
|
return false;
|
332 |
|
|
else if (is_gimple_assign (stmt))
|
333 |
|
|
{
|
334 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
335 |
|
|
|
336 |
|
|
if (!AGGREGATE_TYPE_P (TREE_TYPE (lhs)))
|
337 |
|
|
{
|
338 |
|
|
if (flag_strict_aliasing
|
339 |
|
|
&& !POINTER_TYPE_P (TREE_TYPE (lhs)))
|
340 |
|
|
return false;
|
341 |
|
|
|
342 |
|
|
if (TREE_CODE (lhs) == COMPONENT_REF
|
343 |
|
|
&& !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
|
344 |
|
|
return false;
|
345 |
|
|
/* In the future we might want to use get_base_ref_and_offset to find
|
346 |
|
|
if there is a field corresponding to the offset and if so, proceed
|
347 |
|
|
almost like if it was a component ref. */
|
348 |
|
|
}
|
349 |
|
|
}
|
350 |
|
|
return true;
|
351 |
|
|
}
|
352 |
|
|
|
353 |
|
|
/* If STMT can be proved to be an assignment to the virtual method table
|
354 |
|
|
pointer of ANALYZED_OBJ and the type associated with the new table
|
355 |
|
|
identified, return the type. Otherwise return NULL_TREE. */
|
356 |
|
|
|
357 |
|
|
static tree
|
358 |
|
|
extr_type_from_vtbl_ptr_store (gimple stmt, struct type_change_info *tci)
|
359 |
|
|
{
|
360 |
|
|
HOST_WIDE_INT offset, size, max_size;
|
361 |
|
|
tree lhs, rhs, base;
|
362 |
|
|
|
363 |
|
|
if (!gimple_assign_single_p (stmt))
|
364 |
|
|
return NULL_TREE;
|
365 |
|
|
|
366 |
|
|
lhs = gimple_assign_lhs (stmt);
|
367 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
368 |
|
|
if (TREE_CODE (lhs) != COMPONENT_REF
|
369 |
|
|
|| !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1))
|
370 |
|
|
|| TREE_CODE (rhs) != ADDR_EXPR)
|
371 |
|
|
return NULL_TREE;
|
372 |
|
|
rhs = get_base_address (TREE_OPERAND (rhs, 0));
|
373 |
|
|
if (!rhs
|
374 |
|
|
|| TREE_CODE (rhs) != VAR_DECL
|
375 |
|
|
|| !DECL_VIRTUAL_P (rhs))
|
376 |
|
|
return NULL_TREE;
|
377 |
|
|
|
378 |
|
|
base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
|
379 |
|
|
if (offset != tci->offset
|
380 |
|
|
|| size != POINTER_SIZE
|
381 |
|
|
|| max_size != POINTER_SIZE)
|
382 |
|
|
return NULL_TREE;
|
383 |
|
|
if (TREE_CODE (base) == MEM_REF)
|
384 |
|
|
{
|
385 |
|
|
if (TREE_CODE (tci->object) != MEM_REF
|
386 |
|
|
|| TREE_OPERAND (tci->object, 0) != TREE_OPERAND (base, 0)
|
387 |
|
|
|| !tree_int_cst_equal (TREE_OPERAND (tci->object, 1),
|
388 |
|
|
TREE_OPERAND (base, 1)))
|
389 |
|
|
return NULL_TREE;
|
390 |
|
|
}
|
391 |
|
|
else if (tci->object != base)
|
392 |
|
|
return NULL_TREE;
|
393 |
|
|
|
394 |
|
|
return DECL_CONTEXT (rhs);
|
395 |
|
|
}
|
396 |
|
|
|
397 |
|
|
/* Callback of walk_aliased_vdefs and a helper function for
|
398 |
|
|
detect_type_change to check whether a particular statement may modify
|
399 |
|
|
the virtual table pointer, and if possible also determine the new type of
|
400 |
|
|
the (sub-)object. It stores its result into DATA, which points to a
|
401 |
|
|
type_change_info structure. */
|
402 |
|
|
|
403 |
|
|
static bool
|
404 |
|
|
check_stmt_for_type_change (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
|
405 |
|
|
{
|
406 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (vdef);
|
407 |
|
|
struct type_change_info *tci = (struct type_change_info *) data;
|
408 |
|
|
|
409 |
|
|
if (stmt_may_be_vtbl_ptr_store (stmt))
|
410 |
|
|
{
|
411 |
|
|
tree type;
|
412 |
|
|
type = extr_type_from_vtbl_ptr_store (stmt, tci);
|
413 |
|
|
if (tci->type_maybe_changed
|
414 |
|
|
&& type != tci->known_current_type)
|
415 |
|
|
tci->multiple_types_encountered = true;
|
416 |
|
|
tci->known_current_type = type;
|
417 |
|
|
tci->type_maybe_changed = true;
|
418 |
|
|
return true;
|
419 |
|
|
}
|
420 |
|
|
else
|
421 |
|
|
return false;
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
|
425 |
|
|
|
426 |
|
|
/* Like detect_type_change but with extra argument COMP_TYPE which will become
|
427 |
|
|
the component type part of new JFUNC of dynamic type change is detected and
|
428 |
|
|
the new base type is identified. */
|
429 |
|
|
|
430 |
|
|
static bool
|
431 |
|
|
detect_type_change_1 (tree arg, tree base, tree comp_type, gimple call,
|
432 |
|
|
struct ipa_jump_func *jfunc, HOST_WIDE_INT offset)
|
433 |
|
|
{
|
434 |
|
|
struct type_change_info tci;
|
435 |
|
|
ao_ref ao;
|
436 |
|
|
|
437 |
|
|
gcc_checking_assert (DECL_P (arg)
|
438 |
|
|
|| TREE_CODE (arg) == MEM_REF
|
439 |
|
|
|| handled_component_p (arg));
|
440 |
|
|
/* Const calls cannot call virtual methods through VMT and so type changes do
|
441 |
|
|
not matter. */
|
442 |
|
|
if (!flag_devirtualize || !gimple_vuse (call))
|
443 |
|
|
return false;
|
444 |
|
|
|
445 |
|
|
ao_ref_init (&ao, arg);
|
446 |
|
|
ao.base = base;
|
447 |
|
|
ao.offset = offset;
|
448 |
|
|
ao.size = POINTER_SIZE;
|
449 |
|
|
ao.max_size = ao.size;
|
450 |
|
|
|
451 |
|
|
tci.offset = offset;
|
452 |
|
|
tci.object = get_base_address (arg);
|
453 |
|
|
tci.known_current_type = NULL_TREE;
|
454 |
|
|
tci.type_maybe_changed = false;
|
455 |
|
|
tci.multiple_types_encountered = false;
|
456 |
|
|
|
457 |
|
|
walk_aliased_vdefs (&ao, gimple_vuse (call), check_stmt_for_type_change,
|
458 |
|
|
&tci, NULL);
|
459 |
|
|
if (!tci.type_maybe_changed)
|
460 |
|
|
return false;
|
461 |
|
|
|
462 |
|
|
if (!tci.known_current_type
|
463 |
|
|
|| tci.multiple_types_encountered
|
464 |
|
|
|| offset != 0)
|
465 |
|
|
jfunc->type = IPA_JF_UNKNOWN;
|
466 |
|
|
else
|
467 |
|
|
{
|
468 |
|
|
jfunc->type = IPA_JF_KNOWN_TYPE;
|
469 |
|
|
jfunc->value.known_type.base_type = tci.known_current_type;
|
470 |
|
|
jfunc->value.known_type.component_type = comp_type;
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
return true;
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
/* Detect whether the dynamic type of ARG has changed (before callsite CALL) by
|
477 |
|
|
looking for assignments to its virtual table pointer. If it is, return true
|
478 |
|
|
and fill in the jump function JFUNC with relevant type information or set it
|
479 |
|
|
to unknown. ARG is the object itself (not a pointer to it, unless
|
480 |
|
|
dereferenced). BASE is the base of the memory access as returned by
|
481 |
|
|
get_ref_base_and_extent, as is the offset. */
|
482 |
|
|
|
483 |
|
|
static bool
|
484 |
|
|
detect_type_change (tree arg, tree base, gimple call,
|
485 |
|
|
struct ipa_jump_func *jfunc, HOST_WIDE_INT offset)
|
486 |
|
|
{
|
487 |
|
|
return detect_type_change_1 (arg, base, TREE_TYPE (arg), call, jfunc, offset);
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
/* Like detect_type_change but ARG is supposed to be a non-dereferenced pointer
|
491 |
|
|
SSA name (its dereference will become the base and the offset is assumed to
|
492 |
|
|
be zero). */
|
493 |
|
|
|
494 |
|
|
static bool
|
495 |
|
|
detect_type_change_ssa (tree arg, gimple call, struct ipa_jump_func *jfunc)
|
496 |
|
|
{
|
497 |
|
|
tree comp_type;
|
498 |
|
|
|
499 |
|
|
gcc_checking_assert (TREE_CODE (arg) == SSA_NAME);
|
500 |
|
|
if (!flag_devirtualize
|
501 |
|
|
|| !POINTER_TYPE_P (TREE_TYPE (arg))
|
502 |
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) != RECORD_TYPE)
|
503 |
|
|
return false;
|
504 |
|
|
|
505 |
|
|
comp_type = TREE_TYPE (TREE_TYPE (arg));
|
506 |
|
|
arg = build2 (MEM_REF, ptr_type_node, arg,
|
507 |
|
|
build_int_cst (ptr_type_node, 0));
|
508 |
|
|
|
509 |
|
|
return detect_type_change_1 (arg, arg, comp_type, call, jfunc, 0);
|
510 |
|
|
}
|
511 |
|
|
|
512 |
|
|
/* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
|
513 |
|
|
boolean variable pointed to by DATA. */
|
514 |
|
|
|
515 |
|
|
static bool
|
516 |
|
|
mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
|
517 |
|
|
void *data)
|
518 |
|
|
{
|
519 |
|
|
bool *b = (bool *) data;
|
520 |
|
|
*b = true;
|
521 |
|
|
return true;
|
522 |
|
|
}
|
523 |
|
|
|
524 |
|
|
/* Return true if the formal parameter PARM might have been modified in this
|
525 |
|
|
function before reaching the statement STMT. PARM_AINFO is a pointer to a
|
526 |
|
|
structure containing temporary information about PARM. */
|
527 |
|
|
|
528 |
|
|
static bool
|
529 |
|
|
is_parm_modified_before_stmt (struct param_analysis_info *parm_ainfo,
|
530 |
|
|
gimple stmt, tree parm)
|
531 |
|
|
{
|
532 |
|
|
bool modified = false;
|
533 |
|
|
ao_ref refd;
|
534 |
|
|
|
535 |
|
|
if (parm_ainfo->modified)
|
536 |
|
|
return true;
|
537 |
|
|
|
538 |
|
|
gcc_checking_assert (gimple_vuse (stmt) != NULL_TREE);
|
539 |
|
|
ao_ref_init (&refd, parm);
|
540 |
|
|
walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified,
|
541 |
|
|
&modified, &parm_ainfo->visited_statements);
|
542 |
|
|
if (modified)
|
543 |
|
|
{
|
544 |
|
|
parm_ainfo->modified = true;
|
545 |
|
|
return true;
|
546 |
|
|
}
|
547 |
|
|
return false;
|
548 |
|
|
}
|
549 |
|
|
|
550 |
|
|
/* If STMT is an assignment that loads a value from an parameter declaration,
|
551 |
|
|
return the index of the parameter in ipa_node_params which has not been
|
552 |
|
|
modified. Otherwise return -1. */
|
553 |
|
|
|
554 |
|
|
static int
|
555 |
|
|
load_from_unmodified_param (struct ipa_node_params *info,
|
556 |
|
|
struct param_analysis_info *parms_ainfo,
|
557 |
|
|
gimple stmt)
|
558 |
|
|
{
|
559 |
|
|
int index;
|
560 |
|
|
tree op1;
|
561 |
|
|
|
562 |
|
|
if (!gimple_assign_single_p (stmt))
|
563 |
|
|
return -1;
|
564 |
|
|
|
565 |
|
|
op1 = gimple_assign_rhs1 (stmt);
|
566 |
|
|
if (TREE_CODE (op1) != PARM_DECL)
|
567 |
|
|
return -1;
|
568 |
|
|
|
569 |
|
|
index = ipa_get_param_decl_index (info, op1);
|
570 |
|
|
if (index < 0
|
571 |
|
|
|| is_parm_modified_before_stmt (&parms_ainfo[index], stmt, op1))
|
572 |
|
|
return -1;
|
573 |
|
|
|
574 |
|
|
return index;
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
/* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
|
578 |
|
|
of an assignment statement STMT, try to determine whether we are actually
|
579 |
|
|
handling any of the following cases and construct an appropriate jump
|
580 |
|
|
function into JFUNC if so:
|
581 |
|
|
|
582 |
|
|
1) The passed value is loaded from a formal parameter which is not a gimple
|
583 |
|
|
register (most probably because it is addressable, the value has to be
|
584 |
|
|
scalar) and we can guarantee the value has not changed. This case can
|
585 |
|
|
therefore be described by a simple pass-through jump function. For example:
|
586 |
|
|
|
587 |
|
|
foo (int a)
|
588 |
|
|
{
|
589 |
|
|
int a.0;
|
590 |
|
|
|
591 |
|
|
a.0_2 = a;
|
592 |
|
|
bar (a.0_2);
|
593 |
|
|
|
594 |
|
|
2) The passed value can be described by a simple arithmetic pass-through
|
595 |
|
|
jump function. E.g.
|
596 |
|
|
|
597 |
|
|
foo (int a)
|
598 |
|
|
{
|
599 |
|
|
int D.2064;
|
600 |
|
|
|
601 |
|
|
D.2064_4 = a.1(D) + 4;
|
602 |
|
|
bar (D.2064_4);
|
603 |
|
|
|
604 |
|
|
This case can also occur in combination of the previous one, e.g.:
|
605 |
|
|
|
606 |
|
|
foo (int a, int z)
|
607 |
|
|
{
|
608 |
|
|
int a.0;
|
609 |
|
|
int D.2064;
|
610 |
|
|
|
611 |
|
|
a.0_3 = a;
|
612 |
|
|
D.2064_4 = a.0_3 + 4;
|
613 |
|
|
foo (D.2064_4);
|
614 |
|
|
|
615 |
|
|
3) The passed value is an address of an object within another one (which
|
616 |
|
|
also passed by reference). Such situations are described by an ancestor
|
617 |
|
|
jump function and describe situations such as:
|
618 |
|
|
|
619 |
|
|
B::foo() (struct B * const this)
|
620 |
|
|
{
|
621 |
|
|
struct A * D.1845;
|
622 |
|
|
|
623 |
|
|
D.1845_2 = &this_1(D)->D.1748;
|
624 |
|
|
A::bar (D.1845_2);
|
625 |
|
|
|
626 |
|
|
INFO is the structure describing individual parameters access different
|
627 |
|
|
stages of IPA optimizations. PARMS_AINFO contains the information that is
|
628 |
|
|
only needed for intraprocedural analysis. */
|
629 |
|
|
|
630 |
|
|
static void
|
631 |
|
|
compute_complex_assign_jump_func (struct ipa_node_params *info,
|
632 |
|
|
struct param_analysis_info *parms_ainfo,
|
633 |
|
|
struct ipa_jump_func *jfunc,
|
634 |
|
|
gimple call, gimple stmt, tree name)
|
635 |
|
|
{
|
636 |
|
|
HOST_WIDE_INT offset, size, max_size;
|
637 |
|
|
tree op1, tc_ssa, base, ssa;
|
638 |
|
|
int index;
|
639 |
|
|
|
640 |
|
|
op1 = gimple_assign_rhs1 (stmt);
|
641 |
|
|
|
642 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
643 |
|
|
{
|
644 |
|
|
if (SSA_NAME_IS_DEFAULT_DEF (op1))
|
645 |
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
|
646 |
|
|
else
|
647 |
|
|
index = load_from_unmodified_param (info, parms_ainfo,
|
648 |
|
|
SSA_NAME_DEF_STMT (op1));
|
649 |
|
|
tc_ssa = op1;
|
650 |
|
|
}
|
651 |
|
|
else
|
652 |
|
|
{
|
653 |
|
|
index = load_from_unmodified_param (info, parms_ainfo, stmt);
|
654 |
|
|
tc_ssa = gimple_assign_lhs (stmt);
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
if (index >= 0)
|
658 |
|
|
{
|
659 |
|
|
tree op2 = gimple_assign_rhs2 (stmt);
|
660 |
|
|
|
661 |
|
|
if (op2)
|
662 |
|
|
{
|
663 |
|
|
if (!is_gimple_ip_invariant (op2)
|
664 |
|
|
|| (TREE_CODE_CLASS (gimple_expr_code (stmt)) != tcc_comparison
|
665 |
|
|
&& !useless_type_conversion_p (TREE_TYPE (name),
|
666 |
|
|
TREE_TYPE (op1))))
|
667 |
|
|
return;
|
668 |
|
|
|
669 |
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
670 |
|
|
jfunc->value.pass_through.formal_id = index;
|
671 |
|
|
jfunc->value.pass_through.operation = gimple_assign_rhs_code (stmt);
|
672 |
|
|
jfunc->value.pass_through.operand = op2;
|
673 |
|
|
}
|
674 |
|
|
else if (gimple_assign_single_p (stmt)
|
675 |
|
|
&& !detect_type_change_ssa (tc_ssa, call, jfunc))
|
676 |
|
|
{
|
677 |
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
678 |
|
|
jfunc->value.pass_through.formal_id = index;
|
679 |
|
|
jfunc->value.pass_through.operation = NOP_EXPR;
|
680 |
|
|
}
|
681 |
|
|
return;
|
682 |
|
|
}
|
683 |
|
|
|
684 |
|
|
if (TREE_CODE (op1) != ADDR_EXPR)
|
685 |
|
|
return;
|
686 |
|
|
op1 = TREE_OPERAND (op1, 0);
|
687 |
|
|
if (TREE_CODE (TREE_TYPE (op1)) != RECORD_TYPE)
|
688 |
|
|
return;
|
689 |
|
|
base = get_ref_base_and_extent (op1, &offset, &size, &max_size);
|
690 |
|
|
if (TREE_CODE (base) != MEM_REF
|
691 |
|
|
/* If this is a varying address, punt. */
|
692 |
|
|
|| max_size == -1
|
693 |
|
|
|| max_size != size)
|
694 |
|
|
return;
|
695 |
|
|
offset += mem_ref_offset (base).low * BITS_PER_UNIT;
|
696 |
|
|
ssa = TREE_OPERAND (base, 0);
|
697 |
|
|
if (TREE_CODE (ssa) != SSA_NAME
|
698 |
|
|
|| !SSA_NAME_IS_DEFAULT_DEF (ssa)
|
699 |
|
|
|| offset < 0)
|
700 |
|
|
return;
|
701 |
|
|
|
702 |
|
|
/* Dynamic types are changed only in constructors and destructors and */
|
703 |
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (ssa));
|
704 |
|
|
if (index >= 0
|
705 |
|
|
&& !detect_type_change (op1, base, call, jfunc, offset))
|
706 |
|
|
{
|
707 |
|
|
jfunc->type = IPA_JF_ANCESTOR;
|
708 |
|
|
jfunc->value.ancestor.formal_id = index;
|
709 |
|
|
jfunc->value.ancestor.offset = offset;
|
710 |
|
|
jfunc->value.ancestor.type = TREE_TYPE (op1);
|
711 |
|
|
}
|
712 |
|
|
}
|
713 |
|
|
|
714 |
|
|
/* Extract the base, offset and MEM_REF expression from a statement ASSIGN if
|
715 |
|
|
it looks like:
|
716 |
|
|
|
717 |
|
|
iftmp.1_3 = &obj_2(D)->D.1762;
|
718 |
|
|
|
719 |
|
|
The base of the MEM_REF must be a default definition SSA NAME of a
|
720 |
|
|
parameter. Return NULL_TREE if it looks otherwise. If case of success, the
|
721 |
|
|
whole MEM_REF expression is returned and the offset calculated from any
|
722 |
|
|
handled components and the MEM_REF itself is stored into *OFFSET. The whole
|
723 |
|
|
RHS stripped off the ADDR_EXPR is stored into *OBJ_P. */
|
724 |
|
|
|
725 |
|
|
static tree
|
726 |
|
|
get_ancestor_addr_info (gimple assign, tree *obj_p, HOST_WIDE_INT *offset)
|
727 |
|
|
{
|
728 |
|
|
HOST_WIDE_INT size, max_size;
|
729 |
|
|
tree expr, parm, obj;
|
730 |
|
|
|
731 |
|
|
if (!gimple_assign_single_p (assign))
|
732 |
|
|
return NULL_TREE;
|
733 |
|
|
expr = gimple_assign_rhs1 (assign);
|
734 |
|
|
|
735 |
|
|
if (TREE_CODE (expr) != ADDR_EXPR)
|
736 |
|
|
return NULL_TREE;
|
737 |
|
|
expr = TREE_OPERAND (expr, 0);
|
738 |
|
|
obj = expr;
|
739 |
|
|
expr = get_ref_base_and_extent (expr, offset, &size, &max_size);
|
740 |
|
|
|
741 |
|
|
if (TREE_CODE (expr) != MEM_REF
|
742 |
|
|
/* If this is a varying address, punt. */
|
743 |
|
|
|| max_size == -1
|
744 |
|
|
|| max_size != size
|
745 |
|
|
|| *offset < 0)
|
746 |
|
|
return NULL_TREE;
|
747 |
|
|
parm = TREE_OPERAND (expr, 0);
|
748 |
|
|
if (TREE_CODE (parm) != SSA_NAME
|
749 |
|
|
|| !SSA_NAME_IS_DEFAULT_DEF (parm)
|
750 |
|
|
|| TREE_CODE (SSA_NAME_VAR (parm)) != PARM_DECL)
|
751 |
|
|
return NULL_TREE;
|
752 |
|
|
|
753 |
|
|
*offset += mem_ref_offset (expr).low * BITS_PER_UNIT;
|
754 |
|
|
*obj_p = obj;
|
755 |
|
|
return expr;
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
|
759 |
|
|
/* Given that an actual argument is an SSA_NAME that is a result of a phi
|
760 |
|
|
statement PHI, try to find out whether NAME is in fact a
|
761 |
|
|
multiple-inheritance typecast from a descendant into an ancestor of a formal
|
762 |
|
|
parameter and thus can be described by an ancestor jump function and if so,
|
763 |
|
|
write the appropriate function into JFUNC.
|
764 |
|
|
|
765 |
|
|
Essentially we want to match the following pattern:
|
766 |
|
|
|
767 |
|
|
if (obj_2(D) != 0B)
|
768 |
|
|
goto <bb 3>;
|
769 |
|
|
else
|
770 |
|
|
goto <bb 4>;
|
771 |
|
|
|
772 |
|
|
<bb 3>:
|
773 |
|
|
iftmp.1_3 = &obj_2(D)->D.1762;
|
774 |
|
|
|
775 |
|
|
<bb 4>:
|
776 |
|
|
# iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
|
777 |
|
|
D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
|
778 |
|
|
return D.1879_6; */
|
779 |
|
|
|
780 |
|
|
static void
|
781 |
|
|
compute_complex_ancestor_jump_func (struct ipa_node_params *info,
|
782 |
|
|
struct ipa_jump_func *jfunc,
|
783 |
|
|
gimple call, gimple phi)
|
784 |
|
|
{
|
785 |
|
|
HOST_WIDE_INT offset;
|
786 |
|
|
gimple assign, cond;
|
787 |
|
|
basic_block phi_bb, assign_bb, cond_bb;
|
788 |
|
|
tree tmp, parm, expr, obj;
|
789 |
|
|
int index, i;
|
790 |
|
|
|
791 |
|
|
if (gimple_phi_num_args (phi) != 2)
|
792 |
|
|
return;
|
793 |
|
|
|
794 |
|
|
if (integer_zerop (PHI_ARG_DEF (phi, 1)))
|
795 |
|
|
tmp = PHI_ARG_DEF (phi, 0);
|
796 |
|
|
else if (integer_zerop (PHI_ARG_DEF (phi, 0)))
|
797 |
|
|
tmp = PHI_ARG_DEF (phi, 1);
|
798 |
|
|
else
|
799 |
|
|
return;
|
800 |
|
|
if (TREE_CODE (tmp) != SSA_NAME
|
801 |
|
|
|| SSA_NAME_IS_DEFAULT_DEF (tmp)
|
802 |
|
|
|| !POINTER_TYPE_P (TREE_TYPE (tmp))
|
803 |
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
|
804 |
|
|
return;
|
805 |
|
|
|
806 |
|
|
assign = SSA_NAME_DEF_STMT (tmp);
|
807 |
|
|
assign_bb = gimple_bb (assign);
|
808 |
|
|
if (!single_pred_p (assign_bb))
|
809 |
|
|
return;
|
810 |
|
|
expr = get_ancestor_addr_info (assign, &obj, &offset);
|
811 |
|
|
if (!expr)
|
812 |
|
|
return;
|
813 |
|
|
parm = TREE_OPERAND (expr, 0);
|
814 |
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
|
815 |
|
|
gcc_assert (index >= 0);
|
816 |
|
|
|
817 |
|
|
cond_bb = single_pred (assign_bb);
|
818 |
|
|
cond = last_stmt (cond_bb);
|
819 |
|
|
if (!cond
|
820 |
|
|
|| gimple_code (cond) != GIMPLE_COND
|
821 |
|
|
|| gimple_cond_code (cond) != NE_EXPR
|
822 |
|
|
|| gimple_cond_lhs (cond) != parm
|
823 |
|
|
|| !integer_zerop (gimple_cond_rhs (cond)))
|
824 |
|
|
return;
|
825 |
|
|
|
826 |
|
|
phi_bb = gimple_bb (phi);
|
827 |
|
|
for (i = 0; i < 2; i++)
|
828 |
|
|
{
|
829 |
|
|
basic_block pred = EDGE_PRED (phi_bb, i)->src;
|
830 |
|
|
if (pred != assign_bb && pred != cond_bb)
|
831 |
|
|
return;
|
832 |
|
|
}
|
833 |
|
|
|
834 |
|
|
if (!detect_type_change (obj, expr, call, jfunc, offset))
|
835 |
|
|
{
|
836 |
|
|
jfunc->type = IPA_JF_ANCESTOR;
|
837 |
|
|
jfunc->value.ancestor.formal_id = index;
|
838 |
|
|
jfunc->value.ancestor.offset = offset;
|
839 |
|
|
jfunc->value.ancestor.type = TREE_TYPE (obj);
|
840 |
|
|
}
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
/* Given OP which is passed as an actual argument to a called function,
|
844 |
|
|
determine if it is possible to construct a KNOWN_TYPE jump function for it
|
845 |
|
|
and if so, create one and store it to JFUNC. */
|
846 |
|
|
|
847 |
|
|
static void
|
848 |
|
|
compute_known_type_jump_func (tree op, struct ipa_jump_func *jfunc,
|
849 |
|
|
gimple call)
|
850 |
|
|
{
|
851 |
|
|
HOST_WIDE_INT offset, size, max_size;
|
852 |
|
|
tree base;
|
853 |
|
|
|
854 |
|
|
if (!flag_devirtualize
|
855 |
|
|
|| TREE_CODE (op) != ADDR_EXPR
|
856 |
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (op))) != RECORD_TYPE)
|
857 |
|
|
return;
|
858 |
|
|
|
859 |
|
|
op = TREE_OPERAND (op, 0);
|
860 |
|
|
base = get_ref_base_and_extent (op, &offset, &size, &max_size);
|
861 |
|
|
if (!DECL_P (base)
|
862 |
|
|
|| max_size == -1
|
863 |
|
|
|| max_size != size
|
864 |
|
|
|| TREE_CODE (TREE_TYPE (base)) != RECORD_TYPE
|
865 |
|
|
|| is_global_var (base))
|
866 |
|
|
return;
|
867 |
|
|
|
868 |
|
|
if (detect_type_change (op, base, call, jfunc, offset)
|
869 |
|
|
|| !TYPE_BINFO (TREE_TYPE (base)))
|
870 |
|
|
return;
|
871 |
|
|
|
872 |
|
|
jfunc->type = IPA_JF_KNOWN_TYPE;
|
873 |
|
|
jfunc->value.known_type.base_type = TREE_TYPE (base);
|
874 |
|
|
jfunc->value.known_type.offset = offset;
|
875 |
|
|
jfunc->value.known_type.component_type = TREE_TYPE (op);
|
876 |
|
|
}
|
877 |
|
|
|
878 |
|
|
|
879 |
|
|
/* Determine the jump functions of scalar arguments. Scalar means SSA names
|
880 |
|
|
and constants of a number of selected types. INFO is the ipa_node_params
|
881 |
|
|
structure associated with the caller, PARMS_AINFO describes state of
|
882 |
|
|
analysis with respect to individual formal parameters. ARGS is the
|
883 |
|
|
ipa_edge_args structure describing the callsite CALL which is the call
|
884 |
|
|
statement being examined.*/
|
885 |
|
|
|
886 |
|
|
static void
|
887 |
|
|
compute_scalar_jump_functions (struct ipa_node_params *info,
|
888 |
|
|
struct param_analysis_info *parms_ainfo,
|
889 |
|
|
struct ipa_edge_args *args,
|
890 |
|
|
gimple call)
|
891 |
|
|
{
|
892 |
|
|
tree arg;
|
893 |
|
|
unsigned num = 0;
|
894 |
|
|
|
895 |
|
|
for (num = 0; num < gimple_call_num_args (call); num++)
|
896 |
|
|
{
|
897 |
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, num);
|
898 |
|
|
arg = gimple_call_arg (call, num);
|
899 |
|
|
|
900 |
|
|
if (is_gimple_ip_invariant (arg))
|
901 |
|
|
{
|
902 |
|
|
jfunc->type = IPA_JF_CONST;
|
903 |
|
|
jfunc->value.constant = arg;
|
904 |
|
|
}
|
905 |
|
|
else if (TREE_CODE (arg) == SSA_NAME)
|
906 |
|
|
{
|
907 |
|
|
if (SSA_NAME_IS_DEFAULT_DEF (arg))
|
908 |
|
|
{
|
909 |
|
|
int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
|
910 |
|
|
|
911 |
|
|
if (index >= 0
|
912 |
|
|
&& !detect_type_change_ssa (arg, call, jfunc))
|
913 |
|
|
{
|
914 |
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
915 |
|
|
jfunc->value.pass_through.formal_id = index;
|
916 |
|
|
jfunc->value.pass_through.operation = NOP_EXPR;
|
917 |
|
|
}
|
918 |
|
|
}
|
919 |
|
|
else
|
920 |
|
|
{
|
921 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (arg);
|
922 |
|
|
if (is_gimple_assign (stmt))
|
923 |
|
|
compute_complex_assign_jump_func (info, parms_ainfo, jfunc,
|
924 |
|
|
call, stmt, arg);
|
925 |
|
|
else if (gimple_code (stmt) == GIMPLE_PHI)
|
926 |
|
|
compute_complex_ancestor_jump_func (info, jfunc, call, stmt);
|
927 |
|
|
}
|
928 |
|
|
}
|
929 |
|
|
else
|
930 |
|
|
compute_known_type_jump_func (arg, jfunc, call);
|
931 |
|
|
}
|
932 |
|
|
}
|
933 |
|
|
|
934 |
|
|
/* Inspect the given TYPE and return true iff it has the same structure (the
|
935 |
|
|
same number of fields of the same types) as a C++ member pointer. If
|
936 |
|
|
METHOD_PTR and DELTA are non-NULL, store the trees representing the
|
937 |
|
|
corresponding fields there. */
|
938 |
|
|
|
939 |
|
|
static bool
|
940 |
|
|
type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
|
941 |
|
|
{
|
942 |
|
|
tree fld;
|
943 |
|
|
|
944 |
|
|
if (TREE_CODE (type) != RECORD_TYPE)
|
945 |
|
|
return false;
|
946 |
|
|
|
947 |
|
|
fld = TYPE_FIELDS (type);
|
948 |
|
|
if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
|
949 |
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE)
|
950 |
|
|
return false;
|
951 |
|
|
|
952 |
|
|
if (method_ptr)
|
953 |
|
|
*method_ptr = fld;
|
954 |
|
|
|
955 |
|
|
fld = DECL_CHAIN (fld);
|
956 |
|
|
if (!fld || INTEGRAL_TYPE_P (fld))
|
957 |
|
|
return false;
|
958 |
|
|
if (delta)
|
959 |
|
|
*delta = fld;
|
960 |
|
|
|
961 |
|
|
if (DECL_CHAIN (fld))
|
962 |
|
|
return false;
|
963 |
|
|
|
964 |
|
|
return true;
|
965 |
|
|
}
|
966 |
|
|
|
967 |
|
|
/* Go through arguments of the CALL and for every one that looks like a member
|
968 |
|
|
pointer, check whether it can be safely declared pass-through and if so,
|
969 |
|
|
mark that to the corresponding item of jump FUNCTIONS. Return true iff
|
970 |
|
|
there are non-pass-through member pointers within the arguments. INFO
|
971 |
|
|
describes formal parameters of the caller. PARMS_INFO is a pointer to a
|
972 |
|
|
vector containing intermediate information about each formal parameter. */
|
973 |
|
|
|
974 |
|
|
static bool
|
975 |
|
|
compute_pass_through_member_ptrs (struct ipa_node_params *info,
|
976 |
|
|
struct param_analysis_info *parms_ainfo,
|
977 |
|
|
struct ipa_edge_args *args,
|
978 |
|
|
gimple call)
|
979 |
|
|
{
|
980 |
|
|
bool undecided_members = false;
|
981 |
|
|
unsigned num;
|
982 |
|
|
tree arg;
|
983 |
|
|
|
984 |
|
|
for (num = 0; num < gimple_call_num_args (call); num++)
|
985 |
|
|
{
|
986 |
|
|
arg = gimple_call_arg (call, num);
|
987 |
|
|
|
988 |
|
|
if (type_like_member_ptr_p (TREE_TYPE (arg), NULL, NULL))
|
989 |
|
|
{
|
990 |
|
|
if (TREE_CODE (arg) == PARM_DECL)
|
991 |
|
|
{
|
992 |
|
|
int index = ipa_get_param_decl_index (info, arg);
|
993 |
|
|
|
994 |
|
|
gcc_assert (index >=0);
|
995 |
|
|
if (!is_parm_modified_before_stmt (&parms_ainfo[index], call,
|
996 |
|
|
arg))
|
997 |
|
|
{
|
998 |
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args,
|
999 |
|
|
num);
|
1000 |
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
1001 |
|
|
jfunc->value.pass_through.formal_id = index;
|
1002 |
|
|
jfunc->value.pass_through.operation = NOP_EXPR;
|
1003 |
|
|
}
|
1004 |
|
|
else
|
1005 |
|
|
undecided_members = true;
|
1006 |
|
|
}
|
1007 |
|
|
else
|
1008 |
|
|
undecided_members = true;
|
1009 |
|
|
}
|
1010 |
|
|
}
|
1011 |
|
|
|
1012 |
|
|
return undecided_members;
|
1013 |
|
|
}
|
1014 |
|
|
|
1015 |
|
|
/* Simple function filling in a member pointer constant jump function (with PFN
|
1016 |
|
|
and DELTA as the constant value) into JFUNC. */
|
1017 |
|
|
|
1018 |
|
|
static void
|
1019 |
|
|
fill_member_ptr_cst_jump_function (struct ipa_jump_func *jfunc,
|
1020 |
|
|
tree pfn, tree delta)
|
1021 |
|
|
{
|
1022 |
|
|
jfunc->type = IPA_JF_CONST_MEMBER_PTR;
|
1023 |
|
|
jfunc->value.member_cst.pfn = pfn;
|
1024 |
|
|
jfunc->value.member_cst.delta = delta;
|
1025 |
|
|
}
|
1026 |
|
|
|
1027 |
|
|
/* If RHS is an SSA_NAME and it is defined by a simple copy assign statement,
|
1028 |
|
|
return the rhs of its defining statement. */
|
1029 |
|
|
|
1030 |
|
|
static inline tree
|
1031 |
|
|
get_ssa_def_if_simple_copy (tree rhs)
|
1032 |
|
|
{
|
1033 |
|
|
while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
|
1034 |
|
|
{
|
1035 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (rhs);
|
1036 |
|
|
|
1037 |
|
|
if (gimple_assign_single_p (def_stmt))
|
1038 |
|
|
rhs = gimple_assign_rhs1 (def_stmt);
|
1039 |
|
|
else
|
1040 |
|
|
break;
|
1041 |
|
|
}
|
1042 |
|
|
return rhs;
|
1043 |
|
|
}
|
1044 |
|
|
|
1045 |
|
|
/* Traverse statements from CALL backwards, scanning whether the argument ARG
|
1046 |
|
|
which is a member pointer is filled in with constant values. If it is, fill
|
1047 |
|
|
the jump function JFUNC in appropriately. METHOD_FIELD and DELTA_FIELD are
|
1048 |
|
|
fields of the record type of the member pointer. To give an example, we
|
1049 |
|
|
look for a pattern looking like the following:
|
1050 |
|
|
|
1051 |
|
|
D.2515.__pfn ={v} printStuff;
|
1052 |
|
|
D.2515.__delta ={v} 0;
|
1053 |
|
|
i_1 = doprinting (D.2515); */
|
1054 |
|
|
|
1055 |
|
|
static void
|
1056 |
|
|
determine_cst_member_ptr (gimple call, tree arg, tree method_field,
|
1057 |
|
|
tree delta_field, struct ipa_jump_func *jfunc)
|
1058 |
|
|
{
|
1059 |
|
|
gimple_stmt_iterator gsi;
|
1060 |
|
|
tree method = NULL_TREE;
|
1061 |
|
|
tree delta = NULL_TREE;
|
1062 |
|
|
|
1063 |
|
|
gsi = gsi_for_stmt (call);
|
1064 |
|
|
|
1065 |
|
|
gsi_prev (&gsi);
|
1066 |
|
|
for (; !gsi_end_p (gsi); gsi_prev (&gsi))
|
1067 |
|
|
{
|
1068 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1069 |
|
|
tree lhs, rhs, fld;
|
1070 |
|
|
|
1071 |
|
|
if (!stmt_may_clobber_ref_p (stmt, arg))
|
1072 |
|
|
continue;
|
1073 |
|
|
if (!gimple_assign_single_p (stmt))
|
1074 |
|
|
return;
|
1075 |
|
|
|
1076 |
|
|
lhs = gimple_assign_lhs (stmt);
|
1077 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
1078 |
|
|
|
1079 |
|
|
if (TREE_CODE (lhs) != COMPONENT_REF
|
1080 |
|
|
|| TREE_OPERAND (lhs, 0) != arg)
|
1081 |
|
|
return;
|
1082 |
|
|
|
1083 |
|
|
fld = TREE_OPERAND (lhs, 1);
|
1084 |
|
|
if (!method && fld == method_field)
|
1085 |
|
|
{
|
1086 |
|
|
rhs = get_ssa_def_if_simple_copy (rhs);
|
1087 |
|
|
if (TREE_CODE (rhs) == ADDR_EXPR
|
1088 |
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == FUNCTION_DECL
|
1089 |
|
|
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs, 0))) == METHOD_TYPE)
|
1090 |
|
|
{
|
1091 |
|
|
method = TREE_OPERAND (rhs, 0);
|
1092 |
|
|
if (delta)
|
1093 |
|
|
{
|
1094 |
|
|
fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
|
1095 |
|
|
return;
|
1096 |
|
|
}
|
1097 |
|
|
}
|
1098 |
|
|
else
|
1099 |
|
|
return;
|
1100 |
|
|
}
|
1101 |
|
|
|
1102 |
|
|
if (!delta && fld == delta_field)
|
1103 |
|
|
{
|
1104 |
|
|
rhs = get_ssa_def_if_simple_copy (rhs);
|
1105 |
|
|
if (TREE_CODE (rhs) == INTEGER_CST)
|
1106 |
|
|
{
|
1107 |
|
|
delta = rhs;
|
1108 |
|
|
if (method)
|
1109 |
|
|
{
|
1110 |
|
|
fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
|
1111 |
|
|
return;
|
1112 |
|
|
}
|
1113 |
|
|
}
|
1114 |
|
|
else
|
1115 |
|
|
return;
|
1116 |
|
|
}
|
1117 |
|
|
}
|
1118 |
|
|
|
1119 |
|
|
return;
|
1120 |
|
|
}
|
1121 |
|
|
|
1122 |
|
|
/* Go through the arguments of the CALL and for every member pointer within
|
1123 |
|
|
tries determine whether it is a constant. If it is, create a corresponding
|
1124 |
|
|
constant jump function in FUNCTIONS which is an array of jump functions
|
1125 |
|
|
associated with the call. */
|
1126 |
|
|
|
1127 |
|
|
static void
|
1128 |
|
|
compute_cst_member_ptr_arguments (struct ipa_edge_args *args,
|
1129 |
|
|
gimple call)
|
1130 |
|
|
{
|
1131 |
|
|
unsigned num;
|
1132 |
|
|
tree arg, method_field, delta_field;
|
1133 |
|
|
|
1134 |
|
|
for (num = 0; num < gimple_call_num_args (call); num++)
|
1135 |
|
|
{
|
1136 |
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, num);
|
1137 |
|
|
arg = gimple_call_arg (call, num);
|
1138 |
|
|
|
1139 |
|
|
if (jfunc->type == IPA_JF_UNKNOWN
|
1140 |
|
|
&& type_like_member_ptr_p (TREE_TYPE (arg), &method_field,
|
1141 |
|
|
&delta_field))
|
1142 |
|
|
determine_cst_member_ptr (call, arg, method_field, delta_field, jfunc);
|
1143 |
|
|
}
|
1144 |
|
|
}
|
1145 |
|
|
|
1146 |
|
|
/* Compute jump function for all arguments of callsite CS and insert the
|
1147 |
|
|
information in the jump_functions array in the ipa_edge_args corresponding
|
1148 |
|
|
to this callsite. */
|
1149 |
|
|
|
1150 |
|
|
static void
|
1151 |
|
|
ipa_compute_jump_functions_for_edge (struct param_analysis_info *parms_ainfo,
|
1152 |
|
|
struct cgraph_edge *cs)
|
1153 |
|
|
{
|
1154 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
|
1155 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (cs);
|
1156 |
|
|
gimple call = cs->call_stmt;
|
1157 |
|
|
int arg_num = gimple_call_num_args (call);
|
1158 |
|
|
|
1159 |
|
|
if (arg_num == 0 || args->jump_functions)
|
1160 |
|
|
return;
|
1161 |
|
|
VEC_safe_grow_cleared (ipa_jump_func_t, gc, args->jump_functions, arg_num);
|
1162 |
|
|
|
1163 |
|
|
/* We will deal with constants and SSA scalars first: */
|
1164 |
|
|
compute_scalar_jump_functions (info, parms_ainfo, args, call);
|
1165 |
|
|
|
1166 |
|
|
/* Let's check whether there are any potential member pointers and if so,
|
1167 |
|
|
whether we can determine their functions as pass_through. */
|
1168 |
|
|
if (!compute_pass_through_member_ptrs (info, parms_ainfo, args, call))
|
1169 |
|
|
return;
|
1170 |
|
|
|
1171 |
|
|
/* Finally, let's check whether we actually pass a new constant member
|
1172 |
|
|
pointer here... */
|
1173 |
|
|
compute_cst_member_ptr_arguments (args, call);
|
1174 |
|
|
}
|
1175 |
|
|
|
1176 |
|
|
/* Compute jump functions for all edges - both direct and indirect - outgoing
|
1177 |
|
|
from NODE. Also count the actual arguments in the process. */
|
1178 |
|
|
|
1179 |
|
|
static void
|
1180 |
|
|
ipa_compute_jump_functions (struct cgraph_node *node,
|
1181 |
|
|
struct param_analysis_info *parms_ainfo)
|
1182 |
|
|
{
|
1183 |
|
|
struct cgraph_edge *cs;
|
1184 |
|
|
|
1185 |
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
1186 |
|
|
{
|
1187 |
|
|
struct cgraph_node *callee = cgraph_function_or_thunk_node (cs->callee,
|
1188 |
|
|
NULL);
|
1189 |
|
|
/* We do not need to bother analyzing calls to unknown
|
1190 |
|
|
functions unless they may become known during lto/whopr. */
|
1191 |
|
|
if (!callee->analyzed && !flag_lto)
|
1192 |
|
|
continue;
|
1193 |
|
|
ipa_compute_jump_functions_for_edge (parms_ainfo, cs);
|
1194 |
|
|
}
|
1195 |
|
|
|
1196 |
|
|
for (cs = node->indirect_calls; cs; cs = cs->next_callee)
|
1197 |
|
|
ipa_compute_jump_functions_for_edge (parms_ainfo, cs);
|
1198 |
|
|
}
|
1199 |
|
|
|
1200 |
|
|
/* If RHS looks like a rhs of a statement loading pfn from a member
|
1201 |
|
|
pointer formal parameter, return the parameter, otherwise return
|
1202 |
|
|
NULL. If USE_DELTA, then we look for a use of the delta field
|
1203 |
|
|
rather than the pfn. */
|
1204 |
|
|
|
1205 |
|
|
static tree
|
1206 |
|
|
ipa_get_member_ptr_load_param (tree rhs, bool use_delta)
|
1207 |
|
|
{
|
1208 |
|
|
tree rec, ref_field, ref_offset, fld, fld_offset, ptr_field, delta_field;
|
1209 |
|
|
|
1210 |
|
|
if (TREE_CODE (rhs) == COMPONENT_REF)
|
1211 |
|
|
{
|
1212 |
|
|
ref_field = TREE_OPERAND (rhs, 1);
|
1213 |
|
|
rhs = TREE_OPERAND (rhs, 0);
|
1214 |
|
|
}
|
1215 |
|
|
else
|
1216 |
|
|
ref_field = NULL_TREE;
|
1217 |
|
|
if (TREE_CODE (rhs) != MEM_REF)
|
1218 |
|
|
return NULL_TREE;
|
1219 |
|
|
rec = TREE_OPERAND (rhs, 0);
|
1220 |
|
|
if (TREE_CODE (rec) != ADDR_EXPR)
|
1221 |
|
|
return NULL_TREE;
|
1222 |
|
|
rec = TREE_OPERAND (rec, 0);
|
1223 |
|
|
if (TREE_CODE (rec) != PARM_DECL
|
1224 |
|
|
|| !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
|
1225 |
|
|
return NULL_TREE;
|
1226 |
|
|
|
1227 |
|
|
ref_offset = TREE_OPERAND (rhs, 1);
|
1228 |
|
|
|
1229 |
|
|
if (ref_field)
|
1230 |
|
|
{
|
1231 |
|
|
if (integer_nonzerop (ref_offset))
|
1232 |
|
|
return NULL_TREE;
|
1233 |
|
|
|
1234 |
|
|
if (use_delta)
|
1235 |
|
|
fld = delta_field;
|
1236 |
|
|
else
|
1237 |
|
|
fld = ptr_field;
|
1238 |
|
|
|
1239 |
|
|
return ref_field == fld ? rec : NULL_TREE;
|
1240 |
|
|
}
|
1241 |
|
|
|
1242 |
|
|
if (use_delta)
|
1243 |
|
|
fld_offset = byte_position (delta_field);
|
1244 |
|
|
else
|
1245 |
|
|
fld_offset = byte_position (ptr_field);
|
1246 |
|
|
|
1247 |
|
|
return tree_int_cst_equal (ref_offset, fld_offset) ? rec : NULL_TREE;
|
1248 |
|
|
}
|
1249 |
|
|
|
1250 |
|
|
/* If STMT looks like a statement loading a value from a member pointer formal
|
1251 |
|
|
parameter, this function returns that parameter. */
|
1252 |
|
|
|
1253 |
|
|
static tree
|
1254 |
|
|
ipa_get_stmt_member_ptr_load_param (gimple stmt, bool use_delta)
|
1255 |
|
|
{
|
1256 |
|
|
tree rhs;
|
1257 |
|
|
|
1258 |
|
|
if (!gimple_assign_single_p (stmt))
|
1259 |
|
|
return NULL_TREE;
|
1260 |
|
|
|
1261 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
1262 |
|
|
return ipa_get_member_ptr_load_param (rhs, use_delta);
|
1263 |
|
|
}
|
1264 |
|
|
|
1265 |
|
|
/* Returns true iff T is an SSA_NAME defined by a statement. */
|
1266 |
|
|
|
1267 |
|
|
static bool
|
1268 |
|
|
ipa_is_ssa_with_stmt_def (tree t)
|
1269 |
|
|
{
|
1270 |
|
|
if (TREE_CODE (t) == SSA_NAME
|
1271 |
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (t))
|
1272 |
|
|
return true;
|
1273 |
|
|
else
|
1274 |
|
|
return false;
|
1275 |
|
|
}
|
1276 |
|
|
|
1277 |
|
|
/* Find the indirect call graph edge corresponding to STMT and mark it as a
|
1278 |
|
|
call to a parameter number PARAM_INDEX. NODE is the caller. Return the
|
1279 |
|
|
indirect call graph edge. */
|
1280 |
|
|
|
1281 |
|
|
static struct cgraph_edge *
|
1282 |
|
|
ipa_note_param_call (struct cgraph_node *node, int param_index, gimple stmt)
|
1283 |
|
|
{
|
1284 |
|
|
struct cgraph_edge *cs;
|
1285 |
|
|
|
1286 |
|
|
cs = cgraph_edge (node, stmt);
|
1287 |
|
|
cs->indirect_info->param_index = param_index;
|
1288 |
|
|
cs->indirect_info->anc_offset = 0;
|
1289 |
|
|
cs->indirect_info->polymorphic = 0;
|
1290 |
|
|
return cs;
|
1291 |
|
|
}
|
1292 |
|
|
|
1293 |
|
|
/* Analyze the CALL and examine uses of formal parameters of the caller NODE
|
1294 |
|
|
(described by INFO). PARMS_AINFO is a pointer to a vector containing
|
1295 |
|
|
intermediate information about each formal parameter. Currently it checks
|
1296 |
|
|
whether the call calls a pointer that is a formal parameter and if so, the
|
1297 |
|
|
parameter is marked with the called flag and an indirect call graph edge
|
1298 |
|
|
describing the call is created. This is very simple for ordinary pointers
|
1299 |
|
|
represented in SSA but not-so-nice when it comes to member pointers. The
|
1300 |
|
|
ugly part of this function does nothing more than trying to match the
|
1301 |
|
|
pattern of such a call. An example of such a pattern is the gimple dump
|
1302 |
|
|
below, the call is on the last line:
|
1303 |
|
|
|
1304 |
|
|
<bb 2>:
|
1305 |
|
|
f$__delta_5 = f.__delta;
|
1306 |
|
|
f$__pfn_24 = f.__pfn;
|
1307 |
|
|
|
1308 |
|
|
or
|
1309 |
|
|
<bb 2>:
|
1310 |
|
|
f$__delta_5 = MEM[(struct *)&f];
|
1311 |
|
|
f$__pfn_24 = MEM[(struct *)&f + 4B];
|
1312 |
|
|
|
1313 |
|
|
and a few lines below:
|
1314 |
|
|
|
1315 |
|
|
<bb 5>
|
1316 |
|
|
D.2496_3 = (int) f$__pfn_24;
|
1317 |
|
|
D.2497_4 = D.2496_3 & 1;
|
1318 |
|
|
if (D.2497_4 != 0)
|
1319 |
|
|
goto <bb 3>;
|
1320 |
|
|
else
|
1321 |
|
|
goto <bb 4>;
|
1322 |
|
|
|
1323 |
|
|
<bb 6>:
|
1324 |
|
|
D.2500_7 = (unsigned int) f$__delta_5;
|
1325 |
|
|
D.2501_8 = &S + D.2500_7;
|
1326 |
|
|
D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
|
1327 |
|
|
D.2503_10 = *D.2502_9;
|
1328 |
|
|
D.2504_12 = f$__pfn_24 + -1;
|
1329 |
|
|
D.2505_13 = (unsigned int) D.2504_12;
|
1330 |
|
|
D.2506_14 = D.2503_10 + D.2505_13;
|
1331 |
|
|
D.2507_15 = *D.2506_14;
|
1332 |
|
|
iftmp.11_16 = (String:: *) D.2507_15;
|
1333 |
|
|
|
1334 |
|
|
<bb 7>:
|
1335 |
|
|
# iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
|
1336 |
|
|
D.2500_19 = (unsigned int) f$__delta_5;
|
1337 |
|
|
D.2508_20 = &S + D.2500_19;
|
1338 |
|
|
D.2493_21 = iftmp.11_1 (D.2508_20, 4);
|
1339 |
|
|
|
1340 |
|
|
Such patterns are results of simple calls to a member pointer:
|
1341 |
|
|
|
1342 |
|
|
int doprinting (int (MyString::* f)(int) const)
|
1343 |
|
|
{
|
1344 |
|
|
MyString S ("somestring");
|
1345 |
|
|
|
1346 |
|
|
return (S.*f)(4);
|
1347 |
|
|
}
|
1348 |
|
|
*/
|
1349 |
|
|
|
1350 |
|
|
static void
|
1351 |
|
|
ipa_analyze_indirect_call_uses (struct cgraph_node *node,
|
1352 |
|
|
struct ipa_node_params *info,
|
1353 |
|
|
struct param_analysis_info *parms_ainfo,
|
1354 |
|
|
gimple call, tree target)
|
1355 |
|
|
{
|
1356 |
|
|
gimple def;
|
1357 |
|
|
tree n1, n2;
|
1358 |
|
|
gimple d1, d2;
|
1359 |
|
|
tree rec, rec2, cond;
|
1360 |
|
|
gimple branch;
|
1361 |
|
|
int index;
|
1362 |
|
|
basic_block bb, virt_bb, join;
|
1363 |
|
|
|
1364 |
|
|
if (SSA_NAME_IS_DEFAULT_DEF (target))
|
1365 |
|
|
{
|
1366 |
|
|
tree var = SSA_NAME_VAR (target);
|
1367 |
|
|
index = ipa_get_param_decl_index (info, var);
|
1368 |
|
|
if (index >= 0)
|
1369 |
|
|
ipa_note_param_call (node, index, call);
|
1370 |
|
|
return;
|
1371 |
|
|
}
|
1372 |
|
|
|
1373 |
|
|
/* Now we need to try to match the complex pattern of calling a member
|
1374 |
|
|
pointer. */
|
1375 |
|
|
|
1376 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (target))
|
1377 |
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
|
1378 |
|
|
return;
|
1379 |
|
|
|
1380 |
|
|
def = SSA_NAME_DEF_STMT (target);
|
1381 |
|
|
if (gimple_code (def) != GIMPLE_PHI)
|
1382 |
|
|
return;
|
1383 |
|
|
|
1384 |
|
|
if (gimple_phi_num_args (def) != 2)
|
1385 |
|
|
return;
|
1386 |
|
|
|
1387 |
|
|
/* First, we need to check whether one of these is a load from a member
|
1388 |
|
|
pointer that is a parameter to this function. */
|
1389 |
|
|
n1 = PHI_ARG_DEF (def, 0);
|
1390 |
|
|
n2 = PHI_ARG_DEF (def, 1);
|
1391 |
|
|
if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
|
1392 |
|
|
return;
|
1393 |
|
|
d1 = SSA_NAME_DEF_STMT (n1);
|
1394 |
|
|
d2 = SSA_NAME_DEF_STMT (n2);
|
1395 |
|
|
|
1396 |
|
|
join = gimple_bb (def);
|
1397 |
|
|
if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false)))
|
1398 |
|
|
{
|
1399 |
|
|
if (ipa_get_stmt_member_ptr_load_param (d2, false))
|
1400 |
|
|
return;
|
1401 |
|
|
|
1402 |
|
|
bb = EDGE_PRED (join, 0)->src;
|
1403 |
|
|
virt_bb = gimple_bb (d2);
|
1404 |
|
|
}
|
1405 |
|
|
else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false)))
|
1406 |
|
|
{
|
1407 |
|
|
bb = EDGE_PRED (join, 1)->src;
|
1408 |
|
|
virt_bb = gimple_bb (d1);
|
1409 |
|
|
}
|
1410 |
|
|
else
|
1411 |
|
|
return;
|
1412 |
|
|
|
1413 |
|
|
/* Second, we need to check that the basic blocks are laid out in the way
|
1414 |
|
|
corresponding to the pattern. */
|
1415 |
|
|
|
1416 |
|
|
if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
|
1417 |
|
|
|| single_pred (virt_bb) != bb
|
1418 |
|
|
|| single_succ (virt_bb) != join)
|
1419 |
|
|
return;
|
1420 |
|
|
|
1421 |
|
|
/* Third, let's see that the branching is done depending on the least
|
1422 |
|
|
significant bit of the pfn. */
|
1423 |
|
|
|
1424 |
|
|
branch = last_stmt (bb);
|
1425 |
|
|
if (!branch || gimple_code (branch) != GIMPLE_COND)
|
1426 |
|
|
return;
|
1427 |
|
|
|
1428 |
|
|
if ((gimple_cond_code (branch) != NE_EXPR
|
1429 |
|
|
&& gimple_cond_code (branch) != EQ_EXPR)
|
1430 |
|
|
|| !integer_zerop (gimple_cond_rhs (branch)))
|
1431 |
|
|
return;
|
1432 |
|
|
|
1433 |
|
|
cond = gimple_cond_lhs (branch);
|
1434 |
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
1435 |
|
|
return;
|
1436 |
|
|
|
1437 |
|
|
def = SSA_NAME_DEF_STMT (cond);
|
1438 |
|
|
if (!is_gimple_assign (def)
|
1439 |
|
|
|| gimple_assign_rhs_code (def) != BIT_AND_EXPR
|
1440 |
|
|
|| !integer_onep (gimple_assign_rhs2 (def)))
|
1441 |
|
|
return;
|
1442 |
|
|
|
1443 |
|
|
cond = gimple_assign_rhs1 (def);
|
1444 |
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
1445 |
|
|
return;
|
1446 |
|
|
|
1447 |
|
|
def = SSA_NAME_DEF_STMT (cond);
|
1448 |
|
|
|
1449 |
|
|
if (is_gimple_assign (def)
|
1450 |
|
|
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
|
1451 |
|
|
{
|
1452 |
|
|
cond = gimple_assign_rhs1 (def);
|
1453 |
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
1454 |
|
|
return;
|
1455 |
|
|
def = SSA_NAME_DEF_STMT (cond);
|
1456 |
|
|
}
|
1457 |
|
|
|
1458 |
|
|
rec2 = ipa_get_stmt_member_ptr_load_param (def,
|
1459 |
|
|
(TARGET_PTRMEMFUNC_VBIT_LOCATION
|
1460 |
|
|
== ptrmemfunc_vbit_in_delta));
|
1461 |
|
|
|
1462 |
|
|
if (rec != rec2)
|
1463 |
|
|
return;
|
1464 |
|
|
|
1465 |
|
|
index = ipa_get_param_decl_index (info, rec);
|
1466 |
|
|
if (index >= 0 && !is_parm_modified_before_stmt (&parms_ainfo[index],
|
1467 |
|
|
call, rec))
|
1468 |
|
|
ipa_note_param_call (node, index, call);
|
1469 |
|
|
|
1470 |
|
|
return;
|
1471 |
|
|
}
|
1472 |
|
|
|
1473 |
|
|
/* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
|
1474 |
|
|
object referenced in the expression is a formal parameter of the caller
|
1475 |
|
|
(described by INFO), create a call note for the statement. */
|
1476 |
|
|
|
1477 |
|
|
static void
|
1478 |
|
|
ipa_analyze_virtual_call_uses (struct cgraph_node *node,
|
1479 |
|
|
struct ipa_node_params *info, gimple call,
|
1480 |
|
|
tree target)
|
1481 |
|
|
{
|
1482 |
|
|
struct cgraph_edge *cs;
|
1483 |
|
|
struct cgraph_indirect_call_info *ii;
|
1484 |
|
|
struct ipa_jump_func jfunc;
|
1485 |
|
|
tree obj = OBJ_TYPE_REF_OBJECT (target);
|
1486 |
|
|
int index;
|
1487 |
|
|
HOST_WIDE_INT anc_offset;
|
1488 |
|
|
|
1489 |
|
|
if (!flag_devirtualize)
|
1490 |
|
|
return;
|
1491 |
|
|
|
1492 |
|
|
if (TREE_CODE (obj) != SSA_NAME)
|
1493 |
|
|
return;
|
1494 |
|
|
|
1495 |
|
|
if (SSA_NAME_IS_DEFAULT_DEF (obj))
|
1496 |
|
|
{
|
1497 |
|
|
if (TREE_CODE (SSA_NAME_VAR (obj)) != PARM_DECL)
|
1498 |
|
|
return;
|
1499 |
|
|
|
1500 |
|
|
anc_offset = 0;
|
1501 |
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (obj));
|
1502 |
|
|
gcc_assert (index >= 0);
|
1503 |
|
|
if (detect_type_change_ssa (obj, call, &jfunc))
|
1504 |
|
|
return;
|
1505 |
|
|
}
|
1506 |
|
|
else
|
1507 |
|
|
{
|
1508 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (obj);
|
1509 |
|
|
tree expr;
|
1510 |
|
|
|
1511 |
|
|
expr = get_ancestor_addr_info (stmt, &obj, &anc_offset);
|
1512 |
|
|
if (!expr)
|
1513 |
|
|
return;
|
1514 |
|
|
index = ipa_get_param_decl_index (info,
|
1515 |
|
|
SSA_NAME_VAR (TREE_OPERAND (expr, 0)));
|
1516 |
|
|
gcc_assert (index >= 0);
|
1517 |
|
|
if (detect_type_change (obj, expr, call, &jfunc, anc_offset))
|
1518 |
|
|
return;
|
1519 |
|
|
}
|
1520 |
|
|
|
1521 |
|
|
cs = ipa_note_param_call (node, index, call);
|
1522 |
|
|
ii = cs->indirect_info;
|
1523 |
|
|
ii->anc_offset = anc_offset;
|
1524 |
|
|
ii->otr_token = tree_low_cst (OBJ_TYPE_REF_TOKEN (target), 1);
|
1525 |
|
|
ii->otr_type = TREE_TYPE (TREE_TYPE (OBJ_TYPE_REF_OBJECT (target)));
|
1526 |
|
|
ii->polymorphic = 1;
|
1527 |
|
|
}
|
1528 |
|
|
|
1529 |
|
|
/* Analyze a call statement CALL whether and how it utilizes formal parameters
|
1530 |
|
|
of the caller (described by INFO). PARMS_AINFO is a pointer to a vector
|
1531 |
|
|
containing intermediate information about each formal parameter. */
|
1532 |
|
|
|
1533 |
|
|
static void
|
1534 |
|
|
ipa_analyze_call_uses (struct cgraph_node *node,
|
1535 |
|
|
struct ipa_node_params *info,
|
1536 |
|
|
struct param_analysis_info *parms_ainfo, gimple call)
|
1537 |
|
|
{
|
1538 |
|
|
tree target = gimple_call_fn (call);
|
1539 |
|
|
|
1540 |
|
|
if (!target)
|
1541 |
|
|
return;
|
1542 |
|
|
if (TREE_CODE (target) == SSA_NAME)
|
1543 |
|
|
ipa_analyze_indirect_call_uses (node, info, parms_ainfo, call, target);
|
1544 |
|
|
else if (TREE_CODE (target) == OBJ_TYPE_REF)
|
1545 |
|
|
ipa_analyze_virtual_call_uses (node, info, call, target);
|
1546 |
|
|
}
|
1547 |
|
|
|
1548 |
|
|
|
1549 |
|
|
/* Analyze the call statement STMT with respect to formal parameters (described
|
1550 |
|
|
in INFO) of caller given by NODE. Currently it only checks whether formal
|
1551 |
|
|
parameters are called. PARMS_AINFO is a pointer to a vector containing
|
1552 |
|
|
intermediate information about each formal parameter. */
|
1553 |
|
|
|
1554 |
|
|
static void
|
1555 |
|
|
ipa_analyze_stmt_uses (struct cgraph_node *node, struct ipa_node_params *info,
|
1556 |
|
|
struct param_analysis_info *parms_ainfo, gimple stmt)
|
1557 |
|
|
{
|
1558 |
|
|
if (is_gimple_call (stmt))
|
1559 |
|
|
ipa_analyze_call_uses (node, info, parms_ainfo, stmt);
|
1560 |
|
|
}
|
1561 |
|
|
|
1562 |
|
|
/* Callback of walk_stmt_load_store_addr_ops for the visit_load.
|
1563 |
|
|
If OP is a parameter declaration, mark it as used in the info structure
|
1564 |
|
|
passed in DATA. */
|
1565 |
|
|
|
1566 |
|
|
static bool
|
1567 |
|
|
visit_ref_for_mod_analysis (gimple stmt ATTRIBUTE_UNUSED,
|
1568 |
|
|
tree op, void *data)
|
1569 |
|
|
{
|
1570 |
|
|
struct ipa_node_params *info = (struct ipa_node_params *) data;
|
1571 |
|
|
|
1572 |
|
|
op = get_base_address (op);
|
1573 |
|
|
if (op
|
1574 |
|
|
&& TREE_CODE (op) == PARM_DECL)
|
1575 |
|
|
{
|
1576 |
|
|
int index = ipa_get_param_decl_index (info, op);
|
1577 |
|
|
gcc_assert (index >= 0);
|
1578 |
|
|
ipa_set_param_used (info, index, true);
|
1579 |
|
|
}
|
1580 |
|
|
|
1581 |
|
|
return false;
|
1582 |
|
|
}
|
1583 |
|
|
|
1584 |
|
|
/* Scan the function body of NODE and inspect the uses of formal parameters.
|
1585 |
|
|
Store the findings in various structures of the associated ipa_node_params
|
1586 |
|
|
structure, such as parameter flags, notes etc. PARMS_AINFO is a pointer to a
|
1587 |
|
|
vector containing intermediate information about each formal parameter. */
|
1588 |
|
|
|
1589 |
|
|
static void
|
1590 |
|
|
ipa_analyze_params_uses (struct cgraph_node *node,
|
1591 |
|
|
struct param_analysis_info *parms_ainfo)
|
1592 |
|
|
{
|
1593 |
|
|
tree decl = node->decl;
|
1594 |
|
|
basic_block bb;
|
1595 |
|
|
struct function *func;
|
1596 |
|
|
gimple_stmt_iterator gsi;
|
1597 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
1598 |
|
|
int i;
|
1599 |
|
|
|
1600 |
|
|
if (ipa_get_param_count (info) == 0 || info->uses_analysis_done)
|
1601 |
|
|
return;
|
1602 |
|
|
|
1603 |
|
|
for (i = 0; i < ipa_get_param_count (info); i++)
|
1604 |
|
|
{
|
1605 |
|
|
tree parm = ipa_get_param (info, i);
|
1606 |
|
|
/* For SSA regs see if parameter is used. For non-SSA we compute
|
1607 |
|
|
the flag during modification analysis. */
|
1608 |
|
|
if (is_gimple_reg (parm)
|
1609 |
|
|
&& gimple_default_def (DECL_STRUCT_FUNCTION (node->decl), parm))
|
1610 |
|
|
ipa_set_param_used (info, i, true);
|
1611 |
|
|
}
|
1612 |
|
|
|
1613 |
|
|
func = DECL_STRUCT_FUNCTION (decl);
|
1614 |
|
|
FOR_EACH_BB_FN (bb, func)
|
1615 |
|
|
{
|
1616 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1617 |
|
|
{
|
1618 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1619 |
|
|
|
1620 |
|
|
if (is_gimple_debug (stmt))
|
1621 |
|
|
continue;
|
1622 |
|
|
|
1623 |
|
|
ipa_analyze_stmt_uses (node, info, parms_ainfo, stmt);
|
1624 |
|
|
walk_stmt_load_store_addr_ops (stmt, info,
|
1625 |
|
|
visit_ref_for_mod_analysis,
|
1626 |
|
|
visit_ref_for_mod_analysis,
|
1627 |
|
|
visit_ref_for_mod_analysis);
|
1628 |
|
|
}
|
1629 |
|
|
for (gsi = gsi_start (phi_nodes (bb)); !gsi_end_p (gsi); gsi_next (&gsi))
|
1630 |
|
|
walk_stmt_load_store_addr_ops (gsi_stmt (gsi), info,
|
1631 |
|
|
visit_ref_for_mod_analysis,
|
1632 |
|
|
visit_ref_for_mod_analysis,
|
1633 |
|
|
visit_ref_for_mod_analysis);
|
1634 |
|
|
}
|
1635 |
|
|
|
1636 |
|
|
info->uses_analysis_done = 1;
|
1637 |
|
|
}
|
1638 |
|
|
|
1639 |
|
|
/* Initialize the array describing properties of of formal parameters
|
1640 |
|
|
of NODE, analyze their uses and compute jump functions associated
|
1641 |
|
|
with actual arguments of calls from within NODE. */
|
1642 |
|
|
|
1643 |
|
|
void
|
1644 |
|
|
ipa_analyze_node (struct cgraph_node *node)
|
1645 |
|
|
{
|
1646 |
|
|
struct ipa_node_params *info;
|
1647 |
|
|
struct param_analysis_info *parms_ainfo;
|
1648 |
|
|
int i, param_count;
|
1649 |
|
|
|
1650 |
|
|
ipa_check_create_node_params ();
|
1651 |
|
|
ipa_check_create_edge_args ();
|
1652 |
|
|
info = IPA_NODE_REF (node);
|
1653 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
1654 |
|
|
current_function_decl = node->decl;
|
1655 |
|
|
ipa_initialize_node_params (node);
|
1656 |
|
|
|
1657 |
|
|
param_count = ipa_get_param_count (info);
|
1658 |
|
|
parms_ainfo = XALLOCAVEC (struct param_analysis_info, param_count);
|
1659 |
|
|
memset (parms_ainfo, 0, sizeof (struct param_analysis_info) * param_count);
|
1660 |
|
|
|
1661 |
|
|
ipa_analyze_params_uses (node, parms_ainfo);
|
1662 |
|
|
ipa_compute_jump_functions (node, parms_ainfo);
|
1663 |
|
|
|
1664 |
|
|
for (i = 0; i < param_count; i++)
|
1665 |
|
|
if (parms_ainfo[i].visited_statements)
|
1666 |
|
|
BITMAP_FREE (parms_ainfo[i].visited_statements);
|
1667 |
|
|
|
1668 |
|
|
current_function_decl = NULL;
|
1669 |
|
|
pop_cfun ();
|
1670 |
|
|
}
|
1671 |
|
|
|
1672 |
|
|
|
1673 |
|
|
/* Update the jump function DST when the call graph edge corresponding to SRC is
|
1674 |
|
|
is being inlined, knowing that DST is of type ancestor and src of known
|
1675 |
|
|
type. */
|
1676 |
|
|
|
1677 |
|
|
static void
|
1678 |
|
|
combine_known_type_and_ancestor_jfs (struct ipa_jump_func *src,
|
1679 |
|
|
struct ipa_jump_func *dst)
|
1680 |
|
|
{
|
1681 |
|
|
HOST_WIDE_INT combined_offset;
|
1682 |
|
|
tree combined_type;
|
1683 |
|
|
|
1684 |
|
|
combined_offset = src->value.known_type.offset + dst->value.ancestor.offset;
|
1685 |
|
|
combined_type = dst->value.ancestor.type;
|
1686 |
|
|
|
1687 |
|
|
dst->type = IPA_JF_KNOWN_TYPE;
|
1688 |
|
|
dst->value.known_type.base_type = src->value.known_type.base_type;
|
1689 |
|
|
dst->value.known_type.offset = combined_offset;
|
1690 |
|
|
dst->value.known_type.component_type = combined_type;
|
1691 |
|
|
}
|
1692 |
|
|
|
1693 |
|
|
/* Update the jump functions associated with call graph edge E when the call
|
1694 |
|
|
graph edge CS is being inlined, assuming that E->caller is already (possibly
|
1695 |
|
|
indirectly) inlined into CS->callee and that E has not been inlined. */
|
1696 |
|
|
|
1697 |
|
|
static void
|
1698 |
|
|
update_jump_functions_after_inlining (struct cgraph_edge *cs,
|
1699 |
|
|
struct cgraph_edge *e)
|
1700 |
|
|
{
|
1701 |
|
|
struct ipa_edge_args *top = IPA_EDGE_REF (cs);
|
1702 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
1703 |
|
|
int count = ipa_get_cs_argument_count (args);
|
1704 |
|
|
int i;
|
1705 |
|
|
|
1706 |
|
|
for (i = 0; i < count; i++)
|
1707 |
|
|
{
|
1708 |
|
|
struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
|
1709 |
|
|
|
1710 |
|
|
if (dst->type == IPA_JF_ANCESTOR)
|
1711 |
|
|
{
|
1712 |
|
|
struct ipa_jump_func *src;
|
1713 |
|
|
|
1714 |
|
|
/* Variable number of arguments can cause havoc if we try to access
|
1715 |
|
|
one that does not exist in the inlined edge. So make sure we
|
1716 |
|
|
don't. */
|
1717 |
|
|
if (dst->value.ancestor.formal_id >= ipa_get_cs_argument_count (top))
|
1718 |
|
|
{
|
1719 |
|
|
dst->type = IPA_JF_UNKNOWN;
|
1720 |
|
|
continue;
|
1721 |
|
|
}
|
1722 |
|
|
|
1723 |
|
|
src = ipa_get_ith_jump_func (top, dst->value.ancestor.formal_id);
|
1724 |
|
|
if (src->type == IPA_JF_KNOWN_TYPE)
|
1725 |
|
|
combine_known_type_and_ancestor_jfs (src, dst);
|
1726 |
|
|
else if (src->type == IPA_JF_PASS_THROUGH
|
1727 |
|
|
&& src->value.pass_through.operation == NOP_EXPR)
|
1728 |
|
|
dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
|
1729 |
|
|
else if (src->type == IPA_JF_ANCESTOR)
|
1730 |
|
|
{
|
1731 |
|
|
dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
|
1732 |
|
|
dst->value.ancestor.offset += src->value.ancestor.offset;
|
1733 |
|
|
}
|
1734 |
|
|
else
|
1735 |
|
|
dst->type = IPA_JF_UNKNOWN;
|
1736 |
|
|
}
|
1737 |
|
|
else if (dst->type == IPA_JF_PASS_THROUGH)
|
1738 |
|
|
{
|
1739 |
|
|
struct ipa_jump_func *src;
|
1740 |
|
|
/* We must check range due to calls with variable number of arguments
|
1741 |
|
|
and we cannot combine jump functions with operations. */
|
1742 |
|
|
if (dst->value.pass_through.operation == NOP_EXPR
|
1743 |
|
|
&& (dst->value.pass_through.formal_id
|
1744 |
|
|
< ipa_get_cs_argument_count (top)))
|
1745 |
|
|
{
|
1746 |
|
|
src = ipa_get_ith_jump_func (top,
|
1747 |
|
|
dst->value.pass_through.formal_id);
|
1748 |
|
|
*dst = *src;
|
1749 |
|
|
}
|
1750 |
|
|
else
|
1751 |
|
|
dst->type = IPA_JF_UNKNOWN;
|
1752 |
|
|
}
|
1753 |
|
|
}
|
1754 |
|
|
}
|
1755 |
|
|
|
1756 |
|
|
/* If TARGET is an addr_expr of a function declaration, make it the destination
|
1757 |
|
|
of an indirect edge IE and return the edge. Otherwise, return NULL. */
|
1758 |
|
|
|
1759 |
|
|
struct cgraph_edge *
|
1760 |
|
|
ipa_make_edge_direct_to_target (struct cgraph_edge *ie, tree target)
|
1761 |
|
|
{
|
1762 |
|
|
struct cgraph_node *callee;
|
1763 |
|
|
|
1764 |
|
|
if (TREE_CODE (target) == ADDR_EXPR)
|
1765 |
|
|
target = TREE_OPERAND (target, 0);
|
1766 |
|
|
if (TREE_CODE (target) != FUNCTION_DECL)
|
1767 |
|
|
return NULL;
|
1768 |
|
|
callee = cgraph_get_node (target);
|
1769 |
|
|
if (!callee)
|
1770 |
|
|
return NULL;
|
1771 |
|
|
ipa_check_create_node_params ();
|
1772 |
|
|
|
1773 |
|
|
/* We can not make edges to inline clones. It is bug that someone removed
|
1774 |
|
|
the cgraph node too early. */
|
1775 |
|
|
gcc_assert (!callee->global.inlined_to);
|
1776 |
|
|
|
1777 |
|
|
cgraph_make_edge_direct (ie, callee);
|
1778 |
|
|
if (dump_file)
|
1779 |
|
|
{
|
1780 |
|
|
fprintf (dump_file, "ipa-prop: Discovered %s call to a known target "
|
1781 |
|
|
"(%s/%i -> %s/%i), for stmt ",
|
1782 |
|
|
ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
|
1783 |
|
|
cgraph_node_name (ie->caller), ie->caller->uid,
|
1784 |
|
|
cgraph_node_name (ie->callee), ie->callee->uid);
|
1785 |
|
|
if (ie->call_stmt)
|
1786 |
|
|
print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
|
1787 |
|
|
else
|
1788 |
|
|
fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
|
1789 |
|
|
}
|
1790 |
|
|
callee = cgraph_function_or_thunk_node (callee, NULL);
|
1791 |
|
|
|
1792 |
|
|
return ie;
|
1793 |
|
|
}
|
1794 |
|
|
|
1795 |
|
|
/* Try to find a destination for indirect edge IE that corresponds to a simple
|
1796 |
|
|
call or a call of a member function pointer and where the destination is a
|
1797 |
|
|
pointer formal parameter described by jump function JFUNC. If it can be
|
1798 |
|
|
determined, return the newly direct edge, otherwise return NULL. */
|
1799 |
|
|
|
1800 |
|
|
static struct cgraph_edge *
|
1801 |
|
|
try_make_edge_direct_simple_call (struct cgraph_edge *ie,
|
1802 |
|
|
struct ipa_jump_func *jfunc)
|
1803 |
|
|
{
|
1804 |
|
|
tree target;
|
1805 |
|
|
|
1806 |
|
|
if (jfunc->type == IPA_JF_CONST)
|
1807 |
|
|
target = jfunc->value.constant;
|
1808 |
|
|
else if (jfunc->type == IPA_JF_CONST_MEMBER_PTR)
|
1809 |
|
|
target = jfunc->value.member_cst.pfn;
|
1810 |
|
|
else
|
1811 |
|
|
return NULL;
|
1812 |
|
|
|
1813 |
|
|
return ipa_make_edge_direct_to_target (ie, target);
|
1814 |
|
|
}
|
1815 |
|
|
|
1816 |
|
|
/* Try to find a destination for indirect edge IE that corresponds to a
|
1817 |
|
|
virtual call based on a formal parameter which is described by jump
|
1818 |
|
|
function JFUNC and if it can be determined, make it direct and return the
|
1819 |
|
|
direct edge. Otherwise, return NULL. */
|
1820 |
|
|
|
1821 |
|
|
static struct cgraph_edge *
|
1822 |
|
|
try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
|
1823 |
|
|
struct ipa_jump_func *jfunc)
|
1824 |
|
|
{
|
1825 |
|
|
tree binfo, target;
|
1826 |
|
|
|
1827 |
|
|
if (jfunc->type != IPA_JF_KNOWN_TYPE)
|
1828 |
|
|
return NULL;
|
1829 |
|
|
|
1830 |
|
|
binfo = TYPE_BINFO (jfunc->value.known_type.base_type);
|
1831 |
|
|
gcc_checking_assert (binfo);
|
1832 |
|
|
binfo = get_binfo_at_offset (binfo, jfunc->value.known_type.offset
|
1833 |
|
|
+ ie->indirect_info->anc_offset,
|
1834 |
|
|
ie->indirect_info->otr_type);
|
1835 |
|
|
if (binfo)
|
1836 |
|
|
target = gimple_get_virt_method_for_binfo (ie->indirect_info->otr_token,
|
1837 |
|
|
binfo);
|
1838 |
|
|
else
|
1839 |
|
|
return NULL;
|
1840 |
|
|
|
1841 |
|
|
if (target)
|
1842 |
|
|
return ipa_make_edge_direct_to_target (ie, target);
|
1843 |
|
|
else
|
1844 |
|
|
return NULL;
|
1845 |
|
|
}
|
1846 |
|
|
|
1847 |
|
|
/* Update the param called notes associated with NODE when CS is being inlined,
|
1848 |
|
|
assuming NODE is (potentially indirectly) inlined into CS->callee.
|
1849 |
|
|
Moreover, if the callee is discovered to be constant, create a new cgraph
|
1850 |
|
|
edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
|
1851 |
|
|
unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
|
1852 |
|
|
|
1853 |
|
|
static bool
|
1854 |
|
|
update_indirect_edges_after_inlining (struct cgraph_edge *cs,
|
1855 |
|
|
struct cgraph_node *node,
|
1856 |
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
1857 |
|
|
{
|
1858 |
|
|
struct ipa_edge_args *top;
|
1859 |
|
|
struct cgraph_edge *ie, *next_ie, *new_direct_edge;
|
1860 |
|
|
bool res = false;
|
1861 |
|
|
|
1862 |
|
|
ipa_check_create_edge_args ();
|
1863 |
|
|
top = IPA_EDGE_REF (cs);
|
1864 |
|
|
|
1865 |
|
|
for (ie = node->indirect_calls; ie; ie = next_ie)
|
1866 |
|
|
{
|
1867 |
|
|
struct cgraph_indirect_call_info *ici = ie->indirect_info;
|
1868 |
|
|
struct ipa_jump_func *jfunc;
|
1869 |
|
|
|
1870 |
|
|
next_ie = ie->next_callee;
|
1871 |
|
|
|
1872 |
|
|
if (ici->param_index == -1)
|
1873 |
|
|
continue;
|
1874 |
|
|
|
1875 |
|
|
/* We must check range due to calls with variable number of arguments: */
|
1876 |
|
|
if (ici->param_index >= ipa_get_cs_argument_count (top))
|
1877 |
|
|
{
|
1878 |
|
|
ici->param_index = -1;
|
1879 |
|
|
continue;
|
1880 |
|
|
}
|
1881 |
|
|
|
1882 |
|
|
jfunc = ipa_get_ith_jump_func (top, ici->param_index);
|
1883 |
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH
|
1884 |
|
|
&& jfunc->value.pass_through.operation == NOP_EXPR)
|
1885 |
|
|
ici->param_index = jfunc->value.pass_through.formal_id;
|
1886 |
|
|
else if (jfunc->type == IPA_JF_ANCESTOR)
|
1887 |
|
|
{
|
1888 |
|
|
ici->param_index = jfunc->value.ancestor.formal_id;
|
1889 |
|
|
ici->anc_offset += jfunc->value.ancestor.offset;
|
1890 |
|
|
}
|
1891 |
|
|
else
|
1892 |
|
|
/* Either we can find a destination for this edge now or never. */
|
1893 |
|
|
ici->param_index = -1;
|
1894 |
|
|
|
1895 |
|
|
if (!flag_indirect_inlining)
|
1896 |
|
|
continue;
|
1897 |
|
|
|
1898 |
|
|
if (ici->polymorphic)
|
1899 |
|
|
new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc);
|
1900 |
|
|
else
|
1901 |
|
|
new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc);
|
1902 |
|
|
|
1903 |
|
|
if (new_direct_edge)
|
1904 |
|
|
{
|
1905 |
|
|
new_direct_edge->indirect_inlining_edge = 1;
|
1906 |
|
|
if (new_direct_edge->call_stmt)
|
1907 |
|
|
new_direct_edge->call_stmt_cannot_inline_p
|
1908 |
|
|
= !gimple_check_call_matching_types (new_direct_edge->call_stmt,
|
1909 |
|
|
new_direct_edge->callee->decl);
|
1910 |
|
|
if (new_edges)
|
1911 |
|
|
{
|
1912 |
|
|
VEC_safe_push (cgraph_edge_p, heap, *new_edges,
|
1913 |
|
|
new_direct_edge);
|
1914 |
|
|
top = IPA_EDGE_REF (cs);
|
1915 |
|
|
res = true;
|
1916 |
|
|
}
|
1917 |
|
|
}
|
1918 |
|
|
}
|
1919 |
|
|
|
1920 |
|
|
return res;
|
1921 |
|
|
}
|
1922 |
|
|
|
1923 |
|
|
/* Recursively traverse subtree of NODE (including node) made of inlined
|
1924 |
|
|
cgraph_edges when CS has been inlined and invoke
|
1925 |
|
|
update_indirect_edges_after_inlining on all nodes and
|
1926 |
|
|
update_jump_functions_after_inlining on all non-inlined edges that lead out
|
1927 |
|
|
of this subtree. Newly discovered indirect edges will be added to
|
1928 |
|
|
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
|
1929 |
|
|
created. */
|
1930 |
|
|
|
1931 |
|
|
static bool
|
1932 |
|
|
propagate_info_to_inlined_callees (struct cgraph_edge *cs,
|
1933 |
|
|
struct cgraph_node *node,
|
1934 |
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
1935 |
|
|
{
|
1936 |
|
|
struct cgraph_edge *e;
|
1937 |
|
|
bool res;
|
1938 |
|
|
|
1939 |
|
|
res = update_indirect_edges_after_inlining (cs, node, new_edges);
|
1940 |
|
|
|
1941 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
1942 |
|
|
if (!e->inline_failed)
|
1943 |
|
|
res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
|
1944 |
|
|
else
|
1945 |
|
|
update_jump_functions_after_inlining (cs, e);
|
1946 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
1947 |
|
|
update_jump_functions_after_inlining (cs, e);
|
1948 |
|
|
|
1949 |
|
|
return res;
|
1950 |
|
|
}
|
1951 |
|
|
|
1952 |
|
|
/* Update jump functions and call note functions on inlining the call site CS.
|
1953 |
|
|
CS is expected to lead to a node already cloned by
|
1954 |
|
|
cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
|
1955 |
|
|
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
|
1956 |
|
|
created. */
|
1957 |
|
|
|
1958 |
|
|
bool
|
1959 |
|
|
ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
|
1960 |
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
1961 |
|
|
{
|
1962 |
|
|
bool changed;
|
1963 |
|
|
/* Do nothing if the preparation phase has not been carried out yet
|
1964 |
|
|
(i.e. during early inlining). */
|
1965 |
|
|
if (!ipa_node_params_vector)
|
1966 |
|
|
return false;
|
1967 |
|
|
gcc_assert (ipa_edge_args_vector);
|
1968 |
|
|
|
1969 |
|
|
changed = propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
|
1970 |
|
|
|
1971 |
|
|
/* We do not keep jump functions of inlined edges up to date. Better to free
|
1972 |
|
|
them so we do not access them accidentally. */
|
1973 |
|
|
ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
|
1974 |
|
|
return changed;
|
1975 |
|
|
}
|
1976 |
|
|
|
1977 |
|
|
/* Frees all dynamically allocated structures that the argument info points
|
1978 |
|
|
to. */
|
1979 |
|
|
|
1980 |
|
|
void
|
1981 |
|
|
ipa_free_edge_args_substructures (struct ipa_edge_args *args)
|
1982 |
|
|
{
|
1983 |
|
|
if (args->jump_functions)
|
1984 |
|
|
ggc_free (args->jump_functions);
|
1985 |
|
|
|
1986 |
|
|
memset (args, 0, sizeof (*args));
|
1987 |
|
|
}
|
1988 |
|
|
|
1989 |
|
|
/* Free all ipa_edge structures. */
|
1990 |
|
|
|
1991 |
|
|
void
|
1992 |
|
|
ipa_free_all_edge_args (void)
|
1993 |
|
|
{
|
1994 |
|
|
int i;
|
1995 |
|
|
struct ipa_edge_args *args;
|
1996 |
|
|
|
1997 |
|
|
FOR_EACH_VEC_ELT (ipa_edge_args_t, ipa_edge_args_vector, i, args)
|
1998 |
|
|
ipa_free_edge_args_substructures (args);
|
1999 |
|
|
|
2000 |
|
|
VEC_free (ipa_edge_args_t, gc, ipa_edge_args_vector);
|
2001 |
|
|
ipa_edge_args_vector = NULL;
|
2002 |
|
|
}
|
2003 |
|
|
|
2004 |
|
|
/* Frees all dynamically allocated structures that the param info points
|
2005 |
|
|
to. */
|
2006 |
|
|
|
2007 |
|
|
void
|
2008 |
|
|
ipa_free_node_params_substructures (struct ipa_node_params *info)
|
2009 |
|
|
{
|
2010 |
|
|
VEC_free (ipa_param_descriptor_t, heap, info->descriptors);
|
2011 |
|
|
free (info->lattices);
|
2012 |
|
|
/* Lattice values and their sources are deallocated with their alocation
|
2013 |
|
|
pool. */
|
2014 |
|
|
VEC_free (tree, heap, info->known_vals);
|
2015 |
|
|
memset (info, 0, sizeof (*info));
|
2016 |
|
|
}
|
2017 |
|
|
|
2018 |
|
|
/* Free all ipa_node_params structures. */
|
2019 |
|
|
|
2020 |
|
|
void
|
2021 |
|
|
ipa_free_all_node_params (void)
|
2022 |
|
|
{
|
2023 |
|
|
int i;
|
2024 |
|
|
struct ipa_node_params *info;
|
2025 |
|
|
|
2026 |
|
|
FOR_EACH_VEC_ELT (ipa_node_params_t, ipa_node_params_vector, i, info)
|
2027 |
|
|
ipa_free_node_params_substructures (info);
|
2028 |
|
|
|
2029 |
|
|
VEC_free (ipa_node_params_t, heap, ipa_node_params_vector);
|
2030 |
|
|
ipa_node_params_vector = NULL;
|
2031 |
|
|
}
|
2032 |
|
|
|
2033 |
|
|
/* Hook that is called by cgraph.c when an edge is removed. */
|
2034 |
|
|
|
2035 |
|
|
static void
|
2036 |
|
|
ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
|
2037 |
|
|
{
|
2038 |
|
|
/* During IPA-CP updating we can be called on not-yet analyze clones. */
|
2039 |
|
|
if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
|
2040 |
|
|
<= (unsigned)cs->uid)
|
2041 |
|
|
return;
|
2042 |
|
|
ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
|
2043 |
|
|
}
|
2044 |
|
|
|
2045 |
|
|
/* Hook that is called by cgraph.c when a node is removed. */
|
2046 |
|
|
|
2047 |
|
|
static void
|
2048 |
|
|
ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
2049 |
|
|
{
|
2050 |
|
|
/* During IPA-CP updating we can be called on not-yet analyze clones. */
|
2051 |
|
|
if (VEC_length (ipa_node_params_t, ipa_node_params_vector)
|
2052 |
|
|
<= (unsigned)node->uid)
|
2053 |
|
|
return;
|
2054 |
|
|
ipa_free_node_params_substructures (IPA_NODE_REF (node));
|
2055 |
|
|
}
|
2056 |
|
|
|
2057 |
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
2058 |
|
|
|
2059 |
|
|
static void
|
2060 |
|
|
ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
|
2061 |
|
|
__attribute__((unused)) void *data)
|
2062 |
|
|
{
|
2063 |
|
|
struct ipa_edge_args *old_args, *new_args;
|
2064 |
|
|
|
2065 |
|
|
ipa_check_create_edge_args ();
|
2066 |
|
|
|
2067 |
|
|
old_args = IPA_EDGE_REF (src);
|
2068 |
|
|
new_args = IPA_EDGE_REF (dst);
|
2069 |
|
|
|
2070 |
|
|
new_args->jump_functions = VEC_copy (ipa_jump_func_t, gc,
|
2071 |
|
|
old_args->jump_functions);
|
2072 |
|
|
}
|
2073 |
|
|
|
2074 |
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
2075 |
|
|
|
2076 |
|
|
static void
|
2077 |
|
|
ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
|
2078 |
|
|
ATTRIBUTE_UNUSED void *data)
|
2079 |
|
|
{
|
2080 |
|
|
struct ipa_node_params *old_info, *new_info;
|
2081 |
|
|
|
2082 |
|
|
ipa_check_create_node_params ();
|
2083 |
|
|
old_info = IPA_NODE_REF (src);
|
2084 |
|
|
new_info = IPA_NODE_REF (dst);
|
2085 |
|
|
|
2086 |
|
|
new_info->descriptors = VEC_copy (ipa_param_descriptor_t, heap,
|
2087 |
|
|
old_info->descriptors);
|
2088 |
|
|
new_info->lattices = NULL;
|
2089 |
|
|
new_info->ipcp_orig_node = old_info->ipcp_orig_node;
|
2090 |
|
|
|
2091 |
|
|
new_info->uses_analysis_done = old_info->uses_analysis_done;
|
2092 |
|
|
new_info->node_enqueued = old_info->node_enqueued;
|
2093 |
|
|
}
|
2094 |
|
|
|
2095 |
|
|
|
2096 |
|
|
/* Analyze newly added function into callgraph. */
|
2097 |
|
|
|
2098 |
|
|
static void
|
2099 |
|
|
ipa_add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
2100 |
|
|
{
|
2101 |
|
|
ipa_analyze_node (node);
|
2102 |
|
|
}
|
2103 |
|
|
|
2104 |
|
|
/* Register our cgraph hooks if they are not already there. */
|
2105 |
|
|
|
2106 |
|
|
void
|
2107 |
|
|
ipa_register_cgraph_hooks (void)
|
2108 |
|
|
{
|
2109 |
|
|
if (!edge_removal_hook_holder)
|
2110 |
|
|
edge_removal_hook_holder =
|
2111 |
|
|
cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
|
2112 |
|
|
if (!node_removal_hook_holder)
|
2113 |
|
|
node_removal_hook_holder =
|
2114 |
|
|
cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL);
|
2115 |
|
|
if (!edge_duplication_hook_holder)
|
2116 |
|
|
edge_duplication_hook_holder =
|
2117 |
|
|
cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
|
2118 |
|
|
if (!node_duplication_hook_holder)
|
2119 |
|
|
node_duplication_hook_holder =
|
2120 |
|
|
cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL);
|
2121 |
|
|
function_insertion_hook_holder =
|
2122 |
|
|
cgraph_add_function_insertion_hook (&ipa_add_new_function, NULL);
|
2123 |
|
|
}
|
2124 |
|
|
|
2125 |
|
|
/* Unregister our cgraph hooks if they are not already there. */
|
2126 |
|
|
|
2127 |
|
|
static void
|
2128 |
|
|
ipa_unregister_cgraph_hooks (void)
|
2129 |
|
|
{
|
2130 |
|
|
cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
|
2131 |
|
|
edge_removal_hook_holder = NULL;
|
2132 |
|
|
cgraph_remove_node_removal_hook (node_removal_hook_holder);
|
2133 |
|
|
node_removal_hook_holder = NULL;
|
2134 |
|
|
cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
|
2135 |
|
|
edge_duplication_hook_holder = NULL;
|
2136 |
|
|
cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
|
2137 |
|
|
node_duplication_hook_holder = NULL;
|
2138 |
|
|
cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
|
2139 |
|
|
function_insertion_hook_holder = NULL;
|
2140 |
|
|
}
|
2141 |
|
|
|
2142 |
|
|
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
|
2143 |
|
|
longer needed after ipa-cp. */
|
2144 |
|
|
|
2145 |
|
|
void
|
2146 |
|
|
ipa_free_all_structures_after_ipa_cp (void)
|
2147 |
|
|
{
|
2148 |
|
|
if (!optimize)
|
2149 |
|
|
{
|
2150 |
|
|
ipa_free_all_edge_args ();
|
2151 |
|
|
ipa_free_all_node_params ();
|
2152 |
|
|
free_alloc_pool (ipcp_sources_pool);
|
2153 |
|
|
free_alloc_pool (ipcp_values_pool);
|
2154 |
|
|
ipa_unregister_cgraph_hooks ();
|
2155 |
|
|
}
|
2156 |
|
|
}
|
2157 |
|
|
|
2158 |
|
|
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
|
2159 |
|
|
longer needed after indirect inlining. */
|
2160 |
|
|
|
2161 |
|
|
void
|
2162 |
|
|
ipa_free_all_structures_after_iinln (void)
|
2163 |
|
|
{
|
2164 |
|
|
ipa_free_all_edge_args ();
|
2165 |
|
|
ipa_free_all_node_params ();
|
2166 |
|
|
ipa_unregister_cgraph_hooks ();
|
2167 |
|
|
if (ipcp_sources_pool)
|
2168 |
|
|
free_alloc_pool (ipcp_sources_pool);
|
2169 |
|
|
if (ipcp_values_pool)
|
2170 |
|
|
free_alloc_pool (ipcp_values_pool);
|
2171 |
|
|
}
|
2172 |
|
|
|
2173 |
|
|
/* Print ipa_tree_map data structures of all functions in the
|
2174 |
|
|
callgraph to F. */
|
2175 |
|
|
|
2176 |
|
|
void
|
2177 |
|
|
ipa_print_node_params (FILE * f, struct cgraph_node *node)
|
2178 |
|
|
{
|
2179 |
|
|
int i, count;
|
2180 |
|
|
tree temp;
|
2181 |
|
|
struct ipa_node_params *info;
|
2182 |
|
|
|
2183 |
|
|
if (!node->analyzed)
|
2184 |
|
|
return;
|
2185 |
|
|
info = IPA_NODE_REF (node);
|
2186 |
|
|
fprintf (f, " function %s parameter descriptors:\n",
|
2187 |
|
|
cgraph_node_name (node));
|
2188 |
|
|
count = ipa_get_param_count (info);
|
2189 |
|
|
for (i = 0; i < count; i++)
|
2190 |
|
|
{
|
2191 |
|
|
temp = ipa_get_param (info, i);
|
2192 |
|
|
if (TREE_CODE (temp) == PARM_DECL)
|
2193 |
|
|
fprintf (f, " param %d : %s", i,
|
2194 |
|
|
(DECL_NAME (temp)
|
2195 |
|
|
? (*lang_hooks.decl_printable_name) (temp, 2)
|
2196 |
|
|
: "(unnamed)"));
|
2197 |
|
|
if (ipa_is_param_used (info, i))
|
2198 |
|
|
fprintf (f, " used");
|
2199 |
|
|
fprintf (f, "\n");
|
2200 |
|
|
}
|
2201 |
|
|
}
|
2202 |
|
|
|
2203 |
|
|
/* Print ipa_tree_map data structures of all functions in the
|
2204 |
|
|
callgraph to F. */
|
2205 |
|
|
|
2206 |
|
|
void
|
2207 |
|
|
ipa_print_all_params (FILE * f)
|
2208 |
|
|
{
|
2209 |
|
|
struct cgraph_node *node;
|
2210 |
|
|
|
2211 |
|
|
fprintf (f, "\nFunction parameters:\n");
|
2212 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
2213 |
|
|
ipa_print_node_params (f, node);
|
2214 |
|
|
}
|
2215 |
|
|
|
2216 |
|
|
/* Return a heap allocated vector containing formal parameters of FNDECL. */
|
2217 |
|
|
|
2218 |
|
|
VEC(tree, heap) *
|
2219 |
|
|
ipa_get_vector_of_formal_parms (tree fndecl)
|
2220 |
|
|
{
|
2221 |
|
|
VEC(tree, heap) *args;
|
2222 |
|
|
int count;
|
2223 |
|
|
tree parm;
|
2224 |
|
|
|
2225 |
|
|
count = count_formal_params (fndecl);
|
2226 |
|
|
args = VEC_alloc (tree, heap, count);
|
2227 |
|
|
for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
|
2228 |
|
|
VEC_quick_push (tree, args, parm);
|
2229 |
|
|
|
2230 |
|
|
return args;
|
2231 |
|
|
}
|
2232 |
|
|
|
2233 |
|
|
/* Return a heap allocated vector containing types of formal parameters of
|
2234 |
|
|
function type FNTYPE. */
|
2235 |
|
|
|
2236 |
|
|
static inline VEC(tree, heap) *
|
2237 |
|
|
get_vector_of_formal_parm_types (tree fntype)
|
2238 |
|
|
{
|
2239 |
|
|
VEC(tree, heap) *types;
|
2240 |
|
|
int count = 0;
|
2241 |
|
|
tree t;
|
2242 |
|
|
|
2243 |
|
|
for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
|
2244 |
|
|
count++;
|
2245 |
|
|
|
2246 |
|
|
types = VEC_alloc (tree, heap, count);
|
2247 |
|
|
for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
|
2248 |
|
|
VEC_quick_push (tree, types, TREE_VALUE (t));
|
2249 |
|
|
|
2250 |
|
|
return types;
|
2251 |
|
|
}
|
2252 |
|
|
|
2253 |
|
|
/* Modify the function declaration FNDECL and its type according to the plan in
|
2254 |
|
|
ADJUSTMENTS. It also sets base fields of individual adjustments structures
|
2255 |
|
|
to reflect the actual parameters being modified which are determined by the
|
2256 |
|
|
base_index field. */
|
2257 |
|
|
|
2258 |
|
|
void
|
2259 |
|
|
ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec adjustments,
|
2260 |
|
|
const char *synth_parm_prefix)
|
2261 |
|
|
{
|
2262 |
|
|
VEC(tree, heap) *oparms, *otypes;
|
2263 |
|
|
tree orig_type, new_type = NULL;
|
2264 |
|
|
tree old_arg_types, t, new_arg_types = NULL;
|
2265 |
|
|
tree parm, *link = &DECL_ARGUMENTS (fndecl);
|
2266 |
|
|
int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
2267 |
|
|
tree new_reversed = NULL;
|
2268 |
|
|
bool care_for_types, last_parm_void;
|
2269 |
|
|
|
2270 |
|
|
if (!synth_parm_prefix)
|
2271 |
|
|
synth_parm_prefix = "SYNTH";
|
2272 |
|
|
|
2273 |
|
|
oparms = ipa_get_vector_of_formal_parms (fndecl);
|
2274 |
|
|
orig_type = TREE_TYPE (fndecl);
|
2275 |
|
|
old_arg_types = TYPE_ARG_TYPES (orig_type);
|
2276 |
|
|
|
2277 |
|
|
/* The following test is an ugly hack, some functions simply don't have any
|
2278 |
|
|
arguments in their type. This is probably a bug but well... */
|
2279 |
|
|
care_for_types = (old_arg_types != NULL_TREE);
|
2280 |
|
|
if (care_for_types)
|
2281 |
|
|
{
|
2282 |
|
|
last_parm_void = (TREE_VALUE (tree_last (old_arg_types))
|
2283 |
|
|
== void_type_node);
|
2284 |
|
|
otypes = get_vector_of_formal_parm_types (orig_type);
|
2285 |
|
|
if (last_parm_void)
|
2286 |
|
|
gcc_assert (VEC_length (tree, oparms) + 1 == VEC_length (tree, otypes));
|
2287 |
|
|
else
|
2288 |
|
|
gcc_assert (VEC_length (tree, oparms) == VEC_length (tree, otypes));
|
2289 |
|
|
}
|
2290 |
|
|
else
|
2291 |
|
|
{
|
2292 |
|
|
last_parm_void = false;
|
2293 |
|
|
otypes = NULL;
|
2294 |
|
|
}
|
2295 |
|
|
|
2296 |
|
|
for (i = 0; i < len; i++)
|
2297 |
|
|
{
|
2298 |
|
|
struct ipa_parm_adjustment *adj;
|
2299 |
|
|
gcc_assert (link);
|
2300 |
|
|
|
2301 |
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
2302 |
|
|
parm = VEC_index (tree, oparms, adj->base_index);
|
2303 |
|
|
adj->base = parm;
|
2304 |
|
|
|
2305 |
|
|
if (adj->copy_param)
|
2306 |
|
|
{
|
2307 |
|
|
if (care_for_types)
|
2308 |
|
|
new_arg_types = tree_cons (NULL_TREE, VEC_index (tree, otypes,
|
2309 |
|
|
adj->base_index),
|
2310 |
|
|
new_arg_types);
|
2311 |
|
|
*link = parm;
|
2312 |
|
|
link = &DECL_CHAIN (parm);
|
2313 |
|
|
}
|
2314 |
|
|
else if (!adj->remove_param)
|
2315 |
|
|
{
|
2316 |
|
|
tree new_parm;
|
2317 |
|
|
tree ptype;
|
2318 |
|
|
|
2319 |
|
|
if (adj->by_ref)
|
2320 |
|
|
ptype = build_pointer_type (adj->type);
|
2321 |
|
|
else
|
2322 |
|
|
ptype = adj->type;
|
2323 |
|
|
|
2324 |
|
|
if (care_for_types)
|
2325 |
|
|
new_arg_types = tree_cons (NULL_TREE, ptype, new_arg_types);
|
2326 |
|
|
|
2327 |
|
|
new_parm = build_decl (UNKNOWN_LOCATION, PARM_DECL, NULL_TREE,
|
2328 |
|
|
ptype);
|
2329 |
|
|
DECL_NAME (new_parm) = create_tmp_var_name (synth_parm_prefix);
|
2330 |
|
|
|
2331 |
|
|
DECL_ARTIFICIAL (new_parm) = 1;
|
2332 |
|
|
DECL_ARG_TYPE (new_parm) = ptype;
|
2333 |
|
|
DECL_CONTEXT (new_parm) = fndecl;
|
2334 |
|
|
TREE_USED (new_parm) = 1;
|
2335 |
|
|
DECL_IGNORED_P (new_parm) = 1;
|
2336 |
|
|
layout_decl (new_parm, 0);
|
2337 |
|
|
|
2338 |
|
|
add_referenced_var (new_parm);
|
2339 |
|
|
mark_sym_for_renaming (new_parm);
|
2340 |
|
|
adj->base = parm;
|
2341 |
|
|
adj->reduction = new_parm;
|
2342 |
|
|
|
2343 |
|
|
*link = new_parm;
|
2344 |
|
|
|
2345 |
|
|
link = &DECL_CHAIN (new_parm);
|
2346 |
|
|
}
|
2347 |
|
|
}
|
2348 |
|
|
|
2349 |
|
|
*link = NULL_TREE;
|
2350 |
|
|
|
2351 |
|
|
if (care_for_types)
|
2352 |
|
|
{
|
2353 |
|
|
new_reversed = nreverse (new_arg_types);
|
2354 |
|
|
if (last_parm_void)
|
2355 |
|
|
{
|
2356 |
|
|
if (new_reversed)
|
2357 |
|
|
TREE_CHAIN (new_arg_types) = void_list_node;
|
2358 |
|
|
else
|
2359 |
|
|
new_reversed = void_list_node;
|
2360 |
|
|
}
|
2361 |
|
|
}
|
2362 |
|
|
|
2363 |
|
|
/* Use copy_node to preserve as much as possible from original type
|
2364 |
|
|
(debug info, attribute lists etc.)
|
2365 |
|
|
Exception is METHOD_TYPEs must have THIS argument.
|
2366 |
|
|
When we are asked to remove it, we need to build new FUNCTION_TYPE
|
2367 |
|
|
instead. */
|
2368 |
|
|
if (TREE_CODE (orig_type) != METHOD_TYPE
|
2369 |
|
|
|| (VEC_index (ipa_parm_adjustment_t, adjustments, 0)->copy_param
|
2370 |
|
|
&& VEC_index (ipa_parm_adjustment_t, adjustments, 0)->base_index == 0))
|
2371 |
|
|
{
|
2372 |
|
|
new_type = build_distinct_type_copy (orig_type);
|
2373 |
|
|
TYPE_ARG_TYPES (new_type) = new_reversed;
|
2374 |
|
|
}
|
2375 |
|
|
else
|
2376 |
|
|
{
|
2377 |
|
|
new_type
|
2378 |
|
|
= build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
|
2379 |
|
|
new_reversed));
|
2380 |
|
|
TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
|
2381 |
|
|
DECL_VINDEX (fndecl) = NULL_TREE;
|
2382 |
|
|
}
|
2383 |
|
|
|
2384 |
|
|
/* When signature changes, we need to clear builtin info. */
|
2385 |
|
|
if (DECL_BUILT_IN (fndecl))
|
2386 |
|
|
{
|
2387 |
|
|
DECL_BUILT_IN_CLASS (fndecl) = NOT_BUILT_IN;
|
2388 |
|
|
DECL_FUNCTION_CODE (fndecl) = (enum built_in_function) 0;
|
2389 |
|
|
}
|
2390 |
|
|
|
2391 |
|
|
/* This is a new type, not a copy of an old type. Need to reassociate
|
2392 |
|
|
variants. We can handle everything except the main variant lazily. */
|
2393 |
|
|
t = TYPE_MAIN_VARIANT (orig_type);
|
2394 |
|
|
if (orig_type != t)
|
2395 |
|
|
{
|
2396 |
|
|
TYPE_MAIN_VARIANT (new_type) = t;
|
2397 |
|
|
TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
|
2398 |
|
|
TYPE_NEXT_VARIANT (t) = new_type;
|
2399 |
|
|
}
|
2400 |
|
|
else
|
2401 |
|
|
{
|
2402 |
|
|
TYPE_MAIN_VARIANT (new_type) = new_type;
|
2403 |
|
|
TYPE_NEXT_VARIANT (new_type) = NULL;
|
2404 |
|
|
}
|
2405 |
|
|
|
2406 |
|
|
TREE_TYPE (fndecl) = new_type;
|
2407 |
|
|
DECL_VIRTUAL_P (fndecl) = 0;
|
2408 |
|
|
if (otypes)
|
2409 |
|
|
VEC_free (tree, heap, otypes);
|
2410 |
|
|
VEC_free (tree, heap, oparms);
|
2411 |
|
|
}
|
2412 |
|
|
|
2413 |
|
|
/* Modify actual arguments of a function call CS as indicated in ADJUSTMENTS.
|
2414 |
|
|
If this is a directly recursive call, CS must be NULL. Otherwise it must
|
2415 |
|
|
contain the corresponding call graph edge. */
|
2416 |
|
|
|
2417 |
|
|
void
|
2418 |
|
|
ipa_modify_call_arguments (struct cgraph_edge *cs, gimple stmt,
|
2419 |
|
|
ipa_parm_adjustment_vec adjustments)
|
2420 |
|
|
{
|
2421 |
|
|
VEC(tree, heap) *vargs;
|
2422 |
|
|
VEC(tree, gc) **debug_args = NULL;
|
2423 |
|
|
gimple new_stmt;
|
2424 |
|
|
gimple_stmt_iterator gsi;
|
2425 |
|
|
tree callee_decl;
|
2426 |
|
|
int i, len;
|
2427 |
|
|
|
2428 |
|
|
len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
2429 |
|
|
vargs = VEC_alloc (tree, heap, len);
|
2430 |
|
|
callee_decl = !cs ? gimple_call_fndecl (stmt) : cs->callee->decl;
|
2431 |
|
|
|
2432 |
|
|
gsi = gsi_for_stmt (stmt);
|
2433 |
|
|
for (i = 0; i < len; i++)
|
2434 |
|
|
{
|
2435 |
|
|
struct ipa_parm_adjustment *adj;
|
2436 |
|
|
|
2437 |
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
2438 |
|
|
|
2439 |
|
|
if (adj->copy_param)
|
2440 |
|
|
{
|
2441 |
|
|
tree arg = gimple_call_arg (stmt, adj->base_index);
|
2442 |
|
|
|
2443 |
|
|
VEC_quick_push (tree, vargs, arg);
|
2444 |
|
|
}
|
2445 |
|
|
else if (!adj->remove_param)
|
2446 |
|
|
{
|
2447 |
|
|
tree expr, base, off;
|
2448 |
|
|
location_t loc;
|
2449 |
|
|
|
2450 |
|
|
/* We create a new parameter out of the value of the old one, we can
|
2451 |
|
|
do the following kind of transformations:
|
2452 |
|
|
|
2453 |
|
|
- A scalar passed by reference is converted to a scalar passed by
|
2454 |
|
|
value. (adj->by_ref is false and the type of the original
|
2455 |
|
|
actual argument is a pointer to a scalar).
|
2456 |
|
|
|
2457 |
|
|
- A part of an aggregate is passed instead of the whole aggregate.
|
2458 |
|
|
The part can be passed either by value or by reference, this is
|
2459 |
|
|
determined by value of adj->by_ref. Moreover, the code below
|
2460 |
|
|
handles both situations when the original aggregate is passed by
|
2461 |
|
|
value (its type is not a pointer) and when it is passed by
|
2462 |
|
|
reference (it is a pointer to an aggregate).
|
2463 |
|
|
|
2464 |
|
|
When the new argument is passed by reference (adj->by_ref is true)
|
2465 |
|
|
it must be a part of an aggregate and therefore we form it by
|
2466 |
|
|
simply taking the address of a reference inside the original
|
2467 |
|
|
aggregate. */
|
2468 |
|
|
|
2469 |
|
|
gcc_checking_assert (adj->offset % BITS_PER_UNIT == 0);
|
2470 |
|
|
base = gimple_call_arg (stmt, adj->base_index);
|
2471 |
|
|
loc = EXPR_LOCATION (base);
|
2472 |
|
|
|
2473 |
|
|
if (TREE_CODE (base) != ADDR_EXPR
|
2474 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (base)))
|
2475 |
|
|
off = build_int_cst (adj->alias_ptr_type,
|
2476 |
|
|
adj->offset / BITS_PER_UNIT);
|
2477 |
|
|
else
|
2478 |
|
|
{
|
2479 |
|
|
HOST_WIDE_INT base_offset;
|
2480 |
|
|
tree prev_base;
|
2481 |
|
|
|
2482 |
|
|
if (TREE_CODE (base) == ADDR_EXPR)
|
2483 |
|
|
base = TREE_OPERAND (base, 0);
|
2484 |
|
|
prev_base = base;
|
2485 |
|
|
base = get_addr_base_and_unit_offset (base, &base_offset);
|
2486 |
|
|
/* Aggregate arguments can have non-invariant addresses. */
|
2487 |
|
|
if (!base)
|
2488 |
|
|
{
|
2489 |
|
|
base = build_fold_addr_expr (prev_base);
|
2490 |
|
|
off = build_int_cst (adj->alias_ptr_type,
|
2491 |
|
|
adj->offset / BITS_PER_UNIT);
|
2492 |
|
|
}
|
2493 |
|
|
else if (TREE_CODE (base) == MEM_REF)
|
2494 |
|
|
{
|
2495 |
|
|
off = build_int_cst (adj->alias_ptr_type,
|
2496 |
|
|
base_offset
|
2497 |
|
|
+ adj->offset / BITS_PER_UNIT);
|
2498 |
|
|
off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1),
|
2499 |
|
|
off);
|
2500 |
|
|
base = TREE_OPERAND (base, 0);
|
2501 |
|
|
}
|
2502 |
|
|
else
|
2503 |
|
|
{
|
2504 |
|
|
off = build_int_cst (adj->alias_ptr_type,
|
2505 |
|
|
base_offset
|
2506 |
|
|
+ adj->offset / BITS_PER_UNIT);
|
2507 |
|
|
base = build_fold_addr_expr (base);
|
2508 |
|
|
}
|
2509 |
|
|
}
|
2510 |
|
|
|
2511 |
|
|
if (!adj->by_ref)
|
2512 |
|
|
{
|
2513 |
|
|
tree type = adj->type;
|
2514 |
|
|
unsigned int align;
|
2515 |
|
|
unsigned HOST_WIDE_INT misalign;
|
2516 |
|
|
align = get_pointer_alignment_1 (base, &misalign);
|
2517 |
|
|
misalign += (double_int_sext (tree_to_double_int (off),
|
2518 |
|
|
TYPE_PRECISION (TREE_TYPE (off))).low
|
2519 |
|
|
* BITS_PER_UNIT);
|
2520 |
|
|
misalign = misalign & (align - 1);
|
2521 |
|
|
if (misalign != 0)
|
2522 |
|
|
align = (misalign & -misalign);
|
2523 |
|
|
if (align < TYPE_ALIGN (type))
|
2524 |
|
|
type = build_aligned_type (type, align);
|
2525 |
|
|
expr = fold_build2_loc (loc, MEM_REF, type, base, off);
|
2526 |
|
|
}
|
2527 |
|
|
else
|
2528 |
|
|
{
|
2529 |
|
|
expr = fold_build2_loc (loc, MEM_REF, adj->type, base, off);
|
2530 |
|
|
expr = build_fold_addr_expr (expr);
|
2531 |
|
|
}
|
2532 |
|
|
|
2533 |
|
|
expr = force_gimple_operand_gsi (&gsi, expr,
|
2534 |
|
|
adj->by_ref
|
2535 |
|
|
|| is_gimple_reg_type (adj->type),
|
2536 |
|
|
NULL, true, GSI_SAME_STMT);
|
2537 |
|
|
VEC_quick_push (tree, vargs, expr);
|
2538 |
|
|
}
|
2539 |
|
|
if (!adj->copy_param && MAY_HAVE_DEBUG_STMTS)
|
2540 |
|
|
{
|
2541 |
|
|
unsigned int ix;
|
2542 |
|
|
tree ddecl = NULL_TREE, origin = DECL_ORIGIN (adj->base), arg;
|
2543 |
|
|
gimple def_temp;
|
2544 |
|
|
|
2545 |
|
|
arg = gimple_call_arg (stmt, adj->base_index);
|
2546 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (origin), TREE_TYPE (arg)))
|
2547 |
|
|
{
|
2548 |
|
|
if (!fold_convertible_p (TREE_TYPE (origin), arg))
|
2549 |
|
|
continue;
|
2550 |
|
|
arg = fold_convert_loc (gimple_location (stmt),
|
2551 |
|
|
TREE_TYPE (origin), arg);
|
2552 |
|
|
}
|
2553 |
|
|
if (debug_args == NULL)
|
2554 |
|
|
debug_args = decl_debug_args_insert (callee_decl);
|
2555 |
|
|
for (ix = 0; VEC_iterate (tree, *debug_args, ix, ddecl); ix += 2)
|
2556 |
|
|
if (ddecl == origin)
|
2557 |
|
|
{
|
2558 |
|
|
ddecl = VEC_index (tree, *debug_args, ix + 1);
|
2559 |
|
|
break;
|
2560 |
|
|
}
|
2561 |
|
|
if (ddecl == NULL)
|
2562 |
|
|
{
|
2563 |
|
|
ddecl = make_node (DEBUG_EXPR_DECL);
|
2564 |
|
|
DECL_ARTIFICIAL (ddecl) = 1;
|
2565 |
|
|
TREE_TYPE (ddecl) = TREE_TYPE (origin);
|
2566 |
|
|
DECL_MODE (ddecl) = DECL_MODE (origin);
|
2567 |
|
|
|
2568 |
|
|
VEC_safe_push (tree, gc, *debug_args, origin);
|
2569 |
|
|
VEC_safe_push (tree, gc, *debug_args, ddecl);
|
2570 |
|
|
}
|
2571 |
|
|
def_temp = gimple_build_debug_bind (ddecl, unshare_expr (arg),
|
2572 |
|
|
stmt);
|
2573 |
|
|
gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
|
2574 |
|
|
}
|
2575 |
|
|
}
|
2576 |
|
|
|
2577 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2578 |
|
|
{
|
2579 |
|
|
fprintf (dump_file, "replacing stmt:");
|
2580 |
|
|
print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
|
2581 |
|
|
}
|
2582 |
|
|
|
2583 |
|
|
new_stmt = gimple_build_call_vec (callee_decl, vargs);
|
2584 |
|
|
VEC_free (tree, heap, vargs);
|
2585 |
|
|
if (gimple_call_lhs (stmt))
|
2586 |
|
|
gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
|
2587 |
|
|
|
2588 |
|
|
gimple_set_block (new_stmt, gimple_block (stmt));
|
2589 |
|
|
if (gimple_has_location (stmt))
|
2590 |
|
|
gimple_set_location (new_stmt, gimple_location (stmt));
|
2591 |
|
|
gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
|
2592 |
|
|
gimple_call_copy_flags (new_stmt, stmt);
|
2593 |
|
|
|
2594 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2595 |
|
|
{
|
2596 |
|
|
fprintf (dump_file, "with stmt:");
|
2597 |
|
|
print_gimple_stmt (dump_file, new_stmt, 0, 0);
|
2598 |
|
|
fprintf (dump_file, "\n");
|
2599 |
|
|
}
|
2600 |
|
|
gsi_replace (&gsi, new_stmt, true);
|
2601 |
|
|
if (cs)
|
2602 |
|
|
cgraph_set_call_stmt (cs, new_stmt);
|
2603 |
|
|
update_ssa (TODO_update_ssa);
|
2604 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
2605 |
|
|
}
|
2606 |
|
|
|
2607 |
|
|
/* Return true iff BASE_INDEX is in ADJUSTMENTS more than once. */
|
2608 |
|
|
|
2609 |
|
|
static bool
|
2610 |
|
|
index_in_adjustments_multiple_times_p (int base_index,
|
2611 |
|
|
ipa_parm_adjustment_vec adjustments)
|
2612 |
|
|
{
|
2613 |
|
|
int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
2614 |
|
|
bool one = false;
|
2615 |
|
|
|
2616 |
|
|
for (i = 0; i < len; i++)
|
2617 |
|
|
{
|
2618 |
|
|
struct ipa_parm_adjustment *adj;
|
2619 |
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
2620 |
|
|
|
2621 |
|
|
if (adj->base_index == base_index)
|
2622 |
|
|
{
|
2623 |
|
|
if (one)
|
2624 |
|
|
return true;
|
2625 |
|
|
else
|
2626 |
|
|
one = true;
|
2627 |
|
|
}
|
2628 |
|
|
}
|
2629 |
|
|
return false;
|
2630 |
|
|
}
|
2631 |
|
|
|
2632 |
|
|
|
2633 |
|
|
/* Return adjustments that should have the same effect on function parameters
|
2634 |
|
|
and call arguments as if they were first changed according to adjustments in
|
2635 |
|
|
INNER and then by adjustments in OUTER. */
|
2636 |
|
|
|
2637 |
|
|
ipa_parm_adjustment_vec
|
2638 |
|
|
ipa_combine_adjustments (ipa_parm_adjustment_vec inner,
|
2639 |
|
|
ipa_parm_adjustment_vec outer)
|
2640 |
|
|
{
|
2641 |
|
|
int i, outlen = VEC_length (ipa_parm_adjustment_t, outer);
|
2642 |
|
|
int inlen = VEC_length (ipa_parm_adjustment_t, inner);
|
2643 |
|
|
int removals = 0;
|
2644 |
|
|
ipa_parm_adjustment_vec adjustments, tmp;
|
2645 |
|
|
|
2646 |
|
|
tmp = VEC_alloc (ipa_parm_adjustment_t, heap, inlen);
|
2647 |
|
|
for (i = 0; i < inlen; i++)
|
2648 |
|
|
{
|
2649 |
|
|
struct ipa_parm_adjustment *n;
|
2650 |
|
|
n = VEC_index (ipa_parm_adjustment_t, inner, i);
|
2651 |
|
|
|
2652 |
|
|
if (n->remove_param)
|
2653 |
|
|
removals++;
|
2654 |
|
|
else
|
2655 |
|
|
VEC_quick_push (ipa_parm_adjustment_t, tmp, n);
|
2656 |
|
|
}
|
2657 |
|
|
|
2658 |
|
|
adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, outlen + removals);
|
2659 |
|
|
for (i = 0; i < outlen; i++)
|
2660 |
|
|
{
|
2661 |
|
|
struct ipa_parm_adjustment *r;
|
2662 |
|
|
struct ipa_parm_adjustment *out = VEC_index (ipa_parm_adjustment_t,
|
2663 |
|
|
outer, i);
|
2664 |
|
|
struct ipa_parm_adjustment *in = VEC_index (ipa_parm_adjustment_t, tmp,
|
2665 |
|
|
out->base_index);
|
2666 |
|
|
|
2667 |
|
|
gcc_assert (!in->remove_param);
|
2668 |
|
|
if (out->remove_param)
|
2669 |
|
|
{
|
2670 |
|
|
if (!index_in_adjustments_multiple_times_p (in->base_index, tmp))
|
2671 |
|
|
{
|
2672 |
|
|
r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
|
2673 |
|
|
memset (r, 0, sizeof (*r));
|
2674 |
|
|
r->remove_param = true;
|
2675 |
|
|
}
|
2676 |
|
|
continue;
|
2677 |
|
|
}
|
2678 |
|
|
|
2679 |
|
|
r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
|
2680 |
|
|
memset (r, 0, sizeof (*r));
|
2681 |
|
|
r->base_index = in->base_index;
|
2682 |
|
|
r->type = out->type;
|
2683 |
|
|
|
2684 |
|
|
/* FIXME: Create nonlocal value too. */
|
2685 |
|
|
|
2686 |
|
|
if (in->copy_param && out->copy_param)
|
2687 |
|
|
r->copy_param = true;
|
2688 |
|
|
else if (in->copy_param)
|
2689 |
|
|
r->offset = out->offset;
|
2690 |
|
|
else if (out->copy_param)
|
2691 |
|
|
r->offset = in->offset;
|
2692 |
|
|
else
|
2693 |
|
|
r->offset = in->offset + out->offset;
|
2694 |
|
|
}
|
2695 |
|
|
|
2696 |
|
|
for (i = 0; i < inlen; i++)
|
2697 |
|
|
{
|
2698 |
|
|
struct ipa_parm_adjustment *n = VEC_index (ipa_parm_adjustment_t,
|
2699 |
|
|
inner, i);
|
2700 |
|
|
|
2701 |
|
|
if (n->remove_param)
|
2702 |
|
|
VEC_quick_push (ipa_parm_adjustment_t, adjustments, n);
|
2703 |
|
|
}
|
2704 |
|
|
|
2705 |
|
|
VEC_free (ipa_parm_adjustment_t, heap, tmp);
|
2706 |
|
|
return adjustments;
|
2707 |
|
|
}
|
2708 |
|
|
|
2709 |
|
|
/* Dump the adjustments in the vector ADJUSTMENTS to dump_file in a human
|
2710 |
|
|
friendly way, assuming they are meant to be applied to FNDECL. */
|
2711 |
|
|
|
2712 |
|
|
void
|
2713 |
|
|
ipa_dump_param_adjustments (FILE *file, ipa_parm_adjustment_vec adjustments,
|
2714 |
|
|
tree fndecl)
|
2715 |
|
|
{
|
2716 |
|
|
int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
2717 |
|
|
bool first = true;
|
2718 |
|
|
VEC(tree, heap) *parms = ipa_get_vector_of_formal_parms (fndecl);
|
2719 |
|
|
|
2720 |
|
|
fprintf (file, "IPA param adjustments: ");
|
2721 |
|
|
for (i = 0; i < len; i++)
|
2722 |
|
|
{
|
2723 |
|
|
struct ipa_parm_adjustment *adj;
|
2724 |
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
2725 |
|
|
|
2726 |
|
|
if (!first)
|
2727 |
|
|
fprintf (file, " ");
|
2728 |
|
|
else
|
2729 |
|
|
first = false;
|
2730 |
|
|
|
2731 |
|
|
fprintf (file, "%i. base_index: %i - ", i, adj->base_index);
|
2732 |
|
|
print_generic_expr (file, VEC_index (tree, parms, adj->base_index), 0);
|
2733 |
|
|
if (adj->base)
|
2734 |
|
|
{
|
2735 |
|
|
fprintf (file, ", base: ");
|
2736 |
|
|
print_generic_expr (file, adj->base, 0);
|
2737 |
|
|
}
|
2738 |
|
|
if (adj->reduction)
|
2739 |
|
|
{
|
2740 |
|
|
fprintf (file, ", reduction: ");
|
2741 |
|
|
print_generic_expr (file, adj->reduction, 0);
|
2742 |
|
|
}
|
2743 |
|
|
if (adj->new_ssa_base)
|
2744 |
|
|
{
|
2745 |
|
|
fprintf (file, ", new_ssa_base: ");
|
2746 |
|
|
print_generic_expr (file, adj->new_ssa_base, 0);
|
2747 |
|
|
}
|
2748 |
|
|
|
2749 |
|
|
if (adj->copy_param)
|
2750 |
|
|
fprintf (file, ", copy_param");
|
2751 |
|
|
else if (adj->remove_param)
|
2752 |
|
|
fprintf (file, ", remove_param");
|
2753 |
|
|
else
|
2754 |
|
|
fprintf (file, ", offset %li", (long) adj->offset);
|
2755 |
|
|
if (adj->by_ref)
|
2756 |
|
|
fprintf (file, ", by_ref");
|
2757 |
|
|
print_node_brief (file, ", type: ", adj->type, 0);
|
2758 |
|
|
fprintf (file, "\n");
|
2759 |
|
|
}
|
2760 |
|
|
VEC_free (tree, heap, parms);
|
2761 |
|
|
}
|
2762 |
|
|
|
2763 |
|
|
/* Stream out jump function JUMP_FUNC to OB. */
|
2764 |
|
|
|
2765 |
|
|
static void
|
2766 |
|
|
ipa_write_jump_function (struct output_block *ob,
|
2767 |
|
|
struct ipa_jump_func *jump_func)
|
2768 |
|
|
{
|
2769 |
|
|
streamer_write_uhwi (ob, jump_func->type);
|
2770 |
|
|
|
2771 |
|
|
switch (jump_func->type)
|
2772 |
|
|
{
|
2773 |
|
|
case IPA_JF_UNKNOWN:
|
2774 |
|
|
break;
|
2775 |
|
|
case IPA_JF_KNOWN_TYPE:
|
2776 |
|
|
streamer_write_uhwi (ob, jump_func->value.known_type.offset);
|
2777 |
|
|
stream_write_tree (ob, jump_func->value.known_type.base_type, true);
|
2778 |
|
|
stream_write_tree (ob, jump_func->value.known_type.component_type, true);
|
2779 |
|
|
break;
|
2780 |
|
|
case IPA_JF_CONST:
|
2781 |
|
|
stream_write_tree (ob, jump_func->value.constant, true);
|
2782 |
|
|
break;
|
2783 |
|
|
case IPA_JF_PASS_THROUGH:
|
2784 |
|
|
stream_write_tree (ob, jump_func->value.pass_through.operand, true);
|
2785 |
|
|
streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
|
2786 |
|
|
streamer_write_uhwi (ob, jump_func->value.pass_through.operation);
|
2787 |
|
|
break;
|
2788 |
|
|
case IPA_JF_ANCESTOR:
|
2789 |
|
|
streamer_write_uhwi (ob, jump_func->value.ancestor.offset);
|
2790 |
|
|
stream_write_tree (ob, jump_func->value.ancestor.type, true);
|
2791 |
|
|
streamer_write_uhwi (ob, jump_func->value.ancestor.formal_id);
|
2792 |
|
|
break;
|
2793 |
|
|
case IPA_JF_CONST_MEMBER_PTR:
|
2794 |
|
|
stream_write_tree (ob, jump_func->value.member_cst.pfn, true);
|
2795 |
|
|
stream_write_tree (ob, jump_func->value.member_cst.delta, false);
|
2796 |
|
|
break;
|
2797 |
|
|
}
|
2798 |
|
|
}
|
2799 |
|
|
|
2800 |
|
|
/* Read in jump function JUMP_FUNC from IB. */
|
2801 |
|
|
|
2802 |
|
|
static void
|
2803 |
|
|
ipa_read_jump_function (struct lto_input_block *ib,
|
2804 |
|
|
struct ipa_jump_func *jump_func,
|
2805 |
|
|
struct data_in *data_in)
|
2806 |
|
|
{
|
2807 |
|
|
jump_func->type = (enum jump_func_type) streamer_read_uhwi (ib);
|
2808 |
|
|
|
2809 |
|
|
switch (jump_func->type)
|
2810 |
|
|
{
|
2811 |
|
|
case IPA_JF_UNKNOWN:
|
2812 |
|
|
break;
|
2813 |
|
|
case IPA_JF_KNOWN_TYPE:
|
2814 |
|
|
jump_func->value.known_type.offset = streamer_read_uhwi (ib);
|
2815 |
|
|
jump_func->value.known_type.base_type = stream_read_tree (ib, data_in);
|
2816 |
|
|
jump_func->value.known_type.component_type = stream_read_tree (ib,
|
2817 |
|
|
data_in);
|
2818 |
|
|
break;
|
2819 |
|
|
case IPA_JF_CONST:
|
2820 |
|
|
jump_func->value.constant = stream_read_tree (ib, data_in);
|
2821 |
|
|
break;
|
2822 |
|
|
case IPA_JF_PASS_THROUGH:
|
2823 |
|
|
jump_func->value.pass_through.operand = stream_read_tree (ib, data_in);
|
2824 |
|
|
jump_func->value.pass_through.formal_id = streamer_read_uhwi (ib);
|
2825 |
|
|
jump_func->value.pass_through.operation
|
2826 |
|
|
= (enum tree_code) streamer_read_uhwi (ib);
|
2827 |
|
|
break;
|
2828 |
|
|
case IPA_JF_ANCESTOR:
|
2829 |
|
|
jump_func->value.ancestor.offset = streamer_read_uhwi (ib);
|
2830 |
|
|
jump_func->value.ancestor.type = stream_read_tree (ib, data_in);
|
2831 |
|
|
jump_func->value.ancestor.formal_id = streamer_read_uhwi (ib);
|
2832 |
|
|
break;
|
2833 |
|
|
case IPA_JF_CONST_MEMBER_PTR:
|
2834 |
|
|
jump_func->value.member_cst.pfn = stream_read_tree (ib, data_in);
|
2835 |
|
|
jump_func->value.member_cst.delta = stream_read_tree (ib, data_in);
|
2836 |
|
|
break;
|
2837 |
|
|
}
|
2838 |
|
|
}
|
2839 |
|
|
|
2840 |
|
|
/* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
|
2841 |
|
|
relevant to indirect inlining to OB. */
|
2842 |
|
|
|
2843 |
|
|
static void
|
2844 |
|
|
ipa_write_indirect_edge_info (struct output_block *ob,
|
2845 |
|
|
struct cgraph_edge *cs)
|
2846 |
|
|
{
|
2847 |
|
|
struct cgraph_indirect_call_info *ii = cs->indirect_info;
|
2848 |
|
|
struct bitpack_d bp;
|
2849 |
|
|
|
2850 |
|
|
streamer_write_hwi (ob, ii->param_index);
|
2851 |
|
|
streamer_write_hwi (ob, ii->anc_offset);
|
2852 |
|
|
bp = bitpack_create (ob->main_stream);
|
2853 |
|
|
bp_pack_value (&bp, ii->polymorphic, 1);
|
2854 |
|
|
streamer_write_bitpack (&bp);
|
2855 |
|
|
|
2856 |
|
|
if (ii->polymorphic)
|
2857 |
|
|
{
|
2858 |
|
|
streamer_write_hwi (ob, ii->otr_token);
|
2859 |
|
|
stream_write_tree (ob, ii->otr_type, true);
|
2860 |
|
|
}
|
2861 |
|
|
}
|
2862 |
|
|
|
2863 |
|
|
/* Read in parts of cgraph_indirect_call_info corresponding to CS that are
|
2864 |
|
|
relevant to indirect inlining from IB. */
|
2865 |
|
|
|
2866 |
|
|
static void
|
2867 |
|
|
ipa_read_indirect_edge_info (struct lto_input_block *ib,
|
2868 |
|
|
struct data_in *data_in ATTRIBUTE_UNUSED,
|
2869 |
|
|
struct cgraph_edge *cs)
|
2870 |
|
|
{
|
2871 |
|
|
struct cgraph_indirect_call_info *ii = cs->indirect_info;
|
2872 |
|
|
struct bitpack_d bp;
|
2873 |
|
|
|
2874 |
|
|
ii->param_index = (int) streamer_read_hwi (ib);
|
2875 |
|
|
ii->anc_offset = (HOST_WIDE_INT) streamer_read_hwi (ib);
|
2876 |
|
|
bp = streamer_read_bitpack (ib);
|
2877 |
|
|
ii->polymorphic = bp_unpack_value (&bp, 1);
|
2878 |
|
|
if (ii->polymorphic)
|
2879 |
|
|
{
|
2880 |
|
|
ii->otr_token = (HOST_WIDE_INT) streamer_read_hwi (ib);
|
2881 |
|
|
ii->otr_type = stream_read_tree (ib, data_in);
|
2882 |
|
|
}
|
2883 |
|
|
}
|
2884 |
|
|
|
2885 |
|
|
/* Stream out NODE info to OB. */
|
2886 |
|
|
|
2887 |
|
|
static void
|
2888 |
|
|
ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
|
2889 |
|
|
{
|
2890 |
|
|
int node_ref;
|
2891 |
|
|
lto_cgraph_encoder_t encoder;
|
2892 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
2893 |
|
|
int j;
|
2894 |
|
|
struct cgraph_edge *e;
|
2895 |
|
|
struct bitpack_d bp;
|
2896 |
|
|
|
2897 |
|
|
encoder = ob->decl_state->cgraph_node_encoder;
|
2898 |
|
|
node_ref = lto_cgraph_encoder_encode (encoder, node);
|
2899 |
|
|
streamer_write_uhwi (ob, node_ref);
|
2900 |
|
|
|
2901 |
|
|
bp = bitpack_create (ob->main_stream);
|
2902 |
|
|
gcc_assert (info->uses_analysis_done
|
2903 |
|
|
|| ipa_get_param_count (info) == 0);
|
2904 |
|
|
gcc_assert (!info->node_enqueued);
|
2905 |
|
|
gcc_assert (!info->ipcp_orig_node);
|
2906 |
|
|
for (j = 0; j < ipa_get_param_count (info); j++)
|
2907 |
|
|
bp_pack_value (&bp, ipa_is_param_used (info, j), 1);
|
2908 |
|
|
streamer_write_bitpack (&bp);
|
2909 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
2910 |
|
|
{
|
2911 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
2912 |
|
|
|
2913 |
|
|
streamer_write_uhwi (ob, ipa_get_cs_argument_count (args));
|
2914 |
|
|
for (j = 0; j < ipa_get_cs_argument_count (args); j++)
|
2915 |
|
|
ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
|
2916 |
|
|
}
|
2917 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
2918 |
|
|
{
|
2919 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
2920 |
|
|
|
2921 |
|
|
streamer_write_uhwi (ob, ipa_get_cs_argument_count (args));
|
2922 |
|
|
for (j = 0; j < ipa_get_cs_argument_count (args); j++)
|
2923 |
|
|
ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
|
2924 |
|
|
ipa_write_indirect_edge_info (ob, e);
|
2925 |
|
|
}
|
2926 |
|
|
}
|
2927 |
|
|
|
2928 |
|
|
/* Stream in NODE info from IB. */
|
2929 |
|
|
|
2930 |
|
|
static void
|
2931 |
|
|
ipa_read_node_info (struct lto_input_block *ib, struct cgraph_node *node,
|
2932 |
|
|
struct data_in *data_in)
|
2933 |
|
|
{
|
2934 |
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
2935 |
|
|
int k;
|
2936 |
|
|
struct cgraph_edge *e;
|
2937 |
|
|
struct bitpack_d bp;
|
2938 |
|
|
|
2939 |
|
|
ipa_initialize_node_params (node);
|
2940 |
|
|
|
2941 |
|
|
bp = streamer_read_bitpack (ib);
|
2942 |
|
|
if (ipa_get_param_count (info) != 0)
|
2943 |
|
|
info->uses_analysis_done = true;
|
2944 |
|
|
info->node_enqueued = false;
|
2945 |
|
|
for (k = 0; k < ipa_get_param_count (info); k++)
|
2946 |
|
|
ipa_set_param_used (info, k, bp_unpack_value (&bp, 1));
|
2947 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
2948 |
|
|
{
|
2949 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
2950 |
|
|
int count = streamer_read_uhwi (ib);
|
2951 |
|
|
|
2952 |
|
|
if (!count)
|
2953 |
|
|
continue;
|
2954 |
|
|
VEC_safe_grow_cleared (ipa_jump_func_t, gc, args->jump_functions, count);
|
2955 |
|
|
|
2956 |
|
|
for (k = 0; k < ipa_get_cs_argument_count (args); k++)
|
2957 |
|
|
ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), data_in);
|
2958 |
|
|
}
|
2959 |
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
2960 |
|
|
{
|
2961 |
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
2962 |
|
|
int count = streamer_read_uhwi (ib);
|
2963 |
|
|
|
2964 |
|
|
if (count)
|
2965 |
|
|
{
|
2966 |
|
|
VEC_safe_grow_cleared (ipa_jump_func_t, gc, args->jump_functions,
|
2967 |
|
|
count);
|
2968 |
|
|
for (k = 0; k < ipa_get_cs_argument_count (args); k++)
|
2969 |
|
|
ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k),
|
2970 |
|
|
data_in);
|
2971 |
|
|
}
|
2972 |
|
|
ipa_read_indirect_edge_info (ib, data_in, e);
|
2973 |
|
|
}
|
2974 |
|
|
}
|
2975 |
|
|
|
2976 |
|
|
/* Write jump functions for nodes in SET. */
|
2977 |
|
|
|
2978 |
|
|
void
|
2979 |
|
|
ipa_prop_write_jump_functions (cgraph_node_set set)
|
2980 |
|
|
{
|
2981 |
|
|
struct cgraph_node *node;
|
2982 |
|
|
struct output_block *ob;
|
2983 |
|
|
unsigned int count = 0;
|
2984 |
|
|
cgraph_node_set_iterator csi;
|
2985 |
|
|
|
2986 |
|
|
if (!ipa_node_params_vector)
|
2987 |
|
|
return;
|
2988 |
|
|
|
2989 |
|
|
ob = create_output_block (LTO_section_jump_functions);
|
2990 |
|
|
ob->cgraph_node = NULL;
|
2991 |
|
|
for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
|
2992 |
|
|
{
|
2993 |
|
|
node = csi_node (csi);
|
2994 |
|
|
if (cgraph_function_with_gimple_body_p (node)
|
2995 |
|
|
&& IPA_NODE_REF (node) != NULL)
|
2996 |
|
|
count++;
|
2997 |
|
|
}
|
2998 |
|
|
|
2999 |
|
|
streamer_write_uhwi (ob, count);
|
3000 |
|
|
|
3001 |
|
|
/* Process all of the functions. */
|
3002 |
|
|
for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
|
3003 |
|
|
{
|
3004 |
|
|
node = csi_node (csi);
|
3005 |
|
|
if (cgraph_function_with_gimple_body_p (node)
|
3006 |
|
|
&& IPA_NODE_REF (node) != NULL)
|
3007 |
|
|
ipa_write_node_info (ob, node);
|
3008 |
|
|
}
|
3009 |
|
|
streamer_write_char_stream (ob->main_stream, 0);
|
3010 |
|
|
produce_asm (ob, NULL);
|
3011 |
|
|
destroy_output_block (ob);
|
3012 |
|
|
}
|
3013 |
|
|
|
3014 |
|
|
/* Read section in file FILE_DATA of length LEN with data DATA. */
|
3015 |
|
|
|
3016 |
|
|
static void
|
3017 |
|
|
ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
|
3018 |
|
|
size_t len)
|
3019 |
|
|
{
|
3020 |
|
|
const struct lto_function_header *header =
|
3021 |
|
|
(const struct lto_function_header *) data;
|
3022 |
|
|
const int cfg_offset = sizeof (struct lto_function_header);
|
3023 |
|
|
const int main_offset = cfg_offset + header->cfg_size;
|
3024 |
|
|
const int string_offset = main_offset + header->main_size;
|
3025 |
|
|
struct data_in *data_in;
|
3026 |
|
|
struct lto_input_block ib_main;
|
3027 |
|
|
unsigned int i;
|
3028 |
|
|
unsigned int count;
|
3029 |
|
|
|
3030 |
|
|
LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
|
3031 |
|
|
header->main_size);
|
3032 |
|
|
|
3033 |
|
|
data_in =
|
3034 |
|
|
lto_data_in_create (file_data, (const char *) data + string_offset,
|
3035 |
|
|
header->string_size, NULL);
|
3036 |
|
|
count = streamer_read_uhwi (&ib_main);
|
3037 |
|
|
|
3038 |
|
|
for (i = 0; i < count; i++)
|
3039 |
|
|
{
|
3040 |
|
|
unsigned int index;
|
3041 |
|
|
struct cgraph_node *node;
|
3042 |
|
|
lto_cgraph_encoder_t encoder;
|
3043 |
|
|
|
3044 |
|
|
index = streamer_read_uhwi (&ib_main);
|
3045 |
|
|
encoder = file_data->cgraph_node_encoder;
|
3046 |
|
|
node = lto_cgraph_encoder_deref (encoder, index);
|
3047 |
|
|
gcc_assert (node->analyzed);
|
3048 |
|
|
ipa_read_node_info (&ib_main, node, data_in);
|
3049 |
|
|
}
|
3050 |
|
|
lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
|
3051 |
|
|
len);
|
3052 |
|
|
lto_data_in_delete (data_in);
|
3053 |
|
|
}
|
3054 |
|
|
|
3055 |
|
|
/* Read ipcp jump functions. */
|
3056 |
|
|
|
3057 |
|
|
void
|
3058 |
|
|
ipa_prop_read_jump_functions (void)
|
3059 |
|
|
{
|
3060 |
|
|
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
|
3061 |
|
|
struct lto_file_decl_data *file_data;
|
3062 |
|
|
unsigned int j = 0;
|
3063 |
|
|
|
3064 |
|
|
ipa_check_create_node_params ();
|
3065 |
|
|
ipa_check_create_edge_args ();
|
3066 |
|
|
ipa_register_cgraph_hooks ();
|
3067 |
|
|
|
3068 |
|
|
while ((file_data = file_data_vec[j++]))
|
3069 |
|
|
{
|
3070 |
|
|
size_t len;
|
3071 |
|
|
const char *data = lto_get_section_data (file_data, LTO_section_jump_functions, NULL, &len);
|
3072 |
|
|
|
3073 |
|
|
if (data)
|
3074 |
|
|
ipa_prop_read_section (file_data, data, len);
|
3075 |
|
|
}
|
3076 |
|
|
}
|
3077 |
|
|
|
3078 |
|
|
/* After merging units, we can get mismatch in argument counts.
|
3079 |
|
|
Also decl merging might've rendered parameter lists obsolete.
|
3080 |
|
|
Also compute called_with_variable_arg info. */
|
3081 |
|
|
|
3082 |
|
|
void
|
3083 |
|
|
ipa_update_after_lto_read (void)
|
3084 |
|
|
{
|
3085 |
|
|
struct cgraph_node *node;
|
3086 |
|
|
|
3087 |
|
|
ipa_check_create_node_params ();
|
3088 |
|
|
ipa_check_create_edge_args ();
|
3089 |
|
|
|
3090 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
3091 |
|
|
if (node->analyzed)
|
3092 |
|
|
ipa_initialize_node_params (node);
|
3093 |
|
|
}
|