1 |
684 |
jeremybenn |
/* Building internal representation for IRA.
|
2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "rtl.h"
|
27 |
|
|
#include "tm_p.h"
|
28 |
|
|
#include "target.h"
|
29 |
|
|
#include "regs.h"
|
30 |
|
|
#include "flags.h"
|
31 |
|
|
#include "hard-reg-set.h"
|
32 |
|
|
#include "basic-block.h"
|
33 |
|
|
#include "insn-config.h"
|
34 |
|
|
#include "recog.h"
|
35 |
|
|
#include "diagnostic-core.h"
|
36 |
|
|
#include "params.h"
|
37 |
|
|
#include "df.h"
|
38 |
|
|
#include "output.h"
|
39 |
|
|
#include "reload.h"
|
40 |
|
|
#include "sparseset.h"
|
41 |
|
|
#include "ira-int.h"
|
42 |
|
|
#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
|
43 |
|
|
|
44 |
|
|
static ira_copy_t find_allocno_copy (ira_allocno_t, ira_allocno_t, rtx,
|
45 |
|
|
ira_loop_tree_node_t);
|
46 |
|
|
|
47 |
|
|
/* The root of the loop tree corresponding to the all function. */
|
48 |
|
|
ira_loop_tree_node_t ira_loop_tree_root;
|
49 |
|
|
|
50 |
|
|
/* Height of the loop tree. */
|
51 |
|
|
int ira_loop_tree_height;
|
52 |
|
|
|
53 |
|
|
/* All nodes representing basic blocks are referred through the
|
54 |
|
|
following array. We can not use basic block member `aux' for this
|
55 |
|
|
because it is used for insertion of insns on edges. */
|
56 |
|
|
ira_loop_tree_node_t ira_bb_nodes;
|
57 |
|
|
|
58 |
|
|
/* All nodes representing loops are referred through the following
|
59 |
|
|
array. */
|
60 |
|
|
ira_loop_tree_node_t ira_loop_nodes;
|
61 |
|
|
|
62 |
|
|
/* Map regno -> allocnos with given regno (see comments for
|
63 |
|
|
allocno member `next_regno_allocno'). */
|
64 |
|
|
ira_allocno_t *ira_regno_allocno_map;
|
65 |
|
|
|
66 |
|
|
/* Array of references to all allocnos. The order number of the
|
67 |
|
|
allocno corresponds to the index in the array. Removed allocnos
|
68 |
|
|
have NULL element value. */
|
69 |
|
|
ira_allocno_t *ira_allocnos;
|
70 |
|
|
|
71 |
|
|
/* Sizes of the previous array. */
|
72 |
|
|
int ira_allocnos_num;
|
73 |
|
|
|
74 |
|
|
/* Count of conflict record structures we've created, used when creating
|
75 |
|
|
a new conflict id. */
|
76 |
|
|
int ira_objects_num;
|
77 |
|
|
|
78 |
|
|
/* Map a conflict id to its conflict record. */
|
79 |
|
|
ira_object_t *ira_object_id_map;
|
80 |
|
|
|
81 |
|
|
/* Array of references to all copies. The order number of the copy
|
82 |
|
|
corresponds to the index in the array. Removed copies have NULL
|
83 |
|
|
element value. */
|
84 |
|
|
ira_copy_t *ira_copies;
|
85 |
|
|
|
86 |
|
|
/* Size of the previous array. */
|
87 |
|
|
int ira_copies_num;
|
88 |
|
|
|
89 |
|
|
|
90 |
|
|
|
91 |
|
|
/* LAST_BASIC_BLOCK before generating additional insns because of live
|
92 |
|
|
range splitting. Emitting insns on a critical edge creates a new
|
93 |
|
|
basic block. */
|
94 |
|
|
static int last_basic_block_before_change;
|
95 |
|
|
|
96 |
|
|
/* Initialize some members in loop tree node NODE. Use LOOP_NUM for
|
97 |
|
|
the member loop_num. */
|
98 |
|
|
static void
|
99 |
|
|
init_loop_tree_node (struct ira_loop_tree_node *node, int loop_num)
|
100 |
|
|
{
|
101 |
|
|
int max_regno = max_reg_num ();
|
102 |
|
|
|
103 |
|
|
node->regno_allocno_map
|
104 |
|
|
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) * max_regno);
|
105 |
|
|
memset (node->regno_allocno_map, 0, sizeof (ira_allocno_t) * max_regno);
|
106 |
|
|
memset (node->reg_pressure, 0, sizeof (node->reg_pressure));
|
107 |
|
|
node->all_allocnos = ira_allocate_bitmap ();
|
108 |
|
|
node->modified_regnos = ira_allocate_bitmap ();
|
109 |
|
|
node->border_allocnos = ira_allocate_bitmap ();
|
110 |
|
|
node->local_copies = ira_allocate_bitmap ();
|
111 |
|
|
node->loop_num = loop_num;
|
112 |
|
|
node->children = NULL;
|
113 |
|
|
node->subloops = NULL;
|
114 |
|
|
}
|
115 |
|
|
|
116 |
|
|
|
117 |
|
|
/* The following function allocates the loop tree nodes. If
|
118 |
|
|
CURRENT_LOOPS is NULL, the nodes corresponding to the loops (except
|
119 |
|
|
the root which corresponds the all function) will be not allocated
|
120 |
|
|
but nodes will still be allocated for basic blocks. */
|
121 |
|
|
static void
|
122 |
|
|
create_loop_tree_nodes (void)
|
123 |
|
|
{
|
124 |
|
|
unsigned int i, j;
|
125 |
|
|
bool skip_p;
|
126 |
|
|
edge_iterator ei;
|
127 |
|
|
edge e;
|
128 |
|
|
VEC (edge, heap) *edges;
|
129 |
|
|
loop_p loop;
|
130 |
|
|
|
131 |
|
|
ira_bb_nodes
|
132 |
|
|
= ((struct ira_loop_tree_node *)
|
133 |
|
|
ira_allocate (sizeof (struct ira_loop_tree_node) * last_basic_block));
|
134 |
|
|
last_basic_block_before_change = last_basic_block;
|
135 |
|
|
for (i = 0; i < (unsigned int) last_basic_block; i++)
|
136 |
|
|
{
|
137 |
|
|
ira_bb_nodes[i].regno_allocno_map = NULL;
|
138 |
|
|
memset (ira_bb_nodes[i].reg_pressure, 0,
|
139 |
|
|
sizeof (ira_bb_nodes[i].reg_pressure));
|
140 |
|
|
ira_bb_nodes[i].all_allocnos = NULL;
|
141 |
|
|
ira_bb_nodes[i].modified_regnos = NULL;
|
142 |
|
|
ira_bb_nodes[i].border_allocnos = NULL;
|
143 |
|
|
ira_bb_nodes[i].local_copies = NULL;
|
144 |
|
|
}
|
145 |
|
|
if (current_loops == NULL)
|
146 |
|
|
{
|
147 |
|
|
ira_loop_nodes = ((struct ira_loop_tree_node *)
|
148 |
|
|
ira_allocate (sizeof (struct ira_loop_tree_node)));
|
149 |
|
|
init_loop_tree_node (ira_loop_nodes, 0);
|
150 |
|
|
return;
|
151 |
|
|
}
|
152 |
|
|
ira_loop_nodes = ((struct ira_loop_tree_node *)
|
153 |
|
|
ira_allocate (sizeof (struct ira_loop_tree_node)
|
154 |
|
|
* VEC_length (loop_p, ira_loops.larray)));
|
155 |
|
|
FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop)
|
156 |
|
|
{
|
157 |
|
|
if (loop != ira_loops.tree_root)
|
158 |
|
|
{
|
159 |
|
|
ira_loop_nodes[i].regno_allocno_map = NULL;
|
160 |
|
|
skip_p = false;
|
161 |
|
|
FOR_EACH_EDGE (e, ei, loop->header->preds)
|
162 |
|
|
if (e->src != loop->latch
|
163 |
|
|
&& (e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
|
164 |
|
|
{
|
165 |
|
|
skip_p = true;
|
166 |
|
|
break;
|
167 |
|
|
}
|
168 |
|
|
if (skip_p)
|
169 |
|
|
continue;
|
170 |
|
|
edges = get_loop_exit_edges (loop);
|
171 |
|
|
FOR_EACH_VEC_ELT (edge, edges, j, e)
|
172 |
|
|
if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
|
173 |
|
|
{
|
174 |
|
|
skip_p = true;
|
175 |
|
|
break;
|
176 |
|
|
}
|
177 |
|
|
VEC_free (edge, heap, edges);
|
178 |
|
|
if (skip_p)
|
179 |
|
|
continue;
|
180 |
|
|
}
|
181 |
|
|
init_loop_tree_node (&ira_loop_nodes[i], loop->num);
|
182 |
|
|
}
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
/* The function returns TRUE if there are more one allocation
|
186 |
|
|
region. */
|
187 |
|
|
static bool
|
188 |
|
|
more_one_region_p (void)
|
189 |
|
|
{
|
190 |
|
|
unsigned int i;
|
191 |
|
|
loop_p loop;
|
192 |
|
|
|
193 |
|
|
if (current_loops != NULL)
|
194 |
|
|
FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop)
|
195 |
|
|
if (ira_loop_nodes[i].regno_allocno_map != NULL
|
196 |
|
|
&& ira_loop_tree_root != &ira_loop_nodes[i])
|
197 |
|
|
return true;
|
198 |
|
|
return false;
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
/* Free the loop tree node of a loop. */
|
202 |
|
|
static void
|
203 |
|
|
finish_loop_tree_node (ira_loop_tree_node_t loop)
|
204 |
|
|
{
|
205 |
|
|
if (loop->regno_allocno_map != NULL)
|
206 |
|
|
{
|
207 |
|
|
ira_assert (loop->bb == NULL);
|
208 |
|
|
ira_free_bitmap (loop->local_copies);
|
209 |
|
|
ira_free_bitmap (loop->border_allocnos);
|
210 |
|
|
ira_free_bitmap (loop->modified_regnos);
|
211 |
|
|
ira_free_bitmap (loop->all_allocnos);
|
212 |
|
|
ira_free (loop->regno_allocno_map);
|
213 |
|
|
loop->regno_allocno_map = NULL;
|
214 |
|
|
}
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
/* Free the loop tree nodes. */
|
218 |
|
|
static void
|
219 |
|
|
finish_loop_tree_nodes (void)
|
220 |
|
|
{
|
221 |
|
|
unsigned int i;
|
222 |
|
|
loop_p loop;
|
223 |
|
|
|
224 |
|
|
if (current_loops == NULL)
|
225 |
|
|
finish_loop_tree_node (&ira_loop_nodes[0]);
|
226 |
|
|
else
|
227 |
|
|
FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop)
|
228 |
|
|
finish_loop_tree_node (&ira_loop_nodes[i]);
|
229 |
|
|
ira_free (ira_loop_nodes);
|
230 |
|
|
for (i = 0; i < (unsigned int) last_basic_block_before_change; i++)
|
231 |
|
|
{
|
232 |
|
|
if (ira_bb_nodes[i].local_copies != NULL)
|
233 |
|
|
ira_free_bitmap (ira_bb_nodes[i].local_copies);
|
234 |
|
|
if (ira_bb_nodes[i].border_allocnos != NULL)
|
235 |
|
|
ira_free_bitmap (ira_bb_nodes[i].border_allocnos);
|
236 |
|
|
if (ira_bb_nodes[i].modified_regnos != NULL)
|
237 |
|
|
ira_free_bitmap (ira_bb_nodes[i].modified_regnos);
|
238 |
|
|
if (ira_bb_nodes[i].all_allocnos != NULL)
|
239 |
|
|
ira_free_bitmap (ira_bb_nodes[i].all_allocnos);
|
240 |
|
|
if (ira_bb_nodes[i].regno_allocno_map != NULL)
|
241 |
|
|
ira_free (ira_bb_nodes[i].regno_allocno_map);
|
242 |
|
|
}
|
243 |
|
|
ira_free (ira_bb_nodes);
|
244 |
|
|
}
|
245 |
|
|
|
246 |
|
|
|
247 |
|
|
|
248 |
|
|
/* The following recursive function adds LOOP to the loop tree
|
249 |
|
|
hierarchy. LOOP is added only once. If LOOP is NULL we adding
|
250 |
|
|
loop designating the whole function when CFG loops are not
|
251 |
|
|
built. */
|
252 |
|
|
static void
|
253 |
|
|
add_loop_to_tree (struct loop *loop)
|
254 |
|
|
{
|
255 |
|
|
int loop_num;
|
256 |
|
|
struct loop *parent;
|
257 |
|
|
ira_loop_tree_node_t loop_node, parent_node;
|
258 |
|
|
|
259 |
|
|
/* We can not use loop node access macros here because of potential
|
260 |
|
|
checking and because the nodes are not initialized enough
|
261 |
|
|
yet. */
|
262 |
|
|
if (loop != NULL && loop_outer (loop) != NULL)
|
263 |
|
|
add_loop_to_tree (loop_outer (loop));
|
264 |
|
|
loop_num = loop != NULL ? loop->num : 0;
|
265 |
|
|
if (ira_loop_nodes[loop_num].regno_allocno_map != NULL
|
266 |
|
|
&& ira_loop_nodes[loop_num].children == NULL)
|
267 |
|
|
{
|
268 |
|
|
/* We have not added loop node to the tree yet. */
|
269 |
|
|
loop_node = &ira_loop_nodes[loop_num];
|
270 |
|
|
loop_node->loop = loop;
|
271 |
|
|
loop_node->bb = NULL;
|
272 |
|
|
if (loop == NULL)
|
273 |
|
|
parent = NULL;
|
274 |
|
|
else
|
275 |
|
|
{
|
276 |
|
|
for (parent = loop_outer (loop);
|
277 |
|
|
parent != NULL;
|
278 |
|
|
parent = loop_outer (parent))
|
279 |
|
|
if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
|
280 |
|
|
break;
|
281 |
|
|
}
|
282 |
|
|
if (parent == NULL)
|
283 |
|
|
{
|
284 |
|
|
loop_node->next = NULL;
|
285 |
|
|
loop_node->subloop_next = NULL;
|
286 |
|
|
loop_node->parent = NULL;
|
287 |
|
|
}
|
288 |
|
|
else
|
289 |
|
|
{
|
290 |
|
|
parent_node = &ira_loop_nodes[parent->num];
|
291 |
|
|
loop_node->next = parent_node->children;
|
292 |
|
|
parent_node->children = loop_node;
|
293 |
|
|
loop_node->subloop_next = parent_node->subloops;
|
294 |
|
|
parent_node->subloops = loop_node;
|
295 |
|
|
loop_node->parent = parent_node;
|
296 |
|
|
}
|
297 |
|
|
}
|
298 |
|
|
}
|
299 |
|
|
|
300 |
|
|
/* The following recursive function sets up levels of nodes of the
|
301 |
|
|
tree given its root LOOP_NODE. The enumeration starts with LEVEL.
|
302 |
|
|
The function returns maximal value of level in the tree + 1. */
|
303 |
|
|
static int
|
304 |
|
|
setup_loop_tree_level (ira_loop_tree_node_t loop_node, int level)
|
305 |
|
|
{
|
306 |
|
|
int height, max_height;
|
307 |
|
|
ira_loop_tree_node_t subloop_node;
|
308 |
|
|
|
309 |
|
|
ira_assert (loop_node->bb == NULL);
|
310 |
|
|
loop_node->level = level;
|
311 |
|
|
max_height = level + 1;
|
312 |
|
|
for (subloop_node = loop_node->subloops;
|
313 |
|
|
subloop_node != NULL;
|
314 |
|
|
subloop_node = subloop_node->subloop_next)
|
315 |
|
|
{
|
316 |
|
|
ira_assert (subloop_node->bb == NULL);
|
317 |
|
|
height = setup_loop_tree_level (subloop_node, level + 1);
|
318 |
|
|
if (height > max_height)
|
319 |
|
|
max_height = height;
|
320 |
|
|
}
|
321 |
|
|
return max_height;
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
/* Create the loop tree. The algorithm is designed to provide correct
|
325 |
|
|
order of loops (they are ordered by their last loop BB) and basic
|
326 |
|
|
blocks in the chain formed by member next. */
|
327 |
|
|
static void
|
328 |
|
|
form_loop_tree (void)
|
329 |
|
|
{
|
330 |
|
|
basic_block bb;
|
331 |
|
|
struct loop *parent;
|
332 |
|
|
ira_loop_tree_node_t bb_node, loop_node;
|
333 |
|
|
|
334 |
|
|
/* We can not use loop/bb node access macros because of potential
|
335 |
|
|
checking and because the nodes are not initialized enough
|
336 |
|
|
yet. */
|
337 |
|
|
FOR_EACH_BB (bb)
|
338 |
|
|
{
|
339 |
|
|
bb_node = &ira_bb_nodes[bb->index];
|
340 |
|
|
bb_node->bb = bb;
|
341 |
|
|
bb_node->loop = NULL;
|
342 |
|
|
bb_node->subloops = NULL;
|
343 |
|
|
bb_node->children = NULL;
|
344 |
|
|
bb_node->subloop_next = NULL;
|
345 |
|
|
bb_node->next = NULL;
|
346 |
|
|
if (current_loops == NULL)
|
347 |
|
|
parent = NULL;
|
348 |
|
|
else
|
349 |
|
|
{
|
350 |
|
|
for (parent = bb->loop_father;
|
351 |
|
|
parent != NULL;
|
352 |
|
|
parent = loop_outer (parent))
|
353 |
|
|
if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
|
354 |
|
|
break;
|
355 |
|
|
}
|
356 |
|
|
add_loop_to_tree (parent);
|
357 |
|
|
loop_node = &ira_loop_nodes[parent == NULL ? 0 : parent->num];
|
358 |
|
|
bb_node->next = loop_node->children;
|
359 |
|
|
bb_node->parent = loop_node;
|
360 |
|
|
loop_node->children = bb_node;
|
361 |
|
|
}
|
362 |
|
|
ira_loop_tree_root = IRA_LOOP_NODE_BY_INDEX (0);
|
363 |
|
|
ira_loop_tree_height = setup_loop_tree_level (ira_loop_tree_root, 0);
|
364 |
|
|
ira_assert (ira_loop_tree_root->regno_allocno_map != NULL);
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
|
368 |
|
|
|
369 |
|
|
/* Rebuild IRA_REGNO_ALLOCNO_MAP and REGNO_ALLOCNO_MAPs of the loop
|
370 |
|
|
tree nodes. */
|
371 |
|
|
static void
|
372 |
|
|
rebuild_regno_allocno_maps (void)
|
373 |
|
|
{
|
374 |
|
|
unsigned int l;
|
375 |
|
|
int max_regno, regno;
|
376 |
|
|
ira_allocno_t a;
|
377 |
|
|
ira_loop_tree_node_t loop_tree_node;
|
378 |
|
|
loop_p loop;
|
379 |
|
|
ira_allocno_iterator ai;
|
380 |
|
|
|
381 |
|
|
ira_assert (current_loops != NULL);
|
382 |
|
|
max_regno = max_reg_num ();
|
383 |
|
|
FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, l, loop)
|
384 |
|
|
if (ira_loop_nodes[l].regno_allocno_map != NULL)
|
385 |
|
|
{
|
386 |
|
|
ira_free (ira_loop_nodes[l].regno_allocno_map);
|
387 |
|
|
ira_loop_nodes[l].regno_allocno_map
|
388 |
|
|
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
|
389 |
|
|
* max_regno);
|
390 |
|
|
memset (ira_loop_nodes[l].regno_allocno_map, 0,
|
391 |
|
|
sizeof (ira_allocno_t) * max_regno);
|
392 |
|
|
}
|
393 |
|
|
ira_free (ira_regno_allocno_map);
|
394 |
|
|
ira_regno_allocno_map
|
395 |
|
|
= (ira_allocno_t *) ira_allocate (max_regno * sizeof (ira_allocno_t));
|
396 |
|
|
memset (ira_regno_allocno_map, 0, max_regno * sizeof (ira_allocno_t));
|
397 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
398 |
|
|
{
|
399 |
|
|
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
400 |
|
|
/* Caps are not in the regno allocno maps. */
|
401 |
|
|
continue;
|
402 |
|
|
regno = ALLOCNO_REGNO (a);
|
403 |
|
|
loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
|
404 |
|
|
ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
|
405 |
|
|
ira_regno_allocno_map[regno] = a;
|
406 |
|
|
if (loop_tree_node->regno_allocno_map[regno] == NULL)
|
407 |
|
|
/* Remember that we can create temporary allocnos to break
|
408 |
|
|
cycles in register shuffle. */
|
409 |
|
|
loop_tree_node->regno_allocno_map[regno] = a;
|
410 |
|
|
}
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
|
414 |
|
|
/* Pools for allocnos, allocno live ranges and objects. */
|
415 |
|
|
static alloc_pool allocno_pool, live_range_pool, object_pool;
|
416 |
|
|
|
417 |
|
|
/* Vec containing references to all created allocnos. It is a
|
418 |
|
|
container of array allocnos. */
|
419 |
|
|
static VEC(ira_allocno_t,heap) *allocno_vec;
|
420 |
|
|
|
421 |
|
|
/* Vec containing references to all created ira_objects. It is a
|
422 |
|
|
container of ira_object_id_map. */
|
423 |
|
|
static VEC(ira_object_t,heap) *ira_object_id_map_vec;
|
424 |
|
|
|
425 |
|
|
/* Initialize data concerning allocnos. */
|
426 |
|
|
static void
|
427 |
|
|
initiate_allocnos (void)
|
428 |
|
|
{
|
429 |
|
|
live_range_pool
|
430 |
|
|
= create_alloc_pool ("live ranges",
|
431 |
|
|
sizeof (struct live_range), 100);
|
432 |
|
|
allocno_pool
|
433 |
|
|
= create_alloc_pool ("allocnos", sizeof (struct ira_allocno), 100);
|
434 |
|
|
object_pool
|
435 |
|
|
= create_alloc_pool ("objects", sizeof (struct ira_object), 100);
|
436 |
|
|
allocno_vec = VEC_alloc (ira_allocno_t, heap, max_reg_num () * 2);
|
437 |
|
|
ira_allocnos = NULL;
|
438 |
|
|
ira_allocnos_num = 0;
|
439 |
|
|
ira_objects_num = 0;
|
440 |
|
|
ira_object_id_map_vec
|
441 |
|
|
= VEC_alloc (ira_object_t, heap, max_reg_num () * 2);
|
442 |
|
|
ira_object_id_map = NULL;
|
443 |
|
|
ira_regno_allocno_map
|
444 |
|
|
= (ira_allocno_t *) ira_allocate (max_reg_num ()
|
445 |
|
|
* sizeof (ira_allocno_t));
|
446 |
|
|
memset (ira_regno_allocno_map, 0, max_reg_num () * sizeof (ira_allocno_t));
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
/* Create and return an object corresponding to a new allocno A. */
|
450 |
|
|
static ira_object_t
|
451 |
|
|
ira_create_object (ira_allocno_t a, int subword)
|
452 |
|
|
{
|
453 |
|
|
enum reg_class aclass = ALLOCNO_CLASS (a);
|
454 |
|
|
ira_object_t obj = (ira_object_t) pool_alloc (object_pool);
|
455 |
|
|
|
456 |
|
|
OBJECT_ALLOCNO (obj) = a;
|
457 |
|
|
OBJECT_SUBWORD (obj) = subword;
|
458 |
|
|
OBJECT_CONFLICT_ID (obj) = ira_objects_num;
|
459 |
|
|
OBJECT_CONFLICT_VEC_P (obj) = false;
|
460 |
|
|
OBJECT_CONFLICT_ARRAY (obj) = NULL;
|
461 |
|
|
OBJECT_NUM_CONFLICTS (obj) = 0;
|
462 |
|
|
COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
|
463 |
|
|
COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
|
464 |
|
|
IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
|
465 |
|
|
reg_class_contents[aclass]);
|
466 |
|
|
IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
|
467 |
|
|
reg_class_contents[aclass]);
|
468 |
|
|
OBJECT_MIN (obj) = INT_MAX;
|
469 |
|
|
OBJECT_MAX (obj) = -1;
|
470 |
|
|
OBJECT_LIVE_RANGES (obj) = NULL;
|
471 |
|
|
|
472 |
|
|
VEC_safe_push (ira_object_t, heap, ira_object_id_map_vec, obj);
|
473 |
|
|
ira_object_id_map
|
474 |
|
|
= VEC_address (ira_object_t, ira_object_id_map_vec);
|
475 |
|
|
ira_objects_num = VEC_length (ira_object_t, ira_object_id_map_vec);
|
476 |
|
|
|
477 |
|
|
return obj;
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
/* Create and return the allocno corresponding to REGNO in
|
481 |
|
|
LOOP_TREE_NODE. Add the allocno to the list of allocnos with the
|
482 |
|
|
same regno if CAP_P is FALSE. */
|
483 |
|
|
ira_allocno_t
|
484 |
|
|
ira_create_allocno (int regno, bool cap_p,
|
485 |
|
|
ira_loop_tree_node_t loop_tree_node)
|
486 |
|
|
{
|
487 |
|
|
ira_allocno_t a;
|
488 |
|
|
|
489 |
|
|
a = (ira_allocno_t) pool_alloc (allocno_pool);
|
490 |
|
|
ALLOCNO_REGNO (a) = regno;
|
491 |
|
|
ALLOCNO_LOOP_TREE_NODE (a) = loop_tree_node;
|
492 |
|
|
if (! cap_p)
|
493 |
|
|
{
|
494 |
|
|
ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
|
495 |
|
|
ira_regno_allocno_map[regno] = a;
|
496 |
|
|
if (loop_tree_node->regno_allocno_map[regno] == NULL)
|
497 |
|
|
/* Remember that we can create temporary allocnos to break
|
498 |
|
|
cycles in register shuffle on region borders (see
|
499 |
|
|
ira-emit.c). */
|
500 |
|
|
loop_tree_node->regno_allocno_map[regno] = a;
|
501 |
|
|
}
|
502 |
|
|
ALLOCNO_CAP (a) = NULL;
|
503 |
|
|
ALLOCNO_CAP_MEMBER (a) = NULL;
|
504 |
|
|
ALLOCNO_NUM (a) = ira_allocnos_num;
|
505 |
|
|
bitmap_set_bit (loop_tree_node->all_allocnos, ALLOCNO_NUM (a));
|
506 |
|
|
ALLOCNO_NREFS (a) = 0;
|
507 |
|
|
ALLOCNO_FREQ (a) = 0;
|
508 |
|
|
ALLOCNO_HARD_REGNO (a) = -1;
|
509 |
|
|
ALLOCNO_CALL_FREQ (a) = 0;
|
510 |
|
|
ALLOCNO_CALLS_CROSSED_NUM (a) = 0;
|
511 |
|
|
#ifdef STACK_REGS
|
512 |
|
|
ALLOCNO_NO_STACK_REG_P (a) = false;
|
513 |
|
|
ALLOCNO_TOTAL_NO_STACK_REG_P (a) = false;
|
514 |
|
|
#endif
|
515 |
|
|
ALLOCNO_DONT_REASSIGN_P (a) = false;
|
516 |
|
|
ALLOCNO_BAD_SPILL_P (a) = false;
|
517 |
|
|
ALLOCNO_ASSIGNED_P (a) = false;
|
518 |
|
|
ALLOCNO_MODE (a) = (regno < 0 ? VOIDmode : PSEUDO_REGNO_MODE (regno));
|
519 |
|
|
ALLOCNO_COPIES (a) = NULL;
|
520 |
|
|
ALLOCNO_HARD_REG_COSTS (a) = NULL;
|
521 |
|
|
ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
|
522 |
|
|
ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
|
523 |
|
|
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
|
524 |
|
|
ALLOCNO_CLASS (a) = NO_REGS;
|
525 |
|
|
ALLOCNO_UPDATED_CLASS_COST (a) = 0;
|
526 |
|
|
ALLOCNO_CLASS_COST (a) = 0;
|
527 |
|
|
ALLOCNO_MEMORY_COST (a) = 0;
|
528 |
|
|
ALLOCNO_UPDATED_MEMORY_COST (a) = 0;
|
529 |
|
|
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) = 0;
|
530 |
|
|
ALLOCNO_NUM_OBJECTS (a) = 0;
|
531 |
|
|
|
532 |
|
|
ALLOCNO_ADD_DATA (a) = NULL;
|
533 |
|
|
VEC_safe_push (ira_allocno_t, heap, allocno_vec, a);
|
534 |
|
|
ira_allocnos = VEC_address (ira_allocno_t, allocno_vec);
|
535 |
|
|
ira_allocnos_num = VEC_length (ira_allocno_t, allocno_vec);
|
536 |
|
|
|
537 |
|
|
return a;
|
538 |
|
|
}
|
539 |
|
|
|
540 |
|
|
/* Set up register class for A and update its conflict hard
|
541 |
|
|
registers. */
|
542 |
|
|
void
|
543 |
|
|
ira_set_allocno_class (ira_allocno_t a, enum reg_class aclass)
|
544 |
|
|
{
|
545 |
|
|
ira_allocno_object_iterator oi;
|
546 |
|
|
ira_object_t obj;
|
547 |
|
|
|
548 |
|
|
ALLOCNO_CLASS (a) = aclass;
|
549 |
|
|
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
550 |
|
|
{
|
551 |
|
|
IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
|
552 |
|
|
reg_class_contents[aclass]);
|
553 |
|
|
IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
|
554 |
|
|
reg_class_contents[aclass]);
|
555 |
|
|
}
|
556 |
|
|
}
|
557 |
|
|
|
558 |
|
|
/* Determine the number of objects we should associate with allocno A
|
559 |
|
|
and allocate them. */
|
560 |
|
|
void
|
561 |
|
|
ira_create_allocno_objects (ira_allocno_t a)
|
562 |
|
|
{
|
563 |
|
|
enum machine_mode mode = ALLOCNO_MODE (a);
|
564 |
|
|
enum reg_class aclass = ALLOCNO_CLASS (a);
|
565 |
|
|
int n = ira_reg_class_max_nregs[aclass][mode];
|
566 |
|
|
int i;
|
567 |
|
|
|
568 |
|
|
if (GET_MODE_SIZE (mode) != 2 * UNITS_PER_WORD || n != 2)
|
569 |
|
|
n = 1;
|
570 |
|
|
|
571 |
|
|
ALLOCNO_NUM_OBJECTS (a) = n;
|
572 |
|
|
for (i = 0; i < n; i++)
|
573 |
|
|
ALLOCNO_OBJECT (a, i) = ira_create_object (a, i);
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
/* For each allocno, set ALLOCNO_NUM_OBJECTS and create the
|
577 |
|
|
ALLOCNO_OBJECT structures. This must be called after the allocno
|
578 |
|
|
classes are known. */
|
579 |
|
|
static void
|
580 |
|
|
create_allocno_objects (void)
|
581 |
|
|
{
|
582 |
|
|
ira_allocno_t a;
|
583 |
|
|
ira_allocno_iterator ai;
|
584 |
|
|
|
585 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
586 |
|
|
ira_create_allocno_objects (a);
|
587 |
|
|
}
|
588 |
|
|
|
589 |
|
|
/* Merge hard register conflict information for all objects associated with
|
590 |
|
|
allocno TO into the corresponding objects associated with FROM.
|
591 |
|
|
If TOTAL_ONLY is true, we only merge OBJECT_TOTAL_CONFLICT_HARD_REGS. */
|
592 |
|
|
static void
|
593 |
|
|
merge_hard_reg_conflicts (ira_allocno_t from, ira_allocno_t to,
|
594 |
|
|
bool total_only)
|
595 |
|
|
{
|
596 |
|
|
int i;
|
597 |
|
|
gcc_assert (ALLOCNO_NUM_OBJECTS (to) == ALLOCNO_NUM_OBJECTS (from));
|
598 |
|
|
for (i = 0; i < ALLOCNO_NUM_OBJECTS (to); i++)
|
599 |
|
|
{
|
600 |
|
|
ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
|
601 |
|
|
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
|
602 |
|
|
|
603 |
|
|
if (!total_only)
|
604 |
|
|
IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (to_obj),
|
605 |
|
|
OBJECT_CONFLICT_HARD_REGS (from_obj));
|
606 |
|
|
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (to_obj),
|
607 |
|
|
OBJECT_TOTAL_CONFLICT_HARD_REGS (from_obj));
|
608 |
|
|
}
|
609 |
|
|
#ifdef STACK_REGS
|
610 |
|
|
if (!total_only && ALLOCNO_NO_STACK_REG_P (from))
|
611 |
|
|
ALLOCNO_NO_STACK_REG_P (to) = true;
|
612 |
|
|
if (ALLOCNO_TOTAL_NO_STACK_REG_P (from))
|
613 |
|
|
ALLOCNO_TOTAL_NO_STACK_REG_P (to) = true;
|
614 |
|
|
#endif
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
/* Update hard register conflict information for all objects associated with
|
618 |
|
|
A to include the regs in SET. */
|
619 |
|
|
void
|
620 |
|
|
ior_hard_reg_conflicts (ira_allocno_t a, HARD_REG_SET *set)
|
621 |
|
|
{
|
622 |
|
|
ira_allocno_object_iterator i;
|
623 |
|
|
ira_object_t obj;
|
624 |
|
|
|
625 |
|
|
FOR_EACH_ALLOCNO_OBJECT (a, obj, i)
|
626 |
|
|
{
|
627 |
|
|
IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), *set);
|
628 |
|
|
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), *set);
|
629 |
|
|
}
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
/* Return TRUE if a conflict vector with NUM elements is more
|
633 |
|
|
profitable than a conflict bit vector for OBJ. */
|
634 |
|
|
bool
|
635 |
|
|
ira_conflict_vector_profitable_p (ira_object_t obj, int num)
|
636 |
|
|
{
|
637 |
|
|
int nw;
|
638 |
|
|
int max = OBJECT_MAX (obj);
|
639 |
|
|
int min = OBJECT_MIN (obj);
|
640 |
|
|
|
641 |
|
|
if (max < min)
|
642 |
|
|
/* We prefer a bit vector in such case because it does not result
|
643 |
|
|
in allocation. */
|
644 |
|
|
return false;
|
645 |
|
|
|
646 |
|
|
nw = (max - min + IRA_INT_BITS) / IRA_INT_BITS;
|
647 |
|
|
return (2 * sizeof (ira_object_t) * (num + 1)
|
648 |
|
|
< 3 * nw * sizeof (IRA_INT_TYPE));
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
/* Allocates and initialize the conflict vector of OBJ for NUM
|
652 |
|
|
conflicting objects. */
|
653 |
|
|
void
|
654 |
|
|
ira_allocate_conflict_vec (ira_object_t obj, int num)
|
655 |
|
|
{
|
656 |
|
|
int size;
|
657 |
|
|
ira_object_t *vec;
|
658 |
|
|
|
659 |
|
|
ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
|
660 |
|
|
num++; /* for NULL end marker */
|
661 |
|
|
size = sizeof (ira_object_t) * num;
|
662 |
|
|
OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
|
663 |
|
|
vec = (ira_object_t *) OBJECT_CONFLICT_ARRAY (obj);
|
664 |
|
|
vec[0] = NULL;
|
665 |
|
|
OBJECT_NUM_CONFLICTS (obj) = 0;
|
666 |
|
|
OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
|
667 |
|
|
OBJECT_CONFLICT_VEC_P (obj) = true;
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
/* Allocate and initialize the conflict bit vector of OBJ. */
|
671 |
|
|
static void
|
672 |
|
|
allocate_conflict_bit_vec (ira_object_t obj)
|
673 |
|
|
{
|
674 |
|
|
unsigned int size;
|
675 |
|
|
|
676 |
|
|
ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
|
677 |
|
|
size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) + IRA_INT_BITS)
|
678 |
|
|
/ IRA_INT_BITS * sizeof (IRA_INT_TYPE));
|
679 |
|
|
OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
|
680 |
|
|
memset (OBJECT_CONFLICT_ARRAY (obj), 0, size);
|
681 |
|
|
OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
|
682 |
|
|
OBJECT_CONFLICT_VEC_P (obj) = false;
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
/* Allocate and initialize the conflict vector or conflict bit vector
|
686 |
|
|
of OBJ for NUM conflicting allocnos whatever is more profitable. */
|
687 |
|
|
void
|
688 |
|
|
ira_allocate_object_conflicts (ira_object_t obj, int num)
|
689 |
|
|
{
|
690 |
|
|
if (ira_conflict_vector_profitable_p (obj, num))
|
691 |
|
|
ira_allocate_conflict_vec (obj, num);
|
692 |
|
|
else
|
693 |
|
|
allocate_conflict_bit_vec (obj);
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
/* Add OBJ2 to the conflicts of OBJ1. */
|
697 |
|
|
static void
|
698 |
|
|
add_to_conflicts (ira_object_t obj1, ira_object_t obj2)
|
699 |
|
|
{
|
700 |
|
|
int num;
|
701 |
|
|
unsigned int size;
|
702 |
|
|
|
703 |
|
|
if (OBJECT_CONFLICT_VEC_P (obj1))
|
704 |
|
|
{
|
705 |
|
|
ira_object_t *vec = OBJECT_CONFLICT_VEC (obj1);
|
706 |
|
|
int curr_num = OBJECT_NUM_CONFLICTS (obj1);
|
707 |
|
|
num = curr_num + 2;
|
708 |
|
|
if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < num * sizeof (ira_object_t))
|
709 |
|
|
{
|
710 |
|
|
ira_object_t *newvec;
|
711 |
|
|
size = (3 * num / 2 + 1) * sizeof (ira_allocno_t);
|
712 |
|
|
newvec = (ira_object_t *) ira_allocate (size);
|
713 |
|
|
memcpy (newvec, vec, curr_num * sizeof (ira_object_t));
|
714 |
|
|
ira_free (vec);
|
715 |
|
|
vec = newvec;
|
716 |
|
|
OBJECT_CONFLICT_ARRAY (obj1) = vec;
|
717 |
|
|
OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
|
718 |
|
|
}
|
719 |
|
|
vec[num - 2] = obj2;
|
720 |
|
|
vec[num - 1] = NULL;
|
721 |
|
|
OBJECT_NUM_CONFLICTS (obj1)++;
|
722 |
|
|
}
|
723 |
|
|
else
|
724 |
|
|
{
|
725 |
|
|
int nw, added_head_nw, id;
|
726 |
|
|
IRA_INT_TYPE *vec = OBJECT_CONFLICT_BITVEC (obj1);
|
727 |
|
|
|
728 |
|
|
id = OBJECT_CONFLICT_ID (obj2);
|
729 |
|
|
if (OBJECT_MIN (obj1) > id)
|
730 |
|
|
{
|
731 |
|
|
/* Expand head of the bit vector. */
|
732 |
|
|
added_head_nw = (OBJECT_MIN (obj1) - id - 1) / IRA_INT_BITS + 1;
|
733 |
|
|
nw = (OBJECT_MAX (obj1) - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
|
734 |
|
|
size = (nw + added_head_nw) * sizeof (IRA_INT_TYPE);
|
735 |
|
|
if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) >= size)
|
736 |
|
|
{
|
737 |
|
|
memmove ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
|
738 |
|
|
vec, nw * sizeof (IRA_INT_TYPE));
|
739 |
|
|
memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
|
740 |
|
|
}
|
741 |
|
|
else
|
742 |
|
|
{
|
743 |
|
|
size
|
744 |
|
|
= (3 * (nw + added_head_nw) / 2 + 1) * sizeof (IRA_INT_TYPE);
|
745 |
|
|
vec = (IRA_INT_TYPE *) ira_allocate (size);
|
746 |
|
|
memcpy ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
|
747 |
|
|
OBJECT_CONFLICT_ARRAY (obj1), nw * sizeof (IRA_INT_TYPE));
|
748 |
|
|
memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
|
749 |
|
|
memset ((char *) vec
|
750 |
|
|
+ (nw + added_head_nw) * sizeof (IRA_INT_TYPE),
|
751 |
|
|
0, size - (nw + added_head_nw) * sizeof (IRA_INT_TYPE));
|
752 |
|
|
ira_free (OBJECT_CONFLICT_ARRAY (obj1));
|
753 |
|
|
OBJECT_CONFLICT_ARRAY (obj1) = vec;
|
754 |
|
|
OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
|
755 |
|
|
}
|
756 |
|
|
OBJECT_MIN (obj1) -= added_head_nw * IRA_INT_BITS;
|
757 |
|
|
}
|
758 |
|
|
else if (OBJECT_MAX (obj1) < id)
|
759 |
|
|
{
|
760 |
|
|
nw = (id - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
|
761 |
|
|
size = nw * sizeof (IRA_INT_TYPE);
|
762 |
|
|
if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < size)
|
763 |
|
|
{
|
764 |
|
|
/* Expand tail of the bit vector. */
|
765 |
|
|
size = (3 * nw / 2 + 1) * sizeof (IRA_INT_TYPE);
|
766 |
|
|
vec = (IRA_INT_TYPE *) ira_allocate (size);
|
767 |
|
|
memcpy (vec, OBJECT_CONFLICT_ARRAY (obj1), OBJECT_CONFLICT_ARRAY_SIZE (obj1));
|
768 |
|
|
memset ((char *) vec + OBJECT_CONFLICT_ARRAY_SIZE (obj1),
|
769 |
|
|
0, size - OBJECT_CONFLICT_ARRAY_SIZE (obj1));
|
770 |
|
|
ira_free (OBJECT_CONFLICT_ARRAY (obj1));
|
771 |
|
|
OBJECT_CONFLICT_ARRAY (obj1) = vec;
|
772 |
|
|
OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
|
773 |
|
|
}
|
774 |
|
|
OBJECT_MAX (obj1) = id;
|
775 |
|
|
}
|
776 |
|
|
SET_MINMAX_SET_BIT (vec, id, OBJECT_MIN (obj1), OBJECT_MAX (obj1));
|
777 |
|
|
}
|
778 |
|
|
}
|
779 |
|
|
|
780 |
|
|
/* Add OBJ1 to the conflicts of OBJ2 and vice versa. */
|
781 |
|
|
static void
|
782 |
|
|
ira_add_conflict (ira_object_t obj1, ira_object_t obj2)
|
783 |
|
|
{
|
784 |
|
|
add_to_conflicts (obj1, obj2);
|
785 |
|
|
add_to_conflicts (obj2, obj1);
|
786 |
|
|
}
|
787 |
|
|
|
788 |
|
|
/* Clear all conflicts of OBJ. */
|
789 |
|
|
static void
|
790 |
|
|
clear_conflicts (ira_object_t obj)
|
791 |
|
|
{
|
792 |
|
|
if (OBJECT_CONFLICT_VEC_P (obj))
|
793 |
|
|
{
|
794 |
|
|
OBJECT_NUM_CONFLICTS (obj) = 0;
|
795 |
|
|
OBJECT_CONFLICT_VEC (obj)[0] = NULL;
|
796 |
|
|
}
|
797 |
|
|
else if (OBJECT_CONFLICT_ARRAY_SIZE (obj) != 0)
|
798 |
|
|
{
|
799 |
|
|
int nw;
|
800 |
|
|
|
801 |
|
|
nw = (OBJECT_MAX (obj) - OBJECT_MIN (obj)) / IRA_INT_BITS + 1;
|
802 |
|
|
memset (OBJECT_CONFLICT_BITVEC (obj), 0, nw * sizeof (IRA_INT_TYPE));
|
803 |
|
|
}
|
804 |
|
|
}
|
805 |
|
|
|
806 |
|
|
/* The array used to find duplications in conflict vectors of
|
807 |
|
|
allocnos. */
|
808 |
|
|
static int *conflict_check;
|
809 |
|
|
|
810 |
|
|
/* The value used to mark allocation presence in conflict vector of
|
811 |
|
|
the current allocno. */
|
812 |
|
|
static int curr_conflict_check_tick;
|
813 |
|
|
|
814 |
|
|
/* Remove duplications in conflict vector of OBJ. */
|
815 |
|
|
static void
|
816 |
|
|
compress_conflict_vec (ira_object_t obj)
|
817 |
|
|
{
|
818 |
|
|
ira_object_t *vec, conflict_obj;
|
819 |
|
|
int i, j;
|
820 |
|
|
|
821 |
|
|
ira_assert (OBJECT_CONFLICT_VEC_P (obj));
|
822 |
|
|
vec = OBJECT_CONFLICT_VEC (obj);
|
823 |
|
|
curr_conflict_check_tick++;
|
824 |
|
|
for (i = j = 0; (conflict_obj = vec[i]) != NULL; i++)
|
825 |
|
|
{
|
826 |
|
|
int id = OBJECT_CONFLICT_ID (conflict_obj);
|
827 |
|
|
if (conflict_check[id] != curr_conflict_check_tick)
|
828 |
|
|
{
|
829 |
|
|
conflict_check[id] = curr_conflict_check_tick;
|
830 |
|
|
vec[j++] = conflict_obj;
|
831 |
|
|
}
|
832 |
|
|
}
|
833 |
|
|
OBJECT_NUM_CONFLICTS (obj) = j;
|
834 |
|
|
vec[j] = NULL;
|
835 |
|
|
}
|
836 |
|
|
|
837 |
|
|
/* Remove duplications in conflict vectors of all allocnos. */
|
838 |
|
|
static void
|
839 |
|
|
compress_conflict_vecs (void)
|
840 |
|
|
{
|
841 |
|
|
ira_object_t obj;
|
842 |
|
|
ira_object_iterator oi;
|
843 |
|
|
|
844 |
|
|
conflict_check = (int *) ira_allocate (sizeof (int) * ira_objects_num);
|
845 |
|
|
memset (conflict_check, 0, sizeof (int) * ira_objects_num);
|
846 |
|
|
curr_conflict_check_tick = 0;
|
847 |
|
|
FOR_EACH_OBJECT (obj, oi)
|
848 |
|
|
{
|
849 |
|
|
if (OBJECT_CONFLICT_VEC_P (obj))
|
850 |
|
|
compress_conflict_vec (obj);
|
851 |
|
|
}
|
852 |
|
|
ira_free (conflict_check);
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
/* This recursive function outputs allocno A and if it is a cap the
|
856 |
|
|
function outputs its members. */
|
857 |
|
|
void
|
858 |
|
|
ira_print_expanded_allocno (ira_allocno_t a)
|
859 |
|
|
{
|
860 |
|
|
basic_block bb;
|
861 |
|
|
|
862 |
|
|
fprintf (ira_dump_file, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
|
863 |
|
|
if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
|
864 |
|
|
fprintf (ira_dump_file, ",b%d", bb->index);
|
865 |
|
|
else
|
866 |
|
|
fprintf (ira_dump_file, ",l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
|
867 |
|
|
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
868 |
|
|
{
|
869 |
|
|
fprintf (ira_dump_file, ":");
|
870 |
|
|
ira_print_expanded_allocno (ALLOCNO_CAP_MEMBER (a));
|
871 |
|
|
}
|
872 |
|
|
fprintf (ira_dump_file, ")");
|
873 |
|
|
}
|
874 |
|
|
|
875 |
|
|
/* Create and return the cap representing allocno A in the
|
876 |
|
|
parent loop. */
|
877 |
|
|
static ira_allocno_t
|
878 |
|
|
create_cap_allocno (ira_allocno_t a)
|
879 |
|
|
{
|
880 |
|
|
ira_allocno_t cap;
|
881 |
|
|
ira_loop_tree_node_t parent;
|
882 |
|
|
enum reg_class aclass;
|
883 |
|
|
|
884 |
|
|
parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
|
885 |
|
|
cap = ira_create_allocno (ALLOCNO_REGNO (a), true, parent);
|
886 |
|
|
ALLOCNO_MODE (cap) = ALLOCNO_MODE (a);
|
887 |
|
|
aclass = ALLOCNO_CLASS (a);
|
888 |
|
|
ira_set_allocno_class (cap, aclass);
|
889 |
|
|
ira_create_allocno_objects (cap);
|
890 |
|
|
ALLOCNO_CAP_MEMBER (cap) = a;
|
891 |
|
|
ALLOCNO_CAP (a) = cap;
|
892 |
|
|
ALLOCNO_CLASS_COST (cap) = ALLOCNO_CLASS_COST (a);
|
893 |
|
|
ALLOCNO_MEMORY_COST (cap) = ALLOCNO_MEMORY_COST (a);
|
894 |
|
|
ira_allocate_and_copy_costs
|
895 |
|
|
(&ALLOCNO_HARD_REG_COSTS (cap), aclass, ALLOCNO_HARD_REG_COSTS (a));
|
896 |
|
|
ira_allocate_and_copy_costs
|
897 |
|
|
(&ALLOCNO_CONFLICT_HARD_REG_COSTS (cap), aclass,
|
898 |
|
|
ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
|
899 |
|
|
ALLOCNO_BAD_SPILL_P (cap) = ALLOCNO_BAD_SPILL_P (a);
|
900 |
|
|
ALLOCNO_NREFS (cap) = ALLOCNO_NREFS (a);
|
901 |
|
|
ALLOCNO_FREQ (cap) = ALLOCNO_FREQ (a);
|
902 |
|
|
ALLOCNO_CALL_FREQ (cap) = ALLOCNO_CALL_FREQ (a);
|
903 |
|
|
|
904 |
|
|
merge_hard_reg_conflicts (a, cap, false);
|
905 |
|
|
|
906 |
|
|
ALLOCNO_CALLS_CROSSED_NUM (cap) = ALLOCNO_CALLS_CROSSED_NUM (a);
|
907 |
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
908 |
|
|
{
|
909 |
|
|
fprintf (ira_dump_file, " Creating cap ");
|
910 |
|
|
ira_print_expanded_allocno (cap);
|
911 |
|
|
fprintf (ira_dump_file, "\n");
|
912 |
|
|
}
|
913 |
|
|
return cap;
|
914 |
|
|
}
|
915 |
|
|
|
916 |
|
|
/* Create and return a live range for OBJECT with given attributes. */
|
917 |
|
|
live_range_t
|
918 |
|
|
ira_create_live_range (ira_object_t obj, int start, int finish,
|
919 |
|
|
live_range_t next)
|
920 |
|
|
{
|
921 |
|
|
live_range_t p;
|
922 |
|
|
|
923 |
|
|
p = (live_range_t) pool_alloc (live_range_pool);
|
924 |
|
|
p->object = obj;
|
925 |
|
|
p->start = start;
|
926 |
|
|
p->finish = finish;
|
927 |
|
|
p->next = next;
|
928 |
|
|
return p;
|
929 |
|
|
}
|
930 |
|
|
|
931 |
|
|
/* Create a new live range for OBJECT and queue it at the head of its
|
932 |
|
|
live range list. */
|
933 |
|
|
void
|
934 |
|
|
ira_add_live_range_to_object (ira_object_t object, int start, int finish)
|
935 |
|
|
{
|
936 |
|
|
live_range_t p;
|
937 |
|
|
p = ira_create_live_range (object, start, finish,
|
938 |
|
|
OBJECT_LIVE_RANGES (object));
|
939 |
|
|
OBJECT_LIVE_RANGES (object) = p;
|
940 |
|
|
}
|
941 |
|
|
|
942 |
|
|
/* Copy allocno live range R and return the result. */
|
943 |
|
|
static live_range_t
|
944 |
|
|
copy_live_range (live_range_t r)
|
945 |
|
|
{
|
946 |
|
|
live_range_t p;
|
947 |
|
|
|
948 |
|
|
p = (live_range_t) pool_alloc (live_range_pool);
|
949 |
|
|
*p = *r;
|
950 |
|
|
return p;
|
951 |
|
|
}
|
952 |
|
|
|
953 |
|
|
/* Copy allocno live range list given by its head R and return the
|
954 |
|
|
result. */
|
955 |
|
|
live_range_t
|
956 |
|
|
ira_copy_live_range_list (live_range_t r)
|
957 |
|
|
{
|
958 |
|
|
live_range_t p, first, last;
|
959 |
|
|
|
960 |
|
|
if (r == NULL)
|
961 |
|
|
return NULL;
|
962 |
|
|
for (first = last = NULL; r != NULL; r = r->next)
|
963 |
|
|
{
|
964 |
|
|
p = copy_live_range (r);
|
965 |
|
|
if (first == NULL)
|
966 |
|
|
first = p;
|
967 |
|
|
else
|
968 |
|
|
last->next = p;
|
969 |
|
|
last = p;
|
970 |
|
|
}
|
971 |
|
|
return first;
|
972 |
|
|
}
|
973 |
|
|
|
974 |
|
|
/* Merge ranges R1 and R2 and returns the result. The function
|
975 |
|
|
maintains the order of ranges and tries to minimize number of the
|
976 |
|
|
result ranges. */
|
977 |
|
|
live_range_t
|
978 |
|
|
ira_merge_live_ranges (live_range_t r1, live_range_t r2)
|
979 |
|
|
{
|
980 |
|
|
live_range_t first, last, temp;
|
981 |
|
|
|
982 |
|
|
if (r1 == NULL)
|
983 |
|
|
return r2;
|
984 |
|
|
if (r2 == NULL)
|
985 |
|
|
return r1;
|
986 |
|
|
for (first = last = NULL; r1 != NULL && r2 != NULL;)
|
987 |
|
|
{
|
988 |
|
|
if (r1->start < r2->start)
|
989 |
|
|
{
|
990 |
|
|
temp = r1;
|
991 |
|
|
r1 = r2;
|
992 |
|
|
r2 = temp;
|
993 |
|
|
}
|
994 |
|
|
if (r1->start <= r2->finish + 1)
|
995 |
|
|
{
|
996 |
|
|
/* Intersected ranges: merge r1 and r2 into r1. */
|
997 |
|
|
r1->start = r2->start;
|
998 |
|
|
if (r1->finish < r2->finish)
|
999 |
|
|
r1->finish = r2->finish;
|
1000 |
|
|
temp = r2;
|
1001 |
|
|
r2 = r2->next;
|
1002 |
|
|
ira_finish_live_range (temp);
|
1003 |
|
|
if (r2 == NULL)
|
1004 |
|
|
{
|
1005 |
|
|
/* To try to merge with subsequent ranges in r1. */
|
1006 |
|
|
r2 = r1->next;
|
1007 |
|
|
r1->next = NULL;
|
1008 |
|
|
}
|
1009 |
|
|
}
|
1010 |
|
|
else
|
1011 |
|
|
{
|
1012 |
|
|
/* Add r1 to the result. */
|
1013 |
|
|
if (first == NULL)
|
1014 |
|
|
first = last = r1;
|
1015 |
|
|
else
|
1016 |
|
|
{
|
1017 |
|
|
last->next = r1;
|
1018 |
|
|
last = r1;
|
1019 |
|
|
}
|
1020 |
|
|
r1 = r1->next;
|
1021 |
|
|
if (r1 == NULL)
|
1022 |
|
|
{
|
1023 |
|
|
/* To try to merge with subsequent ranges in r2. */
|
1024 |
|
|
r1 = r2->next;
|
1025 |
|
|
r2->next = NULL;
|
1026 |
|
|
}
|
1027 |
|
|
}
|
1028 |
|
|
}
|
1029 |
|
|
if (r1 != NULL)
|
1030 |
|
|
{
|
1031 |
|
|
if (first == NULL)
|
1032 |
|
|
first = r1;
|
1033 |
|
|
else
|
1034 |
|
|
last->next = r1;
|
1035 |
|
|
ira_assert (r1->next == NULL);
|
1036 |
|
|
}
|
1037 |
|
|
else if (r2 != NULL)
|
1038 |
|
|
{
|
1039 |
|
|
if (first == NULL)
|
1040 |
|
|
first = r2;
|
1041 |
|
|
else
|
1042 |
|
|
last->next = r2;
|
1043 |
|
|
ira_assert (r2->next == NULL);
|
1044 |
|
|
}
|
1045 |
|
|
else
|
1046 |
|
|
{
|
1047 |
|
|
ira_assert (last->next == NULL);
|
1048 |
|
|
}
|
1049 |
|
|
return first;
|
1050 |
|
|
}
|
1051 |
|
|
|
1052 |
|
|
/* Return TRUE if live ranges R1 and R2 intersect. */
|
1053 |
|
|
bool
|
1054 |
|
|
ira_live_ranges_intersect_p (live_range_t r1, live_range_t r2)
|
1055 |
|
|
{
|
1056 |
|
|
/* Remember the live ranges are always kept ordered. */
|
1057 |
|
|
while (r1 != NULL && r2 != NULL)
|
1058 |
|
|
{
|
1059 |
|
|
if (r1->start > r2->finish)
|
1060 |
|
|
r1 = r1->next;
|
1061 |
|
|
else if (r2->start > r1->finish)
|
1062 |
|
|
r2 = r2->next;
|
1063 |
|
|
else
|
1064 |
|
|
return true;
|
1065 |
|
|
}
|
1066 |
|
|
return false;
|
1067 |
|
|
}
|
1068 |
|
|
|
1069 |
|
|
/* Free allocno live range R. */
|
1070 |
|
|
void
|
1071 |
|
|
ira_finish_live_range (live_range_t r)
|
1072 |
|
|
{
|
1073 |
|
|
pool_free (live_range_pool, r);
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
/* Free list of allocno live ranges starting with R. */
|
1077 |
|
|
void
|
1078 |
|
|
ira_finish_live_range_list (live_range_t r)
|
1079 |
|
|
{
|
1080 |
|
|
live_range_t next_r;
|
1081 |
|
|
|
1082 |
|
|
for (; r != NULL; r = next_r)
|
1083 |
|
|
{
|
1084 |
|
|
next_r = r->next;
|
1085 |
|
|
ira_finish_live_range (r);
|
1086 |
|
|
}
|
1087 |
|
|
}
|
1088 |
|
|
|
1089 |
|
|
/* Free updated register costs of allocno A. */
|
1090 |
|
|
void
|
1091 |
|
|
ira_free_allocno_updated_costs (ira_allocno_t a)
|
1092 |
|
|
{
|
1093 |
|
|
enum reg_class aclass;
|
1094 |
|
|
|
1095 |
|
|
aclass = ALLOCNO_CLASS (a);
|
1096 |
|
|
if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
|
1097 |
|
|
ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass);
|
1098 |
|
|
ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
|
1099 |
|
|
if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
|
1100 |
|
|
ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
|
1101 |
|
|
aclass);
|
1102 |
|
|
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
|
1103 |
|
|
}
|
1104 |
|
|
|
1105 |
|
|
/* Free and nullify all cost vectors allocated earlier for allocno
|
1106 |
|
|
A. */
|
1107 |
|
|
static void
|
1108 |
|
|
ira_free_allocno_costs (ira_allocno_t a)
|
1109 |
|
|
{
|
1110 |
|
|
enum reg_class aclass = ALLOCNO_CLASS (a);
|
1111 |
|
|
ira_object_t obj;
|
1112 |
|
|
ira_allocno_object_iterator oi;
|
1113 |
|
|
|
1114 |
|
|
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
1115 |
|
|
{
|
1116 |
|
|
ira_finish_live_range_list (OBJECT_LIVE_RANGES (obj));
|
1117 |
|
|
ira_object_id_map[OBJECT_CONFLICT_ID (obj)] = NULL;
|
1118 |
|
|
if (OBJECT_CONFLICT_ARRAY (obj) != NULL)
|
1119 |
|
|
ira_free (OBJECT_CONFLICT_ARRAY (obj));
|
1120 |
|
|
pool_free (object_pool, obj);
|
1121 |
|
|
}
|
1122 |
|
|
|
1123 |
|
|
ira_allocnos[ALLOCNO_NUM (a)] = NULL;
|
1124 |
|
|
if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
|
1125 |
|
|
ira_free_cost_vector (ALLOCNO_HARD_REG_COSTS (a), aclass);
|
1126 |
|
|
if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL)
|
1127 |
|
|
ira_free_cost_vector (ALLOCNO_CONFLICT_HARD_REG_COSTS (a), aclass);
|
1128 |
|
|
if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
|
1129 |
|
|
ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass);
|
1130 |
|
|
if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
|
1131 |
|
|
ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
|
1132 |
|
|
aclass);
|
1133 |
|
|
ALLOCNO_HARD_REG_COSTS (a) = NULL;
|
1134 |
|
|
ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
|
1135 |
|
|
ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
|
1136 |
|
|
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
|
1137 |
|
|
}
|
1138 |
|
|
|
1139 |
|
|
/* Free the memory allocated for allocno A. */
|
1140 |
|
|
static void
|
1141 |
|
|
finish_allocno (ira_allocno_t a)
|
1142 |
|
|
{
|
1143 |
|
|
ira_free_allocno_costs (a);
|
1144 |
|
|
pool_free (allocno_pool, a);
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
/* Free the memory allocated for all allocnos. */
|
1148 |
|
|
static void
|
1149 |
|
|
finish_allocnos (void)
|
1150 |
|
|
{
|
1151 |
|
|
ira_allocno_t a;
|
1152 |
|
|
ira_allocno_iterator ai;
|
1153 |
|
|
|
1154 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
1155 |
|
|
finish_allocno (a);
|
1156 |
|
|
ira_free (ira_regno_allocno_map);
|
1157 |
|
|
VEC_free (ira_object_t, heap, ira_object_id_map_vec);
|
1158 |
|
|
VEC_free (ira_allocno_t, heap, allocno_vec);
|
1159 |
|
|
free_alloc_pool (allocno_pool);
|
1160 |
|
|
free_alloc_pool (object_pool);
|
1161 |
|
|
free_alloc_pool (live_range_pool);
|
1162 |
|
|
}
|
1163 |
|
|
|
1164 |
|
|
|
1165 |
|
|
|
1166 |
|
|
/* Pools for copies. */
|
1167 |
|
|
static alloc_pool copy_pool;
|
1168 |
|
|
|
1169 |
|
|
/* Vec containing references to all created copies. It is a
|
1170 |
|
|
container of array ira_copies. */
|
1171 |
|
|
static VEC(ira_copy_t,heap) *copy_vec;
|
1172 |
|
|
|
1173 |
|
|
/* The function initializes data concerning allocno copies. */
|
1174 |
|
|
static void
|
1175 |
|
|
initiate_copies (void)
|
1176 |
|
|
{
|
1177 |
|
|
copy_pool
|
1178 |
|
|
= create_alloc_pool ("copies", sizeof (struct ira_allocno_copy), 100);
|
1179 |
|
|
copy_vec = VEC_alloc (ira_copy_t, heap, get_max_uid ());
|
1180 |
|
|
ira_copies = NULL;
|
1181 |
|
|
ira_copies_num = 0;
|
1182 |
|
|
}
|
1183 |
|
|
|
1184 |
|
|
/* Return copy connecting A1 and A2 and originated from INSN of
|
1185 |
|
|
LOOP_TREE_NODE if any. */
|
1186 |
|
|
static ira_copy_t
|
1187 |
|
|
find_allocno_copy (ira_allocno_t a1, ira_allocno_t a2, rtx insn,
|
1188 |
|
|
ira_loop_tree_node_t loop_tree_node)
|
1189 |
|
|
{
|
1190 |
|
|
ira_copy_t cp, next_cp;
|
1191 |
|
|
ira_allocno_t another_a;
|
1192 |
|
|
|
1193 |
|
|
for (cp = ALLOCNO_COPIES (a1); cp != NULL; cp = next_cp)
|
1194 |
|
|
{
|
1195 |
|
|
if (cp->first == a1)
|
1196 |
|
|
{
|
1197 |
|
|
next_cp = cp->next_first_allocno_copy;
|
1198 |
|
|
another_a = cp->second;
|
1199 |
|
|
}
|
1200 |
|
|
else if (cp->second == a1)
|
1201 |
|
|
{
|
1202 |
|
|
next_cp = cp->next_second_allocno_copy;
|
1203 |
|
|
another_a = cp->first;
|
1204 |
|
|
}
|
1205 |
|
|
else
|
1206 |
|
|
gcc_unreachable ();
|
1207 |
|
|
if (another_a == a2 && cp->insn == insn
|
1208 |
|
|
&& cp->loop_tree_node == loop_tree_node)
|
1209 |
|
|
return cp;
|
1210 |
|
|
}
|
1211 |
|
|
return NULL;
|
1212 |
|
|
}
|
1213 |
|
|
|
1214 |
|
|
/* Create and return copy with given attributes LOOP_TREE_NODE, FIRST,
|
1215 |
|
|
SECOND, FREQ, CONSTRAINT_P, and INSN. */
|
1216 |
|
|
ira_copy_t
|
1217 |
|
|
ira_create_copy (ira_allocno_t first, ira_allocno_t second, int freq,
|
1218 |
|
|
bool constraint_p, rtx insn,
|
1219 |
|
|
ira_loop_tree_node_t loop_tree_node)
|
1220 |
|
|
{
|
1221 |
|
|
ira_copy_t cp;
|
1222 |
|
|
|
1223 |
|
|
cp = (ira_copy_t) pool_alloc (copy_pool);
|
1224 |
|
|
cp->num = ira_copies_num;
|
1225 |
|
|
cp->first = first;
|
1226 |
|
|
cp->second = second;
|
1227 |
|
|
cp->freq = freq;
|
1228 |
|
|
cp->constraint_p = constraint_p;
|
1229 |
|
|
cp->insn = insn;
|
1230 |
|
|
cp->loop_tree_node = loop_tree_node;
|
1231 |
|
|
VEC_safe_push (ira_copy_t, heap, copy_vec, cp);
|
1232 |
|
|
ira_copies = VEC_address (ira_copy_t, copy_vec);
|
1233 |
|
|
ira_copies_num = VEC_length (ira_copy_t, copy_vec);
|
1234 |
|
|
return cp;
|
1235 |
|
|
}
|
1236 |
|
|
|
1237 |
|
|
/* Attach a copy CP to allocnos involved into the copy. */
|
1238 |
|
|
void
|
1239 |
|
|
ira_add_allocno_copy_to_list (ira_copy_t cp)
|
1240 |
|
|
{
|
1241 |
|
|
ira_allocno_t first = cp->first, second = cp->second;
|
1242 |
|
|
|
1243 |
|
|
cp->prev_first_allocno_copy = NULL;
|
1244 |
|
|
cp->prev_second_allocno_copy = NULL;
|
1245 |
|
|
cp->next_first_allocno_copy = ALLOCNO_COPIES (first);
|
1246 |
|
|
if (cp->next_first_allocno_copy != NULL)
|
1247 |
|
|
{
|
1248 |
|
|
if (cp->next_first_allocno_copy->first == first)
|
1249 |
|
|
cp->next_first_allocno_copy->prev_first_allocno_copy = cp;
|
1250 |
|
|
else
|
1251 |
|
|
cp->next_first_allocno_copy->prev_second_allocno_copy = cp;
|
1252 |
|
|
}
|
1253 |
|
|
cp->next_second_allocno_copy = ALLOCNO_COPIES (second);
|
1254 |
|
|
if (cp->next_second_allocno_copy != NULL)
|
1255 |
|
|
{
|
1256 |
|
|
if (cp->next_second_allocno_copy->second == second)
|
1257 |
|
|
cp->next_second_allocno_copy->prev_second_allocno_copy = cp;
|
1258 |
|
|
else
|
1259 |
|
|
cp->next_second_allocno_copy->prev_first_allocno_copy = cp;
|
1260 |
|
|
}
|
1261 |
|
|
ALLOCNO_COPIES (first) = cp;
|
1262 |
|
|
ALLOCNO_COPIES (second) = cp;
|
1263 |
|
|
}
|
1264 |
|
|
|
1265 |
|
|
/* Make a copy CP a canonical copy where number of the
|
1266 |
|
|
first allocno is less than the second one. */
|
1267 |
|
|
void
|
1268 |
|
|
ira_swap_allocno_copy_ends_if_necessary (ira_copy_t cp)
|
1269 |
|
|
{
|
1270 |
|
|
ira_allocno_t temp;
|
1271 |
|
|
ira_copy_t temp_cp;
|
1272 |
|
|
|
1273 |
|
|
if (ALLOCNO_NUM (cp->first) <= ALLOCNO_NUM (cp->second))
|
1274 |
|
|
return;
|
1275 |
|
|
|
1276 |
|
|
temp = cp->first;
|
1277 |
|
|
cp->first = cp->second;
|
1278 |
|
|
cp->second = temp;
|
1279 |
|
|
|
1280 |
|
|
temp_cp = cp->prev_first_allocno_copy;
|
1281 |
|
|
cp->prev_first_allocno_copy = cp->prev_second_allocno_copy;
|
1282 |
|
|
cp->prev_second_allocno_copy = temp_cp;
|
1283 |
|
|
|
1284 |
|
|
temp_cp = cp->next_first_allocno_copy;
|
1285 |
|
|
cp->next_first_allocno_copy = cp->next_second_allocno_copy;
|
1286 |
|
|
cp->next_second_allocno_copy = temp_cp;
|
1287 |
|
|
}
|
1288 |
|
|
|
1289 |
|
|
/* Create (or update frequency if the copy already exists) and return
|
1290 |
|
|
the copy of allocnos FIRST and SECOND with frequency FREQ
|
1291 |
|
|
corresponding to move insn INSN (if any) and originated from
|
1292 |
|
|
LOOP_TREE_NODE. */
|
1293 |
|
|
ira_copy_t
|
1294 |
|
|
ira_add_allocno_copy (ira_allocno_t first, ira_allocno_t second, int freq,
|
1295 |
|
|
bool constraint_p, rtx insn,
|
1296 |
|
|
ira_loop_tree_node_t loop_tree_node)
|
1297 |
|
|
{
|
1298 |
|
|
ira_copy_t cp;
|
1299 |
|
|
|
1300 |
|
|
if ((cp = find_allocno_copy (first, second, insn, loop_tree_node)) != NULL)
|
1301 |
|
|
{
|
1302 |
|
|
cp->freq += freq;
|
1303 |
|
|
return cp;
|
1304 |
|
|
}
|
1305 |
|
|
cp = ira_create_copy (first, second, freq, constraint_p, insn,
|
1306 |
|
|
loop_tree_node);
|
1307 |
|
|
ira_assert (first != NULL && second != NULL);
|
1308 |
|
|
ira_add_allocno_copy_to_list (cp);
|
1309 |
|
|
ira_swap_allocno_copy_ends_if_necessary (cp);
|
1310 |
|
|
return cp;
|
1311 |
|
|
}
|
1312 |
|
|
|
1313 |
|
|
/* Print info about copy CP into file F. */
|
1314 |
|
|
static void
|
1315 |
|
|
print_copy (FILE *f, ira_copy_t cp)
|
1316 |
|
|
{
|
1317 |
|
|
fprintf (f, " cp%d:a%d(r%d)<->a%d(r%d)@%d:%s\n", cp->num,
|
1318 |
|
|
ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
|
1319 |
|
|
ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second), cp->freq,
|
1320 |
|
|
cp->insn != NULL
|
1321 |
|
|
? "move" : cp->constraint_p ? "constraint" : "shuffle");
|
1322 |
|
|
}
|
1323 |
|
|
|
1324 |
|
|
/* Print info about copy CP into stderr. */
|
1325 |
|
|
void
|
1326 |
|
|
ira_debug_copy (ira_copy_t cp)
|
1327 |
|
|
{
|
1328 |
|
|
print_copy (stderr, cp);
|
1329 |
|
|
}
|
1330 |
|
|
|
1331 |
|
|
/* Print info about all copies into file F. */
|
1332 |
|
|
static void
|
1333 |
|
|
print_copies (FILE *f)
|
1334 |
|
|
{
|
1335 |
|
|
ira_copy_t cp;
|
1336 |
|
|
ira_copy_iterator ci;
|
1337 |
|
|
|
1338 |
|
|
FOR_EACH_COPY (cp, ci)
|
1339 |
|
|
print_copy (f, cp);
|
1340 |
|
|
}
|
1341 |
|
|
|
1342 |
|
|
/* Print info about all copies into stderr. */
|
1343 |
|
|
void
|
1344 |
|
|
ira_debug_copies (void)
|
1345 |
|
|
{
|
1346 |
|
|
print_copies (stderr);
|
1347 |
|
|
}
|
1348 |
|
|
|
1349 |
|
|
/* Print info about copies involving allocno A into file F. */
|
1350 |
|
|
static void
|
1351 |
|
|
print_allocno_copies (FILE *f, ira_allocno_t a)
|
1352 |
|
|
{
|
1353 |
|
|
ira_allocno_t another_a;
|
1354 |
|
|
ira_copy_t cp, next_cp;
|
1355 |
|
|
|
1356 |
|
|
fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
|
1357 |
|
|
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
|
1358 |
|
|
{
|
1359 |
|
|
if (cp->first == a)
|
1360 |
|
|
{
|
1361 |
|
|
next_cp = cp->next_first_allocno_copy;
|
1362 |
|
|
another_a = cp->second;
|
1363 |
|
|
}
|
1364 |
|
|
else if (cp->second == a)
|
1365 |
|
|
{
|
1366 |
|
|
next_cp = cp->next_second_allocno_copy;
|
1367 |
|
|
another_a = cp->first;
|
1368 |
|
|
}
|
1369 |
|
|
else
|
1370 |
|
|
gcc_unreachable ();
|
1371 |
|
|
fprintf (f, " cp%d:a%d(r%d)@%d", cp->num,
|
1372 |
|
|
ALLOCNO_NUM (another_a), ALLOCNO_REGNO (another_a), cp->freq);
|
1373 |
|
|
}
|
1374 |
|
|
fprintf (f, "\n");
|
1375 |
|
|
}
|
1376 |
|
|
|
1377 |
|
|
/* Print info about copies involving allocno A into stderr. */
|
1378 |
|
|
void
|
1379 |
|
|
ira_debug_allocno_copies (ira_allocno_t a)
|
1380 |
|
|
{
|
1381 |
|
|
print_allocno_copies (stderr, a);
|
1382 |
|
|
}
|
1383 |
|
|
|
1384 |
|
|
/* The function frees memory allocated for copy CP. */
|
1385 |
|
|
static void
|
1386 |
|
|
finish_copy (ira_copy_t cp)
|
1387 |
|
|
{
|
1388 |
|
|
pool_free (copy_pool, cp);
|
1389 |
|
|
}
|
1390 |
|
|
|
1391 |
|
|
|
1392 |
|
|
/* Free memory allocated for all copies. */
|
1393 |
|
|
static void
|
1394 |
|
|
finish_copies (void)
|
1395 |
|
|
{
|
1396 |
|
|
ira_copy_t cp;
|
1397 |
|
|
ira_copy_iterator ci;
|
1398 |
|
|
|
1399 |
|
|
FOR_EACH_COPY (cp, ci)
|
1400 |
|
|
finish_copy (cp);
|
1401 |
|
|
VEC_free (ira_copy_t, heap, copy_vec);
|
1402 |
|
|
free_alloc_pool (copy_pool);
|
1403 |
|
|
}
|
1404 |
|
|
|
1405 |
|
|
|
1406 |
|
|
|
1407 |
|
|
/* Pools for cost vectors. It is defined only for allocno classes. */
|
1408 |
|
|
static alloc_pool cost_vector_pool[N_REG_CLASSES];
|
1409 |
|
|
|
1410 |
|
|
/* The function initiates work with hard register cost vectors. It
|
1411 |
|
|
creates allocation pool for each allocno class. */
|
1412 |
|
|
static void
|
1413 |
|
|
initiate_cost_vectors (void)
|
1414 |
|
|
{
|
1415 |
|
|
int i;
|
1416 |
|
|
enum reg_class aclass;
|
1417 |
|
|
|
1418 |
|
|
for (i = 0; i < ira_allocno_classes_num; i++)
|
1419 |
|
|
{
|
1420 |
|
|
aclass = ira_allocno_classes[i];
|
1421 |
|
|
cost_vector_pool[aclass]
|
1422 |
|
|
= create_alloc_pool ("cost vectors",
|
1423 |
|
|
sizeof (int) * ira_class_hard_regs_num[aclass],
|
1424 |
|
|
100);
|
1425 |
|
|
}
|
1426 |
|
|
}
|
1427 |
|
|
|
1428 |
|
|
/* Allocate and return a cost vector VEC for ACLASS. */
|
1429 |
|
|
int *
|
1430 |
|
|
ira_allocate_cost_vector (reg_class_t aclass)
|
1431 |
|
|
{
|
1432 |
|
|
return (int *) pool_alloc (cost_vector_pool[(int) aclass]);
|
1433 |
|
|
}
|
1434 |
|
|
|
1435 |
|
|
/* Free a cost vector VEC for ACLASS. */
|
1436 |
|
|
void
|
1437 |
|
|
ira_free_cost_vector (int *vec, reg_class_t aclass)
|
1438 |
|
|
{
|
1439 |
|
|
ira_assert (vec != NULL);
|
1440 |
|
|
pool_free (cost_vector_pool[(int) aclass], vec);
|
1441 |
|
|
}
|
1442 |
|
|
|
1443 |
|
|
/* Finish work with hard register cost vectors. Release allocation
|
1444 |
|
|
pool for each allocno class. */
|
1445 |
|
|
static void
|
1446 |
|
|
finish_cost_vectors (void)
|
1447 |
|
|
{
|
1448 |
|
|
int i;
|
1449 |
|
|
enum reg_class aclass;
|
1450 |
|
|
|
1451 |
|
|
for (i = 0; i < ira_allocno_classes_num; i++)
|
1452 |
|
|
{
|
1453 |
|
|
aclass = ira_allocno_classes[i];
|
1454 |
|
|
free_alloc_pool (cost_vector_pool[aclass]);
|
1455 |
|
|
}
|
1456 |
|
|
}
|
1457 |
|
|
|
1458 |
|
|
|
1459 |
|
|
|
1460 |
|
|
/* The current loop tree node and its regno allocno map. */
|
1461 |
|
|
ira_loop_tree_node_t ira_curr_loop_tree_node;
|
1462 |
|
|
ira_allocno_t *ira_curr_regno_allocno_map;
|
1463 |
|
|
|
1464 |
|
|
/* This recursive function traverses loop tree with root LOOP_NODE
|
1465 |
|
|
calling non-null functions PREORDER_FUNC and POSTORDER_FUNC
|
1466 |
|
|
correspondingly in preorder and postorder. The function sets up
|
1467 |
|
|
IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P,
|
1468 |
|
|
basic block nodes of LOOP_NODE is also processed (before its
|
1469 |
|
|
subloop nodes). */
|
1470 |
|
|
void
|
1471 |
|
|
ira_traverse_loop_tree (bool bb_p, ira_loop_tree_node_t loop_node,
|
1472 |
|
|
void (*preorder_func) (ira_loop_tree_node_t),
|
1473 |
|
|
void (*postorder_func) (ira_loop_tree_node_t))
|
1474 |
|
|
{
|
1475 |
|
|
ira_loop_tree_node_t subloop_node;
|
1476 |
|
|
|
1477 |
|
|
ira_assert (loop_node->bb == NULL);
|
1478 |
|
|
ira_curr_loop_tree_node = loop_node;
|
1479 |
|
|
ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
|
1480 |
|
|
|
1481 |
|
|
if (preorder_func != NULL)
|
1482 |
|
|
(*preorder_func) (loop_node);
|
1483 |
|
|
|
1484 |
|
|
if (bb_p)
|
1485 |
|
|
for (subloop_node = loop_node->children;
|
1486 |
|
|
subloop_node != NULL;
|
1487 |
|
|
subloop_node = subloop_node->next)
|
1488 |
|
|
if (subloop_node->bb != NULL)
|
1489 |
|
|
{
|
1490 |
|
|
if (preorder_func != NULL)
|
1491 |
|
|
(*preorder_func) (subloop_node);
|
1492 |
|
|
|
1493 |
|
|
if (postorder_func != NULL)
|
1494 |
|
|
(*postorder_func) (subloop_node);
|
1495 |
|
|
}
|
1496 |
|
|
|
1497 |
|
|
for (subloop_node = loop_node->subloops;
|
1498 |
|
|
subloop_node != NULL;
|
1499 |
|
|
subloop_node = subloop_node->subloop_next)
|
1500 |
|
|
{
|
1501 |
|
|
ira_assert (subloop_node->bb == NULL);
|
1502 |
|
|
ira_traverse_loop_tree (bb_p, subloop_node,
|
1503 |
|
|
preorder_func, postorder_func);
|
1504 |
|
|
}
|
1505 |
|
|
|
1506 |
|
|
ira_curr_loop_tree_node = loop_node;
|
1507 |
|
|
ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
|
1508 |
|
|
|
1509 |
|
|
if (postorder_func != NULL)
|
1510 |
|
|
(*postorder_func) (loop_node);
|
1511 |
|
|
}
|
1512 |
|
|
|
1513 |
|
|
|
1514 |
|
|
|
1515 |
|
|
/* The basic block currently being processed. */
|
1516 |
|
|
static basic_block curr_bb;
|
1517 |
|
|
|
1518 |
|
|
/* This recursive function creates allocnos corresponding to
|
1519 |
|
|
pseudo-registers containing in X. True OUTPUT_P means that X is
|
1520 |
|
|
a lvalue. */
|
1521 |
|
|
static void
|
1522 |
|
|
create_insn_allocnos (rtx x, bool output_p)
|
1523 |
|
|
{
|
1524 |
|
|
int i, j;
|
1525 |
|
|
const char *fmt;
|
1526 |
|
|
enum rtx_code code = GET_CODE (x);
|
1527 |
|
|
|
1528 |
|
|
if (code == REG)
|
1529 |
|
|
{
|
1530 |
|
|
int regno;
|
1531 |
|
|
|
1532 |
|
|
if ((regno = REGNO (x)) >= FIRST_PSEUDO_REGISTER)
|
1533 |
|
|
{
|
1534 |
|
|
ira_allocno_t a;
|
1535 |
|
|
|
1536 |
|
|
if ((a = ira_curr_regno_allocno_map[regno]) == NULL)
|
1537 |
|
|
a = ira_create_allocno (regno, false, ira_curr_loop_tree_node);
|
1538 |
|
|
|
1539 |
|
|
ALLOCNO_NREFS (a)++;
|
1540 |
|
|
ALLOCNO_FREQ (a) += REG_FREQ_FROM_BB (curr_bb);
|
1541 |
|
|
if (output_p)
|
1542 |
|
|
bitmap_set_bit (ira_curr_loop_tree_node->modified_regnos, regno);
|
1543 |
|
|
}
|
1544 |
|
|
return;
|
1545 |
|
|
}
|
1546 |
|
|
else if (code == SET)
|
1547 |
|
|
{
|
1548 |
|
|
create_insn_allocnos (SET_DEST (x), true);
|
1549 |
|
|
create_insn_allocnos (SET_SRC (x), false);
|
1550 |
|
|
return;
|
1551 |
|
|
}
|
1552 |
|
|
else if (code == CLOBBER)
|
1553 |
|
|
{
|
1554 |
|
|
create_insn_allocnos (XEXP (x, 0), true);
|
1555 |
|
|
return;
|
1556 |
|
|
}
|
1557 |
|
|
else if (code == MEM)
|
1558 |
|
|
{
|
1559 |
|
|
create_insn_allocnos (XEXP (x, 0), false);
|
1560 |
|
|
return;
|
1561 |
|
|
}
|
1562 |
|
|
else if (code == PRE_DEC || code == POST_DEC || code == PRE_INC ||
|
1563 |
|
|
code == POST_INC || code == POST_MODIFY || code == PRE_MODIFY)
|
1564 |
|
|
{
|
1565 |
|
|
create_insn_allocnos (XEXP (x, 0), true);
|
1566 |
|
|
create_insn_allocnos (XEXP (x, 0), false);
|
1567 |
|
|
return;
|
1568 |
|
|
}
|
1569 |
|
|
|
1570 |
|
|
fmt = GET_RTX_FORMAT (code);
|
1571 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
1572 |
|
|
{
|
1573 |
|
|
if (fmt[i] == 'e')
|
1574 |
|
|
create_insn_allocnos (XEXP (x, i), output_p);
|
1575 |
|
|
else if (fmt[i] == 'E')
|
1576 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
1577 |
|
|
create_insn_allocnos (XVECEXP (x, i, j), output_p);
|
1578 |
|
|
}
|
1579 |
|
|
}
|
1580 |
|
|
|
1581 |
|
|
/* Create allocnos corresponding to pseudo-registers living in the
|
1582 |
|
|
basic block represented by the corresponding loop tree node
|
1583 |
|
|
BB_NODE. */
|
1584 |
|
|
static void
|
1585 |
|
|
create_bb_allocnos (ira_loop_tree_node_t bb_node)
|
1586 |
|
|
{
|
1587 |
|
|
basic_block bb;
|
1588 |
|
|
rtx insn;
|
1589 |
|
|
unsigned int i;
|
1590 |
|
|
bitmap_iterator bi;
|
1591 |
|
|
|
1592 |
|
|
curr_bb = bb = bb_node->bb;
|
1593 |
|
|
ira_assert (bb != NULL);
|
1594 |
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
1595 |
|
|
if (NONDEBUG_INSN_P (insn))
|
1596 |
|
|
create_insn_allocnos (PATTERN (insn), false);
|
1597 |
|
|
/* It might be a allocno living through from one subloop to
|
1598 |
|
|
another. */
|
1599 |
|
|
EXECUTE_IF_SET_IN_REG_SET (DF_LR_IN (bb), FIRST_PSEUDO_REGISTER, i, bi)
|
1600 |
|
|
if (ira_curr_regno_allocno_map[i] == NULL)
|
1601 |
|
|
ira_create_allocno (i, false, ira_curr_loop_tree_node);
|
1602 |
|
|
}
|
1603 |
|
|
|
1604 |
|
|
/* Create allocnos corresponding to pseudo-registers living on edge E
|
1605 |
|
|
(a loop entry or exit). Also mark the allocnos as living on the
|
1606 |
|
|
loop border. */
|
1607 |
|
|
static void
|
1608 |
|
|
create_loop_allocnos (edge e)
|
1609 |
|
|
{
|
1610 |
|
|
unsigned int i;
|
1611 |
|
|
bitmap live_in_regs, border_allocnos;
|
1612 |
|
|
bitmap_iterator bi;
|
1613 |
|
|
ira_loop_tree_node_t parent;
|
1614 |
|
|
|
1615 |
|
|
live_in_regs = DF_LR_IN (e->dest);
|
1616 |
|
|
border_allocnos = ira_curr_loop_tree_node->border_allocnos;
|
1617 |
|
|
EXECUTE_IF_SET_IN_REG_SET (DF_LR_OUT (e->src),
|
1618 |
|
|
FIRST_PSEUDO_REGISTER, i, bi)
|
1619 |
|
|
if (bitmap_bit_p (live_in_regs, i))
|
1620 |
|
|
{
|
1621 |
|
|
if (ira_curr_regno_allocno_map[i] == NULL)
|
1622 |
|
|
{
|
1623 |
|
|
/* The order of creations is important for right
|
1624 |
|
|
ira_regno_allocno_map. */
|
1625 |
|
|
if ((parent = ira_curr_loop_tree_node->parent) != NULL
|
1626 |
|
|
&& parent->regno_allocno_map[i] == NULL)
|
1627 |
|
|
ira_create_allocno (i, false, parent);
|
1628 |
|
|
ira_create_allocno (i, false, ira_curr_loop_tree_node);
|
1629 |
|
|
}
|
1630 |
|
|
bitmap_set_bit (border_allocnos,
|
1631 |
|
|
ALLOCNO_NUM (ira_curr_regno_allocno_map[i]));
|
1632 |
|
|
}
|
1633 |
|
|
}
|
1634 |
|
|
|
1635 |
|
|
/* Create allocnos corresponding to pseudo-registers living in loop
|
1636 |
|
|
represented by the corresponding loop tree node LOOP_NODE. This
|
1637 |
|
|
function is called by ira_traverse_loop_tree. */
|
1638 |
|
|
static void
|
1639 |
|
|
create_loop_tree_node_allocnos (ira_loop_tree_node_t loop_node)
|
1640 |
|
|
{
|
1641 |
|
|
if (loop_node->bb != NULL)
|
1642 |
|
|
create_bb_allocnos (loop_node);
|
1643 |
|
|
else if (loop_node != ira_loop_tree_root)
|
1644 |
|
|
{
|
1645 |
|
|
int i;
|
1646 |
|
|
edge_iterator ei;
|
1647 |
|
|
edge e;
|
1648 |
|
|
VEC (edge, heap) *edges;
|
1649 |
|
|
|
1650 |
|
|
ira_assert (current_loops != NULL);
|
1651 |
|
|
FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
|
1652 |
|
|
if (e->src != loop_node->loop->latch)
|
1653 |
|
|
create_loop_allocnos (e);
|
1654 |
|
|
|
1655 |
|
|
edges = get_loop_exit_edges (loop_node->loop);
|
1656 |
|
|
FOR_EACH_VEC_ELT (edge, edges, i, e)
|
1657 |
|
|
create_loop_allocnos (e);
|
1658 |
|
|
VEC_free (edge, heap, edges);
|
1659 |
|
|
}
|
1660 |
|
|
}
|
1661 |
|
|
|
1662 |
|
|
/* Propagate information about allocnos modified inside the loop given
|
1663 |
|
|
by its LOOP_TREE_NODE to its parent. */
|
1664 |
|
|
static void
|
1665 |
|
|
propagate_modified_regnos (ira_loop_tree_node_t loop_tree_node)
|
1666 |
|
|
{
|
1667 |
|
|
if (loop_tree_node == ira_loop_tree_root)
|
1668 |
|
|
return;
|
1669 |
|
|
ira_assert (loop_tree_node->bb == NULL);
|
1670 |
|
|
bitmap_ior_into (loop_tree_node->parent->modified_regnos,
|
1671 |
|
|
loop_tree_node->modified_regnos);
|
1672 |
|
|
}
|
1673 |
|
|
|
1674 |
|
|
/* Propagate new info about allocno A (see comments about accumulated
|
1675 |
|
|
info in allocno definition) to the corresponding allocno on upper
|
1676 |
|
|
loop tree level. So allocnos on upper levels accumulate
|
1677 |
|
|
information about the corresponding allocnos in nested regions.
|
1678 |
|
|
The new info means allocno info finally calculated in this
|
1679 |
|
|
file. */
|
1680 |
|
|
static void
|
1681 |
|
|
propagate_allocno_info (void)
|
1682 |
|
|
{
|
1683 |
|
|
int i;
|
1684 |
|
|
ira_allocno_t a, parent_a;
|
1685 |
|
|
ira_loop_tree_node_t parent;
|
1686 |
|
|
enum reg_class aclass;
|
1687 |
|
|
|
1688 |
|
|
if (flag_ira_region != IRA_REGION_ALL
|
1689 |
|
|
&& flag_ira_region != IRA_REGION_MIXED)
|
1690 |
|
|
return;
|
1691 |
|
|
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
1692 |
|
|
for (a = ira_regno_allocno_map[i];
|
1693 |
|
|
a != NULL;
|
1694 |
|
|
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
1695 |
|
|
if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
|
1696 |
|
|
&& (parent_a = parent->regno_allocno_map[i]) != NULL
|
1697 |
|
|
/* There are no caps yet at this point. So use
|
1698 |
|
|
border_allocnos to find allocnos for the propagation. */
|
1699 |
|
|
&& bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a)->border_allocnos,
|
1700 |
|
|
ALLOCNO_NUM (a)))
|
1701 |
|
|
{
|
1702 |
|
|
if (! ALLOCNO_BAD_SPILL_P (a))
|
1703 |
|
|
ALLOCNO_BAD_SPILL_P (parent_a) = false;
|
1704 |
|
|
ALLOCNO_NREFS (parent_a) += ALLOCNO_NREFS (a);
|
1705 |
|
|
ALLOCNO_FREQ (parent_a) += ALLOCNO_FREQ (a);
|
1706 |
|
|
ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
|
1707 |
|
|
merge_hard_reg_conflicts (a, parent_a, true);
|
1708 |
|
|
ALLOCNO_CALLS_CROSSED_NUM (parent_a)
|
1709 |
|
|
+= ALLOCNO_CALLS_CROSSED_NUM (a);
|
1710 |
|
|
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
|
1711 |
|
|
+= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
|
1712 |
|
|
aclass = ALLOCNO_CLASS (a);
|
1713 |
|
|
ira_assert (aclass == ALLOCNO_CLASS (parent_a));
|
1714 |
|
|
ira_allocate_and_accumulate_costs
|
1715 |
|
|
(&ALLOCNO_HARD_REG_COSTS (parent_a), aclass,
|
1716 |
|
|
ALLOCNO_HARD_REG_COSTS (a));
|
1717 |
|
|
ira_allocate_and_accumulate_costs
|
1718 |
|
|
(&ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a),
|
1719 |
|
|
aclass,
|
1720 |
|
|
ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
|
1721 |
|
|
ALLOCNO_CLASS_COST (parent_a)
|
1722 |
|
|
+= ALLOCNO_CLASS_COST (a);
|
1723 |
|
|
ALLOCNO_MEMORY_COST (parent_a) += ALLOCNO_MEMORY_COST (a);
|
1724 |
|
|
}
|
1725 |
|
|
}
|
1726 |
|
|
|
1727 |
|
|
/* Create allocnos corresponding to pseudo-registers in the current
|
1728 |
|
|
function. Traverse the loop tree for this. */
|
1729 |
|
|
static void
|
1730 |
|
|
create_allocnos (void)
|
1731 |
|
|
{
|
1732 |
|
|
/* We need to process BB first to correctly link allocnos by member
|
1733 |
|
|
next_regno_allocno. */
|
1734 |
|
|
ira_traverse_loop_tree (true, ira_loop_tree_root,
|
1735 |
|
|
create_loop_tree_node_allocnos, NULL);
|
1736 |
|
|
if (optimize)
|
1737 |
|
|
ira_traverse_loop_tree (false, ira_loop_tree_root, NULL,
|
1738 |
|
|
propagate_modified_regnos);
|
1739 |
|
|
}
|
1740 |
|
|
|
1741 |
|
|
|
1742 |
|
|
|
1743 |
|
|
/* The page contains function to remove some regions from a separate
|
1744 |
|
|
register allocation. We remove regions whose separate allocation
|
1745 |
|
|
will hardly improve the result. As a result we speed up regional
|
1746 |
|
|
register allocation. */
|
1747 |
|
|
|
1748 |
|
|
/* The function changes the object in range list given by R to OBJ. */
|
1749 |
|
|
static void
|
1750 |
|
|
change_object_in_range_list (live_range_t r, ira_object_t obj)
|
1751 |
|
|
{
|
1752 |
|
|
for (; r != NULL; r = r->next)
|
1753 |
|
|
r->object = obj;
|
1754 |
|
|
}
|
1755 |
|
|
|
1756 |
|
|
/* Move all live ranges associated with allocno FROM to allocno TO. */
|
1757 |
|
|
static void
|
1758 |
|
|
move_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
|
1759 |
|
|
{
|
1760 |
|
|
int i;
|
1761 |
|
|
int n = ALLOCNO_NUM_OBJECTS (from);
|
1762 |
|
|
|
1763 |
|
|
gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
|
1764 |
|
|
|
1765 |
|
|
for (i = 0; i < n; i++)
|
1766 |
|
|
{
|
1767 |
|
|
ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
|
1768 |
|
|
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
|
1769 |
|
|
live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
|
1770 |
|
|
|
1771 |
|
|
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
|
1772 |
|
|
{
|
1773 |
|
|
fprintf (ira_dump_file,
|
1774 |
|
|
" Moving ranges of a%dr%d to a%dr%d: ",
|
1775 |
|
|
ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
|
1776 |
|
|
ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
|
1777 |
|
|
ira_print_live_range_list (ira_dump_file, lr);
|
1778 |
|
|
}
|
1779 |
|
|
change_object_in_range_list (lr, to_obj);
|
1780 |
|
|
OBJECT_LIVE_RANGES (to_obj)
|
1781 |
|
|
= ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
|
1782 |
|
|
OBJECT_LIVE_RANGES (from_obj) = NULL;
|
1783 |
|
|
}
|
1784 |
|
|
}
|
1785 |
|
|
|
1786 |
|
|
static void
|
1787 |
|
|
copy_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
|
1788 |
|
|
{
|
1789 |
|
|
int i;
|
1790 |
|
|
int n = ALLOCNO_NUM_OBJECTS (from);
|
1791 |
|
|
|
1792 |
|
|
gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
|
1793 |
|
|
|
1794 |
|
|
for (i = 0; i < n; i++)
|
1795 |
|
|
{
|
1796 |
|
|
ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
|
1797 |
|
|
ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
|
1798 |
|
|
live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
|
1799 |
|
|
|
1800 |
|
|
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
|
1801 |
|
|
{
|
1802 |
|
|
fprintf (ira_dump_file, " Copying ranges of a%dr%d to a%dr%d: ",
|
1803 |
|
|
ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
|
1804 |
|
|
ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
|
1805 |
|
|
ira_print_live_range_list (ira_dump_file, lr);
|
1806 |
|
|
}
|
1807 |
|
|
lr = ira_copy_live_range_list (lr);
|
1808 |
|
|
change_object_in_range_list (lr, to_obj);
|
1809 |
|
|
OBJECT_LIVE_RANGES (to_obj)
|
1810 |
|
|
= ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
|
1811 |
|
|
}
|
1812 |
|
|
}
|
1813 |
|
|
|
1814 |
|
|
/* Return TRUE if NODE represents a loop with low register
|
1815 |
|
|
pressure. */
|
1816 |
|
|
static bool
|
1817 |
|
|
low_pressure_loop_node_p (ira_loop_tree_node_t node)
|
1818 |
|
|
{
|
1819 |
|
|
int i;
|
1820 |
|
|
enum reg_class pclass;
|
1821 |
|
|
|
1822 |
|
|
if (node->bb != NULL)
|
1823 |
|
|
return false;
|
1824 |
|
|
|
1825 |
|
|
for (i = 0; i < ira_pressure_classes_num; i++)
|
1826 |
|
|
{
|
1827 |
|
|
pclass = ira_pressure_classes[i];
|
1828 |
|
|
if (node->reg_pressure[pclass] > ira_available_class_regs[pclass]
|
1829 |
|
|
&& ira_available_class_regs[pclass] > 1)
|
1830 |
|
|
return false;
|
1831 |
|
|
}
|
1832 |
|
|
return true;
|
1833 |
|
|
}
|
1834 |
|
|
|
1835 |
|
|
#ifdef STACK_REGS
|
1836 |
|
|
/* Return TRUE if LOOP has a complex enter or exit edge. We don't
|
1837 |
|
|
form a region from such loop if the target use stack register
|
1838 |
|
|
because reg-stack.c can not deal with such edges. */
|
1839 |
|
|
static bool
|
1840 |
|
|
loop_with_complex_edge_p (struct loop *loop)
|
1841 |
|
|
{
|
1842 |
|
|
int i;
|
1843 |
|
|
edge_iterator ei;
|
1844 |
|
|
edge e;
|
1845 |
|
|
VEC (edge, heap) *edges;
|
1846 |
|
|
|
1847 |
|
|
FOR_EACH_EDGE (e, ei, loop->header->preds)
|
1848 |
|
|
if (e->flags & EDGE_EH)
|
1849 |
|
|
return true;
|
1850 |
|
|
edges = get_loop_exit_edges (loop);
|
1851 |
|
|
FOR_EACH_VEC_ELT (edge, edges, i, e)
|
1852 |
|
|
if (e->flags & EDGE_COMPLEX)
|
1853 |
|
|
return true;
|
1854 |
|
|
return false;
|
1855 |
|
|
}
|
1856 |
|
|
#endif
|
1857 |
|
|
|
1858 |
|
|
/* Sort loops for marking them for removal. We put already marked
|
1859 |
|
|
loops first, then less frequent loops next, and then outer loops
|
1860 |
|
|
next. */
|
1861 |
|
|
static int
|
1862 |
|
|
loop_compare_func (const void *v1p, const void *v2p)
|
1863 |
|
|
{
|
1864 |
|
|
int diff;
|
1865 |
|
|
ira_loop_tree_node_t l1 = *(const ira_loop_tree_node_t *) v1p;
|
1866 |
|
|
ira_loop_tree_node_t l2 = *(const ira_loop_tree_node_t *) v2p;
|
1867 |
|
|
|
1868 |
|
|
ira_assert (l1->parent != NULL && l2->parent != NULL);
|
1869 |
|
|
if (l1->to_remove_p && ! l2->to_remove_p)
|
1870 |
|
|
return -1;
|
1871 |
|
|
if (! l1->to_remove_p && l2->to_remove_p)
|
1872 |
|
|
return 1;
|
1873 |
|
|
if ((diff = l1->loop->header->frequency - l2->loop->header->frequency) != 0)
|
1874 |
|
|
return diff;
|
1875 |
|
|
if ((diff = (int) loop_depth (l1->loop) - (int) loop_depth (l2->loop)) != 0)
|
1876 |
|
|
return diff;
|
1877 |
|
|
/* Make sorting stable. */
|
1878 |
|
|
return l1->loop_num - l2->loop_num;
|
1879 |
|
|
}
|
1880 |
|
|
|
1881 |
|
|
/* Mark loops which should be removed from regional allocation. We
|
1882 |
|
|
remove a loop with low register pressure inside another loop with
|
1883 |
|
|
register pressure. In this case a separate allocation of the loop
|
1884 |
|
|
hardly helps (for irregular register file architecture it could
|
1885 |
|
|
help by choosing a better hard register in the loop but we prefer
|
1886 |
|
|
faster allocation even in this case). We also remove cheap loops
|
1887 |
|
|
if there are more than IRA_MAX_LOOPS_NUM of them. Loop with EH
|
1888 |
|
|
exit or enter edges are removed too because the allocation might
|
1889 |
|
|
require put pseudo moves on the EH edges (we could still do this
|
1890 |
|
|
for pseudos with caller saved hard registers in some cases but it
|
1891 |
|
|
is impossible to say here or during top-down allocation pass what
|
1892 |
|
|
hard register the pseudos get finally). */
|
1893 |
|
|
static void
|
1894 |
|
|
mark_loops_for_removal (void)
|
1895 |
|
|
{
|
1896 |
|
|
int i, n;
|
1897 |
|
|
ira_loop_tree_node_t *sorted_loops;
|
1898 |
|
|
loop_p loop;
|
1899 |
|
|
|
1900 |
|
|
ira_assert (current_loops != NULL);
|
1901 |
|
|
sorted_loops
|
1902 |
|
|
= (ira_loop_tree_node_t *) ira_allocate (sizeof (ira_loop_tree_node_t)
|
1903 |
|
|
* VEC_length (loop_p,
|
1904 |
|
|
ira_loops.larray));
|
1905 |
|
|
for (n = i = 0; VEC_iterate (loop_p, ira_loops.larray, i, loop); i++)
|
1906 |
|
|
if (ira_loop_nodes[i].regno_allocno_map != NULL)
|
1907 |
|
|
{
|
1908 |
|
|
if (ira_loop_nodes[i].parent == NULL)
|
1909 |
|
|
{
|
1910 |
|
|
/* Don't remove the root. */
|
1911 |
|
|
ira_loop_nodes[i].to_remove_p = false;
|
1912 |
|
|
continue;
|
1913 |
|
|
}
|
1914 |
|
|
sorted_loops[n++] = &ira_loop_nodes[i];
|
1915 |
|
|
ira_loop_nodes[i].to_remove_p
|
1916 |
|
|
= ((low_pressure_loop_node_p (ira_loop_nodes[i].parent)
|
1917 |
|
|
&& low_pressure_loop_node_p (&ira_loop_nodes[i]))
|
1918 |
|
|
#ifdef STACK_REGS
|
1919 |
|
|
|| loop_with_complex_edge_p (ira_loop_nodes[i].loop)
|
1920 |
|
|
#endif
|
1921 |
|
|
);
|
1922 |
|
|
}
|
1923 |
|
|
qsort (sorted_loops, n, sizeof (ira_loop_tree_node_t), loop_compare_func);
|
1924 |
|
|
for (i = 0; n - i + 1 > IRA_MAX_LOOPS_NUM; i++)
|
1925 |
|
|
{
|
1926 |
|
|
sorted_loops[i]->to_remove_p = true;
|
1927 |
|
|
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
|
1928 |
|
|
fprintf
|
1929 |
|
|
(ira_dump_file,
|
1930 |
|
|
" Mark loop %d (header %d, freq %d, depth %d) for removal (%s)\n",
|
1931 |
|
|
sorted_loops[i]->loop_num, sorted_loops[i]->loop->header->index,
|
1932 |
|
|
sorted_loops[i]->loop->header->frequency,
|
1933 |
|
|
loop_depth (sorted_loops[i]->loop),
|
1934 |
|
|
low_pressure_loop_node_p (sorted_loops[i]->parent)
|
1935 |
|
|
&& low_pressure_loop_node_p (sorted_loops[i])
|
1936 |
|
|
? "low pressure" : "cheap loop");
|
1937 |
|
|
}
|
1938 |
|
|
ira_free (sorted_loops);
|
1939 |
|
|
}
|
1940 |
|
|
|
1941 |
|
|
/* Mark all loops but root for removing. */
|
1942 |
|
|
static void
|
1943 |
|
|
mark_all_loops_for_removal (void)
|
1944 |
|
|
{
|
1945 |
|
|
int i;
|
1946 |
|
|
loop_p loop;
|
1947 |
|
|
|
1948 |
|
|
ira_assert (current_loops != NULL);
|
1949 |
|
|
FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop)
|
1950 |
|
|
if (ira_loop_nodes[i].regno_allocno_map != NULL)
|
1951 |
|
|
{
|
1952 |
|
|
if (ira_loop_nodes[i].parent == NULL)
|
1953 |
|
|
{
|
1954 |
|
|
/* Don't remove the root. */
|
1955 |
|
|
ira_loop_nodes[i].to_remove_p = false;
|
1956 |
|
|
continue;
|
1957 |
|
|
}
|
1958 |
|
|
ira_loop_nodes[i].to_remove_p = true;
|
1959 |
|
|
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
|
1960 |
|
|
fprintf
|
1961 |
|
|
(ira_dump_file,
|
1962 |
|
|
" Mark loop %d (header %d, freq %d, depth %d) for removal\n",
|
1963 |
|
|
ira_loop_nodes[i].loop_num,
|
1964 |
|
|
ira_loop_nodes[i].loop->header->index,
|
1965 |
|
|
ira_loop_nodes[i].loop->header->frequency,
|
1966 |
|
|
loop_depth (ira_loop_nodes[i].loop));
|
1967 |
|
|
}
|
1968 |
|
|
}
|
1969 |
|
|
|
1970 |
|
|
/* Definition of vector of loop tree nodes. */
|
1971 |
|
|
DEF_VEC_P(ira_loop_tree_node_t);
|
1972 |
|
|
DEF_VEC_ALLOC_P(ira_loop_tree_node_t, heap);
|
1973 |
|
|
|
1974 |
|
|
/* Vec containing references to all removed loop tree nodes. */
|
1975 |
|
|
static VEC(ira_loop_tree_node_t,heap) *removed_loop_vec;
|
1976 |
|
|
|
1977 |
|
|
/* Vec containing references to all children of loop tree nodes. */
|
1978 |
|
|
static VEC(ira_loop_tree_node_t,heap) *children_vec;
|
1979 |
|
|
|
1980 |
|
|
/* Remove subregions of NODE if their separate allocation will not
|
1981 |
|
|
improve the result. */
|
1982 |
|
|
static void
|
1983 |
|
|
remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_node_t node)
|
1984 |
|
|
{
|
1985 |
|
|
unsigned int start;
|
1986 |
|
|
bool remove_p;
|
1987 |
|
|
ira_loop_tree_node_t subnode;
|
1988 |
|
|
|
1989 |
|
|
remove_p = node->to_remove_p;
|
1990 |
|
|
if (! remove_p)
|
1991 |
|
|
VEC_safe_push (ira_loop_tree_node_t, heap, children_vec, node);
|
1992 |
|
|
start = VEC_length (ira_loop_tree_node_t, children_vec);
|
1993 |
|
|
for (subnode = node->children; subnode != NULL; subnode = subnode->next)
|
1994 |
|
|
if (subnode->bb == NULL)
|
1995 |
|
|
remove_uneccesary_loop_nodes_from_loop_tree (subnode);
|
1996 |
|
|
else
|
1997 |
|
|
VEC_safe_push (ira_loop_tree_node_t, heap, children_vec, subnode);
|
1998 |
|
|
node->children = node->subloops = NULL;
|
1999 |
|
|
if (remove_p)
|
2000 |
|
|
{
|
2001 |
|
|
VEC_safe_push (ira_loop_tree_node_t, heap, removed_loop_vec, node);
|
2002 |
|
|
return;
|
2003 |
|
|
}
|
2004 |
|
|
while (VEC_length (ira_loop_tree_node_t, children_vec) > start)
|
2005 |
|
|
{
|
2006 |
|
|
subnode = VEC_pop (ira_loop_tree_node_t, children_vec);
|
2007 |
|
|
subnode->parent = node;
|
2008 |
|
|
subnode->next = node->children;
|
2009 |
|
|
node->children = subnode;
|
2010 |
|
|
if (subnode->bb == NULL)
|
2011 |
|
|
{
|
2012 |
|
|
subnode->subloop_next = node->subloops;
|
2013 |
|
|
node->subloops = subnode;
|
2014 |
|
|
}
|
2015 |
|
|
}
|
2016 |
|
|
}
|
2017 |
|
|
|
2018 |
|
|
/* Return TRUE if NODE is inside PARENT. */
|
2019 |
|
|
static bool
|
2020 |
|
|
loop_is_inside_p (ira_loop_tree_node_t node, ira_loop_tree_node_t parent)
|
2021 |
|
|
{
|
2022 |
|
|
for (node = node->parent; node != NULL; node = node->parent)
|
2023 |
|
|
if (node == parent)
|
2024 |
|
|
return true;
|
2025 |
|
|
return false;
|
2026 |
|
|
}
|
2027 |
|
|
|
2028 |
|
|
/* Sort allocnos according to their order in regno allocno list. */
|
2029 |
|
|
static int
|
2030 |
|
|
regno_allocno_order_compare_func (const void *v1p, const void *v2p)
|
2031 |
|
|
{
|
2032 |
|
|
ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
|
2033 |
|
|
ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
|
2034 |
|
|
ira_loop_tree_node_t n1 = ALLOCNO_LOOP_TREE_NODE (a1);
|
2035 |
|
|
ira_loop_tree_node_t n2 = ALLOCNO_LOOP_TREE_NODE (a2);
|
2036 |
|
|
|
2037 |
|
|
if (loop_is_inside_p (n1, n2))
|
2038 |
|
|
return -1;
|
2039 |
|
|
else if (loop_is_inside_p (n2, n1))
|
2040 |
|
|
return 1;
|
2041 |
|
|
/* If allocnos are equally good, sort by allocno numbers, so that
|
2042 |
|
|
the results of qsort leave nothing to chance. We put allocnos
|
2043 |
|
|
with higher number first in the list because it is the original
|
2044 |
|
|
order for allocnos from loops on the same levels. */
|
2045 |
|
|
return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
|
2046 |
|
|
}
|
2047 |
|
|
|
2048 |
|
|
/* This array is used to sort allocnos to restore allocno order in
|
2049 |
|
|
the regno allocno list. */
|
2050 |
|
|
static ira_allocno_t *regno_allocnos;
|
2051 |
|
|
|
2052 |
|
|
/* Restore allocno order for REGNO in the regno allocno list. */
|
2053 |
|
|
static void
|
2054 |
|
|
ira_rebuild_regno_allocno_list (int regno)
|
2055 |
|
|
{
|
2056 |
|
|
int i, n;
|
2057 |
|
|
ira_allocno_t a;
|
2058 |
|
|
|
2059 |
|
|
for (n = 0, a = ira_regno_allocno_map[regno];
|
2060 |
|
|
a != NULL;
|
2061 |
|
|
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
2062 |
|
|
regno_allocnos[n++] = a;
|
2063 |
|
|
ira_assert (n > 0);
|
2064 |
|
|
qsort (regno_allocnos, n, sizeof (ira_allocno_t),
|
2065 |
|
|
regno_allocno_order_compare_func);
|
2066 |
|
|
for (i = 1; i < n; i++)
|
2067 |
|
|
ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[i - 1]) = regno_allocnos[i];
|
2068 |
|
|
ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[n - 1]) = NULL;
|
2069 |
|
|
ira_regno_allocno_map[regno] = regno_allocnos[0];
|
2070 |
|
|
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
|
2071 |
|
|
fprintf (ira_dump_file, " Rebuilding regno allocno list for %d\n", regno);
|
2072 |
|
|
}
|
2073 |
|
|
|
2074 |
|
|
/* Propagate info from allocno FROM_A to allocno A. */
|
2075 |
|
|
static void
|
2076 |
|
|
propagate_some_info_from_allocno (ira_allocno_t a, ira_allocno_t from_a)
|
2077 |
|
|
{
|
2078 |
|
|
enum reg_class aclass;
|
2079 |
|
|
|
2080 |
|
|
merge_hard_reg_conflicts (from_a, a, false);
|
2081 |
|
|
ALLOCNO_NREFS (a) += ALLOCNO_NREFS (from_a);
|
2082 |
|
|
ALLOCNO_FREQ (a) += ALLOCNO_FREQ (from_a);
|
2083 |
|
|
ALLOCNO_CALL_FREQ (a) += ALLOCNO_CALL_FREQ (from_a);
|
2084 |
|
|
ALLOCNO_CALLS_CROSSED_NUM (a) += ALLOCNO_CALLS_CROSSED_NUM (from_a);
|
2085 |
|
|
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a)
|
2086 |
|
|
+= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (from_a);
|
2087 |
|
|
if (! ALLOCNO_BAD_SPILL_P (from_a))
|
2088 |
|
|
ALLOCNO_BAD_SPILL_P (a) = false;
|
2089 |
|
|
aclass = ALLOCNO_CLASS (from_a);
|
2090 |
|
|
ira_assert (aclass == ALLOCNO_CLASS (a));
|
2091 |
|
|
ira_allocate_and_accumulate_costs (&ALLOCNO_HARD_REG_COSTS (a), aclass,
|
2092 |
|
|
ALLOCNO_HARD_REG_COSTS (from_a));
|
2093 |
|
|
ira_allocate_and_accumulate_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
|
2094 |
|
|
aclass,
|
2095 |
|
|
ALLOCNO_CONFLICT_HARD_REG_COSTS (from_a));
|
2096 |
|
|
ALLOCNO_CLASS_COST (a) += ALLOCNO_CLASS_COST (from_a);
|
2097 |
|
|
ALLOCNO_MEMORY_COST (a) += ALLOCNO_MEMORY_COST (from_a);
|
2098 |
|
|
}
|
2099 |
|
|
|
2100 |
|
|
/* Remove allocnos from loops removed from the allocation
|
2101 |
|
|
consideration. */
|
2102 |
|
|
static void
|
2103 |
|
|
remove_unnecessary_allocnos (void)
|
2104 |
|
|
{
|
2105 |
|
|
int regno;
|
2106 |
|
|
bool merged_p, rebuild_p;
|
2107 |
|
|
ira_allocno_t a, prev_a, next_a, parent_a;
|
2108 |
|
|
ira_loop_tree_node_t a_node, parent;
|
2109 |
|
|
|
2110 |
|
|
merged_p = false;
|
2111 |
|
|
regno_allocnos = NULL;
|
2112 |
|
|
for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
|
2113 |
|
|
{
|
2114 |
|
|
rebuild_p = false;
|
2115 |
|
|
for (prev_a = NULL, a = ira_regno_allocno_map[regno];
|
2116 |
|
|
a != NULL;
|
2117 |
|
|
a = next_a)
|
2118 |
|
|
{
|
2119 |
|
|
next_a = ALLOCNO_NEXT_REGNO_ALLOCNO (a);
|
2120 |
|
|
a_node = ALLOCNO_LOOP_TREE_NODE (a);
|
2121 |
|
|
if (! a_node->to_remove_p)
|
2122 |
|
|
prev_a = a;
|
2123 |
|
|
else
|
2124 |
|
|
{
|
2125 |
|
|
for (parent = a_node->parent;
|
2126 |
|
|
(parent_a = parent->regno_allocno_map[regno]) == NULL
|
2127 |
|
|
&& parent->to_remove_p;
|
2128 |
|
|
parent = parent->parent)
|
2129 |
|
|
;
|
2130 |
|
|
if (parent_a == NULL)
|
2131 |
|
|
{
|
2132 |
|
|
/* There are no allocnos with the same regno in
|
2133 |
|
|
upper region -- just move the allocno to the
|
2134 |
|
|
upper region. */
|
2135 |
|
|
prev_a = a;
|
2136 |
|
|
ALLOCNO_LOOP_TREE_NODE (a) = parent;
|
2137 |
|
|
parent->regno_allocno_map[regno] = a;
|
2138 |
|
|
bitmap_set_bit (parent->all_allocnos, ALLOCNO_NUM (a));
|
2139 |
|
|
rebuild_p = true;
|
2140 |
|
|
}
|
2141 |
|
|
else
|
2142 |
|
|
{
|
2143 |
|
|
/* Remove the allocno and update info of allocno in
|
2144 |
|
|
the upper region. */
|
2145 |
|
|
if (prev_a == NULL)
|
2146 |
|
|
ira_regno_allocno_map[regno] = next_a;
|
2147 |
|
|
else
|
2148 |
|
|
ALLOCNO_NEXT_REGNO_ALLOCNO (prev_a) = next_a;
|
2149 |
|
|
move_allocno_live_ranges (a, parent_a);
|
2150 |
|
|
merged_p = true;
|
2151 |
|
|
propagate_some_info_from_allocno (parent_a, a);
|
2152 |
|
|
/* Remove it from the corresponding regno allocno
|
2153 |
|
|
map to avoid info propagation of subsequent
|
2154 |
|
|
allocno into this already removed allocno. */
|
2155 |
|
|
a_node->regno_allocno_map[regno] = NULL;
|
2156 |
|
|
finish_allocno (a);
|
2157 |
|
|
}
|
2158 |
|
|
}
|
2159 |
|
|
}
|
2160 |
|
|
if (rebuild_p)
|
2161 |
|
|
/* We need to restore the order in regno allocno list. */
|
2162 |
|
|
{
|
2163 |
|
|
if (regno_allocnos == NULL)
|
2164 |
|
|
regno_allocnos
|
2165 |
|
|
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
|
2166 |
|
|
* ira_allocnos_num);
|
2167 |
|
|
ira_rebuild_regno_allocno_list (regno);
|
2168 |
|
|
}
|
2169 |
|
|
}
|
2170 |
|
|
if (merged_p)
|
2171 |
|
|
ira_rebuild_start_finish_chains ();
|
2172 |
|
|
if (regno_allocnos != NULL)
|
2173 |
|
|
ira_free (regno_allocnos);
|
2174 |
|
|
}
|
2175 |
|
|
|
2176 |
|
|
/* Remove allocnos from all loops but the root. */
|
2177 |
|
|
static void
|
2178 |
|
|
remove_low_level_allocnos (void)
|
2179 |
|
|
{
|
2180 |
|
|
int regno;
|
2181 |
|
|
bool merged_p, propagate_p;
|
2182 |
|
|
ira_allocno_t a, top_a;
|
2183 |
|
|
ira_loop_tree_node_t a_node, parent;
|
2184 |
|
|
ira_allocno_iterator ai;
|
2185 |
|
|
|
2186 |
|
|
merged_p = false;
|
2187 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2188 |
|
|
{
|
2189 |
|
|
a_node = ALLOCNO_LOOP_TREE_NODE (a);
|
2190 |
|
|
if (a_node == ira_loop_tree_root || ALLOCNO_CAP_MEMBER (a) != NULL)
|
2191 |
|
|
continue;
|
2192 |
|
|
regno = ALLOCNO_REGNO (a);
|
2193 |
|
|
if ((top_a = ira_loop_tree_root->regno_allocno_map[regno]) == NULL)
|
2194 |
|
|
{
|
2195 |
|
|
ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
|
2196 |
|
|
ira_loop_tree_root->regno_allocno_map[regno] = a;
|
2197 |
|
|
continue;
|
2198 |
|
|
}
|
2199 |
|
|
propagate_p = a_node->parent->regno_allocno_map[regno] == NULL;
|
2200 |
|
|
/* Remove the allocno and update info of allocno in the upper
|
2201 |
|
|
region. */
|
2202 |
|
|
move_allocno_live_ranges (a, top_a);
|
2203 |
|
|
merged_p = true;
|
2204 |
|
|
if (propagate_p)
|
2205 |
|
|
propagate_some_info_from_allocno (top_a, a);
|
2206 |
|
|
}
|
2207 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2208 |
|
|
{
|
2209 |
|
|
a_node = ALLOCNO_LOOP_TREE_NODE (a);
|
2210 |
|
|
if (a_node == ira_loop_tree_root)
|
2211 |
|
|
continue;
|
2212 |
|
|
parent = a_node->parent;
|
2213 |
|
|
regno = ALLOCNO_REGNO (a);
|
2214 |
|
|
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
2215 |
|
|
ira_assert (ALLOCNO_CAP (a) != NULL);
|
2216 |
|
|
else if (ALLOCNO_CAP (a) == NULL)
|
2217 |
|
|
ira_assert (parent->regno_allocno_map[regno] != NULL);
|
2218 |
|
|
}
|
2219 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2220 |
|
|
{
|
2221 |
|
|
regno = ALLOCNO_REGNO (a);
|
2222 |
|
|
if (ira_loop_tree_root->regno_allocno_map[regno] == a)
|
2223 |
|
|
{
|
2224 |
|
|
ira_object_t obj;
|
2225 |
|
|
ira_allocno_object_iterator oi;
|
2226 |
|
|
|
2227 |
|
|
ira_regno_allocno_map[regno] = a;
|
2228 |
|
|
ALLOCNO_NEXT_REGNO_ALLOCNO (a) = NULL;
|
2229 |
|
|
ALLOCNO_CAP_MEMBER (a) = NULL;
|
2230 |
|
|
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
2231 |
|
|
COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
|
2232 |
|
|
OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
|
2233 |
|
|
#ifdef STACK_REGS
|
2234 |
|
|
if (ALLOCNO_TOTAL_NO_STACK_REG_P (a))
|
2235 |
|
|
ALLOCNO_NO_STACK_REG_P (a) = true;
|
2236 |
|
|
#endif
|
2237 |
|
|
}
|
2238 |
|
|
else
|
2239 |
|
|
finish_allocno (a);
|
2240 |
|
|
}
|
2241 |
|
|
if (merged_p)
|
2242 |
|
|
ira_rebuild_start_finish_chains ();
|
2243 |
|
|
}
|
2244 |
|
|
|
2245 |
|
|
/* Remove loops from consideration. We remove all loops except for
|
2246 |
|
|
root if ALL_P or loops for which a separate allocation will not
|
2247 |
|
|
improve the result. We have to do this after allocno creation and
|
2248 |
|
|
their costs and allocno class evaluation because only after that
|
2249 |
|
|
the register pressure can be known and is calculated. */
|
2250 |
|
|
static void
|
2251 |
|
|
remove_unnecessary_regions (bool all_p)
|
2252 |
|
|
{
|
2253 |
|
|
if (current_loops == NULL)
|
2254 |
|
|
return;
|
2255 |
|
|
if (all_p)
|
2256 |
|
|
mark_all_loops_for_removal ();
|
2257 |
|
|
else
|
2258 |
|
|
mark_loops_for_removal ();
|
2259 |
|
|
children_vec
|
2260 |
|
|
= VEC_alloc (ira_loop_tree_node_t, heap,
|
2261 |
|
|
last_basic_block + VEC_length (loop_p, ira_loops.larray));
|
2262 |
|
|
removed_loop_vec
|
2263 |
|
|
= VEC_alloc (ira_loop_tree_node_t, heap,
|
2264 |
|
|
last_basic_block + VEC_length (loop_p, ira_loops.larray));
|
2265 |
|
|
remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_root) ;
|
2266 |
|
|
VEC_free (ira_loop_tree_node_t, heap, children_vec);
|
2267 |
|
|
if (all_p)
|
2268 |
|
|
remove_low_level_allocnos ();
|
2269 |
|
|
else
|
2270 |
|
|
remove_unnecessary_allocnos ();
|
2271 |
|
|
while (VEC_length (ira_loop_tree_node_t, removed_loop_vec) > 0)
|
2272 |
|
|
finish_loop_tree_node (VEC_pop (ira_loop_tree_node_t, removed_loop_vec));
|
2273 |
|
|
VEC_free (ira_loop_tree_node_t, heap, removed_loop_vec);
|
2274 |
|
|
}
|
2275 |
|
|
|
2276 |
|
|
|
2277 |
|
|
|
2278 |
|
|
/* At this point true value of allocno attribute bad_spill_p means
|
2279 |
|
|
that there is an insn where allocno occurs and where the allocno
|
2280 |
|
|
can not be used as memory. The function updates the attribute, now
|
2281 |
|
|
it can be true only for allocnos which can not be used as memory in
|
2282 |
|
|
an insn and in whose live ranges there is other allocno deaths.
|
2283 |
|
|
Spilling allocnos with true value will not improve the code because
|
2284 |
|
|
it will not make other allocnos colorable and additional reloads
|
2285 |
|
|
for the corresponding pseudo will be generated in reload pass for
|
2286 |
|
|
each insn it occurs.
|
2287 |
|
|
|
2288 |
|
|
This is a trick mentioned in one classic article of Chaitin etc
|
2289 |
|
|
which is frequently omitted in other implementations of RA based on
|
2290 |
|
|
graph coloring. */
|
2291 |
|
|
static void
|
2292 |
|
|
update_bad_spill_attribute (void)
|
2293 |
|
|
{
|
2294 |
|
|
int i;
|
2295 |
|
|
ira_allocno_t a;
|
2296 |
|
|
ira_allocno_iterator ai;
|
2297 |
|
|
ira_allocno_object_iterator aoi;
|
2298 |
|
|
ira_object_t obj;
|
2299 |
|
|
live_range_t r;
|
2300 |
|
|
enum reg_class aclass;
|
2301 |
|
|
bitmap_head dead_points[N_REG_CLASSES];
|
2302 |
|
|
|
2303 |
|
|
for (i = 0; i < ira_allocno_classes_num; i++)
|
2304 |
|
|
{
|
2305 |
|
|
aclass = ira_allocno_classes[i];
|
2306 |
|
|
bitmap_initialize (&dead_points[aclass], ®_obstack);
|
2307 |
|
|
}
|
2308 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2309 |
|
|
{
|
2310 |
|
|
aclass = ALLOCNO_CLASS (a);
|
2311 |
|
|
if (aclass == NO_REGS)
|
2312 |
|
|
continue;
|
2313 |
|
|
FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
|
2314 |
|
|
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
2315 |
|
|
bitmap_set_bit (&dead_points[aclass], r->finish);
|
2316 |
|
|
}
|
2317 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2318 |
|
|
{
|
2319 |
|
|
aclass = ALLOCNO_CLASS (a);
|
2320 |
|
|
if (aclass == NO_REGS)
|
2321 |
|
|
continue;
|
2322 |
|
|
if (! ALLOCNO_BAD_SPILL_P (a))
|
2323 |
|
|
continue;
|
2324 |
|
|
FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
|
2325 |
|
|
{
|
2326 |
|
|
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
2327 |
|
|
{
|
2328 |
|
|
for (i = r->start + 1; i < r->finish; i++)
|
2329 |
|
|
if (bitmap_bit_p (&dead_points[aclass], i))
|
2330 |
|
|
break;
|
2331 |
|
|
if (i < r->finish)
|
2332 |
|
|
break;
|
2333 |
|
|
}
|
2334 |
|
|
if (r != NULL)
|
2335 |
|
|
{
|
2336 |
|
|
ALLOCNO_BAD_SPILL_P (a) = false;
|
2337 |
|
|
break;
|
2338 |
|
|
}
|
2339 |
|
|
}
|
2340 |
|
|
}
|
2341 |
|
|
for (i = 0; i < ira_allocno_classes_num; i++)
|
2342 |
|
|
{
|
2343 |
|
|
aclass = ira_allocno_classes[i];
|
2344 |
|
|
bitmap_clear (&dead_points[aclass]);
|
2345 |
|
|
}
|
2346 |
|
|
}
|
2347 |
|
|
|
2348 |
|
|
|
2349 |
|
|
|
2350 |
|
|
/* Set up minimal and maximal live range points for allocnos. */
|
2351 |
|
|
static void
|
2352 |
|
|
setup_min_max_allocno_live_range_point (void)
|
2353 |
|
|
{
|
2354 |
|
|
int i;
|
2355 |
|
|
ira_allocno_t a, parent_a, cap;
|
2356 |
|
|
ira_allocno_iterator ai;
|
2357 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
2358 |
|
|
ira_object_iterator oi;
|
2359 |
|
|
ira_object_t obj;
|
2360 |
|
|
#endif
|
2361 |
|
|
live_range_t r;
|
2362 |
|
|
ira_loop_tree_node_t parent;
|
2363 |
|
|
|
2364 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2365 |
|
|
{
|
2366 |
|
|
int n = ALLOCNO_NUM_OBJECTS (a);
|
2367 |
|
|
|
2368 |
|
|
for (i = 0; i < n; i++)
|
2369 |
|
|
{
|
2370 |
|
|
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
2371 |
|
|
r = OBJECT_LIVE_RANGES (obj);
|
2372 |
|
|
if (r == NULL)
|
2373 |
|
|
continue;
|
2374 |
|
|
OBJECT_MAX (obj) = r->finish;
|
2375 |
|
|
for (; r->next != NULL; r = r->next)
|
2376 |
|
|
;
|
2377 |
|
|
OBJECT_MIN (obj) = r->start;
|
2378 |
|
|
}
|
2379 |
|
|
}
|
2380 |
|
|
for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
2381 |
|
|
for (a = ira_regno_allocno_map[i];
|
2382 |
|
|
a != NULL;
|
2383 |
|
|
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
2384 |
|
|
{
|
2385 |
|
|
int j;
|
2386 |
|
|
int n = ALLOCNO_NUM_OBJECTS (a);
|
2387 |
|
|
|
2388 |
|
|
for (j = 0; j < n; j++)
|
2389 |
|
|
{
|
2390 |
|
|
ira_object_t obj = ALLOCNO_OBJECT (a, j);
|
2391 |
|
|
ira_object_t parent_obj;
|
2392 |
|
|
|
2393 |
|
|
if (OBJECT_MAX (obj) < 0)
|
2394 |
|
|
continue;
|
2395 |
|
|
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
|
2396 |
|
|
/* Accumulation of range info. */
|
2397 |
|
|
if (ALLOCNO_CAP (a) != NULL)
|
2398 |
|
|
{
|
2399 |
|
|
for (cap = ALLOCNO_CAP (a); cap != NULL; cap = ALLOCNO_CAP (cap))
|
2400 |
|
|
{
|
2401 |
|
|
ira_object_t cap_obj = ALLOCNO_OBJECT (cap, j);
|
2402 |
|
|
if (OBJECT_MAX (cap_obj) < OBJECT_MAX (obj))
|
2403 |
|
|
OBJECT_MAX (cap_obj) = OBJECT_MAX (obj);
|
2404 |
|
|
if (OBJECT_MIN (cap_obj) > OBJECT_MIN (obj))
|
2405 |
|
|
OBJECT_MIN (cap_obj) = OBJECT_MIN (obj);
|
2406 |
|
|
}
|
2407 |
|
|
continue;
|
2408 |
|
|
}
|
2409 |
|
|
if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL)
|
2410 |
|
|
continue;
|
2411 |
|
|
parent_a = parent->regno_allocno_map[i];
|
2412 |
|
|
parent_obj = ALLOCNO_OBJECT (parent_a, j);
|
2413 |
|
|
if (OBJECT_MAX (parent_obj) < OBJECT_MAX (obj))
|
2414 |
|
|
OBJECT_MAX (parent_obj) = OBJECT_MAX (obj);
|
2415 |
|
|
if (OBJECT_MIN (parent_obj) > OBJECT_MIN (obj))
|
2416 |
|
|
OBJECT_MIN (parent_obj) = OBJECT_MIN (obj);
|
2417 |
|
|
}
|
2418 |
|
|
}
|
2419 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
2420 |
|
|
FOR_EACH_OBJECT (obj, oi)
|
2421 |
|
|
{
|
2422 |
|
|
if ((0 <= OBJECT_MIN (obj) && OBJECT_MIN (obj) <= ira_max_point)
|
2423 |
|
|
&& (0 <= OBJECT_MAX (obj) && OBJECT_MAX (obj) <= ira_max_point))
|
2424 |
|
|
continue;
|
2425 |
|
|
gcc_unreachable ();
|
2426 |
|
|
}
|
2427 |
|
|
#endif
|
2428 |
|
|
}
|
2429 |
|
|
|
2430 |
|
|
/* Sort allocnos according to their live ranges. Allocnos with
|
2431 |
|
|
smaller allocno class are put first unless we use priority
|
2432 |
|
|
coloring. Allocnos with the same class are ordered according
|
2433 |
|
|
their start (min). Allocnos with the same start are ordered
|
2434 |
|
|
according their finish (max). */
|
2435 |
|
|
static int
|
2436 |
|
|
object_range_compare_func (const void *v1p, const void *v2p)
|
2437 |
|
|
{
|
2438 |
|
|
int diff;
|
2439 |
|
|
ira_object_t obj1 = *(const ira_object_t *) v1p;
|
2440 |
|
|
ira_object_t obj2 = *(const ira_object_t *) v2p;
|
2441 |
|
|
ira_allocno_t a1 = OBJECT_ALLOCNO (obj1);
|
2442 |
|
|
ira_allocno_t a2 = OBJECT_ALLOCNO (obj2);
|
2443 |
|
|
|
2444 |
|
|
if ((diff = OBJECT_MIN (obj1) - OBJECT_MIN (obj2)) != 0)
|
2445 |
|
|
return diff;
|
2446 |
|
|
if ((diff = OBJECT_MAX (obj1) - OBJECT_MAX (obj2)) != 0)
|
2447 |
|
|
return diff;
|
2448 |
|
|
return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
|
2449 |
|
|
}
|
2450 |
|
|
|
2451 |
|
|
/* Sort ira_object_id_map and set up conflict id of allocnos. */
|
2452 |
|
|
static void
|
2453 |
|
|
sort_conflict_id_map (void)
|
2454 |
|
|
{
|
2455 |
|
|
int i, num;
|
2456 |
|
|
ira_allocno_t a;
|
2457 |
|
|
ira_allocno_iterator ai;
|
2458 |
|
|
|
2459 |
|
|
num = 0;
|
2460 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2461 |
|
|
{
|
2462 |
|
|
ira_allocno_object_iterator oi;
|
2463 |
|
|
ira_object_t obj;
|
2464 |
|
|
|
2465 |
|
|
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
2466 |
|
|
ira_object_id_map[num++] = obj;
|
2467 |
|
|
}
|
2468 |
|
|
qsort (ira_object_id_map, num, sizeof (ira_object_t),
|
2469 |
|
|
object_range_compare_func);
|
2470 |
|
|
for (i = 0; i < num; i++)
|
2471 |
|
|
{
|
2472 |
|
|
ira_object_t obj = ira_object_id_map[i];
|
2473 |
|
|
|
2474 |
|
|
gcc_assert (obj != NULL);
|
2475 |
|
|
OBJECT_CONFLICT_ID (obj) = i;
|
2476 |
|
|
}
|
2477 |
|
|
for (i = num; i < ira_objects_num; i++)
|
2478 |
|
|
ira_object_id_map[i] = NULL;
|
2479 |
|
|
}
|
2480 |
|
|
|
2481 |
|
|
/* Set up minimal and maximal conflict ids of allocnos with which
|
2482 |
|
|
given allocno can conflict. */
|
2483 |
|
|
static void
|
2484 |
|
|
setup_min_max_conflict_allocno_ids (void)
|
2485 |
|
|
{
|
2486 |
|
|
int aclass;
|
2487 |
|
|
int i, j, min, max, start, finish, first_not_finished, filled_area_start;
|
2488 |
|
|
int *live_range_min, *last_lived;
|
2489 |
|
|
int word0_min, word0_max;
|
2490 |
|
|
ira_allocno_t a;
|
2491 |
|
|
ira_allocno_iterator ai;
|
2492 |
|
|
|
2493 |
|
|
live_range_min = (int *) ira_allocate (sizeof (int) * ira_objects_num);
|
2494 |
|
|
aclass = -1;
|
2495 |
|
|
first_not_finished = -1;
|
2496 |
|
|
for (i = 0; i < ira_objects_num; i++)
|
2497 |
|
|
{
|
2498 |
|
|
ira_object_t obj = ira_object_id_map[i];
|
2499 |
|
|
|
2500 |
|
|
if (obj == NULL)
|
2501 |
|
|
continue;
|
2502 |
|
|
|
2503 |
|
|
a = OBJECT_ALLOCNO (obj);
|
2504 |
|
|
|
2505 |
|
|
if (aclass < 0)
|
2506 |
|
|
{
|
2507 |
|
|
aclass = ALLOCNO_CLASS (a);
|
2508 |
|
|
min = i;
|
2509 |
|
|
first_not_finished = i;
|
2510 |
|
|
}
|
2511 |
|
|
else
|
2512 |
|
|
{
|
2513 |
|
|
start = OBJECT_MIN (obj);
|
2514 |
|
|
/* If we skip an allocno, the allocno with smaller ids will
|
2515 |
|
|
be also skipped because of the secondary sorting the
|
2516 |
|
|
range finishes (see function
|
2517 |
|
|
object_range_compare_func). */
|
2518 |
|
|
while (first_not_finished < i
|
2519 |
|
|
&& start > OBJECT_MAX (ira_object_id_map
|
2520 |
|
|
[first_not_finished]))
|
2521 |
|
|
first_not_finished++;
|
2522 |
|
|
min = first_not_finished;
|
2523 |
|
|
}
|
2524 |
|
|
if (min == i)
|
2525 |
|
|
/* We could increase min further in this case but it is good
|
2526 |
|
|
enough. */
|
2527 |
|
|
min++;
|
2528 |
|
|
live_range_min[i] = OBJECT_MIN (obj);
|
2529 |
|
|
OBJECT_MIN (obj) = min;
|
2530 |
|
|
}
|
2531 |
|
|
last_lived = (int *) ira_allocate (sizeof (int) * ira_max_point);
|
2532 |
|
|
aclass = -1;
|
2533 |
|
|
filled_area_start = -1;
|
2534 |
|
|
for (i = ira_objects_num - 1; i >= 0; i--)
|
2535 |
|
|
{
|
2536 |
|
|
ira_object_t obj = ira_object_id_map[i];
|
2537 |
|
|
|
2538 |
|
|
if (obj == NULL)
|
2539 |
|
|
continue;
|
2540 |
|
|
|
2541 |
|
|
a = OBJECT_ALLOCNO (obj);
|
2542 |
|
|
if (aclass < 0)
|
2543 |
|
|
{
|
2544 |
|
|
aclass = ALLOCNO_CLASS (a);
|
2545 |
|
|
for (j = 0; j < ira_max_point; j++)
|
2546 |
|
|
last_lived[j] = -1;
|
2547 |
|
|
filled_area_start = ira_max_point;
|
2548 |
|
|
}
|
2549 |
|
|
min = live_range_min[i];
|
2550 |
|
|
finish = OBJECT_MAX (obj);
|
2551 |
|
|
max = last_lived[finish];
|
2552 |
|
|
if (max < 0)
|
2553 |
|
|
/* We could decrease max further in this case but it is good
|
2554 |
|
|
enough. */
|
2555 |
|
|
max = OBJECT_CONFLICT_ID (obj) - 1;
|
2556 |
|
|
OBJECT_MAX (obj) = max;
|
2557 |
|
|
/* In filling, we can go further A range finish to recognize
|
2558 |
|
|
intersection quickly because if the finish of subsequently
|
2559 |
|
|
processed allocno (it has smaller conflict id) range is
|
2560 |
|
|
further A range finish than they are definitely intersected
|
2561 |
|
|
(the reason for this is the allocnos with bigger conflict id
|
2562 |
|
|
have their range starts not smaller than allocnos with
|
2563 |
|
|
smaller ids. */
|
2564 |
|
|
for (j = min; j < filled_area_start; j++)
|
2565 |
|
|
last_lived[j] = i;
|
2566 |
|
|
filled_area_start = min;
|
2567 |
|
|
}
|
2568 |
|
|
ira_free (last_lived);
|
2569 |
|
|
ira_free (live_range_min);
|
2570 |
|
|
|
2571 |
|
|
/* For allocnos with more than one object, we may later record extra conflicts in
|
2572 |
|
|
subobject 0 that we cannot really know about here.
|
2573 |
|
|
For now, simply widen the min/max range of these subobjects. */
|
2574 |
|
|
|
2575 |
|
|
word0_min = INT_MAX;
|
2576 |
|
|
word0_max = INT_MIN;
|
2577 |
|
|
|
2578 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2579 |
|
|
{
|
2580 |
|
|
int n = ALLOCNO_NUM_OBJECTS (a);
|
2581 |
|
|
ira_object_t obj0;
|
2582 |
|
|
|
2583 |
|
|
if (n < 2)
|
2584 |
|
|
continue;
|
2585 |
|
|
obj0 = ALLOCNO_OBJECT (a, 0);
|
2586 |
|
|
if (OBJECT_CONFLICT_ID (obj0) < word0_min)
|
2587 |
|
|
word0_min = OBJECT_CONFLICT_ID (obj0);
|
2588 |
|
|
if (OBJECT_CONFLICT_ID (obj0) > word0_max)
|
2589 |
|
|
word0_max = OBJECT_CONFLICT_ID (obj0);
|
2590 |
|
|
}
|
2591 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2592 |
|
|
{
|
2593 |
|
|
int n = ALLOCNO_NUM_OBJECTS (a);
|
2594 |
|
|
ira_object_t obj0;
|
2595 |
|
|
|
2596 |
|
|
if (n < 2)
|
2597 |
|
|
continue;
|
2598 |
|
|
obj0 = ALLOCNO_OBJECT (a, 0);
|
2599 |
|
|
if (OBJECT_MIN (obj0) > word0_min)
|
2600 |
|
|
OBJECT_MIN (obj0) = word0_min;
|
2601 |
|
|
if (OBJECT_MAX (obj0) < word0_max)
|
2602 |
|
|
OBJECT_MAX (obj0) = word0_max;
|
2603 |
|
|
}
|
2604 |
|
|
}
|
2605 |
|
|
|
2606 |
|
|
|
2607 |
|
|
|
2608 |
|
|
static void
|
2609 |
|
|
create_caps (void)
|
2610 |
|
|
{
|
2611 |
|
|
ira_allocno_t a;
|
2612 |
|
|
ira_allocno_iterator ai;
|
2613 |
|
|
ira_loop_tree_node_t loop_tree_node;
|
2614 |
|
|
|
2615 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2616 |
|
|
{
|
2617 |
|
|
if (ALLOCNO_LOOP_TREE_NODE (a) == ira_loop_tree_root)
|
2618 |
|
|
continue;
|
2619 |
|
|
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
2620 |
|
|
create_cap_allocno (a);
|
2621 |
|
|
else if (ALLOCNO_CAP (a) == NULL)
|
2622 |
|
|
{
|
2623 |
|
|
loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
|
2624 |
|
|
if (!bitmap_bit_p (loop_tree_node->border_allocnos, ALLOCNO_NUM (a)))
|
2625 |
|
|
create_cap_allocno (a);
|
2626 |
|
|
}
|
2627 |
|
|
}
|
2628 |
|
|
}
|
2629 |
|
|
|
2630 |
|
|
|
2631 |
|
|
|
2632 |
|
|
/* The page contains code transforming more one region internal
|
2633 |
|
|
representation (IR) to one region IR which is necessary for reload.
|
2634 |
|
|
This transformation is called IR flattening. We might just rebuild
|
2635 |
|
|
the IR for one region but we don't do it because it takes a lot of
|
2636 |
|
|
time. */
|
2637 |
|
|
|
2638 |
|
|
/* Map: regno -> allocnos which will finally represent the regno for
|
2639 |
|
|
IR with one region. */
|
2640 |
|
|
static ira_allocno_t *regno_top_level_allocno_map;
|
2641 |
|
|
|
2642 |
|
|
/* Find the allocno that corresponds to A at a level one higher up in the
|
2643 |
|
|
loop tree. Returns NULL if A is a cap, or if it has no parent. */
|
2644 |
|
|
ira_allocno_t
|
2645 |
|
|
ira_parent_allocno (ira_allocno_t a)
|
2646 |
|
|
{
|
2647 |
|
|
ira_loop_tree_node_t parent;
|
2648 |
|
|
|
2649 |
|
|
if (ALLOCNO_CAP (a) != NULL)
|
2650 |
|
|
return NULL;
|
2651 |
|
|
|
2652 |
|
|
parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
|
2653 |
|
|
if (parent == NULL)
|
2654 |
|
|
return NULL;
|
2655 |
|
|
|
2656 |
|
|
return parent->regno_allocno_map[ALLOCNO_REGNO (a)];
|
2657 |
|
|
}
|
2658 |
|
|
|
2659 |
|
|
/* Find the allocno that corresponds to A at a level one higher up in the
|
2660 |
|
|
loop tree. If ALLOCNO_CAP is set for A, return that. */
|
2661 |
|
|
ira_allocno_t
|
2662 |
|
|
ira_parent_or_cap_allocno (ira_allocno_t a)
|
2663 |
|
|
{
|
2664 |
|
|
if (ALLOCNO_CAP (a) != NULL)
|
2665 |
|
|
return ALLOCNO_CAP (a);
|
2666 |
|
|
|
2667 |
|
|
return ira_parent_allocno (a);
|
2668 |
|
|
}
|
2669 |
|
|
|
2670 |
|
|
/* Process all allocnos originated from pseudo REGNO and copy live
|
2671 |
|
|
ranges, hard reg conflicts, and allocno stack reg attributes from
|
2672 |
|
|
low level allocnos to final allocnos which are destinations of
|
2673 |
|
|
removed stores at a loop exit. Return true if we copied live
|
2674 |
|
|
ranges. */
|
2675 |
|
|
static bool
|
2676 |
|
|
copy_info_to_removed_store_destinations (int regno)
|
2677 |
|
|
{
|
2678 |
|
|
ira_allocno_t a;
|
2679 |
|
|
ira_allocno_t parent_a = NULL;
|
2680 |
|
|
ira_loop_tree_node_t parent;
|
2681 |
|
|
bool merged_p;
|
2682 |
|
|
|
2683 |
|
|
merged_p = false;
|
2684 |
|
|
for (a = ira_regno_allocno_map[regno];
|
2685 |
|
|
a != NULL;
|
2686 |
|
|
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
2687 |
|
|
{
|
2688 |
|
|
if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))])
|
2689 |
|
|
/* This allocno will be removed. */
|
2690 |
|
|
continue;
|
2691 |
|
|
|
2692 |
|
|
/* Caps will be removed. */
|
2693 |
|
|
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
|
2694 |
|
|
for (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
|
2695 |
|
|
parent != NULL;
|
2696 |
|
|
parent = parent->parent)
|
2697 |
|
|
if ((parent_a = parent->regno_allocno_map[regno]) == NULL
|
2698 |
|
|
|| (parent_a
|
2699 |
|
|
== regno_top_level_allocno_map[REGNO
|
2700 |
|
|
(allocno_emit_reg (parent_a))]
|
2701 |
|
|
&& ALLOCNO_EMIT_DATA (parent_a)->mem_optimized_dest_p))
|
2702 |
|
|
break;
|
2703 |
|
|
if (parent == NULL || parent_a == NULL)
|
2704 |
|
|
continue;
|
2705 |
|
|
|
2706 |
|
|
copy_allocno_live_ranges (a, parent_a);
|
2707 |
|
|
merge_hard_reg_conflicts (a, parent_a, true);
|
2708 |
|
|
|
2709 |
|
|
ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
|
2710 |
|
|
ALLOCNO_CALLS_CROSSED_NUM (parent_a)
|
2711 |
|
|
+= ALLOCNO_CALLS_CROSSED_NUM (a);
|
2712 |
|
|
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
|
2713 |
|
|
+= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
|
2714 |
|
|
merged_p = true;
|
2715 |
|
|
}
|
2716 |
|
|
return merged_p;
|
2717 |
|
|
}
|
2718 |
|
|
|
2719 |
|
|
/* Flatten the IR. In other words, this function transforms IR as if
|
2720 |
|
|
it were built with one region (without loops). We could make it
|
2721 |
|
|
much simpler by rebuilding IR with one region, but unfortunately it
|
2722 |
|
|
takes a lot of time. MAX_REGNO_BEFORE_EMIT and
|
2723 |
|
|
IRA_MAX_POINT_BEFORE_EMIT are correspondingly MAX_REG_NUM () and
|
2724 |
|
|
IRA_MAX_POINT before emitting insns on the loop borders. */
|
2725 |
|
|
void
|
2726 |
|
|
ira_flattening (int max_regno_before_emit, int ira_max_point_before_emit)
|
2727 |
|
|
{
|
2728 |
|
|
int i, j;
|
2729 |
|
|
bool keep_p;
|
2730 |
|
|
int hard_regs_num;
|
2731 |
|
|
bool new_pseudos_p, merged_p, mem_dest_p;
|
2732 |
|
|
unsigned int n;
|
2733 |
|
|
enum reg_class aclass;
|
2734 |
|
|
ira_allocno_t a, parent_a, first, second, node_first, node_second;
|
2735 |
|
|
ira_copy_t cp;
|
2736 |
|
|
ira_loop_tree_node_t node;
|
2737 |
|
|
live_range_t r;
|
2738 |
|
|
ira_allocno_iterator ai;
|
2739 |
|
|
ira_copy_iterator ci;
|
2740 |
|
|
|
2741 |
|
|
regno_top_level_allocno_map
|
2742 |
|
|
= (ira_allocno_t *) ira_allocate (max_reg_num ()
|
2743 |
|
|
* sizeof (ira_allocno_t));
|
2744 |
|
|
memset (regno_top_level_allocno_map, 0,
|
2745 |
|
|
max_reg_num () * sizeof (ira_allocno_t));
|
2746 |
|
|
new_pseudos_p = merged_p = false;
|
2747 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2748 |
|
|
{
|
2749 |
|
|
ira_allocno_object_iterator oi;
|
2750 |
|
|
ira_object_t obj;
|
2751 |
|
|
|
2752 |
|
|
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
2753 |
|
|
/* Caps are not in the regno allocno maps and they are never
|
2754 |
|
|
will be transformed into allocnos existing after IR
|
2755 |
|
|
flattening. */
|
2756 |
|
|
continue;
|
2757 |
|
|
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
2758 |
|
|
COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
|
2759 |
|
|
OBJECT_CONFLICT_HARD_REGS (obj));
|
2760 |
|
|
#ifdef STACK_REGS
|
2761 |
|
|
ALLOCNO_TOTAL_NO_STACK_REG_P (a) = ALLOCNO_NO_STACK_REG_P (a);
|
2762 |
|
|
#endif
|
2763 |
|
|
}
|
2764 |
|
|
/* Fix final allocno attributes. */
|
2765 |
|
|
for (i = max_regno_before_emit - 1; i >= FIRST_PSEUDO_REGISTER; i--)
|
2766 |
|
|
{
|
2767 |
|
|
mem_dest_p = false;
|
2768 |
|
|
for (a = ira_regno_allocno_map[i];
|
2769 |
|
|
a != NULL;
|
2770 |
|
|
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
2771 |
|
|
{
|
2772 |
|
|
ira_emit_data_t parent_data, data = ALLOCNO_EMIT_DATA (a);
|
2773 |
|
|
|
2774 |
|
|
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
|
2775 |
|
|
if (data->somewhere_renamed_p)
|
2776 |
|
|
new_pseudos_p = true;
|
2777 |
|
|
parent_a = ira_parent_allocno (a);
|
2778 |
|
|
if (parent_a == NULL)
|
2779 |
|
|
{
|
2780 |
|
|
ALLOCNO_COPIES (a) = NULL;
|
2781 |
|
|
regno_top_level_allocno_map[REGNO (data->reg)] = a;
|
2782 |
|
|
continue;
|
2783 |
|
|
}
|
2784 |
|
|
ira_assert (ALLOCNO_CAP_MEMBER (parent_a) == NULL);
|
2785 |
|
|
|
2786 |
|
|
if (data->mem_optimized_dest != NULL)
|
2787 |
|
|
mem_dest_p = true;
|
2788 |
|
|
parent_data = ALLOCNO_EMIT_DATA (parent_a);
|
2789 |
|
|
if (REGNO (data->reg) == REGNO (parent_data->reg))
|
2790 |
|
|
{
|
2791 |
|
|
merge_hard_reg_conflicts (a, parent_a, true);
|
2792 |
|
|
move_allocno_live_ranges (a, parent_a);
|
2793 |
|
|
merged_p = true;
|
2794 |
|
|
parent_data->mem_optimized_dest_p
|
2795 |
|
|
= (parent_data->mem_optimized_dest_p
|
2796 |
|
|
|| data->mem_optimized_dest_p);
|
2797 |
|
|
continue;
|
2798 |
|
|
}
|
2799 |
|
|
new_pseudos_p = true;
|
2800 |
|
|
for (;;)
|
2801 |
|
|
{
|
2802 |
|
|
ALLOCNO_NREFS (parent_a) -= ALLOCNO_NREFS (a);
|
2803 |
|
|
ALLOCNO_FREQ (parent_a) -= ALLOCNO_FREQ (a);
|
2804 |
|
|
ALLOCNO_CALL_FREQ (parent_a) -= ALLOCNO_CALL_FREQ (a);
|
2805 |
|
|
ALLOCNO_CALLS_CROSSED_NUM (parent_a)
|
2806 |
|
|
-= ALLOCNO_CALLS_CROSSED_NUM (a);
|
2807 |
|
|
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
|
2808 |
|
|
-= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
|
2809 |
|
|
ira_assert (ALLOCNO_CALLS_CROSSED_NUM (parent_a) >= 0
|
2810 |
|
|
&& ALLOCNO_NREFS (parent_a) >= 0
|
2811 |
|
|
&& ALLOCNO_FREQ (parent_a) >= 0);
|
2812 |
|
|
aclass = ALLOCNO_CLASS (parent_a);
|
2813 |
|
|
hard_regs_num = ira_class_hard_regs_num[aclass];
|
2814 |
|
|
if (ALLOCNO_HARD_REG_COSTS (a) != NULL
|
2815 |
|
|
&& ALLOCNO_HARD_REG_COSTS (parent_a) != NULL)
|
2816 |
|
|
for (j = 0; j < hard_regs_num; j++)
|
2817 |
|
|
ALLOCNO_HARD_REG_COSTS (parent_a)[j]
|
2818 |
|
|
-= ALLOCNO_HARD_REG_COSTS (a)[j];
|
2819 |
|
|
if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL
|
2820 |
|
|
&& ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a) != NULL)
|
2821 |
|
|
for (j = 0; j < hard_regs_num; j++)
|
2822 |
|
|
ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a)[j]
|
2823 |
|
|
-= ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[j];
|
2824 |
|
|
ALLOCNO_CLASS_COST (parent_a)
|
2825 |
|
|
-= ALLOCNO_CLASS_COST (a);
|
2826 |
|
|
ALLOCNO_MEMORY_COST (parent_a) -= ALLOCNO_MEMORY_COST (a);
|
2827 |
|
|
parent_a = ira_parent_allocno (parent_a);
|
2828 |
|
|
if (parent_a == NULL)
|
2829 |
|
|
break;
|
2830 |
|
|
}
|
2831 |
|
|
ALLOCNO_COPIES (a) = NULL;
|
2832 |
|
|
regno_top_level_allocno_map[REGNO (data->reg)] = a;
|
2833 |
|
|
}
|
2834 |
|
|
if (mem_dest_p && copy_info_to_removed_store_destinations (i))
|
2835 |
|
|
merged_p = true;
|
2836 |
|
|
}
|
2837 |
|
|
ira_assert (new_pseudos_p || ira_max_point_before_emit == ira_max_point);
|
2838 |
|
|
if (merged_p || ira_max_point_before_emit != ira_max_point)
|
2839 |
|
|
ira_rebuild_start_finish_chains ();
|
2840 |
|
|
if (new_pseudos_p)
|
2841 |
|
|
{
|
2842 |
|
|
sparseset objects_live;
|
2843 |
|
|
|
2844 |
|
|
/* Rebuild conflicts. */
|
2845 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2846 |
|
|
{
|
2847 |
|
|
ira_allocno_object_iterator oi;
|
2848 |
|
|
ira_object_t obj;
|
2849 |
|
|
|
2850 |
|
|
if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
|
2851 |
|
|
|| ALLOCNO_CAP_MEMBER (a) != NULL)
|
2852 |
|
|
continue;
|
2853 |
|
|
FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
|
2854 |
|
|
{
|
2855 |
|
|
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
2856 |
|
|
ira_assert (r->object == obj);
|
2857 |
|
|
clear_conflicts (obj);
|
2858 |
|
|
}
|
2859 |
|
|
}
|
2860 |
|
|
objects_live = sparseset_alloc (ira_objects_num);
|
2861 |
|
|
for (i = 0; i < ira_max_point; i++)
|
2862 |
|
|
{
|
2863 |
|
|
for (r = ira_start_point_ranges[i]; r != NULL; r = r->start_next)
|
2864 |
|
|
{
|
2865 |
|
|
ira_object_t obj = r->object;
|
2866 |
|
|
|
2867 |
|
|
a = OBJECT_ALLOCNO (obj);
|
2868 |
|
|
if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
|
2869 |
|
|
|| ALLOCNO_CAP_MEMBER (a) != NULL)
|
2870 |
|
|
continue;
|
2871 |
|
|
|
2872 |
|
|
aclass = ALLOCNO_CLASS (a);
|
2873 |
|
|
sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
|
2874 |
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, n)
|
2875 |
|
|
{
|
2876 |
|
|
ira_object_t live_obj = ira_object_id_map[n];
|
2877 |
|
|
ira_allocno_t live_a = OBJECT_ALLOCNO (live_obj);
|
2878 |
|
|
enum reg_class live_aclass = ALLOCNO_CLASS (live_a);
|
2879 |
|
|
|
2880 |
|
|
if (ira_reg_classes_intersect_p[aclass][live_aclass]
|
2881 |
|
|
/* Don't set up conflict for the allocno with itself. */
|
2882 |
|
|
&& live_a != a)
|
2883 |
|
|
ira_add_conflict (obj, live_obj);
|
2884 |
|
|
}
|
2885 |
|
|
}
|
2886 |
|
|
|
2887 |
|
|
for (r = ira_finish_point_ranges[i]; r != NULL; r = r->finish_next)
|
2888 |
|
|
sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (r->object));
|
2889 |
|
|
}
|
2890 |
|
|
sparseset_free (objects_live);
|
2891 |
|
|
compress_conflict_vecs ();
|
2892 |
|
|
}
|
2893 |
|
|
/* Mark some copies for removing and change allocnos in the rest
|
2894 |
|
|
copies. */
|
2895 |
|
|
FOR_EACH_COPY (cp, ci)
|
2896 |
|
|
{
|
2897 |
|
|
if (ALLOCNO_CAP_MEMBER (cp->first) != NULL
|
2898 |
|
|
|| ALLOCNO_CAP_MEMBER (cp->second) != NULL)
|
2899 |
|
|
{
|
2900 |
|
|
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
|
2901 |
|
|
fprintf
|
2902 |
|
|
(ira_dump_file, " Remove cp%d:%c%dr%d-%c%dr%d\n",
|
2903 |
|
|
cp->num, ALLOCNO_CAP_MEMBER (cp->first) != NULL ? 'c' : 'a',
|
2904 |
|
|
ALLOCNO_NUM (cp->first),
|
2905 |
|
|
REGNO (allocno_emit_reg (cp->first)),
|
2906 |
|
|
ALLOCNO_CAP_MEMBER (cp->second) != NULL ? 'c' : 'a',
|
2907 |
|
|
ALLOCNO_NUM (cp->second),
|
2908 |
|
|
REGNO (allocno_emit_reg (cp->second)));
|
2909 |
|
|
cp->loop_tree_node = NULL;
|
2910 |
|
|
continue;
|
2911 |
|
|
}
|
2912 |
|
|
first
|
2913 |
|
|
= regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->first))];
|
2914 |
|
|
second
|
2915 |
|
|
= regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->second))];
|
2916 |
|
|
node = cp->loop_tree_node;
|
2917 |
|
|
if (node == NULL)
|
2918 |
|
|
keep_p = true; /* It copy generated in ira-emit.c. */
|
2919 |
|
|
else
|
2920 |
|
|
{
|
2921 |
|
|
/* Check that the copy was not propagated from level on
|
2922 |
|
|
which we will have different pseudos. */
|
2923 |
|
|
node_first = node->regno_allocno_map[ALLOCNO_REGNO (cp->first)];
|
2924 |
|
|
node_second = node->regno_allocno_map[ALLOCNO_REGNO (cp->second)];
|
2925 |
|
|
keep_p = ((REGNO (allocno_emit_reg (first))
|
2926 |
|
|
== REGNO (allocno_emit_reg (node_first)))
|
2927 |
|
|
&& (REGNO (allocno_emit_reg (second))
|
2928 |
|
|
== REGNO (allocno_emit_reg (node_second))));
|
2929 |
|
|
}
|
2930 |
|
|
if (keep_p)
|
2931 |
|
|
{
|
2932 |
|
|
cp->loop_tree_node = ira_loop_tree_root;
|
2933 |
|
|
cp->first = first;
|
2934 |
|
|
cp->second = second;
|
2935 |
|
|
}
|
2936 |
|
|
else
|
2937 |
|
|
{
|
2938 |
|
|
cp->loop_tree_node = NULL;
|
2939 |
|
|
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
|
2940 |
|
|
fprintf (ira_dump_file, " Remove cp%d:a%dr%d-a%dr%d\n",
|
2941 |
|
|
cp->num, ALLOCNO_NUM (cp->first),
|
2942 |
|
|
REGNO (allocno_emit_reg (cp->first)),
|
2943 |
|
|
ALLOCNO_NUM (cp->second),
|
2944 |
|
|
REGNO (allocno_emit_reg (cp->second)));
|
2945 |
|
|
}
|
2946 |
|
|
}
|
2947 |
|
|
/* Remove unnecessary allocnos on lower levels of the loop tree. */
|
2948 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
2949 |
|
|
{
|
2950 |
|
|
if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
|
2951 |
|
|
|| ALLOCNO_CAP_MEMBER (a) != NULL)
|
2952 |
|
|
{
|
2953 |
|
|
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
|
2954 |
|
|
fprintf (ira_dump_file, " Remove a%dr%d\n",
|
2955 |
|
|
ALLOCNO_NUM (a), REGNO (allocno_emit_reg (a)));
|
2956 |
|
|
finish_allocno (a);
|
2957 |
|
|
continue;
|
2958 |
|
|
}
|
2959 |
|
|
ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
|
2960 |
|
|
ALLOCNO_REGNO (a) = REGNO (allocno_emit_reg (a));
|
2961 |
|
|
ALLOCNO_CAP (a) = NULL;
|
2962 |
|
|
/* Restore updated costs for assignments from reload. */
|
2963 |
|
|
ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
|
2964 |
|
|
ALLOCNO_UPDATED_CLASS_COST (a) = ALLOCNO_CLASS_COST (a);
|
2965 |
|
|
if (! ALLOCNO_ASSIGNED_P (a))
|
2966 |
|
|
ira_free_allocno_updated_costs (a);
|
2967 |
|
|
ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
|
2968 |
|
|
ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
|
2969 |
|
|
}
|
2970 |
|
|
/* Remove unnecessary copies. */
|
2971 |
|
|
FOR_EACH_COPY (cp, ci)
|
2972 |
|
|
{
|
2973 |
|
|
if (cp->loop_tree_node == NULL)
|
2974 |
|
|
{
|
2975 |
|
|
ira_copies[cp->num] = NULL;
|
2976 |
|
|
finish_copy (cp);
|
2977 |
|
|
continue;
|
2978 |
|
|
}
|
2979 |
|
|
ira_assert
|
2980 |
|
|
(ALLOCNO_LOOP_TREE_NODE (cp->first) == ira_loop_tree_root
|
2981 |
|
|
&& ALLOCNO_LOOP_TREE_NODE (cp->second) == ira_loop_tree_root);
|
2982 |
|
|
ira_add_allocno_copy_to_list (cp);
|
2983 |
|
|
ira_swap_allocno_copy_ends_if_necessary (cp);
|
2984 |
|
|
}
|
2985 |
|
|
rebuild_regno_allocno_maps ();
|
2986 |
|
|
if (ira_max_point != ira_max_point_before_emit)
|
2987 |
|
|
ira_compress_allocno_live_ranges ();
|
2988 |
|
|
ira_free (regno_top_level_allocno_map);
|
2989 |
|
|
}
|
2990 |
|
|
|
2991 |
|
|
|
2992 |
|
|
|
2993 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
2994 |
|
|
/* Check creation of all allocnos. Allocnos on lower levels should
|
2995 |
|
|
have allocnos or caps on all upper levels. */
|
2996 |
|
|
static void
|
2997 |
|
|
check_allocno_creation (void)
|
2998 |
|
|
{
|
2999 |
|
|
ira_allocno_t a;
|
3000 |
|
|
ira_allocno_iterator ai;
|
3001 |
|
|
ira_loop_tree_node_t loop_tree_node;
|
3002 |
|
|
|
3003 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
3004 |
|
|
{
|
3005 |
|
|
loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
|
3006 |
|
|
ira_assert (bitmap_bit_p (loop_tree_node->all_allocnos,
|
3007 |
|
|
ALLOCNO_NUM (a)));
|
3008 |
|
|
if (loop_tree_node == ira_loop_tree_root)
|
3009 |
|
|
continue;
|
3010 |
|
|
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
3011 |
|
|
ira_assert (ALLOCNO_CAP (a) != NULL);
|
3012 |
|
|
else if (ALLOCNO_CAP (a) == NULL)
|
3013 |
|
|
ira_assert (loop_tree_node->parent
|
3014 |
|
|
->regno_allocno_map[ALLOCNO_REGNO (a)] != NULL
|
3015 |
|
|
&& bitmap_bit_p (loop_tree_node->border_allocnos,
|
3016 |
|
|
ALLOCNO_NUM (a)));
|
3017 |
|
|
}
|
3018 |
|
|
}
|
3019 |
|
|
#endif
|
3020 |
|
|
|
3021 |
|
|
/* Identify allocnos which prefer a register class with a single hard register.
|
3022 |
|
|
Adjust ALLOCNO_CONFLICT_HARD_REG_COSTS so that conflicting allocnos are
|
3023 |
|
|
less likely to use the preferred singleton register. */
|
3024 |
|
|
static void
|
3025 |
|
|
update_conflict_hard_reg_costs (void)
|
3026 |
|
|
{
|
3027 |
|
|
ira_allocno_t a;
|
3028 |
|
|
ira_allocno_iterator ai;
|
3029 |
|
|
int i, index, min;
|
3030 |
|
|
|
3031 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
3032 |
|
|
{
|
3033 |
|
|
reg_class_t aclass = ALLOCNO_CLASS (a);
|
3034 |
|
|
reg_class_t pref = reg_preferred_class (ALLOCNO_REGNO (a));
|
3035 |
|
|
|
3036 |
|
|
if (reg_class_size[(int) pref] != 1)
|
3037 |
|
|
continue;
|
3038 |
|
|
index = ira_class_hard_reg_index[(int) aclass]
|
3039 |
|
|
[ira_class_hard_regs[(int) pref][0]];
|
3040 |
|
|
if (index < 0)
|
3041 |
|
|
continue;
|
3042 |
|
|
if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) == NULL
|
3043 |
|
|
|| ALLOCNO_HARD_REG_COSTS (a) == NULL)
|
3044 |
|
|
continue;
|
3045 |
|
|
min = INT_MAX;
|
3046 |
|
|
for (i = ira_class_hard_regs_num[(int) aclass] - 1; i >= 0; i--)
|
3047 |
|
|
if (ALLOCNO_HARD_REG_COSTS (a)[i] > ALLOCNO_CLASS_COST (a)
|
3048 |
|
|
&& min > ALLOCNO_HARD_REG_COSTS (a)[i])
|
3049 |
|
|
min = ALLOCNO_HARD_REG_COSTS (a)[i];
|
3050 |
|
|
if (min == INT_MAX)
|
3051 |
|
|
continue;
|
3052 |
|
|
ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
|
3053 |
|
|
aclass, 0);
|
3054 |
|
|
ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[index]
|
3055 |
|
|
-= min - ALLOCNO_CLASS_COST (a);
|
3056 |
|
|
}
|
3057 |
|
|
}
|
3058 |
|
|
|
3059 |
|
|
/* Create a internal representation (IR) for IRA (allocnos, copies,
|
3060 |
|
|
loop tree nodes). The function returns TRUE if we generate loop
|
3061 |
|
|
structure (besides nodes representing all function and the basic
|
3062 |
|
|
blocks) for regional allocation. A true return means that we
|
3063 |
|
|
really need to flatten IR before the reload. */
|
3064 |
|
|
bool
|
3065 |
|
|
ira_build (void)
|
3066 |
|
|
{
|
3067 |
|
|
bool loops_p;
|
3068 |
|
|
|
3069 |
|
|
df_analyze ();
|
3070 |
|
|
initiate_cost_vectors ();
|
3071 |
|
|
initiate_allocnos ();
|
3072 |
|
|
initiate_copies ();
|
3073 |
|
|
create_loop_tree_nodes ();
|
3074 |
|
|
form_loop_tree ();
|
3075 |
|
|
create_allocnos ();
|
3076 |
|
|
ira_costs ();
|
3077 |
|
|
create_allocno_objects ();
|
3078 |
|
|
ira_create_allocno_live_ranges ();
|
3079 |
|
|
remove_unnecessary_regions (false);
|
3080 |
|
|
ira_compress_allocno_live_ranges ();
|
3081 |
|
|
update_bad_spill_attribute ();
|
3082 |
|
|
loops_p = more_one_region_p ();
|
3083 |
|
|
if (loops_p)
|
3084 |
|
|
{
|
3085 |
|
|
propagate_allocno_info ();
|
3086 |
|
|
create_caps ();
|
3087 |
|
|
}
|
3088 |
|
|
ira_tune_allocno_costs ();
|
3089 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
3090 |
|
|
check_allocno_creation ();
|
3091 |
|
|
#endif
|
3092 |
|
|
setup_min_max_allocno_live_range_point ();
|
3093 |
|
|
sort_conflict_id_map ();
|
3094 |
|
|
setup_min_max_conflict_allocno_ids ();
|
3095 |
|
|
ira_build_conflicts ();
|
3096 |
|
|
update_conflict_hard_reg_costs ();
|
3097 |
|
|
if (! ira_conflicts_p)
|
3098 |
|
|
{
|
3099 |
|
|
ira_allocno_t a;
|
3100 |
|
|
ira_allocno_iterator ai;
|
3101 |
|
|
|
3102 |
|
|
/* Remove all regions but root one. */
|
3103 |
|
|
if (loops_p)
|
3104 |
|
|
{
|
3105 |
|
|
remove_unnecessary_regions (true);
|
3106 |
|
|
loops_p = false;
|
3107 |
|
|
}
|
3108 |
|
|
/* We don't save hard registers around calls for fast allocation
|
3109 |
|
|
-- add caller clobbered registers as conflicting ones to
|
3110 |
|
|
allocno crossing calls. */
|
3111 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
3112 |
|
|
if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
|
3113 |
|
|
ior_hard_reg_conflicts (a, &call_used_reg_set);
|
3114 |
|
|
}
|
3115 |
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
3116 |
|
|
print_copies (ira_dump_file);
|
3117 |
|
|
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
3118 |
|
|
{
|
3119 |
|
|
int n, nr, nr_big;
|
3120 |
|
|
ira_allocno_t a;
|
3121 |
|
|
live_range_t r;
|
3122 |
|
|
ira_allocno_iterator ai;
|
3123 |
|
|
|
3124 |
|
|
n = 0;
|
3125 |
|
|
nr = 0;
|
3126 |
|
|
nr_big = 0;
|
3127 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
3128 |
|
|
{
|
3129 |
|
|
int j, nobj = ALLOCNO_NUM_OBJECTS (a);
|
3130 |
|
|
|
3131 |
|
|
if (nobj > 1)
|
3132 |
|
|
nr_big++;
|
3133 |
|
|
for (j = 0; j < nobj; j++)
|
3134 |
|
|
{
|
3135 |
|
|
ira_object_t obj = ALLOCNO_OBJECT (a, j);
|
3136 |
|
|
n += OBJECT_NUM_CONFLICTS (obj);
|
3137 |
|
|
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
3138 |
|
|
nr++;
|
3139 |
|
|
}
|
3140 |
|
|
}
|
3141 |
|
|
fprintf (ira_dump_file, " regions=%d, blocks=%d, points=%d\n",
|
3142 |
|
|
current_loops == NULL ? 1 : VEC_length (loop_p, ira_loops.larray),
|
3143 |
|
|
n_basic_blocks, ira_max_point);
|
3144 |
|
|
fprintf (ira_dump_file,
|
3145 |
|
|
" allocnos=%d (big %d), copies=%d, conflicts=%d, ranges=%d\n",
|
3146 |
|
|
ira_allocnos_num, nr_big, ira_copies_num, n, nr);
|
3147 |
|
|
}
|
3148 |
|
|
return loops_p;
|
3149 |
|
|
}
|
3150 |
|
|
|
3151 |
|
|
/* Release the data created by function ira_build. */
|
3152 |
|
|
void
|
3153 |
|
|
ira_destroy (void)
|
3154 |
|
|
{
|
3155 |
|
|
finish_loop_tree_nodes ();
|
3156 |
|
|
finish_copies ();
|
3157 |
|
|
finish_allocnos ();
|
3158 |
|
|
finish_cost_vectors ();
|
3159 |
|
|
ira_finish_allocno_live_ranges ();
|
3160 |
|
|
}
|